Ross, Ashley J; Chuang, Chia-Hsun; Pellejero-Ibanez, Marcos; Seo, Hee-Jong; Vargas-Magana, Mariana; Cuesta, Antonio J; Percival, Will J; Burden, Angela; Sanchez, Ariel G; Grieb, Jan Niklas; Reid, Beth; Brownstein, Joel R; Dawson, Kyle S; Eisenstein, Daniel J; Ho, Shirley; Kitaura, Francisco-Shu; Nichol, Robert C; Olmstead, Matthew D; Prada, Francisco; Rodriguez-Torres, Sergio A; Saito, Shun; Salazar-Albornoz, Salvador; Schneider, Donald P; Thomas, Daniel; Tinker, Jeremy; Tojeiro, Rita; Wang, Yuting; White, Martin; Zhao, Gong-bo
2016-01-01
We present baryon acoustic oscillation (BAO) scale measurements determined from the clustering of 1.2 million massive galaxies with redshifts 0.2 < z < 0.75 distributed over 9300 square degrees, as quantified by their redshift-space correlation function. In order to facilitate these measurements, we define, describe, and motivate the selection function for galaxies in the final data release (DR12) of the SDSS III Baryon Oscillation Spectroscopic Survey (BOSS). This includes the observational footprint, masks for image quality and Galactic extinction, and weights to account for density relationships intrinsic to the imaging and spectroscopic portions of the survey. We simulate the observed systematic trends in mock galaxy samples and demonstrate that they impart no bias on baryon acoustic oscillation (BAO) scale measurements and have a minor impact on the recovered statistical uncertainty. We measure transverse and radial BAO distance measurements in 0.2 < z < 0.5, 0.5 < z < 0.75, and (overla...
Anderson, Lauren; Bailey, Stephen; Beutler, Florian; Bhardwaj, Vaishali; Blanton, Michael; Bolton, Adam S; Brinkmann, J; Brownstein, Joel R; Burden, Angela; Chuang, Chia-Hsun; Cuesta, Antonio J; Dawson, Kyle S; Eisenstein, Daniel J; Escoffier, Stephanie; Gunn, James E; Guo, Hong; Ho, Shirley; Honscheid, Klaus; Howlett, Cullan; Kirkby, David; Lupton, Robert H; Manera, Marc; Maraston, Claudia; McBride, Cameron K; Mena, Olga; Montesano, Francesco; Nichol, Robert C; Nuza, Sebastian E; Olmstead, Matthew D; Padmanabhan, Nikhil; Palanque-Delabrouille, Nathalie; Parejko, John; Percival, Will J; Petitjean, Patrick; Prada, Francisco; Price-Whelan, Adrian M; Reid, Beth; Roe, Natalie A; Ross, Ashley J; Ross, Nicholas P; Sabiu, Cristiano G; Saito, Shun; Samushia, Lado; Sanchez, Ariel G; Schlegel, David J; Schneider, Donald P; Scoccola, Claudia G; Seo, Hee-Jong; Skibba, Ramin A; Strauss, Michael A; Swanson, Molly E C; Thomas, Daniel; Tinker, Jeremy L; Tojeiro, Rita; Magana, Mariana Vargas; Verde, Licia; Wake, David A; Weaver, Benjamin A; Weinberg, David H; White, Martin; Xu, Xiaoying; Yeche, Christophe; Zehavi, Idit; Zhao, Gong-Bo
2013-01-01
We present a one per cent measurement of the cosmic distance scale from the detections of the baryon acoustic oscillations in the clustering of galaxies from the Baryon Oscillation Spectroscopic Survey (BOSS), which is part of the Sloan Digital Sky Survey III (SDSS-III). Our results come from the Data Release 11 (DR11) sample, containing nearly one million galaxies and covering approximately 8500 square degrees and the redshift range $0.2
Anderson, Lauren; Bailey, Stephen; Bizyaev, Dmitry; Blanton, Michael; Bolton, Adam S; Brinkmann, J; Brownstein, Joel R; Burden, Angela; Cuesta, Antonio J; da Costa, Luiz N A; Dawson, Kyle S; de Putter, Roland; Eisenstein, Daniel J; Gunn, James E; Guo, Hong; Hamilton, Jean-Christophe; Harding, Paul; Ho, Shirley; Honscheid, Klaus; Kazin, Eyal; Kirkby, D; Kneib, Jean-Paul; Labatie, Antione; Loomis, Craig; Lupton, Robert H; Malanushenko, Elena; Malanushenko, Viktor; Mandelbaum, Rachel; Manera, Marc; Maraston, Claudia; McBride, Cameron K; Mehta, Kushal T; Mena, Olga; Montesano, Francesco; Muna, Demetri; Nichol, Robert C; Nuza, Sebastian E; Olmstead, Matthew D; Oravetz, Daniel; Padmanabhan, Nikhil; Palanque-Delabrouille, Nathalie; Pan, Kaike; Parejko, John; Paris, Isabelle; Percival, Will J; Petitjean, Patrick; Prada, Francisco; Reid, Beth; Roe, Natalie A; Ross, Ashley J; Ross, Nicholas P; Samushia, Lado; Sanchez, Ariel G; Schneider, David J Schlegel Donald P; Scoccola, Claudia G; Seo, Hee-Jong; Sheldon, Erin S; Simmons, Audrey; Skibba, Ramin A; Strauss, Michael A; Swanson, Molly E C; Thomas, Daniel; Tinker, Jeremy L; Tojeiro, Rita; Magana, Mariana Vargas; Verde, Licia; Wagner, Christian; Wake, David A; Weaver, Benjamin A; Weinberg, David H; White, Martin; Xu, Xiaoying; Yeche, Christophe; Zehavi, Idit; Zhao, Gong-Bo
2012-01-01
We present measurements of galaxy clustering from the Baryon Oscillation Spectroscopic Survey (BOSS), which is part of the Sloan Digital Sky Survey III (SDSS-III). These use the Data Release 9 (DR9) CMASS sample, which contains 264,283 massive galaxies covering 3275 square degrees with an effective redshift z=0.57 and redshift range 0.43 < z < 0.7. Assuming a concordance Lambda-CDM cosmological model, this sample covers an effective volume of 2.2 Gpc^3, and represents the largest sample of the Universe ever surveyed at this density, n = 3 x 10^-4 h^-3 Mpc^3. We measure the angle-averaged galaxy correlation function and power spectrum, including density-field reconstruction of the baryon acoustic oscillation (BAO) feature. The acoustic features are detected at a significance of 5\\sigma in both the correlation function and power spectrum. Combining with the SDSS-II Luminous Red Galaxy Sample, the detection significance increases to 6.7\\sigma. Fitting for the position of the acoustic features measures the ...
Beutler, Florian; Ross, Ashley J; McDonald, Patrick; Saito, Shun; Bolton, Adam S; Brownstein, Joel R; Chuang, Chia-Hsun; Cuesta, Antonio J; Eisenstein, Daniel J; Font-Ribera, Andreu; Grieb, Jan Niklas; Hand, Nick; Kitaura, Francisco-Shu; Modi, Chirag; Nichol, Robert C; Percival, Will J; Prada, Francisco; Rodriguez-Torres, Sergio; Roe, Natalie A; Ross, Nicholas P; Salazar-Albornoz, Salvador; Sánchez, Ariel G; Schneider, Donald P; Slosar, Anže; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magaña, Mariana; Vazquez, Jose A
2016-01-01
We analyse the Baryon Acoustic Oscillation (BAO) signal of the final Baryon Oscillation Spectroscopic Survey (BOSS) data release (DR12). Our analysis is performed in Fourier-space, using the power spectrum monopole and quadrupole. The dataset includes $1\\,198\\,006$ galaxies over the redshift range $0.2 < z < 0.75$. We divide this dataset into three (overlapping) redshift bins with the effective redshifts $\\zeff = 0.38$, $0.51$ and $0.61$. We demonstrate the reliability of our analysis pipeline using N-body simulations as well as $\\sim 1000$ MultiDark-Patchy mock catalogues, which mimic the BOSS-DR12 target selection. We apply density field reconstruction to enhance the BAO signal-to-noise ratio. By including the power spectrum quadrupole we can separate the line-of-sight and angular modes, which allows us to constrain the angular diameter distance $D_A(z)$ and the Hubble parameter $H(z)$ separately. We obtain two independent $1.6\\%$ and $1.5\\%$ constraints on $D_A(z)$ and $2.9\\%$ and $2.3\\%$ constraints...
Vargas-Magaña, Mariana; Cuesta, Antonio J; O'Connell, Ross; Ross, Ashley J; Eisenstein, Daniel J; Percival, Will J; Grieb, Jan Niklas; Sánchez, Ariel G; Tinker, Jeremy L; Tojeiro, Rita; Beutler, Florian; Chuang, Chia-Hsun; Kitaura, Francisco-Shu; Prada, Francisco; Rodríguez-Torres, Sergio A; Rossi, Graziano; Seo, Hee-Jong; Brownstein, Joel R; Olmstead, Matthew; Thomas, Daniel
2016-01-01
We investigate the potential sources of theoretical systematics in the anisotropic Baryon Acoustic Oscillation (BAO) distance scale measurements from the clustering of galaxies in configuration space using the final Data Release (DR12) of the Baryon Oscillation Spectroscopic Survey (BOSS). We perform a detailed study of the impact on BAO measurements from choices in the methodology such as fiducial cosmology, clustering estimators, random catalogues, fitting templates, and covariance matrices. The theoretical systematic uncertainties in BAO parameters are found to be 0.002 in in the isotropic dilation $\\alpha$ and 0.003 in in the quadrupolar dilation $\\epsilon$. We also present BAO-only distance scale constraints from the anisotropic analysis of the correlation function. Our constraints on the angular diameter distance $D_A(z)$ and the Hubble parameter $H(z)$ including both statistical and theoretical systematic uncertainties are 1.5% and 2.8% at $z_{\\rm eff}=0.38$, 1.4% and 2.4% at $z_{\\rm eff}=0.51$, and 1....
Beutler, Florian; Seo, Hee-Jong; Ross, Ashley J.; McDonald, Patrick; Saito, Shun; Bolton, Adam S.; Brownstein, Joel R.; Chuang, Chia-Hsun; Cuesta, Antonio J.; Eisenstein, Daniel J.; Font-Ribera, Andreu; Grieb, Jan Niklas; Hand, Nick; Kitaura, Francisco-Shu; Modi, Chirag; Nichol, Robert C.; Percival, Will J.; Prada, Francisco; Rodriguez-Torres, Sergio; Roe, Natalie A.; Ross, Nicholas P.; Salazar-Albornoz, Salvador; Sánchez, Ariel G.; Schneider, Donald P.; Slosar, Anže; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magaña, Mariana; Vazquez, Jose A.
2017-01-01
We analyse the baryon acoustic oscillation (BAO) signal of the final Baryon Oscillation Spectroscopic Survey (BOSS) data release (DR12). Our analysis is performed in the Fourier space, using the power spectrum monopole and quadrupole. The data set includes 1198 006 galaxies over the redshift range 0.2 < z < 0.75. We divide this data set into three (overlapping) redshift bins with the effective redshifts zeff = 0.38, 0.51 and 0.61. We demonstrate the reliability of our analysis pipeline using N-body simulations as well as ˜1000 MultiDark-Patchy mock catalogues that mimic the BOSS-DR12 target selection. We apply density field reconstruction to enhance the BAO signal-to-noise ratio. By including the power spectrum quadrupole we can separate the line of sight and angular modes, which allows us to constrain the angular diameter distance DA(z) and the Hubble parameter H(z) separately. We obtain two independent 1.6 and 1.5 per cent constraints on DA(z) and 2.9 and 2.3 per cent constraints on H(z) for the low (zeff = 0.38) and high (zeff = 0.61) redshift bin, respectively. We obtain two independent 1 and 0.9 per cent constraints on the angular averaged distance DV(z), when ignoring the Alcock-Paczynski effect. The detection significance of the BAO signal is of the order of 8σ (post-reconstruction) for each of the three redshift bins. Our results are in good agreement with the Planck prediction within Λ cold dark matter. This paper is part of a set that analyses the final galaxy clustering data set from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. to produce the final cosmological constraints from BOSS.
Ross, Ashley J.; Beutler, Florian; Chuang, Chia-Hsun; Pellejero-Ibanez, Marcos; Seo, Hee-Jong; Vargas-Magaña, Mariana; Cuesta, Antonio J.; Percival, Will J.; Burden, Angela; Sánchez, Ariel G.; Grieb, Jan Niklas; Reid, Beth; Brownstein, Joel R.; Dawson, Kyle S.; Eisenstein, Daniel J.; Ho, Shirley; Kitaura, Francisco-Shu; Nichol, Robert C.; Olmstead, Matthew D.; Prada, Francisco; Rodríguez-Torres, Sergio A.; Saito, Shun; Salazar-Albornoz, Salvador; Schneider, Donald P.; Thomas, Daniel; Tinker, Jeremy; Tojeiro, Rita; Wang, Yuting; White, Martin; Zhao, Gong-bo
2017-01-01
We present baryon acoustic oscillation (BAO) scale measurements determined from the clustering of 1.2 million massive galaxies with redshifts 0.2 image quality and Galactic extinction, and weights to account for density relationships intrinsic to the imaging and spectroscopic portions of the survey. We simulate the observed systematic trends in mock galaxy samples and demonstrate that they impart no bias on BAO scale measurements and have a minor impact on the recovered statistical uncertainty. We measure transverse and radial BAO distance measurements in 0.2 < z < 0.5, 0.5 < z < 0.75, and (overlapping) 0.4 < z < 0.6 redshift bins. In each redshift bin, we obtain a precision that is 2.7 per cent or better on the radial distance and 1.6 per cent or better on the transverse distance. The combination of the redshift bins represents 1.8 per cent precision on the radial distance and 1.1 per cent precision on the transverse distance. This paper is part of a set that analyses the final galaxy clustering data set from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. to produce the final cosmological constraints from BOSS.
Gaztañaga, E; Castander, F; Crocce, M; Fosalba, P
2008-01-01
We present the 3-point function $\\xi_3$ and $Q_3=\\xi_3/\\xi_2^2$ for a spectroscopic volume limited sample of 40,000 luminous red galaxies (LRG) from the Sloan Digital Sky Survey DR6. We find a strong (S/N>6) detection of Q_3 on scales of 55-125 Mpc/h, with a well defined peak around 105 Mpc/h in all $\\xi_2$, $\\xi_3$ and Q_3, in excellent agreement with the predicted shape and location of the imprint of the baryon acoustic oscillations (BAO). We use very large simulations (from a cubic box of L=7680 Mpc/h) to asses and test the significance of our measurement. This detection demonstrates the non-linear growth of structure by gravitational instability between z=1000 and the present. Our measurements show the expected shape for Q_3 as a function of the triangular configuration. This provides a first direct measurement of the non-linear mode coupling coefficients of density and velocity fluctuations which, on these large scales, are independent of cosmic time, the amplitude of fluctuations or cosmological paramet...
Soumagnac, M T; Sabiu, C G; Loeb, A; Ross, A J; Abdalla, F B; Balan, S T; Lahav, O
2016-01-01
Baryon Acoustic Oscillations (BAOs) in the early Universe are predicted to leave an as yet undetected signature on the relative clustering of total mass versus luminous matter. A detection of this effect would provide an important confirmation of the standard cosmological paradigm and constrain alternatives to dark matter as well as non-standard fluctuations such as Compensated Isocurvature Perturbations (CIPs). We conduct the first observational search for this effect, by comparing the number-weighted and luminosity-weighted correlation functions, using the SDSS-III BOSS Data Release 10 CMASS sample. When including CIPs in our model, we formally obtain evidence at $3.2\\sigma$ of the relative clustering signature and a limit that matches the existing upper limits on the amplitude of CIPs. However, various tests suggest that these results are not yet robust, perhaps due to systematic biases in the data. The method developed in this Letter, used with more accurate future data such as that from DESI, is likely t...
Cuesta, Antonio J; Beutler, Florian; Bolton, Adam S; Brownstein, Joel R; Eisenstein, Daniel J; Gil-Marín, Héctor; Ho, Shirley; McBride, Cameron K; Maraston, Claudia; Padmanabhan, Nikhil; Percival, Will J; Reid, Beth A; Ross, Ashley J; Ross, Nicholas P; Sánchez, Ariel G; Schlegel, David J; Schneider, Donald P; Thomas, Daniel; Tinker, Jeremy; Tojeiro, Rita; Verde, Licia; White, Martin
2015-01-01
We present distance scale measurements from the baryon acoustic oscillation signal in the CMASS and LOWZ samples from the Data Release 12 of the Baryon Oscillation Spectroscopic Survey (BOSS). The total volume probed is 14.5 Gpc$^3$, a 10% increment from Data Release 11. From an analysis of the spherically averaged correlation function, we infer a distance to $z=0.57$ of $D_V(z)r^{\\rm fid}_{\\rm d}/r_ {\\rm d}=2028\\pm19$ Mpc and a distance to $z=0.32$ of $D_V(z)r^{\\rm fid}_{\\rm d}/r_{\\rm d}=1263\\pm21$ Mpc assuming a cosmology in which $r^{\\rm fid}_{\\rm d}=147.10$ Mpc. From the anisotropic analysis, we find an angular diameter distance to $z=0.57$ of $D_{\\rm A}(z)r^{\\rm fid}_{\\rm d}/r_{\\rm d}=1401\\pm19$ Mpc and a distance to $z=0.32$ of $981\\pm20$ Mpc, a 1.4% and 2.0% measurement respectively. The Hubble parameter at $z=0.57$ is $H(z)r_{\\rm d}/r^{\\rm fid}_{\\rm d}=100.3\\pm3.4$ km s$^{-1}$ Mpc$^{-1}$ and its value at $z=0.32$ is $79.2\\pm5.5$ km s$^{-1}$ Mpc$^{-1}$, a 3.4% and 6.9% measurement respectively. These c...
Redshift uncertainties and baryonic acoustic oscillations
Chaves-Montero, Jonás; Hernández-Monteagudo, Carlos
2016-01-01
In the upcoming era of high-precision galaxy surveys, it becomes necessary to understand the impact of uncertain redshift estimators on cosmological observables. In this paper we present a detailed exploration of the galaxy clustering and baryonic acoustic oscillation (BAO) signal under the presence of redshift errors. We provide analytic expressions for how the monopole and the quadrupole of the redshift-space power spectrum (together with their covariances) are affected. Additionally, we discuss the modifications in the shape, signal to noise, and cosmological constraining power of the BAO signature. We show how and why the BAO contrast is $\\mathit{enhanced}$ with small redshift uncertainties, and explore in detail how the cosmological information is modulated by the interplay of redshift-space distortions, redshift errors, and the number density of the sample. We validate our results by comparing them with measurements from a ensemble of $N$-body simulations with $8100h^{-3}\\text{Gpc}^3$ aggregated volume....
Baryon Acoustic Oscillations reconstruction with pixels
Obuljen, Andrej; Castorina, Emanuele; Viel, Matteo
2016-01-01
Gravitational non-linear evolution induces a shift in the position of the baryon acoustic oscillations (BAO) peak together with a damping and broadening of its shape that bias and degrades the accuracy with which the position of the peak can be determined. BAO reconstruction is a technique developed to undo part of the effect of non-linearities. We present a new reconstruction method that consists in displacing pixels instead of galaxies and whose implementation is easier than the standard reconstruction method. We show that our method is equivalent to the standard reconstruction technique in the limit where the number of pixels becomes very large. This method is particularly useful in surveys where individual galaxies are not resolved, as in 21cm intensity mapping observations. We validate our method by reconstructing mock pixelated maps, that we build from the distribution of matter and halos in real- and redshift-space, from a large set of numerical simulations. We find that our method is able to decrease ...
Cosmological implications of baryon acoustic oscillation (BAO) measurements
Aubourg, Éric; Bautista, Julian E; Beutler, Florian; Bhardwaj, Vaishali; Bizyaev, Dmitry; Blanton, Michael; Blomqvist, Michael; Bolton, Adam S; Bovy, Jo; Brewington, Howard; Brinkmann, J; Brownstein, Joel R; Burden, Angela; Busca, Nicolás G; Carithers, William; Chuang, Chia-Hsun; Comparat, Johan; Cuesta, Antonio J; Dawson, Kyle S; Delubac, Timothée; Eisenstein, Daniel J; Font-Ribera, Andreu; Ge, Jian; Goff, J -M Le; Gontcho, Satya Gontcho A; Gott, J Richard; Gunn, James E; Guo, Hong; Guy, Julien; Hamilton, Jean-Christophe; Ho, Shirley; Honscheid, Klaus; Howlett, Cullan; Kirkby, David; Kitaura, Francisco S; Kneib, Jean-Paul; Lee, Khee-Gan; Long, Dan; Lupton, Robert H; Magaña, Mariana Vargas; Malanushenko, Viktor; Malanushenko, Elena; Manera, Marc; Maraston, Claudia; Margala, Daniel; McBride, Cameron K; Miralda-Escudé, Jordi; Myers, Adam D; Nichol, Robert C; Noterdaeme, Pasquier; Nuza, Sebastián E; Olmstead, Matthew D; Oravetz, Daniel; Pâris, Isabelle; Padmanabhan, Nikhil; Palanque-Delabrouille, Nathalie; Pan, Kaike; Pellejero-Ibanez, Marcos; Percival, Will J; Petitjean, Patrick; Pieri, Matthew M; Prada, Francisco; Reid, Beth; Roe, Natalie A; Ross, Ashley J; Ross, Nicholas P; Rossi, Graziano; Rubiño-Martín, Jose Alberto; Sánchez, Ariel G; Samushia, Lado; Santos, Ricardo Tanausú Génova; Scóccola, Claudia G; Schlegel, David J; Schneider, Donald P; Seo, Hee-Jong; Sheldon, Erin; Simmons, Audrey; Skibba, Ramin A; Slosar, Anže; Strauss, Michael A; Thomas, Daniel; Tinker, Jeremy L; Tojeiro, Rita; Vazquez, Jose Alberto; Viel, Matteo; Wake, David A; Weaver, Benjamin A; Weinberg, David H; Wood-Vasey, W M; Yèche, Christophe; Zehavi, Idit; Zhao, Gong-Bo
2014-01-01
We derive constraints on cosmological parameters and tests of dark energy models from the combination of baryon acoustic oscillation (BAO) measurements with cosmic microwave background (CMB) and Type Ia supernova (SN) data. We take advantage of high-precision BAO measurements from galaxy clustering and the Ly-alpha forest (LyaF) in the BOSS survey of SDSS-III. BAO data alone yield a high confidence detection of dark energy, and in combination with the CMB angular acoustic scale they further imply a nearly flat universe. Combining BAO and SN data into an "inverse distance ladder" yields a 1.7% measurement of $H_0=67.3 \\pm1.1$ km/s/Mpc. This measurement assumes standard pre-recombination physics but is insensitive to assumptions about dark energy or space curvature, so agreement with CMB-based estimates that assume a flat LCDM cosmology is an important corroboration of this minimal cosmological model. For open LCDM, our BAO+SN+CMB combination yields $\\Omega_m=0.301 \\pm 0.008$ and curvature $\\Omega_k=-0.003 \\pm ...
Equivalence Principle and the Baryon Acoustic Peak
Baldauf, Tobias; Simonović, Marko; Zaldarriaga, Matias
2015-01-01
We study the dominant effect of a long wavelength density perturbation $\\delta(\\lambda_L)$ on short distance physics. In the non-relativistic limit, the result is a uniform acceleration, fixed by the equivalence principle, and typically has no effect on statistical averages due to translational invariance. This same reasoning has been formalized to obtain a "consistency condition" on the cosmological correlation functions. In the presence of a feature, such as the acoustic peak at $l_{\\rm BAO}$, this naive expectation breaks down for $\\lambda_L
Supersonic Relative Velocity Effect on the Baryonic Acoustic Oscillation Measurements
Yoo, Jaiyul; Seljak, Uros
2011-01-01
We investigate the effect of supersonic relative velocities between baryons and dark matter, recently shown to arise generically at high redshift, on baryonic acoustic oscillation (BAO) measurements at low redshift. The amplitude of the relative velocity effect at low redshift is model-dependent, but can be parameterized by using an unknown bias. We find that if unaccounted, the relative velocity effect can shift the BAO peak position and bias estimates of the dark energy equation-of-state due to its non-smooth, out-of-phase oscillation structure around the BAO scale. Fortunately, the relative velocity effect can be easily modeled in constraining cosmological parameters without substantially inflating the error budget. We also demonstrate that the presence of the relative velocity effect gives rise to a unique signature in the galaxy bispectrum, which can be utilized to isolate this effect. Future dark energy surveys can accurately measure the relative velocity effect and subtract it from the power spectrum a...
Bidondo, Alejandro
2002-11-01
This acoustic diffusion research presents a pragmatic view, based more on effects than causes and 15 very useful in the project advance control process, where the sound field's diffusion coefficient, sound field diffusivity (SFD), for its evaluation. Further research suggestions are presented to obtain an octave frequency resolution of the SFD for precise design or acoustical corrections.
Baryon Acoustic Peak and the Squeezed Limit Bispectrum
Mirbabayi, Mehrdad; Zaldarriaga, Matias
2014-01-01
In the non-relativistic regime, pertinent to the large scale structure of the Universe, the leading effect of a long-wavelength perturbation $\\delta(\\lambda_L)$ on short distance physics is a uniform acceleration $\\propto \\lambda_L \\delta(\\lambda_L)$. Typically, this has no effect on statistical averages at equal time since a uniform acceleration results in a uniform translation -- a reasoning that has been formalized as a "consistency condition" on the cosmological correlation functions. This naive expectation fails in the presence of the baryon acoustic feature provided $\\lambda_L < \\ell_{\\rm BAO}$. We derive the squeezed limit of correlation functions in this regime.
Baryon Acoustic Oscillation Intensity Mapping of Dark Energy
Chang, Tzu-Ching; Pen, Ue-Li; Peterson, Jeffrey B.; McDonald, Patrick
2008-03-01
The expansion of the Universe appears to be accelerating, and the mysterious antigravity agent of this acceleration has been called “dark energy.” To measure the dynamics of dark energy, baryon acoustic oscillations (BAO) can be used. Previous discussions of the BAO dark energy test have focused on direct measurements of redshifts of as many as 109 individual galaxies, by observing the 21 cm line or by detecting optical emission. Here we show how the study of acoustic oscillation in the 21 cm brightness can be accomplished by economical three-dimensional intensity mapping. If our estimates gain acceptance they may be the starting point for a new class of dark energy experiments dedicated to large angular scale mapping of the radio sky, shedding light on dark energy.
A New Statistic for Analyzing Baryon Acoustic Oscillations
Xu, X; Padmanabhan, N; Eisenstein, D; Eckel, J; Mehta, K; Metchnik, M; Pinto, P; Seo, H -J
2010-01-01
We introduce a new statistic omega_l for measuring and analyzing large-scale structure and particularly the baryon acoustic oscillations. omega_l is a band-filtered, configuration space statistic that is easily implemented and has advantages over the traditional power spectrum and correlation function estimators. Unlike these estimators, omega_l can localize most of the acoustic information into a single dip at the acoustic scale while also avoiding sensitivity to the poorly constrained large scale power (i.e., the integral constraint) through the use of a localized and compensated filter. It is also sensitive to anisotropic clustering through pair counting and does not require any binning. We measure the shift in the acoustic peak due to nonlinear effects using the monopole omega_0 derived from subsampled dark matter catalogues as well as from mock galaxy catalogues created via halo occupation distribution (HOD) modeling. All of these are drawn from 44 realizations of 1024^3 particle dark matter simulations ...
Future Perspectives on Baryon Form Factor Measurements with BES III
Schönning, Karin; Li, Cui
2017-03-01
The electromagnetic structure of hadrons, parameterised in terms of electromagnetic form factors, EMFF's, provide a key to the strong interaction. Nucleon EMFF's have been studied rigorously for more than 60 years but the new techniques and larger data samples available at modern facilities have given rise to a renewed interest for the field. Recently, the access to hyperon structure by hyperon time-like EMFF provides an additional dimension. The BEijing Spectrometer (BES III) at the Beijing Electron Positron Collider (BEPC-II) in China is the only running experiment where time-like baryon EMFF's can be studied in the e+e- → BB̅ reaction. The BES III detector is an excellent tool for baryon form factor measurements thanks to its near 4π coverage, precise tracking, PID and calorimetry. All hyperons in the SU(3) spin 1/2 octet and spin 3/2 decuplet are energetically accessible within the BEPC-II energy range. Recent data on proton and Λ hyperon form factors will be presented. Furthermore, a world-leading data sample was collected in 2014-2015 for precision measurements of baryon form factors. In particular, the data will enable a measurement of the relative phase between the electric and the magnetic form factors for Λ and Λc+ and hyperons. The modulus of the phase can be extracted from the hyperon polarisation, which in turn is experimentally accessible via the weak, parity violating decay. Furthermore, from the spin correlation between the outgoing hyperon and antihyperon, the sign of the phase can be extracted. This means that the time-like form factors can be completely determined for the first time. The methods will be outlined and the prospects of the BES III form factor measurements will be given. We will also present a planned upgrade of the BES III detector which is expected to improve future form factor measurements.
Streaming Velocities and the Baryon Acoustic Oscillation Scale.
Blazek, Jonathan A; McEwen, Joseph E; Hirata, Christopher M
2016-03-25
At the epoch of decoupling, cosmic baryons had supersonic velocities relative to the dark matter that were coherent on large scales. These velocities subsequently slow the growth of small-scale structure and, via feedback processes, can influence the formation of larger galaxies. We examine the effect of streaming velocities on the galaxy correlation function, including all leading-order contributions for the first time. We find that the impact on the baryon acoustic oscillation (BAO) peak is dramatically enhanced (by a factor of ∼5) over the results of previous investigations, with the primary new effect due to advection: if a galaxy retains memory of the primordial streaming velocity, it does so at its Lagrangian, rather than Eulerian, position. Since correlations in the streaming velocity change rapidly at the BAO scale, this advection term can cause a significant shift in the observed BAO position. If streaming velocities impact tracer density at the 1% level, compared to the linear bias, the recovered BAO scale is shifted by approximately 0.5%. This new effect, which is required to preserve Galilean invariance, greatly increases the importance of including streaming velocities in the analysis of upcoming BAO measurements and opens a new window to the astrophysics of galaxy formation.
Measuring baryon acoustic oscillations with future SKA surveys
Bull, Philip; Raccanelli, Alvise; Blake, Chris; Ferreira, Pedro G; Santos, Mario G; Schwarz, Dominik J
2015-01-01
The imprint of baryon acoustic oscillations (BAO) in large-scale structure can be used as a standard ruler for mapping out the cosmic expansion history, and hence for testing cosmological models. In this article we briefly describe the scientific background to the BAO technique, and forecast the potential of the Phase 1 and 2 SKA telescopes to perform BAO surveys using both galaxy catalogues and intensity mapping, assessing their competitiveness with current and future optical galaxy surveys. We find that a 25,000 sq. deg. intensity mapping survey on a Phase 1 array will preferentially constrain the radial BAO, providing a highly competitive 2% constraint on the expansion rate at z ~ 2. A 30,000 sq. deg. galaxy redshift survey on SKA2 will outperform all other planned experiments for z < 1.4.
Efficient Reconstruction of Linear Baryon Acoustic Oscillations in Galaxy Surveys
Burden, Angela; Manera, Marc; Cuesta, Antonio J; Magana, Mariana Vargas; Ho, Shirley
2014-01-01
Reconstructing an estimate of linear Baryon Acoustic Oscillations (BAO) from an evolved galaxy field has become a standard technique in recent analyses. By partially removing non-linear damping caused by bulk motions, the real-space BAO peak in the correlation function is sharpened, and oscillations in the power spectrum are visible to smaller scales. In turn these lead to stronger measurements of the BAO scale. Future surveys are being designed assuming that this improvement has been applied, and this technique is therefore of critical importance for future BAO measurements. A number of reconstruction techniques are available, but the most widely used is a simple algorithm that decorrelates large-scale and small-scale modes approximately removing the bulk-flow displacements by moving the overdensity field (Eisenstein et al. 2007; Padmanabhan, White & Cohn 2009). We consider the practical implementation of this algorithm, looking at the efficiency of reconstruction as a function of the assumptions made fo...
The baryon acoustic oscillation peak: a flexible standard ruler
Roukema, Boudewijn F
2016-01-01
For about a decade, the baryon acoustic oscillation (BAO) peak at about 105 Mpc/h has provided a standard ruler test of the LCDM cosmological model, a member of the Friedmann--Lemaitre--Robertson--Walker (FLRW) family of cosmological models---according to which comoving space is rigid. However, general relativity does not require comoving space to be rigid. During the virialisation epoch, when the most massive structures form by gravitational collapse, it should be expected that comoving space evolves inhomogeneous curvature as structure grows. The BAO peak standard ruler should also follow this inhomogeneous evolution if the comoving rigidity assumption is false. This "standard" ruler has now been detected to be flexible, as expected under general relativity.
Measuring the speed of light with baryon acoustic oscillations.
Salzano, Vincenzo; Dąbrowski, Mariusz P; Lazkoz, Ruth
2015-03-13
In this Letter, we describe a new method to use baryon acoustic oscillations (BAO) to derive a constraint on the possible variation of the speed of light. The method relies on the fact that there is a simple relation between the angular diameter distance (D(A)) maximum and the Hubble function (H) evaluated at the same maximum-condition redshift, which includes speed of light c. We note the close analogy of the BAO probe with a laboratory experiment: here we have D(A) which plays the role of a standard (cosmological) ruler, and H^{-1}, with the dimension of time, as a (cosmological) clock. We evaluate if current or future missions such as Euclid can be sensitive enough to detect any variation of c.
Baryon Acoustic Oscillations in the Lyman Alpha Forest
Norman, Michael L; Harkness, Robert
2009-01-01
We use hydrodynamic cosmological simulations in a (600 Mpc)^3 volume to study the observability of baryon acoustic oscillations (BAO) in the intergalactic medium as probed by Lyman alpha forest (LAF) absorption. The large scale separation between the wavelength of the BAO mode (~150 Mpc) and the size of LAF absorbers (~100 kpc) makes this a numerically challenging problem. We report on several 2048^3 simulations of the LAF using the ENZO code. We adopt WMAP5 concordance cosmological parameters and power spectrum including BAO perturbations. 5000 synthetic HI absorption line spectra are generated randomly piercing the box face. We calculate the cross-correlation function between widely separated pairs. We detect the BAO signal at z=3 where theory predicts to moderate statistical significance.
Is the baryon acoustic oscillation peak a cosmological standard ruler?
Roukema, Boudewijn F; Fujii, Hirokazu; Ostrowski, Jan J
2016-01-01
In the standard model of cosmology, the Universe is static in comoving coordinates; expansion occurs homogeneously and is represented by a global scale factor. The baryon acoustic oscillation (BAO) peak location is a statistical tracer that represents, in the standard model, a fixed comoving-length standard ruler. Recent gravitational collapse should modify the metric, rendering the effective scale factor, and thus the BAO standard ruler, spatially inhomogeneous. Using the Sloan Digital Sky Survey, we show to high significance (P < 0.001) that the spatial compression of the BAO peak location increases as the spatial paths' overlap with superclusters increases. Detailed observational and theoretical calibration of this BAO peak location environment dependence will be needed when interpreting the next decade's cosmological surveys.
Systematic treatment of non-linear effects in Baryon Acoustic Oscillations
Ivanov, Mikhail M
2016-01-01
In this contribution we will discuss the non-linear effects in the baryon acoustic oscillations and present a systematic and controllable way to account for them within time-sliced perturbation theory.
The Baryon Oscillation Spectroscopic Survey of SDSS-III
Dawson, Kyle S; Ahn, Christopher P; Anderson, Scott F; Aubourg, Eric; Bailey, Stephen; Barkhouser, Robert H; Bautista, Julian E; Beifiori, Alessandra; Berlind, Andreas A; Bhardwaj, Vaishali; Bizyaev, Dmitry; Blake, Cullen H; Blanton, Michael R; Blomqvist, Michael; Bolton, Adam S; Borde, Arnaud; Bovy, Jo; Brandt, W N; Brewington, Howard; Brinkmann, Jon; Brown, Peter J; Brownstein, Joel R; Bundy, Kevin; Busca, N G; Carithers, William; Carnero, Aurelio R; Carr, Michael A; Chen, Yanmei; Comparat, Johan; Connolly, Natalia; Cope, Frances; Croft, Rupert A C; Cuesta, Antonio J; da Costa, Luiz N; Davenport, James R A; Delubac, Timothee; de Putter, Roland; Dhital, Saurav; Ealet, Anne; Ebelke, Garrett L; Eisenstein, Daniel J; Escoffier, S; Fan, Xiaohui; Ak, N Filiz; Finley, Hayley; Font-Ribera, Andreu; Genova-Santos, R; Gunn, James E; Guo, Hong; Haggard, Daryl; Hall, Patrick B; Hamilton, Jean-Christophe; Harris, Ben; Harris, David W; Ho, Shirley; Hogg, David W; Holder, Diana; Honscheid, Klaus; Huehnerhoff, Joe; Jordan, Beatrice; Jordan, Wendell P; Kauffmann, Guinevere; Kazin, Eyal A; Kirkby, David; Klaene, Mark A; Kneib, Jean-Paul; Goff, Jean-Marc Le; Lee, Khee-Gan; Long, Daniel C; Loomis, Craig P; Lundgren, Britt; Lupton, Robert H; Maia, Marcio A G; Makler, Martin; Malanushenko, Elena; Malanushenko, Viktor; Mandelbaum, Rachel; Manera, Marc; Maraston, Claudia; Margala, Daniel; Masters, Karen L; McBride, Cameron K; McDonald, Patrick; McGreer, Ian D; Mena, Olga; Miralda-Escude, Jordi; Montero-Dorta, Antonio D; Montesano, Francesco; Muna, Demitri; Myers, Adam D; Naugle, Tracy; Nichol, Robert C; Noterdaeme, Pasquier; Olmstead, Matthew D; Oravetz, Audrey; Oravetz, Daniel J; Owen, Russell; Padmanabhan, Nikhil; Palanque-Delabrouille, Nathalie; Pan, Kaike; Parejko, John K; Paris, Isabelle; Percival, Will J; Perez-Fournon, Ismael; Perez-Rafols, Ignasi; Petitjean, Patrick; Pfaffenberger, Robert; Pforr, Janine; Pieri, Matthew M; Prada, Francisco; Price-Whelan, Adrian M; Raddick, M Jordan; Rebolo, Rafael; Rich, James; Richards, Gordon T; Rockosi, Constance M; Roe, Natalie A; Ross, Ashley J; Ross, Nicholas P; Rossi, Graziano; Rubino-Martin, J A; Samushia, Lado; Sanchez, Ariel G; Sayres, Conor; Schmidt, Sarah J; Schneider, Donald P; Scoccola, C G; Seo, Hee-Jong; Shelden, Alaina; Sheldon, Erin; Shen, Yue; Shu, Yiping; Slosar, Anze; Smee, Stephen A; Snedden, Stephanie A; Stauffer, Fritz; Steele, Oliver; Strauss, Michael A; Suzuki, Nao; Swanson, Molly E C; Tal, Tomer; Tanaka, Masayuki; Thomas, Daniel; Tinker, Jeremy L; Tojeiro, Rita; Tremonti, Christy A; Magana, M Vargas; Verde, Licia; Viel, Matteo; Wake, David A; Watson, Mike; Weaver, Benjamin A; Weinberg, David H; Weiner, Benjamin J; West, Andrew A; White, Martin; Wood-Vasey, W M; Yeche, Christophe; Zehavi, Idit; Zhao, Gong-Bo; Zheng, Zheng
2012-01-01
The Baryon Oscillation Spectroscopic Survey (BOSS) is designed to measure the scale of baryon acoustic oscillations (BAO) in the clustering of matter over a larger volume than the combined efforts of all previous spectroscopic surveys of large scale structure. BOSS uses luminous galaxies to measure BAO to redshifts z<0.7 and observations of neutral hydrogen in the Lyman alpha forest in quasar spectra to constrain BAO over the redshift range 2.15
Measuring Baryon Acoustic Oscillations from the clustering of voids
Liang, Yu; Chuang, Chia-Hsun; Kitaura, Francisco-Shu; Tao, Charling
2015-01-01
We investigate the necessary methodology to optimally measure the baryon acoustic oscillation (BAO) signal, from voids based on galaxy redshift catalogues. To this end, we study the dependency of the BAO signal on the population of voids classified by their sizes. We find for the first time the characteristic features of the correlation function of voids including the first robust detection of BAOs in mock galaxy catalogues. These show an anti-correlation around the scale corresponding to the smallest size of voids in the sample (the void exclusion effect), and dips at both sides of the BAO peak, which can be used to determine the significance of the BAO signal without any priori model. Furthermore, our analysis demonstrates that there is a scale dependent bias for different populations of voids depending on the radius, with the peculiar property that the void population with the largest BAO significance corresponds to tracers with approximately zero bias on the largest scales. We further investigate the meth...
Non-Gaussian errors of baryonic acoustic oscillations
Ngan, Wai-Hin Wayne; Pen, Ue-Li; McDonald, Patrick; MacDonald, Ilana
2011-01-01
We revisit the uncertainty in baryon acoustic oscillation (BAO) forecasts and data analyses. In particular, we study how much the error on the measured mean and uncertainty on the dilation scale are affected by the non-Gaussianity of the non-linear density field. We examine two possible impacts of non-Gaussian analysis: 1. we derive the distance estimators from Gaussian theory, but use 1000 N-Body simulations to measure the actual errors, and compare this to the Gaussian prediction, and 2. we compute new optimal estimators, which requires the inverse of the non-Gaussian covariance matrix of the matter power spectrum. Obtaining an accurate and precise inversion is challenging, and we opted for a noise reduction technique applied on the covariance matrices. By measuring the bootstrap error on the inverted matrix, this work quantifies for the first time the significance of the non-Gaussian error corrections on the BAO dilation scale. We find that the variance (error squared) on distance measurements can deviate ...
Cosmological implications of two types of baryon acoustic oscillation data
Hu, Yazhou; Li, Nan; Wang, Shuang
2015-01-01
Aims: We explore the cosmological implications of two types of baryon acoustic oscillation (BAO) data that are extracted by using the spherically averaged one-dimensional galaxy clustering (GC) statistics (hereafter BAO1) and the anisotropic two-dimensional GC statistics (hereafter BAO2), respectively. Methods: Firstly, making use of the BAO1 and the BAO2 data, as well as the SNLS3 type Ia supernovae sample and the Planck distance priors data, we constrain the parameter spaces of the $\\Lambda$CDM, the $w$CDM, and the Chevallier-Polarski-Linder (CPL) model. Then, we discuss the impacts of different BAO data on parameter estimation, equation of state $w$, figure of merit and deceleration-acceleration transition redshift. At last, we use various dark energy diagnosis, including Hubble diagram $H(z)$, deceleration diagram $q(z)$, statefinder hierarchy $\\{S^{(1)}_3, S^{(1)}_4\\}$, composite null diagnosic (CND) $\\{S^{(1)}_3, \\epsilon(z)\\}$ and $\\{S^{(1)}_4, \\epsilon(z)\\}$, to distinguish the differences between the...
Baryon Acoustic Oscillations in the Ly-\\alpha\\ forest of BOSS quasars
Busca, Nicolás G; Rich, James; Bailey, Stephen; Font-Ribera, Andreu; Kirkby, David; Goff, J -M Le; Pieri, Matthew M; Slosar, Anze; Aubourg, Éric; Bautista, Julian E; Bizyaev, Dmitry; Blomqvist, Michael; Bolton, Adam S; Bovy, Jo; Brewington, Howard; Borde, Arnaud; Brinkmann, J; Carithers, Bill; Croft, Rupert A C; Dawson, Kyle S; Ebelke, Garrett; Eisenstein, Daniel J; Hamilton, Jean-Christophe; Ho, Shirley; Hogg, David W; Honscheid, Klaus; Lee, Khee-Gan; Lundgren, Britt; Malanushenko, Elena; Malanushenko, Viktor; Margala, Daniel; Maraston, Claudia; Mehta, Kushal; Miralda-Escudé, Jordi; Myers, Adam D; Nichol, Robert C; Noterdaeme, Pasquier; Olmstead, Matthew D; Oravetz, Daniel; Palanque-Delabrouille, Nathalie; Pan, Kaike; Pâris, Isabelle; Percival, Will J; Petitjean, Patrick; Roe, N A; Rollinde, Emmanuel; Ross, Nicholas P; Rossi, Graziano; Schlegel, David J; Schneider, Donald P; Shelden, Alaina; Sheldon, Erin S; Simmons, Audrey; Snedden, Stephanie; Tinker, Jeremy L; Viel, Matteo; Weaver, Benjamin A; Weinberg, David H; White, Martin; Yèche, Christophe; York, Donald G; Zhao, Gong-Bo
2012-01-01
We report a detection of the baryon acoustic oscillation (BAO) feature in the three-dimensional correlation function of the transmitted flux fraction in the \\Lya forest of high-redshift quasars. The study uses 48,640 quasars in the redshift range $2.1\\le z \\le 3.5$ from the Baryon Oscillation Spectroscopic Survey (BOSS) of the third generation of the Sloan Digital Sky Survey (SDSS-III). At a mean redshift $z=2.3$, we measure the monopole and quadrupole components of the correlation function for separations in the range $20\\hMpc
Quasar-Lyman $\\alpha$ Forest Cross-Correlation from BOSS DR11 : Baryon Acoustic Oscillations
Font-Ribera, Andreu; Busca, Nicolas; Miralda-Escudé, Jordi; Ross, Nicholas P; Slosar, Anže; Aubourg, Éric; Bailey, Stephen; Bhardwaj, Vaishali; Bautista, Julian; Beutler, Florian; Bizyaev, Dmitry; Blomqvist, Michael; Brewington, Howard; Brinkmann, Jon; Brownstein, Joel R; Carithers, Bill; Dawson, Kyle S; Delubac, Timothée; Ebelke, Garrett; Eisenstein, Daniel J; Ge, Jian; Kinemuchi, Karen; Lee, Khee-Gan; Malanushenko, Viktor; Malanushenko, Elena; Marchante, Moses; Margala, Daniel; Muna, Demitri; Myers, Adam D; Noterdaeme, Pasquier; Oravetz, Daniel; Palanque-Delabrouille, Nathalie; Pâris, Isabelle; Petitjean, Patrick; Pieri, Matthew M; Rossi, Graziano; Schneider, Donald P; Simmons, Audrey; Viel, Matteo; Yeche, Christophe; York, Donald G
2013-01-01
We measure the large-scale cross-correlation of quasars with the Lyman alpha forest absorption, using over 164,000 quasars from Data Release 11 of the SDSS-III Baryon Oscillation Spectroscopic Survey. We extend the previous study of roughly 60,000 quasars from Data Release 9 to larger separations, allowing a measurement of the Baryonic Acoustic Oscillation (BAO) scale along the line of sight $c/(H(z=2.36) ~ r_s) = 9.0 \\pm 0.3$ and across the line of sight $D_A(z=2.36)~ / ~ r_s = 10.8 \\pm 0.4$, consistent with CMB and other BAO data. Using the best fit value of the sound horizon from Planck data ($r_s=147.49 Mpc$), we can translate these results to a measurement of the Hubble parameter of $H(z=2.36) = 226 \\pm 8 km/s$ and of the angular diameter distance of $D_A(z=2.36) = 1590 \\pm 60 Mpc$. The measured cross-correlation function and an update of the code to fit the BAO scale (baofit) are made publicly available.
Baryon Acoustic Oscillations in the Ly{\\alpha} forest of BOSS DR11 quasars
Delubac, Timothée; Busca, Nicolás G; Rich, James; Kirkby, David; Bailey, Stephen; Font-Ribera, Andreu; Slosar, Anže; Lee, Khee-Gan; Pieri, Matthew M; Hamilton, Jean-Christophe; Aubourg, Éric; Blomqvist, Michael; Bovy, Jo; Brinkmann, J; Carithers, William; Dawson, Kyle S; Eisenstein, Daniel J; Kneib, Jean-Paul; Goff, J -M Le; Margala, Daniel; Miralda-Escudé, Jordi; Myers, Adam D; Nichol, Robert C; Noterdaeme, Pasquier; O'Connell, Ross; Olmstead, Matthew D; Palanque-Delabrouille, Nathalie; Pâris, Isabelle; Petitjean, Patrick; Ross, Nicholas P; Rossi, Graziano; Schlegel, David J; Schneider, Donald P; Weinberg, David H; Yèche, Christophe; York, Donald G
2014-01-01
We report a detection of the baryon acoustic oscillation (BAO) feature in the flux-correlation function of the Ly{\\alpha} forest of high-redshift quasars with a statistical significance of five standard deviations. The study uses 137,562 quasars in the redshift range $2.1\\le z \\le 3.5$ from the Data Release 11 (DR11) of the Baryon Oscillation Spectroscopic Survey (BOSS) of SDSS-III. This sample contains three times the number of quasars used in previous studies. The measured position of the BAO peak determines the angular distance, $D_A(z=2.34)$ and expansion rate, $H(z=2.34)$, both on a scale set by the sound horizon at the drag epoch, $r_d$. We find $D_A/r_d=11.28\\pm0.65(1\\sigma)^{+2.8}_{-1.2}(2\\sigma)$ and $D_H/r_d=9.18\\pm0.28(1\\sigma)\\pm0.6(2\\sigma)$ where $D_H=c/H$. The optimal combination, $\\sim D_H^{0.7}D_A^{0.3}/r_d$ is determined with a precision of $\\sim2\\%$. For the value $r_d=147.4~{\\rm Mpc}$, consistent with the CMB power spectrum measured by Planck, we find $D_A(z=2.34)=1662\\pm96(1\\sigma)~{\\rm M...
Cosmological implications of different baryon acoustic oscillation data
Wang, Shuang; Hu, YaZhou; Li, Miao
2017-04-01
In this work, we explore the cosmological implications of different baryon acoustic oscillation (BAO) data, including the BAO data extracted by using the spherically averaged one-dimensional galaxy clustering (GC) statistics (hereafter BAO1) and the BAO data obtained by using the anisotropic two-dimensional GC statistics (hereafter BAO2). To make a comparison, we also take into account the case without BAO data (hereafter NO BAO). Firstly, making use of these BAO data, as well as the SNLS3 type Ia supernovae sample and the Planck distance priors data, we give the cosmological constraints of the ΛCDM, the wCDM, and the Chevallier-Polarski-Linder (CPL) model. Then, we discuss the impacts of different BAO data on cosmological consquences, including its effects on parameter space, equation of state (EoS), figure of merit (FoM), deceleration-acceleration transition redshift, Hubble parameter H( z), deceleration parameter q( z), statefinder hierarchy S 3 (1)( z), S 4 (1)( z) and cosmic age t( z). We find that: (1) NO BAO data always give a smallest fractional matter density Ω m0, a largest fractional curvature density Ωk0 and a largest Hubble constant h; in contrast, BAO1 data always give a largest Ω m0, a smallest Ω k0 and a smallest h. (2) For the wCDM and the CPL model, NO BAO data always give a largest EoS w; in contrast, BAO2 data always give a smallest w. (3) Compared with the case of BAO1, BAO2 data always give a slightly larger FoM, and thus can give a cosmological constraint with a slightly better accuracy. (4) The impacts of different BAO data on the cosmic evolution and the comic age are very small, and cannot be distinguished by using various dark energy diagnoses and the cosmic age data.
Cosmological implications of different baryon acoustic oscillation data
Wang, Shuang; Hu, YaZhou; Li, Miao
2017-04-01
In this work, we explore the cosmological implications of different baryon acoustic oscillation (BAO) data, including the BAO data extracted by using the spherically averaged one-dimensional galaxy clustering (GC) statistics (hereafter BAO1) and the BAO data obtained by using the anisotropic two-dimensional GC statistics (hereafter BAO2). To make a comparison, we also take into account the case without BAO data (hereafter NO BAO). Firstly, making use of these BAO data, as well as the SNLS3 type Ia supernovae sample and the Planck distance priors data, we give the cosmological constraints of the ΛCDM, the wCDM, and the Chevallier-Polarski-Linder (CPL) model. Then, we discuss the impacts of different BAO data on cosmological consquences, including its effects on parameter space, equation of state (EoS), figure of merit (FoM), deceleration-acceleration transition redshift, Hubble parameter H( z), deceleration parameter q( z), statefinder hierarchy S 3 (1)( z), S 4 (1)( z) and cosmic age t( z). We find that: (1) NO BAO data always give a smallest fractional matter density Ω m0, a largest fractional curvature density Ωk0 and a largest Hubble constant h; in contrast, BAO1 data always give a largest Ω m0, a smallest Ω k0 and a smallest h. (2) For the wCDM and the CPL model, NO BAO data always give a largest EoS w; in contrast, BAO2 data always give a smallest w. (3) Compared with the case of BAO1, BAO2 data always give a slightly larger FoM, and thus can give a cosmological constraint with a slightly better accuracy. (4) The impacts of different BAO data on the cosmic evolution and the comic age are very small, and cannot be distinguished by using various dark energy diagnoses and the cosmic age data.
Sanchez, Ariel G; Salazar-Albornoz, Salvador; Alam, Shadab; Beutler, Florian; Ross, Ashley J; Brownstein, Joel R; Chuang, Chia-Hsun; Cuesta, Antonio J; Eisenstein, Daniel J; Kitaura, Francisco-Shu; Percival, Will J; Prada, Francisco; Rodriguez-Torres, Sergio; Seo, Hee-Jong; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana; Vazquez, Jose A; Zhao, Gong-Bo
2016-01-01
The cosmological information contained in anisotropic galaxy clustering measurements can often be compressed into a small number of parameters whose posterior distribution is well described by a Gaussian. We present a general methodology to combine these estimates into a single set of consensus constraints that encode the total information of the individual measurements, taking into account the full covariance between the different methods. We illustrate this technique by applying it to combine the results obtained from different clustering analyses, including measurements of the signature of baryon acoustic oscillations (BAO) and redshift-space distortions (RSD), based on a set of mock catalogues of the final SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Our results show that the region of the parameter space allowed by the consensus constraints is smaller than that of the individual methods, highlighting the importance of performing multiple analyses on galaxy surveys even when the measurements a...
High statistics analysis using anisotropic clover lattices: (III) Baryon-baryon interactions
Energy Technology Data Exchange (ETDEWEB)
Beane, S; Detmold, W; Lin, H; Luu, T; Orginos, K; Savage, M; Torok, A; Walker-Loud, A
2010-01-19
Low-energy baryon-baryon interactions are calculated in a high-statistics lattice QCD study on a single ensemble of anisotropic clover gauge-field configurations at a pion mass of m{sub {pi}} {approx} 390 MeV, a spatial volume of L{sup 3} {approx} (2.5 fm){sup 3}, and a spatial lattice spacing of b {approx} 0.123 fm. Luescher's method is used to extract nucleon-nucleon, hyperon-nucleon and hyperon-hyperon scattering phase shifts at one momentum from the one- and two-baryon ground-state energies in the lattice volume. The isospin-3/2 N{Sigma} interactions are found to be highly spin-dependent, and the interaction in the {sup 3}S{sub 1} channel is found to be strong. In contrast, the N{Lambda} interactions are found to be spin-independent, within the uncertainties of the calculation, consistent with the absence of one-pion-exchange. The only channel for which a negative energy-shift is found is {Lambda}{Lambda}, indicating that the {Lambda}{Lambda} interaction is attractive, as anticipated from model-dependent discussions regarding the H-dibaryon. The NN scattering lengths are found to be small, clearly indicating the absence of any fine-tuning in the NN-sector at this pion mass. This is consistent with our previous Lattice QCD calculation of NN interactions. The behavior of the signal-to-noise ratio in the baryon-baryon correlation functions, and in the ratio of correlation functions that yields the ground-state energy splitting is explored. In particular, focus is placed on the window of time slices for which the signal-to-noise ratio does not degrade exponentially, as this provides the opportunity to extract quantitative information about multi-baryon systems.
High Statistics Analysis using Anisotropic Clover Lattices: (III) Baryon-Baryon Interactions
Energy Technology Data Exchange (ETDEWEB)
Beane, Silas [Univ. of New Hampshire, Durham, NH (United States); Detmold, William [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Lin, Huey-Wen [Univ. of Washington, Seattle, WA (United States); Luu, Thomas C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Orginos, Kostas [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Savage, Martin [Univ. of Washington, Seattle, WA (United States); Torok, Aaron M. [Indiana Univ., Bloomington, IN (United States). Dept. of Physics; Walker-Loud, Andre [College of William and Mary, Williamsburg, VA (United States)
2010-03-01
Low-energy baryon-baryon interactions are calculated in a high-statistics lattice QCD study on a single ensemble of anisotropic clover gauge-field configurations at a pion mass of m_pi ~ 390 MeV, a spatial volume of L^3 ~ (2.5 fm)^3, and a spatial lattice spacing of b ~ 0.123 fm. Luscher’s method is used to extract nucleon-nucleon, hyperon-nucleon and hyperon-hyperon scattering phase shifts at one momentum from the one- and two-baryon ground-state energies in the lattice volume. The N-Sigma interactions are found to be highly spin-dependent, and the interaction in the ^3 S _1 channel is found to be strong. In contrast, the N-Lambda interactions are found to be spin-independent, within the uncertainties of the calculation, consistent with the absence of one-pion-exchange. The only channel for which a negative energy-shift is found is Lambda-Lambda, indicating that the Lambda-Lambda interaction is attractive, as anticipated from model-dependent discussions regarding the H-dibaryon. The NN scattering lengths are found to be small, clearly indicating the absence of any fine-tuning in the NN-sector at this pion mass. This is consistent with our previous Lattice QCD calculation of the NN interactions. The behavior of the signal-to-noise ratio in the baryon-baryon correlation functions, and in the ratio of correlation functions that yields the ground-state energy splitting
Time-Sliced Perturbation Theory II: Baryon Acoustic Oscillations and Infrared Resummation
Blas, Diego; Ivanov, Mikhail M; Sibiryakov, Sergey
2016-01-01
We use time-sliced perturbation theory (TSPT) to give an accurate description of the infrared non-linear effects affecting the baryonic acoustic oscillations (BAO) present in the distribution of matter at very large scales. In TSPT this can be done via a systematic resummation that has a simple diagrammatic representation and does not involve uncontrollable approximations. We discuss the power counting rules and derive explicit expressions for the resummed matter power spectrum up to next-to leading order and the bispectrum at the leading order. The two-point correlation function agrees well with N-body data at BAO scales. The systematic approach also allows to reliably assess the shift of the baryon acoustic peak due to non-linear effects.
Measuring baryon acoustic oscillations with angular two-point correlation function
Alcaniz, Jailson S; Bernui, Armando; Carvalho, Joel C; Benetti, Micol
2016-01-01
The Baryon Acoustic Oscillations (BAO) imprinted a characteristic correlation length in the large-scale structure of the universe that can be used as a standard ruler for mapping out the cosmic expansion history. Here, we discuss the application of the angular two-point correlation function, $w(\\theta)$, to a sample of luminous red galaxies of the Sloan Digital Sky Survey (SDSS) and derive two new measurements of the BAO angular scale at $z = 0.235$ and $z = 0.365$. Since noise and systematics may hinder the identification of the BAO signature in the $w - \\theta$ plane, we also introduce a potential new method to localize the acoustic bump in a model-independent way. We use these new measurements along with previous data to constrain cosmological parameters of dark energy models and to derive a new estimate of the acoustic scale $r_s$.
Tojeiro, Rita; Burden, Angela; Samushia, Lado; Manera, Marc; Percival, Will J; Beutler, Florian; Cuesta, Antonio J; Dawson, Kyle; Eisenstein, Daniel J; Ho, Shirley; Howett, Cullan; McBride, Cameron K; Montesano, Francisco; Parejko, John K; Reid, Beth; Sánchez, Ariel G; Schlegel, David J; Schneider, Donald P; Tinker, Jeremy L; Magaña, Mariana Vargas; White, Martin
2014-01-01
We present the distance measurement to z = 0.32 using the 11th data release of the Sloan Digital Sky Survey-III Baryon Acoustic Oscillation Survey (BOSS). We use 313,780 galaxies of the low-redshift (LOWZ) sample over 7,341 square-degrees to compute $D_V = (1264 \\pm 25)(r_d/r_{d,fid})$ - a sub 2% measurement - using the baryon acoustic feature measured in the galaxy two-point correlation function and power-spectrum. We compare our results to those obtained in DR10. We study observational systematics in the LOWZ sample and quantify potential effects due to photometric offsets between the northern and southern Galactic caps. We find the sample to be robust to all systematic effects found to impact on the targeting of higher-redshift BOSS galaxies, and that the observed north-south tensions can be explained by either limitations in photometric calibration or by sample variance, and have no impact on our final result. Our measurement, combined with the baryonic acoustic scale at z = 0.57, is used in Anderson et a...
Sánchez, Ariel G.; Grieb, Jan Niklas; Salazar-Albornoz, Salvador; Alam, Shadab; Beutler, Florian; Ross, Ashley J.; Brownstein, Joel R.; Chuang, Chia-Hsun; Cuesta, Antonio J.; Eisenstein, Daniel J.; Kitaura, Francisco-Shu; Percival, Will J.; Prada, Francisco; Rodríguez-Torres, Sergio; Seo, Hee-Jong; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magaña, Mariana; Vazquez, Jose A.; Zhao, Gong-Bo
2017-01-01
The cosmological information contained in anisotropic galaxy clustering measurements can often be compressed into a small number of parameters whose posterior distribution is well described by a Gaussian. We present a general methodology to combine these estimates into a single set of consensus constraints that encode the total information of the individual measurements, taking into account the full covariance between the different methods. We illustrate this technique by applying it to combine the results obtained from different clustering analyses, including measurements of the signature of baryon acoustic oscillations and redshift-space distortions, based on a set of mock catalogues of the final SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Our results show that the region of the parameter space allowed by the consensus constraints is smaller than that of the individual methods, highlighting the importance of performing multiple analyses on galaxy surveys even when the measurements are highly correlated. This paper is part of a set that analyses the final galaxy clustering data set from BOSS. The methodology presented here is used in Alam et al. to produce the final cosmological constraints from BOSS.
Bautista, Julian E; Font-Ribera, Andreu; Pieri, Matthew M; Busca, Nicolás G; Miralda-Escudé, Jordi; Palanque-Delabrouille, Nathalie; Rich, James; Dawson, Kyle; Feng, Yu; Ge, Jian; Gontcho, Satya Gontcho A; Ho, Shirley; Goff, Jean Marc Le; Noterdaeme, Pasquier; Pâris, Isabelle; Rossi, Graziano; Schlegel, David
2014-01-01
We describe mock data-sets generated to simulate the high-redshift quasar sample in Data Release 11 (DR11) of the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). The mock spectra contain Ly{\\alpha} forest correlations useful for studying the 3D correlation function including Baryon Acoustic Oscillations (BAO). They also include astrophysical effects such as quasar continuum diversity and high-density absorbers, instrumental effects such as noise and spectral resolution, as well as imperfections introduced by the SDSS pipeline treatment of the raw data. The Ly{\\alpha} forest BAO analysis of the BOSS collaboration, described in Delubac et al. 2014, has used these mock data-sets to develop and cross-check analysis procedures prior to performing the BAO analysis on real data, and for continued systematic cross checks. Tests presented here show that the simulations reproduce sufficiently well important characteristics of real spectra. These mock data-sets will be made available together with the data at t...
Mock Quasar-Lyman-α forest data-sets for the SDSS-III Baryon Oscillation Spectroscopic Survey
Bautista, Julian E.; Bailey, Stephen; Font-Ribera, Andreu; Pieri, Matthew M.; Busca, Nicolas G.; Miralda-Escudé, Jordi; Palanque-Delabrouille, Nathalie; Rich, James; Dawson, Kyle; Feng, Yu; Ge, Jian; Gontcho, Satya Gontcho A.; Ho, Shirley; Le Goff, Jean Marc; Noterdaeme, Pasquier; Pâris, Isabelle; Rossi, Graziano; Schlegel, David
2015-05-01
We describe mock data-sets generated to simulate the high-redshift quasar sample in Data Release 11 (DR11) of the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). The mock spectra contain Lyα forest correlations useful for studying the 3D correlation function including Baryon Acoustic Oscillations (BAO). They also include astrophysical effects such as quasar continuum diversity and high-density absorbers, instrumental effects such as noise and spectral resolution, as well as imperfections introduced by the SDSS pipeline treatment of the raw data. The Lyα forest BAO analysis of the BOSS collaboration, described in Delubac et al. 2014, has used these mock data-sets to develop and cross-check analysis procedures prior to performing the BAO analysis on real data, and for continued systematic cross checks. Tests presented here show that the simulations reproduce sufficiently well important characteristics of real spectra. These mock data-sets will be made available together with the data at the time of the Data Release 11.
Measuring the distance-redshift relation with the baryon acoustic oscillations of galaxy clusters
Veropalumbo, Alfonso; Moscardini, Lauro; Moresco, Michele; Cimatti, Andrea
2015-01-01
We analyse the largest spectroscopic samples of galaxy clusters to date, and provide observational constraints on the distance-redshift relation from baryon acoustic oscillations. The cluster samples considered in this work have been extracted from the Sloan Digital Sky Survey at three median redshifts, $z=0.2$, $z=0.3$, and $z=0.5$. The number of objects is $12910$, $42215$, and $11816$, respectively. We detect the peak of baryon acoustic oscillations for all the three samples. The derived distance constraints are: $r_s/D_V(z=0.2)=0.18 \\pm 0.01$, $r_s/D_V(z=0.3)=0.124 \\pm 0.004$ and $r_s/D_V(z=0.5)=0.080 \\pm 0.002$. Combining these measurements, we obtain robust constraints on cosmological parameters. Our results are in agreement with the standard $\\Lambda$ cold dark matter model. Specifically, we constrain the Hubble constant in a $\\Lambda$CDM model, $H_0 = 64_{-9}^{+14} \\, \\mathrm{km} \\, \\mathrm{s}^{-1}\\mathrm{Mpc}^{-1}$, the density of curvature energy, in the $o\\Lambda$CDM context, $\\Omega_K = -0.015_{-0...
Pober, Jonathan C; DeBoer, David R; McDonald, Patrick; McQuinn, Matthew; Aguirre, James E; Ali, Zaki; Bradley, Richard F; Chang, Tzu-Ching; Morales, Miguel F
2012-01-01
This work describes a new instrument optimized for a detection of the neutral hydrogen 21cm power spectrum between redshifts of 0.5-1.5: the Baryon Acoustic Oscillation Broadband and Broad-beam (BAOBAB) Array. BAOBAB will build on the efforts of a first generation of 21cm experiments which are targeting a detection of the signal from the Epoch of Reionization at z ~ 10. At z ~ 1, the emission from neutral hydrogen in self-shielded overdense halos also presents an accessible signal, since the dominant, synchrotron foreground emission is considerably fainter than at redshift 10. The principle science driver for these observations are Baryon Acoustic Oscillations in the matter power spectrum which have the potential to act as a standard ruler and constrain the nature of dark energy. BAOBAB will fully correlate dual-polarization antenna tiles over the 600-900MHz band with a frequency resolution of 300 kHz and a system temperature of 50K. The number of antennas will grow in staged deployments, and reconfigurations...
The BOSS-WiggleZ overlap region I: Baryon Acoustic Oscillations
Beutler, Florian; Koda, Jun; Marin, Felipe; Seo, Hee-Jong; Cuesta, Antonio J; Schneider, Donald P
2015-01-01
We study the large-scale clustering of galaxies in the overlap region of the Baryon Oscillation Spectroscopic Survey (BOSS) CMASS sample and the WiggleZ Dark Energy Survey. We calculate the auto-correlation and cross-correlation functions in the overlap region of the two datasets and detect a Baryon Acoustic Oscillation (BAO) signal in each of them. The BAO measurement from the cross-correlation function represents the first such detection between two different galaxy surveys. After applying density-field reconstruction we report distance-scale measurements $D_V r_s^{\\rm fid} / r_s = (1970 \\pm 47, 2132 \\pm 67, 2100 \\pm 200)$ Mpc from CMASS, the cross-correlation and WiggleZ, respectively. We use correlated mock realizations to calculate the covariance between the three BAO constraints. The distance scales derived from the two datasets are consistent, and are also robust against switching the displacement fields used for reconstruction between the two surveys. This approach can be used to construct a correlati...
The BOSS-WiggleZ overlap region - I. Baryon acoustic oscillations
Beutler, Florian; Blake, Chris; Koda, Jun; Marín, Felipe A.; Seo, Hee-Jong; Cuesta, Antonio J.; Schneider, Donald P.
2016-01-01
We study the large-scale clustering of galaxies in the overlap region of the Baryon Oscillation Spectroscopic Survey (BOSS) CMASS sample and the WiggleZ Dark Energy Survey. We calculate the auto-correlation and cross-correlation functions in the overlap region of the two data sets and detect a Baryon Acoustic Oscillation (BAO) signal in each of them. The BAO measurement from the cross-correlation function represents the first such detection between two different galaxy surveys. After applying density-field reconstruction we report distance-scale measurements D_V r_s^fid / r_s = (1970 ± 45, 2132 ± 65, 2100 ± 200) Mpc from CMASS, the cross-correlation and WiggleZ, respectively. The distance scales derived from the two data sets are consistent, and are also robust against switching the displacement fields used for reconstruction between the two surveys. We use correlated mock realizations to calculate the covariance between the three BAO constraints. This approach can be used to construct a correlation matrix, permitting for the first time a rigorous combination of WiggleZ and CMASS BAO measurements. Using a volume-scaling technique, our result can also be used to combine WiggleZ and future CMASS DR12 results. Finally, we show that the relative velocity effect, a possible source of systematic uncertainty for the BAO technique, is consistent with zero for our samples.
Redshift Weights for Baryon Acoustic Oscillations : Application to Mock Galaxy Catalogs
Zhu, Fangzhou; White, Martin; Ross, Ashley J; Zhao, Gongbo
2016-01-01
Large redshift surveys capable of measuring the Baryon Acoustic Oscillation (BAO) signal have proven to be an effective way of measuring the distance-redshift relation in cosmology. Building off the work in Zhu et al. (2015), we develop a technique to directly constrain the distance-redshift relation from BAO measurements without splitting the sample into redshift bins. We parametrize the distance-redshift relation, relative to a fiducial model, as a quadratic expansion. We measure its coefficients and reconstruct the distance-redshift relation from the expansion. We apply the redshift weighting technique in Zhu et al. (2015) to the clustering of galaxies from 1000 QuickPM (QPM) mock simulations after reconstruction and achieve a 0.75% measurement of the angular diameter distance $D_A$ at $z=0.64$ and the same precision for Hubble parameter H at $z=0.29$. These QPM mock catalogs are designed to mimic the clustering and noise level of the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 12 (DR12). W...
Measuring the 2D baryon acoustic oscillation signal of galaxies in WiggleZ: cosmological constraints
Hinton, Samuel R.; Kazin, Eyal; Davis, Tamara M.; Blake, Chris; Brough, Sarah; Colless, Matthew; Couch, Warrick J.; Drinkwater, Michael J.; Glazebrook, Karl; Jurek, Russell J.; Parkinson, David; Pimbblet, Kevin A.; Poole, Gregory B.; Pracy, Michael; Woods, David
2017-02-01
We present results from the 2D anisotropic baryon acoustic oscillation (BAO) signal present in the final data set from the WiggleZ Dark Energy Survey. We analyse the WiggleZ data in two ways: first using the full shape of the 2D correlation function and secondly focusing only on the position of the BAO peak in the reconstructed data set. When fitting for the full shape of the 2D correlation function we use a multipole expansion to compare with theory. When we use the reconstructed data we marginalize over the shape and just measure the position of the BAO peak, analysing the data in wedges separating the signal along the line of sight from that parallel to the line of sight. We verify our method with mock data and find the results to be free of bias or systematic offsets. We also redo the pre-reconstruction angle-averaged (1D) WiggleZ BAO analysis with an improved covariance and present an updated result. The final results are presented in the form of Ωc h2, H(z), and DA(z) for three redshift bins with effective redshifts z = 0.44, 0.60, and 0.73. Within these bins and methodologies, we recover constraints between 5 and 22 per cent error. Our cosmological constraints are consistent with flat ΛCDM cosmology and agree with results from the Baryon Oscillation Spectroscopic Survey.
Baryon Acoustic Oscillations in 2D: Modeling Redshift-space Power Spectrum from Perturbation Theory
Taruya, Atsushi; Saito, Shun
2010-01-01
We present an improved prescription for matter power spectrum in redshift space taking a proper account of both the non-linear gravitational clustering and redshift distortion, which are of particular importance for accurately modeling baryon acoustic oscillations (BAOs). Contrary to the models of redshift distortion phenomenologically introduced but frequently used in the literature, the new model includes the corrections arising from the non-linear coupling between the density and velocity fields associated with two competitive effects of redshift distortion, i.e., Kaiser and Finger-of-God effects. Based on the improved treatment of perturbation theory for gravitational clustering, we compare our model predictions with monopole and quadrupole power spectra of N-body simulations, and an excellent agreement is achieved over the scales of BAOs. Potential impacts on constraining dark energy and modified gravity from the redshift-space power spectrum are also investigated based on the Fisher-matrix formalism. We...
Ma, Cong
2016-01-01
We use cosmological luminosity distance ($d_L$) from the JLA Type Ia supernovae compilation and angular-diameter distance ($d_A$) based on BOSS and WiggleZ baryon acoustic oscillation measurements to test the distance-duality relation $\\eta \\equiv d_L / [ (1 + z)^2 d_A ] = 1$. The $d_L$ measurements are matched to $d_A$ redshift by a statistically-motivated compression procedure. By means of Monte Carlo methods, non-trivial and correlated distributions of $\\eta$ can be explored in a straightforward manner without resorting to a particular evolution template $\\eta(z)$. Assuming Planck cosmological parameter uncertainty, we find 5% constraints in favor of $\\eta = 1$, consistent with the weaker 7--10% constraints obtained using WiggleZ data. These results stand in contrast to previous claims that $\\eta < 1$ has been found close to or above $1\\sigma$ level.
A CROSS-CHECK FOR H0 FROM LYMAN- α FOREST AND BARYON ACOUSTIC OSCILLATIONS
Directory of Open Access Journals (Sweden)
V. C. Busti
2016-01-01
Full Text Available A new method is proposed to infer the Hubble constant H0 through the observed mean transmitted flux from high-redshift quasars and the baryon acoustic oscillations (BAOs. A semi-analytical model for the cosmological-independent volume density distribution function was adopted; it allowed us to obtain constraints on the cosmological parameters once a moderate knowledge of the Inter Galactic Medium (IGM parameters is assumed. Our analysis, based on two different samples of Lyman-α forest and the BAO measurement, restricts (h, Ωm to the intervals 0.19 ≤ Ωm ≤ 0.23 and 0.53 ≤ h ≤ 0.82 (1σ. Although the constraints are weaker compared with other estimates, we point out that, with a bigger sample and a better knowledge of the IGM, this method could provide complementary results to measure the Hubble constant independently of the cosmic distance ladder.
Xu, Lixin
2012-01-01
In this paper, the holographic dark energy (HDE) model, where the future event horizon is taken as an IR cut-off, is confronted by using currently available cosmic observational data sets which include type Ia supernovae, baryon acoustic oscillation and cosmic microwave background radiation from full information of WMAP-7yr. Via the Markov Chain Monte Carlo method, we obtain the values of model parameter $c= 0.696_{- 0.0737- 0.132- 0.190}^{+ 0.0736+ 0.159+ 0.264}$ with $1,2,3\\sigma$ regions. Therefore one can conclude that at lest $3\\sigma$ level the future Universe will be dominated by phantom like dark energy. It is not consistent with positive energy condition, however this condition must be satisfied to derive the holographic bound. It implies that the current cosmic observational data points disfavor the HDE model.
Simulations of Baryon Acoustic Oscillations I: Growth of Large-Scale Density Fluctuations
Takahashi, Ryuichi; Matsubara, Takahiko; Sugiyama, Naoshi; Kayo, Issha; Nishimichi, Takahiro; Shirata, Akihito; Taruya, Atsushi; Saito, Shun; Yahata, Kazuhiro; Suto, Yasushi
2008-01-01
We critically examine how well the evolution of large-scale density perturbations is followed in cosmological $N$-body simulations. We first run a large volume simulation and perform a mode-by-mode analysis in three-dimensional Fourier space. We show that the growth of large-scale fluctuations significantly deviates from linear theory predictions. The deviations are caused by {\\it nonlinear} coupling with a small number of modes at largest scales owing to finiteness of the simulation volume. We then develop an analytic model based on second-order perturbation theory to quantify the effect. Our model accurately reproduces the simulation results. For a single realization, the second-order effect appears typically as ``zig-zag'' patterns around the linear-theory prediction, which imprints artificial ``oscillations'' that lie on the real baryon-acoustic oscillations. Although an ensemble average of a number of realizations approaches the linear theory prediction, the dispersions of the realizations remain large e...
A cross-check for H0 from Lyman-α Forest and Baryon Acoustic Oscillations
Busti, V. C.; Guimarães, R. N.; Lima, J. A. S.
2016-04-01
A new method is proposed to infer the Hubble constant H0 through the observed mean transmitted flux from high-redshift quasars and the baryon acoustic oscillations (BAOs). A semi-analytical model for the cosmological-independent volume density distribution function was adopted; it allowed us to obtain constraints on the cosmological parameters once a moderate knowledge of the Inter Galactic Medium (IGM) parameters is assumed. Our analysis, based on two different samples of Lyman-α forest and the BAO measurement, restricts (h, Ωm) to the intervals 0.19 ≤ Ωm ≤ 0.23 and 0.53 ≤ h ≤ 0.82 (1σ). Although the constraints are weaker compared with other estimates, we point out that, with a bigger sample and a better knowledge of the IGM, this method could provide complementary results to measure the Hubble constant independently of the cosmic distance ladder.
Energy Technology Data Exchange (ETDEWEB)
Pober, Jonathan C.; Parsons, Aaron R.; McQuinn, Matthew; Ali, Zaki [Astronomy Department, University of California, Berkeley, CA (United States); DeBoer, David R. [Radio Astronomy Laboratory, University of California, Berkeley, CA (United States); McDonald, Patrick [Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Aguirre, James E. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA (United States); Bradley, Richard F. [Astronomy Department and Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA (United States); Chang, Tzu-Ching [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei, Taiwan (China); Morales, Miguel F. [Department of Physics, University of Washington, Seattle, WA (United States)
2013-03-15
This work describes a new instrument optimized for a detection of the neutral hydrogen 21 cm power spectrum between redshifts of 0.5 and 1.5: the Baryon Acoustic Oscillation Broadband and Broad-beam (BAOBAB) array. BAOBAB will build on the efforts of a first generation of 21 cm experiments that are targeting a detection of the signal from the Epoch of Reionization at z {approx} 10. At z {approx} 1, the emission from neutral hydrogen in self-shielded overdense halos also presents an accessible signal, since the dominant, synchrotron foreground emission is considerably fainter than at redshift 10. The principle science driver for these observations are baryon acoustic oscillations in the matter power spectrum which have the potential to act as a standard ruler and constrain the nature of dark energy. BAOBAB will fully correlate dual-polarization antenna tiles over the 600-900 MHz band with a frequency resolution of 300 kHz and a system temperature of 50 K. The number of antennas will grow in staged deployments, and reconfigurations of the array will allow for both traditional imaging and high power spectrum sensitivity operations. We present calculations of the power spectrum sensitivity for various array sizes, with a 35 element array measuring the cosmic neutral hydrogen fraction as a function of redshift, and a 132 element system detecting the BAO features in the power spectrum, yielding a 1.8% error on the z {approx} 1 distance scale, and, in turn, significant improvements to constraints on the dark energy equation of state over an unprecedented range of redshifts from {approx}0.5 to 1.5.
Blake, Chris; Beutler, Florian; Davis, Tamara; Parkinson, David; Brough, Sarah; Colless, Matthew; Contreras, Carlos; Couch, Warrick; Croom, Scott; Croton, Darren; Drinkwater, Michael J; Forster, Karl; Gilbank, David; Gladders, Mike; Glazebrook, Karl; Jelliffe, Ben; Jurek, Russell J; Li, I-hui; Madore, Barry; Martin, Chris; Pimbblet, Kevin; Poole, Gregory; Pracy, Michael; Sharp, Rob; Wisnioski, Emily; Woods, David; Wyder, Ted; Yee, Howard
2011-01-01
We present measurements of the baryon acoustic peak at redshifts z = 0.44, 0.6 and 0.73 in the galaxy correlation function of the final dataset of the WiggleZ Dark Energy Survey. We combine our correlation function with lower-redshift measurements from the 6-degree Field Galaxy Survey and Sloan Digital Sky Survey, producing a stacked survey correlation function in which the statistical significance of the detection of the baryon acoustic peak is 4.9-sigma relative to a zero-baryon model with no peak. We fit cosmological models to this combined baryon acoustic oscillation (BAO) dataset comprising six distance-redshift data points, and compare the results to similar fits to the latest compilation of supernovae (SNe) and Cosmic Microwave Background (CMB) data. The BAO and SNe datasets produce consistent measurements of the equation-of-state w of dark energy, when separately combined with the CMB, providing a powerful check for systematic errors in either of these distance probes. Combining all datasets we determ...
Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Liang, Yu; Zhao, Cheng; Tao, Charling; Rodríguez-Torres, Sergio; Eisenstein, Daniel J; Gil-Marín, Héctor; Kneib, Jean-Paul; McBride, Cameron; Percival, Will J; Ross, Ashley J; Sánchez, Ariel G; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana; Zhao, Gong-Bo
2016-04-29
Sound waves from the primordial fluctuations of the Universe imprinted in the large-scale structure, called baryon acoustic oscillations (BAOs), can be used as standard rulers to measure the scale of the Universe. These oscillations have already been detected in the distribution of galaxies. Here we propose to measure BAOs from the troughs (minima) of the density field. Based on two sets of accurate mock halo catalogues with and without BAOs in the seed initial conditions, we demonstrate that the BAO signal cannot be obtained from the clustering of classical disjoint voids, but it is clearly detected from overlapping voids. The latter represent an estimate of all troughs of the density field. We compute them from the empty circumsphere centers constrained by tetrahedra of galaxies using Delaunay triangulation. Our theoretical models based on an unprecedented large set of detailed simulated void catalogues are remarkably well confirmed by observational data. We use the largest recently publicly available sample of luminous red galaxies from SDSS-III BOSS DR11 to unveil for the first time a >3σ BAO detection from voids in observations. Since voids are nearly isotropically expanding regions, their centers represent the most quiet places in the Universe, keeping in mind the cosmos origin and providing a new promising window in the analysis of the cosmological large-scale structure from galaxy surveys.
Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Liang, Yu; Zhao, Cheng; Tao, Charling; Rodríguez-Torres, Sergio; Eisenstein, Daniel J.; Gil-Marín, Héctor; Kneib, Jean-Paul; McBride, Cameron; Percival, Will J.; Ross, Ashley J.; Sánchez, Ariel G.; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana; Zhao, Gong-Bo
2016-04-01
Sound waves from the primordial fluctuations of the Universe imprinted in the large-scale structure, called baryon acoustic oscillations (BAOs), can be used as standard rulers to measure the scale of the Universe. These oscillations have already been detected in the distribution of galaxies. Here we propose to measure BAOs from the troughs (minima) of the density field. Based on two sets of accurate mock halo catalogues with and without BAOs in the seed initial conditions, we demonstrate that the BAO signal cannot be obtained from the clustering of classical disjoint voids, but it is clearly detected from overlapping voids. The latter represent an estimate of all troughs of the density field. We compute them from the empty circumsphere centers constrained by tetrahedra of galaxies using Delaunay triangulation. Our theoretical models based on an unprecedented large set of detailed simulated void catalogues are remarkably well confirmed by observational data. We use the largest recently publicly available sample of luminous red galaxies from SDSS-III BOSS DR11 to unveil for the first time a >3 σ BAO detection from voids in observations. Since voids are nearly isotropically expanding regions, their centers represent the most quiet places in the Universe, keeping in mind the cosmos origin and providing a new promising window in the analysis of the cosmological large-scale structure from galaxy surveys.
Galaxy Bias and its Effects on the Baryon Acoustic Oscillations Measurements
Mehta, Kushal T; Eckel, Jonathan; Eisenstein, Daniel J; Metchnik, Marc; Pinto, Philip; Xu, Xiaoying
2011-01-01
The baryon acoustic oscillation (BAO) feature in the clustering of matter in the universe serves as a robust standard ruler and hence can be used to map the expansion history of the universe. We use high force resolution simulations to analyze the effects of galaxy bias on the measurements of the BAO signal. We apply a variety of Halo Occupation Distributions (HODs) and produce biased mass tracers to mimic different galaxy populations. We investigate whether galaxy bias changes the non-linear shifts on the acoustic scale relative to the underlying dark matter distribution presented by Seo et al (2009). For the less biased HOD models (b 3) show a shift at moderate significance (0.79% \\pm 0.31% for the most extreme case). We test the one-step reconstruction technique introduced by Eisenstein et al. (2007) in the case of realistic galaxy bias and shot noise. The reconstruction scheme increases the correlation between the initial and final (z = 1) density fields achieving an equivalent level of correlation at ne...
Galaxy bias and its effects on the Baryon acoustic oscillations measurements
Energy Technology Data Exchange (ETDEWEB)
Mehta, Kushal T. [Univ. of Arizona, Tucson, AZ (United States); Seo, Hee -Jong [Univ. of California, Berkeley, CA (United States); Fermi National Accelerator Lab., Batavia, IL (United States); Eckel, Jonathan [Univ. of Arizona, Tucson, AZ (United States); Eisenstein, Daniel J. [Univ. of Arizona, Tucson, AZ (United States); Harvard Univ., Cambridge, MA (United States); Metchnik, Marc [Univ. of Arizona, Tucson, AZ (United States); Pinto, Philip [Univ. of Arizona, Tucson, AZ (United States); Xu, Xiaoying [Univ. of Arizona, Tucson, AZ (United States)
2011-05-31
The baryon acoustic oscillation (BAO) feature in the clustering of matter in the universe serves as a robust standard ruler and hence can be used to map the expansion history of the universe. We use high force resolution simulations to analyze the effects of galaxy bias on the measurements of the BAO signal. We apply a variety of Halo Occupation Distributions (HODs) and produce biased mass tracers to mimic different galaxy populations. We investigate whether galaxy bias changes the non-linear shifts on the acoustic scale relative to the underlying dark matter distribution presented by Seo et al. (2009). For the less biased HOD models (b < 3), we do not detect any shift in the acoustic scale relative to the no-bias case, typically 0.10% ± 0.10%. However, the most biased HOD models (b > 3) show a shift at moderate significance (0.79% ± 0.31% for the most extreme case). We test the one-step reconstruction technique introduced by Eisenstein et al. (2007) in the case of realistic galaxy bias and shot noise. The reconstruction scheme increases the correlation between the initial and final (z = 1) density fields achieving an equivalent level of correlation at nearly twice the wavenumber after reconstruction. Reconstruction reduces the shifts and errors on the shifts. We find that after reconstruction the shifts from the galaxy cases and the dark matter case are consistent with each other and with no shift. The 1σ systematic errors on the distance measurements inferred from our BAO measurements with various HODs after reconstruction are about 0.07%-0.15%.
Galaxy bias and its effects on the Baryon acoustic oscillations measurements
Energy Technology Data Exchange (ETDEWEB)
Mehta, Kushal T. [Univ. of Arizona, Tucson, AZ (United States); Seo, Hee -Jong [Univ. of California, Berkeley, CA (United States); Fermi National Accelerator Lab., Batavia, IL (United States); Eckel, Jonathan [Univ. of Arizona, Tucson, AZ (United States); Eisenstein, Daniel J. [Univ. of Arizona, Tucson, AZ (United States); Harvard Univ., Cambridge, MA (United States); Metchnik, Marc [Univ. of Arizona, Tucson, AZ (United States); Pinto, Philip [Univ. of Arizona, Tucson, AZ (United States); Xu, Xiaoying [Univ. of Arizona, Tucson, AZ (United States)
2011-05-31
The baryon acoustic oscillation (BAO) feature in the clustering of matter in the universe serves as a robust standard ruler and hence can be used to map the expansion history of the universe. We use high force resolution simulations to analyze the effects of galaxy bias on the measurements of the BAO signal. We apply a variety of Halo Occupation Distributions (HODs) and produce biased mass tracers to mimic different galaxy populations. We investigate whether galaxy bias changes the non-linear shifts on the acoustic scale relative to the underlying dark matter distribution presented by Seo et al. (2009). For the less biased HOD models (b < 3), we do not detect any shift in the acoustic scale relative to the no-bias case, typically 0.10% ± 0.10%. However, the most biased HOD models (b > 3) show a shift at moderate significance (0.79% ± 0.31% for the most extreme case). We test the one-step reconstruction technique introduced by Eisenstein et al. (2007) in the case of realistic galaxy bias and shot noise. The reconstruction scheme increases the correlation between the initial and final (z = 1) density fields achieving an equivalent level of correlation at nearly twice the wavenumber after reconstruction. Reconstruction reduces the shifts and errors on the shifts. We find that after reconstruction the shifts from the galaxy cases and the dark matter case are consistent with each other and with no shift. The 1σ systematic errors on the distance measurements inferred from our BAO measurements with various HODs after reconstruction are about 0.07%-0.15%.
Measuring the 2D Baryon Acoustic Oscillation signal of galaxies in WiggleZ: Cosmological constraints
Hinton, Samuel R; Davis, Tamara M; Blake, Chris; Brough, Sarah; Colless, Matthew; Couch, Warrick J; Drinkwater, Michael J; Glazebrook, Karl; Jurek, Russel J; Parkinson, David; Pimbblet, Kevin A; Poole, Gregory B; Pracy, Michael; Woods, David
2016-01-01
We present results from the 2D anisotropic Baryon Acoustic Oscillation (BAO) signal present in the final dataset from the WiggleZ Dark Energy Survey. We analyse the WiggleZ data in two ways: firstly using the full shape of the 2D correlation function and secondly focussing only on the position of the BAO peak in the reconstructed data set. When fitting for the full shape of the 2D correlation function we use a multipole expansion to compare with theory. When we use the reconstructed data we marginalise over the shape and just measure the position of the BAO peak, analysing the data in wedges separating the signal along the line of sight from that parallel to the line of sight. We verify our method with mock data and find the results to be free of bias or systematic offsets. We also redo the pre-reconstruction angle averaged (1D) WiggleZ BAO analysis with an improved covariance and present an updated result. The final results are presented in the form of $\\Omega_c h^2$, $H(z)$, and $D_A(z)$ for three redshift ...
The Alcock Paczy'nski test with Baryon Acoustic Oscillations: systematic effects for future surveys
Lepori, Francesca; Di Dio, Enea; Viel, Matteo; Baccigalupi, Carlo; Durrer, Ruth
2017-02-01
We investigate the Alcock Paczy'nski (AP) test applied to the Baryon Acoustic Oscillation (BAO) feature in the galaxy correlation function. By using a general formalism that includes relativistic effects, we quantify the importance of the linear redshift space distortions and gravitational lensing corrections to the galaxy number density fluctuation. We show that redshift space distortions significantly affect the shape of the correlation function, both in radial and transverse directions, causing different values of galaxy bias to induce offsets up to 1% in the AP test. On the other hand, we find that the lensing correction around the BAO scale modifies the amplitude but not the shape of the correlation function and therefore does not introduce any systematic effect. Furthermore, we investigate in details how the AP test is sensitive to redshift binning: a window function in transverse direction suppresses correlations and shifts the peak position toward smaller angular scales. We determine the correction that should be applied in order to account for this effect, when performing the test with data from three future planned galaxy redshift surveys: Euclid, the Dark Energy Spectroscopic Instrument (DESI) and the Square Kilometer Array (SKA).
Baryonic acoustic oscillations from 21cm intensity mapping: the Square Kilometre Array case
Villaescusa-Navarro, Francisco; Viel, Matteo
2016-01-01
We quantitatively investigate the possibility of detecting baryonic acoustic oscillations (BAO) using single-dish 21cm intensity mapping observations in the post-reionization era. We show that the telescope beam smears out the isotropic BAO signature and, in the case of the Square Kilometer Array (SKA) instrument, makes it undetectable at redshifts $z\\gtrsim1$. We however demonstrate that the BAO peak can still be detected in the radial 21cm power spectrum and describe a method to make this type of measurements. By means of numerical simulations, containing the 21cm cosmological signal as well as the most relevant Galactic and extra-Galactic foregrounds and basic instrumental effect, we quantify the precision with which the radial BAO scale can be measured in the 21cm power spectrum. We systematically investigate the signal-to-noise and the precision of the recovered BAO signal as a function of cosmic variance, instrumental noise, angular resolution and foreground contamination. We find that the expected nois...
A detection of Baryon Acoustic Oscillations from the distribution of galaxy clusters
Hong, Tao; Wen, Z L
2015-01-01
We calculate the correlation function of 79,091 galaxy clusters in the redshift region of $0.05 \\leq z \\leq 0.5$ selected from the WH15 cluster catalog. With a weight of cluster mass, a significant baryon acoustic oscillation (BAO) peak is detected on the correlation function with a significance of $3.9 \\sigma$. By fitting the correlation function with a $\\Lambda$CDM model curve, we find $D_v(z = 0.331) r_d^{fid}/r_d = 1269.4 \\pm 58$ Mpc which is consistent with the Planck 2015 cosmology. We find that the correlation functions of the higher mass sub-samples show a higher amplitude at small scales of $r < 80~h^{-1}{\\rm Mpc}$, which is consistent with our precious result. We find a clear signal of the `Finger-of-God' effect on the 2D correlation function of the whole sample, which indicates the random peculiar motion of central bright galaxies in the gravitation potential well of clusters.
Energy Technology Data Exchange (ETDEWEB)
Xu Lixin, E-mail: lxxu@dlut.edu.cn [Institute of Theoretical Physics, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); College of Advanced Science and Technology, Dalian University of Technology, Dalian 116024 (China); Korea Astronomy and Space Science Institute, Yuseong Daedeokdaero 776, Daejeon 305-348 (Korea, Republic of); Wang Yuting [Institute of Theoretical Physics, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)
2011-08-11
In this Letter, a parametrization describing the kinematical state of the universe via cosmographic approach is considered, where the minimum input is the assumption of the cosmological principle, i.e. the Friedmann-Robertson-Walker metric. A distinguished feature is that the result does not depend on any gravity theory and dark energy models. As a result, a series of cosmographic parameters (deceleration parameter q{sub 0}, jerk parameter j{sub 0} and snap parameter s{sub 0}) are constrained from the cosmic observations which include type Ia supernovae (SN) Union2, the Baryon Acoustic Oscillation (BAO), the observational Hubble data (OHD), the high redshift Gamma ray bursts (GRBs). By using Markov Chain Monte Carlo (MCMC) method, we find the best fit values of cosmographic parameters in 1{sigma} regions: H{sub 0}=74.299{sub -4.287}{sup +4.932}, q{sub 0}=-0.386{sub -0.618}{sup +0.655}, j{sub 0}=-4.925{sub -7.297}{sup +6.658} and s{sub 0}=-26.404{sub -9.097}{sup +20.964} which are improved remarkably. The values of q{sub 0} and j{sub 0} are consistent with flat {Lambda}CDM model in 1{sigma} region. But the value of s{sub 0} of flat {Lambda}CDM model will go beyond the 1{sigma} region.
Valiviita, Jussi
2015-01-01
We employ the Planck 2013 CMB temperature anisotropy and lensing data, and baryon acoustic oscillation (BAO) data to constrain a phenomenological $w$CDM model, where dark matter and dark energy interact. We assume time-dependent equation of state parameter for dark energy, and treat dark matter and dark energy as fluids whose energy-exchange rate is proportional to the dark-matter density. The CMB data alone leave a strong degeneracy between the interaction rate and the physical CDM density parameter today, $\\omega_c$, allowing a large interaction rate $|\\Gamma| \\sim H_0$. However, as has been known for a while, the BAO data break this degeneracy. Moreover, we exploit the CMB lensing potential likelihood, which probes the matter perturbations at redshift $z \\sim 2$ and is very sensitive to the growth of structure, and hence one of the tools for discerning between the $\\Lambda$CDM model and its alternatives. However, we find that in the non-phantom models ($w_{\\mathrm{de}}>-1$), the constraints remain unchange...
Simulations of Baryon Acoustic Oscillations II: Covariance matrix of the matter power spectrum
Takahashi, Ryuichi; Takada, Masahiro; Matsubara, Takahiko; Sugiyama, Naoshi; Kayo, Issha; Nishizawa, Atsushi J; Nishimichi, Takahiro; Saito, Shun; Taruya, Atsushi
2009-01-01
We use 5000 cosmological N-body simulations of 1(Gpc/h)^3 box for the concordance LCDM model in order to study the sampling variances of nonlinear matter power spectrum. We show that the non-Gaussian errors can be important even on large length scales relevant for baryon acoustic oscillations (BAO). Our findings are (1) the non-Gaussian errors degrade the cumulative signal-to-noise ratios (S/N) for the power spectrum amplitude by up to a factor of 2 and 4 for redshifts z=1 and 0, respectively. (2) There is little information on the power spectrum amplitudes in the quasi-nonlinear regime, confirming the previous results. (3) The distribution of power spectrum estimators at BAO scales, among the realizations, is well approximated by a Gaussian distribution with variance that is given by the diagonal covariance component. (4) For the redshift-space power spectrum, the degradation in S/N by non-Gaussian errors is mitigated due to nonlinear redshift distortions. (5) For an actual galaxy survey, the additional shot...
The C IV Forest as a Probe of Baryon Acoustic Oscillations
Pieri, Matthew M
2014-01-01
In light of recent successes in measuring baryon acoustic oscillations in quasar absorption using the Lyman-alpha (Ly-alpha) transition, I explore the possibility of using the 1548 Ang transition of triply-ionized carbon (C IV) as a tracer. While the Ly-alpha forest is a more sensitive tracer of intergalactic gas, it is limited by the fact that it can only be measured in the optical window at redshifts z > 2. Quasars are challenging to identify and observe at these high-redshifts, but the C IV forest can be probed down to redshifts z = 1.3, taking full advantage of the peak in the redshift distribution of quasars that can be targeted with high efficiency. I explore the strength of the C IV absorption signal and show that the absorbing population on the red side of the Ly-alpha emission line is dominated by C IV. As a consequence, I argue that forthcoming surveys will have a sufficient increase in quasar number density to offset the lower sensitivity of the C IV forest and provide competitive precision using b...
Testing cosmic transparency with the latest baryon acoustic oscillations and type Ia supernovae data
Institute of Scientific and Technical Information of China (English)
Jun Chen; Pu-Xun Wu; Hong-Wei Yu; Zheng-Xiang Li
2013-01-01
Observations show that Type Ia supernovae (SNe Ia) are dimmer than expected from a matter dominated Universe.It has been suggested that this observed phenomenon can also be explained using light absorption instead of dark energy.However,there is a serious degeneracy between the cosmic absorption parameter and the present matter density parameter Ωm when one tries to place constraints on the cosmic opacity using SNe Ia data.We combine the latest baryon acoustic oscillation (BAO) and Union2 SNe Ia data in order to break this degeneracy.Assuming a flat ACDM model,we find that,although an opaque Universe is favored by SNe Ia+BAO since the best fit value of the cosmic absorption parameter is larger than zero,Ωm =1 is ruled out at the 99.7％ confidence level.Thus,cosmic opacity is not sufficient to account for the present observations and dark energy or modified gravity is still required.
The 6dF Galaxy Survey: Baryon Acoustic Oscillations and the Local Hubble Constant
Beutler, Florian; Colless, Matthew; Jones, D Heath; Staveley-Smith, Lister; Campbell, Lachlan; Parker, Quentin; Saunders, Will; Watson, Fred
2011-01-01
We analyse the large-scale correlation function of the 6dF Galaxy Survey (6dFGS) and detect a Baryon Acoustic Oscillation (BAO) signal. The 6dFGS BAO detection allows us to constrain the distance-redshift relation at z_{\\rm eff} = 0.106. We achieve a distance measure of D_V(z_{\\rm eff}) = 456\\pm27 Mpc and a measurement of the distance ratio, r_s(z_d)/D_V(z_{\\rm eff}) = 0.336\\pm0.015 (4.5% precision), where r_s(z_d) is the sound horizon at the drag epoch z_d. The low effective redshift of 6dFGS makes it a competitive and independent alternative to Cepheids and low-z supernovae in constraining the Hubble constant. We find a Hubble constant of H_0 = 67\\pm3.2 km s^{-1} Mpc^{-1} (4.8% precision) that depends only on the WMAP-7 calibration of the sound horizon and on the galaxy clustering in 6dFGS. Compared to earlier BAO studies at higher redshift, our analysis is less dependent on other cosmological parameters. The sensitivity to H_0 can be used to break the degeneracy between the dark energy equation of state pa...
An accurate determination of the Hubble constant from Baryon Acoustic Oscillation datasets
Cheng, Cheng
2014-01-01
Even though the Hubble constant cannot be significantly determined by the low-redshift Baryon Acoustic Oscillation (BAO) data alone, it can be tightly constrained once the high-redshift BAO data are combined. Combining BAO data from 6dFGS, BOSS DR11 clustering of galaxies, WiggleZ and $z=2.34$ from BOSS DR11 quasar Lyman-$\\alpha$ forest lines, we get $H_0=68.17^{+1.55}_{-1.56}$ km s$^{-1}$ Mpc$^{-1}$. In addition, adopting the the simultaneous measurements of $H(z)$ and $D_A(z)$ from the two-dimensional two-point correlation function from BOSS DR9 CMASS sample and two-dimensional matter power spectrum from SDSS DR7 sample, we obtain $H_0=68.11\\pm1.69$ km s$^{-1}$ Mpc$^{-1}$. Finally, combining all of the BAO datasets, we conclude $H_0=68.11\\pm 0.86$ km s$^{-1}$ Mpc$^{-1}$, a 1.3% determination.
Model independent evidence for dark energy evolution from Baryon Acoustic Oscillations
Sahni, Varun; Starobinsky, Alexei A
2014-01-01
Baryon Acoustic Oscillations (BAO) allow us to determine the expansion history of the Universe, thereby shedding light on the nature of dark energy. Recent observations of BAO's in the SDSS DR9 and DR11 have provided us with statistically independent measurements of $H(z)$ at redshifts of 0.57 and 2.34, respectively. We show that these measurements can be used to test the cosmological constant hypothesis in a model independent manner by means of an improved version of the $Om$ diagnostic. Our results indicate that the SDSS DR11 measurement of $H(z) = 222 \\pm 7$ km/sec/Mpc at $z = 2.34$, when taken in tandem with measurements of $H(z)$ at lower redshifts, imply considerable tension with the standard $\\Lambda$CDM model. Our estimation of the new diagnostic $Omh^2$ from SDSS DR9 and DR11 data, namely $Omh^2 \\approx 0.122 \\pm 0.01$, which is equivalent to $\\Omega_{0m}h^2$ for the spatially flat $\\Lambda$CDM model, is in tension with the value $\\Omega_{0m}h^2 = 0.1426 \\pm 0.0025$ determined for $\\Lambda$CDM from P...
Hunting down systematics in baryon acoustic oscillations after cosmic high noon
Prada, Francisco; Chuang, Chia-Hsun; Yepes, Gustavo; Klypin, Anatoly A; Kitaura, Francisco-Shu; Gottlober, Stefan
2014-01-01
Future dark energy experiments will require better and more accurate theoretical predictions for the baryonic acoustic oscillations (BAO) signature in the spectrum of cosmological perturbations. Here, we use large N-body simulations of the \\LambdaCDM Planck cosmology to study any possible systematic shifts and damping in BAO due to the impact of nonlinear gravitational growth of structure, scale dependent and non-local bias, and redshift-space distortions. The effect of cosmic variance is largely reduced by dividing the tracer power spectrum by that from a BAO-free simulation starting with the same phases. This permits us to study with unprecedented accuracy (better than 0.02% for dark matter and 0.07% for low-bias halos) small shifts of the pristine BAO wavenumbers towards larger k, and non-linear damping of BAO wiggles in the power spectrum of dark matter and halo populations in the redshift range z=0-1. For dark matter, we provide an accurate parametrization of the evolution of \\alpha as a function of the ...
Probing Dark Energy with Baryonic Acoustic Oscillations from Future Large Galaxy Redshift Surveys
Eisenstein, D J
2003-01-01
We show that the measurement of the baryonic acoustic oscillations in large high redshift galaxy surveys offers a precision route to the measurement of dark energy. The cosmic microwave background provides the scale of the oscillations as a standard ruler that can be measured in the clustering of galaxies, thereby yielding the Hubble parameter and angular diameter distance as a function of redshift. This, in turn, enables one to probe dark energy. We use a Fisher matrix formalism to study the statistical errors for redshift surveys up to z=3 and report errors on cosmography while marginalizing over a large number of cosmological parameters including a time-dependent equation of state. With redshifts surveys combined with cosmic microwave background satellite data, we achieve errors of 0.037 on Omega_x, 0.10 on w(z=0.8), and 0.28 on dw(z)/dz for cosmological constant model. Models with less negative w(z) permit tighter constraints. We test and discuss the dependence of performance on redshift, survey condition...
Ross, Nicholas P; White, Martin; Richards, Gordon T; Myers, Adam D; Palanque-Delabrouille, Nathalie; Strauss, Michael A; Anderson, Scott F; Shen, Yue; Brandt, W N; Yeche, Christophe; Swanson, Molly E C; Aubourg, Eric; Bailey, Stephen; Bizyaev, Dmitry; Bovy, Jo; Brewington, Howard; Brinkmann, J; DeGraf, Colin; Di Matteo, Tiziana; Ebelke, Garrett; Fan, Xiaohui; Ge, Jian; Malanushenko, Elena; Malanushenko, Viktor; Mandelbaum, Rachel; Maraston, Claudia; Muna, Demitri; Oravetz, Daniel; Pan, Kaike; Paris, Isabelle; Petitjean, Patrick; Schawinski, Kevin; Schlegel, David J; Schneider, Donald P; Silverman, John D; Simmons, Audrey; Snedden, Stephanie; Streblyanska, Alina; Suzuki, Nao; Weinberg, David H; York, Donald
2012-01-01
We present a new measurement of the optical Quasar Luminosity Function (QLF), using data from the Sloan Digital Sky Survey-III: Baryon Oscillation Spectroscopic Survey (SDSS-III: BOSS). From the SDSS-III Data Release Nine (DR9), we select a uniform sample of 22,301 i<=21.8 quasars over an area of 2236 sq. deg with confirmed spectroscopic redshifts between 2.2
Kazin, Eyal A; Cuesta, Antonio J; Beutler, Florian; Chuang, Chia-Hsun; Eisenstein, Daniel J; Manera, Marc; Padmanabhan, Nikhil; Percival, Will J; Prada, Francisco; Ross, Ashley J; Seo, Hee-Jong; Tinker, Jeremy; Tojeiro, Rita; Xu, Xiaoying; Brinkmann, J; Joel, Brownstein; Nichol, Robert C; Schlegel, David J; Schneider, Donald P; Thomas, Daniel
2013-01-01
We analyze the 2D correlation function of the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) CMASS sample of massive galaxies of the ninth data release to measure cosmic expansion H and the angular diameter distance D_A at a mean redshift of = 0.57. We apply, for the first time, a new correlation function technique called clustering wedges. Using a physically motivated model, the anisotropic baryonic acoustic feature in the galaxy sample is detected at a significance level of 4.7 sigma compared to a featureless model. The baryonic acoustic feature is used to obtain model independent constraints cz/H/r_s = 12.28 +- 0.82 (6.7 per-cent accuracy) and D_A/r_s = 9.05 +- 0.27 (3.0 per-cent) with a correlation coefficient of -0.5, where r_s is the sound horizon scale at the end of the baryonic drag era. We conduct thorough tests on the data and 600 simulated realizations, finding robustness of the results regardless of the details of the analysis method. Combining with r_s constraints from the Cosmic Microw...
Kazin, Eyal A; Blake, Chris; Padmanabhan, Nikhil
2014-01-01
We present significant improvements in cosmic distance measurements from the WiggleZ Dark Energy Survey, achieved by applying the reconstruction of the baryonic acoustic feature technique. We show using both data and simulations that the reconstruction technique can often be effective despite patchiness of the survey, significant edge effects and shot-noise. We investigate three redshift bins in the redshift range 0.2<$z$<1, and in all three find improvement after reconstruction in the detection of the baryonic acoustic feature and its usage as a standard ruler. We measure model independent distance measures $D_{\\mathrm V}(r_{\\mathrm s}^\\mathrm{fid}/r_{\\mathrm s})$ of 1716 $\\pm$ 83 Mpc, 2221 $\\pm$ 101 Mpc, 2516 $\\pm$ 86 Mpc (68% CL) at effective redshifts z = 0.44, 0.6, 0.73, respectively, where $D_{\\mathrm V}$ is the volume-average-distance, and $r_{\\mathrm s}$ is the sound horizon at the end of the baryon drag epoch. These significantly improved 4.8, 4.5 and 3.4 percent accuracy measurements are equiv...
Bolton, Adam S; Aubourg, Eric; Bailey, Stephen; Bhardwaj, Vaishali; Brownstein, Joel R; Burles, Scott; Chen, Yan-Mei; Gunn, James E; Dawson, Kyle; Eisenstein, Daniel J; Knapp, G R; Loomis, Craig P; Lupton, Robert H; Maraston, Claudia; Muna, Demitri; Myers, Adam D; Olmstead, Matthew D; Padmanabhan, Nikhil; Paris, Isabelle; Percival, Will J; Petitjean, Patrick; Rockosi, Constance M; Ross, Nicholas P; Schneider, Donald P; Shu, Yiping; Strauss, Michael A; Thomas, Daniel; Tremonti, Christy A; Wake, David A; Weaver, Benjamin A; Wood-Vasey, W Michael
2012-01-01
(abridged) We describe the automated spectral classification, redshift determination, and parameter measurement pipeline in use for the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey III (SDSS-III) as of Data Release 9, encompassing 831,000 moderate-resolution optical spectra. We give a review of the algorithms employed, and describe the changes to the pipeline that have been implemented for BOSS relative to previous SDSS-I/II versions, including new sets of stellar, galaxy, and quasar redshift templates. For the color-selected CMASS sample of massive galaxies at redshift 0.4 <~ z <~ 0.8 targeted by BOSS for the purposes of large-scale cosmological measurements, the pipeline achieves an automated classification success rate of 98.7% and confirms 95.4% of unique CMASS targets as galaxies (with the balance being mostly M stars). Based on visual inspections of a subset of BOSS galaxies, we find that ~0.2% of confidently reported CMASS sample classifications and redshifts are...
Baryonic acoustic oscillations from 21 cm intensity mapping: the Square Kilometre Array case
Villaescusa-Navarro, Francisco; Alonso, David; Viel, Matteo
2017-04-01
We quantitatively investigate the possibility of detecting baryonic acoustic oscillations (BAO) using single-dish 21 cm intensity mapping observations in the post-reionization era. We show that the telescope beam smears out the isotropic BAO signature and, in the case of the Square Kilometre Array (SKA) instrument, makes it undetectable at redshifts z ≳ 1. We however demonstrate that the BAO peak can still be detected in the radial 21 cm power spectrum and describe a method to make this type of measurements. By means of numerical simulations, containing the 21 cm cosmological signal as well as the most relevant Galactic and extra-Galactic foregrounds and basic instrumental effect, we quantify the precision with which the radial BAO scale can be measured in the 21 cm power spectrum. We systematically investigate the signal to noise and the precision of the recovered BAO signal as a function of cosmic variance, instrumental noise, angular resolution and foreground contamination. We find that the expected noise levels of SKA would degrade the final BAO errors by ∼5 per cent with respect to the cosmic-variance limited case at low redshifts, but that the effect grows up to ∼65 per cent at z ∼ 2-3. Furthermore, we find that the radial BAO signature is robust against foreground systematics, and that the main effect is an increase of ∼20 per cent in the final uncertainty on the standard ruler caused by the contribution of foreground residuals as well as the reduction in sky area needed to avoid high-foreground regions. We also find that it should be possible to detect the radial BAO signature with high significance in the full redshift range. We conclude that a 21 cm experiment carried out by the SKA should be able to make direct measurements of the expansion rate H(z) with measure the expansion with competitive per cent level precision on redshifts z ≲ 2.5.
MODEL-INDEPENDENT EVIDENCE FOR DARK ENERGY EVOLUTION FROM BARYON ACOUSTIC OSCILLATIONS
Energy Technology Data Exchange (ETDEWEB)
Sahni, V. [Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411007 (India); Shafieloo, A. [Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Starobinsky, A. A., E-mail: varun@iucaa.ernet.in, E-mail: arman@apctp.org, E-mail: alstar@landau.ac.ru [Landau Institute for Theoretical Physics RAS, Moscow 119334 (Russian Federation)
2014-10-01
Baryon acoustic oscillations (BAOs) allow us to determine the expansion history of the universe, thereby shedding light on the nature of dark energy. Recent observations of BAOs in the Sloan Digital Sky Survey (SDSS) DR9 and DR11 have provided us with statistically independent measurements of H(z) at redshifts of 0.57 and 2.34, respectively. We show that these measurements can be used to test the cosmological constant hypothesis in a model-independent manner by means of an improved version of the Om diagnostic. Our results indicate that the SDSS DR11 measurement of H(z) = 222 ± 7 km s{sup –1} Mpc{sup –1} at z = 2.34, when taken in tandem with measurements of H(z) at lower redshifts, imply considerable tension with the standard ΛCDM model. Our estimation of the new diagnostic Omh {sup 2} from SDSS DR9 and DR11 data, namely, Omh {sup 2} ≈ 0.122 ± 0.01, which is equivalent to Ω{sub 0m} h {sup 2} for the spatially flat ΛCDM model, is in tension with the value Ω{sub 0m} h {sup 2} = 0.1426 ± 0.0025 determined for ΛCDM from Planck+WP. This tension is alleviated in models in which the cosmological constant was dynamically screened (compensated) in the past. Such evolving dark energy models display a pole in the effective equation of state of dark energy at high redshifts, which emerges as a smoking gun test for these theories.
Ross, Ashley J; Burden, Angela; Percival, Will J; Tojeiro, Rita; Manera, Marc; Beutler, Florian; Brinkmann, J; Brownstein, Joel R; Carnero, Aurelio; da Costa, Luiz A N; Eisenstein, Daniel J; Guo, Hong; Ho, Shirley; Maia, Marcio A G; Montesano, Francesco; Muna, Demitri; Nichol, Robert C; Nuza, Sebastian E; Sanchez, Ariel G; Schneider, Donald P; Skibba, Ramin A; Sobreira, Flavia; Streblyanska, Alina; Swanson, Molly E C; Thomas, Daniel; Tinker, Jeremy L; Wake, David A; Zehavi, Idit; Zhao, Gong-bo
2013-01-01
We study the clustering of galaxies, as a function of their colour, from Data Release Ten (DR10) of the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). We select 122,967 galaxies with 0.43 < z < 0.7 into a "Blue" sample and 131,969 into a "Red" sample based on k+e corrected (to z=0.55) r-i colours and i band magnitudes. The samples are chosen to each contain more than 100,000 galaxies, have similar redshift distributions, and maximize the difference in clustering amplitude. The Red sample has a 40% larger bias than the Blue (b_Red/b_Blue = 1.39+-0.04), implying the Red galaxies occupy dark matter halos with an average mass that is 0.5 log Mo greater. Spherically averaged measurements of the correlation function, \\xi 0, and the power spectrum are used to locate the position of the baryon acoustic oscillation (BAO) feature of both samples. Using \\xi 0, we obtain distance scales, relative to our reference LCDM cosmology, of 1.010+-0.027 for the Red sample and 1.005+-0.031 for the Blue. After apply...
Zhao, Gong-Bo; Saito, Shun; Wang, Dandan; Ross, Ashley J; Beutler, Florian; Grieb, Jan Niklas; Chuang, Chia-Hsun; Kitaura, Francisco-Shu; Rodriguez-Torres, Sergio; Percival, Will J; Brownstein, Joel R; Cuesta, Antonio J; Eisenstein, Daniel J; Gil-Marín, Héctor; Kneib, Jean-Paul; Nichol, Robert C; Olmstead, Matthew D; Prada, Francisco; Rossi, Graziano; Salazar-Albornoz, Salvador; Samushia, Lado; Sánchez, Ariel G; Thomas, Daniel; Tinker, Jeremy L; Tojeiro, Rita; Weinberg, David H; Zhu, Fangzhou
2016-01-01
We perform a tomographic baryon acoustic oscillations (BAO) analysis using the monopole, quadrupole and hexadecapole of the redshift-space galaxy power spectrum measured from the pre-reconstructed combined galaxy sample of the completed Sloan Digital Sky Survey (SDSS-III) Baryon Oscillation Spectroscopic Survey (BOSS) Data Release (DR)12 covering the redshift range of $0.20
Alam, Shadab; Bailey, Stephen; Beutler, Florian; Bizyaev, Dmitry; Blazek, Jonathan A; Bolton, Adam S; Brownstein, Joel R; Burden, Angela; Chuang, Chia-Hsun; Comparat, Johan; Cuesta, Antonio J; Dawson, Kyle S; Eisenstein, Daniel J; Escoffier, Stephanie; Gil-Marín, Héctor; Grieb, Jan Niklas; Hand, Nick; Ho, Shirley; Kinemuchi, Karen; Kirkby, David; Kitaura, Francisco; Malanushenko, Elena; Malanushenko, Viktor; Maraston, Claudia; McBride, Cameron K; Nichol, Robert C; Olmstead, Matthew D; Oravetz, Daniel; Padmanabhan, Nikhil; Palanque-Delabrouille, Nathalie; Pan, Kaike; Pellejero-Ibanez, Marcos; Percival, Will J; Petitjean, Patrick; Prada, Francisco; Price-Whelan, Adrian M; Reid, Beth A; Rodríguez-Torres, Sergio A; Roe, Natalie A; Ross, Ashley J; Ross, Nicholas P; Rossi, Graziano; Rubiño-Martín, Jose Alberto; Sánchez, Ariel G; Saito, Shun; Salazar-Albornoz, Salvador; Samushia, Lado; Satpathy, Siddharth; Scóccola, Claudia G; Schlegel, David J; Schneider, Donald P; Seo, Hee-Jong; Simmons, Audrey; Slosar, Anže; Strauss, Michael A; Swanson, Molly E C; Thomas, Daniel; Tinker, Jeremy L; Tojeiro, Rita; Magaña, Mariana Vargas; Vazquez, Jose Alberto; Verde, Licia; Wake, David A; Wang, Yuting; Weinberg, David H; White, Martin; Wood-Vasey, W Michael; Yèche, Christophe; Zehavi, Idit; Zhai, Zhongxu; Zhao, Gong-Bo
2016-01-01
We present cosmological results from the final galaxy clustering data set of the Baryon Oscillation Spectroscopic Survey, part of the Sloan Digital Sky Survey III. Our combined galaxy sample comprises 1.2 million massive galaxies over an effective area of 9329 deg^2 and volume of 18.7 Gpc^3, divided into three partially overlapping redshift slices centred at effective redshifts 0.38, 0.51, and 0.61. We measure the angular diameter distance DM and Hubble parameter H from the baryon acoustic oscillation (BAO) method after applying reconstruction to reduce non-linear effects on the BAO feature. Using the anisotropic clustering of the pre-reconstruction density field, we measure the product DM*H from the Alcock-Paczynski (AP) effect and the growth of structure, quantified by f{\\sigma}8(z), from redshift-space distortions (RSD). We combine measurements presented in seven companion papers into a set of consensus values and likelihoods, obtaining constraints that are tighter and more robust than those from any one m...
Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Zhao, Cheng; Prada, Francisco; Gil-Marin, Hector; Guo, Hong; Yepes, Gustavo; Klypin, Anatoly; Scoccola, Claudia G; Tinker, Jeremy; McBride, Cameron; Reid, Beth; Sanchez, Ariel G; Salazar-Albornoz, Salvador; Grieb, Jan Niklas; Vargas-Magana, Mariana; Cuesta, Antonio J; Neyrinck, Mark; Beutler, Florian; Comparat, Johan; Percival, Will; Ross, Ashley
2015-01-01
We reproduce the galaxy clustering catalogue from the SDSS-III Baryon Oscillations Spectroscopic Survey Data Release 12 (BOSS DR12) with high fidelity on all relevant scales in order to allow a robust analysis of baryon acoustic oscillations and redshift space distortions. We have generated 12,288 MultiDark patchy light-cones corresponding to an effective volume of ~192,000 [Gpc/h]^3 (the largest ever simulated volume), including cosmic evolution in the range from 0.15 to 0.75. The mocks have been calibrated using a reference galaxy catalogue based on the Halo Abundance Matching modelling of the BOSS DR12 galaxy clustering data and on the data themselves. The production of the MultiDark PATCHY BOSS DR12 mocks follows three steps. First, we apply the PATCHY-code to generate a dark matter field and an object distribution including nonlinear stochastic galaxy bias. Second, we run the halo/stellar distribution reconstruction HADRON-code to assign masses to the various objects. This step uses the mass distribution...
Bolton, Adam S.; Schlegel, David J.; Aubourg, Éric; Bailey, Stephen; Bhardwaj, Vaishali; Brownstein, Joel R.; Burles, Scott; Chen, Yan-Mei; Dawson, Kyle; Eisenstein, Daniel J.; Gunn, James E.; Knapp, G. R.; Loomis, Craig P.; Lupton, Robert H.; Maraston, Claudia; Muna, Demitri; Myers, Adam D.; Olmstead, Matthew D.; Padmanabhan, Nikhil; Pâris, Isabelle; Percival, Will J.; Petitjean, Patrick; Rockosi, Constance M.; Ross, Nicholas P.; Schneider, Donald P.; Shu, Yiping; Strauss, Michael A.; Thomas, Daniel; Tremonti, Christy A.; Wake, David A.; Weaver, Benjamin A.; Wood-Vasey, W. Michael
2012-11-01
We describe the automated spectral classification, redshift determination, and parameter measurement pipeline in use for the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey III (SDSS-III) as of the survey's ninth data release (DR9), encompassing 831,000 moderate-resolution optical spectra. We give a review of the algorithms employed, and describe the changes to the pipeline that have been implemented for BOSS relative to previous SDSS-I/II versions, including new sets of stellar, galaxy, and quasar redshift templates. For the color-selected "CMASS" sample of massive galaxies at redshift 0.4 visual inspections of a subset of BOSS galaxies, we find that approximately 0.2% of confidently reported CMASS sample classifications and redshifts are incorrect, and about 0.4% of all CMASS spectra are objects unclassified by the current algorithm which are potentially recoverable. The BOSS pipeline confirms that ~51.5% of the quasar targets have quasar spectra, with the balance mainly consisting of stars and low signal-to-noise spectra. Statistical (as opposed to systematic) redshift errors propagated from photon noise are typically a few tens of km s-1 for both galaxies and quasars, with a significant tail to a few hundreds of km s-1 for quasars. We test the accuracy of these statistical redshift error estimates using repeat observations, finding them underestimated by a factor of 1.19-1.34 for galaxies and by a factor of two for quasars. We assess the impact of sky-subtraction quality, signal-to-noise ratio, and other factors on galaxy redshift success. Finally, we document known issues with the BOSS DR9 spectroscopic data set and describe directions of ongoing development.
Nishimichi, Takahiro; Nakamichi, Masashi; Taruya, Atsushi; Yahata, Kazuhiro; Shirata, Akihito; Saito, Shun; Nomura, Hidenori; Yamamoto, Kazuhiro; Suto, Yasushi
2007-01-01
An acoustic oscillation of the primeval photon-baryon fluid around the decoupling time imprints a characteristic scale in the galaxy distribution today, known as the baryon acoustic oscillation (BAO) scale. Several on-going and/or future galaxy surveys aim at detecting and precisely determining the BAO scale so as to trace the expansion history of the universe. We consider nonlinear and redshift-space distortion effects on the shifts of the BAO scale in $k$-space using perturbation theory. The resulting shifts are indeed sensitive to different choices of the definition of the BAO scale, which needs to be kept in mind in the data analysis. We present a toy model to explain the physical behavior of the shifts. We find that the BAO scale defined as in Percival et al. (2007) indeed shows very small shifts ($\\lesssim$ 1%) relative to the prediction in {\\it linear theory} in real space. The shifts can be predicted accurately for scales where the perturbation theory is reliable.
Hoeneisen, B
2016-01-01
We define Baryon Acoustic Oscillation (BAO) distances $\\hat{d}_\\alpha(z, z_c)$, $\\hat{d}_z(z, z_c)$, and $\\hat{d}_/(z, z_c)$ that do not depend on cosmological parameters. These BAO distances are measured as a function of redshift $z$ with the Sloan Digital Sky Survey (SDSS) data release DR12. From these BAO distances alone, or together with the correlation angle $\\theta_\\textrm{MC}$ of the Cosmic Microwave Background (CMB), we constrain the cosmological parameters in several scenarios. We find $4.3 \\sigma$ tension between the BAO plus $\\theta_\\textrm{MC}$ data and a cosmology with flat space and constant dark energy density $\\Omega_\\textrm{DE}(a)$. Releasing one and/or the other of these constraints obtains agreement with the data. We measure $\\Omega_\\textrm{DE}(a)$ as a function of $a$.
Energy Technology Data Exchange (ETDEWEB)
Kirkby, David; Margala, Daniel; Blomqvist, Michael [Department of Physics and Astronomy, University of California, Irvine, 92697 (United States); Slosar, Anže [Brookhaven National Laboratory, Blgd 510, Upton NY 11375 (United States); Bailey, Stephen; Carithers, Bill [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Busca, Nicolás G.; Bautista, Julian E. [APC, Université Paris Diderot-Paris 7, CNRS/IN2P3, CEA, Observatoire de Paris, 10, rue A. Domon and L. Duquet, Paris (France); Delubac, Timothée; Rich, James; Palanque-Delabrouille, Nathalie [CEA, Centre de Saclay, IRFU, F-91191 Gif-sur-Yvette (France); Brownstein, Joel R.; Dawson, Kyle S. [Department of Physics and Astronomy, University of Utah, 115 S 1400 E, Salt Lake City, UT 84112 (United States); Croft, Rupert A.C. [Bruce and Astrid McWilliams Center for Cosmology, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Font-Ribera, Andreu [Institute of Theoretical Physics, University of Zurich, 8057 Zurich (Switzerland); Miralda-Escudé, Jordi [Institució Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia (Spain); Myers, Adam D. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Nichol, Robert C. [Institute of Cosmology and Gravitation, Dennis Sciama Building, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Pâris, Isabelle; Petitjean, Patrick, E-mail: dkirkby@uci.edu [Université Paris 6 et CNRS, Institut d' Astrophysique de Paris, 98bis blvd. Arago, 75014 Paris (France); and others
2013-03-01
We describe fitting methods developed to analyze fluctuations in the Lyman-α forest and measure the parameters of baryon acoustic oscillations (BAO). We apply our methods to BOSS Data Release 9. Our method is based on models of the three-dimensional correlation function in physical coordinate space, and includes the effects of redshift-space distortions, anisotropic non-linear broadening, and broadband distortions. We allow for independent scale factors along and perpendicular to the line of sight to minimize the dependence on our assumed fiducial cosmology and to obtain separate measurements of the BAO angular and relative velocity scales. Our fitting software and the input files needed to reproduce our main BOSS Data Release 9 results are publicly available.
Moldenhauer, Jacob; Thompson, John; Easson, Damien A
2010-01-01
We consider recently proposed higher order gravity models where the action is built from the Einstein-Hilbert action plus a function f(G) of the Gauss-Bonnet invariant. The models were previously shown to pass physical acceptability conditions as well as solar system tests. In this paper, we compare the models to combined data sets of supernovae, baryon acoustic oscillations, and constraints from the CMB surface of last scattering. We find that the models provide fits to the data that are close to those of the LCDM concordance model. The results provide a pool of higher order gravity models that pass these tests and need to be compared to constraints from large scale structure and full CMB analysis.
Hernández-Monteagudo, Carlos; Ross, Ashley J.; Cuesta, Antonio; Génova-Santos, Ricardo; Xia, Jun-Qing; Prada, Francisco; Rossi, Graziano; Neyrinck, Mark; Viel, Matteo; Rubiño-Martin, Jose-Alberto; Scóccola, Claudia G.; Zhao, Gongbo; Schneider, Donald P.; Brownstein, Joel R.; Thomas, Daniel; Brinkmann, Jonathan V.
2014-02-01
In the context of the study of the integrated Sachs-Wolfe (ISW) effect, we construct a template of the projected density distribution up to redshift z ≃ 0.7 by using the luminous galaxies (LGs) from the Sloan Digital Sky Survey (SDSS) Data Release 8 (DR8). We use a photometric redshift catalogue trained with more than a hundred thousand galaxies from the Baryon Oscillation Spectroscopic Survey (BOSS) in the SDSS DR8 imaging area covering nearly one-quarter of the sky. We consider two different LG samples whose selection matches that of SDSS-III/BOSS: the low-redshift sample (LOWZ, z ∈ [0.15, 0.5]) and the constant mass sample (CMASS, z ∈ [0.4, 0.7]). When building the galaxy angular density templates we use the information from star density, survey footprint, seeing conditions, sky emission, dust extinction and airmass to explore the impact of these artefacts on each of the two LG samples. In agreement with previous studies, we find that the CMASS sample is particularly sensitive to Galactic stars, which dominate the contribution to the auto-angular power spectrum below ℓ = 7. Other potential systematics affect mostly the very low multipole range (ℓ ∈ [2, 7]), but leave fluctuations on smaller scales practically unchanged. The resulting angular power spectra in the multipole range ℓ ∈ [2, 100] for the LOWZ, CMASS and LOWZ+CMASS samples are compatible with linear Λ cold dark matter (ΛCDM) expectations and constant bias values of b = 1.98 ± 0.11, 2.08 ± 0.14 and 1.88 ± 0.11, respectively, with no traces of non-Gaussianity signatures, i.e. f_NL^local=59± 75 at 95 per cent confidence level for the full LOWZ+CMASS sample in the multipole range ℓ ∈ [4, 100]. After cross-correlating Wilkinson Microwave Anisotropy Probe 9-year data with the LOWZ+CMASS LG projected density field, the ISW signal is detected at the level of 1.62-1.69σ. While this result is in close agreement with theoretical expectations and predictions from realistic Monte Carlo
Ata, Metin; Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Rodríguez-Torres, Sergio; Angulo, Raul E.; Ferraro, Simone; Gil-Marín, Hector; McDonald, Patrick; Hernández Monteagudo, Carlos; Müller, Volker; Yepes, Gustavo; Autefage, Mathieu; Baumgarten, Falk; Beutler, Florian; Brownstein, Joel R.; Burden, Angela; Eisenstein, Daniel J.; Guo, Hong; Ho, Shirley; McBride, Cameron; Neyrinck, Mark; Olmstead, Matthew D.; Padmanabhan, Nikhil; Percival, Will J.; Prada, Francisco; Rossi, Graziano; Sánchez, Ariel G.; Schlegel, David; Schneider, Donald P.; Seo, Hee-Jong; Streblyanska, Alina; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana
2017-06-01
We present a Bayesian phase-space reconstruction of the cosmic large-scale matter density and velocity fields from the Sloan Digital Sky Survey-III Baryon Oscillations Spectroscopic Survey Data Release 12 CMASS galaxy clustering catalogue. We rely on a given Λ cold dark matter cosmology, a mesh resolution in the range of 6-10 h-1 Mpc, and a lognormal-Poisson model with a redshift-dependent non-linear bias. The bias parameters are derived from the data and a general renormalized perturbation theory approach. We use combined Gibbs and Hamiltonian sampling, implemented in the argo code, to iteratively reconstruct the dark matter density field and the coherent peculiar velocities of individual galaxies, correcting hereby for coherent redshift space distortions. Our tests relying on accurate N-body-based mock galaxy catalogues show unbiased real space power spectra of the non-linear density field up to k ˜ 0.2 h Mpc-1, and vanishing quadrupoles down to r ˜ 20 h-1 Mpc. We also demonstrate that the non-linear cosmic web can be obtained from the tidal field tensor based on the Gaussian component of the reconstructed density field. We find that the reconstructed velocities have a statistical correlation coefficient compared to the true velocities of each individual light-cone mock galaxy of r ˜ 0.68 including about 10 per cent of satellite galaxies with virial motions (about r = 0.75 without satellites). The power spectra of the velocity divergence agree well with theoretical predictions up to k ˜ 0.2 h Mpc-1. This work will be especially useful to improve, for example, baryon acoustic oscillation reconstructions, kinematic Sunyaev-Zeldovich, integrated Sachs-Wolfe measurements or environmental studies.
Beutler, Florian; Seo, Hee-Jong; Saito, Shun; Chuang, Chia-Hsun; Cuesta, Antonio J.; Eisenstein, Daniel J.; Gil-Marín, Héctor; Grieb, Jan Niklas; Hand, Nick; Kitaura, Francisco-Shu; Modi, Chirag; Nichol, Robert C.; Olmstead, Matthew D.; Percival, Will J.; Prada, Francisco; Sánchez, Ariel G.; Rodriguez-Torres, Sergio; Ross, Ashley J.; Ross, Nicholas P.; Schneider, Donald P.; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magaña, Mariana
2017-04-01
We investigate the anisotropic clustering of the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 12 sample, which consists of 1198 006 galaxies in the redshift range 0.2 measure redshift-space distortions simultaneously with the Alcock-Paczynski effect and the baryon acoustic oscillation scale. We include the power-spectrum monopole, quadrupole and hexadecapole in our analysis and compare our measurements with a perturbation-theory-based model, while properly accounting for the survey window function. To evaluate the reliability of our analysis pipeline, we participate in a mock challenge, which results in systematic uncertainties significantly smaller than the statistical uncertainties. While the high-redshift constraint on fσ8 at zeff = 0.61 indicates a small (∼1.4σ) deviation from the prediction of the Planck ΛCDM (Λ cold dark matter) model, the low-redshift constraint is in good agreement with Planck ΛCDM. This paper is part of a set that analyses the final galaxy clustering data set from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. to produce the final cosmological constraints from BOSS.
Reid, Beth; Padmanabhan, Nikhil; Percival, Will J; Tinker, Jeremy; Tojeiro, Rita; White, Martin; Eisenstein, Daniel J; Maraston, Claudia; Ross, Ashley J; Sanchez, Ariel G; Schlegel, David; Sheldon, Erin; Strauss, Michael A; Thomas, Daniel; Wake, David; Beutler, Florian; Bizyaev, Dmitry; Bolton, Adam S; Brownstein, Joel R; Chuang, Chia-Hsun; Dawson, Kyle; Harding, Paul; Kitaura, Francisco-Shu; Leauthaud, Alexie; Masters, Karen; McBride, Cameron K; More, Surhud; Olmstead, Matthew D; Oravetz, Daniel; Nuza, Sebastian E; Pan, Kaike; Parejko, John; Pforr, Janine; Prada, Francisco; Rodriguez-Torres, Sergio; Salazar-Albornoz, Salvador; Samushia, Lado; Schneider, Donald P; Scoccola, Claudia G; Simmons, Audrey; Vargas-Magana, Mariana
2015-01-01
The Baryon Oscillation Spectroscopic Survey (BOSS), part of the Sloan Digital Sky Survey (SDSS) III project, has provided the largest survey of galaxy redshifts available to date, in terms of both the number of galaxy redshifts measured by a single survey, and the effective cosmological volume covered. Key to analysing the clustering of these data to provide cosmological measurements is understanding the detailed properties of this sample. Potential issues include variations in the target catalogue caused by changes either in the targeting algorithm or properties of the data used, the pattern of spectroscopic observations, the spatial distribution of targets for which redshifts were not obtained, and variations in the target sky density due to observational systematics. We document here the target selection algorithms used to create the galaxy samples that comprise BOSS. We also present the algorithms used to create large scale structure catalogues for the final Data Release (DR12) samples and the associated ...
Keselman, J. A.; Nusser, A.
2017-01-01
NoAM for "No Action Method" is a framework for reconstructing the past orbits of observed tracers of the large scale mass density field. It seeks exact solutions of the equations of motion (EoM), satisfying initial homogeneity and the final observed particle (tracer) positions. The solutions are found iteratively reaching a specified tolerance defined as the RMS of the distance between reconstructed and observed positions. Starting from a guess for the initial conditions, NoAM advances particles using standard N-body techniques for solving the EoM. Alternatively, the EoM can be replaced by any approximation such as Zel'dovich and second order perturbation theory (2LPT). NoAM is suitable for billions of particles and can easily handle non-regular volumes, redshift space, and other constraints. We implement NoAM to systematically compare Zel'dovich, 2LPT, and N-body dynamics over diverse configurations ranging from idealized high-res periodic simulation box to realistic galaxy mocks. Our findings are (i) Non-linear reconstructions with Zel'dovich, 2LPT, and full dynamics perform better than linear theory only for idealized catalogs in real space. For realistic catalogs, linear theory is the optimal choice for reconstructing velocity fields smoothed on scales {buildrel > over {˜}} 5 h^{-1}{Mpc}.(ii) all non-linear back-in-time reconstructions tested here, produce comparable enhancement of the baryonic oscillation signal in the correlation function.
New constraints on H_0 and Omega_M from SZE/X-RAY data and Baryon Acoustic Oscillations
Holanda, R F L; Lima, J A S
2008-01-01
The Hubble constant, $H_0$, sets the scale of the size and age of the Universe and its determination from independent methods is still worthwhile to be investigated. In this article, by using the Sunyaev-Zel`dovich effect and X-ray surface brightness data from 38 galaxy clusters observed by Bonamente {\\it{et al.}} (2006), we obtain a new estimate of $H_0$ in the context of a flat $\\Lambda$CDM model. There is a degeneracy on the mass density parameter ($\\Omega_{m}$) which is broken by applying a joint analysis involving the baryon acoustic oscillations (BAO) as given by Sloan Digital Sky Survey (SDSS). This happens because the BAO signature does not depend on $H_0$. Our basic finding is that a joint analysis involving these tests yield $H_0= 0.765^{+0.035}_{-0.033}$ km s$^{-1}$ Mpc$^{-1}$ and $\\Omega_{m}=0.27^{+0.03}_{-0.02}$. Since the hypothesis of spherical geometry assumed by Bonamente {\\it {et al.}} is questionable, we have also compared the above results to a recent work where a sample of triaxial galaxy...
Hütsi, Gert; Kolodzig, Alexander; Sunyaev, Rashid
2014-01-01
We investigate the potential of large X-ray selected AGN samples for detecting baryonic acoustic oscillations (BAO). Though AGN selection in X-ray band is very clean and efficient, it does not provide us redshift information, and thus needs to be complemented with an optical follow-up. The main focus of this study is: (i) to find necessary requirements to the quality of the optical follow-up and (ii) to formulate the optimal strategy of the X-ray survey, in order to detect the BAO. We demonstrate that redshift accuracy of sigma_0=10^{-2} and the catastrophic failure rate of <~30% are sufficient for a reliable detection of BAO in future X-ray surveys. Spectroscopic quality redshifts combined with negligible fraction of catastrophic failures will boost the confidence level of the BAO detection by a factor of ~2. For the meaningful detection of BAO, X-ray surveys of moderate depth of F_lim ~ few 10^{-15} erg/s/cm^2 covering sky area from a ~few hundred to ~ten thousand square degrees are required. The optimal...
Alam, Shadab; Ata, Metin; Bailey, Stephen; Beutler, Florian; Bizyaev, Dmitry; Blazek, Jonathan A.; Bolton, Adam S.; Brownstein, Joel R.; Burden, Angela; Chuang, Chia-Hsun; Comparat, Johan; Cuesta, Antonio J.; Dawson, Kyle S.; Eisenstein, Daniel J.; Escoffier, Stephanie; Gil-Marín, Héctor; Grieb, Jan Niklas; Hand, Nick; Ho, Shirley; Kinemuchi, Karen; Kirkby, David; Kitaura, Francisco; Malanushenko, Elena; Malanushenko, Viktor; Maraston, Claudia; McBride, Cameron K.; Nichol, Robert C.; Olmstead, Matthew D.; Oravetz, Daniel; Padmanabhan, Nikhil; Palanque-Delabrouille, Nathalie; Pan, Kaike; Pellejero-Ibanez, Marcos; Percival, Will J.; Petitjean, Patrick; Prada, Francisco; Price-Whelan, Adrian M.; Reid, Beth A.; Rodríguez-Torres, Sergio A.; Roe, Natalie A.; Ross, Ashley J.; Ross, Nicholas P.; Rossi, Graziano; Rubiño-Martín, Jose Alberto; Saito, Shun; Salazar-Albornoz, Salvador; Samushia, Lado; Sánchez, Ariel G.; Satpathy, Siddharth; Schlegel, David J.; Schneider, Donald P.; Scóccola, Claudia G.; Seo, Hee-Jong; Sheldon, Erin S.; Simmons, Audrey; Slosar, Anže; Strauss, Michael A.; Swanson, Molly E. C.; Thomas, Daniel; Tinker, Jeremy L.; Tojeiro, Rita; Magaña, Mariana Vargas; Vazquez, Jose Alberto; Verde, Licia; Wake, David A.; Wang, Yuting; Weinberg, David H.; White, Martin; Wood-Vasey, W. Michael; Yèche, Christophe; Zehavi, Idit; Zhai, Zhongxu; Zhao, Gong-Bo
2017-09-01
We present cosmological results from the final galaxy clustering data set of the Baryon Oscillation Spectroscopic Survey, part of the Sloan Digital Sky Survey III. Our combined galaxy sample comprises 1.2 million massive galaxies over an effective area of 9329 deg2 and volume of 18.7 Gpc3, divided into three partially overlapping redshift slices centred at effective redshifts 0.38, 0.51 and 0.61. We measure the angular diameter distance DM and Hubble parameter H from the baryon acoustic oscillation (BAO) method, in combination with a cosmic microwave background prior on the sound horizon scale, after applying reconstruction to reduce non-linear effects on the BAO feature. Using the anisotropic clustering of the pre-reconstruction density field, we measure the product DMH from the Alcock-Paczynski (AP) effect and the growth of structure, quantified by fσ8(z), from redshift-space distortions (RSD). We combine individual measurements presented in seven companion papers into a set of consensus values and likelihoods, obtaining constraints that are tighter and more robust than those from any one method; in particular, the AP measurement from sub-BAO scales sharpens constraints from post-reconstruction BAOs by breaking degeneracy between DM and H. Combined with Planck 2016 cosmic microwave background measurements, our distance scale measurements simultaneously imply curvature ΩK = 0.0003 ± 0.0026 and a dark energy equation-of-state parameter w = -1.01 ± 0.06, in strong affirmation of the spatially flat cold dark matter (CDM) model with a cosmological constant (ΛCDM). Our RSD measurements of fσ8, at 6 per cent precision, are similarly consistent with this model. When combined with supernova Ia data, we find H0 = 67.3 ± 1.0 km s-1 Mpc-1 even for our most general dark energy model, in tension with some direct measurements. Adding extra relativistic species as a degree of freedom loosens the constraint only slightly, to H0 = 67.8 ± 1.2 km s-1 Mpc-1. Assuming flat
Hütsi, Gert; Gilfanov, Marat; Kolodzig, Alexander; Sunyaev, Rashid
2014-12-01
We investigate the potential of large X-ray-selected AGN samples for detecting baryonic acoustic oscillations (BAO). Though AGN selection in X-ray band is very clean and efficient, it does not provide redshift information, and thus needs to be complemented with an optical follow-up. The main focus of this study is (i) to find the requirements needed for the quality of the optical follow-up and (ii) to formulate the optimal strategy of the X-ray survey, in order to detect the BAO. We demonstrate that redshift accuracy of σ0 = 10-2 at z = 1 and the catastrophic failure rate of ffail ≲ 30% are sufficient for a reliable detection of BAO in future X-ray surveys. Spectroscopic quality redshifts (σ0 = 10-3 and ffail ~ 0) will boost the confidence level of the BAO detection by a factor of ~2. For meaningful detection of BAO, X-ray surveys of moderate depth of Flim ~ few 10-15 erg s-1/cm2 covering sky area from a few hundred to ~ten thousand square degrees are required. The optimal strategy for the BAO detection does not necessarily require full sky coverage. For example, in a 1000 day-long survey by an eROSITA type telescope, an optimal strategy would be to survey a sky area of ~9000 deg2, yielding a ~16σ BAO detection. A similar detection will be achieved by ATHENA+ or WFXT class telescopes in a survey with a duration of 100 days, covering a similar sky area. XMM-Newton can achieve a marginal BAO detection in a 100-day survey covering ~400 deg2. These surveys would demand a moderate-to-high cost in terms the optical follow-ups, requiring determination of redshifts of ~105 (XMM-Newton) to ~3 × 106 objects (eROSITA, ATHENA+, and WFXT) in these sky areas.
Chiang, Chi-Ting; Sánchez, Ariel G; Schmidt, Fabian; Komatsu, Eiichiro
2015-01-01
We report on the first measurement of the position-dependent correlation function from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 10 CMASS sample. This new observable measures the correlation between two-point functions of galaxy pairs within different subvolumes, $\\hat{\\xi}({\\rm r},{\\rm r}_L)$, where ${\\rm r}_L$ is the location of a subvolume, and the corresponding mean overdensities, $\\bar{\\delta}({\\rm r}_L)$. This correlation, which we call the "integrated three-point function", $i\\zeta(r)=\\langle\\hat{\\xi}({\\rm r},{\\rm r}_L)\\bar{\\delta}({\\rm r}_L)\\rangle$, measures a three-point function of two short- and one long-wavelength modes, and is generated by nonlinear gravitational evolution and possibly also by the physics of inflation. The $i\\zeta(r)$ measured from the BOSS data lies within the scatter of those from the mock galaxy catalogs in redshift space, yielding a ten-percent-level determination of the amplitude of $i\\zeta(r)$. The tree-level perturbation theory in redshift s...
Guo, Hong; Zheng, Zheng; Weinberg, David H; Berlind, Andreas A; Blanton, Michael; Chen, Yanmei; Eisenstein, Daniel J; Ho, Shirley; Kazin, Eyal; Manera, Marc; Maraston, Claudia; McBride, Cameron K; Nuza, Sebastian E; Padmanabhan, Nikhil; Parejko, John K; Percival, Will J; Ross, Ashley J; Ross, Nicholas P; Samushia, Lado; Sanchez, Ariel G; Schlegel, David J; Schneider, Donald P; Skibba, Ramin A; Swanson, Molly E C; Tinker, Jeremy L; Tojeiro, Rita; Wake, David A; White, Martin; Bahcall, Neta A; Bizyaev, Dmitry; Brewington, Howard; Bundy, Kevin; da Costa, Luiz N A; Ebelke, Garrett; Malanushenko, Viktor; Malanushenko, Elena; Oravetz, Daniel; Rossi, Graziano; Simmons, Audrey; Snedden, Stephanie; Streblyanska, Alina; Thomas, Daniel
2012-01-01
We measure the luminosity and color dependence and the redshift evolution of galaxy clustering in the Sloan Digital Sky Survey-III Baryon Oscillation Spectroscopic Survey Ninth Data Release. We focus on the projected two-point correlation function (2PCF) of subsets of its CMASS sample, which includes about 260,000 galaxies over ~3,300 sq. deg in the redshift range 0.43
Ross, Ashley J; Sanchez, Ariel G; Samushia, Lado; Ho, Shirley; Kazin, Eyal; Manera, Marc; Reid, Beth; White, Martin; Tojeiro, Rita; McBride, Cameron K; Xu, Xiaoying; Wake, David A; Strauss, Michael A; Montesano, Francesco; Swanson, Molly E C; Bailey, Stephen; Bolton, Adam S; Dorta, Antonio Montero; Eisenstein, Daniel J; Guo, Hong; Hamilton, Jean-Christophe; Nichol, Robert C; Padmanabhan, Nikhil; Prada, Francisco; Schlegel, David J; Magana, Mariana Vargas; Zehavi, Idit; Blanton, Michael; Bizyaev, Dmitry; Brewington, Howard; Cuesta, Antonio J; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Daniel; Parejko, John; Pan, Kaike; Shelden, Donald P Schneider Alaina; Simmons, Audrey; Snedden, Stephanie; Zhao, Gong-bo
2012-01-01
We analyze the density field of galaxies observed by the Sloan Digital Sky Survey (SDSS)-III Baryon Oscillation Spectroscopic Survey (BOSS) included in the SDSS Data Release Nine (DR9). DR9 includes spectroscopic redshifts for over 400,000 galaxies spread over a footprint of 3,275 deg^2. We identify, characterize, and mitigate the impact of sources of systematic uncertainty on large-scale clustering measurements, both for angular moments of the redshift-space correlation function and the spherically averaged power spectrum, P(k), in order to ensure that robust cosmological constraints will be obtained from these data. A correlation between the projected density of stars and the higher redshift (0.43 120h^-1Mpc or k < 0.01hMpc^-1. We find that these errors can be ameliorated by weighting galaxies based on their surface brightness and the local stellar density. We use mock galaxy catalogs that simulate the CMASS selection function to determine that randomly selecting galaxy redshifts in order to simulate th...
Hernandez-Monteagudo, Carlos; Cuesta, Antonio; Genova-Santos, Ricardo; Prada, Francisco; Rossi, Graziano; Neyrinck, Mark; Viel, Matteo; Rubino-Martin, Jose-Alberto; Scoccola, Claudia G; Zhao, Gongbo; Schneider, Donald P; Brownstein, Joel R; Thomas, Daniel; Brinkmann, Jonathan V
2013-01-01
In the context of the study of the Integrated Sachs Wolfe effect (ISW), we construct a template of the projected density distribution up to $z\\simeq 0.7$ by using the Luminous Galaxies (LGs) from the Sloan Digital Sky Survey DR8. We use a photo-z catalogue trained with more than a hundred thousand galaxies from BOSS in the SDSS DR8 imaging area. We consider two different LG samples whose selection matches that of SDSS-III/BOSS: the LOWZ sample ($z\\in [0.15,0.5]$) and the CMASS sample ($z\\in[0.4,0.7]$). When building the LG density maps we use the information from star density, survey footprint, seeing conditions, sky emission, dust extinction and airmass to explore the impact of these artifacts on the two LG samples. In agreement with previous studies, we find that the CMASS sample is particularly sensitive to Galactic stars, which dominate the contribution to the auto-angular power spectrum below $\\ell=7$. Other potential systematics affect mostly the low multipole range ($\\ell\\in[2,7]$), but leave fluctuati...
Beutler, Florian; Saito, Shun; Chuang, Chia-Hsun; Cuesta, Antonio J; Eisenstein, Daniel J; Gil-Marín, Héctor; Grieb, Jan Niklas; Hand, Nick; Kitaura, Francisco-Shu; Modi, Chirag; Nichol, Robert C; Olmstead, Matthew D; Percival, Will J; Prada, Francisco; Sánchez, Ariel G; Rodriguez-Torres, Sergio; Ross, Ashley J; Ross, Nicholas P; Schneider, Donald P; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magaña, Mariana
2016-01-01
We investigate the anisotropic clustering of the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 12 (DR12) sample, which consists of $1\\,198\\,006$ galaxies in the redshift range $0.2 < z < 0.75$ and a sky coverage of $10\\,252\\,$deg$^2$. We analyse this dataset in Fourier space, using the power spectrum multipoles to measure Redshift-Space Distortions (RSD) simultaneously with the Alcock-Paczynski (AP) effect and the Baryon Acoustic Oscillation (BAO) scale. We include the power spectrum monopole, quadrupole and hexadecapole in our analysis and compare our measurements with a perturbation theory based model, while properly accounting for the survey window function. To evaluate the reliability of our analysis pipeline we participate in a mock challenge, which resulted in systematic uncertainties significantly smaller than the statistical uncertainties. While the high-redshift constraint on $f\\sigma_8$ at $z_{\\rm eff}=0.61$ indicates a small ($\\sim 1.4\\sigma$) deviation from the prediction of th...
Wang, Yuting; Zhao, Gong-Bo; Chuang, Chia-Hsun; Ross, Ashley J.; Percival, Will J.; Gil-Marín, Héctor; Cuesta, Antonio J.; Kitaura, Francisco-Shu; Rodriguez-Torres, Sergio; Brownstein, Joel R.; Eisenstein, Daniel J.; Ho, Shirley; Kneib, Jean-Paul; Olmstead, Matthew D.; Prada, Francisco; Rossi, Graziano; Sánchez, Ariel G.; Salazar-Albornoz, Salvador; Thomas, Daniel; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magaña, Mariana; Zhu, Fangzhou
2017-08-01
We perform a tomographic baryon acoustic oscillations (BAOs) analysis using the two-point galaxy correlation function measured from the combined sample of Baryon Oscillation Spectroscopic Survey Data Release 12 (BOSS DR12), which covers the redshift range of 0.2 clustering, we obtain a measurement of DA(z)/rd and H(z)rd at nine effective redshifts with the full covariance matrix calibrated using MultiDark-Patchy mock catalogues. Using the reconstructed galaxy catalogues, we obtain the precision of 1.3-2.2 per cent for DA(z)/rd and 2.1-6.0 per cent for H(z)rd. To quantify the gain from the tomographic information, we compare the constraints on the cosmological parameters using our nine-bin BAO measurements, the consensus three-bin BAO and redshift space distortion measurements at three effective redshifts in Alam et al., and the non-tomographic (one-bin) BAO measurement at a single effective redshift. Comparing the nine-bin with one-bin constraint result, it can improve the dark energy Figure of Merit by a factor of 1.24 for the Chevallier-Polarski-Linder parametrization for equation-of-state parameter wDE. The errors of w0 and wa from nine-bin constraints are slightly improved when compared to the three-bin constraint result.
Gil-Marín, Héctor; Cuesta, Antonio J; Brownstein, Joel R; Chuang, Chia-Hsun; Ho, Shirley; Kitaura, Francisco-Shu; Maraston, Claudia; Prada, Francisco; Rodríguez-Torres, Sergio; Ross, Ashely J; Schlegel, David J; Schneider, Donald P; Thomas, Daniel; Tinker, Jeremy L; Tojeiro, Rita; Magaña, Mariana Vargas; Zhao, Gong-Bo
2015-01-01
[abridged] We present an anisotropic analysis of the baryonic acoustic oscillation (BAO) scale in the twelfth and final data release of the Baryonic Oscillation Spectroscopic Survey (BOSS). We independently analyse the LOWZ and CMASS galaxy samples: the LOWZ sample contains contains 361\\,762 galaxies with an effective redshift of $z_{\\rm LOWZ}=0.32$, and the CMASS sample consists of 777\\,202 galaxies with an effective redshift of $z_{\\rm CMASS}=0.57$. We extract the BAO peak position from the monopole power spectrum moment, $\\alpha_0$, and from the $\\mu^2$ moment, $\\alpha_2$. We report $H(z_{\\rm LOWZ})r_s(z_d)=(11.64\\pm0.62)\\cdot10^3\\,{\\rm km}s^{-1}$ and $D_A(z_{\\rm LOWZ})/r_s(z_d)=6.85\\pm0.17$ with a cross-correlation coefficient of $r_{HD_A}=0.42$, for the LOWZ sample; and $H(z_{\\rm CMASS})r_s(z_d)=(14.56\\pm0.38)\\cdot10^3\\,{\\rm km}s^{-1}$ and $D_A(z_{\\rm CMASS})/r_s(z_d)=9.42\\pm0.13$ with a cross-correlation coefficient of $r_{HD_A}=0.51$, for the CMASS sample. We combine these results with the measurements...
Zhao, Gong-Bo; Wang, Yuting; Saito, Shun; Wang, Dandan; Ross, Ashley J.; Beutler, Florian; Grieb, Jan Niklas; Chuang, Chia-Hsun; Kitaura, Francisco-Shu; Rodriguez-Torres, Sergio; Percival, Will J.; Brownstein, Joel R.; Cuesta, Antonio J.; Eisenstein, Daniel J.; Gil-Marín, Héctor; Kneib, Jean-Paul; Nichol, Robert C.; Olmstead, Matthew D.; Prada, Francisco; Rossi, Graziano; Salazar-Albornoz, Salvador; Samushia, Lado; Sánchez, Ariel G.; Thomas, Daniel; Tinker, Jeremy L.; Tojeiro, Rita; Weinberg, David H.; Zhu, Fangzhou
2017-04-01
We perform a tomographic baryon acoustic oscillations (BAO) analysis using the monopole, quadrupole and hexadecapole of the redshift-space galaxy power spectrum measured from the pre-reconstructed combined galaxy sample of the completed Sloan Digital Sky Survey Baryon Oscillation Spectroscopic Survey (BOSS) Data Release12 covering the redshift range of 0.20 < z < 0.75. By allowing for overlap between neighbouring redshift slices, we successfully obtained the isotropic and anisotropic BAO distance measurements within nine redshift slices to a precision of 1.5-3.4 per cent for DV/rd, 1.8-4.2 per cent for DA/rd and 3.7-7.5 per cent for H rd, depending on effective redshifts. We provide our BAO measurement of DA/rd and H rd with the full covariance matrix, which can be used for cosmological implications. Our measurements are consistent with those presented in Alam et al., in which the BAO distances are measured at three effective redshifts. We constrain dark energy parameters using our measurements and find an improvement of the Figure-of-Merit of dark energy in general due to the temporal BAO information resolved. This paper is a part of a set that analyses the final galaxy clustering data set from BOSS.
Page, P R
2003-01-01
We review the status of hybrid baryons. The only known way to study hybrids rigorously is via excited adiabatic potentials. Hybrids can be modelled by both the bag and flux-tube models. The low-lying hybrid baryon is N 1/2^+ with a mass of 1.5-1.8 GeV. Hybrid baryons can be produced in the glue-rich processes of diffractive gamma N and pi N production, Psi decays and p pbar annihilation.
Slepian, Zachary; Brownstein, Joel R; Chuang, Chia-Hsun; Gil-Marín, Héctor; Ho, Shirley; Kitaura, Francisco-Shu; Percival, Will J; Ross, Ashley J; Rossi, Graziano; Seo, Hee-Jong; Slosar, Anže; Vargas-Magaña, Mariana
2016-01-01
We present the large-scale 3-point correlation function (3PCF) of the SDSS DR12 CMASS sample of $777,202$ Luminous Red Galaxies, the largest-ever sample used for a 3PCF or bispectrum measurement. We make the first high-significance ($4.5\\sigma$) detection of Baryon Acoustic Oscillations (BAO) in the 3PCF. Using these acoustic features in the 3PCF as a standard ruler, we measure the distance to $z=0.57$ to $1.7\\%$ precision (statistical plus systematic). We find $D_{\\rm V}= 2024\\pm29\\;{\\rm Mpc\\;(stat)}\\pm20\\;{\\rm Mpc\\;(sys)}$ for our fiducial cosmology (consistent with Planck 2015) and bias model. This measurement extends the use of the BAO technique from the 2-point correlation function (2PCF) and power spectrum to the 3PCF and opens an avenue for deriving additional cosmological distance information from future large-scale structure redshift surveys such as DESI. Our measured distance scale from the 3PCF is fairly independent from that derived from the pre-reconstruction 2PCF and is equivalent to increasing ...
Slepian, Zachary; Eisenstein, Daniel J.; Brownstein, Joel R.; Chuang, Chia-Hsun; Gil-Marín, Héctor; Ho, Shirley; Kitaura, Francisco-Shu; Percival, Will J.; Ross, Ashley J.; Rossi, Graziano; Seo, Hee-Jong; Slosar, Anže; Vargas-Magaña, Mariana
2017-08-01
We present the large-scale three-point correlation function (3PCF) of the Sloan Digital Sky Survey DR12 Constant stellar Mass (CMASS) sample of 777 202 Luminous Red Galaxies, the largest-ever sample used for a 3PCF or bispectrum measurement. We make the first high-significance (4.5σ) detection of baryon acoustic oscillations (BAO) in the 3PCF. Using these acoustic features in the 3PCF as a standard ruler, we measure the distance to z = 0.57 to 1.7 per cent precision (statistical plus systematic). We find DV = 2024 ± 29 Mpc (stat) ± 20 Mpc (sys) for our fiducial cosmology (consistent with Planck 2015) and bias model. This measurement extends the use of the BAO technique from the two-point correlation function (2PCF) and power spectrum to the 3PCF and opens an avenue for deriving additional cosmological distance information from future large-scale structure redshift surveys such as DESI. Our measured distance scale from the 3PCF is fairly independent from that derived from the pre-reconstruction 2PCF and is equivalent to increasing the length of BOSS by roughly 10 per cent; reconstruction appears to lower the independence of the distance measurements. Fitting a model including tidal tensor bias yields a moderate-significance (2.6σ) detection of this bias with a value in agreement with the prediction from local Lagrangian biasing.
Oset, E; Sun, Bao Xi; Vacas, M J Vicente; Ramos, A; Gonzalez, P; Vijande, J; Torres, A Martinez; Khemchandani, K
2009-01-01
In this talk I show recent results on how many excited baryon resonances appear as systems of one meson and one baryon, or two mesons and one baryon, with the mesons being either pseudoscalar or vectors. Connection with experiment is made including a discussion on old predictions and recent results for the photoproduction of the $\\Lambda(1405)$ resonance, as well as the prediction of one $1/2^+$ baryon state around 1920 MeV which might have been seen in the $\\gamma p \\to K^+ \\Lambda$ reaction.
Energy Technology Data Exchange (ETDEWEB)
Oset, E. [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Aptdo. 22085, 46071 Valencia (Spain); Sarkar, S. [Variable Energy Cyclotron Centre, 1/AF, Bidhannagar, Kolkata 700064 (India); Sun Baoxi [Institute of Theoretical Physics, College of Applied Sciences, Beijing University of Technology, Beijing 100124 (China); Vicente Vacas, M.J. [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Aptdo. 22085, 46071 Valencia (Spain); Ramos, A. [Departament d' Estructura i Constituents de la Materia and Institut de Ciencies del Cosmos, Universitat de Barcelona, 08028 Barcelona (Spain); Gonzalez, P. [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Aptdo. 22085, 46071 Valencia (Spain); Vijande, J. [Departamento de Fisica Atomica Molecular y Nuclear and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Aptdo. 22085, 46071 Valencia (Spain); Martinez Torres, A. [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Aptdo. 22085, 46071 Valencia (Spain); Khemchandani, K. [Centro de Fisica Computacional, Departamento de Fisica, Universidade de Coimbra, P-3004-516 Coimbra (Portugal)
2010-04-01
In this talk I show recent results on how many excited baryon resonances appear as systems of one meson and one baryon, or two mesons and one baryon, with the mesons being either pseudoscalar or vectors. Connection with experiment is made including a discussion on old predictions and recent results for the photoproduction of the {lambda}(1405) resonance, as well as the prediction of one 1/2{sup +} baryon state around 1920 MeV which might have been seen in the {gamma}p{yields}K{sup +}{lambda} reaction.
Rodríguez-Torres, Sergio A; Chuang, Chia-Hsun; Guo, Hong; Klypin, Anatoly; Behroozi, Peter; Hahn, Chang Hoon; Comparat, Johan; Yepes, Gustavo; Montero-Dorta, Antonio D; Brownstein, Joel R; Maraston, Claudia; McBride, Cameron K; Tinker, Jeremy; Gottlöber, Stefan; Favole, Ginevra; Shu, Yiping; Kitaura, Francisco-Shu; Bolton, Adam; Scoccimarro, Román; Samushia, Lado; Schlegel, David; Schneider, Donald P; Thomas, Daniel
2015-01-01
We present a study of the clustering and halo occupation distribution of BOSS CMASS galaxies in the redshift range 0.43 < z < 0.7 drawn from the Final SDSS-III Data Release. We compare the BOSS results with the predictions of a halo abundance matching (HAM) clustering model that assigns galaxies to dark matter halos selected from the large BigMultiDark N-body simulation of a flat $\\Lambda$CDM Planck cosmology. We compare the observational data with the simulated ones on a light-cone constructed from 20 subsequent outputs of the simulation. Observational effects such as incompleteness, geometry, veto masks and fiber collisions are included in the model, which reproduces within 1-$\\sigma$ errors the observed monopole of the 2-point correlation function at all relevant scales{: --} from the smallest scales, 0.5 $h^{-1}$Mpc , up to scales beyond the Baryonic Acoustic Oscillation feature. This model also agrees remarkably well with the BOSS galaxy power spectrum (up to $k\\sim1$ $h$ Mpc$^{-1}$), and the three...
Xu, Lixin
2013-01-01
In this paper, we use the joint measurement of geometry and growth rate from matter density perturbations to constrain the holographic dark energy model. The geometry measurement includes type Ia supernovae (SN Ia) Union2.1, full information of cosmic microwave background (CMB) from WMAP-7yr and baryon acoustic oscillation (BAO). For the growth rate of matter density perturbations, the results $f(z)\\sigma_8(z)$ measured from the redshift-space distortion (RSD) in the galaxy power spectrum are employed. Via the Markov Chain Monte Carlo method, we try to constrain the model parameters space. The jointed constraint shows that $c=0.750_{- 0.0999- 0.173- 0.226}^{+ 0.0976+ 0.215+ 0.319}$ and $\\sigma_8=0.763_{- 0.0465- 0.0826- 0.108}^{+ 0.0477+ 0.0910+ 0.120}$ with $1,2,3\\sigma$ regions. After marginalizing the other irrelevant model parameters, we show the evolution of the equation of state of HDE with respect to the redshift $z$. Though the current cosmic data points favor a phantom like HDE Universe for the mean ...
Gaztanaga, Enrique; Hui, Lam
2008-01-01
This is the 4th paper in a series where we study the clustering of LRG galaxies in the latest spectroscopic SDSS data release, DR6, which has 75000 LRG galaxies sampling 1.1 (Gpc/h)^3 to z=0.47. Here we study the 2-point correlation function, separated in perpendicular (sigma) and line-of-sight (pi) directions. We find a significant detection of a peak at r=110 Mpc/h, which shows as a circular ring in the sigma-pi plane. There is also a significant detection of the peak along the line-of-sight (LOS) direction both in sub-samples at low, z=0.15-30, and high redshifts, z=0.40-0.47. The overall shape and location of the peak is consistent with baryon acoustic oscillations (BAO). The amplitude in the line-of-sight direction, however, is larger than conventional expectations. We argue this is due to magnification bias. Because the data is shot noise dominated, a lensing boost in signal translates into a boost in S/N. We take advantage of this high S/N to produce, for the first time, a direct measurement of the Hub...
Hoeneisen, B
2016-01-01
We define Baryon Acoustic Oscillation (BAO) observables $\\hat{d}_\\alpha(z, z_c)$, $\\hat{d}_z(z, z_c)$, and $\\hat{d}_/(z, z_c)$ that do not depend on any cosmological parameter. From each of these observables we recover the BAO correlation length $d_\\textrm{BAO}$ with its respective dependence on cosmological parameters. These BAO observables are measured as a function of redshift $z$ with the Sloan Digital Sky Survey (SDSS) data release DR12. From the BAO measurements alone, or together with the correlation angle $\\theta_\\textrm{MC}$ of the Cosmic Microwave Background (CMB), we constrain the curvature parameter $\\Omega_k$ and the dark energy density $\\Omega_\\textrm{DE}(a)$ as a function of the expansion parameter $a$ in several scenarios. These observables are further constrained with external measurements of $h$ and $\\Omega_\\textrm{b} h^2$. We find some tension between the data and a cosmology with flat space and constant dark energy density $\\Omega_\\textrm{DE}(a)$.
Energy Technology Data Exchange (ETDEWEB)
Farooq, Omer, E-mail: omer@phys.ksu.edu; Ratra, Bharat, E-mail: ratra@phys.ksu.edu
2013-06-10
We use the Busca et al. (2012) [11] measurement of the Hubble parameter at redshift z=2.3 in conjunction with 21 lower z measurements, from Simon, Verde, and Jimenez (2005) [81], Gaztañaga, Cabré, and Hui (2009) [33], Stern et al. (2010) [85], and Moresco et al. (2012) [52], to place constraints on model parameters of constant and time-evolving dark energy cosmological models. The inclusion of the new Busca et al. (2012) [11] measurement results in H(z) constraints significantly more restrictive than those derived by Farooq, Mania, and Ratra (2013) [31]. These H(z) constraints are now more restrictive than those that follow from current Type Ia supernova (SNIa) apparent magnitude measurements Suzuki et al. (2012) [86]. The H(z) constraints by themselves require an accelerating cosmological expansion at about 2 σ confidence level, depending on cosmological model and Hubble constant prior used in the analysis. A joint analysis of H(z), baryon acoustic oscillation peak length scale, and SNIa data favors a spatially-flat cosmological model currently dominated by a time-independent cosmological constant but does not exclude slowly-evolving dark energy density.
Ahn, Christopher P; Prieto, Carlos Allende; Anderson, Scott F; Anderton, Timothy; Andrews, Brett H; Bailey, Éric Aubourg Stephen; Barnes, Rory; Bautista, Julian; Beers, Timothy C; Beifiori, Alessandra; Berlind, Andreas A; Bhardwaj, Vaishali; Bizyaev, Dmitry; Blake, Cullen H; Blanton, Michael R; Blomqvist, Michael; Bochanski, John J; Bolton, Adam S; Borde, Arnaud; Bovy, Jo; Brandt, W N; Brinkmann, J; Brown, Peter J; Brownstein, Joel R; Bundy, Kevin; Busca, N G; Carithers, William; Carnero, Aurelio R; Carr, Michael A; Casetti-Dinescu, Dana I; Chen, Yanmei; Chiappini, Cristina; Comparat, Johan; Connolly, Natalia; Crepp, Justin R; Cristiani, Stefano; Croft, Rupert A C; Cuesta, Antonio J; da Costa, Luiz N; Davenport, James R A; Dawson, Kyle S; de Putter, Roland; De Lee, Nathan; Delubac, Timothée; Dhital, Saurav; Ealet, Anne; Ebelke, Garrett L; Edmondson, Edward M; Eisenstein, Daniel J; Escoffier, S; Esposito, Massimiliano; Evans, Michael L; Fan, Xiaohui; Castellá, Bruno Femení a; Alvar, Emma Fernández; Ferreira, Leticia D; Ak, N Filiz; Finley, Hayley; Fleming, Scott W; Font-Ribera, Andreu; Frinchaboy, Peter M; García-Hernández, D A; Pérez, A E García; Ge, Jian; Génova-Santos, R; Gillespie, Bruce A; Girardi, Léo; Hernández, Jonay I González; Grebel, Eva K; Gunn, James E; Haggard, Daryl; Hamilton, Jean-Christophe; Harris, David W; Hawley, Suzanne L; Hearty, Frederick R; Ho, Shirley; Hogg, David W; Holtzman, Jon A; Honscheid, Klaus; Huehnerhoff, J; Ivans, Inese I; Ivezić, Zeljko; Jacobson, Heather R; Jiang, Linhua; Johansson, Jonas; Johnson, Jennifer A; Kauffmann, Guinevere; Kirkby, David; Kirkpatrick, Jessica A; Klaene, Mark A; Knapp, Gillian R; Kneib, Jean-Paul; Goff, Jean-Marc Le; Leauthaud, Alexie; Lee, Khee-Gan; Lee, Young Sun; Long, Daniel C; Loomis, Craig P; Lucatello, Sara; Lundgren, Britt; Lupton, Robert H; Ma, Bo; Ma, Zhibo; MacDonald, Nicholas; Mahadevan, Suvrath; Maia, Marcio A G; Majewski, Steven R; Makler, Martin; Malanushenko, Elena; Malanushenko, Viktor; Manchado, A; Mandelbaum, Rachel; Manera, Marc; Maraston, Claudia; Margala, Daniel; Martell, Sarah L; McBride, Cameron K; McGreer, Ian D; McMahon, Richard G; Ménard, Brice; Meszaros, Sz; Miralda-Escudé, Jordi; Montero-Dorta, Antonio D; Montesano, Francesco; Morrison, Heather L; Muna, Demitri; Munn, Jeffrey A; Murayama, Hitoshi; Myers, Adam D; Neto, A F; Nguyen, Duy Cuong; Nichol, Robert C; Nidever, David L; Noterdaeme, Pasquier; Ogando, Ricardo L C; Olmstead, Matthew D; Oravetz, Daniel J; Owen, Russell; Padmanabhan, Nikhil; Palanque-Delabrouille, Nathalie; Pan, Kaike; Parejko, John K; Parihar, Prachi; Pâris, Isabelle; Pattarakijwanich, Petchara; Pepper, Joshua; Percival, Will J; Pérez-Fournon, Ismael; Pérez-Ráfols, Ignasi; Petitjean, Patrick; Pforr, Janine; Pieri, Matthew M; Pinsonneault, Marc H; de Mello, G F Porto; Prada, Francisco; Price-Whelan, Adrian M; Raddick, M Jordan; Rebolo, Rafael; Rich, James; Richards, Gordon T; Robin, Annie C; Rocha-Pinto, Helio J; Rockosi, Constance M; Roe, Natalie A; Ross, Ashley J; Ross, Nicholas P; Rubiño-Martin, J A; Samushia, Lado; Almeida, J Sanchez; Sánchez, Ariel G; Santiago, Basílio; Sayres, Conor; Schlegel, David J; Schlesinger, Katharine J; Schmidt, Sarah J; Schneider, Donald P; Schwope, Axel D; Scóccola, C G; Seljak, Uros; Sheldon, Erin; Shen, Yue; Shu, Yiping; Simmerer, Jennifer; Simmons, Audrey E; Skibba, Ramin A; Slosar, A; Sobreira, Flavia; Sobeck, Jennifer S; Stassun, Keivan G; Steele, Oliver; Steinmetz, Matthias; Strauss, Michael A; Swanson, Molly E C; Tal, Tomer; Thakar, Aniruddha R; Thomas, Daniel; Thompson, Benjamin A; Tinker, Jeremy L; Tojeiro, Rita; Tremonti, Christy A; Magaña, M Vargas; Verde, Licia; Viel, Matteo; Vikas, Shailendra K; Vogt, Nicole P; Wake, David A; Wang, Ji; Weaver, Benjamin A; Weinberg, David H; Weiner, Benjamin J; West, Andrew A; White, Martin; Wilson, John C; Wisniewski, John P; Wood-Vasey, W M; Yanny, Brian; Yèche, Christophe; York, Donald G; Zamora, O; Zasowski, Gail; Zehavi, Idit; Zhao, Gong-Bo; Zheng, Zheng; Zhu, Guangtun; Zinn, Joel C
2012-01-01
The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median z=0.52), 102,100 new quasar spectra (median z=2.32), and 90,897 new stellar spectra, along with the data presented in previous data releases. These spectra were obtained with the new BOSS spectrograph and were taken between 2009 December and 2011 July. In addition, the stellar parameters pipeline, which determines radial velocities, surface temperatures, surface gravities, and metallicities of stars, has been updated and refined with improvements in temperature estimates for stars with T_eff-0.5. DR9 includes new stellar parameters for all stars presented in DR8, including stars from SDSS-I and II, as well as those observed as part of the SDSS-III Sloan Extension for Galactic Understanding and Exploration-2 (SEGUE-2). The astrometry error introduced in the DR8 imaging catalogs has...
Wang, Yuting; Chuang, Chia-Hsun; Ross, Ashley J; Percival, Will J; Gil-Marín, Héctor; Cuesta, Antonio J; Kitaura, Francisco-Shu; Rodriguez-Torres, Sergio; Brownstein, Joel R; Eisenstein, Daniel J; Ho, Shirley; Kneib, Jean-Paul; Olmstead, Matt; Prada, Francisco; Rossi, Graziano; Sánchez, Ariel G; Salazar-Albornoz, Salvador; Thomas, Daniel; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magaña, Mariana; Zhu, Fangzhou
2016-01-01
We perform a tomographic baryon acoustic oscillations analysis using the two-point galaxy correlation function measured from the combined sample of BOSS DR12, which covers the redshift range of $0.2
Ata, Metin; Chuang, Chia-Hsun; Rodríguez-Torres, Sergio; Angulo, Raul E; Ferraro, Simone; McDonald, Patrick; Monteagudo, Carlos Hernández; Müller, Volker; Yepes, Gustavo; Baumgarten, Falk; Beutler, Florian; Brownstein, Joel R; Burden, Angela; Eisenstein, Daniel J; Guo, Hong; Ho, Shirley; McBride, Cameron; Neyrinck, Mark; Olmstead, Matthew D; Padmanabhan, Nikhil; Perciva, Will J; Prada, Francisco; Rossi, Graziano; Sánchez, Ariel G; Schlege, David; Schneider, Donald P; Seo, Hee-Jong; Streblyanska, Alina; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana
2016-01-01
We present a Bayesian phase space reconstruction of the cosmic large-scale matter density and velocity fields from the SDSS-III Baryon Oscillations Spectroscopic Survey Data Release 12 (BOSS DR12) CMASS galaxy clustering catalogue. We rely on a given $\\Lambda$CDM cosmology, a mesh resolution in the range of 6-10 $h^{-1}$ Mpc, and a lognormal-Poisson model with a redshift dependent nonlinear bias. The bias parameters are derived from the data and a general renormalised perturbation theory approach. We use combined Gibbs and Hamiltonian sampling, implemented in the \\textsc{argo} code, to iteratively reconstruct the dark matter density field and the coherent peculiar velocities of individual galaxies, correcting hereby for coherent redshift space distortions (RSD). Our tests relying on accurate $N$-body based mock galaxy catalogues, show unbiased real space power spectra of the nonlinear density field up to $k\\sim0.2\\, h$ Mpc$^{-1}$, and vanishing quadrupoles down to $\\sim20\\,h^{-1}$ Mpc. We also demonstrate tha...
Chuang, Chia-Hsun; Beutler, Florian; Eisenstein, Daniel J; Escoffier, Stephanie; Ho, Shirley; Kneib, Jean-Paul; Manera, Marc; Nuza, Sebastian E; Schlegel, David J; Schneider, Donald P; Weaver, Benjamin A; Brownstein, Joel R; Dawson, Kyle S; Maraston, Claudia; Thomas, Daniel
2013-01-01
With the largest spectroscopic galaxy survey volume drawn from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), we can extract cosmological constraints from the measurements of redshift and geometric distortions at quasi-linear scales (e.g. above 50 Mpc/h), which can be modeled by perturbation theory. We analyze the broad-range shape of the monopole and quadrupole correlation functions of the BOSS Data Release 11 (DR11) CMASS galaxy sample, at the effective redshift z=0.57, to obtain constraints on the Hubble expansion rate H(z), the angular-diameter distance D_A(z), the normalized growth rate f(z)\\sigma_8(z), and the physical matter density \\Omega_mh^2. We provide accurate measurements on {H^{-1}R_{fid}^{-1.0}, D_A R_{fid}^{-0.96}, f\\sigma_8(\\Omega_m h^2)^{0.45}}, where R_{fid}\\equiv r_s/r_{s,fid}, r_s is the comoving sound horizon at the drag epoch, and r_{s,fid} is the sound scale of the fiducial cosmology used in this study. We also extract cosmological constraints from BOSS DR11 LOWZ sample, ...
Guo, Hong; Zehavi, Idit; Xu, Haojie; Eisenstein, Daniel J; Weinberg, David H; Bahcall, Neta A; Berlind, Andreas A; Comparat, Johan; McBride, Cameron K; Ross, Ashley J; Schneider, Donald P; Skibba, Ramin A; Swanson, Molly E C; Tinker, Jeremy L; Tojeiro, Rita; Wake, David A
2014-01-01
We investigate the luminosity and colour dependence of clustering of CMASS galaxies in the Sloan Digital Sky Survey-III Baryon Oscillation Spectroscopic Survey Tenth Data Release. The halo occupation distribution framework is adopted to model the projected two-point correlation function measurements on small and intermediate scales (from $0.02$ to $60\\,h^{-1}{\\rm {Mpc}}$) and to interpret the observed trends and infer the connection of galaxies to dark matter halos. We find that luminous red galaxies reside in massive halos of mass $M{\\sim}10^{13}$--$10^{14}\\,h^{-1}{\\rm M_\\odot}$ and more luminous galaxies are more clustered and hosted by more massive halos. The strong small-scale clustering requires a fraction of these galaxies to be satellites in massive halos, with the fraction at the level of 5--8 per cent and decreasing with luminosity. The characteristic mass of a halo hosting on average one satellite galaxy above a luminosity threshold is about a factor $8.7$ larger than that of a halo hosting a centra...
Sanchez, Ariel G; Crocce, Martin; Grieb, Jan Niklas; Salazar-Albornoz, Salvador; DallaVecchia, Claudio; Lippich, Martha; Beutler, Florian; Brownstein, Joel R; Chuang, Chia-Hsun; Eisenstein, Daniel J; Kitaura, Francisco-Shu; Olmstead, Matthew D; Percival, Will J; Prada, Francisco; Rodriguez-Torres, Sergio; Ross, Ashley J; Samushia, Lado; Seo, Hee-Jong; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana; Wang, Yuting; Zhao, Gong-Bo
2016-01-01
We explore the cosmological implications of anisotropic clustering measurements in configuration space of the final galaxy samples from Data Release 12 of the SDSS-III Baryon Oscillation Spectroscopic Survey. We implement a new detailed modelling of the effects of non-linearities, galaxy bias and redshift-space distortions that can be used to extract unbiased cosmological information from our measurements for scales $s \\gtrsim 20\\,h^{-1}{\\rm Mpc}$. We combined the galaxy clustering information from BOSS with the latest cosmic microwave background (CMB) observations and Type Ia supernovae samples and found no significant evidence for a deviation from the $\\Lambda$CDM cosmological model. In particular, these data sets can constrain the dark energy equation of state parameter to $w_{\\rm DE}=-0.996\\pm0.042$ when assumed time-independent, the curvature of the Universe to $\\Omega_{k}=-0.0007\\pm 0.0030$ and the sum of the neutrino masses to $\\sum m_{\
Reid, Beth A; White, Martin; Percival, Will J; Manera, Marc; Padmanabhan, Nikhil; Ross, Ashley J; Sánchez, Ariel G; Bailey, Stephen; Bizyaev, Dmitry; Bolton, Adam S; Brewington, Howard; Brinkmann, J; Brownstein, Joel R; Cuesta, Antonio J; Eisenstein, Daniel J; Gunn, James E; Honscheid, Klaus; Malanushenko, Elena; Malanushenko, Viktor; Maraston, Claudia; McBride, Cameron K; Muna, Demitri; Nichol, Robert C; Oravetz, Daniel; Pan, Kaike; de Putter, Roland; Roe, N A; Ross, Nicholas P; Schlegel, David J; Schneider, Donald P; Seo, Hee-Jong; Shelden, Alaina; Sheldon, Erin S; Simmons, Audrey; Skibba, Ramin A; Snedden, Stephanie; Swanson, Molly E C; Thomas, Daniel; Tinker, Jeremy; Tojeiro, Rita; Verde, Licia; Wake, David A; Weaver, Benjamin A; Weinberg, David H; Zehavi, Idit; Zhao, Gong-Bo
2012-01-01
We analyze the anisotropic clustering of massive galaxies from the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 9 (DR9) sample, which consists of 264,283 galaxies in the redshift range 0.43 0.57, and when combined imply \\Omega_{\\Lambda} = 0.74 +/- 0.016, independent of the Universe's evolution at z<0.57. In our companion paper (Samushia et al. prep), we explore further cosmological implications of these observations.
Sánchez, Ariel G.; Scoccimarro, Román; Crocce, Martín; Grieb, Jan Niklas; Salazar-Albornoz, Salvador; Dalla Vecchia, Claudio; Lippich, Martha; Beutler, Florian; Brownstein, Joel R.; Chuang, Chia-Hsun; Eisenstein, Daniel J.; Kitaura, Francisco-Shu; Olmstead, Matthew D.; Percival, Will J.; Prada, Francisco; Rodríguez-Torres, Sergio; Ross, Ashley J.; Samushia, Lado; Seo, Hee-Jong; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magaña, Mariana; Wang, Yuting; Zhao, Gong-Bo
2017-01-01
We explore the cosmological implications of anisotropic clustering measurements in configuration space of the final galaxy samples from Data Release 12 of the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey. We implement a new detailed modelling of the effects of non-linearities, bias and redshift-space distortions that can be used to extract unbiased cosmological information from our measurements for scales s ≳ 20 h-1 Mpc. We combined the information from Baryon Oscillation Spectroscopic Survey (BOSS) with the latest cosmic microwave background (CMB) observations and Type Ia supernovae samples and found no significant evidence for a deviation from the Λ cold dark matter (ΛCDM) cosmological model. In particular, these data sets can constrain the dark energy equation-of-state parameter to wDE = -0.996 ± 0.042 when to be assumed time independent, the curvature of the Universe to Ωk = -0.0007 ± 0.0030 and the sum of the neutrino masses to ∑mν < 0.25 eV at 95 per cent confidence levels. We explore the constraints on the growth rate of cosmic structures assuming f(z) = Ωm(z)γ and obtain γ = 0.609 ± 0.079, in good agreement with the predictions of general relativity of γ = 0.55. We compress the information of our clustering measurements into constraints on the parameter combinations DV(z)/rd, FAP(z) and fσ8(z) at zeff = 0.38, 0.51 and 0.61 with their respective covariance matrices and find good agreement with the predictions for these parameters obtained from the best-fitting ΛCDM model to the CMB data from the Planck satellite. This paper is part of a set that analyses the final galaxy clustering data set from BOSS. The measurements and likelihoods presented here are combined with others by Alam et al. to produce the final cosmological constraints from BOSS.
Energy Technology Data Exchange (ETDEWEB)
Mukhopadhyay, N.C.
1986-01-01
The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested. (LEW)
Ata, Metin; Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Rodríguez-Torres, Sergio; Angulo, Raul E.; Ferraro, Simone; Gil-Marín, Hector; McDonald, Patrick; Monteagudo, Carlos Hernández; Müller, Volker; Yepes, Gustavo; Autefage, Mathieu; Baumgarten, Falk; Beutler, Florian; Brownstein, Joel R.; Burden, Angela; Eisenstein, Daniel J.; Guo, Hong; Ho, Shirley; McBride, Cameron; Neyrinck, Mark; Olmstead, Matthew D.; Padmanabhan, Nikhil; Percival, Will J.; Prada, Francisco; Rossi, Graziano; Sánchez, Ariel G.; Schlegel, David; Schneider, Donald P.; Seo, Hee-Jong; Streblyanska, Alina; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana
2017-01-01
We present a Bayesian phase-space reconstruction of the cosmic large-scale matter density and velocity fields from the SDSS-III Baryon Oscillations Spectroscopic Survey Data Release 12 (BOSS DR12) CMASS galaxy clustering catalogue. We rely on a given ΛCDM cosmology, a mesh resolution in the range of 6-10 h-1 Mpc, and a lognormal-Poisson model with a redshift dependent nonlinear bias. The bias parameters are derived from the data and a general renormalised perturbation theory approach. We use combined Gibbs and Hamiltonian sampling, implemented in the ARGO code, to iteratively reconstruct the dark matter density field and the coherent peculiar velocities of individual galaxies, correcting hereby for coherent redshift space distortions (RSD). Our tests relying on accurate N-body based mock galaxy catalogues, show unbiased real space power spectra of the nonlinear density field up to k ˜ 0.2 h Mpc-1, and vanishing quadrupoles down to r ˜ 20 h-1 Mpc. We also demonstrate that the nonlinear cosmic web can be obtained from the tidal field tensor based on the Gaussian component of the reconstructed density field. We find that the reconstructed velocities have a statistical correlation coefficient compared to the true velocities of each individual lightcone mock galaxy of r ˜ 0.68 including about 10% of satellite galaxies with virial motions (about r = 0.75 without satellites). The power spectra of the velocity divergence agree well with theoretical predictions up to k ˜ 0.2 h Mpc-1. This work will be especially useful to improve, e.g. BAO reconstructions, kinematic Sunyaev-Zeldovich (kSZ), integrated Sachs-Wolfe (ISW) measurements, or environmental studies.
Kaplunovsky, Vadim; Sonnenschein, Jacob
2012-01-01
In the large N limit cold dense nuclear matter must be in a lattice phase. This applies also to holographic models of hadron physics. In a class of such models, like the generalized Sakai-Sugimoto model, baryons take the form of instantons of the effective flavor gauge theory that resides on probe flavor branes. In this paper we study the phase structure of baryonic crystals by analyzing discrete periodic configurations of such instantons. We find that instanton configurations exhibit a series of "popcorn" transitions upon increasing the density. Through these transitions normal (3D) lattices expand into the transverse dimension, eventually becoming a higher dimensional (4D) multi-layer lattice at large densities. We consider 3D lattices of zero size instantons as well as 1D periodic chains of finite size instantons, which serve as toy models of the full holographic systems. In particular, for the finite-size case we determine solutions of the corresponding ADHM equations for both a straight chain and for a 2...
Gudnason, Sven Bjarke
2014-01-01
We study a Skyrme-type model with a potential term motivated by Bose-Einstein condensates (BECs), which we call the BEC Skyrme model. We consider two flavors of the model, the first is the Skyrme model and the second has a sixth-order derivative term instead of the Skyrme term; both with the added BEC-motivated potential. The model contains toroidally shaped Skyrmions and they are characterized by two integers P and Q, representing the winding numbers of two complex scalar fields along the toroidal and poloidal cycles of the torus, respectively. The baryon number is B=PQ. We find stable Skyrmion solutions for P=1,2,3,4,5 with Q=1, while for P=6 and Q=1 it is only metastable. We further find that configurations with higher Q>1 are all unstable and split into Q configurations with Q=1.
Chuang, Chia-Hsun; Prada, Francisco; Pellejero-Ibanez, Marcos; Beutler, Florian; Cuesta, Antonio J.; Eisenstein, Daniel J.; Escoffier, Stephanie; Ho, Shirley; Kitaura, Francisco-Shu; Kneib, Jean-Paul; Manera, Marc; Nuza, Sebastián E.; Rodríguez-Torres, Sergio; Ross, Ashley; Rubiño-Martín, J. A.; Samushia, Lado; Schlegel, David J.; Schneider, Donald P.; Wang, Yuting; Weaver, Benjamin A.; Zhao, Gongbo; Brownstein, Joel R.; Dawson, Kyle S.; Maraston, Claudia; Olmstead, Matthew D.; Thomas, Daniel
2016-10-01
With the largest spectroscopic galaxy survey volume drawn from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), we can extract cosmological constraints from the measurements of redshift and geometric distortions at quasi-linear scales (e.g. above 50 h-1 Mpc). We analyse the broad-range shape of the monopole and quadrupole correlation functions of the BOSS Data Release 12 (DR12) CMASS galaxy sample, at the effective redshift z = 0.59, to obtain constraints on the Hubble expansion rate H(z), the angular- diameter distance DA(z), the normalized growth rate f(z)σ8(z), and the physical matter density Ωm h2. We obtain robust measurements by including a polynomial as the model for the systematic errors, and find it works very well against the systematic effects, e.g. ones induced by stars and seeing. We provide accurate measurements {DA(0.59)rs,fid/rs, H(0.59)rs/rs,fid, f(0.59)σ8(0.59), Ωm h2} = {1427 ± 26 Mpc, 97.3 ± 3.3 km s-1 Mpc-1, 0.488 ± 0.060, 0.135 ± 0.016}, where rs is the comoving sound horizon at the drag epoch and rs,fid = 147.66 Mpc is the sound scale of the fiducial cosmology used in this study. The parameters which are not well constrained by our galaxy clustering analysis are marginalized over with wide flat priors. Since no priors from other data sets, e.g. cosmic microwave background (CMB), are adopted and no dark energy models are assumed, our results from BOSS CMASS galaxy clustering alone may be combined with other data sets, i.e. CMB, SNe, lensing or other galaxy clustering data to constrain the parameters of a given cosmological model. The uncertainty on the dark energy equation of state parameter, w, from CMB+CMASS is about 8 per cent. The uncertainty on the curvature fraction, Ωk, is 0.3 per cent. We do not find deviation from flat ΛCDM.
Rodríguez-Torres, Sergio A.; Chuang, Chia-Hsun; Prada, Francisco; Guo, Hong; Klypin, Anatoly; Behroozi, Peter; Hahn, Chang Hoon; Comparat, Johan; Yepes, Gustavo; Montero-Dorta, Antonio D.; Brownstein, Joel R.; Maraston, Claudia; McBride, Cameron K.; Tinker, Jeremy; Gottlöber, Stefan; Favole, Ginevra; Shu, Yiping; Kitaura, Francisco-Shu; Bolton, Adam; Scoccimarro, Román; Samushia, Lado; Schlegel, David; Schneider, Donald P.; Thomas, Daniel
2016-08-01
We present a study of the clustering and halo occupation distribution of Baryon Oscillation Spectroscopic Survey (BOSS) CMASS galaxies in the redshift range 0.43 veto masks and fibre collisions are included in the model, which reproduces within 1σ errors the observed monopole of the two-point correlation function at all relevant scales: from the smallest scales, 0.5 h-1 Mpc, up to scales beyond the baryon acoustic oscillation feature. This model also agrees remarkably well with the BOSS galaxy power spectrum (up to k ˜ 1 h Mpc-1), and the three-point correlation function. The quadrupole of the correlation function presents some tensions with observations. We discuss possible causes that can explain this disagreement, including target selection effects. Overall, the standard HAM model describes remarkably well the clustering statistics of the CMASS sample. We compare the stellar-to-halo mass relation for the CMASS sample measured using weak lensing in the Canada-France-Hawaii Telescope Stripe 82 Survey with the prediction of our clustering model, and find a good agreement within 1σ. The BigMD-BOSS light cone including properties of BOSS galaxies and halo properties is made publicly available.
Fukushima, Kenji
2014-01-01
We summarize recent developments in identifying the ground state of dense baryonic matter and beyond. The topics include deconfinement from baryonic matter to quark matter, a diquark mixture, topological effect coupled with chirality and density, and inhomogeneous chiral condensates.
Gil-Marín, Héctor; Brownstein, Joel R; Chuang, Chia-Hsun; Grieb, Jan Niklas; Ho, Shirley; Kitaura, Francisco-Shu; Maraston, Claudia; Prada, Francisco; Rodríguez-Torres, Sergio; Ross, Ashley J; Samushia, Lado; Schlegel, David J; Thomas, Daniel; Tinker, Jeremy L; Zhao, Gong-Bo
2015-01-01
We measure and analyse the clustering of the Baryon Oscillation Spectroscopic Survey (BOSS) relative to the line-of-sight (LOS), for LOWZ and CMASS galaxy samples drawn from the final Data Release 12 (DR12). The LOWZ sample contains 361\\,762 galaxies with an effective redshift of $z_{\\rm lowz}=0.32$, and the CMASS sample 777\\,202 galaxies with an effective redshift of $z_{\\rm cmass}=0.57$. From the power spectrum monopole and quadrupole moments around the LOS, we measure the growth of structure parameter $f$ times the amplitude of dark matter density fluctuations $\\sigma_8$ by modeling the Redshift-Space Distortion signal. When the geometrical Alcock-Paczynski effect is also constrained from the same data, we find joint constraints on $f\\sigma_8$, the product of the Hubble constant and the comoving sound horizon at the baryon drag epoch $H(z)r_s(z_d)$, and the angular distance parameter divided by the sound horizon $D_A(z)/r_s(z_d)$. We find $f(z_{\\rm lowz})\\sigma_8(z_{\\rm lowz})=0.394\\pm0.062$, $D_A(z_{\\rm l...
Gil-Marín, Héctor; Verde, Licia; Brownstein, Joel R; Chuang, Chia-Hsun; Kitaura, Francisco-Shu; Rodríguez-Torres, Sergio A; Olmstead, Matthew D
2016-01-01
We measure and analyse the bispectrum of the final, Data Release 12, galaxy sample provided by the Baryon Oscillation Spectroscopic Survey, splitting by selection algorithm into LOWZ and CMASS galaxies. The LOWZ sample contains 361762 galaxies with an effective redshift of $z_{\\rm LOWZ}=0.32$, and the CMASS sample 777202 galaxies with an effective redshift of $z_{\\rm CMASS}=0.57$. Combining the power spectrum, measured relative to the line-of-sight, with the spherically averaged bispectrum, we are able to constrain the product of the growth of structure parameter, $f$, and the amplitude of dark matter density fluctuations, $\\sigma_8$, along with the geometric Alcock-Paczynski parameters, the product of the Hubble constant and the comoving sound horizon at the baryon drag epoch, $H(z)r_s(z_d)$, and the angular distance parameter divided by the sound horizon, $D_A(z)/r_s(z_d)$. We find $f(z_{\\rm LOWZ})\\sigma_8(z_{\\rm LOWZ})=0.460\\pm 0.066$, $D_A(z_{\\rm LOWZ})/r_s(z_d)=6.74 \\pm 0.22$, $H(z_{\\rm LOWZ})r_s(z_d)=(1...
Gil-Marín, Héctor; Percival, Will J.; Verde, Licia; Brownstein, Joel R.; Chuang, Chia-Hsun; Kitaura, Francisco-Shu; Rodríguez-Torres, Sergio A.; Olmstead, Matthew D.
2017-02-01
We measure and analyse the bispectrum of the final data release 12 (DR12), galaxy sample provided by the Baryon Oscillation Spectroscopic Survey, splitting by selection algorithm into LOWZ and CMASS galaxies. The LOWZ sample contains 361 762 galaxies with an effective redshift of zLOWZ = 0.32, and the CMASS sample contains 777 202 galaxies with an effective redshift of zCMASS = 0.57. Combining the power spectrum, measured relative to the line of sight, with the spherically averaged bispectrum, we are able to constrain the product of the growth of structure parameter, f, and the amplitude of dark matter density fluctuations, σ8, along with the geometric Alcock-Paczynski parameters, the product of the Hubble constant and the comoving sound horizon at the baryon drag epoch, H(z)rs(zd), and the angular distance parameter divided by the sound horizon, DA(z)/rs(zd). After combining pre-reconstruction RSD analyses of the power spectrum monopole, quadrupole and bispectrum monopole with post-reconstruction analysis of the BAO power spectrum monopole and quadrupole, we find f(zLOWZ)σ8(zLOWZ) = 0.427 ± 0.056, DA(zLOWZ)/rs(zd) = 6.60 ± 0.13, H(zLOWZ)rs(zd) = (11.55 ± 0.38)103 km s-1 for the LOWZ sample, and f(zCMASS)σ8(zCMASS) = 0.426 ± 0.029, DA(zCMASS)/rs(zd) = 9.39 ± 0.10, H(zCMASS)rs(zd) = (14.02 ± 0.22)103 km s-1 for the CMASS sample. We find general agreement with previous Baryon Oscillation Spectroscopic Survey DR11 and DR12 measurements. Combining our data set with Planck15 we perform a null test of General Relativity through the γ-parametrization finding γ =0.733^{+0.068}_{-0.069}, which is ∼2.7σ away from the General Relativity predictions.
Grieb, Jan Niklas; Salazar-Albornoz, Salvador; Scoccimarro, Román; Crocce, Martín; Vecchia, Claudio Dalla; Montesano, Francesco; Gil-Marín, Héctor; Ross, Ashley J; Beutler, Florian; Rodríguez-Torres, Sergio; Chuang, Chia-Hsun; Prada, Francisco; Kitaura, Francisco-Shu; Cuesta, Antonio J; Eisenstein, Daniel J; Percival, Will J; Vargas-Magana, Mariana; Tinker, Jeremy L; Tojeiro, Rita; Brownstein, Joel R; Maraston, Claudia; Nichol, Robert C; Olmstead, Matthew D; Samushia, Lado; Seo, Hee-Jong; Streblyanska, Alina; Zhao, Gong-bo
2016-01-01
We extract cosmological information from the anisotropic power spectrum measurements from the recently completed Baryon Oscillation Spectroscopic Survey (BOSS), extending the concept of clustering wedges to Fourier space. Making use of new FFT-based estimators, we measure the power spectrum clustering wedges of the BOSS sample by filtering out the information of Legendre multipoles l > 4. Our modelling of these measurements is based on novel approaches to describe non-linear evolution, bias, and redshift-space distortions, which we test using synthetic catalogues based on large-volume N-body simulations. We are able to include smaller scales than in previous analyses, resulting in tighter cosmological constraints. Using three overlapping redshift bins, we measure the angular diameter distance, the Hubble parameter, and the cosmic growth rate, and explore the cosmological implications of our full shape clustering measurements in combination with CMB and SN Ia data. Assuming a {\\Lambda}CDM cosmology, we constra...
Ogilvy, Stephen
2015-01-01
The vast amount of $c\\overline{c}$ production that can be recorded by the LHCb detector makes it an ideal environment to study the hadronic production of charmed baryons, along with the properties of their decays. We briefly describe the LHCb experiment and the triggering mechanisms it uses for recording charm production. Previous charmed baryon results from LHCb are detailed, with a description of the future plans for the charmed baryon programme.
Pellejero-Ibanez, Marcos; Chuang, Chia-Hsun; Rubiño-Martín, J. A.; Cuesta, Antonio J.; Wang, Yuting; Zhao, Gongbo; Ross, Ashley J.; Rodríguez-Torres, Sergio; Prada, Francisco; Slosar, Anže; Vazquez, Jose A.; Alam, Shadab; Beutler, Florian; Eisenstein, Daniel J.; Gil-Marín, Héctor; Grieb, Jan Niklas; Ho, Shirley; Kitaura, Francisco-Shu; Percival, Will J.; Rossi, Graziano; Salazar-Albornoz, Salvador; Samushia, Lado; Sánchez, Ariel G.; Satpathy, Siddharth; Seo, Hee-Jong; Tinker, Jeremy L.; Tojeiro, Rita; Vargas-Magaña, Mariana; Brownstein, Joel R.; Nichol, Robert C.; Olmstead, Matthew D.
2017-07-01
We develop a new computationally efficient methodology called double-probe analysis with the aim of minimizing informative priors (those coming from extra probes) in the estimation of cosmological parameters. Using our new methodology, we extract the dark energy model-independent cosmological constraints from the joint data sets of the Baryon Oscillation Spectroscopic Survey (BOSS) galaxy sample and Planck cosmic microwave background (CMB) measurements. We measure the mean values and covariance matrix of {R, la, Ωbh2, ns, log(As), Ωk, H(z), DA(z), f(z)σ8(z)}, which give an efficient summary of the Planck data and two-point statistics from the BOSS galaxy sample. The CMB shift parameters are R=√{Ω _m H_0^2} r(z_*) and la = πr(z*)/rs(z*), where z* is the redshift at the last scattering surface, and r(z*) and rs(z*) denote our comoving distance to the z* and sound horizon at z*, respectively; Ωb is the baryon fraction at z = 0. This approximate methodology guarantees that we will not need to put informative priors on the cosmological parameters that galaxy clustering is unable to constrain, i.e. Ωbh2 and ns. The main advantage is that the computational time required for extracting these parameters is decreased by a factor of 60 with respect to exact full-likelihood analyses. The results obtained show no tension with the flat Λ cold dark matter (ΛCDM) cosmological paradigm. By comparing with the full-likelihood exact analysis with fixed dark energy models, on one hand we demonstrate that the double-probe method provides robust cosmological parameter constraints that can be conveniently used to study dark energy models, and on the other hand we provide a reliable set of measurements assuming dark energy models to be used, for example, in distance estimations. We extend our study to measure the sum of the neutrino mass using different methodologies, including double-probe analysis (introduced in this study), full-likelihood analysis and single-probe analysis
Satpathy, Siddharth; Ho, Shirley; White, Martin; Bahcall, Neta A; Beutler, Florian; Brownstein, Joel R; Chuang, Chia-Hsun; Eisenstein, Daniel J; Grieb, Jan Niklas; Kitaura, Francisco; Olmstead, Matthew D; Percival, Will J; Salazar-Albornoz, Salvador; Sánchez, Ariel G; Seo, Hee-Jong; Thomas, Daniel; Tinker, Jeremy L; Tojeiro, Rita
2016-01-01
We present a measurement of the linear growth rate of structure, \\textit{f} from the Sloan Digital Sky Survey III (SDSS III) Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 12 (DR12) using Convolution Lagrangian Perturbation Theory (CLPT) with Gaussian Streaming Redshift-Space Distortions (GSRSD) to model the two point statistics of BOSS galaxies in DR12. The BOSS-DR12 dataset includes 1,198,006 massive galaxies spread over the redshift range $0.2 < z < 0.75$. These galaxy samples are categorized in three redshift bins. Using CLPT-GSRSD in our analysis of the combined sample of the three redshift bins, we report measurements of $f \\sigma_8$ for the three redshift bins. We find $f \\sigma_8 = 0.430 \\pm 0.054$ at $z_{\\rm eff} = 0.38$, $f \\sigma_8 = 0.452 \\pm 0.057$ at $z_{\\rm eff} = 0.51$ and $f \\sigma_8 = 0.457 \\pm 0.052$ at $z_{\\rm eff} = 0.61$. Our results are consistent with the predictions of Planck $\\Lambda$CDM-GR. Our constraints on the growth rates of structure in the Universe at differ...
Baryon-Baryon coupling in hypernuclei
Energy Technology Data Exchange (ETDEWEB)
Gibson, B.F.; Afnan, I.R.; Carlson, J.A. [and others
1995-04-01
Baryon-baryon coupling such as {Lambda}N-{Sigma}N in {Lambda} hypernuclei and {Lambda}{Lambda}-{Xi}N in {Lambda}{Lambda} hypernuclei produce novel physics not observed in conventional nonstrange nuclei. This is especially evident in few-body systems. To illustrate this, a comparison of S = {minus}1 and S = 0 baryon-separation energies is made. The role of {Lambda}N-{Sigma}N coupling suppression in the A = 4 {Lambda} hypernuclei due to Pauli blocking is reviewed. The analysis is extended to S = {minus}2 systems. Measurement of the {sub {Lambda}{Lambda}}{sup 4}H or {sub {Lambda}{Lambda}}{sup 5}He {Lambda}{Lambda} separation energy is proposed as a means to investigate the full {Lambda}{Lambda} and {Xi}N interaction.
Salazar-Albornoz, Salvador; Sánchez, Ariel G.; Grieb, Jan Niklas; Crocce, Martin; Scoccimarro, Roman; Alam, Shadab; Beutler, Florian; Brownstein, Joel R.; Chuang, Chia-Hsun; Kitaura, Francisco-Shu; Olmstead, Matthew D.; Percival, Will J.; Prada, Francisco; Rodríguez-Torres, Sergio; Samushia, Lado; Tinker, Jeremy; Thomas, Daniel; Tojeiro, Rita; Wang, Yuting; Zhao, Gong-bo
2017-07-01
We investigate the cosmological implications of studying galaxy clustering using a tomographic approach applied to the final Baryon Oscillation Spectroscopic Survey (BOSS) DR12 galaxy sample, including both auto- and cross-correlation functions between redshift shells. We model the signal of the full shape of the angular correlation function, ω(θ), in redshift bins using state-of-the-art modelling of non-linearities, bias and redshift-space distortions. We present results on the redshift evolution of the linear bias of BOSS galaxies, which cannot be obtained with traditional methods for galaxy-clustering analysis. We also obtain constraints on cosmological parameters, combining this tomographic analysis with measurements of the cosmic microwave background (CMB) and Type Ia supernova (SNIa). We explore a number of cosmological models, including the standard Λ cold dark matter model and its most interesting extensions, such as deviations from wDE = -1, non-minimal neutrino masses, spatial curvature and deviations from general relativity (GR) using the growth-index γ parametrization. These results are, in general, comparable to the most precise present-day constraints on cosmological parameters, and show very good agreement with the standard model. In particular, combining CMB, ω(θ) and SNIa, we find a value of wDE consistent with -1 to a precision better than 5 per cent when it is assumed to be constant in time, and better than 6 per cent when we also allow for a spatially curved Universe.
Wiegand, Alexander
2016-01-01
We probe the higher-order clustering of the galaxies in the final data release (DR12) of the Sloan Digital Sky Survey Baryon Oscillation Spectroscopic Survey (BOSS) using the method of germ-grain Minkowski Functionals (MFs). Our sample consists of 410,615 BOSS galaxies from the northern Galactic cap in the redshift range 0.450--0.595. We show the MFs to be sensitive to contributions up to the six-point correlation function for this data set. We ensure with a custom angular mask that the results are more independent of boundary effects than in previous analyses of this type. We extract the higher-order part of the MFs and quantify the difference to the case without higher-order correlations. The resulting $\\chi^{2}$ value of over 10,000 for a modest number of degrees of freedom, O(200), indicates a 100-sigma deviation and demonstrates that we have a highly significant signal of the non-Gaussian contributions to the galaxy distribution. This statistical power can be useful in testing models with differing highe...
Kubis, B; Meißner, Ulf G; Mei{\\ss}ner, Ulf-G.
1999-01-01
We calculate the form factors of the baryon octet in the framework of heavy baryon chiral perturbation theory. The calculated charge radius of the show that kaon loop effects can play a significant role in the neutron electric form factor. Furthermore. we derive generalized Caldi-Pagels relations between various charge radii which are free of chiral loop effects.
Naik, Paras
2016-01-01
The LHCb detector is an excellent instrument for studying the production and decay of charmed baryons in $pp$ collisions, due to efficient triggering mechanisms that capture the copious production of $c\\overline{c}$ at the Large Hadron Collider. The LHCb experiment and its charmed baryon results from LHCb are detailed, with a description of our future plans.
Grieb, Jan Niklas; Sánchez, Ariel G.; Salazar-Albornoz, Salvador; Scoccimarro, Román; Crocce, Martín; Dalla Vecchia, Claudio; Montesano, Francesco; Gil-Marín, Héctor; Ross, Ashley J.; Beutler, Florian; Rodríguez-Torres, Sergio; Chuang, Chia-Hsun; Prada, Francisco; Kitaura, Francisco-Shu; Cuesta, Antonio J.; Eisenstein, Daniel J.; Percival, Will J.; Vargas-Magaña, Mariana; Tinker, Jeremy L.; Tojeiro, Rita; Brownstein, Joel R.; Maraston, Claudia; Nichol, Robert C.; Olmstead, Matthew D.; Samushia, Lado; Seo, Hee-Jong; Streblyanska, Alina; Zhao, Gong-bo
2017-05-01
We extract cosmological information from the anisotropic power-spectrum measurements from the recently completed Baryon Oscillation Spectroscopic Survey (BOSS), extending the concept of clustering wedges to Fourier space. Making use of new fast-Fourier-transform-based estimators, we measure the power-spectrum clustering wedges of the BOSS sample by filtering out the information of Legendre multipoles ℓ > 4. Our modelling of these measurements is based on novel approaches to describe non-linear evolution, bias and redshift-space distortions, which we test using synthetic catalogues based on large-volume N-body simulations. We are able to include smaller scales than in previous analyses, resulting in tighter cosmological constraints. Using three overlapping redshift bins, we measure the angular-diameter distance, the Hubble parameter and the cosmic growth rate, and explore the cosmological implications of our full-shape clustering measurements in combination with cosmic microwave background and Type Ia supernova data. Assuming a Λ cold dark matter (ΛCDM) cosmology, we constrain the matter density to Ω M= 0.311_{-0.010}^{+0.009} and the Hubble parameter to H_0 = 67.6_{-0.6}^{+0.7} km s^{-1 Mpc^{-1}}, at a confidence level of 68 per cent. We also allow for non-standard dark energy models and modifications of the growth rate, finding good agreement with the ΛCDM paradigm. For example, we constrain the equation-of-state parameter to w = -1.019_{-0.039}^{+0.048}. This paper is part of a set that analyses the final galaxy-clustering data set from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. to produce the final cosmological constraints from BOSS.
Grieb, Jan Niklas; Sánchez, Ariel G.; Salazar-Albornoz, Salvador; Scoccimarro, Román; Crocce, Martín; Dalla Vecchia, Claudio; Montesano, Francesco; Gil-Marín, Héctor; Ross, Ashley J.; Beutler, Florian; Rodríguez-Torres, Sergio; Chuang, Chia-Hsun; Prada, Francisco; Kitaura, Francisco-Shu; Cuesta, Antonio J.; Eisenstein, Daniel J.; Percival, Will J.; Vargas-Magaña, Mariana; Tinker, Jeremy L.; Tojeiro, Rita; Brownstein, Joel R.; Maraston, Claudia; Nichol, Robert C.; Olmstead, Matthew D.; Samushia, Lado; Seo, Hee-Jong; Streblyanska, Alina; Zhao, Gong-bo
2017-01-01
We extract cosmological information from the anisotropic power spectrum measurements from the recently completed Baryon Oscillation Spectroscopic Survey (BOSS), extending the concept of clustering wedges to Fourier space. Making use of new FFT-based estimators, we measure the power spectrum clustering wedges of the BOSS sample by filtering out the information of Legendre multipoles ℓ > 4. Our modelling of these measurements is based on novel approaches to describe non-linear evolution, bias, and redshift-space distortions, which we test using synthetic catalogues based on large-volume N-body simulations. We are able to include smaller scales than in previous analyses, resulting in tighter cosmological constraints. Using three overlapping redshift bins, we measure the angular diameter distance, the Hubble parameter, and the cosmic growth rate, and explore the cosmological implications of our full shape clustering measurements in combination with CMB and SN Ia data. Assuming a ΛCDM cosmology, we constrain the matter density to Ω M= 0.311_{-0.010}^{+0.009} and the Hubble parameter to H_0 = 67.6_{-0.6}^{+0.7} km s^{-1} Mpc^{-1}, at a confidence level (CL) of 68 per cent. We also allow for non-standard dark energy models and modifications of the growth rate, finding good agreement with the ΛCDM paradigm. For example, we constrain the equation-of-state parameter to w = -1.019_{-0.039}^{+0.048}. This paper is part of a set that analyses the final galaxy clustering dataset from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. (2016) to produce the final cosmological constraints from BOSS.
Charmed baryons on the lattice
Padmanath, M
2015-01-01
We discuss the significance of charm baryon spectroscopy in hadron physics and review the recent developments of the spectra of charmed baryons in lattice calculations. Special emphasis is given on the recent studies of highly excited charm baryon states. Recent precision lattice measurements of the low lying charm and bottom baryons are also reviewed.
Indian Academy of Sciences (India)
Torsten Leddig
2012-11-01
From inclusive measurements, it is known that about 7% of all mesons decay into final states with baryons. In these decays, some striking features become visible compared to mesonic decays. The largest branching fractions come with quite moderate multiplicities of 3–4 hadrons. We note that two-body decays to baryons are suppressed relative to three- and four-body decays. In most of these analyses, the invariant baryon–antibaryon mass shows an enhancement near the threshold. We propose a phenomenological interpretation of this quite common feature of hadronization to baryons.
Boyle, Devin K.
2017-01-01
The Vehicle Integrated Propulsion Research (VIPR) Phase III project was executed at Edwards Air Force Base, California, by the National Aeronautics and Space Administration and several industry, academic, and government partners in the summer of 2015. One of the research objectives was to use external radial acoustic microphone arrays to detect changes in the noise characteristics produced by the research engine during volcanic ash ingestion and seeded fault insertion scenarios involving bleed air valves. Preliminary results indicate the successful acoustic detection of suspected degradation as a result of cumulative exposure to volcanic ash. This detection is shown through progressive changes, particularly in the high-frequency content, as a function of exposure to greater cumulative quantities of ash. Additionally, detection of the simulated failure of the 14th stage stability bleed valve and, to a lesser extent, the station 2.5 stability bleed valve, to their fully-open fail-safe positions was achieved by means of spectral comparisons between nominal (normal valve operation) and seeded fault scenarios.
Page, P R
2000-01-01
We discuss whether a low-lying hybrid baryon should be defined as a three quark - gluon bound state or as three quarks moving on an excited adiabatic potential. We show that the latter definition becomes exact, not only for very heavy quarks, but also for specific dynamics. We review the literature on the signatures of hybrid baryons, with specific reference to strong hadronic decays, electromagnetic couplings, diffractive production and production in psi decay.
Energy Technology Data Exchange (ETDEWEB)
Carr, B.J. [Queen Mary and Westfield Coll., London (United Kingdom). Astronomy Unit]|[Fermi National Accelerator Lab., Batavia, IL (United States). NASA/Fermilab Astrophysics Center
1997-03-01
Dark matter may reside in galactic disks, galactic halos, clusters of galaxies and the background Universe. Cosmological nucleosynthesis arguments suggest that only some fraction of the baryons in the Universe are in visible form, so at least some of the dark matter problems could be baryonic. The dark matter in galactic disks (if real) is almost certainly baryonic and, in this case, it is either in white dwarfs or brown dwarfs. The dark matter in galactic halos could be at least partly baryonic and, in this case, it is likely to be contained in the remnants of a first generation of pregalactic or protogalatic stars. The various constrains on the nature of such remnants suggest that brown dwarfs are the most plausible candidates, although (rather perplexingly) microlensing searches currently favor white dwarfs. The dark matter in clusters or intergalactic space could be baryonic only if one gives up the standard cosmological nucleosynthesis scenario or assumes that the dark objects are primordial black holes which formed before nucleosynthesis. If it is non-baryonic and in the form of cold WIMPs (Weakly Interacting Massive Particles), then such particles should also provide some of the halo dark matter. 89 refs., 1 fig., 2 tabs.
Baryon Spectroscopy and Resonances
Energy Technology Data Exchange (ETDEWEB)
Robert Edwards
2011-12-01
A short review of current efforts to determine the highly excited state spectrum of QCD, and in particular baryons, using lattice QCD techniques is presented. The determination of the highly excited spectrum of QCD is a major theoretical and experimental challenge. The experimental investigation of the excited baryon spectrum has been a long-standing element of the hadronic-physics program, an important component of which is the search for so-called 'missing resonances', baryonic states predicted by the quark model based on three constituent quarks but which have not yet been observed experimentally. Should such states not be found, it may indicate that the baryon spectrum can be modeled with fewer effective degrees of freedom, such as in quark-diquark models. In the past decade, there has been an extensive program to collect data on electromagnetic production of one and two mesons at Jefferson Lab, MIT-Bates, LEGS, MAMI, ELSA, and GRAAL. To analyze these data, and thereby refine our knowledge of the baryon spectrum, a variety of physics analysis models have been developed at Bonn, George Washington University, Jefferson Laboratory and Mainz. To provide a theoretical determination and interpretation of the spectrum, ab initio computations within lattice QCD have been used. Historically, the calculation of the masses of the lowest-lying states, for both baryons and mesons, has been a benchmark calculation of this discretized, finite-volume computational approach, where the aim is well-understood control over the various systematic errors that enter into a calculation; for a recent review. However, there is now increasing effort aimed at calculating the excited states of the theory, with several groups presenting investigations of the low-lying excited baryon spectrum, using a variety of discretizations, numbers of quark flavors, interpolating operators, and fitting methodologies. Some aspects of these calculations remain unresolved and are the subject of
Institute of Scientific and Technical Information of China (English)
詹想; 崔建华; 王宝泉; 翟忠旭; 张同杰
2014-01-01
Radial Baryon Acoustic Oscillation (RBAO)measurements,distant type Ia supernovae (SNe Ia),the observational H(z)data (OHD)and the Cosmic Microwave Background (CMB)shift parameter data are used to constrain cosmological parameters ofΛCDM and XCDM cosmologies and to further examine the role of OHD and SNe Ia data in cosmological constraints.The likelihood function over h is marginalized by integrating the probability density P∝e(-χ2/2)to obtain best fitting results and confidence regions in theΩm-ΩΛplane.Combination analysis for bothΛCDM and XCDM models reveal that confidence regions of 68.3%, 95.4% and 99.7% levels using OHD+RBAO+CMB data are in good agreement with that of SNe Ia+RBAO+CMB data which is consistent with data from Lin et al.(2009).With more OHD data,it may be possible to constrain cosmological parameters using OHD data instead of SNe Ia data in the future.%使用径向重子声学振荡(RBAO)测量遥远的 Ia型超新星(SNe Ia)、观测哈勃参量数据(OHD)和宇宙微波背景(CMB)位移参数数据来限制ΛCDM和 XCDM宇宙的宇宙学参量,进一步检查了 OHD和 SNe Ia 数据对宇宙学的约束作用.我们对似然函数的归化哈勃参数h进行了边缘化,即积分概率密度P∝e-Χ2/2,以在Ωm-ΩΛ平面获得最佳的拟合结果和置信区域.依据ΛCDM和 XCDM模型的组合分析,我们发现在置信区域为68.3%、95.4%和99.7%的置信水平上,OHD+RBAO+CMB数据和 SNe Ia+RBAO+CMB数据符合得很好.随着越来越多的 OHD数据的获得,我们或许在将来可以使用 OHD数据代替 SNe Ia数据来限制宇宙学参量.
Charmed Bottom Baryon Spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Brown, Zachary S; Detmold, William; Meinel, Stefan; Orginos, Kostas
2014-11-01
The spectrum of doubly and triply heavy baryons remains experimentally unexplored to a large extent. Although the detection of such heavy particle states may lie beyond the reach of exper- iments for some time, it is interesting compute this spectrum from QCD and compare results between lattice calculations and continuum theoretical models. Several lattice calculations ex- ist for both doubly and triply charmed as well as doubly and triply bottom baryons. Here, we present preliminary results from the first lattice calculation of doubly and triply heavy baryons including both charm and bottom quarks. We use domain wall fermions for 2+1 flavors (up down and strange) of sea and valence quarks, a relativistic heavy quark action for the charm quarks, and non-relativistic QCD for the heavier bottom quarks. We present preliminary results for the ground state spectrum.
Baryonic Spectroscopy at BESIII
Liu, Fang
Based on 106 million Ψ(3686) events collected with BESIII detector at BEPCII, some results on excited baryons from the partial wave analysis are presented. In the decay of ψ(3686) to pbar{p}π 0, two new baryonic excited states, Jpc = 1/2 + N(2300) and Jpc = 5/2 - N(2570) are significant, and additional 5 well known N* excited states are observed. In ψ(3686) to pbar{p}η , an excited-nucleon state N(1535) is dominant. In ψ(3686) to K - Λ bar{Ξ} + + c.c., two hyperons Ξ(1690) and Ξ(1820) are observed. In ψ(3686) to Λ bar{Σ }π + c.c., some excited strange baryons bar{Λ }* and Σ* are measured on the Σ+π- and Λπ- mass spectra.
Liu, Keh-Fei
2016-01-01
The relevance of chiral symmetry in baryons is highlighted in three examples in the nucleon spectroscopy and structure. The first one is the importance of chiral dynamics in understanding the Roper resonance. The second one is the role of chiral symmetry in the lattice calculation of $\\pi N \\sigma$ term and strangeness. The third one is the role of chiral $U(1)$ anomaly in the anomalous Ward identity in evaluating the quark spin and the quark orbital angular momentum. Finally, the chiral effective theory for baryons is discussed.
(Hybrid) Baryons Symmetries and Masses
Page, P R
1999-01-01
We construct (hybrid) baryons in the flux-tube model of Isgur and Paton. In the limit of adiabatic quark motion, we build proper eigenstates of orbital angular momentum and construct the flavour, spin and J^P of hybrid baryons from the symmetries of the system. The lowest mass hybrid baryon is estimated at approximately 2 GeV.
Babu, K S; Al-Binni, U; Banerjee, S; Baxter, D V; Berezhiani, Z; Bergevin, M; Bhattacharya, S; Brice, S; Brock, R; Burgess, T W; Castellanos, L; Chattopadhyay, S; Chen, M-C; Church, E; Coppola, C E; Cowen, D F; Cowsik, R; Crabtree, J A; Davoudiasl, H; Dermisek, R; Dolgov, A; Dutta, B; Dvali, G; Ferguson, P; Perez, P Fileviez; Gabriel, T; Gal, A; Gallmeier, F; Ganezer, K S; Gogoladze, I; Golubeva, E S; Graves, V B; Greene, G; Handler, T; Hartfiel, B; Hawari, A; Heilbronn, L; Hill, J; Jaffe, D; Johnson, C; Jung, C K; Kamyshkov, Y; Kerbikov, B; Kopeliovich, B Z; Kopeliovich, V B; Korsch, W; Lachenmaier, T; Langacker, P; Liu, C-Y; Marciano, W J; Mocko, M; Mohapatra, R N; Mokhov, N; Muhrer, G; Mumm, P; Nath, P; Obayashi, Y; Okun, L; Pati, J C; Pattie, R W; Phillips, D G; Quigg, C; Raaf, J L; Raby, S; Ramberg, E; Ray, A; Roy, A; Ruggles, A; Sarkar, U; Saunders, A; Serebrov, A; Shafi, Q; Shimizu, H; Shiozawa, M; Shrock, R; Sikdar, A K; Snow, W M; Soha, A; Spanier, S; Stavenga, G C; Striganov, S; Svoboda, R; Tang, Z; Tavartkiladze, Z; Townsend, L; Tulin, S; Vainshtein, A; Van Kooten, R; Wagner, C E M; Wang, Z; Wehring, B; Wilson, R J; Wise, M; Yokoyama, M; Young, A R
2013-01-01
This report, prepared for the Community Planning Study - Snowmass 2013 - summarizes the theoretical motivations and the experimental efforts to search for baryon number violation, focussing on nucleon decay and neutron-antineutron oscillations. Present and future nucleon decay search experiments using large underground detectors, as well as planned neutron-antineutron oscillation search experiments with free neutron beams are highlighted.
Problems in baryon spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Capstick, S. [Florida State Univ., Tallahassee, FL (United States)
1994-04-01
Current issues and problems in the physics of ground- and excited-state baryons are considered, and are classified into those which should be resolved by CEBAF in its present form, and those which may require CEBAF to undergo an energy upgrade to 8 GeV or more. Recent theoretical developments designed to address these problems are outlined.
Spontaneous Baryogenesis without Baryon Isocurvature
De Simone, Andrea
2016-01-01
We propose a new class of spontaneous baryogenesis models that does not produce baryon isocurvature perturbations. The baryon chemical potential in these models is independent of the field value of the baryon-generating scalar, hence the scalar field fluctuations are blocked from propagating into the baryon isocurvature. We demonstrate this mechanism in simple examples where spontaneous baryogenesis is driven by a non-canonical scalar field. The suppression of the baryon isocurvature allows spontaneous baryogenesis to be compatible even with high-scale inflation.
Photoproduction of charmed baryons
Energy Technology Data Exchange (ETDEWEB)
Russell, J. J.
1980-01-01
The results of a search for the photoproduction of charmed baryons in the broad-band neutral beam at Fermi National Accelerator Laboratory are reported. The lowest lying charmed baryon ({lambda}/sub c//sup +/) is observed through its decay to p-anti K/sup 0/. The cross section times branching ratio of {gamma} + C --> {lambda}/sub c//sup +/ + X, {gamma} + C --> p + anti K/sup 0/ is measured to be sigma B = 3 nanobarns/nucleon. The total error on this measurement is estimated to be -20% to +40%. The mass of the {lambda}/sub c//sup +/ is found to be 2.284 +- 0.001 GeV/c/sup 2/, in good agreement with the Mark II result from SPEAR. Upper limits (90% confidence level) are set on sigma B for the modes {lambda}/sup 0/π, {lambda}/sup 0/πππ, pKπ.
The Multi-Object, Fiber-Fed Spectrographs for SDSS and the Baryon Oscillation Spectroscopic Survey
Smee, Stephen; Uomoto, Alan; Roe, Natalie; Schlegel, David; Rockosi, Constance M; Carr, Michael A; Leger, French; Dawson, Kyle S; Olmstead, Matthew D; Brinkmann, Jon; Owen, Russell; Barkhouser, Robert H; Honscheid, Klaus; Harding, Paul; Long, Dan; Lupton, Robert H; Loomis, Craig; Anderson, Lauren; Annis, James; Bernardi, Mariangela; Bhardwaj, Vaishali; Bizyaev, Dmitry; Bolton, Adam S; Brewington, Howard; Briggs, John W; Burles, Scott; Burns, James G; Castander, Francisco; Connolly, Andrew; Davenport, James R; Ebelke, Garrett; Epps, Harland; Feldman, Paul D; Friedman, Scott; Frieman, Joshua; Heckman, Timothy; Hull, Charles L; Knapp, Gillian R; Lawrence, David M; Loveday, Jon; Mannery, Edward J; Malanushenko, Elena; Malanushenko, Viktor; Merrelli, Aronne; Muna, Demitri; Newman, Peter; Nichol, Robert C; Oravetz, Daniel; Pan, Kaike; Pope, Adrian C; Ricketts, Paul G; Shelden, Alaina; Sandford, Dale; Siegmund, Walter; Simmons, Audrey; Smith, D; Snedden, Stephanie; Schneider, Donald P; Strauss, Michael; SubbaRao, Mark; Tremonti, Christy; Waddell, Patrick; York, Donald G
2012-01-01
We present the design and performance of the multi-object fiber spectrographs for the Sloan Digital Sky Survey (SDSS) and their upgrade for the Baryon Oscillation Spectroscopic Survey (BOSS). Originally commissioned in Fall 1999 on the 2.5-m aperture Sloan Telescope at Apache Point Observatory, the spectrographs produced more than 1.5 million spectra for the SDSS and SDSS-II surveys, enabling a wide variety of Galactic and extra-galactic science including the first observation of baryon acoustic oscillations in 2005. The spectrographs were upgraded in 2009 and are currently in use for BOSS, the flagship survey of the third-generation SDSS-III project. BOSS will measure redshifts of 1.35 million massive galaxies to redshift 0.7 and Lyman-$\\alpha$ absorption of 160,000 high redshift quasars over 10,000 square degrees of sky, making percent level measurements of the absolute cosmic distance scale of the Universe and placing tight constraints on the equation of state of dark energy. The twin multi-object fiber sp...
Baryon spectroscopy in lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Derek B. Leinweber; Wolodymyr Melnitchouk; David Richards; Anthony G. Williams; James Zanotti
2004-04-01
We review recent developments in the study of excited baryon spectroscopy in lattice QCD. After introducing the basic methods used to extract masses from correlation functions, we discuss various interpolating fields and lattice actions commonly used in the literature. We present a survey of results of recent calculations of excited baryons in quenched QCD, and outline possible future directions in the study of baryon spectra.
Baryon-Baryon Interactions ---Nijmegen Extended-Soft-Core Models---
Rijken, T. A.; Nagels, M. M.; Yamamoto, Y.
pseudo-scalar-, vector-, scalar-, and axial-mesons, (ii) diffractive (i.e. multiple-gluon) exchanges, (iii) two pseudo-scalar exchange (PS-PS), and (iv) meson-pair-exchange (MPE). The OBE- and pair-vertices are regulated by gaussian form factors producing potentials with a soft behavior near the origin. The assignment of the cutoff masses for the BBM-vertices is dependent on the SU(3)-classification of the exchanged mesons for OBE, and a similar scheme for MPE. The ESC-models ESC04 and ESC08 describe the nucleon-nucleon (NN), hyperon-nucleon (YN), and hyperon-hyperon (YY) interactions in a unified way using broken SU(3)-symmetry. Novel ingredients in the OBE-sector in the ESC-models are the inclusion of (i) the axial-vector meson potentials, (ii) a zero in the scalar- and axial-vector meson form factors. These innovations made it possible for the first time to keep the meson coupling parameters of the model qualitatively in accordance with the predictions of the (3P_0) quark-antiquark creation (QPC) model. This is also the case for the F/(F+D)-ratios. Furthermore, the introduction of the zero helped to avoid the occurrence of unwanted bound states in Lambda N. Broken SU(3)-symmetry serves to connect the NN and the YN channels, which leaves after fitting NN only a few free parameters for the determination of the YN-interactions. In particular, the meson-baryon coupling constants are calculated via SU(3) using the coupling constants of the NN oplus YN-analysis as input. In ESC04 medium strong flavor-symmetry-breaking (FSB) of the coupling constants was investigated, using the (3}P_{0) -model with a Gell-Mann-Okubo hypercharge breaking for the BBM-coupling. In ESC08 the couplings are kept SU(3)-symmetric. The charge-symmetry-breaking (CSB) in the Lambda p and Lambda n channels, which is an SU(2) isospin breaking, is included in the OBE-, TME-, and MPE-potentials. In ESC04 and ESC08 simultaneous fits to the NN- and the YN- scattering data have been achieved, using different
Stochastic isocurvature baryon fluctuations, baryon diffusion, and primordial nucleosynthesis
Kurki-Suonio, H; Mathews, G J; Kurki-Suonio, Hannu; Jedamzik, Karsten; Mathews, Grant J
1996-01-01
We examine effects on primordial nucleosynthesis from a truly random spatial distribution in the baryon-to-photon ratio (\\eta). We generate stochastic fluctuation spectra characterized by different spectral indices and root-mean-square fluctuation amplitudes. For the first time we explicitly calculate the effects of baryon diffusion on the nucleosynthesis yields of such stochastic fluctuations. We also consider the collapse instability of large-mass-scale inhomogeneities. Our results are generally applicable to any primordial mechanism producing fluctuations in \\eta which can be characterized by a spectral index. In particular, these results apply to primordial isocurvature baryon fluctuation (PIB) models. The amplitudes of scale-invariant baryon fluctuations are found to be severely constrained by primordial nucleosynthesis. However, when the \\eta distribution is characterized by decreasing fluctuation amplitudes with increasing length scale, surprisingly large fluctuation amplitudes on the baryon diffusion ...
Soberman, R K; Soberman, Robert K.; Dubin, Maurice
2001-01-01
A comet-like, but magnitudes smaller, extremely low albedo interstellar meteoroid population of fragile aggregates with solar type composition, measured in space and terrestrially, is most probably the universal dark matter. Although non-baryonic particles cannot be excluded, only "Big Bang" cosmology predicts an appreciable fraction of such alternate forms. As more counter-physics hypotheses are added to fit observation to the expanding universe assumption, a classical physics alternative proffers dark matter interactive red shifts normally correlated with distance. The cosmic microwave background results from size-independent thermal plateau radiation that emanates from dark matter gravitationally drawn into the Galaxy.
Pati, Jogesh C.; Salam, Abdus
We suggest that baryon-number conservation may not be absolute and that an integrally charged quark may disintegrate into two leptons and an antilepton with a coupling strength G Bmp2≲ 10-9. On the other hand, if quarks are much heavier than low-lying hadrons, the decay of a three-quark system like the proton is highly forbidden (proton lifetime ≳ 1028 y). Motivation for these ideas appears to arise within a unified theory of hadrons and leptons and their gauge interactions. We emphasize the consequences of such a possibility for real quark searches.
Dynamical Structure of Baryons
Aleksejevs, A
2013-01-01
Compton scattering offers a unique opportunity to study the dynamical structure of hadrons over a wide kinematic range, with polarizabilities characterizing the hadron active internal degrees of freedom. We present calculations and detailed analysis of electric and magnetic and the spin-dependent dynamical polarizabilities for the lowest in mass SU(3) octet of baryons. These extensive calculations are made possible by the recent implementation of semi-automatized calculations in chiral perturbation theory which allows evaluating polarizabilities from Compton scattering up to next-to-the-leading order. The dependencies for the range of photon energies covering the majority of the meson photoproduction channels are analyzed.
Bijker, R; Leviatan, A
1993-01-01
We propose an algebraic description of the geometric structure of baryons in terms of the algebra $U(7)$. We construct a mass operator that preserves the threefold permutational symmetry and discuss a collective model of baryons with the geometry of an oblate top.
Anomalous Dimensions of Conformal Baryons
DEFF Research Database (Denmark)
Pica, Claudio; Sannino, Francesco
2016-01-01
We determine the anomalous dimensions of baryon operators for the three color theory as function of the number of massless flavours within the conformal window to the maximum known order in perturbation theory. We show that the anomalous dimension of the baryon is controllably small, within...
Anomalous Dimensions of Conformal Baryons
DEFF Research Database (Denmark)
Pica, Claudio; Sannino, Francesco
2016-01-01
We determine the anomalous dimensions of baryon operators for the three color theory as function of the number of massless flavours within the conformal window to the maximum known order in perturbation theory. We show that the anomalous dimension of the baryon is controllably small, within the $...
Baryon stopping probes deconfinement
Wolschin, Georg
2016-08-01
Stopping and baryon transport in central relativistic Pb + Pb and Au + Au collisions are reconsidered with the aim to find indications for the transition from hadronic to partonic processes. At energies reached at the CERN Super Proton Synchrotron ( √{s_{NN}} = 6.3-17.3 GeV) and at RHIC (62.4 GeV) the fragmentation-peak positions as obtained from the data depend linearly on the beam rapidity and are in agreement with earlier results from a QCD-based approach that accounts for gluon saturation. No discontinuities in the net-proton fragmentation peak positions occur in the expected transition region from partons to hadrons at 6-10GeV. In contrast, the mean rapidity loss is predicted to depend linearly on the beam rapidity only at high energies beyond the RHIC scale. The combination of both results offers a clue for the transition from hard partonic to soft hadronic processes in baryon stopping. NICA results could corroborate these findings.
Electromagnetic properties of baryons
Energy Technology Data Exchange (ETDEWEB)
Haupt, C.
2006-07-01
Static observables of bound state systems in field theoretic descriptions are usually extracted from form factors in the limit of vanishing squared four-momentum transfer of the probing exchange particle. On the other hand, static properties in nonrelativistic quantum mechanics can be formulated by means of expectation values involving essentially scalar products of wave functions. The main objective of this work is to show that a synthesis of both approaches is indeed possible - at least if certain restrictions are made to the kind of interactions between the constituents of the bound system - leading to new insights into the structure of static properties. The focus lies especially on the charge radii and magnetic moments of baryons described within a covariant constituent quark model having its field theoretic foundations in the Bethe-Salpeter equation. The current matrix element in the Breit frame between the vertex functions is derived. The charge radius and magnetic moment of a bound three-fermion system is then derived by starting from their usual definition from form factors and in case of the charge radius also from the well-known radius of a charge distribution in classical electrodynamics. In both cases the static limit at the photon point is taken analytically and subsequently the integration over the relative energy variables is done. Finally the vertex functions are replaced by Salpeter amplitudes and the expression is symmetrized over the three fermions. The final results express the charge radius and magnetic moment of the three-fermion system as expectation values with respect to Salpeter amplitudes. The numerical implementation of the analytic results is done within a covariant constituent quark model with quark confinement and a residual instanton interaction accounting for the fine structure of the observed mass spectra. The Salpeter amplitudes which where obtained by solving the Salpeter equation are used to compute the expectation values of
Algebraic Approach to Baryon Structure
Leviatan, A
1996-01-01
We present an algebraic approach to the internal structure of baryons in terms of three constituents. We investigate a collective model in which the nucleon is regarded as a rotating and vibrating oblate top with a prescribed distribution of charges and magnetization. We contrast the collective and single-particle descriptions of baryons and compare the predictions of the model with existing data on masses, electromagnetic elastic and transition form factors and strong decays widths.
Anomalous Dimensions of Conformal Baryons
DEFF Research Database (Denmark)
Pica, Claudio; Sannino, Francesco
2016-01-01
We determine the anomalous dimensions of baryon operators for the three color theory as function of the number of massless flavours within the conformal window to the maximum known order in perturbation theory. We show that the anomalous dimension of the baryon is controllably small, within...... the $\\delta$-expansion, for a wide range of number of flavours. We also find that this is always smaller than the anomalous dimension of the fermion mass operator. These findings challenge the partial compositeness paradigm....
Excitations of strange bottom baryons
Woloshyn, R M
2016-01-01
The ground state and first excited state masses of Omega(b) and Omega(bb) baryons are calculated in lattice QCD using dynamical 2+1 flavour gauge fields. A set of baryon operators employing different combinations of smeared quark fields was used in the framework of the variational method. Results for radial excitation energies were confirmed by carrying out a supplementary multiexponential fitting analysis. Comparison is made with quark model calculations.
Excitations of strange bottom baryons
Energy Technology Data Exchange (ETDEWEB)
Woloshyn, R.M. [TRIUMF, Vancouver, British Columbia (Canada)
2016-09-15
The ground-state and first-excited-state masses of Ω{sub b} and Ω{sub bb} baryons are calculated in lattice QCD using dynamical 2 + 1 flavour gauge fields. A set of baryon operators employing different combinations of smeared quark fields was used in the framework of the variational method. Results for radial excitation energies were confirmed by carrying out a supplementary multiexponential fitting analysis. Comparison is made with quark model calculations. (orig.)
Anomalous Dimensions of Conformal Baryons
Pica, Claudio
2016-01-01
We determine the anomalous dimensions of baryon operators for the three color theory as function of the number of massless flavours within the conformal window to the maximum known order in perturbation theory. We show that the anomalous dimension of the baryon is controllably small for a wide range of number of flavours. We also find that this is always smaller than the anomalous dimension of the fermion mass operator. These findings challenge the partial compositeness paradigm.
Baryon spectrum and chiral dynamics
Glozman, L Ya
1995-01-01
New results on baryon structure and spectrum developed in collaboration with Dan Riska [1-4] are reported. The main idea is that beyond the chiral symmetry spontaneous breaking scale light and strange baryons should be considered as systems of three constituent quarks with an effective confining interaction and a chiral interaction that is mediated by the octet of Goldstone bosons (pseudoscalar mesons) between the constituent quarks.
Improved Spectrophotometric Calibration of the SDSS-III BOSS Quasar Sample
Margala, Daniel; Dawson, Kyle; Bailey, Stephen; Blanton, Michael; Schneider, Donald P
2015-01-01
We present a model for spectrophotometric calibration errors in observations of quasars from the third generation of the Sloan Digital Sky Survey (SDSS-III) Baryon Oscillation Spectroscopic Survey (BOSS) and describe the correction procedure we have developed and applied to this sample. Calibration errors are primarily due to atmospheric differential refraction and guiding offsets during each exposure. The corrections potentially reduce the systematics for any studies of BOSS quasars, including the measurement of baryon acoustic oscillations using the Lyman-$\\alpha$ forest. Our model suggests that, on average, the observed quasar flux in BOSS is overestimated by $\\sim 19\\%$ at 3600 \\AA\\ and underestimated by $\\sim 24\\%$ at 10,000 \\AA. Our corrections for the entire BOSS quasar sample are publicly available.
Galaxy Cluster Baryon Fractions Revisited
Gonzalez, Anthony H; Zabludoff, Ann I; Zaritsky, Dennis
2013-01-01
We measure the baryons contained in both the stellar and hot gas components for twelve galaxy clusters and groups at z~0.1 with M=1-5e14 Msun. This paper improves upon our previous work through the addition of XMM data, enabling measurements of the total mass and masses of each major baryonic component --- ICM, intracluster stars, and stars in galaxies --- for each system. We recover a relation for the stellar mass versus halo mass consistent with our previous result. We confirm that the partitioning of baryons between the stellar and hot gas components is a strong function of M500; the fractions of total mass in stars and X-ray gas within r500 scale as M500^-0.45 and M500^0.26, respectively. We also confirm that the combination of the BCG and intracluster stars is an increasingly important contributor to the stellar baryon budget in lower halo masses. We find a weak, but statistically significant, dependence of the total baryon fraction upon halo mass, scaling as M500^0.16. For M500>2e14, the total baryon fr...
Molecular dynamics simulation for the baryon-quark phase transition at finite baryon density
Energy Technology Data Exchange (ETDEWEB)
Akimura, Y. [Saitama University, Department of physics, Sakura-Ku, Saitama City (Japan); Japan Atomic Energy Research Institute, Advanced Science Research Center, Tokai (Japan); Maruyama, T.; Chiba, S. [Japan Atomic Energy Research Institute, Advanced Science Research Center, Tokai (Japan); Yoshinaga, N. [Saitama University, Department of physics, Sakura-Ku, Saitama City (Japan)
2005-09-01
We study the baryon-quark phase transition in the molecular dynamics (MD) of the quark degrees of freedom at finite baryon density. The baryon state at low baryon density, and the deconfined quark state at high baryon density are reproduced. We investigate the equations of state of matters with different u-d-s compositions. It is found that the baryon-quark transition is sensitive to the quark width. (orig.)
Galaxy Cluster Baryon Fractions Revisited
Gonzalez, Anthony H.; Sivanandam, Suresh; Zabludoff, Ann I.; Zaritsky, Dennis
2013-11-01
We measure the baryons contained in both the stellar and hot-gas components for 12 galaxy clusters and groups at z ~ 0.1 with M = 1-5 × 1014 M ⊙. This paper improves upon our previous work through the addition of XMM-Newton X-ray data, enabling measurements of the total mass and masses of each major baryonic component—intracluster medium, intracluster stars, and stars in galaxies—for each system. We recover a mean relation for the stellar mass versus halo mass, M_{\\star }\\propto M_{500}^{-0.52+/- 0.04}, that is 1σ shallower than in our previous result. We confirm that the partitioning of baryons between the stellar and hot-gas components is a strong function of M 500; the fractions of total mass in stars and X-ray gas within a sphere of radius r 500 scale as f_{\\star }\\propto M_{500}^{-0.45+/- 0.04} and f_{gas}\\propto M_{500}^{0.26+/- 0.03}, respectively. We also confirm that the combination of the brightest cluster galaxy and intracluster stars is an increasingly important contributor to the stellar baryon budget in lower halo masses. Studies that fail to fully account for intracluster stars typically underestimate the normalization of the stellar baryon fraction versus M 500 relation by ~25%. Our derived stellar baryon fractions are also higher, and the trend with halo mass weaker, than those derived from recent halo occupation distribution and abundance matching analyses. One difference from our previous work is the weak, but statistically significant, dependence here of the total baryon fraction upon halo mass: f_{bary}\\propto M_{500}^{0.16+/- 0.04}. For M 500 >~ 2 × 1014, the total baryon fractions within r 500 are on average 18% below the universal value from the seven year Wilkinson Microwave Anisotropy Probe (WMAP) analysis, or 7% below for the cosmological parameters from the Planck analysis. In the latter case, the difference between the universal value and cluster baryon fractions is less than the systematic uncertainties associated with
Baryons and baryonic matter in four-fermion interaction models
Energy Technology Data Exchange (ETDEWEB)
Urlichs, K.
2007-02-23
In this work we discuss baryons and baryonic matter in simple four-fermion interaction theories, the Gross-Neveu model and the Nambu-Jona-Lasinio model in 1+1 and 2+1 space-time dimensions. These models are designed as toy models for dynamical symmetry breaking in strong interaction physics. Pointlike interactions (''four-fermion'' interactions) between quarks replace the full gluon mediated interaction of quantum chromodynamics. We consider the limit of a large number of fermion flavors, where a mean field approach becomes exact. This method is formulated in the language of relativistic many particle theory and is equivalent to the Hartree-Fock approximation. In 1+1 dimensions, we generalize known results on the ground state to the case where chiral symmetry is broken explicitly by a bare mass term. For the Gross-Neveu model, we derive an exact self-consistent solution for the finite density ground state, consisting of a one-dimensional array of equally spaced potential wells, a baryon crystal. For the Nambu- Jona-Lasinio model we apply the derivative expansion technique to calculate the total energy in powers of derivatives of the mean field. In a picture akin to the Skyrme model of nuclear physics, the baryon emerges as a topological soliton. The solution for both the single baryon and dense baryonic matter is given in a systematic expansion in powers of the pion mass. The solution of the Hartree-Fock problem is more complicated in 2+1 dimensions. In the massless Gross-Neveu model we derive an exact self-consistent solution by extending the baryon crystal of the 1+1 dimensional model, maintaining translational invariance in one spatial direction. This one-dimensional configuration is energetically degenerate to the translationally invariant solution, a hint in favor of a possible translational symmetry breakdown by more general geometrical structures. In the Nambu-Jona-Lasinio model, topological soliton configurations induce a finite baryon
Energy Technology Data Exchange (ETDEWEB)
Cabral, Ricardo de Freitas; Itaboray, Lucas Mendes; Santos, Anna Paula de Oliveira [Centro Universitario de Volta Redonda (UNIFOA), Volta Redonda, RJ (Brazil)
2015-12-15
The field of electronic processing of the ceramic piezoelectric type imported powdered led to the production of ceramics with 97% of theoretical density, homogeneous microstructure with great potential for applications in piezoelectric devices such as electro acoustic transducers. However, the production of electronic ceramics National piezoelectric type is not yet able to have as raw material zirconate titanate Lead (PZT) 100% made in Brazil. Thus, this is used for supply of domestic production, the zirconium oxide. In this work, both post PZT types I and III, imported, were uniaxially pressed at 70 MPa and sintered at 1200 and 1250 deg C for 3 hours. Hardness measurements were performed by micro indentation, X-ray diffraction analysis and Scanning Electron Microscopy. The hardness of PZT I was 393 HV. (author)
Quark confinement mechanism for baryons
Goncharov, Yu P
2013-01-01
The confinement mechanism proposed earlier and then successfully applied to meson spectroscopy by the author is extended over baryons. For this aim the wave functions of baryons are built as tensorial products of those corresponding to the 2-body problem underlying the confinement mechanism of two quarks. This allows one to obtain the Hamiltonian of the quark interactions in a baryon and, accordingly, the possible energy spectrum of the latter. Also one may construct the electric and magnetic form factors of baryon in a natural way which entails the expressions for the root-mean-square radius and anomalous magnetic moment. To ullustrate the formalism in the given Chapter for the sake of simplicity only symmetrical baryons (i.e., composed from three quarks of the same flavours) $\\Delta^{++}$, $\\Delta^{-}$, $\\Omega^-$ are considered. For them the masses, the root-mean-square radii and anomalous magnetic moments are expressed in an explicit analytical form through the parameters of the confining SU(3)-gluonic fi...
Baryon Transition in Holographic QCD
Li, Siwen
2015-01-01
We propose a mechanism of holographic baryon transition in the Sakai-Sugimoto (SS) model: baryons in this model can jump to different states under the mediated effect of gravitons (or glueballs by holography). We consider a time-dependent gravitational perturbation from M5-brane solution of D=11 supergravity and by employing the relations between 11D M-theory and IIA string theory, we get its 10 dimensional counterpart in the SS model. Such a perturbation is received by the D4-branes wrapped on the $S^{4}$ part of the 10D background, namely the baryon vertex. Technically, baryons in the SS model are described by BPST instanton ansatz and their dynamics can be analyzed using the quantum mechanical system in the instanton's moduli space. In this way, different baryonic states are marked by quantum numbers of moduli space quantum mechanics. By holographic spirit, the gravitational perturbation enters the Hamiltonian as a time-dependent perturbation and it is this time-dependent perturbative Hamiltonian produces ...
Baryonic Condensates on the Conifold
Benna, M K; Klebanov, I R; Benna, Marcus K.; Dymarsky, Anatoly; Klebanov, Igor R.
2007-01-01
We provide new evidence for the gauge/string duality between the baryonic branch of the cascading SU(k(M+1)) \\times SU(kM) gauge theory and a family of type IIB flux backgrounds based on warped products of the deformed conifold and R^{3,1}. We show that a Euclidean D5-brane wrapping all six deformed conifold directions can be used to measure the baryon expectation values, and present arguments based on kappa-symmetry and the equations of motion that identify the gauge bundles required to ensure worldvolume supersymmetry of this object. Furthermore, we investigate its coupling to the pseudoscalar and scalar modes associated with the phase and magnitude, respectively, of the baryon expectation value. We find that these massless modes perturb the Dirac-Born-Infeld and Chern-Simons terms of the D5-brane action in a way consistent with our identification of the baryonic condensates. We match the scaling dimension of the baryon operators computed from the D5-brane action with that found in the cascading gauge theor...
Density-dependent effective baryon-baryon interaction from chiral three-baryon forces
Petschauer, Stefan; Kaiser, Norbert; Meißner, Ulf-G; Weise, Wolfram
2016-01-01
A density-dependent effective potential for the baryon-baryon interaction in the presence of the (hyper)nuclear medium is constructed, based on the leading (irreducible) three-baryon forces derived within SU(3) chiral effective field theory. We evaluate the contributions from three classes: contact terms, one-pion exchange and two-pion exchange. In the strangeness-zero sector we recover the known result for the in-medium nucleon-nucleon interaction. Explicit expressions for the Lambda-nucleon in-medium potential in (asymmetric) nuclear matter are presented. Our results are suitable for implementation into calculations of (hyper)nuclear matter. In order to estimate the low-energy constants of the leading three-baryon forces we introduce the decuplet baryons as explicit degrees of freedom and construct the relevant terms in the minimal non-relativistic Lagrangian. With these, the constants are estimated through decuplet saturation. Utilizing this approximation we provide numerical results for the effect of the ...
Density-dependent effective baryon-baryon interaction from chiral three-baryon forces
Petschauer, Stefan; Haidenbauer, Johann; Kaiser, Norbert; Meißner, Ulf-G.; Weise, Wolfram
2017-01-01
A density-dependent effective potential for the baryon-baryon interaction in the presence of the (hyper)nuclear medium is constructed, based on the leading (irreducible) three-baryon forces derived within SU(3) chiral effective field theory. We evaluate the contributions from three classes: contact terms, one-pion exchange and two-pion exchange. In the strangeness-zero sector we recover the known result for the in-medium nucleon-nucleon interaction. Explicit expressions for the ΛN in-medium potential in (asymmetric) nuclear matter are presented. Our results are suitable for implementation into calculations of (hyper)nuclear matter. In order to estimate the low-energy constants of the leading three-baryon forces we introduce the decuplet baryons as explicit degrees of freedom and construct the relevant terms in the minimal non-relativistic Lagrangian. With these, the constants are estimated through decuplet saturation. Utilizing this approximation we provide numerical results for the effect of the three-body force in symmetric nuclear matter and pure neutron matter on the ΛN interaction. A moderate repulsion that increases with density is found in comparison to the free ΛN interaction.
Decuplet baryons in hot medium
Azizi, K
2016-01-01
The thermal properties of the light decuplet baryons are investigated in the framework of the thermal QCD sum rules. In particular, the behavior of the mass and residue of the $\\Delta$, $\\Sigma^{*}$, $\\Xi^{*}$ and $\\Omega$ baryons with respect to temperature are analyzed taking into account the additional operators coming up in the Wilson expansion at finite temperature. It is found that the mass and residue of these particles remain overall unaffected up to $T\\simeq150~MeV$ but, after this point, they start to diminish, considerably.
Dilatons in Dense Baryonic Matter
Lee, Hyun Kyu
2013-01-01
We discuss the role of dilaton, which is supposed to be representing a special feature of scale symmetry of QCD, trace anomaly, in dense baryonic matter. The idea that the scale symmetry breaking of QCD is responsible for the spontaneous breaking of chiral symmetry is presented along the similar spirit of Freund-Nambu model. The incorporation of dilaton field in the hidden local symmetric parity doublet model is briefly sketched with the possible role of dilaton at high density baryonic matter, the emergence of linear sigma model in dilaton limit.
Deforming baryons into confining strings
Hartnoll, S A; Hartnoll, Sean A.; Portugues, Ruben
2004-01-01
We find explicit probe D3-brane solutions in the infrared of the Maldacena-Nunez background. The solutions describe deformed baryon vertices: q external quarks are separated in spacetime from the remaining N-q. As the separation is taken to infinity we recover known solutions describing infinite confining strings in ${\\mathcal{N}}=1$ gauge theory. We present results for the mass of finite confining strings as a function of length. We also find probe D2-brane solutions in a confining type IIA geometry, the reduction of a G_2 holonomy M theory background. The interpretation of these solutions as deformed baryons/confining strings is not as straightforward.
Pellejero-Ibanez, Marcos; Rubiño-Martín, J A; Cuesta, Antonio J; Wang, Yuting; Zhao, Gong-bo; Ross, Ashley J; Rodríguez-Torres, Sergio; Prada, Francisco; Slosar, Anže; Vazquez, Jose A; Alam, Shadab; Beutler, Florian; Eisenstein, Daniel J; Gil-Marín, Héctor; Grieb, Jan Niklas; Ho, Shirley; Kitaura, Francisco-Shu; Percival, Will J; Rossi, Graziano; Salazar-Albornoz, Salvador; Samushia, Lado; Sánchez, Ariel G; Satpathy, Siddharth; Seo, Hee-Jong; Tinker, Jeremy L; Tojeiro, Rita; Vargas-Magaña, Mariana; Brownstein, Joel R; Nichol, Robert C; Olmstead, Matthew D
2016-01-01
We develop a new methodology called double-probe analysis with the aim of minimizing informative priors in the estimation of cosmological parameters. We extract the dark-energy-model-independent cosmological constraints from the joint data sets of Baryon Oscillation Spectroscopic Survey (BOSS) galaxy sample and Planck cosmic microwave background (CMB) measurement. We measure the mean values and covariance matrix of $\\{R$, $l_a$, $\\Omega_b h^2$, $n_s$, $log(A_s)$, $\\Omega_k$, $H(z)$, $D_A(z)$, $f(z)\\sigma_8(z)\\}$, which give an efficient summary of Planck data and 2-point statistics from BOSS galaxy sample, where $R=\\sqrt{\\Omega_m H_0^2}\\,r(z_*)$, and $l_a=\\pi r(z_*)/r_s(z_*)$, $z_*$ is the redshift at the last scattering surface, and $r(z_*)$ and $r_s(z_*)$ denote our comoving distance to $z_*$ and sound horizon at $z_*$ respectively. The advantage of this method is that we do not need to put informative priors on the cosmological parameters that galaxy clustering is not able to constrain well, i.e. $\\Omega_b...
Accurate initial conditions in mixed dark matter-baryon simulations
Valkenburg, Wessel; Villaescusa-Navarro, Francisco
2017-06-01
We quantify the error in the results of mixed baryon-dark-matter hydrodynamic simulations, stemming from outdated approximations for the generation of initial conditions. The error at redshift 0 in contemporary large simulations is of the order of few to 10 per cent in the power spectra of baryons and dark matter, and their combined total-matter power spectrum. After describing how to properly assign initial displacements and peculiar velocities to multiple species, we review several approximations: (1) using the total-matter power spectrum to compute displacements and peculiar velocities of both fluids, (2) scaling the linear redshift-zero power spectrum back to the initial power spectrum using the Newtonian growth factor ignoring homogeneous radiation, (3) using a mix of general-relativistic gauges so as to approximate Newtonian gravity, namely longitudinal-gauge velocities with synchronous-gauge densities and (4) ignoring the phase-difference in the Fourier modes for the offset baryon grid, relative to the dark-matter grid. Three of these approximations do not take into account that dark matter and baryons experience a scale-dependent growth after photon decoupling, which results in directions of velocity that are not the same as their direction of displacement. We compare the outcome of hydrodynamic simulations with these four approximations to our reference simulation, all setup with the same random seed and simulated using gadget-III.
Energy Technology Data Exchange (ETDEWEB)
Berkes, I.
1996-12-31
This article discusses the nature of the dark matter and the possibility of the detection of non-baryonic dark matter in an underground experiment. Among the useful detectors the low temperature bolometers are considered in some detail. (author). 19 refs.
Algebraic model of baryon resonances
Bijker, R
1997-01-01
We discuss recent calculations of electromagnetic form factors and strong decay widths of nucleon and delta resonances. The calculations are done in a collective constituent model of the nucleon, in which the baryons are interpreted as rotations and vibrations of an oblate top.
Bijker, R; Leviatan, A
1997-01-01
We study strong decays of nonstrange baryons by making use of the algebraic approach to hadron structure. Within this framework we derive closed expressions for decay widths in an elementary-meson emission model and use these to analyze the experimental data for $N^* \\rightarrow N + \\pi$, $N^* + \\pi$, $\\Delta^* \\rightarrow \\Delta + \\pi$ and $\\Delta^* \\rightarrow \\Delta +
Beauty baryons: Recent CDF results
Energy Technology Data Exchange (ETDEWEB)
Tseng, J. [Massachusetts Inst. of Technology, Cambridge, MA (United States)
1996-12-01
Using data collected between 1992 and 1995 at the Fermilab Tevatron, CDF has searched for the {Lambda}{sub b} baryon through both semileptonic and hadronic decay channels. This presentation reviews measurements of the {Lambda}{sub b} mass, lifetime, and production and decay rates performed with this data.
Predictions for Excited Strange Baryons
Energy Technology Data Exchange (ETDEWEB)
Fernando, Ishara P.; Goity, Jose L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-04-01
An assessment is made of predictions for excited hyperon masses which follow from flavor symmetry and consistency with a 1/N c expansion of QCD. Such predictions are based on presently established baryonic resonances. Low lying hyperon resonances which do not seem to fit into the proposed scheme are discussed.
Baryon Number Current in Chiral Soliton Model
Institute of Scientific and Technical Information of China (English)
LiXiguo
2003-01-01
Last year two exotic and narrow baryons, θ+(1540) and Ξ3/2--(1862), which are pentaquark states have been reported by several group. Their minimal quark content are uudds and ddssu, respectively. The θ+(1540) baryon was observed in few independent experiments. Its hypercharge, Y=2. The exotic baryon is an isosinglet. The Ξ3/2--(1862) baryon was also observed in the Ξ-π- invariant mass spectrum in proton-proton scattering at the CERN SPS . The search of exotic baryons was motivated by the flavor SU(3) extension of
Fogel, Ronen; Seshia, Ashwin A.
2016-01-01
Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040
Glueball-baryon interactions in holographic QCD
Li, Si-Wen
2017-10-01
Studying the Witten-Sakai-Sugimoto model with type IIA string theory, we find the glueball-baryon interaction is predicted in this model. The glueball is identified as the 11D gravitational waves or graviton described by the M5-brane supergravity solution. Employing the relation of M-theory and type IIA string theory, glueball is also 10D gravitational perturbations which are the excited modes by close strings in the bulk of this model. On the other hand, baryon is identified as a D4-brane wrapped on S4 which is named as baryon vertex, so the glueball-baryon interaction is nothing but the close string/baryon vertex interaction in this model. Since the baryon vertex could be equivalently treated as the instanton configurations on the flavor brane, we identify the glueball-baryon interaction as ;graviton-instanton; interaction in order to describe it quantitatively by the quantum mechanical system for the collective modes of baryons. So the effective Hamiltonian can be obtained by considering the gravitational perturbations in the flavor brane action. With this Hamiltonian, the amplitudes and the selection rules of the glueball-baryon interaction can be analytically calculated in the strong coupling limit. We show our calculations explicitly in two characteristic situations which are ;scalar and tensor glueball interacting with baryons;. Although there is a long way to go, our work provides a holographic way to understand the interactions of baryons in hadronic physics and nuclear physics by the underlying string theory.
Standing surface acoustic waves in LiNbO3 studied by time resolved X-ray diffraction at Petra III
Directory of Open Access Journals (Sweden)
T. Reusch
2013-07-01
Full Text Available We have carried out time resolved stroboscopic diffraction experiments on standing surface acoustic waves (SAWs of Rayleigh type on a LiNbO3 substrate. A novel timing system has been developed and commissioned at the storage ring Petra III of Desy, allowing for phase locked stroboscopic diffraction experiments applicable to a broad range of timescales and experimental conditions. The combination of atomic structural resolution with temporal resolution on the picosecond time scale allows for the observation of the atomistic displacements for each time (or phase point within the SAW period. A seamless transition between dynamical and kinematic scattering regimes as a function of the instantaneous surface amplitude induced by the standing SAW is observed. The interpretation and control of the experiment, in particular disentangling the diffraction effects (kinematic to dynamical diffraction regime from possible non-linear surface effects is unambiguously enabled by the precise control of phase between the standing SAW and the synchrotron bunches. The example illustrates the great flexibility and universality of the presented timing system, opening up new opportunities for a broad range of time resolved experiments.
Searching for the missing baryons in clusters.
Rasheed, Bilhuda; Bahcall, Neta; Bode, Paul
2011-03-01
Observations of clusters of galaxies suggest that they contain fewer baryons (gas plus stars) than the cosmic baryon fraction. This "missing baryon" puzzle is especially surprising for the most massive clusters, which are expected to be representative of the cosmic matter content of the universe (baryons and dark matter). Here we show that the baryons may not actually be missing from clusters, but rather are extended to larger radii than typically observed. The baryon deficiency is typically observed in the central regions of clusters (∼0.5 the virial radius). However, the observed gas-density profile is significantly shallower than the mass-density profile, implying that the gas is more extended than the mass and that the gas fraction increases with radius. We use the observed density profiles of gas and mass in clusters to extrapolate the measured baryon fraction as a function of radius and as a function of cluster mass. We find that the baryon fraction reaches the cosmic value near the virial radius for all groups and clusters above ∼5 x 10(13)h(-1)(72)M. This suggests that the baryons are not missing, they are simply located in cluster outskirts. Heating processes (such as shock-heating of the intracluster gas, supernovae, and Active Galactic Nuclei feedback) likely contribute to this expanded distribution. Upcoming observations should be able to detect these baryons.
Excited Baryons in Holographic QCD
Energy Technology Data Exchange (ETDEWEB)
de Teramond, Guy F.; /Costa Rica U.; Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins
2011-11-08
The light-front holographic QCD approach is used to describe baryon spectroscopy and the systematics of nucleon transition form factors. Baryon spectroscopy and the excitation dynamics of nucleon resonances encoded in the nucleon transition form factors can provide fundamental insight into the strong-coupling dynamics of QCD. The transition from the hard-scattering perturbative domain to the non-perturbative region is sensitive to the detailed dynamics of confined quarks and gluons. Computations of such phenomena from first principles in QCD are clearly very challenging. The most successful theoretical approach thus far has been to quantize QCD on discrete lattices in Euclidean space-time; however, dynamical observables in Minkowski space-time, such as the time-like hadronic form factors are not amenable to Euclidean numerical lattice computations.
Heavy Baryon Production and Decay
Dunietz, Isard
1998-01-01
The branching ratio B(Lambda_c -> p K- pi+) normalizes the production and decay of charmed and bottom baryons. At present, this crucial branching ratio is extracted dominantly from B.bar -> baryons analyses. This note questions several of the underlying assumptions and predicts sizable B.bar -> D(*) N N'.bar X transitions, which were traditionally neglected. It predicts B(Lambda_c -> p K- pi+) to be significantly larger (0.07 +/- 0.02) than the world average. Some consequences are briefly mentioned. Several techniques to measure B(Lambda_c -> p K- pi+) are outlined with existing or soon available data samples. By equating two recent CLEO results, an appendix obtains B(D0 -> K- pi+)= 0.035 +/- 0.002, which is somewhat smaller than the current world average.
Mathur, Smita; Williams, Rik J
2007-01-01
We review our attempts to discover lost baryons at low redshift with ``X-ray forest'' of absorption lines from the warm-hot intergalactic medium. We discuss the best evidence to date along the Mrk 421 sightline. We then discuss the missing baryons in the Local Group and the significance of the z=0 absorption systems in X-ray spectra. We argue that the debate over the Galactic vs. extragalactic origin of the z=0 systems is premature as these systems likely contain both components. Observations with next generation X-ray missions such as Constellation-X and XEUS will be crucial to map out the warm-hot intergalactic medium.
Algebraic model of baryon structure
Bijker, R
2000-01-01
We discuss properties of baryon resonances belonging to the Nucleon, Delta, Sigma, Lambda, Xi and Omega families in a collective string-like model for the nucleon, in which the radial excitations are interpreted as rotations and vibrations of the string configuration. We find good overall agreement with the available data. The main discrepancies are found for low lying S-wave states, in particular N(1535), N(1650), Sigma(1750), Lambda*(1405), Lambda(1670) and Lambda(1800).
Transport coefficients of heavy baryons
Tolos, Laura; Torres-Rincon, Juan M.; Das, Santosh K.
2016-08-01
We compute the transport coefficients (drag and momentum diffusion) of the low-lying heavy baryons Λc and Λb in a medium of light mesons formed at the later stages of high-energy heavy-ion collisions. We employ the Fokker-Planck approach to obtain the transport coefficients from unitarized baryon-meson interactions based on effective field theories that respect chiral and heavy-quark symmetries. We provide the transport coefficients as a function of temperature and heavy-baryon momentum, and analyze the applicability of certain nonrelativistic estimates. Moreover we compare our outcome for the spatial diffusion coefficient to the one coming from the solution of the Boltzmann-Uehling-Uhlenbeck transport equation, and we find a very good agreement between both calculations. The transport coefficients for Λc and Λb in a thermal bath will be used in a subsequent publication as input in a Langevin evolution code for the generation and propagation of heavy particles in heavy-ion collisions at LHC and RHIC energies.
Landau Damping of Baryon Structure Formation in the Post Reionization Epoch
Chang, Feng-Yin
2010-01-01
It has been suggested by Chen and Lai that the proper description of the large scale structure formation of the universe in the post-reionization era, which is conventionally characterized via gas hydrodynamics, should include the plasma collective effects in the formulation. Specifically, it is the combined pressure from the baryon thermal motions and the residual long-range electrostatic potentials resulted from the imperfect Debye shielding, that fights against the gravitational collapse. As a result, at small-scales the baryons would oscillate at the ion-acoustic, instead of the conventional neutral acoustic, frequency. In this paper we extend and improve the Chen-Lai formulation with the attention to the Landau damping of the ion-acoustic oscillations. Since T_e \\sim T_i in the post-reionization era, the ion acoustic oscillations would inevitably suffer the Landau damping which severely suppresses the baryon density spectrum in the regimes of intermediate and high wavenumber k. To describe this Landau-da...
Heavy Baryons and QCD Sum Rules
Yakovlev, O I
1996-01-01
We discuss an application of QCD sum rules to the heavy baryons $\\Lambda_Q$ and $\\Sigma_Q$. The predictions for the masses of heavy baryons, residues and Isgur-Wise function are presented. The new results on two loop anomalous dimensions of baryonic currents and QCD radiative corrections (two- and three- loop contributions) to the first two Wilson coefficients in OPE are explicitly presented.
Hadronic molecules in the heavy baryon spectrum
Entem, D. R.; Ortega, P. G.; Fernández, F.
2016-01-01
We study possible baryon molecules in the non-strange heavy baryon spectrum. We include configurations with a heavy-meson and a light baryon. We find several structures, in particular we can understand the Λc(2940) as a D*N molecule with JP = 3/2- quantum numbers. We also find D(*)Δ candidates for the recently discovered Xc(3250) resonance.
Baryon Number Violation and String Topologies
Sjöstrand, Torbjörn
2003-01-01
In supersymmetric scenarios with broken R-parity, baryon number violating sparticle decays become possible. In order to search for such decays, a good understanding of expected event properties is essential. We here develop a complete framework that allows detailed studies. Special attention is given to the hadronization phase, wherein the baryon number violating vertex is associated with the appearance of a junction in the colour confinement field. This allows us to tell where to look for the extra (anti)baryon directly associated with the baryon number violating decay.
Baryon Form Factors at Threshold
Energy Technology Data Exchange (ETDEWEB)
Baldini Ferroli, Rinaldo [Museo Storico della Fisica e Centro Studi e Ricerche ' E. Fermi' , Rome (Italy); INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Pacetti, Simone [INFN and Dipartimento di Fisica, Universita di Perugia, Perugia (Italy)
2012-04-15
An extensive study of the e{sup +}e{sup -}{yields}pp{sup Macron }BABAR cross section data is presented. Two unexpected outcomes have been found: the modulus of the proton form factor is normalized to one at threshold, i.e.: |G{sup p}(4M{sub p}{sup 2})|=1, as a pointlike fermion, and the resummation factor in the Sommerfeld formula is not needed. Other e{sup +}e{sup -} {yields} baryon-antibaryon cross sections show a similar behavior near threshold.
The Photon-Baryon Governed Universe
Directory of Open Access Journals (Sweden)
Laszlo A. Marosi
2012-01-01
Full Text Available In a previous paper we postulated that the repulsive force responsible for the universal expansion is associated with the excitation of the empty space (quantum vacuum and the excitation energy is represented by the energy of the cosmic microwave background (CMB. In this paper, we show that the concept of the repulsive space expanding photon field (i can successfully be applied to explain the local velocity anomaly of the Milky Way Galaxy as shown by Faber and Burstein (1998 and Tully (1998, (ii offers a convincing explanation of the still disputed question of the cosmological expansion on local and intergalactic scales discussed by Cooperstock et al. (1998, and (iii explains the redshift (RS of the CMB in accordance with the law of energy conservation without the need for dark matter (DM and dark energy (DE. Probably the most remarkable result of this model (abbreviated as photon/baryon: PB model in the following discussion is that the individual voids building up the soup-bubble- (SB- like galaxy distribution are the governing dynamical components of the universal expansion. Further consequence implies that the universe is considerably older than the interpretation of the Hubble constant as expansion velocity suggests.
Baryon form factors in chiral perturbation theory
Kubis, B; Kubis, Bastian; Meissner, Ulf-G.
2001-01-01
We analyze the electromagnetic form factors of the ground state baryon octet to fourth order in relativistic baryon chiral perturbation theory. Predictions for the \\Sigma^- charge radius and the \\Lambda-\\Sigma^0 transition moment are found to be in excellent agreement with the available experimental information. Furthermore, the convergence behavior of the hyperon charge radii is shown to be more than satisfactory.
Exactly solvable models of baryon structure
Bijker, R
1998-01-01
We present a qualitative analysis of the gross features of baryon spectroscopy (masses and form factors) in terms of various exactly solvable models. It is shown that a collective model, in which baryon resonances are interpreted as rotations and vibrations of an oblate symmetric top, provides a good starting point for a more detailed quantitative study.
Exactly solvable models of baryon structure
Energy Technology Data Exchange (ETDEWEB)
Bijker, R. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico. Apartado Postal 70-543, 04510 Mexico D.F. (Mexico); Leviatan, A. [Racah Institute of Physics, The Hebrew University. Jerusalem 91904, Israel (Israel)
1998-12-31
We present a qualitative analysis of the gross features of baryon spectroscopy (masses and form factors) in terms of various exactly solvable models. It is shown that a collective model, in which baryon resonances are interpreted as rotations and vibrations of an oblate symmetric top, provides a good starting point for a more detailed quantitative study. (Author)
Baryon number violation in future accelerators
Energy Technology Data Exchange (ETDEWEB)
Tracas, N.D.; Zoupanos, G.
1989-03-30
As a demonstration of the possibility to observe baryon number violation in the next generation of accelerators we present a semirealistic GUT in which proton decay is forbidden and the unification scale is at approx. = 10/sup 3-4/ TeV, leading therefore to observable baryon number violating processes.
(Hybrid) Baryons Quantum Numbers and Adiabatic Potentials
Page, P R
1999-01-01
We construct (hybrid) baryons in the flux-tube model of Isgur and Paton. In the limit of adiabatic quark motion, we build proper eigenstates of orbital angular momentum and indicate the flavour, spin, chirality and J^P of (hybrid) baryons. The adiabatic potential is calculated as a function of the quark positions.
Pathways to Rare Baryonic B Decays
Hou Wei Shu; Hou, Wei-Shu
2001-01-01
We point out new ways to search for charmless baryonic B decays: baryon pair production in association with $\\eta^\\prime$ is very likely as large as or even a bit larger than two body $K\\pi/\\pi\\pi$ modes. We extend our argument, in weaker form, to $B\\to \\gamma + X_s$ and $\\ell\
Baryon and lepton violation in astrophysics.
Kolb, E. W.
The cosmological and astrophysical significance of baryon and lepton number violating process is the subject of this paper. The possibility of baryon-number violating processes in the electroweak transition in the early universe is reviewed. The implications of lepton-number violation via Nambu-Goldstone bosons are discussed in detail.
Baryon spectroscopy and the omega minus
Energy Technology Data Exchange (ETDEWEB)
Samios, N.P.
1994-12-31
In this report, I will mainly discuss baryon resonances with emphasis on the discovery of the {Omega}{sup {minus}}. However, for completeness, I will also present some data on the meson resonances which together with the baryons led to the uncovering of the SU(3) symmetry of particles and ultimately to the concept of quarks.
Exploring the simplest purely baryonic decay processes
Geng, C Q; Rodrigues, Eduardo
2016-01-01
We propose to search for purely baryonic decay processes at the LHCb experiment. In particular, we concentrate on the decay $\\Lambda_b^0\\to p\\bar pn$, which is the simplest purely baryonic decay mode, with solely spin-1/2 baryons involved. We predict its decay branching ratio to be ${\\cal B}(\\Lambda_b^0\\to p\\bar pn)=(2.0^{+0.3}_{-0.2})\\times 10^{-6}$, which is sufficiently large to make the decay mode accessible to LHCb. Though not considered in general, purely baryonic decays could shed light on the puzzle of the baryon number asymmetry in the universe by means of a better understanding of the baryonic nature of our matter world. As such, they constitute a yet unexplored class of decay processes worth investigating. Our study can be extended to the purely baryonic decays of $\\Lambda_b^0\\to p\\bar p \\Lambda$, $\\Lambda_b^0\\to \\Lambda \\bar p\\Lambda$ and $\\Lambda_b^0\\to \\Lambda\\bar \\Lambda\\Lambda$, as well as other similar anti-triplet $b$-baryon decays, such as $\\Xi_b^{0,-}$.
A rotating string model versus baryon spectra
Sonnenschein, Jacob
2014-01-01
We continue our program of describing hadrons as rotating strings with massive endpoints. In this paper we propose models of baryons and confront them with the baryon Regge trajectories. We show that these are best fitted by a model of a single string with a quark at one endpoint and a diquark at the other. This model is preferred over the Y-shaped string model with a quark at each endpoint. We show how the model follows from a stringy model of the holographic baryon which includes a baryonic vertex connected with $N_c$ strings to flavor probe branes. From fitting to baryonic data we find that there is no clear evidence for a non-zero baryonic vertex mass, but if there is such a mass it should be located at one of the string endpoints. The available baryon trajectories in the angular momentum plane $(J,M^2)$, involving light, strange, and charmed baryons, are rather well fitted when adding masses to the string endpoints, with a single universal slope $\\alp = 0.95$ GeV$^{-2}$. Most of the results for the quark...
Baryon symmetric big bang cosmology
Stecker, F. W.
1978-01-01
Both the quantum theory and Einsteins theory of special relativity lead to the supposition that matter and antimatter were produced in equal quantities during the big bang. It is noted that local matter/antimatter asymmetries may be reconciled with universal symmetry by assuming (1) a slight imbalance of matter over antimatter in the early universe, annihilation, and a subsequent remainder of matter; (2) localized regions of excess for one or the other type of matter as an initial condition; and (3) an extremely dense, high temperature state with zero net baryon number; i.e., matter/antimatter symmetry. Attention is given to the third assumption, which is the simplest and the most in keeping with current knowledge of the cosmos, especially as pertains the universality of 3 K background radiation. Mechanisms of galaxy formation are discussed, whereby matter and antimatter might have collided and annihilated each other, or have coexisted (and continue to coexist) at vast distances. It is pointed out that baryon symmetric big bang cosmology could probably be proved if an antinucleus could be detected in cosmic radiation.
Pion mean fields and heavy baryons
Yang, Ghil-Seok; Polyakov, Maxim V; Praszałowicz, Michał
2016-01-01
We show that the masses of the lowest-lying heavy baryons can be very well described in a pion mean-field approach. We consider a heavy baryon as a system consisting of the $N_c-1$ light quarks that induce the pion mean field, and a heavy quark as a static color source under the influence of this mean field. In this approach we derive a number of \\textit{model-independent} relations and calculate the heavy baryon masses using those of the lowest-lying light baryons as input. The results are in remarkable agreement with the experimental data. In addition, the mass of the $\\Omega_b^*$ baryon is predicted.
Strangeness in the baryon ground states
Semke, A
2012-01-01
We compute the strangeness content of the baryon ground states based on an analysis of recent lattice simulations of the BMW, PACS, LHPC and HSC groups for the pion-mass dependence of the baryon masses. Our results rely on the relativistic chiral Lagrangian and large-$N_c$ sum rule estimates of the counter terms relevant for the baryon masses at N$^3$LO. A partial summation is implied by the use of physical baryon and meson masses in the one-loop contributions to the baryon self energies. A simultaneous description of the lattice results of the BMW, LHPC, PACS and HSC groups is achieved. We predict the pion- and strangeness sigma terms and the pion-mass dependence of the octet and decuplet ground states at different strange quark masses.
Baryons and baryonic matter in the large Nc and heavy quark limits
Cohen, Thomas D; Ndousse, Kamal K
2011-01-01
This paper explores properties of baryons and finite density baryonic matter in an artificial world in which Nc, the number of colors, is large and the quarks of all species are degenerate and much larger than {\\Lambda}_QCD. It has long been known that in large Nc QCD, baryons composed entirely of heavy quarks are accurately described in the mean-field approximation. However, the detailed properties of baryons in the combined large Nc and heavy quark limits have not been fully explored. Here some basic properties of baryons are computed using a variational approach. At leading order in both the large Nc and heavy quark expansions the baryon mass is computed explicitly as is the baryon form factor. Baryonic matter, the analog of nuclear matter in this artificial world, should also be well described in the mean-field approximation. In the special case where all baryons have an identical spin flavor structure, it is shown that in the formal heavy quark and large Nc limit interactions between baryons are strictly...
Diffuse baryonic matter beyond 2020
Markevitch, M; Nulsen, P; Rasia, E; Vikhlinin, A; Kravtsov, A; Forman, W; Brunetti, G; Sarazin, C; Elvis, M; Fabbiano, G; Hornschemeier, A; Brissenden, R
2009-01-01
The hot, diffuse gas that fills the largest overdense structures in the Universe -- clusters of galaxies and a web of giant filaments connecting them -- provides us with tools to address a wide array of fundamental astrophysical and cosmological questions via observations in the X-ray band. Clusters are sensitive cosmological probes. To utilize their full potential for precision cosmology in the following decades, we must precisely understand their physics -- from their cool cores stirred by jets produced by the central supermassive black hole (itself fed by inflow of intracluster gas), to their outskirts, where the infall of intergalactic medium (IGM) drives shocks and accelerates cosmic rays. Beyond the cluster confines lies the virtually unexplored warm IGM, believed to contain most of the baryonic matter in the present-day Universe. As a depository of all the matter ever ejected from galaxies, it carries unique information on the history of energy and metal production in the Universe. Currently planned ma...
Holography, charge and baryon asymmetry
Mongan, T R
2009-01-01
The holographic principle indicates the finite number of bits of information available on the particle horizon describes all physics within the horizon. Linking information on the horizon with Standard Model particles requires a holographic model describing constituents (preons) of Standard Model particles in terms of bits of information on the horizon. Standard Model particles have charges 0, 1/3, 2/3 or 1 in units of the electron charge e, so bits in a preon model must be identified with fractional charge. Energy must be transferred to change the state of a bit, and labeling the low energy state of a bit e/3n and the high energy state -e/3n amounts to defining electric charge. Any such charged preon model will produce more protons than anti-protons at the time of baryogenesis and require baryon asymmetry. It will also produce more positrons than electrons, as suggested by astrophysical measurements.
Light baryons and their excitations
Eichmann, Gernot; Fischer, Christian S.; Sanchis-Alepuz, Hèlios
2016-11-01
We study ground states and excitations of light octet and decuplet baryons within the framework of Dyson-Schwinger and Faddeev equations. We improve upon similar approaches by explicitly taking into account the momentum-dependent dynamics of the quark-gluon interaction that leads to dynamical chiral symmetry breaking. We perform calculations in both the three-body Faddeev framework and the quark-diquark approximation in order to assess the impact of the latter on the spectrum. Our results indicate that both approaches agree well with each other. The resulting spectra furthermore agree one-to-one with experiment, provided well-known deficiencies of the rainbow-ladder approximation are compensated for. We also discuss the mass evolution of the Roper and the excited Δ with varying pion mass and analyze the internal structure in terms of their partial wave decompositions.
Holographic heavy ion collisions with baryon charge
Casalderrey-Solana, Jorge; van der Schee, Wilke; Triana, Miquel
2016-01-01
We numerically simulate collisions of charged shockwaves in Einstein-Maxwell theory in anti-de Sitter space as a toy model of heavy ion collisions with non-zero baryon charge. The stress tensor and the baryon current become well described by charged hydrodynamics at roughly the same time. The effect of the charge density on generic observables is typically no larger than 15\\%. %The rapidity profile of the charge is wider than the profile of the local energy density. We find significant stopping of the baryon charge and compare our results with those in heavy ion collision experiments.
More about the light baryon spectrum
Eichmann, Gernot
2016-01-01
We discuss the light baryon spectrum obtained from a recent quark-diquark calculation, implementing non-pointlike diquarks that are self-consistently calculated from their Bethe-Salpeter equations. We examine the orbital angular momentum content in the baryons' rest frame and highlight the fact that baryons carry all possible values of L compatible with their spin, without the restriction P=(-1)^L which is only valid nonrelativistically. We furthermore investigate the meaning of complex conjugate eigenvalues of Bethe-Salpeter equations, their possible connection with 'anomalous' states, and we propose a method to eliminate them from the spectrum.
More About the Light Baryon Spectrum
Eichmann, Gernot
2017-03-01
We discuss the light baryon spectrum obtained from a recent quark-diquark calculation, implementing non-pointlike diquarks that are self-consistently calculated from their Bethe-Salpeter equations. We examine the orbital angular momentum content in the baryons' rest frame and highlight the fact that baryons carry all possible values of L compatible with their spin, without the restriction P=(-1)^L which is only valid nonrelativistically. We furthermore investigate the meaning of complex conjugate eigenvalues of Bethe-Salpeter equations, their possible connection with `anomalous' states, and we propose a method to eliminate them from the spectrum.
Analysis of Baryon Angular Correlations with Pythia
Mccune, Amara
2017-01-01
Our current understanding of baryon production is encompassed in the framework of the Lund String Fragmentation Model, which is then encoded in the Monte Carlo event generator program Pythia. In proton-proton collisions, daughter particles of the same baryon number produce an anti-correlation in $\\Delta\\eta\\Delta\\varphi$ space in ALICE data, while Pythia programs predict a correlation. To understand this unusual effect, where it comes from, and where our models of baryon production go wrong, correlation functions were systematically generated with Pythia. Effects of energy scaling, color reconnection, and popcorn parameters were investigated.
Pire, Bernard; Szymanowski, Lech
2010-01-01
We construct a spectral representation for the transition distribution amplitudes (TDAs), i.e. matrix elements of three quark correlators which arise e.g. in the description of baryon to meson and baryon to photon transitions within the factorization approach to hard exclusive reactions. We generalize for these quantities the notion of double distributions introduced in the context of generalized parton distributions. We propose the generalization of A.Radyushkin's factorized Ansatz for the case of baryon to meson and baryon to photon TDAs. Our construction opens the way to modeling of baryon to meson and baryon to photon TDAs in their complete domain of definition and quantitative estimates of cross-sections for various hard exclusive reactions.
Masses and magnetic moments of ground-state baryons in covariant baryon chiral perturbation theory
Geng, L S; Alvarez-Ruso, L; Vicente-Vacas, M J
2012-01-01
We report on some recent developments in our understanding of the light-quark mass dependence and the SU(3) flavor symmetry breaking corrections to the magnetic moments of the ground-state baryons in a covariant formulation of baryon chiral perturbation theory, the so-called EOMS formulation. We show that this covariant ChPT exhibits some promising features compared to its heavy-baryon and infrared counterparts.
Suppression of Baryon Diffusion and Transport in a Baryon Rich Strongly Coupled Quark-Gluon Plasma.
Rougemont, Romulo; Noronha, Jorge; Noronha-Hostler, Jacquelyn
2015-11-13
Five dimensional black hole solutions that describe the QCD crossover transition seen in (2+1)-flavor lattice QCD calculations at zero and nonzero baryon densities are used to obtain predictions for the baryon susceptibility, baryon conductivity, baryon diffusion constant, and thermal conductivity of the strongly coupled quark-gluon plasma in the range of temperatures 130 MeV≤T≤300 MeV and baryon chemical potentials 0≤μ(B)≤400 MeV. Diffusive transport is predicted to be suppressed in this region of the QCD phase diagram, which is consistent with the existence of a critical end point at larger baryon densities. We also calculate the fourth-order baryon susceptibility at zero baryon chemical potential and find quantitative agreement with recent lattice results. The baryon transport coefficients computed in this Letter can be readily implemented in state-of-the-art hydrodynamic codes used to investigate the dense QGP currently produced at RHIC's low energy beam scan.
Baryon asymmetry from primordial black holes
Hamada, Yuta
2016-01-01
We propose a new scenario of the baryogenesis from primordial black holes (PBH). Assuming presence of a microscopic baryon (or lepton) number violation and a CP violating operator such as $\\partial_\\alpha F(\\mathcal{R_{....}} ) J^\\alpha$ where $F(\\mathcal{R_{....}})$ is a scalar function of the Riemann tensor, time evolution of an evaporating black hole generates baryonic (leptonic) chemical potential at the horizon; consequently PBH enumerates asymmetric Hawking radiation between baryons (leptons) and anti-baryons (leptons). Though the operator is higher dimensional and largely suppressed by a high mass scale $M_*$, we show that sufficient amount of asymmetry can be generated for wide range of parameters of the PBH mass $M_{\\rm PBH}$, its abundance $\\Omega_{\\rm PBH}$, and the scale $M_*$.
Baryonic torii: Toroidal baryons in a generalized Skyrme model
Gudnason, Sven Bjarke; Nitta, Muneto
2015-02-01
We study a Skyrme-type model with a potential term motivated by Bose-Einstein condensates (BECs), which we call the BEC Skyrme model. We consider two flavors of the model: the first is the Skyrme model, and the second has a sixth-order derivative term instead of the Skyrme term, both with the added BEC-motivated potential. The model contains toroidally shaped Skyrmions, and they are characterized by two integers P and Q , representing the winding numbers of two complex scalar fields along the toroidal and poloidal cycles of the torus, respectively. The baryon number is B =P Q . We find stable Skyrmion solutions for P =1 ,2 ,3 ,4 ,5 with Q =1 , while for P =6 and Q =1 , it is only metastable. We further find that configurations with higher Q >1 are all unstable and split into Q configurations with Q =1 . Finally we discover a phase transition, possibly of first order, in the mass parameter of the potential under study.
Heavy Flavor Baryons at the Tevatron
Energy Technology Data Exchange (ETDEWEB)
Kuhr, Thomas
2011-09-01
The Tevatron experiments CDF and D0 have filled many empty spots in the spectrum of heavy baryons over the last few years. The most recent results are described in this article: The first direct observation of the {Xi}{sub b}{sup 0}, improved measurements of {Sigma}{sub b} properties, a new measurement of the {Lambda}{sub b} {yields} J/{psi}{Lambda} branching ratio, and a high-statistics study of charm baryons.
The baryon content of the Cosmic Web
Eckert, Dominique; Jauzac, Mathilde; Shan, HuanYuan; Kneib, Jean-Paul; Erben, Thomas; Israel, Holger; Jullo, Eric; Klein, Matthias; Massey, Richard; Richard, Johan; Tchernin, Céline
2015-01-01
Big-Bang nucleosynthesis indicates that baryons account for 5% of the Universe’s total energy content[1]. In the local Universe, the census of all observed baryons falls short of this estimate by a factor of two[2,3]. Cosmological simulations indicate that the missing baryons have not yet condensed into virialised halos, but reside throughout the filaments of the cosmic web: a low-density plasma at temperature 105–107 K known as the warm-hot intergalactic medium (WHIM)[3,4,5,6]. There have been previous claims of the detection of warm baryons along the line of sight to distant blazars[7,8,9,10] and hot gas between interacting clusters[11,12,13,14]. These observations were however unable to trace the large-scale filamentary structure, or to estimate the total amount of warm baryons in a representative volume of the Universe. Here we report X-ray observations of filamentary structures of ten-million-degree gas associated with the galaxy cluster Abell 2744. Previous observations of this cluster[15] were unable to resolve and remove coincidental X-ray point sources. After subtracting these, we reveal hot gas structures that are coherent over 8 Mpc scales. The filaments coincide with over-densities of galaxies and dark matter, with 5-10% of their mass in baryonic gas. This gas has been heated up by the cluster's gravitational pull and is now feeding its core. PMID:26632589
Spin-flavor composition of excited baryons
Fernando, Ishara; Goity, Jose
2015-10-01
The excited baryon masses are analyzed in the framework of the 1 /Nc expansion using the available physical masses and also the masses obtained in lattice QCD for different quark masses. The baryon states are organized into irreducible representations of SU (6) × O (3) , where the [ 56 ,lP =0+ ] ground state and excited baryons, and the [ 56 ,2+ ] and [ 70 ,1- ] excited states are analyzed. The analyses are carried out to O 1 /Nc and first order in the quark masses. The issue of state identifications is discussed. Numerous parameter independent mass relations result at those orders, among them the well known Gell-Mann-Okubo and Equal Spacing relations, as well as additional relations involving baryons with different spins. It is observed that such relations are satisfied at the expected level of precision. Predictions for physically unknown states for each multiplet are obtained. From the quark-mass dependence of the coefficients in the baryon mass formulas an increasingly simpler picture of the spin-flavor composition of the baryons is observed with increasing pion mass (equivalently, increasing mu , d masses), as measured by the number of significant mass operators. This work was supported in part by DOE Contract No. DE-AC05-06OR23177 under which JSA operates the Thomas Jefferson National Accelerator Facility (J. L. G.), and by the NSF (USA) through Grant PHY-0855789 and PHY-1307413 (I. P. F and J. L. G).
Disentanglement of Electromagnetic Baryon Properties
Sadasivan, Daniel; Doring, Michael
2017-01-01
Through recent advances in experimental techniques, the precise extraction of the spectrum of baryonic resonances and their properties becomes possible. Helicity couplings at the resonance pole are fundamental parameters describing the electromagnetic properties of resonances and enabling the comparison of theoretical models with data. We have extracted them from experiments carried out at Jefferson Lab and other facilities using a multipole analysis within the Julich-Bonn framework. Special attention has been paid to the uncertainties and correlations of helicity couplings. Using the world data on the reaction γp -> ηp , we have calculated, for the first time, the covariance matrix. Our results are useful in several ways. They quantify uncertainties but also correlations of helicity couplings. Second, they can tell us quantitatively how useful a given polarization measurement is. Third, they can tell us how the measurement of a new observable would constrain and disentangle the resonance properties which could be helpful in the design of new experiments. Finally, on the subject of the missing resonance problem, model selection techniques and statistical tests allow us to quantify the significance of whether a resonance exists. Supported by NSF CAREER Grant No. PHY-1452055, NSF PIF Grant No. 1415459, by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177, and by Research Center Julich through the HPC grant jikp07.
A proposal to construct SELEX - segmented large-x baryon spectrometer
Energy Technology Data Exchange (ETDEWEB)
Russ, J., (spokesperson); Edelstein, R.; Gibaut, D.; Lipton, R.; Potter, D.; /Carnegie Mellon U.; Lach, J.; Stutte, L.; /Fermilab; Li, Yun-Shan; Tang, Fu-Kun; Lang,; Li, Cheng-Ze; /Beijing, Inst. High Energy Phys.; Denisov, A.S.; Golovtsov, V.; Grachev, V.; Krivshich, A.; Kuropatkin, N.; Schegelsky, V.; Smirnov, N.; Terentiev, N.K.; Uvarov, L.; Vorobyov, A.; /St. Petersburg, INP /Iowa U. /Sao Paulo U. /Yale U.
1987-11-01
Heavy flavor experiments currently in progress at e{sup +}e{sup -} colliders or in the fixed target programs at CERN and Fermilab are aimed at collecting large samples (> 10,000 reconstructed events) of charmed events. These experiments will provide a great deal of information about charmed meson systems, but the expected yield of charmed baryons is not large--10% or less of the sample size. The most detailed study of the charm strange baryon {Xi}{sub c}{sup +} comes not from a large-statistics central production experiment at high energy but rather from a 20-day run at modest beam flux in the CERN hyperon beam. This proposal exploits the advantages in triggering and particle identification of large-x production to make a systematic study of charm baryon production and decay systematics. For the dominant ({approx} 10% branching ratio) modes of these baryons, they expect to collect 10{sup 6} triggered events in each mode per running period. This will give adequate statistics to study even highly suppressed modes. The study of meson systematics by the Mark III spectrometer at SPEAR led to a revolution in the understanding of charmed meson decay mechanisms. No present experiment will supply a similar data set for the charmed baryons. A fixed target experiment cannot supply the absolute branching ratios that e{sup +}e{sup -} annihilation on the {Upsilon}(3770) resonance provides for the Mark III data. They can supply relative branching ratios for the non-leptonic and semileptonic decay modes of charmed baryons and establish the importance of two-body resonance modes in the decay mechanism. This information, along with lifetime measurements for {Lambda}{sub c}{sup +}, {Sigma}{sub c}{sup ++}, {Sigma}{sub c}{sup +}, {Sigma}{sub c}{sup 0}, {Xi}{sub c}{sup +} and {Omega}{sub c}{sup 0} baryons, will permit evaluation in the baryon sector of the role of color suppression, Pauli suppression, sextet enhancement and other varied mechanisms which influence decay rates of charmed
Search for doubly charmed baryons and study of charmed strange baryons at Belle
Energy Technology Data Exchange (ETDEWEB)
Kato, Y.; Iijima, T.; Adachi, I.; Aihara, H.; Asner, D. M.; Aushev, T.; Bakich, A. M.; Bala, A.; Ban, Y.; Bhardwaj, V.; Bhuyan, B.; Bobrov, A.; Bonvicini, G.; Bozek, A.; Bračko, M.; Browder, T. E.; Červenkov, D.; Chekelian, V.; Chen, A.; Cheon, B. G.; Chilikin, K.; Chistov, R.; Cho, K.; Chobanova, V.; Choi, Y.; Cinabro, D.; Dalseno, J.; Danilov, M.; Doležal, Z.; Drásal, Z.; Drutskoy, A.; Dutta, D.; Dutta, K.; Eidelman, S.; Farhat, H.; Fast, J. E.; Ferber, T.; Gaur, V.; Gabyshev, N.; Ganguly, S.; Garmash, A.; Gillard, R.; Goh, Y. M.; Golob, B.; Haba, J.; Hayasaka, K.; Hayashii, H.; He, X. H.; Horii, Y.; Hoshi, Y.; Hou, W. -S.; Hsiung, Y. B.; Inami, K.; Ishikawa, A.; Iwasaki, Y.; Iwashita, T.; Jaegle, I.; Julius, T.; Kang, J. H.; Kato, E.; Kawasaki, T.; Kiesling, C.; Kim, D. Y.; Kim, H. J.; Kim, J. B.; Kim, J. H.; Kim, M. J.; Kim, Y. J.; Klucar, J.; Ko, B. R.; Kodyš, P.; Korpar, S.; Krokovny, P.; Kuhr, T.; Kuzmin, A.; Kwon, Y. -J.; Lee, S. -H.; Li, J.; Li, Y.; Li Gioi, L.; Libby, J.; Liu, Y.; Liventsev, D.; Matvienko, D.; Miyabayashi, K.; Miyata, H.; Mizuk, R.; Moll, A.; Muramatsu, N.; Mussa, R.; Nagasaka, Y.; Nakano, E.; Nakao, M.; Nakazawa, H.; Nayak, M.; Nedelkovska, E.; Ng, C.; Niiyama, M.; Nisar, N. K.; Nishida, S.; Nitoh, O.; Ogawa, S.; Okuno, S.; Pakhlov, P.; Pakhlova, G.; Park, C. W.; Park, H.; Park, H. K.; Pedlar, T. K.; Peng, T.; Pestotnik, R.; Petrič, M.; Piilonen, L. E.; Ritter, M.; Röhrken, M.; Rostomyan, A.; Sahoo, H.; Saito, T.; Sakai, Y.; Sandilya, S.; Santelj, L.; Sanuki, T.; Savinov, V.; Schneider, O.; Schnell, G.; Schwanda, C.; Semmler, D.; Senyo, K.; Seon, O.; Shapkin, M.; Shen, C. P.; Shibata, T. -A.; Shiu, J. -G.; Shwartz, B.; Sibidanov, A.; Sohn, Y. -S.; Sokolov, A.; Solovieva, E.; Stanič, S.; Starič, M.; Steder, M.; Sumihama, M.; Sumiyoshi, T.; Tamponi, U.; Tanida, K.; Tatishvili, G.; Teramoto, Y.; Uchida, M.; Uehara, S.; Uglov, T.; Unno, Y.; Uno, S.; Van Hulse, C.; Vanhoefer, P.; Varner, G.; Vinokurova, A.; Vorobyev, V.; Wagner, M. N.; Wang, C. H.; Wang, M. -Z.; Wang, P.; Watanabe, M.; Watanabe, Y.; Williams, K. M.; Won, E.; Yamashita, Y.; Yashchenko, S.; Zhang, Z. P.; Zhilich, V.; Zhulanov, V.; Zupanc, A.
2014-03-17
We report results of a study of doubly charmed baryons and charmed strange baryons. The analysis is performed using a 980 fb^{-1} data sample collected with the Belle detector at the KEKB asymmetric-energy e^{+}e^{-} collider.
National Research Council Canada - National Science Library
Long, Marshall
2014-01-01
.... Beginning with a brief history, it reviews the fundamentals of acoustics, human perception and reaction to sound, acoustic noise measurements, noise metrics, and environmental noise characterization...
Baryon-baryon bound states in a (2+1)-dimensional lattice QCD model
Faria da Veiga, Paulo A.; O'Carroll, Michael; Schor, Ricardo
2003-08-01
We consider bound states of two baryons (antibaryons) in lattice QCD in a Euclidean formulation. For simplicity, we analyze an SU(3) theory with a single flavor in 2+1 dimensions and two-dimensional Dirac matrices. For a small hopping parameter 0<κ≪1 and large glueball mass, we recently showed the existence of a (anti)baryonlike particle, with an asymptotic mass of the order of -3 ln κ and with an isolated dispersion curve, i.e., an upper gap property persisting up to near the meson-baryon threshold, which is of order -5 ln κ. Here, we show that there is no baryon-baryon (or antibaryon-antibaryon) bound state solution to the Bethe-Salpeter equation up to the two-baryon threshold, which is approximately -6 ln κ.
Forming supermassive black holes by accreting dark and baryon matter
Hu, J; Lou, Y Q; Zhang, S; Hu, Jian; Shen, Yue; Lou, Yu-Qing; Zhang, Shuangnan
2006-01-01
Given a large-scale mixture of self-interacting dark matter (SIDM) particles and baryon matter distributed in the early Universe, we advance here a two-phase accretion scenario for forming supermassive black holes (SMBHs) with masses around $\\sim 10^9 M_{\\odot}$ at high redshifts $z (\\gsim 6)$. The first phase is conceived to involve a rapid quasi-spherical and quasi-steady Bondi accretion of mainly SIDM particles embedded with baryon matter onto seed black holes (BHs) created at redshifts $z\\lsim 30$ by the first generation of massive Population III stars; this earlier phase rapidly gives birth to significantly enlarged seed BH masses of $M_{\\hbox{\\tiny BH},t_1}\\backsimeq 1.4\\times 10^6\\ M_\\odot \\sigma_0/(1\\hbox{cm}^2\\hbox{g}^{-1})(C_s/30\\hbox{km s}^{-1})^4$ during $z\\sim 20-15$, where $\\sigma_0$ is the cross section per unit mass of SIDM particles and $C_s$ is the velocity dispersion in the SIDM halo referred to as an effective "sound speed". The second phase of BH mass growth is envisaged to proceed primar...
Gas distribution, metal enrichment, and baryon fraction in Gaussian and non-Gaussian universes
Maio, Umberto
2011-01-01
We study the cosmological evolution of baryons in universes with and without primordial non-Gaussianities via (large scale) N-body/hydrodynamical simulations, including gas cooling, star formation, stellar evolution, chemical enrichment from both population III and population II regimes, and feedback effects. We find that large fnl values for non-Gaussianities can alter the gas probability distribution functions, the metal pollution history, the halo baryon, gas and stellar fractions, mostly at early times. More precisely: (i) non-Gaussianities lead to an earlier evolution of primordial gas, structures, and star formation; (ii) metal enrichment starts earlier (with respect to the Gaussian scenario) in non-Gaussian models with larger fnl; (iii) gas fractions within the haloes are not significantly affected by the different values of fnl, with deviations of ~1-10%; (iv) the stellar fraction is quite sensitive to non-Gaussianities at early times, with discrepancies reaching up to a factor of ~10 at very high z, ...
Heavy baryon spectroscopy from the lattice
Energy Technology Data Exchange (ETDEWEB)
Bowler, K.C.; Kenway, R.D.; Oliveira, O.; Richards, D.G.; Ueberholz, P. [Department of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3JZ (Scotland); Lellouch, L.; Nieves, J.; Sachrajda, C.T.; Stella, N.; Wittig, H. [Physics Department, The University, Southampton SO17 1BJ (United Kingdom)
1996-09-01
The results of an exploratory lattice study of heavy baryon spectroscopy are presented. We have computed the full spectrum of the eight baryons containing a single heavy quark, on a 24{sup 3}{times}48 lattice at {beta}=6.2, using an {ital O}({ital a})-improved fermion action. We discuss the lattice baryon operators and give a method for isolating the contributions of the spin doublets ({Sigma},{Sigma}{sup {asterisk}}), ({Xi}{sup {prime}},{Xi}{sup {asterisk}}), and ({Omega},{Omega}{sup {asterisk}}) to the correlation function of the relevant operator. We compare our results with the available experimental data and find good agreement in both the charm and the {ital b}-quark sectors, despite the long extrapolation in the heavy quark mass needed in the latter case. We also predict the masses of several undiscovered baryons. We compute the {Lambda}-pseudoscalar meson and {Sigma}-{Lambda} mass splittings. Our results, which have errors in the range 10{endash}30{percent}, are in good agreement with the experimental numbers. For the {Sigma}{sup {asterisk}}-{Sigma} mass splitting, we find results considerably smaller than the experimental values for both the charm and the {ital b}-flavored baryons, although in the latter case the experimental results are still preliminary. This is also the case for the lattice results for the hyperfine splitting for the heavy mesons. {copyright} {ital 1996 The American Physical Society.}
The Baryonic Tully-Fisher relation revisited
Pfenniger, D
2004-01-01
The Baryonic Tully-Fisher relation (BTF) can be substantially improved when considering that the galactic baryonic mass is likely to consist not only from the detected baryons, stars and gas, but also from a dark baryonic component proportional to the HI gas. The BTF relation is optimally improved when the HI mass is multiplied by a factor of about 3, but larger factors up to 11-16 still improve the fit over the original one using only the detected baryons. The strength of this improved relation is quantified with up-to-date statistical tests such as the Akaike Information Criterion or the Bayesian Information Criterion. In particular they allow to show that supposing a variable $M_\\star/L$ ratio instead is much less significant. This result reinforces the suggestion made in several recent works that mass within galactic disks must be a multiple of the HI mass, and that galactic disks are substantially, but not necessarily fully, self-gravitating.
Strong decays of baryons and missing resonances
Bijker, R.; Ferretti, J.; Galatà, G.; García-Tecocoatzi, H.; Santopinto, E.
2016-10-01
We provide results for the open-flavor strong decays of strange and nonstrange baryons into a baryon-vector/pseudoscalar meson pair. The decay amplitudes are computed in the 3P0 pair-creation model, where s s ¯ pair-creation suppression is included for the first time in the baryon sector, in combination with the U (7 ) and hypercentral models. The effects of this s s ¯ suppression mechanism cannot be reabsorbed in a redefinition of the model parameters or in a different choice of the 3P0 model vertex factor. Our results for the decay amplitudes are compared with the existing experimental data and previous 3P0 and elementary meson emission model calculations. In this respect, we show that distinct quark models differ in the number of missing resonances they predict and also in the quantum numbers of states. Therefore, future experimental results will be important in order to disentangle different models of baryon structure. Finally, in the appendixes, we provide some details of our calculations, including the derivation of all relevant flavor couplings with strangeness suppression. This derivation may be helpful to calculate the open-flavor decay amplitudes starting from other models of baryons.
Lokki, Tapio; Savioja, Lauri
The term virtual acoustics is often applied when sound signal is processed to contain features of a simulated acoustical space and sound is spatially reproduced either with binaural or with multichannel techniques. Therefore, virtual acoustics consists of spatial sound reproduction and room acoustics modeling.
Papastergis, Emmanouil; Huang, Shan; Giovanelli, Riccardo; Haynes, Martha P
2012-01-01
We use both an HI-selected and an optically-selected galaxy sample to directly measure the abundance of galaxies as a function of their "baryonic" mass (stars + atomic gas). Stellar masses are calculated based on optical data from the Sloan Digital Sky Survey (SDSS) and atomic gas masses are calculated using atomic hydrogen (HI) emission line data from the Arecibo Legacy Fast ALFA (ALFALFA) survey. By using the technique of abundance matching, we combine the measured baryonic function (BMF) of galaxies with the dark matter halo mass function in a LCDM universe, in order to determine the galactic baryon fraction as a function of host halo mass. We find that the baryon fraction of low-mass halos is much smaller than the cosmic value, even when atomic gas is taken into account. We find that the galactic baryon deficit increases monotonically with decreasing halo mass, in contrast with previous studies which suggested an approximately constant baryon fraction at the low-mass end. We argue that the observed baryon...
Dark matter assimilation into the baryon asymmetry
Energy Technology Data Exchange (ETDEWEB)
D' Eramo, Francesco; Fei, Lin; Thaler, Jesse, E-mail: fderamo@mit.edu, E-mail: lfei@mit.edu, E-mail: jthaler@mit.edu [Center for Theoretical Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)
2012-03-01
Pure singlets are typically disfavored as dark matter candidates, since they generically have a thermal relic abundance larger than the observed value. In this paper, we propose a new dark matter mechanism called {sup a}ssimilation{sup ,} which takes advantage of the baryon asymmetry of the universe to generate the correct relic abundance of singlet dark matter. Through assimilation, dark matter itself is efficiently destroyed, but dark matter number is stored in new quasi-stable heavy states which carry the baryon asymmetry. The subsequent annihilation and late-time decay of these heavy states yields (symmetric) dark matter as well as (asymmetric) standard model baryons. We study in detail the case of pure bino dark matter by augmenting the minimal supersymmetric standard model with vector-like chiral multiplets. In the parameter range where this mechanism is effective, the LHC can discover long-lived charged particles which were responsible for assimilating dark matter.
Spectroscopy of charmed baryons from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Padmanath, M. [Univ. of Graz (Austria). Inst. of Physics; Edwards, Robert G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Mathur, Nilmani [Tata Institute of Fundamental Research, Bombay (India); Peardon, Michael [Trinity College, Dublin (Ireland)
2015-01-01
We present the ground and excited state spectra of singly, doubly and triply charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their continuum analogues are utilized. Using novel computational techniques correlation functions of these operators are generated and the variational method is exploited to extract excited states. The lattice spectra that we obtain have baryonic states with well-defined total spins up to 7/2 and the low lying states remarkably resemble the expectations of quantum numbers from SU(6) x O(3) symmetry. Various energy splittings between the extracted states, including splittings due to hyperfine as well as spin-orbit coupling, are considered and those are also compared against similar energy splittings at other quark masses.
Dark Matter and the Baryon Asymmetry
Farrar, G R; Farrar, Glennys R.; Zaharijas, Gabrijela
2006-01-01
We present a mechanism to generate the baryon asymmetry of the Universe which preserves the net baryon number created in the Big Bang. If dark matter particles carry baryon number $B_X$, and $\\sigma^{\\rm annih}_{\\bar{X}} < \\sigma^{\\rm annih}_{X} $, the $\\bar{X}$'s freeze out at a higher temperature and have a larger relic density than $X$'s. If $m_X \\lsi 4.5 B_X $GeV and the annihilation cross sections differ by $\\mathcal{O}$(10%) or more, this type of scenario naturally explains the observed $\\Omega_{DM} \\approx 5 \\Omega_b$. Two concrete examples are given, one of which can be excluded on observational grounds.
Heavy Baryons in a Quark Model
Energy Technology Data Exchange (ETDEWEB)
Winston Roberts; Muslema Pervin
2007-11-14
A quark model is applied to the spectrum of baryons containing heavy quarks. The model gives masses for the known heavy baryons that are in agreement with experiment, but for the doubly-charmed baryon $\\Xi_{cc}$, the model prediction is too heavy. Mixing between the $\\Xi_Q$ and $\\Xi_Q^\\prime$ states is examined and is found to be small for the lowest lying states. In contrast with this, mixing between the $\\Xi_{bc}$ and $\\Xi_{bc}^\\prime$ states is found to be large, and the implication of this mixing for properties of these states is briefly discussed. We also examine heavy-quark spin-symmetry multiplets, and find that many states in the model can be placed in such multiplets.
Compressed Baryonic Matter: from Nuclei to Pulsars
Xu, Renxin
2013-01-01
Our world is wonderful because of the negligible baryonic part although unknown dark matter and dark energy dominate the Universe. Those nuclei in the daily life are forbidden to fuse by compression due to the Coulomb repulse, nevertheless, it is usually unexpected in extraterrestrial extreme-environments: the gravity in a core of massive evolved star is so strong that all the other forces (including the Coulomb one) could be neglected. Compressed baryonic matter is then produced after supernova, manifesting itself as pulsar-like stars observed. The study of this compressed baryonic matter can not only be meaningful in fundamental physics (e.g., the elementary color interaction at low-energy scale, testing gravity theories, detecting nano-Hertz background gravitational waves), but has also profound implications in engineering applications (including time standard and navigation), and additionally, is focused by Chinese advanced telescopes, either terrestrial or in space. Historically, in 1930s, L. Landau spec...
Production and decay of charmed baryons
Hosaka, Atsushi; Hiyama, Emiko; Kim, SangHo; Kim, Hyun-Chul; Nagahiro, Hideko; Noumi, Hiroyuki; Oka, Makoto; Shirotori, Kotaro; Yoshida, Tetsuya; Yasui, Shigehiro
2016-10-01
In this paper, we discuss reactions involving charmed baryons to explore their unique features. A well known phenomenon, the separation of the two internal motions of the ρ and λ types of a three-quark system is revisited. First we discuss the mass spectrum of low lying excitations as function of the heavy quark mass, smoothly connecting the SU (3) and heavy quark limits. The properties of these modes can be tested in the production and decay reactions of the baryons. For production, we consider a one step process which excites dominantly λ modes. We find abundant production rates for some of the excited states. For decay, we study a pion emission process which provides a clean tool to test the structure of heavy quark systems due to the well controlled low energy dynamics of pions and quarks. Both production and decay of charmed baryons are issues for future experiments at J-PARC.
Decuplet baryons in a hot medium
Energy Technology Data Exchange (ETDEWEB)
Azizi, K.; Bozkir, G. [Dogus Univ., Istanbul (Turkey). Dept. of Physics
2016-10-15
The thermal properties of the light decuplet baryons are investigated in the framework of the thermal QCD sum rules. In particular, the behavior of the mass and residue of the Δ, Σ*, Ξ*, and Ω baryons with respect to temperature are analyzed taking into account the additional operators appearing in the Wilson expansion at finite temperature. It is found that the mass and residue of these particles remain overall unaffected up to T ≅ 150 MeV but, beyond this point, they start to diminish considerably. (orig.)
Heavy flavor baryons in hypercentral model
Indian Academy of Sciences (India)
Bhavin Patel; Ajay Kumar Rai; P C Vinodkumar
2008-05-01
Heavy flavor baryons containing single and double charm (beauty) quarks with light flavor combinations are studied using the hypercentral description of the three-body problem. The confinement potential is assumed as hypercentral Coulomb plus power potential with power index . The ground state masses of the heavy flavor, $J^{P} = \\dfrac{1}{2}^{+}$ and $\\dfrac{3}{2}^{+}$ baryons are computed for different power indices, starting from 0.5 to 2.0. The predicted masses are found to attain a saturated value in each case of quark combinations beyond the power index = 1.0.
Roper resonance and the baryon spectrum
Elsey, J. A.; Afnan, I. R.
1989-10-01
We present a method for calculating the baryon spectrum in the cloudy-bag model in which the masses of the baryons are identical to the poles of the S matrix in the complex energy plane. In particular, we demonstrate that the width for the decay of these resonances by pion emission is dependent on whether the calculations are carried out on the real energy axis or at the resonance poles, the latter being consistent with the scattering experiments that determine these widths. Results for N*(1440) are presented.
Roper resonance and the baryon spectrum
Energy Technology Data Exchange (ETDEWEB)
Elsey, J.A.; Afnan, I.R. (School of Physical Sciences, The Flinders University of South Australia, Bedford Park, South Australia 5042, Australia (AU))
1989-10-01
We present a method for calculating the baryon spectrum in the cloudy-bag model in which the masses of the baryons are identical to the poles of the {ital S} matrix in the complex energy plane. In particular, we demonstrate that the width for the decay of these resonances by pion emission is dependent on whether the calculations are carried out on the real energy axis or at the resonance poles, the latter being consistent with the scattering experiments that determine these widths. Results for {ital N}{sup *}(1440) are presented.
Constructing Hybrid Baryons with Flux Tubes
Capstick, Simon; Capstick, Simon; Page, Philip R.
1999-01-01
Hybrid baryon states are described in quark potential models as having explicit excitation of the gluon degrees of freedom. Such states are described in a model motivated by the strong coupling limit of Hamiltonian lattice gauge theory, where three flux tubes meeting at a junction play the role of the glue. The adiabatic approximation for the quark motion is used, and the flux tubes and junction are modeled by beads which are attracted to each other and the quarks by a linear potential, and vibrate in various string modes. Quantum numbers and estimates of the energies of the lightest hybrid baryons are provided.
Exciting Baryons: now and in the future
Pennington, M R
2011-01-01
This is the final talk of NSTAR2011 conference. It is not a summary talk, but rather a looking forward to what still needs to be done in excited baryon physics. In particular, we need to hone our tools connecting experimental inputs with QCD. At present we rely on models that often have doubtful connections with the underlying theory, and this needs to be dramatically improved, if we are to reach definitive conclusions about the relevant degrees of freedom of excited baryons. Conclusions that we want to have by NSTAR2021.
Meson Production and Baryon Resonances at CLAS
Energy Technology Data Exchange (ETDEWEB)
Volker Burkert
2011-02-01
I give a brief overview of the exploration of baryon properties in meson photo- and electroproduction. These processes provide ample information for the study of electromagnetic couplings of baryon resonances and to search for states, yet to be discovered. The CLAS detector, combined with the use of energy-tagged polarized photons and polarized electrons, as well as polarized targets and the measurement of recoil polarization, provide the tools for a comprehensive nucleon resonance program. I briefly present the status of this program, prospects for the next few years, and plans for the Jefferson Lab 12 GeV upgrade.
Eisenstein, Daniel J.; Weinberg, David H.; Agol, Eric; Aihara, Hiroaki; Allende Prieto, Carlos; Anderson, Scott F.; Arns, James A.; Aubourg, Éric; Bailey, Stephen; Balbinot, Eduardo; Barkhouser, Robert; Beers, Timothy C.; Berlind, Andreas A.; Bickerton, Steven J.; Bizyaev, Dmitry; Blanton, Michael R.; Bochanski, John J.; Bolton, Adam S.; Bosman, Casey T.; Bovy, Jo; Brandt, W. N.; Breslauer, Ben; Brewington, Howard J.; Brinkmann, J.; Brown, Peter J.; Brownstein, Joel R.; Burger, Dan; Busca, Nicolas G.; Campbell, Heather; Cargile, Phillip A.; Carithers, William C.; Carlberg, Joleen K.; Carr, Michael A.; Chang, Liang; Chen, Yanmei; Chiappini, Cristina; Comparat, Johan; Connolly, Natalia; Cortes, Marina; Croft, Rupert A. C.; Cunha, Katia; da Costa, Luiz N.; Davenport, James R. A.; Dawson, Kyle; De Lee, Nathan; Porto de Mello, Gustavo F.; de Simoni, Fernando; Dean, Janice; Dhital, Saurav; Ealet, Anne; Ebelke, Garrett L.; Edmondson, Edward M.; Eiting, Jacob M.; Escoffier, Stephanie; Esposito, Massimiliano; Evans, Michael L.; Fan, Xiaohui; Femenía Castellá, Bruno; Dutra Ferreira, Leticia; Fitzgerald, Greg; Fleming, Scott W.; Font-Ribera, Andreu; Ford, Eric B.; Frinchaboy, Peter M.; García Pérez, Ana Elia; Gaudi, B. Scott; Ge, Jian; Ghezzi, Luan; Gillespie, Bruce A.; Gilmore, G.; Girardi, Léo; Gott, J. Richard; Gould, Andrew; Grebel, Eva K.; Gunn, James E.; Hamilton, Jean-Christophe; Harding, Paul; Harris, David W.; Hawley, Suzanne L.; Hearty, Frederick R.; Hennawi, Joseph F.; González Hernández, Jonay I.; Ho, Shirley; Hogg, David W.; Holtzman, Jon A.; Honscheid, Klaus; Inada, Naohisa; Ivans, Inese I.; Jiang, Linhua; Jiang, Peng; Johnson, Jennifer A.; Jordan, Cathy; Jordan, Wendell P.; Kauffmann, Guinevere; Kazin, Eyal; Kirkby, David; Klaene, Mark A.; Knapp, G. R.; Kneib, Jean-Paul; Kochanek, C. S.; Koesterke, Lars; Kollmeier, Juna A.; Kron, Richard G.; Lampeitl, Hubert; Lang, Dustin; Lawler, James E.; Le Goff, Jean-Marc; Lee, Brian L.; Lee, Young Sun; Leisenring, Jarron M.; Lin, Yen-Ting; Liu, Jian; Long, Daniel C.; Loomis, Craig P.; Lucatello, Sara; Lundgren, Britt; Lupton, Robert H.; Ma, Bo; Ma, Zhibo; MacDonald, Nicholas; Mack, Claude; Mahadevan, Suvrath; Maia, Marcio A. G.; Majewski, Steven R.; Makler, Martin; Malanushenko, Elena; Malanushenko, Viktor; Mandelbaum, Rachel; Maraston, Claudia; Margala, Daniel; Maseman, Paul; Masters, Karen L.; McBride, Cameron K.; McDonald, Patrick; McGreer, Ian D.; McMahon, Richard G.; Mena Requejo, Olga; Ménard, Brice; Miralda-Escudé, Jordi; Morrison, Heather L.; Mullally, Fergal; Muna, Demitri; Murayama, Hitoshi; Myers, Adam D.; Naugle, Tracy; Neto, Angelo Fausti; Nguyen, Duy Cuong; Nichol, Robert C.; Nidever, David L.; O'Connell, Robert W.; Ogando, Ricardo L. C.; Olmstead, Matthew D.; Oravetz, Daniel J.; Padmanabhan, Nikhil; Paegert, Martin; Palanque-Delabrouille, Nathalie; Pan, Kaike; Pandey, Parul; Parejko, John K.; Pâris, Isabelle; Pellegrini, Paulo; Pepper, Joshua; Percival, Will J.; Petitjean, Patrick; Pfaffenberger, Robert; Pforr, Janine; Phleps, Stefanie; Pichon, Christophe; Pieri, Matthew M.; Prada, Francisco; Price-Whelan, Adrian M.; Raddick, M. Jordan; Ramos, Beatriz H. F.; Reid, I. Neill; Reyle, Celine; Rich, James; Richards, Gordon T.; Rieke, George H.; Rieke, Marcia J.; Rix, Hans-Walter; Robin, Annie C.; Rocha-Pinto, Helio J.; Rockosi, Constance M.; Roe, Natalie A.; Rollinde, Emmanuel; Ross, Ashley J.; Ross, Nicholas P.; Rossetto, Bruno; Sánchez, Ariel G.; Santiago, Basilio; Sayres, Conor; Schiavon, Ricardo; Schlegel, David J.; Schlesinger, Katharine J.; Schmidt, Sarah J.; Schneider, Donald P.; Sellgren, Kris; Shelden, Alaina; Sheldon, Erin; Shetrone, Matthew; Shu, Yiping; Silverman, John D.; Simmerer, Jennifer; Simmons, Audrey E.; Sivarani, Thirupathi; Skrutskie, M. F.; Slosar, Anže; Smee, Stephen; Smith, Verne V.; Snedden, Stephanie A.; Stassun, Keivan G.; Steele, Oliver; Steinmetz, Matthias; Stockett, Mark H.; Stollberg, Todd; Strauss, Michael A.; Szalay, Alexander S.; Tanaka, Masayuki; Thakar, Aniruddha R.; Thomas, Daniel; Tinker, Jeremy L.; Tofflemire, Benjamin M.; Tojeiro, Rita; Tremonti, Christy A.; Vargas Magaña, Mariana; Verde, Licia; Vogt, Nicole P.; Wake, David A.; Wan, Xiaoke; Wang, Ji; Weaver, Benjamin A.; White, Martin; White, Simon D. M.; Wilson, John C.; Wisniewski, John P.; Wood-Vasey, W. Michael; Yanny, Brian; Yasuda, Naoki; Yèche, Christophe; York, Donald G.; Young, Erick; Zasowski, Gail; Zehavi, Idit; Zhao, Bo
2011-09-01
Building on the legacy of the Sloan Digital Sky Survey (SDSS-I and II), SDSS-III is a program of four spectroscopic surveys on three scientific themes: dark energy and cosmological parameters, the history and structure of the Milky Way, and the population of giant planets around other stars. In keeping with SDSS tradition, SDSS-III will provide regular public releases of all its data, beginning with SDSS Data Release 8 (DR8), which was made public in 2011 January and includes SDSS-I and SDSS-II images and spectra reprocessed with the latest pipelines and calibrations produced for the SDSS-III investigations. This paper presents an overview of the four surveys that comprise SDSS-III. The Baryon Oscillation Spectroscopic Survey will measure redshifts of 1.5 million massive galaxies and Lyα forest spectra of 150,000 quasars, using the baryon acoustic oscillation feature of large-scale structure to obtain percent-level determinations of the distance scale and Hubble expansion rate at z = 100 per resolution element), H-band (1.51 μm MARVELS) will monitor radial velocities of more than 8000 FGK stars with the sensitivity and cadence (10-40 m s-1, ~24 visits per star) needed to detect giant planets with periods up to two years, providing an unprecedented data set for understanding the formation and dynamical evolution of giant planet systems. As of 2011 January, SDSS-III has obtained spectra of more than 240,000 galaxies, 29,000 z >= 2.2 quasars, and 140,000 stars, including 74,000 velocity measurements of 2580 stars for MARVELS.
Algebraic Treatment of Collective Excitations in Baryon Spectroscopy
Bijker, R
1993-01-01
We present an algebraic U(7) model for baryons which encompasses both single-particle and collective forms of quark dynamics. The mass operator by construction preserves the permutation symmetry between identical quarks. The underlying geometric structure of baryons is discussed in terms of a rigid rotating and vibrating oblate top shape. The model is applied to the mass spectrum of nonstrange baryons.
Heavy Baryon Transitions in a Relativistic Three-Quark Model
Ivanov, M A; Kroll, P; Lyubovitskij, V E
1997-01-01
Exclusive semileptonic decays of bottom and charm baryons are considered within a relativistic three-quark model with a Gaussian shape for the baryon-three-quark vertex and standard quark propagators. We calculate the baryonic Isgur-Wise functions, decay rates and asymmetry parameters.
Strangeness -2 and -3 Baryons in a Constituent Quark Model
Energy Technology Data Exchange (ETDEWEB)
Muslema Pervin; Winston Roberts
2007-09-19
We apply a quark model developed in earlier work to the spectrum of baryons with strangeness -2 and -3. The model describes a number of well-established baryons successfully, and application to cascade baryons allows the quantum numbers of some known states to be deduced.
Energy Technology Data Exchange (ETDEWEB)
Knippschild, Bastian
2012-03-05
Quantum Chromodynamics (QCD) is the theory of strong interactions, one of the four fundamental forces in our Universe. It describes the interaction of gluons and quarks which build up hadrons like protons and neutrons. Most of the visible matter in our universe is made of protons and neutrons. Hence, we are interested in their fundamental properties like their masses, their distribution of charge and their shape. The only known theoretical, non-perturbative and ab initio method to investigate hadron properties at low energies is lattice Quantum Chromodynamics (lattice QCD). However, up-to-date simulations (especially for baryonic quantities) do not achieve the accuracy of experiments. In fact, current simulations do not even reproduce the experimental values for the form factors. The question arises wether these deviations can be explained by systematic effects in lattice QCD simulations. This thesis is about the computation of nucleon form factors and other hadronic quantities from lattice QCD. So called Wilson fermions are used and the u- and d-quarks are treated fully dynamically. The simulations were performed using gauge ensembles with a range of lattice spacings, volumes and pion masses. First of all, the lattice spacing was set to be able to make contact between the lattice results and their experimental complement and to be able to perform a continuum extrapolation. The light quark mass has been computed and found to be m{sub ud}{sup MS}(2 GeV)=3.03(17)(38) MeV. This value is in good agreement with values from experiments and other lattice determinations. Electro-magnetic and axial form factors of the nucleon have been calculated. From these form factors the nucleon radii and the coupling constants were computed. The different ensembles enabled us to investigate systematically the dependence of these quantities on the volume, the lattice spacing and the pion mass. Finally we perform a continuum extrapolation and chiral extrapolations to the physical point
DEFF Research Database (Denmark)
Blauert, Jens
Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book...... the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as......: acoustics, cognitive science, speech science, and communication technology....
Baryons in the unquenched quark model
Bijker, R; Lopez-Ruiz, M A; Santopinto, E
2016-01-01
In this contribution, we present the unquenched quark model as an extension of the constituent quark model that includes the effects of sea quarks via a $^{3}P_{0}$ quark-antiquark pair-creation mechanism. Particular attention is paid to the spin and flavor content of the proton, magnetic moments and $\\beta$ decays of octet baryons.
Beauty baryon decays: a theoretical overview
Wang, Yu-Ming
2014-11-01
I overview the theoretical status and recent progress on the calculations of beauty baryon decays focusing on the QCD aspects of the exclusive semi-leptonic Λb → plμ decay at large recoil and theoretical challenges of radiative and electro-weak penguin decays Λb → Λγ,Λl+l-.
Light element synthesis in baryon isocurvature models
Kumar, D L P
2006-01-01
The prejudice against baryon isocurvature models is primarily because of their inconsistency with early universe light element nucleosynthesis results. We propose that incipient low metallicity (Pop II) star forming regions can be expected to have environments conducive to Deuterium production by spallation, up to levels observed in the universe.
Baryon Ratios in Quark-Gluon Plasma
Institute of Scientific and Technical Information of China (English)
MA Zhong-Biao; MIAO Hong; GAO Chong-Shou
2003-01-01
A way to calculate ratios of baryon produced from quark gluon plasma in relativistic heavyion collisionsis presented. It is assumed that at the beginning of the hadronization there are diquarks and anti-diquarks in the quarkmatter. The number of three-quark states is distributed between the corresponding multiplets, and hadronic decays aretaken into account. The results are shown at last.
The CMU Baryon Amplitude Analysis Program
Bellis, Matt
2007-05-01
The PWA group at Carnegie Mellon University has developed a comprehensive approach and analysis package for the purpose of extracting the amplitudes for photoproduced baryon resonances. The end goal is to identify any missing resonances that are predicted by the constituent quark model, but not definitively observed in experiments. The data comes from the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab.
Multiinstanton ladders in baryon number violating processes
Lazarides, G
1995-01-01
We estimate the contribution of a class of multiinstanton ladder graphs to baryon and lepton number violating processes in the standard model. We find that this contribution is negligible and does not alter the high energy behavior of the leading semiclassical approximation.
Baryons in a chiral constituent quark model
Glozman, L Ya
1998-01-01
In the low-energy regime light and strange baryons should be considered as systems of constituent quarks with confining interaction and a chiral interaction that is mediated by Goldstone bosons as well as by vector and scalar mesons. The flavor-spin structure and sign of the short-range part of the spin-spin force reduces the $SU(6)_{FS}$ symmetry down to $SU(3)_F \\times SU(2)_S$, induces hyperfine splittings and provides correct ordering of the lowest states with positive and negative parity. There is a cancellation of the tensor force from pseudoscalar- and vector-exchanges in baryons. The spin-orbit interactions from $\\rho$-like and $\\omega$-like exchanges also cancel each other in baryons while they produce a big spin-orbit force in NN system. A unified description of light and strange baryon spectra calculated in a semirelativistic framework is presented. It is demonstrated that the same short-range part of spin-spin interaction between the constituent quarks induces a strong short-range repulsion in $NN...
Valley Singularities and Baryon Number Violation
Provero, P
1994-01-01
We consider the valley--method computation of the inclusive cross section of baryon number violating processes in the Standard Model. We show that any physically correct model of the valley action should present a singularity in the saddle point valley parameters as functions of the energy of the process. This singularity prevents the saddle point configuration from collapsing into the perturbative vacuum.
Baryon number violation catalysed by grand unified monopoles
Ellis, Jonathan Richard; Olive, Keith A
1982-01-01
It has been recognized for some time that grand unified monopoles may catalyze Delta B not=0 processes. The authors obtain model-independent upper bounds on the rates for such reactions from the survival of the baryon number generated in the early Universe and from present-day baryon stability. These constraints are compatible with recent estimates of large baryon number violating monopole cross sections, but a monopole flux close to present experimental upper limits could be detectable in forthcoming baryon decay experiments. The authors mention signatures for monopole-induced baryon 'decay' and point out that it could be used to solve the energy crisis.
Magnetic moments of negative-parity baryons in QCD
Aliev, T M
2014-01-01
Using the most general form of the interpolating current for the octet baryons, the magnetic moments of the negative-parity baryons are calculated within the light-cone sum rules. The contributions coming from diagonal transitions of the positive-parity baryons, and also from non-diagonal transition between positive and negative-parity baryons are eliminated by considering the combinations of different sum rules corresponding to the different Lorentz structures. A comparison of our results on magnetic moments of the negative-parity baryons with the other approaches existing in literature is presented.
Holographic black hole engineering at finite baryon chemical potential
Rougemont, Romulo
2016-01-01
This is a contribution for the Proceedings of the Conference Hot Quarks 2016, held at South Padre Island, Texas, USA, 12-17 September 2016. I briefly review some thermodynamic and baryon transport results obtained from a bottom-up Einstein-Maxwell-Dilaton holographic model engineered to describe the physics of the quark-gluon plasma at finite temperature and baryon density. The results for the equation of state, baryon susceptibilities, and the curvature of the crossover band are in quantitative agreement with the corresponding lattice QCD results with $2+1$ flavors and physical quark masses. Baryon diffusion is predicted to be suppressed by increasing the baryon chemical potential.
National Oceanic and Atmospheric Administration, Department of Commerce — To determine movements of green turtles in the nearshore foraging areas, we deployed acoustic tags and determined their movements through active and passive acoustic...
Biological Effects of Acoustic Cavitation
2007-11-02
rectified diffusion. 56 III. STABLE CAVITATION A. Introduction There are manv areas associated with the biological effects of ultrasound in which the...used said as cavitation indicators. Further, if clinical ultrasound systems are found to be inducing cavitation , either stable or transient, it will...O BIOLOGICAL EFFECTS OF ACOUSTIC CAVITATION by Lawrence A. Crum -- Physical Acoustics Research Laboratory Department of Physics and Astronomy ’ CTE
Exotic baryon resonances in the Skyrme model
Diakonov, Dmitri
2008-01-01
We outline how one can understand the Skyrme model from the modern perspective. We review the quantization of the SU(3) rotations of the Skyrmion, leading to the exotic baryons that cannot be made of three quarks. It is shown that in the limit of large number of colours the lowest-mass exotic baryons can be studied from the kaon-Skyrmion scattering amplitudes, an approach known after Callan and Klebanov. We follow this approach and find, both analytically and numerically, a strong Theta+ resonance in the scattering amplitude that is traced to the rotational mode. The Skyrme model does predict an exotic resonance Theta+ but grossly overestimates the width. To understand better the factors affecting the width, it is computed by several methods giving, however, identical results. In particular, we show that insofar as the width is small, it can be found from the transition axial constant. The physics leading to a narrow Theta+ resonance is briefly reviewed and affirmed.
Effective Degrees of Freedom in Baryon Spectroscopy
Santopinto, E.; Ferretti, J.
2016-10-01
Three quark and quark-diquark models are characterized by several missing resonances, even if in the latter case the state space is a reduced one. Moreover, even quark-diquark models show some differences in their predictions for missing states. After several years of discussion, we still do not know whether baryons can be completely described in terms of three quark models or if diquark correlations have to be taken into account; another possibility, suggested in Santopinto (Phys Rev C 72:022201, 2005), Ferretti et al. (Phys Rev C 83:065204, 2011) and Galatà and Santopinto (Phys Rev C 86:045202, 2012), is that the previous pictures (three-quark and quark-diquark) represent the dominant descriptions of baryons at different energy scales. New experiments may be planned at Jlab (JLab12), Bes, Belle and LHCb in order to answer this fundamental open question.
Two Baryons with Twisted Boundary Conditions
Energy Technology Data Exchange (ETDEWEB)
Briceno, Raul [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Davoudi, Zohreh [Univ. of Washington, Seattle, WA (United States) and Institute for Nuclear Theory, Seattle, WA (United States); Luu, Thomas [Lawrence Livermore National Laboratory, Livermore, CA (United States); Savage, Martin [Univ. of Washington, Seattle, WA (United States) and Institute for Nuclear Theory, Seattle, WA (United States)
2014-04-01
The quantization condition for two particle systems with arbitrary number of two-body open coupled-channels, spin and masses in a finite cubic volume is presented. The condition presented is in agreement with all previous studies of two-body systems in a finite volume. The result is fully relativistic and holds for all momenta below inelastic thresholds and is exact up to exponential volume corrections that are governed by m{sub {pi}} L, where m{sub {pi}} is the pion mass and L is the spatial extent of my box. Its implication for the studies of coupled-channel baryon-baryon systems is discussed, and the necessary tools for implementing the formalism are review.
Heavy baryons in the large Nc limit
Directory of Open Access Journals (Sweden)
C. Albertus
2015-11-01
Full Text Available It is shown that in the large Nc limit heavy baryon masses can be estimated quantitatively in a 1/Nc expansion using the Hartree approximation. The results are compared with available lattice calculations for different values of the ratio between the square root of the string tension and the heavy quark mass σ/mQ. These estimates implement important 1/Nc corrections and assume a string tension independent of Nc. Using a potential adjusted to agree with the one obtained in lattice QCD, a variational analysis of the ground state spin averaged baryon mass is performed using Gaussian Hartree wave functions. Relativistic corrections through the quark kinetic energy are included. The results provide good estimates for the first sub-leading in 1/Nc corrections.
A Schwarzschild-like model for baryons
Singleton, D.; Yoshida, A.
2002-06-01
We present a toy model of baryons using singular solutions of the SU(2) Yang-Mill-Higgs (YMH) field equations, which bears some similarity to the Schwarzschild solution of general relativity. The SU (2) solutions are used as a background field into which a scalar, SU (2) test particle is placed. This can be compared to placing an electrically charged particle in a Coulomb background field, except the SU (2) YMH solutions are singular on a spherical membrane thus trapping (confining) the test particle inside the sphere in a manner similar to certain bag models of baryons. An interesting consequence of this model is that the composite system is a fermion even though the original Lagrangian contains only bosonic fields.
The Baryonic Tully-Fisher Relation.
McGaugh; Schombert; Bothun; de Blok WJ
2000-04-20
We explore the Tully-Fisher relation over five decades in stellar mass in galaxies with circular velocities ranging over 30 less, similarVc less, similar300 km s-1. We find a clear break in the optical Tully-Fisher relation: field galaxies with Vc less, similar90 km s-1 fall below the relation defined by brighter galaxies. These faint galaxies, however, are very rich in gas; adding in the gas mass and plotting the baryonic disk mass Md=M*+Mgas in place of luminosity restores the single linear relation. The Tully-Fisher relation thus appears fundamentally to be a relation between rotation velocity and total baryonic mass of the form Md~V4c.
Baryon Spectrum Analysis using Covariant Constraint Dynamics
Whitney, Joshua; Crater, Horace
2012-03-01
The energy spectrum of the baryons is determined by treating each of them as a three-body system with the interacting forces coming from a set of two-body potentials that depend on both the distance between the quarks and the spin and orbital angular momentum coupling terms. The Two Body Dirac equations of constraint dynamics derived by Crater and Van Alstine, matched with the quasipotential formalism of Todorov as the underlying two-body formalism are used, as well as the three-body constraint formalism of Sazdjian to integrate the three two-body equations into a single relativistically covariant three body equation for the bound state energies. The results are analyzed and compared to experiment using a best fit method and several different algorithms, including a gradient approach, and Monte Carlo method. Results for all well-known baryons are presented and compared to experiment, with good accuracy.
Baryon and time asymmetries of the universe
Barnaveli, A T; Barnaveli, Andro; Gogberashvili, Merab
1995-01-01
This paper is devoted to the investigation of connection between two apparent asymmetries of the nature --- time-asymmetry and Baryon Asymmetry of the Universe (BAU). The brief review of this subjects is given. We consider the particle behavior in curved space-time and the possibility of T- and CPT-violation by the universe expansion. If these symmetries are violated we can dispense with the nonequilibrium condition which is usualy considered as the one of necessary ingredients for BAU-generation. Such mechanism of GUT-scale baryogenesis can provide the observed value of baryon asymmetry. We show this on the example of minimal SU(5) model which usually fails to explain the observed BAU without taking into account gravitational effects. Predominance of matter over antimatter and the cosmological arrow of time (the time-direction in which the Universe expands) seem to be connected facts and, possibly, BAU is the one of observable facts of CPT-violation in nature.
Bhattacharya, D. P.; Das, J.; Basu, A.; Das, B.
2017-09-01
In compound semiconductors which lack inversion symmetry, the combined interaction of the electrons with both acoustic and piezoelectric phonons is dominant at low lattice temperatures ( 20 K). The field dependence of the effective electron temperature under these conditions, has been calculated by solving the modified energy balance equation that takes due account of the degeneracy. The traditionally used heated Fermi-Dirac (F.D.) function for the non-equilibrium distribution function is approximated by some well tested model distribution. This makes it possible to carry out the integrations quite easily and, thus to obtain some more realistic results in a closed form, without taking recourse to any oversimplified approximations. The numerical results that follow for InSb, InAs and GaN, from the present analysis, are then compared with the available theoretical and experimental data. The degeneracy and the piezoelectric interaction, both are seen to bring about significant changes in the electron temperature characteristics. The scope for further refinement is discussed.
An algebraic model of baryon spectroscopy
Bijker, R
1999-01-01
We discuss recent calculations of the mass spectrum, electromagnetic and strong couplings of baryon resonances. The calculations are done in a collective constituent model for the nucleon, in which the resonances are interpreted as rotations and vibrations of a symmetric top with a prescribed distribution of the charge and magnetization. We analyze recent data on eta-photo- and eta-electroproduction, and the tensor analyzing power in deuteron scattering.
Understanding the baryon and meson spectra
Energy Technology Data Exchange (ETDEWEB)
Pennington, Michael R. [JLAB
2013-10-01
A brief overview is given of what we know of the baryon and meson spectra, with a focus on what are the key internal degrees of freedom and how these relate to strong coupling QCD. The challenges, experimental, theoretical and phenomenological, for the future are outlined, with particular reference to a program at Jefferson Lab to extract hadronic states in which glue unambiguously contributes to their quantum numbers.
Baryon currents in QCD with compact dimensions
Lucini, B; Pica, C; Lucini, Biagio; Patella, Agostino; Pica, Claudio
2007-01-01
On a compact space with non-trivial cycles, for sufficiently small values of the radii of the compact dimensions, SU(N) gauge theories coupled with fermions in the fundamental representation spontaneously break charge conjugation, time reversal and parity. We show at one loop in perturbation theory that physical signature for this phenomenon is a non-zero baryonic current wrapping around the compact directions. The persistence of this current beyond the perturbative regime is checked by lattice simulations.
Baryons in chiral constituent quark model
Glozman, L Ya
1996-01-01
Beyond the spontaneous chiral symmetry breaking scale light and strange baryons should be considered as systems of three constituent quarks with an effective confining interaction and a flavor-spin chiral interaction that is mediated by the octet of Goldstone bosons (pseudoscalar mesons) between the constituent quarks. One cannot exclude, however, the possibility that this flavor-spin interaction has an appreciable vector- and higher meson exchange component.
A Heavy Quark Symmetry Approach to Baryons
Energy Technology Data Exchange (ETDEWEB)
Albertus, C. [Departamento de Fisica Moderna. Facultad de Ciencias, Universidad de Granada, E-18071 Granada (Spain); Amaro, J.E. [Departamento de Fisica Moderna. Facultad de Ciencias, Universidad de Granada, E-18071 Granada (Spain); Hernandez, E. [Grupo de Fisica Nuclear. Facultad de Ciencias, Universidad de Salamanca, E-37008 Salamanca (Spain); Nieves, J. [Departamento de Fisica Moderna. Facultad de Ciencias, Universidad de Granada, E-18071 Granada (Spain)
2005-06-13
We evaluate different properties of baryons with a heavy c or b quark. The use of Heavy Quark Symmetry (HQS) provides with an important simplification of the non relativistic three body problem which can be solved by means of a simple variational approach. This scheme is able to reproduce previous results obtained with more involved Faddeev calculations. The resulting wave functions are parametrized in a simple manner, and can be used to calculate further observables.
Baryon spectroscopy with polarization observables from CLAS
Energy Technology Data Exchange (ETDEWEB)
Strauch, Steffen [Univ. of South Carolina, Columbia, SC (United States)
2016-08-01
Meson photoproduction is an important tool in the study of baryon resonances. The spectrum of broad and overlapping nucleon excitations can be greatly clarified by use of polarization observables. The N* program at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS) includes experimental studies with linearly and circularly polarized tagged photon beams, longitudinally and transversely polarized nucleon targets, and recoil polarizations. An overview of these experimental studies and recent results will be given.
Screened potential and the baryon spectrum
Vijande, J; Garcilazo, H; Valcarce, A
2003-01-01
We show that in a quark model scheme the use of a screened potential, suggested by lattice QCD, instead of an infinitely rising one with the interquark distance, provides a more adequate description of the high-energy baryon spectrum. In particular an almost perfect parallelism between the predicted and observed number of states comes out throwing new light about the so-called missing resonance problem.
Tidal Dwarf Galaxies and Missing Baryons
Directory of Open Access Journals (Sweden)
Frederic Bournaud
2010-01-01
Full Text Available Tidal dwarf galaxies form during the interaction, collision, or merger of massive spiral galaxies. They can resemble “normal” dwarf galaxies in terms of mass, size, and become dwarf satellites orbiting around their massive progenitor. They nevertheless keep some signatures from their origin, making them interesting targets for cosmological studies. In particular, they should be free from dark matter from a spheroidal halo. Flat rotation curves and high dynamical masses may then indicate the presence of an unseen component, and constrain the properties of the “missing baryons,” known to exist but not directly observed. The number of dwarf galaxies in the Universe is another cosmological problem for which it is important to ascertain if tidal dwarf galaxies formed frequently at high redshift, when the merger rate was high, and many of them survived until today. In this paper, “dark matter” is used to refer to the nonbaryonic matter, mostly located in large dark halos, that is, CDM in the standard paradigm, and “missing baryons” or “dark baryons” is used to refer to the baryons known to exist but hardly observed at redshift zero, and are a baryonic dark component that is additional to “dark matter”.
Intergalactic Baryons in the Local Universe
Danforth, Charles W
2008-01-01
Simulations predict that shocks from large-scale structure formation and galactic winds have reduced the fraction of baryons in the warm, photoionized phase (the Lya forest) from nearly 100% in the early universe to less than 50% today. Some of the remaining baryons are predicted to lie in the warm-hot ionized medium (WHIM) phase at T=10^5-10^7 K, but the quantity remains a highly tunable parameter of the models. Modern UV spectrographs have provided unprecedented access to both the Lya forest and potential WHIM tracers at z~0, and several independent groups have constructed large catalogs of far-UV IGM absorbers along ~30 AGN sight lines. There is general agreement between the surveys that the warm, photoionized phase makes up ~30% of the baryon budget at z~0. Another ~10% can be accounted for in collapsed structures (stars, galaxies, etc.). However, interpretation of the ~100 high-ion (OVI, etc) absorbers at z<0.5 is more controversial. These species are readily created in the shocks expected to exist in...
Baryons, Neutrinos, Feedback and Weak Gravitational Lensing
Harnois-Déraps, Joachim; Viola, Massimo; Heymans, Catherine
2014-01-01
(Abridged) The effect of baryonic feedback on the dark matter mass distribution is generally considered to be a nuisance to weak gravitational lensing. Measurements of cosmological parameters are affected as feedback alters the cosmic shear signal on angular scales smaller than a few arcminutes. Recent progress on the numerical modelling of baryon physics has shown that this effect could be so large that, rather than being a nuisance, the effect can be constrained with current weak lensing surveys, hence providing an alternative astrophysical insight on one of the most challenging questions of galaxy formation. In order to perform our analysis, we construct an analytic fitting formula that describes the effect of the baryons on the mass power spectrum. This fitting formula is based on three scenarios of the OWL hydrodynamical simulations. It is specifically calibrated for $z<1.5$, where it models the simulations to an accuracy that is better than $2\\%$ for scales $k<10 h\\mbox{Mpc}^{-1}$ and better than ...
Charmed bottom baryon spectroscopy from lattice QCD
Brown, Zachary S; Meinel, Stefan; Orginos, Kostas
2014-01-01
We calculate the masses of baryons containing one, two, or three heavy quarks using lattice QCD. We consider all possible combinations of charm and bottom quarks, and compute a total of 36 different states with $J^P = \\frac12^+$ and $J^P = \\frac32^+$. We use domain-wall fermions for the up, down, and strange quarks, a relativistic heavy-quark action for the charm quarks, and nonrelativistic QCD for the bottom quarks. Our analysis includes results from two different lattice spacings and seven different pion masses. We perform extrapolations of the baryon masses to the continuum limit and to the physical pion mass using $SU(4|2)$ heavy-hadron chiral perturbation theory including $1/m_Q$ and finite-volume effects. For the 14 singly heavy baryons that have already been observed, our results agree with the experimental values within the uncertainties. We compare our predictions for the hitherto unobserved states with other lattice calculations and quark-model studies.
Acoustic cloaking and transformation acoustics
Energy Technology Data Exchange (ETDEWEB)
Chen Huanyang [School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006 (China); Chan, C T, E-mail: kenyon@ust.h, E-mail: phchan@ust.h [Department of Physics and the William Mong Institute of NanoScience and Technology, The Hong Kong University of Science and Technology, Clear Water Bay (Hong Kong)
2010-03-24
In this review, we give a brief introduction to the application of the new technique of transformation acoustics, which draws on a correspondence between coordinate transformation and material properties. The technique is formulated for both acoustic waves and linear liquid surface waves. Some interesting conceptual devices can be designed for manipulating acoustic waves. For example, we can design acoustic cloaks that make an object invisible to acoustic waves, and the cloak can either encompass or lie outside the object to be concealed. Transformation acoustics, as an analog of transformation optics, can go beyond invisibility cloaking. As an illustration for manipulating linear liquid surface waves, we show that a liquid wave rotator can be designed and fabricated to rotate the wave front. The acoustic transformation media require acoustic materials which are anisotropic and inhomogeneous. Such materials are difficult to find in nature. However, composite materials with embedded sub-wavelength resonators can in principle be made and such 'acoustic metamaterials' can exhibit nearly arbitrary values of effective density and modulus tensors to satisfy the demanding material requirements in transformation acoustics. We introduce resonant sonic materials and Helmholtz resonators as examples of acoustic metamaterials that exhibit resonant behaviour in effective density and effective modulus. (topical review)
Fragmentation Functions for Heavy Baryons in the Recombination Model
Institute of Scientific and Technical Information of China (English)
彭茹
2011-01-01
Using the shower parton distributions determined by the recombination model, we predict the fragmentation functions for heavy baryons. Then we obtain the completed fragmentation functions of heavy quarks (c and b) splitting into their hadrons (mesons and baryons containing one heavy valence quark). The calculated process shows that the fragmentation functions for mesons and baryons are not independent if the hadronization of the shower partons is taken into account.%Using the shower parton distributions determined by the recombination model,we predict the fragmentation functions for heavy baryons.Then we obtain the completed fragmentation functions of heavy quarks(c and b)splitting into their hadrons(mesons and baryons containing one heavy valence quark).The calculated process shows that the fragmentation functions for mesons and baryons are not independent if the hadronization of the shower partons is taken into account.
Baryons as Fock states of 3,5,... Quarks
Energy Technology Data Exchange (ETDEWEB)
Dmitri Diakonov; Victor Petrov
2004-09-01
We present a generating functional producing quark wave functions of all Fock states in the octet, decuplet and antidecuplet baryons in the mean field approximation, both in the rest and infinite momentum frames. In particular, for the usual octet and decuplet baryons we get the SU(6)-symmetric wave functions for their 3-quark component but with specific corrections from relativism and from additional quark-antiquark pairs. For the exotic antidecuplet baryons we obtain the 5-quark wave function.
Calculating Masses of Pentaquarks Composed of Baryons and Mesons
Directory of Open Access Journals (Sweden)
M. Monemzadeh
2016-01-01
Full Text Available We consider an exotic baryon (pentaquark as a bound state of two-body systems composed of a baryon (nucleon and a meson. We used a baryon-meson picture to reduce a complicated five-body problem to simple two-body problems. The homogeneous Lippmann-Schwinger integral equation is solved in configuration space by using one-pion exchange potential. We calculate the masses of pentaquarks θc(uuddc¯ and θb(uuddb¯.
Litniewski, Jerzy; Kujawska, Tamara; 31st International Symposium on Acoustical Imaging
2012-01-01
The International Symposium on Acoustical Imaging is a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. This interdisciplinary Symposium has been taking place continuously since 1968. In the course of the years the proceedings volumes in the Acoustical Imaging Series have become a reference for cutting-edge research in the field. In 2011 the 31st International Symposium on Acoustical Imaging was held in Warsaw, Poland, April 10-13. Offering both a broad perspective on the state-of-the-art as well as in-depth research contributions by the specialists in the field, this Volume 31 in the Series contains an excellent collection of papers in six major categories: Biological and Medical Imaging Physics and Mathematics of Acoustical Imaging Acoustic Microscopy Transducers and Arrays Nondestructive Evaluation and Industrial Applications Underwater Imaging
Fogel, Ronen; Limson, Janice; Seshia, Ashwin A.
2016-01-01
Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of ...
Nayak, Rajkishore
2016-01-01
This book highlights the manufacturing and applications of acoustic textiles in various industries. It also includes examples from different industries in which acoustic textiles can be used to absorb noise and help reduce the impact of noise at the workplace. Given the importance of noise reduction in the working environment in several industries, the book offers a valuable guide for companies, educators and researchers involved with acoustic materials.
One-loop corrections to the baryon axial vector current
Indian Academy of Sciences (India)
M A Hernández-Ruíz
2012-10-01
The symmetry breaking corrections to the pion–baryon couplings vanish to first order in $1/N_{c}$, where $N_{c}$ is the number of colours. Loop graphs with octet and decuplet intermediate states cancel to various orders in $N_{c}$ as a consequence of the large-$N_{c}$ spin-flavour symmetry of QCD baryons. The baryon axial vector current is computed at one-loop order in heavy baryon chiral perturbation theory in the large Nc limit. $1/N_{c}$ corrections in the case of $g_{A}$ in QCD are presented here.
Search for CP violation in baryon decays at LHCb
CERN. Geneva
2016-01-01
The phenomenon of CP violation has been observed in the K- and B-meson systems, but not yet with any baryonic particle. We report on searches for CP violation in baryon decays at LHCb using Run I data. We find evidence for CP violation in Lambda0b -> p pi- pi+ pi- decays with a statistical significance corresponding to 3.3 standard deviations, including systematic uncertainties. This represents the first evidence of CP violation in the baryon sector. An overview of other recent results of baryon decays will be presented, along with some highlights of the charmless B-decay programme.
Magnetic Moments of Baryons with a Heavy Quark
Weigel, H
2003-01-01
We compute magnetic moments of baryons with a heavy quark in the bound state approach for heavy baryons. In this approach the heavy baryon is considered as a heavy meson bound to a light baryon. The latter is represented as a soliton excitation of light meson fields. We obtain the magnetic moments by sandwiching pertinent components of the electromagnetic current operator between the bound state wave--functions. We extract this current operator from the coupling to the photon field after extending the action to be gauge invariant.
Dark Matter in Lepto-Baryonic Left-Right Theories
Patra, Sudhanwa
2015-01-01
A Lepto-Baryonic Left-Right symmetric theory is considered where leptons and baryons are local gauge symmetries. These theories are generally anomalous and the possible gauge anomaly free solutions for these theories are presented here. This paper also shows different ways in which Lepto-Baryonic Left-Right theories are broken down to Standard Model gauge group which further breaks down to low energy by SM Higgs boson. It is found that the neutral component of fermion triplets can be a viable dark matter candidate originally introduced for gauge anomaly cancellation. The other dark matter possibilities within this Lepto-Baryonic Left-Right symmetric theories are also presented.
Notes on exotic anti-decuplet of baryons
Polyakov, M V
2004-01-01
We emphasize the importance of identifying non-exotic SU(3) partners of the Theta^+ pentaquark, and indicate possible ways how to do it. We also use the soliton picture of baryons to relate Reggeon couplings of various baryons. These relations are used to estimate the Theta^+ production cross section in high energy processes. We show that the corresponding cross sections are significantly suppressed relative to the production cross sections of usual baryons. Finally, we present spin non-flip form factors of the anti-decuplet baryons in the framework of the chiral quark soliton model.
Spectroscopy of singly, doubly, and triply bottom baryons
Wei, Ke-Wei; Liu, Na; Wang, Qian-Qian; Guo, Xin-Heng
2016-01-01
Recently, many singly bottom baryons have been established experimentally, but no doubly or triply bottom baryon has been observed. Under the Regge phenomenology, the mass of a ground state unobserved doubly or triply bottom baryon is expressed as a function of masses of the well established light baryons and singly bottom baryons. (For example, we write the mass of $\\Omega_{bbb}$ as a function of the masses of well established light baryons ($\\Sigma^{*}$, $\\Xi^{*}$, $\\Omega$) and singly bottom baryons ($\\Sigma_b^{*}$, $\\Xi_b^{*}$), and give its value to be 14788$\\pm$80 MeV.) After that, we calculate the values of Regge slopes and Regge intercepts for singly, doubly, and triply bottom baryons. (Regge intercepts and slopes, which are usually regarded as fundamental constants of hadron dynamics, are useful for many spectral and nonspectral purposes.) Then, masses of the orbitally excited singly, doubly, and triply bottom baryons are estimated. The isospin splitting is also determined, $M_{\\Xi_{bb}^{-}}-M_{\\Xi_{...
Hypermagnetic Fields and Baryon Asymmetry from Pseudoscalar Inflation
Anber, Mohamed M
2015-01-01
We show that maximally helical hypermagnetic fields produced during pseudoscalar inflation can generate the observed baryon asymmetry of the universe via the B+L anomaly in the Standard Model. We find that most of the parameter space of pseudoscalar inflation that explains the cosmological data leads to baryon overproduction, hence the models of natural inflation are severely constrained. We also point out a connection between the baryon number and topology of the relic magnetic fields. Both the magnitude and sign of magnetic helicity can be detected in future diffuse gamma ray data. This will be a smoking gun evidence for a link between inflation and the baryon asymmetry of the Universe.
Energy Technology Data Exchange (ETDEWEB)
Darling, Timothy W [Los Alamos National Laboratory; Carpenter, M A [UNIV OF CAMBRIDGE; Buckley, A [UNIV OF CAMBRIDGE; Taylor, P A [UNIV OF CAMBRIDGE; Mcknight, R E A [UNIV OF CAMBRIDGE
2009-01-01
Resonant Ultrasound Spectroscopy has been used to characterize elastic softening and a variety of new acoustic dissipation processes associated with the Pm{bar 3}m {leftrightarrow} R{bar 3}c transition in single crystal and ceramic samples of LaAlO{sub 3}. Softening of the cubic structure ahead of the transition point is not accompanied by an increase in dissipation but follows different temperature dependences for the bulk modulus, 1/3(C{sub 11} + 2C{sub 12}), and the shear components 1/2(C{sub 11}-C{sub 12}) and C{sub 44} as if the tilting instability contains two slightly different critical temperatures. The transition itself is marked by the complete disappearance of resonance peaks (superattenuation), which then reappear below {approx}700 K in spectra from single crystals. Comparison with low frequency, high stress data from the literature indicate that the dissipation is not due to macroscopic displacement of needle twins. An alternative mechanism, local bowing of twin walls under low dynamic stress, is proposed. Pinning of the walls with respect to this displacement process occurs below {approx}350 K. Anelasticity maps, analogous to plastic deformation mechanism maps, are proposed to display dispersion relations and temperature/frequency/stress fields for different twin wall related dissipation mechanisms. An additional dissipation process, with an activation energy of 43 {+-} 6 kJ.mole{sup -1}, occurs in the vicinity of 250 K. The mechanism for this is not known, but it is associated with C{sub 44} and therefore appears to be related in some way to the cubic {leftrightarrow} rhombohedral transition at {approx}817 K. Slight softening in the temperature interval {approx}220 {yields} 70 K of resonance peaks determined by shear elastic constants hints at an incipient E{sub g} ferroelastic instability in LaAlO{sub 3}. The softening interval ends with a further dissipation peak at {approx} 60 K, the origin of which is discussed in terms of freezing of atomic
Papastergis, Emmanouil; Cattaneo, Andrea; Huang, Shan; Giovanelli, Riccardo; Haynes, Martha P.
2012-01-01
We use both an HI-selected and an optically-selected galaxy sample to directly measure the abundance of galaxies as a function of their "baryonic" mass (stars + atomic gas). Stellar masses are calculated based on optical data from the Sloan Digital Sky Survey (SDSS) and atomic gas masses are
Search for doubly charmed baryons and study of charmed strange baryons at Belle
Kato, Y; Adachi, I; Aihara, H; Asner, D M; Aushev, T; Bakich, A M; Bala, A; Ban, Y; Bhardwaj, V; Bhuyan, B; Bobrov, A; Bonvicini, G; Bozek, A; Bračko, M; Browder, T E; Červenkov, D; Chekelian, V; Chen, A; Cheon, B G; Chilikin, K; Chistov, R; Cho, K; Chobanova, V; Choi, Y; Cinabro, D; Dalseno, J; Danilov, M; Doležal, Z; Drásal, Z; Drutskoy, A; Dutta, D; Dutta, K; Eidelman, S; Farhat, H; Fast, J E; Ferber, T; Gaur, V; Gabyshev, N; Ganguly, S; Garmash, A; Gillard, R; Goh, Y M; Golob, B; Haba, J; Hayasaka, K; Hayashii, H; He, X H; Horii, Y; Hoshi, Y; Hou, W -S; Hsiung, Y B; Inami, K; Ishikawa, A; Iwasaki, Y; Iwashita, T; Jaegle, I; Julius, T; Kang, J H; Kato, E; Kawasaki, T; Kiesling, C; Kim, D Y; Kim, H J; Kim, J B; Kim, J H; Kim, M J; Kim, Y J; Klucar, J; Ko, B R; Kodyš, P; Korpar, S; Krokovny, P; Kuhr, T; Kuzmin, A; Kwon, Y -J; Lee, S -H; Li, J; Li, Y; Gioi, L Li; Libby, J; Liu, Y; Liventsev, D; Matvienko, D; Miyabayashi, K; Miyata, H; Mizuk, R; Moll, A; Muramatsu, N; Mussa, R; Nagasaka, Y; Nakano, E; Nakao, M; Nayak, M; Nedelkovska, E; Ng, C; Niiyama, M; Nisar, N K; Nishida, S; Nitoh, O; Ogawa, S; Okuno, S; Pakhlov, P; Pakhlova, G; Park, C W; Park, H; Park, H K; Pedlar, T K; Peng, T; Pestotnik, R; Petrič, M; Piilonen, L E; Ritter, M; Röhrken, M; Rostomyan, A; Sahoo, H; Saito, T; Sakai, Y; Sandilya, S; Santelj, L; Sanuki, T; Savinov, V; Schneider, O; Schnell, G; Schwanda, C; Semmler, D; Senyo, K; Seon, O; Shapkin, M; Shen, C P; Shibata, T -A; Shiu, J -G; Shwartz, B; Sibidanov, A; Sohn, Y -S; Sokolov, A; Solovieva, E; Stanič, S; Starič, M; Steder, M; Sumihama, M; Sumiyoshi, T; Tamponi, U; Tanida, K; Tatishvili, G; Teramoto, Y; Uchida, M; Uehara, S; Uglov, T; Unno, Y; Uno, S; Van Hulse, C; Vanhoefer, P; Varner, G; Vinokurova, A; Vorobyev, V; Wagner, M N; Wang, C H; Wang, M -Z; Wang, P; Watanabe, M; Watanabe, Y; Williams, K M; Won, E; Yamashita, Y; Yashchenko, S; Zhang, Z P; Zhilich, V; Zhulanov, V; Zupanc, A
2013-01-01
We report results of a study of doubly charmed baryons and charmed strange baryons. The analysis is performed using a 980 fb^-1 data sample collected with the Belle detector at the KEKB asymmetric-energy e^+e^- collider. We search for doubly charmed baryons Xi_cc^+(+) with the Lambda_c^+K^-pi^+(pi^+) and Xi_c^0pi^+(pi^+) final states. No significant signal is observed. We also search for two excited charmed strange baryons, Xi_c(3055)^+ and Xi_c(3123)^+ with the Sigma_c^++(2455)K^- and Sigma_c^++(2520)K^- final states. The Xi_c(3055)^+ signal is observed with a significance of 6.6 standard deviations including systematic uncertainty, while no signature of the Xi_c(3123)^+ is seen. We also study properties of the Xi_c(2645)^+ and measure a width of 2.6 +- 0.2 (stat) +- 0.4 (syst) MeV/c^2, which is the first significant determination.
Papastergis, Emmanouil; Cattaneo, Andrea; Huang, Shan; Giovanelli, Riccardo; Haynes, Martha P.
2012-01-01
We use both an HI-selected and an optically-selected galaxy sample to directly measure the abundance of galaxies as a function of their "baryonic" mass (stars + atomic gas). Stellar masses are calculated based on optical data from the Sloan Digital Sky Survey (SDSS) and atomic gas masses are calcula
a Relativistic Calculation of Baryon Masses
Giammarco, Joseph Michael
1990-01-01
We calculate ground state baryon masses using a saddle-point variational (SPV) method, which permits us the use of fully relativistic 4-component Dirac spinors without the need for positive energy projection operators. This variational approach has been shown to work in the relativistic domain for one particle in an external potential (Dirac equation). We have extended its use to the relativistic 3-body Breit equation. Our procedure is as follows: we pick a trial wave function having the appropriate spin, flavor and color dependence. This can be accomplished with a non-symmetric relativistic spatial wave function having two different size parameters if the the first two quarks are always chosen to be identical. We than calculate an energy eigenvalue for the particle state and vary the parameters in our wave function to search for a "saddle-point". We minimize the energy with respect to the two size parameters and maximize with respect to two parameters that measure the contribution from the negative-energy states. This gives the baryon's mass as a function of four input parameters: the masses of the up, down and strange quarks (m_{u=d },m_{s}), and the strength of the coupling constants for the potentials ( alpha_{s},mu). We do this for the eight Baryon ground states and fit these to experimental data. This fit gives the values of the input parameters. For the potentials we use a coulombic term to represent one-gluon exchange and a linear term for confinement. For both terms we include a retardation term required by relativity. We also add delta function and spin-spin terms to account for the large contribution of the coulomb interaction at the origin. The results we obtain from our SPV method are in good agreement with experimental data. The actual search for the saddle-point parameters and the fitting of the quark masses and the values of the coupling strengths was done on a CDC Cyber 860.
Baryon instability search in large detectors
Energy Technology Data Exchange (ETDEWEB)
Moscoso, L. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l`Instrumentation Associee
1996-08-01
Nucleon decay appears as a consequence of models trying to explain the baryon-antibaryon asymmetry. This has motivated 15 years ago many underground experiments devoted to the search of proton and neutron decay. A very large number of decay channels have been investigated and no evidence has been found yielding lower limits on lifetime which rule out the minimal SU(5) Grand Unified Theory predictions and put severe constraints on more complicated models. Next generation experiments like Super-Kamiokande, which is starting to take data now, ICARUS, whose a 600 ton prototype is under construction, will be sensitive to more complicated models predicting larger lifetimes. (author). 16 refs.
Flavour Oscillations in Dense Baryonic Matter
Filip, Peter
2017-01-01
We suggest that fast neutral meson oscillations may occur in a dense baryonic matter, which can influence the balance of s/¯s quarks in the nucleus-nucleus and proton-nucleus interactions, if primordial multiplicities of neutral K 0, mesons are sufficiently asymmetrical. The phenomenon can occur even if CP symmetry is fully conserved, and it may be responsible for the enhanced sub-threshold production of multi-strange hyperons observed in the low-energy A+A and p+A interactions.
SU(3) flavour breaking and baryon structure
Energy Technology Data Exchange (ETDEWEB)
Cooke, A.N.; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe, Hyogo (Japan); Pleiter, D. [Forschungszentrum Juelich GmbH (Germany). Juelich Supercomputing Centre (JSC); Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Shanahan, P.; Zanotti, J.M. [Adelaide Univ., SA (Australia). CSSM, School of Chemistry and Physics; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Stueben, H. [Hamburg Univ. (Germany). Regionales Rechenzentrum; Collaboration: QCDSF/UKQCD Collaboration
2013-11-15
We present results from the QCDSF/UKQCD collaboration for hyperon electromagnetic form factors and axial charges obtained from simulations using N{sub f}=2+1 flavours of O(a)-improved Wilson fermions. We also consider matrix elements relevant for hyperon semileptonic decays. We find flavour-breaking effects in hyperon magnetic moments which are consistent with experiment, while our results for the connected quark spin content indicates that quarks contribute more to the spin of the {Xi} baryon than they do to the proton.
Non-baryonic dark matter in cosmology
Del Popolo, A.
2013-07-01
This paper is based on lectures given at the IX Mexican School on Gravitation and Mathematical Physics. The lectures (as the paper) were a broad-band review of the current status of non-baryonic dark matter research. I start with a historical overview of the evidences of dark matter existence, then I discuss how dark matter is distributed from small scale to large scale, and I then verge the attention to dark matter nature: dark matter candidates and their detection. I finally discuss some of the limits of the ΛCDM model, with particular emphasis on the small scale problems of the paradigm.
Non-Baryonic Dark Matter in Cosmology
Del Popolo, A
2014-01-01
This paper is a broad-band review of the current status of non-baryonic dark matter research. I start with a historical overview of the evidences of dark matter existence, then I discuss how dark matter is distributed from small scale to large scale, and I then verge the attention to dark matter nature: dark matter candidates and their detection. I finally discuss some of the limits of the $\\Lambda$CDM model, with particular emphasis on the small scale problems of the paradigm.
Baryons in Massive Gross-Neveu Models
Thies, M; Thies, Michael; Urlichs, Konrad
2005-01-01
Baryons in the large N limit of (1+1)-dimensional Gross-Neveu models with either discrete or continuous chiral symmetry have long been known. We generalize their construction to the case where the symmetry is explicitly broken by a bare mass term in the Lagrangian. In the discrete symmetry case, the exact solution is found for arbitrary bare fermion mass, using the Hartree-Fock approach. In the continuous symmetry case, a derivative expansion allows us to rederive a formerly proposed Skyrme-type model and to compute systematically corrections to the leading order description based on an effective sine-Gordon theory.
Magnetic Polarizability of Diquarks in Baryons
Filip, Peter
2014-01-01
We study the response of diquark wave function in \\Lambda-type baryons to strong magnetic fields. It is found that quantum state of J=0 diquark (ud) in the magnetic field changes due to magnetic polarizability, and constituent quarks in (ud) diquark become polarized. The phenomenon influences polarized quark distribution functions \\Delta u(x) and \\Delta d(x), which therefore may be sensitive to the internal electromagnetic fields in hypernuclei. We also speculate, that strange quark polarization in nucleon may originate from the interaction of virtual (ss') quark pairs with the intrinsic magnetic field of nucleon B $\\approx$ 10^13 T.
Shuryak, E. V.; Verbaarschot, J. J. M.
1992-04-01
Baryon number violation and multiple production of W and Higgs bosons are described semiclassically in terms of the instanton-anti-instanton valley. We find (i) two saddle points, one describing reflection from a barrier and the other describing tunneling through it. We find (ii) a critical energy Ec~35 TeV where the cross section is suppressed as exp(-const/g2w), but the formulas are no longer valid; (iii) however, depending on the (still uncertain) Higgs bosson action, the cross section at this point may be large enough to be observable.
DEFF Research Database (Denmark)
Blauert, Jens
the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as......Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book...... chapters represent review articles covering the most relevant areas of the field. They are written with the goal of providing students with comprehensive introductions. Further they offer a supply of numerous references to the relevant literature. Besides its usefulness as a textbook, this will make...
Lyamshev, Leonid M
2004-01-01
Radiation acoustics is a developing field lying at the intersection of acoustics, high-energy physics, nuclear physics, and condensed matter physics. Radiation Acoustics is among the first books to address this promising field of study, and the first to collect all of the most significant results achieved since research in this area began in earnest in the 1970s.The book begins by reviewing the data on elementary particles, absorption of penetrating radiation in a substance, and the mechanisms of acoustic radiation excitation. The next seven chapters present a theoretical treatment of thermoradiation sound generation in condensed media under the action of modulated penetrating radiation and radiation pulses. The author explores particular features of the acoustic fields of moving thermoradiation sound sources, sound excitation by single high-energy particles, and the efficiency and optimal conditions of thermoradiation sound generation. Experimental results follow the theoretical discussions, and these clearl...
(Hybrid) Baryons in the Flux-Tube Model
Page, P R
1999-01-01
We construct baryons and hybrid baryons in the non-relativistic flux-tube model of Isgur and Paton. The motion of the flux-tube with the three quark positions fixed, except for centre of mass corrections, is discussed. It is shown that the problem can to an excellent approximation be reduced to the independent motion of a junction and strings.
Baryon octet distribution amplitudes in Wandzura-Wilczek approximation
Energy Technology Data Exchange (ETDEWEB)
Anikin, I.V. [Joint Institute of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics; Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Manashov, A.N. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2015-12-15
We study higher twist distribution amplitudes for the SU{sub F}(3) baryon octet. We identify independent functions for all baryons in the isospin symmetry limit and calculate the Wandzura-Wilczek contributions to the twist-4 and 5 distributions amplitudes.
Search for strange baryon electric dipole moment at LHCb
Lewis, Daniel James
2017-01-01
A search for the EDM of $\\Lambda$ baryons using the LHCb detector is proposed. In order to perform this search, the reconstruction of $\\Lambda$ baryons using T tracks must be possible. This note presents the reconstruction techniques and resolution studies that demonstrate that this is indeed feasible.
Baryon magnetic moments in the effective quark Lagrangian approach
Simonov, YA; Tjon, JA; Weda, J; Simonov, Yu A.
2002-01-01
An effective quark Lagrangian is derived from first principles through bilocal gluon field correlators. It is used to write down equations for baryons, containing both perturbative and nonperturbative fields. As a result one obtains magnetic moments of octet and decuplet baryons without the introduc
Evidence for chiral logarithms in the baryon spectrum
Walker-Loud, Andre
2011-01-01
Using precise lattice QCD computations of the baryon spectrum, we present the first direct evidence for the presence of contributions to the baryon masses which are non-analytic in the light quark masses; contributions which are often denoted "chiral logarithms". We isolate the poor convergence of SU(3) baryon chiral perturbation theory to the flavor-singlet mass combination. The flavor-octet baryon mass splittings, which are corrected by chiral logarithms at next to leading order in SU(3) chiral perturbation theory, yield baryon-pion axial coupling constants D, F, C and H consistent with QCD values; the first evidence of chiral logarithms in the baryon spectrum. The Gell-Mann--Okubo relation, a flavor-27 baryon mass splitting, which is dominated by chiral corrections from light quark masses, provides further evidence for the presence of non-analytic light quark mass dependence in the baryon spectrum; we simultaneously find the GMO relation to be inconsistent with the first few terms in a taylor expansion in ...
Finite Volume Effect of Baryons in Strange Hadronic Matter
Institute of Scientific and Technical Information of China (English)
SUN Bao-Xi; LI Lei; NING Ping-Zhi; ZHAO En-Guang
2001-01-01
The finite volume effect of baryons in strange hadronic matter (SHM) is studied within the framework of relativistic mean-field theory. As this effect is concerned, the saturation density of SHM turns lower, and the binding energy per baryon decreases. Its influence to the compression modulus of SHM is also discussed.
Electroproduction of Baryon Resonances and Strangeness Suppression
Santopinto, E; Tecocoatzi, H Garcia
2016-01-01
We describe the electroproduction ratios of baryon-meson states from nucleon using an extension of the quark model that takes into account the sea. As a result we provide, with no adjustable parameters, the predictions of ratios of exclusive meson-baryon final states: Lambda K , Sigma K, p pion, and n pion. These predictions are in agreement with the new Jlab experimental data showing that sea quarks play an important role in the electroproduction. We also predicted further ratios of exclusive reactions that can be measured and tested in future experiments. In particular, we suggested new experiments on deuterium and tritium. Such measurements can provide crucial test of different predictions concerning the structure of nucleon and its sea quarks helping to solve an outstanding problem. Finally, we computed the so called strangeness suppression factor, lambda s, that is the suppression of strange quark-antiquarks compared to nonstrange pairs, and we found that our finding with this simple extension of the qua...
Baryon masses with dynamical twisted mass fermions
Alexandrou, C; Koutsou, G; Baron, R; Guichon, P; Brinet, M; Carbonell, J; Drach, V; Liu, Z; Pène, O; Urbach, C
2007-01-01
We present results on the mass of the nucleon and the $\\Delta$ using two dynamical degenerate twisted mass quarks. The evaluation is performed at four quark masses corresponding to a pion mass in the range of 690-300 MeV on lattices of size 2.1 fm and 2.7 fm. We check for cutoff effects by evaluating these baryon masses on lattices of spatial size 2.1 fm with lattice spacings $a(\\beta=3.9)=0.0855(6)$ fm and $a(\\beta=4.05)=0.0666(6)$ fm, determined from the pion sector and find them to be within our statistical errors. Lattice results are extrapolated to the physical limit using continuum chiral perturbation theory. The nucleon mass at the physical point provides a determination of the lattice spacing. Using heavy baryon chiral perturbation theory at ${\\cal O}(p^3)$ we find $a(\\beta=3.9)=0.0879(12)$ fm, with a systematic error due to the chiral extrapolation estimated to be about the same as the statistical error. This value of the lattice spacing is in good agreement with the value determined from the pion se...
Predictions for masses of bottom baryons
Karliner, Marek; Lipkin, Harry J; Rosner, Jonathan L
2007-01-01
The recent observation of Sigma_b^{+-} (uub and ddb) and Xi_b^- (dsb) baryons at the Tevatron within 2 MeV of our theoretical predictions provides a strong motivation for applying the same theoretical approach, based on modeling the color hyperfine interaction, to predict the masses of other bottom baryons which might be observed in the foreseeable future. For S-wave qqb states we predict M(Omega_b) = 6052.1+-5.6 MeV, M(Omega^*_b) = 6082.8+-5.6 MeV, and M(Xi_b^0) = 5786.7 +- 3.0 MeV. For states with one unit of orbital angular momentum between the b quark and the two light quarks we predict M(Lambda_{b[1/2]}) = 5929+-2 MeV, M(Lambda_{b[3/2]}) = 5940+-2 MeV, M(Xi_{b[1/2]}) = 6106+-4 MeV, and M(Xi_{b[3/2]}) = 6115+-4 MeV.
The Quark Model and $b$ Baryons
Karliner, Marek; Lipkin, Harry J; Rosner, Jonathan L
2008-01-01
The recent observation at the Tevatron of $\\Sigma_b^{\\pm}$ ($uub$ and $ddb$) baryons within 2 MeV of the predicted $\\Sigma_b - \\Lambda_b$ splitting and of $\\Xi_b^-$ $(dsb)$ baryons at the Tevatron within a few MeV of predictions has provided strong confirmation for a theoretical approach based on modeling the color hyperfine interaction. The prediction of $M(\\Xi^-_b) = 5790$ to 5800 MeV is reviewed and similar methods used to predict the masses of the excited states $\\Xi_b^\\prime$ and $\\Xi_b^*$. The main source of uncertainty is the method used to estimate the mass difference $m_b - m_c$ from known hadrons. We verify that corrections due to the details of the interquark potential and to $\\Xi_b$--$\\Xi_b^\\prime$ mixing are small. For S-wave $qqb$ states we predict $M(\\Omega_b) = 6052.1 \\pm 5.6$ MeV, $M(\\Omega^*_b) = 6082.8 \\pm 5.6$ MeV, and $M(\\Xi_b^0) = 5786.7 \\pm 3.0$ MeV. For states with one unit of orbital angular momentum between the $b$ quark and the two light quarks we predict $M(\\Lambda_{b[1/2]}) = 5929...
The Compressed Baryonic Matter Experiment at FAIR
Energy Technology Data Exchange (ETDEWEB)
Heuser, Johann M.
2013-05-02
The Compressed Baryonic Matter (CBM) experiment will explore the phase diagram of strongly interacting matter in the region of high net baryon densities. The experiment is being laid out for nuclear collision rates from 0.1 to 10 MHz to access a unique wide spectrum of probes, including rarest particles like hadrons containing charm quarks, or multi-strange hyperons. The physics programme will be performed with ion beams of energies up to 45 GeV/nucleon. Those will be delivered by the SIS-300 synchrotron at the completed FAIR accelerator complex. Parts of the research programme can already be addressed with the SIS-100 synchrotron at the start of FAIR operation in 2018. The initial energy range of up to 11 GeV/nucleon for heavy nuclei, 14 GeV/nucleon for light nuclei, and 29 GeV for protons, allows addressing the equation of state of compressed nuclear matter, the properties of hadrons in a dense medium, the production and propagation of charm near the production threshold, and exploring the third, strange dimension of the nuclide chart. In this article we summarize the CBM physics programme, the preparation of the detector, and give an outline of the recently begun construction of the Facility for Antiproton and Ion Research.
Baryon formation and dissociation in dense hadronic and quark matter
Energy Technology Data Exchange (ETDEWEB)
Wang Jincheng [Interdisciplinary Center for Theoretical Study and Department of Modern Physics, University of Science and Technology of China, Anhui 230026 (China); Institute for Theoretical Physics, Johann Wolfgang Goethe University, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main (Germany); Wang Qun, E-mail: qunwang@ustc.edu.cn [Interdisciplinary Center for Theoretical Study and Department of Modern Physics, University of Science and Technology of China, Anhui 230026 (China); Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences, Beijing 100049 (China); Rischke, Dirk H. [Institute for Theoretical Physics, Johann Wolfgang Goethe University, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main (Germany); Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, D-60438 Frankfurt am Main (Germany)
2011-10-19
We study the formation of baryons as composed of quarks and diquarks in hot and dense hadronic matter in a Nambu-Jona-Lasinio (NJL)-type model. We first solve the Dyson-Schwinger equation for the diquark propagator and then use this to solve the Dyson-Schwinger equation for the baryon propagator. We find that stable baryon resonances exist only in the phase of broken chiral symmetry. In the chirally symmetric phase, we do not find a pole in the baryon propagator. In the color-superconducting phase, there is a pole, but it has a large decay width. The diquark does not need to be stable in order to form a stable baryon, a feature typical for so-called Borromean states. Varying the strength of the diquark coupling constant, we also find similarities to the properties of an Efimov state.
Doubly heavy baryon spectra guided by lattice QCD
Garcilazo, H; Vijande, J
2016-01-01
This paper provides results for the ground state and excited spectra of three-flavored doubly heavy baryons, $bcn$ and $bcs$. We take advantage of the spin-independent interaction recently obtained to reconcile the lattice SU(3) QCD static potential and the results of nonperturbative lattice QCD for the triply heavy baryon spectra. We show that the spin-dependent potential might be constrained on the basis of nonperturbative lattice QCD results for the spin splittings of three-flavored doubly heavy baryons. Our results may also represent a challenge for future lattice QCD work, because a smaller lattice error could help in distinguishing between different prescriptions for the spin-dependent part of the interaction. Thus, by comparing with the reported baryon spectra obtained with parameters estimated from lattice QCD, one can challenge the precision of lattice calculations. The present work supports a coherent description of singly, doubly and triply heavy baryons with the same Cornell-like interacting poten...
Spectrum of heavy baryons in the quark model
Yoshida, Tetsuya; Hosaka, Atsushi; Oka, Makoto; Sadato, Katsunori
2015-01-01
Single- and double- heavy baryons are studied in the constituent quark model. The model Hamiltonian is chosen as a standard one with two exceptions : (1) The color-Coulomb term depend on quark masses, and (2) an antisymmetric $LS$ force is introduced. Model parameters are fixed by the strange baryon spectra, $\\Lambda$ and $\\Sigma$ baryons. The masses of the observed charmed and bottomed baryons are, then, fairly well reproduced. Our focus is on the low-lying negative-parity states, in which the heavy baryons show specific excitation modes reflecting the mass differences of heavy and light quarks. By changing quark masses from the SU(3) limit to the strange quark mass, further to the charm and bottom quark masses, we demonstrate that the spectra change from the SU(3) symmetry patterns to the heavy quark symmetry ones.
Octet baryon electromagnetic form factors in a relativistic quark model
Ramalho, G
2011-01-01
We study the octet baryon electromagnetic properties by applying the covariant spectator quark model, and provide covariant parametrization that can be used to study baryon electromagnetic reactions. While we use the lattice QCD data in the large pion mass regime (small pion cloud effects) to determine the parameters of the model in the valence quark sector, we use the nucleon physical and octet baryon magnetic moment data to parameterize the pion cloud contributions. The valence quark contributions for the octet baryon electromagnetic form factors are estimated by extrapolating the lattice parametrization in the large pion mass regime to the physical regime. As for the pion cloud contributions, we parameterize them in a covariant, phenomenological manner, combined with SU(3) symmetry. We also discuss the impact of the pion cloud effects on the octet baryon electromagnetic form factors and their radii.
Octet Baryon Electromagnetic Form Factors in a Relativistic Quark Model
Energy Technology Data Exchange (ETDEWEB)
Gilberto Ramalho, Kazuo Tsushima
2011-09-01
We study the octet baryon electromagnetic properties by applying the covariant spectator quark model, and provide covariant parametrization that can be used to study baryon electromagnetic reactions. While we use the lattice QCD data in the large pion mass regime (small pion cloud effects) to determine the parameters of the model in the valence quark sector, we use the nucleon physical and octet baryon magnetic moment data to parameterize the pion cloud contributions. The valence quark contributions for the octet baryon electromagnetic form factors are estimated by extrapolating the lattice parametrization in the large pion mass regime to the physical regime. As for the pion cloud contributions, we parameterize them in a covariant, phenomenological manner, combined with SU(3) symmetry. We also discuss the impact of the pion cloud effects on the octet baryon electromagnetic form factors and their radii.
Strange baryon spectroscopy in the relativistic quark model
Faustov, R N
2015-01-01
Mass spectra of strange baryons are calculated in the framework of the relativistic quark model based on the quasipotential approach. Baryons are treated as the relativistic quark-diquark bound systems. It is assumed that two quarks with equal constituent masses form a diquark. The diquark excitations and its internal structure are consistently taken into account. Calculations are performed up to rather high orbital and radial excitations of strange baryons. On this basis the Regge trajectories are constructed. The obtained results are compared with available experimental data and previous predictions. It is found that all masses of the 4- and 3-star, as well as most of the 2- and 1-star states of strange baryons with established quantum numbers are well reproduced. The developed relativistic quark-diquark model predicts less excited states than three-quark models of strange baryons.
Strange baryon spectroscopy in the relativistic quark model
Faustov, R. N.; Galkin, V. O.
2015-09-01
Mass spectra of strange baryons are calculated in the framework of the relativistic quark model based on the quasipotential approach. Baryons are treated as relativistic quark-diquark bound systems. It is assumed that two quarks with equal constituent masses form a diquark. The diquark excitations and its internal structure are consistently taken into account. Calculations are performed up to rather high orbital and radial excitations of strange baryons. On this basis the Regge trajectories are constructed. The obtained results are compared with available experimental data and previous predictions. It is found that all masses of the 4- and 3-star states of strange baryons with established quantum numbers, as well as most of the 2- and 1-star states, are well reproduced. The developed relativistic quark-diquark model predicts less excited states than three-quark models of strange baryons.
North Pacific Acoustic Laboratory: Deep Water Acoustic Propagation in the Philippine Sea
2014-09-30
acoustic predictions and for understanding the local ocean dynamics, (iii) improving our understanding of the physics of scattering by internal waves ...the scattering of the acoustic signals by ocean internal waves and/or spice (Dzieciuch, 2014). The procedure consisted of pulse compression of the...ambient noise field, and (v) understanding the relationship between the acoustic field in the water column and the seismic field in the seafloor for both
Prakash, Abhishek; SDSS-IV/eBOSS
2017-01-01
SDSS-IV/eBOSS survey will allow a ˜1% measurement of the Baryon Acoustic Oscillation (BAO) scale and a 4.0%Redshift Space Distortion (RSD) measurement using a relatively uniform set of luminous, early-type galaxies in the redshift range 0.6 image both wider areas and deeper volumes than would be possible with spectroscopy, allowing one to probe both larger scales and larger volumes. The ability to make precise clustering measurements with photometric data has been well demonstrated by Padmanabhan et al. (2007).
Aspects of baryon structure in lattice QCD
Babich, Ronald
Despite the long success of Quantum Chromodynamics (QCD) as the theory of the strong interactions, there remains much to be understood about the structure of hadrons and the consequences of QCD in the nonperturbative regime. Lattice gauge theory, a framework nearly as old as QCD itself, makes calculations in this regime possible, starting from first principles. With advances in theoretical understanding, methods, and computer technology, the lattice has found application to an ever-widening range of problems. In this dissertation, I consider two such problems having to do with the structure of baryons. The first concerns the contribution of sea quarks, and the strange quark in particular, to form factors of the nucleon. This has been a long-standing challenge for the lattice, because such contributions involve the insertion of a current on a quark loop, demanding the full inversion of the discretized Dirac operator, conceptually a large sparse matrix. I discuss methods for addressing this challenge and present a calculation of the strange scalar form factor and the related parameter fTs. The latter is of great theoretical interest, since it enters into the cross section for the scattering of dark matter off nuclei in supersymmetric extensions of the standard model. As such, it represents a major uncertainty in the interpretation of direct detection experiments. I also present results for the strange quark contribution to the nucleon's axial and electromagnetic form factors, which are themselves the subject of active experimental programs. These calculations were performed using the Wilson fermion formulation on a 243 x 64 anisotropic lattice. In the second part of the dissertation, I turn to the valence sector and address the role of diquark correlations in the observed spectrum of hadrons and their properties. A diquark is a correlated pair of quarks, thought to play an important role in certain phenomenological models of hadrons. I present results for baryon wave
National Oceanic and Atmospheric Administration, Department of Commerce — Fisheries acoustics data are collected from more than 200 sea-days each year aboard the FRV DELAWARE II and FRV ALBATROSS IV (decommissioned) and the FSV Henry B....
Damarla, Thyagaraju
2015-01-01
This book presents all aspects of situational awareness in a battlefield using acoustic signals. It starts by presenting the science behind understanding and interpretation of sound signals. The book then goes on to provide various signal processing techniques used in acoustics to find the direction of sound source, localize gunfire, track vehicles, and detect people. The necessary mathematical background and various classification and fusion techniques are presented. The book contains majority of the things one would need to process acoustic signals for all aspects of situational awareness in one location. The book also presents array theory, which is pivotal in finding the direction of arrival of acoustic signals. In addition, the book presents techniques to fuse the information from multiple homogeneous/heterogeneous sensors for better detection. MATLAB code is provided for majority of the real application, which is a valuable resource in not only understanding the theory but readers, can also use the code...
Akiyama, Iwaki
2009-01-01
The 29th International Symposium on Acoustical Imaging was held in Shonan Village, Kanagawa, Japan, April 15-18, 2007. This interdisciplinary Symposium has been taking place every two years since 1968 and forms a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. In the course of the years the volumes in the Acoustical Imaging Series have developed and become well-known and appreciated reference works. Offering both a broad perspective on the state-of-the-art in the field as well as an in-depth look at its leading edge research, this Volume 29 in the Series contains again an excellent collection of seventy papers presented in nine major categories: Strain Imaging Biological and Medical Applications Acoustic Microscopy Non-Destructive Evaluation and Industrial Applications Components and Systems Geophysics and Underwater Imaging Physics and Mathematics Medical Image Analysis FDTD method and Other Numerical Simulations Audience Researcher...
Kuttruff, Heinrich; Mommertz, Eckard
The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.
Hyperon Single-Particle Potentials Calculated from SU6 Quark-Model Baryon-Baryon Interactions
Kohno, M; Fujita, T; Nakamoto, C; Suzuki, Y
2000-01-01
Using the SU6 quark-model baryon-baryon interaction recently developed by the Kyoto-Niigata group, we calculate NN, Lambda N and Sigma N G-matrices in ordinary nuclear matter. This is the first attempt to discuss the Lambda and Sigma single-particle potentials in nuclear medium, based on the realistic quark-model potential. The Lambda potential has the depth of more than 40 MeV, which is more attractive than the value expected from the experimental data of Lambda-hypernuclei. The Sigma potential turns out to be repulsive, the origin of which is traced back to the strong Pauli repulsion in the Sigma N (I=3/2) ^3S_1 state.
Mirage in Temporal Correlation functions for Baryon-Baryon Interactions in Lattice QCD
Iritani, Takumi; Aoki, Sinya; Gongyo, Shinya; Hatsuda, Tetsuo; Ikeda, Yoichi; Inoue, Takashi; Ishii, Noriyoshi; Murano, Keiko; Nemura, Hidekatsu; Sasaki, Kenji
2016-01-01
Single state saturation of the temporal correlation function is a key condition to extract physical observables such as energies and matrix elements of hadrons from lattice QCD simulations. A method commonly employed to check the saturation is to seek for a plateau of the observables for large Euclidean time. Identifying the plateau in the cases having nearby states, however, is non-trivial and one may even be misled by a fake plateau. Such a situation takes place typically for the system with two or more baryons. In this study, we demonstrate explicitly the danger from a possible fake plateau in the temporal correlation functions mainly for two baryons ($\\Xi\\Xi$ and $NN$), and three and four baryons ($^3{\\rm He}$ and $^4{\\rm He})$ as well, employing (2+1)-flavor lattice QCD at $m_{\\pi}=0.51$ GeV on four lattice volumes with $L=$ 2.9, 3.6, 4.3 and 5.8 fm. Caution is given for drawing conclusion on the bound $NN$, $3N$ and $4N$ systems only based on the temporal correlation functions.
Quark-Model Baryon-Baryon Interaction and its Applications to Hypernuclei
Fujiwara, Y; Suzuki, Y; Kohno, M; Miyagawa, K
2004-01-01
The quark-model baryon-baryon interaction fss2, proposed by the Kyoto-Niigata group, is a unified model for the complete baryon octet (B_8=N, Lambda, Sigma and Xi), which is formulated in a framework of the (3q)-(3q) resonating-group method (RGM) using the spin-flavor SU_6 quark-model wave functions and effective meson-exchange potentials at the quark level. Model parameters are determined to reproduce properties of the nucleon-nucleon system and the low-energy cross section data for the hyperon-nucleon scattering. Due to the several improvements including the introduction of vector-meson exchange potentials, fss2 has achieved very accurate description of the NN and YN interactions, comparable to various one-boson exchange potentials. We review the essential features of fss2 and our previous model FSS, and their predictions to few-body systems in confrontation with the available experimental data. Some characteristic features of the B_8 B_8 interactions with the higher strangeness, S=-2, -3, -4, predicted by ...
First observation of doubly charmed baryons
Energy Technology Data Exchange (ETDEWEB)
M. A. Moinester et al.
2003-09-25
The SELEX experiment (E781) at Fermilab has observed two statistically compelling high mass states near 3.6 GeV/c{sup 2}, decaying to {Lambda}{sub c}{sup +} K{sup -} {pi}{sup +} and {Lambda}{sub c}{sup +} K{sup -} {pi}{sup +}{pi}{sup +}. These final states are Cabibbo-allowed decay modes of doubly charmed baryons {Xi}{sub cc}{sup +} and {Xi}{sub cc}{sup ++}, respectively. The masses are in the range expected from theoretical considerations, but the spectroscopy is surprising. SELEX also has weaker preliminary evidence for a state near 3.8 GeV/c{sup 2}, a high mass state decaying to {Lambda}{sub c}{sup +} K{sup -} {pi}{sup +}{pi}{sup +}, possibly an excited {Xi}{sub cc}{sup ++} (ccu*). Data are presented and discussed.
Observation of a new charmed baryon
Albrecht, H.; Ehrlichmann, H.; Hamacher, T.; Hofmann, R. P.; Kirchhoff, T.; Nau, A.; Nowak, S.; Schröder, H.; Schulz, H. D.; Walter, M.; Wurth, R.; Hast, C.; Kapitza, H.; Kolanoski, H.; Kosche, A.; Lange, A.; Lindner, A.; Mankel, R.; Schieber, M.; Siegmund, T.; Spaan, B.; Thurn, H.; Töpfer, D.; Wegener, D.; Bittner, M.; Eckstein, P.; Paulini, M.; Reim, K.; Wegener, H.; Eckmann, R.; Mundt, R.; Oest, T.; Reiner, R.; Schmidt-Parzefall, W.; Stiewe, J.; Werner, S.; Ehret, K.; Hofmann, W.; Hüpper, A.; Khan, S.; Knöpfle, K. T.; Seeger, M.; Spengler, J.; Britton, D. I.; Charlesworth, C. E. K.; Edwards, K. W.; Hyatt, E. R. F.; Krieger, P.; Macfarlane, D. B.; Patel, P. M.; Prentice, J. D.; Saull, P. R. B.; Tzamariudaki, K.; van de Water, R. G.; Yoon, T.-S.; Reβing, D.; Schmidtler, M.; Schneider, M.; Schubert, K. R.; Strahl, K.; Waldi, R.; Weseler, S.; Kernel, G.; Križan, P.; Križnič, E.; Podobnik, T.; Živko, T.; Balagura, V.; Belyaev, I.; Chechelnitsky, S.; Danilov, M.; Droutskoy, A.; Gershtein, Yu.; Golutvin, A.; Korolko, I.; Kostina, G.; Litvintsev, D.; Lubimov, V.; Pakhlov, P.; Semenov, S.; Snizhko, A.; Tichomirov, I.; Zaitsev, Yu.; Argus Collaboration
1993-11-01
Using the ARGUS detector at the e+e- storage ring DORIS II at DESY, we have observed a new charmed baryon state in the channel Λc+π+π-. (All references to a specific charged state also imply the charge conjugate state.) The mass of this state was measured to be (2626.6 ± 0.5 ± 1.5) MeV/ c2. The product of the production cross section and branching ratio for this channel was determined to be (11.5 ± 2.5 ± 3.0) pb, and the natural width estimated to be smaller than 3.2 MeV/ c2 at 90% CL.
How do galaxies get their baryons?
Conselice, Christopher J
2011-01-01
Understanding how galaxies obtain baryons, their stars and gas, over cosmic time is traditionally approached in two different ways - theoretically and observationally. In general, observational approaches to galaxy formation include measuring basic galaxy properties, such as luminosities, stellar masses, rotation speeds, star formation rates and how these features evolve through time. Theoretically, cosmologically based models collate the physical effects driving galaxy assembly - mergers of galaxies, accretion of gas, star formation, and feedback, amongst others, to form predictions which are matched to galaxy observables. An alternative approach is to examine directly, in an observational way, the processes driving galaxy assembly, including the effects of feedback. This is a new `third way' towards understanding how galaxies are forming from gas accretion and mergers, and directly probes these effects instead of relying on simulations designed to reproduce observations. This empirical approach towards unde...
Review of Baryon Spectroscopy in Lattice QCD
Lin, Huey-Wen
2011-01-01
The complex patterns of the hadronic spectrum have puzzled physicists since the early discovery of the "particle zoo" in the 1960s. Today, the properties of these myriad particles are understood to be the result of quantum chromodynamics (QCD) with some modification by the electroweak interactions. Despite the discovery of this fundamental theory, the description of the hadronic spectrum has long been dominated by phenomenological models, due to the difficulties of addressing QCD in the strong-coupling regime, where nonperturbative effects are essential. By making numerical calculations in discretized spacetime, lattice gauge theory enables the ab initio study of many low-energy properties of QCD. Significant efforts are underway internationally to use lattice QCD to directly compute properties of ground and excited-state baryons. Detailed knowledge of the hadronic spectrum will provide insight into the character of these states beyond what can be extracted from models. In this review, I will focus on the lat...
On light baryons and their excitations
Eichmann, Gernot; Sanchis-Alepuz, Helios
2016-01-01
We study ground states and excitations of light octet and decuplet baryons within the framework of Dyson-Schwinger and Faddeev equations. We improve upon similar approaches by explicitly taking into account the momentum-dependent dynamics of the quark-gluon interaction that leads to dynamical chiral symmetry breaking. We perform calculations in both the three-body Faddeev framework and the quark-diquark approximation in order to assess the impact of the latter on the spectrum. Our results indicate that both approaches agree well with each other. The resulting spectra furthermore agree one-to-one with experiment, provided well-known deficiencies of the rainbow-ladder approximation are compensated for. We also discuss the mass evolution of the Roper and the excited Delta with varying pion mass and analyse the internal structure in terms of their partial wave decompositions.
Examining CP Symmetry in Strange Baryon Decays
Luk, K B
2000-01-01
Non-conservation of CP symmetry can manisfest itself in non-leptonic hyperon decays as a difference in the decay parameter between the strange-baryon decay and its charge conjugate. By comparing the decay distribution in the $\\Lambda$ helicity frame for the decay sequence $\\Xi^{-} \\to \\Lambda \\pi^{-}$, $\\Lambda \\to p \\pi^{-}$ with that of $\\bar{\\Xi}^{+}$ decay, E756 at Fermilab did not observe any CP-odd effect at the $10^{-2}$ level. The status of a follow-up experiment, HyperCP (FNAL E871), to search for CP violation in charged $\\Xi-\\Lambda$ decay with a sensitivity of $10^{-4}$ is also presented.
Observation of excited $\\Lambda^0_b$ baryons
Aaij, R; Adametz, A; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amhis, Y; Anderson, J; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, C; Bauer, Th; Bay, A; Beddow, J; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Corti, G; Couturier, B; Cowan, G A; Craik, D; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Del Buono, L; Deplano, C; Derkach, D; Deschamps, O; Dettori, F; Dickens, J; Dijkstra, H; Diniz Batista, P; Domingo Bonal, F; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisele, F; Eisenhardt, S; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Elsby, D; Esperante Pereira, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Fernandez Albor, V; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garnier, J-C; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauld, R; Gauvin, N; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Harrison, P F; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Hoballah, M; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Huston, R S; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jahjah Hussein, M; Jans, E; Jansen, F; Jaton, P; Jean-Marie, B; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Keaveney, J; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kim, Y M; Knecht, M; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kruzelecki, K; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Li, L; Li, Y; Li Gioi, L; Lieng, M; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Luisier, J; Mac Raighne, A; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Magnin, J; Malde, S; Mamunur, R M D; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Massafferri, A; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Maynard, B; Mazurov, A; McCarthy, J; McGregor, G; McNulty, R; Meissner, M; Merk, M; Merkel, J; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Mylroie-Smith, J; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen-Mau, C; Nicol, M; Niess, V; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B K; Palacios, J; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pie Valls, B; Pietrzyk, B; Pilař, T; Pinci, D; Plackett, R; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodrigues, F; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Rosello, M; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santinelli, R; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schleich, S; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Smith, M; Sobczak, K; Soler, F J P; Solomin, A; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tsaregorodtsev, A; Tuning, N; Ubeda Garcia, M; Ukleja, A; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Vesterinen, M; Viaud, B; Videau, I; Vieira, D; Vilasis-Cardona, X; Visniakov, J; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zvyagin, A
2012-01-01
Using $pp$ collision data corresponding to 1.0~fb^{-1} integrated luminosity collected by the LHCb detector, two narrow states are observed in the $\\Lambda_b^0\\pi^+\\pi^-$ spectrum with masses $5911.95\\pm 0.12(\\mbox{stat})\\pm 0.03(\\mbox{syst})\\pm 0.66(\\Lambda_b^0\\mbox{ mass})$ MeV/$c^2$ and $5919.76\\pm 0.07(\\mbox{stat})\\pm 0.02(\\mbox{syst})\\pm 0.66(\\Lambda_b^0\\mbox{ mass})$ MeV/$c^2$. The significances of the observations are 4.9 and 10.1 standard deviations, respectively. These states are interpreted as the orbitally-excited $\\Lambda_b^0$ baryons, $\\Lambda_b^{*0}(5912)$ and $\\Lambda_b^{*0}(5920)$.
Leptogenesis and gravity: Baryon asymmetry without decays
Directory of Open Access Journals (Sweden)
J.I. McDonald
2017-03-01
Full Text Available A popular class of theories attributes the matter-antimatter asymmetry of the Universe to CP-violating decays of super-heavy BSM particles in the Early Universe. Recently, we discovered a new source of leptogenesis in these models, namely that the same Yukawa phases which provide the CP violation for decays, combined with curved-spacetime loop effects, lead to an entirely new gravitational mechanism for generating an asymmetry, driven by the expansion of the Universe and independent of the departure of the heavy particles from equilibrium. In this Letter, we build on previous work by analysing the full Boltzmann equation, exploring the full parameter space of the theory and studying the time-evolution of the asymmetry. Remarkably, we find regions of parameter space where decays play no part at all, and where the baryon asymmetry of the Universe is determined solely by gravitational effects.
Baryon transition form factors at the pole
Tiator, L.; Döring, M.; Workman, R. L.; Hadžimehmedović, M.; Osmanović, H.; Omerović, R.; Stahov, J.; Švarc, A.
2016-12-01
Electromagnetic resonance properties are uniquely defined at the pole and do not depend on the separation of the resonance from background or the decay channel. Photon-nucleon branching ratios are nowadays often quoted at the pole, and we generalize the considerations to the case of virtual photons. We derive and compare relations for nucleon to baryon transition form factors both for the Breit-Wigner and the pole positions. Using the MAID2007 and SAID SM08 partial wave analyses of pion electroproduction data, we compare the GM, GE, and GC form factors for the Δ (1232 ) resonance excitation at the Breit-Wigner resonance and pole positions up to Q2=5 GeV2 . We also explore the E /M and S /M ratios as functions of Q2. For pole and residue extraction, we apply the Laurent + Pietarinen method.
Baryon transition form factors at the pole
Tiator, L; Workman, R L; Hadžimehmedović, M; Osmanović, H; Omerović, R; Stahov, J; Švarc, A
2016-01-01
Electromagnetic resonance properties are uniquely defined at the pole and do not depend on the separation of the resonance from background or the decay channel. Photon-nucleon branching ratios are nowadays often quoted at the pole, and we generalize the considerations to the case of virtual photons. We derive and compare relations for nucleon to baryon transition form factors both for the Breit-Wigner and the pole positions. Using the MAID2007 and SAID SM08 partial wave analyses of pion electroproduction data, we compare the $G_M$, $G_E$, and $G_C$ form factors for the $\\Delta(1232)$ resonance excitation at the Breit-Wigner resonance and pole positions up to $Q^2=5$ GeV$^2$. We also explore the $E/M$ and $S/M$ ratios as functions of $Q^2$. For pole and residue extraction, we apply the Laurent + Pietarinen method.
Cluster outskirts and the missing baryons
Eckert, D.
2016-06-01
Galaxy clusters are located at the crossroads of intergalactic filaments and are still forming through the continuous merging and accretion of smaller structures from the surrounding cosmic web. Deep, wide-field X-ray studies of the outskirts of the most massive clusters bring us valuable insight into the processes leading to the growth of cosmic structures. In addition, cluster outskirts are privileged sites to search for the missing baryons, which are thought to reside within the filaments of the cosmic web. I will present the XMM cluster outskirts project, a VLP that aims at mapping the outskirts of 13 nearby clusters. Based on the results obtained with this program, I will then explore ideas to exploit the capabilities of XMM during the next decade.
Spin-orbit interactions between two baryons
Energy Technology Data Exchange (ETDEWEB)
Takeuchi, Sachiko [Japan College of Social Work, Kiyose, Tokyo (Japan); Morimatsu, Osamu [High Energy Accelerator Research Organization, Tanashi Branch (KEK-Tanashi), Tanashi, Tokyo (Japan); Tani, Yoshihiro; Oka, Makoto [Tokyo Inst. of Tech. (Japan). Dept. of Physics
2000-04-01
The spin-orbit interactions in the quark cluster models are reviewed in this article. The observed spin-orbit force between two nucleons is strong, while that in the excited baryons or in the {lambda}N interaction is small. We try to sort out whether the quark cluster model can produce a spin-orbit force which explains these features simultaneously. Various works which include the spin-orbit force with different origins such as gluons, mesons, or coupling to other channels are compared to each other. The roles of the symmetric and anti-symmetric spin- orbit forces in the NN scattering phase shifts and in the YN low-energy cross sections and the phase shifts are investigated. (author)
Leptogenesis and gravity: Baryon asymmetry without decays
McDonald, J. I.; Shore, G. M.
2017-03-01
A popular class of theories attributes the matter-antimatter asymmetry of the Universe to CP-violating decays of super-heavy BSM particles in the Early Universe. Recently, we discovered a new source of leptogenesis in these models, namely that the same Yukawa phases which provide the CP violation for decays, combined with curved-spacetime loop effects, lead to an entirely new gravitational mechanism for generating an asymmetry, driven by the expansion of the Universe and independent of the departure of the heavy particles from equilibrium. In this Letter, we build on previous work by analysing the full Boltzmann equation, exploring the full parameter space of the theory and studying the time-evolution of the asymmetry. Remarkably, we find regions of parameter space where decays play no part at all, and where the baryon asymmetry of the Universe is determined solely by gravitational effects.
Quantum Operator Design for Lattice Baryon Spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Lichtl, Adam [Carnegie Mellon Univ., Pittsburgh, PA (United States)
2006-09-07
A previously-proposed method of constructing spatially-extended gauge-invariant three-quark operators for use in Monte Carlo lattice QCD calculations is tested, and a methodology for using these operators to extract the energies of a large number of baryon states is developed. This work is part of a long-term project undertaken by the Lattice Hadron Physics Collaboration to carry out a first-principles calculation of the low-lying spectrum of QCD. The operators are assemblages of smeared and gauge-covariantly-displaced quark fields having a definite flavor structure. The importance of using smeared fields is dramatically demonstrated. It is found that quark field smearing greatly reduces the couplings to the unwanted high-lying short-wavelength modes, while gauge field smearing drastically reduces the statistical noise in the extended operators.
Quark-mass dependence of baryon resonances
Energy Technology Data Exchange (ETDEWEB)
Lutz, M.F.M. [Gesellschaft fuer Schwerionenforschung (GSI), Planck Str. 1, D-64291 Darmstadt (Germany) and Institut fuer Kernphysik, TU Darmstadt, D-64289 Darmstadt (Germany)]. E-mail: m.lutz@gsi.de; Garcia-Recio, C. [Departamento de Fisica Moderna, Universidad de Granada, E-18071 Granada (Spain); Kolomeitsev, E.E. [Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen (Denmark); Nieves, J. [Departamento de Fisica Moderna, Universidad de Granada, E-18071 Granada (Spain)
2005-05-30
We study the quark-mass dependence of JP=12- s-wave and JP=32- d-wave baryon resonances. Parameter-free results are obtained in terms of the leading order chiral Lagrangian. In the 'heavy' SU(3) limit with m{pi}=mK{approx}500 MeV the s-wave resonances turn into bound states forming two octets plus a singlet representations of the SU(3) group. Similarly the d-wave resonances turn into bound states forming an octet and a decuplet in this limit. A contrasted result is obtained in the 'light' SU(3) limit with m{pi}=mK{approx}140 MeV for which no resonances exist.
Baryon transition form factors at the pole
Energy Technology Data Exchange (ETDEWEB)
Tiator, L.; Döring, M.; Workman, R. L.; Hadžimehmedović, M.; Osmanović, H.; Omerović, R.; Stahov, J.; Švarc, A.
2016-12-01
Electromagnetic resonance properties are uniquely defined at the pole and do not depend on the separation of the resonance from background or the decay channel. Photon-nucleon branching ratios are nowadays often quoted at the pole, and we generalize the considerations to the case of virtual photons. We derive and compare relations for nucleon to baryon transition form factors both for the Breit-Wigner and the pole positions. Using the MAID2007 and SAID SM08 partial wave analyses of pion electroproduction data, we compare the $G_M$, $G_E$, and $G_C$ form factors for the $\\Delta(1232)$ resonance excitation at the Breit-Wigner resonance and pole positions up to $Q^2=5$ GeV$^2$. We also explore the $E/M$ and $S/M$ ratios as functions of $Q^2$. For pole and residue extraction, we apply the Laurent + Pietarinen method.
Baryon oscillations in galaxy and matter power-spectrum covariance matrices
Neyrinck, Mark C
2007-01-01
We investigate large-amplitude baryon acoustic oscillations (BAO's) in off-diagonal entries of cosmological power-spectrum covariance matrices. These covariance-matrix BAO's describe the increased attenuation of power-spectrum BAO's caused by upward fluctuations in large-scale power. We derive an analytic approximation to covariance-matrix entries in the BAO regime, and check the analytical predictions using N-body simulations. These BAO's look much stronger than the BAO's in the power spectrum, but seem detectable only at about a one-sigma level in gigaparsec-scale galaxy surveys. In estimating cosmological parameters using matter or galaxy power spectra, including the covariance-matrix BAO's can have a several-percent effect on error-bar widths for some parameters directly related to the BAO's, such as the baryon fraction. Also, we find that including the numerous galaxies in small haloes in a survey can reduce error bars in these cosmological parameters more than the simple reduction in shot noise might su...
The SDSS-IV extended Baryonic Oscillation Spectroscopic Survey: Quasar Target Selection
Myers, Adam D; Prakash, Abhishek; Pâris, Isabelle; Yeche, Christophe; Dawson, Kyle S; Bovy, Jo; Lang, Dustin; Schlegel, David J; Newman, Jeffrey A; Petitjean, Patrick; Kneib, Jean Paul; Laurent, Pierre; Percival, Will J; Ross, Ashley J; Seo, Hee-Jong; Tinker, Jeremy L; Armengaud, Eric; Brownstein, Joel; Burtin, Etienne; Cai, Zheng; Comparat, Johan; Kasliwal, Mansi; Kulkarni, Shrinivas R; Laher, Russ; Levitan, David; McBride, Cameron K; McGreer, Ian D; Miller, Adam A; Nugent, Peter; Ofek, Eran; Rossi, Graziano; Ruan, John; Schneider, Donald P; Sesar, Branimir; Streblyanska, Alina; Surace, Jason
2015-01-01
As part of the SDSS-IV the extended Baryon Oscillation Spectroscopic Survey (eBOSS) will perform measurements of the cosmological distance scale via application of the Baryon Acoustic Oscillation (BAO) method to samples of quasars and galaxies. Quasar surveys are particularly useful in the BAO context as they can trace extremely large volumes back to moderately high redshift. eBOSS will adopt two approaches to target quasars over a 7500 sq. deg. area. First, z > 2.1 quasars will be targeted to improve BAO measurements in the Lyman-Alpha Forest. Second, a homogeneously selected "CORE" sample of quasars at 0.9 2.1 quasars. A supplemental selection based on variability of quasars in multi-epoch imaging from the Palomar Transient Factory should recover an additional ~3-4 per sq. deg. z > 2.1 quasars to g 500,000 new spectroscopically confirmed quasars and > 500,000 uniformly selected spectroscopically confirmed 0.9 < z < 2.2 quasars. At the conclusion of SDSS-IV, the SDSS will have provided unique spectra...
The SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Overview and Early Data
Dawson, Kyle S; Percival, Will J; Alam, Shadab; Albareti, Franco D; Anderson, Scott F; Armengaud, Eric; Aubourg, Eric; Bailey, Stephen; Bautista, Julian E; Berlind, Andreas A; Bershady, Matthew A; Beutler, Florian; Bizyaev, Dmitry; Blanton, Michael R; Blomqvist, Michael; Bolton, Adam S; Bovy, Jo; Brandt, W N; Brinkmann, Jon; Brownstein, Joel R; Burtin, Etienne; Busca, N G; Cai, Zheng; Chuang, Chia-Hsun; Clerc, Nicolas; Comparat, Johan; Cope, Frances; Croft, Rupert A C; Cruz-Gonzalez, Irene; da Costa, Luiz N; Cousinou, Marie-Claude; Darling, Jeremy; de la Torre, Sylvain; Delubac, Timothee; Bourboux, Helion du Mas des; Dwelly, Tom; Ealet, Anne; Eisenstein, Daniel J; Eracleous, Michael; Escoffier, S; Fan, Xiaohui; Finoguenov, Alexis; Font-Ribera, Andreu; Frinchaboy, Peter; Gaulme, Patrick; Georgakakis, Antonis; Green, Paul; Guo, Hong; Guy, Julien; Ho, Shirley; Holder, Diana; Huehnerhoff, Joe; Hutchinson, Timothy; Jing, Yipeng; Jullo, Eric; Kamble, Vikrant; Kinemuchi, Karen; Kirkby, David; Kitaura, Francisco-Shu; Klaene, Mark A; Laher, Russ R; Lang, Dustin; Laurent, Pierre; Goff, Jean-Marc Le; Li, Cheng; Liang, Yu; Lima, Marcos; Lin, Qiufan; Lin, Weipeng; Lin, Yen-Ting; Long, Daniel C; Lundgren, Britt; MacDonald, Nicholas; Maia, Marcio Antonio Geimba; Malanushenko, Elena; Malanushenko, Viktor; Mariappan, Vivek; McBride, Cameron K; McGreer, Ian D; Menard, Brice; Merloni, Andrea; Meza, Andres; Montero-Dorta, Antonio D; Muna, Demitri; Myers, Adam D; Nandra, Kirpal; Naugle, Tracy; Newman, Jeffrey A; Noterdaeme, Pasquier; Nugent, Peter; Ogando, Ricardo; Olmstead, Matthew D; Oravetz, Audrey; Oravetz, Daniel J; Padmanabhan, Nikhil; Palanque-Delabrouille, Nathalie; Pan, Kaike; Parejko, John K; Paris, Isabelle; Peacock, John A; Petitjean, Patrick; Pieri, Matthew M; Pisani, Alice; Prada, Francisco; Prakash, Abhishek; Raichoor, Anand; Reid, Beth; Rich, James; Ridl, Jethro; Rodriguez-Torres, Sergio; Rosell, Aurelio Carnero; Ross, Ashley J; Rossi, Graziano; Ruan, John; Salvato, Mara; Sayres, Conor; Schneider, Donald P; Schlegel, David J; Seljak, Uros; Seo, Hee-Jong; Sesar, Branimir; Shandera, Sarah; Shu, Yiping; Slosar, Anze; Sobreira, Flavia; Strauss, Michael A; Streblyanska, Alina; Suzuki, Nao; Tao, Charling; Tinker, Jeremy L; Tojeiro, Rita; Vargas-Magana, Mariana; Wang, Yuting; Weaver, Benjamin A; Weinberg, David H; White, Martin; Wood-Vasey, W M; Yeche, Christophe; Zhai, Zhongxu; Zhao, Cheng; Zhao, Gong-bo; Zheng, Zheng; Zhu, Guangtun Ben; Zou, Hu
2015-01-01
The Extended Baryon Oscillation Spectroscopic Survey (eBOSS) will conduct novel cosmological observations using the BOSS spectrograph at Apache Point Observatory. Observations will be simultaneous with the Time Domain Spectroscopic Survey (TDSS) designed for variability studies and the Spectroscopic Identification of eROSITA Sources (SPIDERS) program designed for studies of X-ray sources. eBOSS will use four different tracers to measure the distance-redshift relation with baryon acoustic oscillations (BAO) in the clustering of matter. Using more than 250,000 new, spectroscopically confirmed luminous red galaxies at a median redshift z=0.72, we project that eBOSS will yield measurements of $d_A(z)$ to an accuracy of 1.2% and measurements of H(z) to 2.1% when combined with the z>0.6 sample of BOSS galaxies. With ~195,000 new emission line galaxy redshifts, we expect BAO measurements of $d_A(z)$ to an accuracy of 3.1% and H(z) to 4.7% at an effective redshift of z= 0.87. A sample of more than 500,000 spectroscop...
Dark Matter and the Baryon Asymmetry of the Universe
Farrar, G R; Farrar, Glennys R.; Zaharijas, Gabrijela
2004-01-01
We present a mechanism to generate the baryon asymmetry of the Universe which preserves the net baryon number created in the Big Bang. If dark matter particles carry baryon number $B_X$, and $\\sigma^{\\rm annih}_{\\bar{X}} < \\sigma^{\\rm annih}_{X} $, the $\\bar{X}$'s freeze out at a higher temperature and have a larger relic density than $X$'s. If $m_X \\lsi 4.5 B_X $GeV and the annihilation cross sections differ by $\\gsi 10%$, this type of scenario naturally explains the observed $\\Omega_{DM} \\approx 5 \\Omega_b$.
Stability issues with baryons in AdS/CFT
Sfetsos, Konstadinos
2008-01-01
We consider baryon vertices within the gauge/gravity correspondence for a class of curved backgrounds. The holographic description based on the N=4 SYM theory for SU(N) allows classical solutions representing bound states of k-quarks with k less than or equal to N. We construct the corresponding classical configurations and perform a stability analysis. We present the details for the theory at the conformal point and at finite temperature and show that there is a critical value of k, below which there is instability. This may also arise when the baryon reaches a critical size. We also extend our treatment to magnetically charged baryon vertices.
Missing Baryons and the Warm-Hot Intergalactic Medium
Nicastro, F; Elvis, Martin
2007-01-01
Stars and gas in galaxies, hot intracluster medium, and intergalactic photo-ionized gas make up at most half of the baryons that are expected to be present in the universe. The majority of baryons are still missing and are expected to be hidden in a web of warm-hot intergalactic medium. This matter was shock-heated during the collapse of density perturbations that led to the formation of the relaxed structures that we see today. Finding the missing baryons and thereby producing a complete inventory of possibly the only detectable component of the energy-mass budget of the universe is crucial to validate or invalidate our standard cosmological model.
Are narrow mesons, baryons and dibaryons evidence for multiquark states?
Energy Technology Data Exchange (ETDEWEB)
Tatischeff, B.; Yonnet, J. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire
2000-07-01
Several narrow structures have been progressively observed since the last fifteen years, in di-baryonic invariant mass spectra or in missing mass spectra. More recently, narrow structures were observed in baryonic and now in mesonic mass spectra. Since these small peaks appear at fixed masses, independently of the experiment, they are associated with real states. There is no room to explain these states within classical nuclear physics taking into account baryonic and mesonic degrees of freedom. An interpretation is proposed, which associate these narrow structures with two coloured quark clusters. (authors)
Medium modifications of baryon properties in nuclear matter and hypernuclei
Liang, J. S.; Shen, H.
2013-09-01
We study the medium modifications of baryon properties in nuclear many-body systems, especially in Λ hypernuclei. The nucleon and the Λ hyperon are described in the Friedberg-Lee model as nontopological solitons which interact through the self-consistent exchange of scalar and vector mesons. The quark degrees of freedom are explicitly considered in the model, so that the medium effects on baryons could be investigated. It is found that the model can provide reasonable descriptions for nuclear matter, finite nuclei, and Λ hypernuclei. The present model predicts a significant increase of the baryon radius in nuclear medium.
Diquark correlations in baryons: the Interacting Quark Diquark Model
Santopinto, E
2015-01-01
A review of the underlying ideas of the Interacting Quark Diquark Model (IQDM) that asses the baryon spectroscopy in terms of quark diquark degrees of freedom is given, together with a discussion of the missing resonances problem. Some ideas about its generalization the heavy baryon spectroscopy is given.s of freedom is given, together with a discussion of the missing resonances problem. Some ideas about its generalization the heavy baryon spectroscopy is given.The results are compared to the existing experimental data.
Medium modifications of baryon properties in nuclear matter and hypernuclei
Liang, J S
2013-01-01
We study the medium modifications of baryon properties in nuclear many-body systems, especially in $\\Lambda$ hypernuclei. The nucleon and the $\\Lambda$ hyperon are described in the Friedberg-Lee model as nontopological solitons which interact through the self-consistent exchange of scalar and vector mesons. The quark degrees of freedom are explicitly considered in the model, so that the medium effects on baryons could be investigated. It is found that the model can provide reasonable descriptions for nuclear matter, finite nuclei, and $\\Lambda$ hypernuclei. The present model predicts a significant increase of the baryon radius in nuclear medium.
Relativistic five-quark equations and hybrid baryon spectroscopy
Gerasyuta, S M
2002-01-01
The relativistic five-quark equations are found in the framework of the dispersion relation technique. The Behavior of the low-energy five-particle amplitude is determined by its leading singularities in the pair invariant masses. The solutions of these equations using the method based on the extraction leading singularities of the amplitudes are obtained. The mass spectra of nucleon and delta-isobar hybrid baryons are calculated. The calculations of hybrid baryon amplitudes estimate the contributions of four subamplitudes. The main contributions to the hybrid baryon amplitude are determined by the subamplitudes, which include the excited gluon states.
Dynamically generated open charmed baryons beyond the zero range approximation
Jimenez-Tejero, C E; Vidaña, I
2009-01-01
The interaction of the low lying pseudo-scalar mesons with the ground state baryons in the charm sector is studied within a coupled channel approach using a t-channel vector-exchange driving force. The amplitudes describing the scattering of the pseudo-scalar mesons off the ground-state baryons are obtained by solving the Lippmann--Schwinger equation. We analyze in detail the effects of going beyond the $t=0$ approximation. Our model predicts the dynamical generation of several open charmed baryon resonances in different isospin and strangeness channels, some of which can be clearly identified with recently observed states.
Baryon resonances as dynamically generated states in chiral dynamics
Jido, Dasiuke
2012-01-01
We discuss baryon resonances which are dynamically generated in hadron dynamics based on chiral coupled channels approach. With the dynamical description of the baryon resonance, we discuss the origin of the resonance pole, finding that for the description of N(1535) some other components than meson and baryon are necessary. Since the chiral unitary model provides a microscopic description in terms of constituent hadrons, it is straightforward to calculate transition amplitudes and form factors of resonances without introducing further parameters. Finally we briefly discuss few-body nuclear kaonic systems as hadronic molecular states.
Baryons and Low-Density Baryonic Matter in 1+1 Dimensional Large N_c QCD with Heavy Quarks
Adhikari, Prabal; Jamgochian, Arec; Kumar, Nilay
2012-01-01
This paper studies baryons and baryonic matter in the combined large N_c and heavy quark mass limits of QCD in 1+1 dimension. In this non-relativistic limit, baryons are composed of N_c quarks that interact, at leading order in N_c, through a color Coulomb potential. Using variational techniques, very accurate calculations of single baryon masses and interaction energies of low-density baryon crystal are performed. These results are used to cross-check a general numerical approach applicable for arbitrary quark masses and baryon densities recently proposed by Bringoltz, which is based on a lattice in a finite box with periodic boundary conditions. The Bringoltz method differs from a previous approach of Salcedo, et al. in its treatment of a finite box effect - namely gauge configurations that wind around the box. One might expect these effects to be small for large enough boxes, in which the baryon density approaches zero to high accuracy at the edges. However, the effects of these windings appear to be quite...
Mass spectra and Regge trajectories of , , and baryons
Shah, Zalak; Thakkar, Kaushal; Rai, Ajay Kumar; Vinodkumar, P. C.
2016-12-01
We calculate the mass spectra of the singly charmed baryons (, , and ) using the hypercentral constituent quark model (hCQM). The hyper color Coulomb plus linear potential is used to calculate the masses of positive (up to ) and negative (up to ) parity excited states. The spin-spin, spin-orbital and tensor interaction terms are also incorporated for mass spectra. We have compared our results with other theoretical and lattice QCD predictions for each baryon. Moreover, the known experimental results are also reasonably close to our predicted masses. By using the radial and orbital excitation, we construct Regge trajectories for the baryons in the (n, M2) plane and find their slopes and intercepts. Other properties of these baryons, like magnetic moments, radiative transitions and radiative decay widths, are also calculated successfully. Supported in part (A. K. Rai) by DST, India (SERB Fast Track Scheme SR/FTP/PS-152/2012)
Electromagnetic form factors of baryons in an algebraic approach
Energy Technology Data Exchange (ETDEWEB)
Bijker, R. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, 04510 Mexico D.F. (Mexico); Leviatan, A. [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel)
1999-07-01
We present a simultaneous analysis of elastic and transition form factors of the nucleon. The calculations are performed in the framework of an algebraic model of baryons. Effects of meson cloud couplings are considered. (Author)
Electromagnetic form factors of baryons in an algebraic approach
Bijker, R
1999-01-01
We present a simultaneous analysis of elastic and transition form factors of the nucleon. The calculations are performed in the framework of an algebraic model of baryons. Effects of meson cloud couplings are considered.
Octet baryon electromagnetic form factors in nuclear medium
Ramalho, G; Thomas, A W
2012-01-01
We study the octet baryon electromagnetic form factors in nuclear matter using the covariant spectator quark model extended to the nuclear matter regime. The parameters of the model in vacuum are fixed by the study of the octet baryon electromagnetic form factors. In nuclear matter the changes in hadron properties are calculated by including the relevant hadron masses and the modification of the pion-baryon coupling constants calculated in the quark-meson coupling model. In nuclear matter the magnetic form factors of the octet baryons are enhanced in the low $Q^2$ region, while the electric form factors show a more rapid variation with $Q^2$. The results are compared with the modification of the bound proton electromagnetic form factors observed at Jefferson Lab. In addition, the corresponding changes for the bound neutron are predicted.
Meson-Baryon Interactions in Unitarized Chiral Perturbation Theory
García-Recio, C; Ruiz-Arriola, E; Vacas, M J V
2003-01-01
Meson-Baryon Interactions can be successfully described using both Chiral Symmetry and Unitarity. The $s-$wave meson-baryon scattering amplitude is analyzed in a Bethe-Salpeter coupled channel formalism incorporating Chiral Symmetry in the potential. Two body coupled channel unitarity is exactly preserved. The needed two particle irreducible matrix amplitude is taken from lowest order Chiral Perturbation Theory in a relativistic formalism. Off-shell behavior is parameterized in terms of low energy constants. The relation to the heavy baryon limit is discussed. The position of the complex poles in the second Riemann sheet of the scattering amplitude determine masses and widths baryonic resonances of the N(1535), N(1670), $\\Lambda (1405)$ and $\\Lambda(1670)$ resonances which compare well with accepted numbers.
Baryon production in $e^{+}e^{-}$-annihilation at PETRA
Bartel, Wulfrin; Dittmann, P; Eichler, R; Felst, R; Haidt, Dieter; Krehbiel, H; Meier, K; Naroska, Beate; O'Neill, L H; Steffen, P; Wenninger, Horst; Zhang, Y; Elsen, E E; Helm, M; Petersen, A; Warming, P; Weber, G; Bethke, Siegfried; Drumm, H; Heintze, J; Heinzelmann, G; Hellenbrand, K H; Heuer, R D; Von Krogh, J; Lennert, P; Kawabata, S; Matsumura, H; Nozaki, T; Olsson, J; Rieseberg, H; Wagner, A; Bell, A; Foster, F; Hughes, G; Wriedt, H; Allison, J; Ball, A H; Bamford, G; Barlow, R; Bowdery, C K; Duerdoth, I P; Hassard, J F; King, B T; Loebinger, F K; MacBeth, A A; McCann, H; Mills, H E; Murphy, P G; Prosper, H B; Stephens, K; Clarke, D; Goddard, M C; Marshall, R; Pearce, G F; Kobayashi, T; Komamiya, S; Koshiba, M; Minowa, M; Nozaki, M; Orito, S; Sato, A; Suda, T; Takeda, H; Totsuka, Y; Watanabe, Y; Yamada, S; Yanagisawa, C
1981-01-01
Data on p and Lambda production by e/sup +/e/sup -/-annihilation at CM energies between 30 and 36 GeV are presented. Indication for an angular anticorrelation in events with baryon-antibaryon pairs is seen.
Excited state mass spectra of doubly heavy Ξ baryons
Energy Technology Data Exchange (ETDEWEB)
Shah, Zalak; Rai, Ajay Kumar [Sardar Vallabhbhai National Institute of Technology, Department of Applied Physics, Surat, Gujarat (India)
2017-02-15
In this paper, the mass spectra are obtained for doubly heavy Ξ baryons, namely, Ξ{sub cc}{sup +}, Ξ{sub cc}{sup ++}, Ξ{sub bb}{sup -}, Ξ{sub bb}{sup 0}, Ξ{sub bc}{sup 0} and Ξ{sub bc}{sup +}. These baryons consist of two heavy quarks (cc, bb, and bc) with a light (d or u) quark. The ground, radial, and orbital states are calculated in the framework of the hypercentral constituent quark model with Coulomb plus linear potential. Our results are also compared with other predictions, thus, the average possible range of excited states masses of these Ξ baryons can be determined. The study of the Regge trajectories is performed in (n, M{sup 2}) and (J, M{sup 2}) planes and their slopes and intercepts are also determined. Lastly, the ground state magnetic moments of these doubly heavy baryons are also calculated. (orig.)
Two-Baryon Correlation Functions in 2-flavour QCD
Francis, Anthony; Rae, Thomas D; Wittig, Hartmut
2013-01-01
We present first results for two-baryon correlation functions, computed using $N_f=2$ flavours of O($a$) improved Wilson quarks, with the aim of explaining potential dibaryon bound states, specifically the H-dibaryon. In particular, we use a GEVP to isolate the groundstate using two-baryon (hyperon-hyperon) correlation functions $\\big(\\langle C_{XY}(t)C_{XY}(0) \\rangle$, where $XY=\\Lambda\\Lambda, \\Sigma\\Sigma, N\\Xi, \\cdots\\big)$, each of which has an overlap with the H-dibaryon. We employ a `blocking' algorithm to handle the large number of contractions, which may easily be extended to N-baryon correlation functions. We also comment on its application to the analysis of single baryon masses ($n$, $\\Lambda$, $\\Xi$, $\\cdots$). This study is performed on an isotropic lattice with $m_\\pi = 460$ MeV, $m_\\pi L = 4.7$ and $a = 0.063$ fm.
Dirac's Covariant Constraint Dynamics Applied to the Baryon Spectrum
Whitney, Joshua; Crater, Horace
2010-02-01
A baryon is a hadron containing three quarks in a combination of up, down, strange, charm, or bottom. For prediction of the baryon energy spectrum, a baryon is modeled as a three-body system with the interacting forces coming from a set of two-body potentials that depend on the distance between the quarks, the spin-spin and spin-orbit angular momentum coupling terms, and a tensor term. Techniques and equations are derived from Todorov's work on constraint dynamics and the quasi-potential equation together with Two Body Dirac equations developed by Crater and Van Alstine, and adapted to this specific problem by further use of Sazdjian's N-body constraints dynamics for general confined systems. Baryon spectroscopy results are presented and compared with experiment. Typically, a best fit method is used in the analyses that employ several different algorithms, including a gradient approach, Monte Carlo modeling, and simulated annealing methods. )
Chiral Dynamics of Baryons in a Lorentz Covariant Quark Model
Faessler, A; Lyubovitskij, V E; Pumsa-ard, K; Faessler, Amand; Gutsche, Th.
2006-01-01
We develop a manifestly Lorentz covariant chiral quark model for the study of baryons as bound states of constituent quarks dressed by a cloud of pseudoscalar mesons. The approach is based on a non-linear chirally symmetric Lagrangian, which involves effective degrees of freedom - constituent quarks and the chiral (pseudoscalar meson) fields. In a first step, this Lagrangian can be used to perform a dressing of the constituent quarks by a cloud of light pseudoscalar mesons and other heavy states using the calculational technique of infrared dimensional regularization of loop diagrams. We calculate the dressed transition operators with a proper chiral expansion which are relevant for the interaction of quarks with external fields in the presence of a virtual meson cloud. In a second step, these dressed operators are used to calculate baryon matrix elements. Applications are worked out for the masses of the baryon octet, the meson-nucleon sigma terms, the magnetic moments of the baryon octet, the nucleon charge...
Low-mode averaging for baryon correlation functions
Giusti, Leonardo; Giusti, Leonardo; Necco, Silvia
2005-01-01
The low-mode averaging technique is a powerful tool for reducing large fluctuations in correlation functions due to low-mode eigenvalues of the Dirac operator. In this work we propose a generalization to baryons and test our method on two-point correlation functions of left-handed nucleons, computed with quenched Neuberger fermions on a lattice with extension L=1.5 fm. We show that the statistical fluctuations can be reduced and the baryon signal significantly improved.
Dahan, Raphael; Carmon, Tal
2015-01-01
Contrary to their capillary resonances (Rayleigh, 1879) and their optical resonances (Ashkin, 1977), droplets acoustical resonances were rarely considered. Here we experimentally excite, for the first time, the acoustical resonances of a droplet that relies on sound instead of capillary waves. Droplets vibrations at 37 MHz rates and 100 quality factor are optically excited and interrogated at an optical threshold of 68 microWatt. Our vibrations span a spectral band that is 1000 times higher when compared with drops previously-studied capillary vibration.
National Oceanic and Atmospheric Administration, Department of Commerce — The 2014 acoustic-trawl method (ATM) project aboard Bell M. Shimada represents a joint effort between the SWFSC and the NWFSC in investigating elements of the...
National Oceanic and Atmospheric Administration, Department of Commerce — The 2014 acoustic-trawl method (ATM) project aboard Bell M. Shimada represents a joint effort between the SWFSC and the NWFSC in investigating elements of the...
Phenomenological sizes of confinement regions in baryons
Energy Technology Data Exchange (ETDEWEB)
Brown, G.E.; Klimt, S.; Weise, W.; Rho, M.
1988-10-01
Standard order of magnitude estimates from QCD indicate that the radius of the quark-gluon core in the nucleon is ..lambda../sup -1//sub QCD/ > or approx. 1 fm. However, in work with the chiral bag model, we have found that the effective confinement size for low energy reactions can be as small as approx. = 1/2 fm or smaller. This shrinking of the effective confinement size has been attributed to the pressure of the pion cloud surrounding the quark core. The concept of confinement size is evidently subtle in light-quark systems, due to the chiral vacuum structure. This is indicated by the 'Cheshire Cat' phenomenon, in which physical observables tend to be insensitive to the bag radius R. We suggest that when strange quarks are present, a qualitative change occurs in the Cheshire Cat picture; in particular, we propose that strangeness provides an obstruction to this picture. We present a phenomenological indication that when strange quarks are present, the bag radius R is frozen at a value substantially larger than 0.5 fm by as much as a factor of two. Roughly speaking, the Cheshire Cat picture emerges from a near cancellation between repulsive quark kinetic and attractive pion-cloud energies in the case of the nucleon. In the ..lambda.. and ..sigma.. particles, however, replacement of one up or down quark by a strange quark removes part of the attraction from the coupling of the quarks to the pion cloud. This upsets the balance needed for the Cheshire Cat phenomenon and makes larger strange baryons more favorable energetically than the 0.5 fm ones appropriate for pure u- and d-systems. We find that magnetic moments of strange baryons favor a bag radius R approx. = 1.1 fm. We find that the excited states of the ..lambda..-hyperons favor similarly large bag radii. Somewhat less convincingly, due to perturbative effects - the bag radius appropriate to the ..delta..(1232) lies intermediate between that of the nucleon and of the stran
Chiral extrapolations and strangeness in the baryon ground states
Lutz, Matthias F M
2013-01-01
We review the quark-mass dependence of the baryon octet and decuplet masses as obtained from recent lattice simulations of the BMW, PACS-CS, LHPC, HSC and QCDSF-UKQCD groups. Our discussion relies on the relativistic chiral Lagrangian and large-$N_c$ sum rule estimates of the counter terms relevant for the baryon masses at N$^3$LO. A partial summation is implied by the use of physical baryon and meson masses in the one-loop contributions to the baryon self energies. In our analysis the physical masses are reproduced exactly by means of a suitable set of linear constraints. A quantitative and simultaneous description of all lattice results is achieved in terms of a six parameter fit, where the symmetry conserving counter term that are relevant at N$^3$LO are not yet being used. For pion masses larger than 300 MeV there appears to be an approximate linear pion-mass dependence of all octet and decuplet baryon masses. We discuss the pion- and strangeness sigma terms of the baryon octet states.
Study of ψ(3770 decaying to baryon anti-baryon pairs
Directory of Open Access Journals (Sweden)
Li-Gang Xia
2016-05-01
Full Text Available To study the decays of ψ(3770 going to baryon anti-baryon pairs (BB¯, all available experiments of measuring the cross sections of e+e−→BB¯ at center-of-mass energy ranging from 3.0 GeV to 3.9 GeV are combined. To relate the baryon octets, a model based on the SU(3 flavor symmetry is used and the SU(3 breaking effects are also considered. Assuming the electric and magnetic form factors are equal (|GE|=|GM|, a global fit including the interference between the QED process and the resonant process is performed. The branching fraction of ψ(3770→BB¯ is determined to be (2.4±0.8±0.3×10−5, (1.7±0.6±0.1×10−5, (4.5±0.9±0.1×10−5, (4.5±0.9±0.1×10−5, (2.0±0.7±0.1×10−5, and (2.0±0.7±0.1×10−5 for B=p,Λ,Σ+,Σ0,Ξ− and Ξ0, respectively, where the first uncertainty is from the global fit and the second uncertainty is the systematic uncertainty due to the assumption |GE|=|GM|. They are at least one order of magnitude larger than a simple scaling of the branching fraction of J/ψ/ψ(3686→BB¯.
Energy Technology Data Exchange (ETDEWEB)
Somogyi, Gabor [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Zurich Univ. (Switzerland). Inst. for Theoretical Physics; Smith, Robert E. [Zurich Univ. (Switzerland). Inst. for Theoretical Physics
2009-10-15
Baryonic Acoustic Oscillation (BAO) features are amplified for baryon and slightly damped for CDM spectra. If we compare the total matter power spectra in the 2- and 1-component fluid approaches, then we find excellent agreement, with deviations being < 0.5% throughout the evolution. Consequences: high precision modeling of the large-scale distribution of baryons in the Universe can not be achieved through an effective mean-mass 1-component fluid approximation; detection significance of BAO will be amplified in probes that study baryonic matter, relative to probes that study the CDM or total mass only. The CDM distribution can be modeled accurately at late times and the total matter at all times. This is good news for probes that are sensitive to the total mass, such as gravitational weak lensing as existing modeling techniques are good enough. Lastly, we identify an analytic approximation that greatly simplifies the evaluation of the full PT expressions, and it is better than < 1% over the full range of scales and times considered. (orig.)
Possible hidden-charm molecular baryons composed of an anti-charmed meson and a charmed baryon
Institute of Scientific and Technical Information of China (English)
YANG Zhong-Cheng; SUN Zhi-Feng; HE Jun; LIU Xiang; ZHU Shi-Lin
2012-01-01
Using the one-boson-exchange model,we studied the possible existence of very loosely bound hidden-charm molecular baryons composed of an anti-charmed meson and a charmed baryon.Our numerical results indicate that the ∑c(D)* and ∑c(D) states exist,but that the ∑c(D) and ∑c(D)* molecular states do not.
Structure and reactions of pentaquark baryons
Indian Academy of Sciences (India)
Atsushi Hosaka
2006-04-01
We review the current status of the exotic pentaquark baryons. After a brief look at experiments of both positive and negative results, we discuss theoretical methods to study the structure and reactions for the pentaquarks. First we introduce the quark model and the chiral soliton model, where we discuss the relation of mass spectrum and parity with some emphasis on the role of chiral symmetry. It is always useful to picture the structure of the pentaquarks in terms of quarks. As for other methods, we discuss a model-independent method, and briefly mention the results from the lattice and QCD sum rule. Decay properties are then studied in some detail, which is one of the important properties of +. We investigate the relation between the decay width and the quark structure having certain spin-parity quantum numbers. Through these analyses, we consider as plausible quantum numbers of +, = 3/2-. In the last part of this note, we discuss production reactions of + which provide links between the theoretical models and experimental information. We discuss photoproductions and hadron-induced reactions which are useful to explore the nature of +.
Conformal symmetry and light flavor baryon spectra
Kirchbach, M
2010-01-01
The degeneracy among parity pairs systematically observed in the N and Delta spectra is interpreted as signature for conformal symmetry realization in the light flavor baryon sector in consequence of AdS/CFT. The case is made by showing that all the observed N and Delta resonances with masses below 2500 MeV distribute fairly well over the first levels of a unitary representation of the conformal group, a representation that covers the spectrum of a quark-diquark system, placed directly on the AdS_5 cone, conformally compactified to R^1*S^3. The free geodesic motion on the S^3 manifold is described by means of the scalar conformal equation there, which is of the Klein-Gordon type. The equation is then gauged by the "curved" Coulomb potential that has the form of a cotangent function. Conformal symmetry is not exact, this because the gauge potential slightly modifies the conformal centrifugal barrier of the free geodesic motion. Thanks to this, the degeneracy between P11-S11 pairs from same level is relaxed, wh...
BASE - The Baryon Antibaryon Symmetry Experiment
Smorra, C.; Blaum, K.; Bojtar, L.; Borchert, M.; Franke, K. A.; Higuchi, T.; Leefer, N.; Nagahama, H.; Matsuda, Y.; Mooser, A.; Niemann, M.; Ospelkaus, C.; Quint, W.; Schneider, G.; Sellner, S.; Tanaka, T.; Van Gorp, S.; Walz, J.; Yamazaki, Y.; Ulmer, S.
2015-11-01
The Baryon Antibaryon Symmetry Experiment (BASE) aims at performing a stringent test of the combined charge parity and time reversal (CPT) symmetry by comparing the magnetic moments of the proton and the antiproton with high precision. Using single particles in a Penning trap, the proton/antiproton g-factors, i.e. the magnetic moment in units of the nuclear magneton, are determined by measuring the respective ratio of the spin-precession frequency to the cyclotron frequency. The spin precession frequency is measured by non-destructive detection of spin quantum transitions using the continuous Stern-Gerlach effect, and the cyclotron frequency is determined from the particle*s motional eigenfrequencies in the Penning trap using the invariance theorem. By application of the double Penning-trap method we expect that in our measurements a fractional precision of δg/g 10-9 can be achieved. The successful application of this method to the antiproton will consist a factor 1000 improvement in the fractional precision of its magnetic moment. The BASE collaboration has constructed and commissioned a new experiment at the Antiproton Decelerator (AD) of CERN. This article describes and summarizes the physical and technical aspects of this new experiment.
Heavy baryons as polarimeters at colliders
Energy Technology Data Exchange (ETDEWEB)
Galanti, Mario [Department of Physics and Astronomy, University of Rochester,Rochester, NY 14627-0171 (United States); Giammanco, Andrea [Centre for Cosmology, Particle Physics and Phenomenology, Université catholique de Louvain,B-1348 Louvain-la-Neuve (Belgium); National Institute of Chemical Physics and Biophysics,10143 Tallinn (Estonia); Grossman, Yuval [Laboratory for Elementary-Particle Physics, Cornell University,Ithaca, NY 14853 (United States); Kats, Yevgeny; Stamou, Emmanuel [Department of Particle Physics and Astrophysics, Weizmann Institute of Science,Rehovot 7610001 (Israel); Zupan, Jure [Department of Physics, University of Cincinnati,Cincinnati, OH 45221 (United States)
2015-11-10
In new-physics processes that produce b or c jets, a measurement of the initial b or c-quark polarization could provide crucial information about the structure of the new physics. In the heavy-quark limit, the b and c-quark polarizations are preserved in the lightest baryons they hadronize into, Λ{sub b} and Λ{sub c}, respectively. We revisit the prediction for the polarization retention after the hadronization process and extend it to the case of transverse polarization. We show how ATLAS and CMS can measure the b-quark polarization using semileptonic Λ{sub b} decays, and the c-quark polarization using Λ{sub c}{sup +}→pK{sup −}π{sup +} decays. For calibrating both measurements we suggest to use tt̄ samples in which these polarizations can be measured with precision of order 10% using 100 fb{sup −1} of data in Run 2 of the LHC. Measurements of the transverse polarization in QCD events at ATLAS, CMS and LHCb are motivated as well. The proposed measurements give access to nonperturbative QCD parameters relevant to the dynamics of the hadronization process.
Strangeness production in high density baryon matter
Ganz, R E
1999-01-01
Strangeness production in heavy-ion collisions, when compared to proton proton collisions, is potentially a sensitive probe for collective energy deposition and therefore for reaction mechanisms in general. It may therefore provide insight into possible QGP formation in dense nuclear matter. To establish an understanding of the observed yields, a systematic study of high density baryon matter at different beam energies is essential. This might also reveal possible discontinuities in the energy dependence of the reaction mechanism. We present preliminary results for kaon production in Au+Au collisions at beam kinetic energies of 6, 8, and 10.7 GeV/u obtained by the E917 experiment at the AGS (BNL). These measurements complement those carried out by the E866 collaboration at 2, 4, and 10.7 GeV/u with a significantly enlarged data sample. In both experiments a large range of rapidities was covered by taking data at different angular settings of the magnetic spectrometer.
First observation of a baryonic Bc+ decay.
Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Brown, H; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cojocariu, L; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H-M; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Fay, Rf; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garofoli, J; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gavardi, L; Gavrilov, G; Geraci, A; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Giani', S; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kelsey, M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lowdon, P; Lu, H; Lucchesi, D; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A
2014-10-10
A baryonic decay of the B(c)(+) meson, B(c)(+) → J/ψppπ(+), is observed for the first time, with a significance of 7.3 standard deviations, in pp collision data collected with the LHCb detector and corresponding to an integrated luminosity of 3.0 fb(-1) taken at center-of-mass energies of 7 and 8 TeV. With the B(c)(+) → J/ψπ(+) decay as the normalization channel, the ratio of branching fractions is measured to be B(B(c)(+) → J/ψppπ(+))/B(B(c)(+) → J/ψπ(+)) = 0.143(-0.034)(+0.039)(stat) ± 0.013(syst). The mass of the B(c)(+) meson is determined as M(B(c)(+) = 6274.0 ± 1.8(stat) ± 0.4(syst) MeV/c(2), using the B(c)(+) → J/ψppπ(+) channel.
Heavy baryons as polarimeters at colliders
Galanti, Mario; Grossman, Yuval; Kats, Yevgeny; Stamou, Emmanuel; Zupan, Jure
2015-01-01
In new-physics processes that produce b or c jets, a measurement of the initial b or c-quark polarization could provide crucial information about the structure of new physics. In the heavy-quark limit, the b and c-quark polarizations are preserved in the lightest baryons they hadronize into, Lambda_b and Lambda_c, respectively. We revisit the prediction for the polarization retention after the hadronization process and extend it to the case of transverse polarization. We show how ATLAS and CMS can measure the b-quark polarization using semileptonic Lambda_b decays, and the c-quark polarization using Lambda_c+ -> p K- pi+ decays. For calibrating both measurements we suggest to use ttbar samples in which the polarizations can be measured with a precision of order 10% using 100/fb of data in Run 2 of the LHC. LHCb measurements of the transverse polarization in QCD events are motivated as well. An existing LHCb analysis can be significantly improved for this purpose.
BASE - The Baryon Antibaryon Symmetry Experiment
Smorra, C; Bojtar, L.; Borchert, M.; Franke, K.A.; Higuchi, T.; Leefer, N.; Nagahama, H.; Matsuda, Y.; Mooser, A.; Niemann, M.; Ospelkaus, C.; Quint, W.; Schneider, G.; Sellner, S.; Tanaka, T.; Van Gorp, S.; Walz, J.; Yamazaki, Y.; Ulmer, S.
2015-01-01
The Baryon Antibaryon Symmetry Experiment (BASE) aims at performing a stringent test of the combined charge parity and time reversal (CPT) symmetry by comparing the magnetic moments of the proton and the antiproton with high precision. Using single particles in a Penning trap, the proton/antiproton $g$-factors, i.e. the magnetic moment in units of the nuclear magneton, are determined by measuring the respective ratio of the spin-precession frequency to the cyclotron frequency. The spin precession frequency is measured by non-destructive detection of spin quantum transitions using the continuous Stern-Gerlach effect, and the cyclotron frequency is determined from the particle's motional eigenfrequencies in the Penning trap using the invariance theorem. By application of the double Penning-trap method we expect that in our measurements a fractional precision of $\\delta g/g$ 10$^{-9}$ can be achieved. The successful application of this method to the antiproton will represent a factor 1000 improvement in the frac...
Instructive discussion of effective block algorithm for baryon-baryon correlators
Nemura, Hidekatsu
2015-01-01
We describe a fairly specific idea to calculate efficiently a large number of four-point correlation functions, which are primary quantities to study the nuclear force and hyperonic nuclear forces from lattice QCD, for various baryon-baryon (BB) channels. We discuss how the effective block algorithm significantly reduces the number of iterations with considering the four-point correlator of proton-$\\Lambda$ system as a specific example. The effective block algorithm is applied to calculate the 52 channels of four-point correlation functions from nucleon-nucleon to $\\Xi-\\Xi$, in order to study the complete set of isospin symmetric BB interactions. The elapsed times measured on hybrid parallel computation on BlueGene/Q show reasonable performances at various combinations of the number of OpenMP threads and the number of MPI nodes. The numerical results are benchmarked with the results from the unified contraction algorithm for all of computed sites of 52 four-point correlators.
Instructive discussion of an effective block algorithm for baryon-baryon correlators
Nemura, Hidekatsu
2016-10-01
We describe an approach for the efficient calculation of a large number of four-point correlation functions for various baryon-baryon (BB) channels, which are the primary quantities for studying the nuclear and hyperonic nuclear forces from lattice quantum chromodynamics. Using the four-point correlation function of a proton- Λ system as a specific example, we discuss how an effective block algorithm significantly reduces the number of iterations. The effective block algorithm is applied to calculate 52 channels of the four-point correlation functions from nucleon-nucleon to Ξ- Ξ, in order to study the complete set of isospin symmetric BB interactions. The elapsed times measured for hybrid parallel computation on BlueGene/Q demonstrate that the performance of the present algorithm is reasonable for various combinations of the number of OpenMP threads and the number of MPI nodes. The numerical results are compared with the results obtained using the unified contraction algorithm for all computed sites of the 52 four-point correlators.
Acoustic transducer for acoustic microscopy
Khuri-Yakub, Butrus T.; Chou, Ching H.
1990-01-01
A shear acoustic transducer-lens system in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens.
Charmed and strange baryon production in 29 GeV electron positron annihilation
Energy Technology Data Exchange (ETDEWEB)
Klein, S.R.
1988-06-01
This dissertation presents measurements of the production rates of baryons with different strangeness and spin. The analyses presented here use data taken with the Mark III detector at the PEP storage ring, operating at a center of mass energy of 29 GeV. The ..xi../sup /minus// production rate is measured to be 0.017 +- 0.004 +- 0.004 per hadronic event, ..cap omega../sup /minus// production is measured to be 0.014 +- 0.006 +- 0.004 per hadronic event, and ..xi..*/sup 0/ production is less than 0.006 per hadronic event at a 90% confidence level. These measurements place strong constraints on models of baryon production. In particular, the unexpectedly high rate of ..cap omega../sup /minus// production is difficult to explain in any diquark based model. Semileptonic ..lambda../sub c//sup +/ decays have also been observed. Because neither the branching ratios nor the production rate are well known, it is difficult to interpret these results. However, they do indicate that the branching ratio for ..lambda../sub c//sup +/ ..-->.. ..lambda..l..nu.. may be higher than previous experimental measurements. 85 refs., 45 figs., 12 tabs.
The History of Cosmic Baryons X-ray Emission vs. Star Formation Rate
Menci, N
1999-01-01
We relate the star formation from cold baryons in virialized structures to the X-ray properties of the associated diffuse, hot baryonic component. Our computations use the standard ``semi-analytic'' models to describe i) the evolution of dark matter halos through merging after the hierarchical clustering, ii) the star formation governed by radiative cooling and by supernova feedback, iii) the hydro- and thermodynamics of the hot gas, rendered with our Punctuated Equilibria model. So we relate the X-ray observables concerning the intra-cluster medium to the thermal energy of the gas pre-heated and expelled by supernovae following star formation, and then accreted during the subsequent merging events. We show that at fluxes fainter than $F_X\\approx 10^{-15}$ erg/cm$^2 $ s (well within the reach of next generation X-ray observatories) the X-ray counts of extended extragalactic sources (as well as the faint end of the luminosity function, the contribution to the soft X-ray background, and the $L_X-T$ correlation ...
Slepian, Zachary; Blazek, Jonathan A; Brownstein, Joel R; Chuang, Chia-Hsun; Gil-Marín, Héctor; Ho, Shirley; Kitaura, Francisco-Shu; McEwen, Joseph E; Percival, Will J; Ross, Ashley J; Rossi, Graziano; Seo, Hee-Jong; Slosar, Anže; Vargas-Magaña, Mariana
2016-01-01
We search for a galaxy clustering bias due to a modulation of galaxy number with the baryon-dark matter relative velocity resulting from recombination-era physics. We find no detected signal and place the constraint $b_v < 0.01$ on the relative velocity bias for the CMASS galaxies. This bias is an important potential systematic of Baryon Acoustic Oscillation (BAO) method measurements of the cosmic distance scale using the 2-point clustering. Our limit on the relative velocity bias indicates a systematic shift of no more than $0.3\\%$ rms in the distance scale inferred from the BAO feature in the BOSS 2-point clustering, well below the $1\\%$ statistical error of this measurement. This constraint is the most stringent currently available and has important implications for the ability of upcoming large-scale structure surveys such as DESI to self-protect against the relative velocity as a possible systematic.
Excited state mass spectra of singly charmed baryons
Energy Technology Data Exchange (ETDEWEB)
Shah, Zalak; Kumar Rai, Ajay [Sardar Vallabhbhai National Institute of Technology, Department of Applied Physics, Surat, Gujarat (India); Thakkar, Kaushal [GIDC Degree Engineering College, Department of Applied Sciences and Humanities, Abrama (India); Vinodkumar, P.C. [Sardar Patel University, Department of Physics, V.V. Nagar (India)
2016-10-15
Mass spectra of excited states of the singly charmed baryons are calculated using the hypercentral description of the three-body system. The baryons consist of a charm quark and light quarks (u, d and s) are studied in the framework of QCD motivated constituent quark model. The form of the confinement potential is hyper-Coloumb plus power potential with potential index ν, varying from 0.5 to 2.0. The first-order correction to the confinement potential is also incorporated in this approach. The radial as well as orbital excited state masses of Σ{sub c}{sup ++}, Σ{sub c}{sup +}, Σ{sub c}{sup 0}, Ξ{sub c}{sup +}, Ξ{sub c}{sup 0}, Λ{sub c}{sup +}, Ω{sub c}{sup 0} baryons, are reported in this paper. We have incorporated spin-spin, spin-orbit and tensor interactions perturbatively in the present study. The semi-electronic decay of Ω{sub c} and Ξ{sub c} are also calculated using the spectroscopic parameters of these baryons. The computed results are compared with other theoretical predictions as well as with the available experimental observations. We also construct the Regge trajectory in (n{sub r},M{sup 2}) and (J,M{sup 2}) planes for these baryons. (orig.)
Spectrum and Structure of Excited Baryons with CLAS
Burkert, Volker D.
2017-01-01
In this contribution I discuss recent results in light quark baryon spectroscopy involving CLAS data and higher level analysis results from the partial wave analysis by the Bonn-Gatchina group. New baryon states were discovered largely based on the open strangeness production channels γp → K+Λ and γp → K+Σ0. The data illustrate the great potential of the kaon-hyperon channel in the discovery of higher mass baryon resonances in s-channel production. Other channels with discovery potential, such as γp → pω and γp → ϕp are also discussed. In the second part I will demonstrate on data the sensitivity of meson electroproduction to expose the active degrees of freedom underlying resonance transitions as a function of the probed distance scale. For several of the prominent excited states in the lower mass range the short distance behavior is described by a core of three dressed-quarks with running quark mass, and meson-baryon contributions make up significant parts of the excitation strength at large distances. Finally, I give an outlook of baryon resonance physics at the 12 GeV CEBAF electron accelerator. Talk presented at the CRC-16 Symposium, Bonn University, June 6-9, 2016.
Spectrum and Structure of Excited Baryons with CLAS*
Directory of Open Access Journals (Sweden)
Burkert Volker D.
2017-01-01
Full Text Available In this contribution I discuss recent results in light quark baryon spectroscopy involving CLAS data and higher level analysis results from the partial wave analysis by the Bonn-Gatchina group. New baryon states were discovered largely based on the open strangeness production channels γp → K+Λ and γp → K+Σ0. The data illustrate the great potential of the kaon-hyperon channel in the discovery of higher mass baryon resonances in s-channel production. Other channels with discovery potential, such as γp → pω and γp → ϕp are also discussed. In the second part I will demonstrate on data the sensitivity of meson electroproduction to expose the active degrees of freedom underlying resonance transitions as a function of the probed distance scale. For several of the prominent excited states in the lower mass range the short distance behavior is described by a core of three dressed-quarks with running quark mass, and meson-baryon contributions make up significant parts of the excitation strength at large distances. Finally, I give an outlook of baryon resonance physics at the 12 GeV CEBAF electron accelerator.
Propagation of heavy baryons in heavy-ion collisions
Das, Santosh K.; Torres-Rincon, Juan M.; Tolos, Laura; Minissale, Vincenzo; Scardina, Francesco; Greco, Vincenzo
2016-12-01
The drag and diffusion coefficients of heavy baryons (Λc and Λb ) in the hadronic phase created in the latter stage of the heavy-ion collisions at RHIC and LHC energies have been evaluated recently. In this work we compute some experimental observables, such as the nuclear suppression factor RA A and the elliptic flow v2 of heavy baryons at RHIC and LHC energies, highlighting the role of the hadronic phase contribution to these observables, which are going to be measured at Run 3 of LHC. For the time evolution of the heavy quarks in the quark and gluon plasma (QGP) and heavy baryons in the hadronic phase, we use the Langevin dynamics. For the hadronization of the heavy quarks to heavy baryons we employ Peterson fragmentation functions. We observe a strong suppression of both the Λc and Λb . We find that the hadronic medium has a sizable impact on the heavy-baryon elliptic flow whereas the impact of hadronic medium rescattering is almost unnoticeable on the nuclear suppression factor. We evaluate the Λc/D ratio at RHIC and LHC. We find that the Λc/D ratio remains unaffected due to the hadronic phase rescattering which enables it as a nobel probe of QGP phase dynamics along with its hadronization.
Structure of charmed baryons studied by pionic decays
Nagahiro, Hideko; Hosaka, Atsushi; Oka, Makoto; Noumi, Hiroyuki
2016-01-01
We investigate the decays of the charmed baryons aiming at the systematic understanding of hadron internal structures based on the quark model by paying attention to heavy quark symmetry. We evaluate the decay widths from the one pion emission for the known excited states, \\Lambda_c^*(2595), \\Lambda_c^*(2625), \\Lambda_c^*(2765), \\Lambda_c^*(2880) and \\Lambda_c^*(2940), as well as for the ground states \\Sigma_c(2455) and \\Sigma_c^*(2520). The decay properties of the lower excited charmed baryons are well explained, and several important predictions for higher excited baryons are given. We find that the axial-vector type coupling of the pion to the light quarks is essential, which is expected from chiral symmetry, to reproduce the decay widths especially of the low lying \\Lambda_c^* baryons. We emphasize the importance of the branching ratios of \\Gamma(\\Sigma_c^*\\pi)/\\Gamma(\\Sigma_c\\pi) for the study of the nature of higher excited \\Lambda_c^* baryons.
The segregation of baryons and dark matter during halo assembly
Liao, Shihong; Frenk, Carlos S; Guo, Qi; Wang, Jie
2016-01-01
The standard galaxy formation theory assumes that baryons and dark matter are initially well-mixed before becoming segregated due to radiative cooling. We use non-radiative hydrodynamical simulations to explicitly examine this assumption and find that baryons and dark matter can also be segregated during the build-up of the halo. As a result, baryons in many haloes do not originate from the same Lagrangian region as the dark matter. When using the fraction of corresponding dark matter and gas particles in the initial conditions (the "paired fraction") as a proxy of the dark matter and gas segregation strength of a halo, on average about $25$ percent of the baryonic and dark matter of the final halo are segregated in the initial conditions. A consequence of this effect is that the baryons and dark matter of the same halo initially experience different tidal torques and thus their angular momentum vectors are often misaligned. This is at odds with the assumption of the standard galaxy formation model, and chall...
Another source of baryons in B meson decays
Dunietz, Isard; Falk, A F; Wise, M B; Isard Dunietz; Peter S Cooper; Adam F Falk; Mark B Wise
1994-01-01
It is usually assumed that the production of baryons in B meson decays is induced primarily by the quark level process b\\to c\\bar ud, where the charm quark hadronizes into a charmed baryon. With this assumption, the \\Lambda_c momentum spectrum would indicate that the transition B\\to\\Lambda_c X is dominated by multi-body B decays. However, a closer examination of the momentum spectrum reveals that the mass m_X against which the \\Lambda_c is recoiling almost always satisfies m_X\\agt m_{\\Xi_c}. This fact leads us to examine the hypothesis that the production of charmed baryons in B decays is in fact dominated by the underlying transition b\\to c\\bar cs, and is seen primarily in modes with two charmed baryons in the final state. We propose a number of tests of this hypothesis. If this mechanism is indeed important in baryon production, then there are interesting consequences and applications, including potentially important implications for the ``charm deficit'' in B decays.
Decays of J/psi (3100) to baryon final states
Energy Technology Data Exchange (ETDEWEB)
Eaton, M.W.
1982-05-01
We present results for the decays of psi(3100) into baryon and hyperon final states. The sample studied here consists of 1.3 million produced psi decays. The decays into nonstrange baryons agree well with currently established results, but with better statistics. In addition, significant resonance formation in multibody final states is observed. The decay psi ..-->.. anti pp..gamma.., the first direct photon decay of the psi involving baryons in the final state, is presented and the theoretical implications of the decays are briefly explored. Several new decays of the psi involving strange baryons are explored, including the first observations of three body final states involving hyperons. The I-spin symmetry of the strong decay psi ..-->.. baryons has clearly been observed. The reduced matrix elements for psi ..-->.. B anti B are presented for final states of different SU(3) content. The B/sub 8/ anti B/sub 8/ results are in excellent agreement with the psi being an SU(3) singlet as are the results for psi ..-->.. B/sub 10/ anti B/sub 10/. We present the first evidence for the SU(3) violating decays of the type psi ..-->.. B/sub 8/ anti B/sub 10/ + c.c.. Angular distributions for psi ..-->.. B/sub 8/ anti B/sub 8/ are presented and compared with theoretical predictions. Statistics are limited, but the data tends to prefer other than a 1 + Cos/sup 2/theta distribution.
Spectroscopy of doubly charmed baryons from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Padmanath, M. [Univ. of Graz, Graz (Austria); Edwards, Robert G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Mathur, Nilmani [Tata Inst. of Fundamental Research, Mumbai (India); Peardon, Michael [Trinity College, Dublin (Ireland)
2015-05-06
This study presents the ground and excited state spectra of doubly charmed baryons from lattice QCD with dynamical quark fields. Calculations are performed on anisotropic lattices of size 16³ × 128, with inverse spacing in temporal direction a_{t}⁻¹=5.67(4) GeV and with a pion mass of about 390 MeV. A large set of baryonic operators that respect the symmetries of the lattice yet which retain a memory of their continuum analogues are used. These operators transform as irreducible representations of SU(3)_{F} symmetry for flavor, SU(4) symmetry for Dirac spins of quarks and O(3) for spatial symmetry. The distillation method is utilized to generate baryon correlation functions which are analyzed using the variational fitting method to extract excited states. The lattice spectra obtained have baryonic states with well-defined total spins up to 7/2 and the pattern of low-lying states does not support the diquark picture for doubly charmed baryons. On the contrary the calculated spectra are remarkably similar to the expectations from models with an SU(6)×O(3) symmetry. Various spin-dependent energy splittings between the extracted states are also evaluated.
Mummery, Benjamin O.; McCarthy, Ian G.; Bird, Simeon; Schaye, Joop
2017-10-01
We use the cosmo-OWLS and bahamas suites of cosmological hydrodynamical simulations to explore the separate and combined effects of baryon physics (particularly feedback from active galactic nuclei, AGN) and free streaming of massive neutrinos on large-scale structure. We focus on five diagnostics: (i) the halo mass function, (ii) halo mass density profiles, (iii) the halo mass-concentration relation, (iv) the clustering of haloes and (v) the clustering of matter, and we explore the extent to which the effects of baryon physics and neutrino free streaming can be treated independently. Consistent with previous studies, we find that both AGN feedback and neutrino free streaming suppress the total matter power spectrum, although their scale and redshift dependences differ significantly. The inclusion of AGN feedback can significantly reduce the masses of groups and clusters, and increase their scale radii. These effects lead to a decrease in the amplitude of the mass-concentration relation and an increase in the halo autocorrelation function at fixed mass. Neutrinos also lower the masses of groups and clusters while having no significant effect on the shape of their density profiles (thus also affecting the mass-concentration relation and halo clustering in a qualitatively similar way to feedback). We show that, with only a small number of exceptions, the combined effects of baryon physics and neutrino free streaming on all five diagnostics can be estimated to typically better than a few per cent accuracy by treating these processes independently (i.e. by multiplying their separate effects).
Energy Technology Data Exchange (ETDEWEB)
Eifler, Tim; Krause, Elisabeth; Dodelson, Scott; Zentner, Andrew; Hearin, Andrew; Gnedin, Nickolay
2014-05-28
Systematic uncertainties that have been subdominant in past large-scale structure (LSS) surveys are likely to exceed statistical uncertainties of current and future LSS data sets, potentially limiting the extraction of cosmological information. Here we present a general framework (PCA marginalization) to consistently incorporate systematic effects into a likelihood analysis. This technique naturally accounts for degeneracies between nuisance parameters and can substantially reduce the dimension of the parameter space that needs to be sampled. As a practical application, we apply PCA marginalization to account for baryonic physics as an uncertainty in cosmic shear tomography. Specifically, we use CosmoLike to run simulated likelihood analyses on three independent sets of numerical simulations, each covering a wide range of baryonic scenarios differing in cooling, star formation, and feedback mechanisms. We simulate a Stage III (Dark Energy Survey) and Stage IV (Large Synoptic Survey Telescope/Euclid) survey and find a substantial bias in cosmological constraints if baryonic physics is not accounted for. We then show that PCA marginalization (employing at most 3 to 4 nuisance parameters) removes this bias. Our study demonstrates that it is possible to obtain robust, precise constraints on the dark energy equation of state even in the presence of large levels of systematic uncertainty in astrophysical processes. We conclude that the PCA marginalization technique is a powerful, general tool for addressing many of the challenges facing the precision cosmology program.
Acoustic dose and acoustic dose-rate.
Duck, Francis
2009-10-01
Acoustic dose is defined as the energy deposited by absorption of an acoustic wave per unit mass of the medium supporting the wave. Expressions for acoustic dose and acoustic dose-rate are given for plane-wave conditions, including temporal and frequency dependencies of energy deposition. The relationship between the acoustic dose-rate and the resulting temperature increase is explored, as is the relationship between acoustic dose-rate and radiation force. Energy transfer from the wave to the medium by means of acoustic cavitation is considered, and an approach is proposed in principle that could allow cavitation to be included within the proposed definitions of acoustic dose and acoustic dose-rate.
Energy Technology Data Exchange (ETDEWEB)
Barik, N.; Das, M. (Utkal Univ., Bhubaneswar (India). Dept. of Physics)
1983-01-13
Several properties of octet baryons such as (i) the magnetic moment, (ii) (Gsub(A)/Gsub(v))sub(n) for neutron ..beta..-decay and (iii) the charge radius of the proton have been calculated in a simple independent-quark model under the assumption that the individual constituent quarks are confined, in first approximation, by a relativistic power-law potential Vsub(q)(r)=(1+..beta..) (asup(..nu..+1)rsup(..nu..)+V/sub 0/) with a, ..nu..>0. In view of the simplicity of the model, the results obtained are quite encouraging.
A New Measurement of the Masses and Widths of the Sigma_c^*++ and Sigma_c^*0 Charmed Baryons
Athar, S. B.
2004-01-01
Using data recorded by the CLEO III detector at CESR, we have made measurements of some properties of the Sigma_c^{*++} and Sigma_c^{*0} charmed baryons. In particular: Gamma(Sigma_c^{*++})=14.4^{+1.6}_{-1.5}+-1.4 MeV, M(Sigma_c^{*++})-M(Lambda_c^+) = 231.5+-0.4+-0.3 MeV, Gamma(Sigma_c^{*0})=16.6^{+1.9}_{-1.7}+-1.4 MeV, M(Sigma_c^{*0})-M(Lambda_c^+) = 231.4+-0.5+-0.3 MeV.
Study of Baryon Spectroscopy Using a New Potential Form
Directory of Open Access Journals (Sweden)
L. I. Abou-Salem
2014-01-01
Full Text Available In the present work, the nonrelativistic quark model is applied to study baryon systems, where the constituent quarks are bound by a suitable hyper central potential. We proposed a new phenomenological form of the interaction potential, digamma-type potential. Using the Jacobi coordinates, the three-body wave equation is solved numerically to calculate the resonance states of the N, Δ, Λ, and Σ baryon systems. The present model contains only two adjustable parameters in addition to the quark masses. Our theoretical calculations are compared to the available experimental data and Cornell potential results. The description of the spectrum shows that the ground states of the considered light and strange baryon spectra are in general well reproduced.
Non-singlet Baryons in Less Supersymmetric Backgrounds
Giataganas, Dimitrios; Picos, Marco; Siampos, Konstadinos
2012-01-01
We analyze the holographic description of non-singlet baryons in various backgrounds with reduced supersymmetries and/or confining. We show that they exist in all AdS_5xY_5 backgrounds with Y_5 an Einstein manifold bearing five form flux, for a number of quarks 5N/8< k< N, independently on the supersymmetries preserved. This result still holds for gamma_i deformations. In the confining Maldacena-Nunez background non-singlet baryons also exist, although in this case the interval for the number of quarks is reduced as compared to the conformal case. We generalize these configurations to include a non-vanishing magnetic flux such that a complementary microscopical description can be given in terms of lower dimensional branes expanding into fuzzy baryons. This description is a first step towards exploring the finite 't Hooft coupling region.
Baryon stopping and saturation physics at RHIC and LHC
Mehtar-Tani, Yacine
2009-01-01
We investigate baryon transport in relativistic heavy-ion collisions at energies reached at the CERN Super Proton Synchrotron, BNL Relativistic Heavy-Ion Collider (RHIC), and CERN LHC in the model of saturation. An analytical scaling law is derived within the color glass condensate framework based on small-coupling QCD. Transverse momentum spectra, net-baryon rapidity distributions and their energy, mass and centrality dependences are well described. In a comparison with RHIC data in Au + Au collisions at sqrt (s_NN) = 62.4 GeV and 200 GeV, the gradual approach to the gluon saturation regime is investigated, and limits for the saturation-scale exponent are determined. Predictions for net-baryon rapidity spectra and the mean rapidity loss in central Pb + Pb collisions at LHC energies of sqrt (s_NN) = 5.52 TeV are made.
Impact of finite density on spectroscopic parameters of decuplet baryons
Azizi, K; Sundu, H
2016-01-01
The decuplet baryons, $\\Delta$, $\\Sigma^{*}$, $\\Xi^{*}$ and $\\Omega^{-}$, are studied in nuclear matter by using the in-medium QCD sum rules. By fixing the three momentum of the particles under consideration at the rest frame of the medium, the negative energy contributions are removed. It is obtained that the parameters of the $\\Delta$ baryon are more affected by the medium against the $\\Omega^{-}$ state, containing three strange quarks, whose mass and residue do not affected by the medium, considerably. We also find the vector and scalar self energies of these baryons in nuclear matter. By the recent progresses at $\\bar{P}$ANDA experiment at FAIR it may be possible to study the in-medium properties of such states even the multi-strange $\\Xi^{*}$ and $\\Omega^{-}$ systems in near future.
Interactions between Octet Baryons in the SU_6 Quark model
Fujiwara, Y; Nakamoto, C; Suzuki, Y
2001-01-01
The baryon-baryon interactions for the complete baryon octet (B_8) are investigated in a unified framework of the resonating-group method, in which the spin-flavor SU_6 quark-model wave functions are employed. Model parameters are determined to reproduce properties of the nucleon-nucleon system and the low-energy cross section data for the hyperon-nucleon interaction. We then proceed to explore B_8 B_8 interactions in the strangeness S=-2, -3 and -4 sectors. The S-wave phase-shift behavior and total cross sections are systematically understood by 1) the spin-flavor SU_6 symmetry, 2) the special role of the pion exchange, and 3) the flavor symmetry breaking.
Measurement of b-Baryons with the CDF II detector
Energy Technology Data Exchange (ETDEWEB)
Heuser, Joachim; /Karlsruhe U., EKP
2007-10-01
We report the observation of new bottom baryon states. The most recent result is the observation of the baryon {Xi}{sub b}{sup -} through the decay {Xi}{sub b}{sup -} {yields} J/{psi}{Xi}{sup -}. The significance of the signal corresponds to 7.7{sigma} and the {Xi}{sub b}{sup -} mass is measured to be 5792.9{+-}2.5(stat.){+-}1.7(syst.) MeV/c{sup 2}. In addition we observe four resonances in the {Lambda}{sub b}{sup 0}{pi}{sup {+-}} spectra, consistent with the bottom baryons {Sigma}{sub b}{sup (*){+-}}. All observations are in agreement with theoretical expectations.
Accurate initial conditions in mixed Dark Matter--Baryon simulations
Valkenburg, Wessel
2016-01-01
We quantify the error in the results of mixed baryon--dark-matter hydrodynamic simulations, stemming from outdated approximations for the generation of initial conditions. The error at redshift 0 in contemporary large simulations, is of the order of few to ten percent in the power spectra of baryons and dark matter, and their combined total-matter power spectrum. After describing how to properly assign initial displacements and peculiar velocities to multiple species, we review several approximations: (1) {using the total-matter power spectrum to compute displacements and peculiar velocities of both fluids}, (2) scaling the linear redshift-zero power spectrum back to the initial power spectrum using the Newtonian growth factor ignoring homogeneous radiation, (3) using longitudinal-gauge velocities with synchronous-gauge densities, and (4) ignoring the phase-difference in the Fourier modes for the offset baryon grid, relative to the dark-matter grid. Three of these approximations do not take into account that ...
Accounting for Baryons in Cosmological Constraints from Cosmic Shear
Zentner, Andrew R; Dodelson, Scott; Eifler, Tim; Krause, Elisabeth; Hearin, Andrew P
2012-01-01
One of the most pernicious theoretical systematics facing upcoming gravitational lensing surveys is the uncertainty introduced by the effects of baryons on the power spectrum of the convergence field. One method that has been proposed to account for these effects is to allow several additional parameters (that characterize dark matter halos) to vary and to fit lensing data to these halo parameters concurrently with the standard set of cosmological parameters. We test this method. In particular, we use this technique to model convergence power spectrum predictions from a set of cosmological simulations. We estimate biases in dark energy equation of state parameters that would be incurred if one were to fit the spectra predicted by the simulations either with no model for baryons, or with the proposed method. We show that neglecting baryonic effect leads to biases in dark energy parameters that are several times the statistical errors for a survey like the Dark Energy Survey. The proposed method to correct for ...
Baryons as relativistic three-quark bound states
Eichmann, Gernot; Williams, Richard; Alkofer, Reinhard; Fischer, Christian S
2016-01-01
We review the spectrum and electromagnetic properties of baryons described as relativistic three-quark bound states within QCD. The composite nature of baryons results in a rich excitation spectrum, whilst leading to highly non-trivial structural properties explored by the coupling to external (electromagnetic and other) currents. Both present many unsolved problems despite decades of experimental and theoretical research. We discuss the progress in these fields from a theoretical perspective, focusing on nonperturbative QCD as encoded in the functional approach via Dyson-Schwinger and Bethe-Salpeter equations. We give a systematic overview as to how results are obtained in this framework and explain technical connections to lattice QCD. We also discuss the mutual relations to the quark model, which still serves as a reference to distinguish 'expected' from 'unexpected' physics. We confront recent results on the spectrum of non-strange and strange baryons, their form factors and the issues of two-photon proce...
Observation of the sigma_b baryons at CDF
Energy Technology Data Exchange (ETDEWEB)
Pursley, Jennifer M.; /Johns Hopkins U.
2007-03-01
We present a measurement of four new bottom baryons in proton-antiproton collisions with a center of mass energy of 1.96 TeV. Using 1.1 fb{sup -1} of data collected by the CDF II detector, we observe four {Lambda}{sup 0}{sub b}{pi}{+-} resonances in the fully reconstructed decay mode {Lambda}{sup 0}{sub b} {yields} {Lambda}{sup +}{sub c}{pi}{sup -}, where {Lambda}{sup +}{sub c} {yields} pK{sup -}{pi}{sup +}. The probability for the background to produce a similar or larger signal is less than 8.3 x 10{sup -8}, corresponding to a significance of greater than 5.2 {sigma}. We interpret these baryons as the {Sigma}{sub b}{sup (*){+-}} baryons.
Excited state mass spectra and Regge trajectories of bottom baryons
Thakkar, Kaushal; Shah, Zalak; Rai, Ajay Kumar; C. Vinodkumar, P.
2017-09-01
We present the mass spectra of radial and orbital excited states of singly heavy bottom baryons; Σb+, Σb-, Ξb-, Ξb0, Λb0 and Ωb-. The QCD motivated hypercentral quark model is employed for the three body description of baryons and the form of confinement potential is hyper Coulomb plus linear. The first order correction to the confinement potential is also incorporated in this work. The semi-electronic decay of Ωb and Ξb are calculated using the spectroscopic parameters of the baryons. The computed results are compared with other theoretical predictions as well as with the available experimental observations. The Regge trajectories are plotted in (n ,M2) plane.
Measurement of the Lifetime of b-baryons
Abreu, P; Adye, T; Adzic, P; Albrecht, Z; Alderweireld, T; Alekseev, G D; Alemany, R; Allmendinger, T; Allport, P P; Almehed, S; Amaldi, Ugo; Amato, S; Anassontzis, E G; Andersson, P; Andreazza, A; Andringa, S; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barbiellini, Guido; Barbier, R; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Belous, K S; Benvenuti, Alberto C; Bérat, C; Berggren, M; Bertini, D; Bertrand, D; Besançon, M; Bianchi, F; Bigi, M; Bilenky, S M; Bizouard, M A; Bloch, D; Blom, H M; Bonesini, M; Bonivento, W; Boonekamp, M; Booth, P S L; Borgland, A W; Borisov, G; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Boyko, I; Bozovic, I; Bozzo, M; Branchini, P; Brenke, T; Brenner, R A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschmann, P; Cabrera, S; Caccia, M; Calvi, M; Camporesi, T; Canale, V; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Chabaud, V; Chapkin, M M; Charpentier, P; Chaussard, L; Checchia, P; Chelkov, G A; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Chudoba, J; Cieslik, K; Collins, P; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Cowell, J H; Crawley, H B; Crennell, D J; Crépé, S; Crosetti, G; Cuevas-Maestro, J; Czellar, S; Davenport, Martyn; Da Silva, W; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Brabandere, S; De Clercq, C; De Lotto, B; De Min, A; De Paula, L S; Dijkstra, H; Di Ciaccio, Lucia; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Dris, M; Duperrin, A; Durand, J D; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Ellert, M; Elsing, M; Engel, J P; Erzen, B; Espirito-Santo, M C; Falk, E; Fanourakis, G K; Fassouliotis, D; Fayot, J; Feindt, Michael; Fenyuk, A; Ferrari, P; Ferrer, A; Ferrer-Ribas, E; Fichet, S; Firestone, A; Flagmeyer, U; Föth, H; Fokitis, E; Fontanelli, F; Franek, B J; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gamblin, S; Gandelman, M; García, C; Gaspar, C; Gaspar, M; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Ghodbane, N; Gil, I; Glege, F; Gokieli, R; Golob, B; Gómez-Ceballos, G; Gonçalves, P; González-Caballero, I; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Grahl, J; Graziani, E; Green, C; Grimm, H J; Gris, P; Grosdidier, G; Grzelak, K; Günther, M; Guy, J; Hahn, F; Hahn, S; Haider, S; Hallgren, A; Hamacher, K; Hansen, J; Harris, F J; Hedberg, V; Heising, S; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Heuser, J M; Higón, E; Holmgren, S O; Holt, P J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hughes, G J; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, P E; Joram, C; Juillot, P; Kapusta, F; Karafasoulis, K; Katsanevas, S; Katsoufis, E C; Keränen, R; Kersevan, Borut P; Khomenko, B A; Khovanskii, N N; Kiiskinen, A P; King, B J; Kinvig, A; Kjaer, N J; Klapp, O; Klein, H; Kluit, P M; Kokkinias, P; Koratzinos, M; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Krammer, Manfred; Kriznic, E; Krstic, J; Krumshtein, Z; Kubinec, P; Kurowska, J; Kurvinen, K L; Lamsa, J; Lane, D W; Langefeld, P; Lapin, V; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Leinonen, L; Leisos, A; Leitner, R; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Lethuillier, M; Libby, J; Liko, D; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; Lopes, J H; López, J M; López-Fernandez, R; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Mahon, J R; Maio, A; Malek, A; Malmgren, T G M; Malychev, V; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, F; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; McPherson, G; Meroni, C; Meyer, W T; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Moch, M; Møller, R; Mönig, K; Monge, M R; Moreau, X; Morettini, P; Morton, G A; Müller, U; Münich, K; Mulders, M; Mulet-Marquis, C; Muresan, R; Murray, W J; Muryn, B; Myatt, Gerald; Myklebust, T; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Némécek, S; Neufeld, N; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nikolenko, M; Nomokonov, V P; Normand, Ainsley; Nygren, A; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Orazi, G; Österberg, K; Ouraou, A; Paganoni, M; Paiano, S; Pain, R; Paiva, R; Palacios, J; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Pegoraro, M; Peralta, L; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Rakoczy, D; Ratoff, P N; Read, A L; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Reinhardt, R; Renton, P B; Resvanis, L K; Richard, F; Rídky, J; Rinaudo, G; Røhne, O M; Romero, A; Ronchese, P; Rosenberg, E I; Rosinsky, P; Roudeau, Patrick; Rovelli, T; Royon, C; Ruhlmann-Kleider, V; Ruiz, A; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sampsonidis, D; Sannino, M; Schneider, H; Schwemling, P; Schwickerath, U; Schyns, M A E; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Sekulin, R L; Shellard, R C; Sheridan, A; Siebel, M; Simard, L C; Simonetto, F; Sissakian, A N; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Sopczak, André; Sosnowski, R; Spassoff, Tz; Spiriti, E; Sponholz, P; Squarcia, S; Stampfer, D; Stanescu, C; Stanic, S; Stevenson, K; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Tegenfeldt, F; Terranova, F; Thomas, J; Timmermans, J; Tinti, N; Tkatchev, L G; Todorova-Nová, S; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortora, L; Tranströmer, G; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tzamarias, S; Überschär, B; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; Van der Velde, C; van Apeldoorn, G W; van Dam, P; Van Doninck, W K; Van Eldik, J; Van Lysebetten, A; Van Vulpen, I B; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Verzi, V; Vilanova, D; Vitale, L; Vlasov, E; Vodopyanov, A S; Vollmer, C F; Voulgaris, G; Vrba, V; Wahlen, H; Walck, C; Weiser, C; Wicke, D; Wickens, J H; Wilkinson, G R; Winter, M; Witek, M; Wolf, G; Yi, J; Yushchenko, O P; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zucchelli, G C; Zumerle, G
1999-01-01
The average lifetime of weakly decaying $b$-baryons was studied using 3.6 million $Z^0$ hadronic decays collected by the DELPHI detector at LEP. The measurement of the proper decay time distribution of secondary vertices was used on three complementary samples. The first sample consisted of events with a fully reconstructed $\\Lambda_c^+$ and an opposite charge lepton, or an oppositely charged lepton pair accompanied by a $\\Lambda^0$. The other two samples were more inclusive, where $b$-baryon semileptonic decays were recognized by the presence of either a proton identified by the RICH detector or a $\\Lambda^0$ and a lepton of charge opposite to that of the proton. The combined result was: \\begin{eqnarray*} \\tau(b\\mathrm{-baryon}) = 1.14\\pm0.08 \\; (stat)\\pm0.04 \\; (syst) \\; \\mathrm{ps} \\; . \\end{eqnarray*} It updates and replaces all previous results published by the DELPHI collaboration.
Moduli induced cogenesis of baryon asymmetry and dark matter
Dhuria, Mansi; Sarkar, Utpal
2015-01-01
We study a cogenesis mechanism in which the observed baryon asymmetry of the universe and the dark matter abundance can be produced simultaneously at low reheating temperature without violating baryon number in the fundamental vertex. In particular, we consider a model which could be realized in the context of type IIB large volume string compactifications. The matter superfields in this model include additional pairs of color triplet and singlet superfields in addition to the Minimal Supersymmetric Standard Model (MSSM) superfields. Assuming that the mass of the additional singlet fermions is O(GeV) and color triplet fermions is O(TeV), we show that the modulus dominantly decays into the additional color triplet superfields. After soft supersymmetry (SUSY) breaking, the lightest eigenstate of scalar component of color triplet superfield further decays into fermionic component of singlet superfield and quarks without violating baryon number. Assuming R-parity conservation, it follows that the singlet superfie...
Baryon electric dipole moments from strong CP violation
Guo, Feng-Kun; Meißner, Ulf-G.
2012-12-01
The electric dipole form factors and moments of the ground state baryons are calculated in chiral perturbation theory at next-to-leading order. We show that the baryon electric dipole form factors at this order depend only on two combinations of low-energy constants. We also derive various relations that are free of unknown low-energy constants. We use recent lattice QCD data to calculate all baryon EDMs. In particular, we find d n = -2 .9 ± 0 .9 and d p = 1 .1 ± 1 .1 in units of 10-16 e θ 0 cm. Finite volume corrections to the electric dipole moments are also worked out. We show that for a precision extraction from lattice QCD data, the next-to-leading order terms have to be accounted for.
Use of acoustic vortices in acoustic levitation
DEFF Research Database (Denmark)
Cutanda Henriquez, Vicente; Santillan, Arturo Orozco; Juhl, Peter Møller
2009-01-01
Acoustic fields are known to exert forces on the surfaces of objects. These forces are noticeable if the sound pressure is sufficiently high. Two phenomena where acoustic forces are relevant are: i) acoustic levitation, where strong standing waves can hold small objects at certain positions...... of acoustical vortices uses an efficient numerical implementation based on the superposition of two orthogonal sound fields with a delay of 90° between them. It is shown that acoustic levitation and the use of acoustic vortices can be combined to manipulate objects in an efficient and controlled manner without...
Acoustic Neuroma Educational Video
Full Text Available ... Back Learn about acoustic neuroma AN Facts What is acoustic neuroma? Diagnosing Symptoms Side Effects Keywords Questions ... kit Treatment Options Overview Observation Radiation Surgery What is acoustic neuroma Diagnosing Symptoms Side effects Question To ...
Magnetic Moments of Baryons containing all heavy quarks in Quark-Diquark Model
Thakkar, Kaushal; Vinodkumar, P C
2016-01-01
The triply heavy flavour baryons are studied using the Quark-diquark description of the three-body system. The confinement potential for present study of triply heavy flavour baryons is assumed as coulomb plus power potential with power index $\
Faessler, A; Holstein, Barry R; Lyubovitskij, V E; Nicmorus, D; Pumsa-ard, K; Faessler, Amand; Gutsche, Thomas; Holstein, Barry R.; Lyubovitskij, Valery E.; Nicmorus, Diana; Pumsa-ard, Kem
2006-01-01
We calculate magnetic moments of light baryons and N -> Delta gamma transition characteristics using a manifestly Lorentz covariant chiral quark approach for the study of baryons as bound states of constituent quarks dressed by a cloud of pseudoscalar mesons.
Baryon symmetric big-bang cosmology. [matter-antimatter symmetry
Stecker, F. W.
1978-01-01
The framework of baryon-symmetric big-bang cosmology offers the greatest potential for deducing the evolution of the universe as a consequence of physical laws and processes with the minimum number of arbitrary assumptions as to initial conditions in the big-bang. In addition, it offers the possibility of explaining the photon-baryon ratio in the universe and how galaxies and galaxy clusters are formed, and also provides the only acceptable explanation at present for the origin of the cosmic gamma ray background radiation.
Baryon Asymmetry, Neutrino Mixing and Supersymmetric SO(10) Unification
Plümacher, Michael
1998-01-01
The baryon asymmetry of the universe can be explained by the out-of-equilibrium decays of heavy right-handed neutrinos. We analyse this mechanism in the framework of a supersymmetric extension of the Standard Model and show that lepton number violating scatterings are indispensable for baryogenesis, even though they may wash-out a generated asymmetry. By assuming a similar pattern of mixings and masses for neutrinos and up-type quarks, as suggested by SO(10) unification, we can generate the observed baryon asymmetry without any fine tuning, if (B-L) is broken at the unification scale preferred by the MSW solution to the solar neutrino deficit.
Transition magnetic moments between negative parity heavy baryons
Aliev, T M; Savci, M
2015-01-01
The transition magnetic moments between negative parity, spin-1/2 heavy baryons are studied in framework of the light cone QCD sum rules. By constructing the sum rules for different Lorentz structures, the unwanted contributions coming from negative (positive) to positive (negative) parity transitions are removed. It is found that the magnetic moments between neutral negative parity heavy $\\Xi_Q^{\\prime 0}$ and $\\Xi_Q^0$ baryons are very small. Magnetic moments of the $\\Sigma_Q \\to \\Lambda_Q$ and $ \\Xi_Q^{\\prime \\pm} \\to \\Xi_Q^\\pm$ transitions are quite large and can be measured in further experiments.
Baryon inhomogeneities in a charged quark gluon plasma
Energy Technology Data Exchange (ETDEWEB)
Ray, Avijeet [Indian Institute of Technology Roorkee, Uttarakhand, 247667 (India); Sanyal, Soma, E-mail: sossp@uohyd.ernet.in [School of Physics, University of Hyderabad, Gachibowli, Hyderabad, 500046 (India)
2013-10-07
We study the generation of baryon inhomogeneities in regions of the quark gluon plasma which have a charge imbalance. We find that the overdensity in the baryon lumps for positively charged particles is different from the overdensity due to the negatively charged particles. Since quarks are charged particles, the probability of forming neutrons or protons in the lumps would thus be changed. The probability of forming hadrons having quarks of the same charges would be enhanced. This might have interesting consequences for the inhomogeneous nucleosynthesis calculations.
Baryon Wave Functions in Covariant Relativistic Quark Models
Dillig, M
2002-01-01
We derive covariant baryon wave functions for arbitrary Lorentz boosts. Modeling baryons as quark-diquark systems, we reduce their manifestly covariant Bethe-Salpeter equation to a covariant 3-dimensional form by projecting on the relative quark-diquark energy. Guided by a phenomenological multigluon exchange representation of a covariant confining kernel, we derive for practical applications explicit solutions for harmonic confinement and for the MIT Bag Model. We briefly comment on the interplay of boosts and center-of-mass corrections in relativistic quark models.
Study of Doubly Heavy Baryon Spectrum via QCD Sum Rules
Institute of Scientific and Technical Information of China (English)
TANG Liang; YUAN Xu-Hao; QIAO Cong-Feng; LI Xue-Qian
2012-01-01
In this work, we calculate the mass spectrum of doubly heavy baryons with the diquaxk model in terms of the QCD sum rules. The interpolating currents are composed of a heavy diquaxk field and a light quark field. Contributions of the operators up to dimension six are taken into account in the operator product expansion. Within a reasonable error tolerance, our numerical results axe compatible with other theoretical predictions. This indicates that the diquaxk picture reflects the reality and is applicable to the study of doubly heavy baryons.
Diquark correlations in baryons on the lattice with overlap quarks
Energy Technology Data Exchange (ETDEWEB)
Babich, R.; Howard, J.; Rebbi, C. [Boston Univ., MA (United States). Dept. of Physics; Garron, N. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Hoelbling, C. [Wuppertal Univ. (Gesamthochschule) (Germany). Fachbereich Physik; Lellouch, L. [CNRS Luminy, Marseille (France). Centre de Physique Theorique]|[Wuppertal Univ. (Gesamthochschule) (Germany). Fachbereich Physik
2007-01-15
We evaluate baryon wave functions in both the Coulomb and Landau gauge in lattice QCD. These are constructed from quark propagators calculated with the overlap Dirac operator on quenched gauge configurations at {beta}=6. By comparing baryon states that differ in their diquark content, we find evidence for enhanced correlation in the scalar diquark channel, as favored by quark models. We also summarize earlier results for diquark masses in the Landau gauge, casting them in a form more easily compared with subsequent studies. (orig.)
Effect of higher orbital angular momenta in the baryon spectrum
Garcilazo, H; Fernández, F
2001-01-01
We have performed a Faddeev calculation of the baryon spectrum for the chiral constituent quark model including higher orbital angular momentum states. We have found that the effect of these states is important, although a description of the baryon spectrum of the same quality as the one given by including only the lowest-order configurations can be obtained. We have studied the effect of the pseudoscalar quark-quark interaction on the relative position of the positive- and negative-parity excitations of the nucleon as well as the effect of varying the strength of the color-magnetic interaction.
On Exotic Systems of Baryons in Chiral Soliton Models
Kopeliovich, Vladimir
2016-01-01
The role of zero mode quantum corrections to the energy of baryonic systems with exotic quantum numbers (strangeness) is discussed. A simple expression for the contribution depending on strange inertia is obtained in the $SU(3)-$collective coordinate quantization approach, and it is shown that this correction stabilizes the systems the stronger the greater their baryon number is. Furthemore, systems are considered which could be interpreted in the quark model language as containing additional $q\\bar q-$pairs. It is argued that a strange skyrmion crystal should have additional binding in comparison with the $SU(2)-$quantized neutron crystal.
Li, Hao-Song; Chen, Xiao-Lin; Deng, Wei-Zhen; Zhu, Shi-Lin
2016-01-01
We have systematically investigated the magnetic moments and magnetic form factors of the decuplet baryons to the next-to-next-leading order in the framework of the heavy baryon chiral perturbation theory. Our calculation includes the contributions from both the intermediate decuplet and octet baryon states in the loops. We also calculate the charge and magnetic dipole form factors of the decuplet baryons. Our results may be useful to the chiral extrapolation of the lattice simulations of the decuplet electromagnetic properties.
Magnetic moments of heavy baryons in the relativistic three-quark model
Faessler, A; Ivanov, M A; Körner, J G; Lyubovitskij, V E; Nicmorus, D; Pumsa-ard, K; Faessler, Amand; Gutsche, Th.
2006-01-01
The magnetic moments of ground state single, double and triple heavy baryons containing charm or bottom quarks are calculated in a relativistic three-quark model, which, in the heavy quark limit, is consistent with Heavy Quark Effective Theory and Heavy Hadron Chiral Perturbation Theory. The internal quark structure of baryons is modeled by baryonic three-quark currents with a spin-flavor structure patterned according to standard covariant baryonic wave functions and currents used in QCD sum rule calculations.
On the quark-mass dependence of baryon ground-state masses
Energy Technology Data Exchange (ETDEWEB)
Semke, Alexander
2010-02-17
Baryon masses of the flavour SU(3) octet and decuplet baryons are calculated in the framework of the Chiral Perturbations Theory - the effective field theory of the strong interaction. The chiral extrapolation to the higher meson (quark) masses is carried out. The comparison with the recent results on the baryon masses from lattice calculations are presented. (orig.)
Factorization of heavy-to-light baryonic transitions in SCET
Energy Technology Data Exchange (ETDEWEB)
Wang, Wei
2011-12-15
In the framework of the soft-collinear effective theory, we demonstrate that the leading-power heavy-to-light baryonic form factors at large recoil obey the heavy quark and large energy symmetries. Symmetry breaking effects have several origins but all of them are suppressed by {lambda}/m{sub b} or {lambda}/E, where {lambda} is the hadronic scale, m{sub b} is the b quark mass and E{proportional_to}m{sub b} is the energy of light baryon in the final state. Including the energy release dependence, we derive the scaling law for form factors {xi}{sub {lambda}}{sub ,p}{proportional_to}{lambda}{sup 2} /E{sup 2}, which is in accordance with the implication from the experimental measurement on the branching ratio of {lambda}{sub b} {yields} p{pi}{sup -}. At leading order in {alpha}{sub s}, the leading-power baryonic form factors can factorize into the soft and collinear matrix elements without encountering any divergence. A leading-power factorization formula for nonleptonic b-baryon decays is also established. (orig.)
New Observations of beauty baryon decays at LHCb
Vitaly, Andreev
2014-01-01
This report describes the work I have done during my summer student association with the LHCb (Large Hadron Collider Beauty Experiment) collaboration at CERN from 30.06 till 26.09.2014. The project was performed in a team with two other summer students. In this report I concentrate on my contribution to the team work. In addition, one section is dedicated to the management framework called “scrum” which we used to collaborate as a team. The goal of my task was to analyze yet unobserved decays of the beauty Lambda-b-0 baryon. This is interesting since the CP violation still remains unobserved in baryons and beauty baryons are generally not well-known yet. LHCb is the first detector where these heavy baryons can be analyzed in detail. In addition these decays may play an important role in other processes and one can gain new insights into the strong interaction. The analysis presented here was performed on the full 2011-2012 LHC run data and includes several decays which are observed for the first time.
Radiative decays of negative parity heavy baryons in QCD
Agamaliev, A K; Savcı, M
2016-01-01
The transition form factors responsible for the radiative $\\Sigma_Q \\to \\Lambda_Q \\gamma$ and $\\Xi_Q^\\prime \\to \\Xi \\gamma$ decays of the negative parity baryons are examined within light cone QCD sum rules. The decay widths of the radiative transitions are calculated using the obtained results of the form factors.
Spectrum and Structure of Excited Baryons with CLAS
Burkert, Volker D
2016-01-01
In this contribution we discuss recent results in light quark baryon spectroscopy involving CLAS data and higher level analysis results from the partial wave analysis by the Bonn-Gatchina group. New baryon states were discovered largely based on the open strangeness production channels $\\gamma p \\to K^+ \\Lambda$ and $\\gamma p \\to K^+ \\Sigma^0$. The data illustrate the great potential of the kaon-hyperon channel in the discovery of higher mass baryon resonances in s-channel production. Other channels with discovery potential, such as $\\gamma p \\to p \\omega$ and $\\gamma p \\to \\phi p$ are also discussed. In the second part I will demonstrate on data the sensitivity of meson electroproduction to expose the active degrees of freedom underlying resonance transitions as a function of the probed distance scale. For several of the prominent excited states in the lower mass range the short distance behavior is described by a core of three dressed-quarks with running quark mass, and meson-baryon contributions make up si...
Algebraic models of hadron structure I. Nonstrange baryons
Bijker, R; Leviatan, A
1994-01-01
We introduce an algebraic framework for the description of baryons. Within this framework we study a collective string-like model and show that this model gives a good overall description of the presently available data. We discuss in particular masses and electromagnetic couplings, including the transition form factors that can be measured at new electron facilities.
Algebraic Models of Hadron Structure; 2, Strange Baryons
Bijker, R; Leviatan, A
2000-01-01
The algebraic treatment of baryons is extended to strange resonances. Within this framework we study a collective string-like model in which the radial excitations are interpreted as rotations and vibrations of the strings. We derive a mass formula and closed expressions for strong and electromagnetic decay widths and use these to analyze the available experimental data.
Algebraic models of hadron structure. I. Nonstrange baryons
Energy Technology Data Exchange (ETDEWEB)
Bijker, R. [Univ. of Utrecht (Netherlands); Iachello, F. [Yale Univ., New Haven, CT (United States); Leviatan, A. [Hebrew Univ., Jerusalem (Israel)
1994-11-15
The authors introduce an algebraic framework for the description of baryons. Within this framework they study a collective string-like model and show that this model gives a good overall description of the presently available data. They discuss in particular masses and electromagnetic couplings, including the transition form factors that can be measured at new electron facilities. 44 refs., 15 figs., 11 tabs.
Observation of Two New Xi(-)(b) Baryon Resonances
Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M. -O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjornstad, P. M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carson, L.; Akiba, K. Carvalho; Casanova Mohr, R. C. M.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S. -F.; Chiapolini, N.; Chrzaszcz, M.; Vidal, X. Cid; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Counts, I.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A. C.; Torres, M. Cruz; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Dean, C. -T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Deleage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Domenico, A.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suarez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. -M.; Evans, T.; Falabella, A.; Faerber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fol, P.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Pardinas, J.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gastaldi, U.; Gauld, R.; Gavardi, L.; Gazzoni, U.; Geraci, A.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Giani, S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Goebel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Gandara, M. Grabalosa; Graciani Diaz, R.; Cardoso, L. A. Granado; Grauges, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griftith, P.; Grillo, L.; Gruenberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Hess, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jaton, P.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M.; Kenyon, I. R.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; Van Leerdam, J.; Lees, J. -P.; Lefevre, R.; Leflat, A.; Lefrancois, J.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lowdon, P.; Lucchesi, D.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Benito, C. Mann; Marino, P.; Maerki, R.; Marks, J.; Martellotti, G.; Martinelli, M.; Santos, D. Martinez; Vidal, F. Martinez; Martin Tostes, D.; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; McSkelly, B.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M. -N.; Moggi, N.; Rodriguez, J. Molina; Monteil, S.; Morandin, M.; Morawski, P.; Morda, A.; Morello, M. J.; Moron, J.; Morris, A. -B.; Mountain, R.; Muheim, F.; Mueller, K.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obratsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Orlandea, M.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Pal, B. K.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parkes, C.; Parkinson, C. J.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Altarelli, M. Pepe; Perazzini, S.; Perret, P.; Pescatore, L.; Pesen, E.; Petridis, K.; Petrolini, A.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilar, T.; Pinci, D.; Pistone, A.; Playfer, S.; Plo Casasus, M.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Navarro, A. Puig; Punzi, G.; Qian, W.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redi, F.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Perez, P. Rodriguez; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz, H.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M. -H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepp, I.; Sena, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Sheychenko, V.; Shires, A.; Coutinho, R. Silva; Simi, G.; Sirendi, M.; Skidmore, N.; Skillicorn, I.; Skwarnicki, T.; Smith, N. A.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Sterpka, F.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; Van Tilburg, J.; Tisserand, V.; Tobin, M.; Todd, J.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Garcia, M. Ubeda; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Gomez, R. Vazquez; Vazquez Regueiro, P.; Vazquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Barbosa, J. V. V. B. Viana; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voss, C.; de Vries, J. A.; Wraldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Whitehead, M.; Wiedner, D.; Wilkinson, G.; Wilkinson, M.; Williams, M. P.; Williams, M.; Wilschut, H. W.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyae, M.; Zhang, L.; Zhang, W. C.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.
2015-01-01
Two structures are observed close to the kinematic threshold in the Xi(0)(b)pi(-) mass spectrum in a sample of proton-proton collision data, corresponding to an integrated luminosity of 3.0 fb(-1), recorded by the LEICb experiment. In the quark model, two baryonic resonances with quark content bds a
Moduli induced cogenesis of baryon asymmetry and dark matter
Directory of Open Access Journals (Sweden)
Mansi Dhuria
2016-05-01
Full Text Available We study a cogenesis mechanism in which the observed baryon asymmetry of the universe and the dark matter abundance can be produced simultaneously at low reheating temperature without violating baryon number in the fundamental interactions. In particular, we consider a model which can be realized in the context of type IIB large volume string compactifications. The matter superfields in this model include additional pairs of color triplet and singlet superfields in addition to the Minimal Supersymmetric Standard Model (MSSM superfields. Assuming that the mass of the additional singlet fermions is O(GeV and of the color triplet fermions is O(TeV, we show that the modulus dominantly decays into the additional color triplet superfields. After soft supersymmetry (SUSY breaking, the lightest eigenstate of scalar component of color triplet superfield further decays into fermionic component of singlet superfield and quarks without violating baryon number. Imposing discrete Z2 symmetry, it follows that the singlet fermion will not further decay into the SM particles and therefore it can be considered as a stable asymmetric dark matter (ADM component. We find that the decay of the lightest eigenstate of scalar component of color triplet superfield gives the observed baryon asymmetry in the visible sector, an asymmetric dark matter component with the right abundance and naturally explains cosmic coincidence.
The inner regions of disk galaxies: a constant baryonic fraction?
Lelli, Federico
2014-01-01
For disk galaxies (spirals and irregulars), the inner circular-velocity gradient (inner steepness of the rotation curve) correlates with the central surface brightness with a slope of ~0.5. This implies that the central dynamical mass density scales almost linearly with the central baryonic density. Here I show that this empirical relation is consistent with a simple model where the central baryonic fraction f_bar(0) is fixed to 1 (no dark matter) and the observed scatter is due to differences in the baryonic mass-to-light ratio M_bar/L (ranging from 1 to 3 in the R-band) and in the characteristic thickness of the central stellar component dz (ranging from 100 to 500 pc). Models with lower baryonic fractions are possible, although they require some fine-tuning in the values of M_bar/L and dz. Regardless of the actual value of f_bar(0), the fact that different types of galaxies do not show strong variations in f_bar(0) is surprising, and may represent a challenge for models of galaxy formation in a LCDM cosmol...
Three Baryon Interaction Generated by Determinant Interaction of Quarks
Ohnishi, Akira; Morita, Kenji
2016-01-01
We discuss the three-baryon interaction generated by the determinant interaction of quarks, known as the Kobayashi-Maskawa-'t Hooft (KMT) interaction. The expectation value of the KMT interaction operator is calculated in fully-antisymmetrized quark-cluster model wave functions for one-, two- and three-octet baryon states. The three-baryon potential from the KMT interaction is found to be repulsive for $NN\\Lambda$ and $N\\Lambda\\Lambda$ systems, while it is zero for the $NNN$ system. The strength and range of the three-baryon potential are found to be comparable to those for the $NNN$ three-body potential obtained in lattice QCD simulations. The contribution to the $\\Lambda$ single particle potential in nuclear matter is found to be 0.28 MeV and 0.73 MeV in neutron matter and symmetric nuclear matter at normal nuclear density, respectively. These repulsive forces are not enough to solve the hyperon puzzle, but may be measured in high-precision hyperisotope experiments.
First Observation of a Baryonic B-c(+) Decay
Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bettler, M. -O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjornstad, P. M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brambach, T.; van den Brand, J.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Brown, H.; Bursche, A.; Busetto, G.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Perez, D. Campora; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carson, L.; Akiba, K. Carvalho; Casse, G.; Cassina, L.; Garcia, L. Castillo; Cattaneo, M.; Cauet, Ch.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S. -F.; Chiapolini, N.; Chrzaszcz, M.; Ciba, K.; Vidal, X. Cid; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cojocariu, L.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Counts, I.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Torres, M. Cruz; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Deleage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Di Canto, A.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suarez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. -M.; Evans, T.; Falabella, A.; Faerber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, R. F.; Ferguson, D.; Fernandez Albor, V.; Rodrigues, F. Ferreira; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Pardinas, J.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gavrilov, G.; Geraci, A.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Giani, S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Goebel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Gandara, M. Grabalosa; Graciani Diaz, R.; Cardoso, L. A. Granado; Grauges, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Gruenberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Hess, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Hunt, P.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jaton, P.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kaballo, M.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M.; Kenyon, I. R.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J. -P.; Lefevre, R.; Leflat, A.; Lefrancois, J.; Leo, S.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lopez-March, N.; Lowdon, P.; Lu, H.; Lucchesi, D.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Maerki, R.; Marks, J.; Martellotti, G.; Martens, A.; Sanchez, A. Martin; Martinelli, M.; Santos, D. Martinez; Martinez Vidal, F.; Tostes, D. Martins; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Mazurov, A.; McCann, M.; McCarthy, J.; Mcnab, A.; McNulty, R.; McSkelly, B.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M. -N.; Moggi, N.; Rodriguez, J. Molina; Monteil, S.; Morandin, M.; Morawski, P.; Morda, A.; Morello, M. J.; Moron, J.; Morris, A. -B.; Mountain, R.; Muheim, F.; Mueller, K.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Oggero, S.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, G.; Orlandea, M.; Goicochea, J. M. Otalora; Owen, P.; Oyanguren, A.; Pal, B. K.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parkes, C.; Parkinson, C. J.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pazos Alvarez, A.; Pearce, A.; Pellegrino, A.; Altarelli, M. Pepe; Perazzini, S.; Perez Trigo, E.; Perret, P.; Perrin-Terrin, M.; Pescatore, L.; Pesen, E.; Petridis, K.; Petrolini, A.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilar, T.; Pinci, D.; Pistone, A.; Playfer, S.; Plo Casasus, M.; Polci, F.; Poluektov, A.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Navarro, A. Puig; Punzi, G.; Qian, W.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Romero, D. A. Roa; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Perez, P. Rodriguez; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz, H.; Ruiz Valls, P.; Silva, J. J. Saborido; Sagidova, N.; Sail, P.; Saitta, B.; Guimaraes, V. Salustino; Mayordomo, C. Sanchez; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrie, M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M. -H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Seco, M.; Semennikov, A.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Coutinho, R. Silva; Simi, G.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, N. A.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; De Paula, B. Souza; Spaan, B.; Sparkes, A.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Subbiah, V. K.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szilard, D.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Tran, M. T.; Tresch, M.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Garcia, M. Ubeda; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vagnoni, V.; Valenti, G.; Vallier, A.; Gomez, R. Vazquez; Vazquez Regueiro, P.; Sierra, C. Vzquez; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voss, C.; Voss, H.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Whitehead, M.; Wicht, J.; Wiedner, D.; Wilkinson, G.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wu, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, W. C.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zvyagin, A.
2014-01-01
A baryonic decay of the B-c(+) meson, B-c(+) -> J/psi p (p) over bar pi(+) is observed for the first time, with a significance of 7.3 standard deviations, in pp collision data collected with the LHCb detector and corresponding to an integrated luminosity of 3.0 fb(-1) taken at center-of-mass energie
Dense baryonic matter in strong coupling lattice gauge theory
Bringoltz, B
2004-01-01
We investigate the strong coupling limit of lattice QCD in the Hamiltonian formulation for systems with non-zero baryon density. In leading order the Hamiltonian looks like an antiferromagnet that is invariant under global U(N_f)xU(N_f) and local SU(N_c). Physically it describes meson dynamics with a fixed background of baryon density. We study this Hamiltonian with several baryon number distributions, and concentrate on the global symmetries of the ground state and on the properties of low lying excitations. In particular, for uniform non-zero baryon density we write the partition function as a path integral that is tractable in the limit of large N_c. We find that the ground state spontaneously breaks chiral symmetry as well as discrete lattice rotations in a way that depends on N_f and the density. The low energy excitations include type I and type II Goldstone bosons. The energies of the latter are of order 1/N_c, and are quadratic in momentum. Bosons of either type can develop anisotropic dispersion rela...
Constraining Dark Matter-Baryon Scattering with Linear Cosmology
Dvorkin, Cora; Kamionkowski, Marc
2013-01-01
We derive constraints on elastic scattering between baryons and dark matter using the cosmic microwave background (CMB) data from the Planck satellite and the Lyman-alpha forest data from the Sloan Digital Sky Survey. Elastic scattering allows baryons and dark matter to exchange momentum, affecting the dynamics of linear density perturbations in the early Universe. We derive constraints to scattering cross sections of the form sigma \\propto v^n, allowing for a wide range of velocity dependencies with n between -4 and 2. We improve and correct previous estimates where they exist, including velocity-independent cross section as well as dark matter millicharge and electromagnetic dipole moments. Lyman-alpha forest data dominates the constraints for n>-3, where the improvement over CMB data alone can be several orders of magnitude. Dark matter-baryon scattering cannot affect the halo mass function on mass scales M>10^{12} M_{solar}. Our results imply, model-independently, that a baryon in the halo of a galaxy lik...
Factorization of heavy-to-light baryonic transitions in SCET
Energy Technology Data Exchange (ETDEWEB)
Wang, Wei
2011-12-15
In the framework of the soft-collinear effective theory, we demonstrate that the leading-power heavy-to-light baryonic form factors at large recoil obey the heavy quark and large energy symmetries. Symmetry breaking effects have several origins but all of them are suppressed by {lambda}/m{sub b} or {lambda}/E, where {lambda} is the hadronic scale, m{sub b} is the b quark mass and E{proportional_to}m{sub b} is the energy of light baryon in the final state. Including the energy release dependence, we derive the scaling law for form factors {xi}{sub {lambda}}{sub ,p}{proportional_to}{lambda}{sup 2} /E{sup 2}, which is in accordance with the implication from the experimental measurement on the branching ratio of {lambda}{sub b} {yields} p{pi}{sup -}. At leading order in {alpha}{sub s}, the leading-power baryonic form factors can factorize into the soft and collinear matrix elements without encountering any divergence. A leading-power factorization formula for nonleptonic b-baryon decays is also established. (orig.)
Pion photo- and electroproduction in relativistic baryon ChPT
Directory of Open Access Journals (Sweden)
Tiator Lothar
2014-06-01
Full Text Available We present a calculation of pion photo- and electroproduction in manifestly Lorentz-invariant baryon chiral perturbation theory up to and including order q4. We fix the low-energy constants by fitting experimental data in all available reaction channels. Our results can be accessed via a web interface, the so-called chiral MAID.
The baryon fraction in hydrodynamical simulations of galaxy clusters
Ettori, S; Borgani, S; Murante, G
2006-01-01
We study the baryon mass fraction in a set of hydrodynamical simulations of galaxy clusters performed using the Tree+SPH code GADGET-2. We investigate the dependence of the baryon fraction upon the radiative cooling, star formation, feedback through galactic winds, conduction and redshift. Both the cold stellar component and the hot X-ray emitting gas have narrow distributions that, at large cluster-centric distances r>R500, are nearly independent of the physics included in the simulations. Only the non-radiative runs reproduce the gas fraction inferred from observations of the inner regions (r ~ R2500) of massive clusters. When cooling is turned on, the excess star formation is mitigated by the action of galactic winds, but yet not by the amount required by observational data. The baryon fraction within a fixed overdensity increases slightly with redshift, independent of the physical processes involved in the accumulation of baryons in the cluster potential well. In runs with cooling and feedback, the increa...
Baryomorphosis: Relating the Baryon Asymmetry to the "WIMP Miracle"
McDonald, John
2010-01-01
We present a generic framework, "baryomorphosis", which modifies the baryon asymmetry to be naturally of the order of a typical thermal relic WIMP density. We consider a simple scalar-based model to show how this is possible. This model introduces a sector in which a large initial baryon asymmetry is injected into particles ("annihilons"), phi_{B}, phi_{B, hat}, of mass ~ 100 GeV - 1 TeV. phi_{B}-phi_{B, hat} annihilations convert the initial phi_{B}, phi_{B, hat} asymmetry to a final asymmetry with a thermal relic WIMP-like density. This subsequently decays to a conventional baryon asymmetry whose magnitude is naturally related to the density of thermal relic WIMP dark matter. In this way the two coincidences of baryons and dark matter i.e. why their densities are similar to each other and why they are both similar to a WIMP thermal relic density (the "WIMP miracle"), may be understood. The model can be tested by the production of annihilons at colliders.
The Inner Regions of Disk Galaxies: A Constant Baryonic Fraction?
Directory of Open Access Journals (Sweden)
Federico Lelli
2014-07-01
Full Text Available For disk galaxies (spirals and irregulars, the inner circular-velocity gradient dRV0 (inner steepness of the rotation curve correlates with the central surface brightness ∑*,0 with a slope of ~0.5. This implies that the central dynamical mass density scales almost linearly with the central baryonic density. Here I show that this empirical relation is consistent with a simple model where the central baryonic fraction ƒbar,0 is fixed to 1 (no dark matter and the observed scatter is due to differences in the baryonic mass-to-light ratio Mbar / LR (ranging from 1 to 3 in the R-band and in the characteristic thickness of the central stellar component Δz (ranging from 100 to 500 pc. Models with lower baryonic fractions are possible, although they require some fine-tuning in the values of Mbar/LR and Δz. Regardless of the actual value of ƒbar,0, the fact that different types of galaxies do not show strong variations in ƒbar,0 is surprising, and may represent a challenge for models of galaxy formation in a Λ Cold Dark Matter (ΛCDM cosmology.
The search for exotic baryons at the HERMES experiment
Energy Technology Data Exchange (ETDEWEB)
Deconinck, Wouter
2008-07-15
One of the interesting questions of Quantum Chromodynamics, the theory that governs the interactions between quarks and gluons, has been whether it is possible to observe hadrons which can not be explained as a combination of only two or three valence quarks. In numerous searches the existence of these exotic hadrons could not be confirmed. Recently, calculations based on the quark soliton model predicted the narrow exotic baryons {theta}{sup +} and {xi}{sup --}. A narrow resonance identified as the {theta}{sup +} was observed by several experiments at the predicted mass of 1540 MeV, but later followed by several dedicated experiments that could not confirm these positive results. At the HERMES experiment a search for the quasi-real photoproduction of the exotic baryon {theta}{sup +} on a deuterium target and the subsequent decay through pK{sup 0}{sub S} {yields} p{pi}{sup +}{pi}{sup -} revealed a narrow resonance in the pK{sup 0}{sub S} invariant mass distribution at 1528 MeV. In the search for the corresponding antiparticle {xi}{sup --} the result is consistent with zero events. In this thesis we present the search for the exotic baryon {xi}{sup --} on a deuterium target in the data sample used for the observation of the {theta}{sup +}. An upper limit on the cross section of the exotic baryon {xi}{sup --} is determined. The search for the exotic baryon {theta}{sup +} on hydrogen and deuterium targets at the HERMES experiment is extensively discussed. The event mixing method can be used to estimate the distribution of background events. Several difficulties with this method were addressed, but the background description in the case of the exotic baryon {theta}{sup +} remains unconvincing. Between the years 2002 and 2005 the HERMES experiment operated with a magnetic holding field around the hydrogen target. A method for the reconstruction of displaced vertices in this field was developed. The data collected during the years 2006 and 2007 offer an integrated
Thermodynamics of Hot Hadronic Gases at Finite Baryon Densities
Albright, Michael Glenn
In this thesis we investigate equilibrium and nonequilibrium thermodynamic properties of Quantum Chromodynamics (QCD) matter at finite baryon densities. We begin by constructing crossover models for the thermodynamic equation of state. These use switching functions to smoothly interpolate between a hadronic gas model at low energy densities to a perturbative QCD equation of state at high energy densities. We carefully design the switching function to avoid introducing first-, second-, or higher-order phase transitions which lattice QCD indicates are not present at small baryon chemical potentials. We employ three kinds of hadronic models in the crossover constructions, two of which include repulsive interactions via an excluded volume approximation while one model does not. We find that the three crossover models are in excellent agreement with accurate lattice QCD calculations of the equation of state over a wide range of temperatures and baryon chemical potentials. Hence, the crossover models should be very useful for parameterizing the equation of state at finite baryon densities, which is needed to build next-generation hydrodynamic simulations of heavy-ion collisions. We next calculate the speed of sound and baryon number fluctuations predicted by the crossover models. We find that crossover models with hadronic repulsion are most successful at reproducing the lattice results, while the model without repulsion is less successful, and hadron (only) models show poor agreement. We then compare the crossover models to net-proton fluctuation measurements from the STAR Collaboration at the Relativistic Heavy Ion Collider (RHIC). The comparisons suggest baryon number fluctuations freeze-out well below the chemical freeze-out temperature. We also search for signs of critical fluctuations in the STAR data, but we find no evidence for them at this time. Finally, we derive kinetic theory formulas for the shear and bulk viscosity and thermal conductivity of hot hadronic
Magnetic Moments of Octet Baryons in Hot and Dense Nuclear Matter
Singh, Harpreet; Dahiya, Harleen
2016-01-01
We have calculated the in-medium magnetic moments of octet baryons in the presence of hot and dense symmetric nuclear matter. Effective magnetic moments of baryons have been derived from medium modified quark masses within chiral SU(3) quark mean field model.Further, for better insight of medium modification of baryonic magnetic moments, we have considered the explicit contributions from the valence as well as sea quark effects. These effects have been successful in giving the description of baryonic magnetic moments in vacuum. The magnetic moments of baryons are found to vary significantly as a function of density of nuclear medium.
Simultaneous Generation of WIMP Miracle-like Densities of Baryons and Dark Matter
McDonald, John
2012-09-01
The observed density of dark matter is of the magnitude expected for a thermal relic weakly-interacting massive particle (WIMP). In addition, the observed baryon density is within an order of magnitude of the dark matter density. This suggests that the baryon density is physically related to a typical thermal relic WIMP dark matter density. We present a model which simultaneously generates thermal relic WIMP-like densities for both baryons and dark matter by modifying a large initial baryon asymmetry. Production of unstable scalars carrying baryon number at the LHC would be a clear signature of the model.