WorldWideScience

Sample records for ii numerical validation

  1. Numerical simulation and experimental validation of coiled adiabatic capillary tubes

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Valladares, O. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico (UNAM), Apdo. Postal 34, 62580 Temixco, Morelos (Mexico)

    2007-04-15

    The objective of this study is to extend and validate the model developed and presented in previous works [O. Garcia-Valladares, C.D. Perez-Segarra, A. Oliva, Numerical simulation of capillary tube expansion devices behaviour with pure and mixed refrigerants considering metastable region. Part I: mathematical formulation and numerical model, Applied Thermal Engineering 22 (2) (2002) 173-182; O. Garcia-Valladares, C.D. Perez-Segarra, A. Oliva, Numerical simulation of capillary tube expansion devices behaviour with pure and mixed refrigerants considering metastable region. Part II: experimental validation and parametric studies, Applied Thermal Engineering 22 (4) (2002) 379-391] to coiled adiabatic capillary tube expansion devices working with pure and mixed refrigerants. The discretized governing equations are coupled using an implicit step by step method. A special treatment has been implemented in order to consider transitions (subcooled liquid region, metastable liquid region, metastable two-phase region and equilibrium two-phase region). All the flow variables (enthalpies, temperatures, pressures, vapor qualities, velocities, heat fluxes, etc.) together with the thermophysical properties are evaluated at each point of the grid in which the domain is discretized. The numerical model allows analysis of aspects such as geometry, type of fluid (pure substances and mixtures), critical or non-critical flow conditions, metastable regions, and transient aspects. Comparison of the numerical simulation with a wide range of experimental data presented in the technical literature will be shown in the present article in order to validate the model developed. (author)

  2. Numerical integration subprogrammes in Fortran II-D

    Energy Technology Data Exchange (ETDEWEB)

    Fry, C. R.

    1966-12-15

    This note briefly describes some integration subprogrammes written in FORTRAN II-D for the IBM 1620-II at CARDE. These presented are two Newton-Cotes, Chebyshev polynomial summation, Filon's, Nordsieck's and optimum Runge-Kutta and predictor-corrector methods. A few miscellaneous numerical integration procedures are also mentioned covering statistical functions, oscillating integrands and functions occurring in electrical engineering.

  3. Numerical analysis II essentials

    CERN Document Server

    REA, The Editors of; Staff of Research Education Association

    1989-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Numerical Analysis II covers simultaneous linear systems and matrix methods, differential equations, Fourier transformations, partial differential equations, and Monte Carlo methods.

  4. HYDRA-II: A hydrothermal analysis computer code: Volume 1, Equations and numerics

    International Nuclear Information System (INIS)

    McCann, R.A.

    1987-04-01

    HYDRA-II is a hydrothermal computer code capable of three-dimensional analysis of coupled conduction, convection, and thermal radiation problems. This code is especially appropriate for simulating the steady-state performance of spent fuel storage systems. The code has been evaluated for this application for the US Department of Energy's Commercial Spent Fuel Management Program. HYDRA-II provides a finite difference solution in Cartesian coordinates to the equations governing the conservation of mass, momentum, and energy. A cylindrical coordinate system may also be used to enclose the Cartesian coordinate system. This exterior coordinate system is useful for modeling cylindrical cask bodies. The difference equations for conservation of momentum are enhanced by the incorporation of directional porosities and permeabilities that aid in modeling solid structures whose dimensions may be smaller than the computational mesh. The equation for conservation of energy permits of modeling of orthotropic physical properties and film resistances. Several automated procedures are available to model radiation transfer within enclosures and from fuel rod to fuel rod. The documentation of HYDRA-II is presented in three separate volumes. This volume, Volume I - Equations and Numerics, describes the basic differential equations, illustrates how the difference equations are formulated, and gives the solution procedures employed. Volume II - User's Manual contains code flow charts, discusses the code structure, provides detailed instructions for preparing an input file, and illustrates the operation of the code by means of a model problem. The final volume, Volume III - Verification/Validation Assessments, presents results of numerical simulations of single- and multiassembly storage systems and comparisons with experimental data. 4 refs

  5. Automatic validation of numerical solutions

    DEFF Research Database (Denmark)

    Stauning, Ole

    1997-01-01

    This thesis is concerned with ``Automatic Validation of Numerical Solutions''. The basic theory of interval analysis and self-validating methods is introduced. The mean value enclosure is applied to discrete mappings for obtaining narrow enclosures of the iterates when applying these mappings...... differential equations, but in this thesis, we describe how to use the methods for enclosing iterates of discrete mappings, and then later use them for discretizing solutions of ordinary differential equations. The theory of automatic differentiation is introduced, and three methods for obtaining derivatives...... are described: The forward, the backward, and the Taylor expansion methods. The three methods have been implemented in the C++ program packages FADBAD/TADIFF. Some examples showing how to use the three metho ds are presented. A feature of FADBAD/TADIFF not present in other automatic differentiation packages...

  6. Validation of the Essentials of Magnetism II in Chinese critical care settings.

    Science.gov (United States)

    Bai, Jinbing; Hsu, Lily; Zhang, Qing

    2015-05-01

    To translate and evaluate the psychometric properties of the Essentials of Magnetism II tool (EOM II) for Chinese nurses in critical care settings. The EOM II is a reliable and valid scale for measuring the healthy work environment (HWE) for nurses in Western countries, however, it has not been validated among Chinese nurses. The translation of the EOM II followed internationally recognized guidelines. The Chinese version of the Essentials of Magnetism II tool (C-EOM II) was reviewed by an expert panel for culturally semantic equivalence and content validity. Then, 706 nurses from 28 intensive care units (ICUs) affiliated with 14 tertiary hospitals participated in this study. The reliability of the C-EOM II was assessed using the Cronbach's alpha coefficient; the content validity of this scale was assessed using the content validity index (CVI); and the construct validity was assessed using the confirmatory factor analysis (CFA). The C-EOM II showed excellent content validity with a CVI of 0·92. All the subscales of the C-EOM II were significantly correlated with overall nurse job satisfaction and nurse-assessed quality of care. The CFA showed that the C-EOM II was composed of 45 items with nine factors, accounting for 46·51% of the total variance. Cronbach's alpha coefficients for these factors ranged from 0·56 to 0·89. The C-EOM II is a promising scale to assess the HWE for Chinese ICU nurses. Nursing administrators and health care policy-makers can use the C-EOM II to evaluate clinical work environment so that a healthier work environment can be created and sustained for staff nurses. © 2013 British Association of Critical Care Nurses.

  7. Numerical simulations of type II gradient drift irregularities in the equatorial electrojet

    International Nuclear Information System (INIS)

    Ferch, R.L.; Sudan, R.N.

    1977-01-01

    Two-dimensional numerical studies of the development of type II irregularities in the equatorial electrojet have been carried out using a method similar to that of McDonald et al., (1974) except that ion inertia has been neglected. This simplification is shown to be a valid approximation whenever the electron drift velocity is small in comparison with the ion acoustic velocity and the values of the other parameters are those appropriate for the equatorial E layer. This code enables us to follow the development of quasi-steady state turbulence from appropriate initial pertubations. The two-dimensional turbulent spectrum of electron density perturbations excited is studied both for the case of devlopment from initial perturbations and for the case of a continuously pumped single driving wave

  8. Electromagnetic scattering problems -Numerical issues and new experimental approaches of validation

    Energy Technology Data Exchange (ETDEWEB)

    Geise, Robert; Neubauer, Bjoern; Zimmer, Georg [University of Braunschweig, Institute for Electromagnetic Compatibility, Schleinitzstrasse 23, 38106 Braunschweig (Germany)

    2015-03-10

    Electromagnetic scattering problems, thus the question how radiated energy spreads when impinging on an object, are an essential part of wave propagation. Though the Maxwell’s differential equations as starting point, are actually quite simple,the integral formulation of an object’s boundary conditions, respectively the solution for unknown induced currents can only be solved numerically in most cases.As a timely topic of practical importance the scattering of rotating wind turbines is discussed, the numerical description of which is still based on rigorous approximations with yet unspecified accuracy. In this context the issue of validating numerical solutions is addressed, both with reference simulations but in particular with the experimental approach of scaled measurements. For the latter the idea of an incremental validation is proposed allowing a step by step validation of required new mathematical models in scattering theory.

  9. The concept of validation of numerical models for consequence analysis

    International Nuclear Information System (INIS)

    Borg, Audun; Paulsen Husted, Bjarne; Njå, Ove

    2014-01-01

    Numerical models such as computational fluid dynamics (CFD) models are increasingly used in life safety studies and other types of analyses to calculate the effects of fire and explosions. The validity of these models is usually established by benchmark testing. This is done to quantitatively measure the agreement between the predictions provided by the model and the real world represented by observations in experiments. This approach assumes that all variables in the real world relevant for the specific study are adequately measured in the experiments and in the predictions made by the model. In this paper the various definitions of validation for CFD models used for hazard prediction are investigated to assess their implication for consequence analysis in a design phase. In other words, how is uncertainty in the prediction of future events reflected in the validation process? The sources of uncertainty are viewed from the perspective of the safety engineer. An example of the use of a CFD model is included to illustrate the assumptions the analyst must make and how these affect the prediction made by the model. The assessments presented in this paper are based on a review of standards and best practice guides for CFD modeling and the documentation from two existing CFD programs. Our main thrust has been to assess how validation work is performed and communicated in practice. We conclude that the concept of validation adopted for numerical models is adequate in terms of model performance. However, it does not address the main sources of uncertainty from the perspective of the safety engineer. Uncertainty in the input quantities describing future events, which are determined by the model user, outweighs the inaccuracies in the model as reported in validation studies. - Highlights: • Examine the basic concept of validation applied to models for consequence analysis. • Review standards and guides for validation of numerical models. • Comparison of the validation

  10. Validation of the Parental Facilitation of Mastery Scale-II.

    Science.gov (United States)

    Zalta, Alyson K; Allred, Kelly M; Jayawickreme, Eranda; Blackie, Laura E R; Chambless, Dianne L

    2017-10-01

    To develop a more reliable and comprehensive version of the Parental Facilitation of Mastery Scale (PFMS) METHOD: In Study 1, 387 undergraduates completed an expanded PFMS (PFMS-II) and measures of parenting, perceived control, responses to early life challenges, and psychopathology. In Study 2, 182 trauma-exposed community participants completed the PFMS-II and measures of perceived control, psychopathology, and well-being RESULTS: In Study 1, exploratory factor analysis of the PFMS-II revealed two factors. These factors replicated in Study 2; one item was removed to achieve measurement invariance across race. The final PFMS-II comprised a 10-item overprotection scale and a 7-item challenge scale. In both samples, this measure demonstrated good convergent and discriminant validity and was more reliable than the original PFMS. Parental challenge was a unique predictor of perceived control in both samples CONCLUSION: The PFMS-II is a valid measure of important parenting behaviors not fully captured in other measures. © 2016 Wiley Periodicals, Inc.

  11. Validation of Hydrodynamic Numerical Model of a Pitching Wave Energy Converter

    DEFF Research Database (Denmark)

    López, Maria del Pilar Heras; Thomas, Sarah; Kramer, Morten Mejlhede

    2017-01-01

    Validation of numerical model is essential in the development of new technologies. Commercial software and codes available simulating wave energy converters (WECs) have not been proved to work for all the available and upcoming technologies yet. The present paper presents the first stages...... of the validation process of a hydrodynamic numerical model for a pitching wave energy converter. The development of dry tests, wave flume and wave basin experiments are going to be explained, lessons learned shared and results presented....

  12. Impact-friction vibrations of tubular systems. Numerical simulation and experimental validation

    International Nuclear Information System (INIS)

    Jacquart, G.

    1993-05-01

    This note presents a summary on the numerical developments made to simulate impact-friction vibrations of tubular systems, detailing the algorithms used and the expression of impact and friction forces. A synthesis of the experimental results obtained on MASSIF workbench is also presented, as well as their comparison with numerical computations in order to validate the numerical approach. (author). 5 refs

  13. Numerical Predictions of Wind Turbine Power and Aerodynamic Loads for the NREL Phase II and IV Combined Experiment Rotor

    Science.gov (United States)

    Duque, Earl P. N.; Johnson, Wayne; vanDam, C. P.; Chao, David D.; Cortes, Regina; Yee, Karen

    1999-01-01

    Accurate, reliable and robust numerical predictions of wind turbine rotor power remain a challenge to the wind energy industry. The literature reports various methods that compare predictions to experiments. The methods vary from Blade Element Momentum Theory (BEM), Vortex Lattice (VL), to variants of Reynolds-averaged Navier-Stokes (RaNS). The BEM and VL methods consistently show discrepancies in predicting rotor power at higher wind speeds mainly due to inadequacies with inboard stall and stall delay models. The RaNS methodologies show promise in predicting blade stall. However, inaccurate rotor vortex wake convection, boundary layer turbulence modeling and grid resolution has limited their accuracy. In addition, the inherently unsteady stalled flow conditions become computationally expensive for even the best endowed research labs. Although numerical power predictions have been compared to experiment. The availability of good wind turbine data sufficient for code validation experimental data that has been extracted from the IEA Annex XIV download site for the NREL Combined Experiment phase II and phase IV rotor. In addition, the comparisons will show data that has been further reduced into steady wind and zero yaw conditions suitable for comparisons to "steady wind" rotor power predictions. In summary, the paper will present and discuss the capabilities and limitations of the three numerical methods and make available a database of experimental data suitable to help other numerical methods practitioners validate their own work.

  14. The Danish Barriers Questionnaire-II: preliminary validation in cancer pain patients

    DEFF Research Database (Denmark)

    Jacobsen, Ramune; Møldrup, Claus; Christrup, Lona Louring

    2009-01-01

    OBJECTIVE: The objective of this study was to examine the psychometric properties of the Danish version of the Barriers Questionnaire-II (DBQ-II). METHODS: The validated Norwegian version of the DBQ-II was translated into Danish. Cancer patients for the study were recruited from specialized pain...... cancer pain management. Scale two, Immune System, consisted of three items addressing the belief that pain medications harm the immune system. Scale three, Monitor, consisted of three items addressing the fear that pain medicine masks changes in one's body. Scale four, Communication, consisted of five......: The DBQ-II seems to be a reliable and valid measure of the barriers to pain management among Danish cancer patients....

  15. Control of uncertain systems by feedback linearization with neural networks augmentation. Part II. Controller validation by numerical simulation

    Directory of Open Access Journals (Sweden)

    Adrian TOADER

    2010-09-01

    Full Text Available The paper was conceived in two parts. Part I, previously published in this journal, highlighted the main steps of adaptive output feedback control for non-affine uncertain systems, having a known relative degree. The main paradigm of this approach was the feedback linearization (dynamic inversion with neural network augmentation. Meanwhile, based on new contributions of the authors, a new paradigm, that of robust servomechanism problem solution, has been added to the controller architecture. The current Part II of the paper presents the validation of the controller hereby obtained by using the longitudinal channel of a hovering VTOL-type aircraft as mathematical model.

  16. Two-dimensional numerical modeling and solution of convection heat transfer in turbulent He II

    Science.gov (United States)

    Zhang, Burt X.; Karr, Gerald R.

    1991-01-01

    Numerical schemes are employed to investigate heat transfer in the turbulent flow of He II. FEM is used to solve a set of equations governing the heat transfer and hydrodynamics of He II in the turbulent regime. Numerical results are compared with available experimental data and interpreted in terms of conventional heat transfer parameters such as the Prandtl number, the Peclet number, and the Nusselt number. Within the prescribed Reynolds number domain, the Gorter-Mellink thermal counterflow mechanism becomes less significant, and He II acts like an ordinary fluid. The convection heat transfer characteristics of He II in the highly turbulent regime can be successfully described by using the conventional turbulence and heat transfer theories.

  17. Labour anxiety questionnaire (KLP II)- revised-the construction and psychological validation

    OpenAIRE

    Putyński, Leszek; Paciorek, Mariusz

    2008-01-01

    Self-report Labour Anxiety Questionnaire (KLP II) was developed to asses the level of labour anxiety in pregnant women. This short tool consists of 9 items, which include attitudes toward labour and fear of labour. The questionnaire was valided on 53 pregnant women. The results of the study indicate that the Labour Anxiety Questionnaire (KLP II) is reliable and valid method to identify pregnant women with high level of labour anxiety.

  18. Numerical Validation of Chemical Compositional Model for Wettability Alteration Processes

    Science.gov (United States)

    Bekbauov, Bakhbergen; Berdyshev, Abdumauvlen; Baishemirov, Zharasbek; Bau, Domenico

    2017-12-01

    Chemical compositional simulation of enhanced oil recovery and surfactant enhanced aquifer remediation processes is a complex task that involves solving dozens of equations for all grid blocks representing a reservoir. In the present work, we perform a numerical validation of the newly developed mathematical formulation which satisfies the conservation laws of mass and energy and allows applying a sequential solution approach to solve the governing equations separately and implicitly. Through its application to the numerical experiment using a wettability alteration model and comparisons with existing chemical compositional model's numerical results, the new model has proven to be practical, reliable and stable.

  19. The child-Langmuir limit for semiconductors: a numerical validation

    International Nuclear Information System (INIS)

    Caceres, M.J.; Carrillo, J.A.; Degond, P.

    2002-01-01

    The Boltzmann-Poisson system modeling the electron flow in semiconductors is used to discuss the validity of the Child-Langmuir asymptotics. The scattering kernel is approximated by a simple relaxation time operator. The Child-Langmuir limit gives an approximation of the current-voltage characteristic curves by means of a scaling procedure in which the ballistic velocity is much larger that the thermal one. We discuss the validity of the Child-Langmuir regime by performing detailed numerical comparisons between the simulation of the Boltzmann-Poisson system and the Child-Langmuir equations in test problems. (authors)

  20. SASSYS validation with the EBR-II shutdown heat removal tests

    International Nuclear Information System (INIS)

    Herzog, J.P.

    1989-01-01

    SASSYS is a coupled neutronic and thermal hydraulic code developed for the analysis of transients in liquid metal cooled reactors (LMRs). The code is especially suited for evaluating of normal reactor transients -- protected (design basis) and unprotected (anticipated transient without scram) transients. Because SASSYS is heavily used in support of the IFR concept and of innovative LMR designs, such as PRISM, a strong validation base for the code must exist. Part of the validation process for SASSYS is analysis of experiments performed on operating reactors, such as the metal fueled Experimental Breeder Reactor -- II (EBR-II). During the course of a series of historic whole-plant experiments, EBR-II illustrated key safety features of metal fueled LMRs. These experiments, the Shutdown Heat Removal Tests (SHRT), culminated in unprotected loss of flow and loss of heat sink transients from full power and flow. Analysis of these and earlier SHRT experiments constitutes a vital part of SASSYS validation, because it facilitates scrutiny of specific SASSYS models and of integrated code capability. 12 refs., 11 figs

  1. Validating the standard for the National Board Dental Examination Part II.

    Science.gov (United States)

    Tsai, Tsung-Hsun; Neumann, Laura M; Littlefield, John H

    2012-05-01

    As part of the overall exam validation process, the Joint Commission on National Dental Examinations periodically reviews and validates the pass/fail standard for the National Board Dental Examination (NBDE), Parts I and II. The most recent standard-setting activities for NBDE Part II used the Objective Standard Setting method. This report describes the process used to set the pass/fail standard for the 2009 exam. The failure rate on the NBDE Part II increased from 5.3 percent in 2008 to 13.7 percent in 2009 and then decreased to 10 percent in 2010. This article describes the Objective Standard Setting method and presents the estimated probabilities of classification errors based on the beta binomial mathematical model. The results show that the probability of correct classifications of candidate performance is very high (0.97) and that probabilities of false negative and false positive errors are very small (.03 and <0.001, respectively). The low probability of classification errors supports the conclusion that the pass/fail score on the NBDE Part II is a valid guide for making decisions about candidates for dental licensure.

  2. Numerical modeling and experimental validation of thermoplastic composites induction welding

    Science.gov (United States)

    Palmieri, Barbara; Nele, Luigi; Galise, Francesco

    2018-05-01

    In this work, a numerical simulation and experimental test of the induction welding of continuous fibre-reinforced thermoplastic composites (CFRTPCs) was provided. The thermoplastic Polyamide 66 (PA66) with carbon fiber fabric was used. Using a dedicated software (JMag Designer), the influence of the fundamental process parameters such as temperature, current and holding time was investigated. In order to validate the results of the simulations, and therefore the numerical model used, experimental tests were carried out, and the temperature values measured during the tests were compared with the aid of an optical pyrometer, with those provided by the numerical simulation. The mechanical properties of the welded joints were evaluated by single lap shear tests.

  3. Validity of the Mania Subscale of the Diagnostic Assessment for the Severely Handicapped-II (DASH-II).

    Science.gov (United States)

    Matson, Johnny L.; Smiroldo, Brandi B.

    1997-01-01

    A study tested the validity of the Diagnostic Assessment for the Severely Handicapped-II (DASH-II) for determining the presence of mania (bipolar disorder) in 22 individuals with severe mental retardation. Results found the mania subscale to be internally consistent and able to be used to classify manic and control subjects accurately. (Author/CR)

  4. A 3-D model of superfluid helium suitable for numerical analysis

    CERN Document Server

    Darve, C; Van Sciver, S W

    2009-01-01

    The two-fluid description is a very successful phenomenological representation of the properties of Helium II. A 3-D model suitable for numerical analysis based on the Landau-Khalatnikov description of Helium II is proposed. In this paper we introduce a system of partial differential equations that is both complete and consistent as well as practical, to be used for a 3-D solution of the flow of Helium II. The development of a 3-D numerical model for Helium II is motivated by the need to validate experimental results obtained by observing the normal component velocity distribution in a Helium II thermal counter-flow using the Particle Image Velocimetry (PIV) technique.

  5. WEC-SIM Phase 1 Validation Testing -- Numerical Modeling of Experiments: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Ruehl, Kelley; Michelen, Carlos; Bosma, Bret; Yu, Yi-Hsiang

    2016-08-01

    The Wave Energy Converter Simulator (WEC-Sim) is an open-source code jointly developed by Sandia National Laboratories and the National Renewable Energy Laboratory. It is used to model wave energy converters subjected to operational and extreme waves. In order for the WEC-Sim code to be beneficial to the wave energy community, code verification and physical model validation is necessary. This paper describes numerical modeling of the wave tank testing for the 1:33-scale experimental testing of the floating oscillating surge wave energy converter. The comparison between WEC-Sim and the Phase 1 experimental data set serves as code validation. This paper is a follow-up to the WEC-Sim paper on experimental testing, and describes the WEC-Sim numerical simulations for the floating oscillating surge wave energy converter.

  6. Adaptive pressure-controlled cellular structures for shape morphing: II. Numerical and experimental validation

    International Nuclear Information System (INIS)

    Luo, Quantian; Tong, Liyong

    2013-01-01

    This part presents finite element analysis to verify the present formulations on mechanics of the pressurized cellular structures derived in Part I and experimental testing for a pressurized cellular actuator to demonstrate feasibility and realization of the proposed pressurized cellular structures. Linear and nonlinear finite element analyses are implemented in a commercial finite element analysis package and the numerical results are compared with those of the novel formulations given in Part I. A pressurized cellular structure specimen with 3 cells is fabricated and tested. The fabricated 3-cell cellular structure is capable of yielding a free actuation strain of around 24%. The measured pressure-induced displacement and blocking force compare favorably with the numerical results predicted by the finite element analysis and analytical formulations. (paper)

  7. Numerical Simulation and Experimental Validation of the Inflation Test of Latex Balloons

    OpenAIRE

    Bustos, Claudio; Herrera, Claudio García; Celentano, Diego; Chen, Daming; Cruchaga, Marcela

    2016-01-01

    Abstract Experiments and modeling aimed at assessing the mechanical response of latex balloons in the inflation test are presented. To this end, the hyperelastic Yeoh material model is firstly characterized via tensile test and, then, used to numerically simulate via finite elements the stress-strain evolution during the inflation test. The numerical pressure-displacement curves are validated with those obtained experimentally. Moreover, this analysis is extended to a biomedical problem of an...

  8. The Portuguese long version of the Copenhagen Psychosocial Questionnaire II (COPSOQ II) - a validation study.

    Science.gov (United States)

    Rosário, Susel; Azevedo, Luís F; Fonseca, João A; Nienhaus, Albert; Nübling, Matthias; da Costa, José Torres

    2017-01-01

    Psychosocial risks are now widely recognised as one of the biggest challenges for occupational safety and health (OSH) and a major public health concern. The aim of this paper is to investigate the Portuguese long version of the Copenhagen Psychosocial Questionnaire II (COPSOQ II), in order to analyse the psychometric properties of the instrument and to validate it. The Portuguese COPSOQ II was issued to a total of 745 Portuguese employees from both private and public organisations across several economic sectors at a baseline and then 2 weeks later. Methodological quality appraisal was based on COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) recommendations. An analysis of the psychometric properties of the long version of COPSOQ II (internal consistency, intraclass correlation coefficient, floor and ceiling effects, response rate, missing values, mean and standard deviation, exploratory factor analysis) was performed to determine the validity and reliability of the instrument. The COPSOQ II had a response rate of 60.6% (test) and a follow-up response rate of 59.5% (retest). In general, a Cronbach's alpha of the COPSOQ scales (test and retest) was above the conventional threshold of 0.70. The test-retest reliability estimated by the intraclass correlation coefficient (ICC) showed a higher reliability for most of the scales, above the conventional 0.7, except for eight scales. The proportion of the missing values was less than 1.3%, except for two scales. The average scores and standard deviations showed similar results to the original Danish study, except for eight scales. All of the scales had low floor and ceiling effects, with one exception . Overall, the exploratory factor analysis presented good results in 27 scales assuming a reflective measurement model. The hypothesized factor structure under a reflective model was not supported in 14 scales and for some but not all of these scales the explanation may be a formative

  9. Numerical Simulation and Experimental Validation of the Inflation Test of Latex Balloons

    Directory of Open Access Journals (Sweden)

    Claudio Bustos

    Full Text Available Abstract Experiments and modeling aimed at assessing the mechanical response of latex balloons in the inflation test are presented. To this end, the hyperelastic Yeoh material model is firstly characterized via tensile test and, then, used to numerically simulate via finite elements the stress-strain evolution during the inflation test. The numerical pressure-displacement curves are validated with those obtained experimentally. Moreover, this analysis is extended to a biomedical problem of an eyeball under glaucoma conditions.

  10. Numerical study of the Columbia high-beta device: Torus-II

    Energy Technology Data Exchange (ETDEWEB)

    Izzo, R.

    1981-01-01

    The ionization, heating and subsequent long-time-scale behavior of the helium plasma in the Columbia fusion device, Torus-II, is studied. The purpose of this work is to perform numerical simulations while maintaining a high level of interaction with experimentalists. The device is operated as a toroidal z-pinch to prepare the gas for heating. This ionization of helium is studied using a zero-dimensional, two-fluid code. It is essentially an energy balance calculation that follows the development of the various charge states of the helium and any impurities (primarily silicon and oxygen) that are present. The code is an atomic physics model of Torus-II. In addition to ionization, we include three-body and radiative recombination processes.

  11. Numerical study of the Columbia high-beta device: Torus-II

    International Nuclear Information System (INIS)

    Izzo, R.

    1981-01-01

    The ionization, heating and subsequent long-time-scale behavior of the helium plasma in the Columbia fusion device, Torus-II, is studied. The purpose of this work is to perform numerical simulations while maintaining a high level of interaction with experimentalists. The device is operated as a toroidal z-pinch to prepare the gas for heating. This ionization of helium is studied using a zero-dimensional, two-fluid code. It is essentially an energy balance calculation that follows the development of the various charge states of the helium and any impurities (primarily silicon and oxygen) that are present. The code is an atomic physics model of Torus-II. In addition to ionization, we include three-body and radiative recombination processes

  12. Validation of a numerical FSI simulation of an aortic BMHV by in vitro PIV experiments.

    Science.gov (United States)

    Annerel, S; Claessens, T; Degroote, J; Segers, P; Vierendeels, J

    2014-08-01

    In this paper, a validation of a recently developed fluid-structure interaction (FSI) coupling algorithm to simulate numerically the dynamics of an aortic bileaflet mechanical heart valve (BMHV) is performed. This validation is done by comparing the numerical simulation results with in vitro experiments. For the in vitro experiments, the leaflet kinematics and flow fields are obtained via the particle image velocimetry (PIV) technique. Subsequently, the same case is numerically simulated by the coupling algorithm and the resulting leaflet kinematics and flow fields are obtained. Finally, the results are compared, revealing great similarity in leaflet motion and flow fields between the numerical simulation and the experimental test. Therefore, it is concluded that the developed algorithm is able to capture very accurately all the major leaflet kinematics and dynamics and can be used to study and optimize the design of BMHVs. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  13. Validation of the multimedia version of the RDC/TMD axis II questionnaire in Portuguese

    Directory of Open Access Journals (Sweden)

    Ricardo Figueiredo Cavalcanti

    2010-06-01

    Full Text Available OBJECTIVE: The aim of the study was to validate the multimedia version of the Research Diagnostic Criteria for Temporomandibular Disorders (RDC/TMD Axis II Questionnaire in Portuguese language. MATERIAL AND METHODS: The sample comprised 30 patients with signs and symptoms of temporomandibular disorders (TMD, evaluated at the Orofacial Pain Control Center of the Dental School of the University of Pernambuco, Brazil, between April and June 2006. Data collection was performed using the following instruments: Simplifed Anamnestic Index (SAI and RDC/TMD Axis II written version and multimedia version. The validation process consisted of analyzing the internal consistency of the scales. Concurrent and convergent validity were evaluated by the Spearman's rank correlation. In addition, test and analysis of reproducibility by the Kappa weighted statistical test and Spearman's rank correlation test were performed. RESULTS: The multimedia version of the RDC/TMD Axis II questionnaire in Portuguese was considered consistent (Crombrach alpha = 0.94, reproducible (Spearman 0.670 to 0.913, p<0.01 and valid (p<0.01. CONCLUSION: The questionnaire showed valid and reproducible results, and represents an instrument of practical application in epidemiological studies of TMD in the Brazilian population.

  14. Validating the Beck Depression Inventory-II in Indonesia's general population and coronary heart disease patients

    NARCIS (Netherlands)

    Ginting, H.; Näring, G.W.B.; Veld, W.M. van der; Srisayekti, W.; Becker, E.S.

    2013-01-01

    This study assesses the validity and determines the cut-off point for the Beck Depression Inventory-II (the BDI-II) among Indonesians. The Indonesian version of the BDI-II (the Indo BDI-II) was administered to 720 healthy individuals from the general population, 215 Coronary Heart Disease (CHD)

  15. Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes II

    International Nuclear Information System (INIS)

    Larsen, E.W.; Morel, J.E.

    1989-01-01

    In a recent article (Larsen, Morel, and Miller, J. Comput. Phys. 69, 283 (1987)), a theoretical method is described for assessing the accuracy of transport differencing schemes in highly scattering media with optically thick spatial meshes. In the present article, this method is extended to enable one to determine the accuracy of such schemes in the presence of numerically unresolved boundary layers. Numerical results are presented that demonstrate the validity and accuracy of our analysis. copyright 1989 Academic Press, Inc

  16. Translation, adaptation and validation of a Portuguese version of the Moorehead-Ardelt Quality of Life Questionnaire II.

    Science.gov (United States)

    Maciel, João; Infante, Paulo; Ribeiro, Susana; Ferreira, André; Silva, Artur C; Caravana, Jorge; Carvalho, Manuel G

    2014-11-01

    The prevalence of obesity has increased worldwide. An assessment of the impact of obesity on health-related quality of life (HRQoL) requires specific instruments. The Moorehead-Ardelt Quality of Life Questionnaire II (MA-II) is a widely used instrument to assess HRQoL in morbidly obese patients. The objective of this study was to translate and validate a Portuguese version of the MA-II.The study included forward and backward translations of the original MA-II. The reliability of the Portuguese MA-II was estimated using the internal consistency and test-retest methods. For validation purposes, the Spearman's rank correlation coefficient was used to evaluate the correlation between the Portuguese MA-II and the Portuguese versions of two other questionnaires, the 36-item Short Form Health Survey (SF-36) and the Impact of Weight on Quality of Life-Lite (IWQOL-Lite).One hundred and fifty morbidly obese patients were randomly assigned to test the reliability and validity of the Portuguese MA-II. Good internal consistency was demonstrated by a Cronbach's alpha coefficient of 0.80, and a very good agreement in terms of test-retest reliability was recorded, with an overall intraclass correlation coefficient (ICC) of 0.88. The total sums of MA-II scores and each item of MA-II were significantly correlated with all domains of SF-36 and IWQOL-Lite. A statistically significant negative correlation was found between the MA-II total score and BMI. Moreover, age, gender and surgical status were independent predictors of MA-II total score.A reliable and valid Portuguese version of the MA-II was produced, thus enabling the routine use of MA-II in the morbidly obese Portuguese population.

  17. Numerical validation of selected computer programs in nonlinear analysis of steel frame exposed to fire

    Science.gov (United States)

    Maślak, Mariusz; Pazdanowski, Michał; Woźniczka, Piotr

    2018-01-01

    Validation of fire resistance for the same steel frame bearing structure is performed here using three different numerical models, i.e. a bar one prepared in the SAFIR environment, and two 3D models developed within the framework of Autodesk Simulation Mechanical (ASM) and an alternative one developed in the environment of the Abaqus code. The results of the computer simulations performed are compared with the experimental results obtained previously, in a laboratory fire test, on a structure having the same characteristics and subjected to the same heating regimen. Comparison of the experimental and numerically determined displacement evolution paths for selected nodes of the considered frame during the simulated fire exposure constitutes the basic criterion applied to evaluate the validity of the numerical results obtained. The experimental and numerically determined estimates of critical temperature specific to the considered frame and related to the limit state of bearing capacity in fire have been verified as well.

  18. Doubtful outcome of the validation of the Rome II questionnaire: validation of a symptom based diagnostic tool

    Directory of Open Access Journals (Sweden)

    Nylin Henry BO

    2009-12-01

    Full Text Available Abstract Background Questionnaires are used in research and clinical practice. For gastrointestinal complaints the Rome II questionnaire is internationally known but not validated. The aim of this study was to validate a printed and a computerized version of Rome II, translated into Swedish. Results from various analyses are reported. Methods Volunteers from a population based colonoscopy study were included (n = 1011, together with patients seeking general practice (n = 45 and patients visiting a gastrointestinal specialists' clinic (n = 67. The questionnaire consists of 38 questions concerning gastrointestinal symptoms and complaints. Diagnoses are made after a special code. Our validation included analyses of the translation, feasibility, predictability, reproducibility and reliability. Kappa values and overall agreement were measured. The factor structures were confirmed using a principal component analysis and Cronbach's alpha was used to test the internal consistency. Results and Discussion Translation and back translation showed good agreement. The questionnaire was easy to understand and use. The reproducibility test showed kappa values of 0.60 for GERS, 0.52 for FD, and 0.47 for IBS. Kappa values and overall agreement for the predictability when the diagnoses by the questionnaire were compared to the diagnoses by the clinician were 0.26 and 90% for GERS, 0.18 and 85% for FD, and 0.49 and 86% for IBS. Corresponding figures for the agreement between the printed and the digital version were 0.50 and 92% for GERS, 0.64 and 95% for FD, and 0.76 and 95% for IBS. Cronbach's alpha coefficient for GERS was 0.75 with a span per item of 0.71 to 0.76. For FD the figures were 0.68 and 0.54 to 0.70 and for IBS 0.61 and 0.56 to 0.66. The Rome II questionnaire has never been thoroughly validated before even if diagnoses made by the Rome criteria have been compared to diagnoses made in clinical practice. Conclusion The accuracy of the Swedish version of

  19. A numerical assessment of rough surface scattering theories. I - Horizontal polarization. II - Vertical polarization

    Science.gov (United States)

    Rodriguez, Ernesto; Kim, Yunjin; Durden, Stephen L.

    1992-01-01

    A numerical evaluation is presented of the regime of validity for various rough surface scattering theories against numerical results obtained by employing the method of moments. The contribution of each theory is considered up to second order in the perturbation expansion for the surface current. Considering both vertical and horizontal polarizations, the unified perturbation method provides best results among all theories weighed.

  20. Validity and Reliability of the Verbal Numerical Rating Scale for Children Aged 4 to 17 Years With Acute Pain.

    Science.gov (United States)

    Tsze, Daniel S; von Baeyer, Carl L; Pahalyants, Vartan; Dayan, Peter S

    2018-06-01

    The Verbal Numerical Rating Scale is the most commonly used self-report measure of pain intensity. It is unclear how the validity and reliability of the scale scores vary across children's ages. We aimed to determine the validity and reliability of the scale for children presenting to the emergency department across a comprehensive spectrum of age. This was a cross-sectional study of children aged 4 to 17 years. Children self-reported their pain intensity, using the Verbal Numerical Rating Scale and Faces Pain Scale-Revised at 2 serial assessments. We evaluated convergent validity (strong validity defined as correlation coefficient ≥0.60), agreement (difference between concurrent Verbal Numerical Rating Scale and Faces Pain Scale-Revised scores), known-groups validity (difference in score between children with painful versus nonpainful conditions), responsivity (decrease in score after analgesic administration), and reliability (test-retest at 2 serial assessments) in the total sample and subgroups based on age. We enrolled 760 children; 27 did not understand the Verbal Numerical Rating Scale and were removed. Of the remainder, Pearson correlations were strong to very strong (0.62 to 0.96) in all years of age except 4 and 5 years, and agreement was strong for children aged 8 and older. Known-groups validity and responsivity were strong in all years of age. Reliability was strong in all age subgroups, including each year of age from 4 to 7 years. Convergent validity, known-groups validity, responsivity, and reliability of the Verbal Numerical Rating Scale were strong for children aged 6 to 17 years. Convergent validity was not strong for children aged 4 and 5 years. Our findings support the use of the Verbal Numerical Rating Scale for most children aged 6 years and older, but not for those aged 4 and 5 years. Copyright © 2017 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.

  1. Efficient Integration, Validation and Troubleshooting in Multimodal Distributed Diagnostic Schemes, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In general, development and validation of diagnostic models for complex safety critical systems are time and cost intensive jobs. The proposed Phase-II effort will...

  2. Quasi-direct numerical simulation of a pebble bed configuration, Part-II: Temperature field analysis

    International Nuclear Information System (INIS)

    Shams, A.; Roelofs, F.; Komen, E.M.J.; Baglietto, E.

    2013-01-01

    Highlights: ► Quasi direct numerical simulations (q-DNSs) of a pebble bed configuration have been performed. ► This q-DNS database may serve as a reference for the validation of different turbulence modeling approaches. ► A wide range of qualitative and quantitative data throughout the computational domain has been generated. ► Results for mean, RMS of temperature and respective turbulent heat fluxes are extensively reported in this paper. -- Abstract: Good prediction of the flow and heat transfer phenomena in the pebble bed core of a high temperature reactor (HTR) is a challenge for available turbulence models, which still require to be validated. While experimental data are generally desirable in this validation process, due to the complex geometric configuration and measurement difficulties, a very limited amount of data is currently available. On the other hand, direct numerical simulation (DNS) is considered an accurate simulation technique, which may serve as an alternative for validating turbulence models. In the framework of the present study, quasi-direct numerical simulation (q-DNS) of a single face cubic centered pebble bed is performed, which will serve as a reference for the validation of different turbulence modeling approaches in order to perform calculations for a randomly arranged pebble bed. These simulations were performed at a Reynolds number of 3088, based on pebble diameter, with a porosity level of 0.42. Results related to flow field (mean, RMS and covariance of velocity) have been presented in Part-I, whereas, in the present article, we focus our attention to the analysis of the temperature field. A wide range of qualitative and quantitative data for the thermal field (mean, RMS and turbulent heat flux) has been generated

  3. On the Validation of a Numerical Model for the Analysis of Soil-Structure Interaction Problems

    Directory of Open Access Journals (Sweden)

    Jorge Luis Palomino Tamayo

    Full Text Available Abstract Modeling and simulation of mechanical response of structures, relies on the use of computational models. Therefore, verification and validation procedures are the primary means of assessing accuracy, confidence and credibility in modeling. This paper is concerned with the validation of a three dimensional numerical model based on the finite element method suitable for the dynamic analysis of soil-structure interaction problems. The soil mass, structure, structure's foundation and the appropriate boundary conditions can be represented altogether in a single model by using a direct approach. The theory of porous media of Biot is used to represent the soil mass as a two-phase material which is considered to be fully saturated with water; meanwhile other parts of the system are treated as one-phase materials. Plasticity of the soil mass is the main source of non-linearity in the problem and therefore an iterative-incremental algorithm based on the Newton-Raphson procedure is used to solve the nonlinear equilibrium equations. For discretization in time, the Generalized Newmark-β method is used. The soil is represented by a plasticity-based, effective-stress constitutive model suitable for liquefaction. Validation of the present numerical model is done by comparing analytical and centrifuge test results of soil and soil-pile systems with those results obtained with the present numerical model. A soil-pile-structure interaction problem is also presented in order to shown the potentiality of the numerical tool.

  4. Comparative validity of MMPI-2 and MCMI-II personality disorder classifications.

    Science.gov (United States)

    Wise, E A

    1996-06-01

    Minnesota Multiphasic Personality Inventory-2 (MMPI-2) overlapping and nonoverlapping scales were demonstrated to perform comparably to their original MMPI forms. They were then evaluated for convergent and discriminant validity with the Million Clinical Multiaxial Inventory-II (MCMI-II) personality disorder scales. The MMPI-2 and MCMI-II personality disorder scales demonstrated convergent and discriminant coefficients similar to their original forms. However, the MMPI-2 personality scales classified significantly more of the sample as Dramatic, whereas the MCMI-II diagnosed more of the sample as Anxious. Furthermore, single-scale and 2-point code type classification rates were quite low, indicating that at the level of the individual, the personality disorder scales are not measuring comparable constructs. Hence, each instrument is providing similar and unique information, justifying their continued use together for the purpose of diagnosing personality disorders.

  5. PIV-validated numerical modeling of pulsatile flows in distal coronary end-to-side anastomoses.

    Science.gov (United States)

    Xiong, F L; Chong, C K

    2007-01-01

    This study employed particle image velocimetry (PIV) to validate a numerical model in a complementary approach to quantify hemodynamic factors in distal coronary anastomoses and to gain more insights on their relationship with anastomotic geometry. Instantaneous flow fields and wall shear stresses (WSS) were obtained from PIV measurement in a modified life-size silastic anastomosis model adapted from a conventional geometry by incorporating a smooth graft-artery transition. The results were compared with those predicted by a concurrent numerical model. The numerical method was then used to calculate cycle-averaged WSS (WSS(cyc)) and spatial wall shear stress gradient (SWSSG), two critical hemodynamic factors in the pathogenesis of intimal thickening (IT), to compare the conventional and modified geometries. Excellent qualitative agreement and satisfactory quantitative agreement with averaged normalized error in WSS between 0.8% and 8.9% were achieved between the PIV experiment and numerical model. Compared to the conventional geometry, the modified geometry produces a more uniform WSS(cyc) distribution eliminating both high and low WSS(cyc) around the toe, critical in avoiding IT. Peak SWSSG on the artery floor of the modified model is less than one-half that in the conventional case, and high SWSSG at the toe is eliminated. The validated numerical model is useful for modeling unsteady coronary anastomotic flows and elucidating the significance of geometry regulated hemodynamics. The results suggest the clinical relevance of constructing smooth graft-artery transition in distal coronary anastomoses to improve their hemodynamic performance.

  6. Validation of a numerical 3-D fluid-structure interaction model for a prosthetic valve based on experimental PIV measurements.

    Science.gov (United States)

    Guivier-Curien, Carine; Deplano, Valérie; Bertrand, Eric

    2009-10-01

    A numerical 3-D fluid-structure interaction (FSI) model of a prosthetic aortic valve was developed, based on a commercial computational fluid dynamics (CFD) software program using an Arbitrary Eulerian Lagrangian (ALE) formulation. To make sure of the validity of this numerical model, an equivalent experimental model accounting for both the geometrical features and the hydrodynamic conditions was also developed. The leaflet and the flow behaviours around the bileaflet valve were investigated numerically and experimentally by performing particle image velocimetry (PIV) measurements. Through quantitative and qualitative comparisons, it was shown that the leaflet behaviour and the velocity fields were similar in both models. The present study allows the validation of a fully coupled 3-D FSI numerical model. The promising numerical tool could be therefore used to investigate clinical issues involving the aortic valve.

  7. An analytic solution for numerical modeling validation in electromagnetics: the resistive sphere

    Science.gov (United States)

    Swidinsky, Andrei; Liu, Lifei

    2017-11-01

    We derive the electromagnetic response of a resistive sphere to an electric dipole source buried in a conductive whole space. The solution consists of an infinite series of spherical Bessel functions and associated Legendre polynomials, and follows the well-studied problem of a conductive sphere buried in a resistive whole space in the presence of a magnetic dipole. Our result is particularly useful for controlled-source electromagnetic problems using a grounded electric dipole transmitter and can be used to check numerical methods of calculating the response of resistive targets (such as finite difference, finite volume, finite element and integral equation). While we elect to focus on the resistive sphere in our examples, the expressions in this paper are completely general and allow for arbitrary source frequency, sphere radius, transmitter position, receiver position and sphere/host conductivity contrast so that conductive target responses can also be checked. Commonly used mesh validation techniques consist of comparisons against other numerical codes, but such solutions may not always be reliable or readily available. Alternatively, the response of simple 1-D models can be tested against well-known whole space, half-space and layered earth solutions, but such an approach is inadequate for validating models with curved surfaces. We demonstrate that our theoretical results can be used as a complementary validation tool by comparing analytic electric fields to those calculated through a finite-element analysis; the software implementation of this infinite series solution is made available for direct and immediate application.

  8. Numerical Simulation of Hydrogen Combustion: Global Reaction Model and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yun [School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an (China); Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY (United States); Liu, Yinhe, E-mail: yinheliu@mail.xjtu.edu.cn [School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an (China)

    2017-11-20

    Due to the complexity of modeling the combustion process in nuclear power plants, the global mechanisms are preferred for numerical simulation. To quickly perform the highly resolved simulations with limited processing resources of large-scale hydrogen combustion, a method based on thermal theory was developed to obtain kinetic parameters of global reaction mechanism of hydrogen–air combustion in a wide range. The calculated kinetic parameters at lower hydrogen concentration (C{sub hydrogen} < 20%) were validated against the results obtained from experimental measurements in a container and combustion test facility. In addition, the numerical data by the global mechanism (C{sub hydrogen} > 20%) were compared with the results by detailed mechanism. Good agreement between the model prediction and the experimental data was achieved, and the comparison between simulation results by the detailed mechanism and the global reaction mechanism show that the present calculated global mechanism has excellent predictable capabilities for a wide range of hydrogen–air mixtures.

  9. Numerical Simulation of Hydrogen Combustion: Global Reaction Model and Validation

    International Nuclear Information System (INIS)

    Zhang, Yun; Liu, Yinhe

    2017-01-01

    Due to the complexity of modeling the combustion process in nuclear power plants, the global mechanisms are preferred for numerical simulation. To quickly perform the highly resolved simulations with limited processing resources of large-scale hydrogen combustion, a method based on thermal theory was developed to obtain kinetic parameters of global reaction mechanism of hydrogen–air combustion in a wide range. The calculated kinetic parameters at lower hydrogen concentration (C hydrogen < 20%) were validated against the results obtained from experimental measurements in a container and combustion test facility. In addition, the numerical data by the global mechanism (C hydrogen > 20%) were compared with the results by detailed mechanism. Good agreement between the model prediction and the experimental data was achieved, and the comparison between simulation results by the detailed mechanism and the global reaction mechanism show that the present calculated global mechanism has excellent predictable capabilities for a wide range of hydrogen–air mixtures.

  10. Validation of numerical model for cook stove using Reynolds averaged Navier-Stokes based solver

    Science.gov (United States)

    Islam, Md. Moinul; Hasan, Md. Abdullah Al; Rahman, Md. Mominur; Rahaman, Md. Mashiur

    2017-12-01

    Biomass fired cook stoves, for many years, have been the main cooking appliance for the rural people of developing countries. Several researches have been carried out to the find efficient stoves. In the present study, numerical model of an improved household cook stove is developed to analyze the heat transfer and flow behavior of gas during operation. The numerical model is validated with the experimental results. Computation of the numerical model is executed the using non-premixed combustion model. Reynold's averaged Navier-Stokes (RaNS) equation along with the κ - ɛ model governed the turbulent flow associated within the computed domain. The computational results are in well agreement with the experiment. Developed numerical model can be used to predict the effect of different biomasses on the efficiency of the cook stove.

  11. Numerical resolution of the time-domain three-dimensional Maxwell equations by a conform finite element approximation. Part II: numerical results

    International Nuclear Information System (INIS)

    Heintze, E.

    1993-01-01

    The aim of this report is to validate the program MAX3D built up from the discretization of the formulation (FB) established in part 1. A qualitative and quantitative analysis is carried out on numerical results obtained with various test cases of which, for most of them, analytical solutions are known. 32 figs., 3 refs

  12. Noninvasive assessment of mitral inertness [correction of inertance]: clinical results with numerical model validation.

    Science.gov (United States)

    Firstenberg, M S; Greenberg, N L; Smedira, N G; McCarthy, P M; Garcia, M J; Thomas, J D

    2001-01-01

    Inertial forces (Mdv/dt) are a significant component of transmitral flow, but cannot be measured with Doppler echo. We validated a method of estimating Mdv/dt. Ten patients had a dual sensor transmitral (TM) catheter placed during cardiac surgery. Doppler and 2D echo was performed while acquiring LA and LV pressures. Mdv/dt was determined from the Bernoulli equation using Doppler velocities and TM gradients. Results were compared with numerical modeling. TM gradients (range: 1.04-14.24 mmHg) consisted of 74.0 +/- 11.0% inertial forcers (range: 0.6-12.9 mmHg). Multivariate analysis predicted Mdv/dt = -4.171(S/D (RATIO)) + 0.063(LAvolume-max) + 5. Using this equation, a strong relationship was obtained for the clinical dataset (y=0.98x - 0.045, r=0.90) and the results of numerical modeling (y=0.96x - 0.16, r=0.84). TM gradients are mainly inertial and, as validated by modeling, can be estimated with echocardiography.

  13. Numerical calibration and experimental validation of a PCM-Air heat exchanger model

    International Nuclear Information System (INIS)

    Stathopoulos, N.; El Mankibi, M.; Santamouris, Mattheos

    2017-01-01

    Highlights: • Development of a PCM-Air heat exchanger experimental unit and its numerical model. • Differential Scanning Calorimetry for PCM properties. • Ineptitude of DSC obtained heat capacity curves. • Creation of adequate heat capacity curves depending on heat transfer rates. • Confrontation of numerical and experimental results and validation of the model. - Abstract: Ambitious goals have been set at international, European and French level for energy consumption and greenhouse gas emissions decrease of the building sector. Achieving them requires renewable energy integration, a technology that presents however an important drawback: intermittent energy production. In response, thermal energy storage (TES) technology applications have been developed in order to correlate energy production and consumption of the building. Phase Change Materials (PCMs) have been widely used in TES applications as they offer a high storage density and adequate phase change temperature range. It is important to accurately know the thermophysical properties of the PCM, both for experimental (system design) and numerical (correct prediction) purposes. In this paper, the fabrication of a PCM – Air experimental prototype is presented at first, along with the development of a numerical model simulating the downstream temperature evolution of the heat exchanger. Particular focus is given to the calibration method and the validation of the model using experimental characterization results. Differential scanning calorimetry (DSC) is used to define the thermal properties of the PCM. Initial numerical results are underestimated compared to experimental ones. Various factors were investigated, pointing to the ineptitude of the heat capacity parameter, as DSC results depend on heating/cooling rates. Adequate heat capacity curves were empirically determined, depending on heat transfer rates and based on DSC results and experimental observations. The results of the proposed model

  14. Validity of transcobalamin II-based radioassay for the determination of serum vitamin B12 concentrations

    International Nuclear Information System (INIS)

    Paltridge, G.; Rudzki, Z.; Ryall, R.G.

    1980-01-01

    A valid radioassay for the estimation of serum vitamin B 12 in the presence of naturally occurring vitamin B 12 (= cobalamin) analogues can be operated if serum transcobalamin II (TC II) is used as the binding protein. Serum samples that gave diagnostically discrepant results when their vitamin B 12 content was analysed (i) by a commercial radioassay known to be susceptible to interference from cobalamin analogues, and (ii) by microbiological assay, were further analysed by an alternative radioassay which uses the transcobalamins (principally TC II) of diluted normal serum as the assay binding protein. Concordance between the results from microbiological assay and the TC II-based radioassay was found in all cases. In an extended study over a three-year period, all routine serum samples sent for vitamin B 12 analysis that had a vitamin B 12 content of less than 320 ng/l by the TC II-based radioassay (reference range 200-850 ng/l) were reanalysed using an established microbiological method. Over 1000 samples were thus analysed. The data are presented to demonstrate the validity of the TC II-based radioassay results in this group of patients, serum samples from which are most likely to produce diagnostically erroneous vitamin B 12 results when analysed by a radioassay that is less specific for cobalamins. (author)

  15. On joint numerical radius II

    Czech Academy of Sciences Publication Activity Database

    Drnovšek, R.; Müller, Vladimír

    2014-01-01

    Roč. 62, č. 9 (2014), s. 1197-1204 ISSN 0308-1087 R&D Projects: GA ČR GA201/09/0473; GA AV ČR IAA100190903 Institutional support: RVO:67985840 Keywords : joint numerical range * numerical radius Subject RIV: BA - General Mathematics Impact factor: 0.738, year: 2014 http://www.tandfonline.com/doi/abs/10.1080/03081087.2013.816303

  16. A quasi-stationary numerical model of atomized metal droplets, II: Prediction and assessment

    DEFF Research Database (Denmark)

    Pryds, Nini H.; Hattel, Jesper Henri; Thorborg, Jesper

    1999-01-01

    been illustrated.A comparison between the numerical model and the experimental results shows an excellent agreement and demonstrates the validity of the present model, e.g. the calculated gas temperature which has an important influence on the droplet solidification behaviour as well as the calculated......A new model which extends previous studies and includes the interaction between enveloping gas and an array of droplets has been developed and presented in a previous paper. The model incorporates the probability density function of atomized metallic droplets into the heat transfer equations....... The main thrust of the model is that the gas temperature was not predetermined and calculated empirically but calculated numerically based on heat balance consideration. In this paper, the accuracy of the numerical model and the applicability of the model as a predictive tool have been investigated...

  17. Numerical and experimental validation of a particle Galerkin method for metal grinding simulation

    Science.gov (United States)

    Wu, C. T.; Bui, Tinh Quoc; Wu, Youcai; Luo, Tzui-Liang; Wang, Morris; Liao, Chien-Chih; Chen, Pei-Yin; Lai, Yu-Sheng

    2018-03-01

    In this paper, a numerical approach with an experimental validation is introduced for modelling high-speed metal grinding processes in 6061-T6 aluminum alloys. The derivation of the present numerical method starts with an establishment of a stabilized particle Galerkin approximation. A non-residual penalty term from strain smoothing is introduced as a means of stabilizing the particle Galerkin method. Additionally, second-order strain gradients are introduced to the penalized functional for the regularization of damage-induced strain localization problem. To handle the severe deformation in metal grinding simulation, an adaptive anisotropic Lagrangian kernel is employed. Finally, the formulation incorporates a bond-based failure criterion to bypass the prospective spurious damage growth issues in material failure and cutting debris simulation. A three-dimensional metal grinding problem is analyzed and compared with the experimental results to demonstrate the effectiveness and accuracy of the proposed numerical approach.

  18. Large-scale Validation of AMIP II Land-surface Simulations: Preliminary Results for Ten Models

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, T J; Henderson-Sellers, A; Irannejad, P; McGuffie, K; Zhang, H

    2005-12-01

    This report summarizes initial findings of a large-scale validation of the land-surface simulations of ten atmospheric general circulation models that are entries in phase II of the Atmospheric Model Intercomparison Project (AMIP II). This validation is conducted by AMIP Diagnostic Subproject 12 on Land-surface Processes and Parameterizations, which is focusing on putative relationships between the continental climate simulations and the associated models' land-surface schemes. The selected models typify the diversity of representations of land-surface climate that are currently implemented by the global modeling community. The current dearth of global-scale terrestrial observations makes exacting validation of AMIP II continental simulations impractical. Thus, selected land-surface processes of the models are compared with several alternative validation data sets, which include merged in-situ/satellite products, climate reanalyses, and off-line simulations of land-surface schemes that are driven by observed forcings. The aggregated spatio-temporal differences between each simulated process and a chosen reference data set then are quantified by means of root-mean-square error statistics; the differences among alternative validation data sets are similarly quantified as an estimate of the current observational uncertainty in the selected land-surface process. Examples of these metrics are displayed for land-surface air temperature, precipitation, and the latent and sensible heat fluxes. It is found that the simulations of surface air temperature, when aggregated over all land and seasons, agree most closely with the chosen reference data, while the simulations of precipitation agree least. In the latter case, there also is considerable inter-model scatter in the error statistics, with the reanalyses estimates of precipitation resembling the AMIP II simulations more than to the chosen reference data. In aggregate, the simulations of land-surface latent and

  19. Thermal performance analysis of PCM in refrigerated container envelopes in the Italian context – Numerical modeling and validation

    International Nuclear Information System (INIS)

    Copertaro, Benedetta; Principi, Paolo; Fioretti, Roberto

    2016-01-01

    Highlights: • A refrigerated container with PCMs was evaluated in the Italian climatic context. • The numerical results were validated by an experimental campaign. • A 4.23% of mean bias was achieved comparing the numerical and experimental results. • PCMs application leads to a reduction in peak heat load of 20%. • An energy rate reduction of 4.65% was obtained in the PCMs added container. - Abstract: Due to external climatic conditions, radiation and temperature, refrigerated containers are subjected to high thermal stresses during storage in yards, warehouses, ships or during transport by rail or road. Moreover the consequent high thermal load has a great influence on both the electric and fuel energy consumption and on combined greenhouse gas emissions into the atmosphere. The aim of this research is the theoretical evaluation, using a previously validated Finite Element Method (FEM), of the related energy benefits deriving from the application of PCMs (Phase Change Materials) to a traditional refrigerated container envelope. Specifically the numerical analysis was performed for several kinds of PCMs, climatic conditions and exposures. The study also provides a numerical tool to be used in the prediction of the thermal performance of refrigerated container envelopes with PCM in the Italian context. An experimental analysis was carried out in order to test the accuracy of the numerical model and to validate it. Results show that PCM application to a 20’ ISO container envelope can reduce and shift the daily heat load phases with respect to a traditional envelope fitted only with insulating materials.

  20. Validation of a numerical algorithm based on transformed equations

    International Nuclear Information System (INIS)

    Xu, H.; Barron, R.M.; Zhang, C.

    2003-01-01

    Generally, a typical equation governing a physical process, such as fluid flow or heat transfer, has three types of terms that involve partial derivatives, namely, the transient term, the convective terms and the diffusion terms. The major difficulty in obtaining numerical solutions of these partial differential equations is the discretization of the convective terms. The transient term is usually discretized using the first-order forward or backward differencing scheme. The diffusion terms are usually discretized using the central differencing scheme and no difficulty arises since these terms involve second-order spatial derivatives of the flow variables. The convective terms are non-linear and contain first-order spatial derivatives. The main difference between various numerical algorithms is the discretization of the convective terms. In the present study, an alternative approach to discretizing the governing equations is presented. In this algorithm, the governing equations are first transformed by introducing an exponential function to eliminate the convective terms in the equations. The proposed algorithm is applied to simulate some fluid flows with exact solutions to validate the proposed algorithm. The fluid flows used in this study are a self-designed quasi-fluid flow problem, stagnation in plane flow (Hiemenz flow), and flow between two concentric cylinders. The comparisons with the power-law scheme indicate that the proposed scheme exhibits better performance. (author)

  1. A thermoelectric power generating heat exchanger: Part IINumerical modeling and optimization

    International Nuclear Information System (INIS)

    Sarhadi, Ali; Bjørk, Rasmus; Lindeburg, Niels; Viereck, Peter; Pryds, Nini

    2016-01-01

    Highlights: • A comprehensive model was developed to optimize the integrated TEG-heat exchanger. • The developed model was validated with the experimental data. • The effect of using different interface materials on the output power was assessed. • The influence of TEG arrangement on the power production was investigated. • Optimized geometrical parameters and proper interface materials were suggested. - Abstract: In Part I of this study, the performance of an experimental integrated thermoelectric generator (TEG)-heat exchanger was presented. In the current study, Part II, the obtained experimental results are compared with those predicted by a finite element (FE) model. In the simulation of the integrated TEG-heat exchanger, the thermal contact resistance between the TEG and the heat exchanger is modeled assuming either an ideal thermal contact or using a combined Cooper–Mikic–Yovanovich (CMY) and parallel plate gap formulation, which takes into account the contact pressure, roughness and hardness of the interface surfaces as well as the air gap thermal resistance at the interface. The combined CMY and parallel plate gap model is then further developed to simulate the thermal contact resistance for the case of an interface material. The numerical results show good agreement with the experimental data with an average deviation of 17% for the case without interface material and 12% in the case of including additional material at the interfaces. The model is then employed to evaluate the power production of the integrated system using different interface materials, including graphite, aluminum (Al), tin (Sn) and lead (Pb) in a form of thin foils. The numerical results show that lead foil at the interface has the best performance, with an improvement in power production of 34% compared to graphite foil. Finally, the model predicts that for a certain flow rate, increasing the parallel TEG channels for the integrated systems with 4, 8, and 12 TEGs

  2. Time-dependent magnetization of a type-II superconductor numerically calculated by using the flux-creep equation

    International Nuclear Information System (INIS)

    Lee, J. H.; Park, I. S.; Ahmad, D.; Kim, D.; Kim, Y. C.; Ko, R. K.; Jeong, D. Y.

    2012-01-01

    The macroscopic magnetic behaviors of a type-II superconductor, such as the field- or the temperature-dependent magnetization, have been described by using critical state models. However, because the models are time-independent, the magnetic relaxation in a type-II superconductor cannot be described by them, and the time dependence of the magnetization can affect the field or the temperature-dependent magnetization curve described by the models. In order to avoid the time independence of critical state models, we try the numerical calculation used by Qin et al., who mainly calculated the temperature dependence of the ac susceptibility χ(T). Their calculation showed that the frequency-dependent χ(T) could be obtained by using the flux-creep equation. We calculated the field-dependent magnetization and magnetic relaxation by using a numerical method. The calculated field-dependent magnetization M(H) curves shows the shapes of a typical type-II superconductor. The calculated magnetic relaxation do not show a logarithmic decay of the magnetization, but the addition of a surface barrier to the relaxation calculation caused a clear logarithmic decay of the magnetization, producing a crossover at a mid-time. This means that the logarithmic magnetic relaxation is caused by not only flux creep but also a combination of flux creep and a surface barrier.

  3. Testing the Predictive Validity of the Hendrich II Fall Risk Model.

    Science.gov (United States)

    Jung, Hyesil; Park, Hyeoun-Ae

    2018-03-01

    Cumulative data on patient fall risk have been compiled in electronic medical records systems, and it is possible to test the validity of fall-risk assessment tools using these data between the times of admission and occurrence of a fall. The Hendrich II Fall Risk Model scores assessed during three time points of hospital stays were extracted and used for testing the predictive validity: (a) upon admission, (b) when the maximum fall-risk score from admission to falling or discharge, and (c) immediately before falling or discharge. Predictive validity was examined using seven predictive indicators. In addition, logistic regression analysis was used to identify factors that significantly affect the occurrence of a fall. Among the different time points, the maximum fall-risk score assessed between admission and falling or discharge showed the best predictive performance. Confusion or disorientation and having a poor ability to rise from a sitting position were significant risk factors for a fall.

  4. Creating a benchmark of vertical axis wind turbines in dynamic stall for validating numerical models

    DEFF Research Database (Denmark)

    Castelein, D.; Ragni, D.; Tescione, G.

    2015-01-01

    An experimental campaign using Particle Image Velocimetry (2C-PIV) technique has been conducted on a H-type Vertical Axis Wind Turbine (VAWT) to create a benchmark for validating and comparing numerical models. The turbine is operated at tip speed ratios (TSR) of 4.5 and 2, at an average chord...

  5. Social anxiety and fear of negative evaluation: construct validity of the BFNE-II.

    Science.gov (United States)

    Carleton, R Nicholas; Collimore, Kelsey C; Asmundson, Gordon J G

    2007-01-01

    disorder. Psychological Assessment, 17, 179-190]; however [Carleton, R. N., McCreary, D., Norton, P. J., & Asmundson, G. J. G. (in press-a). The Brief Fear of Negative Evaluation Scale, Revised. Depression & Anxiety; Collins, K. A., Westra, H. A., Dozois, D. J. A., & Stewart, S. H. (2005). The validity of the brief version of the fear of negative evaluation scale. Journal of Anxiety Disorders, 19, 345-359] recommend that these items be reworded to maintain scale sensitivity. The present study examined the reliability and validity of the BFNE-II, a version of the BFNE evaluating revisions of the reverse-worded items in a community sample. A unitary model of the BFNE-II resulted in excellent confirmatory factor analysis fit indices. Moderate convergent and discriminant validity were found when BFNE-II items were correlated with additional independent measures of social anxiety [i.e., Social Interaction Anxiety & Social Phobia Scales; Mattick, R. P., & Clarke, J. C. (1998). Development and validation of measures of social phobia scrutiny fear and social interaction anxiety. Behaviour Research and Therapy, 36, 455-470], and fear [i.e., Anxiety Sensitivity Index; Reiss, S., & McNally, R. J. (1985). The expectancy model of fear. In S. Reiss, R. R. Bootzin (Eds.), Theoretical issues in behaviour therapy (pp. 107--121). New York: Academic Press. and the Illness/Injury Sensitivity Index; Carleton, R. N., Park, I., & Asmundson, G. J. G. (in press-b). The Illness/Injury Sensitivity Index: an examination of construct validity. Depression & Anxiety). These findings support the utility of the revised items and the validity of the BFNE-II as a measure of the fear of negative evaluation. Implications and future research directions are discussed.

  6. Validation of CRIB II for prediction of mortality in premature babies.

    Science.gov (United States)

    Rastogi, Pallav Kumar; Sreenivas, V; Kumar, Nirmal

    2010-02-01

    Validation of Clinical Risk Index for Babies (CRIB II) score in predicting the neonatal mortality in preterm neonates < or = 32 weeks gestational age. Prospective cohort study. Tertiary care neonatal unit. 86 consecutively born preterm neonates with gestational age < or = 32 weeks. The five variables related to CRIB II were recorded within the first hour of admission for data analysis. The receiver operating characteristics (ROC) curve was used to check the accuracy of the mortality prediction. HL Goodness of fit test was used to see the discrepancy between observed and expected outcomes. A total of 86 neonates (males 59.6% mean birthweight: 1228 +/- 398 grams; mean gestational age: 28.3 +/- 2.4 weeks) were enrolled in the study, of which 17 (19.8%) left hospital against medical advice (LAMA) before reaching the study end point. Among 69 neonates completing the study, 24 (34.8%) had adverse outcome during hospital stay and 45 (65.2%) had favorable outcome. CRIB II correctly predicted adverse outcome in 90.3% (Hosmer Lemeshow goodness of fit test P=0.6). Area under curve (AUC) for CRIB II was 0.9032. In intention to treat analysis with LAMA cases included as survivors, the mortality prediction was 87%. If these were included as having died then mortality prediction was 83.1%. The CRIB II score was found to be a good predictive instrument for mortality in preterm infants < or = 32 weeks gestation.

  7. Numerical modeling and validation of helium jet impingement cooling of high heat flux divertor components

    International Nuclear Information System (INIS)

    Koncar, Bostjan; Simonovski, Igor; Norajitra, Prachai

    2009-01-01

    Numerical analyses of jet impingement cooling presented in this paper were performed as a part of helium-cooled divertor studies for post-ITER generation of fusion reactors. The cooling ability of divertor cooled by multiple helium jets was analysed. Thermal-hydraulic characteristics and temperature distributions in the solid structures were predicted for the reference geometry of one cooling finger. To assess numerical errors, different meshes (hexagonal, tetra, tetra-prism) and discretisation schemes were used. The temperatures in the solid structures decrease with finer mesh and higher order discretisation and converge towards finite values. Numerical simulations were validated against high heat flux experiments, performed at Efremov Institute, St. Petersburg. The predicted design parameters show reasonable agreement with measured data. The calculated maximum thimble temperature was below the tile-thimble brazing temperature, indicating good heat removal capability of reference divertor design. (author)

  8. EBR-II Data Digitization

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Su-Jong [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sackett, John [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-08-01

    1. Objectives To produce a validation database out of those recorded signals it will be necessary also to identify the documents need to reconstruct the status of reactor at the time of the beginning of the recordings. This should comprehends the core loading specification (assemblies type and location and burn-up) along with this data the assemblies drawings and the core drawings will be identified. The first task of the project will be identify the location of the sensors, with respect the reactor plant layout, and the physical quantities recorded by the Experimental Breeder Reactor-II (EBR-II) data acquisition system. This first task will allow guiding and prioritizing the selection of drawings needed to numerically reproduce those signals. 1.1 Scopes and Deliverables The deliverables of this project are the list of sensors in EBR-II system, the identification of storing location of those sensors, identification of a core isotopic composition at the moment of the start of system recording. Information of the sensors in EBR-II reactor system was summarized from the EBR-II system design descriptions listed in Section 1.2.

  9. Verification and validation of a numeric procedure for flow simulation of a 2x2 PWR rod bundle

    International Nuclear Information System (INIS)

    Santos, Andre A.C.; Barros Filho, Jose Afonso; Navarro, Moyses A.

    2011-01-01

    Before Computational Fluid Dynamics (CFD) can be considered as a reliable tool for the analysis of flow through rod bundles there is a need to establish the credibility of the numerical results. Procedures must be defined to evaluate the error and uncertainty due to aspects such as mesh refinement, turbulence model, wall treatment and appropriate definition of boundary conditions. These procedures are referred to as Verification and Validation (V and V) processes. In 2009 a standard was published by the American Society of Mechanical Engineers (ASME) establishing detailed procedures for V and V of CFD simulations. This paper presents a V and V evaluation of a numerical methodology applied to the simulation of a PWR rod bundle segment with a split vane spacer grid based on ASMEs standard. In this study six progressively refined meshes were generated to evaluate the numerical uncertainty through the verification procedure. Experimental and analytical results available in the literature were used in this study for validation purpose. The results show that the ASME verification procedure can give highly variable predictions of uncertainty depending on the mesh triplet used for the evaluation. However, the procedure can give good insight towards optimization of the mesh size and overall result quality. Although the experimental results used for the validation were not ideal, through the validation procedure the deficiencies and strengths of the presented modeling could be detected and reasonably evaluated. Even though it is difficult to obtain reliable estimates of the uncertainty of flow quantities in the turbulent flow, this study shows that the V and V process is a necessary step in a CFD analysis of a spacer grid design. (author)

  10. NUMERICAL MODELLING AND EXPERIMENTAL INFLATION VALIDATION OF A BIAS TWO-WHEEL TIRE

    Directory of Open Access Journals (Sweden)

    CHUNG KET THEIN

    2016-02-01

    Full Text Available This paper presents a parametric study on the development of a computational model for bias two-wheel tire through finite element analysis (FEA. An 80/90- 17 bias two-wheel tire was adopted which made up of four major layers of rubber compound with different material properties to strengthen the structure. Mooney-Rivlin hyperelastic model was applied to represent the behaviour of incompressible rubber compound. A 3D tire model was built for structural static finite element analysis. The result was validated from the inflation analysis. Structural static finite element analysis method is suitable for evaluation of the tire design and improvement of the tire behaviour to desired performance. Experimental tire was inflated at various pressures and the geometry between numerical and experimental tire were compared. There are good agreements between numerical simulation model and the experiment results. This indicates that the simulation model can be applied to the bias two-wheel tire design in order to predict the tire behaviour and improve its mechanical characteristics.

  11. Numerical modelling of transdermal delivery from matrix systems: parametric study and experimental validation with silicone matrices.

    Science.gov (United States)

    Snorradóttir, Bergthóra S; Jónsdóttir, Fjóla; Sigurdsson, Sven Th; Másson, Már

    2014-08-01

    A model is presented for transdermal drug delivery from single-layered silicone matrix systems. The work is based on our previous results that, in particular, extend the well-known Higuchi model. Recently, we have introduced a numerical transient model describing matrix systems where the drug dissolution can be non-instantaneous. Furthermore, our model can describe complex interactions within a multi-layered matrix and the matrix to skin boundary. The power of the modelling approach presented here is further illustrated by allowing the possibility of a donor solution. The model is validated by a comparison with experimental data, as well as validating the parameter values against each other, using various configurations with donor solution, silicone matrix and skin. Our results show that the model is a good approximation to real multi-layered delivery systems. The model offers the ability of comparing drug release for ibuprofen and diclofenac, which cannot be analysed by the Higuchi model because the dissolution in the latter case turns out to be limited. The experiments and numerical model outlined in this study could also be adjusted to more general formulations, which enhances the utility of the numerical model as a design tool for the development of drug-loaded matrices for trans-membrane and transdermal delivery. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  12. MATSIM -The Development and Validation of a Numerical Voxel Model based on the MATROSHKA Phantom

    Science.gov (United States)

    Beck, Peter; Rollet, Sofia; Berger, Thomas; Bergmann, Robert; Hajek, Michael; Latocha, Marcin; Vana, Norbert; Zechner, Andrea; Reitz, Guenther

    The AIT Austrian Institute of Technology coordinates the project MATSIM (MATROSHKA Simulation) in collaboration with the Vienna University of Technology and the German Aerospace Center. The aim of the project is to develop a voxel-based model of the MATROSHKA anthro-pomorphic torso used at the International Space Station (ISS) as foundation to perform Monte Carlo high-energy particle transport simulations for different irradiation conditions. Funded by the Austrian Space Applications Programme (ASAP), MATSIM is a co-investigation with the European Space Agency (ESA) ELIPS project MATROSHKA, an international collaboration of more than 18 research institutes and space agencies from all over the world, under the science and project lead of the German Aerospace Center. The MATROSHKA facility is designed to determine the radiation exposure of an astronaut onboard ISS and especially during an ex-travehicular activity. The numerical model developed in the frame of MATSIM is validated by reference measurements. In this report we give on overview of the model development and compare photon and neutron irradiations of the detector-equipped phantom torso with Monte Carlo simulations using FLUKA. Exposure to Co-60 photons was realized in the standard ir-radiation laboratory at Seibersdorf, while investigations with neutrons were performed at the thermal column of the Vienna TRIGA Mark-II reactor. The phantom was loaded with passive thermoluminescence dosimeters. In addition, first results of the calculated dose distribution within the torso are presented for a simulated exposure in low-Earth orbit.

  13. Geometrical Comparison of Numerical Models Used in the Design and Validation of Mechanically Rolled Tube-Tubesheet Joints

    DEFF Research Database (Denmark)

    Madsen, Søren Bøgelund; Ibsen, Claus Hessler; Gervang, Bo

    2015-01-01

    The focus of this paper is the validation and comparison of simplified numerical models of the mechanical rolling process used in tube to tubesheet joints. The investigated models is an axisymmetric model and planar models with plane strain and stress. There are different pros and cons...

  14. In Situ Experiment and Numerical Model Validation of a Borehole Heat Exchanger in Shallow Hard Crystalline Rock

    Directory of Open Access Journals (Sweden)

    Mateusz Janiszewski

    2018-04-01

    Full Text Available Accurate and fast numerical modelling of the borehole heat exchanger (BHE is required for simulation of long-term thermal energy storage in rocks using boreholes. The goal of this study was to conduct an in situ experiment to validate the proposed numerical modelling approach. In the experiment, hot water was circulated for 21 days through a single U-tube BHE installed in an underground research tunnel located at a shallow depth in crystalline rock. The results of the simulations using the proposed model were validated against the measurements. The numerical model simulated the BHE’s behaviour accurately and compared well with two other modelling approaches from the literature. The model is capable of replicating the complex geometrical arrangement of the BHE and is considered to be more appropriate for simulations of BHE systems with complex geometries. The results of the sensitivity analysis of the proposed model have shown that low thermal conductivity, high density, and high heat capacity of rock are essential for maximising the storage efficiency of a borehole thermal energy storage system. Other characteristics of BHEs, such as a high thermal conductivity of the grout, a large radius of the pipe, and a large distance between the pipes, are also preferred for maximising efficiency.

  15. An Experimentally Validated Numerical Modeling Technique for Perforated Plate Heat Exchangers.

    Science.gov (United States)

    White, M J; Nellis, G F; Kelin, S A; Zhu, W; Gianchandani, Y

    2010-11-01

    Cryogenic and high-temperature systems often require compact heat exchangers with a high resistance to axial conduction in order to control the heat transfer induced by axial temperature differences. One attractive design for such applications is a perforated plate heat exchanger that utilizes high conductivity perforated plates to provide the stream-to-stream heat transfer and low conductivity spacers to prevent axial conduction between the perforated plates. This paper presents a numerical model of a perforated plate heat exchanger that accounts for axial conduction, external parasitic heat loads, variable fluid and material properties, and conduction to and from the ends of the heat exchanger. The numerical model is validated by experimentally testing several perforated plate heat exchangers that are fabricated using microelectromechanical systems based manufacturing methods. This type of heat exchanger was investigated for potential use in a cryosurgical probe. One of these heat exchangers included perforated plates with integrated platinum resistance thermometers. These plates provided in situ measurements of the internal temperature distribution in addition to the temperature, pressure, and flow rate measured at the inlet and exit ports of the device. The platinum wires were deposited between the fluid passages on the perforated plate and are used to measure the temperature at the interface between the wall material and the flowing fluid. The experimental testing demonstrates the ability of the numerical model to accurately predict both the overall performance and the internal temperature distribution of perforated plate heat exchangers over a range of geometry and operating conditions. The parameters that were varied include the axial length, temperature range, mass flow rate, and working fluid.

  16. Predictive validity of the Hendrich fall risk model II in an acute geriatric unit.

    Science.gov (United States)

    Ivziku, Dhurata; Matarese, Maria; Pedone, Claudio

    2011-04-01

    Falls are the most common adverse events reported in acute care hospitals, and older patients are the most likely to fall. The risk of falling cannot be completely eliminated, but it can be reduced through the implementation of a fall prevention program. A major evidence-based intervention to prevent falls has been the use of fall-risk assessment tools. Many tools have been increasingly developed in recent years, but most instruments have not been investigated regarding reliability, validity and clinical usefulness. This study intends to evaluate the predictive validity and inter-rater reliability of Hendrich fall risk model II (HFRM II) in order to identify older patients at risk of falling in geriatric units and recommend its use in clinical practice. A prospective descriptive design was used. The study was carried out in a geriatric acute care unit of an Italian University hospital. All over 65 years old patients consecutively admitted to a geriatric acute care unit of an Italian University hospital over 8-month period were enrolled. The patients enrolled were screened for the falls risk by nurses with the HFRM II within 24h of admission. The falls occurring during the patient's hospital stay were registered. Inter-rater reliability, area under the ROC curve, sensitivity, specificity, positive and negative predictive values and time for the administration were evaluated. 179 elderly patients were included. The inter-rater reliability was 0.87 (95% CI 0.71-1.00). The administration time was about 1min. The most frequently reported risk factors were depression, incontinence, vertigo. Sensitivity and specificity were respectively 86% and 43%. The optimal cut-off score for screening at risk patients was 5 with an area under the ROC curve of 0.72. The risk factors more strongly associated with falls were confusion and depression. As falls of older patients are a common problem in acute care settings it is necessary that the nurses use specific validate and reliable

  17. International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics

    CERN Document Server

    DEVELOPMENTS IN RELIABLE COMPUTING

    1999-01-01

    The SCAN conference, the International Symposium on Scientific Com­ puting, Computer Arithmetic and Validated Numerics, takes place bian­ nually under the joint auspices of GAMM (Gesellschaft fiir Angewandte Mathematik und Mechanik) and IMACS (International Association for Mathematics and Computers in Simulation). SCAN-98 attracted more than 100 participants from 21 countries all over the world. During the four days from September 22 to 25, nine highlighted, plenary lectures and over 70 contributed talks were given. These figures indicate a large participation, which was partly caused by the attraction of the organizing country, Hungary, but also the effec­ tive support system have contributed to the success. The conference was substantially supported by the Hungarian Research Fund OTKA, GAMM, the National Technology Development Board OMFB and by the J6zsef Attila University. Due to this funding, it was possible to subsidize the participation of over 20 scientists, mainly from Eastern European countries. I...

  18. Validation of Multibody Program to Optimize Simulated Trajectories II Parachute Simulation with Interacting Forces

    Science.gov (United States)

    Raiszadeh, Behzad; Queen, Eric M.; Hotchko, Nathaniel J.

    2009-01-01

    A capability to simulate trajectories of multiple interacting rigid bodies has been developed, tested and validated. This capability uses the Program to Optimize Simulated Trajectories II (POST 2). The standard version of POST 2 allows trajectory simulation of multiple bodies without force interaction. In the current implementation, the force interaction between the parachute and the suspended bodies has been modeled using flexible lines, allowing accurate trajectory simulation of the individual bodies in flight. The POST 2 multibody capability is intended to be general purpose and applicable to any parachute entry trajectory simulation. This research paper explains the motivation for multibody parachute simulation, discusses implementation methods, and presents validation of this capability.

  19. RELAP-7 Software Verification and Validation Plan: Requirements Traceability Matrix (RTM) Part 1 – Physics and numerical methods

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Joon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Yoo, Jun Soo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis Lee [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    This INL plan comprehensively describes the Requirements Traceability Matrix (RTM) on main physics and numerical method of the RELAP-7. The plan also describes the testing-based software verification and validation (SV&V) process—a set of specially designed software models used to test RELAP-7.

  20. Validation of the Health-Promoting Lifestyle Profile II for Hispanic male truck drivers in the Southwest.

    Science.gov (United States)

    Mullins, Iris L; O'Day, Trish; Kan, Tsz Yin

    2013-08-01

    The aims of the study were to validate the English and Spanish Versions of the Health-Promoting Lifestyle Profile II (HPLP II) with Hispanic male truck drivers and to determine if there were any differences in drivers' responses based on driving responsibility. The methods included a descriptive correlation design, the HPLP II (English and Spanish versions), and a demographic questionnaire. Fifty-two Hispanic drivers participated in the study. There were no significant differences in long haul and short haul drivers' responses to the HPLP II. Cronbach's alpha for the Spanish version was .97 and the subscales alphas ranged from .74 to .94. The English version alpha was .92 and the subscales ranged from .68 to .84. Findings suggest the subscales of Health Responsibility, Physical Activities, Nutrition, and Spirituality Growth on the HPLP II Spanish and English versions may not adequately assess health-promoting behaviors and cultural influences for the Hispanic male population in the southwestern border region.

  1. Tank waste source term inventory validation. Volume II. Letter report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This document comprises Volume II of the Letter Report entitled Tank Waste Source Term Inventory Validation. This volume contains Appendix C, Radionuclide Tables, and Appendix D, Chemical Analyte Tables. The sample data for selection of 11 radionuclides and 24 chemical analytes were extracted from six separate sample data sets, were arranged in a tabular format and were plotted on scatter plots for all of the 149 single-shell tanks, the 24 double-shell tanks and the four aging waste tanks. The solid and liquid sample data was placed in separate tables and plots. The sample data and plots were compiled from the following data sets: characterization raw sample data, recent core samples, D. Braun data base, Wastren (Van Vleet) data base, TRAC and HTCE inventories.

  2. Tank waste source term inventory validation. Volume II. Letter report

    International Nuclear Information System (INIS)

    1995-04-01

    This document comprises Volume II of the Letter Report entitled Tank Waste Source Term Inventory Validation. This volume contains Appendix C, Radionuclide Tables, and Appendix D, Chemical Analyte Tables. The sample data for selection of 11 radionuclides and 24 chemical analytes were extracted from six separate sample data sets, were arranged in a tabular format and were plotted on scatter plots for all of the 149 single-shell tanks, the 24 double-shell tanks and the four aging waste tanks. The solid and liquid sample data was placed in separate tables and plots. The sample data and plots were compiled from the following data sets: characterization raw sample data, recent core samples, D. Braun data base, Wastren (Van Vleet) data base, TRAC and HTCE inventories

  3. Structure-borne noise of railway composite bridge: Numerical simulation and experimental validation

    Science.gov (United States)

    Li, Xiaozhen; Liu, Quanmin; Pei, Shiling; Song, Lizhong; Zhang, Xun

    2015-09-01

    In order to investigate the characteristics of the noise from steel-concrete composite bridges under high-speed train loading, a model used to predict the bridge-borne noise is established and validated through a field experiment. The numerical model for noise prediction is developed based on the combination of spatial train-track-bridge coupled vibration theory and Statistical Energy Analysis (SEA). Firstly, train-track-bridge coupled vibration is adopted to obtain the velocity time history of the bridge deck vibration. Then, the velocity time history is transferred into frequency domain through FFT to serve as the vibratory energy of SEA deck subsystems. Finally, the transmission of the vibratory energy is obtained by solving the energy balance equations of SEA, and the sound radiation is computed using the vibro-acoustic theory. The numerically computed noise level is verified by a field measurement. It is determined that the dominant frequency of steel-concrete composite bridge-borne noise is 20-1000 Hz. The noise from the bottom flange of steel longitudinal girder is less than other components in the whole frequency bands, while the noise from web of steel longitudinal girder is dominant in high frequency range above 315 Hz. The noise from concrete deck dominates in low-frequency domain ranges from 80 Hz to 160 Hz.

  4. Analytical and numerical study of validation test-cases for multi-physic problems: application to magneto-hydro-dynamic

    Directory of Open Access Journals (Sweden)

    D Cébron

    2016-04-01

    Full Text Available The present paper is concerned with the numerical simulation of Magneto-Hydro-Dynamic (MHD problems with industrial tools. MHD has receivedattention some twenty to thirty years ago as a possible alternative inpropulsion applications; MHD propelled ships have even been designed forthat purpose. However, such propulsion systems have been proved of lowefficiency and fundamental researches in the area have progressivelyreceived much less attention over the past decades. Numerical simulationof MHD problem could however provide interesting solutions in the field ofturbulent flow control. The development of recent efficient numericaltechniques for multi-physic applications provide promising tool for theengineer for that purpose. In the present paper, some elementary testcases in laminar flow with magnetic forcing terms are analysed; equationsof the coupled problem are exposed, analytical solutions are derived ineach case and are compared to numerical solutions obtained with anumerical tool for multi-physic applications. The present work can be seenas a validation of numerical tools (based on the finite element method foracademic as well as industrial application purposes.

  5. Validation of a Numerical Program for Analyzing Kinetic Energy Potential in the Bangka Strait, North Sulawesi, Indonesia

    Science.gov (United States)

    Rompas, P. T. D.; Taunaumang, H.; Sangari, F. J.

    2018-02-01

    The paper presents validation of the numerical program that computes the distribution of marine current velocities in the Bangka strait and the kinetic energy potential in the form the distributions of available power per area in the Bangka strait. The numerical program used the RANS model where the pressure distribution in the vertical assumed to be hydrostatic. The 2D and 3D numerical program results compared with the measurement results that are observation results to the moment conditions of low and high tide currents. It found no different significant between the numerical results and the measurement results. There are 0.97-2.2 kW/m2 the kinetic energy potential in the form the distributions of available power per area in the Bangka strait when low tide currents, whereas when high tide currents of 1.02-2.1 kW/m2. The results show that to be enabling the installation of marine current turbines for construction of power plant in the Bangka strait, North Sulawesi, Indonesia.

  6. Evaluation of thermophysical properties of Al–Sn–Si alloys based on computational thermodynamics and validation by numerical and experimental simulation of solidification

    International Nuclear Information System (INIS)

    Bertelli, Felipe; Cheung, Noé; Ferreira, Ivaldo L.; Garcia, Amauri

    2016-01-01

    Highlights: • A numerical routine coupled to a computational thermodynamics software is proposed to calculate thermophysical properties. • The approach encompasses numerical and experimental simulation of solidification. • Al–Sn–Si alloys thermophysical properties are validated by experimental/numerical cooling rate results. - Abstract: Modelling of manufacturing processes of multicomponent Al-based alloys products, such as casting, requires thermophysical properties that are rarely found in the literature. It is extremely important to use reliable values of such properties, as they can influence critically on simulated output results. In the present study, a numerical routine is developed and connected in real runtime execution to a computational thermodynamic software with a view to permitting thermophysical properties such as: latent heats; specific heats; temperatures and heats of transformation; phase fractions and composition and density of Al–Sn–Si alloys as a function of temperature, to be determined. A numerical solidification model is used to run solidification simulations of ternary Al-based alloys using the appropriate calculated thermophysical properties. Directional solidification experiments are carried out with two Al–Sn–Si alloys compositions to provide experimental cooling rates profiles along the length of the castings, which are compared with numerical simulations in order to validate the calculated thermophysical data. For both cases a good agreement can be observed, indicating the relevance of applicability of the proposed approach.

  7. Novel and validated titrimetric method for determination of selected angiotensin-II-receptor antagonists in pharmaceutical preparations and its comparison with UV spectrophotometric determination

    Directory of Open Access Journals (Sweden)

    Shrikant H. Patil

    2012-12-01

    Full Text Available A novel and simple titrimetric method for determination of commonly used angiotensin-II-receptor antagonists (ARA-IIs is developed and validated. The direct acid base titration of four ARA-IIs, namely eprosartan mesylate, irbesartan, telmisartan and valsartan, was carried out in the mixture of ethanol:water (1:1 as solvent using standardized sodium hydroxide aqueous solution as titrant, either visually using phenolphthalein as an indicator or potentiometrically using combined pH electrode. The method was found to be accurate and precise, having relative standard deviation of less than 2% for all ARA-IIs studied. Also, it was shown that the method could be successfully applied to the assay of commercial pharmaceuticals containing the above-mentioned ARA-IIs. The validity of the method was tested by the recovery studies of standard addition to pharmaceuticals and the results were found to be satisfactory. Results obtained by this method were found to be in good agreement with those obtained by UV spectrophotometric method. For UV spectrophotometric analysis ethanol was used as a solvent and wavelength of 233 nm, 246 nm, 296 nm, and 250 nm was selected for determination of eprosartan mesylate, irbesartan, telmisartan, and valsartan respectively. The proposed titrimetric method is simple, rapid, convenient and sufficiently precise for quality control purposes. Keywords: Angiotensin-II-receptor antagonists, Titrimetric assay, UV spectrophotometry, Validation

  8. Rapid Robot Design Validation, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Energid Technologies will create a comprehensive software infrastructure for rapid validation of robot designs. The software will support push-button validation...

  9. OC5 Project Phase II: Validation of Global Loads of the DeepCwind Floating Semisubmersible Wind Turbine

    DEFF Research Database (Denmark)

    Robertson, Amy N.; Wendt, Fabian; Jonkman, Jason M.

    2017-01-01

    This paper summarizes the findings from Phase II of the Offshore Code Comparison, Collaboration, Continued, with Correlation project. The project is run under the International Energy Agency Wind Research Task 30, and is focused on validating the tools used for modeling offshore wind systems thro...

  10. Numerical studies and metric development for validation of magnetohydrodynamic models on the HIT-SI experiment

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, C., E-mail: hansec@uw.edu [PSI-Center, University of Washington, Seattle, Washington 98195 (United States); Columbia University, New York, New York 10027 (United States); Victor, B.; Morgan, K.; Hossack, A.; Sutherland, D. [HIT-SI Group, University of Washington, Seattle, Washington 98195 (United States); Jarboe, T.; Nelson, B. A. [HIT-SI Group, University of Washington, Seattle, Washington 98195 (United States); PSI-Center, University of Washington, Seattle, Washington 98195 (United States); Marklin, G. [PSI-Center, University of Washington, Seattle, Washington 98195 (United States)

    2015-05-15

    We present application of three scalar metrics derived from the Biorthogonal Decomposition (BD) technique to evaluate the level of agreement between macroscopic plasma dynamics in different data sets. BD decomposes large data sets, as produced by distributed diagnostic arrays, into principal mode structures without assumptions on spatial or temporal structure. These metrics have been applied to validation of the Hall-MHD model using experimental data from the Helicity Injected Torus with Steady Inductive helicity injection experiment. Each metric provides a measure of correlation between mode structures extracted from experimental data and simulations for an array of 192 surface-mounted magnetic probes. Numerical validation studies have been performed using the NIMROD code, where the injectors are modeled as boundary conditions on the flux conserver, and the PSI-TET code, where the entire plasma volume is treated. Initial results from a comprehensive validation study of high performance operation with different injector frequencies are presented, illustrating application of the BD method. Using a simplified (constant, uniform density and temperature) Hall-MHD model, simulation results agree with experimental observation for two of the three defined metrics when the injectors are driven with a frequency of 14.5 kHz.

  11. Numerical simulation and experimental validation of internal heat exchanger influence on CO{sub 2} trans-critical cycle performance

    Energy Technology Data Exchange (ETDEWEB)

    Rigola, Joaquim; Ablanque, Nicolas; Perez-Segarra, Carlos D.; Oliva, Assensi [Centre Tecnologic de Transferencia de Calor (CTTC), Universitat Politecnica de Catalunya (UPC), ETSEIAT, C. Colom 11, 08222 Terrassa (Barcelona) (Spain)

    2010-06-15

    The present paper is a numerical and experimental comparative study of the whole vapour compression refrigerating cycle in general, and reciprocating compressors in particular, with the aim of showing the possibilities that CO{sub 2} offers for commercial refrigeration, considering a single-stage trans-critical cycle using semi-hermetic reciprocating compressors under small cooling capacity systems. The present work is focussed on the influence of using an internal heat exchanger (IHX) in order to improve the cycle performance under real working conditions. In order to validate the numerical results, an experimental unit specially designed and built to analyze trans-critical refrigerating equipments considering IHX has been built. Both numerical results and experimental data show reasonable good agreement, while the comparative global values conclude the improvement of cooling capacity and COP when IHX is considered in the CO{sub 2} trans-critical cycle. (author)

  12. Validation of WIMS-AECL/(MULTICELL)/RFSP system by the results of phase-B test at Wolsung-II unit

    Energy Technology Data Exchange (ETDEWEB)

    Hong, In Seob; Min, Byung Joo; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-03-01

    The object of this study is the validation of WIMS-AECL lattice code which has been proposed for the substitution of POWDERPUFS-V(PPV) code. For the validation of this code, WIMS-AECL/(MULTICELL)/RFSP (lattice calculation/(incremental cross section calculation)/core calculation) code system has been used for the Post-Simulation of Phase-B physics Test at Wolsung-II unit. This code system had been used for the Wolsong-I and Point Lepraeu reactors, but after a few modifications of WIMS-AECL input values for Wolsong-II, the results of WIMS-AECL/RFSP code calculations are much improved to those of the old ones. Most of the results show good estimation except moderator temperature coefficient test. And the verification of this result must be done, which is one of the further work. 6 figs., 15 tabs. (Author)

  13. Development and validation of a free-piston engine generator numerical model

    International Nuclear Information System (INIS)

    Jia, Boru; Zuo, Zhengxing; Tian, Guohong; Feng, Huihua; Roskilly, A.P.

    2015-01-01

    Highlights: • Detailed numerical model of free-piston engine generator is presented. • Sub models for both starting process and steady operation are derived. • Simulation results show good agreement with prototype test data. • Engine performance with different starting motor force and varied loads are simulated. • The efficiency of the prototype is estimated to be 31.5% at a power output of 4 kW under full load. - Abstract: This paper focuses on the numerical modelling of a spark ignited free-piston engine generator and the model validation with test results. Detailed sub-models for both starting process and steady operation were derived. The compression and expansion processes were not regarded as ideal gas isentropic processes; both heat transfer and air leakage were taken into consideration. The simulation results show good agreement with the prototype test data for both the starting process and steady operation. During the starting process, the difference of the in-cylinder gas pressure can be controlled within 1 bar for every running cycle. For the steady operation process, the difference was less than 5% and the areas enclosed on the pressure–volume diagram were similar, indicating that the power produced by the engine and the engine efficiency could be predicted by this model. Based on this model, the starting process with different starting motor forces and the combustion process with various throttle openings were simulated. The engine performance during stable operation at 100% engine load was predicted, and the efficiency of the prototype was estimated to be 31.5% at power output of 4 kW

  14. Experimental Study of the Twin Turbulent Water Jets Using Laser Doppler Anemometry for Validating Numerical Models

    International Nuclear Information System (INIS)

    Wang Huhu; Lee Saya; Hassan, Yassin A.; Ruggles, Arthur E.

    2014-01-01

    The design of next generation (Gen. IV) high-temperature nuclear reactors including gas-cooled and sodium-cooled ones involves massive numerical works especially the Computational Fluid Dynamics (CFD) simulations. The high cost of large-scale experiments and the inherent uncertainties existing in the turbulent models and wall functions of any CFD codes solving Reynolds-averaged Navier-Stokes (RANS) equations necessitate the high-spacial experimental data sets for benchmarking the simulation results. In Gen. IV conceptual reactors, the high- temperature flows mix in the upper plenum before entering the secondary cooling system. The mixing condition should be accurately estimated and fully understood as it is related to the thermal stresses induced in the upper plenum and the magnitudes of output power oscillations due to any changes of primary coolant temperature. The purpose of this study is to use Laser Doppler Anemometry (LDA) technique to measure the flow field of two submerged parallel jets issuing from two rectangular channels. The LDA data sets can be used to validate the corresponding simulation results. The jets studied in this work were at room temperature. The turbulent characteristics including the distributions of mean velocities, turbulence intensities, Reynolds stresses were studied. Uncertainty analysis was also performed to study the errors involved in this experiment. The experimental results in this work are valid for benchmarking any steady-state numerical simulations using turbulence models to solve RANS equations. (author)

  15. Comparison of mortality prediction models and validation of SAPS II in critically ill burns patients.

    Science.gov (United States)

    Pantet, O; Faouzi, M; Brusselaers, N; Vernay, A; Berger, M M

    2016-06-30

    Specific burn outcome prediction scores such as the Abbreviated Burn Severity Index (ABSI), Ryan, Belgian Outcome of Burn Injury (BOBI) and revised Baux scores have been extensively studied. Validation studies of the critical care score SAPS II (Simplified Acute Physiology Score) have included burns patients but not addressed them as a cohort. The study aimed at comparing their performance in a Swiss burns intensive care unit (ICU) and to observe whether they were affected by a standardized definition of inhalation injury. We conducted a retrospective cohort study, including all consecutive ICU burn admissions (n=492) between 1996 and 2013: 5 epochs were defined by protocol changes. As required for SAPS II calculation, stays burned (TBSA) and inhalation injury (systematic standardized diagnosis since 2006). Study epochs were compared (χ2 test, ANOVA). Score performance was assessed by receiver operating characteristic curve analysis. SAPS II performed well (AUC 0.89), particularly in burns burns <40% TBSA. Ryan and BOBI scores were least accurate, as they heavily weight inhalation injury.

  16. VALIDATION OF NUMERICAL METHODS TO CALCULATE BYPASS FLOW IN A PRISMATIC GAS-COOLED REACTOR CORE

    Directory of Open Access Journals (Sweden)

    NAM-IL TAK

    2013-11-01

    Full Text Available For thermo-fluid and safety analyses of a High Temperature Gas-cooled Reactor (HTGR, intensive efforts are in progress in the developments of the GAMMA+ code of Korea Atomic Energy Research Institute (KAERI and the AGREE code of the University of Michigan (U of M. One of the important requirements for GAMMA+ and AGREE is an accurate modeling capability of a bypass flow in a prismatic core. Recently, a series of air experiments were performed at Seoul National University (SNU in order to understand bypass flow behavior and generate an experimental database for the validation of computer codes. The main objective of the present work is to validate the GAMMA+ and AGREE codes using the experimental data published by SNU. The numerical results of the two codes were compared with the measured data. A good agreement was found between the calculations and the measurement. It was concluded that GAMMA+ and AGREE can reliably simulate the bypass flow behavior in a prismatic core.

  17. High accuracy mantle convection simulation through modern numerical methods

    KAUST Repository

    Kronbichler, Martin

    2012-08-21

    Numerical simulation of the processes in the Earth\\'s mantle is a key piece in understanding its dynamics, composition, history and interaction with the lithosphere and the Earth\\'s core. However, doing so presents many practical difficulties related to the numerical methods that can accurately represent these processes at relevant scales. This paper presents an overview of the state of the art in algorithms for high-Rayleigh number flows such as those in the Earth\\'s mantle, and discusses their implementation in the Open Source code Aspect (Advanced Solver for Problems in Earth\\'s ConvecTion). Specifically, we show how an interconnected set of methods for adaptive mesh refinement (AMR), higher order spatial and temporal discretizations, advection stabilization and efficient linear solvers can provide high accuracy at a numerical cost unachievable with traditional methods, and how these methods can be designed in a way so that they scale to large numbers of processors on compute clusters. Aspect relies on the numerical software packages deal.II and Trilinos, enabling us to focus on high level code and keeping our implementation compact. We present results from validation tests using widely used benchmarks for our code, as well as scaling results from parallel runs. © 2012 The Authors Geophysical Journal International © 2012 RAS.

  18. Validation of SAGE II ozone measurements

    Science.gov (United States)

    Cunnold, D. M.; Chu, W. P.; Mccormick, M. P.; Veiga, R. E.; Barnes, R. A.

    1989-01-01

    Five ozone profiles from the Stratospheric Aerosol and Gas Experiment (SAGE) II are compared with coincident ozonesonde measurements obtained at Natal, Brazil, and Wallops Island, Virginia. It is shown that the mean difference between all of the measurements is about 1 percent and that the agreement is within 7 percent at altitudes between 20 and 53 km. Good agreement is also found for ozone mixing ratios on pressure surfaces. It is concluded that the SAGE II profiles provide useful ozone information up to about 60 km altitude.

  19. Neuro-evolutionary computing paradigm for Painlevé equation-II in nonlinear optics

    Science.gov (United States)

    Ahmad, Iftikhar; Ahmad, Sufyan; Awais, Muhammad; Ul Islam Ahmad, Siraj; Asif Zahoor Raja, Muhammad

    2018-05-01

    The aim of this study is to investigate the numerical treatment of the Painlevé equation-II arising in physical models of nonlinear optics through artificial intelligence procedures by incorporating a single layer structure of neural networks optimized with genetic algorithms, sequential quadratic programming and active set techniques. We constructed a mathematical model for the nonlinear Painlevé equation-II with the help of networks by defining an error-based cost function in mean square sense. The performance of the proposed technique is validated through statistical analyses by means of the one-way ANOVA test conducted on a dataset generated by a large number of independent runs.

  20. A Validation Approach for Quasistatic Numerical/Experimental Indentation Analysis in Soft Materials Using 3D Digital Image Correlation.

    Science.gov (United States)

    Felipe-Sesé, Luis; López-Alba, Elías; Hannemann, Benedikt; Schmeer, Sebastian; Diaz, Francisco A

    2017-06-28

    A quasistatic indentation numerical analysis in a round section specimen made of soft material has been performed and validated with a full field experimental technique, i.e., Digital Image Correlation 3D. The contact experiment specifically consisted of loading a 25 mm diameter rubber cylinder of up to a 5 mm indentation and then unloading. Experimental strains fields measured at the surface of the specimen during the experiment were compared with those obtained by performing two numerical analyses employing two different hyperplastic material models. The comparison was performed using an Image Decomposition new methodology that makes a direct comparison of full-field data independently of their scale or orientation possible. Numerical results show a good level of agreement with those measured during the experiments. However, since image decomposition allows for the differences to be quantified, it was observed that one of the adopted material models reproduces lower differences compared to experimental results.

  1. Experimental and Numerical Investigations on Feasibility and Validity of Prismatic Rock Specimen in SHPB

    Directory of Open Access Journals (Sweden)

    Xibing Li

    2016-01-01

    Full Text Available The paper presents experimental and numerical studies on the feasibility and validity of using prismatic rock specimens in split Hopkinson pressure bar (SHPB test. Firstly, the experimental tests are conducted to evaluate the stress and strain uniformity in the prismatic specimens during impact loading. The stress analysis at the ends of the specimen shows that stress equilibrium can be achieved after about three wave reflections in the specimen, and the balance can be well maintained for a certain time after peak stress. The strain analysis reveals that the prismatic specimen deforms uniformly during the dynamic loading period. Secondly, numerical simulation is performed to further verify the stress and strain uniformity in the prismatic specimen in SHPB test. It indicates that the stress equilibrium can be achieved in prismatic specimen despite a certain degree of stress concentration at the corners. The comparative experiments demonstrate that the change of specimen shape has no significant effect on dynamic responses and failure patterns of the specimen. Finally, a dynamic crack propagation test is presented to show the application of the present work in studying fracturing mechanisms under dynamic loading.

  2. Dark matter as a dynamic effect due to a non-minimal gravitational coupling with matter (II): Numerical results

    International Nuclear Information System (INIS)

    Paramos, J; Bertolami, O

    2010-01-01

    Following the previous contribution discussing the rich phenomenology of models possessing a non-minimal coupling between matter and geometry, with emphasis on its characteristics and analytical results, the obtained 'dark matter' mimicking mechanism is numerically studied. This allows for ascertaining the order of magnitude of the relevant parameters, leading to a validation of the analytical results and the discussion of possible cosmological implications and deviation from universality.

  3. Validation of a Quasi-Linear Numerical Model of a Pitching Wave Energy Converter in Close Proximity to a Fixed Structure

    DEFF Research Database (Denmark)

    López, Maria del Pilar Heras; Thomas, Sarah; Kramer, Morten Mejlhede

    2017-01-01

    attempting to validate a numerical model of a WEC using a variety of scaled physical tests in a waveflume. The technology used as a case study in this paper is a pitching WEC in close proximity to a fixed structure. Challenges are presented relating to waveflume effects and obtaining accurate physical input...

  4. Validation of a Numerical Model for Dynamic Three-Dimensional Railway Bridge Analysis by Comparison with a Small-Scale Laboratory Model

    DEFF Research Database (Denmark)

    Bucinskas, Paulius; Sneideris, Jonas; Agapii, Liuba

    2018-01-01

    The aim of the paper is analyse to what extent a small-scale experimental model can be applied in order to develop and validate a numerical model for dynamic analysis of a multi-span railway bridge interacting with the underlying soil. For this purpose a small-scale model of a bridge structure is...

  5. Multi-instantons and exact results II: specific cases, higher-order effects, and numerical calculations

    International Nuclear Information System (INIS)

    Zinn-Justin, Jean; Jentschura, Ulrich D.

    2004-01-01

    In this second part of the treatment of instantons in quantum mechanics, the focus is on specific calculations related to a number of quantum mechanical potentials with degenerate minima. We calculate the leading multi-instanton contributions to the partition function, using the formalism introduced in the first part of the treatise [Ann. Phys. (N. Y.) (previous issue) (2004)]. The following potentials are considered: (i) asymmetric potentials with degenerate minima, (ii) the periodic cosine potential, (iii) anharmonic oscillators with radial symmetry, and (iv) a specific potential which bears an analogy with the Fokker-Planck equation. The latter potential has the peculiar property that the perturbation series for the ground-state energy vanishes to all orders and is thus formally convergent (the ground-state energy, however, is non-zero and positive). For the potentials (ii), (iii), and (iv), we calculate the perturbative B-function as well as the instanton A-function to fourth order in g. We also consider the double-well potential in detail, and present some higher-order analytic as well as numerical calculations to verify explicitly the related conjectures up to the order of three instantons. Strategies analogous to those outlined here could result in new conjectures for problems where our present understanding is more limited

  6. Recent results of seismic isolation study in CRIEPI: Numerical activities

    International Nuclear Information System (INIS)

    Shiojiri, Hiroo; Ishida, Katsuhiko; Yabana, Shurichi; Hirata, Kazuta

    1992-01-01

    Development of detailed numerical models of a bearing and the related isolation system Is necessary for establishing the rational design of the bearing and the system. The developed numerical models should be validated regarding the physical parameters and the basic assumption by comparing the experimental results with the numerical ones. The numerical work being conducted in CRIEPI consists of the following items: (1) Simple modeling of the behavior of the bearings capable of approximating the tests on bearings, and the validation of the model for the bearing by comparing the numerical results adopting the models with the shaking table tests results; (2) Detailed three-dimensional modeling of single bearings with finite-element codes, and the experimental validation of the model; (3)Simple and detailed three-dimensional modeling of isolation buildings and experimental validation

  7. Numerical simulation support to the ESA/THOR mission

    Science.gov (United States)

    Valentini, F.; Servidio, S.; Perri, S.; Perrone, D.; De Marco, R.; Marcucci, M. F.; Daniele, B.; Bruno, R.; Camporeale, E.

    2016-12-01

    THOR is a spacecraft concept currently undergoing study phase as acandidate for the next ESA medium size mission M4. THOR has been designedto solve the longstanding physical problems of particle heating andenergization in turbulent plasmas. It will provide high resolutionmeasurements of electromagnetic fields and particle distribution functionswith unprecedented resolution, with the aim of exploring the so-calledkinetic scales. We present the numerical simulation framework which is supporting the THOR mission during the study phase. The THOR teamincludes many scientists developing and running different simulation codes(Eulerian-Vlasov, Particle-In-Cell, Gyrokinetics, Two-fluid, MHD, etc.),addressing the physics of plasma turbulence, shocks, magnetic reconnectionand so on.These numerical codes are being used during the study phase, mainly withthe aim of addressing the following points:(i) to simulate the response of real particle instruments on board THOR, byemploying an electrostatic analyser simulator which mimics the response ofthe CSW, IMS and TEA instruments to the particle velocity distributions ofprotons, alpha particle and electrons, as obtained from kinetic numericalsimulations of plasma turbulence.(ii) to compare multi-spacecraft with single-spacecraft configurations inmeasuring current density, by making use of both numerical models ofsynthetic turbulence and real data from MMS spacecraft.(iii) to investigate the validity of the Taylor hypothesis indifferent configurations of plasma turbulence

  8. Low-temperature Synthesis of Tin(II) Oxide From Tin(II) ketoacidoximate Precursor

    KAUST Repository

    Alshankiti, Buthainah

    2015-01-01

    Sn (II) oxide finds numerous applications in different fields such as thin film transistors1, solar cells2 and sensors.3 In this study we present the fabrication of tin monoxide SnO by using Sn (II) ketoacid oximate complexes as precursors. Tin (II

  9. DECOVALEX II PROJECT. Technical report - Task 1A and 1B

    International Nuclear Information System (INIS)

    Lanru Jing; Stephansson, Ove; Kautsky, F.

    1998-08-01

    DECOVALEX II project started in November 1995 as a continuation of the DECOVALEX I project, which was completed at the end of 1994. The project was initiated by recognizing the fact that a proper evaluation of the current capacities of numerical modelling of the coupled T-H-M processes in fractured media is needed not only for small scale, well controlled laboratory test cases such as those studied in DECOVALEX I, but also for less characterised, more complex and realistic in-situ experiments. This will contribute to validation and confidence building in the current mathematical models, numerical methods and computer codes. Four tasks were defined in the DECOVALEX II project: TASK 1 - numerical study of the RCF3 pumping test and shaft excavation at Sellafield by Nirex, UK; TASK 2 - numerical study of the in-situ T-H-M experiments at Kamaishi Mine by PNC, Japan; TASK 3 - review of current state-of-the-art of rock joint research and TASK 4 - report on the coupled T-H-M issues related to repository design and performance assessment. This report is one of the technical reports of the DECOVALEX II project, describing the work performed for TASK 1A and 1B - the predictions and model calibrations for the RCF 3 pumping test at Sellafield. Presented in this report are the descriptions of the project, tasks, approaches, methods and results of numerical modelling work carried out by the research teams. The report is a summary of the research reports written by the research teams and submitted to the project secretariat, and the discussions held during project workshops and task force group meetings. The opinions and conclusions in this report, however, reflect only ideas of the authors, not necessarily a collective representation of the funding organisations of the project

  10. Monte Carlo-based validation of the ENDF/MC2-II/SDX cell homogenization path

    International Nuclear Information System (INIS)

    Wade, D.C.

    1979-04-01

    The results are presented of a program of validation of the unit cell homogenization prescriptions and codes used for the analysis of Zero Power Reactor (ZPR) fast breeder reactor critical experiments. The ZPR drawer loading patterns comprise both plate type and pin-calandria type unit cells. A prescription is used to convert the three dimensional physical geometry of the drawer loadings into one dimensional calculational models. The ETOE-II/MC 2 -II/SDX code sequence is used to transform ENDF/B basic nuclear data into unit cell average broad group cross sections based on the 1D models. Cell average, broad group anisotropic diffusion coefficients are generated using the methods of Benoist or of Gelbard. The resulting broad (approx. 10 to 30) group parameters are used in multigroup diffusion and S/sub n/ transport calculations of full core XY or RZ models which employ smeared atom densities to represent the contents of the unit cells

  11. Monte Carlo; based validation of the ENDF/MC2-II/SDX cell homogenization path

    International Nuclear Information System (INIS)

    Wade, D.C.

    1978-11-01

    The results are summarized of a program of validation of the unit cell homogenization prescriptions and codes used for the analysis of Zero Power Reactor (ZPR) fast breeder reactor critical experiments. The ZPR drawer loading patterns comprise both plate type and pin-calandria type unit cells. A prescription is used to convert the three dimensional physical geometry of the drawer loadings into one dimensional calculational models. The ETOE-II/MC 2 -II/SDX code sequence is used to transform ENDF/B basic nuclear data into unit cell average broad group cross sections based on the 1D models. Cell average, broad group anisotropic diffusion coefficients are generated using the methods of Benoist or of Gelbard. The resulting broad (approx. 10 to 30) group parameters are used in multigroup diffusion and S/sub n/ transport calculations of full core XY or RZ models which employ smeared atom densities to represent the contents of the unit cells

  12. Optimal Control of Diesel Engines: Numerical Methods, Applications, and Experimental Validation

    Directory of Open Access Journals (Sweden)

    Jonas Asprion

    2014-01-01

    become complex systems. The exploitation of any leftover potential during transient operation is crucial. However, even an experienced calibration engineer cannot conceive all the dynamic cross couplings between the many actuators. Therefore, a highly iterative procedure is required to obtain a single engine calibration, which in turn causes a high demand for test-bench time. Physics-based mathematical models and a dynamic optimisation are the tools to alleviate this dilemma. This paper presents the methods required to implement such an approach. The optimisation-oriented modelling of diesel engines is summarised, and the numerical methods required to solve the corresponding large-scale optimal control problems are presented. The resulting optimal control input trajectories over long driving profiles are shown to provide enough information to allow conclusions to be drawn for causal control strategies. Ways of utilising this data are illustrated, which indicate that a fully automated dynamic calibration of the engine control unit is conceivable. An experimental validation demonstrates the meaningfulness of these results. The measurement results show that the optimisation predicts the reduction of the fuel consumption and the cumulative pollutant emissions with a relative error of around 10% on highly transient driving cycles.

  13. Improved numerical algorithm and experimental validation of a system thermal-hydraulic/CFD coupling method for multi-scale transient simulations of pool-type reactors

    International Nuclear Information System (INIS)

    Toti, A.; Vierendeels, J.; Belloni, F.

    2017-01-01

    Highlights: • A system thermal-hydraulic/CFD coupling methodology is proposed for high-fidelity transient flow analyses. • The method is based on domain decomposition and implicit numerical scheme. • A novel interface Quasi-Newton algorithm is implemented to improve stability and convergence rate. • Preliminary validation analyses on the TALL-3D experiment. - Abstract: The paper describes the development and validation of a coupling methodology between the best-estimate system thermal-hydraulic code RELAP5-3D and the CFD code FLUENT, conceived for high fidelity plant-scale safety analyses of pool-type reactors. The computational tool is developed to assess the impact of three-dimensional phenomena occurring in accidental transients such as loss of flow (LOF) in the research reactor MYRRHA, currently in the design phase at the Belgian Nuclear Research Centre, SCK• CEN. A partitioned, implicit domain decomposition coupling algorithm is implemented, in which the coupled domains exchange thermal-hydraulics variables at coupling boundary interfaces. Numerical stability and interface convergence rates are improved by a novel interface Quasi-Newton algorithm, which is compared in this paper with previously tested numerical schemes. The developed computational method has been assessed for validation purposes against the experiment performed at the test facility TALL-3D, operated by the Royal Institute of Technology (KTH) in Sweden. This paper details the results of the simulation of a loss of forced convection test, showing the capability of the developed methodology to predict transients influenced by local three-dimensional phenomena.

  14. Kursk Operation Simulation and Validation Exercise - Phase II (KOSAVE II)

    National Research Council Canada - National Science Library

    Bauman, Walter

    1998-01-01

    ... (KOSAVE) Study (KOSAVE II) documents, in this report a statistical record of the Kursk battle, as represented in the KDB, for use as both a standalone descriptive record for historians, and as a baseline for a subsequent Phase...

  15. Heat transfer to sub- and supercritical water flowing upward in a vertical tube at low mass fluxes: numerical analysis and experimental validation

    NARCIS (Netherlands)

    Odu, Samuel Obarinu; Koster, P.; van der Ham, Aloysius G.J.; van der Hoef, Martin Anton; Kersten, Sascha R.A.

    2016-01-01

    Heat transfer to supercritical water (SCW) flowing upward in a vertical heated tube at low mass fluxes (G ≤ 20 kg/m2 s) has been numerically investigated in COMSOL Multiphysics and validated with experimental data. The turbulence models, essential to describing local turbulence, in COMSOL have been

  16. Experimental validation of a numerical model of two-phase displacement in porous medium

    International Nuclear Information System (INIS)

    Genty, A.

    1996-01-01

    Burial in geological layers appears to be an interesting solution to dispose of radioactive wastes. This thesis analyzes and simulates the behaviour of gas produced by waste barrels corrosion. The released contaminated gas drains the water initially present in the host rock and yields a water-gas two phase flow. A literature survey of two phase flow shows that fluid interfaces may display instabilities for definite flow characteristics. When the displacement is stable a smooth interface proceeds through the porous medium. When the interface shows fingering, the displacement is said to be 'viscous-unstable', and when the front is jagged the displacement is called 'capillary' displacement. A dimensional analysis of classical equations governing two phase flow in porous media is combined with a classification of dominant forces to define an original map of flow regimes that includes gravitational forces. The map is based on three dimensionless numbers and predicts a priori the flow type. For typical data describing a radioactive waste repository a 'viscous-unstable' displacement is predicted by the map. We simulate water-gas displacement with a numerical model previously developed; this code, based on the Muskat model, uses the mixed-hybrid finite elements technique and is therefore well adapted for tracking moving interfaces. Fluxes are well conserved, however instabilities cannot be simulated. We assume that there is always a scale to be found where instabilities can be averaged and we try to validate the model with experimental two phase flows. We performed laboratory water-gas flow experiments for a variety of flow conditions. The observed displacement types are consistent with the map of flow regimes. Good agreement with numerical simulations is obtained when precise parameters of the displacements are available, in particular relative permeability curves. We conclude that our model allows a first approach of migration of gas near a radioactive waste repository

  17. Validation of a 2-D semi-coupled numerical model for fluid-structure-seabed interaction

    Science.gov (United States)

    Ye, Jianhong; Jeng, Dongsheng; Wang, Ren; Zhu, Changqi

    2013-10-01

    A 2-D semi-coupled model PORO-WSSI 2D (also be referred as FSSI-CAS 2D) for the Fluid-Structure-Seabed Interaction (FSSI) has been developed by employing RANS equations for wave motion in fluid domain, VARANS equations for porous flow in porous structures; and taking the dynamic Biot's equations (known as "u - p" approximation) for soil as the governing equations. The finite difference two-step projection method and the forward time difference method are adopted to solve the RANS, VARANS equations; and the finite element method is adopted to solve the "u - p" approximation. A data exchange port is developed to couple the RANS, VARANS equations and the dynamic Biot's equations together. The analytical solution proposed by Hsu and Jeng (1994) and some experiments conducted in wave flume or geotechnical centrifuge in which various waves involved are used to validate the developed semi-coupled numerical model. The sandy bed involved in these experiments is poro-elastic or poro-elastoplastic. The inclusion of the interaction between fluid, marine structures and poro-elastoplastic seabed foundation is a special point and highlight in this paper, which is essentially different with other previous coupled models The excellent agreement between the numerical results and the experiment data indicates that the developed coupled model is highly reliablefor the FSSI problem.

  18. The development and validation of a numerical integration method for non-linear viscoelastic modeling

    Science.gov (United States)

    Ramo, Nicole L.; Puttlitz, Christian M.

    2018-01-01

    Compelling evidence that many biological soft tissues display both strain- and time-dependent behavior has led to the development of fully non-linear viscoelastic modeling techniques to represent the tissue’s mechanical response under dynamic conditions. Since the current stress state of a viscoelastic material is dependent on all previous loading events, numerical analyses are complicated by the requirement of computing and storing the stress at each step throughout the load history. This requirement quickly becomes computationally expensive, and in some cases intractable, for finite element models. Therefore, we have developed a strain-dependent numerical integration approach for capturing non-linear viscoelasticity that enables calculation of the current stress from a strain-dependent history state variable stored from the preceding time step only, which improves both fitting efficiency and computational tractability. This methodology was validated based on its ability to recover non-linear viscoelastic coefficients from simulated stress-relaxation (six strain levels) and dynamic cyclic (three frequencies) experimental stress-strain data. The model successfully fit each data set with average errors in recovered coefficients of 0.3% for stress-relaxation fits and 0.1% for cyclic. The results support the use of the presented methodology to develop linear or non-linear viscoelastic models from stress-relaxation or cyclic experimental data of biological soft tissues. PMID:29293558

  19. Experimental and numerical determination of the dynamic properties of the reactor building of Atucha II NPP

    International Nuclear Information System (INIS)

    Ceballos, M.A.; Car, E.J.; Prato, T.A.; Prato, C.A.; Alvarez, L.M.; Godoy, A.R.

    1995-01-01

    Determination of the dynamic properties of the reactor building of Atucha II NPP is carried out in order to: i) Obtain valuable information for seismic qualification of the plant, and ii) Assess some procedures for testing and analysis that are used in the process of seismic evaluation of existing nuclear facilities founded on Quaternary soil deposits. Both steady state and impulsive dynamic tests were performed but attention is centered here in tile techniques used to determine natural frequencies and modal damping ratios with impulsive tests. Numerical analyses were performed by means of a 3-D model model of the superstructure together with foundation stiffness coefficients derived in a separate paper from steady state vibration tests, and also from analysis with a 2-D F.E. model of the soil layers capable of approximating the 3-D features of the problem. The computed foundation stiffness coefficients are compared both with those obtained from the tests and from an axisymmetric F.E. model; results indicate that foundation stiffness coefficients calculated with F.E. models with soil parameters given by laboratory tests performed on cored samples are significantly lower than those given by the steady state vibration tests. (author)

  20. Validation of the 12-gene colon cancer recurrence score as a predictor of recurrence risk in stage II and III rectal cancer patients.

    Science.gov (United States)

    Reimers, Marlies S; Kuppen, Peter J K; Lee, Mark; Lopatin, Margarita; Tezcan, Haluk; Putter, Hein; Clark-Langone, Kim; Liefers, Gerrit Jan; Shak, Steve; van de Velde, Cornelis J H

    2014-11-01

    The 12-gene Recurrence Score assay is a validated predictor of recurrence risk in stage II and III colon cancer patients. We conducted a prospectively designed study to validate this assay for prediction of recurrence risk in stage II and III rectal cancer patients from the Dutch Total Mesorectal Excision (TME) trial. RNA was extracted from fixed paraffin-embedded primary rectal tumor tissue from stage II and III patients randomized to TME surgery alone, without (neo)adjuvant treatment. Recurrence Score was assessed by quantitative real time-polymerase chain reaction using previously validated colon cancer genes and algorithm. Data were analysed by Cox proportional hazards regression, adjusting for stage and resection margin status. All statistical tests were two-sided. Recurrence Score predicted risk of recurrence (hazard ratio [HR] = 1.57, 95% confidence interval [CI] = 1.11 to 2.21, P = .01), risk of distant recurrence (HR = 1.50, 95% CI = 1.04 to 2.17, P = .03), and rectal cancer-specific survival (HR = 1.64, 95% CI = 1.15 to 2.34, P = .007). The effect of Recurrence Score was most prominent in stage II patients and attenuated with more advanced stage (P(interaction) ≤ .007 for each endpoint). In stage II, five-year cumulative incidence of recurrence ranged from 11.1% in the predefined low Recurrence Score group (48.5% of patients) to 43.3% in the high Recurrence Score group (23.1% of patients). The 12-gene Recurrence Score is a predictor of recurrence risk and cancer-specific survival in rectal cancer patients treated with surgery alone, suggesting a similar underlying biology in colon and rectal cancers. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Absolute, pressure-dependent validation of a calibration-free, airborne laser hygrometer transfer standard (SEALDH-II from 5 to 1200 ppmv using a metrological humidity generator

    Directory of Open Access Journals (Sweden)

    B. Buchholz

    2018-01-01

    Full Text Available Highly accurate water vapor measurements are indispensable for understanding a variety of scientific questions as well as industrial processes. While in metrology water vapor concentrations can be defined, generated, and measured with relative uncertainties in the single percentage range, field-deployable airborne instruments deviate even under quasistatic laboratory conditions up to 10–20 %. The novel SEALDH-II hygrometer, a calibration-free, tuneable diode laser spectrometer, bridges this gap by implementing a new holistic concept to achieve higher accuracy levels in the field. We present in this paper the absolute validation of SEALDH-II at a traceable humidity generator during 23 days of permanent operation at 15 different H2O mole fraction levels between 5 and 1200 ppmv. At each mole fraction level, we studied the pressure dependence at six different gas pressures between 65 and 950 hPa. Further, we describe the setup for this metrological validation, the challenges to overcome when assessing water vapor measurements on a high accuracy level, and the comparison results. With this validation, SEALDH-II is the first airborne, metrologically validated humidity transfer standard which links several scientific airborne and laboratory measurement campaigns to the international metrological water vapor scale.

  2. Pretest Predictions for Phase II Ventilation Tests

    International Nuclear Information System (INIS)

    Yiming Sun

    2001-01-01

    The objective of this calculation is to predict the temperatures of the ventilating air, waste package surface, and concrete pipe walls that will be developed during the Phase II ventilation tests involving various test conditions. The results will be used as inputs to validating numerical approach for modeling continuous ventilation, and be used to support the repository subsurface design. The scope of the calculation is to identify the physical mechanisms and parameters related to thermal response in the Phase II ventilation tests, and describe numerical methods that are used to calculate the effects of continuous ventilation. The calculation is limited to thermal effect only. This engineering work activity is conducted in accordance with the ''Technical Work Plan for: Subsurface Performance Testing for License Application (LA) for Fiscal Year 2001'' (CRWMS M and O 2000d). This technical work plan (TWP) includes an AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', activity evaluation (CRWMS M and O 2000d, Addendum A) that has determined this activity is subject to the YMP quality assurance (QA) program. The calculation is developed in accordance with the AP-3.12Q procedure, ''Calculations''. Additional background information regarding this activity is contained in the ''Development Plan for Ventilation Pretest Predictive Calculation'' (DP) (CRWMS M and O 2000a)

  3. Numerical solution of multiband k.p model for tunnelling in type-II heterostructures

    Directory of Open Access Journals (Sweden)

    A.E. Botha

    2010-01-01

    Full Text Available A new and very general method was developed for calculating the charge and spin-resolved electron tunnelling in type-II heterojunctions. Starting from a multiband k.p description of the bulk energy-band structure, a multiband k.p Riccati equation was derived. The reflection and transmission coefficients were obtained for each channel by integrating the Riccati equation over the entire heterostructure. Numerical instability was reduced through this method, in which the multichannel log-derivative of the envelope function matrix, rather than the envelope function itself, was propagated. As an example, a six-band k.p Hamiltonian was used to calculate the current-voltage characteristics of a 10-nm wide InAs/ GaSb/InAs single quantum well device which exhibited negative differential resistance at room temperature. The calculated current as a function of applied (bias voltage was found to be in semiquantitative agreement with the experiment, a result which indicated that inelastic transport mechanisms do not contribute significantly to the valley currents measured in this particular device.

  4. Solid-phase extraction of Mn(II), Co(II), Ni(II), Cu(II), Cd(II) and Pb(II) ions from environmental samples by flame atomic absorption spectrometry (FAAS)

    Energy Technology Data Exchange (ETDEWEB)

    Duran, Celal [Department of Chemistry, Faculty of Art and Science, Karadeniz Technical University, 61080 Trabzon (Turkey); Gundogdu, Ali [Department of Chemistry, Faculty of Art and Science, Karadeniz Technical University, 61080 Trabzon (Turkey); Bulut, Volkan Numan [Department of Chemistry, Giresun Faculty of Art and Science, Karadeniz Technical University, 28049 Giresun (Turkey); Soylak, Mustafa [Department of Chemistry, Faculty of Art and Science, Erciyes University, 38039 Kayseri (Turkey)]. E-mail: soylak@erciyes.edu.tr; Elci, Latif [Department of Chemistry, Faculty of Art and Science, Pamukkale University, 20020 Denizli (Turkey); Sentuerk, Hasan Basri [Department of Chemistry, Faculty of Art and Science, Karadeniz Technical University, 61080 Trabzon (Turkey); Tuefekci, Mehmet [Department of Chemistry, Faculty of Art and Science, Karadeniz Technical University, 61080 Trabzon (Turkey)

    2007-07-19

    A new method using a column packed with Amberlite XAD-2010 resin as a solid-phase extractant has been developed for the multi-element preconcentration of Mn(II), Co(II), Ni(II), Cu(II), Cd(II), and Pb(II) ions based on their complex formation with the sodium diethyldithiocarbamate (Na-DDTC) prior to flame atomic absorption spectrometric (FAAS) determinations. Metal complexes sorbed on the resin were eluted by 1 mol L{sup -1} HNO{sub 3} in acetone. Effects of the analytical conditions over the preconcentration yields of the metal ions, such as pH, quantity of Na-DDTC, eluent type, sample volume and flow rate, foreign ions etc. have been investigated. The limits of detection (LOD) of the analytes were found in the range 0.08-0.26 {mu}g L{sup -1}. The method was validated by analyzing three certified reference materials. The method has been applied for the determination of trace elements in some environmental samples.

  5. Validations of BWR nuclear design code using ABWR MOX numerical benchmark problems

    International Nuclear Information System (INIS)

    Takano, Shou; Sasagawa, Masaru; Yamana, Teppei; Ikehara, Tadashi; Yanagisawa, Naoki

    2017-01-01

    BWR core design code package (the HINES assembly code and the PANACH core simulator), being used for full MOX-ABWR core design, has been benchmarked against the high-fidelity numerical solutions as references, for the purpose of validating its capability of predicting the BWR core design parameters systematically from UO 2 to 100% MOX cores. The reference solutions were created by whole core critical calculations using MCNPs with the precisely modeled ABWR cores both in hot and cold conditions at BOC and EOC of the equilibrium cycle. A Doppler-Broadening Rejection Correction (DCRB) implemented MCNP5-1.4 with ENDF/B-VII.0 was mainly used to evaluate the core design parameters, except for effective delayed neutron fraction (β eff ) and prompt neutron lifetime (l) with MCNP6.1. The discrepancies in the results between the design codes HINES-PANACH and MCNPs for the core design parameters such as the bundle powers, hot pin powers, control rod worth, boron worth, void reactivity, Doppler reactivity, β eff and l, are almost within target accuracy, leading to the conclusion that HINES-PANACH has sufficient fidelity for application to full MOX-ABWR core design. (author)

  6. J-ACT II. Differences in rate of valid recanalization and of a favorable outcome by site of MCA occlusion

    International Nuclear Information System (INIS)

    Hirano, Teruyuki

    2010-01-01

    The background and purpose of this study was to elucidate whether the effects of alteplase differ with occlusion site of the middle cerebral artery (MCA). An exploratory analysis was made of 57 patients enrolled on the Japan Alteplase Clinical Trial II (J-ACT II). The residual vessel length (mm), determined on pretreatment MR angiography (MRA), was used to reflect the occluded site. The proportions of patients with valid recanalization (modified Mori grade 2-3) at 6 and 24 hours, and a favorable outcome (modified Rankin scale 0-1 at 3 months) were compared between the groups dichotomized according to their lengths of residual vessel. Multiple logistic regression models were generated to elucidate the predictors of valid recanalization and a favorable outcome. Receiver operating characteristic (ROC) analysis revealed that 5 mm was the practical cutoff length for the dichotomization. In patients with M1 length <5 mm (n=12), the frequencies of valid recanalization at 6/24 hours (16.6%/25.0%) were significantly low compared with those (62.2%/82.2%) of 45 patients with a residual M1 length of ≥5 mm and M2 occlusions (p=0.008 for 6 hours, p<0.001 for 24 hours). The proportion of a favorable outcome was also small in patients with M1 length <5 mm (8.3%), as compared to the others (57.8%, p=0.004). In logistic regression models, the site of MCA occlusion (<5 mm) was the significant predictor of valid recanalization at 6/24 hours and of a favorable outcome. In patients with acute MCA occlusion, residual vessel length <5 mm on MRA can identify poor responders. (author)

  7. Analysis of EBR-II neutron and photon physics by multidimensional transport-theory techniques

    International Nuclear Information System (INIS)

    Jacqmin, R.P.; Finck, P.J.; Palmiotti, G.

    1994-01-01

    This paper contains a review of the challenges specific to the EBR-II core physics, a description of the methods and techniques which have been developed for addressing these challenges, and the results of some validation studies relative to power-distribution calculations. Numerical tests have shown that the VARIANT nodal code yields eigenvalue and power predictions as accurate as finite difference and discrete ordinates transport codes, at a small fraction of the cost. Comparisons with continuous-energy Monte Carlo results have proven that the errors introduced by the use of the diffusion-theory approximation in the collapsing procedure to obtain broad-group cross sections, kerma factors, and photon-production matrices, have a small impact on the EBR-II neutron/photon power distribution

  8. Numerical Analysis of Blood Damage Potential of the HeartMate II and HeartWare HVAD Rotary Blood Pumps.

    Science.gov (United States)

    Thamsen, Bente; Blümel, Bastian; Schaller, Jens; Paschereit, Christian O; Affeld, Klaus; Goubergrits, Leonid; Kertzscher, Ulrich

    2015-08-01

    Implantable left ventricular assist devices (LVADs) became the therapy of choice in treating end-stage heart failure. Although survival improved substantially and is similar in currently clinically implanted LVADs HeartMate II (HM II) and HeartWare HVAD, complications related to blood trauma are frequently observed. The aim of this study was to compare these two pumps regarding their potential blood trauma employing computational fluid dynamics. High-resolution structured grids were generated for the pumps. Newtonian flow was calculated, solving Reynolds-averaged Navier-Stokes equations with a sliding mesh approach and a k-ω shear stress transport turbulence model for the operating point of 4.5 L/min and 80 mm Hg. The pumps were compared in terms of volumes subjected to certain viscous shear stress thresholds, below which no trauma was assumed (von Willebrand factor cleavage: 9 Pa, platelet activation: 50 Pa, and hemolysis: 150 Pa), and associated residence times. Additionally, a hemolysis index was calculated based on a Eulerian transport approach. Twenty-two percent of larger volumes above 9 Pa were observed in the HVAD; above 50 Pa and 150 Pa the differences between the two pumps were marginal. Residence times were higher in the HVAD for all thresholds. The hemolysis index was almost equal for the HM II and HVAD. Besides the gap regions in both pumps, the inlet regions of the rotor and diffuser blades have a high hemolysis production in the HM II, whereas in the HVAD, the volute tongue is an additional site for hemolysis production. Thus, in this study, the comparison of the HM II and the HVAD using numerical methods indicated an overall similar tendency to blood trauma in both pumps. However, influences of turbulent shear stresses were not considered and effects of the pivot bearing in the HM II were not taken into account. Further in vitro investigations are required. Copyright © 2015 International Center for Artificial Organs and Transplantation and

  9. [Low grade renal trauma (Part II): diagnostic validity of ultrasonography].

    Science.gov (United States)

    Grill, R; Báca, V; Otcenásek, M; Zátura, F

    2010-04-01

    The aim of the study was to verify whether ultrasonography can be considered a reliable method for the diagnosis of low-grade renal trauma. The group investigated included patients with grade I or grade II blunt renal trauma, as classified by the AAST grading system, in whom ultrasonography alone or in conjunction with computed tomography was used as a primary diagnostic method. B-mode ultrasound with a transabdominal probe working at frequencies of 2.5 to 5.0 MHz was used. Every finding of post-traumatic changes in the renal tissues, i.e., post-contusion hypotonic infiltration of the renal parenchyma or subcapsular haematoma, was included. The results were statistically evaluated by the Chi-square test with the level of significance set at 5%, using Epi Info Version 6 CZ software. The group comprised 112 patients (43 women, 69 men) aged between 17 and 82 years (average, 38 years). It was possible to diagnose grade I or grade II renal injury by ultrasonography in only 60 (54%) of them. The statistical significance of ultrasonography as the only imaging method for the diagnosis of low-grade renal injury was not confirmed (p=0.543) Low-grade renal trauma is a problem from the diagnostic point of view. It usually does not require revision surgery and, if found during repeat surgery for more serious injury of another organ, it usually does not receive attention. Therefore, the macroscopic presentation of grade I and grade II renal injury is poorly understood, nor are their microscopic findings known, because during revision surgery these the traumatised kidneys are not usually removed and their injuries at autopsy on the patients who died of multiple trauma are not recorded either. The results of this study demonstrated that the validity of ultrasonography for the diagnosis of low-grade renal injury is not significant, because this examination can reveal only some of the renal injuries such as perirenal haematoma. An injury to the renal parenchyma is also indicated by

  10. Comparison of Reliability and Validity of the Breast Cancer depression anxiety stress scales (DASS- 21) with the Beck Depression Inventory-(BDI-II) and Hospital Anxiety and Depression Scale (HADS)

    OpenAIRE

    Bener A; Alsulaiman R; Doodson LG; El Ayoubi HR

    2016-01-01

    Background: No study has been conducted to determine the reliability and validity of the Depression, Anxiety and Stress Scale (DASS-21), Hospital Anxiety and Depression [HADS] and Beck Depression Inventory (BDI-II) among the Arab Breast Cancer population. Aim: The aim of this study was to compare the reliability and validity of the Depression, Anxiety, and Stress scale (DASS-21), the Beck Depression Inventory-(BDI-II) and Hospital Anxiety and Depression Scale (HADS) among Breast Cancer women ...

  11. The generation, validation and testing of a coupled 219-group neutron 36-group gamma ray AMPX-II library

    International Nuclear Information System (INIS)

    Panini, G.C.; Siciliano, F.; Lioi, A.

    1987-01-01

    The main characteristics of a P 3 coupled 219-group neutron 36-group gamma-ray library in the AMPX-II Master Interface Format obtained processing ENDF/B-IV data by means of various AMPX-II System modules are presented in this note both for the more reprocessing aspects and features of the generated component files-neutrons, photon and secondary gamma-ray production cross sections. As far as the neutron data are concerned there is the avaibility of 186 data sets regarding most significant fission products. Results of the additional validation of the neutron data pertaining to eighteen benchmark experiments are also given. Some calculational tests on both neutron and coupled data emphasize the important role of the secondary gamma-ray data in nuclear criticality safety calculations

  12. Numerical simulation and experimental validation of aircraft ground deicing model

    Directory of Open Access Journals (Sweden)

    Bin Chen

    2016-05-01

    Full Text Available Aircraft ground deicing plays an important role of guaranteeing the aircraft safety. In practice, most airports generally use as many deicing fluids as possible to remove the ice, which causes the waste of the deicing fluids and the pollution of the environment. Therefore, the model of aircraft ground deicing should be built to establish the foundation for the subsequent research, such as the optimization of the deicing fluid consumption. In this article, the heat balance of the deicing process is depicted, and the dynamic model of the deicing process is provided based on the analysis of the deicing mechanism. In the dynamic model, the surface temperature of the deicing fluids and the ice thickness are regarded as the state parameters, while the fluid flow rate, the initial temperature, and the injection time of the deicing fluids are treated as control parameters. Ignoring the heat exchange between the deicing fluids and the environment, the simplified model is obtained. The rationality of the simplified model is verified by the numerical simulation and the impacts of the flow rate, the initial temperature and the injection time on the deicing process are investigated. To verify the model, the semi-physical experiment system is established, consisting of the low-constant temperature test chamber, the ice simulation system, the deicing fluid heating and spraying system, the simulated wing, the test sensors, and the computer measure and control system. The actual test data verify the validity of the dynamic model and the accuracy of the simulation analysis.

  13. Ultrasonic wave propagation in real-life austenitic V-butt welds: Numerical modeling and validation

    International Nuclear Information System (INIS)

    Hannemann, R.; Marklein, R.; Langenberg, K. J.; Schurig, C.; Koehler, B.; Walte, F.

    2000-01-01

    In nondestructive testing the evaluation of austenitic steel welds with ultrasound is a commonly used method. But, since the wave propagation, scattering, and diffraction effects in such complicated media are hardly understood, computer simulations are very helpful to increase the knowledge of the physical phenomena in such samples. A particularly powerful numerical time domain modeling tool is the well established Elastodynamic Finite Integration Technique (EFIT). Recently, EFIT has been extended to simulate elastic waves in inhomogeneous anisotropic media. In this paper, the step-by-step evaluation of ultrasonic wave propagation in inhomogeneous anisotropic media will be described and the results will be validated against measurements. As a simplified model, a V-butt weld with perpendicular grain structure is investigated. The coincidence between the B Scans of the simulation and the measurement of an idealized V-butt weld is remarkable and even effects predicted by theory and simulation - the appearance of two coupled quasi-SV waves - can be observed. As a next step, an improved and more realistic model of the grain orientation inside the V-butt weld is introduced. This model has been implemented in the EFIT code and has been validated against measurements. For this verification, measured and simulated B-Scans for a real-life V-butt weld have been compared and a significant coincidence has been observed. Furthermore, the main pulses in the B-Scans are interpreted by analyzing the snapshot-movies of the wavefronts

  14. Numerical simulation and experimental validation of the three-dimensional flow field and relative analyte concentration distribution in an atmospheric pressure ion source.

    Science.gov (United States)

    Poehler, Thorsten; Kunte, Robert; Hoenen, Herwart; Jeschke, Peter; Wissdorf, Walter; Brockmann, Klaus J; Benter, Thorsten

    2011-11-01

    In this study, the validation and analysis of steady state numerical simulations of the gas flows within a multi-purpose ion source (MPIS) are presented. The experimental results were obtained with particle image velocimetry (PIV) measurements in a non-scaled MPIS. Two-dimensional time-averaged velocity and turbulent kinetic energy distributions are presented for two dry gas volume flow rates. The numerical results of the validation simulations are in very good agreement with the experimental data. All significant flow features have been correctly predicted within the accuracy of the experiments. For technical reasons, the experiments were conducted at room temperature. Thus, numerical simulations of ionization conditions at two operating points of the MPIS are also presented. It is clearly shown that the dry gas volume flow rate has the most significant impact on the overall flow pattern within the APLI source; far less critical is the (larger) nebulization gas flow. In addition to the approximate solution of Reynolds-Averaged Navier-Stokes equations, a transport equation for the relative analyte concentration has been solved. The results yield information on the three-dimensional analyte distribution within the source. It becomes evident that for ion transport into the MS ion transfer capillary, electromagnetic forces are at least as important as fluid dynamic forces. However, only the fluid dynamics determines the three-dimensional distribution of analyte gas. Thus, local flow phenomena in close proximity to the spray shield are strongly impacting on the ionization efficiency.

  15. Numerical simulation of a hydrocarbon fuelled valveless pulsejet

    Directory of Open Access Journals (Sweden)

    Joseph Kalyan Raj Isac

    2014-06-01

    In the current work, a numerical analysis encompassing feasibility and validation of a valveless pulsejet engine was attempted using CD-adapco׳s STAR-CCM+ CFD package. Due to lack of comprehensive established mathematical laws to govern the working of a pulsejet, most experimental work being performed is done by trial and error. This necessitates in-depth computational studies in order to shed more light on the understanding of valveless pulsejets. The results have been encouraging and in agreement with observed experimental conclusions such as, i changes in dimensions affect the working of a pulsejet, ii presence of a flare enhances the working of a pulsejet, and the close agreement in the frequency of operation. Through continuous study, an optimum initial condition was achieved which enabled the pulsejet to begin operation even before 0.05 s, thereby greatly reducing computational costs if a higher time-scale were to be used.

  16. Three-dimensional deformation response of a NiTi shape memory helical-coil actuator during thermomechanical cycling: experimentally validated numerical model

    Science.gov (United States)

    Dhakal, B.; Nicholson, D. E.; Saleeb, A. F.; Padula, S. A., II; Vaidyanathan, R.

    2016-09-01

    Shape memory alloy (SMA) actuators often operate under a complex state of stress for an extended number of thermomechanical cycles in many aerospace and engineering applications. Hence, it becomes important to account for multi-axial stress states and deformation characteristics (which evolve with thermomechanical cycling) when calibrating any SMA model for implementation in large-scale simulation of actuators. To this end, the present work is focused on the experimental validation of an SMA model calibrated for the transient and cyclic evolutionary behavior of shape memory Ni49.9Ti50.1, for the actuation of axially loaded helical-coil springs. The approach requires both experimental and computational aspects to appropriately assess the thermomechanical response of these multi-dimensional structures. As such, an instrumented and controlled experimental setup was assembled to obtain temperature, torque, degree of twist and extension, while controlling end constraints during heating and cooling of an SMA spring under a constant externally applied axial load. The computational component assesses the capabilities of a general, multi-axial, SMA material-modeling framework, calibrated for Ni49.9Ti50.1 with regard to its usefulness in the simulation of SMA helical-coil spring actuators. Axial extension, being the primary response, was examined on an axially-loaded spring with multiple active coils. Two different conditions of end boundary constraint were investigated in both the numerical simulations as well as the validation experiments: Case (1) where the loading end is restrained against twist (and the resulting torque measured as the secondary response) and Case (2) where the loading end is free to twist (and the degree of twist measured as the secondary response). The present study focuses on the transient and evolutionary response associated with the initial isothermal loading and the subsequent thermal cycles under applied constant axial load. The experimental

  17. Transport Risk Index of Physiologic Stability, version II (TRIPS-II): a simple and practical neonatal illness severity score.

    Science.gov (United States)

    Lee, Shoo K; Aziz, Khalid; Dunn, Michael; Clarke, Maxine; Kovacs, Lajos; Ojah, Cecil; Ye, Xiang Y

    2013-05-01

    Derive and validate a practical assessment of infant illness severity at admission to neonatal intensive care units (NICUs). Prospective study involving 17,075 infants admitted to 15 NICUs in 2006 to 2008. Logistic regression was used to derive a prediction model for mortality comprising four empirically weighted items (temperature, blood pressure, respiratory status, response to noxious stimuli). This Transport Risk Index of Physiologic Stability, version II (TRIPS-II) was then validated for prediction of 7-day and total NICU mortality. TRIPS-II discriminated 7-day (receiver operating curve [ROC] area, 0.90) and total NICU mortality (ROC area, 0.87) from survival. Furthermore, there was a direct association between changes in TRIPS-II at 12 and 24 hours and mortality. There was good calibration across the full range of TRIPS-II scores and the gestational age at birth, and addition of TRIPS-II improved performance of prediction models that use gestational age and baseline population risk variables. TRIPS-II is a validated benchmarking tool for assessing infant illness severity at admission and for up to 24 hours after. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  18. Building and validating a prediction model for paediatric type 1 diabetes risk using next generation targeted sequencing of class II HLA genes.

    Science.gov (United States)

    Zhao, Lue Ping; Carlsson, Annelie; Larsson, Helena Elding; Forsander, Gun; Ivarsson, Sten A; Kockum, Ingrid; Ludvigsson, Johnny; Marcus, Claude; Persson, Martina; Samuelsson, Ulf; Örtqvist, Eva; Pyo, Chul-Woo; Bolouri, Hamid; Zhao, Michael; Nelson, Wyatt C; Geraghty, Daniel E; Lernmark, Åke

    2017-11-01

    It is of interest to predict possible lifetime risk of type 1 diabetes (T1D) in young children for recruiting high-risk subjects into longitudinal studies of effective prevention strategies. Utilizing a case-control study in Sweden, we applied a recently developed next generation targeted sequencing technology to genotype class II genes and applied an object-oriented regression to build and validate a prediction model for T1D. In the training set, estimated risk scores were significantly different between patients and controls (P = 8.12 × 10 -92 ), and the area under the curve (AUC) from the receiver operating characteristic (ROC) analysis was 0.917. Using the validation data set, we validated the result with AUC of 0.886. Combining both training and validation data resulted in a predictive model with AUC of 0.903. Further, we performed a "biological validation" by correlating risk scores with 6 islet autoantibodies, and found that the risk score was significantly correlated with IA-2A (Z-score = 3.628, P < 0.001). When applying this prediction model to the Swedish population, where the lifetime T1D risk ranges from 0.5% to 2%, we anticipate identifying approximately 20 000 high-risk subjects after testing all newborns, and this calculation would identify approximately 80% of all patients expected to develop T1D in their lifetime. Through both empirical and biological validation, we have established a prediction model for estimating lifetime T1D risk, using class II HLA. This prediction model should prove useful for future investigations to identify high-risk subjects for prevention research in high-risk populations. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Numerical modelling and experimental validation of hydrodynamics of an emulsion in an extraction column

    International Nuclear Information System (INIS)

    Paisant, Jean-Francois

    2014-01-01

    Industrial reprocessing of spent fuel is based on chemical separation processes by liquid-liquid extraction into pulsed column. The current context of sustainable development and acceptance of nuclear energy drive the industry to improve the efficiency of this process. Pulsed column efficiency is bound to the amount of available exchange surface, which depends on the geometrical parameters of the column and the operating conditions. A better design would improve the efficiency. In this context, the work presented in this manuscript revolves around physical and numerical modelling of the hydrodynamics of the emulsion coupled with the evolution of the interfacial area, as well as an experimental characterization of the quantities which describe the emulsion. The emulsion is modelled based on the work of D. LHUILLIER. It is an Eulerian approach which describes each phase as a continuous medium as well as the interface which is thought as a third phase moving continuously in the flow field. This thesis contributes to describe of the hydrodynamics of dispersed and continuous phases, in order to determine the slip velocity needed for the design. The written transport equation for interfacial area is based on the thesis of T. RANDRIAMANANTENA. The simulation of this physical model was performed using the method of finite elements (FEM) and implementation was carried out under the software CAST3M. The numerical simulation have shown their abilities to correctly reproduce the expected physical behaviour, in particular, they allow to obtain the slip velocity which is essential to the scale up. In a first experimental approach, the single phase flow has been studied in a pulsed column using particle image velocimetry (PIV), for different amplitude and frequency parameters. A method of synchronization between the recording and the pulsation cycle was used in order to achieve this study. The average behavior, for different regimes of pulsation, has been studied by this way. In

  20. Numerical modelling of two-layer shallow water flow in microtidal salt-wedge estuaries: Finite volume solver and field validation

    Directory of Open Access Journals (Sweden)

    Krvavica Nino

    2017-03-01

    Full Text Available A finite volume model for two-layer shallow water flow in microtidal salt-wedge estuaries is presented in this work. The governing equations are a coupled system of shallow water equations with source terms accounting for irregular channel geometry and shear stress at the bed and interface between the layers. To solve this system we applied the Q-scheme of Roe with suitable treatment of source terms, coupling terms, and wet-dry fronts. The proposed numerical model is explicit in time, shock-capturing and it satisfies the extended conservation property for water at rest. The model was validated by comparing the steady-state solutions against a known arrested salt-wedge model and by comparing both steady-state and time-dependant solutions against field observations in Rječina Estuary in Croatia. When the interfacial friction factor λi was chosen correctly, the agreement between numerical results and field observations was satisfactory.

  1. Experimental Studies of Radiation and Plasma Effects behind the Incident Shock in LENS XX, and the Unsteady Flow Characteristics associated with Free Flight Shroud and Stage Separation and Mode Switching in LENS II

    Science.gov (United States)

    2010-04-01

    Characteristics associated with “Free Flight” Shroud and Stage Separation and Mode Switching in LENS II Michael S. Holden, PhD CUBRC , Inc. 4455 Genesee...ADDRESS(ES) CUBRC , Inc. 4455 Genesee Street Buffalo, NY 14225, USA 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND...switching and inlet-starting validationValidation to CFD community ( CUBRC /UM) Figure 32: Numerical Simulation of the Unsteady Flow Dynamics during

  2. A Qualitative Study on the Content Validity of the Social Capital Scales in the Copenhagen Psychosocial Questionnaire (COPSOQ II

    Directory of Open Access Journals (Sweden)

    Hanne Berthelsen

    2016-06-01

    Full Text Available The Copenhagen Psychosocial Questionnaire (COPSOQ II includes scales for measuring 'workplace social capital'. The overall aim of this article is to evaluate the content validity of the following scales: horizontal trust, vertical trust and justice based on data from cognitive interviews using a think-aloud procedure. Informants were selected to achieve variation in gender, age, region of residence, and occupation. A predetermined coding scheme was used to identify: 1 Perspective (reflection on behalf of oneself only or abstraction to a broader perspective, 2 Use of response options, 3 Contexts challenging the process of answering, and 4 Overall reflections included in the retrieval and judgement processes leading to an answer for each item. The results showed that 1 the intended shift from individual to a broader perspective worked for eight out of eleven items. 2 The response option balancing in the middle covered different meanings. Retrieval of information needed to answer constituted a problem in four out of eleven items. 3 Three contextually challenging situations were identified. 4 For most items the reflections corresponded well with the intention of the scales, though the items asking about withheld information caused more problems in answering and lower content validity compared to the other items of the scales. In general, the findings supported the content validity of the COPSOQ II measurement of workplace social capital as a group construct. The study opens for new insight into how concepts and questions are understood and answered among people coming from different occupations and organizational settings.

  3. Validity and reproducibility of HOMA-IR, 1/HOMA-IR, QUICKI and McAuley's indices in patients with hypertension and type II diabetes.

    Science.gov (United States)

    Sarafidis, P A; Lasaridis, A N; Nilsson, P M; Pikilidou, M I; Stafilas, P C; Kanaki, A; Kazakos, K; Yovos, J; Bakris, G L

    2007-09-01

    The aim of this study was to evaluate the validity and reliability of homeostasis model assessment-insulin resistance (HOMA-IR) index, its reciprocal (1/HOMA-IR), quantitative insulin sensitivity check index (QUICKI) and McAuley's index in hypertensive diabetic patients. In 78 patients with hypertension and type II diabetes glucose, insulin and triglyceride levels were determined after a 12-h fast to calculate these indices, and insulin sensitivity (IS) was measured with the hyperinsulinemic euglycemic clamp technique. Two weeks later, subjects had again their glucose, insulin and triglycerides measured. Simple and multiple linear regression analysis were applied to assess the validity of these indices compared to clamp IS and coefficients of variation between the two visits were estimated to assess their reproducibility. HOMA-IR index was strongly and inversely correlated with the basic IS clamp index, the M-value (r=-0.572, PHOMA-IR and QUICKI indices were positively correlated with the M-value (r=0.342, PHOMA-IR was the best fit of clamp-derived IS. Coefficients of variation between the two visits were 23.5% for HOMA-IR, 19.2% for 1/HOMA-IR, 7.8% for QUICKI and 15.1% for McAuley's index. In conclusion, HOMA-IR, 1/HOMA-IR and QUICKI are valid estimates of clamp-derived IS in patients with hypertension and type II diabetes, whereas the validity of McAuley's index needs further evaluation. QUICKI displayed better reproducibility than the other indices.

  4. Closed-form approximation and numerical validation of the influence of van der Waals force on electrostatic cantilevers at nano-scale separations

    Energy Technology Data Exchange (ETDEWEB)

    Ramezani, Asghar [School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Alasty, Aria [Center of Excellence in Design, Robotics, and Automation (CEDRA), School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Akbari, Javad [Center of Excellence in Design, Robotics, and Automation (CEDRA), School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2008-01-09

    In this paper the two-point boundary value problem (BVP) of the cantilever deflection at nano-scale separations subjected to van der Waals and electrostatic forces is investigated using analytical and numerical methods to obtain the instability point of the beam. In the analytical treatment of the BVP, the nonlinear differential equation of the model is transformed into the integral form by using the Green's function of the cantilever beam. Then, closed-form solutions are obtained by assuming an appropriate shape function for the beam deflection to evaluate the integrals. In the numerical method, the BVP is solved with the MATLAB BVP solver, which implements a collocation method for obtaining the solution of the BVP. The large deformation theory is applied in numerical simulations to study the effect of the finite kinematics on the pull-in parameters of cantilevers. The centerline of the beam under the effect of electrostatic and van der Waals forces at small deflections and at the point of instability is obtained numerically. In computing the centerline of the beam, the axial displacement due to the transverse deformation of the beam is taken into account, using the inextensibility condition. The pull-in parameters of the beam are computed analytically and numerically under the effects of electrostatic and/or van der Waals forces. The detachment length and the minimum initial gap of freestanding cantilevers, which are the basic design parameters, are determined. The results of the analytical study are compared with the numerical solutions of the BVP. The proposed methods are validated by the results published in the literature.

  5. Numerical and adaptive grid methods for ideal magnetohydrodynamics

    Science.gov (United States)

    Loring, Burlen

    2008-02-01

    In this thesis numerical finite difference methods for ideal magnetohydrodynamics(MHD) are investigated. A review of the relevant physics, essential for interpreting the results of numerical solutions and constructing validation cases, is presented. This review includes a discusion of the propagation of small amplitude waves in the MHD system as well as a thorough discussion of MHD shocks, contacts and rarefactions and how they can be piece together to obtain a solutions to the MHD Riemann problem. Numerical issues relevant to the MHD system such as: the loss of nonlinear numerical stability in the presence of discontinuous solutions, the introduction of spurious forces due to the growth of the divergence of the magnetic flux density, the loss of pressure positivity, and the effects of non-conservative numerical methods are discussed, along with the practical approaches which can be used to remedy or minimize the negative consequences of each. The use of block structured adaptive mesh refinement is investigated in the context of a divergence free MHD code. A new method for conserving magnetic flux across AMR grid interfaces is developed and a detailed discussion of our implementation of this method using the CHOMBO AMR framework is given. A preliminary validation of the new method for conserving magnetic flux density across AMR grid interfaces illustrates that the method works. Finally a number of code validation cases are examined spurring a discussion of the strengths and weaknesses of the numerics employed.

  6. Validation of KENOREST with LWR-PROTEUS phase II samples

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, M.; Kilger, R.; Pautz, A.; Zwermann, W. [GRS, Garching (Germany); Grimm, P.; Vasiliev, A.; Ferroukhi, H. [Paul Scherrer Institut, Villigen (Switzerland)

    2012-11-01

    In order to broaden the validation basis of the reactivity and nuclide inventory code KENOREST two samples of the LWR-PROTEUS phase II program have been calculated and compared to the experimental results. In general most nuclides are reproduced very well and agree within about ten percent with the experiment. Some already known problems, the overprediction of metallic fission products and the underprediction of the higher curium isotopes, have been confirmed. One of the largest uncertainties in the calculation was the burnup of the samples due to differences between a core simulation of the fuel vendor and the burnup determined from the measured values of the burnup indicator Nd-148. Two different models taking into account the environment for a peripheral fuel rod have been studied. The more detailed model included the three direct neighbor fuel assemblies depleted along with the fuel rod of interest. The influence on the results has been found to be very small. Compared to the uncertainties from the burnup, this effect can be considered negligible. The reason for the low influence was basically that the spectrum did not get considerably harder with increasing burnup beyond about 20GWd/tHM. Since the sample reached burnups far beyond that value, an effect could not be seen. In the near future an update of the used libraries is planned and it will be very interesting to study the effect on the results, especially for Curium. (orig.)

  7. Thermal loads on the TJ-II Vacuum Vessel under Neutral Beam Injection

    International Nuclear Information System (INIS)

    Guasp, J.; Fuentes, C.; Liniers, M.

    1996-01-01

    In this study a numerical analysis of power loads on the complex 3D structure of the TJ-II Vacuum Vessel, moderated with reasonable accuracy, under NBI, is done. To do this it has been necessary to modify deeply the DENSB code for power loads in order to include the TJ-II VV wall parts as targets and as beam scrapers, allowing the possibility of self-shadowing. After a short description of the primitive version of the DENSB code (paragraph 2) and of the visualisation code MOVIE(paragraph 3), the DENSB upgrading are described (paragraphs 4,5) and finally the results are presented (paragraph 6). These code modifications and the improving on the visualization tools provide more realistic load evaluations, both with and without plasma, validating former results and showing clearly the VV zones that will need new protections. (Author)

  8. DECOVALEX II PROJECT. Technical report - Task 2A and 2B. (Revised edition)

    International Nuclear Information System (INIS)

    Lanru Jing; Stephansson, Ove

    1998-08-01

    DECOVALEX II project started in November 1995 as a continuation of the DECOVALEX I project, which was completed at the end of 1994. The project was initiated by recognizing the fact that a proper evaluation of the current capacities of numerical modelling of the coupled T-H-M processes in fractured media is needed not only for small scale, well controlled laboratory test cases such as those studied in DECOVALEX 1, but also for less characterised, more complex and realistic in-situ experiments. This will contribute to validation and confidence building in the current mathematical models, numerical methods and computer codes. Four tasks were defined in the DECOVALEX II project: TASK 1 - numerical study of the RCF3 pumping test and shaft excavation at Sellafield by Nirex, UK; TASK 2 - numerical study of the in-situ T-H-M experiments at Kamaishi Mine by PNC, Japan; TASK 3 - review of current state-of-the-art of rock joint research and TASK 4 - report on the coupled T-H-M issues related to repository design and performance assessment. This report is one of the technical reports of the DECOVALEX II project, describing the work performed for TASK 2A and 2B - the predictions and model calibration for the hydro-mechanical effect of the excavation of the test pit for the in-situ T-H-M experiments at Kamaishi Mine by PNC, Japan. Presented in this report are the descriptions of the project, definition of Task 2, and approaches, methods and results of numerical modelling work carried out by the research teams. The report is a summary of the research reports written by the research teams and the discussions held during project workshops and task force group meetings. The opinions and conclusions in this report, however, reflect only ideas of the authors, not necessarily a collective representation of the funding organisations of the project

  9. Numerical Analysis of Dusty-Gas Flows

    Science.gov (United States)

    Saito, T.

    2002-02-01

    This paper presents the development of a numerical code for simulating unsteady dusty-gas flows including shock and rarefaction waves. The numerical results obtained for a shock tube problem are used for validating the accuracy and performance of the code. The code is then extended for simulating two-dimensional problems. Since the interactions between the gas and particle phases are calculated with the operator splitting technique, we can choose numerical schemes independently for the different phases. A semi-analytical method is developed for the dust phase, while the TVD scheme of Harten and Yee is chosen for the gas phase. Throughout this study, computations are carried out on SGI Origin2000, a parallel computer with multiple of RISC based processors. The efficient use of the parallel computer system is an important issue and the code implementation on Origin2000 is also described. Flow profiles of both the gas and solid particles behind the steady shock wave are calculated by integrating the steady conservation equations. The good agreement between the pseudo-stationary solutions and those from the current numerical code validates the numerical approach and the actual coding. The pseudo-stationary shock profiles can also be used as initial conditions of unsteady multidimensional simulations.

  10. Redundant sensor validation by using fuzzy logic

    International Nuclear Information System (INIS)

    Holbert, K.E.; Heger, A.S.; Alang-Rashid, N.K.

    1994-01-01

    This research is motivated by the need to relax the strict boundary of numeric-based signal validation. To this end, the use of fuzzy logic for redundant sensor validation is introduced. Since signal validation employs both numbers and qualitative statements, fuzzy logic provides a pathway for transforming human abstractions into the numerical domain and thus coupling both sources of information. With this transformation, linguistically expressed analysis principles can be coded into a classification rule-base for signal failure detection and identification

  11. Paleoclimate validation of a numerical climate model

    International Nuclear Information System (INIS)

    Schelling, F.J.; Church, H.W.; Zak, B.D.; Thompson, S.L.

    1994-01-01

    An analysis planned to validate regional climate model results for a past climate state at Yucca Mountain, Nevada, against paleoclimate evidence for the period is described. This analysis, which will use the GENESIS model of global climate nested with the RegCM2 regional climate model, is part of a larger study for DOE's Yucca Mountain Site Characterization Project that is evaluating the impacts of long term future climate change on performance of the potential high level nuclear waste repository at Yucca Mountain. The planned analysis and anticipated results are presented

  12. Numerical analysis and experimental validation of heat transfer characteristic for flat-plate solar air collector

    International Nuclear Information System (INIS)

    Hung, Tzu-Chen; Huang, Tsung-Jie; Lee, Duen-Sheng; Lin, Chih-Hung; Pei, Bau-Shei; Li, Zeng-Yao

    2017-01-01

    Highlights: • Various types of solar air collectors are discussed. • CFD has been used to validate the characteristics of heat transfer. • Solar Ray Tracing has been successfully used for thermal radiation flux. - Abstract: This study combines both concepts of solar ventilation technology and solar air collector. This is a quite innovative and potential facility to effectively use thermal energy and reduce the accumulation of heat in the indoor space simultaneously. The purpose of this study is to create a prototype and implement the experiments. Computational fluid dynamics (CFD) approach is employed to validate the characteristics of the flow and heat transfer. For the accuracy of numerical predictions, the method of Solar Ray Tracing was used for thermal radiation flux as boundary condition on the wall. The local heat transfer correlation was investigated to predict surrounding wind speed upon device cover. Three sorts of glasses and several aspect ratios of flow channels have been compared to conclude the optimal configuration. In addition, four important factors, such as the stagnant layer thickness, emissivity on the illustrated surface, mass flow rate and the height of the device, are also considered and discussed in detail. The result showed that the optimal design is dominated by the combination of an aspect ratio of 50 mm:10 mm, and appropriate mass flow rate to the height of the device. The present work on thermal energy collection can assist us in designing a powerful solar air collector in some potential applications.

  13. Numerical Simulation of cardiovascular deconditioning in different reduced gravity exposure scenarios. Parabolic flight validation.

    Science.gov (United States)

    Perez-Poch, Antoni; Gonzalez, Daniel

    Numerical models and simulations are an emerging area of research in human physiology. As complex numerical models are available, along with high-speed computing technologies, it is possible to produce more accurate predictions of the long-term effects of reduced gravity on the human body. NELME (Numerical Emulation of Long-Term Microgravity Effects) has been developed as an electrical-like control system model of the pysiological changes that may arise when gravity changes are applied to the cardiovascular system. Validation of the model has been carried out in parabolic flights at UPC BarcelonaTech Platform. A number of parabolas of up to 8 seconds were performed at Sabadell Airport with an aerobatic single-engine CAP10B plane capable of performing such maneuvres. Heart rate, arterial pressure, and gravity data was collected and compared to the output obtained from the model in order to optimize its parameters. The model is then able to perform simulations for long-term periods of exposure to microgravity, and then the risk for a major malfunction is evaluated. Vascular resistance is known to be impaired during a long-term mission. This effects are not fully understood, and the model is capable of providing a continuous thread of simulated scenarios, while varying gravity in a nearly-continuous way. Aerobic exercise as countermeasure has been simulated as a periodic perturbation into the simulated physiological system. Results are discussed in terms of the validaty and reliability of the outcomes from the model, that have been found compatible with the available data in the literature. Different gender sensitivities to microgravity exposure are discussed. Also thermal stress along with exercise, as it happens in the case of Extravehicular activity is smulated. Results show that vascular resistance is significantly impared (p<0,05) at gravity levels less than 0,4g, when exposed for a period of time longer than 16 days. This degree of impairement is comparable with

  14. Multiple-step fault estimation for interval type-II T-S fuzzy system of hypersonic vehicle with time-varying elevator faults

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2017-03-01

    Full Text Available This article proposes a multiple-step fault estimation algorithm for hypersonic flight vehicles that uses an interval type-II Takagi–Sugeno fuzzy model. An interval type-II Takagi–Sugeno fuzzy model is developed to approximate the nonlinear dynamic system and handle the parameter uncertainties of hypersonic firstly. Then, a multiple-step time-varying additive fault estimation algorithm is designed to estimate time-varying additive elevator fault of hypersonic flight vehicles. Finally, the simulation is conducted in both aspects of modeling and fault estimation; the validity and availability of such method are verified by a series of the comparison of numerical simulation results.

  15. Validation of a numerical release model (REPCOM) for the Finnish reactor waste disposal systems: Pt.1

    International Nuclear Information System (INIS)

    Nykyri, Mikko

    1987-05-01

    The aim of the work is to model experimentally the inner structures and materials of two reactor waste repositories and to use the results for the validation work of a numerical near field release model, REPCOM. The experimental modelling of the multibarrier systems is conducted on a laboratory scale by using the same principal materials as are employed in the Finnish reactor waste disposal concepts. The migration of radionuclides is studied in two or more consecutive material layers. The laboratory arrangements include the following test materials: bituminized resin, cemented resin, concrete, crushed rock, and water. The materials correspond to the local materials in the planned disposal systems. Cs-137, Co-60, Sr-85, and Sr-90 are used as tracers, with which the resin, water, and crushed rock are labeled depending on the specimen type. The basic specimen geometries are cylindrical and cubic. In the cylindrical geometry the test materials were placed into PVC-tubes. The corresponding numerical model is one-dimensional. In the cubic geometry the materials were placed inside each other. The boundaries form cubes, and the numerical model is three-dimensional. Altogether 12 test system types were produced. The gamma active nuclides in the cylindrical samples were measured nondestructively with a scanner in order to determine the activity profiles in the specimens. The gamma active nuclides in the cubic samples and the beta emeitting Sr-90 in separate samples will be measured after splitting the samples. One to five activity profiles were determined for each cylindrical gamma-active sample. There are already clear diffusion profiles to be had for strontium in crushed rock, and for cesium in crushed rock and in concrete. Cobalt indicated no diffusion. No activity profiles were measured for the cubic samples or for the beta active, Sr-90-doped samples

  16. A numerical study of non-linear crack tip parameters

    Directory of Open Access Journals (Sweden)

    F.V. Antunes

    2015-07-01

    Full Text Available Crack closure concept has been widely used to explain different issues of fatigue crack propagation. However, different authors have questioned the relevance of crack closure and have proposed alternative concepts. The main objective here is to check the effectiveness of crack closure concept by linking the contact of crack flanks with non-linear crack tip parameters. Accordingly, 3D-FE numerical models with and without contact were developed for a wide range of loading scenarios and the crack tip parameters usually linked to fatigue crack growth, namely range of cyclic plastic strain, crack tip opening displacement, size of reversed plastic zone and total plastic dissipation per cycle, were investigated. It was demonstrated that: i LEFM concepts are applicable to the problem under study; ii the crack closure phenomenon has a great influence on crack tip parameters decreasing their values; iii the Keff concept is able to explain the variations of crack tip parameters produced by the contact of crack flanks; iv the analysis of remote compliance is the best numerical parameter to quantify the crack opening level; v without contact there is no effect of stress ratio on crack tip parameters. Therefore it is proved that the crack closure concept is valid.

  17. Numerical simulation of a semi-indirect evaporative cooler

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R. Herrero [Departamento de Ingenieria Termica y de Fluidos, Universidad Politecnica de Cartagena, C/Dr. Fleming, s/n (Campus Muralla), 30202 Cartagena, Murcia (Spain)

    2009-11-15

    This paper presents the experimental study and numerical simulation of a semi-indirect evaporative cooler (SIEC), which acts as an energy recovery device in air conditioning systems. The numerical simulation was conducted by applying the CFD software FLUENT implementing a UDF to model evaporation/condensation. The numerical model was validated by comparing the simulation results with experimental data. Experimental data and numerical results agree for the lower relative humidity series but not for higher relative humidity values. (author)

  18. TJ-II Library Manual (Version 2)

    International Nuclear Information System (INIS)

    Tribaldos, V.; Milligen, B. Ph. van; Lopez-Fraguas, A.

    2001-01-01

    This is a manual of use of the TJ2 Numerical Library that has been developed for making numerical computations of different TJ-II configurations. This manual is a new version of the earlier manual CIEMAT report 806. (Author)

  19. Development and validation of a numerical model of the swine head subjected to open-field blasts

    Science.gov (United States)

    Kalra, A.; Zhu, F.; Feng, K.; Saif, T.; Kallakuri, S.; Jin, X.; Yang, K.; King, A.

    2017-11-01

    A finite element model of the head of a 55-kg Yucatan pig was developed to calculate the incident pressure and corresponding intracranial pressure due to the explosion of 8 lb (3.63 kg) of C4 at three different distances. The results from the model were validated by comparing findings with experimentally obtained data from five pigs at three different blast overpressure levels: low (150 kPa), medium (275 kPa), and high (400 kPa). The peak values of intracranial pressures from numerical model at different locations of the brain such as the frontal, central, left temporal, right temporal, parietal, and occipital regions were compared with experimental values. The model was able to predict the peak pressure with reasonable percentage differences. The differences for peak incident and intracranial pressure values between the simulation results and the experimental values were found to be less than 2.2 and 29.3%, respectively, at all locations other than the frontal region. Additionally, a series of parametric studies shows that the intracranial pressure was very sensitive to sensor locations, the presence of air bubbles, and reflections experienced during the experiments. Further efforts will be undertaken to correlate the different biomechanical response parameters, such as the intracranial pressure gradient, stress, and strain results obtained from the validated model with injured brain locations once the histology data become available.

  20. Revisiting Formability and Failure of AISI304 Sheets in SPIF: Experimental Approach and Numerical Validation

    Directory of Open Access Journals (Sweden)

    Gabriel Centeno

    2017-11-01

    Full Text Available Single Point Incremental Forming (SPIF is a flexible and economic manufacturing process with a strong potential for manufacturing small and medium batches of highly customized parts. Formability and failure in SPIF have been intensively discussed in recent years, especially because this process allows stable plastic deformation well above the conventional forming limits, as this enhanced formability is only achievable within a certain range of process parameters depending on the material type. This paper analyzes formability and failure of AISI304-H111 sheets deformed by SPIF compared to conventional testing conditions (including Nakazima and stretch-bending tests. With this purpose, experimental tests in SPIF and stretch-bending were carried out and a numerical model of SPIF is performed. The results allow the authors to establish the following contributions regarding SPIF: (i the setting of the limits of the formability enhancement when small tool diameters are used, (ii the evolution of the crack when failure is attained and (iii the determination of the conditions upon which necking is suppressed, leading directly to ductile fracture in SPIF.

  1. Experimental validation of a numerical 3-D finite model applied to wind turbines design under vibration constraints: TREVISE platform

    Science.gov (United States)

    Sellami, Takwa; Jelassi, Sana; Darcherif, Abdel Moumen; Berriri, Hanen; Mimouni, Med Faouzi

    2018-04-01

    With the advancement of wind turbines towards complex structures, the requirement of trusty structural models has become more apparent. Hence, the vibration characteristics of the wind turbine components, like the blades and the tower, have to be extracted under vibration constraints. Although extracting the modal properties of blades is a simple task, calculating precise modal data for the whole wind turbine coupled to its tower/foundation is still a perplexing task. In this framework, this paper focuses on the investigation of the structural modeling approach of modern commercial micro-turbines. Thus, the structural model a complex designed wind turbine, which is Rutland 504, is established based on both experimental and numerical methods. A three-dimensional (3-D) numerical model of the structure was set up based on the finite volume method (FVM) using the academic finite element analysis software ANSYS. To validate the created model, experimental vibration tests were carried out using the vibration test system of TREVISE platform at ECAM-EPMI. The tests were based on the experimental modal analysis (EMA) technique, which is one of the most efficient techniques for identifying structures parameters. Indeed, the poles and residues of the frequency response functions (FRF), between input and output spectra, were calculated to extract the mode shapes and the natural frequencies of the structure. Based on the obtained modal parameters, the numerical designed model was up-dated.

  2. Large scale experiments as a tool for numerical model development

    DEFF Research Database (Denmark)

    Kirkegaard, Jens; Hansen, Erik Asp; Fuchs, Jesper

    2003-01-01

    Experimental modelling is an important tool for study of hydrodynamic phenomena. The applicability of experiments can be expanded by the use of numerical models and experiments are important for documentation of the validity of numerical tools. In other cases numerical tools can be applied...

  3. Role of dust in H II regions

    International Nuclear Information System (INIS)

    Sarazin, C.L.

    1975-01-01

    The purpose of this dissertation is to determine quantitatively the effects of U.V. absorbing dust on H II regions, and compare these effects with observations. Many observations indicate that dust grains are present within H II regions. An analytic theory is presented which describes all three of the effects of dust in H II regions. Although this model is relatively crude, it is useful in determining the approximate size of the modifications due to dust. In order to explore this problem more carefully, detailed numerical models of H II regions with dust were constructed. The ionization and thermal structure of these model H II regions is discussed. The observational consequences of the presence of dust are explored; the optical line intensities, radio continuum and line fluxes, and infrared emission of model H II regions with dust are given. These numerical models are compared with observations of diffuse nebulae. The optical line ratios are compared to several nearby bright H II regions, and it is found that the dust models may explain several anomalies in their spectrum

  4. Dual Rotating Rake Measurements of Higher-Order Duct Modes: Validation Using Experimental and Numerical Data

    Science.gov (United States)

    Dahl, Milo D.; Hixon, Duane R.; Sutliff, Daniel L.

    2018-01-01

    A rotating rake mode measurement system was designed to measure acoustic duct modes generated by a fan stage. After analysis of the measured data, the mode coefficient amplitudes and phases were quantified. Early studies using this system found that mode power levels computed from rotating rake measured data would agree with the far-field power levels. However, this agreement required that the sound from the noise sources within the duct propagated outward from the duct exit without reflection and previous studies suggested conditions could exist where significant reflections could occur. This paper shows that mounting a second rake to the rotating system, with an offset in both the axial and the azimuthal directions, measures the data necessary to determine the modes propagating in both directions within a duct. The rotating rake data analysis technique was extended to include the data measured by the second rake. The analysis resulted in a set of circumferential mode coefficients at each of the two rake microphone locations. Radial basis functions were then least-squares fit to this data to obtain the radial mode coefficients for the modes propagating in both directions within the duct while accounting for the presence of evanescent modes. The validation of the dual-rotating-rake measurements was conducted using data from a combination of experiments and numerical calculations to compute reflection coefficients and other mode coefficient ratios. Compared to results from analytical and numerical computations, the results from dual-rotating-rake measured data followed the expected trends when frequency, mode number, and duct termination geometry were changed.

  5. Numerical simulations of concrete flow: A benchmark comparison

    DEFF Research Database (Denmark)

    Roussel, Nicolas; Gram, Annika; Cremonesi, Massimiliano

    2016-01-01

    First, we define in this paper two benchmark flows readily usable by anyone calibrating a numerical tool for concrete flow prediction. Such benchmark flows shall allow anyone to check the validity of their computational tools no matter the numerical methods and parameters they choose. Second, we ...

  6. Diet History Questionnaire II FAQs | EGRP/DCCPS/NCI/NIH

    Science.gov (United States)

    Answers to general questions about the Diet History Questionnaire II (DHQ II), as well as those related to DHQ II administration, validation, scanning, nutrient estimates, calculations, DHQ II modification, data quality, and more.

  7. Validated Competing Event Model for the Stage I-II Endometrial Cancer Population

    Energy Technology Data Exchange (ETDEWEB)

    Carmona, Ruben; Gulaya, Sachin; Murphy, James D. [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States); Rose, Brent S. [Harvard Radiation Oncology Program, Harvard Medical School, Boston, Massachusetts (United States); Wu, John; Noticewala, Sonal [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States); McHale, Michael T. [Department of Reproductive Medicine, Division of Gynecologic Oncology, University of California San Diego, La Jolla, California (United States); Yashar, Catheryn M. [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States); Vaida, Florin [Department of Family and Preventive Medicine, Biostatistics and Bioinformatics, University of California San Diego Medical Center, San Diego, California (United States); Mell, Loren K., E-mail: lmell@ucsd.edu [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States)

    2014-07-15

    Purpose/Objectives(s): Early-stage endometrial cancer patients are at higher risk of noncancer mortality than of cancer mortality. Competing event models incorporating comorbidity could help identify women most likely to benefit from treatment intensification. Methods and Materials: 67,397 women with stage I-II endometrioid adenocarcinoma after total hysterectomy diagnosed from 1988 to 2009 were identified in Surveillance, Epidemiology, and End Results (SEER) and linked SEER-Medicare databases. Using demographic and clinical information, including comorbidity, we sought to develop and validate a risk score to predict the incidence of competing mortality. Results: In the validation cohort, increasing competing mortality risk score was associated with increased risk of noncancer mortality (subdistribution hazard ratio [SDHR], 1.92; 95% confidence interval [CI], 1.60-2.30) and decreased risk of endometrial cancer mortality (SDHR, 0.61; 95% CI, 0.55-0.78). Controlling for other variables, Charlson Comorbidity Index (CCI) = 1 (SDHR, 1.62; 95% CI, 1.45-1.82) and CCI >1 (SDHR, 3.31; 95% CI, 2.74-4.01) were associated with increased risk of noncancer mortality. The 10-year cumulative incidences of competing mortality within low-, medium-, and high-risk strata were 27.3% (95% CI, 25.2%-29.4%), 34.6% (95% CI, 32.5%-36.7%), and 50.3% (95% CI, 48.2%-52.6%), respectively. With increasing competing mortality risk score, we observed a significant decline in omega (ω), indicating a diminishing likelihood of benefit from treatment intensification. Conclusion: Comorbidity and other factors influence the risk of competing mortality among patients with early-stage endometrial cancer. Competing event models could improve our ability to identify patients likely to benefit from treatment intensification.

  8. Validated Competing Event Model for the Stage I-II Endometrial Cancer Population

    International Nuclear Information System (INIS)

    Carmona, Ruben; Gulaya, Sachin; Murphy, James D.; Rose, Brent S.; Wu, John; Noticewala, Sonal; McHale, Michael T.; Yashar, Catheryn M.; Vaida, Florin; Mell, Loren K.

    2014-01-01

    Purpose/Objectives(s): Early-stage endometrial cancer patients are at higher risk of noncancer mortality than of cancer mortality. Competing event models incorporating comorbidity could help identify women most likely to benefit from treatment intensification. Methods and Materials: 67,397 women with stage I-II endometrioid adenocarcinoma after total hysterectomy diagnosed from 1988 to 2009 were identified in Surveillance, Epidemiology, and End Results (SEER) and linked SEER-Medicare databases. Using demographic and clinical information, including comorbidity, we sought to develop and validate a risk score to predict the incidence of competing mortality. Results: In the validation cohort, increasing competing mortality risk score was associated with increased risk of noncancer mortality (subdistribution hazard ratio [SDHR], 1.92; 95% confidence interval [CI], 1.60-2.30) and decreased risk of endometrial cancer mortality (SDHR, 0.61; 95% CI, 0.55-0.78). Controlling for other variables, Charlson Comorbidity Index (CCI) = 1 (SDHR, 1.62; 95% CI, 1.45-1.82) and CCI >1 (SDHR, 3.31; 95% CI, 2.74-4.01) were associated with increased risk of noncancer mortality. The 10-year cumulative incidences of competing mortality within low-, medium-, and high-risk strata were 27.3% (95% CI, 25.2%-29.4%), 34.6% (95% CI, 32.5%-36.7%), and 50.3% (95% CI, 48.2%-52.6%), respectively. With increasing competing mortality risk score, we observed a significant decline in omega (ω), indicating a diminishing likelihood of benefit from treatment intensification. Conclusion: Comorbidity and other factors influence the risk of competing mortality among patients with early-stage endometrial cancer. Competing event models could improve our ability to identify patients likely to benefit from treatment intensification

  9. Standardization of radioimmunoassay for dosage of angiotensin II (ang-II) and its methodological evaluation; Padronizacao do radioimunoensaio para dosagem de angiotensina II (ang-II) e sua validacao metodologica

    Energy Technology Data Exchange (ETDEWEB)

    Mantovani, Milene; Mecawi, Andre S.; Elias, Lucila L.K.; Antunes-Rodrigues, Jose, E-mail: llelias@fmrp.usp.b, E-mail: antunes@fmrp.usp.b [Universidade de Sao Paulo (FMRP/USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina

    2011-10-26

    This paper standardizes the radioimmunoassay (RIA) for dosage of ANG-II of rats, after experimental conditions of saline hypertonic (2%), treating with losartan (antagonist of ANG-II), hydric privation, and acute hemorrhage (25%). After that, the plasmatic ANG-II was extracted for dosage of RIA, whose sensitiveness was of 1.95 pg/m L, with detection of 1.95 to 1000 pg/m L. The treatment with saline reduced the concentration of ANG-II, while the administration pf losartan, the hydric administration and the hemorrhage increase the values, related to the control group. Those results indicate variations in the plasmatic concentration of ANG-II according to the experimental protocols, validating the method for evaluation of activity renin-angiotensin

  10. Prospective phase II trial of regional hyperthermia and whole liver irradiation for numerous chemorefratory liver metastases from colerectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jeong Il; Park, Hee Chul; Choi, Doo Ho [Dept. of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); and others

    2016-03-15

    A prospective phase II trial was conducted to evaluate the effectiveness and toxicity of regional hyperthermia and whole liver irradiation (WLI) for numerous chemorefractory liver metastases from colorectal cancer. Enrolled patients had numerous chemorefractory hepatic metastases from colorectal cancer. Five sessions of hyperthermia and seven fractions of 3-gray WLI were planned. Health-related quality of life (HRQoL) was determined using the Korean version of the European Organization for Research and Treatment of Cancer quality of life questionnaire C-30 and the Functional Assessment of Cancer Therapy-Hepatobiliary version 4.0. Objective and pain response was evaluated. A total of 12 patients consented to the study and the 10 who received WLI and hyperthermia were analyzed. WLI was completed as planned in nine patients and hyperthermia in eight. Pain response was partial in four patients and stable in four. Partial objective response was achieved in three patients (30.0%) and stable disease was seen in four patients at the 1-month follow-up. One patient died 1 month after treatment because of respiratory failure related to pleural metastasis progression. Other grade III or higher toxicities were detected in three patients; however, all severe toxicities were related to disease progression rather than treatment. No significant difference in HRQoL was noted at the time of assessment for patients who were available for questionnaires. Combined WLI and hyperthermia were well tolerated without severe treatment-related toxicity with a promising response from numerous chemorefractory hepatic metastases from colorectal cancer.

  11. Numerical model CCC

    International Nuclear Information System (INIS)

    Bodvarsson, G.S.; Lippmann, M.J.

    1980-01-01

    The computer program CCC (conduction-convection-consolidation), developed at Lawrence Berkeley Laboratory, solves numerically the heat and mass flow equations for a fully saturated medium, and computes one-dimensional consolidation of the simulated systems. The model employs the Integrated Finite Difference Method (IFDM) in discretizing the saturated medium and formulating the governing equations. The sets of equations are solved either by an iterative solution technique (old version) or an efficient sparse solver (new version). The deformation of the medium is calculated using the one-dimensional consolidation theory of Terzaghi. In this paper, the numerical code is described, validation examples given and areas of application discussed. Several example problems involving flow through fractured media are also presented

  12. Numerical prediction of green water loads on ships

    DEFF Research Database (Denmark)

    Nielsen, Kristian Bendix

    2003-01-01

    The main objective of the present study has been to investigate problems related to shipping green water on deck of a floating vessel by use of numerical methods. A Navier-Stokes solver with a free surface capturing scheme, similar to the VOF method (Hirt and Nichols, 1981) has been applied...... green water problem with relative ship motion included. Great effoort has been made to validate and verify the numerical method and all computations have been verified by use of several computational grids with increasing resolution and validated by comparison to experimental data. Results from the dam...

  13. The Numerical Welding Simulation - Developments and Validation of Simplified and Bead Lumping Methods

    International Nuclear Information System (INIS)

    Baup, Olivier

    2001-01-01

    The aim of this work was to study the TIG multipass welding process on stainless steel, by means of numerical methods and then to work out simplified and bead lumping methods in order to reduce adjusting and realisation times of these calculations. A simulation was used as reference for the validation of these methods; after the presentation of the test series having led to the option choices of this calculation (2D generalised plane strains, elastoplastic model with an isotropic hardening, hardening restoration due to high temperatures), various simplifications were tried on a plate geometry. These simplifications related various modelling points with a correct plastic flow representation in the plate. The use of a reduced number of thermal fields characterising the bead deposit and a low number of tensile curves allow to obtain interesting results, decreasing significantly the Computing times. In addition various lumping bead methods have been studied and concerning both the shape and the thermic of the macro-deposits. The macro-deposit shapes studied are in 'L', or in layer or they represent two beads one on top of the other. Among these three methods, only those using a few number of lumping beads gave bad results since thermo-mechanical history was deeply modified near and inside the weld. Thereafter, simplified methods have been applied to a tubular geometry. On this new geometry, experimental measurements were made during welding, which allow a validation of the reference calculation. Simplified and reference calculations gave approximately the same stress fields as found on plate geometry. Finally, in the last part of this document a procedure for automatic data setting permitting to reduce significantly the calculation phase preparation is presented. It has been applied to the calculation of thick pipe welding in 90 beads; the results are compared with a simplified simulation realised by Framatome and with experimental measurements. A bead by

  14. Validation of numeric methods for calculating interactions between district heating pipelines and the surrounding soil; Validierung numerischer Verfahren zur Berechnung des Interaktionsverhaltens 'Fernwaermeleitung - Baugrund'

    Energy Technology Data Exchange (ETDEWEB)

    Salveter, G.

    2000-07-01

    In this thesis, the results of experimental research work on global bearing behaviour with respect to the existing theoretical basis are systematically analysed for the evaluation and interpretation of measuring results. Among other things, the geometry of the pipeline route, the compactness of the backfilling material and the temperature dependence are considered. The mutual influence of friction and bedding resistances in the region of bends could not yet be determined for a local analysis by existing numerical models. This requires the determination of the induced stress distribution on the pipe perimeter due to lateral displacement of the pipe. The influence is therefore described by a numerical consideration of relative displacements between the pipe and the surrounding soil. Ultimately, relative displacements are verified on the basis of our own complementary results from experimental research carried out in a laboratory for soil mechanics with specially designed test equipment. The global analysis of bearing loads and displacements is done with a numerical model, in which the plastic jacked pipe is idealized as a beam, and the effect of the soil is idealized by spring elements with non-linear force displacement characteristics. An existing numerical model is extended with regard to the new findings and while taking vertical displacements into account. It is used for numerical simulations of selected tests on the global bearing behaviour of underground district heating pipelines which were carried out as part of the research cooperation project. Apart from a good correspondence between calculated results and test results this also provides a plausible description of interrelations. At the same time, however, it also makes itclear that further research is necessary. This thesis provides a contribution to the validation of recent methods for the calculated modelling of the interaction between a district heating pipeline and the subsoil on the basis of

  15. Experimentally validated structural vibration frequencies’ prediction from frictional temperature signatures using numerical simulation: A case of laced cantilever beam-like structures

    Directory of Open Access Journals (Sweden)

    Stephen M Talai

    2016-12-01

    Full Text Available This article pertains to the prediction of structural vibration frequencies from frictional temperature evolution through numerical simulation. To achieve this, a finite element analysis was carried on AISI 304 steel cantilever beam-like structures coupled with a lacing wire using the commercial software ABAQUS/CAE. The coupled temperature–displacement transient analysis simulated the frictional thermal generation. Furthermore, an experimental analysis was carried out with infrared cameras capturing the interfacial thermal images while the beams were subjected to forced excitation, thus validating the finite element analysis results. The analysed vibration frequencies using a MATLAB fast Fourier transform algorithm confirmed the validity of its prediction from the frictional temperature time domain waveform. This finding has a great significance to the mechanical and aerospace engineering communities for the effective structural health monitoring of dynamic structures online using infrared thermography, thus reducing the downtime and maintenance cost, leading to increased efficiency.

  16. Numerical Model to Quantify the Influence of the Cellulosic Substrate on the Ignition Propensity Tests

    Directory of Open Access Journals (Sweden)

    Guindos Pablo

    2016-07-01

    Full Text Available A numerical model based on the finite element method has been constructed to simulate the ignition propensity (IP tests. The objective of this mathematical model was to quantify the influence of different characteristics of the cellulosic substrate on the results of the IP-tests. The creation and validation of the model included the following steps: (I formulation of the model based on experimental thermodynamic characteristics of the cellulosic substrate; (ii calibration of the model according to cone calorimeter tests; (iii validation of the model through mass loss and temperature profiling during IP-testing. Once the model was validated, the influence of each isolated parameter of the cellulosic substrate was quantified via a parametric study. The results revealed that the substrate heat capacity, the cigarette temperature and the pyrolysis activation energy are the most influencing parameters on the thermodynamic response of the substrates, while other parameters like heat of the pyrolysis reaction, density and roughness of the substrate showed little influence. Also the results indicated that the thermodynamic mechanisms involved in the pyrolysis and combustion of the cellulosic substrate are complex and show low repeatability which might impair the reliability of the IP-tests.

  17. TBscore II

    DEFF Research Database (Denmark)

    Rudolf, Frauke; Lemvik, Grethe; Abate, Ebba

    2013-01-01

    Abstract Background: The TBscore, based on simple signs and symptoms, was introduced to predict unsuccessful outcome in tuberculosis patients on treatment. A recent inter-observer variation study showed profound variation in some variables. Further, some variables depend on a physician assessing...... them, making the score less applicable. The aim of the present study was to simplify the TBscore. Methods: Inter-observer variation assessment and exploratory factor analysis were combined to develop a simplified score, the TBscore II. To validate TBscore II we assessed the association between start...

  18. Numerical Study of Particle Interaction in Gas-Particle and Liquid-Particle Flows: Part I Analysis and Validation

    Directory of Open Access Journals (Sweden)

    K. Mohanarangam

    2009-09-01

    Full Text Available A detailed study into the turbulent behaviour of dilute particulate flow under the influence of two carrier phases namely gas and liquid has been carried out behind a sudden expansion geometry. The major endeavour of the study is to ascertain the response of the particles within the carrier (gas or liquid phase. The main aim prompting the current study is the density difference between the carrier and the dispersed phases. While the ratio is quite high in terms of the dispersed phase for the gas-particle flows, the ratio is far more less in terms of the liquid-particle flows. Numerical simulations were carried out for both these classes of flows using an Eulerian two-fluid model with RNG based k-emodel as the turbulent closure. An additional kinetic energy equation to better represent the combined fluid-particle behaviour is also employed in the current set of simulations. In the first part of this two part series, experimental results of Fessler and Eaton (1995 for Gas-Particle (GP flow and that of Founti and Klipfel (1998 for Liquid-Particle (LP flow have been compared and analysed. This forms the basis of the current study which aims to look at the particulate behaviour under the influence of two carrier phases. Further numerical simulations were carried out to test whether the current numerical formulation can used to simulate these varied type of flows and the same were validated against the experimental data of both GP as well LP flow. Qualitative results have been obtained for both these classes of flows with their respective experimental data both at the mean as well as at the turbulence level for carrier as well as the dispersed phases.

  19. International Literature Review on WHODAS II (World Health Organization Disability Assessment Schedule II

    Directory of Open Access Journals (Sweden)

    Federici, Stefano

    2009-06-01

    Full Text Available This review is a critical analysis regarding the study and utilization of the World Health Organization Disability Assessment Schedule II (WHODAS II as a basis for establishing specific criteria for evaluating relevant international scientific literature.The WHODAS II is an instrument developed by the World Health Organisation in order to assess behavioural limitations and restrictions related to an individual’s participation, independent from a medical diagnosis. This instrument was developed by the WHO’s Assessment, Classification and Epidemiology Group within the framework of the WHO/NIH Joint Project on Assessment and Classification of Disablements. To ascertain the international dissemination level of for WHODAS II’s utilization and, at the same time, analyse the studies regarding the psychometric validation of the WHODAS II translation and adaptation in other languages and geographical contests. Particularly, our goal is to highlight which psychometric features have been investigated, focusing on the factorial structure, the reliability, and the validity of this instrument. International literature was researched through the main data bases of indexed scientific production: the Cambridge Scientific Abstracts – CSA, PubMed, and Google Scholar, from 1990 through to December 2008.The following search terms were used:“whodas”, in the field query, plus “title” and “abstract”.The WHODAS II has been used in 54 studies, of which 51 articles are published in international journals, 2 conference abstracts, and one dissertation abstract. Nevertheless, only 7 articles are published in journals and conference proceedings regarding disability and rehabilitation. Others have been published in medical and psychiatric journals, with the aim of indentifying comorbidity correlations in clinical diagnosis concerning patients with mental illness. Just 8 out of 51 articles have studied the psychometric properties of the WHODAS II. The

  20. Spurious solutions in few-body equations. II. Numerical investigations

    International Nuclear Information System (INIS)

    Adhikari, S.K.

    1979-01-01

    A recent analytic study of spurious solutions in few-body equations by Adhikari and Gloeckle is here complemented by numerical investigations. As proposed by Adhikari and Gloeckle we study numerically the spurious solutions in the three-body Weinberg type equations and draw some general conclusions about the existence of spurious solutions in three-body equations with the Weinberg kernel and in other few-body formulations. In particular we conclude that for most of the potentials we encounter in problems of nuclear physics the three-body Weinberg type equation will not have a spurious solution which may interfere with the bound state or scattering calculation. Hence, if proven convenient, the three-body Weinberg type equation can be used in practical calculations. The same conclusion is true for the three-body channel coupling array scheme of Kouri, Levin, and Tobocman. In the case of the set of six coupled four-body equations proposed by Rosenberg et al. and the set of the Bencze-Redish-Sloan equations a careful study of the possible spurious solutions is needed before using these equations in practical calculations

  1. Design and verification of controllers for longitudinal oscillations using optimal control theory and numerical simulation: Predictions for PEP-II

    International Nuclear Information System (INIS)

    Hindi, H.; Prabhakar, S.; Fox, J.; Teytelman, D.

    1997-12-01

    The authors present a technique for the design and verification of efficient bunch-by-bunch controllers for damping longitudinal multibunch instabilities. The controllers attempt to optimize the use of available feedback amplifier power--one of the most expensive components of a feedback system--and define the limits of closed loop system performance. The design technique alternates between analytic computation of single bunch optimal controllers and verification on a multibunch numerical simulator. The simulator identifies unstable coupled bunch modes and predicts their growth and damping rates. The results from the simulator are shown to be in reasonable agreement with analytical calculations based on the single bunch model. The technique is then used to evaluate the performance of a variety of controllers proposed for PEP-II

  2. Transport with Astra in TJ-II; Transporte con Astra en TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Bruna, D; Castejon, F; Fontdecaba, J M

    2004-07-01

    This report describes the adaptation of the numerical transport shell ASTRA for performing plasma calculations in the TJ-II stellarator device. Firstly, an approximation to the TJ-II geometry is made and a simple transport model is shared with two other codes in order to compare these codes (PROCTR, PRETOR-Stellarator) with ASTRA as calculation tool for TJ-II plasmas are provided: interpretative and predictive transport. The first consists in estimating the transport coefficients from real experimental data, thes being taken from three TJ-II discharges. The predictive facet is illustrated using a model that is able to includes self-consistently thedynamics of transport barriers. The report includes this model, written in the ASTRA programming language, to illustrate the use of ASTRA. (Author) 26 refs.

  3. Validation Studies for Numerical Simulations of Flow Phenomena Expected in the Lower Plenum of a Prismatic VHTR Reference Design

    International Nuclear Information System (INIS)

    Richard W. Johnson

    2005-01-01

    The final design of the very high temperature reactor (VHTR) of the fourth generation of nuclear power plants (Gen IV) has not yet been established. The VHTR may be either a prismatic (block) or pebble bed type. It may be either gas-cooled or cooled with an as yet unspecified molten salt. However, a conceptual design of a gas-cooled VHTR, based on the General Atomics GT-MHR, does exist and is called the prismatic VHTR reference design, MacDonald et al [2003], General Atomics [1996]. The present validation studies are based on the prismatic VHTR reference design. In the prismatic VHTR reference design, the flow in the lower plenum will be introduced by dozens of turbulent jets issuing into a large crossflow that must negotiate dozens of cylindrical support columns as it flows toward the exit duct of the reactor vessel. The jets will not all be at the same temperature due to the radial variation of power density expected in the core. However, it is important that the coolant be well mixed when it enters the power conversion unit to ensure proper operation and long life of the power conversion machinery. Hence, it is deemed important to be able to accurately model the flow and mixing of the variable temperature coolant in the lower plenum and exit duct. Accurate flow modeling involves determining modeling strategies including the fineness of the grid needed, iterative convergence tolerance, numerical discretization method used, whether the flow is steady or unsteady, and the turbulence model and wall treatment employed. It also involves validation of the computer code and turbulence model against a series of separate and combined flow phenomena and selection of the data used for the validation. The present report describes progress made to date for the task entitled ''CFD software validation of jets in crossflow'' which was designed to investigate the issues pertaining to the validation process

  4. Numerical simulation of single bubble boiling behavior

    Directory of Open Access Journals (Sweden)

    Junjie Liu

    2017-06-01

    Full Text Available The phenomena of a single bubble boiling process are studied with numerical modeling. The mass, momentum, energy and level set equations are solved using COMSOL multi-physics software. The bubble boiling dynamics, the transient pressure field, velocity field and temperature field in time are analyzed, and reasonable results are obtained. The numeral model is validated by the empirical equation of Fritz and could be used for various applications.

  5. Numerical and Experimental Validation of the Optimization Methodologies for a Wing-Tip Structure Equipped with Conventional and Morphing Ailerons =

    Science.gov (United States)

    Koreanschi, Andreea

    In order to answer the problem of 'how to reduce the aerospace industry's environment footprint?' new morphing technologies were developed. These technologies were aimed at reducing the aircraft's fuel consumption through reduction of the wing drag. The morphing concept used in the present research consists of replacing the conventional aluminium upper surface of the wing with a flexible composite skin for morphing abilities. For the ATR-42 'Morphing wing' project, the wing models were manufactured entirely from composite materials and the morphing region was optimized for flexibility. In this project two rigid wing models and an active morphing wing model were designed, manufactured and wind tunnel tested. For the CRIAQ MDO 505 project, a full scale wing-tip equipped with two types of ailerons, conventional and morphing, was designed, optimized, manufactured, bench and wind tunnel tested. The morphing concept was applied on a real wing internal structure and incorporated aerodynamic, structural and control constraints specific to a multidisciplinary approach. Numerical optimization, aerodynamic analysis and experimental validation were performed for both the CRIAQ MDO 505 full scale wing-tip demonstrator and the ATR-42 reduced scale wing models. In order to improve the aerodynamic performances of the ATR-42 and CRIAQ MDO 505 wing airfoils, three global optimization algorithms were developed, tested and compared. The three algorithms were: the genetic algorithm, the artificial bee colony and the gradient descent. The algorithms were coupled with the two-dimensional aerodynamic solver XFoil. XFoil is known for its rapid convergence, robustness and use of the semi-empirical e n method for determining the position of the flow transition from laminar to turbulent. Based on the performance comparison between the algorithms, the genetic algorithm was chosen for the optimization of the ATR-42 and CRIAQ MDO 505 wing airfoils. The optimization algorithm was improved during

  6. Numerical analysis of resonances induced by s wave neutrons in transmission time-of-flight experiments with a computer IBM 7094 II

    International Nuclear Information System (INIS)

    Corge, Ch.

    1969-01-01

    Numerical analysis of transmission resonances induced by s wave neutrons in time-of-flight experiments can be achieved in a fairly automatic way on an IBM 7094/II computer. The involved computations are carried out following a four step scheme: 1 - experimental raw data are processed to obtain the resonant transmissions, 2 - values of experimental quantities for each resonance are derived from the above transmissions, 3 - resonance parameters are determined using a least square method to solve the over determined system obtained by equalling theoretical functions to the correspondent experimental values. Four analysis methods are gathered in the same code, 4 - graphical control of the results is performed. (author) [fr

  7. Multi-scale modelling and numerical simulation of electronic kinetic transport

    International Nuclear Information System (INIS)

    Duclous, R.

    2009-11-01

    This research thesis which is at the interface between numerical analysis, plasma physics and applied mathematics, deals with the kinetic modelling and numerical simulations of the electron energy transport and deposition in laser-produced plasmas, having in view the processes of fuel assembly to temperature and density conditions necessary to ignite fusion reactions. After a brief review of the processes at play in the collisional kinetic theory of plasmas, with a focus on basic models and methods to implement, couple and validate them, the author focuses on the collective aspect related to the free-streaming electron transport equation in the non-relativistic limit as well as in the relativistic regime. He discusses the numerical development and analysis of the scheme for the Vlasov-Maxwell system, and the selection of a validation procedure and numerical tests. Then, he investigates more specific aspects of the collective transport: the multi-specie transport, submitted to phase-space discontinuities. Dealing with the multi-scale physics of electron transport with collision source terms, he validates the accuracy of a fast Monte Carlo multi-grid solver for the Fokker-Planck-Landau electron-electron collision operator. He reports realistic simulations for the kinetic electron transport in the frame of the shock ignition scheme, the development and validation of a reduced electron transport angular model. He finally explores the relative importance of the processes involving electron-electron collisions at high energy by means a multi-scale reduced model with relativistic Boltzmann terms

  8. Mathematical and Numerical Modeling in Maritime Geomechanics

    Directory of Open Access Journals (Sweden)

    Miguel Martín Stickle

    2012-04-01

    Full Text Available A theoretical and numerical framework to model the foundation of marine offshore structures is presented. The theoretical model is composed by a system of partial differential equations describing coupling between seabed solid skeleton and pore fluids (water, air, oil,... combined with a system of ordinary differential equations describing the specific constitutive relation of the seabed soil skeleton. Once the theoretical model is described, the finite element numerical procedure to achieve an approximate solution of the overning equations is outlined. In order to validate the proposed theoretical and numerical framework the seaward tilt mechanism induced by the action of breaking waves over a vertical breakwater is numerically reproduced. The results numerically attained are in agreement with the main conclusions drawn from the literature associated with this failure mechanism.

  9. Numerical and experimental analysis of vertical spray control patternators

    Directory of Open Access Journals (Sweden)

    F. Sarghini

    2013-09-01

    Full Text Available The experimental vertical spray control walls have the purpose of picking up the liquid delivered by trained sprayer for providing the liquid distribution profile in height. Theoretically this should correspond to the ideal profile, which consists in a uniform distribution on the vegetation. If the profile is different from the ideal, a parameter setup is required on the sprayer. Nonetheless, some problems are hidden in the aforementioned statements: i no wall measures exactly the distribution profile (i.e. the flow through the sections in the vertical plane, parallel to the direction of advancement of the sprayer. Compared to real profile, sensitive errors are introduced: the evaporation of the drops, the deviation of the air flows caused by the sensors panel themselves; by the possibility that the drops bounce on the wall panels, also due to the current of air that can push the liquid veil laterally or upwards, Moreover, everything varies depending on the geometry of the sensors, air velocity, air humidity; ii no one knows what exactly is the optimal distribution profile. It is often considered as optimal a profile that reflects the amount of leaf area subtended by each section absorber: however, it is evident that the path of the droplets changes according to the sprayer typology (eg. radial-flow or horizontal flows. In this work a combined numerical-experimental approach is adopted, in order to assess some of the aforementioned issues: numerical data obtained by using computational fluid dynamics models are compared and validated with experimental data, in order to assess the reliability of numerical simulations in configurations which are difficult to analyze using an experimental setup.

  10. Optimization and design of an aircraft's morphing wing-tip demonstrator for drag reduction at low speeds, Part II - Experimental validation using Infra-Red transition measurement from Wind Tunnel tests

    Directory of Open Access Journals (Sweden)

    Andreea Koreanschi

    2017-02-01

    Full Text Available In the present paper, an ‘in-house’ genetic algorithm was numerically and experimentally validated. The genetic algorithm was applied to an optimization problem for improving the aerodynamic performances of an aircraft wing tip through upper surface morphing. The optimization was performed for 16 flight cases expressed in terms of various combinations of speeds, angles of attack and aileron deflections. The displacements resulted from the optimization were used during the wind tunnel tests of the wing tip demonstrator for the actuators control to change the upper surface shape of the wing. The results of the optimization of the flow behavior for the airfoil morphing upper-surface problem were validated with wind tunnel experimental transition results obtained with infra-red Thermography on the wing-tip demonstrator. The validation proved that the 2D numerical optimization using the ‘in-house’ genetic algorithm was an appropriate tool in improving various aspects of a wing’s aerodynamic performances.

  11. Standardization of radioimmunoassay for dosage of angiotensin II (ang-II) and its methodological evaluation

    International Nuclear Information System (INIS)

    Mantovani, Milene; Mecawi, Andre S.; Elias, Lucila L.K.; Antunes-Rodrigues, Jose

    2011-01-01

    This paper standardizes the radioimmunoassay (RIA) for dosage of ANG-II of rats, after experimental conditions of saline hypertonic (2%), treating with losartan (antagonist of ANG-II), hydric privation, and acute hemorrhage (25%). After that, the plasmatic ANG-II was extracted for dosage of RIA, whose sensitiveness was of 1.95 pg/m L, with detection of 1.95 to 1000 pg/m L. The treatment with saline reduced the concentration of ANG-II, while the administration pf losartan, the hydric administration and the hemorrhage increase the values, related to the control group. Those results indicate variations in the plasmatic concentration of ANG-II according to the experimental protocols, validating the method for evaluation of activity renin-angiotensin

  12. Numerical simulation of a liquid propellant rocket motor

    Science.gov (United States)

    Salvador, Nicolas M. C.; Morales, Marcelo M.; Migueis, Carlos E. S. S.; Bastos-Netto, Demétrio

    2001-03-01

    This work presents a numerical simulation of the flow field in a liquid propellant rocket engine chamber and exit nozzle using techniques to allow the results to be taken as starting points for designing those propulsive systems. This was done using a Finite Volume method simulating the different flow regimes which usually take place in those systems. As the flow field has regions ranging from the low subsonic to the supersonic regimes, the numerical code used, initially developed for compressible flows only, was modified to work proficiently in the whole velocity range. It is well known that codes have been developed in CFD, for either compressible or incompressible flows, the joint treatment of both together being complex even today, given the small number of references available in this area. Here an existing code for compressible flow was used and primitive variables, the pressure, the Cartesian components of the velocity and the temperature instead of the conserved variables were introduced in the Euler and Navier-Stokes equations. This was done to permit the treatment at any Mach number. Unstructured meshes with adaptive refinements were employed here. The convective terms were treated with upwind first and second order methods. The numerical stability was kept with artificial dissipation and in the spatial coverage one used a five stage Runge-Kutta scheme for the Fluid Mechanics and the VODE (Value of Ordinary Differential Equations) scheme along with the Chemkin II in the chemical reacting solution. During the development of this code simulating the flow in a rocket engine, comparison tests were made with several different types of internal and external flows, at different velocities, seeking to establish the confidence level of the techniques being used. These comparisons were done with existing theoretical results and with other codes already validated and well accepted by the CFD community.

  13. Borderline personality disorder subscale (Chinese version) of the structured clinical interview for DSM-IV axis II personality disorders: a validation study in Cantonese-speaking Hong Kong Chinese.

    Science.gov (United States)

    Wong, H M; Chow, L Y

    2011-06-01

    Borderline personality disorder is an important but under-recognised clinical entity, for which there are only a few available diagnostic instruments in the Chinese language. None has been tested for its psychometric properties in the Cantonese-speaking population in Hong Kong. The present study aimed to assess the validity of the Chinese version of the Borderline Personality Disorder subscale of the Structured Clinical Interview for the Diagnostic and Statistical Manual of Mental Disorders Axis II Personality Disorders (SCID-II) in Cantonese-speaking Hong Kong Chinese. A convenience sampling method was used. The subjects were seen by a multidisciplinary clinical team, who arrived at a best-estimate diagnosis and then by application of the SCID-II rater using the Chinese version of the Borderline Personality Disorder subscale. The study was carried out at the psychiatric clinic of the Prince of Wales Hospital in Hong Kong. A total of 87 patients of Chinese ethnicity aged 18 to 64 years who attended the clinic in April 2007 were recruited. The aforementioned patient parameters were used to examine the internal consistency, best-estimate clinical diagnosis-SCID diagnosis agreement, sensitivity, and specificity of the Chinese version of the subscale. The Borderline Personality Disorder subscale (Chinese version) of SCID-II had an internal consistency of 0.82 (Cronbach's alpha coefficient), best-estimate clinical diagnosis-SCID diagnosis agreement of 0.82 (kappa), sensitivity of 0.92, and specificity of 0.94. The Borderline Personality Disorder subscale (Chinese version) of the SCID-II rater had reasonable validity when applied to Cantonese-speaking Chinese subjects in Hong Kong.

  14. Advancement of compressible multiphase flows and sodium-water reaction analysis program SERAPHIM. Validation of a numerical method for the simulation of highly underexpanded jets

    International Nuclear Information System (INIS)

    Uchibori, Akihiro; Ohshima, Hiroyuki; Watanabe, Akira

    2010-01-01

    SERAPHIM is a computer program for the simulation of the compressible multiphase flow involving the sodium-water chemical reaction under a tube failure accident in a steam generator of sodium cooled fast reactors. In this study, the numerical analysis of the highly underexpanded air jets into the air or into the water was performed as a part of validation of the SERAPHIM program. The multi-fluid model, the second-order TVD scheme and the HSMAC method considering a compressibility were used in this analysis. Combining these numerical methods makes it possible to calculate the multiphase flow including supersonic gaseous jets. In the case of the air jet into the air, the calculated pressure, the shape of the jet and the location of a Mach disk agreed with the existing experimental results. The effect of the difference scheme and the mesh resolution on the prediction accuracy was clarified through these analyses. The behavior of the air jet into the water was also reproduced successfully by the proposed numerical method. (author)

  15. Numerical instability of time-discretized one-point kinetic equations

    International Nuclear Information System (INIS)

    Hashimoto, Kengo; Ikeda, Hideaki; Takeda, Toshikazu

    2000-01-01

    The one-point kinetic equations with numerical errors induced by the explicit, implicit and Crank-Nicolson integration methods are derived. The zero-power transfer functions based on the present equations are demonstrated to investigate the numerical stability of the discretized systems. These demonstrations indicate unconditional stability for the implicit and Crank-Nicolson methods but present the possibility of numerical instability for the explicit method. An upper limit of time mesh spacing for the stability is formulated and several numerical calculations are made to confirm the validity of this formula

  16. Developing group investigation-based book on numerical analysis to increase critical thinking student’s ability

    Science.gov (United States)

    Maharani, S.; Suprapto, E.

    2018-03-01

    Critical thinking is very important in Mathematics; it can make student more understanding mathematics concept. Critical thinking is also needed in numerical analysis. The Numerical analysis's book is not yet including critical thinking in them. This research aims to develop group investigation-based book on numerical analysis to increase critical thinking student’s ability, to know the quality of the group investigation-based book on numerical analysis is valid, practical, and effective. The research method is Research and Development (R&D) with the subject are 30 student college department of Mathematics education at Universitas PGRI Madiun. The development model used is 4-D modified to 3-D until the stage development. The type of data used is descriptive qualitative data. Instruments used are sheets of validation, test, and questionnaire. Development results indicate that group investigation-based book on numerical analysis in the category of valid a value 84.25%. Students response to the books very positive, so group investigation-based book on numerical analysis category practical, i.e., 86.00%. The use of group investigation-based book on numerical analysis has been meeting the completeness criteria classical learning that is 84.32 %. Based on research result of this study concluded that group investigation-based book on numerical analysis is feasible because it meets the criteria valid, practical, and effective. So, the book can be used by every mathematics academician. The next research can be observed that book based group investigation in other subjects.

  17. Better prognostic marker in ICU - APACHE II, SOFA or SAP II!

    Science.gov (United States)

    Naqvi, Iftikhar Haider; Mahmood, Khalid; Ziaullaha, Syed; Kashif, Syed Mohammad; Sharif, Asim

    2016-01-01

    This study was designed to determine the comparative efficacy of different scoring system in assessing the prognosis of critically ill patients. This was a retrospective study conducted in medical intensive care unit (MICU) and high dependency unit (HDU) Medical Unit III, Civil Hospital, from April 2012 to August 2012. All patients over age 16 years old who have fulfilled the criteria for MICU admission were included. Predictive mortality of APACHE II, SAP II and SOFA were calculated. Calibration and discrimination were used for validity of each scoring model. A total of 96 patients with equal gender distribution were enrolled. The average APACHE II score in non-survivors (27.97+8.53) was higher than survivors (15.82+8.79) with statistically significant p value (discrimination power than SAP II and SOFA.

  18. Experimental and numerical analyses of different extended surfaces

    International Nuclear Information System (INIS)

    Diani, A; Mancin, S; Zilio, C; Rossetto, L

    2012-01-01

    Air is a cheap and safe fluid, widely used in electronic, aerospace and air conditioning applications. Because of its poor heat transfer properties, it always flows through extended surfaces, such as finned surfaces, to enhance the convective heat transfer. In this paper, experimental results are reviewed and numerical studies during air forced convection through extended surfaces are presented. The thermal and hydraulic behaviours of a reference trapezoidal finned surface, experimentally evaluated by present authors in an open-circuit wind tunnel, has been compared with numerical simulations carried out by using the commercial CFD software COMSOL Multiphysics. Once the model has been validated, numerical simulations have been extended to other rectangular finned configurations, in order to study the effects of the fin thickness, fin pitch and fin height on the thermo-hydraulic behaviour of the extended surfaces. Moreover, several pin fin surfaces have been simulated in the same range of operating conditions previously analyzed. Numerical results about heat transfer and pressure drop, for both plain finned and pin fin surfaces, have been compared with empirical correlations from the open literature, and more accurate equations have been developed, proposed, and validated.

  19. Testability of numerical systems

    International Nuclear Information System (INIS)

    Soulas, B.

    1992-01-01

    In order to face up to the growing complexity of systems, the authors undertook to define a new approach for the qualification of systems. This approach is based on the concept of Testability which, supported by system modelization, validation and verification methods and tools, would allow Integrated Qualification process, applied throughout the life-span of systems. The general principles of this approach are introduced in the general case of numerical systems; in particular, this presentation points out the difference between the specification activity and the modelization and validation activity. This approach is illustrated firstly by the study of a global system and then by case of communication protocol as the software point of view. Finally MODEL which support this approach is described. MODEL tool is a commercial tool providing modelization and validation techniques based on Petri Nets with triple extension: Predicate/Transition, Timed and Stochastic Petri Nets

  20. A comprehensive model for the prediction of vibrations due to underground railway traffic: formulation and validation

    International Nuclear Information System (INIS)

    Costa, Pedro Alvares; Cardoso Silva, Antonio; Calçada, Rui; Lopes, Patricia; Fernandez, Jesus

    2016-01-01

    n this communication, a numerical approach for the prediction of vibrations induced in buildings due to railway traffic in tunnels is presented. The numerical model is based on the concept of dynamic sub structuring, being composed by three autonomous models to simulate the following main parts of the problem: i) generation of vibrations (train-track interaction); ii) propagation of vibrations (track - tunnel-ground system); iii) reception of vibrations (building coupled to the ground). The methodology proposed allows dealing with the three-dimensional characteristics of the problem with a reasonable computational effort [ 1 , 2 ] . After the brief description of the model, its experimental validation is performed. For that, a case study about vibrations inside of a building close to a shallow railway tunnel in Madrid are simulated and the experimental data [ 3 ] is compared with the predicted results [ 4 ]. Finally, the communication finishes with some insights about the potentialities and challenges of this numerical modelling approach on the prediction of the behavior of ancient structures subjected to vibrations induced by human sources (railway and road traffic, pile driving, etc)

  1. Numerical computation of gravitational field for general axisymmetric objects

    Science.gov (United States)

    Fukushima, Toshio

    2016-10-01

    We developed a numerical method to compute the gravitational field of a general axisymmetric object. The method (I) numerically evaluates a double integral of the ring potential by the split quadrature method using the double exponential rules, and (II) derives the acceleration vector by numerically differentiating the numerically integrated potential by Ridder's algorithm. Numerical comparison with the analytical solutions for a finite uniform spheroid and an infinitely extended object of the Miyamoto-Nagai density distribution confirmed the 13- and 11-digit accuracy of the potential and the acceleration vector computed by the method, respectively. By using the method, we present the gravitational potential contour map and/or the rotation curve of various axisymmetric objects: (I) finite uniform objects covering rhombic spindles and circular toroids, (II) infinitely extended spheroids including Sérsic and Navarro-Frenk-White spheroids, and (III) other axisymmetric objects such as an X/peanut-shaped object like NGC 128, a power-law disc with a central hole like the protoplanetary disc of TW Hya, and a tear-drop-shaped toroid like an axisymmetric equilibrium solution of plasma charge distribution in an International Thermonuclear Experimental Reactor-like tokamak. The method is directly applicable to the electrostatic field and will be easily extended for the magnetostatic field. The FORTRAN 90 programs of the new method and some test results are electronically available.

  2. F.B.R. Core mock-up RAPSODIE - II - numerical models

    International Nuclear Information System (INIS)

    Brochard, D.; Hammami, L.; Gantenbein, F.

    1990-01-01

    To study the behaviour of LMFBR cores excited by a seism, tests have been performed on the RAPSODIE core mock-up. The aim of this paper is to present the numerical models used to interprete these tests and the comparisons between calculations and experimental results

  3. Verification and validation benchmarks.

    Energy Technology Data Exchange (ETDEWEB)

    Oberkampf, William Louis; Trucano, Timothy Guy

    2007-02-01

    Verification and validation (V&V) are the primary means to assess the accuracy and reliability of computational simulations. V&V methods and procedures have fundamentally improved the credibility of simulations in several high-consequence fields, such as nuclear reactor safety, underground nuclear waste storage, and nuclear weapon safety. Although the terminology is not uniform across engineering disciplines, code verification deals with assessing the reliability of the software coding, and solution verification deals with assessing the numerical accuracy of the solution to a computational model. Validation addresses the physics modeling accuracy of a computational simulation by comparing the computational results with experimental data. Code verification benchmarks and validation benchmarks have been constructed for a number of years in every field of computational simulation. However, no comprehensive guidelines have been proposed for the construction and use of V&V benchmarks. For example, the field of nuclear reactor safety has not focused on code verification benchmarks, but it has placed great emphasis on developing validation benchmarks. Many of these validation benchmarks are closely related to the operations of actual reactors at near-safety-critical conditions, as opposed to being more fundamental-physics benchmarks. This paper presents recommendations for the effective design and use of code verification benchmarks based on manufactured solutions, classical analytical solutions, and highly accurate numerical solutions. In addition, this paper presents recommendations for the design and use of validation benchmarks, highlighting the careful design of building-block experiments, the estimation of experimental measurement uncertainty for both inputs and outputs to the code, validation metrics, and the role of model calibration in validation. It is argued that the understanding of predictive capability of a computational model is built on the level of

  4. Fundamentals of Numerical Modelling of Casting Processes

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri; Pryds, Nini; Thorborg, Jesper

    Fundamentals of Numerical Modelling of Casting Processes comprises a thorough presentation of the basic phenomena that need to be addressed in numerical simulation of casting processes. The main philosophy of the book is to present the topics in view of their physical meaning, whenever possible......, rather than relying strictly on mathematical formalism. The book, aimed both at the researcher and the practicing engineer, as well as the student, is naturally divided into four parts. Part I (Chapters 1-3) introduces the fundamentals of modelling in a 1-dimensional framework. Part II (Chapter 4...

  5. Numerical modeling and the physical basis of seismic discriminants

    International Nuclear Information System (INIS)

    Denny, M.D.

    1993-01-01

    Accurate seismic event discrimination is critical to detection of nuclear explosions. Numerical modeling applied to seismic event discrimination can lead to increased reliability of proliferation detection. It is particularly applicable to error budgeting and to understanding explosion and earthquake phenomenologies. There also is a need for minimum requirements to validate the models used in numerical modeling

  6. Contact Modelling in Resistance Welding, Part II: Experimental Validation

    DEFF Research Database (Denmark)

    Song, Quanfeng; Zhang, Wenqi; Bay, Niels

    2006-01-01

    Contact algorithms in resistance welding presented in the previous paper are experimentally validated in the present paper. In order to verify the mechanical contact algorithm, two types of experiments, i.e. sandwich upsetting of circular, cylindrical specimens and compression tests of discs...... with a solid ring projection towards a flat ring, are carried out at room temperature. The complete algorithm, involving not only the mechanical model but also the thermal and electrical models, is validated by projection welding experiments. The experimental results are in satisfactory agreement...

  7. Validation of OpenFoam for heavy gas dispersion applications

    NARCIS (Netherlands)

    Mack, A.; Spruijt, M.P.N.

    2013-01-01

    In the present paper heavy gas dispersion calculations were performed with OpenFoam. For a windtunnel test case, numerical data was validated with experiments. For a full scale numerical experiment,a code to code comparison was performed with numerical results obtained from Fluent. The validationwas

  8. Development of a set of benchmark problems to verify numerical methods for solving burnup equations

    International Nuclear Information System (INIS)

    Lago, Daniel; Rahnema, Farzad

    2017-01-01

    Highlights: • Description transmutation chain benchmark problems. • Problems for validating numerical methods for solving burnup equations. • Analytical solutions for the burnup equations. • Numerical solutions for the burnup equations. - Abstract: A comprehensive set of transmutation chain benchmark problems for numerically validating methods for solving burnup equations was created. These benchmark problems were designed to challenge both traditional and modern numerical methods used to solve the complex set of ordinary differential equations used for tracking the change in nuclide concentrations over time due to nuclear phenomena. Given the development of most burnup solvers is done for the purpose of coupling with an established transport solution method, these problems provide a useful resource in testing and validating the burnup equation solver before coupling for use in a lattice or core depletion code. All the relevant parameters for each benchmark problem are described. Results are also provided in the form of reference solutions generated by the Mathematica tool, as well as additional numerical results from MATLAB.

  9. Simultaneous Determination of Cobalt (II and Nickel (II By First Order Derivative Spectrophotometry in Micellar Media

    Directory of Open Access Journals (Sweden)

    Rajni Rohilla

    2012-01-01

    Full Text Available A first-derivative spectrophotometry method for the simultaneous determination of Co (II and Ni (II with Alizarin Red S in presence of Triton X-100 is described. Measurements were made at the zero-crossing wavelengths at 549.0 nm for Co (II and 546.0 nm for Ni (II. The linearity is obtained in the range of 0.291- 4.676 μg/ml of Ni (II and 0.293- 4.124 μg/ml of Co (II in the presence of each other by using first derivative spectrophotometric method. The possible interfering effects of various ions were studied. The validity of the method was examined by using synthetic mixtures of Co (II and Ni (II. The developed derivative procedure, using the zero crossing technique, has been successfully applied for the simultaneous analysis of Co (II and Ni (II in spiked water samples.

  10. Numerical simulation and experimental validation of the large deformation bending and folding behavior of magneto-active elastomer composites

    International Nuclear Information System (INIS)

    Sheridan, Robert; VonLockette, Paris R; Roche, Juan; Lofland, Samuel E

    2014-01-01

    This work seeks to provide a framework for the numerical simulation of magneto-active elastomer (MAE) composite structures for use in origami engineering applications. The emerging field of origami engineering employs folding techniques, an array of crease patterns traditionally on a single flat sheet of paper, to produce structures and devices that perform useful engineering operations. Effective means of numerical simulation offer an efficient way to optimize the crease patterns while coupling to the performance and behavior of the active material. The MAE materials used herein are comprised of nominally 30% v/v, 325 mesh barium hexafarrite particles embedded in Dow HS II silicone elastomer compound. These particulate composites are cured in a magnetic field to produce magneto-elastic solids with anisotropic magnetization, e.g. they have a preferred magnetic axis parallel to the curing axis. The deformed shape and/or blocked force characteristics of these MAEs are examined in three geometries: a monolithic cantilever as well as two- and four-segment composite accordion structures. In the accordion structures, patches of MAE material are bonded to a Gelest OE41 unfilled silicone elastomer substrate. Two methods of simulation, one using the Maxwell stress tensor applied as a traction boundary condition and another employing a minimum energy kinematic (MEK) model, are investigated. Both methods capture actuation due to magnetic torque mechanisms that dominate MAE behavior. Comparison with experimental data show good agreement with only a single adjustable parameter, either an effective constant magnetization of the MAE material in the finite element models (at small and moderate deformations) or an effective modulus in the minimum energy model. The four-segment finite element model was prone to numerical locking at large deformation. The effective magnetization and modulus values required are a fraction of the actual experimentally measured values which suggests a

  11. The impact of dynamic data assimilation on the numerical simulations of the QE II cyclone and an analysis of the jet streak influencing the precyclogenetic environment

    Science.gov (United States)

    Manobianco, John; Uccellini, Louis W.; Brill, Keith F.; Kuo, Ying-Hwa

    1992-01-01

    A mesoscale numerical model is combined with a dynamic data assimilation via Newtonian relaxation, or 'nudging', to provide initial conditions for subsequent simulations of the QE II cyclone. Both the nudging technique and the inclusion of supplementary data are shown to have a large positive impact on the simulation of the QE II cyclone during the initial phase of rapid cyclone development. Within the initial development period (from 1200 to 1800 UTC 9 September 1978), the dynamic assimilation of operational and bogus data yields a coherent two-layer divergence pattern that is not well defined in the model run using only the operational data and static initialization. Diagnostic analysis based on the simulations show that the initial development of the QE II storm between 0000 UTC 9 September and 0000 UTC 10 September was embedded within an indirect circulation of an intense 300-hPa jet streak, was related to baroclinic processes extending throughout a deep portion of the troposphere, and was associated with a classic two-layer mass-divergence profile expected for an extratropical cyclone.

  12. The effect of serum angiotensin II and angiotensin II type 1 receptor ...

    African Journals Online (AJOL)

    Ehab

    2012-06-18

    Jun 18, 2012 ... case-control cross sectional study which included 24 patients with pLN ..... significantly high levels (1000-fold) of Ang II .... initial validation of the Systemic Lupus International ... Fyhrquist F, Metsärinne K, Tikkanen I. Role of.

  13. Biosorption optimization of lead(II), cadmium(II) and copper(II) using response surface methodology and applicability in isotherms and thermodynamics modeling

    International Nuclear Information System (INIS)

    Singh, Rajesh; Chadetrik, Rout; Kumar, Rajender; Bishnoi, Kiran; Bhatia, Divya; Kumar, Anil; Bishnoi, Narsi R.; Singh, Namita

    2010-01-01

    The present study was carried out to optimize the various environmental conditions for biosorption of Pb(II), Cd(II) and Cu(II) by investigating as a function of the initial metal ion concentration, temperature, biosorbent loading and pH using Trichoderma viride as adsorbent. Biosorption of ions from aqueous solution was optimized in a batch system using response surface methodology. The values of R 2 0.9716, 0.9699 and 0.9982 for Pb(II), Cd(II) and Cu(II) ions, respectively, indicated the validity of the model. The thermodynamic properties ΔG o , ΔH o , ΔE o and ΔS o by the metal ions for biosorption were analyzed using the equilibrium constant value obtained from experimental data at different temperatures. The results showed that biosorption of Pb(II) ions by T. viride adsorbent is more endothermic and spontaneous. The study was attempted to offer a better understating of representative biosorption isotherms and thermodynamics with special focuses on binding mechanism for biosorption using the FTIR spectroscopy.

  14. Biosorption optimization of lead(II), cadmium(II) and copper(II) using response surface methodology and applicability in isotherms and thermodynamics modeling

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Rajesh; Chadetrik, Rout; Kumar, Rajender; Bishnoi, Kiran; Bhatia, Divya; Kumar, Anil [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana (India); Bishnoi, Narsi R., E-mail: nrbishnoi@gmail.com [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana (India); Singh, Namita [Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana (India)

    2010-02-15

    The present study was carried out to optimize the various environmental conditions for biosorption of Pb(II), Cd(II) and Cu(II) by investigating as a function of the initial metal ion concentration, temperature, biosorbent loading and pH using Trichoderma viride as adsorbent. Biosorption of ions from aqueous solution was optimized in a batch system using response surface methodology. The values of R{sup 2} 0.9716, 0.9699 and 0.9982 for Pb(II), Cd(II) and Cu(II) ions, respectively, indicated the validity of the model. The thermodynamic properties {Delta}G{sup o}, {Delta}H{sup o}, {Delta}E{sup o} and {Delta}S{sup o} by the metal ions for biosorption were analyzed using the equilibrium constant value obtained from experimental data at different temperatures. The results showed that biosorption of Pb(II) ions by T. viride adsorbent is more endothermic and spontaneous. The study was attempted to offer a better understating of representative biosorption isotherms and thermodynamics with special focuses on binding mechanism for biosorption using the FTIR spectroscopy.

  15. Non-hydrostatic semi-elastic hybrid-coordinate SISL extension of HIRLAM. Part II: numerical testing

    Science.gov (United States)

    Rõõm, Rein; Männik, Aarne; Luhamaa, Andres; Zirk, Marko

    2007-10-01

    The semi-implicit semi-Lagrangian (SISL), two-time-level, non-hydrostatic numerical scheme, based on the non-hydrostatic, semi-elastic pressure-coordinate equations, is tested in model experiments with flow over given orography (elliptical hill, mountain ridge, system of successive ridges) in a rectangular domain with emphasis on the numerical accuracy and non-hydrostatic effect presentation capability. Comparison demonstrates good (in strong primary wave generation) to satisfactory (in weak secondary wave reproduction in some cases) consistency of the numerical modelling results with known stationary linear test solutions. Numerical stability of the developed model is investigated with respect to the reference state choice, modelling dynamics of a stationary front. The horizontally area-mean reference temperature proves to be the optimal stability warrant. The numerical scheme with explicit residual in the vertical forcing term becomes unstable for cross-frontal temperature differences exceeding 30 K. Stability is restored, if the vertical forcing is treated implicitly, which enables to use time steps, comparable with the hydrostatic SISL.

  16. Development and validation of a numerical method for computing two-phase flows without interface reconstruction. Application to Taylor bubbles dynamics

    International Nuclear Information System (INIS)

    Benkenida, Adlene

    1999-01-01

    This work is devoted to the development and the use of a numerical code aimed to compute complex two-phase flows in which the topology of the interfaces evolves in time. The solution strategy makes use of a fixed grid on which interfaces evolve freely. The governing equations of the model (one-fluid model) are obtained by adding the local, instantaneous Navier-Stokes equations of each phase after a spatial filtering. The use of an Eulerian approach yields difficulties in estimating several of the two-phase quantities, especially the viscous stress tensor. This problem is overcome by deriving and validating an expression of the stress tensor valid for any Eulerian treatment and whatever the orientation of the interfaces with respect to the grid. To simplify the governing equations of the model, it is assumed that no phase change occurs, that no local slip exists between both phases, and that no small-scale turbulence is present. The possibility to remove some of these hypotheses is discussed, especially with the future aim of developing a large-eddy simulation approach of two-phase flows in which the motion and the effects of small-scale two-phase structures could be taken into account. Interface transport is performed by using a FCT front capturing method without any interface reconstruction procedure. It is shown through several tests that the version of Zalesak's (1979) algorithm in which each direction is treated independently yields the best results, even though a tendency for interfacial regions to thicken artificially is observed in regions with high stretching rates.The code is validated by performing simulations on some simple two-phase flows and by comparing numerical results with available analytical solutions, experiments, or previous computations. Among the results of these tests, those concerning the bouncing of a bubble on a rigid wall are the most original and shed new light on this phenomenon, especially by revealing the time evolution of the

  17. HPC Benchmark Suite NMx, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In the phase II effort, Intelligent Automation Inc., (IAI) and University of Central Florida (UCF) propose to develop a comprehensive numerical test suite for...

  18. Validation of the LOD score compared with APACHE II score in prediction of the hospital outcome in critically ill patients.

    Science.gov (United States)

    Khwannimit, Bodin

    2008-01-01

    The Logistic Organ Dysfunction score (LOD) is an organ dysfunction score that can predict hospital mortality. The aim of this study was to validate the performance of the LOD score compared with the Acute Physiology and Chronic Health Evaluation II (APACHE II) score in a mixed intensive care unit (ICU) at a tertiary referral university hospital in Thailand. The data were collected prospectively on consecutive ICU admissions over a 24 month period from July1, 2004 until June 30, 2006. Discrimination was evaluated by the area under the receiver operating characteristic curve (AUROC). The calibration was assessed by the Hosmer-Lemeshow goodness-of-fit H statistic. The overall fit of the model was evaluated by the Brier's score. Overall, 1,429 patients were enrolled during the study period. The mortality in the ICU was 20.9% and in the hospital was 27.9%. The median ICU and hospital lengths of stay were 3 and 18 days, respectively, for all patients. Both models showed excellent discrimination. The AUROC for the LOD and APACHE II were 0.860 [95% confidence interval (CI) = 0.838-0.882] and 0.898 (95% Cl = 0.879-0.917), respectively. The LOD score had perfect calibration with the Hosmer-Lemeshow goodness-of-fit H chi-2 = 10 (p = 0.44). However, the APACHE II had poor calibration with the Hosmer-Lemeshow goodness-of-fit H chi-2 = 75.69 (p < 0.001). Brier's score showed the overall fit for both models were 0.123 (95%Cl = 0.107-0.141) and 0.114 (0.098-0.132) for the LOD and APACHE II, respectively. Thus, the LOD score was found to be accurate for predicting hospital mortality for general critically ill patients in Thailand.

  19. Experimental analysis with numerical comparison for different thermoelectric generators configurations

    International Nuclear Information System (INIS)

    Favarel, Camille; Bédécarrats, Jean-Pierre; Kousksou, Tarik; Champier, Daniel

    2016-01-01

    Highlights: • 3 experimental TE generators are tested and compared to a numerical model. • Different mass flow rates and temperatures ranges were used. • Maximum output electrical power is guaranty by the use of MPPT DC/DC controllers. • The importance of the occupancy rate for the design of TEG is demonstrated. • The importance of the location of the TE modules is shown. - Abstract: Thermoelectric (TE) energy harvesting is a promising perspective to use waste heat. Due to the low efficiency of thermoelectric materials many analytical and numerical optimization studies have been developed. To be validated, an optimization must necessarily be linked to the experience. There are a lot of results on thermoelectric generators (TEG) based on experiments or model validations. Nevertheless, the validated models concern most of the time one TE module but rarely an entire system. Moreover, these models of complete system mainly concern the optimization of fluid flow rates or of heat exchangers. Our choice is to optimize the number of these modules in a whole system point of view. A numerical model using a software for numerical computation, based on multi-physics equations such as heat transfer, fluid mechanics and thermoelectricity was developed to predict both thermal and electrical powers of TEG. This paper aims to present the experimental validation of this model and shows interesting experimental results on the location of the TE modules. In parallel, an experimental set-up was built to compare and validate this model. This set-up is composed of a thermal loop with a hot gas source, a cold fluid, a hot fin exchanger, a cold tubular exchanger and thermoelectric modules. The number and the place of these modules can be changed to study different configurations. A specific maximum power point tracker DC/DC converter charging a battery is added in order to study the electrical power produced by the TEG. The analysis of the influence of the number of

  20. On the validity of the equivalent-photon approximation for virtual photon-photon collisions

    International Nuclear Information System (INIS)

    Carimalo, C.; Kessler, P.; Parisi, J.

    1979-05-01

    For virtual photon-photon collisions in electron storage rings, one derive the equivalent-photon approximation from a helicity treatment, and present it in two forms, involving respectively (i) polarized transverse photons ('transverse-photon approximation') and (ii) unpolarized ones ('Williams-Weizsaecker approximation'). One first postulates the conditions of validity of the approximation on the basis of analytic considerations, and then check them numerically in the case of the process e e → e e μ + μ - . For this check, we consider the completely differentiated cross section as far as approximation (i) is concerned; and in the case of approximation (ii), the cross section differentiated with respect to all variables except the azimuthal angles. The results are given in the form of Tables showing the lower and higher limit of the error involved in the approximation for a large variety of kinematic configurations (i. e., energy losses and scattering angles of both electrons). Those Tables are discussed in detail, and conclusions are drawn as to the applicability of the equivalent-photon approximation to future experiments to be performed with high-energy electron storage rings

  1. A Practical Approach to Validating a PD Model

    NARCIS (Netherlands)

    Medema, L.; Koning, de R.; Lensink, B.W.

    2009-01-01

    The capital adequacy framework Basel II aims to promote the adoption of stronger risk management practices by the banking industry. The implementation makes validation of credit risk models more important. Lenders therefore need a validation methodology to convince their supervisors that their

  2. A practical approach to validating a PD model

    NARCIS (Netherlands)

    Medema, Lydian; Koning, Ruud H.; Lensink, Robert; Medema, M.

    The capital adequacy framework Basel II aims to promote the adoption of stronger risk management practices by the banking industry. The implementation makes validation of credit risk models more important. Lenders therefore need a validation methodology to convince their supervisors that their

  3. Direct numerical simulations of premixed turbulent flames with flamelet-generated manifolds

    NARCIS (Netherlands)

    Oijen, van J.A.; Bastiaans, R.J.M.; Goey, de L.P.H.

    2005-01-01

    Direct numerical simulation is a very powerful tool to evaluate the validity of new models and theories for turbulent combustion. In this paper, direct numerical simulations of spherically expanding premixed turbulent flames in the thin reaction zone regime and in the broken reaction zone regime are

  4. Method for numerical simulation of two-term exponentially correlated colored noise

    International Nuclear Information System (INIS)

    Yilmaz, B.; Ayik, S.; Abe, Y.; Gokalp, A.; Yilmaz, O.

    2006-01-01

    A method for numerical simulation of two-term exponentially correlated colored noise is proposed. The method is an extension of traditional method for one-term exponentially correlated colored noise. The validity of the algorithm is tested by comparing numerical simulations with analytical results in two physical applications

  5. Numerical study of a hybrid jet impingement/micro-channel cooling scheme

    International Nuclear Information System (INIS)

    Barrau, Jérôme; Omri, Mohammed; Chemisana, Daniel; Rosell, Joan; Ibañez, Manel; Tadrist, Lounes

    2012-01-01

    A new hybrid jet impingement/micro-channel cooling scheme is studied numerically for use in high-heat-flux thermal management of electronic and power devices. The device is developed with the objective of improving the temperature uniformity of the cooled object. A numerical model based on the k–ω SST turbulent model is developed and validated experimentally. This model is used to carry out a parametrical characterization of the heat sink. The study shows that variations in key parameters of jet impingement and micro-channel technologies allow for the cooling scheme to obtain a wide range of temperature profiles for the cooled object. - Highlights: ► A new hybrid cooling scheme is numerically studied. ► The cooling scheme combines the benefits of jet impingement and micro-channel flows. ► The numerical model is validated by comparison with experimental results. ► The temperature distribution can be adapted to the needs of the cooled system.

  6. Micromagnetic simulations with thermal noise: Physical and numerical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, E. [Dept. de Ingenieria Electromecanica, Universidad de Burgos, Plaza Misael Banuelos, s/n, E-09001, Burgos (Spain)]. E-mail: emvecino@ubu.es; Lopez-Diaz, L. [Dept. de Fisica Aplicada, Universidad Salamanca, Plaza de la Merced s/n, Salamanca E-37008 (Spain); Torres, L. [Dept. de Fisica Aplicada, Universidad Salamanca, Plaza de la Merced s/n, Salamanca E-37008 (Spain); Garcia-Cervera, C.J. [Department of Mathematics, University of California, Santa Barbara, CA 93106 (United States)

    2007-09-15

    Langevin dynamics treats finite temperature effects in micromagnetics framework by adding a thermal fluctuation field to the local effective field. Several works have addressed that the numerical results depend on the cell size used to split the ferromagnetic samples on the nanoscale regime. In this short paper, we analyze a thermally perturbed micromagnetic problem by using an implicit unconditionally stable numerical scheme to integrate the Langevin equation at room temperature. The obtained micromagnetic results for several cell sizes inside the validity range of the micromagnetic formalism, indicate that the addressed cell size dependence could be associated to numerical limitations of the commonly used numerical schemes.

  7. Micromagnetic simulations with thermal noise: Physical and numerical aspects

    International Nuclear Information System (INIS)

    Martinez, E.; Lopez-Diaz, L.; Torres, L.; Garcia-Cervera, C.J.

    2007-01-01

    Langevin dynamics treats finite temperature effects in micromagnetics framework by adding a thermal fluctuation field to the local effective field. Several works have addressed that the numerical results depend on the cell size used to split the ferromagnetic samples on the nanoscale regime. In this short paper, we analyze a thermally perturbed micromagnetic problem by using an implicit unconditionally stable numerical scheme to integrate the Langevin equation at room temperature. The obtained micromagnetic results for several cell sizes inside the validity range of the micromagnetic formalism, indicate that the addressed cell size dependence could be associated to numerical limitations of the commonly used numerical schemes

  8. Collisionless microinstabilities in stellarators. II. Numerical simulations

    International Nuclear Information System (INIS)

    Proll, J. H. E.; Xanthopoulos, P.; Helander, P.

    2013-01-01

    Microinstabilities exhibit a rich variety of behavior in stellarators due to the many degrees of freedom in the magnetic geometry. It has recently been found that certain stellarators (quasi-isodynamic ones with maximum-J geometry) are partly resilient to trapped-particle instabilities, because fast-bouncing particles tend to extract energy from these modes near marginal stability. In reality, stellarators are never perfectly quasi-isodynamic, and the question thus arises whether they still benefit from enhanced stability. Here, the stability properties of Wendelstein 7-X and a more quasi-isodynamic configuration, QIPC, are investigated numerically and compared with the National Compact Stellarator Experiment and the DIII-D tokamak. In gyrokinetic simulations, performed with the gyrokinetic code GENE in the electrostatic and collisionless approximation, ion-temperature-gradient modes, trapped-electron modes, and mixed-type instabilities are studied. Wendelstein 7-X and QIPC exhibit significantly reduced growth rates for all simulations that include kinetic electrons, and the latter are indeed found to be stabilizing in the energy budget. These results suggest that imperfectly optimized stellarators can retain most of the stabilizing properties predicted for perfect maximum-J configurations

  9. Construction and validation of detailed kinetic models for the combustion of gasoline surrogates; Construction et validation de modeles cinetiques detailles pour la combustion de melanges modeles des essences

    Energy Technology Data Exchange (ETDEWEB)

    Touchard, S.

    2005-10-15

    The irreversible reduction of oil resources, the CO{sub 2} emission control and the application of increasingly strict standards of pollutants emission lead the worldwide researchers to work to reduce the pollutants formation and to improve the engine yields, especially by using homogenous charge combustion of lean mixtures. The numerical simulation of fuel blends oxidation is an essential tool to study the influence of fuel formulation and motor conditions on auto-ignition and on pollutants emissions. The automatic generation helps to obtain detailed kinetic models, especially at low temperature, where the number of reactions quickly exceeds thousand. The main purpose of this study is the generation and the validation of detailed kinetic models for the oxidation of gasoline blends using the EXGAS software. This work has implied an improvement of computation rules for thermodynamic and kinetic data, those were validated by numerical simulation using CHEMKIN II softwares. A large part of this work has concerned the understanding of the low temperature oxidation chemistry of the C5 and larger alkenes. Low and high temperature mechanisms were proposed and validated for 1 pentene, 1-hexene, the binary mixtures containing 1 hexene/iso octane, 1 hexene/toluene, iso octane/toluene and the ternary mixture of 1 hexene/toluene/iso octane. Simulations were also done for propene, 1-butene and iso-octane with former models including the modifications proposed in this PhD work. If the generated models allowed us to simulate with a good agreement the auto-ignition delays of the studied molecules and blends, some uncertainties still remains for some reaction paths leading to the formation of cyclic products in the case of alkenes oxidation at low temperature. It would be also interesting to carry on this work for combustion models of gasoline blends at low temperature. (author)

  10. Numerical verification/validation of the theory of coupled reactors for deuterium critical assembly, using MCNP5 and Serpent codes

    International Nuclear Information System (INIS)

    Hussein, M.S; Lewis, B.J.; Bonin, H.W.

    2013-01-01

    The theory of multipoint coupled reactors developed by multi-group transport is verified by using the probabilistic transport code MCNP5 and the continuous-energy Monte Carlo reactor physics burnup calculation Serpent code. The verification was performed by calculating the multiplication factors (or criticality factors) and coupling coefficients for a two-region test reactor known as the Deuterium Critical Assembly, DCA. The multiplication factors k eff calculated numerically and independently from simulations of the DCA by MCNP5 and Serpent codes are compared with the multiplication factors k eff calculated based on the coupled reactor theory. Excellent agreement was obtained between the multiplication factors k eff calculated with the Serpent code, with MCNP5, and from the coupled reactor theory. This analysis demonstrates that the Serpent code is valid for the multipoint coupled reactor calculations. (author)

  11. Numerical verification/validation of the theory of coupled reactors for deuterium critical assembly, using MCNP5 and Serpent codes

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, M.S, E-mail: mohamed.hussein@rmc.ca [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada); Lewis, B.J., E-mail: Brent.Lewis@uoit.ca [Univ. of Ontario Inst. of Technology, Faculty of Energy Systems and Nuclear Science, Oshawa, Ontario (Canada); Bonin, H.W., E-mail: bonin-h@rmc.ca [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada)

    2013-07-01

    The theory of multipoint coupled reactors developed by multi-group transport is verified by using the probabilistic transport code MCNP5 and the continuous-energy Monte Carlo reactor physics burnup calculation Serpent code. The verification was performed by calculating the multiplication factors (or criticality factors) and coupling coefficients for a two-region test reactor known as the Deuterium Critical Assembly, DCA. The multiplication factors k{sub eff} calculated numerically and independently from simulations of the DCA by MCNP5 and Serpent codes are compared with the multiplication factors k{sub eff} calculated based on the coupled reactor theory. Excellent agreement was obtained between the multiplication factors k{sub eff} calculated with the Serpent code, with MCNP5, and from the coupled reactor theory. This analysis demonstrates that the Serpent code is valid for the multipoint coupled reactor calculations. (author)

  12. Analysis of the finite deformation response of shape memory polymers: II. 1D calibration and numerical implementation of a finite deformation, thermoelastic model

    International Nuclear Information System (INIS)

    Volk, Brent L; Lagoudas, Dimitris C; Chen, Yi-Chao

    2010-01-01

    This study presents the analysis of the finite deformation response of a shape memory polymer (SMP). This two-part paper addresses the thermomechanical characterization of SMPs, the derivation of material parameters for a finite deformation phenomenological model, the numerical implementation of such a model, and the predictions from the model with comparisons to experimental data. Part II of this work presents the calibration of a previously developed thermoelastic constitutive model which is capable of handling finite deformations. The model is proposed in a general three-dimensional framework; however, this work focuses on reducing the model to one dimension and subsequently calibrating the model using experimental data obtained in part I. The one-dimensional numerical implementation of the model is presented, including the handling of the system of nonlinear equations and the integral term resulting from the constitutive model. The model is then used to predict the uniaxial shape memory effect. Results indicate good agreement between the model predictions and the experimental results, but the predictions do not capture the irrecoverable deformation present at the end of recovery

  13. Antisocial Personality Disorder Subscale (Chinese Version) of the Structured Clinical Interview for the DSM-IV Axis II disorders: validation study in Cantonese-speaking Hong Kong Chinese.

    Science.gov (United States)

    Tang, D Y Y; Liu, A C Y; Leung, M H T; Siu, B W M

    2013-06-01

    OBJECTIVE. Antisocial personality disorder (ASPD) is a risk factor for violence and is associated with poor treatment response when it is a co-morbid condition with substance abuse. It is an under-recognised clinical entity in the local Hong Kong setting, for which there are only a few available Chinese-language diagnostic instruments. None has been tested for its psychometric properties in the Cantonese-speaking population in Hong Kong. This study therefore aimed to assess the reliability and validity of the Chinese version of the ASPD subscale of the Structured Clinical Interview for the DSM-IV Axis II Disorders (SCID-II) in Hong Kong Chinese. METHODS. This assessment tool was modified according to dialectal differences between Mainland China and Hong Kong. Inpatients in Castle Peak Hospital, Hong Kong, who were designated for priority follow-up based on their assessed propensity for violence and who fulfilled the inclusion criteria for the study, were recruited. To assess the level of agreement, best-estimate diagnosis made by a multidisciplinary team was compared with diagnostic status determined by the SCID-II ASPD subscale. The internal consistency, sensitivity, and specificity of the subscale were also calculated. RESULTS. The internal consistency of the subscale was acceptable at 0.79, whereas the test-retest reliability and inter-rater reliability showed an excellent and good agreement of 0.90 and 0.86, respectively. Best-estimate clinical diagnosis-SCID diagnosis agreement was acceptable at 0.76. The sensitivity, specificity, positive and negative predictive values were 0.91, 0.86, 0.83, and 0.93, respectively. CONCLUSION. The Chinese version of the SCID-II ASPD subscale is reliable and valid for diagnosing ASPD in a Cantonese-speaking clinical population.

  14. Validation and application of a physics database for fast reactor fuel cycle analysis

    International Nuclear Information System (INIS)

    McKnight, R.D.; Stillman, J.A.; Toppel, B.J.; Khalil, H.S.

    1994-01-01

    An effort has been made to automate the execution of fast reactor fuel cycle analysis, using EBR-II as a demonstration vehicle, and to validate the analysis results for application to the IFR closed fuel cycle demonstration at EBR-II and its fuel cycle facility. This effort has included: (1) the application of the standard ANL depletion codes to perform core-follow analyses for an extensive series of EBR-II runs, (2) incorporation of the EBR-II data into a physics database, (3) development and verification of software to update, maintain and verify the database files, (4) development and validation of fuel cycle models and methodology, (5) development and verification of software which utilizes this physics database to automate the application of the ANL depletion codes, methods and models to perform the core-follow analysis, and (6) validation studies of the ANL depletion codes and of their application in support of anticipated near-term operations in EBR-II and the Fuel Cycle Facility. Results of the validation tests indicate the physics database and associated analysis codes and procedures are adequate to predict required quantities in support of early phases of FCF operations

  15. An efficient numerical target strength prediction model: Validation against analysis solutions

    NARCIS (Netherlands)

    Fillinger, L.; Nijhof, M.J.J.; Jong, C.A.F. de

    2014-01-01

    A decade ago, TNO developed RASP (Rapid Acoustic Signature Prediction), a numerical model for the prediction of the target strength of immersed underwater objects. The model is based on Kirchhoff diffraction theory. It is currently being improved to model refraction, angle dependent reflection and

  16. Verification and validation benchmarks

    International Nuclear Information System (INIS)

    Oberkampf, William Louis; Trucano, Timothy Guy

    2007-01-01

    Verification and validation (V and V) are the primary means to assess the accuracy and reliability of computational simulations. V and V methods and procedures have fundamentally improved the credibility of simulations in several high-consequence fields, such as nuclear reactor safety, underground nuclear waste storage, and nuclear weapon safety. Although the terminology is not uniform across engineering disciplines, code verification deals with assessing the reliability of the software coding, and solution verification deals with assessing the numerical accuracy of the solution to a computational model. Validation addresses the physics modeling accuracy of a computational simulation by comparing the computational results with experimental data. Code verification benchmarks and validation benchmarks have been constructed for a number of years in every field of computational simulation. However, no comprehensive guidelines have been proposed for the construction and use of V and V benchmarks. For example, the field of nuclear reactor safety has not focused on code verification benchmarks, but it has placed great emphasis on developing validation benchmarks. Many of these validation benchmarks are closely related to the operations of actual reactors at near-safety-critical conditions, as opposed to being more fundamental-physics benchmarks. This paper presents recommendations for the effective design and use of code verification benchmarks based on manufactured solutions, classical analytical solutions, and highly accurate numerical solutions. In addition, this paper presents recommendations for the design and use of validation benchmarks, highlighting the careful design of building-block experiments, the estimation of experimental measurement uncertainty for both inputs and outputs to the code, validation metrics, and the role of model calibration in validation. It is argued that the understanding of predictive capability of a computational model is built on the

  17. Verification and validation benchmarks

    International Nuclear Information System (INIS)

    Oberkampf, William L.; Trucano, Timothy G.

    2008-01-01

    Verification and validation (V and V) are the primary means to assess the accuracy and reliability of computational simulations. V and V methods and procedures have fundamentally improved the credibility of simulations in several high-consequence fields, such as nuclear reactor safety, underground nuclear waste storage, and nuclear weapon safety. Although the terminology is not uniform across engineering disciplines, code verification deals with assessing the reliability of the software coding, and solution verification deals with assessing the numerical accuracy of the solution to a computational model. Validation addresses the physics modeling accuracy of a computational simulation by comparing the computational results with experimental data. Code verification benchmarks and validation benchmarks have been constructed for a number of years in every field of computational simulation. However, no comprehensive guidelines have been proposed for the construction and use of V and V benchmarks. For example, the field of nuclear reactor safety has not focused on code verification benchmarks, but it has placed great emphasis on developing validation benchmarks. Many of these validation benchmarks are closely related to the operations of actual reactors at near-safety-critical conditions, as opposed to being more fundamental-physics benchmarks. This paper presents recommendations for the effective design and use of code verification benchmarks based on manufactured solutions, classical analytical solutions, and highly accurate numerical solutions. In addition, this paper presents recommendations for the design and use of validation benchmarks, highlighting the careful design of building-block experiments, the estimation of experimental measurement uncertainty for both inputs and outputs to the code, validation metrics, and the role of model calibration in validation. It is argued that the understanding of predictive capability of a computational model is built on the

  18. Direct Numerical Simulation and Visualization of Subcooled Pool Boiling

    Directory of Open Access Journals (Sweden)

    Tomoaki Kunugi

    2014-01-01

    Full Text Available A direct numerical simulation of the boiling phenomena is one of the promising approaches in order to clarify their heat transfer characteristics and discuss the mechanism. During these decades, many DNS procedures have been developed according to the recent high performance computers and computational technologies. In this paper, the state of the art of direct numerical simulation of the pool boiling phenomena during mostly two decades is briefly summarized at first, and then the nonempirical boiling and condensation model proposed by the authors is introduced into the MARS (MultiInterface Advection and Reconstruction Solver developed by the authors. On the other hand, in order to clarify the boiling bubble behaviors under the subcooled conditions, the subcooled pool boiling experiments are also performed by using a high speed and high spatial resolution camera with a highly magnified telescope. Resulting from the numerical simulations of the subcooled pool boiling phenomena, the numerical results obtained by the MARS are validated by being compared to the experimental ones and the existing analytical solutions. The numerical results regarding the time evolution of the boiling bubble departure process under the subcooled conditions show a very good agreement with the experimental results. In conclusion, it can be said that the proposed nonempirical boiling and condensation model combined with the MARS has been validated.

  19. What are validated self-report adherence scales really measuring?: a systematic review.

    Science.gov (United States)

    Nguyen, Thi-My-Uyen; La Caze, Adam; Cottrell, Neil

    2014-03-01

    Medication non-adherence is a significant health problem. There are numerous methods for measuring adherence, but no single method performs well on all criteria. The purpose of this systematic review is to (i) identify self-report medication adherence scales that have been correlated with comparison measures of medication-taking behaviour, (ii) assess how these scales measure adherence and (iii) explore how these adherence scales have been validated. Cinahl and PubMed databases were used to search articles written in English on the development or validation of medication adherence scales dating to August 2012. The search terms used were medication adherence, medication non-adherence, medication compliance and names of each scale. Data such as barriers identified and validation comparison measures were extracted and compared. Sixty articles were included in the review, which consisted of 43 adherence scales. Adherence scales include items that either elicit information regarding the patient's medication-taking behaviour and/or attempts to identify barriers to good medication-taking behaviour or beliefs associated with adherence. The validation strategies employed depended on whether the focus of the scale was to measure medication-taking behaviour or identify barriers or beliefs. Supporting patients to be adherent requires information on their medication-taking behaviour, barriers to adherence and beliefs about medicines. Adherence scales have the potential to explore these aspects of adherence, but currently there has been a greater focus on measuring medication-taking behaviour. Selecting the 'right' adherence scale(s) requires consideration of what needs to be measured and how (and in whom) the scale has been validated. © 2013 The British Pharmacological Society.

  20. Numerical CFD Comparison of Lillgrund Employing RANS

    DEFF Research Database (Denmark)

    Simisiroglou, N.; Breton, S.-P.; Crasto, G.

    2014-01-01

    The following article will validate the results obtained using the actuator disc method in the state of the art numerical Computational Fluid Dynamic (CFD) tool WindSim using on-site measurements from the offshore wind farm Lillgrund. WindSim solves the mass, momentum and energy conservation...

  1. Validity of the ages and stages questionnaires in Korean compared to Bayley Scales of infant development-II for screening preterm infants at corrected age of 18-24 months for neurodevelopmental delay.

    Science.gov (United States)

    Kwun, Yoojin; Park, Hye Won; Kim, Min-Ju; Lee, Byong Sop; Kim, Ellen Ai-Rhan

    2015-04-01

    This study aimed to evaluate the validity of the ages and stages questionnaire in Korean (ASQ 1st edition, Korean Questionnaires, Seoul Community Rehabilitation Center, 2000) for premature infants. The study population consisted of 90 premature infants born between January 1, 2005, and December 31, 2011, who were tested using the ASQ (Korean) and Bayley Scales of Infant Development (BSID) (II) at a corrected age of 18-24 months. The validity of the ASQ (Korean) using cut-off values set at < -2 SD was examined by comparing it to the BSID (II) components, namely, the mental developmental index (MDI) or psychomotor developmental index (PDI), which were both set at < 85. The calculation of the sensitivities, specificities, positive predictive values, and negative predictive values of the ASQ (Korean) components revealed that they detected infants with neurodevelopmental delay with low sensitivity and positive predictive values, however, the communication domain showed moderate correlations with MDI. The failure in more than one domain of the ASQ (Korean) was significantly correlated with the failure in MDI. The ASQ (Korean) showed low validity for screening neurodevelopmentally delayed premature infants.

  2. The Role of Slope in the Fill and Spill Process of Linked Submarine Minibasins. Model Validation and Numerical Runs at Laboratory Scale.

    Science.gov (United States)

    Bastianon, E.; Viparelli, E.; Cantelli, A.; Imran, J.

    2015-12-01

    Primarily motivated by applications to hydrocarbon exploration, submarine minibasins have been widely studied during recent decades to understand the physical phenomenon that characterizes their fill process. Minibasins were identified in seismic records in the Gulf of Mexico, Angola, Trinidad and Tobago, Ireland, Nigeria and also in outcrops (e.g., Tres Pasos Formation, southern Chile). The filling of minibasis is generally described as the 'fill-and-spill' process, i.e. turbidity currents enter, are reflected on the minibasin flanks, pond and deposit suspended sediment. As the minibasin fills the turbidity current spills on the lowermost zone of the basin flank -spill point - and start filling the next basin downdip. Different versions of this simplified model were used to interpret field and laboratory data but it is still unclear how the minibasin size compared to the magnitude of the turbidity currents, the position of each basin in the system, and the slope of the minibasin system affects the characteristics of the deposit (e.g., geometry, grain size). Here, we conduct a numerical study to investigate how the 'fill-and-spill' model changes with increase in slopes of the minibasin system. First, we validate our numerical results against laboratory experiment performed on two linked minibasins located on a horizontal platform by comparing measured and simulated deposit geometries, suspended sediment concentration profiles and grain sizes. We then perform numerical simulations by increasing the minibasin system slope: deposit and flow characteristics are compared with the case of horizontal platform to identify how the depositional processes change. For the numerical study we used a three-dimensional numerical model of turbidity currents that solves the Reynolds-averaged Navier-Stokes equations for dilute suspensions. Turbulence is modeled by a buoyancy-modified k-ɛ closure. The numerical model has a deforming bottom boundary, to model the changes in the bed

  3. Numerical simulation of the PEP-II beam position monitor

    Energy Technology Data Exchange (ETDEWEB)

    Kurita, N; Martin, D; Ng, C -K; Smith, S [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Weiland, T

    1996-08-01

    We use MAFIA to analyze the PEP-II button-type beam position monitor (BPM). Employing proper termination of the BPM into a coaxial cable, the output signal at the BPM is determined. Thus the issues of signal sensitivity and power output can be addressed quantitatively, including all transient effects and wakefields. Besides this first quantitative analysis of a true BPM 3D structure, we find that internal resonant modes are a major source of high value narrow-band impedances. The effects of these resonances on coupled-bunch instabilities are discussed. An estimate of the power dissipation in the ceramic vacuum seal under high current operation is given. (author)

  4. Numerical simulation of the PEP-II beam position monitor

    International Nuclear Information System (INIS)

    Kurita, N.; Martin, D.; Ng, C.K.; Smith, S.; Weiland, T.

    1995-09-01

    The authors use MAFIA to analyze the PEP-II button-type beam position monitor (BPM). Employing proper termination of the BPM into a coaxial cable, the output signal at the BPM is determined. Thus the issues of signal sensitivity and power output can be addressed quantitatively, including all transient effects and wakefields. Besides this first quantitative analysis of a true BPM 3D structure, they find that internal resonant modes are a major-source of high value narrow-band impedances. The effects of these resonances on coupled-bunch instabilities are discussed. An estimate of the power dissipation in the ceramic vacuum seal under high current operation is given

  5. Experimental and numerical study of guided wave propagation in a thin metamaterial plate

    International Nuclear Information System (INIS)

    Zhu, R.; Huang, G.L.; Huang, H.H.; Sun, C.T.

    2011-01-01

    In this Letter, both in-plane and out-of-plane guided waves in a thin plate with local resonators are studied numerically and experimentally. Through the numerical simulation, a new metamaterial plate design is achieved for a low-frequency bandgap in both in-plane and out-of-plane guided waves. Experiments were conducted to validate the numerical design. In the experiment, piezoelectric transducers were used to generate and receive guided wave signals. The results show that the numerical predictions are in very good agreement with the experimental measurements. Specifically, the connection between the local resonance in the thin plate and its wave attenuation mechanism was discussed. -- Highlights: → Both in-plane and out-of-plane guided waves in a thin plate with local resonators are studied numerically and experimentally. → A new metamaterial plate design is achieved for a low-frequency bandgap in both in-plane and out-of-plane guided waves. → Experiments were conducted to validate the numerical design. → The connection between the local resonance in the thin plate and its wave attenuation mechanism was investigated.

  6. Validation of a Wave-Body Interaction Model by Experimental Tests

    DEFF Research Database (Denmark)

    Ferri, Francesco; Kramer, Morten; Pecher, Arthur

    2013-01-01

    Within the wave energy field, numerical simulation has recently acquired a worldwide consent as being a useful tool, besides physical model testing. The main goal of this work is the validation of a numerical model by experimental results. The numerical model is based on a linear wave-body intera...

  7. Construct Validity of the Nepalese School Leaving English Reading Test

    Science.gov (United States)

    Dawadi, Saraswati; Shrestha, Prithvi N.

    2018-01-01

    There has been a steady interest in investigating the validity of language tests in the last decades. Despite numerous studies on construct validity in language testing, there are not many studies examining the construct validity of a reading test. This paper reports on a study that explored the construct validity of the English reading test in…

  8. Numerical Relativity, Black Hole Mergers, and Gravitational Waves: Part II

    Science.gov (United States)

    Centrella, Joan

    2012-01-01

    This series of 3 lectures will present recent developments in numerical relativity, and their applications to simulating black hole mergers and computing the resulting gravitational waveforms. In this second lecture, we focus on simulations of black hole binary mergers. We hig hlight the instabilities that plagued the codes for many years, the r ecent breakthroughs that led to the first accurate simulations, and the current state of the art.

  9. Further validation of liquid metal MHD code for unstructured grid based on OpenFOAM

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jingchao; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn; He, Qingyun; Ye, Minyou

    2015-11-15

    Highlights: • Specific correction scheme has been adopted to revise the calculating result for non-orthogonal meshes. • The developed MHD code based on OpenFOAM platform has been validated by benchmark cases under uniform and non-uniform magnetic field in round and rectangular ducts. • ALEX experimental results have been used to validate the MHD code based on OpenFOAM. - Abstract: In fusion liquid metal blankets, complex geometries involving contractions, expansions, bends, manifolds are very common. The characteristics of liquid metal flow in these geometries are significant. In order to extend the magnetohydrodynamic (MHD) solver developed on OpenFOAM platform to be applied in the complex geometry, the MHD solver based on unstructured meshes has been implemented. The adoption of non-orthogonal correction techniques in the solver makes it possible to process the non-orthogonal meshes in complex geometries. The present paper focused on the validation of the code under critical conditions. An analytical solution benchmark case and two experimental benchmark cases were conducted to validate the code. Benchmark case I is MHD flow in a circular pipe with arbitrary electric conductivity of the walls in a uniform magnetic field. Benchmark cases II and III are experimental cases of 3D laminar steady MHD flow under fringing magnetic field. In all these cases, the numerical results match well with the benchmark cases.

  10. Further validation of liquid metal MHD code for unstructured grid based on OpenFOAM

    International Nuclear Information System (INIS)

    Feng, Jingchao; Chen, Hongli; He, Qingyun; Ye, Minyou

    2015-01-01

    Highlights: • Specific correction scheme has been adopted to revise the calculating result for non-orthogonal meshes. • The developed MHD code based on OpenFOAM platform has been validated by benchmark cases under uniform and non-uniform magnetic field in round and rectangular ducts. • ALEX experimental results have been used to validate the MHD code based on OpenFOAM. - Abstract: In fusion liquid metal blankets, complex geometries involving contractions, expansions, bends, manifolds are very common. The characteristics of liquid metal flow in these geometries are significant. In order to extend the magnetohydrodynamic (MHD) solver developed on OpenFOAM platform to be applied in the complex geometry, the MHD solver based on unstructured meshes has been implemented. The adoption of non-orthogonal correction techniques in the solver makes it possible to process the non-orthogonal meshes in complex geometries. The present paper focused on the validation of the code under critical conditions. An analytical solution benchmark case and two experimental benchmark cases were conducted to validate the code. Benchmark case I is MHD flow in a circular pipe with arbitrary electric conductivity of the walls in a uniform magnetic field. Benchmark cases II and III are experimental cases of 3D laminar steady MHD flow under fringing magnetic field. In all these cases, the numerical results match well with the benchmark cases.

  11. Advanced Numerical Model for Irradiated Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Giorla, Alain B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-03-01

    In this report, we establish a numerical model for concrete exposed to irradiation to address these three critical points. The model accounts for creep in the cement paste and its coupling with damage, temperature and relative humidity. The shift in failure mode with the loading rate is also properly represented. The numerical model for creep has been validated and calibrated against different experiments in the literature [Wittmann, 1970, Le Roy, 1995]. Results from a simplified model are shown to showcase the ability of numerical homogenization to simulate irradiation effects in concrete. In future works, the complete model will be applied to the analysis of the irradiation experiments of Elleuch et al. [1972] and Kelly et al. [1969]. This requires a careful examination of the experimental environmental conditions as in both cases certain critical information are missing, including the relative humidity history. A sensitivity analysis will be conducted to provide lower and upper bounds of the concrete expansion under irradiation, and check if the scatter in the simulated results matches the one found in experiments. The numerical and experimental results will be compared in terms of expansion and loss of mechanical stiffness and strength. Both effects should be captured accordingly by the model to validate it. Once the model has been validated on these two experiments, it can be applied to simulate concrete from nuclear power plants. To do so, the materials used in these concrete must be as well characterized as possible. The main parameters required are the mechanical properties of each constituent in the concrete (aggregates, cement paste), namely the elastic modulus, the creep properties, the tensile and compressive strength, the thermal expansion coefficient, and the drying shrinkage. These can be either measured experimentally, estimated from the initial composition in the case of cement paste, or back-calculated from mechanical tests on concrete. If some

  12. Transient productivity index for numerical well test simulations

    Energy Technology Data Exchange (ETDEWEB)

    Blanc, G.; Ding, D.Y.; Ene, A. [Institut Francais du Petrole, Pau (France)] [and others

    1997-08-01

    The most difficult aspect of numerical simulation of well tests is the treatment of the Bottom Hole Flowing (BHF) Pressure. In full field simulations, this pressure is derived from the Well-block Pressure (WBP) using a numerical productivity index which accounts for the grid size and permeability, and for the well completion. This productivity index is calculated assuming a pseudo-steady state flow regime in the vicinity of the well and is therefore constant during the well production period. Such a pseudo-steady state assumption is no longer valid for the early time of a well test simulation as long as the pressure perturbation has not reached several grid-blocks around the well. This paper offers two different solutions to this problem: (1) The first one is based on the derivation of a Numerical Transient Productivity Index (NTPI) to be applied to Cartesian grids; (2) The second one is based on the use of a Corrected Transmissibility and Accumulation Term (CTAT) in the flow equation. The representation of the pressure behavior given by both solutions is far more accurate than the conventional one as shown by several validation examples which are presented in the following pages.

  13. Validation of APACHE II scoring system at 24 hours after admission as a prognostic tool in urosepsis: A prospective observational study

    Directory of Open Access Journals (Sweden)

    Sundaramoorthy VijayGanapathy

    2017-11-01

    Full Text Available Purpose: Urosepsis implies clinically evident severe infection of urinary tract with features of systemic inflammatory response syndrome (SIRS. We validate the role of a single Acute Physiology and Chronic Health Evaluation II (APACHE II score at 24 hours after admission in predicting mortality in urosepsis. Materials and Methods: A prospective observational study was done in 178 patients admitted with urosepsis in the Department of Urology, in a tertiary care institute from January 2015 to August 2016. Patients >18 years diagnosed as urosepsis using SIRS criteria with positive urine or blood culture for bacteria were included. At 24 hours after admission to intensive care unit, APACHE II score was calculated using 12 physiological variables, age and chronic health. Results: Mean±standard deviation (SD APACHE II score was 26.03±7.03. It was 24.31±6.48 in survivors and 32.39±5.09 in those expired (p<0.001. Among patients undergoing surgery, mean±SD score was higher (30.74±4.85 than among survivors (24.30±6.54 (p<0.001. Receiver operating characteristic (ROC analysis revealed area under curve (AUC of 0.825 with cutoff 25.5 being 94.7% sensitive and 56.4% specific to predict mortality. Mean±SD score in those undergoing surgery was 25.22±6.70 and was lesser than those who did not undergo surgery (28.44±7.49 (p=0.007. ROC analysis revealed AUC of 0.760 with cutoff 25.5 being 94.7% sensitive and 45.6% specific to predict mortality even after surgery. Conclusions: A single APACHE II score assessed at 24 hours after admission was able to predict morbidity, mortality, need for surgical intervention, length of hospitalization, treatment success and outcome in urosepsis patients.

  14. Validation of APACHE II scoring system at 24 hours after admission as a prognostic tool in urosepsis: A prospective observational study.

    Science.gov (United States)

    VijayGanapathy, Sundaramoorthy; Karthikeyan, VIlvapathy Senguttuvan; Sreenivas, Jayaram; Mallya, Ashwin; Keshavamurthy, Ramaiah

    2017-11-01

    Urosepsis implies clinically evident severe infection of urinary tract with features of systemic inflammatory response syndrome (SIRS). We validate the role of a single Acute Physiology and Chronic Health Evaluation II (APACHE II) score at 24 hours after admission in predicting mortality in urosepsis. A prospective observational study was done in 178 patients admitted with urosepsis in the Department of Urology, in a tertiary care institute from January 2015 to August 2016. Patients >18 years diagnosed as urosepsis using SIRS criteria with positive urine or blood culture for bacteria were included. At 24 hours after admission to intensive care unit, APACHE II score was calculated using 12 physiological variables, age and chronic health. Mean±standard deviation (SD) APACHE II score was 26.03±7.03. It was 24.31±6.48 in survivors and 32.39±5.09 in those expired (p<0.001). Among patients undergoing surgery, mean±SD score was higher (30.74±4.85) than among survivors (24.30±6.54) (p<0.001). Receiver operating characteristic (ROC) analysis revealed area under curve (AUC) of 0.825 with cutoff 25.5 being 94.7% sensitive and 56.4% specific to predict mortality. Mean±SD score in those undergoing surgery was 25.22±6.70 and was lesser than those who did not undergo surgery (28.44±7.49) (p=0.007). ROC analysis revealed AUC of 0.760 with cutoff 25.5 being 94.7% sensitive and 45.6% specific to predict mortality even after surgery. A single APACHE II score assessed at 24 hours after admission was able to predict morbidity, mortality, need for surgical intervention, length of hospitalization, treatment success and outcome in urosepsis patients.

  15. Realistic deformable 3D numeric phantom for transcutaneous ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Fernando Mitsuyama; Moraes, Matheus Cardoso; Furuie, Sergio Shiguemi, E-mail: fernando.okara@gmail.com [Universidade de Sao Paulo (USP), SP (Brazil). Escola de Engenharia

    2017-01-15

    Introduction: Numerical phantoms are important tools to design, calibrate and evaluate several methods in various image-processing applications, such as echocardiography and mammography. We present a framework for creating ultrasound numerical deformable phantoms based on Finite Element Method (FEM), Linear Isomorphism and Field II. The proposed method considers that the scatterers map is a property of the tissue; therefore, the scatterers should move according to the tissue strain. Methods: First, a volume representing the target tissue is loaded. Second, parameter values, such as Young's Modulus, scatterers density, attenuation and scattering amplitudes are inserted for each different regions of the phantom. Then, other parameters related to the ultrasound equipment, such as ultrasound frequency and number of transducer elements, are also defined in order to perform the ultrasound acquisition using Field II. Third, the size and position of the transducer and the pressures that are applied against the tissue are defined. Subsequently, FEM is executed and deformation is computed. Next, 3D linear isomorphism is performed to displace the scatterers according to the deformation. Finally, Field II is carried out to generate the non-deformed and deformed ultrasound data. Results: The framework is evaluated by comparing strain values obtained the numerical simulation and from the physical phantom from CIRS. The mean difference between both phantoms is lesser than 10%. Conclusion: The acoustic and deformation outcomes are similar to those obtained using a physical phantom. This framework led to a tool, which is available online and free of charges for educational and research purposes. (author)

  16. Validation study of a quantitative multigene reverse transcriptase-polymerase chain reaction assay for assessment of recurrence risk in patients with stage II colon cancer.

    Science.gov (United States)

    Gray, Richard G; Quirke, Philip; Handley, Kelly; Lopatin, Margarita; Magill, Laura; Baehner, Frederick L; Beaumont, Claire; Clark-Langone, Kim M; Yoshizawa, Carl N; Lee, Mark; Watson, Drew; Shak, Steven; Kerr, David J

    2011-12-10

    We developed quantitative gene expression assays to assess recurrence risk and benefits from chemotherapy in patients with stage II colon cancer. We sought validation by using RNA extracted from fixed paraffin-embedded primary colon tumor blocks from 1,436 patients with stage II colon cancer in the QUASAR (Quick and Simple and Reliable) study of adjuvant fluoropyrimidine chemotherapy versus surgery alone. A recurrence score (RS) and a treatment score (TS) were calculated from gene expression levels of 13 cancer-related genes (n = 7 recurrence genes and n = 6 treatment benefit genes) and from five reference genes with prespecified algorithms. Cox proportional hazards regression models and log-rank methods were used to analyze the relationship between the RS and risk of recurrence in patients treated with surgery alone and between TS and benefits of chemotherapy. Risk of recurrence was significantly associated with RS (hazard ratio [HR] per interquartile range, 1.38; 95% CI, 1.11 to 1.74; P = .004). Recurrence risks at 3 years were 12%, 18%, and 22% for predefined low, intermediate, and high recurrence risk groups, respectively. T stage (HR, 1.94; P < .001) and mismatch repair (MMR) status (HR, 0.31; P < .001) were the strongest histopathologic prognostic factors. The continuous RS was associated with risk of recurrence (P = .006) beyond these and other covariates. There was no trend for increased benefit from chemotherapy at higher TS (P = .95). The continuous 12-gene RS has been validated in a prospective study for assessment of recurrence risk in patients with stage II colon cancer after surgery and provides prognostic value that complements T stage and MMR. The TS was not predictive of chemotherapy benefit.

  17. Numerical simulation of inertial two-phase flow in heterogenous media

    International Nuclear Information System (INIS)

    Ali Akbar ABBASIAN ARANI; Didier LASSEUX; Azita AHMADI

    2005-01-01

    In this work, we present the development of a 3 D numerical tool for simulation of non-Darcy two-phase flow in heterogeneous porous media. The physical model selected is the generalized Darcy-Forchheimer model. A validation is performed first by comparing numerical results with a semi-analytical solution of the Buckley-Leverett type. Secondly, numerical results obtained on 1 D and 2 D heterogeneous configurations are presented and we highlight the importance of the inertial terms according to a Reynolds number of the flow. (authors)

  18. Experimental and Numerical Investigation of Flow Properties of Supersonic Helium-Air Jets

    Science.gov (United States)

    Miller, Steven A. E.; Veltin, Jeremy

    2010-01-01

    Heated high speed subsonic and supersonic jets operating on- or off-design are a source of noise that is not yet fully understood. Helium-air mixtures can be used in the correct ratio to simulate the total temperature ratio of heated air jets and hence have the potential to provide inexpensive and reliable flow and acoustic measurements. This study presents a combination of flow measurements of helium-air high speed jets and numerical simulations of similar helium-air mixture and heated air jets. Jets issuing from axisymmetric convergent and convergent-divergent nozzles are investigated, and the results show very strong similarity with heated air jet measurements found in the literature. This demonstrates the validity of simulating heated high speed jets with helium-air in the laboratory, together with the excellent agreement obtained in the presented data between the numerical predictions and the experiments. The very close match between the numerical and experimental data also validates the frozen chemistry model used in the numerical simulation.

  19. Measuring multi-joint stiffness during single movements: numerical validation of a novel time-frequency approach.

    Science.gov (United States)

    Piovesan, Davide; Pierobon, Alberto; DiZio, Paul; Lackner, James R

    2012-01-01

    This study presents and validates a Time-Frequency technique for measuring 2-dimensional multijoint arm stiffness throughout a single planar movement as well as during static posture. It is proposed as an alternative to current regressive methods which require numerous repetitions to obtain average stiffness on a small segment of the hand trajectory. The method is based on the analysis of the reassigned spectrogram of the arm's response to impulsive perturbations and can estimate arm stiffness on a trial-by-trial basis. Analytic and empirical methods are first derived and tested through modal analysis on synthetic data. The technique's accuracy and robustness are assessed by modeling the estimation of stiffness time profiles changing at different rates and affected by different noise levels. Our method obtains results comparable with two well-known regressive techniques. We also test how the technique can identify the viscoelastic component of non-linear and higher than second order systems with a non-parametrical approach. The technique proposed here is very impervious to noise and can be used easily for both postural and movement tasks. Estimations of stiffness profiles are possible with only one perturbation, making our method a useful tool for estimating limb stiffness during motor learning and adaptation tasks, and for understanding the modulation of stiffness in individuals with neurodegenerative diseases.

  20. Measuring multi-joint stiffness during single movements: numerical validation of a novel time-frequency approach.

    Directory of Open Access Journals (Sweden)

    Davide Piovesan

    Full Text Available This study presents and validates a Time-Frequency technique for measuring 2-dimensional multijoint arm stiffness throughout a single planar movement as well as during static posture. It is proposed as an alternative to current regressive methods which require numerous repetitions to obtain average stiffness on a small segment of the hand trajectory. The method is based on the analysis of the reassigned spectrogram of the arm's response to impulsive perturbations and can estimate arm stiffness on a trial-by-trial basis. Analytic and empirical methods are first derived and tested through modal analysis on synthetic data. The technique's accuracy and robustness are assessed by modeling the estimation of stiffness time profiles changing at different rates and affected by different noise levels. Our method obtains results comparable with two well-known regressive techniques. We also test how the technique can identify the viscoelastic component of non-linear and higher than second order systems with a non-parametrical approach. The technique proposed here is very impervious to noise and can be used easily for both postural and movement tasks. Estimations of stiffness profiles are possible with only one perturbation, making our method a useful tool for estimating limb stiffness during motor learning and adaptation tasks, and for understanding the modulation of stiffness in individuals with neurodegenerative diseases.

  1. Transport with Astra in TJ-II

    International Nuclear Information System (INIS)

    Lopez-Bruna, D.; Castejon, F.; Fontdecaba, J. M.

    2004-01-01

    This report describes the adaptation of the numerical transport shell ASTRA for performing plasma calculations in the TJ-II stellarator device. Firstly, an approximation to the TJ-II geometry is made and a simple transport model is shared with two other codes in order to compare these codes (PROCTR, PRETOR-Stellarator) with ASTRA as calculation tool for TJ-II plasmas are provided: interpretative and predictive transport. The first consists in estimating the transport coefficients from real experimental data, thes being taken from three TJ-II discharges. The predictive facet is illustrated using a model that is able to includes self-consistently the dynamics of transport barriers. The report includes this model, written in the ASTRA programming language, to illustrate the use of ASTRA. (Author) 26 refs

  2. A round robin on numerical analyses for impact problems

    International Nuclear Information System (INIS)

    Yagawa, G.; Ohtsubo, H.; Toi, Y.; Aizawa, T.; Ikushima, T.

    1984-01-01

    In this paper, two types of numerical tests are performed using several general- and special-purpose computer codes to understand dynamic behaviors of CASK for nuclear fuel shipping under the impact onto rigid floor due to the accidental fall from the height of 9 m. Discussed are the efficiency and the validity of direct time integration schemes and the effects of material and geometric nonlinearities and contact conditions on the numerical data. (orig.)

  3. Validation of Numerical Schemes in a Thermal-Hydraulic Analysis Code for a Natural Convection Heat Transfer of a Molten Pool

    International Nuclear Information System (INIS)

    Kim, Jong Tae; Ha, Kwang Soon; Kim, Hwan Yeol; Park, Rae Joon; Song, Jin Ho

    2010-01-01

    , unsteady turbulence models based on filtered or volume-averaged governing equations have been applied for the turbulent natural convection heat transfer. Tran et al. used large eddy simulation (LES) for the analysis of molten corium coolability. The numerical instability is related to a gravitational force of the molten corium. A staggered grid method on an orthogonal structured grid is used to prohibit a pressure oscillation in the numerical solution. But it is impractical to use the structured grid for a partially filled spherical pool, a cone-type pool or triangular pool. An unstructured grid is an alternative for the nonrectangular pools. In order to remove the checkerboard- like pressure oscillation on the unstructured grid, some special interpolation scheme is required. In order to evaluate in-vessel coolability of the molten corium for a pressurized water reactor (PWR), thermo-hydraulic analysis code LILAC had been developed. LILAC has a capability of multi-layered conjugate heat transfer with melt solidification. A solution domain can be 2-dimensional, axisymmetric, and 3-dimensional. LILAC is based on the unstructured mesh technology to discretized non-rectangular pool geometry. Because of too limited man-power to maintain the code, it becomes more and more difficult to implement new physical and numerical models in the code along with increased complication of the code. Recently, open source CFD code OpenFOAM has been released and applied to many academic and engineering areas. OpenFOAM is based on the very similar numerical schemes to the LILAC code. It has many physical and numerical models for multi-physics analysis. And because it is based on object-oriented programming, it is known that new models can be easily implemented and is very fast with a lower possibility of coding errors. This is a very attractive feature for the development, validation and maintenance of an analysis code. On the contrary to commercial CFD codes, it is possible to modify and add

  4. Numerical analysis of choked converging nozzle flows with surface ...

    Indian Academy of Sciences (India)

    numerically investigated by means of a recent computational model that ..... dependent nonlinear formulations, where the solution scheme is most likely to face with .... boundary and geometric conditions, to (15–16), also proves the validity.

  5. Modelling of fluid flow through short tube orifices under metastable conditions: A new numerical validation approach for evaluating the mass flow rate with refrigerant mixtures (HFC-407C and HFC-410A)

    International Nuclear Information System (INIS)

    García-Valladares, O.; Santoyo, E.

    2014-01-01

    In a previous work, one-dimensional numerical modelling of fluid-flow inside short tube orifices was performed, and successfully validated against a wide range of mass flow rate measurements reported for the refrigerant HFC-134a. Governing equations of continuity, momentum, energy and entropy were solved for describing the fluid flow under a wide variety of thermodynamic transitions (e.g., subcooled liquid region, metastable liquid region, metastable two-phase region and equilibrium two-phase region), including sudden contraction and enlargement. In this new study, a comprehensive comparison analysis between numerical simulation data and experimental measurements obtained for HFC-407C and HFC-410A refrigerants (N o  = 241) to extend the applicability of the same mathematical model was carried out. Using a widespread statistical analysis, based on weighted linear regressions with an outlier detection/rejection module at 95% of confidence level, the prediction performance of the mathematical model was again assessed. Linear regressions between predicted mass flow rate data and experimental measurements were computed, and used them as a statistical comparison criterion. A statistical comparison between predicted simulation results and mass flow rate experimental data are reported. Average deviation errors of ±11.1% (for the refrigerant HFC-407C) and ±7.3% (for refrigerant HFC-410A) were found between numerical model and experimental data. These results demonstrate a new and robust application of the model to predict reliably the mass flow rate through short tube orifices under metastable conditions, which enable this tool to be reliably used for the design of short tube orifices. - Highlights: •A modelling for evaluating short tube orifice was developed for refrigerant mixtures. •The numerical model applied considered metastable regions and choke flow. •The model was validated against experimental data for HFC-407C and HFC-410A. •Statistical analysis based

  6. Instructional Support System--Occupational Education II. ISSOE Automotive Mechanics Content Validation.

    Science.gov (United States)

    Abramson, Theodore

    A study was conducted to validate the Instructional Support System-Occupational Education (ISSOE) automotive mechanics curriculum. The following four steps were undertaken: (1) review of the ISSOE materials in terms of their "validity" as task statements; (2) a comparison of the ISSOE tasks to the tasks included in the V-TECS Automotive…

  7. Validation of a two-fluid model used for the simulation of dense fluidized beds; Validation d`un modele a deux fluides applique a la simulation des lits fluidises denses

    Energy Technology Data Exchange (ETDEWEB)

    Boelle, A.

    1997-02-17

    A two-fluid model applied to the simulation of gas-solid dense fluidized beds is validated on micro scale and on macro scale. Phase coupling is carried out in the momentum and energy transport equation of both phases. The modeling is built on the kinetic theory of granular media in which the gas action has been taken into account in order to get correct expressions of transport coefficients. A description of hydrodynamic interactions between particles in high Stokes number flow is also incorporated in the model. The micro scale validation uses Lagrangian numerical simulations viewed as numerical experiments. The first validation case refers to a gas particle simple shear flow. It allows to validate the competition between two dissipation mechanisms: drag and particle collisions. The second validation case is concerted with sedimenting particles in high Stokes number flow. It allows to validate our approach of hydrodynamic interactions. This last case had led us to develop an original Lagrangian simulation with a two-way coupling between the fluid and the particles. The macro scale validation uses the results of Eulerian simulations of dense fluidized bed. Bed height, particles circulation and spontaneous created bubbles characteristics are studied and compared to experimental measurement, both looking at physical and numerical parameters. (author) 159 refs.

  8. Numerical Analysis of Deflections of Multi-Layered Beams

    Science.gov (United States)

    Biliński, Tadeusz; Socha, Tomasz

    2015-03-01

    The paper concerns the rheological bending problem of wooden beams reinforced with embedded composite bars. A theoretical model of the behaviour of a multi-layered beam is presented. The component materials of this beam are described with equations for the linear viscoelastic five-parameter rheological model. Two numerical analysis methods for the long-term response of wood structures are presented. The first method has been developed with SCILAB software. The second one has been developed with the finite element calculation software ABAQUS and user subroutine UMAT. Laboratory investigations were conducted on sample beams of natural dimensions in order to validate the proposed theoretical model and verify numerical simulations. Good agreement between experimental measurements and numerical results is observed.

  9. Structural system identification: Structural dynamics model validation

    Energy Technology Data Exchange (ETDEWEB)

    Red-Horse, J.R.

    1997-04-01

    Structural system identification is concerned with the development of systematic procedures and tools for developing predictive analytical models based on a physical structure`s dynamic response characteristics. It is a multidisciplinary process that involves the ability (1) to define high fidelity physics-based analysis models, (2) to acquire accurate test-derived information for physical specimens using diagnostic experiments, (3) to validate the numerical simulation model by reconciling differences that inevitably exist between the analysis model and the experimental data, and (4) to quantify uncertainties in the final system models and subsequent numerical simulations. The goal of this project was to develop structural system identification techniques and software suitable for both research and production applications in code and model validation.

  10. Numerical simulation of heat transfer in metal foams

    Science.gov (United States)

    Gangapatnam, Priyatham; Kurian, Renju; Venkateshan, S. P.

    2018-02-01

    This paper reports a numerical study of forced convection heat transfer in high porosity aluminum foams. Numerical modeling is done considering both local thermal equilibrium and non local thermal equilibrium conditions in ANSYS-Fluent. The results of the numerical model were validated with experimental results, where air was forced through aluminum foams in a vertical duct at different heat fluxes and velocities. It is observed that while the LTE model highly under predicts the heat transfer in these foams, LTNE model predicts the Nusselt number accurately. The novelty of this study is that once hydrodynamic experiments are conducted the permeability and porosity values obtained experimentally can be used to numerically simulate heat transfer in metal foams. The simulation of heat transfer in foams is further extended to find the effect of foam thickness on heat transfer in metal foams. The numerical results indicate that though larger foam thicknesses resulted in higher heat transfer coefficient, this effect weakens with thickness and is negligible in thick foams.

  11. An integrated numerical protection system (SPIN)

    International Nuclear Information System (INIS)

    Savornin, J.L.; Bouchet, J.M.; Furet, J.L.; Jover, P.; Sala, A.

    1978-01-01

    Developments in technology have now made it possible to perform more sophisticated protection functions which follow more closely the physical phenomena to be monitored. For this reason the Commissariat a l'energie atomique, Merlin-Gerin, Cerci and Framatome have embarked on the joint development of an Integrated Numerical Protection System (SPIN) which will fulfil this objective and will improve the safety and availability of power stations. The system described involves the use of programmed numerical techniques and a structure based on multiprocessors. The architecture has a redundancy of four. Throughout the development of the project the validity of the studies was confirmed by experiments. A first numerical model of a protection function was tested in the laboratory and is now in operation in a power station. A set of models was then introduced for checking the main components of the equipment finally chosen prior to building and testing a prototype. (author)

  12. Numerical Simulation and Validation of a High Head Model Francis Turbine at Part Load Operating Condition

    Science.gov (United States)

    Goyal, Rahul; Trivedi, Chirag; Kumar Gandhi, Bhupendra; Cervantes, Michel J.

    2017-07-01

    Hydraulic turbines are operated over an extended operating range to meet the real time electricity demand. Turbines operated at part load have flow parameters not matching the designed ones. This results in unstable flow conditions in the runner and draft tube developing low frequency and high amplitude pressure pulsations. The unsteady pressure pulsations affect the dynamic stability of the turbine and cause additional fatigue. The work presented in this paper discusses the flow field investigation of a high head model Francis turbine at part load: 50% of the rated load. Numerical simulation of the complete turbine has been performed. Unsteady pressure pulsations in the vaneless space, runner, and draft tube are investigated and validated with available experimental data. Detailed analysis of the rotor stator interaction and draft tube flow field are performed and discussed. The analysis shows the presence of a rotating vortex rope in the draft tube at the frequency of 0.3 times of the runner rotational frequency. The frequency of the vortex rope precession, which causes severe fluctuations and vibrations in the draft tube, is predicted within 3.9% of the experimental measured value. The vortex rope results pressure pulsations propagating in the system whose frequency is also perceive in the runner and upstream the runner.

  13. Overviews of EMRAS I and II

    International Nuclear Information System (INIS)

    Kawaguchi, Isao

    2011-01-01

    Recently there has been attracting growing interest in impacts of irradiation to wildlife organisms. In IAEA, biota dosimetry working group (BWG) was established in Environmental Modeling for Radiation Safety (EMRAS) program, which aimed to intercompare biota dose assessment models to validate their assumptions and estimations. After EMRAS program finished, new program which is referred as EMRAS II was set on January 2009. In EMRAS II, there are three themes, and 9 working groups were established. One of three themes is related to environmental protection, and three working groups (Biota modeling, wildlife transfer coefficient handbook, biota dose effects modeling) were constituted in it. In this report, activities of EMRAS I BWG and EMRAS II theme II are summarized. (author)

  14. Nonspinning numerical relativity waveform surrogates: assessing the model

    Science.gov (United States)

    Field, Scott; Blackman, Jonathan; Galley, Chad; Scheel, Mark; Szilagyi, Bela; Tiglio, Manuel

    2015-04-01

    Recently, multi-modal gravitational waveform surrogate models have been built directly from data numerically generated by the Spectral Einstein Code (SpEC). I will describe ways in which the surrogate model error can be quantified. This task, in turn, requires (i) characterizing differences between waveforms computed by SpEC with those predicted by the surrogate model and (ii) estimating errors associated with the SpEC waveforms from which the surrogate is built. Both pieces can have numerous sources of numerical and systematic errors. We make an attempt to study the most dominant error sources and, ultimately, the surrogate model's fidelity. These investigations yield information about the surrogate model's uncertainty as a function of time (or frequency) and parameter, and could be useful in parameter estimation studies which seek to incorporate model error. Finally, I will conclude by comparing the numerical relativity surrogate model to other inspiral-merger-ringdown models. A companion talk will cover the building of multi-modal surrogate models.

  15. Numerical Analysis on Longitudinal Location Optimization of Vortex Generator in Compact Heat Exchangers

    DEFF Research Database (Denmark)

    Gorji, M.; Mirgolbababei, H.; Barari, Amin

    2011-01-01

    In this paper, numerical, curvilinear and turbulent model has been used to investigate the effect of vortex generator's longitudinal displacement on heat transfer and fluid flow in different Reynolds numbers ranging from 500 to 3000. The numerical model has been validated with experimental results...

  16. Sub-impacts of simply supported beam struck by steel sphere—part II: Numerical simulations

    Directory of Open Access Journals (Sweden)

    Xiaoli Qi

    2016-12-01

    Full Text Available This part of the article describes numerical simulations of the problem investigated experimentally. A three-dimensional finite element model of elastic–plastic for sphere falling on beam has been implemented using the nonlinear dynamic finite element software LS-DYNA. From the numerical simulations, it was found that the LS-DYNA is suitable to study complex sub-impact phenomenon, and good agreement is in general obtained between the simulation and experimental results. The numerical simulations show that the initial impact velocity, equivalent elasticity modulus, contact curvature radius of the sphere, and equivalent mass have great influence on the contact–impact time of the sub-impact, and an applicable range of the theoretical expression of contact–impact time of the sub-impact was determined. In addition, the numerical simulations demonstrate the ratios of maximum amplitudes of the first-, second-, and third-order vibrations to the maximum amplitudes of the beam vibrations, and the phase angle of the first-order vibration will change suddenly when the sub-impacts occur. Furthermore, the occurrence conditions of the sub-impacts were clarified numerically. It was found that the occurrence conditions of the sub-impacts can be represented by a mass ratio threshold, and the thickness or length of the beam has also a great influence on the occurrence of the sub-impacts. Once the sub-impacts occur, which would result in an uncertain behavior of the apparent coefficient of restitution.

  17. Numerical simulation of the tip aerodynamics and acoustics test

    Science.gov (United States)

    Tejero E, F.; Doerffer, P.; Szulc, O.; Cross, J. L.

    2016-04-01

    The application of an efficient flow control system on helicopter rotor blades may lead to improved aerodynamic performance. Recently, our invention of Rod Vortex Generators (RVGs) has been analyzed for helicopter rotor blades in hover with success. As a step forward, the study has been extended to forward flight conditions. For this reason, a validation of the numerical modelling for a reference helicopter rotor (without flow control) is needed. The article presents a study of the flow-field of the AH-1G helicopter rotor in low-, medium- and high-speed forward flight. The CFD code FLOWer from DLR has proven to be a suitable tool for the aerodynamic analysis of the two-bladed rotor without any artificial wake modelling. It solves the URANS equations with LEA (Linear Explicit Algebraic stress) k-ω model using the chimera overlapping grids technique. Validation of the numerical model uses comparison with the detailed flight test data gathered by Cross J. L. and Watts M. E. during the Tip Aerodynamics and Acoustics Test (TAAT) conducted at NASA in 1981. Satisfactory agreements for all speed regimes and a presence of significant flow separation in high-speed forward flight suggest a possible benefit from the future implementation of RVGs. The numerical results based on the URANS approach are presented not only for a popular, low-speed case commonly used in rotorcraft community for CFD codes validation but preferably for medium- and high-speed test conditions that have not been published to date.

  18. Validation of numerical model of a liquid flow in a tundish by laboratory measurements

    Directory of Open Access Journals (Sweden)

    T. Merder

    2014-07-01

    Full Text Available The article presents results of physical and numerical modelling of steel flow through a tundish of continuous casting machine. In numerical calculations the influence of mesh density was tested and the correctness of the flow description in the near-wall region was checked using Standard Wall Function model. Obtained results were verified using experimental results of velocity field (PIV method coming from a water tundish model.

  19. In silico prediction of ROCK II inhibitors by different classification approaches.

    Science.gov (United States)

    Cai, Chuipu; Wu, Qihui; Luo, Yunxia; Ma, Huili; Shen, Jiangang; Zhang, Yongbin; Yang, Lei; Chen, Yunbo; Wen, Zehuai; Wang, Qi

    2017-11-01

    ROCK II is an important pharmacological target linked to central nervous system disorders such as Alzheimer's disease. The purpose of this research is to generate ROCK II inhibitor prediction models by machine learning approaches. Firstly, four sets of descriptors were calculated with MOE 2010 and PaDEL-Descriptor, and optimized by F-score and linear forward selection methods. In addition, four classification algorithms were used to initially build 16 classifiers with k-nearest neighbors [Formula: see text], naïve Bayes, Random forest, and support vector machine. Furthermore, three sets of structural fingerprint descriptors were introduced to enhance the predictive capacity of classifiers, which were assessed with fivefold cross-validation, test set validation and external test set validation. The best two models, MFK + MACCS and MLR + SubFP, have both MCC values of 0.925 for external test set. After that, a privileged substructure analysis was performed to reveal common chemical features of ROCK II inhibitors. Finally, binding modes were analyzed to identify relationships between molecular descriptors and activity, while main interactions were revealed by comparing the docking interaction of the most potent and the weakest ROCK II inhibitors. To the best of our knowledge, this is the first report on ROCK II inhibitors utilizing machine learning approaches that provides a new method for discovering novel ROCK II inhibitors.

  20. Numerical treatment of experimental data in calibration procedures

    International Nuclear Information System (INIS)

    Moreno, C.

    1993-06-01

    A discussion of a numerical procedure to find the proportionality factor between two measured quantities is given in the framework of the least-squares method. Variable, as well as constant, amounts of experimental uncertainties are considered for each variable along their measured range. The variance of the proportionality factor is explicitly given as a closed analytical expression valid for the general case. Limits of the results obtained here have been studied allowing comparisons with those obtained using classical least-squares expressions. Analytical and numerical examples are also discussed. (author). 11 refs, 1 fig., 1 tab

  1. Numerical and Evolutionary Optimization Workshop

    CERN Document Server

    Trujillo, Leonardo; Legrand, Pierrick; Maldonado, Yazmin

    2017-01-01

    This volume comprises a selection of works presented at the Numerical and Evolutionary Optimization (NEO) workshop held in September 2015 in Tijuana, Mexico. The development of powerful search and optimization techniques is of great importance in today’s world that requires researchers and practitioners to tackle a growing number of challenging real-world problems. In particular, there are two well-established and widely known fields that are commonly applied in this area: (i) traditional numerical optimization techniques and (ii) comparatively recent bio-inspired heuristics. Both paradigms have their unique strengths and weaknesses, allowing them to solve some challenging problems while still failing in others. The goal of the NEO workshop series is to bring together people from these and related fields to discuss, compare and merge their complimentary perspectives in order to develop fast and reliable hybrid methods that maximize the strengths and minimize the weaknesses of the underlying paradigms. Throu...

  2. Development of a Two-fluid Drag Law for Clustered Particles using Direct Numerical Simulation and Validation through Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gokaltun, Seckin [Florida International Univ., Miami, FL (United States); Munroe, Norman [Florida International Univ., Miami, FL (United States); Subramaniam, Shankar [Iowa State Univ., Ames, IA (United States)

    2014-12-31

    This study presents a new drag model, based on the cohesive inter-particle forces, implemented in the MFIX code. This new drag model combines an existing standard model in MFIX with a particle-based drag model based on a switching principle. Switches between the models in the computational domain occur where strong particle-to-particle cohesion potential is detected. Three versions of the new model were obtained by using one standard drag model in each version. Later, performance of each version was compared against available experimental data for a fluidized bed, published in the literature and used extensively by other researchers for validation purposes. In our analysis of the results, we first observed that standard models used in this research were incapable of producing closely matching results. Then, we showed for a simple case that a threshold is needed to be set on the solid volume fraction. This modification was applied to avoid non-physical results for the clustering predictions, when governing equation of the solid granular temperate was solved. Later, we used our hybrid technique and observed the capability of our approach in improving the numerical results significantly; however, improvement of the results depended on the threshold of the cohesive index, which was used in the switching procedure. Our results showed that small values of the threshold for the cohesive index could result in significant reduction of the computational error for all the versions of the proposed drag model. In addition, we redesigned an existing circulating fluidized bed (CFB) test facility in order to create validation cases for clustering regime of Geldart A type particles.

  3. Numerical methods for stochastic partial differential equations with white noise

    CERN Document Server

    Zhang, Zhongqiang

    2017-01-01

    This book covers numerical methods for stochastic partial differential equations with white noise using the framework of Wong-Zakai approximation. The book begins with some motivational and background material in the introductory chapters and is divided into three parts. Part I covers numerical stochastic ordinary differential equations. Here the authors start with numerical methods for SDEs with delay using the Wong-Zakai approximation and finite difference in time. Part II covers temporal white noise. Here the authors consider SPDEs as PDEs driven by white noise, where discretization of white noise (Brownian motion) leads to PDEs with smooth noise, which can then be treated by numerical methods for PDEs. In this part, recursive algorithms based on Wiener chaos expansion and stochastic collocation methods are presented for linear stochastic advection-diffusion-reaction equations. In addition, stochastic Euler equations are exploited as an application of stochastic collocation methods, where a numerical compa...

  4. Hall effects on hydromagnetic Couette flow of Class-II in a rotating ...

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology ... Couette flow of class-II of a viscous, incompressible and electrically conducting fluid with ... Numerical solution of energy equation and numerical values of rate of heat transfer at ...

  5. Supercritical CO₂assisted extraction and LC-MS identification of picroside I and picroside II from Picrorhiza kurroa.

    Science.gov (United States)

    Patil, Ajit A; Sachin, Bhusari S; Shinde, Devanand B; Wakte, Pravin S

    2013-02-01

    Picroside I and picroside II have been studied intensively because of their pharmacological actions and clinical applications. Numerous methods have been reported for extracting picroside I and picroside II from Picrorrhiza. kurroa rhizomes. This is the first report of picroside I and picroside II extraction using the supercritical carbon dioxide assisted extraction technique. To develop supercritical carbon dioxide assisted extraction and LC-MS identification of picroside I and picroside II from the Picrorrhiza kurroa Royle rhizomes. Surface response methodology based on 3³ fractional factorial design was used to extract picroside I and picroside II from P. kurroa rhizomes. The effects of various process factors, namely temperature (40-80°C), pressure (25-35 MPa) and co-solvent (methanol) concentration (0-10% v/v) on extraction yield of the two compounds were evaluated. The picroside I and picroside II contents were determined using validated LC-MS methodology. The maximum yield of picroside I (32.502 ± 1.131 mg/g) and picroside II (9.717 ± 0.382 mg/g) was obtained at the 10% v/v co-solvent concentration, 40°C temperature and 30 MPa pressure. The conventional Soxhlet assisted methanol extract of P. kurroa powder resulted in 36.743 ± 1.75 and 11.251 ± 0.54 mg/g yield of picroside I and picroside II, respectively. Variation of concentration and extraction time showed a significant effect on the picroside I and picroside II yield. Supercritical carbon dioxide assisted extraction using methanol as a co-solvent is an efficient and environmentally sustainable method for extracting picroside I and picroside II from P. kurroa rhizomes. Copyright © 2012 John Wiley & Sons, Ltd.

  6. Numerical analysis of the bearing capacity of complex rock mechanical underground systems with filigree structures in the presence of imponderables. A contribution to the systematization of the investigative process with application/demonstration using the example of the salt cavern ASSE II/south flank

    International Nuclear Information System (INIS)

    Dyogtyev, Oleksandr

    2017-01-01

    The thesis dealing with the numerical analysis of the bearing capacity of complex rock mechanical underground systems with filigree structures in the presence of imponderables covers the following issues: status of science and technology, concept for the performance of numerical studies on the bearing capacity of large-volume underground systems, application example salt cavern ASSE II - application of the developed concept/development of numerical tools for the overall system/application of the global model to the given questions/realization of the modification potential.

  7. A guide for validation of FE-Simulations in bulk metal forming

    International Nuclear Information System (INIS)

    Tekkaya, A. Erman

    2005-01-01

    Numerical analysis of metal forming processes is an everyday practice in industry. Forming loads, material flow, forming defects such as underfills, laps and even cracks, stresses in dies and punches, as well as product properties like new hardness distribution, dimensional accuracies and residual stresses are predicted by numerical analysis and used for technology generation. Most of the numerical analysis is done by the finite element method made available for engineers and technicians by numerous by powerful commercial software packages. These software packages act as black-boxes and usually hide the complicated numerical procedures and even their crucial parameters from the applier. Therefore, the question arises during the industrial applications: how accurate is the simulation and how can the results can be assessed? The aim of this paper is to provide a guideline to assess the results of metal forming simulations. Although some ideas are valid for any metal forming process, bulk forming is the process concern. The paper will address firstly the possible sources of error in a finite element analysis of bulk forming processes. Then, some useful elementary knowledge will be summarized. Various levels of validation such as result and ability validation and assessment will be discussed. Finally, interpretation of results will be treated. In this content also some suggestions will be given. (author)

  8. Experimental and numerical study of light gas dispersion in a ventilated room

    Energy Technology Data Exchange (ETDEWEB)

    Gelain, Thomas, E-mail: thomas.gelain@irsn.fr; Prévost, Corinne

    2015-11-15

    Highlights: • Presentation of many experimental local data for different configurations. • Highlight of the influence of numerical parameters used in the CFD code. • Validation of the CFD code ANSYS CFX on the basis of experimental data. - Abstract: The objective of this study is to validate the ANSYS CFX version 12 computational code on the basis of light gas dispersion tests performed in two ventilated rooms. It follows an initial study on heavy gas dispersion carried out by Ricciardi et al. (2008). First, a study of sensitivity to various numerical parameters allows a set of reference data to be developed and the influence of the numerical scheme of advection to be revealed. Second, two helium (simulating hydrogen) dispersion test grids are simulated for the two rooms studied, and the results of the calculations are compared with experimental results. The very good agreement between these results allows the code and its dataset to be validated for this application. In future, a study with higher levels of helium (on the order of 4% vol at equilibrium) is envisaged in the context of safety analyses related to the hydrogen risk, these levels representing the lower explosive limit (LEL) of hydrogen.

  9. Tools for system validation. Dynamic modelling of the direct condenser at Sandvik II in Vaexjoe; Hjaelpmedel foer systemvalidering. Dynamisk modellering av direktkondensorn paa Sandvik II i Vaexjoe

    Energy Technology Data Exchange (ETDEWEB)

    Raaberg, Martin [Dynasim AB, Lund (Sweden); Tuszynski, Jan [Sycon Energikonsult AB, Malmoe (Sweden)

    2002-04-01

    The project reported here aimed to test the suitability of existing computer tools for modelling of energy processes. The suggested use for the models are at the early tests and validations of new, refurbished or modernised thermal plants. The technique presented in this report should be applicable for clarification of the scope of delivery and testing for both the process and tile control system. The validation process can thus be simplified, allowing risk reduction and predictability of the commissioning. The main delays and economical misfortune often occurs during commissioning. This report should prove the feasibility of the purchase routines where purchaser, vendor and quality inspection will use a common model of the process to validate system requirements and specifications. Later on it is used to validate structure and predefine testing. Thanks to agreement on the common model, early tests can be conducted on complex systems, minimizing the investment risks. The modelling reported here concerns the direct condenser at Sandvik 11, power and heating plant owned by Vaexjoe Energi AB in Sweden. We have chosen the direct condenser because it is an existing, well-documented and well-defined subsystem of high complexity in both structure and operation. Heavy transients made commissioning and test runs of similar condensers throughout Sweden costly and troublesome. The work resulted in an open, general, and physically correct model. The model can easily be re-dimensioned through physical parameters of common use. The control system modelled corresponds to the actual control system at the Sandvik II plant. Any improvement or deep validation of the controllers was not included in this work. The suitability is shown through four simulation cases. Three cases are based on a registered plant operation during a turbine trip. The first test case uses present plant data, the second an old steam valve actuator and the third uses the old actuator and an error in level

  10. Numerical Analysis of Deflections of Multi-Layered Beams

    Directory of Open Access Journals (Sweden)

    Biliński Tadeusz

    2015-03-01

    Full Text Available The paper concerns the rheological bending problem of wooden beams reinforced with embedded composite bars. A theoretical model of the behaviour of a multi-layered beam is presented. The component materials of this beam are described with equations for the linear viscoelastic five-parameter rheological model. Two numerical analysis methods for the long-term response of wood structures are presented. The first method has been developed with SCILAB software. The second one has been developed with the finite element calculation software ABAQUS and user subroutine UMAT. Laboratory investigations were conducted on sample beams of natural dimensions in order to validate the proposed theoretical model and verify numerical simulations. Good agreement between experimental measurements and numerical results is observed.

  11. Numerical microstructure prediction for an aluminium casting and its experimental validation

    OpenAIRE

    Unterreiter Guenter; Ludwig Andreas; Wu Menghuai

    2011-01-01

    Virtual manufacturing based on through-process modelling becomes an evolving research area which aims at integrating diverse simulation tools to realize computer-aided design, analysis, prototyping and manufacturing. Numerical prediction of the as-cast microstructure is an initial and critical step in the whole through-process modelling chain for engineering components. A commercial software package with the capability of calculating important microstructure features for aluminium alloys is u...

  12. Paired emitter-detector light emitting diodes for the measurement of lead(II) and cadmium(II)

    International Nuclear Information System (INIS)

    Lau, K.-T.; McHugh, Eimear; Baldwin, Susan; Diamond, Dermot

    2006-01-01

    A transmittance mode optical device based on using a reverse biased light emitting diode (LED) as light detector has been developed for colorimetric analysis. This new optical device was validated with bromocresol green dye for absorbance measurements before being employed for detecting cadmium(II) and lead(II) in water. Results show that the performance of this LED-based device is comparable to much more expensive bench top UV-vis instruments, but with the advantages of being low cost, low power and simple to operate

  13. Paired emitter-detector light emitting diodes for the measurement of lead(II) and cadmium(II)

    Energy Technology Data Exchange (ETDEWEB)

    Lau, K.-T. [Adaptive Sensors Group, National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin 9 (Ireland)]. E-mail: kim.lau@dcu.ie; McHugh, Eimear [Adaptive Sensors Group, National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin 9 (Ireland); Baldwin, Susan [Adaptive Sensors Group, National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin 9 (Ireland); Diamond, Dermot [Adaptive Sensors Group, National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin 9 (Ireland)]. E-mail: Dermot.diamond@dcu.ie

    2006-05-31

    A transmittance mode optical device based on using a reverse biased light emitting diode (LED) as light detector has been developed for colorimetric analysis. This new optical device was validated with bromocresol green dye for absorbance measurements before being employed for detecting cadmium(II) and lead(II) in water. Results show that the performance of this LED-based device is comparable to much more expensive bench top UV-vis instruments, but with the advantages of being low cost, low power and simple to operate.

  14. Numerical simulation of fractional Cable equation of spiny neuronal dendrites

    Directory of Open Access Journals (Sweden)

    N.H. Sweilam

    2014-03-01

    Full Text Available In this article, numerical study for the fractional Cable equation which is fundamental equations for modeling neuronal dynamics is introduced by using weighted average of finite difference methods. The stability analysis of the proposed methods is given by a recently proposed procedure similar to the standard John von Neumann stability analysis. A simple and an accurate stability criterion valid for different discretization schemes of the fractional derivative and arbitrary weight factor is introduced and checked numerically. Numerical results, figures, and comparisons have been presented to confirm the theoretical results and efficiency of the proposed method.

  15. Visualisation of the velocity field in a scaled water model for validation of numerical calculations for a powder fuelled boiler

    Energy Technology Data Exchange (ETDEWEB)

    Dumortier, Laurent [Luleaa Univ. of Technology (Sweden)

    2001-01-01

    Validation of numerical predictions of the flow field in a powder fired industry boiler by flow visualisation in a water model has been studied. The bark powder fired boiler at AssiDomaen Kraftliner in Piteaa has been used as a case study. A literature study covering modelling of combusting flows by water models and different flow visualisation techniques has been carried out. The main conclusion as regards the use of water models is that only qualitative information can be expected. As far as turbulent flow is assured in the model as well as the real furnace, the same Reynolds number is not required. Geometrical similarity is important but modelling of burner jets requires adaptation of the jet diameters in the model. Guidelines for this are available and are presented in the report. The review of visualisation techniques shows that a number of methods have been used successfully for validation of flow field predictions. The conclusion is that the Particle Image Velocimetry and Particle Tracking Velocimetry methods could be very suitable for validation purposes provided that optical access is possible. The numerical predictions include flow fields in a 1130 scale model of the AssiDomaen furnace with water flow as well as flow and temperature fields in the actual furnace. Two burner arrangements were considered both for the model and the actual furnace, namely the present configuration with four front burners and a proposed modification where an additional burner is positioned at a side wall below the other burners. There are many similarities between the predicted flow fields in the model and the full scale furnace but there are also some differences, in particular in the region above the burners and the effects of the low region re-circulation on the lower burner jets. The experiments with the water model have only included the arrangement with four front burners. There were problems determining the velocities in the jets and the comparisons with predictions are

  16. Non-hydrostatic semi-elastic hybrid-coordinate SISL extension of HIRLAM. Part II: numerical testing

    OpenAIRE

    Rõõm, Rein; Männik, Aarne; Luhamaa, Andres; Zirk, Marko

    2007-01-01

    The semi-implicit semi-Lagrangian (SISL), two-time-level, non-hydrostatic numerical scheme, based on the non-hydrostatic, semi-elastic pressure-coordinate equations, is tested in model experiments with flow over given orography (elliptical hill, mountain ridge, system of successive ridges) in a rectangular domain with emphasis on the numerical accuracy and non-hydrostatic effect presentation capability. Comparison demonstrates good (in strong primary wave generation) to satisfactory (in weak ...

  17. Evaluation of the Walking Index for Spinal Cord Injury II (WISCI-II) in children with Spinal Cord Injury (SCI).

    Science.gov (United States)

    Calhoun Thielen, C; Sadowsky, C; Vogel, L C; Taylor, H; Davidson, L; Bultman, J; Gaughan, J; Mulcahey, M J

    2017-05-01

    Mixed methods were used in this study. The appropriateness of the levels of the Walking Index for Spinal Cord Injury II (WISCI-II) for application in children was critically reviewed by physical therapists using the Modified Delphi Technique, and the inter- and intra-rater reliability of the WISCI-II in children was evaluated. To examine the construct validity, and to establish reliability of the WISCI-II related to its use in children with spinal cord injury (SCI). United States of America. Using a Modified Delphi Technique, physical therapists critically reviewed the WISCI-II levels for pediatric utilization. Concurrently, ambulatory children under age 18 years with SCI were evaluated using the WISCI-II on two occasions by the same therapist to establish intra-rater reliability. One trial was photographed and de-identified. Each photograph was reviewed by four different physical therapists who gave WISCI-II scores to establish inter-rater reliability. Summary and descriptive statistics were used to calculate the frequency of yes/no responses for each WISCI-II level question and to determine the percent agreement for each question. Inter- and intra-rater reliability was calculated using interclass correlation coefficients (ICCs) with 95% confidence intervals (CI). Construct validity was confirmed after one Delphi round during which at least 80% agreement was established by 51 physical therapists on the appropriateness of the WISCI-II levels for children. Fifty-two children with SCI aged 2-17 years completed repeated WISCI-II assessments and 40 de-identified photographs were scored by four physical therapists. Intra- and inter-rater reliability was high (ICC=0.997, CI=0.995-0.998 and ICC=0.97, CI=0.95-0.98, respectively). This study demonstrates support for the use of the WISCI-II in ambulatory children with SCI. This study was funded by the Craig H Neilsen Foundation, Spinal Cord Injury Research on the Translation Spectrum, Senior Research Award #282592 (Mulcahey

  18. Numerical study of thermal test of a cask of transportation for radioactive material

    International Nuclear Information System (INIS)

    Vieira, Tiago A.S.; Santos, André A.C. dos; Vidal, Guilherme A.M.; Silva Junior, Geraldo E.

    2017-01-01

    In this study numerical simulations of a transport cask for radioactive material were made and the numerical results were compared with experimental results of tests carried out in two different opportunities. A mesh study was also made regarding the previously designed geometry of the same cask, in order to evaluate its impact in relation to the stability of numerical results for this type of problem. The comparison of the numerical and experimental results allowed to evaluate the need to plan and carry out a new test in order to validate the CFD codes used in the numerical simulations

  19. The validity of METHUSELAH II in water moderated lattice calculations

    International Nuclear Information System (INIS)

    Hicks, D.; Hopkins, D.R.

    1964-09-01

    An improved version of the METHUSELAH code has been developed, which embodies some refinements in the treatment of the thermal spectrum, improved cross-section data, and a neutron balance output. The changes in nuclear data and physical models are summarised in this report; a detailed description of the programme modifications will be published separately. In this report METHUSELAH II predictions are compared with published lattice reactivity and reaction rate data. The systems examined include British S.G.H.W. type lattices (with H 2 O and D 2 O moderation), Canadian natural uranium/D 2 0 experiments, U.S. low enrichment H 2 O systems, and the Hanford Pu A1/H 2 O experiments. In general the agreement is sufficiently good to demonstrate the value of METHUSELAH II as an assessment tool and to indicate clear improvements over METHUSELAH I. A number of discrepancies are, however, observed and are the subject of comment. (author)

  20. Friction stir welding of AA6082-T6 sheets: Numerical analysis and experimental tests

    International Nuclear Information System (INIS)

    Buffa, G.; Fratini, L.

    2004-01-01

    3D numerical simulation of the Friction Stir Welding process is developed with the aim to highlight the process mechanics in terms of metal flux and temperature, strain and strain rate distributions. The numerical results have been validated though a set of experimental tests

  1. Developing Teaching Material Software Assisted for Numerical Methods

    Science.gov (United States)

    Handayani, A. D.; Herman, T.; Fatimah, S.

    2017-09-01

    The NCTM vision shows the importance of two things in school mathematics, which is knowing the mathematics of the 21st century and the need to continue to improve mathematics education to answer the challenges of a changing world. One of the competencies associated with the great challenges of the 21st century is the use of help and tools (including IT), such as: knowing the existence of various tools for mathematical activity. One of the significant challenges in mathematical learning is how to teach students about abstract concepts. In this case, technology in the form of mathematics learning software can be used more widely to embed the abstract concept in mathematics. In mathematics learning, the use of mathematical software can make high level math activity become easier accepted by student. Technology can strengthen student learning by delivering numerical, graphic, and symbolic content without spending the time to calculate complex computing problems manually. The purpose of this research is to design and develop teaching materials software assisted for numerical method. The process of developing the teaching material starts from the defining step, the process of designing the learning material developed based on information obtained from the step of early analysis, learners, materials, tasks that support then done the design step or design, then the last step is the development step. The development of teaching materials software assisted for numerical methods is valid in content. While validator assessment for teaching material in numerical methods is good and can be used with little revision.

  2. Checklists for external validity

    DEFF Research Database (Denmark)

    Dyrvig, Anne-Kirstine; Kidholm, Kristian; Gerke, Oke

    2014-01-01

    to an implementation setting. In this paper, currently available checklists on external validity are identified, assessed and used as a basis for proposing a new improved instrument. METHOD: A systematic literature review was carried out in Pubmed, Embase and Cinahl on English-language papers without time restrictions....... The retrieved checklist items were assessed for (i) the methodology used in primary literature, justifying inclusion of each item; and (ii) the number of times each item appeared in checklists. RESULTS: Fifteen papers were identified, presenting a total of 21 checklists for external validity, yielding a total...... of 38 checklist items. Empirical support was considered the most valid methodology for item inclusion. Assessment of methodological justification showed that none of the items were supported empirically. Other kinds of literature justified the inclusion of 22 of the items, and 17 items were included...

  3. Numerical and experimental study of heat transfers in an arc plasma. Application to TIG arc welding

    International Nuclear Information System (INIS)

    Borel, Damien

    2013-01-01

    The arc welding is used for many industrial applications, especially GTA welding. Given the excellent quality of the produced welds, GTA welding is used for the majority of the interventions (repairs, joined sealing) on the French nuclear park. This work is part of a project carried out by EDF R and D which aims to simulate the whole process and builds a tool able to predict the welds quality. In this study, we focus on the development of a predictive model of the exchanged heat flux at the arc - work piece interface, responsible of the work piece fusion. The modeling of the arc plasma using the electric module of the hydrodynamics software Code Saturne R developed by EDF R and D is required. Two types of experimental tests are jointly carried out to validate this numerical model: i) on density and temperature measurements of plasma by atomic emission spectroscopy and ii) on the evaluation of the heat transfers on the work piece surface. This work also aims at demonstrate that the usual method of using an equivalent thermal source to model the welding process, can be replaced by our plasma model, without the numerous trials inherent to the usual method. (author)

  4. Numerical modelling of the jet nozzle enrichment process

    International Nuclear Information System (INIS)

    Vercelli, P.

    1983-01-01

    A numerical model was developed for the simulation of the isotopic enrichment produced by the jet nozzle process. The flow was considered stationary and under ideal gas conditions. The model calculates, for any position of the skimmer piece: (a) values of radial mass concentration profiles for each isotopic species and (b) values of elementary separation effect (Σ sub(A)) and uranium cut (theta). The comparison of the numerical results obtained with the experimental values given in the literature proves the validity of the present work as an initial step in the modelling of the process. (Author) [pt

  5. Using numerical simulations to extract parameters of toroidal electron plasmas from experimental data

    DEFF Research Database (Denmark)

    Ha, B. N.; Stoneking,, M. R.; Marler, Joan

    2009-01-01

    Measurements of the image charge induced on electrodes provide the primary means of diagnosing plasmas in the Lawrence Non-neutral Torus II (LNT II) [Phys. Rev. Lett. 100, 155001 (2008)]. Therefore, it is necessary to develop techniques that determine characteristics of the electron plasma from......, as in the cylindrical case. In the toroidal case, additional information about the m=1 motion of the plasma can be obtained by analysis of the image charge signal amplitude and shape. Finally, results from the numerical simulations are compared to experimental data from the LNT II and plasma characteristics...

  6. Recent validation tests of the Edelweiss II detector holders

    International Nuclear Information System (INIS)

    Schwamm, F.; Chapellier, M.; Herve, S.; Karolak, M.; Navick, X.-F.

    2006-01-01

    A very good understanding of noise sources is highly important for the sensitivity of a dark matter search experiment. One of these noise contributions in the Edelweiss experiment could be the microphonics and temperature variations caused by vibrations of the cryostat. Recent studies complement an earlier work in describing the effect of the Edelweiss II detector holders on the amplitude of the vibrations seen by the detector. The results of these studies will be presented in this article

  7. CRAB-II: a computer program to predict hydraulics and scram dynamics of LMFBR control assemblies and its validation

    International Nuclear Information System (INIS)

    Carelli, M.D.; Baker, L.A.; Willis, J.M.; Engel, F.C.; Nee, D.Y.

    1982-01-01

    This paper presents an analytical method, the computer code CRAB-II, which calculates the hydraulics and scram dynamics of LMFBR control assemblies of the rod bundle type and its validation against prototypic data obtained for the Clinch River Breeder Reactor (CRBR) primary control assemblies. The physical-mathematical model of the code is presented, followed by a description of the testing of prototypic CRBR control assemblies in water and sodium to characterize, respectively, their hydraulic and scram dynamics behavior. Comparison of code predictions against the experimental data are presened in detail; excellent agreement was found. Also reported are experimental data and empirical correlations for the friction factor of the absorber bundle in the entire flow range (laminar to turbulent) which represent an extension of the state-of-the-art, since only fuel and blanket assemblies friction factor correlations were previously reported in the open literature

  8. Towards numerical simulations of supersonic liquid jets using ghost fluid method

    International Nuclear Information System (INIS)

    Majidi, Sahand; Afshari, Asghar

    2015-01-01

    Highlights: • A ghost fluid method based solver is developed for numerical simulation of compressible multiphase flows. • The performance of the numerical tool is validated via several benchmark problems. • Emergence of supersonic liquid jets in quiescent gaseous environment is simulated using ghost fluid method for the first time. • Bow-shock formation ahead of the liquid jet is clearly observed in the obtained numerical results. • Radiation of mach waves from the phase-interface witnessed experimentally is evidently captured in our numerical simulations. - Abstract: A computational tool based on the ghost fluid method (GFM) is developed to study supersonic liquid jets involving strong shocks and contact discontinuities with high density ratios. The solver utilizes constrained reinitialization method and is capable of switching between the exact and approximate Riemann solvers to increase the robustness. The numerical methodology is validated through several benchmark test problems; these include one-dimensional multiphase shock tube problem, shock–bubble interaction, air cavity collapse in water, and underwater-explosion. A comparison between our results and numerical and experimental observations indicate that the developed solver performs well investigating these problems. The code is then used to simulate the emergence of a supersonic liquid jet into a quiescent gaseous medium, which is the very first time to be studied by a ghost fluid method. The results of simulations are in good agreement with the experimental investigations. Also some of the famous flow characteristics, like the propagation of pressure-waves from the liquid jet interface and dependence of the Mach cone structure on the inlet Mach number, are reproduced numerically. The numerical simulations conducted here suggest that the ghost fluid method is an affordable and reliable scheme to study complicated interfacial evolutions in complex multiphase systems such as supersonic liquid

  9. Numerical and experimental study of two turbulent opposed plane jets

    Energy Technology Data Exchange (ETDEWEB)

    Besbes, Sonia; Mhiri, Hatem [Laboratoire de Mecanique des Fluides et Thermique, Ecole Nationale d' Ingenieurs de Monastir, Route de Ouardanine, Monastir (Tunisia); Le Palec, Georges; Bournot, Philippe [Institut de Mecanique de Marseille, UNIMECA, Technopole de Chateau-Gombert, 60 rue Joliot-Curie, 13453 Marseille (France)

    2003-09-01

    The turbulent interaction between two opposed plane jets separated by a distance H is experimentally studied by using a PIV (Particle Image Velocimetry) method and numerically investigated by means of a finite volume code. Two turbulence models have been tested: the standard k-{epsilon} model and a second-order model. The validation of the numerical study was performed by comparing the results with experimental data obtained for the case of two interacting opposed jets at ambient temperature (isothermal case). The effect of the angle of inclination of the jets is studied. Conclusions of the validation are then used to study the interaction between two jets, one being maintained at ambient temperature whereas the other is heated. Results show that the stagnation point moves towards the heated jet. It is shown that the heating induces a stabilizing effect on the flow. (orig.)

  10. Decoupled numerical simulation of a solid fuel fired retort boiler

    International Nuclear Information System (INIS)

    Ryfa, Arkadiusz; Buczynski, Rafal; Chabinski, Michal; Szlek, Andrzej; Bialecki, Ryszard A.

    2014-01-01

    The paper deals with numerical simulation of the retort boiler fired with solid fuel. Such constructions are very popular for heating systems and their development is mostly based on the designer experience. The simulations have been done in ANSYS/Fluent package and involved two numerical models. The former deals with a fixed-bed combustion of the solid fuel and free-board gas combustion. Solid fuel combustion is based on the coal kinetic parameters. This model encompasses chemical reactions, radiative heat transfer and turbulence. Coal properties have been defined with user defined functions. The latter model describes flow of water inside a water jacked that surrounds the combustion chamber and flue gas ducts. The novelty of the proposed approach is separating of the combustion simulation from the water flow. Such approach allows for reducing the number of degrees of freedom and thus lowering the necessary numerical effort. Decoupling combustion from water flow requires defining interface boundary condition. As this boundary condition is unknown it is adjusted iteratively. The results of the numerical simulation have been successfully validated against measurement data. - Highlights: • New decoupled modelling of small scale boiler is proposed. • Fixed-bed combustion model based on kinetic parameters is introduced. • Decoupling reduced the complexity of the model and computational time. • Simple and computationally inexpensive coupling algorithm is proposed. • Model is successfully validated against measurements

  11. The Tore Supra HeII cryogenic system

    International Nuclear Information System (INIS)

    Claudet, G.

    1991-01-01

    The tokamak TORE SUPRA built by the association EURATOM-CEA is routinely operated with a toroidal magnet made of Niobium Titanium cooled at 1.8 K by pressurized HeII. The paper will remind the reasons for such a choice and will describe the corresponding technical solutions. After several years of operation, the validity of the HeII cooling solution will be discussed on the basis of the actual and long term behaviour

  12. Calibration and validation of a numerical model against experimental data of methane hydrate formation and dissociation in a sandy porous medium

    Science.gov (United States)

    Yin, Z.; Moridis, G. J.; Chong, Z. R.; Linga, P.

    2017-12-01

    Methane hydrates (MH) are known to trap enormous amounts of CH4 in oceanic and permafrost-associated deposits, and are being considered as a potential future energy source. Several powerful numerical simulators were developed to describe the behavior of natural hydrate-bearing sediments (HBS). The complexity and strong nonlinearities in HBS do not allow analytical solutions for code validation. The only reliable method to develop confidence in these models is through comparisons to laboratory and/or field experiments. The objective of this study is to reproduce numerically the results from earlier experiments of MH formation and depressurization (and the corresponding fluid production) in 1.0L reactor involving unconsolidated sand, thus validating and calibrating the TOUGH+Hydrate v1.5 simulator. We faithfully describe the reactor geometry and the experimental process that involves both hydrate formation and dissociation. We demonstrate that the laboratory experiments can only be captured by a kinetic hydration model. There is an excellent agreement between observations and predictions (a) of the cumulative gas depletion (during formation) and production (during dissociation) and (b) of pressure over time. The temperature agreement is less satisfactory, and the deviations are attributed to the fixed locations of the limited number of sensors that cannot fully capture the hydrate heterogeneity. We also predict the spatial distributions over time of the various phase (gas, aqueous and hydrate) saturations. Thus, hydrates form preferentially along the outer boundary of the sand core, and the hydrate front moves inward leaving a significant portion of the sand at the center hydrate-free. During depressurization, dissociation advances again inward from the reactor boundary to the center of the reactor. As expected, methane gas accumulates initially at the locations of most intense dissociation, and then gradually migrates to the upper section of the reactor because of

  13. Validation of CATHARE for gas-cooled reactors

    International Nuclear Information System (INIS)

    Fabrice Bentivoglio; Ola Widlund; Manuel Saez

    2005-01-01

    Full text of publication follows: Extensively validated and qualified for light-water reactor safety studies, the thermo-hydraulics code CATHARE has been adapted to deal also with gas-cooled reactor applications. In order to validate the code for these novel applications, CEA (Commissariat a l'Energie Atomique) has initiated an ambitious long-term experimental program. The foreseen experimental facilities range from small-scale loops for physical correlations, to component technology and system demonstration loops. In the short-term perspective, CATHARE is being validated against existing experimental data, in particular from the German power plant Oberhausen II and the South African Pebble-Bed Micro Model (PBMM). Oberhausen II, operated by the German utility EVO, is a 50 MW(e) direct-cycle Helium turbine plant. The power source is a gas burner rather than a nuclear reactor core, but the power conversion system resembles those of the GFR (Gas-cooled Fast Reactor) and other high-temperature reactor concepts. Oberhausen II was operated for more than 100 000 hours between 1974 and 1988. Design specifications, drawings and experimental data have been obtained through the European HTR project, offering a unique opportunity to validate CATHARE on a large-scale Brayton cycle. Available measurements of temperatures, pressures and mass flows throughout the circuit have allowed a very comprehensive thermohydraulic description of the plant, in steady-state conditions as well as during transients. The Pebble-Bed Micro Model (PBMM) is a small-scale model conceived to demonstrate the operability and control strategies of the South African PBMR concept. The model uses Nitrogen instead of Helium, and an electrical heater with a maximum rating of 420 kW. As the full-scale PBMR, the PBMM loop features three turbines and two compressors on the primary circuit, located on three separate shafts. The generator, however, is modelled by a third compressor on a separate circuit, with a

  14. Numerical Methods Are Feasible for Assessing Surgical Techniques: Application to Astigmatic Keratotomy

    Energy Technology Data Exchange (ETDEWEB)

    Ariza-Gracia, M.A.; Ortilles, A.; Cristobal, J.A.; Rodriguez, J.F.; Calvo, B.

    2016-07-01

    The present study proposes an experimental-numerical protocol whose novelty relies on using both the inflation and the indentation experiments simultaneously to obtain a set of material parameters which accounts for both deformation modes of the cornea: the physiological (biaxial tension) and the non-physiological (bending). The experimental protocol characterizes the corneal geometry and the mechanical response of the cornea when subjected to the experimental tests using an animal model (New Zealand rabbit's cornea). The numerical protocol reproduces the experimental tests by means of an inverse finite element methodology to obtain the set of material properties that minimizes both mechanical responses at the same time. To validate the methodology, an Astigmatic Keratotomy refractive surgery is performed on 4 New Zealand rabbit corneas. The pre and post-surgical topographies of the anterior corneal surface were measured using a MODI topographer (CSO, Italy) to control the total change in astigmatism. Afterwards, the surgery is numerically reproduced to predict the overall change of the cornea. Results showed an acceptable numerical prediction, close to the average experimental correction, validating the material parameters obtained with the proposed protocol. (Author)

  15. Review of Methods and Approaches for Deriving Numeric ...

    Science.gov (United States)

    EPA will propose numeric criteria for nitrogen/phosphorus pollution to protect estuaries, coastal areas and South Florida inland flowing waters that have been designated Class I, II and III , as well as downstream protective values (DPVs) to protect estuarine and marine waters. In accordance with the formal determination and pursuant to a subsequent consent decree, these numeric criteria are being developed to translate and implement Florida’s existing narrative nutrient criterion, to protect the designated use that Florida has previously set for these waters, at Rule 62-302.530(47)(b), F.A.C. which provides that “In no case shall nutrient concentrations of a body of water be altered so as to cause an imbalance in natural populations of aquatic flora or fauna.” Under the Clean Water Act and EPA’s implementing regulations, these numeric criteria must be based on sound scientific rationale and reflect the best available scientific knowledge. EPA has previously published a series of peer reviewed technical guidance documents to develop numeric criteria to address nitrogen/phosphorus pollution in different water body types. EPA recognizes that available and reliable data sources for use in numeric criteria development vary across estuarine and coastal waters in Florida and flowing waters in South Florida. In addition, scientifically defensible approaches for numeric criteria development have different requirements that must be taken into consider

  16. Lattice Boltzmann model for numerical relativity.

    Science.gov (United States)

    Ilseven, E; Mendoza, M

    2016-02-01

    In the Z4 formulation, Einstein equations are written as a set of flux conservative first-order hyperbolic equations that resemble fluid dynamics equations. Based on this formulation, we construct a lattice Boltzmann model for numerical relativity and validate it with well-established tests, also known as "apples with apples." Furthermore, we find that by increasing the relaxation time, we gain stability at the cost of losing accuracy, and by decreasing the lattice spacings while keeping a constant numerical diffusivity, the accuracy and stability of our simulations improve. Finally, in order to show the potential of our approach, a linear scaling law for parallelization with respect to number of CPU cores is demonstrated. Our model represents the first step in using lattice kinetic theory to solve gravitational problems.

  17. Construct Validation of Three Nutrition Questions Using Health and Diet Ratings in Older Canadian Males Living in the Community.

    Science.gov (United States)

    Akhtar, Usman; Keller, Heather H; Tate, Robert B; Lengyel, Christina O

    2015-12-01

    Brief nutrition screening tools are desired for research and practice. Seniors in the Community: Risk Evaluation for Eating and Nutrition (SCREEN-II, 14 items) and the abbreviated version SCREEN-II-AB (8 items) are valid and reliable nutrition screening tools for older adults. This exploratory study used a retrospective cross-sectional design to determine the construct validity of a subset of 3 items (weight loss, appetite, and swallowing difficulty) currently on the SCREEN-II and SCREEN-II-AB tools. Secondary data on community-dwelling senior males (n = 522, mean ± SD age = 86.7 ± 3.0 years) in the Manitoba Follow-up Study (MFUS) study were available for analysis. Participants completed the mailed MFUS Nutrition Survey that included SCREEN-II items and questions pertaining to self-rated health, diet healthiness, and rating of the importance of nutrition towards successful aging as the constructs for comparison. Self-perceived health status (F = 14.7, P importance to aging (ρ = 0.10, P = 0.03) were correlated with the 3-item score. Inferences were consistent with associations between these construct variables and the full SCREEN-II. Three items from SCREEN-II and SCREEN-II-AB demonstrate initial construct validity with self-perceived health status and diet healthiness ratings by older males; further exploration for criterion and predictive validity in more diverse samples is needed.

  18. Approximate Analytic and Numerical Solutions to Lane-Emden Equation via Fuzzy Modeling Method

    Directory of Open Access Journals (Sweden)

    De-Gang Wang

    2012-01-01

    Full Text Available A novel algorithm, called variable weight fuzzy marginal linearization (VWFML method, is proposed. This method can supply approximate analytic and numerical solutions to Lane-Emden equations. And it is easy to be implemented and extended for solving other nonlinear differential equations. Numerical examples are included to demonstrate the validity and applicability of the developed technique.

  19. GPM Ground Validation: Pre to Post-Launch Era

    Science.gov (United States)

    Petersen, Walt; Skofronick-Jackson, Gail; Huffman, George

    2015-04-01

    NASA GPM Ground Validation (GV) activities have transitioned from the pre to post-launch era. Prior to launch direct validation networks and associated partner institutions were identified world-wide, covering a plethora of precipitation regimes. In the U.S. direct GV efforts focused on use of new operational products such as the NOAA Multi-Radar Multi-Sensor suite (MRMS) for TRMM validation and GPM radiometer algorithm database development. In the post-launch, MRMS products including precipitation rate, accumulation, types and data quality are being routinely generated to facilitate statistical GV of instantaneous (e.g., Level II orbit) and merged (e.g., IMERG) GPM products. Toward assessing precipitation column impacts on product uncertainties, range-gate to pixel-level validation of both Dual-Frequency Precipitation Radar (DPR) and GPM microwave imager data are performed using GPM Validation Network (VN) ground radar and satellite data processing software. VN software ingests quality-controlled volumetric radar datasets and geo-matches those data to coincident DPR and radiometer level-II data. When combined MRMS and VN datasets enable more comprehensive interpretation of both ground and satellite-based estimation uncertainties. To support physical validation efforts eight (one) field campaigns have been conducted in the pre (post) launch era. The campaigns span regimes from northern latitude cold-season snow to warm tropical rain. Most recently the Integrated Precipitation and Hydrology Experiment (IPHEx) took place in the mountains of North Carolina and involved combined airborne and ground-based measurements of orographic precipitation and hydrologic processes underneath the GPM Core satellite. One more U.S. GV field campaign (OLYMPEX) is planned for late 2015 and will address cold-season precipitation estimation, process and hydrology in the orographic and oceanic domains of western Washington State. Finally, continuous direct and physical validation

  20. Validation of models in an imaging infrared simulation

    CSIR Research Space (South Africa)

    Willers, C

    2007-10-01

    Full Text Available threeprocessesfortransformingtheinformationbetweentheentities. Reality/ Problem Entity Conceptual Model Computerized Model Model Validation ModelVerification Model Qualification Computer Implementation Analysisand Modelling Simulationand Experimentation “Substantiationthata....C.Refsgaard ,ModellingGuidelines-terminology andguidingprinciples, AdvancesinWaterResources, Vol27,No1,January2004,?pp.71-82(12),Elsevier. et.al. [5]N.Oreskes,et.al.,Verification,Validation,andConfirmationof NumericalModelsintheEarthSciences,Science,Vol263, Number...

  1. Development of a numerical pump testing framework.

    Science.gov (United States)

    Kaufmann, Tim A S; Gregory, Shaun D; Büsen, Martin R; Tansley, Geoff D; Steinseifer, Ulrich

    2014-09-01

    It has been shown that left ventricular assist devices (LVADs) increase the survival rate in end-stage heart failure patients. However, there is an ongoing demand for an increased quality of life, fewer adverse events, and more physiological devices. These challenges necessitate new approaches during the design process. In this study, computational fluid dynamics (CFD), lumped parameter (LP) modeling, mock circulatory loops (MCLs), and particle image velocimetry (PIV) are combined to develop a numerical Pump Testing Framework (nPTF) capable of analyzing local flow patterns and the systemic response of LVADs. The nPTF was created by connecting a CFD model of the aortic arch, including an LVAD outflow graft to an LP model of the circulatory system. Based on the same geometry, a three-dimensional silicone model was crafted using rapid prototyping and connected to an MCL. PIV studies of this setup were performed to validate the local flow fields (PIV) and the systemic response (MCL) of the nPTF. After validation, different outflow graft positions were compared using the nPTF. Both the numerical and the experimental setup were able to generate physiological responses by adjusting resistances and systemic compliance, with mean aortic pressures of 72.2-132.6 mm Hg for rotational speeds of 2200-3050 rpm. During LVAD support, an average flow to the distal branches (cerebral and subclavian) of 24% was found in the experiments and the nPTF. The flow fields from PIV and CFD were in good agreement. Numerical and experimental tools were combined to develop and validate the nPTF, which can be used to analyze local flow fields and the systemic response of LVADs during the design process. This allows analysis of physiological control parameters at early development stages and may, therefore, help to improve patient outcomes. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  2. Gas dynamics of H II regions. II. Two-dimensional axisymmetric calculations

    International Nuclear Information System (INIS)

    Bodenheimer, P.; Tenorio-Tagle, G.; Yorke, H.W.

    1979-01-01

    The evolution of H II regions is calculated with a two-dimensional hydrodynamic numerical procedure under the assumption that the exciting star is born within a cool molecular cloud whose density is about 10 3 particles cm -3 . As the ionization of the cloud's edge is completed, a large pressure gradient is set up and ionized cloud material expands into the ionized low-density (1 particle cm -3 ) intercloud medium, with velocities larger than 30 km s -1 .The calculations are made under the simplifying assumptions that (i) within the H II region, ionization equilibrium holds at all times, (ii) the ionization front is a discontinuity, thus its detailed structure is not calculated, (iii) the temperature of each region (H II region, neutral cloud, and intercloud medium) is constant in time, (iv) all ionizing photons come radially from the exciting star. Four cases are calculated and compared with observations: (1) the edge of the cloud is overrun by a supersonic ionization front, (2) the initial Stroemgren sphere surrounding the star lies deep inside the cloud, thus the cloud's edge is ionized by a subsonic ionization front, (3) the ionization front breaks through two opposite faces of the same cloud simultaneously, (4) the flow encounters an isolated globule of density 10 3 particles cm -3 shortly after emerging from the molecular cloud.The phenomena here considered show how evolving H II regions are an important input of kinetic energy to the interstellar medium

  3. Numerical Procedure for Optimizing Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Mihai Razvan Mitroi

    2014-01-01

    Full Text Available We propose a numerical procedure consisting of a simplified physical model and a numerical method with the aim of optimizing the performance parameters of dye-sensitized solar cells (DSSCs. We calculate the real rate of absorbed photons (in the dye spectral range Grealx by introducing a factor β<1 in order to simplify the light absorption and reflection on TCO electrode. We consider the electrical transport to be purely diffusive and the recombination process only to occur between electrons from the TiO2 conduction band and anions from the electrolyte. The used numerical method permits solving the system of differential equations resulting from the physical model. We apply the proposed numerical procedure on a classical DSSC based on Ruthenium dye in order to validate it. For this, we simulate the J-V characteristics and calculate the main parameters: short-circuit current density Jsc, open circuit voltage Voc, fill factor FF, and power conversion efficiency η. We analyze the influence of the nature of semiconductor (TiO2 and dye and also the influence of different technological parameters on the performance parameters of DSSCs. The obtained results show that the proposed numerical procedure is suitable for developing a numerical simulation platform for improving the DSSCs performance by choosing the optimal parameters.

  4. The validity and clinical utility of structured diagnoses of antisocial personality disorder with forensic patients.

    Science.gov (United States)

    Marin-Avellan, Luisa E; McGauley, Gillian A; Campbell, Colin D; Fonagy, Peter

    2014-08-01

    Current DSM-based instruments for personality disorders (PDs) limit the investigation of the course and outcome of treatment of these disorders. This study examined the validity of the Shedler-Westen Assessment Procedure-200 (SWAP-200) and the Structured Clinical Interview for DSM-IV Axis II PD (SCID-II) in a sample of forensic PD patients. Results based on 66 participants indicated that the SWAP-200 Q-factors reduced the frequency of diagnostic comorbidity of PD categories by half compared with the SCID-II. Only the SWAP-200's Antisocial PD category showed good convergent and discriminant validity with respect to other instruments describing aspects of PD. The validity of the cutoff score for severe antisocial PD was confirmed, and this category predicted severe incidents in the hospital at 1 year of follow-up. A violence risk scale was constructed, which differentiated violent and nonviolent offenders. The results support the validity of the SWAP-200 and its potential clinical utility with forensic PD patients.

  5. Validating the Beck Depression Inventory-II in Indonesia’s general population and coronary heart disease patients

    Directory of Open Access Journals (Sweden)

    Henndy Ginting

    2013-01-01

    Full Text Available Este estudio evalúa la validez y determina los puntos de corte del Inventario de Depresión de Beck -II (BDI-II en Indonesia. La versión indonesia del BDI-II (BDI-II Indo se administró a 720 personas sanas de la población general, a 215 pacientes con Enfermedad Coronaria (EC y a 102 pacientes con depresión. El análisis factorial confirmatorio mostró similitud factorial de las tres muestras. Las correlaciones entre el Indo BDI-II y otras medidas de auto-percepción relacionadas con la depresión fueron significativas, mostrando la validez de constructo del Indo BDI-II. Además, la diferencia de puntuación del Indo BDI-II entre los participantes deprimidos y no deprimidos fue altamente significativa. La consistencia interna y la fiabilidad re- test fueron suficientemente altas. La curva ROC (receiver operating characteristic indicó que el punto de corte de la BDI-II para el nivel de gravedad leve de depresión la población de Indonesia es igual a 17. En conclusión, el Indo BDI-II es una medida válida de depresión, tanto para la población general indonesia como en pacientes con EC.

  6. Cross-Validation of Numerical and Experimental Studies of Transitional Airfoil Performance

    DEFF Research Database (Denmark)

    Frere, Ariane; Hillewaert, Koen; Sarlak, Hamid

    2015-01-01

    The aerodynamic performance characteristic of airfoils are the main input for estimating wind turbine blade loading as well as annual energy production of wind farms. For transitional flow regimes these data are difficult to obtain, both experimentally as well as numerically, due to the very high...... sensitivity of the flow to perturbations, large scale separation and performance hysteresis. The objective of this work is to improve the understanding of the transitional airfoil flow performance by studying the S826 NREL airfoil at low Reynolds numbers (Re = 4:104 and 1:105) with two inherently different...

  7. A numerical approach to the study of the perpetual case of Ameripean options

    Science.gov (United States)

    Kandilarov, J.

    2013-12-01

    A new numerical method for solving the perpetual case of Ameripean options is proposed. The Ameripean delayed exercise model analyzes a new class of option model with American and ParAsian features. The model is mathematically described by ultraparabolic and parabolic PDE's which are valid over different regions. The perpetual case leads to the parabolic-elliptic two-phase Stefan problem with free internal boundary. To deal with the obtained nonlinear problem an iterative numerical method is proposed. Numerical analysis are presented and discussed.

  8. Numerical investigation of natural gas direct injection properties and mixture formation in a spark ignition engine

    Directory of Open Access Journals (Sweden)

    Yadollahi Bijan

    2014-01-01

    Full Text Available In this study, a numerical model has been developed in AVL FIRE software to perform investigation of Direct Natural Gas Injection into the cylinder of Spark Ignition Internal Combustion Engines. In this regard two main parts have been taken into consideration, aiming to convert an MPFI gasoline engine to direct injection NG engine. In the first part of study multi-dimensional numerical simulation of transient injection process, mixing and flow field have been performed via three different validation cases in order to assure the numerical model validity of results. Adaption of such a modeling was found to be a challenging task because of required computational effort and numerical instabilities. In all cases present results were found to have excellent agreement with experimental and numerical results from literature. In the second part, using the moving mesh capability the validated model has been applied to methane Injection into the cylinder of a Direct Injection engine. Five different piston head shapes along with two injector types have been taken into consideration in investigations. A centrally mounted injector location has been adapted to all cases. The effects of injection parameters, combustion chamber geometry, injector type and engine RPM have been studied on mixing of air-fuel inside cylinder. Based on the results, suitable geometrical configuration for a NG DI Engine has been discussed.

  9. Numerical modeling and preliminary validation of drag-based vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Krysiński Tomasz

    2015-03-01

    Full Text Available The main purpose of this article is to verify and validate the mathematical description of the airflow around a wind turbine with vertical axis of rotation, which could be considered as representative for this type of devices. Mathematical modeling of the airflow around wind turbines in particular those with the vertical axis is a problematic matter due to the complex nature of this highly swirled flow. Moreover, it is turbulent flow accompanied by a rotation of the rotor and the dynamic boundary layer separation. In such conditions, the key aspects of the mathematical model are accurate turbulence description, definition of circular motion as well as accompanying effects like centrifugal force or the Coriolis force and parameters of spatial and temporal discretization. The paper presents the impact of the different simulation parameters on the obtained results of the wind turbine simulation. Analysed models have been validated against experimental data published in the literature.

  10. Verification and Validation of RADTRAN 5.5.

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, Douglas.; Weiner, Ruth F.; Mills, George Scott; Hamp, Steve C.

    2005-02-01

    This document contains a description of the verification and validation process used for the RADTRAN 5.5 code. The verification and validation process ensured the proper calculational models and mathematical and numerical methods were used in the RADTRAN 5.5 code for the determination of risk and consequence assessments. The differences between RADTRAN 5 and RADTRAN 5.5 are the addition of tables, an expanded isotope library, and the additional User-Defined meteorological option for accident dispersion. 3

  11. TRUPACT-II, a regulatory perspective

    International Nuclear Information System (INIS)

    Gregory, P.C.; Spooner, O.R.

    1995-01-01

    The Transuranic Package Transporter II (TRUPACT-II) is a US Nuclear Regulatory Commission (NRC) certified Type B packaging for the shipment of contact-handled transuranic (CH-TRU) material by the US Department of Energy (DOE). The NRC approved the TRUPACT-II design as meeting the requirements of Title 10, Code of Federal Regulations, Part 71 (10 CFR 71) and issued Certificate of Compliance (CofC) Number 9218 to the DOE. There are currently 15 certified TRUPACT-IIs. Additional TRUPACT-IIs will be required to make more than 15,000 shipments of CH-TRU waste to the Waste Isolation Pilot Plant (WIPP) site near Carlsbad, New Mexico. The TRUPACT-II may also be used for the DOE inter-site and intra-site shipments of CH-TRU waste. The Land Withdrawal Act (Public Law 102-579), enacted by the US Congress, October 30, 1992, and an agreement between the DOE and the State of New Mexico, signed August 4, 1987, both stipulate that only NRC approved packaging may be used for shipments of TRU waste to the WIPP. Early in the TRUPACT-II development phase it was decided that the transportation system (tractor, trailer, and TRUPACT-II) should be highway legal on all routes without the need for oversize and/or overweight permits. In large measure, public acceptance of the DOE's efforts to safely transport CH-TRU waste depends on the public's perception that the TRUPACT-II is in compliance with all applicable regulations, standards, and quality assurance requirements. This paper addresses some of the numerous regulations applicable to Type B packaging, and it describes how the TRUPACT-II complies with these regulations

  12. PowerShades II. Optimisation and validation of highly transparent photovoltaic. Final report

    Energy Technology Data Exchange (ETDEWEB)

    2010-07-15

    The objective of the project is continued development and validation of a novel Danish photovoltaic product with the work title ''PowerShade''. The PowerShade insulating glazing unit (IGU) is a combination of a strong solar shading device and a power producing photovoltaic coating. The core technology in the PowerShade IGU is a thin film silicon photovoltaic generator applied to a micro structured substrate. The geometry of the substrate provides the unique combination of properties that characterizes the PowerShade module - strong progressive shading, high transparency, and higher electrical output than other semitransparent photovoltaic products with similar transparencies. The project activities fall in two categories, namely development of the processing/product and validation of the product properties. The development part of the project is focussed on increasing the efficiency of the photovoltaic generator by changing from a single-stack type cell to a tandem-stack type cell. The inclusion of PowerShade cells in insulating glazing (IG) units is also addressed in this project. The validation part of the project aims at validation of stability, thermal and optical properties as well as validation of the electrical yield of the product. The validation of thermal and optical properties has been done using full size modules installed in a test facility built during the 2006-08 ''PowerShades'' project. The achieved results will be vital in the coming realisation of a commercial product. Initial processing steps have been automated, and more efficient tandem-type solar cells have been developed. A damp heat test of an IGU has been carried out without any degradation of the solar cell. The PowerShade module assembly concept has been further developed and discussed with different automation equipment vendors and a pick-and-place tool developed. PowerShade's influence on the indoor climate has been modelled and verified by

  13. Validation of Vibro-Impact Force Models by Numerical Simulation, Perturbation Methods and Experiments

    DEFF Research Database (Denmark)

    de Souza Reboucas, Geraldo Francisco; Santos, Ilmar; Thomsen, Jon Juel

    2017-01-01

    The frequency response of a single degree of freedom vibro-impact oscillator is analyzed using Harmonic Linearization, Averaging and Numeric Simulation, considering three different impact force models: one given by a piecewise-linear function (Kelvin-Voigt model), another by a high-order power...

  14. Experimental validation of vibro-impact force models using numeric simulation and perturbation methods

    DEFF Research Database (Denmark)

    de Souza Reboucas, Geraldo Francisco; Santos, Ilmar; Thomsen, Jon Juel

    2017-01-01

    The frequency response of a single-degree of freedom vibro-impact oscillator is analysed using Harmonic Linearization, Averaging and Numeric Simulations considering two different impact force models, one given by a piecewise-linear function and other by a high-order polynomial. Experimental...

  15. Numerical evaluation of path-integral solutions to Fokker-Planck equations. II. Restricted stochastic processes

    International Nuclear Information System (INIS)

    Wehner, M.F.

    1983-01-01

    A path-integral solution is derived for processes described by nonlinear Fokker-Plank equations together with externally imposed boundary conditions. This path-integral solution is written in the form of a path sum for small time steps and contains, in addition to the conventional volume integral, a surface integral which incorporates the boundary conditions. A previously developed numerical method, based on a histogram representation of the probability distribution, is extended to a trapezoidal representation. This improved numerical approach is combined with the present path-integral formalism for restricted processes and is show t give accurate results. 35 refs., 5 figs

  16. Confirmatory Factor Analysis of the Beck Depression Inventory-II in Bariatric Surgery Candidates

    Science.gov (United States)

    Hall, Brian J.; Hood, Megan M.; Nackers, Lisa M.; Azarbad, Leila; Ivan, Iulia; Corsica, Joyce

    2013-01-01

    Screening for depression is an integral part of psychological evaluations conducted prior to bariatric surgery. The Beck Depression Inventory-II (BDI-II) is the most commonly used measure of depression in these treatment evaluations. The reliability and validity of the BDI-II has not yet been evaluated within bariatric surgery-seeking samples,…

  17. CFD Validation Studies for Hypersonic Flow Prediction

    Science.gov (United States)

    Gnoffo, Peter A.

    2001-01-01

    A series of experiments to measure pressure and heating for code validation involving hypersonic, laminar, separated flows was conducted at the Calspan-University at Buffalo Research Center (CUBRC) in the Large Energy National Shock (LENS) tunnel. The experimental data serves as a focus for a code validation session but are not available to the authors until the conclusion of this session. The first set of experiments considered here involve Mach 9.5 and Mach 11.3 N2 flow over a hollow cylinder-flare with 30 degree flare angle at several Reynolds numbers sustaining laminar, separated flow. Truncated and extended flare configurations are considered. The second set of experiments, at similar conditions, involves flow over a sharp, double cone with fore-cone angle of 25 degrees and aft-cone angle of 55 degrees. Both sets of experiments involve 30 degree compressions. Location of the separation point in the numerical simulation is extremely sensitive to the level of grid refinement in the numerical predictions. The numerical simulations also show a significant influence of Reynolds number on extent of separation. Flow unsteadiness was easily introduced into the double cone simulations using aggressive relaxation parameters that normally promote convergence.

  18. NUMERICAL MODELLING OF THE SOIL BEHAVIOUR BY USING NEWLY DEVELOPED ADVANCED MATERIAL MODEL

    Directory of Open Access Journals (Sweden)

    Jan Veselý

    2017-02-01

    Full Text Available This paper describes a theoretical background, implementation and validation of the newly developed Jardine plastic hardening-softening model (JPHS model, which can be used for numerical modelling of the soils behaviour. Although the JPHS model is based on the elasto-plastic theory, like the Mohr-Coulomb model that is widely used in geotechnics, it contains some improvements, which removes the main disadvantages of the MC model. The presented model is coupled with an isotopically hardening and softening law, non-linear elastic stress-strain law, non-associated elasto-plastic material description and a cap yield surface. The validation of the model is done by comparing the numerical results with real measured data from the laboratory tests and by testing of the model on the real project of the tunnel excavation. The 3D numerical analysis is performed and the comparison between the JPHS, Mohr-Coulomb, Modified Cam-Clay, Hardening small strain model and monitoring in-situ data is done.

  19. Graphics gems II

    CERN Document Server

    Arvo, James

    1991-01-01

    Graphics Gems II is a collection of articles shared by a diverse group of people that reflect ideas and approaches in graphics programming which can benefit other computer graphics programmers.This volume presents techniques for doing well-known graphics operations faster or easier. The book contains chapters devoted to topics on two-dimensional and three-dimensional geometry and algorithms, image processing, frame buffer techniques, and ray tracing techniques. The radiosity approach, matrix techniques, and numerical and programming techniques are likewise discussed.Graphics artists and comput

  20. USING CFD TO ANALYZE NUCLEAR SYSTEMS BEHAVIOR: DEFINING THE VALIDATION REQUIREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Richard Schultz

    2012-09-01

    A recommended protocol to formulate numeric tool specifications and validation needs in concert with practices accepted by regulatory agencies for advanced reactors is described. The protocol is based on the plant type and perceived transient and accident envelopes that translates to boundary conditions for a process that gives the: (a) key phenomena and figures-of-merit which must be analyzed to ensure that the advanced plant can be licensed, (b) specification of the numeric tool capabilities necessary to perform the required analyses—including bounding calculational uncertainties, and (c) specification of the validation matrices and experiments--including the desired validation data. The result of applying the process enables a complete program to be defined, including costs, for creating and benchmarking transient and accident analysis methods for advanced reactors. By following a process that is in concert with regulatory agency licensing requirements from the start to finish, based on historical acceptance of past licensing submittals, the methods derived and validated have a high probability of regulatory agency acceptance.

  1. Numerical and Experimental Investigations of the Flow in a Stationary Pelton Bucket

    Science.gov (United States)

    Nakanishi, Yuji; Fujii, Tsuneaki; Kawaguchi, Sho

    A numerical code based on one of mesh-free particle methods, a Moving-Particle Semi-implicit (MPS) Method has been used for the simulation of free surface flows in a bucket of Pelton turbines so far. In this study, the flow in a stationary bucket is investigated by MPS simulation and experiment to validate the numerical code. The free surface flow dependent on the angular position of the bucket and the corresponding pressure distribution on the bucket computed by the numerical code are compared with that obtained experimentally. The comparison shows that numerical code based on MPS method is useful as a tool to gain an insight into the free surface flows in Pelton turbines.

  2. The synthesis of isotopic fluorine and iodine-labeled COX-II inhibitor and in vitro validation

    Energy Technology Data Exchange (ETDEWEB)

    An, Gwang Gil; Lee, Tae Sub; Lee, Kyo Chul; Moon, Byung Seok; Choi, Chang Woon; Chun, Kwon Soo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2005-07-01

    In these day, NASIDs (non-steroidal antiinflammatory drugs) such as aspirin, diclofenac and ibuprofen are the most common medications used to reduce pain and inflammation. However, they act by inhibiting both COX-I and COX-II which can cause serious gastrointestinal side effects such as ulcers, stomach perforations and bleeds. COX-I produces prostaglandins believed to be responsible for the protection of the stomach lining. However, COX-II produces prostaglandins believed to be responsible for pain and inflammation. Recently, the most widely studied selective COX-II inhibitor such as celecoxib and rofecoxib' one work by inhibiting the effect of COX-II on pain and inflammation without inhibiting COX-I which protects gastrointestinal lining.

  3. CIPS Validation Data Plan

    International Nuclear Information System (INIS)

    Dinh, Nam

    2012-01-01

    This report documents analysis, findings and recommendations resulted from a task 'CIPS Validation Data Plan (VDP)' formulated as an POR4 activity in the CASL VUQ Focus Area (FA), to develop a Validation Data Plan (VDP) for Crud-Induced Power Shift (CIPS) challenge problem, and provide guidance for the CIPS VDP implementation. The main reason and motivation for this task to be carried at this time in the VUQ FA is to bring together (i) knowledge of modern view and capability in VUQ, (ii) knowledge of physical processes that govern the CIPS, and (iii) knowledge of codes, models, and data available, used, potentially accessible, and/or being developed in CASL for CIPS prediction, to devise a practical VDP that effectively supports the CASL's mission in CIPS applications.

  4. Numerical method for solving integral equations of neutron transport. II

    International Nuclear Information System (INIS)

    Loyalka, S.K.; Tsai, R.W.

    1975-01-01

    In a recent paper it was pointed out that the weakly singular integral equations of neutron transport can be quite conveniently solved by a method based on subtraction of singularity. This previous paper was devoted entirely to the consideration of simple one-dimensional isotropic-scattering and one-group problems. The present paper constitutes interesting extensions of the previous work in that in addition to a typical two-group anisotropic-scattering albedo problem in the slab geometry, the method is also applied to an isotropic-scattering problem in the x-y geometry. These results are compared with discrete S/sub N/ (ANISN or TWOTRAN-II) results, and for the problems considered here, the proposed method is found to be quite effective. Thus, the method appears to hold considerable potential for future applications. (auth)

  5. Physical validation issue of the NEPTUNE two-phase modelling: validation plan to be adopted, experimental programs to be set up and associated instrumentation techniques developed

    International Nuclear Information System (INIS)

    Pierre Peturaud; Eric Hervieu

    2005-01-01

    Full text of publication follows: A long-term joint development program for the next generation of nuclear reactors simulation tools has been launched in 2001 by EDF (Electricite de France) and CEA (Commissariat a l'Energie Atomique). The NEPTUNE Project constitutes the Thermal-Hydraulics part of this comprehensive program. Along with the underway development of this new two-phase flow software platform, the physical validation of the involved modelling is a crucial issue, whatever the modelling scale is, and the present paper deals with this issue. After a brief recall about the NEPTUNE platform, the general validation strategy to be adopted is first of all clarified by means of three major features: (i) physical validation in close connection with the concerned industrial applications, (ii) involving (as far as possible) a two-step process successively focusing on dominant separate models and assessing the whole modelling capability, (iii) thanks to the use of relevant data with respect to the validation aims. Based on this general validation process, a four-step generic work approach has been defined; it includes: (i) a thorough analysis of the concerned industrial applications to identify the key physical phenomena involved and associated dominant basic models, (ii) an assessment of these models against the available validation pieces of information, to specify the additional validation needs and define dedicated validation plans, (iii) an inventory and assessment of existing validation data (with respect to the requirements specified in the previous task) to identify the actual needs for new validation data, (iv) the specification of the new experimental programs to be set up to provide the needed new data. This work approach has been applied to the NEPTUNE software, focusing on 8 high priority industrial applications, and it has resulted in the definition of (i) the validation plan and experimental programs to be set up for the open medium 3D modelling

  6. Numerical Analysis of Electromagnetic Fields in Multiscale Model

    International Nuclear Information System (INIS)

    Ma Ji; Fang Guang-You; Ji Yi-Cai

    2015-01-01

    Modeling technique for electromagnetic fields excited by antennas is an important topic in computational electromagnetics, which is concerned with the numerical solution of Maxwell's equations. In this paper, a novel hybrid technique that combines method of moments (MoM) with finite-difference time-domain (FDTD) method is presented to handle the problem. This approach employed Huygen's principle to realize the hybridization of the two classical numerical algorithms. For wideband electromagnetic data, the interpolation scheme is used in the MoM based on the dyadic Green's function. On the other hand, with the help of equivalence principle, the scattered electric and magnetic fields on the Huygen's surface calculated by MoM are taken as the sources for FDTD. Therefore, the electromagnetic fields in the environment can be obtained by employing finite-difference time-domain method. Finally, numerical results show the validity of the proposed technique by analyzing two canonical samples. (paper)

  7. Numerical Characterization of Piezoceramics Using Resonance Curves

    Science.gov (United States)

    Pérez, Nicolás; Buiochi, Flávio; Brizzotti Andrade, Marco Aurélio; Adamowski, Julio Cezar

    2016-01-01

    Piezoelectric materials characterization is a challenging problem involving physical concepts, electrical and mechanical measurements and numerical optimization techniques. Piezoelectric ceramics such as Lead Zirconate Titanate (PZT) belong to the 6 mm symmetry class, which requires five elastic, three piezoelectric and two dielectric constants to fully represent the material properties. If losses are considered, the material properties can be represented by complex numbers. In this case, 20 independent material constants are required to obtain the full model. Several numerical methods have been used to adjust the theoretical models to the experimental results. The continuous improvement of the computer processing ability has allowed the use of a specific numerical method, the Finite Element Method (FEM), to iteratively solve the problem of finding the piezoelectric constants. This review presents the recent advances in the numerical characterization of 6 mm piezoelectric materials from experimental electrical impedance curves. The basic strategy consists in measuring the electrical impedance curve of a piezoelectric disk, and then combining the Finite Element Method with an iterative algorithm to find a set of material properties that minimizes the difference between the numerical impedance curve and the experimental one. Different methods to validate the results are also discussed. Examples of characterization of some common piezoelectric ceramics are presented to show the practical application of the described methods. PMID:28787875

  8. Numerical Characterization of Piezoceramics Using Resonance Curves

    Directory of Open Access Journals (Sweden)

    Nicolás Pérez

    2016-01-01

    Full Text Available Piezoelectric materials characterization is a challenging problem involving physical concepts, electrical and mechanical measurements and numerical optimization techniques. Piezoelectric ceramics such as Lead Zirconate Titanate (PZT belong to the 6 mm symmetry class, which requires five elastic, three piezoelectric and two dielectric constants to fully represent the material properties. If losses are considered, the material properties can be represented by complex numbers. In this case, 20 independent material constants are required to obtain the full model. Several numerical methods have been used to adjust the theoretical models to the experimental results. The continuous improvement of the computer processing ability has allowed the use of a specific numerical method, the Finite Element Method (FEM, to iteratively solve the problem of finding the piezoelectric constants. This review presents the recent advances in the numerical characterization of 6 mm piezoelectric materials from experimental electrical impedance curves. The basic strategy consists in measuring the electrical impedance curve of a piezoelectric disk, and then combining the Finite Element Method with an iterative algorithm to find a set of material properties that minimizes the difference between the numerical impedance curve and the experimental one. Different methods to validate the results are also discussed. Examples of characterization of some common piezoelectric ceramics are presented to show the practical application of the described methods.

  9. Enhancing rigour in the validation of patient reported outcome measures (PROMs: bridging linguistic and psychometric testing

    Directory of Open Access Journals (Sweden)

    Roberts Gwerfyl

    2012-06-01

    Full Text Available Abstract Background A strong consensus exists for a systematic approach to linguistic validation of patient reported outcome measures (PROMs and discrete methods for assessing their psychometric properties. Despite the need for robust evidence of the appropriateness of measures, transition from linguistic to psychometric validation is poorly documented or evidenced. This paper demonstrates the importance of linking linguistic and psychometric testing through a purposeful stage which bridges the gap between translation and large-scale validation. Findings Evidence is drawn from a study to develop a Welsh language version of the Beck Depression Inventory-II (BDI-II and investigate its psychometric properties. The BDI-II was translated into Welsh then administered to Welsh-speaking university students (n = 115 and patients with depression (n = 37 concurrent with the English BDI-II, and alongside other established depression and quality of life measures. A Welsh version of the BDI-II was produced that, on administration, showed conceptual equivalence with the original measure; high internal consistency reliability (Cronbach’s alpha = 0.90; 0.96; item homogeneity; adequate correlation with the English BDI-II (r = 0.96; 0.94 and additional measures; and a two-factor structure with one overriding dimension. Nevertheless, in the student sample, the Welsh version showed a significantly lower overall mean than the English (p = 0.002; and significant differences in six mean item scores. This prompted a review and refinement of the translated measure. Conclusions Exploring potential sources of bias in translated measures represents a critical step in the translation-validation process, which until now has been largely underutilised. This paper offers important findings that inform advanced methods of cross-cultural validation of PROMs.

  10. World War II Informational Fact Sheets.

    Science.gov (United States)

    Department of Defense, Washington, DC.

    This commemorative book provides numerous fact sheets on various aspects of World War II, both on the fighting front and the homefront. Replicas of posters of the war era, descriptions of battles with maps, contributions of women and minorities to the war effort, even music of the wartime era, add to this collection of resource materials useful to…

  11. Numerical simulation of instability behaviour of thin-walled frames with flexible connections

    International Nuclear Information System (INIS)

    Turkalj, G.; Brnic, J.; Vizentin, G.; Lanc, D.

    2009-01-01

    A one-dimensional finite element formulation for numerical simulation of instability behaviour of thin-walled frames containing flexible connections is presented. Stiffness matrices of a conventional 14-degree of freedom beam element are derived by applying the linearized virtual work principle and Vlasov's assumption. The structural material is assumed to be homogeneous, isotropic and linear-elastic. Flexible connection behaviour and different warping deformation conditions are introduced into the numerical model by modifying stiffness matrices of a conventional beam element. For that purpose a special transformation matrix is derived. The effectiveness of the numerical algorithm discussed is validated through the test problem

  12. Computing the demagnetizing tensor for finite difference micromagnetic simulations via numerical integration

    International Nuclear Information System (INIS)

    Chernyshenko, Dmitri; Fangohr, Hans

    2015-01-01

    In the finite difference method which is commonly used in computational micromagnetics, the demagnetizing field is usually computed as a convolution of the magnetization vector field with the demagnetizing tensor that describes the magnetostatic field of a cuboidal cell with constant magnetization. An analytical expression for the demagnetizing tensor is available, however at distances far from the cuboidal cell, the numerical evaluation of the analytical expression can be very inaccurate. Due to this large-distance inaccuracy numerical packages such as OOMMF compute the demagnetizing tensor using the explicit formula at distances close to the originating cell, but at distances far from the originating cell a formula based on an asymptotic expansion has to be used. In this work, we describe a method to calculate the demagnetizing field by numerical evaluation of the multidimensional integral in the demagnetizing tensor terms using a sparse grid integration scheme. This method improves the accuracy of computation at intermediate distances from the origin. We compute and report the accuracy of (i) the numerical evaluation of the exact tensor expression which is best for short distances, (ii) the asymptotic expansion best suited for large distances, and (iii) the new method based on numerical integration, which is superior to methods (i) and (ii) for intermediate distances. For all three methods, we show the measurements of accuracy and execution time as a function of distance, for calculations using single precision (4-byte) and double precision (8-byte) floating point arithmetic. We make recommendations for the choice of scheme order and integrating coefficients for the numerical integration method (iii). - Highlights: • We study the accuracy of demagnetization in finite difference micromagnetics. • We introduce a new sparse integration method to compute the tensor more accurately. • Newell, sparse integration and asymptotic method are compared for all ranges

  13. Numerical and experimental evaluation of masonry prisms by finite element method

    Directory of Open Access Journals (Sweden)

    C. F.R. SANTOS

    Full Text Available Abstract This work developed experimental tests and numerical models able to represent the mechanical behavior of prisms made of ordinary and high strength concrete blocks. Experimental tests of prisms were performed and a detailed micro-modeling strategy was adopted for numerical analysis. In this modeling technique, each material (block and mortar was represented by its own mechanical properties. The validation of numerical models was based on experimental results. It was found that the obtained numerical values of compressive strength and modulus of elasticity differ by 5% from the experimentally observed values. Moreover, mechanisms responsible for the rupture of the prisms were evaluated and compared to the behaviors observed in the tests and those described in the literature. Through experimental results it is possible to conclude that the numerical models have been able to represent both the mechanical properties and the mechanisms responsible for failure.

  14. Numerical relativity beyond astrophysics

    Science.gov (United States)

    Garfinkle, David

    2017-01-01

    Though the main applications of computer simulations in relativity are to astrophysical systems such as black holes and neutron stars, nonetheless there are important applications of numerical methods to the investigation of general relativity as a fundamental theory of the nature of space and time. This paper gives an overview of some of these applications. In particular we cover (i) investigations of the properties of spacetime singularities such as those that occur in the interior of black holes and in big bang cosmology. (ii) investigations of critical behavior at the threshold of black hole formation in gravitational collapse. (iii) investigations inspired by string theory, in particular analogs of black holes in more than 4 spacetime dimensions and gravitational collapse in spacetimes with a negative cosmological constant.

  15. Numerical relativity beyond astrophysics.

    Science.gov (United States)

    Garfinkle, David

    2017-01-01

    Though the main applications of computer simulations in relativity are to astrophysical systems such as black holes and neutron stars, nonetheless there are important applications of numerical methods to the investigation of general relativity as a fundamental theory of the nature of space and time. This paper gives an overview of some of these applications. In particular we cover (i) investigations of the properties of spacetime singularities such as those that occur in the interior of black holes and in big bang cosmology. (ii) investigations of critical behavior at the threshold of black hole formation in gravitational collapse. (iii) investigations inspired by string theory, in particular analogs of black holes in more than 4 spacetime dimensions and gravitational collapse in spacetimes with a negative cosmological constant.

  16. Numerical study of droplet impact and rebound on superhydrophobic surface

    Science.gov (United States)

    Cai, Xuan; Wu, Yanchen; Woerner, Martin; Frohnapfel, Bettina

    2017-11-01

    Droplet impact and rebound on superhydrophobic surface is an important process in many applications; among them are developing self-cleaning or anti-icing materials and limiting liquid film formation of Diesel Exhaust Fluid (DEF) in exhaust gas pipe. In the latter field, rebound of DEF droplet from wall is desired as an effective mean for avoiding or reducing unwanted solid deposition. Our goal is to numerically study influence of surface wettability on DEF droplet impact and rebound behavior. A phase-field method is chosen, which was implemented in OpenFOAM by us and validated for wetting-related interfacial flow problems. In the present contribution we first numerically reproduce relevant experimental studies in literature, to validate the code for droplet impact and rebound problem. There we study droplet-surface contact time, maximum/instantaneous spreading factor and droplet shape evolution. Our numerical results show good agreement with experimental data. Next we investigate for DEF droplets the effects of diameter, impact velocity and surface wettability on rebound behavior and jumping height. Based on Weber number and equilibrium contact angle, two regimes are identified. We show that surface wettability is a deciding factor for achieving rebound event. This work is supported by Foundation ``Friedrich-und-Elisabeth Boysen Stiftung fuer Forschung und Innovation'' (BOY-127-TP1).

  17. Construction and validation of attitudes toward plagiarism questionnaire.

    Science.gov (United States)

    Mavrinac, Martina; Brumini, Gordana; Bilić-Zulle, Lidija; Petrovecki, Mladen

    2010-06-01

    To develop and test the psychometric characteristics of a questionnaire measuring attitudes toward plagiarism. Participants were 227 undergraduates and graduate students (128 women and 99 men) from three Croatian universities, with a median age of 21 years (range 18 to 48). Research was conducted from March to June 2009. For the purpose of construction of the first version of the questionnaire, 67 statements (items) were developed. The statements were based on the relevant literature and were developed following rules and recommendations for questionnaire writing, and 36 items were chosen for final validation. Factor analysis was used to find out the factor structure of the questionnaire and to measure construct validity. The final version of the questionnaire consisted of 29 items divided into a three-factor structure: factor I - positive attitude toward plagiarism (12 items); factor II - negative attitude toward plagiarism (7 items); and factor III - subjective norms toward plagiarism (10 items). Cronbach alpha was calculated to confirm the reliability of the scale: factor I - alpha=0.83; factor II - alpha=0.79; and factor III - alpha=0.85. Correlations between factors were: -0.37 between I and II, -0.41 between I and III, and +0.31 between II and III. Attitudes Toward Plagiarism questionnaire was developed, with good psychometric characteristics. It will be used in future research as a standardized tool for measuring attitudes toward plagiarism.

  18. Chemical evolution of two-component galaxies. II

    International Nuclear Information System (INIS)

    Caimmi, R.

    1978-01-01

    In order to confirm and refine the results obtained in a previous paper the chemical evolution of two-component (spheroid + disk) galaxies is derived rejecting the instantaneous recycling approximation, by means of numerical computations, accounting for (i) the collapse phase of the gas, assumed to be uniform in density and composition, and (ii) a birth-rate stellar function. Computations are performed relatively to the solar neighbourhood and to model galaxies which closely resemble the real morphological sequence: in both cases, numerical results are compared with analytical ones. The numerical models of this paper constitute a first-order approximation, while higher order approximations could be made by rejecting the hypothesis of uniform density and composition, and making use of detailed dynamical models. (Auth.)

  19. Validation of Self-Report Impairment Measures for Section III Obsessive-Compulsive and Avoidant Personality Disorders.

    Science.gov (United States)

    Liggett, Jacqueline; Carmichael, Kieran L C; Smith, Alexander; Sellbom, Martin

    2017-01-01

    This study examined the validity of newly developed disorder-specific impairment scales (IS), modeled on the Level of Personality Functioning Scale, for obsessive-compulsive (OCPD) and avoidant (AvPD) personality disorders. The IS focused on content validity (items directly reflected the disorder-specific impairments listed in DSM-5 Section III) and severity of impairment. A community sample of 313 adults completed personality inventories indexing the DSM-5 Sections II and III diagnostic criteria for OCPD and AvPD, as well as measures of impairment in the domains of self- and interpersonal functioning. Results indicated that both impairment measures (for AvPD in particular) showed promise in their ability to measure disorder-specific impairment, demonstrating convergent validity with their respective Section II counterparts and discriminant validity with their noncorresponding Section II disorder and with each other. The pattern of relationships between scores on the IS and scores on external measures of personality functioning, however, did not indicate that it is useful to maintain a distinction between impairment in the self- and interpersonal domains, at least for AvPD and OCPD.

  20. Overview of the TIBER II design

    International Nuclear Information System (INIS)

    Henning, C.D.; Logan, B.G.

    1987-01-01

    The TIBER II Tokamak Ignition/Burn Experimental Reactor design is the result of efforts by numerous people and institutions, including many fusion laboratories, universities, and industries. This overview attempts to place the work in perspective. Major features of the design are compact size, low cost, and steady-state operation. These are achieved through plasma shaping and innovative features such as radiation tolerant magnets and optimized shielding. While TIBER II can operate in a pulsed mode, steady-state is preferred for nuclear testing. Current drive is achieved by a combination of lower hybrid and neutral beams. In addition to 10 MW of ECR is added for disruption control and current drive profiling

  1. Numerical microstructure prediction for an aluminium casting and its experimental validation

    Directory of Open Access Journals (Sweden)

    Unterreiter Guenter

    2011-08-01

    Full Text Available Virtual manufacturing based on through-process modelling becomes an evolving research area which aims at integrating diverse simulation tools to realize computer-aided design, analysis, prototyping and manufacturing. Numerical prediction of the as-cast microstructure is an initial and critical step in the whole through-process modelling chain for engineering components. A commercial software package with the capability of calculating important microstructure features for aluminium alloys is used to simulate a G-AlSi7MgCu0.5 laboratory casting. The simulated microstructure, namely grain size, secondary dendrite arm spacing and diverse phase fractions are verified experimentally. Correspondence and discrepancies are reported and discussed.

  2. Characterization of the TRIGA Mark II reactor full-power steady state

    Energy Technology Data Exchange (ETDEWEB)

    Cammi, Antonio, E-mail: antonio.cammi@polimi.it [Politecnico di Milano – Department of Energy, CeSNEF (Enrico Fermi Center for Nuclear Studies), via La Masa 34, 20156 Milano (Italy); Zanetti, Matteo [Politecnico di Milano – Department of Energy, CeSNEF (Enrico Fermi Center for Nuclear Studies), via La Masa 34, 20156 Milano (Italy); Chiesa, Davide; Clemenza, Massimiliano; Pozzi, Stefano; Previtali, Ezio; Sisti, Monica [University of Milano-Bicocca, Physics Department “G. Occhialini” and INFN Section, Piazza dell’Ateneo Nuovo, 20126 Milan (Italy); Magrotti, Giovanni; Prata, Michele; Salvini, Andrea [University of Pavia, Applied Nuclear Energy Laboratory (L.E.N.A.), Via Gaspare Aselli 41, 27100 Pavia (Italy)

    2016-04-15

    Highlights: • Full-power steady state characterization of the TRIGA Mark II reactor. • Monte Carlo and Multiphysics simulation of the TRIGA Mark II reactor. • Sub-cooled boiling effects in the TRIGA Mark II reactor. • Thermal feedback effects in the TRIGA Mark II reactor. • Experimental data based validation. - Abstract: In this paper, the characterization of the full-power steady state of the TRIGA Mark II nuclear reactor at the University of Pavia is achieved by coupling the Monte Carlo (MC) simulation for neutronics with the “Multiphysics” model for thermal-hydraulics. Neutronic analyses have been carried out with a MCNP5 based MC model of the entire reactor system, already validated in fresh fuel and zero-power configurations (in which thermal effects are negligible) and using all available experimental data as a benchmark. In order to describe the full-power reactor configuration, the temperature distribution in the core must be established. To evaluate this, a thermal-hydraulic model has been developed, using the power distribution results from the MC simulation as input. The thermal-hydraulic model is focused on the core active region and takes into account sub-cooled boiling effects present at full reactor power. The obtained temperature distribution is then entered into the MC model and a benchmark analysis is carried out to validate the model in fresh fuel and full-power configurations. An acceptable correspondence between experimental data and simulation results concerning full-power reactor criticality proves the reliability of the adopted methodology of analysis, both from the perspective of neutronics and thermal-hydraulics.

  3. Efficient approximation of random fields for numerical applications

    KAUST Repository

    Harbrecht, Helmut; Peters, Michael; Siebenmorgen, Markus

    2015-01-01

    We consider the rapid computation of separable expansions for the approximation of random fields. We compare approaches based on techniques from the approximation of non-local operators on the one hand and based on the pivoted Cholesky decomposition on the other hand. We provide an a-posteriori error estimate for the pivoted Cholesky decomposition in terms of the trace. Numerical examples validate and quantify the considered methods.

  4. Efficient approximation of random fields for numerical applications

    KAUST Repository

    Harbrecht, Helmut

    2015-01-07

    We consider the rapid computation of separable expansions for the approximation of random fields. We compare approaches based on techniques from the approximation of non-local operators on the one hand and based on the pivoted Cholesky decomposition on the other hand. We provide an a-posteriori error estimate for the pivoted Cholesky decomposition in terms of the trace. Numerical examples validate and quantify the considered methods.

  5. Validation of an intermediate heat exchanger model for real time analysis

    International Nuclear Information System (INIS)

    Tzanos, C.P.

    1986-11-01

    A new method was presented for LMFBR intermediate heat exchanger (IHX) analysis in real time for purposes of continuous on-line data validation, plant state verification and fault identification. For the validation of this methodology the EBR-II IHX transient during Test 8A was analyzed. This paper presents the results of this analysis

  6. Development of an integrated signal validation system and application to operating power plants

    International Nuclear Information System (INIS)

    Upadhyaya, B.R.; Holbert, K.E.; Kerlin, T.W.

    1989-01-01

    The objective of the university-industry joint research program at the University of Tennessee and Combustion Engineering, Inc. is to develop and implement a comprehensive signal validation system for current power plants and future advanced reactors. The integrated system consists of several parallel signal processing modules. The multi-modular decision information is combined to detect, isolate and characterize faulty signals. The signal validation system has been implemented in a VAX workstation and applied to operational data from a pressurized water reactor (PWR) and the Experimental Breeder Reactor-II (EBR-II). The use of the various signal validation techniques may be extended to predictive maintenance advising, instrument calibration verification, and to the development of intelligent instrumentation systems. 18 refs., 6 figs

  7. Numerical Analysis Of The Resistance To Pullout Test Of Clinched Assemblies Of Thin Metal Sheets

    International Nuclear Information System (INIS)

    Jomaa, Moez; Billardon, Rene

    2007-01-01

    This paper presents the finite element analysis of the resistance of a clinch point to pullout test -that follows the numerical analysis of the forming process of the point-. The simulations have been validated by comparison with experimental evidences. The influence on the numerical predictions of various computation and process parameters have been evaluated

  8. The Concurrent Validity of Brief Screening Questions for Anxiety, Depression, Social Isolation, Catastrophization and Fear of Movement in People with Low Back Pain

    DEFF Research Database (Denmark)

    Kent, Peter; Mirkhil, Saeida; Keating, Jenny

    2014-01-01

    (i) to test the concurrent validity of brief screening questions for five psychosocial constructs (anxiety, depression, social isolation, catastrophization and fear of movement), and (ii) to translate into Danish and validate those screening questions.......(i) to test the concurrent validity of brief screening questions for five psychosocial constructs (anxiety, depression, social isolation, catastrophization and fear of movement), and (ii) to translate into Danish and validate those screening questions....

  9. Calibration and validation of full-field techniques

    Directory of Open Access Journals (Sweden)

    Thalmann R.

    2010-06-01

    Full Text Available We review basic metrological terms related to the use of measurement equipment for verification of numerical model calculations. We address three challenges that are faced when performing measurements in experimental mechanics with optical techniques: the calibration of a measuring instrument that (i measures strain values, (ii provides full-field data, and (iii is dynamic.

  10. Model validation: a systemic and systematic approach

    International Nuclear Information System (INIS)

    Sheng, G.; Elzas, M.S.; Cronhjort, B.T.

    1993-01-01

    The term 'validation' is used ubiquitously in association with the modelling activities of numerous disciplines including social, political natural, physical sciences, and engineering. There is however, a wide range of definitions which give rise to very different interpretations of what activities the process involves. Analyses of results from the present large international effort in modelling radioactive waste disposal systems illustrate the urgent need to develop a common approach to model validation. Some possible explanations are offered to account for the present state of affairs. The methodology developed treats model validation and code verification in a systematic fashion. In fact, this approach may be regarded as a comprehensive framework to assess the adequacy of any simulation study. (author)

  11. Modeling and numerical simulations of the influenced Sznajd model

    Science.gov (United States)

    Karan, Farshad Salimi Naneh; Srinivasan, Aravinda Ramakrishnan; Chakraborty, Subhadeep

    2017-08-01

    This paper investigates the effects of independent nonconformists or influencers on the behavioral dynamic of a population of agents interacting with each other based on the Sznajd model. The system is modeled on a complete graph using the master equation. The acquired equation has been numerically solved. Accuracy of the mathematical model and its corresponding assumptions have been validated by numerical simulations. Regions of initial magnetization have been found from where the system converges to one of two unique steady-state PDFs, depending on the distribution of influencers. The scaling property and entropy of the stationary system in presence of varying level of influence have been presented and discussed.

  12. Numerical and Experimental Validation of a New Damage Initiation Criterion

    Science.gov (United States)

    Sadhinoch, M.; Atzema, E. H.; Perdahcioglu, E. S.; van den Boogaard, A. H.

    2017-09-01

    Most commercial finite element software packages, like Abaqus, have a built-in coupled damage model where a damage evolution needs to be defined in terms of a single fracture energy value for all stress states. The Johnson-Cook criterion has been modified to be Lode parameter dependent and this Modified Johnson-Cook (MJC) criterion is used as a Damage Initiation Surface (DIS) in combination with the built-in Abaqus ductile damage model. An exponential damage evolution law has been used with a single fracture energy value. Ultimately, the simulated force-displacement curves are compared with experiments to validate the MJC criterion. 7 out of 9 fracture experiments were predicted accurately. The limitations and accuracy of the failure predictions of the newly developed damage initiation criterion will be discussed shortly.

  13. Comparison of the performance of different modified graphene oxide nanosheets for the extraction of Pb(II) and Cd(II) from natural samples

    International Nuclear Information System (INIS)

    Sayar, Omid; Mehrani, Kheirollah; Mehrani, Azadeh; Hoseinzadeh, Fatemeh; Sadeghi, Omid

    2014-01-01

    Graphene nanosheets were modified with amino groups and the resulting material was used as a sorbent for the extraction of cadmium and lead ions. The nanosheets were characterized by IR spectroscopy, transmission electron microscopy, thermal gravimetric analysis and elemental analysis. The effects of sample pH, eluent parameters (type, concentration and volume of eluent), flow rates (of both sample and eluent), and of a variety of other ions on the efficiency of the extraction of Cd(II) and Pb(II) were optimized. Following solid phase extraction, the elements were determined by FAAS. The limits of detection are <0.9 μg L −1 for Pb(II) and <5 ng L −1 for Cd(II). The relative standard deviations are <2.2 %. The method was validated by analyzing several certified reference materials and was then used for Pb(II) and Cd(II) determination in natural waters and vegetables. (author)

  14. SMILE: numerical evaluation of the WPS validation test

    International Nuclear Information System (INIS)

    Moinereau, D.; Studer, V.; Dahl, A.; Wadier, Y.

    2004-01-01

    The reactor pressure vessel (RPV) is an essential component liable to limit the lifetime duration of nuclear PWR power plants. The structural integrity assessment of RPV subjected to pressurized thermal shock (PTA) transients made at an European level does not take always into account the potential beneficial effect of the load history (warm pre-stress WPS). A three-year European Research and Development program (SMILE) started in January 2002 as part of the Fifth Framework Program of the European Atomic Energy Community (EURATOM) to evaluate this effect. The SMILE project is one of a ''cluster'' of Fifth Framework Projects in the area of Plant Life Management. It aims to give sufficient elements to model and to validate the beneficial WPS effect in a RPV structural integrity assessment. Finally, this project aims to harmonize the different approaches to lay the basis for European codes and standards regarding the inclusion of the warm pre-stress (WPS) effect in the RPV assessments. Within the framework of this project, an important experimental work has been conducted including WPS type tests on CT specimens and also a PTS type transient experiment on a large cracked cylinder. The present paper describes shortly the PTS type experiment and presents the corresponding analyses based on engineering methods, finite element elastic and elastic-plastic computations, and local approach to fracture. The results are in good agreement with the experimental result. Significant margins are underlined, with an effective significant increase of the material resistance regarding the risk of brittle failure. (orig.)

  15. CIPS Validation Data Plan

    Energy Technology Data Exchange (ETDEWEB)

    Nam Dinh

    2012-03-01

    This report documents analysis, findings and recommendations resulted from a task 'CIPS Validation Data Plan (VDP)' formulated as an POR4 activity in the CASL VUQ Focus Area (FA), to develop a Validation Data Plan (VDP) for Crud-Induced Power Shift (CIPS) challenge problem, and provide guidance for the CIPS VDP implementation. The main reason and motivation for this task to be carried at this time in the VUQ FA is to bring together (i) knowledge of modern view and capability in VUQ, (ii) knowledge of physical processes that govern the CIPS, and (iii) knowledge of codes, models, and data available, used, potentially accessible, and/or being developed in CASL for CIPS prediction, to devise a practical VDP that effectively supports the CASL's mission in CIPS applications.

  16. The echo-enabled harmonic generation options for FLASH II

    International Nuclear Information System (INIS)

    Deng, Haixiao; Decking, Winfried; Faatz, Bart

    2011-03-01

    FLASH II is an upgrade to the existing free electron laser (FEL) FLASH. The echo-enabled harmonic generation (EEHG) scheme is proposed to be a potential seeding option of FLASH II. In this paper, the possibility of EEHG operation of FLASH II is investigated for the first time. With a combination of existing numerical codes, i.e. a laser-beam interaction code in an undulator (LBICU), a beam tracking code in a chicane (ELEGANT) and an universal FEL simulating code (GENESIS), the effects of beam energy chirp and coherent synchrotron radiation (CSR) on EEHG operation are studied as well. In addition, several interesting issues concerning EEHG simulation are discussed. (orig.)

  17. Post Process Characterization of Friction Stir Welded Components, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna Innovations Incorporated proposes in this STTR Phase II project to continue development and validation of Luna's amplitude-dependent, nonlinear ultrasonic...

  18. Automated reasoning applications to design validation and sneak function analysis

    International Nuclear Information System (INIS)

    Stratton, R.C.

    1984-01-01

    Argonne National Laboratory (ANL) is actively involved in the LMFBR Man-Machine Integration (MMI) Safety Program. The objective of this program is to enhance the operational safety and reliability of fast-breeder reactors by optimum integration of men and machines through the application of human factors principles and control engineering to the design, operation, and the control environment. ANL is developing methods to apply automated reasoning and computerization in the validation and sneak function analysis process. This project provides the element definitions and relations necessary for an automated reasoner (AR) to reason about design validation and sneak function analysis. This project also provides a demonstration of this AR application on an Experimental Breeder Reactor-II (EBR-II) system, the Argonne Cooling System

  19. Direct numerical simulation of rotating fluid flow in a closed cylinder

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Christensen, Erik Adler

    1995-01-01

    , is validated against experimental visualizations of both transient and stable periodic flows. The complexity of the flow problem is illuminated numerically by injecting flow tracers into the flow domain and following their evolution in time. The vortex dynamics appears as stretching, folding and squeezing...

  20. Recent Advances in Simulation of Eddy Current Testing of Tubes and Experimental Validations

    Science.gov (United States)

    Reboud, C.; Prémel, D.; Lesselier, D.; Bisiaux, B.

    2007-03-01

    Eddy current testing (ECT) is widely used in iron and steel industry for the inspection of tubes during manufacturing. A collaboration between CEA and the Vallourec Research Center led to the development of new numerical functionalities dedicated to the simulation of ECT of non-magnetic tubes by external probes. The achievement of experimental validations led us to the integration of these models into the CIVA platform. Modeling approach and validation results are discussed here. A new numerical scheme is also proposed in order to improve the accuracy of the model.

  1. Numerical Simulation of Sloshing Phenomena in Cubic Tank with Multiple Baffles

    Directory of Open Access Journals (Sweden)

    Mi-An Xue

    2012-01-01

    Full Text Available A two-phase fluid flow model solving Navier-Stokes equations was employed in this paper to investigate liquid sloshing phenomena in cubic tank with horizontal baffle, perforated vertical baffle, and their combinatorial configurations under the harmonic motion excitation. Laboratory experiment of liquid sloshing in cubic tank with perforated vertical baffle was carried out to validate the present numerical model. Fairly good agreements were obtained from the comparisons between the present numerical results and the present experimental data, available numerical data. Liquid sloshing in cubic tank with multiple baffles was investigated numerically in detail under different external excitation frequencies. Power spectrum of the time series of free surface elevation was presented with the aid of fast Fourier transform technique. The dynamic impact pressures acting on the normal and parallel sidewalls were discussed in detail.

  2. Physical and numerical modelling of permafrost dynamic during a climatic cycle: implications for Meuse - Haute-Marne site

    International Nuclear Information System (INIS)

    Regnier, D.

    2012-01-01

    This manuscript deals about works realized on the permafrost modelling in porous media and its impact on the hydrogeological circulations. These are parts of the Andra's studies on the nuclear waste storage and, on the environmental studies of the Meuse/Haute-Marne (MHM) site. During a climatic cycle, cold periods can generate permafrost (ground with temperature lower than 0 C for 2 consecutive years). This peri-glacial structure propagates towards deep geological layers, and, due to its very low permeability, can stop the flow of water bodies like aquifers. This work presents the elaboration of two numerical models (with Cast3M code (CEA)): (i) a model with thermal conduction, used for the study of a cold wave propagation in porous media with phase transition (water-ice); (ii) a more complex model, managing the thermo-hydraulic coupling of ground phenomenon (conduction, convection and transition of phase). After validation, these two models offer three axes of development: (i) benchmark proposition by the study of two generic test-cases; (ii) study of the local air temperature signal on MHM site: importance of high frequency temperature variations (centennial scale) for permafrost depth and stability; (iii) study of the dynamics of a thermal discontinuity in a typical hydrological system river-plain: closure time of the system by the permafrost according to various parameters (temperatures, geothermal flow, hydrological flow directions). (author) [fr

  3. Numerical experiment to estimate the validity of negative ion diagnostic using photo-detachment combined with Langmuir probing

    Energy Technology Data Exchange (ETDEWEB)

    Oudini, N. [Laboratoire des plasmas de décharges, Centre de Développement des Technologies Avancées, Cité du 20 Aout BP 17 Baba Hassen, 16081 Algiers (Algeria); Sirse, N.; Ellingboe, A. R. [Plasma Research Laboratory, School of Physical Sciences and NCPST, Dublin City University, Dublin 9 (Ireland); Benallal, R. [Unité de Recherche Matériaux et Energies Renouvelables, BP 119, Université Abou Bekr Belkaïd, Tlemcen 13000 (Algeria); Taccogna, F. [Istituto di Metodologie Inorganiche e di Plasmi, CNR, via Amendola 122/D, 70126 Bari (Italy); Aanesland, A. [Laboratoire de Physique des Plasmas, (CNRS, Ecole Polytechnique, Sorbonne Universités, UPMC Univ Paris 06, Univ Paris-Sud), École Polytechnique, 91128 Palaiseau Cedex (France); Bendib, A. [Laboratoire d' Electronique Quantique, Faculté de Physique, USTHB, El Alia BP 32, Bab Ezzouar, 16111 Algiers (Algeria)

    2015-07-15

    This paper presents a critical assessment of the theory of photo-detachment diagnostic method used to probe the negative ion density and electronegativity α = n{sub -}/n{sub e}. In this method, a laser pulse is used to photo-detach all negative ions located within the electropositive channel (laser spot region). The negative ion density is estimated based on the assumption that the increase of the current collected by an electrostatic probe biased positively to the plasma is a result of only the creation of photo-detached electrons. In parallel, the background electron density and temperature are considered as constants during this diagnostics. While the numerical experiments performed here show that the background electron density and temperature increase due to the formation of an electrostatic potential barrier around the electropositive channel. The time scale of potential barrier rise is about 2 ns, which is comparable to the time required to completely photo-detach the negative ions in the electropositive channel (∼3 ns). We find that neglecting the effect of the potential barrier on the background plasma leads to an erroneous determination of the negative ion density. Moreover, the background electron velocity distribution function within the electropositive channel is not Maxwellian. This is due to the acceleration of these electrons through the electrostatic potential barrier. In this work, the validity of the photo-detachment diagnostic assumptions is questioned and our results illustrate the weakness of these assumptions.

  4. Hybrid methods for airframe noise numerical prediction

    Energy Technology Data Exchange (ETDEWEB)

    Terracol, M.; Manoha, E.; Herrero, C.; Labourasse, E.; Redonnet, S. [ONERA, Department of CFD and Aeroacoustics, BP 72, Chatillon (France); Sagaut, P. [Laboratoire de Modelisation en Mecanique - UPMC/CNRS, Paris (France)

    2005-07-01

    This paper describes some significant steps made towards the numerical simulation of the noise radiated by the high-lift devices of a plane. Since the full numerical simulation of such configuration is still out of reach for present supercomputers, some hybrid strategies have been developed to reduce the overall cost of such simulations. The proposed strategy relies on the coupling of an unsteady nearfield CFD with an acoustic propagation solver based on the resolution of the Euler equations for midfield propagation in an inhomogeneous field, and the use of an integral solver for farfield acoustic predictions. In the first part of this paper, this CFD/CAA coupling strategy is presented. In particular, the numerical method used in the propagation solver is detailed, and two applications of this coupling method to the numerical prediction of the aerodynamic noise of an airfoil are presented. Then, a hybrid RANS/LES method is proposed in order to perform some unsteady simulations of complex noise sources. This method allows for significant reduction of the cost of such a simulation by considerably reducing the extent of the LES zone. This method is described and some results of the numerical simulation of the three-dimensional unsteady flow in the slat cove of a high-lift profile are presented. While these results remain very difficult to validate with experiments on similar configurations, they represent up to now the first 3D computations of this kind of flow. (orig.)

  5. Mean-Variance-Validation Technique for Sequential Kriging Metamodels

    International Nuclear Information System (INIS)

    Lee, Tae Hee; Kim, Ho Sung

    2010-01-01

    The rigorous validation of the accuracy of metamodels is an important topic in research on metamodel techniques. Although a leave-k-out cross-validation technique involves a considerably high computational cost, it cannot be used to measure the fidelity of metamodels. Recently, the mean 0 validation technique has been proposed to quantitatively determine the accuracy of metamodels. However, the use of mean 0 validation criterion may lead to premature termination of a sampling process even if the kriging model is inaccurate. In this study, we propose a new validation technique based on the mean and variance of the response evaluated when sequential sampling method, such as maximum entropy sampling, is used. The proposed validation technique is more efficient and accurate than the leave-k-out cross-validation technique, because instead of performing numerical integration, the kriging model is explicitly integrated to accurately evaluate the mean and variance of the response evaluated. The error in the proposed validation technique resembles a root mean squared error, thus it can be used to determine a stop criterion for sequential sampling of metamodels

  6. The Bipolar II Depression Questionnaire: A Self-Report Tool for Detecting Bipolar II Depression.

    Directory of Open Access Journals (Sweden)

    Chi Ming Leung

    Full Text Available Bipolar II (BP-II depression is often misdiagnosed as unipolar (UP depression, resulting in suboptimal treatment. Tools for differentiating between these two types of depression are lacking. This study aimed to develop a simple, self-report screening instrument to help distinguish BP-II depression from UP depressive disorder. A prototype BP-II depression questionnaire (BPIIDQ-P was constructed following a literature review, panel discussions and a field trial. Consecutively assessed patients with a diagnosis of depressive disorder or BP with depressive episodes completed the BPIIDQ-P at a psychiatric outpatient clinic in Hong Kong between October and December 2013. Data were analyzed using discriminant analysis and logistic regression. Of the 298 subjects recruited, 65 (21.8% were males and 233 (78.2% females. There were 112 (37.6% subjects with BP depression [BP-I = 42 (14.1%, BP-II = 70 (23.5%] and 182 (62.4% with UP depression. Based on family history, age at onset, postpartum depression, episodic course, attacks of anxiety, hypersomnia, social phobia and agoraphobia, the 8-item BPIIDQ-8 was constructed. The BPIIDQ-8 differentiated subjects with BP-II from those with UP depression with a sensitivity/specificity of 0.75/0.63 for the whole sample and 0.77/0.72 for a female subgroup with a history of childbirth. The BPIIDQ-8 can differentiate BP-II from UP depression at the secondary care level with satisfactory to good reliability and validity. It has good potential as a screening tool for BP-II depression in primary care settings. Recall bias, the relatively small sample size, and the high proportion of females in the BP-II sample limit the generalization of the results.

  7. A discussion on validation of hydrogeological models

    International Nuclear Information System (INIS)

    Carrera, J.; Mousavi, S.F.; Usunoff, E.J.; Sanchez-Vila, X.; Galarza, G.

    1993-01-01

    Groundwater flow and solute transport are often driven by heterogeneities that elude easy identification. It is also difficult to select and describe the physico-chemical processes controlling solute behaviour. As a result, definition of a conceptual model involves numerous assumptions both on the selection of processes and on the representation of their spatial variability. Validating a numerical model by comparing its predictions with actual measurements may not be sufficient for evaluating whether or not it provides a good representation of 'reality'. Predictions will be close to measurements, regardless of model validity, if these are taken from experiments that stress well-calibrated model modes. On the other hand, predictions will be far from measurements when model parameters are very uncertain, even if the model is indeed a very good representation of the real system. Hence, we contend that 'classical' validation of hydrogeological models is not possible. Rather, models should be viewed as theories about the real system. We propose to follow a rigorous modeling approach in which different sources of uncertainty are explicitly recognized. The application of one such approach is illustrated by modeling a laboratory uranium tracer test performed on fresh granite, which was used as Test Case 1b in INTRAVAL. (author)

  8. Numerical analysis of the bearing capacity of complex rock mechanical underground systems with filigree structures in the presence of imponderables. A contribution to the systematization of the investigative process with application/demonstration using the example of the salt cavern ASSE II/south flank; Numerische Analyse des Tragverhaltens komplexer gebirgsmechanischer untertaegiger Systeme mit filigranen Strukturen bei Anwesenheit von Imponderabilien. Ein Beitrag zur Systematisierung des Untersuchungsprozesses mit Anwendung/Demonstration am Beispiel des Salzbergwerks Schacht ASSE II/Suedflanke

    Energy Technology Data Exchange (ETDEWEB)

    Dyogtyev, Oleksandr

    2017-03-02

    The thesis dealing with the numerical analysis of the bearing capacity of complex rock mechanical underground systems with filigree structures in the presence of imponderables covers the following issues: status of science and technology, concept for the performance of numerical studies on the bearing capacity of large-volume underground systems, application example salt cavern ASSE II - application of the developed concept/development of numerical tools for the overall system/application of the global model to the given questions/realization of the modification potential.

  9. Numerical Analysis of Flood modeling of upper Citarum River under Extreme Flood Condition

    Science.gov (United States)

    Siregar, R. I.

    2018-02-01

    This paper focuses on how to approach the numerical method and computation to analyse flood parameters. Water level and flood discharge are the flood parameters solved by numerical methods approach. Numerical method performed on this paper for unsteady flow conditions have strengths and weaknesses, among others easily applied to the following cases in which the boundary irregular flow. The study area is in upper Citarum Watershed, Bandung, West Java. This paper uses computation approach with Force2 programming and HEC-RAS to solve the flow problem in upper Citarum River, to investigate and forecast extreme flood condition. Numerical analysis based on extreme flood events that have occurred in the upper Citarum watershed. The result of water level parameter modeling and extreme flood discharge compared with measurement data to analyse validation. The inundation area about flood that happened in 2010 is about 75.26 square kilometres. Comparing two-method show that the FEM analysis with Force2 programs has the best approach to validation data with Nash Index is 0.84 and HEC-RAS that is 0.76 for water level. For discharge data Nash Index obtained the result analysis use Force2 is 0.80 and with use HEC-RAS is 0.79.

  10. Characterization of spent EBR-II driver fuel

    International Nuclear Information System (INIS)

    McKnight, R. D.

    1998-01-01

    Operations and material control and accountancy requirements for the Fuel Conditioning Facility demand accurate prediction of the mass flow of spent EBR-II driver fuel into the facility. This requires validated calculational tools that can predict the burnup and isotopic distribution in irradiated Zr-alloy fueled driver assemblies. Detailed core-follow depletion calculations have been performed for an extensive series of EBR-II runs to produce a database of material inventories for the spent fuel to be processed. As this fuel is processed, comparison of calculated values with measured data obtained from samples of this fuel is producing a growing set of validation data. A more extensive set of samples and measurements from the initial processing of irradiated driver fuel has produced valuable estimates of the biases and uncertainties in both the measured and calculated values. Results of these comparisons are presented herein and indicate the calculated values adequately predict the mass flows

  11. Health Activities Project (HAP), Trial Edition II.

    Science.gov (United States)

    Buller, Dave; And Others

    Contained within this Health Activities Project (HAP) trial edition (set II) are a teacher information folio and numerous student activity folios which center around the idea that students in grades 5-8 can control their own health and safety. Each student folio is organized into a Synopsis, Health Background, Materials, Setting Up, and Activities…

  12. Validating the Copenhagen Psychosocial Questionnaire (COPSOQ-II) Using Set-ESEM: Identifying Psychosocial Risk Factors in a Sample of School Principals.

    Science.gov (United States)

    Dicke, Theresa; Marsh, Herbert W; Riley, Philip; Parker, Philip D; Guo, Jiesi; Horwood, Marcus

    2018-01-01

    School principals world-wide report high levels of strain and attrition resulting in a shortage of qualified principals. It is thus crucial to identify psychosocial risk factors that reflect principals' occupational wellbeing. For this purpose, we used the Copenhagen Psychosocial Questionnaire (COPSOQ-II), a widely used self-report measure covering multiple psychosocial factors identified by leading occupational stress theories. We evaluated the COPSOQ-II regarding factor structure and longitudinal, discriminant, and convergent validity using latent structural equation modeling in a large sample of Australian school principals ( N = 2,049). Results reveal that confirmatory factor analysis produced marginally acceptable model fit. A novel approach we call set exploratory structural equation modeling (set-ESEM), where cross-loadings were only allowed within a priori defined sets of factors, fit well, and was more parsimonious than a full ESEM. Further multitrait-multimethod models based on the set-ESEM confirm the importance of a principal's psychosocial risk factors; Stressors and depression were related to demands and ill-being, while confidence and autonomy were related to wellbeing. We also show that working in the private sector was beneficial for showing a low psychosocial risk, while other demographics have little effects. Finally, we identify five latent risk profiles (high risk to no risk) of school principals based on all psychosocial factors. Overall the research presented here closes the theory application gap of a strong multi-dimensional measure of psychosocial risk-factors.

  13. A relaxation-projection method for compressible flows. Part I: The numerical equation of state for the Euler equations

    International Nuclear Information System (INIS)

    Saurel, Richard; Franquet, Erwin; Daniel, Eric; Le Metayer, Olivier

    2007-01-01

    A new projection method is developed for the Euler equations to determine the thermodynamic state in computational cells. It consists in the resolution of a mechanical relaxation problem between the various sub-volumes present in a computational cell. These sub-volumes correspond to the ones traveled by the various waves that produce states with different pressures, velocities, densities and temperatures. Contrarily to Godunov type schemes the relaxed state corresponds to mechanical equilibrium only and remains out of thermal equilibrium. The pressure computation with this relaxation process replaces the use of the conventional equation of state (EOS). A simplified relaxation method is also derived and provides a specific EOS (named the Numerical EOS). The use of the Numerical EOS gives a cure to spurious pressure oscillations that appear at contact discontinuities for fluids governed by real gas EOS. It is then extended to the computation of interface problems separating fluids with different EOS (liquid-gas interface for example) with the Euler equations. The resulting method is very robust, accurate, oscillation free and conservative. For the sake of simplicity and efficiency the method is developed in a Lagrange-projection context and is validated over exact solutions. In a companion paper [F. Petitpas, E. Franquet, R. Saurel, A relaxation-projection method for compressible flows. Part II: computation of interfaces and multiphase mixtures with stiff mechanical relaxation. J. Comput. Phys. (submitted for publication)], the method is extended to the numerical approximation of a non-conservative hyperbolic multiphase flow model for interface computation and shock propagation into mixtures

  14. Small Galactic H II regions. II. The molecular clouds and star formation

    International Nuclear Information System (INIS)

    Hunter, D.A.; Thronson, H.A. Jr.; Wilton, C.

    1990-01-01

    CO maps of molecular clouds associated with 11 small Galactic H II regions are presented and compared with IR images obtained by IRAS. The molecular masses of the clouds are computed and compared with the masses of the stellar content. The mapped clouds have masses of 1000-60,000 solar and are typical of the more numerous, smaller Galactic molecular clouds. All of the clouds have recently made massive OB stars, and many have complex spatial and kinematic structures. The coincidence of IRAS sources and CO peaks suggests that many of the clouds have sites of star formation other than the optically visible H II region. Star-formation efficiencies are uncertain, with values for the clouds ranging from 0.02 to 0.6 with an average value of 0.2. There is no trend of the upper stellar mass limit with Galactic radius and with molecular cloud mass. 53 refs

  15. Complexes in the Ni2+-imidazole-RN(CH2COO-)2 systems. The crystal structures of tris(imidazole)iminodiacetatonickel(II) monohydrate, hexa(imidazole)nickel(II) bis(N-methyliminodiacetato)nickelate(II) hexahydrate, and tetra(aqua)bis(imidazole)nickel(II) bis(N-benzyliminodiacetato)nickelate(II)

    International Nuclear Information System (INIS)

    Polyakova, I.N.; Sergienko, V.S.; Poznyak, A.L.

    2000-01-01

    Crystals of different compositions, namely, [Ni(Ida)(Im) 3 ] · H 2 O (I), [Ni(Im) 6 ][Ni(Mida) 2 ] · 6H 2 O (II), and [Ni(Im) 2 (H 2 O) 4 ][Ni(Bida) 2 ] (III), have been precipitated from aqueous solutions of the Ni 2+ -Lig 2- Im systems, where Lig 2- is Ida, Mida, and Bida, respectively. The crystal structures of I-III are determined by X-ray diffraction analysis (R = 0.0307, 0.0348, and 0.0302 for 3061, 4706, and 2882 reflections, respectively). Crystals I are built of monomeric mixed-ligand complexes and molecules of crystallization water, which are interlinked by hydrogen bonds into a three-dimensional framework. In II and III, the ligands Lig 2- and Im form charged complexes separately. In II, the cationic and anionic layers of the complexes alternate along the c-axis. Numerous hydrogen bonds involving molecules of crystallization water link the layers into a three-dimensional framework. In III, the cationic and anionic complexes, which serve as proton donors and acceptors, respectively, are bound into layers parallel to the xy plane

  16. Numerical treatment of the unsteady hydromagnetic thermal boundary layer problem

    International Nuclear Information System (INIS)

    Drymonitou, M.A.; Geroyannis, V.S.; Goudas, C.L.

    1980-01-01

    This paper presents a suitable numerical method for the treatment of the unsteady hydromagnetic thermal boundary layer problem for flows past an infinite porous flat plate, the motion of which is governed by a general time-dependent law, under the influence of a transverse externally set magnetic field. The normal velocity of suction/injection at the plate is also assumed to be time-dependent. The results obtained on the basis of numerical approximations seem to compare favourably with earlier results (Pande et al., 1976; Tokis, 1978). Analytical approximations are given for the cases of a plate (i) generally accelerated and (ii) harmonically oscillating. The direct numerical treatment is obviously advantageous since it allows handling of cases where the known methods for analytical approximations are not applicable. This problem is closely related to the motions and heat transfer occurring locally on the surfaces of stars. (orig.)

  17. Hexaaquanickel(II tetraaquabis(μ-pyridine-2,6-dicarboxylatobis(pyridine-2,6-dicarboxylatotrinickelate(II octahydrate

    Directory of Open Access Journals (Sweden)

    Javad Safaei-Ghomi

    2010-08-01

    Full Text Available The title compound, [Ni(H2O6][Ni3(C7H3NO44(H2O4]·8H2O, was obtained by the reaction of nickel(II nitrate hexahydrate with pyridine-2,6-dicarboxylic acid (pydcH2 and 1,10-phenanothroline (phen in an aqueous solution. The latter ligand is not involved in formation of the title complex. There are three different NiII atoms in the asymmetric unit, two of which are located on inversion centers, and thus the [Ni(H2O6]2+ cation and the trinuclear {[Ni(pydc2]2-μ-Ni(H2O4}2− anion are centrosymmetric. All NiII atoms exhibit an octahedral coordination geometry. Various interactions, including numerous O—H...O and C—H...O hydrogen bonds and C—O...π stacking of the pyridine and carboxylate groups [3.570 (1, 3.758 (1 and 3.609 (1 Å], are observed in the crystal structure.

  18. Structural analysis of group II chitinase (ChtII) catalysis completes the puzzle of chitin hydrolysis in insects.

    Science.gov (United States)

    Chen, Wei; Qu, Mingbo; Zhou, Yong; Yang, Qing

    2018-02-23

    Chitin is a linear homopolymer of N -acetyl-β-d-glucosamines and a major structural component of insect cuticles. Chitin hydrolysis involves glycoside hydrolase family 18 (GH18) chitinases. In insects, chitin hydrolysis is essential for periodic shedding of the old cuticle ecdysis and proceeds via a pathway different from that in the well studied bacterial chitinolytic system. Group II chitinase (ChtII) is a widespread chitinolytic enzyme in insects and contains the greatest number of catalytic domains and chitin-binding domains among chitinases. In Lepidopterans, ChtII and two other chitinases, ChtI and Chi-h, are essential for chitin hydrolysis. Although ChtI and Chi-h have been well studied, the role of ChtII remains elusive. Here, we investigated the structure and enzymology of Of ChtII, a ChtII derived from the insect pest Ostrinia furnacalis We present the crystal structures of two catalytically active domains of Of ChtII, Of ChtII-C1 and Of ChtII-C2, both in unliganded form and complexed with chitooligosaccharide substrates. We found that Of ChtII-C1 and Of ChtII-C2 both possess long, deep substrate-binding clefts with endochitinase activities. Of ChtII exhibited structural characteristics within the substrate-binding cleft similar to those in Of Chi-h and Of ChtI. However, Of ChtII lacked structural elements favoring substrate binding beyond the active sites, including an extra wall structure present in Of Chi-h. Nevertheless, the numerous domains in Of ChtII may compensate for this difference; a truncation containing one catalytic domain and three chitin-binding modules ( Of ChtII-B4C1) displayed activity toward insoluble polymeric substrates that was higher than those of Of Chi-h and Of ChtI. Our observations provide the last piece of the puzzle of chitin hydrolysis in insects. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Rapid metabolism of exogenous angiotensin II by catecholaminergic neuronal cells in culture media.

    Science.gov (United States)

    Basu, Urmi; Seravalli, Javier; Madayiputhiya, Nandakumar; Adamec, Jiri; Case, Adam J; Zimmerman, Matthew C

    2015-02-01

    Angiotensin II (AngII) acts on central neurons to increase neuronal firing and induce sympathoexcitation, which contribute to the pathogenesis of cardiovascular diseases including hypertension and heart failure. Numerous studies have examined the precise AngII-induced intraneuronal signaling mechanism in an attempt to identify new therapeutic targets for these diseases. Considering the technical challenges in studying specific intraneuronal signaling pathways in vivo, especially in the cardiovascular control brain regions, most studies have relied on neuronal cell culture models. However, there are numerous limitations in using cell culture models to study AngII intraneuronal signaling, including the lack of evidence indicating the stability of AngII in culture media. Herein, we tested the hypothesis that exogenous AngII is rapidly metabolized in neuronal cell culture media. Using liquid chromatography-tandem mass spectrometry, we measured levels of AngII and its metabolites, Ang III, Ang IV, and Ang-1-7, in neuronal cell culture media after administration of exogenous AngII (100 nmol/L) to a neuronal cell culture model (CATH.a neurons). AngII levels rapidly declined in the media, returning to near baseline levels within 3 h of administration. Additionally, levels of Ang III and Ang-1-7 acutely increased, while levels of Ang IV remained unchanged. Replenishing the media with exogenous AngII every 3 h for 24 h resulted in a consistent and significant increase in AngII levels for the duration of the treatment period. These data indicate that AngII is rapidly metabolized in neuronal cell culture media, and replenishing the media at least every 3 h is needed to sustain chronically elevated levels. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  20. Validation of numerical solvers for liquid metal flow in a complex geometry in the presence of a strong magnetic field

    Science.gov (United States)

    Patel, Anita; Pulugundla, Gautam; Smolentsev, Sergey; Abdou, Mohamed; Bhattacharyay, Rajendraprasad

    2018-04-01

    Following the magnetohydrodynamic (MHD) code validation and verification proposal by Smolentsev et al. (Fusion Eng Des 100:65-72, 2015), we perform code to code and code to experiment comparisons between two computational solvers, FLUIDYN and HIMAG, which are presently considered as two of the prospective CFD tools for fusion blanket applications. In such applications, an electrically conducting breeder/coolant circulates in the blanket ducts in the presence of a strong plasma-confining magnetic field at high Hartmann numbers, it{Ha} (it{Ha}^2 is the ratio between electromagnetic and viscous forces) and high interaction parameters, it{N} (it{N} is the ratio of electromagnetic to inertial forces). The main objective of this paper is to provide the scientific and engineering community with common references to assist fusion researchers in the selection of adequate computational means to be used for blanket design and analysis. As an initial validation case, the two codes are applied to the classic problem of a laminar fully developed MHD flows in a rectangular duct. Both codes demonstrate a very good agreement with the analytical solution for it{Ha} up to 15, 000. To address the capabilities of the two codes to properly resolve complex geometry flows, we consider a case of three-dimensional developing MHD flow in a geometry comprising of a series of interconnected electrically conducting rectangular ducts. The computed electric potential distributions for two flows (Case A) it{Ha}=515, it{N}=3.2 and (Case B) it{Ha}=2059, it{N}=63.8 are in very good agreement with the experimental data, while the comparisons for the MHD pressure drop are still unsatisfactory. To better interpret the observed differences, the obtained numerical data are analyzed against earlier theoretical and experimental studies for flows that involve changes in the relative orientation between the flow and the magnetic field.

  1. Various types of numerical schema for the one-dimensional spherical geometry transport equation

    International Nuclear Information System (INIS)

    Jaber, Abdelouhab.

    1981-07-01

    Mathematical and numerical studies of new schemas possessing high accuracy spatial variable properties are described and the corresponding studies presented. In order to do this, the [0,R] x [-1,+1] rectangle is decomposad into Ksub(ij) = [rsub(i),rsub(i+1)] x [μsub(j),μsub(j+1) ] rectangles. Continuous finite element methods employing polynominals of degree 1 in μ and degree 2 in r are defined for each elements. In chapter I, different ways of rendering the particular equation (for μ = -1) discrete are studied. In chapter II, numerical schemas are described and their stability investigated. In chapter III, error estimation theories are exposed and numerical results for different second members, S, given [fr

  2. Application of Carrier Element-Free Co-precipitation Method for Ni(II), Cu(II) and Zn(II) Ions Determination in Water Samples Using Chrysin

    International Nuclear Information System (INIS)

    Layth Imad Abd Ali; Wan Aini Wan Ibrahim; Azli Sulaiman; Mohd Marsin Sanagi

    2015-01-01

    A co-precipitation method was developed to separate and pre-concentrate Ni(II), Cu(II) and Zn(II) ions using an organic co precipitant, chrysin without adding any carrier element termed as carrier element-free co-precipitation (CEFC). Analytes were determined using flame atomic absorption spectrometry (FAAS). The influence of analytical conditions, such as pH of the solution, quantity of co-precipitant, standing time, centrifugation rate and time, sample volume, and interference of concomitant ions were investigated over the recovery yields of the trace metals. The limit of detection, the limit of quantification and linearity range obtained from the FAAS measurements were found to be in the range of 0.64 to 0.86 μg L -1 , 2.13 to 2.86 μg L -1 and 0.9972 to 0.9989 for Ni(II), Cu(III) and Zn(II) ions, respectively. The precision of the method, evaluated as the relative standard deviation (RSD) obtained after analyzing a series of 10 replicates, was between 2.6 % to 3.9 % for the trace metal ions. The proposed procedure was applied and validated by analyzing river water reference material for trace metals (SLRS-5) and spiking trace metal ions in some water samples. The recoveries of the analyte metal ions were between 94.7-101.2 %. (author)

  3. Validation of the newborn larynx modeling with aerodynamical experimental data.

    Science.gov (United States)

    Nicollas, R; Giordano, J; Garrel, R; Medale, M; Caminat, P; Giovanni, A; Ouaknine, M; Triglia, J M

    2009-06-01

    Many authors have studied adult's larynx modelization, but the mechanisms of newborn's voice production have very rarely been investigated. After validating a numerical model with acoustic data, studies were performed on larynges of human fetuses in order to validate this model with aerodynamical experiments. Anatomical measurements were performed and a simplified numerical model was built using Fluent((R)) with the vocal folds in phonatory position. The results obtained are in good agreement with those obtained by laser Doppler velocimetry (LDV) and high-frame rate particle image velocimetry (HFR-PIV), on an experimental bench with excised human fetus larynges. It appears that computing with first cry physiological parameters leads to a model which is close to those obtained in experiments with real organs.

  4. EBR-II [Experimental Breeder Reactor-II] system surveillance using pattern recognition software

    International Nuclear Information System (INIS)

    Mott, J.E.; Radtke, W.H.; King, R.W.

    1986-02-01

    The problem of most accurately determining the Experimental Breeder Reactor-II (EBR-II) reactor outlet temperature from currently available plant signals is investigated. Historically, the reactor outlet pipe was originally instrumented with 8 temperature sensors but, during 22 years of operation, all these instruments have failed except for one remaining thermocouple, and its output had recently become suspect. Using pattern recognition methods to compare values of 129 plant signals for similarities over a 7 month period spanning reconfiguration of the core and recalibration of many plant signals, it was determined that the remaining reactor outlet pipe thermocouple is still useful as an indicator of true mixed mean reactor outlet temperature. Application of this methodology to investigate one specific signal has automatically validated the vast majority of the 129 signals used for pattern recognition and also highlighted a few inconsistent signals for further investigation

  5. Validation of Calculations in a Digital Thermometer Firmware

    Science.gov (United States)

    Batagelj, V.; Miklavec, A.; Bojkovski, J.

    2014-04-01

    State-of-the-art digital thermometers are arguably remarkable measurement instruments, measuring outputs from resistance thermometers and/or thermocouples. Not only that they can readily achieve measuring accuracies in the parts-per-million range, but they also incorporate sophisticated algorithms for the transformation calculation of the measured resistance or voltage to temperature. These algorithms often include high-order polynomials, exponentials and logarithms, and must be performed using both standard coefficients and particular calibration coefficients. The numerical accuracy of these calculations and the associated uncertainty component must be much better than the accuracy of the raw measurement in order to be negligible in the total measurement uncertainty. In order for the end-user to gain confidence in these calculations as well as to conform to formal requirements of ISO/IEC 17025 and other standards, a way of validation of these numerical procedures performed in the firmware of the instrument is required. A software architecture which allows a simple validation of internal measuring instrument calculations is suggested. The digital thermometer should be able to expose all its internal calculation functions to the communication interface, so the end-user can compare the results of the internal measuring instrument calculation with reference results. The method can be regarded as a variation of the black-box software validation. Validation results on a thermometer prototype with implemented validation ability show that the calculation error of basic arithmetic operations is within the expected rounding error. For conversion functions, the calculation error is at least ten times smaller than the thermometer effective resolution for the particular probe type.

  6. Numerical simulation of avascular tumor growth

    Energy Technology Data Exchange (ETDEWEB)

    Slezak, D Fernandez; Suarez, C; Soba, A; Risk, M; Marshall, G [Laboratorio de Sistemas Complejos, Departamento de Computacion, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (C1428EGA) Buenos Aires (Argentina)

    2007-11-15

    A mathematical and numerical model for the description of different aspects of microtumor development is presented. The model is based in the solution of a system of partial differential equations describing an avascular tumor growth. A detailed second-order numeric algorithm for solving this system is described. Parameters are swiped to cover a range of feasible physiological values. While previous published works used a single set of parameters values, here we present a wide range of feasible solutions for tumor growth, covering a more realistic scenario. The model is validated by experimental data obtained with a multicellular spheroid model, a specific type of in vitro biological model which is at present considered to be optimum for the study of complex aspects of avascular microtumor physiology. Moreover, a dynamical analysis and local behaviour of the system is presented, showing chaotic situations for particular sets of parameter values at some fixed points. Further biological experiments related to those specific points may give potentially interesting results.

  7. Verifying and Validating Simulation Models

    Energy Technology Data Exchange (ETDEWEB)

    Hemez, Francois M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-23

    This presentation is a high-level discussion of the Verification and Validation (V&V) of computational models. Definitions of V&V are given to emphasize that “validation” is never performed in a vacuum; it accounts, instead, for the current state-of-knowledge in the discipline considered. In particular comparisons between physical measurements and numerical predictions should account for their respective sources of uncertainty. The differences between error (bias), aleatoric uncertainty (randomness) and epistemic uncertainty (ignorance, lack-of- knowledge) are briefly discussed. Four types of uncertainty in physics and engineering are discussed: 1) experimental variability, 2) variability and randomness, 3) numerical uncertainty and 4) model-form uncertainty. Statistical sampling methods are available to propagate, and analyze, variability and randomness. Numerical uncertainty originates from the truncation error introduced by the discretization of partial differential equations in time and space. Model-form uncertainty is introduced by assumptions often formulated to render a complex problem more tractable and amenable to modeling and simulation. The discussion concludes with high-level guidance to assess the “credibility” of numerical simulations, which stems from the level of rigor with which these various sources of uncertainty are assessed and quantified.

  8. Numerical Modeling and Design of Thermoelectric Cooling Systems and Its Application to Manufacturing Machines

    Science.gov (United States)

    Gallo, A.; Arana, A.; Oyanguren, A.; García, G.; Barbero, A.; Larrañaga, J.; Ulacia, I.

    2013-07-01

    In this work the properties of thermoelectric modules (TEMs) and their behavior have been numerically modeled. Moreover, their applications very often require modeling not only of the TEM but also of the working environment and the product in which they will be working. A clear example is the fact that TEMs are very often installed with heat-dissipating elements such as fans, heat sinks, and heat exchangers; thus, the module will only work according to the heat dissipation conditions that these external sources can provide in a certain environment. In this context, analytic approaches, even though they have been proved to be useful, do not provide enough, accurate information in this regard. Therefore, numerical modeling has been identified as a powerful tool to improve detailed designs of thermoelectric solutions. This paper presents numerical simulations of a TEM in different working conditions, as well as with different commercial dissipation devices. The objective is to obtain the characteristic curve of a TEM using a valid numerical model that can be introduced into larger models of different applications. Also, the numerical model of the module and different cooling devices is provided. Both of them are compared against real tested modules, so that the deviation between them can be measured and discussed. Finally, the TEM is introduced into a manufacturing application and results are discussed to validate the model for further use.

  9. Solving multiobjective optimal reactive power dispatch using modified NSGA-II

    Energy Technology Data Exchange (ETDEWEB)

    Jeyadevi, S.; Baskar, S.; Babulal, C.K.; Willjuice Iruthayarajan, M. [Department of Electrical and Electronics Engineering, Thiagarajar College of Engineering, Madurai, Tamilnadu 625 015 (India)

    2011-02-15

    This paper addresses an application of modified NSGA-II (MNSGA-II) by incorporating controlled elitism and dynamic crowding distance (DCD) strategies in NSGA-II to multiobjective optimal reactive power dispatch (ORPD) problem by minimizing real power loss and maximizing the system voltage stability. To validate the Pareto-front obtained using MNSGA-II, reference Pareto-front is generated using multiple runs of single objective optimization with weighted sum of objectives. For simulation purposes, IEEE 30 and IEEE 118 bus test systems are considered. The performance of MNSGA-II, NSGA-II and multiobjective particle swarm optimization (MOPSO) approaches are compared with respect to multiobjective performance measures. TOPSIS technique is applied on obtained non-dominated solutions to determine best compromise solution (BCS). Karush-Kuhn-Tucker (KKT) conditions are also applied on the obtained non-dominated solutions to substantiate a claim on optimality. Simulation results are quite promising and the MNSGA-II performs better than NSGA-II in maintaining diversity and authenticates its potential to solve multiobjective ORPD effectively. (author)

  10. WATSFAR: numerical simulation of soil WATer and Solute fluxes using a FAst and Robust method

    Science.gov (United States)

    Crevoisier, David; Voltz, Marc

    2013-04-01

    To simulate the evolution of hydro- and agro-systems, numerous spatialised models are based on a multi-local approach and improvement of simulation accuracy by data-assimilation techniques are now used in many application field. The latest acquisition techniques provide a large amount of experimental data, which increase the efficiency of parameters estimation and inverse modelling approaches. In turn simulations are often run on large temporal and spatial domains which requires a large number of model runs. Eventually, despite the regular increase in computing capacities, the development of fast and robust methods describing the evolution of saturated-unsaturated soil water and solute fluxes is still a challenge. Ross (2003, Agron J; 95:1352-1361) proposed a method, solving 1D Richards' and convection-diffusion equation, that fulfil these characteristics. The method is based on a non iterative approach which reduces the numerical divergence risks and allows the use of coarser spatial and temporal discretisations, while assuring a satisfying accuracy of the results. Crevoisier et al. (2009, Adv Wat Res; 32:936-947) proposed some technical improvements and validated this method on a wider range of agro- pedo- climatic situations. In this poster, we present the simulation code WATSFAR which generalises the Ross method to other mathematical representations of soil water retention curve (i.e. standard and modified van Genuchten model) and includes a dual permeability context (preferential fluxes) for both water and solute transfers. The situations tested are those known to be the less favourable when using standard numerical methods: fine textured and extremely dry soils, intense rainfall and solute fluxes, soils near saturation, ... The results of WATSFAR have been compared with the standard finite element model Hydrus. The analysis of these comparisons highlights two main advantages for WATSFAR, i) robustness: even on fine textured soil or high water and solute

  11. Numerical Simulation and Experimental Validation of an Integrated Sleeve-Wedge Anchorage for CFRP Rods

    DEFF Research Database (Denmark)

    Schmidt, Jacob Wittrup; Smith, Scott T.; Täljsten, Björn

    2011-01-01

    . Recently, an integrated sleeve-wedge anchorage has been successfully developed specifically for CFRP rods. This paper in turn presents a numerical simulation of the newly developed anchorage using ABAQUS. The three-dimensional finite element (FE) model, which considers material non-linearity, uses...

  12. German validation of the Conners Adult ADHD Rating Scales (CAARS) II: reliability, validity, diagnostic sensitivity and specificity.

    Science.gov (United States)

    Christiansen, H; Kis, B; Hirsch, O; Matthies, S; Hebebrand, J; Uekermann, J; Abdel-Hamid, M; Kraemer, M; Wiltfang, J; Graf, E; Colla, M; Sobanski, E; Alm, B; Rösler, M; Jacob, C; Jans, T; Huss, M; Schimmelmann, B G; Philipsen, A

    2012-07-01

    The German version of the Conners Adult ADHD Rating Scales (CAARS) has proven to show very high model fit in confirmative factor analyses with the established factors inattention/memory problems, hyperactivity/restlessness, impulsivity/emotional lability, and problems with self-concept in both large healthy control and ADHD patient samples. This study now presents data on the psychometric properties of the German CAARS-self-report (CAARS-S) and observer-report (CAARS-O) questionnaires. CAARS-S/O and questions on sociodemographic variables were filled out by 466 patients with ADHD, 847 healthy control subjects that already participated in two prior studies, and a total of 896 observer data sets were available. Cronbach's-alpha was calculated to obtain internal reliability coefficients. Pearson correlations were performed to assess test-retest reliability, and concurrent, criterion, and discriminant validity. Receiver Operating Characteristics (ROC-analyses) were used to establish sensitivity and specificity for all subscales. Coefficient alphas ranged from .74 to .95, and test-retest reliability from .85 to .92 for the CAARS-S, and from .65 to .85 for the CAARS-O. All CAARS subscales, except problems with self-concept correlated significantly with the Barrett Impulsiveness Scale (BIS), but not with the Wender Utah Rating Scale (WURS). Criterion validity was established with ADHD subtype and diagnosis based on DSM-IV criteria. Sensitivity and specificity were high for all four subscales. The reported results confirm our previous study and show that the German CAARS-S/O do indeed represent a reliable and cross-culturally valid measure of current ADHD symptoms in adults. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  13. URANS simulations of the tip-leakage cavitating flow with verification and validation procedures

    Science.gov (United States)

    Cheng, Huai-yu; Long, Xin-ping; Liang, Yun-zhi; Long, Yun; Ji, Bin

    2018-04-01

    In the present paper, the Vortex Identified Zwart-Gerber-Belamri (VIZGB) cavitation model coupled with the SST-CC turbulence model is used to investigate the unsteady tip-leakage cavitating flow induced by a NACA0009 hydrofoil. A qualitative comparison between the numerical and experimental results is made. In order to quantitatively evaluate the reliability of the numerical data, the verification and validation (V&V) procedures are used in the present paper. Errors of numerical results are estimated with seven error estimators based on the Richardson extrapolation method. It is shown that though a strict validation cannot be achieved, a reasonable prediction of the gross characteristics of the tip-leakage cavitating flow can be obtained. Based on the numerical results, the influence of the cavitation on the tip-leakage vortex (TLV) is discussed, which indicates that the cavitation accelerates the fusion of the TLV and the tip-separation vortex (TSV). Moreover, the trajectory of the TLV, when the cavitation occurs, is close to the side wall.

  14. Gamma ray self-attenuation correction: a simple numerical approach and its validation

    International Nuclear Information System (INIS)

    Agarwal, Chhavi; Poi, Sanhita; Mhatre, Amol; Goswami, A.

    2009-03-01

    A hybrid Monte Carlo method for gamma ray attenuation correction has been developed. The method has been applied to some common counting geometries like cylinder, box, sphere and disc. The method has been validated theoretically and experimentally over a wide range of transmittance and sample-to-detector distances. The advantage of the approach is that it is common to all sample geometries and can be used at all sample-to detector distances. (author)

  15. Cytogenetic and genetic studies of radiation-induced chromosome damage in mouse oocytes. Part 1. Numerical and structural chromosome anomalies in metaphase II oocytes, pre- and post-implantation embryos

    International Nuclear Information System (INIS)

    Tease, Charles; Fisher, Graham

    1996-01-01

    The incidences of X-ray induced numerical and structural chromosome anomalies were screened in a range of developmental stages from metaphase II oocytes through to post-implantation embryos. Following 1 Gy of acute X-rays to immediately preovulatory stage oocytes, the rate of hyperploidy (chromosome gain) was found to be elevated over levels in unirradiated controls, at metaphase II, in 1-cell and 3.5 day pre-implantation embryos but not in 8.5 day post-implantation foetuses. In the latter, however, the frequency of mosaicism was significantly increased. A similar response of an increase in mosaicism but not in hyperploidy in 8.5 day post-implantation embryos was also found after irradiation of dictyate stage oocytes with 4 Gy of acute X-rays. Significantly elevated frequencies of structural chromosome anomalies were present in metaphase II oocytes and pre-implantation embryonic stages, but could not be detected in block-stained chromosome preparations from 8.5 day post-implantation foetuses. However, analysis of chromosome preparations after G-banding showed that almost 14% of 14.5 day foetuses carried a chromosome rearrangement after 1 Gy of X-rays to immediately preovulatory stage oocytes. Overall, our data indicate that the presence of radiation-induced chromosome gains are incompatible with embryonic survival but that a proportion of embryos with structural chromosome damage develop past mid-gestation. These latter embryos are therefore potentially capable of contributing to the genetic burden of the next generation

  16. Numerical Simulation of rivulet build up via lubrication equations

    Science.gov (United States)

    Suzzi, N.; Croce, G.

    2017-11-01

    A number of engineering problems involve the evolution of a thin layer of liquid over a non-wettable substrate. For example, CO2 chemical absorption is carried out in packed columns, where post-combustion CO2 flows up while liquid solvent falls down through a collection of corrugated sheets. Further application include, among others, in-flight icing simulations, moisture condensation on de-humidifier fins, fogging build up and removal. Here, we present a development of an in-house code solving numerically the 2D lubrication equation for a film flowing down an inclined plate. The disjoining pressure approach is followed, in order to model both the contact line discontinuity and the surface wettability. With respect to the original implementation, the full modeling of capillary pressure terms according to Young- Laplace relation allows to investigate contact angles close to π/2. The code is thus validated with literature numerical results, obtained by a fully 3D approach (VOF), showing satisfying agreement despite a strong reduction in terms of computational cost. Steady and unsteady wetting dynamics of a developing rivulet are investigated (and validated) under different load conditions and for different values of the contact angles.

  17. Space in Numerical and Ordinal Information: A Common Construct?

    Directory of Open Access Journals (Sweden)

    Philipp Alexander Schroeder

    2017-12-01

    Full Text Available Space is markedly involved in numerical processing, both explicitly in instrumental learning and implicitly in mental operations on numbers. Besides action decisions, action generations, and attention, the response-related effect of numerical magnitude or ordinality on space is well documented in the Spatial-Numerical Associations of Response Codes (SNARC effect. Here, right- over left-hand responses become relatively faster with increasing magnitude positions. However, SNARC-like behavioral signatures in non-numerical tasks with ordinal information were also observed and inspired new models integrating seemingly spatial effects of ordinal and numerical metrics. To examine this issue further, we report a comparison between numerical SNARC and ordinal SNARC-like effects to investigate group-level characteristics and individual-level deductions from generalized views, i.e., convergent validity. Participants solved order-relevant (before/after classification and order-irrelevant tasks (font color classification with numerical stimuli 1-5, comprising both magnitude and order information, and with weekday stimuli, comprising only ordinal information. A small correlation between magnitude- and order-related SNARCs was observed, but effects are not pronounced in order-irrelevant color judgments. On the group level, order-relevant spatial-numerical associations were best accounted for by a linear magnitude predictor, whereas the SNARC effect for weekdays was categorical. Limited by the representativeness of these tasks and analyses, results are inconsistent with a single amodal cognitive mechanism that activates space in mental processing of cardinal and ordinal information alike. A possible resolution to maintain a generalized view is proposed by discriminating different spatial activations, possibly mediated by visuospatial and verbal working memory, and by relating results to findings from embodied numerical cognition.

  18. Results of the project 'combustion modelling' (BKM II); Ergebnisse des Projekts 'Brennkammermodellierung' (BKM II)

    Energy Technology Data Exchange (ETDEWEB)

    Noll, B.; Rachner, M.; Frank, P.; Schmitz, G.; Geigle, K.P.; Meier, W.; Schuetz, H.; Aigner, M. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Stuttgart (Germany). Inst. fuer Verbrennungstechnik; Kessler, R. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Goettingen (Germany). Inst. fuer Aerodynamik und Stroemungstechnik; Lehmann, B. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Koeln (Germany). Inst. fuer Antriebstechnik; Forkert, T. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Koeln (Germany). Simulation und Softwaretechnik

    2002-07-01

    In the year 1996 the spheres of competence of several DLR-Institutes working in the areas of fluid dynamics, reaction kinetics, combustion, numerical methods and laser measuring techniques have been brought together while contributing to the internal DLR project 'combustion chamber modelling (BKM)', in order to proceed with the computational simulation of combustion processes in combustion chambers of gas turbines. The main issue was the development of a research code for numerical simulation of fluid flow in real combustion chambers. Here the development of computational models of physical and chemical processes was emphasized, among other processes the formation of soot was treated. Moreover, a worldwide outstanding database of measured data for the purpose of code validation has been created within the framework of the BKM project using the laboratory facilities of the DLR, which are in Germany unique for the experimental investigation of the various processes in combustion chambers of gas turbines. The project BKM is part of the specific DLR-programme 'energy'. With the successful completion of the first phase of the project in 1998, a second project phase of three years (BKM II) has been launched at the beginning of 1999. Here the work of the first phase continued and new topics were tackled. The second phase of the project was partly founded by the DLR-programme 'aeronautics'. (orig.) [German] Im Jahr 1996 wurden die Faehigkeiten mehrerer DLR-Institute auf den Gebieten Stroemungsmechanik, Reaktionskinetik, Verbrennung sowie Numerische Verfahren und Laser-Messverfahren in dem DLR-internen Projekt 'Brennkammermodellierung' (BKM) zusammengefuehrt, um die rechnerische Simulation der Verbrennungsvorgaenge in Gasturbinen-Brennkammern voranzutreiben. Dabei war die Entwicklung eines Forschungscodes zur numerischen Simulation von realen Brennkammerstroemungen das vorrangige Ziel der Arbeiten. Ein besonderes Schwergewicht lag

  19. State of the art of numerical modeling of thermohydrologic flow in fractured rock mass

    International Nuclear Information System (INIS)

    Wang, J.S.Y.; Tsang, C.F.; Sterbentz, R.A.

    1983-01-01

    The state of the art of numerical modeling of thermohydrologic flow in fractured rock masses is reviewed and a comparative study is made of several models which have been developed in nuclear waste isolation, geothermal energy, ground-water hydrology, petroleum engineering, and other geologic fields. The general review is followed by separate summaries of the main characteristics of the governing equations, numerical solutions, computer codes, validations, and applications for each model

  20. Forced convection heat transfer in He II

    International Nuclear Information System (INIS)

    Kashani, A.

    1986-01-01

    An investigation of forced convection heat transfer in He II is conducted. The study includes both experimental and theoretical treatments of the problem. The experiment consists of a hydraulic pump and a copper flow tube, 3 mm in ID and 2m long. The system allows measurements of one-dimensional heat and mass transfer in He II. The heat transfer experiments are performed by applying heat at the midpoint along the length of the flow tube. Two modes of heat input are employed, i.e., step function heat input and square pulse heat input. The heat transfer results are discussed in terms of temperature distribution in the tube. The experimental temperature profiles are compared with numerical solutions of an analytical model developed from the He II energy equation. The bath temperature is set at three different values of 1.65, 1.80, and 1.95 K. The He II flow velocity is varied up to 90 cm/s. Pressure is monitored at each end of the flow tube, and the He II pressure drop is obtained for different flow velocities. Results indicate that He II heat transfer by forced convention is considerably higher than that by internal convection. The theoretical model is in close agreement with the experiment. He II pressure drop and friction factor are very similar to those of an ordinary fluid

  1. Numerical Simulation of Liquid Sloshing Problem under Resonant Excitation

    Directory of Open Access Journals (Sweden)

    Fu-kun Gui

    2014-04-01

    Full Text Available Numerical simulations were conducted to investigate the fluid resonance in partially filled rectangular tank based on the OpenFOAM package of viscous fluid model. The numerical model was validated by the available theoretical, numerical, and experimental data. The study was mainly focused on the large amplitude sloshing motion and the corresponding impact force around the resonant condition. It was found that, for the 2D situation, the double pressure peaks happened near to the side walls around the still water level. And they were corresponding to the local free surface rising up and set-down, respectively. The impulsive loads on the tank corner with extreme magnitudes were observed as the free surface impacted the ceiling. The 3D numerical results showed that the free surface amplitudes along the side walls varied diversely, depending on the direction and frequency of the external excitation. The characteristics of the pressure around the still water level and tank ceiling were also presented. According to the computational results, it was found that the 2D numerical model can predict the impact loads near the still water level as accurately as 3D model. However, the impulsive pressure near the tank ceiling corner was remarkably underestimated.

  2. Strategy for a numerical Rock Mechanics Site Descriptive Model. Further development of the theoretical/numerical approach

    International Nuclear Information System (INIS)

    Olofsson, Isabelle; Fredriksson, Anders

    2005-05-01

    The Swedish Nuclear and Fuel Management Company (SKB) is conducting Preliminary Site Investigations at two different locations in Sweden in order to study the possibility of a Deep Repository for spent fuel. In the frame of these Site Investigations, Site Descriptive Models are achieved. These products are the result of an interaction of several disciplines such as geology, hydrogeology, and meteorology. The Rock Mechanics Site Descriptive Model constitutes one of these models. Before the start of the Site Investigations a numerical method using Discrete Fracture Network (DFN) models and the 2D numerical software UDEC was developed. Numerical simulations were the tool chosen for applying the theoretical approach for characterising the mechanical rock mass properties. Some shortcomings were identified when developing the methodology. Their impacts on the modelling (in term of time and quality assurance of results) were estimated to be so important that the improvement of the methodology with another numerical tool was investigated. The theoretical approach is still based on DFN models but the numerical software used is 3DEC. The main assets of the programme compared to UDEC are an optimised algorithm for the generation of fractures in the model and for the assignment of mechanical fracture properties. Due to some numerical constraints the test conditions were set-up in order to simulate 2D plane strain tests. Numerical simulations were conducted on the same data set as used previously for the UDEC modelling in order to estimate and validate the results from the new methodology. A real 3D simulation was also conducted in order to assess the effect of the '2D' conditions in the 3DEC model. Based on the quality of the results it was decided to update the theoretical model and introduce the new methodology based on DFN models and 3DEC simulations for the establishment of the Rock Mechanics Site Descriptive Model. By separating the spatial variability into two parts, one

  3. COMDES-II: A Component-Based Framework for Generative Development of Distributed Real-Time Control Systems

    DEFF Research Database (Denmark)

    Ke, Xu; Sierszecki, Krzysztof; Angelov, Christo K.

    2007-01-01

    The paper presents a generative development methodology and component models of COMDES-II, a component-based software framework for distributed embedded control systems with real-time constraints. The adopted methodology allows for rapid modeling and validation of control software at a higher lev...... methodology for COMDES-II from a general perspective, describes the component models in details and demonstrates their application through a DC-Motor control system case study.......The paper presents a generative development methodology and component models of COMDES-II, a component-based software framework for distributed embedded control systems with real-time constraints. The adopted methodology allows for rapid modeling and validation of control software at a higher level...

  4. Numerical simulation of gasket behaviour during severe accidents (ATHERMIP project)

    International Nuclear Information System (INIS)

    Castro Lopez, Fernando; Orden Martinez, Alfredo

    1998-01-01

    This paper summarises the work carried out to numerically simulate the thermo-mechanical behaviour of sealing gasket in large containment penetrations during a severe accident. The gasket material is an elastomeric material and the thermo-mechanical characterization was based on experimentation. The difficulty of numerical simulation lies in the high non-linearity of the analysis, due on one hand, to the high strain levels reached, and on the other, to stiffness changes introduced by contact/takeoff indicators. Also, the stiffness parameters of the gasket material are not constant, but are subject to changes, both regarding the strain level and the environmental conditions (temperature, radiation). The results obtained allow presenting a calculation model capable of simulating and explaining the behaviour of the sealing gasket during a severe accident. Also, the failure hypothesis numerically obtained was environmentally validated. (author)

  5. Validation of absolute axial neutron flux distribution calculations with MCNP with 197Au(n,γ)198Au reaction rate distribution measurements at the JSI TRIGA Mark II reactor.

    Science.gov (United States)

    Radulović, Vladimir; Štancar, Žiga; Snoj, Luka; Trkov, Andrej

    2014-02-01

    The calculation of axial neutron flux distributions with the MCNP code at the JSI TRIGA Mark II reactor has been validated with experimental measurements of the (197)Au(n,γ)(198)Au reaction rate. The calculated absolute reaction rate values, scaled according to the reactor power and corrected for the flux redistribution effect, are in good agreement with the experimental results. The effect of different cross-section libraries on the calculations has been investigated and shown to be minor. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. DNA binding and cleavage studies of new sulfasalazine-derived dipeptide Zn(II) complex: Validation for specific recognition with 5 Prime -TMP

    Energy Technology Data Exchange (ETDEWEB)

    Tabassum, Sartaj [Department of Chemistry, Aligarh Muslim University, Aligarh, UP 202002 (India); Al-Asbahy, Waddhaah M.; Afzal, Mohd.; Shamsi, Manal; Arjmand, Farukh [Department of Chemistry, Aligarh Muslim University, Aligarh, UP 202002 (India)

    2012-11-15

    A new water soluble complex [Zn(glygly)(ssz)(H{sub 2}O)]{center_dot}6H{sub 2}O, 1 derived from dipeptide (glycyl glycine) and sulfasalazine was synthesized and characterized by spectroscopic (IR, UV-vis, NMR, ESI-MS) and analytical methods. The in vitro DNA binding studies of complex 1 with calf-thymus DNA were carried out by employing various biophysical methods and molecular docking technique which reveals strong electrostatic binding via phosphate backbone of DNA helix, in addition to partial intercalation. To gain further insight into the molecular recognition at the target site, interaction studies of complex 1 with 5 Prime -TMP and 5 Prime -GMP were carried out by UV-vis titration which was validated by {sup 1}H and {sup 31}P NMR with 5 Prime -TMP, which implicate the preferential selectivity of 1 towards N3 of thymine. Complex 1 is accessible to minor groove of DNA and cleaved pBR322 DNA via hydrolytic pathway (validated by T4 ligase assay). - Graphical abstract: Synthesis, characterization, DNA binding and cleavage studies of [Zn(glygly)(ssz)(H{sub 2}O)]{center_dot}6H{sub 2}O (1) containing glycyl glycine and sulfasalazine ligand. Complex 1 recognize minor groove of DNA and show hydrolytic DNA cleavage. Highlights: Black-Right-Pointing-Pointer Novel Zn(II) complex 1 bearing bioactive glycyl glycine and sulfasalazine ligand scaffold. Black-Right-Pointing-Pointer Cleavage activity of 1 was enhanced in presence of activators: H{sub 2}O{sub 2}>MPA>GSH>Asc. Black-Right-Pointing-Pointer Complex 1 recognize minor groove as depicted in the cleavage pattern and molecular docking. Black-Right-Pointing-Pointer Complex 1 cleaves pBR322 DNA via hydrolytic mechanism and validated by T4 DNA ligase experiments.

  7. Summarized presentation of the numerical model used for the pressurizer of a light water nuclear reactor. Description and validation

    International Nuclear Information System (INIS)

    Siarry, P.

    1981-12-01

    The pressurizer model is first described together with its coupling to the nuclear unit. The different stages involved in the validation are then presented: validation of overall qualitative behavior; validation of the open loop pressurizer model; validation of the various units for controlling pressures and levels; simulation of two large transients (Bugey plant) [fr

  8. Numerical evaluation of the tensor bispectrum in two field inflation

    Energy Technology Data Exchange (ETDEWEB)

    Raveendran, Rathul Nath [The Institute of Mathematical Sciences, HBNI, CIT Campus, Chennai, 600113 India (India); Sriramkumar, L., E-mail: rathulnr@imsc.res.in, E-mail: sriram@physics.iitm.ac.in [Department of Physics, Indian Institute of Technology Madras, Chennai, 600036 India (India)

    2017-07-01

    We evaluate the dimensionless non-Gaussianity parameter h {sub NL}, that characterizes the amplitude of the tensor bispectrum, numerically for a class of two field inflationary models such as double inflation, hybrid inflation and aligned natural inflation. We compare the numerical results with the slow roll results which can be obtained analytically. In the context of double inflation, we also investigate the effects on h {sub NL} due to curved trajectories in the field space. We explicitly examine the validity of the consistency relation governing the tensor bispectrum in the squeezed limit. Lastly, we discuss the contribution to h {sub NL} due to the epoch of preheating in two field models.

  9. Numerical evaluation of the tensor bispectrum in two field inflation

    International Nuclear Information System (INIS)

    Raveendran, Rathul Nath; Sriramkumar, L.

    2017-01-01

    We evaluate the dimensionless non-Gaussianity parameter h NL , that characterizes the amplitude of the tensor bispectrum, numerically for a class of two field inflationary models such as double inflation, hybrid inflation and aligned natural inflation. We compare the numerical results with the slow roll results which can be obtained analytically. In the context of double inflation, we also investigate the effects on h NL due to curved trajectories in the field space. We explicitly examine the validity of the consistency relation governing the tensor bispectrum in the squeezed limit. Lastly, we discuss the contribution to h NL due to the epoch of preheating in two field models.

  10. Numerical heating in Particle-In-Cell simulations with Monte Carlo binary collisions

    Science.gov (United States)

    Alves, E. Paulo; Mori, Warren; Fiuza, Frederico

    2017-10-01

    The binary Monte Carlo collision (BMCC) algorithm is a robust and popular method to include Coulomb collision effects in Particle-in-Cell (PIC) simulations of plasmas. While a number of works have focused on extending the validity of the model to different physical regimes of temperature and density, little attention has been given to the fundamental coupling between PIC and BMCC algorithms. Here, we show that the coupling between PIC and BMCC algorithms can give rise to (nonphysical) numerical heating of the system, that can be far greater than that observed when these algorithms operate independently. This deleterious numerical heating effect can significantly impact the evolution of the simulated system particularly for long simulation times. In this work, we describe the source of this numerical heating, and derive scaling laws for the numerical heating rates based on the numerical parameters of PIC-BMCC simulations. We compare our theoretical scalings with PIC-BMCC numerical experiments, and discuss strategies to minimize this parasitic effect. This work is supported by DOE FES under FWP 100237 and 100182.

  11. Numerical and experimental investigation of the self-inducing turbine aeration capacity

    International Nuclear Information System (INIS)

    Achouri, Ryma; Dhaouadi, Hatem; Mhiri, Hatem; Bournot, Philippe

    2014-01-01

    Highlights: • Numerical and experimental study of k L a coefficient of a self-inducing turbine. • Validation of experimental results. • Numerical study of k L a variation with the variation of impeller submersion and blade inclination. • Numerical study of the flow field and hydrodynamic parameters. - Abstract: Self-inducing turbines are a model of mixers that ensure the aeration of a fluid field without using a sparger and a surface aerator. Nevertheless, this type of turbines remain quite complicated in terms of behavior of the fluid within the tank, and its actual aeration capacity varies depending on the type of turbine used. The studied turbine is self-inducing and made of three blades and each blade contains five holes. In this work, we evaluated experimentally – using the technique of dynamic oxygenation and deoxygenating – the aeration capacity of our impeller by calculating the volumetric mass transfer coefficient k L a for various submergences and various inclination angles of the blade. This work was then validated by a numerical modeling using the commercial code Fluent, and the flow within the tank as well as the evolution of the hydrodynamic parameters was also studied. The simulation is steady state with a VOF multiphase model and the realizable k–ε turbulence model. We finally concluded that k L a decreases with the increase of the inclination angle and with the increase of the submergence of our turbine. We could also study the hydrodynamic parameters of the flow such as the power number, the aeration number and the shear rate

  12. Numerical Validation of the Delaunay Normalization and the Krylov-Bogoliubov-Mitropolsky Method

    Directory of Open Access Journals (Sweden)

    David Ortigosa

    2014-01-01

    Full Text Available A scalable second-order analytical orbit propagator programme based on modern and classical perturbation methods is being developed. As a first step in the validation and verification of part of our orbit propagator programme, we only consider the perturbation produced by zonal harmonic coefficients in the Earth’s gravity potential, so that it is possible to analyze the behaviour of the mathematical expressions involved in Delaunay normalization and the Krylov-Bogoliubov-Mitropolsky method in depth and determine their limits.

  13. The range of validity of the two-body approximation in models of terrestrial planet accumulation. II - Gravitational cross sections and runaway accretion

    Science.gov (United States)

    Wetherill, G. W.; Cox, L. P.

    1985-01-01

    The validity of the two-body approximation in calculating encounters between planetesimals has been evaluated as a function of the ratio of unperturbed planetesimal velocity (with respect to a circular orbit) to mutual escape velocity when their surfaces are in contact (V/V-sub-e). Impact rates as a function of this ratio are calculated to within about 20 percent by numerical integration of the equations of motion. It is found that when the ratio is greater than 0.4 the two-body approximation is a good one. Consequences of reducing the ratio to less than 0.02 are examined. Factors leading to an optimal size for growth of planetesimals from a swarm of given eccentricity and placing a limit on the extent of runaway accretion are derived.

  14. Oral history: Validating contributions of elders.

    Science.gov (United States)

    Taft, Lois B; Stolder, Mary Ellen; Knutson, Alice Briolat; Tamke, Karolyn; Platt, Jennifer; Bowlds, Tara

    2004-01-01

    Recording memories of World War II is an intervention that can humanize geriatric care in addition to the historical significance provided. Participants in this oral history project described memories of World War II and expressed themes of patriotism, loss, tense moments, makeshift living, self-sufficiency, and uncertain journey. Their ethnic roots were primarily Scandinavian, Dutch, German, and English. The nursing home participants were slightly older than the community participants (mean ages: 85.5 and 82.4 years, respectively). More women (58%) than men (42%) participated, and 35% of the participants were veterans (eight men one woman). Nursing home and community residents participated in this project, and reciprocal benefits were experienced by participants and listeners alike. Memories of World War II provide a meaningful topic for oral histories. Listening and valuing oral history supports, involves, and validates elders. Oral history has reciprocal benefits that can create a culture to enhance a therapeutic environment.

  15. Numerical solution of High-kappa model of superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Karamikhova, R. [Univ. of Texas, Arlington, TX (United States)

    1996-12-31

    We present formulation and finite element approximations of High-kappa model of superconductivity which is valid in the high {kappa}, high magnetic field setting and accounts for applied magnetic field and current. Major part of this work deals with steady-state and dynamic computational experiments which illustrate our theoretical results numerically. In our experiments we use Galerkin discretization in space along with Backward-Euler and Crank-Nicolson schemes in time. We show that for moderate values of {kappa}, steady states of the model system, computed using the High-kappa model, are virtually identical with results computed using the full Ginzburg-Landau (G-L) equations. We illustrate numerically optimal rates of convergence in space and time for the L{sup 2} and H{sup 1} norms of the error in the High-kappa solution. Finally, our numerical approximations demonstrate some well-known experimentally observed properties of high-temperature superconductors, such as appearance of vortices, effects of increasing the applied magnetic field and the sample size, and the effect of applied constant current.

  16. DNA binding and cleavage studies of new sulfasalazine-derived dipeptide Zn(II) complex: Validation for specific recognition with 5′–TMP

    International Nuclear Information System (INIS)

    Tabassum, Sartaj; Al–Asbahy, Waddhaah M.; Afzal, Mohd.; Shamsi, Manal; Arjmand, Farukh

    2012-01-01

    A new water soluble complex [Zn(glygly)(ssz)(H 2 O)]·6H 2 O, 1 derived from dipeptide (glycyl glycine) and sulfasalazine was synthesized and characterized by spectroscopic (IR, UV–vis, NMR, ESI–MS) and analytical methods. The in vitro DNA binding studies of complex 1 with calf–thymus DNA were carried out by employing various biophysical methods and molecular docking technique which reveals strong electrostatic binding via phosphate backbone of DNA helix, in addition to partial intercalation. To gain further insight into the molecular recognition at the target site, interaction studies of complex 1 with 5′-TMP and 5′-GMP were carried out by UV–vis titration which was validated by 1 H and 31 P NMR with 5′-TMP, which implicate the preferential selectivity of 1 towards N3 of thymine. Complex 1 is accessible to minor groove of DNA and cleaved pBR322 DNA via hydrolytic pathway (validated by T4 ligase assay). - Graphical abstract: Synthesis, characterization, DNA binding and cleavage studies of [Zn(glygly)(ssz)(H 2 O)]·6H 2 O (1) containing glycyl glycine and sulfasalazine ligand. Complex 1 recognize minor groove of DNA and show hydrolytic DNA cleavage. Highlights: ► Novel Zn(II) complex 1 bearing bioactive glycyl glycine and sulfasalazine ligand scaffold. ► Cleavage activity of 1 was enhanced in presence of activators: H 2 O 2 >MPA>GSH>Asc. ► Complex 1 recognize minor groove as depicted in the cleavage pattern and molecular docking. ► Complex 1 cleaves pBR322 DNA via hydrolytic mechanism and validated by T4 DNA ligase experiments.

  17. Patient-related barriers to pain management: the Barriers Questionnaire II (BQ-II).

    Science.gov (United States)

    Gunnarsdottir, Sigridur; Donovan, Heidi S; Serlin, Ronald C; Voge, Catherine; Ward, Sandra

    2002-10-01

    lower scores on the BQ-II than did patients who used inadequate analgesics. The BQ-II is a reliable and valid measure of patient-related barriers to cancer pain management.

  18. Model Validation and Verification of Data Mining from the ...

    African Journals Online (AJOL)

    Michael Horsfall

    In this paper, we seek to present a hybrid method for Model Validation and Verification of Data Mining from the ... This model generally states the numerical value of knowledge .... procedures found in the field of software engineering should be ...

  19. Verification and validation in computational fluid dynamics

    Science.gov (United States)

    Oberkampf, William L.; Trucano, Timothy G.

    2002-04-01

    Verification and validation (V&V) are the primary means to assess accuracy and reliability in computational simulations. This paper presents an extensive review of the literature in V&V in computational fluid dynamics (CFD), discusses methods and procedures for assessing V&V, and develops a number of extensions to existing ideas. The review of the development of V&V terminology and methodology points out the contributions from members of the operations research, statistics, and CFD communities. Fundamental issues in V&V are addressed, such as code verification versus solution verification, model validation versus solution validation, the distinction between error and uncertainty, conceptual sources of error and uncertainty, and the relationship between validation and prediction. The fundamental strategy of verification is the identification and quantification of errors in the computational model and its solution. In verification activities, the accuracy of a computational solution is primarily measured relative to two types of highly accurate solutions: analytical solutions and highly accurate numerical solutions. Methods for determining the accuracy of numerical solutions are presented and the importance of software testing during verification activities is emphasized. The fundamental strategy of validation is to assess how accurately the computational results compare with the experimental data, with quantified error and uncertainty estimates for both. This strategy employs a hierarchical methodology that segregates and simplifies the physical and coupling phenomena involved in the complex engineering system of interest. A hypersonic cruise missile is used as an example of how this hierarchical structure is formulated. The discussion of validation assessment also encompasses a number of other important topics. A set of guidelines is proposed for designing and conducting validation experiments, supported by an explanation of how validation experiments are different

  20. Adapted all-numerical correlator for face recognition applications

    Science.gov (United States)

    Elbouz, M.; Bouzidi, F.; Alfalou, A.; Brosseau, C.; Leonard, I.; Benkelfat, B.-E.

    2013-03-01

    In this study, we suggest and validate an all-numerical implementation of a VanderLugt correlator which is optimized for face recognition applications. The main goal of this implementation is to take advantage of the benefits (detection, localization, and identification of a target object within a scene) of correlation methods and exploit the reconfigurability of numerical approaches. This technique requires a numerical implementation of the optical Fourier transform. We pay special attention to adapt the correlation filter to this numerical implementation. One main goal of this work is to reduce the size of the filter in order to decrease the memory space required for real time applications. To fulfil this requirement, we code the reference images with 8 bits and study the effect of this coding on the performances of several composite filters (phase-only filter, binary phase-only filter). The saturation effect has for effect to decrease the performances of the correlator for making a decision when filters contain up to nine references. Further, an optimization is proposed based for an optimized segmented composite filter. Based on this approach, we present tests with different faces demonstrating that the above mentioned saturation effect is significantly reduced while minimizing the size of the learning data base.

  1. Numerical Modeling and Mechanical Analysis of Flexible Risers

    Directory of Open Access Journals (Sweden)

    J. Y. Li

    2015-01-01

    Full Text Available ABAQUS is used to create a detailed finite element model for a 10-layer unbonded flexible riser to simulate the riser’s mechanical behavior under three load conditions: tension force and internal and external pressure. It presents a technique to create detailed finite element model and to analyze flexible risers. In FEM model, all layers are modeled separately with contact interfaces; interaction between steel trips in certain layers has been considered as well. FEM model considering contact interaction, geometric nonlinearity, and friction has been employed to accurately simulate the structural behavior of riser. The model includes the main features of the riser geometry with very little simplifying assumptions. The model was solved using a fully explicit time-integration scheme implemented in a parallel environment on an eight-processor cluster and 24 G memory computer. There is a very good agreement obtained from numerical and analytical comparisons, which validates the use of numerical model here. The results from the numerical simulation show that the numerical model takes into account various details of the riser. It has been shown that the detailed finite element model can be used to predict riser’s mechanics behavior under various load cases and bound conditions.

  2. Comparison Between Numerical Modeling and Experimental Testing of a Point Absorber WEC Using Linear Power Take-Off System

    DEFF Research Database (Denmark)

    Zurkinden, Andrew Stephen; Kramer, Morten; Sichani, Mahdi Teimouri

    2012-01-01

    systems into a central wave to wire model. The power production then depends on the control strategy which is applied to the device. The objective of this paper is to develop numerical methods for motion analysis of marine structures with a special emphasis on wave energy converters. Two different time...... domain models are applied to a point absorber system working in pitch mode only. The device is similar to the well-known Wavestar prototype located in the Danish North Sea. A laboratory model has been set up in order to validate the numerical simulations of the dynamics. Wave Excitation force...... interaction assumption and linearized equation of motion. The region over which the numerical model is valid will be presented in terms of non-dimensional parameters describing the different wave states....

  3. Symptoms of depression as possible markers of bipolar II disorder.

    Science.gov (United States)

    Benazzi, Franco

    2006-05-01

    Underdiagnosis and misdiagnosis of bipolar-II disorder (BP-II) as a major depressive disorder (MDD) are frequently reported. The study aim was to find which symptoms of depression could be possible cross-sectional markers of BP-II, in order to reduce underdiagnosing BP-II. Consecutive 379 BP-II and 271 MDD major depressive episode (MDE) outpatients were interviewed with the Structured Clinical Interview for DSM-IV, the Hypomania Interview Guide, and the Family History Screen, by a senior psychiatrist in a private practice. Inside-MDE hypomanic symptoms (elevated mood and increased self-esteem always absent by definition) were systematically assessed. Mixed depression was defined as an MDE plus 3 or more inside-MDE hypomanic symptoms, a definition validated by Akiskal and Benazzi. The MDE symptoms significantly more common in BP-II versus MDD were weight gain, increased eating, hypersomnia, psychomotor agitation, worthlessness, and diminished ability to concentrate. The inside-MDE hypomanic symptoms significantly more common in BP-II were distractibility, racing/crowded thoughts, irritability, psychomotor agitation, more talkativeness, increased risky and goal-directed activities. Multiple logistic regression showed that hypersomnia, racing/crowded thoughts, irritability, and psychomotor agitation were independent predictors of BP-II. Irritability had the most balanced combination of sensitivity and specificity predicting BP-II. Psychomotor agitation had the highest specificity but the lowest sensitivity. Racing/crowded thoughts had the highest sensitivity but the lowest specificity. These symptoms had a similar positive predictive value (PPV) for BP-II, which was around 70% (PPV is more clinically useful than sensitivity and specificity), which in turn was similar to the PPV of mixed depression and atypical depression (two diagnostic clinical markers of BP-II). All possible combinations of these symptoms had a PPV similar to that of the individual symptoms. The

  4. Numerical modelling techniques of soft soil improvement via stone columns: A brief review

    Science.gov (United States)

    Zukri, Azhani; Nazir, Ramli

    2018-04-01

    There are a number of numerical studies on stone column systems in the literature. Most of the studies found were involved with two-dimensional analysis of the stone column behaviour, while only a few studies used three-dimensional analysis. The most popular software utilised in those studies was Plaxis 2D and 3D. Other types of software that used for numerical analysis are DIANA, EXAMINE, ZSoil, ABAQUS, ANSYS, NISA, GEOSTUDIO, CRISP, TOCHNOG, CESAR, GEOFEM (2D & 3D), FLAC, and FLAC 3. This paper will review the methodological approaches to model stone column numerically, both in two-dimensional and three-dimensional analyses. The numerical techniques and suitable constitutive model used in the studies will also be discussed. In addition, the validation methods conducted were to verify the numerical analysis conducted will be presented. This review paper also serves as a guide for junior engineers through the applicable procedures and considerations when constructing and running a two or three-dimensional numerical analysis while also citing numerous relevant references.

  5. Sinking, merging and stationary plumes in a coupled chemotaxis-fluid model: a high-resolution numerical approach

    KAUST Repository

    Chertock, A.; Fellner, K.; Kurganov, A.; Lorz, A.; Markowich, P. A.

    2012-01-01

    examples, which illustrate (i) the formation of sinking plumes, (ii) the possible merging of neighbouring plumes and (iii) the convergence towards numerically stable stationary plumes. The examples with stable stationary plumes show how the surface

  6. Does attentional training improve numerical processing in developmental dyscalculia?

    Science.gov (United States)

    Ashkenazi, Sarit; Henik, Avishai

    2012-01-01

    Recently, a deficit in attention was found in those with pure developmental dyscalculia (DD). Accordingly, the present study aimed to examine the influence of attentional training on attention abilities, basic numerical abilities, and arithmetic in participants who were diagnosed as having DD. Nine university students diagnosed as having DD (IQ and reading abilities in the normal range and no indication of attention-deficit hyperactivity disorder) and nine matched controls participated in attentional training (i.e., video game training). First, training modulated the orienting system; after training, the size of the validity effect (i.e., effect of valid vs. invalid) decreased. This effect was comparable in the two groups. Training modulated abnormalities in the attention systems of those with DD, that is, it reduced their enlarged congruity effect (i.e., faster responding when flanking arrows pointed to the same location as a center arrow). Second, in relation to the enumeration task, training reduced the reaction time of the DD group in the subitizing range but did not change their smaller-than-normal subitizing range. Finally, training improved performance in addition problems in both the DD and control groups. These results imply that attentional training does improve most of the attentional deficits of those with DD. In contrast, training did not improve the abnormalities of the DD group in arithmetic or basic numerical processing. Thus, in contrast to the domain-general hypothesis, the deficits in attention among those with DD and the deficits in numerical processing appear to originate from different sources.

  7. Biosorption of copper(II), lead(II), iron(III) and cobalt(II) on Bacillus sphaericus-loaded Diaion SP-850 resin

    International Nuclear Information System (INIS)

    Tuzen, Mustafa; Uluozlu, Ozgur Dogan; Usta, Canan; Soylak, Mustafa

    2007-01-01

    The biosorption of copper(II), lead(II), iron(III) and cobalt(II) on Bacillus sphaericus-loaded Diaion SP-850 resin for preconcentration-separation of them have been investigated. The sorbed analytes on biosorbent were eluted by using 1 mol L -1 HCl and analytes were determined by flame atomic absorption spectrometry. The influences of analytical parameters including amounts of pH, B. sphaericus, sample volume etc. on the quantitative recoveries of analytes were investigated. The effects of alkaline, earth alkaline ions and some metal ions on the retentions of the analytes on the biosorbent were also examined. Separation and preconcentration of Cu, Pb, Fe and Co ions from real samples was achieved quantitatively. The detection limits by 3 sigma for analyte ions were in the range of 0.20-0.75 μg L -1 for aqueous samples and in the range of 2.5-9.4 ng g -1 for solid samples. The validation of the procedure was performed by the analysis of the certified standard reference materials (NRCC-SLRS 4 Riverine Water, SRM 2711 Montana soil and GBW 07605 Tea). The presented method was applied to the determination of analyte ions in green tea, black tea, cultivated mushroom, boiled wheat, rice and soil samples with successfully results

  8. Numerical simulation of MHD flows in inhomogeneous and instationary magnetic fields

    International Nuclear Information System (INIS)

    Ehrhard, Sebastian

    2016-01-01

    In this work, I develop a numerical model for magnetohydrodynamic flows in unsteady an inhomogeneous flow. The model is implemented in the finite-volume based CFD-code OpenFOAM. Some verification and validation tests are made on several standard problems of magnetohydrodynamics. Finally I successful modelled an electromagnetic flowmeter with the code.

  9. Imaging gravity waves in lower stratospheric AMSU-A radiances, Part 2: Validation case study

    Directory of Open Access Journals (Sweden)

    S. D. Eckermann

    2006-01-01

    Full Text Available Two-dimensional radiance maps from Channel 9 (~60–90 hPa of the Advanced Microwave Sounding Unit (AMSU-A, acquired over southern Scandinavia on 14 January 2003, show plane-wave-like oscillations with a wavelength λh of ~400–500 km and peak brightness temperature amplitudes of up to 0.9 K. The wave-like pattern is observed in AMSU-A radiances from 8 overpasses of this region by 4 different satellites, revealing a growth in the disturbance amplitude from 00:00 UTC to 12:00 UTC and a change in its horizontal structure between 12:00 UTC and 20:00 UTC. Forecast and hindcast runs for 14 January 2003 using high-resolution global and regional numerical weather prediction (NWP models generate a lower stratospheric mountain wave over southern Scandinavia with peak 90 hPa temperature amplitudes of ~5–7 K at 12:00 UTC and a similar horizontal wavelength, packet width, phase structure and time evolution to the disturbance observed in AMSU-A radiances. The wave's vertical wavelength is ~12 km. These NWP fields are validated against radiosonde wind and temperature profiles and airborne lidar profiles of temperature and aerosol backscatter ratios acquired from the NASA DC-8 during the second SAGE III Ozone Loss and Validation Experiment (SOLVE II. Both the amplitude and phase of the stratospheric mountain wave in the various NWP fields agree well with localized perturbation features in these suborbital measurements. In particular, we show that this wave formed the type II polar stratospheric clouds measured by the DC-8 lidar. To compare directly with the AMSU-A data, we convert these validated NWP temperature fields into swath-scanned brightness temperatures using three-dimensional Channel 9 weighting functions and the actual AMSU-A scan patterns from each of the 8 overpasses of this region. These NWP-based brightness temperatures contain two-dimensional oscillations due to this resolved stratospheric mountain wave that have an amplitude, wavelength

  10. A numerical study on manoeuvrability of wind turbine installation vessel using OpenFOAM

    Directory of Open Access Journals (Sweden)

    Sungwook Lee

    2015-05-01

    Full Text Available In this study, a numerical prediction method on manoeuvrability of Wind Turbine Installation Vessel (WTIV is presented. Planar Motion Mechanism (PMM captive test for the bare hull of WTIV is carried out in the model basin and compared with the numerical results using RANS simulation based on Open-source Field Operation And Manipulation (OpenFOAM calculation to validate the developed method. The manoeuvrability of WTIV with skeg and/or without skeg is investigated using the numerical approach along with the captive model test. In the numerical calculations, the dynamic stability index which indicates the course keeping ability is evaluated and compared for three different hull configurations i.e. bare hull and other two hulls with center skeg and twin skeg. This paper proves that the numerical approach using RANS simulation can be readily applied to estimate the manoeuvrability of WTIV at the initial design stage.

  11. Numerical simulation investigation on centrifugal compressor performance of turbocharger

    International Nuclear Information System (INIS)

    Li, Jie; Yin, Yuting; Li, Shuqi; Zhang, Jizhong

    2013-01-01

    In this paper, the mathematical model of the flow filed in centrifugal compressor of turbocharger was studied. Based on the theory of computational fluid dynamics (CFD), performance curves and parameter distributions of the compressor were obtained from the 3-D numerical simulation by using CFX. Meanwhile, the influences of grid number and distribution on compressor performance were investigated, and numerical calculation method was analyzed and validated, through combining with test data. The results obtained show the increase of the grid number has little influence on compressor performance while the grid number of single-passage is above 300,000. The results also show that the numerical calculation mass flow rate of compressor choke situation has a good consistent with test results, and the maximum difference of the diffuser exit pressure between simulation and experiment decrease to 3.5% with the assumption of 6 kPa additional total pressure loss at compressor inlet. The numerical simulation method in this paper can be used to predict compressor performance, and the difference of total pressure ratio between calculation and test is less than 7%, and the total-to-total efficiency also have a good consistent with test.

  12. Numerical simulation investigation on centrifugal compressor performance of turbocharger

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jie [China Iron and Steel Research Institute Group, Beijing (China); Yin, Yuting [China North Engine Research Institute, Datong (China); Li, Shuqi; Zhang, Jizhong [Science and Technology Diesel Engine Turbocharging Laboratory, Datong (China)

    2013-06-15

    In this paper, the mathematical model of the flow filed in centrifugal compressor of turbocharger was studied. Based on the theory of computational fluid dynamics (CFD), performance curves and parameter distributions of the compressor were obtained from the 3-D numerical simulation by using CFX. Meanwhile, the influences of grid number and distribution on compressor performance were investigated, and numerical calculation method was analyzed and validated, through combining with test data. The results obtained show the increase of the grid number has little influence on compressor performance while the grid number of single-passage is above 300,000. The results also show that the numerical calculation mass flow rate of compressor choke situation has a good consistent with test results, and the maximum difference of the diffuser exit pressure between simulation and experiment decrease to 3.5% with the assumption of 6 kPa additional total pressure loss at compressor inlet. The numerical simulation method in this paper can be used to predict compressor performance, and the difference of total pressure ratio between calculation and test is less than 7%, and the total-to-total efficiency also have a good consistent with test.

  13. Validation of designing tools as part of nuclear pump development process

    International Nuclear Information System (INIS)

    Klemm, T.; Sehr, F.; Spenner, P.; Fritz, J.

    2010-01-01

    Nuclear pumps are characterized by high safety standards, operational reliability as well as long life cycles. For the design process it is of common use to have a down scaled model pump to qualify operating data and simulate exceptional operating conditions. In case of modifications of the pump design compared to existing reactor coolant pumps a model pump is required to develop methods and tools to design the full scale pump. In the presented case it has a geometry scale of 1:2 regarding the full scale pump size. The experimental data of the model pump is basis for validation of methods and tools which are applied in the designing process of the full scale pump. In this paper the selection of qualified tools and the validation process is demonstrated exemplarily on a cooling circuit. The aim is to predict the resulting flow rate. Tools are chosen for different components depending on the benefit to effort ratio. For elementary flow phenomena such as fluid flow in straight pipes or gaps analytic or empirical laws can be used. For more complex flow situations numerical methods are utilized. Main focus is set on the validation process of the applied numerical flow simulation. In this case not only integral data should be compared, it is also necessary to validate local flow structure of numerical flow simulation to avoid systematic errors in CFD Model generation. Due to complex design internal flow measurements are not possible. On that reason simple comparisons of similar flow test cases are used. Results of this study show, that the flow simulation data closely match measured integral pump and test case data. With this validation it is now possible to qualify CFD simulations as a design tool for the full scale pump in similar cooling circuit. (authors)

  14. Modeling multibody systems with uncertainties. Part II: Numerical applications

    Energy Technology Data Exchange (ETDEWEB)

    Sandu, Corina, E-mail: csandu@vt.edu; Sandu, Adrian; Ahmadian, Mehdi [Virginia Polytechnic Institute and State University, Mechanical Engineering Department (United States)

    2006-04-15

    This study applies generalized polynomial chaos theory to model complex nonlinear multibody dynamic systems operating in the presence of parametric and external uncertainty. Theoretical and computational aspects of this methodology are discussed in the companion paper 'Modeling Multibody Dynamic Systems With Uncertainties. Part I: Theoretical and Computational Aspects .In this paper we illustrate the methodology on selected test cases. The combined effects of parametric and forcing uncertainties are studied for a quarter car model. The uncertainty distributions in the system response in both time and frequency domains are validated against Monte-Carlo simulations. Results indicate that polynomial chaos is more efficient than Monte Carlo and more accurate than statistical linearization. The results of the direct collocation approach are similar to the ones obtained with the Galerkin approach. A stochastic terrain model is constructed using a truncated Karhunen-Loeve expansion. The application of polynomial chaos to differential-algebraic systems is illustrated using the constrained pendulum problem. Limitations of the polynomial chaos approach are studied on two different test problems, one with multiple attractor points, and the second with a chaotic evolution and a nonlinear attractor set. The overall conclusion is that, despite its limitations, generalized polynomial chaos is a powerful approach for the simulation of multibody dynamic systems with uncertainties.

  15. Modeling multibody systems with uncertainties. Part II: Numerical applications

    International Nuclear Information System (INIS)

    Sandu, Corina; Sandu, Adrian; Ahmadian, Mehdi

    2006-01-01

    This study applies generalized polynomial chaos theory to model complex nonlinear multibody dynamic systems operating in the presence of parametric and external uncertainty. Theoretical and computational aspects of this methodology are discussed in the companion paper 'Modeling Multibody Dynamic Systems With Uncertainties. Part I: Theoretical and Computational Aspects .In this paper we illustrate the methodology on selected test cases. The combined effects of parametric and forcing uncertainties are studied for a quarter car model. The uncertainty distributions in the system response in both time and frequency domains are validated against Monte-Carlo simulations. Results indicate that polynomial chaos is more efficient than Monte Carlo and more accurate than statistical linearization. The results of the direct collocation approach are similar to the ones obtained with the Galerkin approach. A stochastic terrain model is constructed using a truncated Karhunen-Loeve expansion. The application of polynomial chaos to differential-algebraic systems is illustrated using the constrained pendulum problem. Limitations of the polynomial chaos approach are studied on two different test problems, one with multiple attractor points, and the second with a chaotic evolution and a nonlinear attractor set. The overall conclusion is that, despite its limitations, generalized polynomial chaos is a powerful approach for the simulation of multibody dynamic systems with uncertainties

  16. LES of turbulent jet in cross-flow: Part 1 – A numerical validation study

    DEFF Research Database (Denmark)

    Cavar, Dalibor; Meyer, Knud Erik

    2012-01-01

    The paper presents results of a LES based numerical simulation of the turbulent jet-in-cross-flow (JICF) flowfield, with Reynolds number based on cross-flow velocity and jet diameter Re=2400 and jet-to-cross-flow velocity ratio of R=3.3. The JICF flow case has been investigated in great detail...

  17. Numerical study of damage evolution and failure in an electromagnetic corner fill operation

    International Nuclear Information System (INIS)

    Imbert, J.M.; Winkler, S.L.; Worswick, M.J.; Oliveira, D.A.; Golovashchenko, S.

    2004-01-01

    A numerical study of an electromagnetic corner fill operation using AA5754 aluminum alloy sheet was performed. Conical parts with side angles of 40 and 45 deg. (included angles of 100 and 90 deg.) were modeled. The numerical calculations were performed with an explicit dynamic finite element structural code, using an analytical electromagnetic pressure distribution. Damage evolution was predicted using a damage subroutine based on the Gurson-Tvergaard-Needleman constitutive model. Experiments were performed to validate the numerical results. Damage measurements were made using optical microscopy to determine the actual damage produced by the forming operations. Predicted final shape, failure and damage levels are presented and compared with experimental results. The numerical models were able to accurately predict damage trends. Failure was predicted in general agreement with the experiments

  18. Clinical evaluation of the Non-Contact Tonometer Mark II.

    Science.gov (United States)

    Chauhan, B C; Henson, D B

    1988-09-01

    The purpose of this investigation was to test the reliability of the American Optical Non-Contact Tonometer Mark II (NCT II) using the Goldmann Applanation Tonometer (GAT) as the validating instrument. The sample contained 102 consecutive patients from our University Eye Clinic, of whom one-half had 4 NCT II measurements first, followed by 4 GAT measurements; the other one-half had 4 GAT measurements first, followed by 4 NCT II measurements. No significant change in intraocular pressure (IOP) was noted over the measurement sequence with either instrument. There was no significant difference between paired NCT II and GAT readings when the NCT II was used first; however, a highly significant difference between paired readings was obtained when the GAT was used first, indicating that the GAT measurement produced a delayed reduction in the IOP. This effect did not occur with the NCT II. Although the NCT II is shown to have a good overall reliability when compared to the GAT in both protocols, the agreement between any two tonometers may be influenced greatly by the very process of taking a measurement and by the dynamic nature of the IOP.

  19. Numerical Study of Aeroacoustic Sound on Performance of Bladeless Fan

    Science.gov (United States)

    Jafari, Mohammad; Sojoudi, Atta; Hafezisefat, Parinaz

    2017-03-01

    Aeroacoustic performance of fans is essential due to their widespread application. Therefore, the original aim of this paper is to evaluate the generated noise owing to different geometric parameters. In current study, effect of five geometric parameters was investigated on well performance of a Bladeless fan. Airflow through this fan was analyzed simulating a Bladeless fan within a 2 m×2 m×4 m room. Analysis of the flow field inside the fan and evaluating its performance were obtained by solving conservations of mass and momentum equations for aerodynamic investigations and FW-H noise equations for aeroacoustic analysis. In order to design Bladeless fan Eppler 473 airfoil profile was used as the cross section of this fan. Five distinct parameters, namely height of cross section of the fan, outlet angle of the flow relative to the fan axis, thickness of airflow outlet slit, hydraulic diameter and aspect ratio for circular and quadratic cross sections were considered. Validating acoustic code results, we compared numerical solution of FW-H noise equations for NACA0012 with experimental results. FW-H model was selected to predict the noise generated by the Bladeless fan as the numerical results indicated a good agreement with experimental ones for NACA0012. To validate 3-D numerical results, the experimental results of a round jet showed good agreement with those simulation data. In order to indicate the effect of each mentioned parameter on the fan performance, SPL and OASPL diagrams were illustrated.

  20. Quality-assurance study of the special-purpose finite-element program SPECTROM: II. Plasticity problems

    International Nuclear Information System (INIS)

    Callahan, G.D.; Fossum, A.F.

    1982-11-01

    General plasticity theory and solution techniques as are currently employed in RE/SPEC's finite element plasticity code SPECTROM-II are presented. Various yield functions are discussed and their differences are illustrated using example problems. Comparison of the results of SPECTROM-II with analytical solutions, numerical solutions, and the general purpose finite element program MARC-CDC show excellent agreement

  1. Analysis of beam feedback loops of RF acceleration system at TARN II

    International Nuclear Information System (INIS)

    Katayama, Takeshi.

    1992-08-01

    Two beam-feedback-loops are prepared for the frequency control of RF acceleration system at cooler-synchrotron TARN II. One is the phase-loop and the other the radial-position-loop. In the present paper, the effects of these loops on the beam dynamics in the synchrotron are studied on the basis of Laplace transformation approach as well as the numerical values for the synchrotron acceleration at TARN II. (author)

  2. PISC II: Parametric studies. Monitoring of PISC-II parametric studies in ultrasonic NDT for PWR

    International Nuclear Information System (INIS)

    Toft, M.W.

    1989-09-01

    The CEGB NDT Applications Centre is partipating in the EEC-funded international Programme for the Inspection of Steel Components (PISC) on account of its relevance to the inspection of Sizewell B and future PWRs. This report describes an inspection monitoring exercise undertaken by NDTAC under partial funding from JRC Ispra, at the initiation of the PISC-III Ultrasonic Modelling Group. Experimental studies have been carried out under PISC-II to investigate ultrasonic defect response as a function of various parameters which characterise the inspection situation. Some of these parametric studies are potentially useful for the validation of theoretical models of ultrasonic inspection and are consequently relevant to the work of the PISC-III Modelling Group. The aim of the present exercise was to ensure that data obtained by the various contract organizations participating in the PISC-II Parametric Studies was of high quality, was a complete record of the inspection and would yield valid comparisons with the predictions of theoretical models. The exercise entailed visits by a nominated CEGB observer to 4 European NDT Laboratories at which the parametric studies were in progress; CISE (Milan); UKAEA (Harwell); UKAEA (Risley) and Vincotte (Brussels). This report presents the findings of those visits

  3. Reliability and Validity of Korean Version of Apraxia Screen of TULIA (K-AST).

    Science.gov (United States)

    Kim, Soo Jin; Yang, You-Na; Lee, Jong Won; Lee, Jin-Youn; Jeong, Eunhwa; Kim, Bo-Ram; Lee, Jongmin

    2016-10-01

    To evaluate the reliability and validity of Korean version of AST (K-AST) as a bedside screening test of apraxia in patients with stroke for early and reliable detection. AST was translated into Korean, and the translated version received authorization from the author of AST. The performances of K-AST in 26 patients (21 males, 5 females; mean age 65.42±17.31 years) with stroke (23 ischemic, 3 hemorrhagic) were videotaped. To test the reliability and validity of K-AST, the recorded performances were assessed by two physiatrists and two occupational therapists twice at a 1-week interval. The patient performances at admission in Korean version of Mini-Mental State Examination (K-MMSE), self-care and transfer categories of Functional Independence Measure (FIM), and motor praxis area of Loewenstein Occupational Therapy Cognitive Assessment, the second edition (LOTCA-II) were also evaluated. Scores of motor praxis area of LOTCA-II was used to assess the validity of K-AST. Inter-rater reliabilities were 0.983 (preliable and valid test for bedside screening of apraxia.

  4. Experimental and numerical contribution to heat transfer enhancement in compact plate heat exchangers

    International Nuclear Information System (INIS)

    Vitillo, Francesco

    2014-01-01

    In the framework of CEA R and D program to develop an industrial prototype of Sodium cooled Fast Reactor, the present thesis aimed to propose an innovative compact heat exchanger technology. In order to increase the global compactness the basic idea of this work is to design a channel were the fluid flow is as much three-dimensional as possible. In particular the channel can be thought as the result of the superposition of two undulated channels in phase opposition. To numerically provide a physically-consistent model, a new non-linear eddy viscosity named Anisotropic Shear Stress Transport (ASST) model has been developed and implemented into the available solver ANSYS FLUENT. To validate the numerical model, two experimental sections have been used to acquire an extensive aerodynamic database, whereas, to validate the thermal modeling approach, the VHEGAS facility has been built. Once having validated the ASST model, correlations for friction factor and Nusselt number for various geometries could be obtained. Finally, it has been shown that the innovative channel is the most compact one among the most important existing industrial compact heat exchanger technologies. (author) [fr

  5. On Line Validation Exercise (OLIVE: A Web Based Service for the Validation of Medium Resolution Land Products. Application to FAPAR Products

    Directory of Open Access Journals (Sweden)

    Marie Weiss

    2014-05-01

    Full Text Available The OLIVE (On Line Interactive Validation Exercise platform is dedicated to the validation of global biophysical products such as LAI (Leaf Area Index and FAPAR (Fraction of Absorbed Photosynthetically Active Radiation. It was developed under the framework of the CEOS (Committee on Earth Observation Satellites Land Product Validation (LPV sub-group. OLIVE has three main objectives: (i to provide a consistent and centralized information on the definition of the biophysical variables, as well as a description of the main available products and their performances (ii to provide transparency and traceability by an online validation procedure compliant with the CEOS LPV and QA4EO (Quality Assurance for Earth Observation recommendations (iii and finally, to provide a tool to benchmark new products, update product validation results and host new ground measurement sites for accuracy assessment. The functionalities and algorithms of OLIVE are described to provide full transparency of its procedures to the community. The validation process and typical results are illustrated for three FAPAR products: GEOV1 (VEGETATION sensor, MGVIo (MERIS sensor and MODIS collection 5 FPAR. OLIVE is available on the European Space Agency CAL/VAL portal, including full documentation, validation exercise results, and product extracts.

  6. Synthesis and characterisation of Cu(II), Ni(II), Mn(II), Zn(II) and VO(II ...

    Indian Academy of Sciences (India)

    Unknown

    Synthesis and characterisation of Cu(II), Ni(II), Mn(II), Zn(II) and VO(II) Schiff base complexes derived from o-phenylenediamine and acetoacetanilide. N RAMAN*, Y PITCHAIKANI RAJA and A KULANDAISAMY. Department of Chemistry, VHNSN College, Virudhunagar 626 001, India e-mail: ra_man@123india.com.

  7. Pseudodynamic Bearing Capacity Analysis of Shallow Strip Footing Using the Advanced Optimization Technique “Hybrid Symbiosis Organisms Search Algorithm” with Numerical Validation

    Directory of Open Access Journals (Sweden)

    Arijit Saha

    2018-01-01

    Full Text Available The analysis of shallow foundations subjected to seismic loading has been an important area of research for civil engineers. This paper presents an upper-bound solution for bearing capacity of shallow strip footing considering composite failure mechanisms by the pseudodynamic approach. A recently developed hybrid symbiosis organisms search (HSOS algorithm has been used to solve this problem. In the HSOS method, the exploration capability of SQI and the exploitation potential of SOS have been combined to increase the robustness of the algorithm. This combination can improve the searching capability of the algorithm for attaining the global optimum. Numerical analysis is also done using dynamic modules of PLAXIS-8.6v for the validation of this analytical solution. The results obtained from the present analysis using HSOS are thoroughly compared with the existing available literature and also with the other optimization techniques. The significance of the present methodology to analyze the bearing capacity is discussed, and the acceptability of HSOS technique is justified to solve such type of engineering problems.

  8. The validity of John Paul II’s concept of education in a family [Aktualność Jana Pawła II koncepcji wychowania w rodzinie

    Directory of Open Access Journals (Sweden)

    Anastazja SORKOWICZ

    2017-11-01

    Full Text Available Searching for a concept of education in a family occupies not only theorists of education but also parents and those persons with a lively interest in practical activities directed to helping families. The Holy Father John Paul II presented a Christian perspective of family and education: He treated the family as an inseparable relationship between a woman and a man, directed from one side towards the good of the spouses and from the other towards the transmission of life to children. Education, as understood by John Paul II, is one of the basic aims of a family, it is one of its most important tasks. The process relies on mutual gift of one’s humanity and takes place during interactions between family members. The success of educational process in a family depends on the quality of relationship between parents: whether spouses – parents take trouble to establish and maintain a true community of persons, whether their relationship is based on mutual trust. Parenthood is understood by John Paul II as a gift and as a task, from which follows the basic right, and simultaneously an obligation, to educate children in accordance with one’s beliefs. This task is of such importance that it should not be appropriated by any other entity. Therefore parents are the first and most important educators of their children, responsible for forming in the younger generation the spirit of universal values. The article is to make the reader more familiar with the teaching of John Paul II concerning education in the family and indicate the elements of this teaching which are especially valid for a human being living at the beginning of the XXIth century and searching for the universal concept of education in the family.

  9. LBflow: An extensible lattice Boltzmann framework for the simulation of geophysical flows. Part II: usage and validation

    Science.gov (United States)

    Llewellin, E. W.

    2010-02-01

    LBflow is a flexible, extensible implementation of the lattice Boltzmann method, developed with geophysical applications in mind. The theoretical basis for LBflow, and its implementation, are presented in the companion paper, 'Part I'. This article covers the practical usage of LBflow and presents guidelines for obtaining optimal results from available computing power. The relationships among simulation resolution, accuracy, runtime and memory requirements are investigated in detail. Particular attention is paid to the origin, quantification and minimization of errors. LBflow is validated against analytical, numerical and experimental results for a range of three-dimensional flow geometries. The fluid conductance of prismatic pipes with various cross sections is calculated with LBflow and found to be in excellent agreement with published results. Simulated flow along sinusoidally constricted pipes gives good agreement with experimental data for a wide range of Reynolds number. The permeability of packs of spheres is determined and shown to be in excellent agreement with analytical results. The accuracy of internal flow patterns within the investigated geometries is also in excellent quantitative agreement with published data. The development of vortices within a sinusoidally constricted pipe with increasing Reynolds number is shown, demonstrating the insight that LBflow can offer as a 'virtual laboratory' for fluid flow.

  10. Validation experiment of a numerically processed millimeter-wave interferometer in a laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kogi, Y., E-mail: kogi@fit.ac.jp; Higashi, T.; Matsukawa, S. [Department of Information Electronics, Fukuoka Institute of Technology, Fukuoka 811-0295 (Japan); Mase, A. [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga, Fukuoka 816-0811 (Japan); Kohagura, J.; Yoshikawa, M. [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Nagayama, Y.; Kawahata, K. [National Institute for Fusion Science, Toki, Gifu 509-5202 (Japan); Kuwahara, D. [Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan)

    2014-11-15

    We propose a new interferometer system for density profile measurements. This system produces multiple measurement chords by a leaky-wave antenna driven by multiple frequency inputs. The proposed system was validated in laboratory evaluation experiments. We confirmed that the interferometer generates a clear image of a Teflon plate as well as the phase shift corresponding to the plate thickness. In another experiment, we confirmed that quasi-optical mirrors can produce multiple measurement chords; however, the finite spot size of the probe beam degrades the sharpness of the resulting image.

  11. Mathematical and numerical study of non-linear models used in plasma physics

    International Nuclear Information System (INIS)

    Ebrard, G.

    2005-12-01

    We study the interaction of several crossing beams with a plasma in the Laser-Megajoule context. We start from Euler-Maxwell. The formal asymptotic is the Zakharov system. For simplified systems of Klein-Gordon-wave type, we justify an approximation by a Zakharov equation for solutions of large amplitude. We construct a new system that simulates the interaction of 2 beams and present a whole hierarchy of models. We introduce a numerical scheme using the known results on Zakharov-wave equations which are valid for short pulses. We give a scheme which eliminate the backscattering wave. We give some numerical results. Finally, we do several numerical simulations of laser-plasma interaction for the initial value problem and the boundary value problem. (author)

  12. The state of the art of numerical modeling of thermohydrologic flow in fractured rock masses

    International Nuclear Information System (INIS)

    Wang, J.S.Y.; Sterbentz, R.A.; Tsang, C.F.

    1982-01-01

    The state of the art of numerical modeling of thermohydrologic flow in fractured rock masses is reviewed and a comparative study is made of several models which have been developed in nuclear waste isolation, geothermal energy, ground water hydrology, petroleum engineering, and other geologic fields. The general review is followed by individual summaries of each model and the main characteristics of its governing equations, numerical solutions, computer codes, validations, and applications

  13. Biologically active new Fe(II, Co(II, Ni(II, Cu(II, Zn(II and Cd(II complexes of N-(2-thienylmethylenemethanamine

    Directory of Open Access Journals (Sweden)

    C. SPÎNU

    2008-04-01

    Full Text Available Iron(II, cobalt(II, nickel (II, copper (II, zinc(II and cadmium(II complexes of the type ML2Cl2, where M is a metal and L is the Schiff base N-(2-thienylmethylenemethanamine (TNAM formed by the condensation of 2-thiophenecarboxaldehyde and methylamine, were prepared and characterized by elemental analysis as well as magnetic and spectroscopic measurements. The elemental analyses suggest the stoichiometry to be 1:2 (metal:ligand. Magnetic susceptibility data coupled with electronic, ESR and Mössbauer spectra suggest a distorted octahedral structure for the Fe(II, Co(II and Ni(II complexes, a square-planar geometry for the Cu(II compound and a tetrahedral geometry for the Zn(II and Cd(II complexes. The infrared and NMR spectra of the complexes agree with co-ordination to the central metal atom through nitrogen and sulphur atoms. Conductance measurements suggest the non-electrolytic nature of the complexes, except for the Cu(II, Zn(II and Cd(II complexes, which are 1:2 electrolytes. The Schiff base and its metal chelates were screened for their biological activity against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa and the metal chelates were found to possess better antibacterial activity than that of the uncomplexed Schiff base.

  14. Colorimeter determination of Fe(II)/Fe(III) ratio in glass

    International Nuclear Information System (INIS)

    Baumann, E.W.; Coleman, C.J.; Karraker, D.G.; Scott, W.H.

    1987-01-01

    A colorimetric method has been developed to determine the Fe(II)/Fe(III) ratio in glass containing nuclear waste. Fe(II) is stabilized with pentavalent vanadium during dissolution in sulfuric and hydrofluoric acids. The chromogen is FerroZine (Hach Chemical Company), which forms a magenta complex with Fe(II). The two-step color development consists of determining the Fe(II) by adding FerroZine, followed by determining total Fe after the Fe(III) present is reduced with ascorbic acid. The method was validated by analyzing mixtures of ferrous/ferric solutions and nonferrous glass frit, and by comparison with Moessbauer spectroscopy. The effect of gamma radiation was established. The procedure is generally applicable to nonradioactive materials such as minerals and other glasses

  15. Numerical simulation of flow-induced vibrations in tube bundles

    International Nuclear Information System (INIS)

    Elisabeth Longatte; Zaky Bendjeddou; Mhamed Souli

    2005-01-01

    numerical scheme are involved to ensure energy conservation at each time step of the coupling process. This approach is applied to the identification of fluid-structure and elastic forces on a single flexible tube moving in a fixed tube bundle. Numerical results are compared to experimental data in terms of added mass, damping and stiffness in still water and in flow. In the present paper the full methodology is described, then main results are presented, validated and discussed in terms of thermo-hydraulics loads and tube vibration patterns. Numerical results presented in this article turn out to be consistent with those obtained experimentally. The next step is to achieve validations and to use this information to prevent damage in components through local studies. (authors)

  16. A numerical strategy for finite element modeling of frictionless asymmetric vocal fold collision

    DEFF Research Database (Denmark)

    Granados, Alba; Misztal, Marek Krzysztof; Brunskog, Jonas

    2016-01-01

    . Theoretical background and numerical analysis of the finite-element position-based contact model are presented, along with validation. A novel contact detection mechanism capable to detect collision in asymmetric oscillations is developed. The effect of inexact contact constraint enforcement on vocal fold...

  17. Numerical study of blow-up in the Davey-Stewartson system

    KAUST Repository

    Klein, Christian

    2013-03-01

    Nonlinear dispersive partial differential equations such as the nonlinear Schrödinger equations can have solutions that blow up. We numerically study the long time behavior and potential blow-up of solutions to the focusing Davey-Stewartson II equation by analyzing perturbations of the lump and the Ozawa solutions. It is shown in this way that both are unstable to blow-up and dispersion, and that blow-up in the Ozawa solution is generic.

  18. Numerical study of blow-up in the Davey-Stewartson system

    KAUST Repository

    Klein, Christian; Muite, Benson; Roidot, Kristelle

    2013-01-01

    Nonlinear dispersive partial differential equations such as the nonlinear Schrödinger equations can have solutions that blow up. We numerically study the long time behavior and potential blow-up of solutions to the focusing Davey-Stewartson II equation by analyzing perturbations of the lump and the Ozawa solutions. It is shown in this way that both are unstable to blow-up and dispersion, and that blow-up in the Ozawa solution is generic.

  19. Modification of Concrete Damaged Plasticity model. Part II: Formulation and numerical tests

    Directory of Open Access Journals (Sweden)

    Kamińska Inez

    2017-01-01

    Full Text Available A refined model for elastoplastic damaged material is formulated based on the plastic potential introduced in Part I [1]. Considered model is an extension of Concrete Damaged Plasticity material implemented in Abaqus [2]. In the paper the stiffness tensor for elastoplastic damaged behaviour is derived. In order to validate the model, computations for the uniaxial tests are performed. Response of the model for various cases of parameter’s choice is shown and compared to the response of the CDP model.

  20. Numerical study of particle filtration in an induction crucible furnace

    International Nuclear Information System (INIS)

    Asad, Amjad; Kratzsch, Christoph; Dudczig, Steffen; Aneziris, Christos G.; Schwarze, Rüdiger

    2016-01-01

    Highlights: • Removing particles from a melt in an induction furnace by using a filter is introduced. • The effect of filter and its permeability on the melt flow is shown. • The impact of filter permeability and particle diameter on filter efficiency is studied. • The filter efficiency depends on filter position and number of the used filter. - Abstract: The present paper deals with a numerical investigation of the turbulent melt flow driven by the electromagnetic force in an induction furnace. The main scope of the paper is to present a new principle to remove non-metallic particles from steel melt in an induction furnace by immersing a porous filter in the melt. The magnetic field acting on the melt is calculated by using the open source software MaxFEM"®, while the turbulent flow is simulated by means of the open source computational fluid dynamics library OpenFOAM"®. The validation of the numerical model is accomplished by using experimental results for the flow without the immersed filter. Here it is shown that the time-averaged flow, obtained numerically is in a good quantitive agreement with the experimental data. Then, the validated numerical model is employed to simulate the melt flow with the immersed filter in the induction furnace of a new type of real steel casting simulator investigated at Technische Universität Bergakademie Freiberg. The considerable effect of the filter on the flow pattern is indicated in the present work. Moreover, it is shown that the filter permeability and its position have a significant influence on the melt flow in the induction furnace. Additionally, particles are injected in the flow domain and tracked by using Lagrangian framework. In this case, the efficiency of the used filter is determined in the present investigation depending on its permeability, its position and the particles diameter.

  1. Numerical detection of the Gardner transition in a mean-field glass former.

    Science.gov (United States)

    Charbonneau, Patrick; Jin, Yuliang; Parisi, Giorgio; Rainone, Corrado; Seoane, Beatriz; Zamponi, Francesco

    2015-07-01

    Recent theoretical advances predict the existence, deep into the glass phase, of a novel phase transition, the so-called Gardner transition. This transition is associated with the emergence of a complex free energy landscape composed of many marginally stable sub-basins within a glass metabasin. In this study, we explore several methods to detect numerically the Gardner transition in a simple structural glass former, the infinite-range Mari-Kurchan model. The transition point is robustly located from three independent approaches: (i) the divergence of the characteristic relaxation time, (ii) the divergence of the caging susceptibility, and (iii) the abnormal tail in the probability distribution function of cage order parameters. We show that the numerical results are fully consistent with the theoretical expectation. The methods we propose may also be generalized to more realistic numerical models as well as to experimental systems.

  2. Validation of Standardized Questionnaires Evaluating Symptoms of Depression in Rheumatoid Arthritis Patients: Approaches to Screening for a Frequent Yet Underrated Challenge.

    Science.gov (United States)

    Englbrecht, Matthias; Alten, Rieke; Aringer, Martin; Baerwald, Christoph G; Burkhardt, Harald; Eby, Nancy; Fliedner, Gerhard; Gauger, Bettina; Henkemeier, Ulf; Hofmann, Michael W; Kleinert, Stefan; Kneitz, Christian; Krueger, Klaus; Pohl, Christoph; Roske, Anne-Eve; Schett, Georg; Schmalzing, Marc; Tausche, Anne-Kathrin; Peter Tony, Hans; Wendler, Joerg

    2017-01-01

    To validate standard self-report questionnaires for depression screening in patients with rheumatoid arthritis (RA) and compare these measures to one another and to the Montgomery-Åsberg Depression Rating Scale (MADRS), a standardized structured interview. In 9 clinical centers across Germany, depressive symptomatology was assessed in 262 adult RA patients at baseline (T0) and at 12 ± 2 weeks followup (T1) using the World Health Organization 5-Item Well-Being Index (WHO-5), the Patient Health Questionnaire (PHQ-9), and the Beck Depression Inventory II (BDI-II). The construct validity of these depression questionnaires (using convergent and discriminant validity) was evaluated using Spearman's correlations at both time points. The test-retest reliability of the questionnaires was evaluated in RA patients who had not undergone a psychotherapeutic intervention or received antidepressants between T0 and T1. The sensitivity and the specificity of the questionnaires were calculated using the results of the MADRS, a structured interview, as the gold standard. According to Spearman's correlation coefficients, all questionnaires met convergent validity criteria (ρ > |0.50|), with the BDI-II performing best, while correlations with age and disease activity for all questionnaires met the criteria for discriminant validity (ρ questionnaire to meet the predefined retest reliability criterion (ρ ≥ 0.70) was the BDI-II (r s  = 0.77), which also achieved the best results for both sensitivity and specificity (>80%) when using the MADRS as the gold standard. The BDI-II best met the predefined criteria, and the PHQ-9 met most of the validity criteria, with lower sensitivity and specificity. © 2016, American College of Rheumatology.

  3. Validating numerical simulations of snow avalanches using dendrochronology: the Cerro Ventana event in Northern Patagonia, Argentina

    Directory of Open Access Journals (Sweden)

    A. Casteller

    2008-05-01

    Full Text Available The damage caused by snow avalanches to property and human lives is underestimated in many regions around the world, especially where this natural hazard remains poorly documented. One such region is the Argentinean Andes, where numerous settlements are threatened almost every winter by large snow avalanches. On 1 September 2002, the largest tragedy in the history of Argentinean mountaineering took place at Cerro Ventana, Northern Patagonia: nine persons were killed and seven others injured by a snow avalanche. In this paper, we combine both numerical modeling and dendrochronological investigations to reconstruct this event. Using information released by local governmental authorities and compiled in the field, the avalanche event was numerically simulated using the avalanche dynamics programs AVAL-1D and RAMMS. Avalanche characteristics, such as extent and date were determined using dendrochronological techniques. Model simulation results were compared with documentary and tree-ring evidences for the 2002 event. Our results show a good agreement between the simulated projection of the avalanche and its reconstructed extent using tree-ring records. Differences between the observed and the simulated avalanche, principally related to the snow height deposition in the run-out zone, are mostly attributed to the low resolution of the digital elevation model used to represent the valley topography. The main contributions of this study are (1 to provide the first calibration of numerical avalanche models for the Patagonian Andes and (2 to highlight the potential of Nothofagus pumilio tree-ring records to reconstruct past snow-avalanche events in time and space. Future research should focus on testing this combined approach in other forested regions of the Andes.

  4. [Reliability and Validity of the Korean Version of the Perinatal Post-Traumatic Stress Disorder Questionnaire].

    Science.gov (United States)

    Park, Yu Kyung; Ju, Hyeon Ok; Na, Hunjoo

    2016-02-01

    The Perinatal Post-Traumatic Stress Disorder Questionnaire (PPQ) was designed to measure post-traumatic symptoms related to childbirth and symptoms during postnatal period. The purpose of this study was to develop a translated Korean version of the PPQ and to evaluate reliability and validity of the Korean PPQ. Participants were 196 mothers at one to 18 months after giving childbirth and data were collected through e-mails. The PPQ was translated into Korean using translation guideline from World Health Organization. For this study Cronbach's alpha and split-half reliability were used to evaluate the reliability of the PPQ. Exploratory Factor Analysis (EFA), Confirmatory Factor Analysis (CFA), and known-group validity were conducted to examine construct validity. Correlations of the PPQ with Impact of Event Scale (IES), Beck Depression Inventory II (BDI-II), and Beck Anxiety Inventory (BAI) were used to test a criterion validity of the PPQ. Cronbach's alpha and Spearman-Brown split-half correlation coefficient were 0.91 and 0.77, respectively. EFA identified a 3-factor solution including arousal, avoidance, and intrusion factors and CFA revealed the strongest support for the 3-factor model. The correlations of the PPQ with IES, BDI-II, and BAI were .99, .60, and .72, respectively, pointing to criterion validity of a high level. The Korean version PPQ is a useful tool for screening and assessing mothers' experiencing emotional distress related to child birth and during the postnatal period. The PPQ also reflects Post Traumatic Stress Disorder's diagnostic standards well.

  5. On the symmetric difference quotient and its application to the correction of orbits. II - A numerical analysis

    Science.gov (United States)

    Serafin, R. A.; Wnuk, E.

    The relative accuracy of ordinary and symmetric difference quotients for elementary functions employed in orbit corrections is investigated analytically. The theoretical results of Serafin (1982) are applied to numerical computations in rectangular coordinates, and results for a number of generalized and practical problems are presented in extensive graphs and discussed in detail. The numerical results confirm that symmetric difference quotients give significantly more accurate predictions than ordinary difference quotients.

  6. Global limit load solutions for thick-walled cylinders with circumferential cracks under combined internal pressure, axial force and bending moment − Part II: Finite element validation

    International Nuclear Information System (INIS)

    Li, Yuebing; Lei, Yuebao; Gao, Zengliang

    2014-01-01

    Global limit load solutions for thick-walled cylinders with circumferential internal/external surface and through-wall defects under combined positive/negative axial force, positive/negative global bending moment and internal pressure have been developed in Part I of this paper. In this Part II, elastic-perfectly plastic 3-D finite element (FE) analyses are performed for selected cases, covering a wide range of geometries and load combinations, to validate the developed limit load solutions. The results show that these limit load solutions can predict the FE data very well for the cases with shallow or deep and short cracks and are conservative. For the cases with very long and deep cracks, the predictions are reasonably accurate and more conservative. -- Highlights: • Elastic-perfectly plastic 3D finite element limiting analyses of cylinders. • Thin/thick-walled cylinders with circumferential surface defects. • Combined loading for pressure, end-force and global bending moment. • Totally 1458 cases analysed and tabulated normalised results provided. • Results used to validate the developed limit load solutions in Part I of this paper

  7. Direct numerical simulation of bluff-body-stabilized premixed flames

    KAUST Repository

    Arias, Paul G.

    2014-01-10

    To enable high fidelity simulation of combustion phenomena in realistic devices, an embedded boundary method is implemented into direct numerical simulations (DNS) of reacting flows. One of the additional numerical issues associated with reacting flows is the stable treatment of the embedded boundaries in the presence of multicomponent species and reactions. The implemented method is validated in two test con gurations: a pre-mixed hydrogen/air flame stabilized in a backward-facing step configuration, and reactive flows around a square prism. The former is of interest in practical gas turbine combustor applications in which the thermo-acoustic instabilities are a strong concern, and the latter serves as a good model problem to capture the vortex shedding behind a bluff body. In addition, a reacting flow behind the square prism serves as a model for the study of flame stabilization in a micro-channel combustor. The present study utilizes fluid-cell reconstruction methods in order to capture important flame-to-solid wall interactions that are important in confined multicomponent reacting flows. Results show that the DNS with embedded boundaries can be extended to more complex geometries without loss of accuracy and the high fidelity simulation data can be used to develop and validate turbulence and combustion models for the design of practical combustion devices.

  8. 3D conformal MRI-controlled transurethral ultrasound prostate therapy: validation of numerical simulations and demonstration in tissue-mimicking gel phantoms.

    Science.gov (United States)

    Burtnyk, Mathieu; N'Djin, William Apoutou; Kobelevskiy, Ilya; Bronskill, Michael; Chopra, Rajiv

    2010-11-21

    .1 ± 0.6 °C, inside and outside the prostate respectively, and the treatment time to within 6.8 min. The simulations also showed excellent agreement in regions of sharp temperature gradients near the transurethral and endorectal cooling devices. Conformal 3D volumes of thermal coagulation can be precisely matched to prostate shapes with transurethral ultrasound devices and active MRI temperature feedback. The accuracy of numerical simulations for MRI-controlled transurethral ultrasound prostate therapy was validated experimentally, reinforcing their utility as an effective treatment planning tool.

  9. Evaluation of wave runup predictions from numerical and parametric models

    Science.gov (United States)

    Stockdon, Hilary F.; Thompson, David M.; Plant, Nathaniel G.; Long, Joseph W.

    2014-01-01

    Wave runup during storms is a primary driver of coastal evolution, including shoreline and dune erosion and barrier island overwash. Runup and its components, setup and swash, can be predicted from a parameterized model that was developed by comparing runup observations to offshore wave height, wave period, and local beach slope. Because observations during extreme storms are often unavailable, a numerical model is used to simulate the storm-driven runup to compare to the parameterized model and then develop an approach to improve the accuracy of the parameterization. Numerically simulated and parameterized runup were compared to observations to evaluate model accuracies. The analysis demonstrated that setup was accurately predicted by both the parameterized model and numerical simulations. Infragravity swash heights were most accurately predicted by the parameterized model. The numerical model suffered from bias and gain errors that depended on whether a one-dimensional or two-dimensional spatial domain was used. Nonetheless, all of the predictions were significantly correlated to the observations, implying that the systematic errors can be corrected. The numerical simulations did not resolve the incident-band swash motions, as expected, and the parameterized model performed best at predicting incident-band swash heights. An assimilated prediction using a weighted average of the parameterized model and the numerical simulations resulted in a reduction in prediction error variance. Finally, the numerical simulations were extended to include storm conditions that have not been previously observed. These results indicated that the parameterized predictions of setup may need modification for extreme conditions; numerical simulations can be used to extend the validity of the parameterized predictions of infragravity swash; and numerical simulations systematically underpredict incident swash, which is relatively unimportant under extreme conditions.

  10. Validity of a parent vocabulary checklist for young Spanish speaking children of Mexican immigrants.

    Science.gov (United States)

    Guiberson, Mark

    2008-01-01

    The primary objective of the current investigation was to examine the concurrent and predictive validity of a parent vocabulary checklist with young Spanish speaking children of Mexican immigrants. This study implemented a longitudinal approach. Nineteen families participated when children were 15-16 months of age, and then again at 30-32 months of age. The Spanish version of the MacArthur Communicative Development Inventory (Inventarios del Desarrollo de Habilidades Communicativas, INV) and spontaneous language samples collected during naturalistic play were used to examine the relationship between observed and reported vocabulary. Vocabulary reported through the INV-II and vocabulary observed at 30-32 months were significantly correlated, suggesting that the INV-II captures a valid representation of vocabulary at this age. Comparatively, vocabulary reported on the INV-I, was not correlated with observed vocabulary at 15-16 months of age or reported or observed vocabulary at 30-32 months of age. These results suggest that the INV-I, when used with 14-16-month-olds, demonstrates limited concurrent and predictive validity. Implications for the clinical use of the INV-I and INV-II are presented.

  11. Numerical simulations of the industrial circulating fluidized bed boiler under air- and oxy-fuel combustion

    International Nuclear Information System (INIS)

    Adamczyk, Wojciech P.; Kozołub, Paweł; Klimanek, Adam; Białecki, Ryszard A.; Andrzejczyk, Marek; Klajny, Marcin

    2015-01-01

    Measured and numerical results of air-fuel combustion process within large scale industrial circulating fluidized bed (CFB) boiler is presented in this paper. For numerical simulations the industrial compact CFB boiler was selected. Numerical simulations were carried out using three-dimensional model where the dense particulate transport phenomenon was simultaneously modelled with combustion process. The fluidization process was modelled using the hybrid Euler-Lagrange approach. The impact of the geometrical model simplification on predicted mass distribution and temperature profiles over CFB boiler combustion chamber two kinds of geometrical models were used, namely the complete model which consist of combustion chamber, solid separators, external solid super-heaters and simplified boiler geometry which was reduced to the combustion chamber. The evaluated temperature and pressure profiles during numerical simulations were compared against measured data collected during boiler air-fuel operation. Collected data was also used for validating numerical model of the oxy-fuel combustion model. Stability of the model and its sensitivity on changes of several input parameters were studied. The comparison of the pressure and temperature profiles for all considered cases gave comparable trends in contrary to measured data. Moreover, some additional test was carried out the check the influence of radiative heat transfer on predicted temperature profile within the CFB boiler. - Highlights: • Hybrid Euler-Lagrange approach was used for modelling particle transport, air- and oxy-fuel combustion process. • Numerical results were validated against measured data. • The influence of different boiler operating conditions on calculated temperature profile was investigated. • New strategy for resolving particle transport in circulating fluidized bed was shown

  12. Confrontation of the Magnetically Arrested Disc Scenario with Observations of FR II Sources

    Energy Technology Data Exchange (ETDEWEB)

    Rusinek, Katarzyna; Sikora, Marek, E-mail: krusinek@camk.edu.pl [Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Warsaw (Poland)

    2017-10-12

    The main aim of our work was to check whether powers of jets in FR II radio galaxies (RGs) and quasars (QSOs) can be reproduced by the Magnetically Arrested Disc (MAD) scenario. Assuming that established in the recent numerical simulations of the MAD scenario the (H/R){sup 2} dependence of the jet production efficiency is correct, we demonstrate that in order to reproduce the observed jet powers in FR II sources: (i) accretion discs must be geometrically much thicker than the standard ones; (ii) and/or that the jet production is strongly modulated.

  13. Numerical investigation on vibration and noise induced by unsteady flow in an axial-flow pump

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Eryun; Ma, Zui Ling; Yang, Ai Ling; Nan, Guo Fang [School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai (China); Zhao, Gai Ping [School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai (China); Li, Guo Ping [Shanghai Marine Equipment Research Institute, Shanghai (China)

    2016-12-15

    Full-scale structural vibration and noise induced by flow in an axial-flow pump was simulated by a hybrid numerical method. An unsteady flow field was solved by a large eddy simulation-based computational fluid dynamics commercial code, Fluent. An experimental validation on pressure fluctuations was performed to impose an appropriate vibration exciting source. The consistency between the computed results and experimental tests were interesting. The modes of the axial-flow pump were computed by the finite element method. After that, the pump vibration and sound field were solved using a coupled vibro-acoustic model. The numerical results indicated that the the blade-passing frequency was the dominant frequency of the vibration acceleration of the pump. This result was consistent with frequency spectral characteristics of unsteady pressure fluctuation. Finally, comparisons of the vibration acceleration between the computed results and the experimental test were conducted. These comparisons validated the computed results. This study shows that using the hybrid numerical method to evaluate the flow-induced vibration and noise generated in an axial-flow pump is feasible.

  14. Optimal design of a composite space shield based on numerical simulations

    International Nuclear Information System (INIS)

    Son, Byung Jin; Yoo, Jeong Hoon; Lee, Min Hyung

    2015-01-01

    In this study, optimal design of a stuffed Whipple shield is proposed by using numerical simulations and new penetration criterion. The target model was selected based on the shield model used in the Columbus module of the international space station. Because experimental results can be obtained only in the low velocity region below 7 km/s, it is required to derive the Ballistic limit curve (BLC) in the high velocity region above 7 km/s by numerical simulation. AUTODYN-2D, the commercial hydro-code package, was used to simulate the nonlinear transient analysis for the hypervelocity impact. The Smoothed particle hydrodynamics (SPH) method was applied to projectile and bumper modeling to represent the debris cloud generated after the impact. Numerical simulation model and selected material properties were validated through a quantitative comparison between numerical and experimental results. A new criterion to determine whether the penetration occurs or not is proposed from kinetic energy analysis by numerical simulation in the velocity region over 7 km/s. The parameter optimization process was performed to improve the protection ability at a specific condition through the Design of experiment (DOE) method and the Response surface methodology (RSM). The performance of the proposed optimal design was numerically verified.

  15. Complexes of cobalt(II), nickel(II), copper(II), zinc(II), cadmium(II) and dioxouranium(II) with thiophene-2-aldehydethiosemicarbazone

    International Nuclear Information System (INIS)

    Singh, Balwan; Misra, Harihar

    1986-01-01

    Metal complexes of thiosemicarbazides have been known for their pharmacological applications. Significant antitubercular, fungicidal and antiviral activities have been reported for thiosemicarbazides and their derivatives. The present study describes the systhesis and characterisation of complexes of Co II , Cu II , Zn II ,Cd II and UO II with thiosemicarbazone obtained by condensing thiophene-2-aldehyde with thiosemicarbazide. 17 refs., 2 tables. (author)

  16. Validation of MORET 4 perturbation against 'physical' type fission products experiments

    International Nuclear Information System (INIS)

    Anno, Jacques; Jacquet, Olivier; Miss, Joachim

    2003-01-01

    After shortly recalling one among the many pertinent recent features of the French criticality CRISTAL package i.e. the perturbation algorithm (so called MORET 4 'Perturbation' or MP), this paper presents original MP validations. Numerical and experimental validations are made using close fission products (FP) experiments. As results, it is shown that, all being equal, MP can detect FP's absorption cross-section variations in the range 0.3-1.2%. (author)

  17. Advanced numerical modelling of a fire. Final report

    International Nuclear Information System (INIS)

    Heikkilae, L.; Keski-Rahkonen, O.

    1996-03-01

    Experience and probabilistic risk assessments show that fires present a major hazard in a nuclear power plant (NPP). The PALOME project (1988-92) improved the quality of numerical simulation of fires to make it a useful tool for fire safety analysis. Some of the most advanced zone model fire simulation codes were acquired. The performance of the codes was studied through literature and personal interviews in earlier studies and BRI2 code from the Japanese Building Research Institute was selected for further use. In PALOME 2 project this work was continued. Information obtained from large-scale fire tests at the German HDR facility allowed reliable prediction of the rate of heat release and was used for code validation. BRI2 code was validated particularly by participation in the CEC standard problem 'Prediction of effects caused by a cable fire experiment within the HDR-facility'. Participation in the development of a new field model code SOFIE specifically for fire applications as British-Swedish-Finnish cooperation was one of the goals of the project. SOFIE code was implemented at VTT and the first results of validation simulations were obtained. Well instrumented fire tests on electronic cabinets were carried out to determine source terms for simulation of room fires and to estimate fire spread to adjacent cabinets. The particular aim of this study was to measure the rate of heat release from a fire in an electronic cabinet. From the three tests, differing mainly in the amount of the fire load, data was obtained for source terms in numerical modelling of fires in rooms containing electronic cabinets. On the basis of these tests also a simple natural ventilation model was derived. (19 refs.)

  18. Heterotic-type II string duality and the H-monopole problem

    CERN Document Server

    Girardello, L; Zaffaroni, A

    1996-01-01

    Since T-duality has been proved only perturbatively and most of the heterotic states map into solitonic, non-perturbative, type II states, the 6-dimensional string-string duality between the heterotic string and the type II string is not sufficient to prove the S-duality of the former, in terms of the known T-duality of the latter. We nevertheless show in detail that perturbative T-duality, together with the heterotic-type II duality, does imply the existence of heterotic H-monopoles, with the correct multiplicity and multiplet structure. This construction is valid at a generic point in the moduli space of heterotic toroidal compactifications.

  19. Application of numerical inverse method in calculation of composition-dependent interdiffusion coefficients in finite diffusion couples

    DEFF Research Database (Denmark)

    Liu, Yuanrong; Chen, Weimin; Zhong, Jing

    2017-01-01

    The previously developed numerical inverse method was applied to determine the composition-dependent interdiffusion coefficients in single-phase finite diffusion couples. The numerical inverse method was first validated in a fictitious binary finite diffusion couple by pre-assuming four standard...... sets of interdiffusion coefficients. After that, the numerical inverse method was then adopted in a ternary Al-Cu-Ni finite diffusion couple. Based on the measured composition profiles, the ternary interdiffusion coefficients along the entire diffusion path of the target ternary diffusion couple were...... obtained by using the numerical inverse approach. The comprehensive comparisons between the computations and the experiments indicate that the numerical inverse method is also applicable to high-throughput determination of the composition-dependent interdiffusion coefficients in finite diffusion couples....

  20. Testing the Gossamer Albatross II

    Science.gov (United States)

    1980-01-01

    The Gossamer Albatross II is seen here during a test flight at NASA's Dryden Flight Research Center, Edwards, California. The original Gossamer Albatross is best known for completing the first completely human powered flight across the English Channel on June 12, 1979. The Albatross II was the backup craft for the Channel flight. It was fitted with a small battery-powered electric motor and flight instruments for the NASA research program in low-speed flight. NASA completed its flight testing of the Gossamer Albatross II and began analysis of the results in April, 1980. During the six week program, 17 actual data gathering flights and 10 other flights were flown here as part of the joint NASA Langley/Dryden flight research program. The lightweight craft, carrying a miniaturized instrumentation system, was flown in three configurations; using human power, with a small electric motor, and towed with the propeller removed. Results from the program contributed to data on the unusual aerodynamic, performance, stability, and control characteristics of large, lightweight aircraft that fly at slow speeds for application to future high altitude aircraft. The Albatross' design and research data contributed to numerous later high altitude projects, including the Pathfinder.