Paul Scherrer Institute Scientific Report 1998. Volume III: Condensed Matter Research with Neutrons
Energy Technology Data Exchange (ETDEWEB)
Schefer, Juerg; Castellazzi, Denise; Bucher-Zimmermann, Claudia [eds.
1999-09-01
As a consequence of a major reorganisation at PSI, a new department has been formed with the groups focussing on research of condensed matter. The activities of the Laboratory of Neutron Scattering (jointly operated with the Swiss Federal Institute of Technology, ETH Zuerich), the Condensed Matter Theory Group, and the Group for Low Temperature Facilities, are described in this annual report figs., tabs., refs.
Paul Scherrer Institute Scientific Report 1998. Volume III: Condensed Matter Research with Neutrons
International Nuclear Information System (INIS)
Schefer, Juerg; Castellazzi, Denise; Bucher-Zimmermann, Claudia
1999-01-01
As a consequence of a major reorganisation at PSI, a new department has been formed with the groups focussing on research of condensed matter. The activities of the Laboratory of Neutron Scattering (jointly operated with the Swiss Federal Institute of Technology, ETH Zuerich), the Condensed Matter Theory Group, and the Group for Low Temperature Facilities, are described in this annual report
Misra, Prasanta K
2012-01-01
Physics of Condensed Matter is designed for a two-semester graduate course on condensed matter physics for students in physics and materials science. While the book offers fundamental ideas and topic areas of condensed matter physics, it also includes many recent topics of interest on which graduate students may choose to do further research. The text can also be used as a one-semester course for advanced undergraduate majors in physics, materials science, solid state chemistry, and electrical engineering, because it offers a breadth of topics applicable to these majors. The book be
Condensed elementary particle matter
International Nuclear Information System (INIS)
Kajantie, K.
1996-01-01
Quark matter is a special case of condensed elementary particle matter, matter governed by the laws of particle physics. The talk discusses how far one can get in the study of particle matter by reducing the problem to computations based on the action. As an example the computation of the phase diagram of electroweak matter is presented. It is quite possible that ultimately an antireductionist attitude will prevail: experiments will reveal unpredicted phenomena not obviously reducible to the study of the action. (orig.)
Paul Scherrer Institute Scientific Report 2000. Volume III: Condensed Matter Research with Neutrons
Energy Technology Data Exchange (ETDEWEB)
Schefer, Juerg; Castellazzi, Denise; Shea-Braun, Margit [eds.
2001-07-01
This year started with a highlight for the Swiss Spallation Neutron Source SINQ located at PSI: The thermal neutron flux exceeded the value of 10{sup 14} n cm{sup -2} s{sup 1} which may be considered as the critical limit for an advanced medium-flux neutron source. The excellent performance attracted a large number of external users to participate at the neutron scattering programme. The major part of this annual report gives an overview on the scientific activities of the staff members of the Laboratory of Neutron Scattering (jointly operated with the Swiss Federal Institute of Technology, ETH Zurich). The research topics covered diverse areas such as strongly correlated electron systems including high-temperature superconductors, low-dimensional and quantum magnetism, materials research on soft and hard matter including multilayers. Progress in 2000 in these topical areas as well as the activities of the Condensed Matter Theory Group, and the Group for Low Temperature Facilities, is described in this report. A list of scientific publications in 2000 is also provided.
Paul Scherrer Institute Scientific Report 2000. Volume III: Condensed Matter Research with Neutrons
International Nuclear Information System (INIS)
Schefer, Juerg; Castellazzi, Denise; Shea-Braun, Margit
2001-01-01
This year started with a highlight for the Swiss Spallation Neutron Source SINQ located at PSI: The thermal neutron flux exceeded the value of 10 14 n cm -2 s 1 which may be considered as the critical limit for an advanced medium-flux neutron source. The excellent performance attracted a large number of external users to participate at the neutron scattering programme. The major part of this annual report gives an overview on the scientific activities of the staff members of the Laboratory of Neutron Scattering (jointly operated with the Swiss Federal Institute of Technology, ETH Zurich). The research topics covered diverse areas such as strongly correlated electron systems including high-temperature superconductors, low-dimensional and quantum magnetism, materials research on soft and hard matter including multilayers. Progress in 2000 in these topical areas as well as the activities of the Condensed Matter Theory Group, and the Group for Low Temperature Facilities, is described in this report. A list of scientific publications in 2000 is also provided
Paul Scherrer Institute Scientific Report 1999. Volume III: Condensed Matter Research with Neutrons
Energy Technology Data Exchange (ETDEWEB)
Schefer, Juerg; Castellazzi, Denise; Shea-Braun, Margit [eds.
2000-07-01
This year was a period of consolidation of the operation at the spallation source of PSI and its scientific exploitation at an increasing number of instruments. The major part of this annual report gives an overview of the research activities in the Laboratory of Neutron Scattering (jointly operated with the Swiss Federal Institute of Technology, ETH Zurich) of our department, mainly emphasizing highly correlated electron systems and the investigation of magnetism. The activities on multilayers and surfaces, a basic research object by itself, is however also to a large extent motivated by the development of optical components for neutron- and X-ray instrumentation. While most of the solid-state work has been done with neutrons, some contributions deal with other probes, like muons and synchrotron light, exploiting the unique possibilities at PSI, to take advantage of the complementary nature of the different probes. Progress in 1999 in these topical areas as well as the activities of the Condensed Matter Theory Group, and the Group for Low Temperature Facilities, is described in this report. A list of scientific publications in 1999 is also provided.
Paul Scherrer Institute Scientific Report 1999. Volume III: Condensed Matter Research with Neutrons
International Nuclear Information System (INIS)
Schefer, Juerg; Castellazzi, Denise; Shea-Braun, Margit
2000-01-01
This year was a period of consolidation of the operation at the spallation source of PSI and its scientific exploitation at an increasing number of instruments. The major part of this annual report gives an overview of the research activities in the Laboratory of Neutron Scattering (jointly operated with the Swiss Federal Institute of Technology, ETH Zurich) of our department, mainly emphasizing highly correlated electron systems and the investigation of magnetism. The activities on multilayers and surfaces, a basic research object by itself, is however also to a large extent motivated by the development of optical components for neutron- and X-ray instrumentation. While most of the solid-state work has been done with neutrons, some contributions deal with other probes, like muons and synchrotron light, exploiting the unique possibilities at PSI, to take advantage of the complementary nature of the different probes. Progress in 1999 in these topical areas as well as the activities of the Condensed Matter Theory Group, and the Group for Low Temperature Facilities, is described in this report. A list of scientific publications in 1999 is also provided
Condensed Matter Nuclear Science
Biberian, Jean-Paul
2006-02-01
. Bloch ions / T. A. Chubb. II. Inhibited diffusion driven surface transmutations / T. A. Chubb. III. Bloch nuclides, Iwamura transmutations, and Oriani showers / T. A. Chubb. Bose-Einstein condensate. Theoretical study of nuclear reactions induced by Bose-Einstein condensation in Pd / K.-I. Tsuchiya and H. Okumura. Proposal for new experimental tests of the Bose-Einstein condensation mechanism for low-energy nuclear reaction and transmutation processes in deuterium loaded micro- and nano-scale cavities / Y. E. Kim ... [et al.]. Mixtures of charged bosons confined in harmonic traps and Bose-Einstein condensation mechanism for low-energy nuclear reactions and transmutation processes in condensed matters / Y. E. Kim and A. L. Zubarev. Alternative interpretation of low-energy nuclear reaction processes with deuterated metals based on the Bose-Einstein condensation mechanism / Y. E. Kim and T. O. Passell. Multi-body fusion. [symbol]He/[symbol]He production ratios by tetrahedral symmetric condensation / A. Takahashi. Phonon coupling. Phonon-exchange models: some new results / P. L. Hagelstein. Neutron clusters. Cold fusion phenomenon and solid state nuclear physics / H. Kozima. Neutrinos, magnetic monopoles. Neutrino-driven nuclear reactions of cold fusion and transmutation / V. Filimonov. Light monopoles theory: an overview of their effects in physics, chemistry, biology, and nuclear science (weak interactions) / G. Lochak. Electrons clusters and magnetic monopoles / M. Rambaut. Others. Effects of atomic electrons on nuclear stability and radioactive decay / D. V. Filippov, L. I. Urutskoev, and A. A. Rukhadze. Search for erzion nuclear catalysis chains from cosmic ray erzions stopping in organic scintillator / Yu. N. Bazhutov and E. V. Pletnikov. Low-energy nuclear reactions resulting as picometer interactions with similarity to K-shell electron capture / H. Hora ... [et al.] -- 5. Other topics. On the possible magnetic mechanism of shortening the runaway of RBMK-1000 reactor
Isihara, A
2007-01-01
More than a graduate text and advanced research guide on condensed matter physics, this volume is useful to plasma physicists and polymer chemists, and their students. It emphasizes applications of statistical mechanics to a variety of systems in condensed matter physics rather than theoretical derivations of the principles of statistical mechanics and techniques. Isihara addresses a dozen different subjects in separate chapters, each designed to be directly accessible and used independently of previous chapters. Topics include simple liquids, electron systems and correlations, two-dimensional
International Nuclear Information System (INIS)
Anon.
1985-01-01
The condensed matter physics research in the Physics Department of Risoe National Laboratory is predominantly experimental utilising diffraction of neutrons and x-rays. The research topics range from studies of structure, excitations and phase transitions in model systems to studies of ion transport, texture and recrystallization kinetics with a more applied nature. (author)
International Nuclear Information System (INIS)
1990-01-01
This is a summary of condensed matter physics in Brazil. It discusses as well, the perspectives and financing evolved in this research area for the next decade. It is specially concerned with semiconductors, magnetic materials, superconductivity, polymers, glasses, crystals ceramics, statistical physics, magnetic resonance and Moessbauer spectroscopy. (A.C.A.S.)
Asymmetric condensed dark matter
Energy Technology Data Exchange (ETDEWEB)
Aguirre, Anthony; Diez-Tejedor, Alberto, E-mail: aguirre@scipp.ucsc.edu, E-mail: alberto.diez@fisica.ugto.mx [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA, 95064 (United States)
2016-04-01
We explore the viability of a boson dark matter candidate with an asymmetry between the number densities of particles and antiparticles. A simple thermal field theory analysis confirms that, under certain general conditions, this component would develop a Bose-Einstein condensate in the early universe that, for appropriate model parameters, could survive the ensuing cosmological evolution until now. The condensation of a dark matter component in equilibrium with the thermal plasma is a relativistic process, hence the amount of matter dictated by the charge asymmetry is complemented by a hot relic density frozen out at the time of decoupling. Contrary to the case of ordinary WIMPs, dark matter particles in a condensate must be lighter than a few tens of eV so that the density from thermal relics is not too large. Big-Bang nucleosynthesis constrains the temperature of decoupling to the scale of the QCD phase transition or above. This requires large dark matter-to-photon ratios and very weak interactions with standard model particles.
Marder, Michael P
2010-01-01
This Second Edition presents an updated review of the whole field of condensed matter physics. It consolidates new and classic topics from disparate sources, teaching not only about the effective masses of electrons in semiconductor crystals and band theory, but also about quasicrystals, dynamics of phase separation, why rubber is more floppy than steel, granular materials, quantum dots, Berry phases, the quantum Hall effect, and Luttinger liquids.
International Nuclear Information System (INIS)
Sapoval, B.
1988-01-01
The 1988 progress report of the laboratory of the Condensed Matter Physics (Polytechnic School, France), is presented. The Laboratory activities are related to the physics of semiconductors and disordered phases. The electrical and optical properties of the semiconductors, mixed conductor, superionic conductors and ceramics, are studied. Moreover, the interfaces of those systems and the sol-gel inorganic polymerization phenomena, are investigated. The most important results obtained, concern the following investigations: the electrochemical field effect transistor, the cathodoluminescence, the low energy secondary electrons emission, the fluctuations of a two-dimensional diffused junction and the aerogels [fr
Monastyrsky, M I
2006-01-01
This book reports new results in condensed matter physics for which topological methods and ideas are important. It considers, on the one hand, recently discovered systems such as carbon nanocrystals and, on the other hand, new topological methods used to describe more traditional systems such as the Fermi surfaces of normal metals, liquid crystals and quasicrystals. The authors of the book are renowned specialists in their fields and present the results of ongoing research, some of it obtained only very recently and not yet published in monograph form.
Condensed matter physics in electrochemistry
International Nuclear Information System (INIS)
Kornyshev, A.A.
1991-01-01
Some topics in electrochemistry are considered from the condensed matter physics viewpoint in relation to the problems discussed in this book. Examples of the successful application of condensed matter physics to electrochemistry are discussed together with prospective problems and pressing questions. (author). 127 refs, 4 figs
Introduction. Cosmology meets condensed matter.
Kibble, T W B; Pickett, G R
2008-08-28
At first sight, low-temperature condensed-matter physics and early Universe cosmology seem worlds apart. Yet, in the last few years a remarkable synergy has developed between the two. It has emerged that, in terms of their mathematical description, there are surprisingly close parallels between them. This interplay has been the subject of a very successful European Science Foundation (ESF) programme entitled COSLAB ('Cosmology in the Laboratory') that ran from 2001 to 2006, itself built on an earlier ESF network called TOPDEF ('Topological Defects: Non-equilibrium Field Theory in Particle Physics, Condensed Matter and Cosmology'). The articles presented in this issue of Philosophical Transactions A are based on talks given at the Royal Society Discussion Meeting 'Cosmology meets condensed matter', held on 28 and 29 January 2008. Many of the speakers had participated earlier in the COSLAB programme, but the strength of the field is illustrated by the presence also of quite a few new participants.
Coherence and chaos in condensed matter
International Nuclear Information System (INIS)
Bishop, A.R.
1989-01-01
This paper discusses the following topics: nonlinearity in condensed matter; coherence and chaos in spatially extended condensed matter systems; nonlinearity and magnetism; and solitons and conducting polymers. 52 refs., 7 figs
Holography, Gravity and Condensed Matter
Energy Technology Data Exchange (ETDEWEB)
Hartnoll, Sean [Stanford Univ., CA (United States). Dept. of Physics
2017-12-20
Over the five years of funding from this grant, I produced 26 publications. These include a book-long monograph on "Holographic Quantum Matter" that is currently in press with MIT press. The remainder were mostly published in Physical Review Letters, the Journal of High Energy Physics, Nature Physics, Classical and Quantum Gravity and Physical Review B. Over this period, the field of holography applied to condensed matter physics developed from a promising theoretical approach to a mature conceptual and practical edifice, whose ideas were realized in experiments. My own work played a central role in this development. In particular, in the final year of this grant, I co-authored two experimental papers in which ideas that I had developed in earlier years were shown to usefully describe transport in strongly correlated materials — these papers were published in Science and in the Proceedings of the National Academy of Sciences (obviously my contribution to these papers was theoretical). My theoretical work in this period developed several new directions of research that have proven to be influential. These include (i) The construction of highly inhomogeneous black hole event horizons, realizing disordered fixed points and describing new regimes of classical gravity, (ii) The conjecture of a bound on diffusivities that could underpin transport in strongly interacting media — an idea which may be proven in the near future and has turned out to be intimately connected to studies of quantum chaos in black holes and strongly correlated media, (iii) The characterization of new forms of hydrodynamic transport, e.g. with phase-disordered order parameters. These studies pertain to key open questions in our understanding of how non-quasiparticle, intrinsically strongly interacting systems can behave. In addition to the interface between holography and strongly interacting condensed matter systems, I made several advances on understanding the role of entanglement in quantum
Fundamentals of condensed matter physics
Cohen, Marvin L
2016-01-01
Based on an established course and covering the fundamentals, central areas, and contemporary topics of this diverse field, Fundamentals of Condensed Matter Physics is a much-needed textbook for graduate students. The book begins with an introduction to the modern conceptual models of a solid from the points of view of interacting atoms and elementary excitations. It then provides students with a thorough grounding in electronic structure as a starting point to understand many properties of condensed matter systems - electronic, structural, vibrational, thermal, optical, transport, magnetic and superconductivity - and methods to calculate them. Taking readers through the concepts and techniques, the text gives both theoretically and experimentally inclined students the knowledge needed for research and teaching careers in this field. It features 200 illustrations, 40 worked examples and 150 homework problems for students to test their understanding. Solutions to the problems for instructors are available at w...
Advances in condensed matter optics
Chen, Liangyao; Jiang, Xunya; Jin, Kuijuan; Liu, Hui; Zhao, Haibin
2015-01-01
This book describes some of the more recent progresses and developmentsin the study of condensed matter optics in both theoretic and experimental fields.It will help readers, especially graduate students and scientists who are studying and working in the nano-photonic field, to understand more deeply the characteristics of light waves propagated in nano-structure-based materials with potential applications in the future.
Accelerators for condensed matter research
International Nuclear Information System (INIS)
Williams, P.R.
1990-01-01
The requirement for high energy, high luminosity beams has stimulated the science and engineering of accelerators to a point where they open up opportunities for new areas of scientific application to benefit from the advances driven by particle physics. One area of great importance is the use of electron or positron storage rings as a source of intense VUV or X-ray synchrotron radiation. An accelerator application that has grown in prominence over the last 10 years has been spallation neutron sources. Neutrons offer an advantage over X-rays as a condensed matter probe because the neutron energy is usually of the same order as the room temperature thermal energy fluctuations in the sample being studied. Another area in which accelerators are playing an increasingly important role in condensed matter research concerns the use of Mu mesons, Muons, as a probe. This paper also presents a description of the ISIS Spallation Neutron Source. The design and status of the facility are described, and examples are given of its application to the study of condensed matter. (N.K.)
Condensed matter analogues of cosmology
Kibble, Tom; Srivastava, Ajit
2013-10-01
It is always exciting when developments in one branch of physics turn out to have relevance in a quite different branch. It would be hard to find two branches farther apart in terms of energy scales than early-universe cosmology and low-temperature condensed matter physics. Nevertheless ideas about the formation of topological defects during rapid phase transitions that originated in the context of the very early universe have proved remarkably fruitful when applied to a variety of condensed matter systems. The mathematical frameworks for describing these systems can be very similar. This interconnection has led to a deeper understanding of the phenomena in condensed matter systems utilizing ideas from cosmology. At the same time, one can view these condensed matter analogues as providing, at least in a limited sense, experimental access to the phenomena of the early universe for which no direct probe is possible. As this special issue well illustrates, this remains a dynamic and exciting field. The basic idea is that when a system goes through a rapid symmetry-breaking phase transition from a symmetric phase into one with spontaneously broken symmetry, the order parameter may make different choices in different regions, creating domains that when they meet can trap defects. The scale of those domains, and hence the density of defects, is constrained by the rate at which the system goes through the transition and the speed with which order parameter information propagates. This is what has come to be known as the Kibble-Zurek mechanism. The resultant scaling laws have now been tested in a considerable variety of different systems. The earliest experiments illustrating the analogy between cosmology and condensed matter were in liquid crystals, in particular on the isotropic-to-nematic transition, primarily because it is very easy to induce the phase transition (typically at room temperature) and to image precisely what is going on. This field remains one of the
Quasiparticles in condensed matter systems
Wölfle, Peter
2018-03-01
Quasiparticles are a powerful concept of condensed matter quantum theory. In this review, the appearence and the properties of quasiparticles are presented in a unifying perspective. The principles behind the existence of quasiparticle excitations in both quantum disordered and ordered phases of fermionic and bosonic systems are discussed. The lifetime of quasiparticles is considered in particular near a continuous classical or quantum phase transition, when the nature of quasiparticles on both sides of a transition into an ordered state changes. A new concept of critical quasiparticles near a quantum critical point is introduced, and applied to quantum phase transitions in heavy fermion metals. Fractional quasiparticles in systems of restricted dimensionality are reviewed. Dirac quasiparticles emerging in so-called Dirac materials are discussed. The more recent discoveries of topologically protected chiral quasiparticles in topological matter and Majorana quasiparticles in topological superconductors are briefly reviewed.
Muonic Chemistry in Condensed Matter
2002-01-01
When polarized muons (@m|+) stop in condensed matter, muonic atoms are formed in the final part of their range, and direct measurements of the @m|+-spin polarization are possible via the asymmetric decay into positrons. The hyperfine interaction determines the characteristic precession frequencies of the @m|+ spin in muonium, @w(Mu). Such frequencies can be altered by the interactions of the muonium's electron spin with the surrounding medium. The measurement of @w(Mu) in a condensed system is known often to provide unique information regarding the system. \\\\ \\\\ In particular, the use of muonium atoms as a light isotope of the simple reactive radical H|0 allows the investigation of fast reactions of radicals over a typical time scale 10|-|9~@$<$~t~@$<$~10|-|5~sec, which is determined by the instrumental resolution at one end and by the @m|+ lifetime at the other. \\\\ \\\\ In biological macromolecules transient radicals, such as the constituents of DNA itself, exist on a time scale of sub-microseconds, acco...
Collision of Bose Condensate Dark Matter structures
International Nuclear Information System (INIS)
Guzman, F. S.
2008-01-01
The status of the scalar field or Bose condensate dark matter model is presented. Results about the solitonic behavior in collision of structures is presented as a possible explanation to the recent-possibly-solitonic behavior in the bullet cluster merger. Some estimates about the possibility to simulate the bullet cluster under the Bose Condensate dark matter model are indicated.
International Nuclear Information System (INIS)
Zacek, Viktor
2015-01-01
The quest for the missing mass of the universe has become one of the big challenges of todays particle physics and cosmology. Astronomical observations show that only 1% of the matter of the Universe is luminous. Moreover there is now convincing evidence that 85% of all gravitationally observable matter in the Universe is of a new exotic kind, different from the 'ordinary' matter surrounding us. In a series of three lectures we discuss past, recent and future efforts made world- wide to detect and/or decipher the nature of Dark Matter. In Lecture I we review our present knowledge of the Dark Matter content of the Universe and how experimenters search for it's candidates; In Lecture II we discuss so-called 'direct detection' techniques which allow to search for scattering of galactic dark matter particles with detectors in deep-underground laboratories; we discuss the interpretation of experimental results and the challenges posed by different backgrounds; In Lecture III we take a look at the 'indirect detection' of the annihilation of dark matter candidates in astrophysical objects, such as our sun or the center of the Milky Way; In addition we will have a look at efforts to produce Dark Matter particles directly at accelerators and we shall close with a look at alternative nonparticle searches and future prospects. (author)
Statistical physics and condensed matter
Energy Technology Data Exchange (ETDEWEB)
NONE
2003-07-01
This document is divided into 4 sections: 1) General aspects of statistical physics. The themes include: possible geometrical structures of thermodynamics, the thermodynamical foundation of quantum measurement, transport phenomena (kinetic theory, hydrodynamics and turbulence) and out of equilibrium systems (stochastic dynamics and turbulence). The techniques involved here are typical of applied analysis: stability criteria, mode decomposition, shocks and stochastic equations. 2) Disordered, glassy and granular systems: statics and dynamics. The complexity of the systems can be studied through the structure of their phase space. The geometry of this phase space is studied in several works: the overlap distribution can now be computed with a very high precision; the boundary energy between low lying states does not behave like in ordinary systems; and the Edward's hypothesis of equi-probability of low lying metastable states is invalidated. The phenomenon of aging, characteristic of glassy dynamics, is studied in several models. Dynamics of biological systems or of fracture is shown to bear some resemblance with that of disordered systems. 3) Quantum systems. The themes include: mesoscopic superconductors, supersymmetric approach to strongly correlated electrons, quantum criticality and heavy fermion compounds, optical sum rule violation in the cuprates, heat capacity of lattice spin models from high-temperature series expansion, Lieb-Schultz-Mattis theorem in dimension larger than one, quantum Hall effect, Bose-Einstein condensation and multiple-spin exchange model on the triangular lattice. 4) Soft condensed matter and biological systems. Path integral representations are invaluable to describe polymers, proteins and self-avoiding membranes. Using these methods, problems as diverse as the titration of a weak poly-acid by a strong base, the denaturation transition of DNA or bridge-hopping in conducting polymers have been addressed. The problems of RNA folding
Statistical physics and condensed matter
International Nuclear Information System (INIS)
2003-01-01
This document is divided into 4 sections: 1) General aspects of statistical physics. The themes include: possible geometrical structures of thermodynamics, the thermodynamical foundation of quantum measurement, transport phenomena (kinetic theory, hydrodynamics and turbulence) and out of equilibrium systems (stochastic dynamics and turbulence). The techniques involved here are typical of applied analysis: stability criteria, mode decomposition, shocks and stochastic equations. 2) Disordered, glassy and granular systems: statics and dynamics. The complexity of the systems can be studied through the structure of their phase space. The geometry of this phase space is studied in several works: the overlap distribution can now be computed with a very high precision; the boundary energy between low lying states does not behave like in ordinary systems; and the Edward's hypothesis of equi-probability of low lying metastable states is invalidated. The phenomenon of aging, characteristic of glassy dynamics, is studied in several models. Dynamics of biological systems or of fracture is shown to bear some resemblance with that of disordered systems. 3) Quantum systems. The themes include: mesoscopic superconductors, supersymmetric approach to strongly correlated electrons, quantum criticality and heavy fermion compounds, optical sum rule violation in the cuprates, heat capacity of lattice spin models from high-temperature series expansion, Lieb-Schultz-Mattis theorem in dimension larger than one, quantum Hall effect, Bose-Einstein condensation and multiple-spin exchange model on the triangular lattice. 4) Soft condensed matter and biological systems. Path integral representations are invaluable to describe polymers, proteins and self-avoiding membranes. Using these methods, problems as diverse as the titration of a weak poly-acid by a strong base, the denaturation transition of DNA or bridge-hopping in conducting polymers have been addressed. The problems of RNA folding has
Topology and condensed matter physics
Mj, Mahan; Bandyopadhyay, Abhijit
2017-01-01
This book introduces aspects of topology and applications to problems in condensed matter physics. Basic topics in mathematics have been introduced in a form accessible to physicists, and the use of topology in quantum, statistical and solid state physics has been developed with an emphasis on pedagogy. The aim is to bridge the language barrier between physics and mathematics, as well as the different specializations in physics. Pitched at the level of a graduate student of physics, this book does not assume any additional knowledge of mathematics or physics. It is therefore suited for advanced postgraduate students as well. A collection of selected problems will help the reader learn the topics on one's own, and the broad range of topics covered will make the text a valuable resource for practising researchers in the field. The book consists of two parts: one corresponds to developing the necessary mathematics and the other discusses applications to physical problems. The section on mathematics is a qui...
Vortices in a rotating dark matter condensate
International Nuclear Information System (INIS)
Yu, Rotha P; Morgan, Michael J
2002-01-01
We examine vortices in a self-gravitating dark matter Bose-Einstein condensate (BEC), consisting of ultra-low mass scalar bosons that arise during a late-time cosmological phase transition. Rotation of the dark matter BEC imprints a background phase gradient on the condensate, which establishes a harmonic trap potential for vortices. A numerical simulation of vortex dynamics shows that the vortex number density, n v ∝ r -1 , resulting in a flat velocity profile for the dark matter condensate. (letter to the editor)
Primes, Geometry and Condensed Matter
Directory of Open Access Journals (Sweden)
Al Rabeh R. H.
2009-07-01
Full Text Available Fascination with primes dates back to the Greeks and before. Primes are named by some "the elementary particles of arithmetic" as every nonprime integer is made of a unique set of primes. In this article we point to new connections between primes, geometry and physics which show that primes could be called "the elementary particles of physics" too. This study considers the problem of closely packing similar circles/spheres in 2D/3D space. This is in effect a discretization process of space and the allowable number in a pack is found to lead to some unexpected cases of prime configurations which is independent of the size of the constituents. We next suggest that a non-prime can be considered geometrically as a symmetric collection that is separable (factorable into similar parts- six is two threes or three twos for example. A collection that has no such symmetry is a prime. As a result, a physical prime aggregate is more difficult to split symmetrically resulting in an inherent stability. This "number/physical" stability idea applies to bigger collections made from smaller (prime units leading to larger stable prime structures in a limitless scaling up process. The distribution of primes among numbers can be understood better using the packing ideas described here and we further suggest that differing numbers (and values of distinct prime factors making a nonprime collection is an important factor in determining the probability and method of possible and subsequent disintegration. Disintegration is bound by energy conservation and is closely related to symmetry by Noether theorems. Thinking of condensed matter as the packing of identical elements, we examine plots of the masses of chemical elements of the periodic table, and also those of the elementary particles of physics, and show that prime packing rules seem to play a role in the make up of matter. The plots show convincingly that the growth of prime numbers and that of the masses of
Primes, Geometry and Condensed Matter
Directory of Open Access Journals (Sweden)
Al Rabeh R. H.
2009-07-01
Full Text Available Fascination with primes dates back to the Greeks and before. Primes are named by some “the elementary particles of arithmetic” as every nonprime integer is made of a unique set of primes. In this article we point to new connections between primes, geometry and physics which show that primes could be called “the elementary particles of physics” too. This study considers the problem of closely packing similar circles / spheres in 2D / 3D space. This is in effect a discretization process of space and the allowable num- ber in a pack is found to lead to some unexpected cases of prime configurations which is independent of the size of the constituents. We next suggest that a non-prime can be considered geometrically as a symmetric collection that is separable (factorable into similar parts- six is two threes or three twos for example. A collection that has no such symmetry is a prime. As a result, a physical prime aggregate is more difficult to split symmetrically resulting in an inherent stability. This “number / physical” stability idea applies to bigger collections made from smaller (prime units leading to larger sta- ble prime structures in a limitless scaling up process. The distribution of primes among numbers can be understood better using the packing ideas described here and we further suggest that differing numbers (and values of distinct prime factors making a nonprime collection is an important factor in determining the probability and method of possible and subsequent disintegration. Disintegration is bound by energy conservation and is closely related to symmetry by Noether theorems. Thinking of condensed matter as the packing of identical elements, we examine plots of the masses of chemical elements of the periodic table, and also those of the elementary particles of physics, and show that prime packing rules seem to play a role in the make up of matter. The plots show con- vincingly that the growth of prime numbers and that
Pion condensation in symmetric nuclear matter
International Nuclear Information System (INIS)
Kabir, K.; Saha, S.; Nath, L.M.
1987-09-01
Using a model which is based essentially on the chiral SU(2)xSU(2) symmetry of the pion-nucleon interaction, we examine the possibility of pion condensation in symmetric nucleon matter. We find that the pion condensation is not likely to occur in symmetric nuclear matter for any finite value of the nuclear density. Consequently, no critical opalescence phenomenon is expected to be seen in the pion-nucleus interaction. (author). 20 refs
Pion condensation in symmetric nuclear matter
Kabir, K.; Saha, S.; Nath, L. M.
1988-01-01
Using a model which is based essentially on the chiral SU(2)×SU(2) symmetry of the pion-nucleon interaction, we examine the possibility of pion condensation in symmetric nucleon matter. We find that the pion condensation is not likely to occur in symmetric nuclear matter for any finite value of the nuclear density. Consequently, no critical opalescence phenomenom is expected to be seen in the pion-nucleus interaction.
Condensed Matter Theories: Volume 25
Ludeña, Eduardo V.; Bishop, Raymond F.; Iza, Peter
2011-03-01
pt. A. Fermi and Bose fluids, exotic systems. Reemergence of the collective mode in [symbol]He and electron layers / H. M. Bohm ... [et al.]. Dissecting and testing collective and topological scenarios for the quantum critical point / J. W. Clark, V. A. Khodel and M. V. Zverev. Helium on nanopatterned surfaces at finite temperature / E. S. Hernandez ... [et al.]. Towards DFT calculations of metal clusters in quantum fluid matrices / S. A. Chin ... [et al.]. Acoustic band gap formation in metamaterials / D. P. Elford ... [et al.]. Dissipative processes in low density strongly interacting 2D electron systems / D. Neilson. Dynamical spatially resolved response function of finite 1-D nano plasmas / T. Raitza, H. Reinholz and G. Ropke. Renormalized bosons and fermions / K. A. Gernoth and M. L. Ristig. Light clusters in nuclear matter / G. Ropke -- pt. B. Quantum magnets, quantum dynamics and phase transitions. Magnetic ordering of antiferromagnets on a spatially anisotropic triangular lattice / R. F. Bishop ... [et al.]. Thermodynamic detection of quantum phase transitions / M. K. G. Kruse ... [et al.]. The SU(2) semi quantum systems dynamics and thermodynamics / C. M. Sarris and A. N. Proto -- pt. C. Physics of nanosystems and nanotechnology. Quasi-one dimensional fluids that exhibit higher dimensional behavior / S. M. Gatica ... [et al.]. Spectral properties of molecular oligomers. A non-Markovian quantum state diffusion approach / J. Roden, W. T. Strunz and A. Eisfeld. Quantum properties in transport through nanoscopic rings: Charge-spin separation and interference effects / K. Hallberg, J. Rincon and S. Ramasesha. Cooperative localization-delocalization in the high T[symbol] cuprates / J. Ranninger. Thermodynamically stable vortex states in superconducting nanowires / W. M. Wu, M. B. Sobnack and F. V. Kusmartsev.pt. D. Quantum information. Quantum information in optical lattices / A. M. Guzman and M. A. Duenas E. -- pt. E. Theory and applications of molecular
Quark Condensate in the Strange Matter
Institute of Scientific and Technical Information of China (English)
LU Chang-Fang; LU" Xiao-Fu
2003-01-01
In a nonlinear chiral SU(3) framework, we investigate the quark condensate in the strange matter including N, Σ, Ξ, and Λ, making use of chiral symmetry spontaneous breaking Lagrangian and mean-field approximation. The results show that the chiral symmetry is restored partially when the strange matter density increases and that 〈π→2〉 plays a very important role in the strange matter which may approach the constituents of the neutron stars. In addition, we can find that the strange matter density where the π-condensate emerges leads to the ratio of the nucleon number to baryon number.
String Theory Methods for Condensed Matter Physics
Nastase, Horatiu
2017-09-01
Preface; Acknowledgments; Introduction; Part I. Condensed Matter Models and Problems: 1. Lightning review of statistical mechanics, thermodynamics, phases and phase transitions; 2. Magnetism in solids; 3. Electrons in solids: Fermi gas vs. Fermi liquid; 4. Bosonic quasi-particles: phonons and plasmons; 5. Spin-charge separation in 1+1 dimensional solids: spinons and holons; 6. The Ising model and the Heisenberg spin chain; 7. Spin chains and integrable systems; 8. The thermodynamic Bethe ansatz; 9. Conformal field theories and quantum phase transitions; 10. Classical vs. quantum Hall effect; 11. Superconductivity: Landau-Ginzburg, London and BCS; 12. Topology and statistics: Berry and Chern-Simons, anyons and nonabelions; 13. Insulators; 14. The Kondo effect and the Kondo problem; 15. Hydrodynamics and transport properties: from Boltzmann to Navier-Stokes; Part II. Elements of General Relativity and String Theory: 16. The Einstein equation and the Schwarzschild solution; 17. The Reissner-Nordstrom and Kerr-Newman solutions and thermodynamic properties of black holes; 18. Extra dimensions and Kaluza-Klein; 19. Electromagnetism and gravity in various dimensions. Consistent truncations; 20. Gravity plus matter: black holes and p-branes in various dimensions; 21. Weak/strong coupling dualities in 1+1, 2+1, 3+1 and d+1 dimensions; 22. The relativistic point particle and the relativistic string; 23. Lightcone strings and quantization; 24. D-branes and gauge fields; 25. Electromagnetic fields on D-branes. Supersymmetry and N = 4 SYM. T-duality of closed strings; 26. Dualities and M theory; 27. The AdS/CFT correspondence: definition and motivation; Part III. Applying String Theory to Condensed Matter Problems: 28. The pp wave correspondence: string Hamiltonian from N = 4 SYM; 29. Spin chains from N = 4 SYM; 30. The Bethe ansatz: Bethe strings from classical strings in AdS; 31. Integrability and AdS/CFT; 32. AdS/CFT phenomenology: Lifshitz, Galilean and Schrodinger
Implanted muon studies in condensed matter science
International Nuclear Information System (INIS)
Cox, S.F.J.
1986-12-01
The paper reviews the broad range of applications of implanted muons in condensed matter. Muon spin rotation is discussed, along with the studies in magnetism, muonion, metals and organic radicals. A description of muon spin relaxation is also given, as well as techniques and applications appropriate to pulsed muon sources. (UK)
Condensed matter studies by nuclear methods
International Nuclear Information System (INIS)
Krolas, K.; Tomala, K.
1988-01-01
The separate abstract was prepared for 1 of the papers in this volume. The remaining 13 papers dealing with the use but not with advances in the use of nuclear methods in studies of condensed matter, were considered outside the subject scope of INIS. (M.F.W.)
International Nuclear Information System (INIS)
Daillant, J.
1997-01-01
After a historical review of the discovery and study of X rays, the various interaction processes between X rays and matter are described: Thomson scattering, Compton scattering, X-photon absorption through photoelectric effect, and magnetic scattering. X ray sources such as the European Synchrotron Radiation Facility (ESRF) are described. The various X-ray applications are presented: imagery such as X tomography, X microscopy, phase contrast; X-ray photoelectron spectroscopy and X-ray absorption spectroscopy; X-ray scattering and diffraction techniques
Pion condensation in symmetric nuclear matter
International Nuclear Information System (INIS)
Shamsunnahar, T.; Saha, S.; Kabir, K.; Nath, L.M.
1991-01-01
We have investigated the possibility of pion condensation in symmetric nuclear matter using a model of pion-nucleon interaction based essentially on chiral SU(2) x SU(2) symmetry. We have found that pion condensation is not possible for any finite value of the density. Consequently, no critical opalescence phenomenon is likely to be seen in pion-nucleus scattering nor is it likely to be possible to explain the EMC effect in terms of an increased number of pions in the nucleus. (author)
Condensate cosmology: Dark energy from dark matter
International Nuclear Information System (INIS)
Bassett, Bruce A.; Parkinson, David; Kunz, Martin; Ungarelli, Carlo
2003-01-01
Imagine a scenario in which the dark energy forms via the condensation of dark matter at some low redshift. The Compton wavelength therefore changes from small to very large at the transition, unlike quintessence or metamorphosis. We study cosmic microwave background (CMB), large scale structure, supernova and radio galaxy constraints on condensation by performing a four parameter likelihood analysis over the Hubble constant and the three parameters associated with Q, the condensate field: Ω Q , w f and z t (energy density and equation of state today, and redshift of transition). Condensation roughly interpolates between ΛCDM (for large z t ) and SCDM (low z t ) and provides a slightly better fit to the data than ΛCDM. We confirm that there is no degeneracy in the CMB between H and z t and discuss the implications of late-time transitions for the Lyman-α forest. Finally we discuss the nonlinear phase of both condensation and metamorphosis, which is much more interesting than in standard quintessence models
Open problems in condensed matter physics, 1987
International Nuclear Information System (INIS)
Falicov, L.M.
1988-08-01
The 1970's and 1980's can be considered the third stage in the explosive development of condensed matter physics. After the very intensive research of the 1930's and 1940's, which followed the formulation of quantum mechanics, and the path-breaking activity of the 1950's and 1960's, the problems being faced now are much more complex and not always susceptible to simple modelling. The (subjectively) open problems discussed here are: high temperature superconductivity, its properties and the possible new mechanisms which lead to it; the integral and fractional quantum Hall effects; new forms of order in condensed-matter systems; the physics of disorder, especially the problem of spin glasses; the physics of complex anisotropic systems; the theoretical prediction of stable and metastable states of matter; the physics of highly correlated states (heavy fermions); the physics of artificially made structures, in particular heterostructures and highly metastable states of matter; the determination of the microscopic structure of surfaces; and chaos and highly nonlinear phnomena. 82 refs
Condensation of galactic cold dark matter
International Nuclear Information System (INIS)
Visinelli, Luca
2016-01-01
We consider the steady-state regime describing the density profile of a dark matter halo, if dark matter is treated as a Bose-Einstein condensate. We first solve the fluid equation for “canonical” cold dark matter, obtaining a class of density profiles which includes the Navarro-Frenk-White profile, and which diverge at the halo core. We then solve numerically the equation obtained when an additional “quantum pressure” term is included in the computation of the density profile. The solution to this latter case is finite at the halo core, possibly avoiding the “cuspy halo problem” present in some cold dark matter theories. Within the model proposed, we predict the mass of the cold dark matter particle to be of the order of M_χc"2≈10"−"2"4 eV, which is of the same order of magnitude as that predicted in ultra-light scalar cold dark matter models. Finally, we derive the differential equation describing perturbations in the density and the pressure of the dark matter fluid.
Holographic duality in condensed matter physics
Zaanen, Jan; Sun, Ya-Wen; Schalm, Koenraad
2015-01-01
A pioneering treatise presenting how the new mathematical techniques of holographic duality unify seemingly unrelated fields of physics. This innovative development morphs quantum field theory, general relativity and the renormalisation group into a single computational framework and this book is the first to bring together a wide range of research in this rapidly developing field. Set within the context of condensed matter physics and using boxes highlighting the specific techniques required, it examines the holographic description of thermal properties of matter, Fermi liquids and superconductors, and hitherto unknown forms of macroscopically entangled quantum matter in terms of general relativity, stars and black holes. Showing that holographic duality can succeed where classic mathematical approaches fail, this text provides a thorough overview of this major breakthrough at the heart of modern physics. The inclusion of extensive introductory material using non-technical language and online Mathematica not...
Condensed matter view of giant resonance phenomena
International Nuclear Information System (INIS)
Zangwill, A.
1987-01-01
The intent of this article is to present a view of giant resonance phenomena (an essentially atomic phenomenon) from the perspective of a condensed matter physicist with an interest in the optical properties of matter. As we shall see, this amounts to a particular prejudice about how one should think about many-body effects in a system of interacting electrons. Some of these effects are special to condensed matter systems and will be dealt with in the second half of this paper. However, it turns out that the authors view of the main ingredient to a giant resonance differs significantly from that normally taken by scientists trained in the traditional methods of atomic physics. Therefore, in the first section the author will take advantage of the fact that his contribution to this volume was composed and delivered to the publishers somewhat after the conclusion of the School (rather than before as requested by the organizers) and try to clearly distinguish the differences of opinion presented by the lecturers from the unalterable experimental facts. 46 references, 9 figures
Diffusion in condensed matter methods, materials, models
Kärger, Jörg
2005-01-01
Diffusion as the process of particle transport due to stochastic movement is a phenomenon of crucial relevance for a large variety of processes and materials. This comprehensive, handbook- style survey of diffusion in condensed matter gives detailed insight into diffusion as the process of particle transport due to stochastic movement. Leading experts in the field describe in 23 chapters the different aspects of diffusion, covering microscopic and macroscopic experimental techniques and exemplary results for various classes of solids, liquids and interfaces as well as several theoretical concepts and models. Students and scientists in physics, chemistry, materials science, and biology will benefit from this detailed compilation.
Hidden Scale Invariance in Condensed Matter
DEFF Research Database (Denmark)
Dyre, J. C.
2014-01-01
. This means that the phase diagram becomes effectively one-dimensional with regard to several physical properties. Liquids and solids with isomorphs include most or all van der Waals bonded systems and metals, as well as weakly ionic or dipolar systems. On the other hand, systems with directional bonding...... (hydrogen bonds or covalent bonds) or strong Coulomb forces generally do not exhibit hidden scale invariance. The article reviews the theory behind this picture of condensed matter and the evidence for it coming from computer simulations and experiments...
STRANGE BARYONIC MATTER AND KAON CONDENSATION
Czech Academy of Sciences Publication Activity Database
Gazda, Daniel; Friedman, E.; Gal, A.; Mareš, Jiří
2011-01-01
Roč. 26, 3-4 (2011), s. 567-569 ISSN 0217-751X. [11th International Workshop on Meson Production, Properties and Interaction. Krakow, 10.06.2010-15.06.2010] R&D Projects: GA ČR GA202/09/1441 Institutional research plan: CEZ:AV0Z10480505 Keywords : (K)over-bar-nuclear bound states * strange baryonic matter * kaon condensation Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.053, year: 2011
Holographic techniques for condensed matter systems
International Nuclear Information System (INIS)
Herzog, Chistopher
2009-01-01
Full text. Gauge/gravity duality, a concept which emerged from string theory, holds promise for revealing the secrets of certain strongly interacting real world condensed matter systems. Historically, string theorists presented their subject as a promising framework for a quantum theory of gravity. More recently, the AdS/CFT correspondence and gauge/gravity dualities have emerged as powerful tools for using what we already know about gravity to investigate the properties of strongly interacting field theories. In this colloquium, I will survey recent developments where black holes are used to calculate the thermodynamic and transport properties of quantum critical systems, superconductors, superfluids, and fermions at unitarity. (author)
Dissipative phenomena in condensed matter some applications
Dattagupta, Sushanta
2004-01-01
From the field of nonequilibrium statistical physics, this graduate- and research-level volume treats the modeling and characterization of dissipative phenomena. A variety of examples from diverse disciplines like condensed matter physics, materials science, metallurgy, chemical physics etc. are discussed. Dattagupta employs the broad framework of stochastic processes and master equation techniques to obtain models for a wide range of experimentally relevant phenomena such as classical and quantum Brownian motion, spin dynamics, kinetics of phase ordering, relaxation in glasses, dissipative tunneling. It provides a pedagogical exposition of current research material and will be useful to experimentalists, computational physicists and theorists.
Collaboration in Australian condensed matter physics research
International Nuclear Information System (INIS)
Cushion, J.D.
1998-01-01
Full text: This year marks the 'coming of age' of the annual Condensed Matter Physics Meetings which has constituted possibly the most successful physics series which has been run in Australia and New Zealand. The conferences have become colloquially known as the 'Wagga conferences' to the community, leading to such strange but interpretable phrases as 'Wagga is in New Zealand this year'. It seems an appropriate time to take stock of some of the changes which have taken place in Australian condensed matter physics research over the past 21 years. Statistics will be presented on some of the trends over this time, using the Wagga abstract books as the data source. Particular emphasis will be placed on the increase in collaborative research which has occurred, fuelled by a combination of government policies, reduction in resources and increasing complexity of some of the research projects. Collaborative papers now frequently include authors from more than one university as well as from CSIRO, ANSTO/AINSE, other government and semi-government laboratories and private industry. None of these occurred in the 'early days' but most would agree that the health of the discipline has been improved by the change. It is also appropriate to point out the role of the Wagga conferences in fostering these collaborations by bringing together the groups so that they could meet, interact and discover which people had the missing expertise to make a particular project viable
Equation of state of warm condensed matter
Energy Technology Data Exchange (ETDEWEB)
Barbee, T.W., III; Young, D.A.; Rogers, F.J.
1998-03-01
Recent advances in computational condensed matter theory have yielded accurate calculations of properties of materials. These calculations have, for the most part, focused on the low temperature (T=0) limit. An accurate determination of the equation of state (EOS) at finite temperature also requires knowledge of the behavior of the electron and ion thermal pressure as a function of T. Current approaches often interpolate between calculated T=0 results and approximations valid in the high T limit. Plasma physics-based approaches are accurate in the high temperature limit, but lose accuracy below T{approximately}T{sub Fermi}. We seek to ``connect up`` these two regimes by using ab initio finite temperature methods (including linear-response[1] based phonon calculations) to derive an equation of state of condensed matter for T{<=}T{sub Fermi}. We will present theoretical results for the principal Hugoniot of shocked materials, including carbon and aluminum, up to pressures P>100 GPa and temperatures T>10{sup 4}K, and compare our results with available experimental data.
Condensed matter physics aspects of electrochemistry
International Nuclear Information System (INIS)
Tosi, M.P.; Kornyshev, A.A.
1991-01-01
This volume collects the proceedings of the Working Party on ''Electrochemistry: Condensed Matter, Atomic and Molecular Physics Aspects'', held for two weeks in the summer of 1990 at the International Centre for Theoretical Physics (ICTP) in Trieste. The goal of the meeting was to discuss those areas of electrochemistry that are accessible to the modern methods of theoretical condensed matter, atomic and molecular physics, in order to stimulate insight and deeper involvement by theoretical physicists into the field. The core of the ICTP Working Party was a set of topically grouped plenary lectures, accompanied by contributed seminars and by the formulation of joint research projects. In the tradition of the ICTP, it was not a meeting of pure theoreticians: about half of the lecturers were professional experimentalists - experts in electrochemistry, physical chemistry, surface science, technical applications. A set of topics was chosen for discussion at the meeting: Liquids, solvation, solutions; The interface (structure, characterization, electric properties, adsorption); Electrodynamics, optics, photo-emission; Charge transfer kinetics (homogeneous and heterogeneous reactions and processes); Superconducting electrodes; Fractal electrodes; Applied research (energy conversion and power sources, electrocatalysis, electroanalysis of turbulent flows). Refs, figs and tabs
Novel Quantum Condensates in Excitonic Matter
International Nuclear Information System (INIS)
Littlewood, P. B.; Keeling, J. M. J.; Simons, B. D.; Eastham, P. R.; Marchetti, F. M.; Szymanska, M. H.
2009-01-01
These lectures interleave discussion of a novel physical problem of a new kind of condensate with teaching of the fundamental theoretical tools of quantum condensed matter field theory. Polaritons and excitons are light mass composite bosons that can be made inside solids in a number of different ways. As bosonic particles, they are liable to make a phase coherent ground state - generically called a Bose-Einstein condensate (BEC) - and these lectures present some models to describe that problem, as well as general approaches to the theory. The focus is very much to explain how mean-field-like approximations that are often presented heuristically can be derived in a systematic fashion by path integral methods. Going beyond the mean field theory then produces a systematic approach to calculation of the excitation energies, and the derivation of effective low energy theories that can be generalised to more complex dynamical and spatial situations than is practicable for the full theory, as well as to study statistical properties beyond the semi-classical regime. in particular, for the polariton problem, it allows one to connect the regimes of equilibrium BEC and non-equilibrium laser. The lectures are self-sufficient, but not highly detailed. The methodological aspects are covered in standard quantum field theory texts and the presentation here is deliberately cursory: the approach will be closest to the book of Altland and Simons. Since these lectures concern a particular type of condensate, reference should also be made to texts on BEC, for example by Pitaevskii and Stringari. A recent theoretically focussed review of polariton systems covers many of the technical issues associated with the polariton problem in greater depth and provides many further references.
The Solar Photosphere: Evidence for Condensed Matter
Directory of Open Access Journals (Sweden)
Robitaille P. M.
2006-04-01
Full Text Available The stellar equations of state treat the Sun much like an ideal gas, wherein the photosphere is viewed as a sparse gaseous plasma. The temperatures inferred in the solar interior give some credence to these models, especially since it is counterintuitive that an object with internal temperatures in excess of 1 MK could be existing in the liquid state. Nonetheless, extreme temperatures, by themselves, are insufficient evidence for the states of matter. The presence of magnetic fields and gravity also impact the expected phase. In the end, it is the physical expression of a state that is required in establishing the proper phase of an object. The photosphere does not lend itself easily to treatment as a gaseous plasma. The physical evidence can be more simply reconciled with a solar body and a photosphere in the condensed state. A discussion of each physical feature follows: (1 the thermal spectrum, (2 limb darkening, (3 solar collapse, (4 the solar density, (5 seismic activity, (6 mass displacement, (7 the chromosphere and critical opalescence, (8 shape, (9 surface activity, (10 photospheric/coronal flows, (11 photospheric imaging, (12 the solar dynamo, and (13 the presence of Sun spots. The explanation of these findings by the gaseous models often requires an improbable combination of events, such as found in the stellar opacity problem. In sharp contrast, each can be explained with simplicity by the condensed state. This work is an invitation to reconsider the phase of the Sun.
Statistical mechanics and applications in condensed matter
Di Castro, Carlo
2015-01-01
This innovative and modular textbook combines classical topics in thermodynamics, statistical mechanics and many-body theory with the latest developments in condensed matter physics research. Written by internationally renowned experts and logically structured to cater for undergraduate and postgraduate students and researchers, it covers the underlying theoretical principles and includes numerous problems and worked examples to put this knowledge into practice. Three main streams provide a framework for the book; beginning with thermodynamics and classical statistical mechanics, including mean field approximation, fluctuations and the renormalization group approach to critical phenomena. The authors then examine quantum statistical mechanics, covering key topics such as normal Fermi and Luttinger liquids, superfluidity and superconductivity. Finally, they explore classical and quantum kinetics, Anderson localization and quantum interference, and disordered Fermi liquids. Unique in providing a bridge between ...
Condensed matter physics with radioactive ion beams
International Nuclear Information System (INIS)
Haas, H.
1996-01-01
An overview of the present uses of radioactive ion beams from ISOLDE for condensed matter research is presented. As simple examples of such work, tracer studies of diffusion processes with radioisotopes and blocking/channeling measurements of emitted particles for lattice location are discussed. Especially the application of nuclear hyperfine interaction techniques such as PAC or Moessbauer spectroscopy has become a powerful tool to study local electronic and structural properties at impurities. Recently, interesting information on impurity properties in semiconductors has been obtained using all these methods. The extreme sensitivity of nuclear techniques makes them also well suited for investigations of surfaces, interfaces, and biomolecules. Some ideas for future uses of high energy radioactive ion beams beyond the scope of the present projects are outlined: the study of diffusion in highly immiscible systems by deep implantation, nuclear polarization with the tilted-foil technique, and transmutation doping of wide-bandgap semiconductors. (orig.)
A duality web in condensed matter systems
Ma, Chen-Te
2018-03-01
We study various dualities in condensed matter systems. The dualities in three dimensions can be derived from a conjecture of a duality between a Dirac fermion theory and an interacting scalar field theory at a Wilson-Fisher fixed point and zero temperature in three dimensions. We show that the dualities are not affected by non-trivial holonomy, use a mean-field method to study the dualities, and discuss the dualities at a finite temperature. Finally, we combine a bulk theory, which is an Abelian p-form theory with a theta term in 2 p + 2 dimensions, and a boundary theory, which is a 2 p + 1 dimensional theory, to discuss constraints and difficulties of a 2 p + 1 dimensional duality web.
Frustration in Condensed Matter and Protein Folding
Li, Z.; Tanner, S.; Conroy, B.; Owens, F.; Tran, M. M.; Boekema, C.
2014-03-01
By means of computer modeling, we are studying frustration in condensed matter and protein folding, including the influence of temperature and Thomson-figure formation. Frustration is due to competing interactions in a disordered state. The key issue is how the particles interact to reach the lowest frustration. The relaxation for frustration is mostly a power function (randomly assigned pattern) or an exponential function (regular patterns like Thomson figures). For the atomic Thomson model, frustration is predicted to decrease with the formation of Thomson figures at zero kelvin. We attempt to apply our frustration modeling to protein folding and dynamics. We investigate the homogeneous protein frustration that would cause the speed of the protein folding to increase. Increase of protein frustration (where frustration and hydrophobicity interplay with protein folding) may lead to a protein mutation. Research is supported by WiSE@SJSU and AFC San Jose.
International Nuclear Information System (INIS)
Hillebrand, C.D.
1999-05-01
An analysis of the literature on Condensed Matter Physics, with particular emphasis on High Temperature Superconductors, was performed on the contents of the bibliographic database International Nuclear Information System (INIS). Quantitative data were obtained on various characteristics of the relevant INIS records such as subject categories, language and country of publication, publication types, etc. The analysis opens up the possibility for further studies, e.g. on international research co-operation and on publication patterns. (author)
Gravitational effects of condensate dark matter on compact stellar objects
International Nuclear Information System (INIS)
Li, X.Y.; Wang, F.Y.; Cheng, K.S.
2012-01-01
We study the gravitational effect of non-self-annihilating dark matter on compact stellar objects. The self-interaction of condensate dark matter can give high accretion rate of dark matter onto stars. Phase transition to condensation state takes place when the dark matter density exceeds the critical value. A compact degenerate dark matter core is developed and alter the structure and stability of the stellar objects. Condensate dark matter admixed neutron stars is studied through the two-fluid TOV equation. The existence of condensate dark matter deforms the mass-radius relation of neutron stars and lower their maximum baryonic masses and radii. The possible effects on the Gamma-ray Burst rate in high redshift are discussed
Physics through the 1990s: condensed-matter physics
International Nuclear Information System (INIS)
1986-01-01
The volume presents the current status of condensed-matter physics from developments since the 1970s to opportunities in the 1990s. Topics include electronic structure, vibrational properties, critical phenomena and phase transitions, magnetism, semiconductors, defects and diffusion, surfaces and interfaces, low-temperature physics, liquid-state physics, polymers, nonlinear dynamics, instabilities, and chaos. Appendices cover the connections between condensed-matter physics and applications of national interest, new experimental techniques and materials, laser spectroscopy, and national facilities for condensed-matter physics research. The needs of the research community regarding support for individual researchers and for national facilities are presented, as are recommendations for improved government-academic-industrial relations
Field theories in condensed matter physics
Concha, Andres
In this thesis, field theory is applied to different problems in the context of condensed matter physics. In the first part of this work, a classical problem in which an elastic instability appears is studied. By taking advantage of the symmetries of the system, it is shown that when a soft substrate has a stiff crust and the whole system is forced to reduce its volume, the stiff crust rearranges in a way that will break the initial rotational symmetry, producing a periodic pattern that can be manipulated at our will by suitable changes of the external parameters. It is shown that elastic interactions in this type of systems can be mapped into non-local effective potentials. The possible application of these instabilities is also discussed. In the second part of this work, quantum electrodynamics (QED) is analyzed as an emergent theory that allows us to describe the low energy excitations in two-dimensional nodal systems. In particular, the ballistic electronic transport in graphene-like systems is analyzed. We propose a novel way to control massless Dirac fermions in graphene and systems alike by controlling the group velocity through the sample. We have analyzed this problem by computing transport properties using the transmission matrix formalism and, remarkably, it is found that a behavior conforming with a Snell's-like law emerges in this system: the basic ingredient needed to produce electronic wave guides. Finally, an anisotropic and strongly interacting version of QED 3 is applied to explain the non-universal emergence of antiferromagnetic order in cuprate superconductors. It is pointed out that the dynamics of interacting vortex anti-vortex fluctuations play a crucial role in defining the strength of interactions in this system. As a consequence, we find that different phases (confined and deconfined) are possible as a function of the relative velocity of the photons with respect to the Fermi and gap velocities for low energy excitation in cuprates.
Diffusive instability of a kaon condensate in neutron star matter
International Nuclear Information System (INIS)
Kubis, Sebastian
2004-01-01
The beta equilibrated dense matter with kaon condensate is analyzed with respect to extended stability conditions, including charge fluctuations. This kind of the diffusive instability appeared to be common property in the kaon condensation case. Results for three different nuclear models are presented
Resource Letter HCMP-1: History of Condensed Matter Physics
Martin, Joseph D.
2017-02-01
This Resource Letter provides a guide to the literature on the history of condensed matter physics, including discussions of the development of the field and strategies for approaching its complicated historical trajectory. Following the presentation of general resources, journal articles and books are cited for the following topics: conceptual development; institutional and community structure; social, cultural, and political history; and connections between condensed matter physics and technology.
Shattered glass seeking the densest matter: the color glass condensate
Appell, D
2004-01-01
"Physicists investigating heavy-particle collisions believe they are on the track of a universal form of matter, one common to very high energy particles ranging from protons to heavy nuclei such as uranium. Some think that this matter, called a color glass condensate, may explain new nuclear properties and the process of particle formation during collisions. Experimentalists have recently reported intriguing data that suggest a color glass condensate has actually formed in past work" (1 page)
Applications of holography to condensed matter physics
Ross, Simon F.
2012-10-01
Holography is one of the key insights to emerge from string theory. It connects quantum gravity to field theory, and thereby provides a non-perturbative formulation of string theory. This has enabled progress on a range of theoretical issues, from the quantum description of spacetime to the calculation of scattering amplitudes in supersymmetric field theories. There have been important insights into both the field theories and the spacetime picture. More recently, applied holography has been the subject of intense and rapid development. The idea here is to use the spacetime description to address questions about strongly coupled field theory relevant to application areas such as finite-temperature QCD and condensed matter physics; the focus in this special issue is on the latter. This involves the study of field theory at finite temperature and with chemical potentials for appropriate charges, described in spacetime by charged black hole solutions. The use of holography to study these systems requires a significant extrapolation, from the field theories where classical gravitational calculations in the bulk are a useful approximation to the experimentally relevant theories. Nonetheless, the approach has had some striking qualitative successes, including the construction of holographic versions of superconducting or superfluid phase transitions, the identification of Fermi liquids with a variety of thermal behaviours, and the construction of a map between a class of gravity solutions and the hydrodynamic regime in the field theory. The use of holography provides a qualitatively new perspective on these aspects of strong coupling dynamics. In addition to insight into the behaviour of the strongly coupled field theories, this work has led to new insights into the bulk dynamics and a deeper understanding of holography. The purpose of this focus issue is to strengthen the connections between this direction and other gravitational research and to make the gravity
Condensed matter applied atomic collision physics, v.4
Datz, Sheldon
1983-01-01
Applied Atomic Collision Physics, Volume 4: Condensed Matter deals with the fundamental knowledge of collision processes in condensed media.The book focuses on the range of applications of atomic collisions in condensed matter, extending from effects on biological systems to the characterization and modification of solids. This volume begins with the description of some aspects of the physics involved in the production of ion beams. The radiation effects in biological and chemical systems, ion scattering and atomic diffraction, x-ray fluorescence analysis, and photoelectron and Auger spectrosc
Pion condensation in cold dense matter and neutron stars
International Nuclear Information System (INIS)
Haensel, P.; Proszynski, M.
1982-01-01
We study possible influence, on the neutron star structure, of a pion condensation occurring in cold dense matter. Several equations of state with pion-condensed phase are considered. The models of neutron stars are calculated and confronted with existing observational data on pulsars. Such a confrontation appears to rule out the models of dense matter with an abnormal self-bound state, and therefore it seems to exclude the possibility of the existence of abnormal superheavy neutron nuclei and abnormal neutron stars with a liquid pion-condensed surface
All basic condensed matter physics phenomena and notions mirror ...
Indian Academy of Sciences (India)
biology an opportunity to explore a variety of condensed matter phenomena and situations, some of which have ... The biological matter such as the tiniest of life, an amoeba, is alive ..... and black-holes, nature fascinates physicists. It is the ...
Proceedings of the 9. National Meeting on Condensed Matter Physics
International Nuclear Information System (INIS)
1986-01-01
The 9. National Meeting on Condensed Matter Physics presents works developed in the following fields: amorphous materials, atomic and molecular physics, biophysics, crystallography, defects, growth and critical phenomena, instrumentation, liquid crystals, magnetism, matter science/mechanical properties, metals and alloys, optic, magnetic resonance and semiconductors. (M.C.K.) [pt
Physics through the 1990s: Condensed-matter physics
International Nuclear Information System (INIS)
1986-01-01
In this survey of condensed-matter physics we describe the current status of the field, present some of the significant discoveries and developments in it since the early 1970s, and indicate some areas in which we expect that important discoveries will be made in the next decade. We also describe the resources that will be required to produce these discoveries. This volume is organized as follows. The first part is devoted to a discussion of the importance of condensed-matter physics; to brief descriptions of several of the most significant discoveries and advances in condensed-matter physics made in the 1970s and early 1980s, and of areas that appear to provide particularly exciting research opportunities in the next decade; and to a presentation of the support needs of condensed-matter physicists in the next decade and of recommendations aimed at their provision. Next, the subfields of condensed-matter physics are reviewed in detail. The volume concludes with several appendixes in which new materials, new experimental techniques, and the National Facilities are reviewed
Interplay between kaon condensation and hyperons in highly dense matter
International Nuclear Information System (INIS)
Muto, Takumi
2008-01-01
The possible coexistence and/or competition of kaon condensation with hyperons are investigated in hyperonic matter, where hyperons are mixed in the ground state of neutron-star matter. The formulation is based on the effective chiral Lagrangian for the kaon-baryon interaction and the nonrelativistic baryon-baryon interaction model. First, the onset condition of the s-wave kaon condensation realized from hyperonic matter is reexamined. It is shown that the usual assumption of the continuous phase transition is not always kept valid in the presence of the negatively charged hyperons (Σ - ). Second, the equation of state (EOS) of the kaon-condensed phase in hyperonic matter is discussed. In the case of the stronger kaon-baryon attractive interaction, it is shown that a local energy minimum with respect to the baryon number density appears as a result of considerable softening of the EOS due to both kaon condensation and hyperon mixing and recovering of the stiffness of the EOS at very high densities. This result implies a possible existence of self-bound objects with kaon condensates on any scale from an atomic nucleus to a neutron star
Long range correlations in condensed matter
International Nuclear Information System (INIS)
Bochicchio, R.C.
1990-01-01
Off diagonal long range order (ODLRO) correlations are strongly related with the generalized Bose-Einstein condensation. Under certain boundary conditions, one implies the other. These phenomena are of great importance in the description of quantum situations with a macroscopic manifestation (superfluidity, superconductivity, etc.). Since ion pairs are not bosons, the definition of ODLRO is modified. The information contained with the 2-particle propagator (electron pairs) and the consequences that lead to pairs statistics are shown in this presentation. The analogy between long range correlations and fluids is also analyzed. (Author). 17 refs
Diagrammatics lectures on selected problems in condensed matter theory
Sadovskii, Michael V
2006-01-01
The introduction of quantum field theory methods has led to a kind of "revolution" in condensed matter theory. This resulted in the increased importance of Feynman diagrams or diagram technique. It has now become imperative for professionals in condensed matter theory to have a thorough knowledge of this method.There are many good books that cover the general aspects of diagrammatic methods. At the same time, there has been a rising need for books that describe calculations and methodical "know how" of specific problems for beginners in graduate and postgraduate courses. This unique collection
Theory of condensed matter. Lectures presented at an international course
International Nuclear Information System (INIS)
1968-01-01
The International Centre for Theoretical Physics, since its inception, has striven to maintain an interdisciplinary character in its research and training programme as far as different branches of theoretical physics are concerned. in pursuance of this aim the Centre has followed a policy of organizing extended research seminars with a comprehensive and synoptic coverage on varying disciplines. The first of these — lasting over a month — was held in 1964 on fluids of ionized particles and plasma physics; the second, lasting for two months, was concerned with physics of elementary particles and high-energy physics; the third, of three months’ duration, October — December 1966, covered nuclear theory; the fourth, bringing the series through a complete cycle, was a course on condensed matter held from 3 October to 16 December 1967. The present volume records the proceedings of this research seminar. The publication is divided into four parts containing 29 papers. Part I — General Courses, Part II - Dynamical lattice properties; Part III — Liquids and molecules; Part IV — Electronic properties
Neutrino emission in inhomogeneous pion condensed quark matter
International Nuclear Information System (INIS)
Huang, Xuguang; Wang, Qun; Zhuang, Pengfei
2008-01-01
It is believed that quark matter can exist in neutron star interior if the baryon density is high enough. When there is a large isospin density, quark matter could be in a pion condensed phase. We compute neutrino emission from direct Urca processes in such a phase, particularly in the inhomogeneous Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) states. The neutrino emissivity and specific heat are obtained, from which the cooling rate is estimated. (author)
Proton mixing in -condensed phase of neutron star matter
Energy Technology Data Exchange (ETDEWEB)
Takatsuka, Tatsuyuki
1984-08-01
The mixing of protons in neutron star matter under the occurrence of condensation is studied in the framework of the ALS (Alternating Layer Spin) model and with the effective interaction approach. It is found that protons are likely to mix under the situation and cause a remarkable energy gain from neutron matter as the density increases. The extent of proton mixing becomes larger by about a factor (1.5-2.5) according to the density rho asymptotically equals (2-5)rho0, rho0 being the nuclear density, as compared with that for the case without pion condensation. The reason can be attributed to the two-dimensional nature of the Fermi gas state characteristic of the nucleon system under condensation.
Soft condensed matter: Polymers, complex fluids, and biomaterials
International Nuclear Information System (INIS)
Schaefer, D.
1995-01-01
Historians often characterize epochs through their dominant materials, clay, bronze, iron, and steel. From this perspective, the modern era is certainly the age of plastics. The progression from hard to soft materials suggests that the emerging era will be the age of open-quotes soft condensed matter.close quotes
Physics in Brazil in the next decade: condensed matter physics
International Nuclear Information System (INIS)
1990-01-01
This book gives a general overview of the present situation in Brazil, concerning research in the different areas of condensed matter physics. The main areas discussed here are: semiconductors, magnetism and magnetic materials, superconductivity liquid crystals and polymers, ceramics, glasses and crystals, statistical physics and solid state physics, crystallography, magnetic resonance and Moessbauer spectroscopy, among others. (A.C.A.S.)
Low dimensional field theories and condensed matter physics
International Nuclear Information System (INIS)
Nagaoka, Yosuke
1992-01-01
This issue is devoted to the Proceedings of the Fourth Yukawa International Seminar (YKIS '91) on Low Dimensional Field Theories and Condensed Matter Physics, which was held on July 28 to August 3 in Kyoto. In recent years there have been great experimental discoveries in the field of condensed matter physics: the quantum Hall effect and the high temperature superconductivity. Theoretical effort to clarify mechanisms of these phenomena revealed that they are deeply related to the basic problem of many-body systems with strong correlation. On the other hand, there have been important developments in field theory in low dimensions: the conformal field theory, the Chern-Simons gauge theory, etc. It was found that these theories work as a powerful method of approach to the problems in condensed matter physics. YKIS '91 was devoted to the study of common problems in low dimensional field theories and condensed matter physics. The 17 of the presented papers are collected in this issue. (J.P.N.)
The coupling of condensed matter excitations to electron probes
International Nuclear Information System (INIS)
Ritchie, R.H.
1988-01-01
Aspects of coupling of a classical electron with bulk and surface excitations in condensed matter have been sketched. Some considerations of a self-energy approach to the complete quantal treatment of this coupling have been given. 19 refs., 3 figs
Proceedings of the 12. National Meeting on Condensed Matter Physics
International Nuclear Information System (INIS)
1989-01-01
The XII National Meeting on Condensed Matter Physics presented works in the areas: atomic and molecular physics; biophysics; crystallography; defects growth and characterization of crystals; instrumentation; liquid crystals; magnetism; science of materials, metals and alloys; magnetic resonance; semiconductors; superconductivity and; surfaces and thin films. (M.C.K.) [pt
Physics of condensed matter at extreme conditions
International Nuclear Information System (INIS)
Ross, M.
1988-01-01
The study of matter under extreme conditions is a highly interdisciplinary subject with broad applications to materials science, geophysics and astrophysics. High-pressure properties are studied in the laboratory using static and dynamic techniques. The two differ drastically in the methods of generating and measuring pressure and in the fundamentally different nature of the final compressed state. This article covers a very broad range of conditions, intended to present an overview of important recent developments and to emphasize the behavior of materials and the kinds of properties now being studied
Experimental and Computational Techniques in Soft Condensed Matter Physics
Olafsen, Jeffrey
2010-09-01
1. Microscopy of soft materials Eric R. Weeks; 2. Computational methods to study jammed Systems Carl F. Schrek and Corey S. O'Hern; 3. Soft random solids: particulate gels, compressed emulsions and hybrid materials Anthony D. Dinsmore; 4. Langmuir monolayers Michael Dennin; 5. Computer modeling of granular rheology Leonardo E. Silbert; 6. Rheological and microrheological measurements of soft condensed matter John R. de Bruyn and Felix K. Oppong; 7. Particle-based measurement techniques for soft matter Nicholas T. Ouellette; 8. Cellular automata models of granular flow G. William Baxter; 9. Photoelastic materials Brian Utter; 10. Image acquisition and analysis in soft condensed matter Jeffrey S. Olafsen; 11. Structure and patterns in bacterial colonies Nicholas C. Darnton.
No pion condensate in nuclear matter due to fluctuations
International Nuclear Information System (INIS)
Kleinert, H.
1981-01-01
We show that if pion condensation occurs in a mean-field theory of infinite nuclear matter, fluctuations completely prevent the formation of a condensate as well as of the associated Goldstone mode. Thus if an increase of opalescence should ever be observed experimentally, it is these fluctuations which are measured rather than the scattering on the Goldstone modes. They preserve isotopic symmetry and increase very smoothly as the density passes the formerly critical density. There are no discontinuities in any thermodynamic quantitiy. (orig.)
Walter Kohn and the Rise of Condensed Matter Physics T V ...
Indian Academy of Sciences (India)
Ramakrishnan T V
Condensed Matter Physics: ( Physics of condensed matter, which is mostly solid, ... The nature and description of electronic states in solids. ( also with coulomb ... materials, molecular complexes, etc.. (Chemistry, biology, materials science….).
Diquark Bose Condensates in High Density Matter and Instantons
International Nuclear Information System (INIS)
Rapp, R.; Shuryak, E.; Schaefer, T.; Velkovsky, M.
1998-01-01
Instantons lead to strong correlations between up and down quarks with spin zero and antisymmetric color wave functions. In cold and dense matter, n b >n c ≅1 fm -3 and T c ∼50 thinspthinspMeV, these pairs Bose condense, replacing the usual left-angle bar qq right-angle condensate and restoring chiral symmetry. At high density, the ground state is a color superconductor in which diquarks play the role of Cooper pairs. An interesting toy model is provided by QCD with two colors: it has a particle-antiparticle symmetry which relates left-angle bar qq right-angle and left-angle qq right-angle condensates. copyright 1998 The American Physical Society
Springer Handbook of Condensed Matter and Materials Data
Martienssen, Werner
2005-01-01
Condensed Matter and Materials Science are two of the most active fields of applied physics, with a stream of discoveries in areas from superconductivity and magnetism to the optical, electronic and mechanical properties of materials. While a huge amount of data has been compiled and spread over numerous reference works, no single volume compiles the most used information. Springer Handbook of Condensed Matter and Materials Data provides a concise compilation of data and functional relationships from the fields of solid-state physics and materials in this 1200-page volume. The data, encapsulated in over 750 tables and 1025 illustrations, have been selected and extracted primarily from the extensive high-quality data collection Landolt-Börnstein and also from other systematic data sources and recent publications of physical and technical property data. Many chapters are authored by Landolt-Börnstein editors, including the editors of this Springer Handbook. Key Topics Fundamental Constants The International S...
Fundamentals of charged particle transport in gases and condensed matter
Robson, Robert E; Hildebrandt, Malte
2018-01-01
This book offers a comprehensive and cohesive overview of transport processes associated with all kinds of charged particles, including electrons, ions, positrons, and muons, in both gases and condensed matter. The emphasis is on fundamental physics, linking experiment, theory and applications. In particular, the authors discuss: The kinetic theory of gases, from the traditional Boltzmann equation to modern generalizations A complementary approach: Maxwell’s equations of change and fluid modeling Calculation of ion-atom scattering cross sections Extension to soft condensed matter, amorphous materials Applications: drift tube experiments, including the Franck-Hertz experiment, modeling plasma processing devices, muon catalysed fusion, positron emission tomography, gaseous radiation detectors Straightforward, physically-based arguments are used wherever possible to complement mathematical rigor.
10th International Workshop on Condensed Matter Theories
Kalia, Rajiv; Bishop, R
1987-01-01
The second volume of Condensed Matter Theories contains the proceedings of the 10th International Workshop held at Argonne National Laboratory, Argonne, IL, U.S.A. during the week of July 21, 1986. The workshop was attended by high-energy, nuclear and condensed-matter physicists as well as materials scientists. This diverse blend of participants was in keeping with the flavor of the previous workshops. This annual series of international workshops was"started in 1977 in Sao Paulo, Brazil. Subsequent'workshops were held in Trieste (Italy), Buenos Aires (Argentina), Caracas (Venezuela), Altenberg (West Germany), Granada (Spain), and San Francisco (U.S.A.). What began as a meeting of the physicists from the Western Hemisphere has expanded in the last three years into an international conference of scientists with diverse interests and backgrounds. This diversity has promoted a healthy exchange of ideas from different branches of physics and also fruitful interactions among the participants. The present volume is...
Condensed matter research using pulsed neutron sources: a bibliography
International Nuclear Information System (INIS)
Mildner, D.F.R.; Stirling, G.C.
1976-05-01
This report is an updated revision of RL-75-095 'Condensed Matter Research Using Pulsed Neutron Sources: A Bibliography'. As before, the survey lists published papers concerning (a) the production of high intensity neutron pulses suitable for thermal neutron scattering research, (b) moderating systems for neutron thermalization and pulse shaping, (c) techniques and instrumentation for diffraction and inelastic scattering at pulsed sources, and (d) their application to research problems concerning the structural and dynamical properties of condensed matter. Papers which deal with the white beam time-of-flight technique at steady state reactors have also been included. A number of scientists have brought to the author's attention papers which have been published since the previous edition. They are thanked and encouraged to continue the cooperation so that the bibliography may be updated periodically. (author)
Advanced spallation neutron sources for condensed matter research
International Nuclear Information System (INIS)
Lovesey, S.W.; Stirling, G.C.
1984-03-01
Advanced spallation neutron sources afford significant advantages over existing high flux reactors. The effective flux is much greater than that currently available with reactor sources. A ten-fold increase in neutron flux will be a major benefit to a wide range of condensed matter studies, and it will realise important experiments that are marginal at reactor sources. Moreover, the high intensity of epithermal neutrons open new vistas in studies of electronic states and molecular vibrations. (author)
Lectures on holographic methods for condensed matter physics
International Nuclear Information System (INIS)
Hartnoll, Sean A
2009-01-01
These notes are loosely based on lectures given at the CERN Winter School on Supergravity, Strings and Gauge theories, February 2009, and at the IPM String School in Tehran, April 2009. I have focused on a few concrete topics and also on addressing questions that have arisen repeatedly. Background condensed matter physics material is included as motivation and easy reference for the high energy physics community. The discussion of holographic techniques progresses from equilibrium, to transport and to superconductivity.
Many body quantum physics at the condensed matter
International Nuclear Information System (INIS)
Llano, M. de
1981-01-01
The non-relativistic, continuous (as opposed to spin) many-body problem as it relates to condensed matter at absolute zero temperature is reviewed in simple, non-technical terms, mainly from the standpoint of infinite order perturbation theory, for physical systems where all the particles have the same mass but which otherwise interact with arbitrary short- or long-ranged two-body forces. (author)
The 1989 progress report: Physics of the condensed matter
International Nuclear Information System (INIS)
Sapoval, B.
1989-01-01
The 1989 progress report of the laboratory of Condensed Matter Physics of the Polytechnic School (France) is presented. The laboratory research fields are the physics of semiconductors and the physics of disordered states. The 1989 main results were the determination of the fractal dimension of silicon aerogels by means of nuclear magnetic resonance and the observation of local vibrations of a fractal drum. The published papers, the conferences and Laboratory staff are listed [fr
Proceedings 17. International Conference on Applied Physics of Condensed Matter
International Nuclear Information System (INIS)
Pudis, D.; Kubicova, I.; Bury, P.
2011-01-01
The 17. International Conference on Applied Physics of Condensed Matter was held on 22-24 June, 2011 in Spa Novy Smokovec, High Tatras, Slovakia. The specialists discussed various aspects of modern problems of nano-science and technology, thin films, MOS structures, optical phenomena, GaN-based heterostructures, simulation methods, heterostructures and devices, solid state characterization and analysis, materials and radiation, sensors and detection methods, and material sciences. Contributions relevant of INIS interest (55 contributions) has been inputted to INIS.
Pion condensation and density isomerism in nuclear matter
International Nuclear Information System (INIS)
Hecking, P.; Weise, W.
1979-01-01
The possible existence of density isomers in nuclear matter, induced by pion condensation, is discussed; the nuclear equation of state is treated within the framework of the sigma model. Repulsive short-range baryon-baryon correlations, the admixture of Δ (1232) isobars and finite-range pion-baryon vertex form factors are taken into account. The strong dependence of density isomerism on the high density extrapolation of the equation of state for normal nuclear matter is also investigated. We find that, once finite range pion-baryon vertices are introduced, the appearance of density isomers becomes unlikely
Proceedings 20. International Conference on Applied Physics of Condensed Matter
International Nuclear Information System (INIS)
Vajda, J.; Jamnicky, I.
2014-01-01
The 20. International Conference on Applied Physics of Condensed Matter was held on 25-28 June, 2014 on Strbske Pleso, Strba, Slovakia. The specialists discussed various aspects of modern problems in: New materials and structures, nanostructures, thin films, their analysis and applications; Nuclear science and technology, influence of irradiation on physical properties of materials, radiation detection; Physical properties and structural aspects of solid materials and their influencing; Computational physics and theory of physical properties of matter; Optical phenomena in materials, photovoltaics and photonics, new principles in sensors and detection methods. Forty-six contributions relevant of INIS interest (forty contributions) has been inputted to INIS.
Dark matter seen as a Bose-Einstein condensate
International Nuclear Information System (INIS)
Manzoni, Andre; Pires, Marcelo
2011-01-01
Full text: Astronomical observations of the stellar angular velocity in galaxies shows the general relativity theory, which considers that the usual matter changes the space-time, unable to describe the angular velocity to the peripheral stars. There are two possibilities to solve this problem, or the general relativity theory is not adequate to the phenomena or another type of matter must be considered in the composition of the galaxies. Many astrophysicists are in agreement considering another type of matter. This matter, called dark matter (DM), must interact very weakly with the barionic matter and, therefore, is invisible to direct observation. Some of them consider this dark matter made up of weakly interacting massive particles (WIMPs), which were not detected yet due to their very thin cross-section. A cloud of these particles is distributed around the galaxy under a low temperature and density. If we consider the cloud as a quantum gas, with the energies and the densities low enough to have binary interactions between particles, the gas can reach temperature condition to take a phase transition to the Bose-Einstein condensate where there are a constructive interference partner of these WIMPs. We performed an investigation about the dark matter being a Bose-Einstein condensate of WIMPs confined in itself gravitational potential. Taking the Thomas-Fermi approximation where the number of WIMPs is big enough to neglect the kinetic contribution in the total energy, we got the state equation of barotropic gas. Fitting this state equation with the data of rotational curves and density profiles taken from astronomical observations of galaxies, we estimated the mass and the scattering length of these WIMPs. (author)
International Nuclear Information System (INIS)
Sikka, S.K.; Gupta, Satish C.; Godwal, B.K.
1997-01-01
The use of pressure as a thermodynamic variable for studying condensed matter has become very important in recent years. Its main effect is to reduce the volume of a substance. Thus, in some sense, it mimics the phenomena taking place during the cohesion of solids like pressure ionization, modifications in electronic properties and phase changes etc. Some of the phase changes under pressure lead to synthesis of new materials. The recent discovery of high T c superconductivity in YBa 2 Cu 3 O 7 may be indirectly attributed to the pressure effect. In applied fields like simulation of reactor accident, design of inertial confinement fusion schemes and for understanding the rock mechanical effects of shock propagation in earth due to underground nuclear explosions, the pressure versus volume relations of condensed matter are a vital input. This volume containing the proceedings of the International Conference on Condensed Matter Under High Pressure covers various aspects of high pressure pertaining to equations of state, phase transitions, electronic, optical and transport properties of solids, atomic and molecular studies, shock induced reactions, energetic materials, materials synthesis, mineral physics, geophysical and planetary sciences, biological applications and food processing and advances in experimental techniques and numerical simulations. Papers relevant to INIS are indexed separately
Bose-Einstein condensate & degenerate Fermi cored dark matter halos
Chung, W.-J.; Nelson, L. A.
2018-06-01
There has been considerable interest in the last several years in support of the idea that galaxies and clusters could have highly condensed cores of dark matter (DM) within their central regions. In particular, it has been suggested that dark matter could form Bose-Einstein condensates (BECs) or degenerate Fermi cores. We examine these possibilities under the assumption that the core consists of highly condensed DM (either bosons or fermions) that is embedded in a diffuse envelope (e.g., isothermal sphere). The novelty of our approach is that we invoke composite polytropes to model spherical collisionless structures in a way that is physically intuitive and can be generalized to include other equations of state (EOSs). Our model is very amenable to the analysis of BEC cores (composed of ultra-light bosons) that have been proposed to resolve small-scale CDM anomalies. We show that the analysis can readily be applied to bosons with or without small repulsive self-interactions. With respect to degenerate Fermi cores, we confirm that fermionic particle masses between 1—1000 keV are not excluded by the observations. Finally, we note that this approach can be extended to include a wide range of EOSs in addition to multi-component collisionless systems.
Is a condensed state of nuclear matter possible?
International Nuclear Information System (INIS)
D'yakonov, D.I.; Mirlin, A.D.
1988-01-01
Nucleon chiral models naturally lead to the concept of ''generalized'' or ''classical'' nucleons which are characterized by a definite orientation in spin-isospin space. Nucleons and Δ resonances are different rotational states of generalized nucleons. Interaction of two generalized nucleons is sharply anisotropic and at a definite relative orientation leads to very strong attraction. This gives an idea of possible existence of a condensed state of nuclear matter, i.e. of a crystal or Fermi liquid with a short-range order which consists of N and Δ coherent superpositions. The variational estimate shows that at densities a few times that of the standard nuclear density this condensed state may be energetically favourable
New state of matter: Bose-Einstein condensation
International Nuclear Information System (INIS)
Anon.
1995-01-01
70 years after work by the Indian physicist Satyendra Nath Bose led Einstein to predict the existence of a new state of matter, the Bose-Einstein condensate has finally been seen. The discovery was made in July by a team from Colorado, and was followed one month later by a second sighting at Rice University at Houston, Texas. It is Bose's theoretical framework governing the behaviour of the particles we now call bosons which led to Einstein's prediction. Unlike fermions, which obey the Pauli exclusion principle of only one resident particle per allowed quantum state, any number of bosons can pack into an identical quantum state. This led Einstein to suggest that under certain conditions, bosons would lose their individual identities, condensing into a kind of 'superboson'. This condensate forms when the quantum mechanical waves of neighbouring bosons overlap, hiding the identity of the individual particles. Such a condition is difficult to achieve, since most long-lived bosons are composite particles which tend to interact and stick together before a condensate can emerge. Extremely low temperatures and high densities are required to overcome this problem. As bosons lose energy and cool down, their wavelengths become longer, and they can be packed close enough together to merge into a condensate. Up until now, however, the extreme conditions needed have not been attainable. Nevertheless, hints of the Bose- Einstein condensate have been inferred in phenomena such as superconductivity and liquid helium superfluidity. Condensates could also play an important role in particle physics and cosmology, explaining, for example, why the pion as a bound quark-antiquark state is so much lighter than the three-quark proton. A hunt to create a pure Bose- Einstein condensate has been underway for over 15 years, with different groups employing different techniques to cool their bosons. The two recent successes have been achieved by incorporating several
Applied mathematics and condensed matter; Mathematiques appliquees et matiere condensee
Energy Technology Data Exchange (ETDEWEB)
Bouche, D.; Jollet, F. [CEA Bruyeres-le-Chatel, 91 (France)
2011-01-15
Applied mathematics have always been a key tool in computing the structure of condensed matter. In this paper, we present the most widely used methods, and show the importance of mathematics in their genesis and evolution. After a brief survey of quantum Monte Carlo methods, which try to compute the N electrons wave function, the paper describes the theoretical foundations of N independent particle approximations. We mainly focus on density functional theory (DFT). This theory associated with advanced numerical methods, and high performance computing, has produced significant achievements in the field. This paper presents the foundations of the theory, as well as different numerical methods used to solve DFT equations. (authors)
Non-Commutative Mechanics in Mathematical & in Condensed Matter Physics
Directory of Open Access Journals (Sweden)
Peter A. Horváthy
2006-12-01
Full Text Available Non-commutative structures were introduced, independently and around the same time, in mathematical and in condensed matter physics (see Table 1. Souriau's construction applied to the two-parameter central extension of the planar Galilei group leads to the ''exotic'' particle, which has non-commuting position coordinates. A Berry-phase argument applied to the Bloch electron yields in turn a semiclassical model that has been used to explain the anomalous/spin/optical Hall effects. The non-commutative parameter is momentum-dependent in this case, and can take the form of a monopole in momentum space.
Nanophenomena at surfaces fundamentals of exotic condensed matter phenomena
Michailov, Michail
2011-01-01
This book presents the state of the art in nanoscale surface physics. It outlines contemporary trends in the field covering a wide range of topical areas: atomic structure of surfaces and interfaces, molecular films and polymer adsorption, biologically inspired nanophysics, surface design and pattern formation, and computer modeling of interfacial phenomena. Bridging 'classical' and 'nano' concepts, the present volume brings attention to the physical background of exotic condensed-matter properties. The book is devoted to Iwan Stranski and Rostislaw Kaischew, remarkable scientists, who played
Quantum simulation of strongly correlated condensed matter systems
Hofstetter, W.; Qin, T.
2018-04-01
We review recent experimental and theoretical progress in realizing and simulating many-body phases of ultracold atoms in optical lattices, which gives access to analog quantum simulations of fundamental model Hamiltonians for strongly correlated condensed matter systems, such as the Hubbard model. After a general introduction to quantum gases in optical lattices, their preparation and cooling, and measurement techniques for relevant observables, we focus on several examples, where quantum simulations of this type have been performed successfully during the past years: Mott-insulator states, itinerant quantum magnetism, disorder-induced localization and its interplay with interactions, and topological quantum states in synthetic gauge fields.
Use of ultracold neutrons for condensed-matter studies
Energy Technology Data Exchange (ETDEWEB)
Michaudon, A.
1997-05-01
Ultracold neutrons have such low velocities that they are reflected by most materials at all incident angles and can be stored in material bottles for long periods of time during which their intrinsic properties can be studied in great detail. These features have been mainly used for fundamental-physics studies including the detection of a possible neutron electric dipole moment and the precise determination of neutron-decay properties. Ultracold neutrons can also play a role in condensed-matter studies with the help of high-resolution spectrometers that use gravity as a strongly dispersive medium for low-velocity neutrons. Such studies have so far been limited by the low intensity of existing ultracold-neutron sources but could be reconsidered with more intense sources, which are now envisaged. This report provides a broad survey of the properties of ultracold neutrons (including their reflectivity by different types of samples), of ultracold-neutron spectrometers that are compared with other high-resolution instruments, of results obtained in the field of condensed matter with these instruments, and of neutron microscopes. All these subjects are illustrated by numerous examples.
Use of ultracold neutrons for condensed-matter studies
International Nuclear Information System (INIS)
Michaudon, A.
1997-05-01
Ultracold neutrons have such low velocities that they are reflected by most materials at all incident angles and can be stored in material bottles for long periods of time during which their intrinsic properties can be studied in great detail. These features have been mainly used for fundamental-physics studies including the detection of a possible neutron electric dipole moment and the precise determination of neutron-decay properties. Ultracold neutrons can also play a role in condensed-matter studies with the help of high-resolution spectrometers that use gravity as a strongly dispersive medium for low-velocity neutrons. Such studies have so far been limited by the low intensity of existing ultracold-neutron sources but could be reconsidered with more intense sources, which are now envisaged. This report provides a broad survey of the properties of ultracold neutrons (including their reflectivity by different types of samples), of ultracold-neutron spectrometers that are compared with other high-resolution instruments, of results obtained in the field of condensed matter with these instruments, and of neutron microscopes. All these subjects are illustrated by numerous examples
International Symposium on Dynamics of Ordering Processes in Condensed Matter
Furukawa, H
1988-01-01
The International Symposium on Dynamics of Ordering Processes in Condensed Matter was held at the Kansai Seminar House, Kyoto, for four days, from 27 to 30 August 1987, under the auspices of the Physical Soci ety of Japan. The symposium was financially supported by the four orga nizations and 45 companies listed on other pages in this volume. We are very grateful to all of them and particularly to the greatest sponsor, the Commemorative Association for the Japan World Exposition 1970. A total Df 22 invited lectures and 48 poster presentations were given and 110 participants attended from seven nations. An objective of the Symposium was to review and extend our present understanding of the dynamics of ordering processes in condensed matters, (for example, alloys, polymers and fluids), that are brought to an un stable state by sudden change of such external parameters as temperature and pressure. A second objective, no less important, was to identify new fields of science that might be investigated by sim...
Condensed Matter NMR under Extreme Conditions: Challenges and Opportunities
Reyes, Arneil
2006-11-01
Advances in resistive magnet and power supply technology have made available extremely high magnetic fields suitable for condensed matter broadline NMR experiments. This capability expands the available phase space for investigating a wide variety of materials using magnetic resonance; utilizing the strength of the field to expose or induce new physical phenomena resulting in better understanding of the physics. Continuous fields up to 45T in NHMFL Hybrid magnet have brought new challenges in designing NMR instrumentation. Field strengths and sample space limitations put constraints on RF pulse power, tuning range, bandwidth, and temperature control. The inclusion of other capabilities, including high pressure, optics, and sample rotation requires intricate probe design and construction, while extremely low milliKelvin temperatures are desired in order to explore energy scales where thermal fluctuations are suppressed. Optimization of these devices has been of paramount consideration in NHMFL Condensed Matter NMR user program. Science achieved at high fields, the new initiatives to develop resistively-detected NMR in 2D electron gas and similar systems, and the current new generation Series-Connected Hybrid magnets for NMR work will be discussed. The NHMFL is supported by the National Science Foundation and the State of Florida.
Condensed Matter Physics in Colombia is in its forties
Camacho, Angela
2015-03-01
Physics in Colombia started to develop in the 70's as a research part of basic sciences with the acquisition, at that time, of large research equipments such as x-rays and EPR. Experimental work was soon supplemented by theoretical investigations, which led to the formation of research groups in condensed matter. In the early 80's existed such groups in five universities. In this report we present, after a short history of the main steps that guided the initial research subjects, the major areas already developed and the minor research groups that are in the stage of consolidation. Currently this type of work is done at least in 20 universities. We also show the actual numbers of researchers, publications, PhD students and laboratories discriminated in gender to complete an overview of Condensed Matter Physics in Colombia. Finally, we present a short review of the main theoretical issues that have been worked in the last decade focusing on low dimensional systems, their structural and optical properties
International Workshop on Current Problems in Condensed Matter
Current Problems in Condensed Matter
1998-01-01
This volume contains the papers presented at the International Workshop on the Cur rent Problems in Condensed Matter: Theory and Experiment, held at Cocoyoc, More los, Mexico, during January 5-9, 1997. The participants had come from Argentina, Austria, Chile, England, France, Germany, Italy, Japan, Mexico, Switzerland, and the USA. The presentations at the Workshop provided state-of-art reviews of many of the most important problems, currently under study, in condensed matter. Equally important to all the participants in the workshop was the fact that we had come to honor a friend, Karl Heinz Bennemann, on his sixty-fifth birthday. This Festschrift is just a small measure of recognition of the intellectualleadership of Professor Bennemann in the field and equally important, as a sincere tribute to his qualities as an exceptional friend, college and mentor. Those who have had the privilege to work closely with Karl have been deeply touched by Karl's inquisitive scientific mind as well as by bis k...
24th Condensed Matter Days National Conference (CMDAYS2016)
International Nuclear Information System (INIS)
2016-01-01
The 24 th edition of Condensed Matter Days (CMDAYS) 2016, a National Conference had been decided to be held at Physics Department, Mizoram University, Aizwal, Mizoram, India during 29-31 August 2016. This decision was taken by the General Body meeting of the CMDAYS on 28 August 2015 at Viswa Bharati, Shanti Niketan, West Bengal, India and Prof. R.K. Thapa was proposed as the Convener of CMDAYS-2016. Initiated by the Institute of Physics, Bhubaneswar, Odisa. The CMDAYS conference is held annually in the last week of August. The main objective of the conference was to bring all the researchers/scientists working in the field of Condensed Matter Physics, or related topics, together on a single platform. In this way, they can present, share and discuss their research findings and further plan collaborative works in future. The conference topics were on the theory and experimental research works done on Strongly correlated systems, Soft condensed matter, Magnetism and Magnetic materials, Disordered systems, Phase transition, Materials for energy harvesting, Nanomaterials and applications, Dielectrics and Ferroelectrics, Optoelectronics and devices, Semiconductors and devices, Biophysics, Biomaterials and composites, Superconductivity, Thin films and devices. It was open to all researchers from the research institutes, universities and colleges. Until the last date 1 st June 2016, we have received 1 plenary lecture, 3 Keynote lectures, 8 invited talks and 55 oral contributed papers. In total, there were 10 technical sessions to complete all the contributed papers along with the invited talks. Sessions were very interesting with the young participants interacting extensively with the senior scientists and everybody enjoyed the conference period with two cultural programmes. On the last day after the closing function, a local tour programme was arranged for all the outside participants. We are grateful to Prof. R. Lalthantluanga, Vice Cahncellor, Mizoram University, Aizawl
11th International Workshop on Condensed Matter Theories
Bishop, R; Manninen, Matti; Condensed Matter Theories : Volume 3
1988-01-01
This book is the third volume in an approximately annual series which comprises the proceedings of the International Workshops on Condensed Matter Theories. The first of these meetings took place in 1977 in Sao Paulo, Brazil, and successive workshops have been held in Trieste, Italy (1978), Buenos Aires, Argentina (1979), Caracas, Venezuela (1980), Mexico City, Mexico (1981), St. Louis, USA (1982), Altenberg, Federal Republic of Germany (1983), Granada, Spain (1984), San Francisco, USA (1985), and Argonne, USA (1986). The present volume contains the proceedings of the Eleventh Workshop which took place in Qulu, Finland during the period 27 July - 1 August, 1987. The original motivation and the historical evolution of the series of Workshops have been amply described in the preface to the first volume in the present series. An important objective throughout has been to work against the ever-present trend for physics to fragment into increasingly narrow fields of specialisation, between which communication is d...
Indus-I beamlines for condensed matter physics
International Nuclear Information System (INIS)
Nandedkar, R.V.
2001-01-01
Full text: A 450 MeV electron storage ring Indus-I is now operational. This storage ring gives synchrotron radiation in soft x-ray vacuum ultra violet (VUV) and to visible region. On this storage ring six beamlines are now being set up for atomic and molecular spectroscopy experiments, solid state spectroscopy experiments and soft and VUV reflectivity experiments. In this talk, present status of beamlines which condense matter physicists will be interested in will be given along with some commissioning experiments. These beam lines are based on a toroidal grating monochromators in the range 40 - 1000 A with moderate energy resolution. Some experiments which can be conducted using these beam lines will be discussed
Integrating Condensed Matter Physics into a Liberal Arts Physics Curriculum
Collett, Jeffrey
2008-03-01
The emergence of nanoscale science into the popular consciousness presents an opportunity to attract and retain future condensed matter scientists. We inject nanoscale physics into recruiting activities and into the introductory and the core portions of the curriculum. Laboratory involvement and research opportunity play important roles in maintaining student engagement. We use inexpensive scanning tunneling (STM) and atomic force (AFM) microscopes to introduce students to nanoscale structure early in their college careers. Although the physics of tip-surface interactions is sophisticated, the resulting images can be interpreted intuitively. We use the STM in introductory modern physics to explore quantum tunneling and the properties of electrons at surfaces. An interdisciplinary course in nanoscience and nanotechnology course team-taught with chemists looks at nanoscale phenomena in physics, chemistry, and biology. Core quantum and statistical physics courses look at effects of quantum mechanics and quantum statistics in degenerate systems. An upper level solid-state physics course takes up traditional condensed matter topics from a structural perspective by beginning with a study of both elastic and inelastic scattering of x-rays from crystalline solids and liquid crystals. Students encounter reciprocal space concepts through the analysis of laboratory scattering data and by the development of the scattering theory. The course then examines the importance of scattering processes in band structure and in electrical and thermal conduction. A segment of the course is devoted to surface physics and nanostructures where we explore the effects of restricting particles to two-dimensional surfaces, one-dimensional wires, and zero-dimensional quantum dots.
Framework for understanding LENR processes, using conventional condensed matter physics
International Nuclear Information System (INIS)
Chubb, Scott R.
2006-01-01
Conventional condensed matter physics provides a unifying framework for understanding low-energy nuclear reactions (LENRs) in solids. In the paper, standard many-body physics techniques are used to illustrate this fact. Specifically, the paper shows that formally the theories by Schwinger, Hagelstein, and Chubb and Chubb (C and C), all can be related to a common set of equations, associated with reaction rate and energy transfer, through a standard many-body physics procedure (R-matrix theory). In each case, particular forms of coherence are used that, implicitly provide a mechanism for understanding how LENRs can proceed without. the emission of high-energy particles. In addition, additional ideas, associated with Conventional Condensed Matter physics, are used to extend the earlier ion band state (IBS) model by C and C. The general model clarifies the origin of coherent. processes that initiate LENRs, through the onset of ion conduction that can occur through ionic fluctuations in nano-scale crystals. In the case of PdD x , these fluctuations begin to occur as x → 1 in sub-lattice structures with characteristic dimensions of 60 nm. The resulting LENRs are triggered by the polarization between injected d's and electrons (immediately above the Fermi energy) that takes place in finite-size PdD crystals. During the prolonged charging of PdD x the applied, external electric field induces these fluctuations through a form of Zener tunneling that mimics the kind of tunneling, predicted by Zener, that is responsible for possible conduction (referred to as Zener-electric breakdown) in insulators. But because the fluctuations are ionic and they occur in PdD, nano-scale structures, a more appropriate characterization is Zener-ionic breakdown in nano-crystalline PdD. Using the underlying dynamics, it is possible to relate triggering times that are required for the initiation of the effect, to crystal size and externally applied fields. (authors)
Framework for understanding LENR processes, using conventional condensed matter physics
Energy Technology Data Exchange (ETDEWEB)
Chubb, Scott R. [Research Systems Inc., 9822 Pebble Weigh Ct., Burke VA 22015-3378 (United States)
2006-07-01
Conventional condensed matter physics provides a unifying framework for understanding low-energy nuclear reactions (LENRs) in solids. In the paper, standard many-body physics techniques are used to illustrate this fact. Specifically, the paper shows that formally the theories by Schwinger, Hagelstein, and Chubb and Chubb (C and C), all can be related to a common set of equations, associated with reaction rate and energy transfer, through a standard many-body physics procedure (R-matrix theory). In each case, particular forms of coherence are used that, implicitly provide a mechanism for understanding how LENRs can proceed without. the emission of high-energy particles. In addition, additional ideas, associated with Conventional Condensed Matter physics, are used to extend the earlier ion band state (IBS) model by C and C. The general model clarifies the origin of coherent. processes that initiate LENRs, through the onset of ion conduction that can occur through ionic fluctuations in nano-scale crystals. In the case of PdD{sub x}, these fluctuations begin to occur as x {yields} 1 in sub-lattice structures with characteristic dimensions of 60 nm. The resulting LENRs are triggered by the polarization between injected d's and electrons (immediately above the Fermi energy) that takes place in finite-size PdD crystals. During the prolonged charging of PdD{sub x} the applied, external electric field induces these fluctuations through a form of Zener tunneling that mimics the kind of tunneling, predicted by Zener, that is responsible for possible conduction (referred to as Zener-electric breakdown) in insulators. But because the fluctuations are ionic and they occur in PdD, nano-scale structures, a more appropriate characterization is Zener-ionic breakdown in nano-crystalline PdD. Using the underlying dynamics, it is possible to relate triggering times that are required for the initiation of the effect, to crystal size and externally applied fields. (authors)
International Nuclear Information System (INIS)
2017-01-01
We are pleased to introduce the Proceedings of the 19 th International School on Condensed Matter Physics “Advances in Nanostructured Condensed Matter: Research and Innovations” (19 th ISCMP). The school was held from August 28 th till September 2 nd , 2016 in Varna, Bulgaria. It was organized by the Institute of Solid State Physics of the Bulgarian Academy of Sciences (ISSP-BAS), and took place at one of the fine resorts on the Bulgarian Black Sea “Saints Constantine and Helena”. The aim of this international school is to bring together top experimentalists and theoreticians, with interests in interdisciplinary areas, with the younger generation of scientists, in order to discuss current research and to communicate new forefront ideas. This year special focus was given to discussions on membrane biophysics and quantum information, also not forgotten were some traditionally covered areas, such as characterization of nanostructured materials. Participants from 12 countries presented 28 invited lectures, 12 short oral talks and 44 posters. The hope of the organizing committee is that the 19 th ISCMP provided enough opportunities for direct scientific contacts, interesting discussions and interactive exchange of ideas between the participants. The nice weather certainly helped a lot in this respect. The editors would like to thank all authors for their high-quality contributions and the members of the international program committee for their commitment. The papers submitted for publication in the Proceedings were refereed according to the publishing standards of the Journal of Physics: Conference Series. The Editorial Committee members are very grateful to the Journal’s staff for the continuous fruitful relations and for giving us the opportunity to present the work from the 19 th ISCMP. Prof. DSc Hassan Chamati, Assist. Prof. Dr. Alexander A. Donkov, Assoc. Prof. Dr. Julia Genova, and Assoc. Prof. Dr. Emilia Pecheva (paper)
Dark matter as the Bose-Einstein condensation in loop quantum cosmology
International Nuclear Information System (INIS)
Atazadeh, K.; Mousavi, M.; Darabi, F.
2016-01-01
We consider the FLRW universe in a loop quantum cosmological model filled with radiation, baryonic matter (with negligible pressure), dark energy, and dark matter. The dark matter sector is supposed to be of Bose-Einstein condensate type. The Bose-Einstein condensation process in a cosmological context by supposing it as an approximate first-order phase transition, has already been studied in the literature. Here, we study the evolution of the physical quantities related to the early universe description such as the energy density, temperature, and scale factor of the universe, before, during, and after the condensation process. We also consider in detail the evolution era of the universe in a mixed normal-condensate dark matter phase. The behavior and time evolution of the condensate dark matter fraction is also analyzed. (orig.)
Quark condensates in nuclear matter in the global color symmetry model of QCD
International Nuclear Information System (INIS)
Liu Yuxin; Gao Dongfeng; Guo Hua
2003-01-01
With the global color symmetry model being extended to finite chemical potential, we study the density dependence of the local and nonlocal scalar quark condensates in nuclear matter. The calculated results indicate that the quark condensates increase smoothly with the increasing of nuclear matter density before the critical value (about 12ρ 0 ) is reached. It also manifests that the chiral symmetry is restored suddenly as the density of nuclear matter reaches its critical value. Meanwhile, the nonlocal quark condensate in nuclear matter changes nonmonotonously against the space-time distance among the quarks
Finite temperature effects in Bose-Einstein condensed dark matter halos
International Nuclear Information System (INIS)
Harko, Tiberiu; Madarassy, Enikö J.M.
2012-01-01
Once the critical temperature of a cosmological boson gas is less than the critical temperature, a Bose-Einstein Condensation process can always take place during the cosmic history of the universe. Zero temperature condensed dark matter can be described as a non-relativistic, Newtonian gravitational condensate, whose density and pressure are related by a barotropic equation of state, with barotropic index equal to one. In the present paper we analyze the effects of the finite dark matter temperature on the properties of the dark matter halos. We formulate the basic equations describing the finite temperature condensate, representing a generalized Gross-Pitaevskii equation that takes into account the presence of the thermal cloud. The static condensate and thermal cloud in thermodynamic equilibrium is analyzed in detail, by using the Hartree-Fock-Bogoliubov and Thomas-Fermi approximations. The condensed dark matter and thermal cloud density and mass profiles at finite temperatures are explicitly obtained. Our results show that when the temperature of the condensate and of the thermal cloud are much smaller than the critical Bose-Einstein transition temperature, the zero temperature density and mass profiles give an excellent description of the dark matter halos. However, finite temperature effects may play an important role in the early stages of the cosmological evolution of the dark matter condensates
Computer simulation studies in condensed-matter physics 5. Proceedings
International Nuclear Information System (INIS)
Landau, D.P.; Mon, K.K.; Schuettler, H.B.
1993-01-01
As the role of computer simulations began to increase in importance, we sensed a need for a ''meeting place'' for both experienced simulators and neophytes to discuss new techniques and results in an environment which promotes extended discussion. As a consequence of these concerns, The Center for Simulational Physics established an annual workshop on Recent Developments in Computer Simulation Studies in Condensed-Matter Physics. This year's workshop was the fifth in this series and the interest which the scientific community has shown demonstrates quite clearly the useful purpose which the series has served. The workshop was held at the University of Georgia, February 17-21, 1992, and these proceedings from a record of the workshop which is published with the goal of timely dissemination of the papers to a wider audience. The proceedings are divided into four parts. The first part contains invited papers which deal with simulational studies of classical systems and includes an introduction to some new simulation techniques and special purpose computers as well. A separate section of the proceedings is devoted to invited papers on quantum systems including new results for strongly correlated electron and quantum spin models. The third section is comprised of a single, invited description of a newly developed software shell designed for running parallel programs. The contributed presentations comprise the final chapter. (orig.). 79 figs
Universal properties of relaxation and diffusion in condensed matter
International Nuclear Information System (INIS)
Ngai K L
2017-01-01
By and large the research communities today are not fully aware of the remarkable universality in the dynamic properties of many-body relaxation/diffusion processes manifested in experiments and simulations on condensed matter with diverse chemical compositions and physical structures. I shall demonstrate the universality first from the dynamic processes in glass-forming systems. This is reinforced by strikingly similar properties of different processes in contrasting interacting systems all having nothing to do with glass transition. The examples given here include glass-forming systems of diverse chemical compositions and physical structures, conductivity relaxation of ionic conductors (liquid, glassy, and crystalline), translation and orientation ordered phase of rigid molecule, and polymer chain dynamics. Universality is also found in the change of dynamics when dimension is reduced to nanometer size in widely different systems. The remarkable universality indicates that many-body relaxation/diffusion is governed by fundamental physics to be unveiled. One candidate is classical chaos on which the coupling model is based, Universal properties predicted by this model are in accord with diverse experiments and simulations. (paper)
Condensed matter applications of AdS/CFT (I)
CERN. Geneva
2009-01-01
These lectures will discuss the application of ads/cft techniques to condensed matter systems. After motivating this endeavor, I will review the basic features of the ads/cft correspondence that will be used. I will review the physics of spectral functions and how they can be computed via AdS/CFT. Holographic superconductors will be discussed. The lectures will conclude with a discussion of open questions and future directions. References: - Holographic Superconductors. Sean A. Hartnoll, Christopher P. Herzog, Gary T. Horowitz, JHEP 0812:015,2008, arXiv:0810.1563 [hep-th] - Ohm's Law at strong coupling: S duality and the cyclotron resonance, Sean A. Hartnoll, Christopher P. Herzog, Phys.Rev.D76:106012,2007, arXiv:0706.3228 [hep-th] - Gravity duals for non-relativistic CFTs. Koushik Balasubramanian, John McGreevy, Phys.Rev.Lett.101:061601,2008, arXiv:0804.4053 [hep-th] - Toward an AdS/cold atoms correspondence: A Geometric realization of the Schrodinger symmetry. D.T. Son, Phys.Rev.D78:0...
Framework for Understanding LENR Processes, Using Ordinary Condensed Matter Physics
Chubb, Scott
2005-03-01
As I have emphasizedootnotetextS.R. Chubb, Proc. ICCF10 (in press). Also, http://www.lenr-canr.org/acrobat/ChubbSRnutsandbol.pdf http://www.lenr-canr.org/acrobat/ChubbSRnutsandbol.pdf, S.R. Chubb, Trans. Amer. Nuc. Soc. 88 , 618 (2003)., in discussions of Low Energy Nuclear Reactions(LENRs), mainstream many-body physics ideas have been largely ignored. A key point is that in condensed matter, delocalized, wave-like effects can allow large amounts of momentum to be transferred instantly to distant locations, without any particular particle (or particles) acquiring high velocity through a Broken Gauge Symmetry. Explicit features in the electronic structure explain how this can occur^1 in finite size PdD crystals, with real boundaries. The essential physics^1 can be related to standard many-body techniquesootnotetextBurke,P.G. and K.A. Berrington, Atomic and Molecular Processes:an R matrix Approach (Bristol: IOP Publishing, 1993).. In the paper, I examine this relationship, the relationship of the theory^1 to other LENR theories, and the importance of certain features (for example, boundaries^1) that are not included in the other LENR theories.
13th International Workshop on Condensed Matter Theories
1990-01-01
This volume gathers the invited talks of the XIII International Work shop on Condensed Matter Theories which took place in Campos do Jordao near Sao Paulo, Brazil, August 6-12, 1989. It contains contributions in a wide variety of fields including neutral quantum and classical fluids, electronic systems, composite materials, plasmas, atoms, molecules and nuclei, and as this year's workshop reflected the natural preoccupation in materials science with its spectacular prospect for mankind, room tempera ture super-conductivity. All topics are treated from a common viewpoint: that of many-body physics, whether theoretical or simu1ational. Since the very first workshop, held at the prestigious Instituto de Fisica Teorica in Sao Paulo, and organized by the same organizer of the 1989 workshop, Professor Valdir Casaca Aguilera-Navarro, the meeting has taken place annually six times in Latin America, four in Europe and three in the United States. Its principal objective has been to innitiate and nurture collaborati...
International Nuclear Information System (INIS)
Andrieux, M.B.
1984-01-01
Characteristics of the condenser cooling waters of various French 900 MW nuclear power plants. Design and description of various types of condensers: condensers feeded directly with river water, condensers feeded by cooling towers, condensers feeded with sea water of brackish water. Presentation of the main problems encountered with the brass bundles (ammoniacal corrosion, erosion of the peripheral tubes, vibrations of the tubes), with the titanium bundles, with the tubular plates, the tubes-tubular plates assemblies, the coatings of the condenser water chamber (sea water), the vapor by-pass and with the air inlet. Analysis of the in service performances such as condensation pressure, oxygen content and availability [fr
Stabilization of matter wave solitons in weakly coupled atomic condensates
International Nuclear Information System (INIS)
Radha, R.; Vinayagam, P.S.
2012-01-01
We investigate the dynamics of a weakly coupled two component Bose–Einstein condensate and generate bright soliton solutions. We observe that when the bright solitons evolve in time, the density of the condensates shoots up suddenly by virtue of weak coupling indicating the onset of instability in the dynamical system. However, this instability can be overcome either through Feshbach resonance by tuning the temporal scattering length or by suitably changing the time dependent coupling coefficient, thereby extending the lifetime of the condensates.
In-stack condensible particulate matter measurement and permitting issues
International Nuclear Information System (INIS)
Corio, L.A.; Sherwell, J.
1997-01-01
Based on the results of recent epidemiological studies and assessments of the causes of visibility degradation, EPA is proposing to regulate PM2.5 emissions. PM can be classified as either filterable or condensible PM. Condensible PM includes sulfates, such as sulfuric acid. Sulfates typically account for at least half of the total dry fine PM mass in the atmosphere. Power plant SO x -based emissions make a significant contribution to ambient fine PM levels in the eastern US. Although much of this mass is derived from secondary chemical reactions in the atmosphere, a portion of this sulfate is emitted directly from stacks as condensible PM. The potential condensible PM fraction associated with coal-burning boiler emissions is somewhat uncertain. The characterization of PM emissions from these sources has been, until recently, based on in-stack filterable PM measurements only. To determine the relative magnitude of condensible PM emissions and better understand condensible PM measurement issues, a review and analysis of actual EPA Method 202 results and state-developed hybrid condensible PM methods were conducted. A review of available Method 202 results for several coal-burning boilers showed that the condensible PM, on average, comprises 60% of the total PM10. A review of recent results for state-developed measurement methods for condensible PM for numerous coal-burning boilers indicated that condensible PM accounted for, on average, approximately 49% of total PM. Caution should be exercised in the use of these results because of the seemingly unresolved issue of artifact formation, which may bias the Method 202 and state-developed methods results on the high side. Condensible PM10 measurement results and issues, and potential ramifications of including condensible PM10 emissions in the PSD permit review process are discussed. Selected power plants in Maryland are discussed as examples
FOREWORD: 18th International School on Condensed Matter Physics
Dimova-Malinovska, Doriana; Genova, Julia; Nesheva, Diana; Petrov, Alexander G.; Primatarowa, Marina T.
2014-12-01
We are delighted to present the Proceedings of the 18th International School on Condensed Matter Physics: Challenges of Nanoscale Science: Theory, Materials, Applications, organized by the Institute of Solid State Physics of the Bulgarian Academy of Sciences and chaired by Professor Alexander G Petrov. On this occasion the School was held in memory of Professor Nikolay Kirov (1943-2013), former Director of the Institute and Chairman between 1991 and 1998. The 18ISCMP was one of several events dedicated to the 145th anniversary of the Bulgarian Academy of Sciences in 2014, and was held in the welcoming Black Sea resort of St. Constantine and Helena near Varna, at the Hotel and Congress Centre Frederic Joliot-Curie. Participants from 16 countries delivered 32 invited lectures, and 71 contributed posters were presented over three lively and well-attended evening sessions. Manuscripts submitted to the Proceedings were refereed in accordance with the guidelines of the Journal of Physics: Conference Series, and we believe the papers published herein testify to the high technical quality and diversity of contributions. A satellite meeting, Transition Metal Oxide Thin Films - Functional Layers in Smart Windows and Water Splitting Devices: Technology and Optoelectronic Properties was held in parallel with the School (http://www.inera.org, 3-6 Sept 2014). This activity, which took place under the FP7-funded project INERA, offered opportunities for crossdisciplinary discussions and exchange of ideas between both sets of participants. As always, a major factor in the success of the 18ISCMP was the social programme, headed by the organized events (Welcome and Farewell Parties) and enhanced in no small measure by a variety of pleasant local restaurants, bars and beaches. We are most grateful to staff of the Journal of Physics: Conference Series for their continued support for the School, this being the third occasion on which the Proceedings have been published under its
Dark matter as a Bose-Einstein Condensate: the relativistic non-minimally coupled case
International Nuclear Information System (INIS)
Bettoni, Dario; Colombo, Mattia; Liberati, Stefano
2014-01-01
Bose-Einstein Condensates have been recently proposed as dark matter candidates. In order to characterize the phenomenology associated to such models, we extend previous investigations by studying the general case of a relativistic BEC on a curved background including a non-minimal coupling to curvature. In particular, we discuss the possibility of a two phase cosmological evolution: a cold dark matter-like phase at the large scales/early times and a condensed phase inside dark matter halos. During the first phase dark matter is described by a minimally coupled weakly self-interacting scalar field, while in the second one dark matter condensates and, we shall argue, develops as a consequence the non-minimal coupling. Finally, we discuss how such non-minimal coupling could provide a new mechanism to address cold dark matter paradigm issues at galactic scales
International Nuclear Information System (INIS)
Messina, A.
2000-01-01
This book contains 102 scientific contributions in the areas of nuclear and condensed matter physics. The conference was attended by 144 physicists, most of them belonging to the Sicilian Universities of Palermo, Catania and Messina
Condensed matter applications of AdS/CFT (III)
CERN. Geneva
2009-01-01
AdS/CFT. Holographic superconductors will be discussed. The lectures will conclude with a discussion of open questions and future directions. References: - Holographic Superconductors. Sean A. Hartnoll, Christopher P. Herzog, Gary T. Horowitz, JHEP 0812:015,2008, arXiv:0810.1563 [hep-th] - Ohm's Law at strong coupling: S duality and the cyclotron resonance, Sean A. Hartnoll, Christopher P. Herzog, Phys.Rev.D76:106012,2007, arXiv:0706.3228 [hep-th] - Gravity duals for non-relativistic CFTs. Koushik Balasubramanian, John McGreevy, Phys.Rev.Lett.101:061601,2008, arXiv:0804.4053 [hep-th] - Toward an AdS/cold atoms correspondence: A Geometric realization of the Schrodinger symmetry. D.T. Son, Phys.Rev.D78:046003,2008, arXi...
Pion condensation in a theory consistent with bulk properties of nuclear matter
International Nuclear Information System (INIS)
Glendenning, N.K.
1980-01-01
A relativistic field theory of nuclear matter is solved for the self-consistent field strengths inthe mean-field approximation. The theory is constrained to reproduce the bulk properties of nuclear matter. A weak pion condensate is compatible with this constraint. At least this is encouraging as concerns the possible existence of a new phase of nuclear matter. In contrast, the Lee-Wick density isomer is probably not compatible with the properties of nuclear matter. 3 figures
The Physics of Life. Part I: The Animate Organism as an Active Condensed Matter Body
Kukuruznyak , Dmitry ,
2017-01-01
Nonequilibrium "active agents" establish bonds with each other and create a quickly evolving condensed state known as active matter. Recently, active matter composed of motile self-organizing biopolymers demonstrated a biotic-like motion similar to cytoplasmic streaming. It was suggested that the active matter could produce cells. However, active matter physics cannot yet define an " organism " and thus make a satisfactory connection to biology. This paper describes an organism made of active...
Effects of delta degrees of freedom on quark condensate in hot and dense matter
International Nuclear Information System (INIS)
Li Lei; Ning Pingzhi
1996-01-01
The relativistic mean-field theory is applied to study the quark condensate systematically in nuclear matter at zero and finite temperature in terms of the relative importance of delta degrees of freedom. Calculations have included the high-order contributions to quark condensate in nuclear medium due to the baryon-baryon interactions. Numerical results are presented for the nuclear density up to five times larger than the normal density and temperature up to 120 MeV. It is found that the delta resonance in nuclear matter can cause substantial decreases to in-medium quark condensate
Phase transition in dense nuclear matter with quark and gluon condensates
International Nuclear Information System (INIS)
Ellis, J.; Kapusta, J.I.; Olive, K.A.
1991-01-01
Nuclear matter is expected to modify the expectation values of the quark and gluon condensates. We utilize the chiral and scale symmetries of QCD to describe the interaction between these condensates and hadrons. We solve the resulting equations self-consistently in the relativistic mean field approximation. In order that these QCD condensates be driven towards zero at high density their coupling to sigma and vector mesons must be such that the masses of these mesons do not decrease with density. In this case a physically sensible phase transition to quark matter ensures. (orig.)
International Nuclear Information System (INIS)
Loewdin, Per-Olov; Oehrn, N.Y.; Sabin, J.R.; Zerner, M.C.
1993-01-01
After an introduction and a personal (World War II and postwar) retrospective by C.C.J. Roothaan, 69 papers are presented in fields of quantum biology, quantum chemistry, and condensed matter physics; topics covered include advanced scientific computing, interaction of photons and matter, quantum molecular dynamics, electronic structure methods, polymeric systems, and quantum chemical methods for extended systems. An author index is included
Soft condensed matter approach to cooking of meat
Sman, van der R.G.M.
2007-01-01
We have viewed cooking meat from the perspective of soft condensed physics and posed that the moisture transport during cooking can be described by Flory-Rehner theory of swelling/shrinking polymer gels. This theory contains the essential physics to describe the transport of liquid moisture due to
Understanding soft condensed matter via modeling and computation
Shi, An-Chang
2011-01-01
All living organisms consist of soft matter. For this reason alone, it is important to be able to understand and predict the structural and dynamical properties of soft materials such as polymers, surfactants, colloids, granular matter and liquids crystals. To achieve a better understanding of soft matter, three different approaches have to be integrated: experiment, theory and simulation. This book focuses on the third approach - but always in the context of the other two.
Fundamentals of Condensed Matter Physics Marvin L. Cohen and Steven G. Louie
Energy Technology Data Exchange (ETDEWEB)
Devanathan, Ram
2017-06-01
This graduate level textbook on Condensed Matter Physics is written lucidly by two leading luminaries in this field. The volume draws its material from the graduate course in condensed matter physics that has been offered by the authors for several decades at the University of California, Berkeley. Cohen and Louie have done an admirable job of guiding the reader gradually from elementary concepts to advanced topics. The book is divided into four main parts that have four chapters each. Chapter 1 presents models of solids in terms of interacting atoms, which is appropriate for the ground state, and excitations to describe collective effects. Chapter 2 deals with the properties of electrons in crystalline materials. The authors introduce the Born-Oppenheimer approximation and then proceed to the periodic potential approximation. Chapter 3 discusses energy bands in materials and covers concepts from the free electron model to the tight binding model and periodic boundary conditions. Chapter 4 starts with fixed atomic cores and introduces lattice vibrations, phonons, and the concept of density of states. By the end of this part, the student should have a basic understanding of electrons and phonons in materials. Part II presents electron dynamics and the response of materials to external probes. Chapter 5 covers the effective Hamiltonian approximation and the motion of the electron under a perturbation, such as an external field. The discussion moves to many-electron interactions and the exchange-correlation energy in Chapter 6, the widely-used Density Functional Theory (DFT) in chapter 7, and the dielectric response function in Chapter 8. The next two parts of the book cover advanced topics. Part III begins with a discussion of the response of materials to photons in Chapter 9. Chapter 10 goes into the details of electron-phonon interactions in different materials and introduces the polaron. Chapter 11 presents electron dynamics in a magnetic field and Chapter 12
One dimensional Bosons: From Condensed Matter Systems to Ultracold Gases
Cazalilla, M. A.; Citro, R.; Giamarchi, T.; Orignac, E.; Rigol, M.
2011-01-01
The physics of one-dimensional interacting bosonic systems is reviewed. Beginning with results from exactly solvable models and computational approaches, the concept of bosonic Tomonaga-Luttinger liquids relevant for one-dimensional Bose fluids is introduced, and compared with Bose-Einstein condensates existing in dimensions higher than one. The effects of various perturbations on the Tomonaga-Luttinger liquid state are discussed as well as extensions to multicomponent and out of equilibrium ...
On the existence of combined condensation of neutral and charged pions in neutron matter
International Nuclear Information System (INIS)
Muto, Takumi; Tatsumi, Toshitaka
1987-01-01
Combined condensation of neutral and charged pions at high-density neutron matter is studied in an approach based on the chiral symmetry. Energy density in the combined π 0 -π c condensed phase to be considered as most energetically favored is derived in a realistic calculation, where we take into account the isobar Δ (1232) degrees of freedom, baryon-baryon short-range correlations described in terms of the Landau-Migdal parameter g', and form factors in the π-baryon vertex. Characteristic features of this phase are discussed in comparison with those of the pure π 0 or the pure π c condensation. The combined π 0 -π c condensed phase sets in at baryon density (3 ∼ 5) times the nuclear density ρ 0 depending on g' after the appearance of the pure π c condensed phase. (author)
Bright matter wave solitons and their collision in Bose-Einstein condensates
International Nuclear Information System (INIS)
Radha, R.; Ramesh Kumar, V.
2007-01-01
We obtain the bright matter wave solitons in Bose-Einstein condensates from a trivial input solution by solving the time dependent Gross-Pitaevskii (GP) equation with quadratic potential and exponentially varying scattering length. We observe that the matter wave density of bright soliton increases with time by virtue of the exponentially increasing scattering length. We also understand that the matter wave densities of bright soliton trains remain finite despite the exchange of atoms during interaction and they travel along different trajectories (diverge) after interaction. We also observe that their amplitudes continue to fluctuate with time. For exponentially decaying scattering lengths, instability sets in the condensates. However, the scattering length can be suitably manipulated without causing the explosion or the collapse of the condensates
The research of condensed matter physics by using intense proton accelerator
International Nuclear Information System (INIS)
Endoh, Yasuo
1990-01-01
The present article covers the application of intense protons to basic condensed matter physics. Major recent neutron scattering activities in condensed matter physics are first outlined, emphasizing the fact that the contribution of accelerator base science has a tremendous impact on this basic science. Application of spallation neutrons to condensed matter physics is discussed in relation to such subjects as high energy (epithermal) excitations and small angle neutron scattering. Then the specific subject of high Tc superconductor is addressed, focusing on how neutrons as well as muons provide experimental results that serve significantly in exploring the mechanism of exotic high Tc superconductivity. Techniques for neutron polarization must be developed in the future. The neutron spin reflectivity ratio has been shown to be a sensitive probe of surface depth profile of magnetization. Another new method is neutron depolarization to probe bulk magnetic induction throughout a slab which neutrons pass through. (N.K.)
Landau, David P; Schüttler, Heinz-Bernd; Computer Simulation Studies in Condensed-Matter Physics XVIII
2006-01-01
This volume represents a "status report" emanating from presentations made during the 18th Annual Workshop on Computer Simulations Studies in Condensed Matter Physics at the Center for Simulational Physics at the University of Georgia in March 2005. It provides a broad overview of the most recent advances in the field, spanning the range from statistical physics to soft condensed matter and biological systems. Results on nanostructures and materials are included as are several descriptions of advances in quantum simulations and quantum computing as well as.methodological advances.
Seventeenth Workshop on Computer Simulation Studies in Condensed-Matter Physics
Landau, David P; Schütler, Heinz-Bernd; Computer Simulation Studies in Condensed-Matter Physics XVI
2006-01-01
This status report features the most recent developments in the field, spanning a wide range of topical areas in the computer simulation of condensed matter/materials physics. Both established and new topics are included, ranging from the statistical mechanics of classical magnetic spin models to electronic structure calculations, quantum simulations, and simulations of soft condensed matter. The book presents new physical results as well as novel methods of simulation and data analysis. Highlights of this volume include various aspects of non-equilibrium statistical mechanics, studies of properties of real materials using both classical model simulations and electronic structure calculations, and the use of computer simulations in teaching.
Noise study in condensed matter physics-Towards extension to surrounding fields
International Nuclear Information System (INIS)
Maeda, Atsutaka
2006-01-01
I briefly review noise studies in condensed matter physics, such as the shot noise measurement in metals, the dynamic-coherent-volume investigation in charge-density waves, the macroscopic quantum tunneling in superconductors, and the experimental investigation of dynamic phase diagram of driven vortices in high-T c superconductors. With these examples, one finds that the noise studies have played many crucial roles in condensed matter physics. I also discuss a recent theoretical suggestion that noise measurements in Josephson junction may clarify the origin of the dark energy in the universe
Energy Technology Data Exchange (ETDEWEB)
Fradkin, Eduardo [Univ. of Illinois, Urbana, IL (United States); Maldacena, Juan [Inst. for Advanced Study, Princeton, NJ (United States); Chatterjee, Lali [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Office of High Energy Physics; Davenport, James W [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Office of Basic Energy Sciences
2015-02-02
On February 2, 2015 the Offices of High Energy Physics (HEP) and Basic Energy Sciences (BES) convened a Round Table discussion among a group of physicists on ‘Common Problems in Condensed Matter and High Energy Physics’. This was motivated by the realization that both fields deal with quantum many body problems, share many of the same challenges, use quantum field theoretical approaches and have productively interacted in the past. The meeting brought together physicists with intersecting interests to explore recent developments and identify possible areas of collaboration.... Several topics were identified as offering great opportunity for discovery and advancement in both condensed matter physics and particle physics research. These included topological phases of matter, the use of entanglement as a tool to study nontrivial quantum systems in condensed matter and gravity, the gauge-gravity duality, non-Fermi liquids, the interplay of transport and anomalies, and strongly interacting disordered systems. Many of the condensed matter problems are realizable in laboratory experiments, where new methods beyond the usual quasi-particle approximation are needed to explain the observed exotic and anomalous results. Tools and techniques such as lattice gauge theories, numerical simulations of many-body systems, and tensor networks are seen as valuable to both communities and will likely benefit from collaborative development.
Quantum condensates and topological bosons in coupled light-matter excitations
Energy Technology Data Exchange (ETDEWEB)
Janot, Alexander
2016-02-29
Motivated by the sustained interest in Bose Einstein condensates and the recent progress in the understanding of topological phases in condensed matter systems, we study quantum condensates and possible topological phases of bosons in coupled light-matter excitations, so-called polaritons. These bosonic quasi-particles emerge if electronic excitations (excitons) couple strongly to photons. In the first part of this thesis a polariton Bose Einstein condensate in the presence of disorder is investigated. In contrast to the constituents of a conventional condensate, such as cold atoms, polaritons have a finite life time. Then, the losses have to be compensated by continued pumping, and a non-thermal steady state can build up. We discuss how static disorder affects this non-equilibrium condensate, and analyze the stability of the superfluid state against disorder. We find that disorder destroys the quasi-long range order of the condensate wave function, and that the polariton condensate is not a superfluid in the thermodynamic limit, even for weak disorder, although superfluid behavior would persist in small systems. Furthermore, we analyze the far field emission pattern of a polariton condensate in a disorder environment in order to compare directly with experiments. In the second part of this thesis features of polaritons in a two-dimensional quantum spin Hall cavity with time reversal symmetry are discussed. We propose a topological invariant which has a nontrivial value if the quantum spin Hall insulator is topologically nontrivial. Furthermore, we analyze emerging polaritonic edge states, discuss their relation to the underlying electronic structure, and develop an effective edge state model for polaritons.
Radial oscillations of strange quark stars admixed with condensed dark matter
Panotopoulos, G.; Lopes, Ilídio
2017-10-01
We compute the 20 lowest frequency radial oscillation modes of strange stars admixed with condensed dark matter. We assume a self-interacting bosonic dark matter, and we model dark matter inside the star as a Bose-Einstein condensate. In this case the equation of state is a polytropic one with index 1 +1 /n =2 and a constant K that is computed in terms of the mass of the dark matter particle and the scattering length. Assuming a mass and a scattering length compatible with current observational bounds for self-interacting dark matter, we have integrated numerically first the Tolman-Oppenheimer-Volkoff equations for the hydrostatic equilibrium, and then the equations for the perturbations ξ =Δ r /r and η =Δ P /P . For a compact object with certain mass and radius we have considered here three cases, namely no dark matter at all and two different dark matter scenarios. Our results show that (i) the separation between consecutive modes increases with the amount of dark matter, and (ii) the effect is more pronounced for higher order modes. These effects are relevant even for a strange star made of 5% dark matter.
ICTP Summer Course on Low-Dimensional Quantum Field Theories for Condensed Matter Physicists
Morandi, G; Lu, Y
1995-01-01
This volume contains a set of pedagogical reviews covering the most recent applications of low-dimensional quantum field theory in condensed matter physics, written by experts who have made major contributions to this rapidly developing field of research. The main purpose is to introduce active young researchers to new ideas and new techniques which are not covered by the standard textbooks.
International Nuclear Information System (INIS)
Mukashev, K.M.; Sarsenbinov, Sh. Sh.
2000-01-01
Fundamental problems and nature of electron-positron annihilation phenomenon, problems of its application in studies of condensed matter, development of various methodic based on this phenomenon for structural studies in solids, mathematical aspects of experimental deta decoding and program means for computer data processing are discussed. (author)
4. International conference on materials science and condensed matter physics. Abstracts
International Nuclear Information System (INIS)
2008-09-01
This book includes more than 200 abstracts on various aspects of: materials processing and characterization, crystal growth methods, solid-state and crystal technology, development of condensed matter theory and modeling of materials properties, solid-state device physics, nano science and nano technology, heterostructures, superlattices, quantum wells and wires, advanced quantum physics for nano systems
DEFF Research Database (Denmark)
Kampel, Nir Shlomo; Griesmaier, Axel Rudolf; Steenstrup, Mads Peter Hornbak
2012-01-01
We investigate experimentally the effects of light assisted collisions on the coherence between momentum states in Bose-Einstein condensates. The onset of superradiant Rayleigh scattering serves as a sensitive monitor for matter-wave coherence. A subtle interplay of binary and collective effects...
Australian and New Zealand Institutes of Physics. Eighteenth annual condensed matter physics meeting
International Nuclear Information System (INIS)
Chaplin, D.; Hutchinson, W.; Yazidjoglou, N.; Stewart, G.
1994-01-01
The Handbook contains abstracts of oral and poster presentations covering various aspects of condensed matter physics such as magnetism, superconductivity, semiconductor materials and their properties, as well as the use of nuclear techniques in studies of these materials. 162 contributions have been considered to be in the INIS subject scope and were indexed separately
Elements of a dialogue between nonlinear models in condensed matter and biophysics
International Nuclear Information System (INIS)
Bishop, A.R.; Lomdahl, P.S.; Kerr, W.C.
1985-01-01
We indicate some of the emerging thematic connections between strongly nonlinear effects in condensed matter and biological materials. These are illustrated with model studies of: (1) structural phase transitions in anisotropic lattices; and (2) finite temperature effects on self-trapped states in vibron-phonon models of α-helix proteins. 13 refs., 8 figs
Spin-polarized versus chiral condensate in quark matter at finite temperature and density
DEFF Research Database (Denmark)
Matsuoka, Hiroaki; Tsue, Yasuhiko; da Providencia, Joao
2016-01-01
It is shown that the spin-polarized condensate appears in quark matter at high baryon density and low temperature due to the tensor-type four-point interaction in the Nambu-Jona-Lasiniotype model as a low-energy effective theory of quantum chromodynamics. It is indicated within this low-energy ef...
The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect
Spaldin, Nicola A.; Fiebig, Manfred; Mostovoy, Maxim
2008-01-01
The concept of toroidal moments in condensed-matter physics and their long-range ordering in a so-called ferrotoroidic state is reviewed. We show that ferrotoroidicity as a form of primary ferroic order can be understood both from microscopic (multipole expansion) and macroscopic (symmetry-based
Dissociative electron attachment and charge transfer in condensed matter
International Nuclear Information System (INIS)
Bass, A.D.; Sanche, L.
2003-01-01
Experiments using energy-selected beams of electrons incident from vacuum upon thin vapour deposited solids show that, as in the gas-phase, scattering cross sections at low energies are dominated by the formation of temporary negative ions (or resonances) and that molecular damage may be effected via dissociative electron attachment (DEA). Recent results also show that charge transfer between anionic states of target molecules and their environment is often crucial in determining cross sections for electron driven processes. Here, we review recent work from our laboratory, in which charge transfer is observed. For rare gas solids, electron exchange between the electron-exciton complex and either a metal substrate or co-adsorbed molecule enhances the desorption of metastable atoms and/or molecular dissociation. We discuss how transient electron capture by surface electron states of a substrate and subsequent electron transfer to a molecular adsorbate enhances the effective cross sections for DEA. We also consider the case of DEA to CF 2 Cl 2 condensed on water and ammonia ices, where electron exchange between pre-solvated electron states of ice and transient molecular anions can also increase DEA cross sections. Electron transfer from molecular resonances into pre-solvated electron states of ice is also discussed
Quantum electrodynamics of resonant energy transfer in condensed matter
International Nuclear Information System (INIS)
Juzeliunas, G.; Andrews, D.L.
1994-01-01
A microscopic many-body QED theory for dipole-dipole resonance energy transfer has been developed from first principles. A distinctive feature of the theory is full incorporation of the dielectric effects of the supporting medium. The approach employs the concept of bath polaritons mediating the energy transfer. The transfer rate is derived in terms of the Green's operator corresponding to the polariton matrix Hamiltonian. In contrast to the more common lossless polariton models, the present theory accommodates an arbitrary number of energy levels for each molecule of the medium. This includes, a case of special interest, where the excitation energy spectrum of the bath molecules is sufficiently dense that it can be treated as a quasicontinuum in the energy region in question, as in the condensed phase normally results from homogeneous and inhomogeneous line broadening. In such a situation, the photon ''dressed'' by the medium polarization (the polariton) acquires a finite lifetime, the role of the dissipative subsystem being played by bath molecules. It is this which leads to the appearance of the exponential decay factor in the microscopically derived pair transfer rates. Accordingly, the problem associated with potentially infinite total ensemble rates, due to the divergent R -2 contribution, is solved from first principles. In addition, the medium modifies the distance dependence of the energy transfer function A(R) and also produces extra modifications due to screening contributions and local field effects. The formalism addresses cases where the surrounding medium is either absorbing or lossless over the range of energies transferred. In the latter case the exponential factor does not appear and the dielectric medium effect in the near zone reduces to that which is familiar from the theory of radiationless (Foerster) energy transfer
Graphene a new paradigm in condensed matter and device physics
Wolf, E L
2014-01-01
The book is an introduction to the science and possible applications of Graphene, the first one-atom-thick crystalline form of matter. Discovered in 2004 by now Nobelists Geim and Novoselov, the single layer of graphite, a hexagonal network of carbon atoms, has astonishing electrical and mechanical properties. It supports the highest electrical current density of any material, far exceeding metals copper and silver. Its absolute minimum thickness, 0.34 nanometers, provides an inherent advantage in possible forms of digital electronics past the era of Moore's Law. The book describes the unusual physics of the material, that it offers linear rather than parabolic energy bands. The Dirac-like electron energy bands lead to high constant carrier speed, similar to light photons. The lattice symmetry further implies a two-component wave-function, which has a practical effect of cancelling direct backscattering of carriers. The resulting high carrier mobility allows observation of the Quantum Hall Effect at room temp...
Simulation of condensed matter dynamics in strong femtosecond laser pulses
International Nuclear Information System (INIS)
Wachter, G.
2014-01-01
Ultrashort custom-tailored laser pulses can be employed to observe and control the motion of electrons in atoms and small molecules on the (sub-) femtosecond time scale. Very recently, efforts are underway to extend these concepts to solid matter. This monograph theoretically explores first applications of electron control by ultrashort laser pulses in three paradigmatic systems of solid-state density: a metal nano-structure (nanometric metal tip), a bulk dielectric (quartz glass), and the buckminsterfullerene molecule (C60) as arguably the smallest possible nano-particle. The electron motion is resolved on the atomic length and time scale by ab-initio simulations based on time-dependent density functional theory. Our quantum simulations are complemented by classical and semi-classical models elucidating the underlying mechanisms. We compare our results to experiments where already available and find good agreement. With increasing laser intensity, we find a transition from vertical photoexcitation to tunneling-like excitation. For nanostructures, that leads to temporally confined electron photoemission and thereby to quantum interferences in the energy spectra of emitted electrons. Similarly, tunneling can be induced between neighboring atoms inside an insulator. This provides a mechanism for ultrafast light-field controlled currents and modification of the optical properties of the solid, promising to eventually realize light-field electronic devices operating on the femtosecond time scale and nanometer length scale. Electron-electron interaction leads to near field enhancement and spatial localization of the non-linear response and is investigated both classically by solving the Maxwell equations near a nanostructure as well as quantum mechanically for the fullerene molecule. For the latter, we discuss scrutiny of the molecular near-field by the attosecond streaking technique. Our results demonstrate that ultrashort laser pulses can be employed to steer the
Applications of Density Functional Theory in Soft Condensed Matter
Löwen, Hartmut
Applications of classical density functional theory (DFT) to soft matter systems like colloids, liquid crystals and polymer solutions are discussed with a focus on the freezing transition and on nonequilibrium Brownian dynamics. First, after a brief reminder of equilibrium density functional theory, DFT is applied to the freezing transition of liquids into crystalline lattices. In particular, spherical particles with radially symmetric pair potentials will be treated (like hard spheres, the classical one-component plasma or Gaussian-core particles). Second, the DFT will be generalized towards Brownian dynamics in order to tackle nonequilibrium problems. After a general introduction to Brownian dynamics using the complementary Smoluchowski and Langevin pictures appropriate for the dynamics of colloidal suspensions, the dynamical density functional theory (DDFT) will be derived from the Smoluchowski equation. This will be done first for spherical particles (e.g. hard spheres or Gaussian-cores) without hydrodynamic interactions. Then we show how to incorporate hydrodynamic interactions between the colloidal particles into the DDFT framework and compare to Brownian dynamics computer simulations. Third orientational degrees of freedom (rod-like particles) will be considered as well. In the latter case, the stability of intermediate liquid crystalline phases (isotropic, nematic, smectic-A, plastic crystals etc) can be predicted. Finally, the corresponding dynamical extension of density functional theory towards orientational degrees of freedom is proposed and the collective behaviour of "active" (self-propelled) Brownian particles is briefly discussed.
Collective emission of matter-wave jets from driven Bose-Einstein condensates.
Clark, Logan W; Gaj, Anita; Feng, Lei; Chin, Cheng
2017-11-16
Scattering is used to probe matter and its interactions in all areas of physics. In ultracold atomic gases, control over pairwise interactions enables us to investigate scattering in quantum many-body systems. Previous experiments on colliding Bose-Einstein condensates have revealed matter-wave interference, haloes of scattered atoms, four-wave mixing and correlations between counter-propagating pairs. However, a regime with strong stimulation of spontaneous collisions analogous to superradiance has proved elusive. In this regime, the collisions rapidly produce highly correlated states with macroscopic population. Here we find that runaway stimulated collisions in Bose-Einstein condensates with periodically modulated interaction strength cause the collective emission of matter-wave jets that resemble fireworks. Jets appear only above a threshold modulation amplitude and their correlations are invariant even when the number of ejected atoms grows exponentially. Hence, we show that the structures and atom occupancies of the jets stem from the quantum fluctuations of the condensate. Our findings demonstrate the conditions required for runaway stimulated collisions and reveal the quantum nature of matter-wave emission.
Gauge/gravity duality applied to condensed matter systems
International Nuclear Information System (INIS)
Ammon, Martin Matthias
2010-01-01
developed. Finally a second model for the field theory at the quantum-critical point, a Chern-Simons matter theory in (2+1) dimensions is studied more precisely. On the gravitational side thereby higher-dimensional membranes and other non-perturbative objects, so-called KK-monopoles are embedded in M-theory respectively its type IIA limit.
Gauge/gravity duality applied to condensed matter systems
Energy Technology Data Exchange (ETDEWEB)
Ammon, Martin Matthias
2010-07-07
developed. Finally a second model for the field theory at the quantum-critical point, a Chern-Simons matter theory in (2+1) dimensions is studied more precisely. On the gravitational side thereby higher-dimensional membranes and other non-perturbative objects, so-called KK-monopoles are embedded in M-theory respectively its type IIA limit.
Use of ORELA to produce neutrons for scattering studies on condensed matter
International Nuclear Information System (INIS)
Peelle, R.W.; Lewis, T.A.; Mihalczo, J.T.; Mook, H.A.; Moon, R.M.
1975-09-01
The Oak Ridge Electron Linear Accelerator (ORELA) is evaluated as a source of neutrons for condensed matter research. Two options are assessed: (1) use of the present target arrangement with minor modifications; and (2) the construction of a new target and experiment facility designed for condensed matter research and equipped with a subcritical fission booster. The expected source strength and time behavior are discussed, including the fundamentals of moderator design. The effect on the programs presently using the linac are considered. It is concluded that a special-purpose neutron source facility using pulsed electrons from ORELA and containing a subcritical booster could be built to make a cost-effective neutron scattering facility of great power and utility. (auth)
CAREER opportunities at the Condensed Matter Physics Program, NSF/DMR
Durakiewicz, Tomasz
The Faculty Early Career Development (CAREER) Program is a Foundation-wide activity, offering prestigious awards in support of junior faculty. Awards are expected to build the careers of teacher-scholars through outstanding research, excellent education and the integration of education and research. Condensed Matter Physics Program receives between 35 and 45 CAREER proposals each year, in areas related to fundamental research of phenomena exhibited by condensed matter systems. Proposal processing, merit review process, funding levels and success rates will be discussed in the presentation. NSF encourages submission of CAREER proposals from junior faculty members from CAREER-eligible organizations and encourages women, members of underrepresented minority groups, and persons with disabilities to apply. NSF/DMR/CMP homepage: https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=5666
International Nuclear Information System (INIS)
Bisanti, Paola; Lovesey, S.W.
1987-05-01
The paper provides a short, and partial view of the neutron scattering technique applied to condensed matter and materials research. Reactor and accelerator-based neutron spectrometers are discussed, together with examples of research projects that illustrate the puissance and modern applications of neutron scattering. Some examples are chosen to show the range of facilities available at the medium flux reactor operated by Casaccia ENEA, Roma and the advanced, pulsed spallation neutron source at the Rutherford Appleton Laboratory, Oxfordshire. (author)
Condensed matter physics of biomolecule systems in a differential geometric framework
DEFF Research Database (Denmark)
Bohr, Henrik; Ipsen, J. H.; Markvorsen, Steen
2007-01-01
In this contribution biomolecular systems are analyzed in a framework of differential geometry in order to derive important condensed matter physics information. In the first section lipid bi-layer membranes are examined with respect to statistical properties and topology, e.g. a relation between...... vesicle formation and the proliferation of genus number. In the second section differential geometric methods are used for analyzing the surface structure of proteins and thereby understanding catalytic properties of larger proteins....
Condensed matter physics of biomolecule systems in a differential geometric framework
DEFF Research Database (Denmark)
Bohr, H.; Ipsen, John Hjort; Markvorsen, S
2007-01-01
In this contribution biomolecular systems are analyzed in a framework of differential geometry in order to derive important condensed matter physics information. In the first section lipid bi-layer membranes axe examined with respect to statistical properties and topology, e.g. a relation between...... vesicle formation and the proliferation of genus number. In the second section differential geometric methods are used for analyzing the surface structure of proteins and thereby understanding catalytic properties of larger proteins....
DEFF Research Database (Denmark)
2001-01-01
The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 2000 are presented in this progress report. Theresearch in physics is concentrated on neutron...... molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods...
Proceedings of the 19th International Conference on Applied Physics of Condensed Matter
International Nuclear Information System (INIS)
Vajda, J.; Jamnicky, I.
2013-01-01
The 19. International Conference on Applied Physics of Condensed Matter was held on 19-21 June, 2013 on Strbske Pleso, Strba, Slovakia. The specialists discussed various aspects of modern problems in: New materials and structures, nanostructures, thin films, their analysis and applications; Nuclear science and technology, influence of irradiation on physical properties of materials, radiation detection; Physical properties and structural aspects of solid materials and their influencing; Computational physics and theory of physical properties of matter; Optical phenomena in materials, photovoltaics and photonics, new principles in sensors and detection methods. Contributions relevant of INIS interest (forty contributions) has been inputted to INIS.
Linking the gaseous and the condensed phases of matter: The slow electron and its interactions
International Nuclear Information System (INIS)
Christophorou, L.G.
1993-01-01
The interfacing of the gaseous and the condensed phases of matter as effected by interphase and cluster studies on the behavior of key reactions involving slow electrons either as reacting initial particles or as products of the reactions themselves is discussed. Emphasis is placed on the measurement of both the cross sections and the energetics involved, although most of the available information to date is on the latter. The discussion is selectively focussed on electron scattering (especially the role of negative ion states in gases, clusters, and dense matter), ionization, electron attachment and photodetachment. The dominant role of the electric polarization of the medium is emphasized
Weak nonlinear matter waves in a trapped two-component Bose-Einstein condensates
International Nuclear Information System (INIS)
Yong Wenmei; Xue Jukui
2008-01-01
The dynamics of the weak nonlinear matter solitary waves in two-component Bose-Einstein condensates (BEC) with cigar-shaped external potential are investigated analytically by a perturbation method. In the small amplitude limit, the two-components can be decoupled and the dynamics of solitary waves are governed by a variable-coefficient Korteweg-de Vries (KdV) equation. The reduction to the KdV equation may be useful to understand the dynamics of nonlinear matter waves in two-component BEC. The analytical expressions for the evolution of soliton, emitted radiation profiles and soliton oscillation frequency are also obtained
Quantum simulations with photons and polaritons merging quantum optics with condensed matter physics
2017-01-01
This book reviews progress towards quantum simulators based on photonic and hybrid light-matter systems, covering theoretical proposals and recent experimental work. Quantum simulators are specially designed quantum computers. Their main aim is to simulate and understand complex and inaccessible quantum many-body phenomena found or predicted in condensed matter physics, materials science and exotic quantum field theories. Applications will include the engineering of smart materials, robust optical or electronic circuits, deciphering quantum chemistry and even the design of drugs. Technological developments in the fields of interfacing light and matter, especially in many-body quantum optics, have motivated recent proposals for quantum simulators based on strongly correlated photons and polaritons generated in hybrid light-matter systems. The latter have complementary strengths to cold atom and ion based simulators and they can probe for example out of equilibrium phenomena in a natural driven-dissipative sett...
6. International conference on materials science and condensed matter physics. Abstracts
International Nuclear Information System (INIS)
2012-09-01
This book includes abstracts of the communications presented at the 6th International Conference on Materials Science and Condensed Matter Physics. The aim of this event is two-fold. First, it provides a nice opportunity for discussions and the dissemination of the latest results on selected topics in materials science, condensed-matter physics, and electrical methods of materials treatment. On the other hand, this is an occasion for sketching a broad perspective of scientific research and technological developments for the participants through oral and poster presentations. The abstracts presented in the book cover certain issues of modern theoretical and experimental physics and advanced technology, such as crystal growth, doping and implantation, fabrication of solid state structures; defect engineering, methods of fabrication and characterization of nanostructures including nanocomposites, nanowires and nano dots; fullerenes and nano tubes; quantum wells and superlattices; molecular-based materials, meso- and nano electronics; methods of structural and mechanical characterization; optical, transport, magnetic and superconductor properties, non-linear phenomena, size and interface effects; condensed matter theory; modelling of materials and structural properties including low dimensional systems; advanced materials and fabrication processes, device modelling and simulation of structures and elements; optoelectronics and photonics; microsensors and micro electro-mechanical systems; degradation and reliability, advanced technologies of electro-physico-chemical methods and equipment for materials machining, including modification of surfaces; electrophysical technologies of intensification of heat- and mass-transfer; treatment of biological preparations and foodstuff.
Testing the Bose-Einstein Condensate dark matter model at galactic cluster scale
International Nuclear Information System (INIS)
Harko, Tiberiu; Liang, Pengxiang; Liang, Shi-Dong; Mocanu, Gabriela
2015-01-01
The possibility that dark matter may be in the form of a Bose-Einstein Condensate (BEC) has been extensively explored at galactic scale. In particular, good fits for the galactic rotations curves have been obtained, and upper limits for the dark matter particle mass and scattering length have been estimated. In the present paper we extend the investigation of the properties of the BEC dark matter to the galactic cluster scale, involving dark matter dominated astrophysical systems formed of thousands of galaxies each. By considering that one of the major components of a galactic cluster, the intra-cluster hot gas, is described by King's β-model, and that both intra-cluster gas and dark matter are in hydrostatic equilibrium, bound by the same total mass profile, we derive the mass and density profiles of the BEC dark matter. In our analysis we consider several theoretical models, corresponding to isothermal hot gas and zero temperature BEC dark matter, non-isothermal gas and zero temperature dark matter, and isothermal gas and finite temperature BEC, respectively. The properties of the finite temperature BEC dark matter cluster are investigated in detail numerically. We compare our theoretical results with the observational data of 106 galactic clusters. Using a least-squares fitting, as well as the observational results for the dark matter self-interaction cross section, we obtain some upper bounds for the mass and scattering length of the dark matter particle. Our results suggest that the mass of the dark matter particle is of the order of μ eV, while the scattering length has values in the range of 10 −7 fm
International Nuclear Information System (INIS)
Fano, U.
1987-02-01
A summary is given for theoretical procedures that describe and evaluate the penetration, degradation and diffusion of slow electrons in condensed matter with characteristics relevant to biological systems. 5 refs
Dimova-Malinovska, Doriana; Nesheva, Diana; Pecheva, Emilia; Petrov, Alexander G.; Primatarowa, Marina T.
2012-12-01
We are pleased to introduce the Proceedings of the 17th International School on Condensed Matter Physics: Open Problems in Condensed Matter Physics, Biomedical Physics and their Applications, organized by the Institute of Solid State Physics of the Bulgarian Academy of Sciences. The Chairman of the School was Professor Alexander G Petrov. Like prior events, the School took place in the beautiful Black Sea resort of Saints Constantine and Helena near Varna, going back to the refurbished facilities of the Panorama hotel. Participants from 17 different countries delivered 31 invited lecturers and 78 posters, contributing through three sessions of poster presentations. Papers submitted to the Proceedings were refereed according to the high standards of the Journal of Physics: Conference Series and the accepted papers illustrate the diversity and the high level of the contributions. Not least significant factor for the success of the 17 ISCMP was the social program, both the organized events (Welcome and Farewell Parties) and the variety of pleasant local restaurants and beaches. Visits to the Archaeological Museum (rich in valuable gold treasures of the ancient Thracian culture) and to the famous rock monastery Aladja were organized for the participants from the Varna Municipality. These Proceedings are published for the second time by the Journal of Physics: Conference Series. We are grateful to the Journal's staff for supporting this idea. The Committee decided that the next event will take place again in Saints Constantine and Helena, 1-5 September 2014. It will be entitled: Challenges of the Nanoscale Science: Theory, Materials and Applications. Doriana Dimova-Malinovska, Diana Nesheva, Emilia Pecheva, Alexander G Petrov and Marina T Primatarowa Editors
7. International conference on materials science and condensed matter physics. Abstracts
International Nuclear Information System (INIS)
2014-09-01
This book includes the abstracts of the communications presented at the 7th International Conference on Materials Science and Condensed Matter Physics, traditional biennial meeting organized by the Institute of Applied Physics of the Academy of Sciences of Moldova (IAP) which celebrates this year its 50th anniversary. The conference reports have been delivered in a broad range of topics in materials science, condensed matter physics, electrochemistry reflecting the research results of the scientific staff and Ph.D. students from the IAP as well as those by distinguished guests from different countries. The abstracts cover special issues of modern theoretical and experimental physics and advanced technology, such as advances in condensed matter theory; theory of low dimensional systems; modelling of materials and structural properties; ordering and phase transitions; quantum optics and electronics; strong correlated electronic systems; crystal growth; electronic processes and transport properties of semiconductors and superconductors; ordering processes in magnetic and multiferroic systems; interaction of light and matter, and optical phenomena; properties of composites, meta materials and molecular materials; crystal engineering of solid state structures; metal-organic materials; porous materials; advanced materials with magnetic, luminescent, nonlinear optical , thermoelectric, catalytic, analytic and pharmaceutical properties; defects engineering and mechanical properties; crystallography of organic, inorganic and supramolecular compounds; advanced physics of nanosystems; methods of nanostructures and nanomaterials fabrication and characterization; electronic properties of quantum wells, superlattices, nanowires and nanodots; meso- and nanoelectronics, optical processes in nanostructures; emerging phenomena in nanocomposites and nanomaterials; device modelling and simulation, device structures and elements; photovoltaics: crystals, thin films, nanoparticles
Fourth American Physical Society Topical Conference on Shock Waves in Condensed Matter
Shock Waves in Condensed Matter
1986-01-01
The Fourth American Physical Society Topical Conference on Shock Waves in Condensed Matter was held in Spokane, Washington, July 22-25, 1985. Two hundred and fifty scientists and engineers representing thirteen countries registered at the conference. The countries represented included the United States of America, Australia, Canada, The People's Repub lic of China, France, India, Israel, Japan, Republic of China (Taiwan), United Kingdom, U. S. S. R, Switzerland and West Germany. One hundred and sixty-two technical papers, cov ering recent developments in shock wave and high pressure physics, were presented. All of the abstracts have been published in the September 1985 issue of the Bulletin of the American Physical Society. The topical conferences, held every two years since 1979, have become the principal forum for shock wave studies in condensed materials. Both formal and informal technical discussions regarding recent developments conveyed a sense of excitement. Consistent with the past conferences, th...
Proceedings of the 18th International Conference on Applied Physics of Condensed Matter
International Nuclear Information System (INIS)
Vajda, J.; Jamnicky, I.
2012-01-01
The 18th International Conference on Applied Physics of Condensed Matter was held on 20-22 June, 2012 on Strbske Pleso, Strba, Slovakia. The specialists discussed various aspects of modern problems in: Nuclear science and technology, influence of irradiation on physical properties of materials, radiation detection; New materials and structures, nanostructures, thin films, their analysis and applications; Physical properties and structural aspects of solid materials and their influencing; Optical phenomena in materials, photovoltaics and photonics, new principles in sensors and detection methods. Contributions relevant of INIS interest (forty-eight contributions) has been inputted to INIS.
DEFF Research Database (Denmark)
2000-01-01
The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1999 are presented in this progress report. Theresearch in physics is concentrated on neutron...... molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures.Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods...
29th Workshop on Recent Developments in Computer Simulation Studies in Condensed Matter Physics
International Nuclear Information System (INIS)
2016-01-01
Thirty years ago, because of the dramatic increase in the power and utility of computer simulations, The University of Georgia formed the first institutional unit devoted to the application of simulations in research and teaching: The Center for Simulational Physics. Then, as the international simulations community expanded further, we sensed the need for a meeting place for both experienced simulators and newcomers to discuss inventive algorithms and recent results in an environment that promoted lively discussion. As a consequence, the Center for Simulational Physics established an annual workshop series on Recent Developments in Computer Simulation Studies in Condensed Matter Physics. This year's highly interactive workshop was the 29th in the series marking our efforts to promote high quality research in simulational physics. The continued interest shown by the scientific community amply demonstrates the useful purpose that these meetings have served. The latest workshop was held at The University of Georgia from February 22-26, 2016. It served to mark the 30 th Anniversary of the founding of the Center for Simulational Physics. In addition, during this Workshop we celebrated the 60 th birthday of our esteemed colleague Prof. H.-Bernd Schuttler. Bernd has not only contributed to the understanding of strongly correlated electron system, but has made seminal contributions to systems biology through the introduction of modern methods of computational physics. These Proceedings provide a “status report” on a number of important topics. This on-line “volume” is published with the goal of timely dissemination of the material to a wider audience. This program was supported in part by the President's Venture Fund through the generous gifts of the University of Georgia Partners and other donors. We also wish to offer thanks to the Office of the Vice-President for Research, the Franklin College of Arts and Sciences, and the IBM Corporation for partial
International Nuclear Information System (INIS)
Ali, A.; Ellis, J.; Randjbar Daemi, S.; eds)
1994-01-01
The book contains papers, mainly on particle physics, presented at the meeting held between 8 and 12 March 1993 at the ICTP in Trieste to honor Professor Abdus Salam. The articles have been grouped in 6 chapters: Standard Model (6 papers), Beyond the Standard Model (4 papers), Astro-Particle Physics and Cosmology (3 papers), Strings and Quantum Gravity (5 papers), Mathematical Physics and Condensed Matter (2 papers), Salam's Collaborators and Students (13 papers). A separate abstract was prepared for each paper. Refs, figs and tabs
Prieto, P.
2009-05-01
We will discuss the current state of R&D in the fields of condensed matter, novel materials, and nanotechnology in the Andean nations. We will initially consider Latin America and the Caribbean (LAC) to then visualize individual developments, as well as those for the region as a whole in these fields of knowledge in each of the nations constituting the Andean Region (Bolivia, Ecuador, Chile, Venezuela, Peru, and Colombia). Based on Science & Technology watch exercises in the countries involved, along with the Iberian American and Inter-American Science & Technology Network of Indicators (Red de indicadores de Ciencia y Tecnolog'ia (RICYT) iberoamericana e interamericana)1, we will reveal statistical data that will shed light on the development in the fields mentioned. As will be noted, total R&D investment in Latin American and Caribbean countries remained constant since 1997. In spite of having reached a general increase in publications without international collaboration in LAC nations, the countries with greatest research productivity in Latin America (Argentina, Mexico, Brazil, and Chile) have strengthened their international collaboration with the United States, France, Germany, and Italy through close links associated with the formation processes of their researchers. Academic and research integration is evaluated through joint authorship of scientific articles, evidencing close collaboration in fields of research. This principle has been used in the creation of cooperation networks among participating nations. As far as networks of research on condensed matter, novel materials, and nanotechnology, the Andean nations have not consolidated a regional network allowing permanent and effective cooperation in research and technological development; as would be expected, given their idiomatic and cultural similarities, their historical background, and geographical proximity, which have been integrating factors in other research areas or socio-economic aspects. This
Neutron beams for the study of condensed matter: a view of the first half-century
International Nuclear Information System (INIS)
Bacon, G.E.
1982-01-01
Neutron diffraction was first demonstrated in 1936 but awaited the development of the nuclear reactor before becoming a practical technique for the study of condensed matter. Neutrons have unique advantages for the location of hydrogen atoms, the recognition of magnetic architecture and the study of crystal vibrations and atomic and molecular motions. The techniques available exploit the optical properties of neutrons over a wavelength range from 0.5 to 500 A. Progress has gone hand in hand with a steady increase of reactor flux over 50 years but future improvements may depend on pulsed linear accelerators as the source of neutrons. (author)
Kim, Yeong E.; Zubarev, Alexander L.
2006-02-01
A mixture of two different species of positively charged bosons in harmonic traps is considered in the mean-field approximation. It is shown that depending on the ratio of parameters, the two components may coexist in same regions of space, in spite of the Coulomb repulsion between the two species. Application of this result is discussed for the generalization of the Bose-Einstein condensation mechanism for low-energy nuclear reaction (LENR) and transmutation processes in condensed matters. For the case of deutron-lithium (d + Li) LENR, the result indicates that (d + 6Li) reactions may dominate over (d + d) reactions in LENR experiments.
Energy Technology Data Exchange (ETDEWEB)
Yeong, E. Kim; Zubarev, Alexander L. [Purdue Nuclear and Many-Body Theory Group (PNMBTG) Department of Physics, Purdue University, West Lafayette, IN 47907 (United States)
2006-07-01
A mixture of two different species of positively charged bosons in harmonic traps is considered in the mean-field approximation. It is shown that depending on the ratio of parameters, the two components may coexist in some regions of space, in spite of the Coulomb repulsion between the two species. Application of this result is discussed for the generalization of the Bose-Einstein condensation mechanism for low-energy nuclear reaction (LENR) and transmutation processes in condensed matters. For the case of deuteron-lithium (d + Li) LENR, the result indicates that (d + {sup 6}Li) reactions may dominate over (d + d) reactions in LENR experiments. (authors)
International Nuclear Information System (INIS)
Yeong, E. Kim; Zubarev, Alexander L.
2006-01-01
A mixture of two different species of positively charged bosons in harmonic traps is considered in the mean-field approximation. It is shown that depending on the ratio of parameters, the two components may coexist in some regions of space, in spite of the Coulomb repulsion between the two species. Application of this result is discussed for the generalization of the Bose-Einstein condensation mechanism for low-energy nuclear reaction (LENR) and transmutation processes in condensed matters. For the case of deuteron-lithium (d + Li) LENR, the result indicates that (d + 6 Li) reactions may dominate over (d + d) reactions in LENR experiments. (authors)
Inhomogeneous condensates in dilute nuclear matter and BCS-BEC crossovers
International Nuclear Information System (INIS)
Stein, Martin; Sedrakian, Armen; Huang, Xu-Guang; Clark, John W; Röpke, Gerd
2014-01-01
We report on recent progress in understanding pairing phenomena in low-density nuclear matter at small and moderate isospin asymmetry. A rich phase diagram has been found comprising various superfluid phases that include a homogeneous and phase-separated BEC phase of deuterons at low density and a homogeneous BCS phase, an inhomogeneous LOFF phase, and a phase-separated BCS phase at higher densities. The transition from the BEC phases to the BCS phases is characterized in terms of the evolution, from strong to weak coupling, of the condensate wavefunction and the second moment of its density distribution in r-space. We briefly discuss approaches to higher-order clustering in low-density nuclear matter.
History of the APS Topical Group on Shock Compression of Condensed Matter
International Nuclear Information System (INIS)
Forbes, J W
2001-01-01
In order to provide broader scientific recognition and to advance the science of shock compressed condensed matter, a group of American Physical Society (APS) members worked within the Society to make this field an active part of the APS. Individual papers were presented at APS meetings starting in the 1940's and shock wave sessions were organized starting with the 1967 Pasadena meeting. Shock wave topical conferences began in 1979 in Pullman, WA. Signatures were obtained on a petition in 1984 from a balanced cross-section of the shock wave community to form an APS Topical Group (TG). The APS Council officially accepted the formation of the Shock Compression of Condensed Matter (SCCM) TG at its October 1984 meeting. This action firmly aligned the shock wave field with a major physical science organization. Most early topical conferences were sanctioned by the APS while those held after 1992 were official APS meetings. The topical group organizes a shock wave topical conference in odd numbered years while participating in shock wavehigh pressure sessions at APS general meetings in even numbered years
Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond
Casola, Francesco; van der Sar, Toeno; Yacoby, Amir
2018-01-01
The magnetic fields generated by spins and currents provide a unique window into the physics of correlated-electron materials and devices. First proposed only a decade ago, magnetometry based on the electron spin of nitrogen-vacancy (NV) defects in diamond is emerging as a platform that is excellently suited for probing condensed matter systems; it can be operated from cryogenic temperatures to above room temperature, has a dynamic range spanning from direct current to gigahertz and allows sensor-sample distances as small as a few nanometres. As such, NV magnetometry provides access to static and dynamic magnetic and electronic phenomena with nanoscale spatial resolution. Pioneering work has focused on proof-of-principle demonstrations of its nanoscale imaging resolution and magnetic field sensitivity. Now, experiments are starting to probe the correlated-electron physics of magnets and superconductors and to explore the current distributions in low-dimensional materials. In this Review, we discuss the application of NV magnetometry to the exploration of condensed matter physics, focusing on its use to study static and dynamic magnetic textures and static and dynamic current distributions.
Condensation for non-relativistic matter in Hořava–Lifshitz gravity
Directory of Open Access Journals (Sweden)
Jiliang Jing
2015-10-01
Full Text Available We study condensation for non-relativistic matter in a Hořava–Lifshitz black hole without the condition of the detailed balance. We show that, for the fixed non-relativistic parameter α2 (or the detailed balance parameter ϵ, it is easier for the scalar hair to form as the parameter ϵ (or α2 becomes larger, but the condensation is not affected by the non-relativistic parameter β2. We also find that the ratio of the gap frequency in conductivity to the critical temperature decreases with the increase of ϵ and α2, but increases with the increase of β2. The ratio can reduce to the Horowitz–Roberts relation ωg/Tc≈8 obtained in the Einstein gravity and Cai's result ωg/Tc≈13 found in a Hořava–Lifshitz gravity with the condition of the detailed balance for the relativistic matter. Especially, we note that the ratio can arrive at the value of the BCS theory ωg/Tc≈3.5 by taking proper values of the parameters.
Limits on inelastic dark matter from ZEPLIN-III
Energy Technology Data Exchange (ETDEWEB)
Akimov, D.Yu. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Araujo, H.M. [Blackett Laboratory, Imperial College, London (United Kingdom); Barnes, E.J. [School of Physics and Astronomy, University of Edinburgh (United Kingdom); Belov, V.A. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Bewick, A. [Blackett Laboratory, Imperial College, London (United Kingdom); Burenkov, A.A. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Cashmore, R. [Brasenose College, University of Oxford (United Kingdom); Chepel, V. [LIP-Coimbra and Department of Physics of the University of Coimbra (Portugal); Currie, A., E-mail: alastair.currie08@imperial.ac.u [Blackett Laboratory, Imperial College, London (United Kingdom); Davidge, D.; Dawson, J. [Blackett Laboratory, Imperial College, London (United Kingdom); Durkin, T.; Edwards, B. [Particle Physics Department, Rutherford Appleton Laboratory, Chilton (United Kingdom); Ghag, C.; Hollingsworth, A. [School of Physics and Astronomy, University of Edinburgh (United Kingdom); Horn, M.; Howard, A.S. [Blackett Laboratory, Imperial College, London (United Kingdom); Hughes, A.J. [Particle Physics Department, Rutherford Appleton Laboratory, Chilton (United Kingdom); Jones, W.G. [Blackett Laboratory, Imperial College, London (United Kingdom); Kalmus, G.E. [Particle Physics Department, Rutherford Appleton Laboratory, Chilton (United Kingdom)
2010-08-30
We present limits on the WIMP-nucleon cross section for inelastic dark matter from a reanalysis of the 2008 run of ZEPLIN-III. Cuts, notably on scintillation pulse shape and scintillation-to-ionisation ratio, give a net exposure of 63kgday in the range 20-80keV nuclear recoil energy, in which 6 events are observed. Upper limits on signal rate are derived from the maximum empty patch in the data. Under standard halo assumptions a small region of parameter space consistent, at 99% CL, with causing the 1.17tonyr DAMA modulation signal is allowed at 90% CL: it is in the mass range 45-60GeVc{sup -2} with a minimum CL of 87%, again derived from the maximum patch. This is the tightest constraint yet presented using xenon, a target nucleus whose similarity to iodine mitigiates systematic error from the assumed halo.
International Conference on Polarised Neutrons for Condensed Matter Investigations (PNCMI 2016)
International Nuclear Information System (INIS)
2017-01-01
The present volume of the Journal of Physics: Conference Series represents Proceedings of the 11th International Conference on Polarised Neutrons for Condensed Matter Investigation (PNCMI) held in Freising, Germany from July 4–7, 2016. The conference attended by more than 120 scientists from various academic, government, and industrial institutions in Europe, Asia and the Americas was organized by the Jülich Centre for Neutron Science of the Forschungszentrum Jülich. The PNCMI-2016 continuoued the successful previous conferences in this series covering the latest condensed matter investigations using polarised neutrons and state-of-the-art methodologies, from effective polarization of neutron beams to wide-angle polarization analysis, as well as applications for novel instrumentation and experiments, with emphasis on prospects for new science and new instrument concepts. The conference program included invited and contributed oral presentations and posters which demonstrated the activities using polarized neutrons all over the world and showed the deep interest in developing the topic. The presentations tackled all area of science including multiferroic and chirality, strongly correlated electron systems, superconductors, frustrated and disordered systems, magnetic nanomaterials, thin films and multilayers, soft matter and biology, imaging, as well as further developments in polarized neutron techniques and methods, including nuclear polarisation, Larmor techniques and depolarisation methods.. We would like to thank all speakers for their presentations and all attendees for their participation. We would also like to gratefully acknowledge the financial support by J-PARC and AIRBUS DS as Premium Sponsors and Swiss Neutronics, ISIS, LLB, PSI and Mirrotron as Standard Sponsors of this conference. The next PNCMI will take place in Great Britain in 2018 and will be organized by ISIS. Alexander Ioffe (Conference Chair) Thomas Gutberlet (Conference Secretary) (paper)
Characteristic size and mass of galaxies in the Bose–Einstein condensate dark matter model
Directory of Open Access Journals (Sweden)
Jae-Weon Lee
2016-05-01
Full Text Available We study the characteristic length scale of galactic halos in the Bose–Einstein condensate (or scalar field dark matter model. Considering the evolution of the density perturbation we show that the average background matter density determines the quantum Jeans mass and hence the spatial size of galaxies at a given epoch. In this model the minimum size of galaxies increases while the minimum mass of the galaxies decreases as the universe expands. The observed values of the mass and the size of the dwarf galaxies are successfully reproduced with the dark matter particle mass m≃5×10−22 eV. The minimum size is about 6×10−3m/Hλc and the typical rotation velocity of the dwarf galaxies is O(H/m c, where H is the Hubble parameter and λc is the Compton wave length of the particle. We also suggest that ultra compact dwarf galaxies are the remnants of the dwarf galaxies formed in the early universe.
Teiji, KUNIHIRO; Tatsuyuki, TAKATSUKA; Ryozo, TAMAGAKI; Department of National Sciences, Ryukoku University; College of Humanities and Social Sciences, Iwate University; Department of Physics, Kyoto University
1985-01-01
Pion condensation in the symmetric nuclear matter is investigated on the basis of the ALS (alternating-layer-spin) model which provides a good description for the π^0 condensation. We perform energy calculations in a realistic way where the isobar (Δ)-mixing, the short range effects and the exchange energy of the interaction are taken into account. The Δ-mixing effect is built in the model state as previously done in the neutron matter. We preferentially employ G-0 force of Sprung and Banerje...
International Nuclear Information System (INIS)
1977-01-01
An in-depth review of the present status and future potential of the applications of low-energy neutron scattering to research in the condensed-matter sciences, including physics, chemistry, biology, and metallurgy is presented. The study shows that neutron scattering technology has proven to be of enormous importance to research in the above areas and especially to those of solid-state physics and chemistry. The main emphasis is on the scattering of low-energy neutrons by condensed matter. Since the same type of neutron source facilities can be used for the study of radiation damage, this related topic has also been included
Energy Technology Data Exchange (ETDEWEB)
Schwartz, A.J. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)], E-mail: schwartz6@llnl.gov
2007-10-11
Although there exists evidence of metallurgical practices dating back over 6000 years, studies of Pu and Pu alloys have been conducted for barely 60 years. During the time of the Manhattan Project and extending for some time afterward, the priority to produce the metal took precedence over the fundamental understanding of the metallurgical principals. In the past decade or so, there has been a resurgence in the basic metallurgy, condensed-matter physics, and chemistry of Pu and Pu alloys. These communities have made substantial progress, both experimentally and theoretically in many areas; however, many challenges still remain. The intent of this brief overview is to highlight a number important challenges that we face in the metallurgy of Pu including phase transformations and phase stability, aging, and the connection between electronic structure and metallurgy.
Piezoresistive Soft Condensed Matter Sensor for Body-Mounted Vital Function Applications
Directory of Open Access Journals (Sweden)
Mark Melnykowycz
2016-03-01
Full Text Available A soft condensed matter sensor (SCMS designed to measure strains on the human body is presented. The hybrid material based on carbon black (CB and a thermoplastic elastomer (TPE was bonded to a textile elastic band and used as a sensor on the human wrist to measure hand motion by detecting the movement of tendons in the wrist. Additionally it was able to track the blood pulse wave of a person, allowing for the determination of pulse wave peaks corresponding to the systole and diastole blood pressures in order to calculate the heart rate. Sensor characterization was done using mechanical cycle testing, and the band sensor achieved a gauge factor of 4–6.3 while displaying low signal relaxation when held at a strain levels. Near-linear signal performance was displayed when loading to successively higher strain levels up to 50% strain.
Chamon, Claudio; Goerbig, Mark O; Moessner, Roderich; Cugliandolo, Leticia F
2017-01-01
Topological condensed matter physics is a recent arrival among the disciplines of modern physics of a distinctive and substantive nature. Its roots reach far back, but much of its current importance derives from exciting developments in the last half-century. The field is advancing rapidly, growing explosively, and diversifying greatly. There is now a zoo of topological phenomena–the quantum spin Hall effect, topological insulators, Coulomb spin liquids, non-Abelian anyonic statistics and their potential application in topological quantum computing, to name but a few–as well as an increasingly sophisticated set of concepts and methods underpinning their understanding. The aim of this Les Houches Summer School was to present an overview of this field, along with a sense of its origins and its place on the map of advances in fundamental physics. The school comprised a set of basic lectures (Part I) aimed at a pedagogical introduction to the fundamental concepts, which was accompanied by more advanced lectur...
International Nuclear Information System (INIS)
Lebech, B.
2001-03-01
The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 2000 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)
Energy Technology Data Exchange (ETDEWEB)
Lebech, B [ed.
2000-02-01
The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1999 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scalestructures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)
3-sphere fibrations: a tool for analyzing twisted materials in condensed matter
International Nuclear Information System (INIS)
Sadoc, J F; Charvolin, J
2009-01-01
Chiral molecules, when densely packed in soft condensed matter or biological materials, build organizations which are most often spontaneously twisted. The crystals of 'blue' phases formed by small mesogenic molecules demonstrate the structural importance of such a twist or torsion, and its presence was also recently observed in finite toroidal aggregates formed by long DNA molecules. The formation of these organizations is driven by the fact that compactness, which tends to align the molecules, enters into conflict with torsion, which tends to disrupt this alignment. This conflict of topological nature, or frustration, arises because of the flatness of the Euclidean space, but does not exist in the curved space of the 3-sphere where particular lines, its fibres, can be drawn which are parallel and nevertheless twisted. As these fibrations conciliate compactness and torsion, they can be used as geometrical templates for the analysis of organizations in the Euclidean space. We describe these fibrations, with a particular emphasis on their torsion.
Roy, S. B.; Myneni, G. R.
2015-12-01
We address the issue of qualifications of the niobium materials to be used for superconducting radio frequency (SCRF) cavity fabrications, from the point of view of a condensed matter physicist/materials scientist. We focus on the particular materials properties of niobium required for the functioning a SCRF cavity, and how to optimize the same properties for the best SCRF cavity performance in a reproducible manner. In this way the niobium materials will not necessarily be characterized by their purity alone, but in terms of those materials properties, which will define the limit of the SCRF cavity performance and also other related material properties, which will help to sustain this best SCRF cavity performance. Furthermore we point out the need of standardization of the post fabrication processing of the niobium-SCRF cavities, which does not impair the optimized superconducting and thermal properties of the starting niobium-materials required for the reproducible performance of the SCRF cavities according to the design values.
International Nuclear Information System (INIS)
Nielsen, M.; Bechgaard, K.; Clausen, K.N.; Feidenhans'l, R.; Johannsen, I.
1998-01-01
The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1997 are presented in this progress report. The research in physics in concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems in undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)
Energy Technology Data Exchange (ETDEWEB)
Roy, S. B., E-mail: sbroy@rrcat.gov.in [Magnetic & Superconducting Materials Section, Materials & Advanced Accelerator Sciences Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Myneni, G. R., E-mail: rao@jlab.org [Thomas Jefferson National Accelerator Facility, Newport News, Virginia (United States)
2015-12-04
We address the issue of qualifications of the niobium materials to be used for superconducting radio frequency (SCRF) cavity fabrications, from the point of view of a condensed matter physicist/materials scientist. We focus on the particular materials properties of niobium required for the functioning a SCRF cavity, and how to optimize the same properties for the best SCRF cavity performance in a reproducible manner. In this way the niobium materials will not necessarily be characterized by their purity alone, but in terms of those materials properties, which will define the limit of the SCRF cavity performance and also other related material properties, which will help to sustain this best SCRF cavity performance. Furthermore we point out the need of standardization of the post fabrication processing of the niobium-SCRF cavities, which does not impair the optimized superconducting and thermal properties of the starting niobium-materials required for the reproducible performance of the SCRF cavities according to the design values.
Gravitational waves as a new probe of Bose–Einstein condensate Dark Matter
Directory of Open Access Journals (Sweden)
P.S. Bhupal Dev
2017-10-01
Full Text Available There exists a class of ultralight Dark Matter (DM models which could give rise to a Bose–Einstein condensate (BEC in the early universe and behave as a single coherent wave instead of individual particles in galaxies. We show that a generic BEC-DM halo intervening along the line of sight of a gravitational wave (GW signal could induce an observable change in the speed of GWs, with the effective refractive index depending only on the mass and self-interaction of the constituent DM particles and the GW frequency. Hence, we propose to use the deviation in the speed of GWs as a new probe of the BEC-DM parameter space. With a multi-messenger approach to GW astronomy and/or with extended sensitivity to lower GW frequencies, the entire BEC-DM parameter space can be effectively probed by our new method in the near future.
International Nuclear Information System (INIS)
Roy, S. B.; Myneni, G. R.
2015-01-01
We address the issue of qualifications of the niobium materials to be used for superconducting radio frequency (SCRF) cavity fabrications, from the point of view of a condensed matter physicist/materials scientist. We focus on the particular materials properties of niobium required for the functioning a SCRF cavity, and how to optimize the same properties for the best SCRF cavity performance in a reproducible manner. In this way the niobium materials will not necessarily be characterized by their purity alone, but in terms of those materials properties, which will define the limit of the SCRF cavity performance and also other related material properties, which will help to sustain this best SCRF cavity performance. Furthermore we point out the need of standardization of the post fabrication processing of the niobium-SCRF cavities, which does not impair the optimized superconducting and thermal properties of the starting niobium-materials required for the reproducible performance of the SCRF cavities according to the design values
International Nuclear Information System (INIS)
Lebech, B.
2000-02-01
The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1999 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)
Energy Technology Data Exchange (ETDEWEB)
Bechgaard, K.; Clausen, K.N.; Feidenhans`l, R.; Johannsen, I. [eds.
1999-04-01
The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical properties of materials. The principal activities in the year 1998 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au) 2 tabs., 142 ills., 169 refs.
Energy Technology Data Exchange (ETDEWEB)
Nielsen, M; Bechgaard, K; Clausen, K N; Feidenhans` l, R; Johannsen, I [eds.
1998-01-01
The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1997 are presented in this progress report. The research in physics in concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems in undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au). 129 ills., 213 refs.
Measurement of Viscoelastic Properties of Condensed Matter using Magnetic Resonance Elastography
Gruwel, Marco L. H.; Latta, Peter; Matwiy, Brendon; Sboto-Frankenstein, Uta; Gervai, Patricia; Tomanek, Boguslaw
2010-01-01
Magnetic resonance elastography (MRE) is a phase contrast technique that provides a non-invasive means of evaluating the viscoelastic properties of soft condensed matter. This has a profound bio-medical significance as it allows for the virtual palpation of areas of the body usually not accessible to the hands of a medical practitioner, such as the brain. Applications of MRE are not restricted to bio-medical applications, however, the viscoelastic properties of prepackaged food products can also non-invasively be determined. Here we describe the design and use of a modular MRE acoustic actuator that can be used for experiments ranging from the human brain to pre-packaged food products. The unique feature of the used actuator design is its simplicity and flexibility, which allows easy reconfiguration.
International Nuclear Information System (INIS)
Bechgaard, K.; Clausen, K.N.; Feidenhans'l, R.; Johannsen, I.
1999-04-01
The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical properties of materials. The principal activities in the year 1998 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)
International Nuclear Information System (INIS)
Baruchel, J.; Hodeau, J.L.; Lehmann, M.S.; Regnard, J.R.; Schlenker, C.
1993-01-01
This book provides the basic information required by a research scientist wishing to undertake studies using neutrons or synchrotron radiation at a Large Facility. These lecture notes result from 'HERCULES', a course that has been held in Grenoble since 1991 to train young scientists in these fields. They cover the production of neutrons and synchrotron radiation and describe all aspects of instrumentation. In addition, this work outlines the basics of the various fields of research pursued at these Large Facilities. It consists of a series of chapters written by experts in the particular fields. While following a progression and constituting a lecture course on neutron and x-ray scattering, these chapters can also be read independently. This first volume will be followed by two further volumes concerned with the applications to solid state physics and chemistry, and to biology and soft condensed matter properties
Ran, Yong; Yang, Yu; Xing, Baoshan; Pignatello, Joseph J; Kwon, Seokjoo; Su, Wei; Zhou, Li
2013-01-01
Although microporosity and surface area of natural organic matter (NOM) are crucial for mechanistic evaluation of the sorption process for nonpolar organic contaminants (NOCs), they have been underestimated by the N adsorption technique. We investigated the CO-derived internal hydrophobic microporosity () and specific surface area (SSA) obtained on dry samples and related them to sorption behaviors of NOCs in water for a wide range of condensed NOM samples. The is obtained from the total CO-derived microporosity by subtracting out the contribution of the outer surfaces of minerals and NOM using N adsorption-derived parameters. The correlation between or CO-SSA and fractional organic carbon content () is very significant, demonstrating that much of the microporosity is associated with internal NOM matrices. The average and CO-SSA are, respectively, 75.1 μL g organic carbon (OC) and 185 m g OC from the correlation analysis. The rigid aliphatic carbon significantly contributes to the microporosity of the Pahokee peat. A strong linear correlation is demonstrated between / and the OC-normalized sorption capacity at the liquid or subcooled liquid-state water solubility calculated via the Freundlich equation for each of four NOCs (phenanthrene, naphthalene, 1,3,5-trichlorobenzene, and 1,2-dichlorobenzene). We concluded that micropore filling ("adsorption") contributes to NOC sorption by condensed NOM, but the exact contribution requires knowing the relationship between the dry-state, CO-determined microporosity and the wet-state, NOC-available microporosity of the organic matter. The findings offer new clues for explaining the nonideal sorption behaviors of NOCs. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Zoology of condensed matter: framids, ordinary stuff, extra-ordinary stuff
Energy Technology Data Exchange (ETDEWEB)
Nicolis, Alberto; Penco, Riccardo [Physics Department and Institute for Strings, Cosmology, and Astroparticle Physics,Columbia University, New York, NY 10027 (United States); Piazza, Federico [Physics Department and Institute for Strings, Cosmology, and Astroparticle Physics,Columbia University, New York, NY 10027 (United States); Paris Center for Cosmological Physics and Laboratoire APC,Université Paris 7, 75205 Paris (France); CPT, Aix Marseille Université,UMR 7332, 13288 Marseille (France); Rattazzi, Riccardo [Institut de Théorie des Phénomènes Physiques,EPFL Lausanne (Switzerland)
2015-06-23
We classify condensed matter systems in terms of the spacetime symmetries they spontaneously break. In particular, we characterize condensed matter itself as any state in a Poincaré-invariant theory that spontaneously breaks Lorentz boosts while preserving at large distances some form of spatial translations, time-translations, and possibly spatial rotations. Surprisingly, the simplest, most minimal system achieving this symmetry breaking pattern — the framid — does not seem to be realized in Nature. Instead, Nature usually adopts a more cumbersome strategy: that of introducing internal translational symmetries — and possibly rotational ones — and of spontaneously breaking them along with their space-time counterparts, while preserving unbroken diagonal subgroups. This symmetry breaking pattern describes the infrared dynamics of ordinary solids, fluids, superfluids, and — if they exist — supersolids. A third, “extra-ordinary”, possibility involves replacing these internal symmetries with other symmetries that do not commute with the Poincaré group, for instance the galileon symmetry, supersymmetry or gauge symmetries. Among these options, we pick the systems based on the galileon symmetry, the “galileids”, for a more detailed study. Despite some similarity, all different patterns produce truly distinct physical systems with different observable properties. For instance, the low-energy 2→2 scattering amplitudes for the Goldstone excitations in the cases of framids, solids and galileids scale respectively as E{sup 2}, E{sup 4}, and E{sup 6}. Similarly the energy momentum tensor in the ground state is “trivial' for framids (ρ+p=0), normal for solids (ρ+p>0) and even inhomogenous for galileids.
Confinement of quasi-particles in a condensed matter system: an inelastic neutron scattering study
International Nuclear Information System (INIS)
Bera, A.K.
2016-01-01
The confinement of quasi particles, a well-known phenomenon in particle physics, can also be realized in a condensed matter system. In particle physics, baryons and mesons are produced by the confinement of quarks, where quarks are bound together by a strong interaction (gauge field) that grows stronger with increasing distance and, therefore, the quarks never exist as individual particles. The condensed matter analogue, confinement of magnetic quasiparticles (spinons) can be illustrated in quasi-one-dimensional spin-1/2 chains. We demonstrate experimentally such spinon confinement in the weakly coupled spin-1/2 XXZ antiferromagnetic chain compound SrCo_2V_2O_8 by single crystal inelastic neutron scattering. The compound SrCo_2V_2O_8 belongs to the general family SrM_2V_2O_8 (M = Ni, Co and Mn), having four-fold screw chains of edge sharing MO_6 octahedra along the crystallographic c axis. In the pure 1D magnetic state of SrCo_2V_2O_8 (above the 3D magnetic ordering temperature T_N =5 K) two spinons (excitations of individual chains) are created by a spin flip, and those spinons propagate independently by subsequent spin flips without any cost of energy. However, below the T_N, two spinons are bound together by weak interchain interactions since the separation between them frustrates the interchain interactions. The interchain interactions play the role of an attractive potential (equivalent to the gauge field), proportional to the distance between spinons, and result in confinement of spinons into bound pairs. (author)
International Nuclear Information System (INIS)
Hu, Bambi.
1988-01-01
This paper reports on the travel of Bambi Hu to France for a workshop on Universalities in Condensed Matter Physics. A very brief discussion is given on the workshop. His paper titled ''Problem of Universality in Phase Transitions in Low-Symmetry Systems,'' is included in this report
International Nuclear Information System (INIS)
Friedan, D.; Kadanoff, L.; Nambu, Y.; Shenker, S.
1988-04-01
Progress is reported in the field of condensed matter physics in the area of two-dimensional critical phenomena, specifically results allowing complete classification of all possible two-dimensional critical phenomena in a certain domain. In the field of high energy physics, progress is reported in string and conformal field theory, and supersymmetry
Bose-Einstein Condensate Dark Matter Halos Confronted with Galactic Rotation Curves
Directory of Open Access Journals (Sweden)
M. Dwornik
2017-01-01
Full Text Available We present a comparative confrontation of both the Bose-Einstein Condensate (BEC and the Navarro-Frenk-White (NFW dark halo models with galactic rotation curves. We employ 6 High Surface Brightness (HSB, 6 Low Surface Brightness (LSB, and 7 dwarf galaxies with rotation curves falling into two classes. In the first class rotational velocities increase with radius over the observed range. The BEC and NFW models give comparable fits for HSB and LSB galaxies of this type, while for dwarf galaxies the fit is significantly better with the BEC model. In the second class the rotational velocity of HSB and LSB galaxies exhibits long flat plateaus, resulting in better fit with the NFW model for HSB galaxies and comparable fits for LSB galaxies. We conclude that due to its central density cusp avoidance the BEC model fits better dwarf galaxy dark matter distribution. Nevertheless it suffers from sharp cutoff in larger galaxies, where the NFW model performs better. The investigated galaxy sample obeys the Tully-Fisher relation, including the particular characteristics exhibited by dwarf galaxies. In both models the fitting enforces a relation between dark matter parameters: the characteristic density and the corresponding characteristic distance scale with an inverse power.
Holmlid, Leif
2009-08-01
Clouds of the condensed excited Rydberg matter (RM) exist in the atmospheres of comets and planetary bodies (most easily observed at Mercury and the Moon), where they surround the entire bodies. Vast such clouds are recently proposed to exist in the upper atmosphere of Earth (giving rise to the enormous features called noctilucent clouds, polar mesospheric clouds, and polar mesospheric summer radar echoes). It has been shown in experiments with RM that linearly polarized visible light scattered from an RM layer is transformed to circularly polarized light with a probability of approximately 50%. The circular Rydberg electrons in the magnetic field in the RM may be chiral scatterers. The magnetic and anisotropic RM medium acts as a circular polarizer probably by delaying one of the perpendicular components of the light wave. The delay process involved is called Rabi-flopping and gives delays of the order of femtoseconds. This strong effect thus gives intense circularly polarized visible and UV light within RM clouds. Amino acids and other chiral molecules will experience a strong interaction with this light field in the upper atmospheres of planets. The interaction will vary with the stereogenic conformation of the molecules and in all probability promote the survival of one enantiomer. Here, this strong effect is proposed to be the origin of homochirality. The formation of amino acids in the RM clouds is probably facilitated by the catalytic effect of RM.
Holmlid, Leif
2009-01-01
Clouds of the condensed excited Rydberg matter (RM) exist in the atmospheres of comets and planetary bodies (most easily observed at Mercury and the Moon), where they surround the entire bodies. Vast such clouds are recently proposed to exist in the upper atmosphere of Earth (giving rise to the enormous features called noctilucent clouds, polar mesospheric clouds, and polar mesospheric summer radar echoes). It has been shown in experiments with RM that linearly polarized visible light scattered from an RM layer is transformed to circularly polarized light with a probability of approximately 50%. The circular Rydberg electrons in the magnetic field in the RM may be chiral scatterers. The magnetic and anisotropic RM medium acts as a circular polarizer probably by delaying one of the perpendicular components of the light wave. The delay process involved is called Rabi-flopping and gives delays of the order of femtoseconds. This strong effect thus gives intense circularly polarized visible and UV light within RM clouds. Amino acids and other chiral molecules will experience a strong interaction with this light field in the upper atmospheres of planets. The interaction will vary with the stereogenic conformation of the molecules and in all probability promote the survival of one enantiomer. Here, this strong effect is proposed to be the origin of homochirality. The formation of amino acids in the RM clouds is probably facilitated by the catalytic effect of RM.
International Nuclear Information System (INIS)
Gonzalez, J. A; Guzman, F. S.
2011-01-01
In order to explore nonlinear effects on the distribution of matter during collisions within the Bose-Einstein condensate (BEC) dark matter model driven by the Schroedinger-Poisson system of equations, we study the head-on collision of structures and focus on the interference pattern formation in the density of matter during the collision process. We explore the possibility that the collision of two structures of fluid matter modeled with an ideal gas equation of state also forms interference patterns and found a negative result. Given that a fluid is the most common flavor of dark matter models, we conclude that one fingerprint of the BEC dark matter model is the pattern formation in the density during a collision of structures.
International Nuclear Information System (INIS)
Vajda, J.; Jamnicky, I.
2015-01-01
The 21. International Conference on Applied Physics of Condensed Matter was held on 24-26 June, 2015 on Strbske Pleso, Strba, Slovakia. The Scientific Conference the Advanced Fast Reactors was part of the 21 st International Conference on APCOM 2015. The specialists discussed various aspects of modern problems in: Physical properties and structural aspects of solid materials and their influencing; Advanced fast reactors; Physical properties and structural aspects of solid materials and their influencing; Nuclear science and technology, influence of irradiation on physical properties of materials, radiation detection; Computational physics and theory of physical properties of matter; interdisciplinary physics of condensed matter; Nuclear science and technology, influence of irradiation on physical properties of materials, radiation detection; Optical phenomena in materials, photovoltaics and photonics, new principles in sensors and detection methods. Fifty seven contributions relevant of INIS interest has been inputted to INIS.
Ferry, David
2009-01-01
It is with a great deal of both happiness and sadness that I have to announce that we are losing one of the real strengths of the Journal of Physics: Condensed Matter (JPCM). Dr Richard Palmer, our Senior Publisher, announced his retirement, and this issue marks the first without his involvement. Of course, we are happy that he will get to enjoy his retirement, but we are sad to lose such a valuable member of our team. Richard first started work at IOP Publishing in March 1971 as an Editorial Assistant with Journal of Physics B: Atomic and Molecular Physics. After a few months, he transferred to Journal of Physics C: Solid State Physics. During his first year, he was sent on a residential publishing training course and asked to sign an undertaking to stay at IOP Publishing for at least two years. Although Richard refused to sign, as he did not want to commit himself, he has remained with the journal since then. The following year, the Assistant Editor of Journal of Physics C: Solid State Physics, Malcolm Haines, walked out without notice in order to work on his family vineyard in France, and Richard stepped into the breach. In those days, external editors had a much more hands-on role in IOP Publishing and he had to travel to Harwell to be interviewed by Alan Lidiard, the Honorary Editor of Journal of Physics C: Solid State Physics, before being given the job of Assistant Editor permanently. I am told that in those days the job consisted mainly of editing and proofreading and peer review. There was no journal development work. At some point in the early 1980s, production and peer review were split into separate departments and Richard then headed a group of journals consisting of Journal of Physics C: Solid State Physics, Journal of Physics D: Applied Physics and Journal of Physics F: Metal Physics, Semiconductor Science and Technology, Superconductor Science and Technology, Plasma Physics and Controlled Fusion, and later Nanotechnology and Modelling and Simulation
The Art of the Motorcycle and the History of Art (and Condensed Matter Physics)
Falco, Charles
Many topics in physics are such that they are difficult to present in ways that the general public finds engaging. In this talk I will discuss two topics I have worked on, directly related to my research in optical and condensed matter physics, that continue to have widespread appeal. In 1871 Louis Guillaume Perreaux installed a compact steam engine in a commercial bicycle and thus produced the world's first motorcycle. The 145 years since the Michaux-Perreaux have resulted in standard production motorcycles incorporating such materials as carbon-fiber composites, maraging steels, and ''exotic'' alloys of magnesium, titanium and aluminum that can exceed 190 mph straight from the show room floor. As a result of 'The Art of the Motorcycle' exhibition I co-curated at the Solomon R. Guggenheim Museum the public has learned the evolution of motorcycles is interwoven with developments in materials physics. In a second topic, discoveries I made with the renowned artist David Hockney convincingly demonstrated optical instruments were in use - by artists, not scientists - nearly 200 years earlier than commonly thought possible, and for the first time account for the remarkable transformation in the reality of portraits that occurred early in the 15th century. By learning a few principles of geometrical optics the public gains insight into the working process of artists such as van Eyck, Bellini and Caravaggio. Acknowledgement: Portions of this work done in collaboration with David Hockney.
First-principles Theory of Magnetic Multipoles in Condensed Matter Systems
Suzuki, Michi-To; Ikeda, Hiroaki; Oppeneer, Peter M.
2018-04-01
The multipole concept, which characterizes the spacial distribution of scalar and vector objects by their angular dependence, has already become widely used in various areas of physics. In recent years it has become employed to systematically classify the anisotropic distribution of electrons and magnetization around atoms in solid state materials. This has been fuelled by the discovery of several physical phenomena that exhibit unusual higher rank multipole moments, beyond that of the conventional degrees of freedom as charge and magnetic dipole moment. Moreover, the higher rank electric/magnetic multipole moments have been suggested as promising order parameters in exotic hidden order phases. While the experimental investigations of such anomalous phases have provided encouraging observations of multipolar order, theoretical approaches have developed at a slower pace. In particular, a materials' specific theory has been missing. The multipole concept has furthermore been recognized as the key quantity which characterizes the resultant configuration of magnetic moments in a cluster of atomic moments. This cluster multipole moment has then been introduced as macroscopic order parameter for a noncollinear antiferromagnetic structure in crystals that can explain unusual physical phenomena whose appearance is determined by the magnetic point group symmetry. It is the purpose of this review to discuss the recent developments in the first-principles theory investigating multipolar degrees of freedom in condensed matter systems. These recent developments exemplify that ab initio electronic structure calculations can unveil detailed insight in the mechanism of physical phenomena caused by the unconventional, multipole degree of freedom.
Camp, Piet
1985-01-01
The 1984 Advanced Study Institute on "Electronic Structure, Dynamics and Quantum Structural Properties of Condensed Matter" took place at the Corsendonk Conference Center, close to the City of Antwerpen, from July 16 till 27, 1984. This NATO Advanced Study Institute was motivated by the research in my Institute, where, in 1971, a project was started on "ab-initio" phonon calculations in Silicon. I~ is my pleasure to thank several instances and people who made this ASI possible. First of all, the sponsor of the Institute, the NATO Scientific Committee. Next, the co-sponsors: Agfa-Gevaert, Bell Telephone Mfg. Co. N.V., C & A, Esso Belgium·, CDC Belgium, Janssens Pharmaceutica, Kredietbank and the Scientific Office of the U.S. Army. Special thanks are due to Dr. P. Van Camp and Drs. H. Nachtegaele, who, over several months, prepared the practical aspects of the ASI with the secretarial help of Mrs. R.-M. Vandekerkhof. I also like to. thank Mrs. M. Cuyvers who prepared and organized the subject and material ...
Directory of Open Access Journals (Sweden)
S. L. Johnson
2017-11-01
Full Text Available We present a non-comprehensive review of some representative experimental studies in crystalline condensed matter systems where the effects of intense ultrashort light pulses are probed using x-ray diffraction and photoelectron spectroscopy. On an ultrafast (sub-picosecond time scale, conventional concepts derived from the assumption of thermodynamic equilibrium must often be modified in order to adequately describe the time-dependent changes in material properties. There are several commonly adopted approaches to this modification, appropriate in different experimental circumstances. One approach is to treat the material as a collection of quasi-thermal subsystems in thermal contact with each other in the so-called “N-temperature” models. On the other extreme, one can also treat the time-dependent changes as fully coherent dynamics of a sometimes complex network of excitations. Here, we present examples of experiments that fall into each of these categories, as well as experiments that partake of both models. We conclude with a discussion of the limitations and future potential of these concepts.
Tang, Feng; Luo, Xi; Du, Yongping; Yu, Yue; Wan, Xiangang
Very recently, there has been significant progress in realizing high-energy particles in condensed matter system (CMS) such as the Dirac, Weyl and Majorana fermions. Besides the spin-1/2 particles, the spin-3/2 elementary particle, known as the Rarita-Schwinger (RS) fermion, has not been observed or simulated in the laboratory. The main obstacle of realizing RS fermion in CMS lies in the nontrivial constraints that eliminate the redundant degrees of freedom in its representation of the Poincaré group. In this Letter, we propose a generic method that automatically contains the constraints in the Hamiltonian and prove the RS modes always exist and can be separated from the other non-RS bands. Through symmetry considerations, we show that the two dimensional (2D) massive RS (M-RS) quasiparticle can emerge in several trigonal and hexagonal lattices. Based on ab initio calculations, we predict that the thin film of CaLiX (X=Ge and Si) may host 2D M-RS excitations near the Fermi level. and Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China.
International Nuclear Information System (INIS)
Adhikari, Sadhan K.
2004-01-01
Using the axially-symmetric time-dependent mean-field Gross-Pitaevskii equation we study the Josephson oscillation in a repulsive Bose-Einstein condensate trapped by a harmonic plus an one-dimensional optical-lattice potential to describe the experiments by Cataliotti et al. [Science 293 (2001) 843, New J. Phys. 5 (2003) 71.1]. After a study of the formation of matter-wave interference upon releasing the condensate from the optical trap, we directly investigate the alternating atomic superfluid Josephson current upon displacing the harmonic trap along the optical axis. The Josephson current is found to be disrupted upon displacing the harmonic trap through a distance greater than a critical distance signaling a superfluid to a classical insulator transition in the condensate
2017-01-01
This book addresses a wide range of topics relating to the properties and behavior of condensed matter under extreme conditions such as intense magnetic and electric fields, high pressures, heat and cold, and mechanical stresses. It is divided into four sections devoted to condensed matter theory, molecular chemistry, theoretical physics, and the philosophy and history of science. The main themes include electronic correlations in material systems under extreme pressure and temperature conditions, surface physics, the transport properties of low-dimensional electronic systems, applications of the density functional theory in molecular systems, and graphene. The book is the outcome of a workshop held at the University of Catania, Italy, in honor of Professor Renato Pucci on the occasion of his 70th birthday. It includes selected invited contributions from collaborators and co-authors of Professor Pucci during his long and successful career, as well as from other distinguished guest authors.
International Nuclear Information System (INIS)
Doddato, Francesca; McDonald, John
2011-01-01
We study the conditions for successful Affleck-Dine baryogenesis and the origin of gravitino dark matter in GMSB models. AD baryogenesis in GMSB models is ruled out by neutron star stability unless Q-balls are unstable and decay before nucleosynthesis. Unstable Q-balls can form if the messenger mass scale is larger than the flat-direction field Φ when the condensate fragments. We provide an example based on AD baryogenesis along a d = 6 flat direction for the case where m 3/2 ≈ 2GeV, as predicted by gravitino dark matter from Q-ball decay. Using a phenomenological GMSB potential which models the Φ dependence of the SUSY breaking terms, we numerically solve for the evolution of Φ and show that the messenger mass can be sufficiently close to the flat-direction field when the condensate fragments. We compute the corresponding reheating temperature and the baryonic charge of the condensate fragments and show that the charge is large enough to produce late-decaying Q-balls which can be the origin of gravitino dark matter
Lulek, Tadeusz; Wal, Andrzej; Lulek, Barbara
2010-03-01
This volume contains the Proceedings of the Tenth Summer School on Theoretical Physics under the banner title 'Symmetry and Structural Properties of Condensed Matter' (SSPCM 2009). The School was organized by Rzeszow University of Technology, Poland, in cooperation with AGH University of Science and Technology, Cracow, Poland, and took place on 2-9 September 2009 in Myczkowce, Poland. With this meeting we have reached the round number ten of the series of biannual SSPCM schools, which started in 1990 and were focused on some advanced mathematical methods of condensed matter physics. The first five meetings were held in Zajaczkowo near Poznan, under the auspices of The Institute of Physics of Adam Mickiewicz University, and the last five in Myczkowce near Rzeszów, in the south-eastern part of Poland. Within these two decades several young workers who started at kindergarten lectures at SSPCM, have now reached their PhD degrees, professorships and authority. Proceedings of the first seven SSPCM meetings were published as separate volumes by World Scientific, and the last two as volumes 30 and 104 of Journal of Physics: Conference Series. The present meeting is also the third of the last schools which put the emphasis on quantum informatics. The main topics of our jubilee SSPCM'09 are the following: Information processing, entanglement, and tensor calculus, Integrable models and unitary symmetry, Finite systems and nanophysics. The Proceedings are divided into three parts accordingly. The school gathered together 55 participants from seven countries and several scientific centers in Poland, accommodating again advanced research with young collaborators and students. Acknowledgements The Organizing Committee would like to express its gratitude to all participants for their many activities during the School and for creating a friendly and inspiring atmosphere within our SSPCM society. Special thanks are due to all lecturers for preparing and presenting their talks and
PREFACE: REXS 2013 - Workshop on Resonant Elastic X-ray Scattering in Condensed Matter
Beutier, G.; Mazzoli, C.; Yakhou, F.; Brown, S. D.; Bombardi, A.; Collins, S. P.
2014-05-01
The aim of this workshop was to bring together experts in experimental and theoretical aspects of resonant elastic x-ray scattering, along with researchers who are new to the field, to discuss important recent results and the fundamentals of the technique. The meeting was a great success, with the first day dedicated to students and new researchers in the field, who received introductory lectures and tutorials. All conference delegates were invited either to make an oral presentation or to present a poster, accompanied by a short talk. The first two papers selected for the REXS13 proceedings (Grenier & Joly and Helliwell) give a basic background to the theory of REXS and applications across a wide range of scientific areas. The remainder of the papers report on some of the latest scientific results obtained by applying the REXS technique to contemporary problems in condensed matter, materials and x-ray physics. It is hoped that these proceedings provide a snapshot of the current status of a vibrant and diverse scientific technique that will be of value not just to those who attended the workshop but also to any other reader with an interest in the subject. Local Scientific Committee REXS13 International Scientific Advisory Committee M Altarelli, European XFEL, Germany F de Bergevin, European Synchrotron Radiation Facility, France J Garcia-Ruiz, Universidad de Zaragoza, Spain A I Goldman, Iowa State University, USA M Goldmann, Institut Nanosciences, France T Schulli, European Synchrotron Radiation Facility, France C R Natoli, Laboratori Nazionali de Frascati, Italy G Materlik, Diamond Light Source, UK L Paolasini, European Synchrotron Radiation Facility, France U Staub, Paul Scherrer Institut, Switzerland K Finkelstein, Cornell University, USA Y Murakami, Photon Factory, Japan REXS13 Local Scientific Committee G Beutier, CNRS Grenoble, France C Mazzoli, Politecnico di Milano, Italy F Yakhou, European Synchrotron Radiation Facility, France S D Brown, XMaS UK CRG
Energy Technology Data Exchange (ETDEWEB)
Borchardt, Julia
2017-02-07
By means of the functional renormalization group (FRG), systems can be described in a nonperturbative way. The derived flow equations are solved via pseudo-spectral methods. As they allow to resolve the full field dependence of the effective potential and provide highly accurate results, these numerical methods are very powerful but have hardly been used in the FRG context. We show their benefits using several examples. Moreover, we apply the pseudo-spectral methods to explore the phase diagram of a bosonic model with two coupled order parameters and to clarify the nature of a possible metastability of the Higgs-Yukawa potential.In the phase diagram of systems with two competing order parameters, fixed points govern multicritical behavior. Such systems are often discussed in the context of condensed matter. Considering the phase diagram of the bosonic model between two and three dimensions, we discover additional fixed points besides the well-known ones from studies in three dimensions. Interestingly, our findings suggest that in certain regions of the phase diagram, two universality classes coexist. To our knowledge, this is the first bosonic model where coexisting (multi-)criticalities are found. Also, the absence of nontrivial fixed points can have a physical meaning, such as in the electroweak sector of the standard model which suffers from the triviality problem. The electroweak transition giving rise to the Higgs mechanism is dominated by the Gaussian fixed point. Due to the low Higgs mass, perturbative calculations suggest a metastable potential. However, the existence of the lower Higgs-mass bound eventually is interrelated with the maximal ultraviolet extension of the standard model. A relaxation of the lower bound would mean that the standard model may be still valid to even higher scales. Within a simple Higgs-Yukawa model, we discuss the origin of metastabilities and mechanisms, which relax the Higgs-mass bound, including higher field operators.
International Nuclear Information System (INIS)
2014-01-01
This conference covers issues relevant to condensed matter physics. The research in this area has laid the foundation for development of science and technology in wide areas of energy, information, communication etc. Papers relevant to INIS are indexed separately
Energy Technology Data Exchange (ETDEWEB)
Kolomeitsev, E.E. [Matej Bel University, Banska Bystrica (Slovakia); Voskresensky, D.N. [National Research Nuclear University (MEPhI), Moscow (Russian Federation)
2016-12-15
The spectrum of bosonic scalar-mode excitations in a normal Fermi liquid with local scalar interaction is investigated for various values and momentum dependence of the scalar Landau parameter f{sub 0} in the particle-hole channel. For f{sub 0} > 0 the conditions are found when the phase velocity on the spectrum of zero sound acquires a minimum at non-zero momentum. For -1 < f{sub 0} < 0 there are only damped excitations, and for f{sub 0} < -1 the spectrum becomes unstable against the growth of scalar-mode excitations. An effective Lagrangian for the scalar excitation modes is derived after performing a bosonization procedure. We demonstrate that the instability may be tamed by the formation of a static Bose condensate of the scalar modes. The condensation may occur in a homogeneous or inhomogeneous state relying on the momentum dependence of the scalar Landau parameter. We show that in the isospin-symmetric nuclear matter there may appear a metastable state at subsaturation nuclear density owing to the condensate. Then we consider a possibility of the condensation of the zero-sound-like excitations in a state with a non-zero momentum in Fermi liquids moving with overcritical velocities, provided an appropriate momentum dependence of the Landau parameter f{sub 0}(k) > 0. We also argue that in peripheral heavy-ion collisions the Pomeranchuk instability may occur already for f{sub 0} > -1. (orig.)
Investigation of static and dynamic properties of condensed matter by using neutron scattering
International Nuclear Information System (INIS)
Davidovic, M.
1997-01-01
Possibilities of using neutron scattering for investigating microscopic properties of materials are analyzed. Basic neutron scattering theory is presented and its use in structure and dynamics analyses of condense systems. (author)
International Nuclear Information System (INIS)
Neklyudov, I.M.
2006-01-01
The main topics of this conference deal with: fundamental base of superconductivity; superconductors with high critical parameters and applied superconductivity; quantum phenomena in condensed media; physics of strength and plasticity; electronic and magnetic properties of metals
Matulis, D
2001-10-18
Knowledge of the energetics of the low solubility of non-polar compounds in water is critical for the understanding of such phenomena as protein folding and biomembrane formation. Solubility in water can be considered as one leg of the three-part thermodynamic cycle - vaporization from the pure liquid, hydration of the vapor in aqueous solution, and aggregation of the substance back into initial pure form as an immiscible phase. Previous studies on the model compounds n-alkanes, 1-alcohols, and 1-aminoalkanes have noted that the thermodynamic parameters (Gibbs free energy, DeltaG; enthalpy, DeltaH; entropy, DeltaS; and heat capacity, DeltaC(p)) associated with these three processes are generally linear functions of the number of carbons in the alkyl chains. Here we assess the accuracy and limitations of the assumption of additivity of CH(2) group contributions to the thermodynamic parameters for vaporization, hydration, and aggregation. Processes of condensation from pure gas to liquid and aqueous solution to aggregate are compared. Hydroxy, amino, and methyl headgroup contributions are estimated, liquid and solid aggregates are distinguished. Most data in the literature were obtained for compounds with short aliphatic hydrocarbon tails. Here we emphasize long aliphatic chain behavior and include our recent experimental data on long chain alkylamine aggregation in aqueous solution obtained by titration calorimetry and van't Hoff analysis. Contrary to what is observed for short compounds, long aliphatic compound aggregation has a large exothermic enthalpy and negative entropy.
Chen, Sow-Hsin; Baglioni, Piero
2006-09-01
This special issue of Journal of Physics: Condensed Matter gathers together a series of contributions presented at the workshop entitled `Topics in the Application of Scattering Methods to Investigate the Structure and Dynamics of Soft Condensed Matter' held at Pensione Bencista, Fiesole, Italy, a wonderful Italian jewel tucked high in the hills above Florence. This immaculate 14th century villa is a feast for the eyes with antiques and original artwork everywhere you turn, and a stunning view of Florence, overlooking numerous villas and groves of olive trees. The meeting consisted of about 40 invited talks delivered by a selected group of prominent physicists and chemists from the USA, Mexico, Europe and Asia working in the fields of complex and glassy liquids. The topics covered by the talks included: simulations on the liquid-liquid transition phenomenon dynamic crossover in deeply supercooled confined water thermodynamics and dynamics of complex fluids dynamics of interfacial water structural arrest transitions in colloidal systems structure and dynamics in complex systems structure of supramolecular assemblies The choice of topics is obviously heavily biased toward the current interests of the two organizers of the workshop, in view of the fact that one of the incentives for organizing the meeting was to celebrate Sow-Hsin Chen’s life-long scientific activities on the occasion of his 70th birthday. The 21 articles presented in this issue are a state-of-the-art description of the different aspects reported at the workshop from all points of view---experimental, theoretical and numerical. The interdisciplinary nature of the talks should make this special issue of interest to a broad community of scientists involved in the study of the properties of complex fluids, soft condensed matter and disordered glassy systems. We are grateful to the Consorzio per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Florence, Italy and to the Materials Science Program of
International Nuclear Information System (INIS)
Schurtenberger, P.; Cavaco, C.
1992-01-01
''Complex fluids'' or ''soft condensed matter'' have recently attracted considerable attention both experimentally as well as theoretically. The hypothesis of a water-induced formation of flexible cylindrical micelles and the existence of entanglement networks was largely based on ''low-resolution'' light scattering and rheological measurements and analogies to classical polymer theory. In order to directly confirm this picture and verify the postulated analogy between the structural properties of polymer chains and lecithin reverse micelles we now used a combination of static light scattering and small angle neutron scattering. (author) 2 figs., 3 refs
International Nuclear Information System (INIS)
1996-01-01
Activities for research into condensed matter have been supported by the German BMBF with approx. 102 million Deutschmarks in the years 1992 through 1995. These financial means have been distributed among 314 research projects in the fields of physics, chemistry, biology, materials science, and other fields, which all rely on the intensive utilization of photon and particle beams generated in large-scale apparatus of institutions for basic research. The volume in hand first gives information of a general kind and statistical data on the distribution of financial means, for a number of priority research projects. The project reports are summarizing reports on the progress achieved in the various projects. (CB) [de
International Nuclear Information System (INIS)
Khonik, V A
2017-01-01
A comprehensive review of a novel promising framework for the understanding of non-crystalline metallic materials, i.e., interstitialcy theory of condensed matter states (ITCM), is presented. The background of the ITCM and its basic results for equilibrium/supercooled liquids and glasses are given. It is emphasized that the ITCM provides a new consistent, clear, and testable approach, which uncovers the generic relationship between the properties of the maternal crystal, equilibrium/supercooled liquid and glass obtained by melt quenching. (topical review)
Paul Scherrer Institut Scientific Report 2001. Volume III: Condensed Matter Research with Neutrons
Energy Technology Data Exchange (ETDEWEB)
Schefer, J.; Castellazzi, D.; Shea-Braun, M. (eds.)
2002-03-01
The SINQ-facility stopped operation at the end of the year 2001 for the scheduled shut down. By that time the spallation target of the 'Cannelloni'-type (D{sub 2}O-cooled steel pins filled with lead) had received a total charge of more then 10 Ah at an average proton current higher than 1 mA. Thereby nearly 4 mols of neutrons had been released from this target. The two operational years with this target delivered the neutrons for about 300 experiments. During this operational period not one single interrupt caused by the spallation target has been recorded -indeed a convincing evidence for the reliability of this system. The probes inserted into the target and some of its parts will now soon be available to the materials scientists for careful investigation. SINQ as a continuous spallation neutron source was considered to be a 'high risk' project. Furthermore it was often accompanied with the suspicion to represent the 'worst of two worlds' - meaning that this facility would suffer from the disadvantages but not benefit from the advantage of a spallation neutron source - the pulse structure. According to our operational experience these fears are not justified provided the various concerns have been properly taken into consideration during design and construction. This report testifies what can be achieved at a continuous spallation neutron source. We believe that these research activities compare well with those from a beam-tube reactor of medium flux. A list of scientific publications in 2000 is also provided.
Paul Scherrer Institut Scientific Report 2001. Volume III: Condensed Matter Research with Neutrons
Energy Technology Data Exchange (ETDEWEB)
Schefer, J; Castellazzi, D; Shea-Braun, M [eds.
2002-03-01
The SINQ-facility stopped operation at the end of the year 2001 for the scheduled shut down. By that time the spallation target of the 'Cannelloni'-type (D{sub 2}O-cooled steel pins filled with lead) had received a total charge of more then 10 Ah at an average proton current higher than 1 mA. Thereby nearly 4 mols of neutrons had been released from this target. The two operational years with this target delivered the neutrons for about 300 experiments. During this operational period not one single interrupt caused by the spallation target has been recorded -indeed a convincing evidence for the reliability of this system. The probes inserted into the target and some of its parts will now soon be available to the materials scientists for careful investigation. SINQ as a continuous spallation neutron source was considered to be a 'high risk' project. Furthermore it was often accompanied with the suspicion to represent the 'worst of two worlds' - meaning that this facility would suffer from the disadvantages but not benefit from the advantage of a spallation neutron source - the pulse structure. According to our operational experience these fears are not justified provided the various concerns have been properly taken into consideration during design and construction. This report testifies what can be achieved at a continuous spallation neutron source. We believe that these research activities compare well with those from a beam-tube reactor of medium flux. A list of scientific publications in 2000 is also provided.
Paul Scherrer Institut Scientific Report 2001. Volume III: Condensed Matter Research with Neutrons
International Nuclear Information System (INIS)
Schefer, J.; Castellazzi, D.; Shea-Braun, M.
2002-03-01
The SINQ-facility stopped operation at the end of the year 2001 for the scheduled shut down. By that time the spallation target of the 'Cannelloni'-type (D 2 O-cooled steel pins filled with lead) had received a total charge of more then 10 Ah at an average proton current higher than 1 mA. Thereby nearly 4 mols of neutrons had been released from this target. The two operational years with this target delivered the neutrons for about 300 experiments. During this operational period not one single interrupt caused by the spallation target has been recorded -indeed a convincing evidence for the reliability of this system. The probes inserted into the target and some of its parts will now soon be available to the materials scientists for careful investigation. SINQ as a continuous spallation neutron source was considered to be a 'high risk' project. Furthermore it was often accompanied with the suspicion to represent the 'worst of two worlds' - meaning that this facility would suffer from the disadvantages but not benefit from the advantage of a spallation neutron source - the pulse structure. According to our operational experience these fears are not justified provided the various concerns have been properly taken into consideration during design and construction. This report testifies what can be achieved at a continuous spallation neutron source. We believe that these research activities compare well with those from a beam-tube reactor of medium flux. A list of scientific publications in 2000 is also provided
International Nuclear Information System (INIS)
Ryu, C; Henderson, K C; Boshier, M G
2014-01-01
Bessel beams are plane waves with amplitude profiles described by Bessel functions. They are important because they propagate ‘diffraction-free’ and because they can carry orbital angular momentum. Here we report the creation of a Bessel beam of de Broglie matter waves. The Bessel beam is produced by the free evolution of a thin toroidal atomic Bose–Einstein condensate (BEC) which has been set into rotational motion. By attempting to stir it at different rotation rates, we show that the toroidal BEC can only be made to rotate at discrete, equally spaced frequencies, demonstrating that circulation is quantized in atomic BECs. The method used here can be viewed as a form of wavefunction engineering which might be developed to implement cold atom matter wave holography. (paper)
Many-Body Quantum Theory in Condensed Matter Physics-An Introduction
International Nuclear Information System (INIS)
Logan, D E
2005-01-01
This is undoubtedly an ambitious book. It aims to provide a wide ranging, yet self-contained and pedagogical introduction to techniques of quantum many-body theory in condensed matter physics, without losing mathematical 'rigor' (which I hope means rigour), and with an eye on physical insight, motivation and application. The authors certainly bring plenty of experience to the task, the book having grown out of their graduate lectures at the Niels Bohr Institute in Copenhagen over a five year period, with the feedback and refinement this presumably brings. The book is also of course ambitious in another sense, for it competes in the tight market of general graduate/advanced undergraduate texts on many-particle physics. Prospective punters will thus want reasons to prefer it to, or at least give it space beside, well established texts in the field. Subject-wise, the book is a good mix of the ancient and modern, the standard and less so. Obligatory chapters deal with the formal cornerstones of many-body theory, from second quantization, time-dependence in quantum mechanics and linear response theory, to Green's function and Feynman diagrams. Traditional topics are well covered, including two chapters on the electron gas, chapters on phonons and electron-phonon coupling, and a concise account of superconductivity (confined, no doubt judiciously, to the conventional BCS case). Less mandatory, albeit conceptually vital, subjects are also aired. These include a chapter on Fermi liquid theory, from both semi-classical and microscopic perspectives, and a freestanding account of one-dimensional electron gases and Luttinger liquids which, given the enormity of the topic, is about as concise as it could be without sacrificing clarity. Quite naturally, the authors' own interests also influence the choice of material covered. A persistent theme, which brings a healthy topicality to the book, is the area of transport in mesoscopic systems or nanostructures. Two chapters, some
BOOK REVIEW: Many-Body Quantum Theory in Condensed Matter Physics—An Introduction
Logan, D. E.
2005-02-01
This is undoubtedly an ambitious book. It aims to provide a wide ranging, yet self-contained and pedagogical introduction to techniques of quantum many-body theory in condensed matter physics, without losing mathematical `rigor' (which I hope means rigour), and with an eye on physical insight, motivation and application. The authors certainly bring plenty of experience to the task, the book having grown out of their graduate lectures at the Niels Bohr Institute in Copenhagen over a five year period, with the feedback and refinement this presumably brings. The book is also of course ambitious in another sense, for it competes in the tight market of general graduate/advanced undergraduate texts on many-particle physics. Prospective punters will thus want reasons to prefer it to, or at least give it space beside, well established texts in the field. Subject-wise, the book is a good mix of the ancient and modern, the standard and less so. Obligatory chapters deal with the formal cornerstones of many-body theory, from second quantization, time-dependence in quantum mechanics and linear response theory, to Green's function and Feynman diagrams. Traditional topics are well covered, including two chapters on the electron gas, chapters on phonons and electron phonon coupling, and a concise account of superconductivity (confined, no doubt judiciously, to the conventional BCS case). Less mandatory, albeit conceptually vital, subjects are also aired. These include a chapter on Fermi liquid theory, from both semi-classical and microscopic perspectives, and a freestanding account of one-dimensional electron gases and Luttinger liquids which, given the enormity of the topic, is about as concise as it could be without sacrificing clarity. Quite naturally, the authors' own interests also influence the choice of material covered. A persistent theme, which brings a healthy topicality to the book, is the area of transport in mesoscopic systems or nanostructures. Two chapters, some
International Nuclear Information System (INIS)
Ne, F.; Zemb, T.
1998-01-01
This project is a part of the 'SOLEIL' synchrotron project. The camera proposed is optimized for small angle x-ray scattering in the domain of soft condensed matter, common heterogeneous materials such as wood, cements, glass, and more generally non-crystalline materials. The beam line is designed to allow a quick succession of different users without time consuming adjustments. Therefore, optical settings are minimized, taking into account the pluri-disciplinary nature of the analysis possibilities. To this end, the technical requirements are as follows. First and essentially, the wave-length has to be fixed and set around 12 keV. Focusing mirrors, optics to sample and sample to detector distances, and the size of the detector allow for a wide range of wave vector to be used. Rejection rate will be lower, and angular dynamical range will be larger than any of the current synchrotron lines. We want this line to be, and to stay, complementary to more specific systems, such as reflectivity experiments or grazing angle scattering experiments. However, we are thinking of an adaptation to ultra small angle scattering mode, based on the Bonse and Hart camera. Such equipment, actually a kind of 'Instamatic' of the reciprocal space, will fulfill to the need of chemical engineers, biophysicists or material scientists interested in hard as well as soft condensed matter. It will allow a large amount of experiments per time unit. (author)
International Nuclear Information System (INIS)
Kobayashi, Yoshio; Shibata, Michihiro; Ohkubo, Yoshitaka
2016-02-01
The research reactor at Research Reactor Institute, Kyoto University is a very useful neutron generator, providing us neutron-rich unstable nuclei by bombarding nuclei with those neutrons. The produced unstable nuclei exhibit aspects distinct from those of stable ones. Nuclear structure studies on a variety of excited states reflecting dynamic nuclear properties are one of fascinating research subjects of physics. On the other hand, some radioactive nuclei can be used as useful probes for understanding interesting properties of condensed matters through studies of hyperfine interactions of static nuclear electromagnetic moments with extranuclear fields. Concerning these two research fields and related areas, the 2nd symposium under the title of 'Nuclear Spectroscopy and Condensed Matter Physics Using Short-lived Nuclei' was held at the Institute for two days on November 4 and 5 in 2015. We are pleased that many hot discussions were made. The talks were given on the followings: 1) Nuclear spectroscopic experiments, 2) TDPAC (time-differential perturbed angular correlation), 3) β-NMR (nuclear magnetic resonance), 4) Moessbauer spectroscopy, 5) muon, etc. This issue is the collection of 17 papers presented at the entitled meeting. The 6 of the presented papers are indexed individually. (J.P.N.)
Study of the Condensed Matter Dynamics by the Deep Inelastic Neutron Technique
International Nuclear Information System (INIS)
Blostein, Juan Jeronimo
2004-01-01
physical phenomena.For the special case of light water/ heavy water mixtures we present calculations that reproduce the behavior of the reported anomalies on the hydrogen-deuterium neutron cross section rate.We present total cross section measurements of such liquid mixtures, in total agreement with the expected values, whereby we conclude that the purported anomalous cross sections (reported after employing the convolution approximation in the eVS data treatment) do not exist.The absence of anomalies in the total cross sections of those liquid mixtures provides a clear evidence of the invalidity of the convolution formalism usually employed in the eVS data treatment. In view of the main motivation that originated the eVS technique, and the clear invalidity of the convolution formalism, we present for the first time the exact formalism to obtain the nuclear impulse distributions in condensed matter systems, starting form the experimentally observed intensity profiles.Such formalism, valid for an arbitrary impulse distribution, does not require the harmonic potential hypothesis, and involves an integration kernel that depends analytically only on the instrumental characteristics, and is independent of the sample characteristics. Our work, besides assessing the magnitude of the inaccuracy of the convolution formalism, establishes the basis for a correct treatment of the experimental data obtained with this technique.On the experimental side, we implemented successfully the eVS technique in the linear accelerator pulsed neutron facility at the Bariloche Atomic Center, thus being the second laboratory in the world to employ it regularly.Monte Carlo simulation presented in this thesis, show the importance to adequately select the sample thickness, and to correct by multiple scattering, attenuation and detector efficiency effects, and also to employ the exact formalism.To this end it is necessary to characterize in detail the different elements that compose the experimental
Tunable rotary orbits of matter-wave nonlinear modes in attractive Bose-Einstein condensates
International Nuclear Information System (INIS)
He, Y J; Wang, H Z; Malomed, Boris A; Mihalache, Dumitru
2008-01-01
We demonstrate that by spatially modulating the Bessel optical lattice where a Bose-Einstein condensate is loaded, we get tunable rotary orbits of nonlinear lattice modes. We show that the radially expanding or shrinking Bessel lattice can drag the nonlinear localized modes to orbits of either larger or smaller radii and the rotary velocity of nonlinear modes can be changed accordingly. The localized modes can even be transferred to the Bessel lattice core when the localized modes' rotations are stopped. Effects beyond the quasi-particle approximation such as destruction of the nonlinear modes by nonadiabatic dragging are also explored
Dark-matter halo mergers as a fertile environment for low-mass Population III star formation
DEFF Research Database (Denmark)
Bovino, S.; Latif, M. A.; Grassi, Tommaso
2014-01-01
While Population III (Pop III) stars are typically thought to be massive, pathways towards lower mass Pop III stars may exist when the cooling of the gas is particularly enhanced. A possible route is enhanced HD cooling during the merging of dark-matter haloes. The mergers can lead to a high ioni...
Khunjua, T. G.; Klimenko, K. G.; Zhokhov, R. N.
2018-03-01
In this paper the phase structure of dense quark matter has been investigated at zero temperature in the presence of baryon, isospin and chiral isospin chemical potentials in the framework of massless (3 +1 )-dimensional Nambu-Jona-Lasinio model with two quark flavors. It has been shown that in the large-Nc limit (Nc is the number of colors of quarks) there exists a duality correspondence between the chiral symmetry breaking phase and the charged pion condensation one. The key conclusion of our studies is the fact that chiral isospin chemical potential generates charged pion condensation in dense quark matter with isotopic asymmetry.
Energy Technology Data Exchange (ETDEWEB)
Yen, Hung-Ju [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Chemistry Division
2016-11-14
These slides cover Hung-Ju Yen's recent work in the synthesis and structural design of functional materials, which were further used for optoelectronic and energy applications, such as lithium ion battery, solar cell, LED, electrochromic, and fuel cells. This was for a job interview at Center for Condensed Matter Sciences. The following topics are detailed: current challenges for lithium-ion batteries; graphene, graphene oxide and nanographene; nanographenes with various functional groups; fine tune d-spacing through organic synthesis: varying functional group; schematic view of LIBs; nanographenes as LIB anode; rate performance (charging-discharging); electrochromic technology; electrochromic materials; advantages of triphenylamine; requirement of electrochromic materials for practical applications; low driving voltage and long cycle life; increasing the electroactive sites by multi-step synthetic procedures; synthetic route to starburst triarylamine-based polyamide; electrochromism ranging from visible to NIR region; transmissive to black electrochromism; RGB and CMY electrochromism.
Martins, C J A P
2016-01-01
This book sheds new light on topological defects in widely differing systems, using the Velocity-Dependent One-Scale Model to better understand their evolution. Topological defects – cosmic strings, monopoles, domain walls or others - necessarily form at cosmological (and condensed matter) phase transitions. If they are stable and long-lived they will be fossil relics of higher-energy physics. Understanding their behaviour and consequences is a key part of any serious attempt to understand the universe, and this requires modelling their evolution. The velocity-dependent one-scale model is the only fully quantitative model of defect network evolution, and the canonical model in the field. This book provides a review of the model, explaining its physical content and describing its broad range of applicability.
Sun, Wen-Rong; Wang, Lei
2018-01-01
To show the existence and properties of matter rogue waves in an F =1 spinor Bose-Einstein condensate (BEC), we work on the three-component Gross-Pitaevskii (GP) equations. Via the Darboux-dressing transformation, we obtain a family of rational solutions describing the extreme events, i.e. rogue waves. This family of solutions includes bright-dark-bright and bright-bright-bright rogue waves. The algebraic construction depends on Lax matrices and their Jordan form. The conditions for the existence of rogue wave solutions in an F =1 spinor BEC are discussed. For the three-component GP equations, if there is modulation instability, it is of baseband type only, confirming our analytic conditions. The energy transfers between the waves are discussed.
International Nuclear Information System (INIS)
2010-09-01
This book includes abstracts of the communications presented at the 5th International Conference on Materials Science and Condensed-Matter Physics and at the Symposium dedicated to the 100th anniversary of academician Boris Lazarenko, the prominent scientist and inventor, the first director of the Institute of Applied Physics of the Academy of Sciences of Moldova. The abstracts presented in the book cover a vast range of subjects, such as: advanced materials and fabrication processes; methods of crystal growth, post-growth technological processes, doping and implantation, fabrication of solid state structures; defect engineering, engineering of molecular assembly; methods of nanostructures and nano materials fabrication and characterization; quantum wells and superlattices; nano composite, nanowires and nano dots; fullerenes and nano tubes, molecular materials, meso- and nano electronics; methods of material and structure characterization; structure and mechanical characterization; optical, electrical, magnetic and superconductor properties, transport processes, nonlinear phenomena, size and interface effects; advances in condensed matter theory; theory of low dimensional systems; modelling of materials and structure properties; development of theoretical methods of solid-state characterization; phase transition; advanced quantum physics for nano systems; device modelling and simulation, device structures and elements; micro- and optoelectronics; photonics; microsensors and micro electro-mechanical systems; microsystems; degradation and reliability, solid-state device design; theory and advanced technologies of electro-physico-chemical and combined methods of materials machining and treatment, including modification of surfaces; theory and advanced technologies of using electric fields, currents and discharges so as to intensify heat mass-transfer, to raise the efficiency of treatment of materials, of biological preparations and foodstuff; modern equipment for
Directory of Open Access Journals (Sweden)
Robitaille P.-M.
2013-07-01
Full Text Available The continuous spectrum of the solar photosphere stands as the paramount observation with regard to the condensed nature of the solar body. Studies relative to Kirchhoﬀ’s law of thermal emission (e.g. Robitaille P.-M. Kirchhoﬀ’s law of thermal emission: 150 years. Progr. Phys., 2009, v. 4, 3–13. and a detailed analysis of the stellar opacity problem (Robitaille P.M. Stellar opacity: The Achilles’ heel of the gaseous Sun. Progr. Phys., 2011, v. 3, 93–99 have revealed that gaseous models remain unable to properly account for the generation of this spectrum. Therefore, it can be stated with certainty that the photosphere is comprised of condensed matter. Beyond the solar surface, the chromospheric layer of the Sun also generates a weak continuous spectrum in the visible region. This emission exposes the presence of material in the condensed state. As a result, above the level of the photosphere, matter exists in both gaseous and condensed forms, much like within the atmosphere of the Earth. The continuous visible spectrum associated with the chromosphere provides the twenty-sixth line of evidence that the Sun is condensed matter.
Stopping powers of energetic electrons penetrating condensed matter-theory and application
International Nuclear Information System (INIS)
Tan Zhenyu; Xia Yueyuan
2004-01-01
In this review article, the motivation of studying inelastic energy loss for energetic electrons penetrating through matter and the corresponding technological importance have been outlined. The theoretical development and method for the calculation of stopping powers are described. The stopping power data tables for a group of polymers and bioorganic compounds are presented, and the application aspects of the stopping power data are briefly discussed. (authors)
Condensed tannins in the diets of primates: a matter of methods?
Rothman, Jessica M; Dusinberre, Kathy; Pell, Alice N
2009-01-01
To understand the ways in which condensed tannins (CT) affect primate diet selection and nutritional status, correct measurements are essential. In the majority of studies of the CT contents of primate foods, a tannin source such as "quebracho" is used to standardize CT assays, but the CT in quebracho tannin may not be similar to those in the plants of interest. We investigated how the choice of standard to calibrate CT assays affects the estimation of CT in the diets of mountain gorillas (Gorilla beringei). We purified the CT from gorilla foods and compared the actual amounts of CT in the foods with estimates produced by using the quebracho tannin. When quebracho was used, the estimates of CT contents of gorilla foods were, on average, 3.6 times the actual content of CT so that the amounts in frequently eaten gorilla foods were substantially overestimated. The overestimation for a given plant could not be predicted reliably and the ranking of plants by tannin content differed according to the standard used. Our results demonstrate that accurate measurements of CT necessitate the use of tannins purified from the plant species of interest. A reevaluation of primatology studies using interspecific comparisons of tannin content will provide new insights into primate food selection and nutritional ecology. (c) 2008 Wiley-Liss, Inc.
The generation of high-power charge particle micro beams and its interaction with condensed matter
International Nuclear Information System (INIS)
Vogel, N.; Skvortsov, V.A.
1996-01-01
As has been observed experimentally, the action of a picosecond laser beam on an Al-target in air gives rise to the generation and acceleration of high-power micro electron and ion beams. An original theoretical model for describing the generation and particle acceleration of such micro beams as a result of the micro channeling effect is presented. It was found that extreme states of matter, with compression in the Gbar pressure range, can be produced by such micro beams. (author). 3 figs., 12 refs
New analytic and computational techniques for finite temperature condensed matter systems
International Nuclear Information System (INIS)
Arias, T.A.
1992-01-01
By employing a special summation technique we find that the breakdown of the Meissner-Ochsenfeld effect in the three dimensional Bose gas as the applied field passes;through its critical value is an entropy driven weakly first order transition, rather than the second order transition usually ascribed to the system. The transition is second order at the usual Bose condensation temperature T c as well as at T = O, with a line o first order transition connecting these critical points. The first order transitions make the Bose gas resemble familiar superconductors, and a Landau-Ginzburg analysis indicates that the Bose gas is always a type I superconductor. We employ the recently introduce conjugate-gradient methods for minimization of the electronic energy functional to perform an extensive ab initio study of the Σ = 5 tilt [310] grain boundary in germanium. We find that the boundary reliably reconstructs to the tetrahedrally bonded network observed in HREM experiments without the proliferation of false local minima observed in similar twist boundaries. The reduced density of bonds crossing the grain boundary plan leads us to conjecture that the boundary may be a preferred fracture interface. We then combine these conjugate-gradient methods with a new technique for generating trail wavefunctions to produce an efficient ab initio molecular dynamics scheme that is that is at least two orders of magnitude more accurate than previous schemes and thus allows accurate calculation of dynamic correlation functions while maintaining tolerable energy conservation for microcanonical averages of those correlation function over picosecond time scales. We present two advances which greatly enhance the efficiency of our new ab initio molecular dynamics technique. We introduce a class of generalizations of traditional Fermionic energy functionals which allow us to lift the orthonormality constraints on the single particle orbitals and thus speed convergence
DEFF Research Database (Denmark)
González-Mellado, Damián; von Wettstein, Penny; Garcés, Rafael
2010-01-01
The ß-ketoacyl-acyl carrier protein synthase III (KAS III; EC 2.3.1.180) is a condensing enzyme catalyzing the initial step of fatty acid biosynthesis using acetyl-CoA as primer. To determine the mechanisms involved in the biosynthesis of fatty acids in sunflower (Helianthus annuus L.) developing...... seeds, a cDNA coding for HaKAS III (EF514400) was isolated, cloned and sequenced. Its protein sequence is as much as 72% identical to other KAS III-like ones such as those from Perilla frutescens, Jatropha curcas, Ricinus communis or Cuphea hookeriana. Phylogenetic study of the HaKAS III homologous...... proteins infers its origin from cyanobacterial ancestors. A genomic DNA gel blot analysis revealed that HaKAS III is a single copy gene. Expression levels of this gene, examined by Q-PCR, revealed higher levels in developing seeds storing oil than in leaves, stems, roots or seedling cotyledons...
Mohammed, Asadig; Murugan, Jeff; Nastase, Horatiu
2012-11-02
We present an embedding of the three-dimensional relativistic Landau-Ginzburg model for condensed matter systems in an N = 6, U(N) × U(N) Chern-Simons-matter theory [the Aharony-Bergman-Jafferis-Maldacena model] by consistently truncating the latter to an Abelian effective field theory encoding the collective dynamics of O(N) of the O(N(2)) modes. In fact, depending on the vacuum expectation value on one of the Aharony-Bergman-Jafferis-Maldacena scalars, a mass deformation parameter μ and the Chern-Simons level number k, our Abelianization prescription allows us to interpolate between the Abelian Higgs model with its usual multivortex solutions and a Ø(4) theory. We sketch a simple condensed matter model that reproduces all the salient features of the Abelianization. In this context, the Abelianization can be interpreted as giving a dimensional reduction from four dimensions.
Impact of condensed matter theories on material studies at high pressures
International Nuclear Information System (INIS)
Godwal, B.K.; Rao, R.S.; Sikka, S.K.; Chidambaram, R.
1997-01-01
We are vigorously pursuing a program to study the behaviour of materials under pressure for the last three decades. Theoretical component has been an important part of our activity. The initial phase of such efforts was devoted to the development of equation of state models at arbitrary temperature and matter density. With the advent of diamond anvil cell device and improvements of the diagnostic technique in dynamic methods, the focus of our studies switched over to the predictions and interpretations of phase transitions. Many times these have led to intense experimental studies and sometimes helped in resolving the controversies. The introduction of linear methods in electron band theory and availability of supercomputers and parallel processors have given boost to the computational physics, and the efforts are now being extended more and more to the ab-initio molecular dynamics simulations. These simulations have a promise to avoid the tedious search for structural stability by trail and error in phase transition studies under pressure or temperature. The current status of our efforts in this direction will be listed with an illustration on liquid sulphur. Our past work on electronic topological transition in zinc led to many experimental and theoretical investigations. The results of electronic structure changes in similar metal cadmium shall be compared with existing understanding in Zn under pressure. Our studies on other compounds (AuIn 2 , YNi 2 B 2 C), which have also been found to display electronic topological transition under pressure, will be discussed. (author)
High energy synchrotron radiation. A new probe for condensed matter research
International Nuclear Information System (INIS)
Schneider, J.R.; Bouchard, R.; Brueckel, T.; Lippert, M.; Neumann, H.B.; Poulsen, H.F.; Ruett, U.; Schmidt, T.; Zimmermann, M. von
1994-01-01
The absorption of 150 keV synchrotron radiation in matter is weak and, as normally done with neutrons, bulk properties are studied in large samples. However, the k-space resolution obtained with a Triple Crystal Diffractometer (TCD) for high energy synchrotron radiation is about one order of magnitude better than in high resolution neutron diffraction. The technique has been applied to measure the structure factor S(Q) of amorphous solids up to momentum transfers of the order of 32 A -1 , to study the intermediate range Ortho-II ordering in large, high quality YBa 2 Cu 3 O 6.5 single crystals and for investigations of the defect scattering from annealed Czochralski grown silicon crystals. Magnetic superlattice reflections have been measured in MnF 2 demonstrating the potential of the technique for high resolution studies of ground state bulk antiferromagnetism. Recently the question of two length scales in the critical scattering at the 100 K phase transition in SrTiO 3 was studied. At the PETRA storage ring, which serves as an accumulator for the HERA electron-proton-ring at DESY and which can be operated up to electron energies of 12 GeV, an undulator beam line is currently under construction and should be available in summer 1995. It opens up exciting new research opportunities for photon energies from about 20 to 150 keV. (orig.)
Jablonski, A.
2018-01-01
Growing availability of synchrotron facilities stimulates an interest in quantitative applications of hard X-ray photoemission spectroscopy (HAXPES) using linearly polarized radiation. An advantage of this approach is the possibility of continuous variation of radiation energy that makes it possible to control the sampling depth for a measurement. Quantitative applications are based on accurate and reliable theory relating the measured spectral features to needed characteristics of the surface region of solids. A major complication in the case of polarized radiation is an involved structure of the photoemission cross-section for hard X-rays. In the present work, details of the relevant formalism are described and algorithms implementing this formalism for different experimental configurations are proposed. The photoelectron signal intensity may be considerably affected by variation in the positioning of the polarization vector with respect to the surface plane. This information is critical for any quantitative application of HAXPES by polarized X-rays. Different quantitative applications based on photoelectrons with energies up to 10 keV are considered here: (i) determination of surface composition, (ii) estimation of sampling depth, and (iii) measurements of an overlayer thickness. Parameters facilitating these applications (mean escape depths, information depths, effective attenuation lengths) were calculated for a number of photoelectron lines in four elemental solids (Si, Cu, Ag and Au) in different experimental configurations and locations of the polarization vector. One of the considered configurations, with polarization vector located in a plane perpendicular to the surface, was recommended for quantitative applications of HAXPES. In this configurations, it was found that the considered parameters vary weakly in the range of photoelectron emission angles from normal emission to about 50° with respect to the surface normal. The averaged values of the mean
Czech Academy of Sciences Publication Activity Database
Almáši, M.; Zeleňák, V.; Opanasenko, Maksym; Císařová, I.
2015-01-01
Roč. 243, APR 2015 (2015), s. 184-194 ISSN 0920-5861 R&D Projects: GA ČR GA14-07101S Institutional support: RVO:61388955 Keywords : cerium(III) * lutetium(III) * Benzene-1,3,5-tricarboxylate Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.312, year: 2015
Direct dark matter search with the CRESST-III experiment - status and perspectives
Willers, M.; Angloher, G.; Bento, A.; Bucci, C.; Canonica, L.; Defay, X.; Erb, A.; Feilitzsch, F. v.; Ferreiro Iachellini, N.; Gütlein, A.; Gorla, P.; Hauff, D.; Jochum, J.; Kiefer, M.; Kluck, H.; Kraus, H.; Lanfranchi, J.-C.; Loebell, J.; Mancuso, M.; Münster, A.; Pagliarone, C.; Petricca, F.; Potzel, W.; Pröbst, F.; Puig, R.; Reindl, F.; Schäffner, K.; Schieck, J.; Schönert, S.; Seidel, W.; Stahlberg, M.; Stodolsky, L.; Strandhagen, C.; Strauss, R.; Tanzke, A.; Trinh Thi, H. H.; Türkoǧlu, C.; Uffinger, M.; Ulrich, A.; Usherov, I.; Wawoczny, S.; Wüstrich, M.; Zöller, A.
2017-09-01
The CRESST-III experiment, located in the Gran Sasso underground laboratory (LNGS, Italy), aims at the direct detection of dark matter (DM) particles. Scintillating CaWO4 crystals operated as cryogenic detectors are used as target material for DM-nucleus scattering. The simultaneous measurement of the phonon signal from the CaWO4 crystal and of the emitted scintillation light in a separate cryogenic light detector is used to discriminate backgrounds from a possible dark matter signal. The experiment aims to significantly improve the sensitivity for low-mass (≲ 5-10 GeV/c2) DM particles by using optimized detector modules with a nuclear recoil-energy threshold ≲ 100 eV. The current status of the experiment as well as projections of the sensitivity for spin-independent DM-nucleon scattering will be presented.
2014-09-01
This volume contains selected papers presented at the 38th National Conference on Theoretical Physics (NCTP-38) and the 1st International Workshop on Theoretical and Computational Physics: Condensed Matter, Soft Matter and Materials Physics (IWTCP-1). Both the conference and the workshop were held from 29 July to 1 August 2013 in Pullman hotel, Da Nang, Vietnam. The IWTCP-1 was a new activity of the Vietnamese Theoretical Physics Society (VTPS) organized in association with the 38th National Conference on Theoretical Physics (NCTP-38), the most well-known annual scientific forum dedicated to the dissemination of the latest development in the field of theoretical physics within the country. The IWTCP-1 was also an External Activity of the Asia Pacific Center for Theoretical Physics (APCTP). The overriding goal of the IWTCP is to provide an international forum for scientists and engineers from academia to share ideas, problems and solution relating to the recent advances in theoretical physics as well as in computational physics. The main IWTCP motivation is to foster scientific exchanges between the Vietnamese theoretical and computational physics community and world-wide scientists as well as to promote high-standard level of research and education activities for young physicists in the country. About 110 participants coming from 10 countries participated in the conference and the workshop. 4 invited talks, 18 oral contributions and 46 posters were presented at the conference. In the workshop we had one keynote lecture and 9 invited talks presented by international experts in the fields of theoretical and computational physics, together with 14 oral and 33 poster contributions. The proceedings were edited by Nguyen Tri Lan, Trinh Xuan Hoang, and Nguyen Ai Viet. We would like to thank all invited speakers, participants and sponsors for making the conference and the workshop successful. Nguyen Ai Viet Chair of NCTP-38 and IWTCP-1
Universal Themes of Bose-Einstein Condensation
Proukakis, Nick P.; Snoke, David W.; Littlewood, Peter B.
2017-04-01
Foreword; List of contributors; Preface; Part I. Introduction: 1. Universality and Bose-Einstein condensation: perspectives on recent work D. W. Snoke, N. P. Proukakis, T. Giamarchi and P. B. Littlewood; 2. A history of Bose-Einstein condensation of atomic hydrogen T. Greytak and D. Kleppner; 3. Twenty years of atomic quantum gases: 1995-2015 W. Ketterle; 4. Introduction to polariton condensation P. B. Littlewood and A. Edelman; Part II. General Topics: Editorial notes; 5. The question of spontaneous symmetry breaking in condensates D. W. Snoke and A. J. Daley; 6. Effects of interactions on Bose-Einstein condensation R. P. Smith; 7. Formation of Bose-Einstein condensates M. J. Davis, T. M. Wright, T. Gasenzer, S. A. Gardiner and N. P. Proukakis; 8. Quenches, relaxation and pre-thermalization in an isolated quantum system T. Langen and J. Schmiedmayer; 9. Ultracold gases with intrinsic scale invariance C. Chin; 10. Berezinskii-Kosterlitz-Thouless phase of a driven-dissipative condensate N. Y. Kim, W. H. Nitsche and Y. Yamamoto; 11. Superfluidity and phase correlations of driven dissipative condensates J. Keeling, L. M. Sieberer, E. Altman, L. Chen, S. Diehl and J. Toner; 12. BEC to BCS crossover from superconductors to polaritons A. Edelman and P. B. Littlewood; Part III. Condensates in Atomic Physics: Editorial notes; 13. Probing and controlling strongly correlated quantum many-body systems using ultracold quantum gases I. Bloch; 14. Preparing and probing chern bands with cold atoms N. Goldman, N. R. Cooper and J. Dalibard; 15. Bose-Einstein condensates in artificial gauge fields L. J. LeBlanc and I. B. Spielman; 16. Second sound in ultracold atomic gases L. Pitaevskii and S. Stringari; 17. Quantum turbulence in atomic Bose-Einstein condensates N. G. Parker, A. J. Allen, C. F. Barenghi and N. P. Proukakis; 18. Spinor-dipolar aspects of Bose-Einstein condensation M. Ueda; Part IV. Condensates in Condensed Matter Physics: Editorial notes; 19. Bose
Jia, Hanzhong; Li, Li; Fan, Xiaoyun; Liu, Mingdeng; Deng, Wenye; Wang, Chuanyi
2013-07-15
In the present study, phenanthrene is employed as a model to explore the roles played by three soil organic matter (SOM) fractions, i.e., dissolved organic matter (DOM), humic acid (HA), and fulvic acid (FA), in its photodegradation with assistance of Fe(III)-smectite under visible-light. Slight decrease in phenanthrene photodegradation rate was observed in the presence of DOM, which is explained in terms of oxidative-radical competition between DOM and target phenanthrene molecules due to the high electron-donor capacity of phenolic moieties in DOM. On the other hand, a critic content is observed with FA (0.70mg/g) and HA (0.65mg/g). Before reaching the critic content, the removal of phenanthrene is accelerated; while after that, the photodegradation rate is suppressed. The acceleration of phenanthrene degradation can be attributed to the photosensitization of FA and HA. Due to the strong interaction between phenanthrene and the phenyl rings, however, the retention of phenanthrene on SOM-Fe(III)-smectite in the presence of high content of HA or FA is enhanced, thus slowing down its photodegradation. Those observations provide valuable insights into the transformation and fate of PAHs in the natural soil environment and open a window for using clay-humic substances complexes for remediation of contaminated soil. Copyright © 2013 Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Jia, Hanzhong, E-mail: jiahz0143@yahoo.com.cn [Laboratory of Eco-Materials and Sustainable Technology (LEMST), Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang 830011 (China); Li, Li [Laboratory of Eco-Materials and Sustainable Technology (LEMST), Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang 830011 (China); The Graduate School of Chinese Academy of Science, Beijing 100049 (China); Fan, Xiaoyun [Laboratory of Eco-Materials and Sustainable Technology (LEMST), Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang 830011 (China); Liu, Mingdeng [Laboratory of Eco-Materials and Sustainable Technology (LEMST), Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang 830011 (China); The Graduate School of Chinese Academy of Science, Beijing 100049 (China); Deng, Wenye [Laboratory of Eco-Materials and Sustainable Technology (LEMST), Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang 830011 (China); Wang, Chuanyi, E-mail: cywang@ms.xjb.ac.cn [Laboratory of Eco-Materials and Sustainable Technology (LEMST), Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang 830011 (China)
2013-07-15
Highlights: • Soil organic matter (SOM) has significant influence on the transformation of PAHs. • Photodegradation rate is strongly dependent on the SOM fractions and their content. • Photolysis is determined by the interaction between phenanthrene, clay and SOM. -- Abstract: In the present study, phenanthrene is employed as a model to explore the roles played by three soil organic matter (SOM) fractions, i.e., dissolved organic matter (DOM), humic acid (HA), and fulvic acid (FA), in its photodegradation with assistance of Fe(III)-smectite under visible-light. Slight decrease in phenanthrene photodegradation rate was observed in the presence of DOM, which is explained in terms of oxidative-radical competition between DOM and target phenanthrene molecules due to the high electron–donor capacity of phenolic moieties in DOM. On the other hand, a critic content is observed with FA (0.70 mg/g) and HA (0.65 mg/g). Before reaching the critic content, the removal of phenanthrene is accelerated; while after that, the photodegradation rate is suppressed. The acceleration of phenanthrene degradation can be attributed to the photosensitization of FA and HA. Due to the strong interaction between phenanthrene and the phenyl rings, however, the retention of phenanthrene on SOM–Fe(III)-smectite in the presence of high content of HA or FA is enhanced, thus slowing down its photodegradation. Those observations provide valuable insights into the transformation and fate of PAHs in the natural soil environment and open a window for using clay–humic substances complexes for remediation of contaminated soil.
Directory of Open Access Journals (Sweden)
Robitaille P.-M.
2013-07-01
Full Text Available The K-corona, a signiﬁcant portion of the solar atmosphere, displays a continuous spectrum which closely parallels photospheric emission, though without the presence of overlying Fraunhofer lines. The E-corona exists in the same region and is characterized by weak emission lines from highly ionized atoms. For instance, the famous green emission line from coronium (FeXIV is part of the E-corona. The F-corona exists beyond the K/E-corona and, like the photospheric spectrum, is characterized by Fraunhofer lines. The F-corona represents photospheric light scattered by dust particles in the interplanetary medium. Within the gaseous models of the Sun, the K-corona is viewed as photospheric radiation which has been scattered by relativistic electrons. This scattering is thought to broaden the Fraunhofer lines of the solar spectrum such that they can no longer be detected in the K-corona. Thus, the gaseous models of the Sun account for the appearance of the K-corona by distorting photospheric light, since they are unable to have recourse to condensed matter to directly produce such radiation. Conversely, it is now advanced that the continuous emission of the K-corona and associated emission lines from the E-corona must be interpreted as manifestations of the same phenomenon: condensed matter exists in the corona. It is well-known that the Sun expels large amounts of material from its surface in the form of ﬂares and coronal mass ejections. Given a liquid metallic hydrogen model of the Sun, it is logical to assume that such matter, which exists in the condensed state on the solar surface, continues to manifest its nature once expelled into the corona. Therefore, the continuous spectrum of the K-corona provides the twenty-seventh line of evidence that the Sun is composed of condensed matter.
Han, Jung Hoon
2017-01-01
This book summarizes some of the most exciting theoretical developments in the topological phenomena of skyrmions in noncentrosymmetric magnetic systems over recent decades. After presenting pedagogical backgrounds to the Berry phase and homotopy theory, the author systematically discusses skyrmions in the order of their development, from the Ginzburg-Landau theory, CP1 theory, Landau-Lifshitz-Gilbert theory, and Monte Carlo numerical approaches. Modern topics, such as the skyrmion-electron interaction, skyrmion-magnon interaction, and various generation mechanisms of the skyrmion are examined with a focus on their general theoretical aspects. The book concludes with a chapter on the skyrmion phenomena in the cold atom context. The topics are presented at a level accessible to beginning graduate students without a substantial background in field theory. The book can also be used as a text for those who wish to engage in the physics of skyrmions in magnetic systems, or as an introduction to the various theoret...
Indian Academy of Sciences (India)
three freely moving electrons. The value at room temperature is 3.1 k B; the electronic specific heat is missing! The next stage in the electronic theory of solids clears up ..... a big dog? We do not know the reasons yet. As it turns out for many fundamentally interesting phenomena, colossal magneto- resistance may also find ...
Computational condensed matter physics
Indian Academy of Sciences (India)
However, the electronic structure based investigations of structural stabilities at high pressures involve tedious trial and error effort, which is avoided in the ab initio molecular dynamics simulations. ... Thus in some sense, it mimics the phenomena taking place during the cohesion of solids. Therefore significant changes are ...
International Nuclear Information System (INIS)
Snoke, David; Littlewood, Peter
2010-01-01
Most students of physics know about the special properties of Bose-Einstein condensates (BECs) as demonstrated in the two best-known examples: superfluid helium-4, first reported in 1938, and condensates of trapped atomic gases, first observed in 1995. (See the article by Wolfgang Ketterle in PHYSICS TODAY, December 1999, page 30.) Many also know that superfluid 3 He and superconducting metals contain BECs of fermion pairs. An underlying principle of all those condensed-matter systems, known as quantum fluids, is that an even number of fermions with half-integer spin can be combined to make a composite boson with integer spin. Such composite bosons, like all bosons, have the property that below some critical temperature--roughly the temperature at which the thermal de Broglie wavelength becomes comparable to the distance between the bosons--the total free energy is minimized by having a macroscopic number of bosons enter a single quantum state and form a macroscopic, coherent matter wave. Remarkably, the effect of interparticle repulsion is to lead to quantum mechanical exchange interactions that make that state robust, since the exchange interactions add coherently.
International Nuclear Information System (INIS)
Miley, George H.; Hora, H.; Badziak, J.; Wolowski, J.; Sheng Zhengming; Zhang Jie; Osman, F.; Zhang Weiyan; Tuhe Xia
2009-01-01
The use of laser-driven Inertial Confinement Fusion (ICF) for space propulsion has been the subject of several earlier conceptual design studies, (see: Orth, 1998; and other references therein). However, these studies were based on older ICF technology using either 'direct' or 'in-direct x-ray driven' type target irradiation. Important new directions have opened for laser ICF in recent years following the development of 'chirped' lasers capable of ultra short pulses with powers of TW up to few PW which leads to the concept of 'fast ignition (FI)' to achieve higher energy gains from target implosions. In a recent publication the authors showed that use of a modified type of FI, termed 'block ignition' (Miley et al., 2008), could meet many of the requirements anticipated (but not then available) by the designs of the Vehicle for Interplanetary Space Transport Applications (VISTA) ICF fusion propulsion ship (Orth, 2008) for deep space missions. Subsequently the first author devised and presented concepts for imbedding high density condensed matter 'clusters' of deuterium into the target to obtain ultra high local fusion reaction rates (Miley, 2008). Such rates are possible due to the high density of the clusters (over an order of magnitude above cryogenic deuterium). Once compressed by the implosion, the yet higher density gives an ultra high reaction rate over the cluster volume since the fusion rate is proportional to the square of the fuel density. Most recently, a new discovery discussed here indicates that the target matrix could be composed of B 11 with proton clusters imbedded. This then makes p-B 11 fusion practical, assuming all of the physics issues such as stability of the clusters during compression are resolved. Indeed, p-B 11 power is ideal for fusion propulsion since it has a minimum of unwanted side products while giving most of the reaction energy to energetic alpha particles which can be directed into an exhaust (propulsion) nozzle. Power plants
Miley, George H.; Hora, H.; Badziak, J.; Wolowski, J.; Sheng, Zheng-Ming; Zhang, Jie; Osman, F.; Zhang, Weiyan; tu He, Xia
2009-03-01
The use of laser-driven Inertial Confinement Fusion (ICF) for space propulsion has been the subject of several earlier conceptual design studies, (see: Orth, 1998; and other references therein). However, these studies were based on older ICF technology using either "direct "or "in-direct x-ray driven" type target irradiation. Important new directions have opened for laser ICF in recent years following the development of "chirped" lasers capable of ultra short pulses with powers of TW up to few PW which leads to the concept of "fast ignition (FI)" to achieve higher energy gains from target implosions. In a recent publication the authors showed that use of a modified type of FI, termed "block ignition" (Miley et al., 2008), could meet many of the requirements anticipated (but not then available) by the designs of the Vehicle for Interplanetary Space Transport Applications (VISTA) ICF fusion propulsion ship (Orth, 2008) for deep space missions. Subsequently the first author devised and presented concepts for imbedding high density condensed matter "clusters" of deuterium into the target to obtain ultra high local fusion reaction rates (Miley, 2008). Such rates are possible due to the high density of the clusters (over an order of magnitude above cryogenic deuterium). Once compressed by the implosion, the yet higher density gives an ultra high reaction rate over the cluster volume since the fusion rate is proportional to the square of the fuel density. Most recently, a new discovery discussed here indicates that the target matrix could be composed of B11 with proton clusters imbedded. This then makes p-B11 fusion practical, assuming all of the physics issues such as stability of the clusters during compression are resolved. Indeed, p-B11 power is ideal for fusion propulsion since it has a minimum of unwanted side products while giving most of the reaction energy to energetic alpha particles which can be directed into an exhaust (propulsion) nozzle. Power plants using p
International Nuclear Information System (INIS)
1981-01-01
The Review Panel on Neutron Scattering has recommended an expanded budget to allow systematic development of the field. An alternative plan for the future of neutron research on condensed matter is presented here, in case it is not possible to fund the expanded budget. This plan leads, in a rational and logical way, to a world-class neutron source that will ensure the vitality of the field and exploit the many benefits that state-of-the-art neutron facilities can bring to programs in the materials and biological sciences. 2 tables
Modelling of condensation phenomena
International Nuclear Information System (INIS)
Jeong, Jae Jun; Chang, Won Pyo
1996-07-01
Condensation occurs when vapor is cooled sufficiently below the saturation temperature to induce the nucleation of droplets. Such nucleation may occur homogeneously within the vapor or heterogeneously on entrained particular matter. Heterogeneous nucleation may occur on the walls of the system, where the temperature is below the saturation temperature. There are two forms of heterogeneous condensation, drop-wise and film-wise. Another form of condensation occurs when vapor directly contacts to subcooled liquid. In nuclear power plant systems, all forms of condensation may occur during normal operation or accident conditions. In this work the modelling of condensation is surveyed, including the Nusselts' laminar film condensation theory in 1916, Rohsenow's turbulent film condensation model in 1950s, and Chen's models in 1987. Major attention is paid on the film condensation models among various research results because of its importance in engineering applications. It is found that theory, experiment, and empirical correlations for film condensation are well established, but research for drop-wise and direct-contact condensation are not sufficient yet. Condensation models in the best-estimate system codes such as RELAP5/MOD3 and CATHARE2 are also investigated. 3 tabs., 11 figs., 36 refs. (Author)
Results from the first science run of the ZEPLIN-III dark matter search experiment
International Nuclear Information System (INIS)
Lebedenko, V. N.; Bewick, A.; Currie, A.; Davidge, D.; Dawson, J.; Horn, M.; Howard, A. S.; Jones, W. G.; Joshi, M.; Liubarsky, I.; Quenby, J. J.; Sumner, T. J.; Thorne, C.; Walker, R. J.; Araujo, H. M.; Edwards, B.; Barnes, E. J.; Ghag, C.; Murphy, A. St. J.; Scovell, P. R.
2009-01-01
The ZEPLIN-III experiment in the Palmer Underground Laboratory at Boulby uses a 12 kg two-phase xenon time-projection chamber to search for the weakly interacting massive particles (WIMPs) that may account for the dark matter of our Galaxy. The detector measures both scintillation and ionization produced by radiation interacting in the liquid to differentiate between the nuclear recoils expected from WIMPs and the electron-recoil background signals down to ∼10 keV nuclear-recoil energy. An analysis of 847 kg·days of data acquired between February 27, 2008, and May 20, 2008, has excluded a WIMP-nucleon elastic scattering spin-independent cross section above 8.1x10 -8 pb at 60 GeVc -2 with a 90% confidence limit. It has also demonstrated that the two-phase xenon technique is capable of better discrimination between electron and nuclear recoils at low-energy than previously achieved by other xenon-based experiments.
Chen, Chunmei; Thompson, Aaron
2018-01-16
Abiotic Fe(II) oxidation by O 2 commonly occurs in the presence of mineral sorbents and organic matter (OM) in soils and sediments; however, this tertiary system has rarely been studied. Therefore, we examined the impacts of mineral surfaces (goethite and γ-Al 2 O 3 ) and organic matter [Suwannee River fulvic acid (SRFA)] on Fe(II) oxidation rates and the resulting Fe(III) (oxyhydr)oxides under 21 and 1% pO 2 at pH 6. We tracked Fe dynamics by adding 57 Fe(II) to 56 Fe-labeled goethite and γ-Al 2 O 3 and characterized the resulting solids using 57 Fe Mössbauer spectroscopy. We found Fe(II) oxidation was slower at low pO 2 and resulted in higher-crystallinity Fe(III) phases. Relative to oxidation of Fe(II) (aq) alone, both goethite and γ-Al 2 O 3 surfaces increased Fe(II) oxidation rates regardless of pO 2 levels, with goethite being the stronger catalyst. Goethite surfaces promoted the formation of crystalline goethite, while γ-Al 2 O 3 favored nano/small particle or disordered goethite and some lepidocrocite; oxidation of Fe(II) aq alone favored lepidocrocite. SRFA reduced oxidation rates in all treatments except the mineral-free systems at 21% pO 2 , and SRFA decreased Fe(III) phase crystallinity, facilitating low-crystalline ferrihydrite in the absence of mineral sorbents, low-crystalline lepidocrocite in the presence of γ-Al 2 O 3 , but either crystalline goethite or ferrihydrite when goethite was present. This work highlights that the oxidation rate, the types of mineral surfaces, and OM control Fe(III) precipitate composition.
Application of TAM III to study sensitivity of soil organic matter degradation to temperature
Vikegard, Peter; Barros, Nieves; Piñeiro, Verónica
2014-05-01
Traditionally, studies of soil biodegradation are based on CO2 dissipation rates. CO2 is a product of aerobic degradation of labile organic substrates like carbohydrates. That limits the biodegradation concept to just one of the soil organic matter fractions. This feature is responsible for some problems to settle the concept of soil organic matter (SOM) recalcitrance and for controversial results defining sensitivity of SOM to temperature. SOM consists of highly complex macromolecules constituted by fractions with different chemical nature and redox state affecting the chemical nature of biodegradation processes. Biodegradation of fractions more reduced than carbohydrates take place through metabolic pathways that dissipate less CO2 than carbohydrate respiration, that may not dissipate CO2, or that even may uptake CO2. These compounds can be considered more recalcitrant and with lower turnover times than labile SOM just because they are degraded at lower CO2 rates that may be just a consequence of the metabolic path. Nevertheless, decomposition of every kind of organic substrate always releases heat. For this reason, the measurement of the heat rate by calorimetry yields a more realistic measurement of the biodegradation of the SOM continuum. TAM III is one of the most recent calorimeters designed for directly measuring in real time the heat rate associated with any degradation process. It is designed as a multichannel system allowing the concomitant measurement of to up 24 samples at isothermal conditions or through a temperature scanning mode from 18 to 100ºC, allowing the continous measure of any sample at controlled non-isothermal conditions. The temperature scanning mode was tested in several soil samples collected at different depths to study their sensitivity to temperature changes from 18 to 35 ºC calculating the Q10 and the activation energy (EA) by the Arrhenius equation. It was attempted to associate the obtained EA values with the soil thermal
A Monte-Carlo code for the detailed simulation of electron and light-ion tracks in condensed matter
International Nuclear Information System (INIS)
Emfietzoglou, D.; Papamichael, G.; Karava, K.; Androulidakis, I.; Pathak, A.; Phillips, G. W.; Moscovitch, M.; Kostarelos, K.
2006-01-01
In an effort to understand the basic mechanism of the action of charged particles in solid radiation dosimeters, we extend our Monte-Carlo code (MC4) to condensed media (liquids/solids) and present new track-structure calculations for electrons and protons. Modeling the energy dissipation process is based on a model dielectric function, which accounts in a semi-empirical and self-consistent way for condensed-phase effects which are computationally intractable. Importantly, these effects mostly influence track-structure characteristics at the nano-meter scale, which is the focus of radiation action models. Since the event-by-event scheme for electron transport is impractical above several kilo-electron volts, a condensed-history random-walk scheme has been implemented to transport the energetic delta rays produced by energetic ions. Based on the above developments, new track-structure calculations are presented for two representative dosimetric materials, namely, liquid water and silicon. Results include radial dose distributions in cylindrical and spherical geometries, as well as, clustering distributions, which, among other things, are important in predicting irreparable damage in biological systems and prompt electric-fields in microelectronics. (authors)
International Nuclear Information System (INIS)
Liu, Rong-Xiang; Tian, Bo; Liu, Li-Cai; Qin, Bo; Lü, Xing
2013-01-01
In this paper we investigate a fourth-order dispersive nonlinear Schrödinger equation, which governs the dynamics of a one-dimensional anisotropic Heisenberg ferromagnetic spin chain with the octuple–dipole interaction in condensed-matter physics as well as the alpha helical proteins with higher-order excitations and interactions in biophysics. Beyond the existing constraint, upon the introduction of an auxiliary function, bilinear forms and N-soliton solutions are constructed with the Hirota method. Asymptotic analysis on the two-soliton solutions indicates that the soliton interactions are elastic. Soliton velocity varies linearly with the coefficient of discreteness and higher-order magnetic interactions. Bound-state solitons can also exist under certain conditions. Period of a bound-state soliton is inversely correlated to the coefficient of discreteness and higher-order magnetic interactions. Interactions among the three solitons are all pairwise elastic
Mintz, Stephan; Perlmutter, Arnold; Neutrino Mass, Dark Matter and Gravitational Waves, Condensation of Atoms and Monopoles, Light-cone Quantization : Orbis Scientiae '96
1996-01-01
The International Conference, Orbis Scientiae 1996, focused on the topics: The Neutrino Mass, Light Cone Quantization, Monopole Condensation, Dark Matter, and Gravitational Waves which we have adopted as the title of these proceedings. Was there any exciting news at the conference? Maybe, it depends on who answers the question. There was an almost unanimous agreement on the overall success of the conference as was evidenced by the fact that in the after-dinner remarks by one of us (BNK) the suggestion of organizing the conference on a biannual basis was presented but not accepted: the participants wanted the continuation of the tradition to convene annually. We shall, of course, comply. The expected observation of gravitational waves will constitute the most exciting vindication of Einstein's general relativity. This subject is attracting the attention of the experimentalists and theorists alike. We hope that by the first decade of the third millennium or earlier, gravitational waves will be detected,...
12th general conference of the condensed matter division of the E.P.S. V.16A
International Nuclear Information System (INIS)
Velicky, B.; Vorlicek, V.; Zaveta, K.
1992-01-01
The proceedings contain 630 abstracts of contributions and posters presented at the conference, out of which 35 have been inputted in INIS. They deal with the application of the dispersion and diffraction of X-rays and neutrons to the investigation of the structure of matter, crystals in particular; with spin-lattice relaxation and superlattices; and with electron spin resonance, nuclear magnetic resonance and Moessbauer spectroscopy. (M.D.)
Energy Technology Data Exchange (ETDEWEB)
Helgesen, G. ed.
2003-05-01
The goal of this ASI was to bring together a group of disparate sciences to discuss areas of research related to competition between interactions of different ranges, for it is this that creates local structure on which complexity depends in soft condensed matter, biological systems and their synthetic models. The starting point, and the underlying theme throughout the ASI, was thus a thorough discussion of the relative role of the various fundamental interactions in such systems (electrostatic, hydrophobic, steric, conformational, van der Waals, etc.). The next focus was on how these competing interactions influence the form and topology of soft and biological matter, like polymers and proteins, leading to hierarchical structures in self-assembling systems and folding patterns sometimes described in terms of chirality, braids and knots. Finally, focus was on how the competing interactions influence various bio processes like genetic regulation and biological evolution taking place in systems like biopolymers, macromolecules and cell membranes. The report includes the abstracts of the posters presented, two of which are given in this database: (1) Precise characterisation of nano channels in track etched membranes by SAXS and SANS, and (2) Cisplatin binding to DNA: Structure, bonding and NMR properties from CarParrinello/Classical MD simulations.
Strangeness condensation and ''clearing'' of the vacuum
International Nuclear Information System (INIS)
Brown, G.E.; Kubodera, Kuniharu; Rho, M.; State Univ. of New York, Stony Brook
1987-01-01
We show that a substantial amount of strange quark-antiquark pair condensates in the nucleon required by the πN sigma term implies that kaons could condense in nuclear matter at a density about three times that of normal nuclear matter. This phenomenon can be understood as the ''cleansing'' of qanti q condensates from the QCD vacuum by a dense nuclear matter, resulting in a (partial) restoration of the chiral symmetry explicitly broken in the vacuum. It is suggested that the condensation signals a new phase distinct from that of quark plasma and that of ordinary dense hadronic matter. (orig.)
Levy, Pablo
2015-03-01
In the first part of my talk, I will describe the status of the experimental research in Condensed Matter Physics in Argentina, biased towards developments related to micro and nanotechnology. In the second part, I will describe the MeMOSat Project, a consortium aimed at producing non-volatile memory devices to work in aggressive environments, like those found in the aerospace and nuclear industries. Our devices rely on the Resistive Switching mechanism, which produces a permanent but reversible change in the electrical resistance across a metal-insulator-metal structure by means of a pulsed protocol of electrical stimuli. Our project is devoted to the study of Memory Mechanisms in Oxides (MeMO) in order to establish a technological platform that tests the Resistive RAM (ReRAM) technology for aerospace applications. A review of MeMOSat's activities is presented, covering the initial Proof of Concept in ceramic millimeter sized samples; the study of different oxide-metal couples including (LaPr)2/3Ca1/3MnO, La2/3Ca1/3MnO3, YBa2Cu3O7, TiO2, HfO2, MgO and CuO; and recent miniaturized arrays of micrometer sized devices controlled by in-house designed electronics, which were launched with the BugSat01 satellite in June2014 by the argentinian company Satellogic.
DEFF Research Database (Denmark)
Jensen, Kasper Risgaard; Fojan, Peter; Jensen, Rasmus Lund
2014-01-01
The condensation of water is a phenomenon occurring in multiple situations in everyday life, e.g., when fog is formed or when dew forms on the grass or on windows. This means that this phenomenon plays an important role within the different fields of science including meteorology, building physics......, and chemistry. In this review we address condensation models and simulations with the main focus on heterogeneous condensation of water. The condensation process is, at first, described from a thermodynamic viewpoint where the nucleation step is described by the classical nucleation theory. Further, we address...
International Nuclear Information System (INIS)
Masuda, Fujio
1980-01-01
Purpose: To enable safe steam condensation by providing steam condensation blades at the end of a pipe. Constitution: When high temperature high pressure steam flows into a vent pipe having an opening under water in a pool or an exhaust pipe or the like for a main steam eacape safety valve, non-condensable gas filled beforehand in the steam exhaust pipe is compressed, and discharged into the water in the pool. The non-condensable gas thus discharged from the steam exhaust pipe is introduced into the interior of the hollow steam condensing blades, is then suitably expanded, and thereafter exhausted from a number of exhaust holes into the water in the pool. In this manner, the non-condensable gas thus discharged is not directly introduced into the water in the pool, but is suitable expanded in the space of the steam condensing blades to suppress extreme over-compression and over-expansion of the gas so as to prevent unstable pressure vibration. (Yoshihara, H.)
Jones, Adele M.; Pham, A. Ninh; Collins, Richard N.; Waite, T. David
2009-05-01
The rate at which iron- and aluminium-natural organic matter (NOM) complexes dissociate plays a critical role in the transport of these elements given the readiness with which they hydrolyse and precipitate. Despite this, there have only been a few reliable studies on the dissociation kinetics of these complexes suggesting half-times of some hours for the dissociation of Fe(III) and Al(III) from a strongly binding component of NOM. First-order dissociation rate constants are re-evaluated here at pH 6.0 and 8.0 and 25 °C using both cation exchange resin and competing ligand methods for Fe(III) and a cation exchange resin method only for Al(III) complexes. Both methods provide similar results at a particular pH with a two-ligand model accounting satisfactorily for the dissociation kinetics results obtained. For Fe(III), half-times on the order of 6-7 h were obtained for dissociation of the strong component and 4-5 min for dissociation of the weak component. For aluminium, the half-times were on the order of 1.5 h and 1-2 min for the strong and weak components, respectively. Overall, Fe(III) complexes with NOM are more stable than analogous complexes with Al(III), implying Fe(III) may be transported further from its source upon dilution and dispersion.
Constraints on low-mass WIMPs from the EDELWEISS-III dark matter search
Energy Technology Data Exchange (ETDEWEB)
Armengaud, E.; De Boissière, T. [CEA Saclay, DSM/IRFU, Gif-sur-Yvette Cedex, 91191 France (France); Arnaud, Q.; Augier, C.; Benoît, A.; Billard, J.; Cazes, A.; Charlieux, F. [Institut de Physique Nucléaire de Lyon-UCBL, IN2P3-CNRS, 4 rue Enrico Fermi, Villeurbanne Cedex, 69622 France (France); Benoît, A.; Bres, G.; Camus, P. [Institut Néel, CNRS/UJF, 25 rue des Martyrs, BP 166, Grenoble, 38042 France (France); Bergé, L.; Broniatowski, A.; Chapellier, M.; Dumoulin, L. [CSNSM, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, 91405 France (France); Bergmann, T. [Karlsruher Institut für Technologie, Institut für Prozessdatenverarbeitung und Elektronik, Postfach 3640, Karlsruhe, 76021 Germany (Germany); Blümer, J. [Karlsruher Institut für Technologie, Institut für Experimentelle Kernphysik, Gaedestr. 1, Karlsruhe, 76128 Germany (Germany); Brudanin, V.; Filosofov, D. [JINR, Laboratory of Nuclear Problems, Joliot-Curie 6, Dubna, Moscow Region, 141980 Russian Federation (Russian Federation); Eitel, K., E-mail: eric.armengaud@cea.fr [Karlsruher Institut für Technologie, Institut für Kernphysik, Postfach 3640, Karlsruhe, 76021 Germany (Germany); and others
2016-05-01
We present the results of a search for elastic scattering from galactic dark matter in the form of Weakly Interacting Massive Particles (WIMPs) in the 4–30 GeV/ c {sup 2} mass range. We make use of a 582 kg-day fiducial exposure from an array of 800 g Germanium bolometers equipped with a set of interleaved electrodes with full surface coverage. We searched specifically for ∼ 2.5–20 keV nuclear recoils inside the detector fiducial volume. As an illustration the number of observed events in the search for 5 (resp. 20) GeV/ c {sup 2} WIMPs are 9 (resp. 4), compared to an expected background of 6.1 (resp. 1.4). A 90% CL limit of 4.3 × 10{sup −40} cm{sup 2} (resp. 9.4 × 10{sup −44} cm{sup 2}) is set on the spin-independent WIMP-nucleon scattering cross-section for 5 (resp. 20) GeV/ c {sup 2} WIMPs. This result represents a 41-fold improvement with respect to the previous EDELWEISS-II low-mass WIMP search for 7 GeV/ c {sup 2} WIMPs. The derived constraint is in tension with hints of WIMP signals from some recent experiments, thus confirming results obtained with different detection techniques.
Pion condensation and neutron star dynamics
International Nuclear Information System (INIS)
Kaempfer, B.
1983-01-01
The question of formation of pion condensate via a phase transition in nuclear matter, especially in the core of neutron stars is reviewed. The possible mechanisms and the theoretical restrictions of pion condensation are summarized. The effects of ultradense equation of state and density jumps on the possible condensation phase transition are investigated. The possibilities of observation of condensation process are described. (D.Gy.)
Energy Technology Data Exchange (ETDEWEB)
Li, Ping; Liang, Jianjun; Fan, Qiaohui [Chinese Academy of Sciences, Lanzhou (China). Key Lab. of Petroleum Resources Research; Wu, Hanyu [Chinese Academy of Sciences, Lanzhou (China). Key Lab. of Petroleum Resources Research; Lanzhou Univ. (China). Radiochemistry Lab.; Yin, Zhuoxin; Pan, Duoqiang; Wu, Wangsuo [Lanzhou Univ. (China). Radiochemistry Lab.; Xu, Di [Chinese Academy of Sciences, Nanjing (China). State Key Lab. of Lake Science and Environment
2017-07-01
The sorption of Eu(III) on potassium feldspar (K-feldspar) was studied under various physicochemical conditions such as pH, temperature, counter ions and organic matter. The results showed that the sorption of Eu(III) on K-feldspar significantly increased with the increase of pH, and high Eu(III) concentration can inhibit such immobility to some extent. The presence of humic acid (HA) can increase the sorption of Eu(III) on K-feldspar in low pH range; while inhibit to a large extent under alkaline conditions. It is very interesting that at pH ∝6.5, high ionic strength can promote the sorption of Eu(III) on K-feldspar in the presence of HA. In contrast, Eu(III) sorption was restricted obviously by NaCl in the absence of HA. The sorption procedure was involved with ion exchange and/or outer-sphere complexation as well as inner-sphere complexation. The presence of F{sup -} and PO{sub 4}{sup 3-} dramatically enhanced Eu(III) sorption on K-feldspar, whereas both SO{sub 4}{sup 2-} and CO{sub 3}{sup 2-} had negative effects on Eu(III) sorption. X-ray photoelectron spectroscopy analysis indicated that Eu(III) tended to form hydrolysates at high initial concentration (3 x 10{sup -4} mol/L) and high temperature (338 K).
Condensed Matter division: GCDMD-14
International Nuclear Information System (INIS)
Segovia, J.L. de; Flores, F.; Garcia-Molines, F.
1994-01-01
The present book contains the abstracts of the plenary lectures, invited talks and communications either as oral or poster presentation. The 692 papers have been distributed according to their scheduled presentation of the corresponding session of the Conference: A. Semiconductors and Insulators B. Surfaces and Interfaces C. Liquid and Statistical Mechanics D. Magnetism and Metals E. Macromolecules and Chemical Physics
Frontiers in condensed matter theory
International Nuclear Information System (INIS)
Lax, M.; Gor'kov, L.P.; Birman, J.L.
1990-01-01
This report contains papers on the following topics: superconductivity; transport, quantum hall effect, localization, and scattering in random systems; high-tc superconductivity; antiferromagnetism and superconductivity; nonradiative transport and energy transport; self-similarity and chaos; superfluids; dielectrics and semiconductors; two dimensional transport and the quantum hall effect; and localization effects
Investigation of condensed matter fusion
International Nuclear Information System (INIS)
Jones, S.E.; Berrondo, M.; Czirr, J.B.; Decker, D.L.; Harrison, K.; Jensen, G.L.; Palmer, E.P.; Rees, L.B.; Taylor, S.; Vanfleet, H.B.; Wang, J.C.; Bennion, D.N.; Harb, J.N.; Pitt, W.G.; Thorne, J.M.; Anderson, A.N.; McMurtry, G.; Murphy, N.; Goff, F.E.
1990-12-01
Work on muon-catalyzed fusion led to research on a possible new type of fusion occurring in hydrogen isotopes embedded in metal lattices. While the nuclear-product yields observed to date are so small as to require careful further checking, rates observed over short times appear sufficiently large to suggest that significant neutrons and triton yields could be realized -- if the process could be understood and controlled. During 1990, we have developed two charged-particle detection systems and three new neutron detectors. A segmented, high-efficiency neutron counter was taken into 600 m underground in a mine in Colorado for studies out of the cosmic-ray background. Significant neutron emissions were observed in this environment in both deuterium-gas-loaded metals and in electrolytic cells, confirming our earlier observations
Local Group dSph radio survey with ATCA (III): constraints on particle dark matter
International Nuclear Information System (INIS)
Regis, Marco; Colafrancesco, Sergio; Profumo, Stefano; De Blok, W.J.G.; Massardi, Marcella; Richter, Laura
2014-01-01
We performed a deep search for radio synchrotron emissions induced by weakly interacting massive particles (WIMPs) annihilation or decay in six dwarf spheroidal (dSph) galaxies of the Local Group. Observations were conducted with the Australia Telescope Compact Array (ATCA) at 16 cm wavelength, with an rms sensitivity better than 0.05 mJy/beam in each field. In this work, we first discuss the uncertainties associated with the modeling of the expected signal, such as the shape of the dark matter (DM) profile and the dSph magnetic properties. We then investigate the possibility that point-sources detected in the proximity of the dSph optical center might be due to the emission from a DM cuspy profile. No evidence for an extended emission over a size of few arcmin (which is the DM halo size) has been detected. We present the associated bounds on the WIMP parameter space for different annihilation/decay final states and for different astrophysical assumptions. If the confinement of electrons and positrons in the dSph is such that the majority of their power is radiated within the dSph region, we obtain constraints on the WIMP annihilation rate which are well below the thermal value for masses up to few TeV. On the other hand, for conservative assumptions on the dSph magnetic properties, the bounds can be dramatically relaxed. We show however that, within the next 10 years and regardless of the astrophysical assumptions, it will be possible to progressively close in on the full parameter space of WIMPs by searching for radio signals in dSphs with SKA and its precursors
Local Group dSph radio survey with ATCA (III): constraints on particle dark matter
Energy Technology Data Exchange (ETDEWEB)
Regis, Marco [Dipartimento di Fisica, Università di Torino, via P. Giuria 1, I-10125 Torino (Italy); Colafrancesco, Sergio [School of Physics, University of the Witwatersrand, Johannesburg (South Africa); Profumo, Stefano [Department of Physics, University of California, 1156 High St., Santa Cruz, CA 95064 (United States); De Blok, W.J.G. [Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7990 AA Dwingeloo (Netherlands); Massardi, Marcella [INAF—Istituto di Radioastronomia, Via Gobetti 101, I-40129, Bologna (Italy); Richter, Laura, E-mail: regis@to.infn.it, E-mail: sergio.colafrancesco@wits.ac.za, E-mail: profumo@ucsc.edu, E-mail: blok@astron.nl, E-mail: massardi@ira.inaf.it, E-mail: laura@ska.ac.za [SKA South Africa, 3rd Floor, The Park, Park Road, Pinelands, 7405 (South Africa)
2014-10-01
We performed a deep search for radio synchrotron emissions induced by weakly interacting massive particles (WIMPs) annihilation or decay in six dwarf spheroidal (dSph) galaxies of the Local Group. Observations were conducted with the Australia Telescope Compact Array (ATCA) at 16 cm wavelength, with an rms sensitivity better than 0.05 mJy/beam in each field. In this work, we first discuss the uncertainties associated with the modeling of the expected signal, such as the shape of the dark matter (DM) profile and the dSph magnetic properties. We then investigate the possibility that point-sources detected in the proximity of the dSph optical center might be due to the emission from a DM cuspy profile. No evidence for an extended emission over a size of few arcmin (which is the DM halo size) has been detected. We present the associated bounds on the WIMP parameter space for different annihilation/decay final states and for different astrophysical assumptions. If the confinement of electrons and positrons in the dSph is such that the majority of their power is radiated within the dSph region, we obtain constraints on the WIMP annihilation rate which are well below the thermal value for masses up to few TeV. On the other hand, for conservative assumptions on the dSph magnetic properties, the bounds can be dramatically relaxed. We show however that, within the next 10 years and regardless of the astrophysical assumptions, it will be possible to progressively close in on the full parameter space of WIMPs by searching for radio signals in dSphs with SKA and its precursors.
Energy Technology Data Exchange (ETDEWEB)
Dong, Xiaoling [Department of Soil and Water Science, University of Florida, Gainesville, FL 32611 (United States); Ma, Lena Q., E-mail: lqma@ufl.edu [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046 (China); Department of Soil and Water Science, University of Florida, Gainesville, FL 32611 (United States); Gress, Julia; Harris, Willie [Department of Soil and Water Science, University of Florida, Gainesville, FL 32611 (United States); Li, Yuncong [Soil and Water Science Department, Tropical Research and Education Center, University of Florida, Homestead, FL 33031-3314 (United States)
2014-02-01
Graphical abstract: - Highlights: • Biochar-derived dissolved organic matter (DOM) effectively reduced Cr(VI) and oxidized As(III). • Cr(VI) and As(III) could serve as a redox couple. • Cr(VI) and As(III) redox conversion was more effective in the ice phase than aqueous phase. • FTIR and ESR showed that biochar DOM served as both electron donor and acceptor. - Abstract: This study evaluated the impact of DOM from two biochars (sugar beet tailing and Brazilian pepper) on Cr(VI) reduction and As(III) oxidation in both ice and aqueous phases with a soil DOM as control. Increasing DOM concentration from 3 to 300 mg C L{sup −1} enhanced Cr(VI) reduction from 20% to 100% and As(III) oxidation from 6.2% to 25%; however, Cr(VI) reduction decreased from 80–86% to negligible while As(III) oxidation increased from negligible to 18–19% with increasing pH from 2 to 10. Electron spin resonance study suggested semiquinone radicals in DOM were involved in As(III) oxidation while Fourier transform infrared analysis suggested that carboxylic groups in DOM participated in both Cr(VI) reduction and As(III) oxidation. During Cr(VI) reduction, part of DOM (∼10%) was oxidized to CO{sub 2}. The enhanced conversion of Cr(VI) and As(III) in the ice phase was due to the freeze concentration effect with elevated concentrations of electron donors and electron acceptors in the grain boundary. Though DOM enhanced both Cr(VI) reduction and As(III)oxidation, Cr(VI) reduction coupled with As(III) oxidation occurred in absence of DOM. The role of DOM, Cr(VI) and/or As(III) in Cr and As transformation may provide new insights into their speciation and toxicity in cold regions.
Fukushima, Kenji
2014-01-01
We summarize recent developments in identifying the ground state of dense baryonic matter and beyond. The topics include deconfinement from baryonic matter to quark matter, a diquark mixture, topological effect coupled with chirality and density, and inhomogeneous chiral condensates.
The color class condensate RHIC and HERA
McLerran, L
2002-01-01
In this talk, I discuss a universal form of matter, the color glass condensate. It is this matter which composes the low x part of all hadronic wavefunctions. The experimental programs at RHIC and HERA, and future programs at LHC and RHIC may allow us to probe and study the properties of this matter. (8 refs).
Condensate and feedwater systems, pumps, and water chemistry. Volume seven
International Nuclear Information System (INIS)
Anon.
1986-01-01
Subject matter includes condensate and feedwater systems (general features of condensate and feedwater systems, condenser hotwell level control, condensate flow, feedwater flow), pumps (principles of fluid flow, types of pumps, centrifugal pumps, positive displacement pumps, jet pumps, pump operating characteristics) and water chemistry (water chemistry fundamentals, corrosion, scaling, radiochemistry, water chemistry control processes, water pretreatment, PWR water chemistry, BWR water chemistry, condenser circulating water chemistry
Black holes in the ghost condensate
International Nuclear Information System (INIS)
Mukohyama, Shinji
2005-01-01
We investigate how the ghost condensate reacts to black holes immersed in it. A ghost condensate defines a hypersurface-orthogonal congruence of timelike curves, each of which has the tangent vector u μ =-g μν ∂ ν φ. It is argued that the ghost condensate in this picture approximately corresponds to a congruence of geodesics. In other words, the ghost condensate accretes into a black hole just like a pressureless dust. Correspondingly, if the energy density of the ghost condensate at large distance is set to an extremely small value by cosmic expansion then the late-time accretion rate of the ghost condensate should be negligible. The accretion rate remains very small even if effects of higher derivative terms are taken into account, provided that the black hole is sufficiently large. It is also discussed how to reconcile the black-hole accretion with the possibility that the ghost condensate might behave like dark matter
Huang, Bin; Gu, Lipeng; He, Huan; Xu, Zhixiang; Pan, Xuejun
2016-09-14
This study investigated the simultaneous transformation of Cr(vi) via a closely coupled biotic and abiotic pathway in an anaerobic system of quinone-reducing bacteria/dissolved organic matters (DOM)/Fe(iii). Batch studies were conducted with quinone-reducing bacteria to assess the influences of sodium formate (NaFc), electron shuttling compounds (DOM) and the Fe(iii) on Cr(vi) reduction rates as these chemical species are likely to be present in the environment during in situ bioremediation. Results indicated that the concentration of sodium formate and anthraquinone-2-sodium sulfonate (AQS) had apparently an effect on Cr(vi) reduction. The fastest decrease in rate for incubation supplemented with 5 mM sodium formate and 0.8 mM AQS showed that Fe(iii)/DOM significantly promoted the reduction of Cr(vi). Presumably due to the presence of more easily utilizable sodium formate, DOM and Fe(iii) have indirect Cr(vi) reduction capability. The coexisting cycles of Fe(ii)/Fe(iii) and DOM(ox)/DOM(red) exhibited a higher redox function than the individual cycle, and their abiotic coupling action can significantly enhance Cr(vi) reduction by quinone-reducing bacteria.
Interference of an array of independent Bose-Einstein condensates
International Nuclear Information System (INIS)
Hadzibabic, Zoran; Stock, Sabine; Battelier, Baptiste; Bretin, Vincent; Dalibard, Jean
2004-01-01
We have observed high-contrast matter wave interference between 30 Bose-Einstein condensates with uncorrelated phases. Interferences were observed after the independent condensates were released from a one-dimensional optical lattice and allowed to overlap. This phenomenon is explained with a simple theoretical model, which generalizes the analysis of the interference of two condensates
Energy Technology Data Exchange (ETDEWEB)
Kang, Dong-Hee [Institute for Inorganic Chemistry, University of Stuttgart (Germany); Department of Chemistry, University of Waterloo, ON (Canada); Korea Research Institute of Standards and Science (KRISS), Daejeon (Korea, Republic of); Ledderboge, Florian; Schleid, Thomas [Institute for Inorganic Chemistry, University of Stuttgart (Germany); Kleinke, Holger [Department of Chemistry, University of Waterloo, ON (Canada)
2015-02-15
Single crystals of Pr{sub 3}S{sub 2}Cl{sub 2}[AsS{sub 3}] were obtained by reacting praseodymium sesquisulfide and trichloride with arsenic and sulfur (molar ratio: 7:4:6:9) in torch-sealed evacuated silica ampoules at 850 C for a week and subsequent slow cooling to room temperature. The transparent, pale yellowish green platelets crystallize monoclinically (Pr{sub 3}S{sub 2}Cl{sub 2}[AsS{sub 3}]: a = 2190.96(9) pm, b = 685.49(3) pm, c = 701.87(3) pm, β = 98.752(3) ) in the non-centrosymmetric space group Cc with Z = 4. The crystal structure of Pr{sub 3}S{sub 2}Cl{sub 2}[AsS{sub 3}] comprises three crystallographically different Pr{sup 3+} cations. (Pr1){sup 3+} and (Pr2){sup 3+} exhibit bicapped trigonal prismatic environments of five sulfur and three chlorine atoms (C.N. = 8) each, whereas only seven sulfur atoms arranged as capped trigonal prism (C.N. = 7) are present in the case of (Pr3){sup 3+}. Two of the five crystallographically different sulfur atoms (S1 and S2) are coordinated by four Pr{sup 3+} cations, each in the shape of slightly distorted [SPr{sub 4}]{sup 10+} tetrahedra (d(S-Pr) = 278-294 pm). Hence, the crystal structure of Pr{sub 3}S{sub 2}Cl{sub 2}[AsS{sub 3}] contains double chains with the composition {sup 1}{sub ∞}{[S_2Pr_3]"5"+}, consisting of two parallel edge-fused chains of anti-SiS{sub 2}-analogous single strands {sup 1}{sub ∞}{[SPr_2]"4"+}, formed by trans-edge sharing [SPr{sub 4}]{sup 10+} tetrahedra. The arrangement of the {sup 1}{sub ∞}{[S_2Pr_3]"5"+} double chains running along [001] can be described as a hexagonal rod-packing. Chloride anions (Cl1 and Cl2) as well as the isolated, ψ{sup 1}-tetrahedral thioarsenate(III) groups [AsS{sub 3}]{sup 3-} (d(As-S) = 228-229 pm) consisting of three sulfur atoms (S3, S4, and S5) and an As{sup 3+} cation carrying a stereochemically active non-bonding electron pair take care of the three-dimensional interconnection and the charge balance of the {sup 1}{sub ∞}{[S_2Pr_3]"5"+} double
Condensation model for the ESBWR passive condensers
International Nuclear Information System (INIS)
Revankar, S. T.; Zhou, W.; Wolf, B.; Oh, S.
2012-01-01
In the General Electric's Economic simplified boiling water reactor (GE-ESBWR) the passive containment cooling system (PCCS) plays a major role in containment pressure control in case of an loss of coolant accident. The PCCS condenser must be able to remove sufficient energy from the reactor containment to prevent containment from exceeding its design pressure following a design basis accident. There are three PCCS condensation modes depending on the containment pressurization due to coolant discharge; complete condensation, cyclic venting and flow through mode. The present work reviews the models and presents model predictive capability along with comparison with existing data from separate effects test. The condensation models in thermal hydraulics code RELAP5 are also assessed to examine its application to various flow modes of condensation. The default model in the code predicts complete condensation well, and basically is Nusselt solution. The UCB model predicts through flow well. None of condensation model in RELAP5 predict complete condensation, cyclic venting, and through flow condensation consistently. New condensation correlations are given that accurately predict all three modes of PCCS condensation. (authors)
Rivasseau, Vincent; Fuchs, Jean-Nöel
2017-01-01
This fifteenth volume of the Poincare Seminar Series, Dirac Matter, describes the surprising resurgence, as a low-energy effective theory of conducting electrons in many condensed matter systems, including graphene and topological insulators, of the famous equation originally invented by P.A.M. Dirac for relativistic quantum mechanics. In five highly pedagogical articles, as befits their origin in lectures to a broad scientific audience, this book explains why Dirac matters. Highlights include the detailed "Graphene and Relativistic Quantum Physics", written by the experimental pioneer, Philip Kim, and devoted to graphene, a form of carbon crystallized in a two-dimensional hexagonal lattice, from its discovery in 2004-2005 by the future Nobel prize winners Kostya Novoselov and Andre Geim to the so-called relativistic quantum Hall effect; the review entitled "Dirac Fermions in Condensed Matter and Beyond", written by two prominent theoreticians, Mark Goerbig and Gilles Montambaux, who consider many other mater...
Enhanced Condensation Heat Transfer
Rose, John Winston
The paper gives some personal observations on various aspects of enhanced condensation heat transfer. The topics discussed are external condensation (horizontal low-finned tubes and wire-wrapped tubes), internal condensation (microfin tubes and microchannels) and Marangoni condensation of binary mixtures.
International Nuclear Information System (INIS)
1993-01-01
This report in three volumes substantiates the contents of the programme survey published in September 1989. The progress reports cover the following research areas: Vol. I, (1). Atomic and molecular physics - free atoms, molecules, macromolecules, clusters, matrix-isolated atoms and molecules. (2) Physics and chemistry of surfaces and interfaces - epitaxy, surface structure, adsorption, electrical, magnetic, and optical properties, thin films, synthetic layer structure. Vol. II, (3). Solid-state physics, and materials science -structural research, lattice dynamics, magnetic structure and dynamics, electronic states; load; spin and pulse density fluctuations; diffusion and internal motion, defects, unordered systems and liquids. Vol. III, (4). Chemistry - bonding and structure, kinetics and reaction mechanisms, polymer research, analysis and synthesis. (5). Biology, - structure and dynamics of biological macromolecules, membrane and cell biology. (6) Development of methods and instruments - neutron sources, synchrotron sources, special accelerators, research with interlinked systems and devices. (orig.) [de
International Nuclear Information System (INIS)
Buechler, Hans Peter; Calcarco, Tommaso; Dressel, Martin
2008-01-01
The following topics are dealt with: Artificial atoms and molecules, tailored from solids, fractional flux quanta, molecular magnets, controlled interaction in quantum gases, the theory of quantum correlations in mott matter, cold gases, and mesoscopic systems, Bose-Einstein condensates on the chip, on the route to the quantum computer, a quantum computer in diamond. (HSI)
Li, Bohua; Shapiro, Paul R.; Rindler-Daller, Tanja
2017-09-01
We consider an alternative to weakly interacting massive particle (WIMP) cold dark matter (CDM)—ultralight bosonic dark matter (m ≳10-22 eV /c2) described by a complex scalar field (SFDM) with a global U (1 ) symmetry—for which the comoving particle number density or charge density is conserved after particle production during standard reheating. We allow for a repulsive self-interaction. In a Λ SFDM universe, SFDM starts out relativistic, evolving from stiff (w =1 ) to radiation-like (w =1 /3 ), before becoming nonrelativistic at late times (w =0 ). Thus, before the familiar radiation-dominated era, there is an earlier era of stiff-SFDM domination. During both the stiff-SFDM-dominated and radiation-dominated eras, the expansion rate is higher than in Λ CDM . The SFDM particle mass m and quartic self-interaction coupling strength λ are therefore constrained by cosmological observables, particularly Neff, the effective number of neutrino species during big bang nucleosynthesis, and zeq, the redshift of matter-radiation equality. Furthermore, since the stochastic gravitational-wave background (SGWB) from inflation is amplified during the stiff-SFDM-dominated era, it can contribute a radiation-like component large enough to affect these observables by further boosting the expansion rate after the stiff era ends. Remarkably, this same amplification makes detection of the SGWB possible at high frequencies by current laser interferometer experiments, e.g., aLIGO/Virgo and LISA. For SFDM particle parameters that satisfy these cosmological constraints, the amplified SGWB is detectable by LIGO for a broad range of reheat temperatures Treheat, for values of the tensor-to-scalar ratio r currently allowed by cosmic microwave background polarization measurements. For a given r and λ /(m c2)2, the marginally allowed Λ SFDM model for each Treheat has the smallest m that satisfies the cosmological constraints, and maximizes the present SGWB energy density for that
Landau-Migdal parameters and pion condensation
Energy Technology Data Exchange (ETDEWEB)
Tatsumi, Toshitaka [Department of Physics, Kyoto Univ., Kyoto (Japan)
1999-08-01
The possibility of pion condensation, one of the long-standing issues in nuclear physics, is reexamined in the light of the recent experimental data on the giant Gamow-Teller resonance. The experimental result tells that the coupling of nucleon particle-hole states with {delta} isobar-hole states in the spin-isospin channel should be weaker than that previously believed. It, in turn, implies that nuclear matter has the making of pion condensation at low densities. The possibility and implications of pion condensation in the heavy-ion collisions and neutron stars should be seriously reconsidered. (author)
Preparata, Giuliano
1995-01-01
Up until now the dominant view of condensed matter physics has been that of an "electrostatic MECCANO" (erector set, for Americans). This book is the first systematic attempt to consider the full quantum-electrodynamical interaction (QED), thus greatly enriching the possible dynamical mechanisms that operate in the construction of the wonderful variety of condensed matter systems, including life itself.A new paradigm is emerging, replacing the "electrostatic MECCANO" with an "electrodynamic NETWORK," which builds condensed matter through the long range (as opposed to the "short range" nature o
Ueda, Yoshitomo; Misumi, Sachiyo; Suzuki, Mina; Ogawa, Shino; Nishigaki, Ruriko; Ishida, Akimasa; Jung, Cha-Gyun; Hida, Hideki
2018-01-01
We previously established neonatal white matter injury (WMI) model rat that is made by right common carotid artery dissection at postnatal day 3, followed by 6% hypoxia for 60 min. This model has fewer oligodendrocyte progenitor cells and reduced myelin basic protein (MBP) positive areas in the sensorimotor cortex, but shows no apparent neuronal loss. However, how motor deficits are induced in this model is unclear. To elucidate the relationship between myelination disturbance and concomitant motor deficits, we first performed motor function tests (gait analysis, grip test, horizontal ladder test) and then analyzed myelination patterns in the sensorimotor cortex using transmission electron microscopy (TEM) and Contactin associated protein 1 (Caspr) staining in the neonatal WMI rats in adulthood. Behavioral tests revealed imbalanced motor coordination in this model. Motor deficit scores were higher in the neonatal WMI model, while hindlimb ladder stepping scores and forelimb grasping force were comparable to controls. Prolonged forelimb swing times and decreased hindlimb paw angles on the injured side were revealed by gait analysis. TEM revealed no change in myelinated axon number and the area g-ratio in the layer II/III of the cortex. Electromyographical durations and latencies in the gluteus maximus in response to electrical stimulation of the brain area were unchanged in the model. Caspr staining revealed fewer positive dots in layers II/III of the WMI cortex, indicating fewer and/or longer myelin sheath. These data suggest that disorganization of oligodendrocyte development in layers II/III of the sensorimotor cortex relates to imbalanced motor coordination in the neonatal WMI model rat.
Performance of evaporative condensers
Energy Technology Data Exchange (ETDEWEB)
Ettouney, Hisham M.; El-Dessouky, Hisham T.; Bouhamra, Walid; Al-Azmi, Bader
2001-07-01
Experimental investigation is conducted to study the performance of evaporative condensers/coolers. The analysis includes development of correlations for the external heat transfer coefficient and the system efficiency. The evaporative condenser includes two finned-tube heat exchangers. The system is designed to allow for operation of a single condenser, two condensers in parallel, and two condensers in series. The analysis is performed as a function of the water-to-air mass flow rate ratio (L/G) and the steam temperature. Also, comparison is made between the performance of the evaporative condenser and same device as an air-cooled condenser. Analysis of the collected data shows that the system efficiency increases at lower L/G ratios and higher steam temperatures. The system efficiency for various configurations for the evaporative condenser varies between 97% and 99%. Lower efficiencies are obtained for the air-cooled condenser, with values between 88% and 92%. The highest efficiency is found for the two condensers in series, followed by two condensers in parallel and then the single condenser. The parallel condenser configuration can handle a larger amount of inlet steam and can provide the required system efficiency and degree of subcooling. The correlation for the system efficiency gives a simple tool for preliminary system design. The correlation developed for the external heat transfer coefficient is found to be consistent with the available literature data. (Author)
Born-Kothari Condensation for Fermions
Directory of Open Access Journals (Sweden)
Arnab Ghosh
2017-09-01
Full Text Available In the spirit of Bose–Einstein condensation, we present a detailed account of the statistical description of the condensation phenomena for a Fermi–Dirac gas following the works of Born and Kothari. For bosons, while the condensed phase below a certain critical temperature, permits macroscopic occupation at the lowest energy single particle state, for fermions, due to Pauli exclusion principle, the condensed phase occurs only in the form of a single occupancy dense modes at the highest energy state. In spite of these rudimentary differences, our recent findings [Ghosh and Ray, 2017] identify the foregoing phenomenon as condensation-like coherence among fermions in an analogous way to Bose–Einstein condensate which is collectively described by a coherent matter wave. To reach the above conclusion, we employ the close relationship between the statistical methods of bosonic and fermionic fields pioneered by Cahill and Glauber. In addition to our previous results, we described in this mini-review that the highest momentum (energy for individual fermions, prerequisite for the condensation process, can be specified in terms of the natural length and energy scales of the problem. The existence of such condensed phases, which are of obvious significance in the context of elementary particles, have also been scrutinized.
International Nuclear Information System (INIS)
Jaksch, D
2003-01-01
The Gross-Pitaevskii equation, named after one of the authors of the book, and its large number of applications for describing the properties of Bose-Einstein condensation (BEC) in trapped weakly interacting atomic gases, is the main topic of this book. In total the monograph comprises 18 chapters and is divided into two parts. Part I introduces the notion of BEC and superfluidity in general terms. The most important properties of the ideal and the weakly interacting Bose gas are described and the effects of nonuniformity due to an external potential at zero temperature are studied. The first part is then concluded with a summary of the properties of superfluid He. In Part II the authors describe the theoretical aspects of BEC in harmonically trapped weakly interacting atomic gases. A short and rather rudimentary chapter on collisions and trapping of atomic gases which seems to be included for completeness only is followed by a detailed analysis of the ground state, collective excitations, thermodynamics, and vortices as well as mixtures of BECs and the Josephson effect in BEC. Finally, the last three chapters deal with topics of more recent interest like BEC in optical lattices, low dimensional systems, and cold Fermi gases. The book is well written and in fact it provides numerous useful and important relations between the different properties of a BEC and covers most of the aspects of ultracold weakly interacting atomic gases from the point of view of condensed matter physics. The book contains a comprehensive introduction to BEC for physicists new to the field as well as a lot of detail and insight for those already familiar with this area. I therefore recommend it to everyone who is interested in BEC. Very clearly however, the intention of the book is not to provide prospects for applications of BEC in atomic physics, quantum optics or quantum state engineering and therefore the more practically oriented reader might sometimes wonder why exactly an equation is
Energy Technology Data Exchange (ETDEWEB)
Cabaniss, Stephen E. [Department of Chemistry, University of New Mexico, Albuquerque, NM 87131 (United States)], E-mail: cabaniss@unm.edu; Maurice, Patricia A. [Department of Geology and Civil Engineering, University of Notre Dame (United States); Madey, Greg [Department of Computer Science, University of Notre Dame (United States)
2007-08-15
An agent-based biogeochemical model has been developed which begins with biochemical precursor molecules and simulates the transformation and degradation of natural organic matter (NOM). This manuscript presents an empirical quantitative structure activity relationship (QSAR) which uses the numbers of ligand groups, charge density and heteroatom density of a molecule to estimate Cu-binding affinity (K{sub Cu}{sup '}) at pH 7.0 and ionic strength 0.10 for the molecules in this model. Calibration of this QSAR on a set of 41 model compounds gives a root mean square error of 0.88 log units and r{sup 2} 0.93. Two simulated NOM assemblages, one beginning with small molecules (tannins, terpenoids, flavonoids) and one with biopolymers (protein, lignin), give markedly different distributions of logK{sub Cu}{sup '}. However, calculations based on these logK{sub Cu}{sup '} distributions agree qualitatively with published experimental Cu(II) titration data from river and lake NOM samples.
The Color Glass Condensate and the Glasma: Two Lectures.
Energy Technology Data Exchange (ETDEWEB)
McLerran,L.
2007-08-29
These two lectures concern the Color Glass Condensate and the Glasma. These are forms of matter which might be studied in high energy hadronic collisions. The Color Glass Condensate is high energy density gluonic matter. It constitutes the part of a hadron wave function important for high energy processes. The Glasma is matter produced from the Color Glass Condensate in the first instants after a collision of two high energy hadrons. Both types of matter are associated with coherent fields. The Color Glass Condensate is static and related to a hadron wavefunction, where the Glasma is transient and evolves quickly after a collision. I present the properties of such matter, and some aspects of what is known of their properties.
Neutron stars with kaon condensation in relativistic effective model
International Nuclear Information System (INIS)
Wu, Chen; Ma, Yugang; Qian, Weiliang; Yang, Jifeng
2013-01-01
Relativistic mean-field theory with parameter sets FSUGold and IU-FSU is extended to study the properties of neutron star matter in β equilibrium by including Kaon condensation. The mixed phase of normal baryons and Kaon condensation cannot exist in neutron star matter for the FSUGold model and the IU-FSU model. In addition, it is found that when the optical potential of the K - in normal nuclear matter U K ≳ -100 MeV, the Kaon condensation phase is absent in the inner cores of the neutron stars. (author)
Characteristic aspects of pion-condensed phases
International Nuclear Information System (INIS)
Takatsuka, Tatsuyuki; Tamagaki, Ryozo; Tatsumi, Toshitaka.
1993-01-01
Characteristic aspects of pion-condensed phases are described in a simple model, for the system involving only nucleons and pions which interact through the π-N P-wave interaction. We consider one typical version in each of three kinds of pion condensation; the one of neutral pions (π 0 ), the one of charged pions (π C ) and the combined one in which both the π 0 and π C condensations are coexistent. Emphasis is put on the description to clarify the novel structures of the nucleon system which are realized in the pion-condensed phases. At first, it is shown that the π 0 condensation is equivalent to the particular nucleonic phase realized by a structure change of the nucleon system, where the attractive first-order effect of the one-pion-exchange (OPE) tensor force is brought about coherently. The aspects of this phase are characterized by the layered structure with a specific spin-isospin order with one-dimensional localization (named the ALS structure in short), which provides the source function for the condensed π 0 field. We utilize both descriptions with use of fields and potentials for the π 0 condensation. Next, the π C condensation realized in neutron-rich matter is described by adopting a version of the traveling condensed wave. In this phase, the nucleonic structure becomes the Fermi gas consisting of quasi-neutrons described by a superposition of neutron and proton. In this sense the structure change of the nucleon system for the π C condensation is moderate, and the field description is suitable. Finally, we describe a coexistent pion condensation, in which both the π 0 and π C condensations coexist without interference in such a manner that the π C condensation develops in the ALS structure. The model adopted here provides us with the characteristic aspects of the pion-condensed phases persisting in the realistic situation, where other ingredients affecting the pion condensation are taken into account. (author)
The Color Glass Condensate: An Intuitive Physical Description
International Nuclear Information System (INIS)
McLerran, Larry
2006-01-01
I argue that the scattering of very high energy strongly interacting particles is controlled by a new, universal form of matter, the Color Glass Condensate. This matter is predicted by QCD and explains the saturation of gluon densites at small x. I motivate the existence of this matter and describe some of its properties
Bose-Einstein condensation in microgravity.
van Zoest, T; Gaaloul, N; Singh, Y; Ahlers, H; Herr, W; Seidel, S T; Ertmer, W; Rasel, E; Eckart, M; Kajari, E; Arnold, S; Nandi, G; Schleich, W P; Walser, R; Vogel, A; Sengstock, K; Bongs, K; Lewoczko-Adamczyk, W; Schiemangk, M; Schuldt, T; Peters, A; Könemann, T; Müntinga, H; Lämmerzahl, C; Dittus, H; Steinmetz, T; Hänsch, T W; Reichel, J
2010-06-18
Albert Einstein's insight that it is impossible to distinguish a local experiment in a "freely falling elevator" from one in free space led to the development of the theory of general relativity. The wave nature of matter manifests itself in a striking way in Bose-Einstein condensates, where millions of atoms lose their identity and can be described by a single macroscopic wave function. We combine these two topics and report the preparation and observation of a Bose-Einstein condensate during free fall in a 146-meter-tall evacuated drop tower. During the expansion over 1 second, the atoms form a giant coherent matter wave that is delocalized on a millimeter scale, which represents a promising source for matter-wave interferometry to test the universality of free fall with quantum matter.
International Nuclear Information System (INIS)
Prisyazhniuk, V.A.
2002-01-01
An equation for nucleation kinetics in steam condensation has been derived, the equation taking into account the concurrent and independent functioning of two nucleation mechanisms: the homogeneous one and the heterogeneous one. The equation is a most general-purpose one and includes all the previously known condensation models as special cases. It is shown how the equation can be used in analyzing the process of steam condensation in the condenser of an industrial steam-turbine plant, and in working out new ways of raising the efficiency of the condenser, as well as of the steam-turbine plant as a whole. (orig.)
Low pressure lithium condensation
International Nuclear Information System (INIS)
Wadkins, R.P.; Oh, C.H.
1985-01-01
A low pressure experiment to evaluate the laminar film condensation coefficients of lithium was conducted. Some thirty-six different heat transfer tests were made at system pressures ranging from 1.3 to 26 Pa. Boiled lithium was condensed on the inside of a 7.6-cm (ID), 409 stainless-steel pipe. Condensed lithium was allowed to reflux back to the pool boiling region below the condensing section. Fourteen chromel/alumel thermocouples were attached in various regions of the condensing section. The thermocouples were initially calibrated with errors of less than one degree Celsius
Quantum tunnelling in condensed media
Kagan, Yu
1992-01-01
The essays in this book deal with of the problem of quantum tunnelling and related behavior of a microscopic or macroscopic system, which interacts strongly with an ""environment"" - this being some form of condensed matter. The ""system"" in question need not be physically distinct from its environment, but could, for example, be one particular degree of freedom on which attention is focussed, as in the case of the Josephson junction studied in several of the papers. This general problem has been studied in many hundreds, if not thousands, of articles in the literature, in contexts as diverse
Vast Antimatter Regions and Scalar Condensate Baryogenesis
Kirilova, D.; Panayotova, M.; Valchanov, T.
2002-01-01
The possibility of natural and abundant creation of antimatter in the Universe in a SUSY-baryogenesis model with a scalar field condensate is described. This scenario predicts vast quantities of antimatter, corresponding to galaxy and galaxy cluster scales today, separated from the matter ones by baryonically empty voids. Theoretical and observational constraints on such antimatter regions are discussed.
Parity and isospin in pion condensation and tensor binding
International Nuclear Information System (INIS)
Pace, E.; Palumbo, F.
1978-01-01
In infinite nuclear matter with pion condensates or tensor binding both parity and isospin symmetries are broken. Finite nuclei with pion condensates or tensor binding, however, can have definite parity. They cannot have a definite value of isospin, whose average value is of the order of the number of nucleons. (Auth.)
Sub-shot-noise phase sensitivity with a Bose-Einstein condensate Mach-Zehnder interferometer
International Nuclear Information System (INIS)
Pezze, L.; Smerzi, A.; Collins, L.A.; Berman, G.P.; Bishop, A.R.
2005-01-01
Bose-Einstein condensates (BEC), with their coherence properties, have attracted wide interest for their possible application to ultraprecise interferometry and ultraweak force sensors. Since condensates, unlike photons, are interacting, they may permit the realization of specific quantum states needed as input of an interferometer to approach the Heisenberg limit, the supposed lower bound to precision phase measurements. To this end, we study the sensitivity to external weak perturbations of a representative matter-wave Mach-Zehnder interferometer whose input are two Bose-Einstein condensates created by splitting a single condensate in two parts. The interferometric phase sensitivity depends on the specific quantum state created with the two condensates, and, therefore, on the time scale of the splitting process. We identify three different regimes, characterized by a phase sensitivity Δθ scaling with the total number of condensate particles N as (i) the standard quantum limit Δθ∼1/N 1/2 (ii) the sub shot-noise Δθ∼1/N 3/4 , and the (iii) the Heisenberg limit Δθ∼1/N. However, in a realistic dynamical BEC splitting, the 1/N limit requires a long adiabaticity time scale, which is hardly reachable experimentally. On the other hand, the sub-shot-noise sensitivity Δθ∼1/N 3/4 can be reached in a realistic experimental setting. We also show that the 1/N 3/4 scaling is a rigorous upper bound in the limit N→∞, while keeping constant all different parameters of the bosonic Mach-Zehnder interferometer
Kaon condensates, nuclear symmetry energy and cooling of neutron stars
Energy Technology Data Exchange (ETDEWEB)
Kubis, S. E-mail: kubis@alf.ifj.edu.pl; Kutschera, M
2003-06-02
The cooling of neutron stars by URCA processes in the kaon-condensed neutron star matter for various forms of nuclear symmetry energy is investigated. The kaon-nucleon interactions are described by a chiral Lagrangian. Nuclear matter energy is parametrized in terms of the isoscalar contribution and the nuclear symmetry energy in the isovector sector. High density behaviour of nuclear symmetry energy plays an essential role in determining the composition of the kaon-condensed neutron star matter which in turn affects the cooling properties. We find that the symmetry energy which decreases at higher densities makes the kaon-condensed neutron star matter fully protonized. This effect inhibits strongly direct URCA processes resulting in slower cooling of neutron stars as only kaon-induced URCA cycles are present. In contrast, for increasing symmetry energy direct URCA processes are allowed in the almost whole density range where the kaon condensation exists.
Kaon condensates, nuclear symmetry energy and cooling of neutron stars
International Nuclear Information System (INIS)
Kubis, S.; Kutschera, M.
2003-01-01
The cooling of neutron stars by URCA processes in the kaon-condensed neutron star matter for various forms of nuclear symmetry energy is investigated. The kaon-nucleon interactions are described by a chiral Lagrangian. Nuclear matter energy is parametrized in terms of the isoscalar contribution and the nuclear symmetry energy in the isovector sector. High density behaviour of nuclear symmetry energy plays an essential role in determining the composition of the kaon-condensed neutron star matter which in turn affects the cooling properties. We find that the symmetry energy which decreases at higher densities makes the kaon-condensed neutron star matter fully protonized. This effect inhibits strongly direct URCA processes resulting in slower cooling of neutron stars as only kaon-induced URCA cycles are present. In contrast, for increasing symmetry energy direct URCA processes are allowed in the almost whole density range where the kaon condensation exists
Excitonic condensation in systems of strongly correlated electrons
Czech Academy of Sciences Publication Activity Database
Kuneš, Jan
2015-01-01
Roč. 27, č. 33 (2015), s. 333201 ISSN 0953-8984 Institutional support: RVO:68378271 Keywords : electronic correlations * exciton * Bose-Einstein condensation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.209, year: 2015
Proceedings: Condenser technology conference
International Nuclear Information System (INIS)
Tsou, J.L.; Mussalli, Y.G.
1991-08-01
Seam surface condenser and associated systems performance strongly affects availability and heat rate in nuclear and fossil power plants. Thirty-six papers presented at a 1990 conference discuss research results, industry experience, and case histories of condenser problems and solutions. This report contains papers on life extension, performance improvement, corrosion and failure analysis, fouling prevention, and recommendation for future R ampersand D. The information represents recent work on condenser problems and solutions to improve the procurement, operation, and maintenance functions of power plant personnel. Several key points follow: A nuclear and a fossil power plant report show that replacing titanium tube bundles improves condenser availability and performance. One paper reports 10 years of experience with enhanced heat transfer tubes in utility condensers. The newly developed enhanced condenser tubes could further improve condensing heat transfer. A new resistance summation method improves the accuracy of condenser performance prediction, especially for stainless steel and titanium tubed condensers. Several papers describe improved condenser fouling monitoring techniques, including a review of zebra mussel issues
Topological insulators Dirac equation in condensed matter
Shen, Shun-Qing
2017-01-01
This new edition presents a unified description of these insulators from one to three dimensions based on the modified Dirac equation. It derives a series of solutions of the bound states near the boundary, and describes the current status of these solutions. Readers are introduced to topological invariants and their applications to a variety of systems from one-dimensional polyacetylene, to two-dimensional quantum spin Hall effect and p-wave superconductors, three-dimensional topological insulators and superconductors or superfluids, and topological Weyl semimetals, helping them to better understand this fascinating field. To reflect research advances in topological insulators, several parts of the book have been updated for the second edition, including: Spin-Triplet Superconductors, Superconductivity in Doped Topological Insulators, Detection of Majorana Fermions and so on. In particular, the book features a new chapter on Weyl semimetals, a topic that has attracted considerable attention and has already b...
Condensed matter at high shock pressures
International Nuclear Information System (INIS)
Nellis, W.J.; Holmes, N.C.; Mitchell, A.C.; Radousky, H.B.; Hamilton, D.
1985-01-01
Experimental techniques are described for shock waves in liquids: Hugoniot equation-of-state, shock temperature and emission spectroscopy, electrical conductivity, and Raman spectroscopy. Experimental data are reviewed and presented in terms of phenomena that occur at high densities and temperatures in shocked He, Ar, N 2 , CO, SiO 2 -aerogel, H 2 O, and C 6 H 6 . The superconducting properties of Nb metal shocked to 100 GPa (1 Mbar) and recovered intact are discussed in terms of prospects for synthesizing novel, metastable materials. Ultrahigh pressure data for Cu is reviewed in the range 0.3 to 6TPa (3 to 60 Mbar). 56 refs., 9 figs., 1 tab
The butane condensed matter conformational problem
Weber, A.C.J.; de Lange, C.A.; Meerts, W.L.; Burnell, E.E.
2010-01-01
From the dipolar couplings of orientationally ordered n-butane obtained by NMR spectroscopy we have calculated conformer probabilities using the modified Chord (Cd) and Size-and-Shape (CI) models to estimate the conformational dependence of the order matrix. All calculation methods make use of
Topological Insulators Dirac Equation in Condensed Matters
Shen, Shun-Qing
2012-01-01
Topological insulators are insulating in the bulk, but process metallic states around its boundary owing to the topological origin of the band structure. The metallic edge or surface states are immune to weak disorder or impurities, and robust against the deformation of the system geometry. This book, Topological insulators, presents a unified description of topological insulators from one to three dimensions based on the modified Dirac equation. A series of solutions of the bound states near the boundary are derived, and the existing conditions of these solutions are described. Topological invariants and their applications to a variety of systems from one-dimensional polyacetalene, to two-dimensional quantum spin Hall effect and p-wave superconductors, and three-dimensional topological insulators and superconductors or superfluids are introduced, helping readers to better understand this fascinating new field. This book is intended for researchers and graduate students working in the field of topological in...
XX International Workshop on Condensed Matter Theories
1998-01-01
Rojo5, M.A. Solis6 and A.A. Valladares4 1 Institute de Fisica Teorica-UNESP, 01405 Säo Paulo, BRAZIL and Departamento de Fisica , Universidade...Estadual de Londrina Londrina, PR, BRAZIL 2Departament de Fisica , Universität de les Hies Balears 07071 Palma de Mallorca, SPAIN department of Physics...SUNY, Buffalo, NY 14260-1500, USA 4Instituto de Investigaciones en Materiales, UN AM 04510 Mexico DF, MEXICO 5PESTIC, Secretaria Academica, IPN
Surface and bulk excitations in condensed matter
International Nuclear Information System (INIS)
Ritchie, R.H.
1988-01-01
In this lecture collective and single-particle electron excitations of solids will be discussed with emphasis on the properties of metallic and semiconducting materials. However, some of the general properties of long-wavelength collective modes to be discussed are valid for insulators as well, and some considerations apply to nuclear excitations such as optical or acoustical phonons, dipolar plasmons, etc. The concept of elementary excitations in solids, pioneered by Bohm and Pines almost 4 decades ago, has proved to be extremely useful in understanding the properties of systems of many particles, especially in respect to the response to the action of external probes. 32 refs., 12 figs
Chirality: from QCD to condensed matter
International Nuclear Information System (INIS)
Kharzeev, D.
2015-01-01
This lecture is about chirality and consists of 4 parts. In the first part a general introduction of chirality is given and its implementation in nuclear and particle physics, in particular the chiral magnetic effect, as well as Chirality in quantum materials (CME, optoelectronics, photonics) are discussed. The 2nd lecture is about the chiral magnetic effect. The 3rd lecture deals with the chiral magnetic effect and hydrodynamics and the last part with chirality and light. (nowak)
Statistical physics including applications to condensed matter
Hermann, Claudine
2005-01-01
Statistical Physics bridges the properties of a macroscopic system and the microscopic behavior of its constituting particles, otherwise impossible due to the giant magnitude of Avogadro's number. Numerous systems of today's key technologies -- as e.g. semiconductors or lasers -- are macroscopic quantum objects; only statistical physics allows for understanding their fundamentals. Therefore, this graduate text also focuses on particular applications such as the properties of electrons in solids with applications, and radiation thermodynamics and the greenhouse effect.
Positron annihilation spectroscopy in condensed matter
International Nuclear Information System (INIS)
Brauer, G.
1982-09-01
The topic of positron annihilation spectroscopy (PAS) is the investigation of all aspects connected with the annihilation of slow positrons. This work deals with the application of PAS to different problems of materials science. The first chapter is an introduction to fundamental aspects of positron annihilation, as far as they are important to the different experimental techniques of PAS. Chapter 2 is concerned with the information obtainable by PAS. The three main experimental techniques of PAS (2γ-angular correlation, positron lifetime and Doppler broadening) are explained and problems in the application of these methods are discussed. Chapter 3 contains experimental results. According to the different fields of application it was subgrouped into: 1. Investigations of crystalline solids. Detection of structural defects in Cu, estimation of defect concentrations, study of the sintering of Cu powders as well as lattice defects in V 3 Si. 2. Chemical investigations. Structure of mixed solvents, selective solvation of mixed solvents by electrolytes as well as the micellization of sodium dodecylsulphate in aqueous solutions. 3. Investigations of glasses. Influence of heat treatment and production technology on the preorder of X-amorphous silica glass as well as preliminary measurements of pyrocerams. 4. Investigations of metallic glasses. Demonstration of the influence of production technology on parameters measurable by PAS. Chapter 4 contains a summary as well as an outlook of further applications of PAS to surface physics, medicine, biology and astrophysics. (author)
Statistical Mechanics and Applications in Condensed Matter
Di Castro, Carlo; Raimondi, Roberto
2015-08-01
Preface; 1. Thermodynamics: a brief overview; 2. Kinetics; 3. From Boltzmann to Gibbs; 4. More ensembles; 5. The thermodynamic limit and its thermodynamic stability; 6. Density matrix and quantum statistical mechanics; 7. The quantum gases; 8. Mean-field theories and critical phenomena; 9. Second quantization and Hartree-Fock approximation; 10. Linear response and fluctuation-dissipation theorem in quantum systems: equilibrium and small deviations; 11. Brownian motion and transport in disordered systems; 12. Fermi liquids; 13. The Landau theory of the second order phase transitions; 14. The Landau-Wilson model for critical phenomena; 15. Superfluidity and superconductivity; 16. The scaling theory; 17. The renormalization group approach; 18. Thermal Green functions; 19. The microscopic foundations of Fermi liquids; 20. The Luttinger liquid; 21. Quantum interference effects in disordered electron systems; Appendix A. The central limit theorem; Appendix B. Some useful properties of the Euler Gamma function; Appendix C. Proof of the second theorem of Yang and Lee; Appendix D. The most probable distribution for the quantum gases; Appendix E. Fermi-Dirac and Bose-Einstein integrals; Appendix F. The Fermi gas in a uniform magnetic field: Landau diamagnetism; Appendix G. Ising and gas-lattice models; Appendix H. Sum over discrete Matsubara frequencies; Appendix I. Hydrodynamics of the two-fluid model of superfluidity; Appendix J. The Cooper problem in the theory of superconductivity; Appendix K. Superconductive fluctuations phenomena; Appendix L. Diagrammatic aspects of the exact solution of the Tomonaga Luttinger model; Appendix M. Details on the theory of the disordered Fermi liquid; References; Author index; Index.
Latest trends in condensed matter physics
Singhal, R K
2011-01-01
This special issue of ""Solid State Phenomena"" documents some novel experimental and theoretical approaches applied to fascinating materials. Motivated by the increasing need to synthesize and understand the properties of technologically important materials, this issue represents an important step forward in improving our understanding of how modern materials can be optimised for technology and industry. The issue comprises 9 original review papers covering experimental approaches and theoretical modeling. The contributions will be very useful to researchers working in various areas of CMP an
Quantum Computing in Condensed Matter Systems
National Research Council Canada - National Science Library
Privman, V
1997-01-01
Specific theoretical calculations of Hamiltonians corresponding to several quantum logic gates, including the NOT gate, quantum signal splitting, and quantum copying, were obtained and prepared for publication...
Condensed matter at high shock pressures
Energy Technology Data Exchange (ETDEWEB)
Nellis, W.J.; Holmes, N.C.; Mitchell, A.C.; Radousky, H.B.; Hamilton, D.
1985-07-12
Experimental techniques are described for shock waves in liquids: Hugoniot equation-of-state, shock temperature and emission spectroscopy, electrical conductivity, and Raman spectroscopy. Experimental data are reviewed and presented in terms of phenomena that occur at high densities and temperatures in shocked He, Ar, N/sub 2/, CO, SiO/sub 2/-aerogel, H/sub 2/O, and C/sub 6/H/sub 6/. The superconducting properties of Nb metal shocked to 100 GPa (1 Mbar) and recovered intact are discussed in terms of prospects for synthesizing novel, metastable materials. Ultrahigh pressure data for Cu is reviewed in the range 0.3 to 6TPa (3 to 60 Mbar). 56 refs., 9 figs., 1 tab.
Condensed matter optical spectroscopy an illustrated introduction
Ionita, Iulian
2014-01-01
Molecular Symmetry and the Symmetry GroupsSymmetry Elements and Symmetry OperationsPoint Groups and Molecular SymmetrySymmetry Classification of MoleculesMatrix Representation of Symmetry TransformationGroup RepresentationsProperties of Irreducible RepresentationsTables of CharactersSymmetry of Crystals and Space GroupsRotation Groups and OperatorsExamples of SymmetryStudy QuestionsReferencesCrystal Field TheoryStates and Energies of Free Atoms and IonsOptical Spectra of Ionic CrystalsImpurities in Crystal Lattice: Splitting of Levels and Terms in Lattice SymmetryWeak Crystalline Field of Octahedral SymmetryEffect of a Weak Crystalline Field of Lower SymmetriesSplitting of Multielectron dn Configurations in the Crystalline FieldJahn-Teller EffectConstruction of Energy-Level DiagramsTanabe-Sugano DiagramsExample of the Co IonLimitations of the Crystal Field TheoryStudy QuestionsReferencesSymmetry and Molecular Orbitals TheoryMolecular OrbitalsHybridization Scheme for σ OrbitalsHybridization Scheme for π Orbi...
International Nuclear Information System (INIS)
Yamamoto, Michiyoshi; Oosumi, Katsumi; Takashima, Yoshie; Mitani, Shinji.
1982-01-01
Purpose: To decrease the frequency for the backwash and regeneration operations due to the increase in the differential pressure resulted from claddings captured in a mixed floor type desalter, and decrease the amount of radioactive liquid wastes of claddings from the condensate systems by removing claddings with electromagnetic filters. Constitution: In an existent plant, a valves is disposed between a condensate pump and a mixed floor type desalter. A pipeway is branched from a condensate pipe between the condensate pipe and the valve, through which condensates are transferred by a pump to an electromagnetic filter such as of a high gradient type electromagntic filter to remove claddings, then returned to a condensate pipe between the valve and the mixed floor type desalter and, thereafter, are removed with ionic components in the mixed floor type desalter and fed to the reactor. (Yoshino, Y.)
Purification method for condensate
International Nuclear Information System (INIS)
Shimoda, Akiyoshi.
1996-01-01
Condensates generated in secondary coolant circuits of a PWR type reactor are filtered using a hollow thread separation membranes comprising aromatic polyether ketone. Preferably, condensates after passing through a turbine are filtered at a place between a condensator and a steam generator at high temperature as close as a temperature of the steam generator. As the hollow thread membrane, partially crystalline membrane comprising aromatic polyether ketone is used. When it is used at high temperature, the crystallinity is preferably not less than 15wt%. Since a hollow thread membrane comprising the aromatic polyether ketone of excellent heat resistance is used, it can filter and purify the condensates at not lower than 70degC. Accordingly, impurities such as colloidal iron can be removed from the condensates, and the precipitation of cruds in the condensates to a steam generator and a turbine can be suppressed. (I.N.)
Phase transition from nuclear matter to color superconducting quark matter
Energy Technology Data Exchange (ETDEWEB)
Bentz, W. E-mail: bentz@keyaki.cc.u-tokai.ac.jp; Horikawa, T.; Ishii, N.; Thomas, A.W
2003-06-02
We construct the nuclear and quark matter equations of state at zero temperature in an effective quark theory (the Nambu-Jona-Lasinio model), and discuss the phase transition between them. The nuclear matter equation of state is based on the quark-diquark description of the single nucleon, while the quark matter equation of state includes the effects of scalar diquark condensation (color superconductivity). The effect of diquark condensation on the phase transition is discussed in detail.
Bose condensates make quantum leaps and bounds
International Nuclear Information System (INIS)
Castin, Y.; Dum, R.; Sinatra, A.
1999-01-01
Since the first observation in 1995 of Bose-Einstein condensation in dilute atomic gases, atomic physicists have made extraordinary progress in understanding this unusual quantum state of matter. BOSE-EINSTEIN condensation is a macroscopic quantum phenomenon that was first predicted by Albert Einstein in the 1920s, at a time when quantum theory was still developing and was being applied to microscopic systems, such as individual particles and atoms. Einstein applied the new concept of Bose statistics to an ideal gas of identical atoms that were at thermal equilibrium and trapped in a box. He predicted that at sufficiently low temperatures the particles would accumulate in the lowest quantum state in the box, giving rise to a new state of matter with many unusual properties. The crucial point of Einstein's model is the absence of interactions between the particles in the box. However, this makes his prediction difficult to test in practice. In most real systems the complicating effect of particle interactions causes the gas to solidify well before the temperature for Bose-Einstein condensation is reached. But techniques developed in the past four years have allowed physicists to form Bose-Einstein condensates for a wide range of elements. In this article the authors describe the latest advances in Bose-Einstein condensation. (UK)
DEFF Research Database (Denmark)
Malterud, Kirsti
2012-01-01
To present background, principles, and procedures for a strategy for qualitative analysis called systematic text condensation and discuss this approach compared with related strategies.......To present background, principles, and procedures for a strategy for qualitative analysis called systematic text condensation and discuss this approach compared with related strategies....
Colored condensates deep inside neutron stars
Directory of Open Access Journals (Sweden)
Blaschke David
2014-01-01
Full Text Available It is demonstrated how in the absence of solutions for QCD under conditions deep inside compact stars an equation of state can be obtained within a model that is built on the basic symmetries of the QCD Lagrangian, in particular chiral symmetry and color symmetry. While in the vacuum the chiral symmetry is spontaneously broken, it gets restored at high densities. Color symmetry, however, gets broken simultaneously by the formation of colorful diquark condensates. It is shown that a strong diquark condensate in cold dense quark matter is essential for supporting the possibility that such states could exist in the recently observed pulsars with masses of 2 Mʘ.
Bose-condensation through resonance decay
International Nuclear Information System (INIS)
Ornik, U.; Pluemer, M.; Strottman, D.
1993-04-01
We show that a system described by an equation of state which contains a high number of degrees of freedom (resonances) can create a considerable amount of superfluid (condensed) pions through the decay of short-lived resonances, if baryon number and entropy are large and the dense matter decouples from chemical equilibrium earlier than from thermal equilibrium. The system cools down faster in the presence of a condensate, an effect that may partially compensate the enhancement of the lifetime expected in the case of quark-gluon-plasma formation. (orig.). 3 figs
Chromosome condensation and segmentation
International Nuclear Information System (INIS)
Viegas-Pequignot, E.M.
1981-01-01
Some aspects of chromosome condensation in mammalians -humans especially- were studied by means of cytogenetic techniques of chromosome banding. Two further approaches were adopted: a study of normal condensation as early as prophase, and an analysis of chromosome segmentation induced by physical (temperature and γ-rays) or chemical agents (base analogues, antibiotics, ...) in order to show out the factors liable to affect condensation. Here 'segmentation' means an abnormal chromosome condensation appearing systematically and being reproducible. The study of normal condensation was made possible by the development of a technique based on cell synchronization by thymidine and giving prophasic and prometaphasic cells. Besides, the possibility of inducing R-banding segmentations on these cells by BrdU (5-bromodeoxyuridine) allowed a much finer analysis of karyotypes. Another technique was developed using 5-ACR (5-azacytidine), it allowed to induce a segmentation similar to the one obtained using BrdU and identify heterochromatic areas rich in G-C bases pairs [fr
Condensation in complex geometries
International Nuclear Information System (INIS)
Lauro, F.
1975-01-01
A mathematical evaluation of the condensation exchange coefficient can only succeds for well specified cases: small upright or inclined plates, horizontal tubes, small height vertical tubes. Among the main hypotheses accounted for this mathematical development in the case of the condensate, a laminar flow and uniform surface temperature are always considered. In practice certain shapes of surfaces significantly increase the heat transfer during the vapor condensation on a surface wet by the condensate. Such surfaces are rough surfaces such as the condensate is submitted to surface tension effects, negligeable for plane or large curvature surfaces, and the nature of the material may play an important role (temperature gradients). Results from tests on tubes with special shapes, performed in France or out of France, are given [fr
Bogoliubov theory of the Hawking effect in Bose-Einstein condensates
International Nuclear Information System (INIS)
Leonhardt, U; Kiss, T; Oehberg, P
2003-01-01
Artificial black holes may demonstrate some of the elusive quantum properties of the event horizon, in particular Hawking radiation. One promising candidate is a sonic hole in a Bose-Einstein condensate. We clarify why Hawking radiation emerges from the condensate and how this condensed-matter analogue reflects some of the intriguing aspects of quantum black holes
Gas condensate--raw material for producing liquid paraffin hydrocarbons
Energy Technology Data Exchange (ETDEWEB)
Aliyeva, R.B.; Alikishi-Zade, G.Yu.; Kuliyev, A.M.; Leonidov, A.N.; Pereverzev, A.N.
1980-01-01
The problem of efficient utilization of gas condensates as raw material for removal of a valuable product, liquid paraffins, is examined. A classification of gas condensates is given which is used as raw material for removing these hydrocarbons: gas condensate with high content of n-alkanes (25-40 mass percent), with average content (18-25 mass percent), with low content (12-18 mass percent), light weight fractions compositions, which do not contain fractions up to 200/sup 0/, and also, content ofless than 12% n-alkanes. Gas condensate I-III groups are 30% of the total reserve of gas condensate. Liquid paraffins hydrocarbons, produced from fractions of diesel fuel, which has been removed from Shatlyk gas condensate under conditions which simulate virtual processes of caramide deparaffinization meet all requirements without additional refining.
Sedimentary condensation and authigenesis
Föllmi, Karl
2016-04-01
Most marine authigenic minerals form in sediments, which are subjected to condensation. Condensation processes lead to the formation of well individualized, extremely thin ( 100ky), and which experienced authigenesis and the precipitation of glaucony, verdine, phosphate, iron and manganese oxyhydroxides, iron sulfide, carbonate and/or silica. They usually show complex internal stratigraphies, which result from an interplay of sediment accumulation, halts in sedimentation, sediment winnowing, erosion, reworking and bypass. They may include amalgamated faunas of different origin and age. Hardgrounds may be part of condensed beds and may embody strongly condensed beds by themselves. Sedimentary condensation is the result of a hydrodynamically active depositional regime, in which sediment accumulation, winnowing, erosion, reworking and bypass are processes, which alternate as a function of changes in the location and intensity of currents, and/or as the result of episodic high-energy events engendered by storms and gravity flow. Sedimentary condensation has been and still is a widespread phenomenon in past and present-day oceans. The present-day distribution of glaucony and verdine-rich sediments on shelves and upper slopes, phosphate-rich sediments and phosphorite on outer shelves and upper slopes, ferromanganese crusts on slopes, seamounts and submarine plateaus, and ferromanganese nodules on abyssal seafloors is a good indication of the importance of condensation processes today. In the past, we may add the occurrence of oolitic ironstone, carbonate hardgrounds, and eventually also silica layers in banded iron formations as indicators of the importance of condensation processes. Besides their economic value, condensed sediments are useful both as a carrier of geochemical proxies of paleoceanographic and paleoenvironmental change, as well as the product of episodes of paleoceanographic and paleoenvironmental change themselves.
Bose-Einstein condensation of atomic gases
International Nuclear Information System (INIS)
Anglin, J. R.; Ketterle, W.
2003-01-01
The early experiments on Bose-Einstein condensation in dilute atomic gases accomplished three longstanding goals. First, cooling of neutral atoms into their motional state, thus subjecting them to ultimate control, limited only by Heisenberg uncertainty relation. Second, creation of a coherent sample of atoms, in which all occupy the same quantum states, and the realization of atom lasers - devices that output coherent matter waves. And third, creation of gaseous quantum fluid, with properties that are different from the quantum liquids helium-3 and helium-4. The field of Bose-Einstein condensation of atomic gases has continued to progress rapidly, driven by the combination of new experimental techniques and theoretical advances. The family of quantum degenerate gases has grown, and now includes metastable and fermionic atoms. condensates have become an ultralow-temperature laboratory for atom optics, collisional physics and many-body physics, encompassing phonons, superfluidity, quantized vortices, Josephson junctions and quantum phase transitions. (author)
Normal matter storage of antiprotons
International Nuclear Information System (INIS)
Campbell, L.J.
1987-01-01
Various simple issues connected with the possible storage of anti p in relative proximity to normal matter are discussed. Although equilibrium storage looks to be impossible, condensed matter systems are sufficiently rich and controllable that nonequilibrium storage is well worth pursuing. Experiments to elucidate the anti p interactions with normal matter are suggested. 32 refs
International Nuclear Information System (INIS)
Martens, E.; Maes, N.; Bruggeman, C.; Van Gompel, M.
2010-01-01
Document available in extended abstract form only. As Natural Organic Matter (NOM) may modify/enhance the mobility of radionuclides (RNs) through complexation or colloidal interactions, it is essential to evaluate the impact of these processes before performing safety assessments aiming at demonstrating the suitability of deep-seated clayey formations for geological disposal of radioactive waste. Column migration experiments with Cm, Pu, Np, Tc and Pa in Boom Clay, initiated about 10 years ago, showed strikingly similar features despite their different chemical speciation. On a relative short time, these RNs began percolating through the clay core until a constant concentration at the outlet side was reached. As most of the aqueous forms of these RNs are supposed to sorb strongly onto the Boom Clay solid phase, it was assumed that their relative fast transport was due to colloids (either intrinsic colloids or NOM-colloids). The constant concentration percolating from the core was thought to result from a solubility limiting phase precipitated at the source position. However, the concentrations in the percolate were systematically lower than the thermodynamic calculated solubilities, and all the more, complexation to NOM would likely result in an increased RN concentration. Although these curves could be modelled by a simple diffusion-advection relationship with linear sorption, they could not be backed up by a mechanistic understanding. As the concentration in the percolate remained constant for many years, the RN-species eluting from the core are assumed to be well in equilibrium with the Boom Clay geochemical conditions. Therefore, they were used as input source (constant concentration boundary condition) for a migration experiment through a fresh clay core (i.e. the outlet of a first cell was coupled to the inlet of a second cell). The measured concentrations at the outlet of the second clay core also reached a constant value, but this value is about one order
National Research Council Canada - National Science Library
Ameel, Timothy
1999-01-01
.... Evaporators and condensers for meso-scale energy systems will most likely be constructed of microchannels due to the microfabrication constraints that limit most structures to two-dimensional planar geometries...
Boilers, evaporators, and condensers
International Nuclear Information System (INIS)
Kakac, S.
1991-01-01
This book reports on the boilers, evaporators and condensers that are used in power plants including nuclear power plants. Topics included are forced convection for single-phase side heat exchangers, heat exchanger fouling, industrial heat exchanger design, fossil-fuel-fired boilers, once through boilers, thermodynamic designs of fossil fuel-first boilers, evaporators and condensers in refrigeration and air conditioning systems (with respect to reducing CFC's) and nuclear steam generators
Molecular equilibrium with condensation
International Nuclear Information System (INIS)
Sharp, C.M.; Huebner, W.F.
1990-01-01
Minimization of the Gibbs energy of formation for species of chemical elements and compounds in their gas and condensed phases determines their relative abundances in a mixture in chemical equilibrium. The procedure is more general and more powerful than previous abundance determinations in multiphase astrophysical mixtures. Some results for astrophysical equations of state are presented, and the effects of condensation on opacity are briefly indicated. 18 refs
International Nuclear Information System (INIS)
Corvin, C.
1995-06-01
A synchronous condenser is a synchronous machine that generates reactive power that leads real power by 90 degrees in phase. The leading reactive power generated by the condenser offsets or cancels the normal lagging reactive power consumed by inductive and nonlinear loads at the accelerator complex. The quality of SLAC's utility power is improved with the addition of the condenser. The inertia of the condenser's 35,000 pound rotor damps and smoothes voltage excursions on two 12 kilovolt master substation buses, improving voltage regulation site wide. The condenser absorbs high frequency transients and noise in effect ''scrubbing'' the electric system power at its primary distribution source. In addition, the condenser produces a substantial savings in power costs. Federal and investor owned utilities that supply electric power to SLAC levy a monthly penalty for lagging reactive power delivered to the site. For the 1993 fiscal year this totaled over $285,000 in added costs for the year. By generating leading reactive power on site, thereby reducing total lagging reactive power requirements, a substantial savings in electric utility bills is achieved. Actual savings of $150,000 or more a year are possible depending on experimental operations
Gas manufacture, processes for: condensers
Energy Technology Data Exchange (ETDEWEB)
Young, W
1876-11-29
In the production of illuminating gas from coal, shale, hydrocarbon oil, or other substance used in the production of gas, the volatile products inside the retort are agitated by means of moving pistons or jets of compressed gas, steam, or vapor in order to decompose them into permanent gases, and in some cases to increase the volume of gas by the decomposition of the injected gas, etc. or by blending or carburetting this gas with the decomposition products of the volatile matters. To separate the condensible hydrocarbons from the crude gas it is passed through heated narrow tortuous passages or is caused to impinge on surfaces. If the crude gases are cold these surfaces are heated and vice versa.
THE COLOUR GLASS CONDENSATE: AN INTRODUCTION
Energy Technology Data Exchange (ETDEWEB)
IANCU,E.; LEONIDOV,A.; MCLERRAN,L.
2001-08-06
In these lectures, the authors develop the theory of the Colour Glass Condensate. This is the matter made of gluons in the high density environment characteristic of deep inelastic scattering or hadron-hadron collisions at very high energy. The lectures are self contained and comprehensive. They start with a phenomenological introduction, develop the theory of classical gluon fields appropriate for the Colour Glass, and end with a derivation and discussion of the renormalization group equations which determine this effective theory.
THE COLOUR GLASS CONDENSATE: AN INTRODUCTION
International Nuclear Information System (INIS)
Iancu, E.; Leonidov, A.; McLerran, L.
2001-01-01
In these lectures, the authors develop the theory of the Colour Glass Condensate. This is the matter made of gluons in the high density environment characteristic of deep inelastic scattering or hadron-hadron collisions at very high energy. The lectures are self contained and comprehensive. They start with a phenomenological introduction, develop the theory of classical gluon fields appropriate for the Colour Glass, and end with a derivation and discussion of the renormalization group equations which determine this effective theory
Rzoska, Sylwester J
2007-01-01
‘Soft Matter Under Exogenic Impacts’ is fairly unique in supplying a comprehensive presentation of high pressures, negative pressures, random constraints and strong electric field exogenic (external) impacts on various soft matter systems. These are: (i) critical liquids, (ii) glass formers, such as supercooled liquids including water, polymers and resins, (iii) liquid crystals and (iv) bio-liquids. It is, because of this, an excellent guide in this novel and still puzzling research area. Besides new results, the identification of new types of physical behavior, new technological materials, ultimate verification of condensed and soft matter physics models, new applications in geophysics, biophysics, biotechnology, are all discussed in this book.
Condensation of steam in horizontal pipes: model development and validation
International Nuclear Information System (INIS)
Szijarto, R.
2015-01-01
This thesis submitted to the Swiss Federal Institute of Technology ETH in Zurich presents the development and validation of a model for the condensation of steam in horizontal pipes. Condensation models were introduced and developed particularly for the application in the emergency cooling system of a Gen-III+ boiling water reactor. Such an emergency cooling system consists of slightly inclined horizontal pipes, which are immersed in a cold water tank. The pipes are connected to the reactor pressure vessel. They are responsible for a fast depressurization of the reactor core in the case of accident. Condensation in horizontal pipes was investigated with both one-dimensional system codes (RELAP5) and three-dimensional computational fluid dynamics software (ANSYS FLUENT). The performance of the RELAP5 code was not sufficient for transient condensation processes. Therefore, a mechanistic model was developed and implemented. Four models were tested on the LAOKOON facility, which analysed direct contact condensation in a horizontal duct
Energy Technology Data Exchange (ETDEWEB)
Ne, F.; Zemb, T. [CEA Saclay, 91 - Gif-sur-Yvette (France). Dept. de Recherche sur l`Etat Condense, les Atomes et les Molecules; Diat, O. [ESRF, 38 - Grenoble (France)
1998-12-31
This project is a part of the `SOLEIL` synchrotron project. The camera proposed is optimized for small angle x-ray scattering in the domain of soft condensed matter, common heterogeneous materials such as wood, cements, glass, and more generally non-crystalline materials. The beam line is designed to allow a quick succession of different users without time consuming adjustments. Therefore, optical settings are minimized, taking into account the pluri-disciplinary nature of the analysis possibilities. To this end, the technical requirements are as follows. First and essentially, the wave-length has to be fixed and set around 12 keV. Focusing mirrors, optics to sample and sample to detector distances, and the size of the detector allow for a wide range of wave vector to be used. Rejection rate will be lower, and angular dynamical range will be larger than any of the current synchrotron lines. We want this line to be, and to stay, complementary to more specific systems, such as reflectivity experiments or grazing angle scattering experiments. However, we are thinking of an adaptation to ultra small angle scattering mode, based on the Bonse and Hart camera. Such equipment, actually a kind of `Instamatic` of the reciprocal space, will fulfill to the need of chemical engineers, biophysicists or material scientists interested in hard as well as soft condensed matter. It will allow a large amount of experiments per time unit. (author)
Pion condensation and instabilities: current theory and experiment
International Nuclear Information System (INIS)
Gyulassy, M.
1980-05-01
Current calculations of pion condensation phenomena in symmetric nuclear matter are reviewed. The RPA and MFA methods are compared. Latest results [LBL-10572] with a relativistic MFA theory constrained by bulk nuclear properties are presented. The differences between equilibrium (condensation) and nonequilibrium (dynamic) instabilities are discussed. Finally, two-proton correlation experiments aimed at looking for critical scattering phenomena and two-pion correlation experiments aimed at looking for pion field coherence are analyzed. 10 figures, 2 tables
CONDENSATION OF WATER VAPOR IN A VERTICAL TUBE CONDENSER
Directory of Open Access Journals (Sweden)
Jan Havlík
2015-10-01
Full Text Available This paper presents an analysis of heat transfer in the process of condensation of water vapor in a vertical shell-and-tube condenser. We analyze the use of the Nusselt model for calculating the condensation heat transfer coefficient (HTC inside a vertical tube and the Kern, Bell-Delaware and Stream-flow analysis methods for calculating the shell-side HTC from tubes to cooling water. These methods are experimentally verified for a specific condenser of waste process vapor containing air. The operating conditions of the condenser may be different from the assumptions adopted in the basic Nusselt theory. Modifications to the Nusselt condensation model are theoretically analyzed.
Containment condensing heat transfer
International Nuclear Information System (INIS)
Gido, R.G.; Koestel, A.
1983-01-01
This report presents a mechanistic heat-transfer model that is valid for large scale containment heat sinks. The model development is based on the determination that the condensation is controlled by mass diffusion through the vapor-air boundary layer, and the application of the classic Reynolds' analogy to formulate expressions for the transfer of heat and mass based on hydrodynamic measurements of the momentum transfer. As a result, the analysis depends on the quantification of the shear stress (momentum transfer) at the interface between the condensate film and the vapor-air boundary layer. In addition, the currently used Tagami and Uchida test observations and their range of applicability are explained
Doi, Masao
2013-01-01
Soft matter (polymers, colloids, surfactants and liquid crystals) are an important class of materials in modern technology. They also form the basis of many future technologies, for example in medical and environmental applications. Soft matter shows complex behaviour between fluids and solids, and used to be a synonym of complex materials. Due to the developments of the past two decades, soft condensed matter can now be discussed on the same sound physical basis as solid condensedmatter. The purpose of this book is to provide an overview of soft matter for undergraduate and graduate students
Simple Simulations of DNA Condensation
Energy Technology Data Exchange (ETDEWEB)
STEVENS,MARK J.
2000-07-12
Molecular dynamics simulations of a simple, bead-spring model of semiflexible polyelectrolytes such as DNA are performed. All charges are explicitly treated. Starting from extended, noncondensed conformations, condensed structures form in the simulations with tetravalent or trivalent counterions. No condensates form or are stable for divalent counterions. The mechanism by which condensates form is described. Briefly, condensation occurs because electrostatic interactions dominate entropy, and the favored Coulombic structure is a charge ordered state. Condensation is a generic phenomena and occurs for a variety of polyelectrolyte parameters. Toroids and rods are the condensate structures. Toroids form preferentially when the molecular stiffness is sufficiently strong.
International Nuclear Information System (INIS)
Sakurai, Manabu; Hirayama, Fumio; Kurosawa, Setsumi; Yoshikawa, Jun; Hosaka, Seiichi.
1992-01-01
The present invention enables to separate and remove 14 C as CO 3 - ions without condensation in a vapor condensation can of a nuclear facility. That is, the vapor condensation device of the nuclear facility comprises (1) a spray pipe for spraying an acidic aqueous solution to the evaporation surface of an evaporation section, (2) a spray pump for sending the acidic aqueous solution to the spray pipe, (3) a tank for storing the acidic aqueous solution, (4) a pH sensor for detecting pH of the evaporation section, (5) a pH control section for controlling the spray pump, depending on the result of the detection of the pH sensor. With such a constitution, the pH of liquid wastes on the vaporization surface is controlled to 7 by spraying an aqueous solution of dilute sulfuric acid to the evaporation surface, thereby enabling to increase the transfer rate of 14 C to condensates to 60 to 70%. If 14 C is separated and removed as a CO 2 gas from the evaporation surface, the pH of the liquid wastes returns to the alkaline range of 9 to 10 and the liquid wastes are returned to a heating section. The amount of spraying the aqueous solution of dilute sulfuric acid can be controlled till the pH is reduced to 5. (I.S.)
Indian Academy of Sciences (India)
absolute zero. These ideas had ... Everybody is talking about Bose-Einstein condensation. This discovery ... needed if we want to find the probability distribution of the x- ... Boltzmann took two approaches to the problem, both of them deep and ...
Preventing freezing of condensate inside tubes of air cooled condenser
International Nuclear Information System (INIS)
Joo, Jeong A; Hwang, In Hwan; Lee, Dong Hwan; Cho, Young Il
2012-01-01
An air cooled condenser is a device that is used for converting steam into condensate by using ambient air. The air cooled condenser is prone to suffer from a serious explosion when the condensate inside the tubes of a heat exchanger is frozen; in particular, tubes can break during winter. This is primarily due to the structural problem of the tube outlet of an existing conventional air cooled condenser system, which causes the backflow of residual steam and noncondensable gases. To solve the backflow problem in such condensers, such a system was simulated and a new system was designed and evaluated in this study. The experimental results using the simulated condenser showed the occurrence of freezing because of the backflow inside the tube. On the other hand, no backflow and freezing occurred in the advanced new condenser, and efficient heat exchange occurred
Czech Academy of Sciences Publication Activity Database
Murašková, V.; Szabó, N.; Pižl, M.; Hoskovcová, I.; Dušek, Michal; Huber, Š.; Sedmidubský, D.
2017-01-01
Roč. 461, May (2017), s. 111-119 ISSN 0020-1693 R&D Projects: GA ČR(CZ) GA15-12653S; GA MŠk LO1603 EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : iron(III) dinuclear complex * dialkoxo bridged pyridoxal Schiff base * C-C bond * crystal structure * magnetic properties Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.002, year: 2016
Condensate bright solitons under transverse confinement
International Nuclear Information System (INIS)
Salasnich, L.; Reatto, L.; Parola, A.
2002-01-01
We investigate the dynamics of Bose-Einstein condensate bright solitons made of alkali-metal atoms with negative scattering length and under harmonic confinement in the transverse direction. Contrary to the one-dimensional (1D) case, the 3D bright soliton exists only below a critical attractive interaction that depends on the extent of confinement. Such a behavior is also found in multisoliton condensates with box boundary conditions. We obtain numerical and analytical estimates of the critical strength beyond which the solitons do not exist. By using an effective 1D nonpolynomial nonlinear Schroedinger equation, which accurately takes into account the transverse dynamics of cigarlike condensates, we numerically simulate the dynamics of the 'soliton train' reported in a recent experiment [Nature (London) 417, 150 (2002)]. Then, analyzing the macroscopic quantum tunneling of the bright soliton on a Gaussian barrier, we find that its interference in the tunneling region is strongly suppressed with respect to nonsolitonic case; moreover, the tunneling through a barrier breaks the shape invariance of the matter wave. Finally, we show that the collapse of the soliton is induced by the scattering on the barrier or by the collision with another matter wave when the density reaches a critical value, for which we derive an accurate analytical formula
Smith, J. E.; And Others
This guide, which is intended for new supervisors and managers to use in an independent study setting, deals with costing, balance sheets, and budgetary control. The first section, "Matters of Cost" by J. E. and J. F. Smith, deals with the following topics: profits and productivity, principles of costing, cost control and cost reduction, fixed and…
International Nuclear Information System (INIS)
Svensson, E.C.
1984-01-01
The Condensate Saga, now halfway through its fifth decade, is reviewed. The recent neutron-scattering work which has at last convincingly established that there is indeed a Bose Condensate in He II is described
Maintaining steam/condensate lines
International Nuclear Information System (INIS)
Russum, S.A.
1992-01-01
Steam and condensate systems must be maintained with the same diligence as the boiler itself. Unfortunately, they often are not. The water treatment program, critical to keeping the boiler at peak efficiency and optimizing operating life, should not stop with the boiler. The program must encompass the steam and condensate system as well. A properly maintained condensate system maximizes condensate recovery, which is a cost-free energy source. The fuel needed to turn the boiler feedwater into steam has already been provided. Returning the condensate allows a significant portion of that fuel cost to be recouped. Condensate has a high heat content. Condensate is a readily available, economical feedwater source. Properly treated, it is very pure. Condensate improves feedwater quality and reduces makeup water demand and pretreatment costs. Higher quality feedwater means more reliable boiler operation
Continuous condensation in nanogrooves
Malijevský, Alexandr
2018-05-01
We consider condensation in a capillary groove of width L and depth D , formed by walls that are completely wet (contact angle θ =0 ), which is in a contact with a gas reservoir of the chemical potential μ . On a mesoscopic level, the condensation process can be described in terms of the midpoint height ℓ of a meniscus formed at the liquid-gas interface. For macroscopically deep grooves (D →∞ ), and in the presence of long-range (dispersion) forces, the condensation corresponds to a second-order phase transition, such that ℓ ˜(μcc-μ ) -1 /4 as μ →μcc - where μc c is the chemical potential pertinent to capillary condensation in a slit pore of width L . For finite values of D , the transition becomes rounded and the groove becomes filled with liquid at a chemical potential higher than μc c with a difference of the order of D-3. For sufficiently deep grooves, the meniscus growth initially follows the power law ℓ ˜(μcc-μ ) -1 /4 , but this behavior eventually crosses over to ℓ ˜D -(μ-μc c) -1 /3 above μc c, with a gap between the two regimes shown to be δ ¯μ ˜D-3 . Right at μ =μc c , when the groove is only partially filled with liquid, the height of the meniscus scales as ℓ*˜(D3L) 1 /4 . Moreover, the chemical potential (or pressure) at which the groove is half-filled with liquid exhibits a nonmonotonic dependence on D with a maximum at D ≈3 L /2 and coincides with μc c when L ≈D . Finally, we show that condensation in finite grooves can be mapped on the condensation in capillary slits formed by two asymmetric (competing) walls a distance D apart with potential strengths depending on L . All these predictions, based on mesoscopic arguments, are confirmed by fully microscopic Rosenfeld's density functional theory with a reasonable agreement down to surprisingly small values of both L and D .
Energy Technology Data Exchange (ETDEWEB)
Wicker, K.
2006-04-15
The humble condenser is among the biggest contributors to a steam power plant's efficiency. But although a clean condenser can provide great economic benefit, a dirty one can raise plant heat rate, resulting in large losses of generation revenue and/or unnecessarily high fuel bills. Conventional methods for cleaning fouled tubes range form chemicals to scrapers to brushes and hydro-blasters. This article compares the available options and describes how one power station, Omaha Public Power District's 600 MW North Omaha coal-fired power station, cleaned up its act. The makeup and cooling water of all its five units comes from the Missouri River. 6 figs.
BWR condensate filtration studies
International Nuclear Information System (INIS)
Wilson, J.A.; Pasricha, A.; Rekart, T.E.
1993-09-01
Poor removal of particulate corrosion products (especially iron) from condensate is one of the major problems in BWR systems. The presence of activated corrosion products creates ''hot spots'' and increases piping dose rates. Also, fuel efficiency is reduced and the risk of fuel failure is increased by the deposit of corrosion products on the fuel. Because of these concerns, current EPRI guidelines call for a maximum of 2 ppb of iron in the reactor feedwater with a level of 0.5 ppb being especially desirable. It has become clear that conventional deep bed resins are incapable of meeting these levels. While installation of prefilter systems is an option, it would be more economical for plants with naked deep beds to find an improved bead resin for use in existing systems. BWR condensate filtration technologies are being tested on a condensate side stream at Hope Creek Nuclear Generating Station. After two years of testing, hollow fiber filters (HFF) and fiber matrix filters (FMF), and low crosslink cation resin, all provide acceptable results. The results are presented for pressure drop, filtration efficiency, and water quality measurements. The costs are compared for backwashable non-precoat HFF and FMF. Results are also presented for full deep bed vessel tests of the low crosslink cation resin
Condensation of exciton polaritons
International Nuclear Information System (INIS)
Kasprzak, J.
2006-10-01
Because of their unique property of bringing pure quantum effects into the real world scale, phase transitions towards condensed phases - like Bose-Einstein condensation (BEC), superfluidity, and superconductivity - have always fascinated scientists. The BEC, appearing upon cooling a gas of bosons below a critical temperature, has been given a striking demonstration in dilute atomic gases of rubidium atoms at temperatures below 200 nK. By confining photons in a semiconductor micro-cavity, and strongly coupling them to electronic excitations, one may create polaritons. These bosonic quasi-particles are 10 9 times lighter than rubidium atoms, thus theoretically allowing a BEC at standard cryogenic temperatures. Here we detail a comprehensive set of experiments giving compelling evidence for a BEC of polaritons. Above a critical density, we observe massive occupation of the ground state, developing from a thermalized and saturated distribution of the polariton population at (16-20) K. We demonstrate as well the existence of a critical temperature for this transition. The spontaneous onset of a coherent state is manifested by the increase of temporal coherence, the build-up of long-range spatial coherence and the reduction of the thermal noise observed in second order coherence experiments. The marked linear polarization of the emission from the condensate is also measured. All of these findings indicate the spontaneous onset of a macroscopic quantum phase. (author)
Polymorphism of Lysozyme Condensates.
Safari, Mohammad S; Byington, Michael C; Conrad, Jacinta C; Vekilov, Peter G
2017-10-05
Protein condensates play essential roles in physiological processes and pathological conditions. Recently discovered mesoscopic protein-rich clusters may act as crucial precursors for the nucleation of ordered protein solids, such as crystals, sickle hemoglobin polymers, and amyloid fibrils. These clusters challenge settled paradigms of protein condensation as the constituent protein molecules present features characteristic of both partially misfolded and native proteins. Here we employ the antimicrobial enzyme lysozyme and examine the similarities between mesoscopic clusters, amyloid structures, and disordered aggregates consisting of chemically modified protein. We show that the mesoscopic clusters are distinct from the other two classes of aggregates. Whereas cluster formation and amyloid oligomerization are both reversible, aggregation triggered by reduction of the intramolecular S-S bonds is permanent. In contrast to the amyloid structures, protein molecules in the clusters retain their enzymatic activity. Furthermore, an essential feature of the mesoscopic clusters is their constant radius of less than 50 nm. The amyloid and disordered aggregates are significantly larger and rapidly grow. These findings demonstrate that the clusters are a product of limited protein structural flexibility. In view of the role of the clusters in the nucleation of ordered protein solids, our results suggest that fine-tuning the degree of protein conformational stability is a powerful tool to control and direct the pathways of protein condensation.
Condenser performance monitoring and cleaning
International Nuclear Information System (INIS)
Walden, J.V.
1998-01-01
The main condenser at Ginna Station was retubed from admiralty brass to 316 stainless steel. A condenser performance monitoring spreadsheet was developed using EPRI guidelines after fouling was discovered. PEPSE computer models were used to determine the power loss and confirm the spreadsheet results. Cleaning of the condenser was performed using plastic scrubbers. Condenser performance improved dramatically following the cleaning. PEPSE, condenser spreadsheet performance, and actual observed plant data correlated well together. The fouling mechanism was determined to be a common lake bacteria and fungus growth which was combined with silt. Chlorination of the circulating water system at the allowable limits is keeping the biofouling under control
Diquark condensate and quark interaction with instanton liquid
International Nuclear Information System (INIS)
Zinov'ev, G.M.; Molodtsov, S.V.
2003-01-01
The interaction of light quarks and instanton liquid is analyzed at finite density of quark/baryon matter and in the phase of nonzero values of diquark (color) condensate. It is shown that instanton liquid perturbation produced by such an interaction results in an essential increase of the critical value of quark chemical potential μ c which provokes the perceptible increase of quark matter density around the expected onset of the color superconductivity phase [ru
Gravitino Condensates in the Early Universe and Inflation
Mavromatos, Nick E
2015-01-01
We review work on the formation of gravitino condensates via the super-Higgs effect in the early Universe. This is a scenario for both inflating the early universe and breaking local supersymmetry (supergravity), entirely independent of any coupling to external matter. The goldstino mode associated with the breaking of (global) supersymmetry is "eaten" by the gravitino field, which becomes massive (via its own vacuum condensation) and breaks the local supersymmetry (supergravity) dynamically. The most natural association of gravitino condensates with inflation proceeds in an indirect way, via a Starobinsky-inflation-type phase. The higher-order curvature corrections of the (quantum) effective action of gravitino condensates induced by integrating out massive gravitino degrees of freedom in a curved space-time background, in the broken-supergravity phase, are responsible for inducing a scalar mode which inflates the Universe. The scenario is in agreement with Planck data phenomenology in a natural and phenomen...
Energy Technology Data Exchange (ETDEWEB)
Newall, H F
1939-01-01
The effects on the combustion rate from excess moisture and the addition of selected inorganic substances to powdered coals were determined. The catalytic effect of 19 known inorganic ash constituents on combustion rates was also examined. Alumina and silica were found to inhibit combustion while ferric oxide accelerated it. Titanium, Ge, and B oxides, along with gypsum and calcium phosphate, decreased the rate of combusion, while Ca, Mg, Mn, and V oxides increased combustion rates. Although several of the ash constituents in coal directly affected combustion rates, the effect of adding them to the coal prior to combustion did not correlate with the effect of the mineral matter already in the coal.
International Nuclear Information System (INIS)
Arnaud, Quentin
2015-01-01
The EDELWEISS-III experiment is dedicated to direct dark matter searches aiming at detecting WIMPS. These massive particles should account for more than 80% of the mass of the Universe and be detectable through their elastic scattering on nuclei constituting the absorber of a detector. As the expected WIMP event rate is extremely low ( 20 GeV). Finally, a study dedicated to the optimization of solid cryogenic detectors to low mass WIMP searches is presented. This study is performed on simulated data using a statistical test based on a profiled likelihood ratio that allows for statistical background subtraction and spectral shape discrimination. This study combined with results from Run308, has lead the EDELWEISS experiment to favor low mass WIMP searches ( [fr
Bose–Einstein condensation of anti-kaons and neutron star twins
Indian Academy of Sciences (India)
We investigate the role of Bose–Einstein condensation (BEC) of anti-kaons on the equation of state (EoS) and other properties of compact stars. In the framework of relativistic mean ﬁeld model we determine the EoS for -stable hyperon matter and compare it to the situation when anti-kaons condense in the system.
International Nuclear Information System (INIS)
Kelp, F.; Pohl, H.H.
1978-01-01
In this plant the steam is distributed by a ventilator from the bottom to symmetrically fixed, inclined cooling elements with tubes. The upper part of the current side of the cooling elements as well as the bottom part of the outflow side can be covered by cover plates via a control circuit. This way, part of the air amount is deviated and in case of unfavourable atmospheric conditions (cold) the air is heated. This heating is enough to prevent freezing of the condensate on the cooling tubes. (DG) [de
International Nuclear Information System (INIS)
Fukuyama, Takeshi; Morikawa, Masahiro
2006-01-01
We do not know 96% of the total matter in the universe. A model is proposed in which Dark Energy is identified as Bose-Einstein Condensation. Global cosmic acceleration and rapid local collapse into black holes (Dark Matter) are examined. We also propose a novel mechanism of inflation due to the steady flow of condensation, which is free from slow-roll conditions for the potential
Ice condenser experimental plan
International Nuclear Information System (INIS)
Kannberg, L.D.; Piepel, G.F.; Owczarski, P.C.; Liebetrau, A.M.
1986-01-01
An experimental plan is being developed to validate the computer code ICEDF. The code was developed to estimate the extent of aerosol retention in the ice compartments of pressurized water reactor ice condenser containment systems during severe accidents. The development of the experimental plan began with review of available information on the conditions under which the code will be applied. Computer-generated estimates of thermohydraulic and aerosol conditions entering the ice condenser were evaluated and along with other information, used to generate design criteria. The design criteria have been used for preliminary test assembly design and for generation of statistical test designs. Consideration of the phenomena to be evaluated in the testing program, as well as equipment and measurement limitations, have led to changes in the design criteria and to subsequent changes in the test assembly design and statistical test design. The overall strategy in developing the experimental plan includes iterative generation and evaluation of candidate test designs using computer codes for statistical test design and ICEDF for estimation of experimental results. Estimates of experimental variability made prior to actual testing will be verified by replicate testing at preselected design points
Optimal design of condenser weight
International Nuclear Information System (INIS)
Zheng Jing; Yan Changqi; Wang Jianjun
2011-01-01
The condenser is an important component in nuclear power plants, which dimension and weight will effect the economical performance and the arrangement of the nuclear power plants. In this paper, the calculation model is established according to the design experience. The corresponding codes are also developed, and the sensitivity of design parameters which influence the condenser weight is analyzed. The present design optimization of the condenser, taking the weight minimization as the objective, is carried out with the self-developed complex-genetic algorithm. The results show that the reference condenser design is far from the best scheme, and also verify the feasibility of the complex-genetic algorithm. (authors)
Czech Academy of Sciences Publication Activity Database
Asadi, Z.; Nasrollahi, N.; Karbalaei-Heidari, H.; Eigner, Václav; Dušek, Michal; Mobaraki, N.; Pournejati, R.
2017-01-01
Roč. 178, May (2017), s. 125-135 ISSN 1386-1425 R&D Projects: GA ČR(CZ) GA15-12653S; GA MŠk LO1603 EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : lanthanum(III) * binding constant * molecular docking * DNA cleavage * cytotoxicity * chitosan Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.536, year: 2016
QCD under extreme conditions. Inhomogeneous condensation
Energy Technology Data Exchange (ETDEWEB)
Heinz, Achim
2014-10-15
Almost 40 years after the first publication on the phase diagram of quantum chromodynamics (QCD) big progress has been made but many questions are still open. This work covers several aspects of low-energy QCD and introduces advanced methods to calculate selected parts of the QCD phase diagram. Spontaneous chiral symmetry breaking as well as its restoration is a major aspect of QCD. Two effective models, the Nambu-Jona-Lasinio (NJL) model and the linear σ-model, are widely used to describe the QCD chiral phase transition. We study the large-N{sub c} behavior of the critical temperature T{sub c} for chiral symmetry restoration in the framework of both models. While in the NJL model T{sub c} is independent of N{sub c} (and in agreement with the expected QCD scaling), the scaling behavior in the linear σ-model reads T{sub c} ∝ N{sup 1/2}{sub c}. However, this mismatch can be corrected: phenomenologically motivated temperature-dependent parameters or the extension with the Polyakov-loop renders the scaling in the linear σ-model compatible with the QCD scaling. The requirement that the chiral condensate which is the order parameter of the chiral symmetry is constant in space is too restrictive. Recent studies on inhomogeneous chiral condensation in cold, dense quark matter suggest a rich crystalline structure. These studies feature models with quark degrees of freedom. In this thesis we investigate the formation of the chiral density wave (CDW) in the framework of the so-called extended linear sigma model (eLSM) at high densities and zero temperature. The eLSM is a modern development of the linear σ-model which contains scalar, pseudoscalar, vector, as well as axial-vector mesons, and in addition, a light tetraquark state. The nucleon and its chiral partner are introduced as parity doublets in the mirror assignment. The model describes successfully the vacuum phenomenology and nuclear matter ground-state properties. As a result we find that an inhomogeneous phase
Comments on the SU(4) dark matter
Shuryak, Edward
2018-01-01
We discuss possible scale of $SU(4)$ dark matter, in form of neutral baryons. We argue that it is very likely that those would have time to cluster into large "nuclear drops" in which they are Bose-condensed.
Charged ρ Meson Condensate in Neutron Stars within RMF Models
Directory of Open Access Journals (Sweden)
Konstantin A. Maslov
2017-12-01
Full Text Available Knowledge of the equation of state (EoS of cold and dense baryonic matter is essential for the description of properties of neutron stars (NSs. With an increase of the density, new baryon species can appear in NS matter, as well as various meson condensates. In previous works, we developed relativistic mean-field (RMF models with hyperons and Δ -isobars, which passed the majority of known experimental constraints, including the existence of a 2 M ⊙ neutron star. In this contribution, we present results of the inclusion of ρ − -meson condensation into these models. We have shown that, in one class of the models (so-called KVOR-based models, in which the additional stiffening procedure is introduced in the isoscalar sector, the condensation gives only a small contribution to the EoS. In another class of the models (MKVOR-based models with additional stiffening in isovector sector, the condensation can lead to a first-order phase transition and a substantial decrease of the NS mass. Nevertheless, in all resulting models, the condensation does not spoil the description of the experimental constraints.
Energy Technology Data Exchange (ETDEWEB)
Rashad, Mohamed [Land and Water Technologies Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, 21934 Alexandria (Egypt); Assaad, Faiz F. [Soils and Water Use Department, National Research Centre, Dokki, Cairo (Egypt); Shalaby, Elsayed A. [Environmental Studies Department, Institute of Graduate Studies and Research, Alexandria University (Egypt)
2013-07-01
Dissolved organic matter (DOM) is one of the decisive factors affecting pollutants mobility in soils receiving waste amendments. The aim of this study was to investigate the effects of DOM1 derived from agricultural solid waste (ASW) and DOM2 derived from municipal solid waste (MSW) on the mobility of inorganic arsenic (As) in two alluvial soils from the Nile River Delta. In column experiments, addition of DOM solutions significantly increased As concentration in the effluents. There was no significant difference between the two soils, the obtained results from soil2 columns revealed that DOM2 has stronger capability than DOM1 to facilitate As mobility. The pH of the studied soils is alkaline (8.1) which promoted the dissociation as well as deprotonation of DOM and as a consequence, humic substances in DOM become negatively charged organic anions, leading to their substantial competition with As for the adsorption sites on both soil surfaces. The results emphasized that in alkaline soils there is a risk of groundwater pollution in the long run by arsenic either naturally found in soil or originated at high soil pH when dissolved organic carbon (DOC) released from various organic amendments ASW and/or MSW and leached through soil profile.
Spatial interference patterns in the dynamics of a 2D Bose-Einstein condensate
Bera, Jayanta; Roy, Utpal
2018-05-01
Bose-Einstein condensate has become a highly tunable physical system, which is proven to mimic a number of interesting physical phenomena in condensed matter physics. We study the dynamics of a two-dimensional Bose Einstein condensate (BEC) in the presence of a flat harmonic confinement and time-dependent sharp potential peak. Condensate density can be meticulously controlled with time by tuning the physically relevant parameters: frequency of the harmonic trap, width of the peaks, frequency of their oscillations, initial density etc. By engineering various trap profile, we solve the system, numerically, and explore the resulting spatial interference patters.
International Nuclear Information System (INIS)
1993-01-01
This report in three volumes substantiates the contents of the programme survey published in September 1989. The progress reports cover the following research areas: Vol. I, (1). Atomic and molecular physics - free atoms, molecules, macromolecules, clusters, matrix-isolated atoms and molecules. (2) Physics and chemistry of surfaces and interfaces - epitaxy, surface structure, adsorption, electrical, magnetic, and optical properties, thin films, synthetic layer structure. Vol. II, (3). Solid-state physics, and materials science -structural research, lattice dynamics, magnetic structure and dynamics, electronic states; load; spin and pulse density fluctuations; diffusion and internal motion, defects, unordered systems and liquids. Vol. III, (4). Chemistry - bonding and structure, kinetics and reaction mechanisms, polymer research, analysis and synthesis. (5). Biology, - structure and dynamics of biological macromolecules, membrane and cell biology. (6) Development of methods and instruments - neutron sources, synchrotron sources, special accelerators, research with interlinked systems and devices. (orig.) [de
International Nuclear Information System (INIS)
1993-01-01
This report in three volumes substantiates the contents of the programme survey published in September 1989. The progress reports cover the following research areas: Vol. I, (1). Atomic and molecular physics - free atoms, molecules, macromolecules, clusters, matrix-isolated atoms and molecules. (2) Physics and chemistry of surfaces and interfaces - epitaxy, surface structure, adsorption, electrical, magnetic, and optical properties, thin films, synthetic layer structure. Vol. II, (3). Solid-state physics, and materials science -structural research, lattice dynamics, magnetic structure and dynamics, electronic states; load; spin and pulse density fluctuations; diffusion and internal motion, defects, unordered systems and liquids. Vol. III, (4). Chemistry - bonding and structure, kinetics and reaction mechanisms, polymer research, analysis and synthesis. (5). Biology, - structure and dynamics of biological macromolecules, membrane and cell biology. (6) Development of methods and instruments - neutron sources, synchrotron sources, special accelerators, research with interlinked systems and devices. (orig.) [de
The dynamics of Affleck-Dine condensate collapse
International Nuclear Information System (INIS)
Enqvist, Kari; McDonald, John
2000-01-01
In the MSSM, cosmological scalar field condensates formed along flat directions of the scalar potential (Affleck-Dine condensates) are typically unstable with respect to formation of Q-balls, a type of non-topological soliton. We consider the dynamical evolution of the Affleck-Dine condensate in the MSSM. We discuss the creation and linear growth, in F- and D-term inflation models, of the quantum seed perturbations which in the non-linear regime catalyse the collapse of the condensate to non-topological soliton lumps. We study numerically the evolution of the collapsing condensate lumps and show that the solitons initially formed are not in general Q-balls, but Q-axitons, a pseudo-breather which can have very different properties from Q-balls of the same charge. We calculate the energy and charge radiated from a spherically symmetric condensate lump as it evolves into a Q-axiton. We also discuss the implications for baryogenesis and dark matter
Condensates in quantum chromodynamics and the cosmological constant
Brodsky, Stanley J.; Shrock, Robert
2011-01-01
Casher and Susskind [Casher A, Susskind L (1974) Phys Rev 9:436–460] have noted that in the light-front description, spontaneous chiral symmetry breaking is a property of hadronic wavefunctions and not of the vacuum. Here we show from several physical perspectives that, because of color confinement, quark and gluon condensates in quantum chromodynamics (QCD) are associated with the internal dynamics of hadrons. We discuss condensates using condensed matter analogues, the Anti de Sitter/conformal field theory correspondence, and the Bethe–Salpeter–Dyson–Schwinger approach for bound states. Our analysis is in agreement with the Casher and Susskind model and the explicit demonstration of “in-hadron” condensates by Roberts and coworkers [Maris P, Roberts CD, Tandy PC (1998) Phys Lett B 420:267–273], using the Bethe–Salpeter–Dyson–Schwinger formalism for QCD-bound states. These results imply that QCD condensates give zero contribution to the cosmological constant, because all of the gravitational effects of the in-hadron condensates are already included in the normal contribution from hadron masses.
Dynamical Evolution of the Scalar Condensate in Heavy Ion Collisions
Csernai, Laszlo P.; Jeon, Sangyong; Kapusta, Joseph I.; Csernai, Laszlo P.; Ellis, Paul J.; Jeon, Sangyong; Kapusta, Joseph I.
2000-01-01
We derive the effective coarse-grained field equation for the scalar condensate of the linear sigma model in a simple and straightforward manner using linear response theory. In general, the necessary response functions cannot be obtained in perturbation theory but require a summation of ladder diagrams. We estimate these response functions using direct physical reasoning. The field equation is solved for hot matter undergoing either one or three dimensional expansion and cooling in the aftermath of a high energy nuclear collision. The results show that the time constant for returning the scalar condensate to thermal equilibrium is of order 2 fm/c.
Parametric Amplification of Vacuum Fluctuations in a Spinor Condensate
DEFF Research Database (Denmark)
Klempt, C.; Topic, O.; Gebreyesus, G.
2010-01-01
to correlated pair creation in the mF=±1 states from an initial mF=0 condensate, which acts as a vacuum for mF≠0. Although this pair creation from a pure mF=0 condensate is ideally triggered by vacuum fluctuations, unavoidable spurious initial mF=±1 atoms induce a classical seed which may become the dominant...... triggering mechanism. We show that pair creation is insensitive to a classical seed for sufficiently large magnetic fields, demonstrating the dominant role of vacuum fluctuations. The presented system thus provides a direct path towards the generation of nonclassical states of matter....
Off gas condenser performance modelling
International Nuclear Information System (INIS)
Cains, P.W.; Hills, K.M.; Waring, S.; Pratchett, A.G.
1989-12-01
A suite of three programmes has been developed to model the ruthenium decontamination performance of a vitrification plant off-gas condenser. The stages of the model are: condensation of water vapour, NO x absorption in the condensate, RuO 4 absorption in the condensate. Juxtaposition of these stages gives a package that may be run on an IBM-compatible desktop PC. Experimental work indicates that the criterion [HNO 2 ] > 10 [RuO 4 ] used to determine RuO 4 destruction in solution is probably realistic under condenser conditions. Vapour pressures of RuO 4 over aqueous solutions at 70 o -90 o C are slightly lower than the values given by extrapolating the ln K p vs. T -1 relation derived from lower temperature data. (author)
Infinite Particle Systems: Complex Systems III
Directory of Open Access Journals (Sweden)
Editorial Board
2008-06-01
Full Text Available In the years 2002-2005, a group of German and Polish mathematicians worked under a DFG research project No 436 POL 113/98/0-1 entitled "Methods of stochastic analysis in the theory of collective phenomena: Gibbs states and statistical hydrodynamics". The results of their study were summarized at the German-Polish conference, which took place in Poland in October 2005. The venue of the conference was Kazimierz Dolny upon Vistula - a lovely town and a popular place for various cultural, scientific, and even political events of an international significance. The conference was also attended by scientists from France, Italy, Portugal, UK, Ukraine, and USA, which predetermined its international character. Since that time, the conference, entitled "Infinite Particle Systems: Complex Systems" has become an annual international event, attended by leading scientists from Germany, Poland and many other countries. The present volume of the "Condensed Matter Physics" contains proceedings of the conference "Infinite Particle Systems: Complex Systems III", which took place in June 2007.
Bose condensation in 4He and neutron scattering
International Nuclear Information System (INIS)
Silver, R.N.
1997-01-01
The discovery of superfluidity in liquid 4 He below T λ = 2.17 K, and its phenomenological characterization since then, has been one of the great success stories of condensed matter physics. The relation of superfluidity to the behavior of atoms was conjectured by F. London in 1938. Superfluidity is a manifestation of the Bose condensation of helium atoms, the extensive occupation of the zero momentum state. Ever since 4 He has been the paradigm in the search for Bose condensates in other systems. At the Pune meeting scientists have heard exciting new evidence for Bose condensates of laser cooled alkali atoms in magnetic traps, of excitons in Cu 2 O, and possibly pre-formed Cooper pairs of electrons in the high T c perovskite superconductors. There remains the holy-grail of forming a Bose condensate in spin-polarized hydrogen. In the current excitement for new types of Bose condensates, and new phenomena such as atom lasers, it may be useful to recall the older story of the experimental verification of a relation between superfluidity and Bose condensation in 4 He. This topic has been investigated over many years by neutron scattering experiments and quantum many-body theory. The authors goal is to illustrate the difficulties of establishing the existence of a Bose condensate in a strongly interacting system, even though its macroscopic effects are manifest. The author assumes readers have access to a review by Silver and Sokol which emphasizes the neutron scattering theory through 1990 and a review by Snow and Sokol of the deep inelastic neutron scattering (DINS) experiments through 1995
Dispersion Engineering of Bose-Einstein Condensates
Khamehchi, Mohammad Amin
The subject of this dissertation is engineering the dispersion relation for dilute Bose-Einstein condensates (BECs). When a BEC is immersed into suitably tailored laser fields its dispersion can be strongly modified. Prominent examples for such laser fields include optical lattice geometries and Raman dressing fields. The ability to engineer the dispersion of a BEC allows for the investigation of a range of phenomena related to quantum hydrodynamics and condensed matter. In the first context, this dissertation studies the excitation spectrum of a spin-orbit coupled (SOC) BEC. The spin-orbit coupling is generated by " dressing" the atoms with two Raman laser fields. The excitation spectrum has a Roton-like feature that can be altered by tuning the Raman laser parameters. It is demonstrated that the Roton mode can be softened, but it does not reach the ground state energy for the experimental conditions we had. Furthermore, the expansion of SOC BECs in 1D is studied by relaxing the trap allowing the BEC to expand in the SOC direction. Contrary to the findings for optical lattices, it is observed that the condensate partially occupies quasimomentum states with negative effective mass, and therefore an abrupt deceleration is observed although the mean field force is along the direction of expansion. In condensed-matter systems, a periodic lattice structure often plays an important role. In this context, an alternative to the Raman dressing scheme can be realized by coupling the s- and p- bands of a static optical lattice via a weak moving lattice. The bands can be treated as pseudo-spin states. It is shown that similar to the dispersion relation of a Raman dressed SOC, the quasimomentum of the ground state is different from zero. Coherent coupling of the SOC dispersion minima can lead to the realization of the stripe phase even though it is not the thermodynamic ground state of the system. Along the lines of studying the hydrodynamics of BECs, three novel
Characterization of spacecraft humidity condensate
Muckle, Susan; Schultz, John R.; Sauer, Richard L.
1994-01-01
When construction of Space Station Freedom reaches the Permanent Manned Capability (PMC) stage, the Water Recovery and Management Subsystem will be fully operational such that (distilled) urine, spent hygiene water, and humidity condensate will be reclaimed to provide water of potable quality. The reclamation technologies currently baselined to process these waste waters include adsorption, ion exchange, catalytic oxidation, and disinfection. To ensure that the baseline technologies will be able to effectively remove those compounds presenting a health risk to the crew, the National Research Council has recommended that additional information be gathered on specific contaminants in waste waters representative of those to be encountered on the Space Station. With the application of new analytical methods and the analysis of waste water samples more representative of the Space Station environment, advances in the identification of the specific contaminants continue to be made. Efforts by the Water and Food Analytical Laboratory at JSC were successful in enlarging the database of contaminants in humidity condensate. These efforts have not only included the chemical characterization of condensate generated during ground-based studies, but most significantly the characterization of cabin and Spacelab condensate generated during Shuttle missions. The analytical results presented in this paper will be used to show how the composition of condensate varies amongst enclosed environments and thus the importance of collecting condensate from an environment close to that of the proposed Space Station. Although advances were made in the characterization of space condensate, complete characterization, particularly of the organics, requires further development of analytical methods.
Condensation in Nanoporous Packed Beds.
Ally, Javed; Molla, Shahnawaz; Mostowfi, Farshid
2016-05-10
In materials with tiny, nanometer-scale pores, liquid condensation is shifted from the bulk saturation pressure observed at larger scales. This effect is called capillary condensation and can block pores, which has major consequences in hydrocarbon production, as well as in fuel cells, catalysis, and powder adhesion. In this study, high pressure nanofluidic condensation studies are performed using propane and carbon dioxide in a colloidal crystal packed bed. Direct visualization allows the extent of condensation to be observed, as well as inference of the pore geometry from Bragg diffraction. We show experimentally that capillary condensation depends on pore geometry and wettability because these factors determine the shape of the menisci that coalesce when pore filling occurs, contrary to the typical assumption that all pore structures can be modeled as cylindrical and perfectly wetting. We also observe capillary condensation at higher pressures than has been done previously, which is important because many applications involving this phenomenon occur well above atmospheric pressure, and there is little, if any, experimental validation of capillary condensation at such pressures, particularly with direct visualization.
Models of coherent exciton condensation
International Nuclear Information System (INIS)
Littlewood, P B; Eastham, P R; Keeling, J M J; Marchetti, F M; Simons, B D; Szymanska, M H
2004-01-01
That excitons in solids might condense into a phase-coherent ground state was proposed about 40 years ago, and has been attracting experimental and theoretical attention ever since. Although experimental confirmation has been hard to come by, the concepts released by this phenomenon have been widely influential. This tutorial review discusses general aspects of the theory of exciton and polariton condensates, focusing on the reasons for coherence in the ground state wavefunction, the BCS to Bose crossover(s) for excitons and for polaritons, and the relationship of the coherent condensates to standard lasers
Models of coherent exciton condensation
Energy Technology Data Exchange (ETDEWEB)
Littlewood, P B [Theory of Condensed Matter, Cavendish Laboratory, Cambridge CB3 0HE (United Kingdom); Eastham, P R [Theory of Condensed Matter, Cavendish Laboratory, Cambridge CB3 0HE (United Kingdom); Keeling, J M J [Theory of Condensed Matter, Cavendish Laboratory, Cambridge CB3 0HE (United Kingdom); Marchetti, F M [Theory of Condensed Matter, Cavendish Laboratory, Cambridge CB3 0HE (United Kingdom); Simons, B D [Theory of Condensed Matter, Cavendish Laboratory, Cambridge CB3 0HE (United Kingdom); Szymanska, M H [Theory of Condensed Matter, Cavendish Laboratory, Cambridge CB3 0HE (United Kingdom)
2004-09-08
That excitons in solids might condense into a phase-coherent ground state was proposed about 40 years ago, and has been attracting experimental and theoretical attention ever since. Although experimental confirmation has been hard to come by, the concepts released by this phenomenon have been widely influential. This tutorial review discusses general aspects of the theory of exciton and polariton condensates, focusing on the reasons for coherence in the ground state wavefunction, the BCS to Bose crossover(s) for excitons and for polaritons, and the relationship of the coherent condensates to standard lasers.
Bose condensation in (random traps
Directory of Open Access Journals (Sweden)
V.A. Zagrebnov
2009-01-01
Full Text Available We study a non-interacting (perfect Bose-gas in random external potentials (traps. It is shown that a generalized Bose-Einstein condensation in the random eigenstates manifests if and only if the same occurs in the one-particle kinetic-energy eigenstates, which corresponds to the generalized condensation of the free Bose-gas. Moreover, we prove that the amounts of both condensate densities are equal. This statement is relevant for justification of the Bogoliubov approximation} in the theory of disordered boson systems.
Capillary condensation and evaporation in alumina nanopores with controlled modulations.
Bruschi, Lorenzo; Mistura, Giampaolo; Liu, Lifeng; Lee, Woo; Gösele, Ulrich; Coasne, Benoit
2010-07-20
Capillary condensation in nanoporous anodic aluminum oxide presenting not interconnected pores with controlled modulations is studied using adsorption experiments and molecular simulations. Both the experimental and simulation data show that capillary condensation and evaporation are driven by the smallest size of the nanopore (constriction). The adsorption isotherms for the open and closed pores are almost identical if constrictions are added to the system. The latter result implies that the type of pore ending does not matter in modulated pores. Thus, the presence of hysteresis loops observed in adsorption isotherms measured in straight nanopores with closed bottom ends can be explained in terms of geometrical inhomogeneities along the pore axis. More generally, these results provide a general picture of capillary condensation and evaporation in constricted or modulated pores that can be used for the interpretation of adsorption in disordered porous materials.
Steam generators, turbines, and condensers. Volume six
International Nuclear Information System (INIS)
Anon.
1986-01-01
Volume six covers steam generators (How steam is generated, steam generation in a PWR, vertical U-tube steam generators, once-through steam generators, how much steam do steam generators make?), turbines (basic turbine principles, impulse turbines, reaction turbines, turbine stages, turbine arrangements, turbine steam flow, steam admission to turbines, turbine seals and supports, turbine oil system, generators), and condensers (need for condensers, basic condenser principles, condenser arrangements, heat transfer in condensers, air removal from condensers, circulating water system, heat loss to the circulating water system, factors affecting condenser performance, condenser auxiliaries)
Condensation coefficient of water in a weak condensation state
International Nuclear Information System (INIS)
Kobayashi, Kazumichi; Watanabe, Shunsuke; Yamano, Daigo; Yano, Takeru; Fujikawa, Shigeo
2008-01-01
The condensation coefficient of water at a vapor-liquid interface is determined by combining shock tube experiments and numerical simulations of the Gaussian-BGK Boltzmann equation. The time evolution in thickness of a liquid film, which is formed on the shock tube endwall behind the shock wave reflected at the endwall, is measured with an optical interferometer consisting of the physical beam and the reference one. The reference beam is utilized to eliminate systematic noises from the physical beam. The growth rate of the film is evaluated from the measured time evolution and it is incorporated into the kinetic boundary condition for the Boltzmann equation. From a numerical simulation using the boundary condition, the condensation coefficient of water is uniquely deduced. The results show that, in a condition of weak condensation near a vapor-liquid equilibrium state, the condensation coefficient of water is almost equal to the evaporation coefficient estimated by molecular dynamics simulations near a vapor-liquid equilibrium state and it decreases as the system becomes a nonequilibrium state. The condensation coefficient of water is nearly identical with that of methanol [Mikami, S., Kobayashi, K., Ota, T., Fujikawa, S., Yano, T., Ichijo, M., 2006. Molecular gas dynamics approaches to interfacial phenomena accompanied with condensation. Exp. Therm. Fluid Sci. 30, 795-800].
Condensation coefficient of water in a weak condensation state
Kobayashi, Kazumichi; Watanabe, Shunsuke; Yamano, Daigo; Yano, Takeru; Fujikawa, Shigeo
2008-07-01
The condensation coefficient of water at a vapor-liquid interface is determined by combining shock tube experiments and numerical simulations of the Gaussian-BGK Boltzmann equation. The time evolution in thickness of a liquid film, which is formed on the shock tube endwall behind the shock wave reflected at the endwall, is measured with an optical interferometer consisting of the physical beam and the reference one. The reference beam is utilized to eliminate systematic noises from the physical beam. The growth rate of the film is evaluated from the measured time evolution and it is incorporated into the kinetic boundary condition for the Boltzmann equation. From a numerical simulation using the boundary condition, the condensation coefficient of water is uniquely deduced. The results show that, in a condition of weak condensation near a vapor-liquid equilibrium state, the condensation coefficient of water is almost equal to the evaporation coefficient estimated by molecular dynamics simulations near a vapor-liquid equilibrium state and it decreases as the system becomes a nonequilibrium state. The condensation coefficient of water is nearly identical with that of methanol [Mikami, S., Kobayashi, K., Ota, T., Fujikawa, S., Yano, T., Ichijo, M., 2006. Molecular gas dynamics approaches to interfacial phenomena accompanied with condensation. Exp. Therm. Fluid Sci. 30, 795-800].
International Nuclear Information System (INIS)
Vikas, Shailendra; Wood-Vasey, W. Michael; Lundgren, Britt; Ross, Nicholas P.; Myers, Adam D.; AlSayyad, Yusra; York, Donald G.; Schneider, Donald P.; Brinkmann, J.; Bizyaev, Dmitry; Brewington, Howard; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Daniel; Pan, Kaike; Snedden, Stephanie; Ge, Jian; Muna, Demitri; Pâris, Isabelle; Petitjean, Patrick
2013-01-01
We measure the two-point cross-correlation function of C IV absorber systems and quasars, using spectroscopic data from the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey (BOSS; Data Release 9). The 19,701 quasars and 6149 C IV ''moderate'' absorbers, 0.28 Å 2 and represent a factor of two increase in sample size over previous investigations. We find a correlation scale length and slope of the redshift-space cross-correlation function of s 0 = 8.46 ± 1.24 Mpc, γ = 1.68 ± 0.19, in the redshift-space range 10 0 = 7.76 ± 2.80 Mpc, γ = 1.74 ± 0.21. We measure the combined quasar and C IV bias to be b QSO b C I V = 8.81 ± 2.28. Using an estimate of b QSO from the quasar auto-correlation function we find b CIV = 2.38 ± 0.62. This b CIV implies that EW > 0.28 Å C IV absorbers at z ∼ 2.3 are typically found in dark matter halos that have masses ≥10 11.3 -10 13.4 M ☉ at that redshift. The complete BOSS sample will triple the number of both quasars and absorption systems and increase the power of this cross-correlation measurement by a factor of two.
Chang, E. I.; Pankow, J. F.
2010-06-01
Secondary organic aerosol (SOA) formation in the atmosphere is currently often modeled using a multiple lumped "two-product" (N·2p) approach. The N·2p approach neglects: 1) variation of activity coefficient (ζi) values and mean molecular weight solid #000; color: #000;">MW in the particulate matter (PM) phase; 2) water uptake into the PM; and 3) the possibility of phase separation in the PM. This study considers these effects by adopting an (N·2p)ζpsolid #000; color: #000;">MW,ζ approach (θ is a phase index). Specific chemical structures are assigned to 25 lumped SOA compounds and to 15 representative primary organic aerosol (POA) compounds to allow calculation of ζi and solid #000; color: #000;">MW values. The SOA structure assignments are based on chamber-derived 2p gas/particle partition coefficient values coupled with known effects of structure on vapor pressure pL,io (atm). To facilitate adoption of the (N·2p)ζpsolid #000; color: #000;">MW,θ approach in large-scale models, this study also develops CP-Wilson.1 (Chang-Pankow-Wilson.1), a group-contribution ζi-prediction method that is more computationally economical than the UNIFAC model of Fredenslund et al. (1975). Group parameter values required by CP-Wilson.1 are obtained by fitting ζi values to predictions from UNIFAC. The (N·2p)ζpsolid #000; color: #000;">MW,θ approach is applied (using CP-Wilson.1) to several real α-pinene/O3 chamber cases for high reacted hydrocarbon levels (ΔHC≈400 to 1000 μg m-3) when relative humidity (RH) ≍50%. Good agreement between the chamber and predicted results is obtained using both the (N·2p)ζpsolid #000; color: #000;">MW,θ and N·2p approaches, indicating relatively small water effects under these conditions. However, for a hypothetical α-pinene/O3 case at ΔHC=30 μg m-3 and RH=50%, the (N·2p)ζpsolid #000; color: #000;">MW,θ approach predicts that water uptake will lead to an organic PM level that is more double that predicted by the N·2p
Solar engineering - a condensed course
Energy Technology Data Exchange (ETDEWEB)
Broman, Lars
2011-11-15
The document represents the material covered in a condensed two-week course focusing on the most important thermal and PV solar energy engineering topics, while also providing some theoretical background.
Chiral thermodynamics of nuclear matter
Energy Technology Data Exchange (ETDEWEB)
Fiorilla, Salvatore
2012-10-23
The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.
Chiral thermodynamics of nuclear matter
International Nuclear Information System (INIS)
Fiorilla, Salvatore
2012-01-01
The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.
Energy Technology Data Exchange (ETDEWEB)
Bertone, Gianfranco [U. Amsterdam, GRAPPA; Hooper, Dan [Fermilab
2016-05-16
Although dark matter is a central element of modern cosmology, the history of how it became accepted as part of the dominant paradigm is often ignored or condensed into a brief anecdotical account focused around the work of a few pioneering scientists. The aim of this review is to provide the reader with a broader historical perspective on the observational discoveries and the theoretical arguments that led the scientific community to adopt dark matter as an essential part of the standard cosmological model.
Capillary Condensation in Confined Media
Charlaix, Elisabeth; Ciccotti, Matteo
2009-01-01
28 pages - To appear in 2010 in the Handbook of Nanophysics - Vol 1 - Edited by Klaus Sattler - CRC Press; We review here the physics of capillary condensation of liquids in confined media, with a special regard to the application in nanotechnologies. The thermodynamics of capillary condensation and thin film adsorption are first exposed along with all the relevant notions. The focus is then shifted to the modelling of capillary forces, to their measurements techniques (including SFA, AFM and...
Thermalization and Bose-Einstein Condensation in Overpopulated Glasma
International Nuclear Information System (INIS)
Blaizot, Jean-Paul; Gelis, François; Liao, Jinfeng; McLerran, Larry; Venugopalan, Raju
2013-01-01
We report recent progress on understanding the thermalization of the quark-gluon plasma during the early stage in a heavy ion collision. The initially high overpopulation in the far-from-equilibrium gluonic matter (“Glasma”) is shown to play a crucial role. The strongly interacting nature (and thus fast evolution) naturally arises as an emergent property of this pre-equilibrium matter where the intrinsic coupling is weak but the highly occupied gluon states coherently amplify the scattering. A possible transient Bose-Einstein Condensate is argued to form dynamically on a rather general ground. We develop a kinetic approach for describing its evolution toward thermalization as well as the onset of condensation
Thermalization and Bose-Einstein Condensation in Overpopulated Glasma
Energy Technology Data Exchange (ETDEWEB)
Blaizot, Jean-Paul; Gelis, François [Institut de Physique Théorique (URA 2306 du CNRS), CEA/DSM/Saclay, 91191, Gif-sur-Yvette Cedex (France); Liao, Jinfeng [Physics Department and CEEM, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); McLerran, Larry [Physics Department, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); Venugopalan, Raju [Physics Department, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States)
2013-05-02
We report recent progress on understanding the thermalization of the quark-gluon plasma during the early stage in a heavy ion collision. The initially high overpopulation in the far-from-equilibrium gluonic matter (“Glasma”) is shown to play a crucial role. The strongly interacting nature (and thus fast evolution) naturally arises as an emergent property of this pre-equilibrium matter where the intrinsic coupling is weak but the highly occupied gluon states coherently amplify the scattering. A possible transient Bose-Einstein Condensate is argued to form dynamically on a rather general ground. We develop a kinetic approach for describing its evolution toward thermalization as well as the onset of condensation.
Directory of Open Access Journals (Sweden)
E. I. Chang
2010-06-01
Full Text Available Secondary organic aerosol (SOA formation in the atmosphere is currently often modeled using a multiple lumped "two-product" (N·2p approach. The N·2p approach neglects: 1 variation of activity coefficient (ζ_{i} values and mean molecular weight MW in the particulate matter (PM phase; 2 water uptake into the PM; and 3 the possibility of phase separation in the PM. This study considers these effects by adopting an (N·2p^{ζpMW,ζ} approach (θ is a phase index. Specific chemical structures are assigned to 25 lumped SOA compounds and to 15 representative primary organic aerosol (POA compounds to allow calculation of ζ_{i} and MW values. The SOA structure assignments are based on chamber-derived 2p gas/particle partition coefficient values coupled with known effects of structure on vapor pressure p_{L,i}^{o} (atm. To facilitate adoption of the (N·2p^{ζpMW,θ} approach in large-scale models, this study also develops CP-Wilson.1 (Chang-Pankow-Wilson.1, a group-contribution ζ_{i}-prediction method that is more computationally economical than the UNIFAC model of Fredenslund et al. (1975. Group parameter values required by CP-Wilson.1 are obtained by fitting ζ_{i} values to predictions from UNIFAC. The (N·2p^{ζpMW,θ} approach is applied (using CP-Wilson.1 to several real α-pinene/O_{3} chamber cases for high reacted hydrocarbon levels (ΔHC≈400 to 1000 μg m^{−3} when relative humidity (RH ≈50%. Good agreement between the chamber and predicted results is
Charged condensate and helium dwarf stars
Energy Technology Data Exchange (ETDEWEB)
Gabadadze, Gregory; Rosen, Rachel A, E-mail: gg32@nyu.edu, E-mail: rar339@nyu.edu [Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY 10003 (United States)
2008-10-15
White dwarf stars composed of carbon, oxygen and heavier elements are expected to crystallize as they cool down below certain temperatures. Yet, simple arguments suggest that the helium white dwarf cores may not solidify, mostly because of zero-point oscillations of the helium ions that would dissolve the crystalline structure. We argue that the interior of the helium dwarfs may instead form a macroscopic quantum state in which the charged helium-4 nuclei are in a Bose-Einstein condensate, while the relativistic electrons form a neutralizing degenerate Fermi liquid. We discuss the electric charge screening, and the spectrum of this substance, showing that the bosonic long-wavelength fluctuations exhibit a mass gap. Hence, there is a suppression at low temperatures of the boson contribution to the specific heat-the latter being dominated by the specific heat of the electrons near the Fermi surface. This state of matter may have observational signatures.
Chiral condensates and QCD vacuum in two dimensions
International Nuclear Information System (INIS)
Christiansen, H.R.
1997-04-01
We analyze the chiral symmetries of flavored quantum chromodynamics in two dimensions and show the existence of the chiral condensates within the path-integral approach. The massless and massive cases are discussed as well,for arbitrary finite and infinite number of colors. Our results put forward the question of topological issues when matter is in the fundamental representation of the gauge group. (author)
Coupled Atom-Polar Molecule Condensate Systems: A Theoretical Adventure
2014-07-14
second uses the linear-response theory more familiar to people working in the �eld of condensed-matter physics. We have introduced a quasiparticle ...picture and found that in this picture the bare EIT model in Fig. 2 (a) can be compared to a double EIT system shown in Fig. 2 (b). The quasiparticle ...energy levels consists of a particle (with positive quasiparticle energy ) and a hole (with negative quasiparticle energy) branch. The double EIT
Direct Observation of Zitterbewegung in a Bose Einstein Condensate
2013-07-03
analogous to the Higgs mechanism where a Higgs condensate (a coherent matter wave) generates mass in the standard model [28].) The zitterbewegung of...directly realize Dirac– boson systems in the laboratory [12, 29], permitting access to new classes of experimental systems. Though BECs near these Dirac...http://www.njp.org/) 10 in an optical lattice, can stably populate these states [34, 35], for example leading to bosonic composite-fermion states [36, 37
Spin-Orbit Coupled Bose-Einstein Condensates
2016-11-03
21. "Many-body physics of spin-orbit-coupled quantum gases ," Invited talk at the March Meeting 2014 in Denver, Colorado (March, 2014) 22... properties of the fundamentally new class of coherent states of quantum matter that had been predicted by the PI and subsequently experimentally...Report Title This ARO research proposal entitled "SPIN-ORBIT COUPLED BOSE-EINSTEIN CONDENSATES" (SOBECs) explored properties of the fundamentally new
Dual chiral density wave in quark matter
International Nuclear Information System (INIS)
Tatsumi, Toshitaka
2002-01-01
We prove that quark matter is unstable for forming a dual chiral density wave above a critical density, within the Nambu-Jona-Lasinio model. Presence of a dual chiral density wave leads to a uniform ferromagnetism in quark matter. A similarity with the spin density wave theory in electron gas and the pion condensation theory is also pointed out. (author)
Dual approaches for defects condensation
Energy Technology Data Exchange (ETDEWEB)
Rougemont, Romulo; Grigorio, Leonardo de Souza; Wotzasek, Clovis [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Guimaraes, Marcelo Santos [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil)
2009-07-01
Full text. Due to the fact that the QCD running coupling constant becomes larger as we go into the low energy (or large distance) limit of the theory, a perturbative treatment of its infrared (IR) region is impossible. In particular, a formal mathematical demonstration of color confinement and a complete physical understanding of the exact mechanism that confines quarks and gluons are two missing points in our current knowledge of the IR-QCD. It was known that due to the Meissner effect of expulsion of magnetic fields in a electric condensate that usual superconductors should confine magnetic monopoles. That point led to the conjecture that the QCD vacuum could be a condensate of chromomagnetic monopoles, a dual superconductor (DSC). Such a chromomagnetic condensate should be responsible for the dual Meissner effect which is expected to lead to the confinement of color charges immersed in this medium. In dual superconductor models of color confinement, magnetic monopoles appear as topological defects in points of the space where the abelian projection becomes singular. Also, condensation of other kinds of defects such as vortices in superfluids and line-like defects in solids are responsible for a great variety of phase transitions, which once more proves the relevance of the subject. In the present work we review two methods that allow us to approach the condensation of defects: the Kleinert Mechanism (KM) and the Julia-Toulouse Mechanism (JTM). We show that in the limit where the vortex gauge field goes to zero, which we identify as the signature of the condensation of defects in the dual picture, these are two equivalent dual prescriptions for obtaining an effective theory for a phase where defects are condensed, starting from the fundamental theory defined in the normal phase where defects are diluted. (author)
Condensation: the new deal; Condensation: la nouvelle donne
Energy Technology Data Exchange (ETDEWEB)
NONE
2002-06-01
The principle of condensation boilers is based on the recovery of the latent heat of the steam generated by the combustion of natural gas. This technology was introduced in France at the end of the 80's but failed in its promise because of the complexity of the equipments available at that time. Today, constructors' offer is more mature and reliable and the context has changed. This technology can conciliate three goals: a mastery of energy consumptions, the comfort of the user and the respect of environment. This meeting organized by the research center of Gaz de France (Cegibat), was a good opportunity to makes a status of the market of individual condensation systems in France and in Europe, to present the situation of this technology today and the 10 golden rules for the fitting and maintenance of individual condensation boilers, and to present some technical references, examples and results of today's offer. (J.S.)
Research progress of control of condensate depression for condenser
Liu, Ying; Liang, Run; Li, Fengyu
2017-08-01
It is introduced that significance and structure of the condensate depression control system. In accordance with controller devised procedure, we analyze and elaborate how to construct the lumped parameter and dynamic mathematical model which possesses distinct physics significance. Neural network model being called black-box model is also introduced. We analyze and contrast the control technique of condensate depression as conventional PI control, fuzzy PI control and fuzzy control. It is indicated that if the controller of condensate depression were devised inappropriate, while the steam discharged of turbine varying by a large margin, would result in the rotation rate of cooling water circulating pump accelerating at a great lick even to trigger the galloping danger which is less impressive for the units operating safely.
DEFF Research Database (Denmark)
Lauridsen, Palle Schantz
2017-01-01
Kort analyse af Shakespeares Richard III med fokus på, hvordan denne skurk fremstilles, så tilskuere (og læsere) langt henad vejen kan føle sympati med ham. Med paralleller til Netflix-serien "House of Cards"......Kort analyse af Shakespeares Richard III med fokus på, hvordan denne skurk fremstilles, så tilskuere (og læsere) langt henad vejen kan føle sympati med ham. Med paralleller til Netflix-serien "House of Cards"...
DEFF Research Database (Denmark)
Frisvad, Jeppe Revall
Interaction of light and matter produces the appearance of materials. To deal with the immense complexity of nature, light and matter is modelled at a macroscopic level in computer graphics. This work is the first to provide the link between the microscopic physical theories of light and matter...... of a material and determine the contents of the material. The book is in four parts. Part I provides the link between microscopic and macroscopic theories of light. Part II describes how to use the properties of microscopic particles to compute the macroscopic properties of materials. Part III illustrates...
One-nucleon absorption of slow pions by atomic nuclei and π condensation
International Nuclear Information System (INIS)
Troitskij, M.A.; Koldaev, M.V.; Chekunaev, N.I.
1977-01-01
Solved is a problem of one-nucleon absorption of slow pions by real nuclei. Without ion condensate one-nucleon absorption forbiddenness decreases due to nucleus finiteness, as nucleus finiteness results in nucleon momentum nonconservation. As a result one-nucleon absorption probability differs from a zero and equals the order of 10 -3 . Calculated is one-nucleon absorption probability in nuclear matter as well as in atomic nuclei due to π condensate existence. The condensate part is shown to be considerable in a finite system as well. For heavy nuclei the condensate presence results in this probability increase about 100 times. Experiments on one-nucleon absorption of slow pions may be critical to elucidate a question of π condensate presence in nuclear systems. In conclusion experimental data available on pion absorption are discussed and it is paid attention to the necessity of carrying out further experiments
International Nuclear Information System (INIS)
Jordan, H.; Sack, C.
1975-05-01
This report gives a detailed description of the latest version of the PARDISEKO code, PARDISEKO III, with particular emphasis on the numerical and programming methods employed. The physical model and its relation to nuclear safety as well as a description and the results of confirming experiments are treated in detail in the Karlsruhe Nuclear Research Centre report KFK-1989. (orig.) [de
Condensational theory of stationary tornadoes
International Nuclear Information System (INIS)
Makarieva, A.M.; Gorshkov, V.G.; Nefiodov, A.V.
2011-01-01
Using the Bernoulli integral for air streamline with condensing water vapor a stationary axisymmetric tornado circulation is described. The obtained profiles of vertical, radial and tangential velocities are in agreement with observations for the Mulhall tornado, world's largest on record and longest-lived among the three tornadoes for which 3D velocity data are available. Maximum possible vortex velocities are estimated. -- Highlights: → Water vapor condensation causes a logarithmic drop of air pressure towards tornado center. → The first ever theoretical description of tornado velocities is obtained. → The maximum vortex velocity grows logarithmically with decreasing tornado eye radius. → Air motion with high velocities can only develop in sufficiently large condensation areas.
Dynamics of inhomogeneous chiral condensates
Carlomagno, Juan Pablo; Krein, Gastão; Kroff, Daniel; Peixoto, Thiago
2018-01-01
We study the dynamics of the formation of inhomogeneous chirally broken phases in the final stages of a heavy-ion collision, with particular interest on the time scales involved in the formation process. The study is conducted within the framework of a Ginzburg-Landau time evolution, driven by a free energy functional motivated by the Nambu-Jona-Lasinio model. Expansion of the medium is modeled by one-dimensional Bjorken flow and its effect on the formation of inhomogeneous condensates is investigated. We also use a free energy functional from a nonlocal Nambu-Jona-Lasinio model which predicts metastable phases that lead to long-lived inhomogeneous condensates before reaching an equilibrium phase with homogeneous condensates.
Scrutinizing the pion condensed phase
Energy Technology Data Exchange (ETDEWEB)
Carignano, Stefano; Mammarella, Andrea; Mannarelli, Massimo [INFN, Laboratori Nazionali del Gran Sasso, Assergi (Italy); Lepori, Luca [Universita di Padova, Dipartimento di Fisica e Astronomia, Padova (Italy); Universita dell' Aquila, Dipartimento di Scienze Fisiche e Chimiche, Coppito-L' Aquila (Italy); Pagliaroli, Giulia [INFN, Laboratori Nazionali del Gran Sasso, Assergi (Italy); Gran Sasso Science Institute, L' Aquila (Italy)
2017-02-15
When the isospin chemical potential exceeds the pion mass, charged pions condense in the zero-momentum state forming a superfluid. Chiral perturbation theory provides a very powerful tool for studying this phase. However, the formalism that is usually employed in this context does not clarify various aspects of the condensation mechanism and makes the identification of the soft modes problematic. We re-examine the pion condensed phase using different approaches within the chiral perturbation theory framework. As a first step, we perform a low-density expansion of the chiral Lagrangian valid close to the onset of the Bose-Einstein condensation. We obtain an effective theory that can be mapped to a Gross-Pitaevskii Lagrangian in which, remarkably, all the coefficients depend on the isospin chemical potential. The low-density expansion becomes unreliable deep in the pion condensed phase. For this reason, we develop an alternative field expansion deriving a low-energy Lagrangian analog to that of quantum magnets. By integrating out the ''radial'' fluctuations we obtain a soft Lagrangian in terms of the Nambu-Goldstone bosons arising from the breaking of the pion number symmetry. Finally, we test the robustness of the second-order transition between the normal and the pion condensed phase when next-to-leading-order chiral corrections are included. We determine the range of parameters for turning the second-order phase transition into a first-order one, finding that the currently accepted values of these corrections are unlikely to change the order of the phase transition. (orig.)
Mathematical models of granular matter
Mariano, Paolo; Giovine, Pasquale
2008-01-01
Granular matter displays a variety of peculiarities that distinguish it from other appearances studied in condensed matter physics and renders its overall mathematical modelling somewhat arduous. Prominent directions in the modelling granular flows are analyzed from various points of view. Foundational issues, numerical schemes and experimental results are discussed. The volume furnishes a rather complete overview of the current research trends in the mechanics of granular matter. Various chapters introduce the reader to different points of view and related techniques. New models describing granular bodies as complex bodies are presented. Results on the analysis of the inelastic Boltzmann equations are collected in different chapters. Gallavotti-Cohen symmetry is also discussed.
Minimum Leakage Condenser Test Program
International Nuclear Information System (INIS)
1978-05-01
This report presents the results and analysis of tests performed on four critical areas of large surface condensers: the tubes, tubesheets, tube/tubesheet joints and the water chambers. Significant changes in operation, service duty and the reliability considerations require that certain existing design criteria be verified and that improved design features be developed. The four critical areas were treated analytically and experimentally. The ANSYS finite element computer program was the basic analytical method and strain gages were used for obtaining experimental data. The results of test and analytical data are compared and recommendations made regarding potential improvement in condenser design features and analytical techniques
CERN. Geneva
2006-01-01
In my lecture series, I will present the recent spectacular advances in the field of quantum gases and macroscopic quantum physics. A variety of subjects will be covered including Bose condensates and degenerate Fermi gases, ultracold molecules and chemistry near absolute zero, Rydberg gases, single-atom manipulation, quantum information processing, as well as applications of cold atoms as precision targets. The topics of the lectures are: I. Physics near absolute zero II. Bose condensation and Fermi degeneracy III. Molecules, Rydberg gases and other exotic species IV. Single-atom manipulation, quantum information processing and ultracold atoms as targets in storage rings
Phase transitions in nuclear matter and consequences for neutron stars
International Nuclear Information System (INIS)
Kaempfer, B.
1983-04-01
Estimates of the minimal bombarding energy necessary to reach the quark gluon phase in heavy ion collisions are presented within a hydrodynamical scenario. Further, the consequences of first-order phase transitions from nuclear/neutron matter to pion-condensed matter or quark matter are discussed for neutron stars. (author)
ICTP Spring College in Condensed Matter on Superconductivity
Lu, Y
1995-01-01
This volume contains the lecture notes of the ""Spring College on Superconductivity"" held from 27 April to 19 June 1992 at ICTP. The distinguished faculty of lecturers has provided a wide coverage of topics on the fascinating subject of superconductivity, ranging from basic physics to the latest developments. The comprehensive reviews included in this volume will prove invaluable for research workers and graduate students in the field.
Femtosecond X-ray scattering in condensed matter
Energy Technology Data Exchange (ETDEWEB)
Korff Schmising, Clemens von
2008-11-24
This thesis investigates the manifold couplings between electronic and structural properties in crystalline Perovskite oxides and a polar molecular crystal. Ultrashort optical excitation changes the electronic structure and the dynamics of the connected reversible lattice rearrangement is imaged in real time by femtosecond X-ray scattering experiments. An epitaxially grown superlattice consisting of alternating nanolayers of metallic and ferromagnetic strontium ruthenate (SRO) and dielectric strontium titanate serves as a model system to study optically generated stress. In the ferromagnetic phase, phonon-mediated and magnetostrictive stress in SRO display similar sub-picosecond dynamics, similar strengths but opposite sign and different excitation spectra. The amplitude of the magnetic component follows the temperature dependent magnetization square, whereas the strength of phononic stress is determined by the amount of deposited energy only. The ultrafast, phonon-mediated stress in SRO compresses ferroelectric nanolayers of lead zirconate titanate in a further superlattice system. This change of tetragonal distortion of the ferroelectric layer reaches up to 2 percent within 1.5 picoseconds and couples to the ferroelectric soft mode, or ion displacement within the unit cell. As a result, the macroscopic polarization is reduced by up to 100 percent with a 500 femtosecond delay that is due to final elongation time of the two anharmonically coupled modes. Femtosecond photoexcitation of organic chromophores in a molecular, polar crystal induces strong changes of the electronic dipole moment via intramolecular charge transfer. Ultrafast changes of transmitted X-ray intensity evidence an angular rotation of molecules around excited dipoles following the 10 picosecond kinetics of the charge transfer reaction. Transient X-ray scattering is governed by solvation, masking changes of the chromophore's molecular structure. (orig.)
PSI condensed matter research and material sciences progress report 1990
International Nuclear Information System (INIS)
Gaeggeler, H.W.; Lorenzen, R.
1991-01-01
A brief overview is given of the research performed in 1990 at PSI's research department F3 in the fields of muon spectroscopy, neutron scattering, accelerator mass spectroscopy, applied and technical physics, geochemistry, trace elements, aerosol chemistry, heavy elements, defect physics, PIREX and spallation neutron source project. figs., tabs., refs
Twentieth ANZIP condensed matter physics meeting. Conference handbook
Energy Technology Data Exchange (ETDEWEB)
NONE
1996-12-31
Theoretical and experimental short communications included in these proceedings cover recent achievements in high temperatures superconductivity, superconducting devices, nuclear techniques in studies of the structure of solids, lattice models and dynamics, physics studies of surfaces, interfaces and thin films. Separate abstracts have been prepared for 180 items in INIS scope
Linear and non-linear optics of condensed matter
International Nuclear Information System (INIS)
McLean, T.P.
1977-01-01
Part I - Linear optics: 1. General introduction. 2. Frequency dependence of epsilon(ω, k vector). 3. Wave-vector dependence of epsilon(ω, k vector). 4. Tensor character of epsilon(ω, k vector). Part II - Non-linear optics: 5. Introduction. 6. A classical theory of non-linear response in one dimension. 7. The generalization to three dimensions. 8. General properties of the polarizability tensors. 9. The phase-matching condition. 10. Propagation in a non-linear dielectric. 11. Second harmonic generation. 12. Coupling of three waves. 13. Materials and their non-linearities. 14. Processes involving energy exchange with the medium. 15. Two-photon absorption. 16. Stimulated Raman effect. 17. Electro-optic effects. 18. Limitations of the approach presented here. (author)
Inelastic scattering in condensed matter with high intensity Moessbauer radiation
International Nuclear Information System (INIS)
Yelon, W.B.; Schupp, G.
1993-02-01
The QUEGS facility at MURR has produced a number of new results and demonstrated the range of potential applications of high resolution, high intensity Moessbauer scattering. This work has been carried out by both MU and Purdue researchers and includes published results on Na, W, pentadecane, polydimethylsiloxane and other systems, manuscripts submitted on alkali halides (Phys. Rev. B) and accurate Moessbauer lineshape measurements (Phys. Rev. C), and manuscripts in preparation on glycerol, NiAl and Moessbauer spectra obtained by modulating a scattering crystal. Recently, new collaborations have been initiated which will substantially enhance our efforts. These are with W. Steiner (Vienna), G. Coddens (Saclay), and R. D. Taylor (Los Alamos). Steiner is experienced with Fe-57 Moessbauer scattering, while Coddens specializes in quasielastic neutron scattering; both of these areas naturally complement our work. R. D. Taylor has pioneered Moessbauer spectroscopy from the time of its discovery and has already made important contributions to our study of lattice dynamics and superconductivity for lead alloyed with small quantities of tin. At the same time, a significant instrument upgrade is underway, funded in part by the DOE-URIP program
Magnetic field and screening effects in condensed and ultradense matter
International Nuclear Information System (INIS)
Roussel, K.M.
1974-01-01
The investigations of three topics are presented: the origin of magnetic fields in white dwarfs and neutron stars, the detection of magnetic fields in white dwarfs, and screening effects due to free charged particles, particularly in semiconductors. (U.S.)
Neutrons: The kinder, gentler probe of condensed matter
International Nuclear Information System (INIS)
Axe, J.D.
1989-01-01
Neutrons play an increasingly important role in the characterization of advanced modern materials. They provide information that complements rather than competes with that provided by other scattering probes. Although neutrons require heroic efforts to produce, the techniques for using them are not particularly difficult, and with the advent of sufficient user friendly facilities, are becoming a routine tool in the arsenal of expanding numbers of materials scientists. 10 refs., 5 figs
Electronic and ionic ordering in condensed matter plasmas
International Nuclear Information System (INIS)
March, N.H.
1981-01-01
Recent progress in treating phase transitions induced by Coulomb interactions is reviewed. This is done by appealing to simple models, and in particular to the one-component plasma, with its quantum-mechanical counterpart jellium. The relevance of the phase transition, to a body-centred-cubic crystal in the classical one-component plasma, to the freezing of liquid metals Na and K is stressed. By generalizing these arguments to a two-component system, regularities in the freezing of the molten alkali halides are understandable. Sublattice disorder in superionics, driven by Coulomb forces, is then discussed. Finally, the ordering of electrons in jellium, in the limit of complete degeneracy, is considered: evidence being presented for the existence of electron liquids in molten Na and K. (author)
Twentieth ANZIP condensed matter physics meeting. Conference handbook
Energy Technology Data Exchange (ETDEWEB)
NONE
1997-12-31
Theoretical and experimental short communications included in these proceedings cover recent achievements in high temperatures superconductivity, superconducting devices, nuclear techniques in studies of the structure of solids, lattice models and dynamics, physics studies of surfaces, interfaces and thin films. Separate abstracts have been prepared for 180 items in INIS scope
32. Brazilian meeting on condensed matter physics. Book of abstracts
International Nuclear Information System (INIS)
2009-01-01
Theoretical and experimental papers are presented in these proceedings approaching the following subjects: X-radiation, quantitative and qualitative analysis, molecular biology, magnetism, superconductivity, crystallography, and oxides
Condensed matter applications of AdS/CFT (II)
CERN. Geneva
2009-01-01
AdS/CFT. Holographic superconductors will be discussed. The lectures will conclude with a discussion of open questions and future directions. References: - Holographic Superconductors. Sean A. Hartnoll, Christopher P. Herzog, Gary T. Horowitz, JHEP 0812:015,2008, arXiv:0810.1563 [hep-th] - Ohm's Law at strong coupling: S duality and the cyclotron resonance, Sean A. Hartnoll, Christopher P. Herzog, Phys.Rev.D76:106012,2007, arXiv:0706.3228 [hep-th] - Gravity duals for non-relativistic CFTs. Koushik Balasubramanian, John McGreevy, Phys.Rev.Lett.101:061601,2008, arXiv:0804.4053 [hep-th] - Toward an AdS/cold atoms correspondence: A Geometric realization of the Schrodinger symmetry. D.T. Son, Phys.Rev.D78:0...
Condensed matter applications of AdS/CFT (IV)
CERN. Geneva
2009-01-01
AdS/CFT. Holographic superconductors will be discussed. The lectures will conclude with a discussion of open questions and future directions. References: - Holographic Superconductors. Sean A. Hartnoll, Christopher P. Herzog, Gary T. Horowitz, JHEP 0812:015,2008, arXiv:0810.1563 [hep-th] - Ohm's Law at strong coupling: S duality and the cyclotron resonance, Sean A. Hartnoll, Christopher P. Herzog, Phys.Rev.D76:106012,2007, arXiv:0706.3228 [hep-th] - Gravity duals for non-relativistic CFTs. Koushik Balasubramanian, John McGreevy, Phys.Rev.Lett.101:061601,2008, arXiv:0804.4053 [hep-th] - Toward an AdS/cold atoms correspondence: A Geometric realization of the Schrodinger symmetry. D.T. Son, Phys.Rev.D78:0...
Ultrasonic spectroscopy applications in condensed matter physics and materials science
Leisure, Robert G
2017-01-01
Ultrasonic spectroscopy is a technique widely used in solid-state physics, materials science, and geology that utilizes acoustic waves to determine fundamental physical properties of materials, such as their elasticity and mechanical energy dissipation. This book provides complete coverage of the main issues relevant to the design, analysis, and interpretation of ultrasonic experiments. Topics including elasticity, acoustic waves in solids, ultrasonic loss, and the relation of elastic constants to thermodynamic potentials are covered in depth. Modern techniques and experimental methods including resonant ultrasound spectroscopy, digital pulse-echo, and picosecond ultrasound are also introduced and reviewed. This self-contained book includes extensive background theory and is accessible to students new to the field of ultrasonic spectroscopy, as well as to graduate students and researchers in physics, engineering, materials science, and geophysics.
Twentieth ANZIP condensed matter physics meeting. Conference handbook
International Nuclear Information System (INIS)
1996-01-01
Theoretical and experimental short communications included in these proceedings cover recent achievements in high temperatures superconductivity, superconducting devices, nuclear techniques in studies of the structure of solids, lattice models and dynamics, physics studies of surfaces, interfaces and thin films. Separate abstracts have been prepared for 180 items in INIS scope
A pulsed neutron facility for condensed matter research
International Nuclear Information System (INIS)
Hobbis, L.C.W.; Rees, G.H.; Stirling, G.C.
1977-06-01
The scientific and technical basis of the project is presented, as follows: broad synopsis of the proposal for a spallation neutron facility; description of neutron scattering and current work in the UK; scientific applications of the Spallation Neutron Source; discussion of various types of neutron sources; outline description of the SNS and its neutron performance parameters; appendix dealing in more detail with utilization (solid state physics, fluids and amorphous solids, structure determination, molecular and biological sciences); appendix dealing in more detail with the project design (800 MeV synchrotron, target station, shielding, radioactivity and radiation damage, utilization, overall programme). (U.K.)
[X-ray diffraction experiments with condenser matter
International Nuclear Information System (INIS)
Coppens, P.
1990-01-01
This report discusses research on the following topics: high-T c superconductors; The response of crystal to an applied electric field; quasicrystals; surface structure and kinetics of surface layer formation; EXAFS studies of superconductors and heterostructures; effect of iron on the crystal structure of perovskite; x-ray detector development; and SAXS experiments
Polyacetylene: a real material linking condensed matter and field theory
International Nuclear Information System (INIS)
Campbell, D.K.
1981-01-01
One of the most active subjects of recent research at the interface between field theory and statistical mechanics concerns a real material that seems more properly to belong to the arcana of organic chemistry than to either field theory or statistical methanics. The material is polyacetylene ((CH)/sub x/), a quasi-one dimensional organic polymer with some very interesting and potentially exotic properties. In this discussion, a pedagogical introduction is given to some of the recent theoretical studies of polyacetylene to convey some of the reasons for the intense excitement in this area
Inelastic scattering in condensed matter with high intensity Moessbauer radiation
International Nuclear Information System (INIS)
Yelon, W.B.; Schupp, G.
1990-10-01
We give a progress report for the work which has been carried out in the last three years with DOE support. A facility for high-intensity Moessbauer scattering is now fully operational at the University of Missouri Research Reactor (MURR) as well as facility at Purdue, using special isotopes produced at MURR. High precision, fundamental Moessbauer effect studies have been carried out using scattering to filter the unwanted radiation. These have led to a new Fourier transform method for describing Moessbauer effect (ME) lineshape and a direct method of fitting ME data to the convolution integral. These methods allow complete correction for source resonance self absorption (SRSA) and the accurate representation of interference effects that add an asymmetric component to the ME lines. We have begun applying these techniques to attenuated ME sources whose central peak has been attenuated by stationary resonant absorbers, to more precisely determine interference parameters and line-shape behavior in the resonance asymptotic region. This analysis is important to both the fundamental ME studies and to scattering studies for which a deconvolution is essential for extracting the correct recoilless fractions and interference parameters. A number of scattering studies have been successfully carried out including a study of the thermal diffuse scattering in Si, which led to an analysis of the resolution function for gamma-ray scattering. Also studied was the anharmonic motion in Na and the satellite reflection Debye-Waller factor in TaS 2 , which indicate phason rather than phonon behavior. We have begun quasielastic diffusion studies in viscous liquids and current results are summarized. These advances, coupled to our improvements in MIcrofoil Conversion Electron spectroscopy lay the foundation for the proposed research outlined in this request for a three-year renewal of DOE support
Gamma scattering in condensed matter with high intensity Moessbauer radiation
International Nuclear Information System (INIS)
1990-01-01
We give a progress report for the work which has been carried out in the last three years with DOE support. A facility for high-intensity Moessbauer scattering is now fully operational at the University of Missouri Research Reactor (MURR) as well as a facility at Purdue, using special isotopes produced at MURR. High precision, fundamental Moessbauer effect studies have been carried out using scattering to filter the unwanted radiation. These have led to a new Fourier transform method for describing Moessbauer effect (ME) lineshape and a direct method of fitting ME data to the convolution integral. These methods allow complete correction for source resonance self absorption (SRSA) and the accurate representation of interference effects that add an asymmetric component to the ME lines. We have begun applying these techniques to attenuated ME sources whose central peak has been attenuated by stationary resonant absorbers, to more precisely determine interference parameters and line-shape behavior in the resonance asymptotic region. This analysis is important to both the fundamental ME studies and to scattering studies for which a deconvolution is essential for extracting the correct recoilless fractions and interference parameters. A number of scattering studies have been successfully carried out including a study of the thermal diffuse scattering in Si, which led to an analysis of the resolution function for gamma-ray scattering. Also studied was the anharmonic motion in Na and the satellite reflection Debye-Waller factor in TaS 2 , which indicate phason rather than phonon behavior. We have begun quasielastic diffusion studies in viscous liquids and current results are summarized. These advances, coupled to our improvements in MIcrofoil Conversion Electron spectroscopy lay the foundation for the proposed research outlined in this request for a three-year renewal of DOE support
Inelastic scattering in condensed matter with high intensity moessbauer radiation
International Nuclear Information System (INIS)
Yelon, W.B.; Schupp, G.
1991-05-01
We give a progress report for the work which has been carried out in the last three years with DOE support. A facility for high-intensity Moessbauer scattering is not fully operational at the University of Missouri Research Reactor (MURR) as well as a facility at Purdue, using special isotopes produced at MURR. High precision, fundamental Moessbauer effect studies have been carried out using Bragg scattering filters to suppress unwanted radiation. These have led to a Fourier transform method for describing Moessbauer effect (ME) lineshape and a direct method of fitting ME data to the convolution integral. These methods allow complete correction for source resonance self absorption and the accurate representation of interference effects that add an asymmetric component to the ME lines. We have begun applying these techniques to attenuated ME sources whose central peak has been attenuated by stationary resonant absorbers, to make a novel independent determination of interference parameters and line-shape behavior in the resonance asymptotic region. This analysis is important to both fundamental ME studies and to scattering studies for which a deconvolution is essential for extracting the correct recoilless fractions and interference parameters. A number of scattering studies have been successfully carried out including a study of the thermal diffuse scattering in Si, which led to an analysis of the resolution function for gamma-ray scattering. Also studied was the anharmonic motion in Na metal and the charge density wave satellite reflection Debye-Waller factor in TaS 2 , which indicate phason rather than phonon behavior. Using a specially constructed sample cell which enables us to vary temperatures from -10 C to 110 C, we have begun quasielastic diffusion studies in viscous liquids and current results are summarized. Included are the temperature and Q dependence of the scattering in pentadecane and diffusion in glycerol
Electron spectroscopy for atoms, molecules and condensed matter
International Nuclear Information System (INIS)
Siegbahn, K.
1981-12-01
A review is given of the research performed at the Institute of Physics, Uppsala under the direction of Prof. Siegbahn. in the field of electron spectroscopy applied to solids, liquids and gases. The developemnt of the spectroscopic methods is the central theme of the review. (L.E.)
Department F3. Condensed matter research and materials sciences
International Nuclear Information System (INIS)
Gaeggeler, H.W.
1989-07-01
The report deals with work done during 1988 in the field of muon spectroscopy, neutron scattering, spallation neutron source SINQ, cryogenic detectors, accelerator mass spectrometry, geochemistry, trace elements, aerosol chemistry, heavy elements, cement products, defect physics, irradiation damages in fusion reactor materials, and superconductivity. 111 figs., 19 tabs., 321 refs
Proceedings of the 10. National Meeting on Condensed Matter Physics
International Nuclear Information System (INIS)
1987-01-01
Papers on: amorphous materials; atomic and molecular physics; biophysics; crystallography; defects, growth and characterization of crystals; statistical physics; instrumentation; liquid crystals; magnetism; science of materials/mechanical properties; metals and alloys; optic; magnetic resonance; and semiconductors are presented. (M.C.K.) [pt
Predictions of the entropies of molecules and condensed matter
International Nuclear Information System (INIS)
Blander, M.; Stover, C.R.
1992-01-01
In this paper, we discuss a statistical mechanical theory for calculating the standard nonelectronic entropies (S O T ) and free energy functions [(G O T --H O 298 )/T] of substances at high temperatures. These quantities are important and are often the only unknown data necessary for determining free energies of compounds, which is necessary for the calculation of chemical and phase equilibria. This lack of data is particularly significant at high temperatures that are important in the genesis of magmas and metamorphic rocks. Accurate enthalpies of formation of compounds are relatively easy to measure calorimetrically. In order to calculate the free energies of compounds from enthalpies of formation at different temperatures, one needs a knowledge of the entropies as a function of temperature. On the other hand, with a knowledge of the free energy functions of a compound as a function of temperature, one needs only a single measurement of the enthalpy of formation of that compound to determine the free energies over a range of temperatures. Thus, since there are very many substances for which such enthalpies of formation are the only known thermodynamic data, a major expansion of standard tables of free energies of formation is possible if one can predict entropies or free energy functions for these substances