WorldWideScience

Sample records for igf median ngal

  1. Urinary NGAL deficiency in recurrent urinary tract infections.

    Science.gov (United States)

    Forster, Catherine S; Johnson, Kathryn; Patel, Viral; Wax, Rebecca; Rodig, Nancy; Barasch, Jonathan; Bachur, Richard; Lee, Richard S

    2017-06-01

    Children with recurrent urinary tract infections (rUTI) often show no identifiable cause of their infections. Neutrophil gelatinase-associated lipocalin (NGAL) is known to be upregulated within the uroepithelium and kidney of patients with UTI and exhibits a localized bacteriostatic effect through iron chelation. We hypothesize that some patients with rUTI without an identifiable cause of their recurrent infections have locally deficient NGAL production. We therefore explored whether a lack of NGAL production may be a factor in the pathogenesis of rUTI. Patients seen in the urology clinic for rUTI who were tract, or other reasons that predispose to UTI, such as neurogenic bladder, the need for intermittent catheterization, or unrepaired posterior urethral valves. Control patients were healthy children enrolled from the emergency department with no history of UTI or renal dysfunction, normal urinalysis at the time of enrollment, and presenting no diagnosis associated with increased NGAL levels, such as acute kidney injury or infection. NGAL was measured by immunoblot. Fifteen cases and controls were enrolled. Median urinary NGAL levels were significantly decreased in rUTI patients compared with controls [15 (14-29) ng/ml vs 30 (27-61) ng/ml; p = 0.002)] Although comparatively diminished, measurable NGAL levels were present in all patients with rUTI. Urinary NGAL is significantly decreased in patients with compared with patients without rUTI. These data suggest that some patients with rUTI may be predisposed to UTI because of a relative local deficiency in urinary NGAL production.

  2. Plasma NGAL and glomerular filtration rate in cardiac transplant recipients treated with standard or reduced calcineurin inhibitor levels

    DEFF Research Database (Denmark)

    Gustafsson, Finn; Gude, Einar; Sigurdardottir, Vilborg

    2014-01-01

    GFR) at baseline (R(2) = 0.21; p year (median [25-75 % percentiles]: ΔmGFR 5.5 [-0.5-11.5] vs -1 [-7-4] ml/min/1.73 m(2); p = 0.006). Baseline P-NGAL predicted mGFR after 1 year (R(2) = 0.18; p ...: P-NGAL was measured in 88 cardiac transplantation patients (median 5 years post-transplant) with renal dysfunction randomized to continuation of conventional calcineurin inhibitor-based immunosuppression or switching to an everolimus-based regimen. RESULTS: P-NGAL correlated with measured GFR (m...

  3. Urine neutrophil gelatinase-associated lipocalin (NGAL as a biomarker for acute canine kidney injury

    Directory of Open Access Journals (Sweden)

    Lee Ya-Jane

    2012-12-01

    Full Text Available Abstract Background Biomarkers for the early prediction of canine acute kidney injury (AKI are clinically important. Recently, neutrophil gelatinase-associated lipocalin (NGAL was found to be a sensitive biomarker for the prediction of human AKI at a very early stage and the development of AKI after surgery. However, NGAL has not yet been studied with respect to dog kidney diseases. The application of NGAL canine AKI was investigated in this study. Results The canine NGAL gene was successfully cloned and expressed. Polyclonal antibodies against canine NGAL were generated and used to develop an ELISA for measuring NGAL protein in serum and urine samples that were collected from 39 dogs at different time points after surgery. AKI was defined by the standard method, namely a serum creatinine increase of greater than or equal to 26.5 μmol/L from baseline within 48 h. At 12 h after surgery, compared to the group without AKI (12 dogs, the NGAL level in the urine of seven dogs with AKI was significantly increased (median 178.4 pg/mL vs. 88.0 pg/mL, and this difference was sustained to 72 h. Conclusion As the increase in NGAL occurred much earlier than the increase in serum creatinine, urine NGAL seems to be able to serve as a sensitive and specific biomarker for the prediction of AKI in dogs.

  4. Does NGAL reduce costs? A cost analysis of urine NGAL (uNGAL) & serum creatinine (sCr) for acute kidney injury (AKI) diagnosis.

    Science.gov (United States)

    Parikh, Amay; Rizzo, John A; Canetta, Pietro; Forster, Catherine; Sise, Meghan; Maarouf, Omar; Singer, Eugenia; Elger, Antje; Elitok, Saban; Schmidt-Ott, Kai; Barasch, Jonathon; Nickolas, Thomas L

    2017-01-01

    Urine neutrophil gelatinase-associated lipocalin (uNGAL) is a sensitive and specific diagnostic test for acute kidney injury (AKI) in the Emergency Department (ED), but its economic impact has not been investigated. We hypothesized that uNGAL used in combination with serum creatinine (sCr) would reduce costs in the management of AKI in patients presenting to the ED in comparison to using sCr alone. A cost simulation model was developed for clinical algorithms to diagnose AKI based on sCr alone vs. uNGAL plus sCr (uNGAL+sCr). A cost minimization analysis was performed to determine total expected costs for patients with AKI. uNGAL test characteristics were validated with eight-hundred forty-nine patients with sCr ≥1.5 from a completed study of 1635 patients recruited from EDs at two U.S. hospitals from 2007-8. Biomarker test, AKI work-up, and diagnostic imaging costs were incorporated. For a hypothetical cohort of 10,000 patients, the model predicted that the expected costs were $900 per patient (pp) in the sCr arm and $950 in the uNGAL+sCr arm. uNGAL+sCr resulted in 1,578 fewer patients with delayed diagnosis and treatment than sCr alone (2,013 vs. 436 pts) at center 1 and 1,973 fewer patients with delayed diagnosis and treatment than sCr alone at center 2 (2,227 vs. 254 patients). Although initial evaluation costs at each center were $50 pp higher in with uNGAL+sCr, total costs declined by $408 pp at Center 1 and by $522 pp at Center 2 due to expected reduced delays in diagnosis and treatment. Sensitivity analyses confirmed savings with uNGAL + sCr for a range of cost inputs. Using uNGAL with sCr as a clinical diagnostic test for AKI may improve patient management and reduce expected costs. Any cost savings would likely result from avoiding delays in diagnosis and treatment and from avoidance of unnecessary testing in patients given a false positive AKI diagnosis by use of sCr alone.

  5. Does NGAL reduce costs? A cost analysis of urine NGAL (uNGAL & serum creatinine (sCr for acute kidney injury (AKI diagnosis.

    Directory of Open Access Journals (Sweden)

    Amay Parikh

    Full Text Available Urine neutrophil gelatinase-associated lipocalin (uNGAL is a sensitive and specific diagnostic test for acute kidney injury (AKI in the Emergency Department (ED, but its economic impact has not been investigated. We hypothesized that uNGAL used in combination with serum creatinine (sCr would reduce costs in the management of AKI in patients presenting to the ED in comparison to using sCr alone.A cost simulation model was developed for clinical algorithms to diagnose AKI based on sCr alone vs. uNGAL plus sCr (uNGAL+sCr. A cost minimization analysis was performed to determine total expected costs for patients with AKI. uNGAL test characteristics were validated with eight-hundred forty-nine patients with sCr ≥1.5 from a completed study of 1635 patients recruited from EDs at two U.S. hospitals from 2007-8. Biomarker test, AKI work-up, and diagnostic imaging costs were incorporated.For a hypothetical cohort of 10,000 patients, the model predicted that the expected costs were $900 per patient (pp in the sCr arm and $950 in the uNGAL+sCr arm. uNGAL+sCr resulted in 1,578 fewer patients with delayed diagnosis and treatment than sCr alone (2,013 vs. 436 pts at center 1 and 1,973 fewer patients with delayed diagnosis and treatment than sCr alone at center 2 (2,227 vs. 254 patients. Although initial evaluation costs at each center were $50 pp higher in with uNGAL+sCr, total costs declined by $408 pp at Center 1 and by $522 pp at Center 2 due to expected reduced delays in diagnosis and treatment. Sensitivity analyses confirmed savings with uNGAL + sCr for a range of cost inputs.Using uNGAL with sCr as a clinical diagnostic test for AKI may improve patient management and reduce expected costs. Any cost savings would likely result from avoiding delays in diagnosis and treatment and from avoidance of unnecessary testing in patients given a false positive AKI diagnosis by use of sCr alone.

  6. Identification of binding sites for an insulin-like growth factor (IGF-I) in the median eminence of the rat brain by quantitative autoradiography

    International Nuclear Information System (INIS)

    Bohannon, N.J.; Figlewicz, D.P.; Corp, E.S.; Wilcox, B.J.; Porte, D. Jr.; Baskin, D.G.

    1986-01-01

    The microanatomical location of IGF-I binding in the rat brain was determined by in vitro autoradiography with slide-mounted sections of frozen brain. Sections incubated in 0.1 nM [ 125 I]-iodo-IGF-I produced a dense grain concentration in regions of the autoradiographic image corresponding to the external palisade zone of the median eminence; other hypothalamic regions were not so heavily labeled. This reaction was significantly reduced in the presence of 100 nM IGF-I. Measurement of binding by computer digital image analysis of autoradiographic images showed that specific binding for IGF-I in the median eminence was 41.3 +/- 8 X 10(-3) fmol/mm2 (mean +/- SEM); nonspecific binding was 11.9 +/- 1.8 X 10(-3) fmol/mm2. In contrast, specific binding to other hypothalamic regions was uniformly lower. In a separate experiment, 1000 nM unlabeled insulin was added. Without insulin, specific binding was 23 +/- 0.9 X 10(-3) fmol/mm2; nonspecific binding was 8 +/- 0.5 X 10(-3) fmol/mm2. In the presence of 1000 nM unlabeled insulin, specific binding for [ 125 I]-iodo-IGF-I was 23 +/- 1 X 10(-3) fmol/mm2. The results suggest that a high concentration of receptors for an IGF-I-like molecule is present in the median eminence

  7. Neutrophil Gelatinase-Associated Lipocalin (NGAL, Pro-Matrix Metalloproteinase-9 (pro-MMP-9 and Their Complex Pro-MMP-9/NGAL in Leukaemias

    Directory of Open Access Journals (Sweden)

    Sandrine Bouchet

    2014-04-01

    Full Text Available Matrix metalloproteinase (MMP-9 and neutrophil gelatinase-associated lipocalin (NGAL have gained attention as cancer biomarkers. The inactive zymogen form of MMP-9 (pro-MMP-9 also exists as a disulphide-linked heterodimer bound to NGAL in humans. Leukaemias represent a heterogeneous group of neoplasms, which vary in their clinical behavior and pathophysiology. In this review, we summarize the current literature on the expression profiles of pro-MMP-9 and NGAL as prognostic factors in leukaemias. We also report the expression of the pro-MMP-9/NGAL complex in these diseases. We discuss the roles of (pro-MMP-9 (active and latent forms and NGAL in tumour development, and evaluate the mechanisms by which pro-MMP-9/NGAL may influence the actions of (pro-MMP-9 and NGAL in cancer. Emerging knowledge about the coexpression and the biology of (pro-MMP-9, NGAL and their complex in cancer including leukaemia may improve treatment outcomes.

  8. Neutrophil Gelatinase-Associated Lipocalin (NGAL), Pro-Matrix Metalloproteinase-9 (pro-MMP-9) and Their Complex Pro-MMP-9/NGAL in Leukaemias

    Energy Technology Data Exchange (ETDEWEB)

    Bouchet, Sandrine; Bauvois, Brigitte, E-mail: brigitte.bauvois@crc.jussieu.fr [INSERM U1138, Université Pierre et Marie Curie, Université Paris-Descartes, Centre de Recherche des Cordeliers, Paris 75006 (France)

    2014-04-04

    Matrix metalloproteinase (MMP)-9 and neutrophil gelatinase-associated lipocalin (NGAL) have gained attention as cancer biomarkers. The inactive zymogen form of MMP-9 (pro-MMP-9) also exists as a disulphide-linked heterodimer bound to NGAL in humans. Leukaemias represent a heterogeneous group of neoplasms, which vary in their clinical behavior and pathophysiology. In this review, we summarize the current literature on the expression profiles of pro-MMP-9 and NGAL as prognostic factors in leukaemias. We also report the expression of the pro-MMP-9/NGAL complex in these diseases. We discuss the roles of (pro)-MMP-9 (active and latent forms) and NGAL in tumour development, and evaluate the mechanisms by which pro-MMP-9/NGAL may influence the actions of (pro)-MMP-9 and NGAL in cancer. Emerging knowledge about the coexpression and the biology of (pro)-MMP-9, NGAL and their complex in cancer including leukaemia may improve treatment outcomes.

  9. Concomitant elevations of MMP-9, NGAL, proMMP-9/NGAL and neutrophil elastase in serum of smokers with chronic obstructive pulmonary disease.

    Science.gov (United States)

    Bchir, Sarra; Nasr, Hela Ben; Bouchet, Sandrine; Benzarti, Mohamed; Garrouch, Abdelhamid; Tabka, Zouhair; Susin, Santos; Chahed, Karim; Bauvois, Brigitte

    2017-07-01

    A growing body of evidence points towards smoking-related phenotypic differences in chronic obstructive pulmonary disease (COPD). As COPD is associated with systemic inflammation, we determined whether smoking status is related to serum levels of matrix metalloproteinase-9 (pro- and active MMP-9), neutrophil gelatinase-associated lipocalin (NGAL) and the proMMP-9/NGAL complex in patients with COPD. Serum samples were collected in 100 stable-phase COPD patients (82 smokers, 18 never-smokers) and 28 healthy adults (21 smokers, 7 never-smokers). Serum levels of studied factors were measured in ELISA. Our data provide the first evidence of simultaneously elevated serum levels of MMP-9, NGAL and proMMP-9/NGAL in COPD smokers. While the triad discriminated between smokers and non-smokers in the COPD group, MMP-9 and proMMP-9/NGAL (but not NGAL) discriminated between smokers with and without COPD. Adjustment for age and smoking pack-years did not alter the findings. Serum MMP-9, NGAL and proMMP-9/NGAL levels were not correlated with the GOLD stage or FEV1 decline. Furthermore, serum levels of neutrophil elastase (NE) and MMP-3 (but not of IL-6 and MMP-12) were also higher in COPD smokers than in healthy smokers before and after adjustment for age and pack-years. Among COPD smokers, levels of MMP-9, NGAL and proMMP-9/NGAL were positively correlated with NE (P < 0.0001) but not with the remaining factors. Gelatin zymography detected proMMP-9 in serum samples of healthy and COPD smoking groups. Our results suggest that associated serum levels of proMMP-9, NGAL, proMMP-9/NGAL and NE may reflect the state of systemic inflammation in COPD related to cigarette smoking. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  10. Circulating levels of matrix metalloproteinase-9 (MMP-9, neutrophil gelatinase-associated lipocalin (NGAL and their complex MMP-9/NGAL in breast cancer disease

    Directory of Open Access Journals (Sweden)

    Nonni Afroditi

    2009-11-01

    Full Text Available Abstract Background Recent evidence suggests that neutrophil gelatinase-associated lipocalin (NGAL expression is induced in many types of human cancer, while detection of its complex with matrix metalloproteinase-9 (MMP-9 is correlated with cancer disease status. We aim to evaluate the serum expression of MMP-9, NGAL and their complex (MMP-9/NGAL during the diagnostic work-up of women with breast abnormalities and investigate their correlation with disease severity. Methods The study included 113 women with non-palpable breast lesions undergoing vacuum-assisted breast biopsy for histological diagnosis, and 30 healthy women, which served as controls. Expression levels of MMP-9, NGAL and their complex MMP-9/NGAL were determined in peripheral blood samples with immunoenzymatic assays. Results Women with invasive ductal carcinoma exhibited significantly increased levels of MMP-9, NGAL and MMP-9/NGAL compared to healthy controls (MMP-9: p Conclusion These findings suggest that the serum measurement of MMP-9 and NGAL may be useful in non-invasively monitoring breast cancer progression, while supporting their potential role as early biomarkers of breast disease status.

  11. Urinary Neutrophil Gelatinase-Associated Lipocalin (NGAL in Patients with Obstructive Sleep Apnea.

    Directory of Open Access Journals (Sweden)

    Manish R Maski

    Full Text Available Obstructive sleep apnea (OSA is a well-established risk factor for hypertension and cardiovascular morbidity and mortality. More recently, OSA has been implicated as an independent risk factor for chronic kidney disease. Urinary neutrophil gelatinase-associated lipocalin (NGAL is a well-accepted early biomarker of subclinical kidney tubular injury, preceding an increase in serum creatinine. The goal of this study was to determine if an association exists between OSA and increased urinary NGAL levels.We prospectively enrolled adult patients from the sleep clinic of an academic medical center. Each underwent polysomnography and submitted a urine specimen upon enrollment. We measured NGAL and creatinine levels on all urine samples before participants received treatment with continuous positive airway pressure (CPAP, and, in a subset of OSA patients, after CPAP therapy. We compared the urinary NGAL/creatinine ratio between untreated participants with and without OSA, and within a subset of 11 OSA patients also after CPAP therapy.A total of 49 subjects were enrolled: 16 controls based on an apnea-hypopnea index (events with at least 4% oxygen desaturation; AHI-4% 5 events/hour (mean AHI-4% = 43.3 +/- 28.1. OSA patients had a higher mean body-mass index than the control group (36.58 +/- 11.02 kg/m2 vs. 26.81 +/- 6.55 kg/m2, respectively; p = 0.0005 and were more likely to be treated for hypertension (54.5% vs. 6.25% of group members, respectively; p = 0.0014. The groups were otherwise similar in demographics, and there was no difference in the number of diabetic subjects or in the mean serum creatinine concentration (control = 0.86 +/- 0.15 mg/dl, OSA = 0.87 +/- 0.19 mg/dl; p = 0.7956. We found no difference between the urinary NGAL-to-creatinine ratios among untreated OSA patients versus control subjects (median NGAL/creatinine = 6.34 ng/mg vs. 6.41 ng/mg, respectively; p = 0.4148. Furthermore, CPAP therapy did not affect the urinary NGAL

  12. Evaluation of NGAL TestTM on Cobas 6000

    DEFF Research Database (Denmark)

    Hansen, Young B L; Damgaard, Anette; Poulsen, Jørgen H

    2014-01-01

    BACKGROUND: Neutrophil Gelatinase-Associated Lipocalin (NGAL) is a promising biomarker for acute kidney injury (AKI). Our objectives were to evaluate the NGAL Test(TM) from Bioporto for both urine NGAL and plasma NGAL on the Cobas 6000 c501 (Roche Diagnostics, Rotkreuz, Switzerland) with matched...... measurements run on Hitachi 917, the method's linearity on the Cobas 6000 in urine, EDTA and Lithium-Heparin (Li-Hep), the influence of using EDTA or Li-Hep tubes and, finally, the impact of freezing and thawing on the sample. METHODS: Forty matched samples of Li-Hep and EDTA plasma and 40 urine samples were...

  13. Pyoverdine, the Major Siderophore in Pseudomonas aeruginosa, Evades NGAL Recognition

    Directory of Open Access Journals (Sweden)

    Mary E. Peek

    2012-01-01

    Full Text Available Pseudomonas aeruginosa is the most common pathogen that persists in the cystic fibrosis lungs. Bacteria such as P. aeruginosa secrete siderophores (iron-chelating molecules and the host limits bacterial growth by producing neutrophil-gelatinase-associated lipocalin (NGAL that specifically scavenges bacterial siderophores, therefore preventing bacteria from establishing infection. P. aeruginosa produces a major siderophore known as pyoverdine, found to be important for bacterial virulence and biofilm development. We report that pyoverdine did not bind to NGAL, as measured by tryptophan fluorescence quenching, while enterobactin bound to NGAL effectively causing a strong response. The experimental data indicate that pyoverdine evades NGAL recognition. We then employed a molecular modeling approach to simulate the binding of pyoverdine to human NGAL using NGAL’s published crystal structures. The docking of pyoverdine to NGAL predicted nine different docking positions; however, neither apo- nor ferric forms of pyoverdine docked into the ligand-binding site in the calyx of NGAL where siderophores are known to bind. The molecular modeling results offer structural support that pyoverdine does not bind to NGAL, confirming the results obtained in the tryptophan quenching assay. The data suggest that pyoverdine is a stealth siderophore that evades NGAL recognition allowing P. aeruginosa to establish chronic infections in CF lungs.

  14. Urinary NGAL marks cystic disease in HIV-associated nephropathy.

    Science.gov (United States)

    Paragas, Neal; Nickolas, Thomas L; Wyatt, Christina; Forster, Catherine S; Sise, Meghan; Morgello, Susan; Jagla, Bernd; Buchen, Charles; Stella, Peter; Sanna-Cherchi, Simone; Carnevali, Maria Luisa; Mattei, Silvia; Bovino, Achiropita; Argentiero, Lucia; Magnano, Andrea; Devarajan, Prasad; Schmidt-Ott, Kai M; Allegri, Landino; Klotman, Paul; D'Agati, Vivette; Gharavi, Ali G; Barasch, Jonathan

    2009-08-01

    Nephrosis and a rapid decline in kidney function characterize HIV-associated nephropathy (HIVAN). Histologically, HIVAN is a collapsing focal segmental glomerulosclerosis with prominent tubular damage. We explored the expression of neutrophil gelatinase-associated lipocalin (NGAL), a marker of tubular injury, to determine whether this protein has the potential to aid in the noninvasive diagnosis of HIVAN. We found that expression of urinary NGAL was much higher in patients with biopsy-proven HIVAN than in HIV-positive and HIV-negative patients with other forms of chronic kidney disease. In the HIV-transgenic mouse model of HIVAN, NGAL mRNA was abundant in dilated, microcystic segments of the nephron. In contrast, urinary NGAL did not correlate with proteinuria in human or in mouse models. These data show that marked upregulation of NGAL accompanies HIVAN and support further study of uNGAL levels in large cohorts to aid in the noninvasive diagnosis of HIVAN and screen for HIVAN-related tubular damage.

  15. Urinary NGAL Ratio Is Not a Sensitive Biomarker for Monitoring Acute Tubular Injury in Kidney Transplant Patients: NGAL and ATI in Renal Transplant Patients

    Directory of Open Access Journals (Sweden)

    Jessica K. Kaufeld

    2012-01-01

    Full Text Available Urinary neutrophil gelatinase-associated lipocalin (uNGAL is known to predict the prolonged delayed graft function after kidney transplantation. We examined the relation of uNGAL with histological findings of acute tubular injury (ATI. Analyses were made in biopsies taken at 6 weeks, 3 months, and 6 months after kidney transplantation. uNGAL was measured in the spot urines, normalized to urinary creatinine excretion, and correlated to biopsy findings and clinical, laboratory, and demographic variables. Controls included healthy individuals, individuals after kidney donation and ICU patients with acute kidney failure. Renal transplant recipients without ATI did not display elevated uNGAL levels compared to the healthy controls. Transplant patients with ATI had a higher uNGAL excretion at 6 weeks than patients without ATI (27,435 versus 13,605 ng/g; P=0.031. This increase in uNGAL was minor compared to ICU patients with acute renal failure (2.05×106 ng/g. Patients with repeated findings of ATI or severe ATI did not have higher urinary NGAL levels compared to those with only one ATI finding or moderate ATI. Female recipient gender and urinary tract infection were identified as potential confounders. uNGAL has a relation with histological signs of acute tubular injury. The usability of this biomarker in renal allograft recipients is limited because of the low sensitivity.

  16. Analytical validation of Gentian NGAL particle-enhanced enhanced turbidimetric immunoassay (PETIA

    Directory of Open Access Journals (Sweden)

    Gian Luca Salvagno

    2017-08-01

    Full Text Available Objectives: This study was designed to validate the analytical performance of the new Gentian particle-enhanced enhanced turbidimetric immunoassay (PETIA for measuring neutrophil gelatinase-associated lipocalin (NGAL in serum samples. Design and methods: Analytical validation of the Gentian NGAL assay was carried out on a Roche Cobas c501 and was based on assessment of limit of blank (LOB, limit of detection (LOD, functional sensitivity, imprecision, linearity and concordance with the BioPorto NGAL test. Results: The LOB and LOD of Gentian NGAL were found to be 3.8 ng/mL and 6.3 ng/mL, respectively. An analytical coefficient of variation (CV of 20% corresponded to a NGAL value of 10 ng/mL. The intra-assay and inter-assay imprecision (CV was between 0.4 and 5.2% and 0.6 and 7.1% and the total imprecision (CV was 3.7%. The linearity was optimal at NGAL concentrations between 37 and 1420 ng/mL (r=1.00; p<0.001. An excellent correlation was observed between values measured with Gentian NGAL and BioPorto NGAL in 74 routine serum samples (r=0.993. The mean percentage bias of the Gentian assay versus the Bioporto assay was +3.1% (95% CI, +1.6% to +4.5%. Conclusions: These results show that Gentian NGAL may be a viable option to other commercial immunoassays for both routine and urgent assessment of serum NGAL. Keywords: Neutrophil gelatinase-associated lipocalin, NGAL, Analytical validation, Acute kidney injury

  17. Neutrophil gelatinase-associated lipocalin (NGAL) and matrix metalloproteinases as novel stress markers in children and young adults on chronic dialysis.

    Science.gov (United States)

    Musiał, Kinga; Zwolińska, Danuta

    2011-03-01

    Phenomena related to chronic kidney disease, such as atherosclerosis, aggravate with the introduction of dialysis. Matrix metalloproteinases (MMP) and factors modifying their activity, such as their tissue inhibitors (TIMP) or neutrophil gelatinase-associated lipocalin (NGAL), take part in the matrix turnover and the endothelial damage characteristic for atherogenesis. However, there are no data on the associations between these parameters and other known pro-atherogenic factors, or on the impact of various dialysis modalities on them. The aim of our study was to assess the serum concentrations of NGAL, MMP-7, MMP-9, and TIMP-1, as well as their correlations with human heat shock proteins (Hsp90α, anti-Hsp60), endothelial dysfunction (sE-selectin), and inflammation (hsCRP) in pediatric patients chronically dialyzed. Twenty-two children on automated peritoneal dialysis (APD), 17 patients on hemodialysis (HD) and 24 controls were examined. The serum concentrations of NGAL, MMP-7, MMP-9, TIMP-1, Hsp90α, anti-Hsp60, and sE-selectin were assessed by enzyme-linked immunosorbent assay (ELISA). The median values of NGAL, MMP-7, MMP-9, TIMP-1, and MMP-9/NGAL ratio were significantly elevated in all dialyzed children vs. controls and were higher in HD than in APD. The values of MMP-9/TIMP-1 and MMP-7/TIMP-1 ratios in the HD subjects were lower than those in the APD children. Hsp90α and anti-Hsp60 predicted the values of NGAL, MMPs, and TIMP-1. Additionally, sE-selectin was a predictor of NGAL levels, whereas NGAL predicted the MMP and TIMP-1 concentrations. The increased concentrations of examined parameters indicate the dysfunction of MMP/TIMP/NGAL system in the dialyzed children, more pronounced on hemodialysis. The discrepancies between dialysis modalities and correlations with heat shock proteins (HSPs) suggest that NGAL may be considered a novel stress protein, whereas MMP-7, MMP-9, and TIMP-1 may be regarded as indicators of stress response in the pediatric

  18. Prognostic significance of urinary NGAL in chronic kidney disease

    Directory of Open Access Journals (Sweden)

    Patel ML

    2015-10-01

    Full Text Available Munna Lal Patel,1 Rekha Sachan,2 Ravi Misra,3 Ritul Kamal,4 Radhey Shyam,5 Pushpalata Sachan6 1Department of Medicine, King George Medical University, Lucknow, India; 2Department of Obstetrics and Gynaecology, King George Medical University, Lucknow, India; 3Department of Internal Medicine, King George Medical University, Lucknow, India; 4Epidemiology Division, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR, Lucknow, India; 5Department of Geriatric Intensive Care Unit, King George Medical University, Lucknow, India; 6Department of Physiology, Career Institute of Medical Sciences, Lucknow, India Background: Chronic kidney disease (CKD is a worldwide public health problem. Recently urinary NGAL (uNGAL has been proven to be a useful (potentially ideal biomarker for early detection of CKD. The aim of the present study was to examine the correlation of uNGAL with severity of renal impairment in CKD and to evaluate its prognostic value in these subjects. Methods: This was a prospective study carried out over a period of 24 months in subjects with CKD due to primary chronic glomerulonephritis. New cases of CKD stage II, III, IV aged between 18 and 65 years were enrolled as per KDIGO (Kidney Disease: Improving Global Outcomes guidelines 2012. A total of 90 subjects completed the study up to the end-point. The primary follow-up end-point was 18 months, or decreased glomerular filtration rate of less than 15 mL/min. Secondary follow-up end-point was the number of subjects who expired during this period. Results: Multiple regression model of estimated glomerular filtration rate showed significant associations with log uNGAL (β=0.38, P<0.001, Ca×PO4 (β=0.60, P<0.001, hemoglobin (β=0.37, P<0.001, urine protein (β=0.34, P<0.001, serum albumin (β=0.48, P<0.001, and systolic blood pressure (β=0.76, P<0.001. Receiver operator curve for uNGAL considering the progression of CKD showed area under the curve

  19. NGAL (Lcn2) monomer is associated with tubulointerstitial damage in chronic kidney disease.

    Science.gov (United States)

    Nickolas, Thomas L; Forster, Catherine S; Sise, Meghan E; Barasch, Nicholas; Solá-Del Valle, David; Viltard, Melanie; Buchen, Charles; Kupferman, Shlomo; Carnevali, Maria Luisa; Bennett, Michael; Mattei, Silvia; Bovino, Achiropita; Argentiero, Lucia; Magnano, Andrea; Devarajan, Prasad; Mori, Kiyoshi; Erdjument-Bromage, Hediye; Tempst, Paul; Allegri, Landino; Barasch, Jonathan

    2012-09-01

    The type and the extent of tissue damage inform the prognosis of chronic kidney disease (CKD), but kidney biopsy is not a routine test. Urinary tests that correlate with specific histological findings might serve as surrogates for the kidney biopsy. We used immunoblots and ARCHITECT-NGAL assays to define the immunoreactivity of urinary neutrophil gelatinase-associated lipocalin (NGAL) in CKD, and we used mass spectroscopy to identify associated proteins. We analyzed kidney biopsies to determine whether specific pathological characteristics associated with the monomeric NGAL species. Advanced CKD urine contained the NGAL monomer as well as novel complexes of NGAL. When these species were separated, we found a significant correlation between the NGAL monomer and glomerular filtration rate (r=-0.53, P<0.001), interstitial fibrosis (mild vs. severe disease; mean 54 vs. 167 μg uNGAL/g Cr, P<0.01), and tubular atrophy (mild vs. severe disease; mean 54 vs. 164 μg uNGAL/g Cr, P<0.01). Monospecific assays of the NGAL monomer demonstrated a correlation with histology that typifies progressive, severe CKD.

  20. Urinary MMP-9/NGAL complex in children with acute cystitis.

    Science.gov (United States)

    Hatipoglu, Sami; Sevketoglu, Esra; Gedikbasi, Asuman; Yilmaz, Alev; Kiyak, Aysel; Mulazimoglu, Mehmet; Aydogan, Gonul; Ozpacaci, Tevfik

    2011-08-01

    The matrix metalloproteinase-9 (MMP-9) and neutrophil gelatinase associated lipocalin (NGAL) are shown to increase in an inflammatory situation. Based on our previous reports that NGAL can be detected in the urine of children with urinary tract infection (UTI), we also asked whether MMP-9/NGAL complex could be detected in the urine of children with UTI. This multicenter, prospective study was conducted between October 2009 and October 2010. Seventy-one patients with symptomatic culture proven UTI, 37 asymptomatic children with contaminated urine and 37 healthy children were recruited. Mean uMMP-9/NGAL/Cr levels were significantly higher in the UTI group than in the control group (p UTI. Using a cut-off value, sensitivity and specificity were 98.6 and 97.3%, respectively. The mean levels of uMMP-9/NGAL/cr in the UTI group were also significantly higher than those in the contamination group (p UTI group were significantly higher before treatment than after treatment (p UTI in children. Identification of NGAL-MMP-9/cr levels in the urine of suspected UTI patients may also be useful to differentiate between contamination and infection and for monitoring of treatment response in children.

  1. Extracorporeal Circulation Causes Release of Neutrophil Gelatinase-Associated Lipocalin (NGAL

    Directory of Open Access Journals (Sweden)

    Per Jönsson

    1999-01-01

    Full Text Available Extracorporeal circulation (ECC used during cardiac surgery causes activation of several inflammatory systems. These events are not fully understood but are responsible for complications during the immediate postoperative period. Neutrophil gelatinase-associated lipocalin (NGAL, a member of the expanding lipocalin family, has recently been described as an inflammatory protein. In this study, the release of NGAL into the circulation in 41 patients undergoing heart surgery with ECC was evaluated. A 4- to 5-fold elevation of the concentration of NGAL in plasma was observed during the immediate postoperative course with a rapid elimination during the first postoperative day. Four patients undergoing lung surgery (without ECC were also studied. The plasma concentration of NGAL only increased with a factor of 1.1-2.2 over the operation. We conclude that NGAL is released into the circulation during heart surgery, probably as a result of the inflammatory activation of leukocytes initiated by the extracorporeal circulation.

  2. Expression of neutrophil gelatinase-associated lipocalin (NGAL) in the gut in Crohn's disease.

    Science.gov (United States)

    Thorsvik, Silje; Bakke, Ingunn; van Beelen Granlund, Atle; Røyset, Elin Synnøve; Damås, Jan Kristian; Østvik, Ann Elisabet; Sandvik, Arne Kristian

    2018-06-05

    The antimicrobial glycoprotein neutrophil gelatinase-associated lipocalin (NGAL) is strongly expressed in several infectious, inflammatory and malignant disorders, among these inflammatory bowel disease (IBD). Fecal and serum NGAL is elevated during active IBD and we have recently shown that fecal NGAL is a novel biomarker for IBD with a test performance comparable to the established fecal biomarker calprotectin. This study examines expression of NGAL in the healthy gut and in Crohn's disease (CD), with emphasis on the previously unexplored small intestine. Pinch biopsies were taken from active and inactive CD in jejunum, ileum and colon and from the same sites in healthy controls. Microarray gene expression showed that the NGAL gene, LCN2, was the second most upregulated among 1820 differentially expressed genes in terminal ileum comparing active CD and controls (FC 5.86, p = 0.027). Based on immunohistochemistry and in situ hybridization findings, this upregulation most likely represented increased expression in epithelial cells. Double immunofluorescence showed NGAL expression in 49% (range 19-70) of Paneth cells (PCs) in control ileum with no change during inflammation. In healthy jejunum, the NGAL expression in PCs was weak to none but markedly increased during active CD. We further found NGAL also in metaplastic PCs in colon. Finally, we show for the first time that NGAL is expressed in enteroendocrine cells in small intestine as well as in colon.

  3. NGAL (Neutrophil Gelatinase-associated Lipocalin) is an Early Predictor of Acute Kidney Injury after Cardiac Surgery and Variation of NGAL Values in Homogenous Study Subject.

    Science.gov (United States)

    Miah, O F; Dowel, F A; Latif, A; Hai, A N; Mahmud, M A; Razzak, M A; Ahammod, T

    2018-01-01

    Isolated CABG (coronary artery bypass grafting) has the lowest incidence of AKI (Acute Kidney Injury), followed by valvular surgery and then, combined CABG with valvular surgery. Due to the difference in baseline characteristics and in surgery type, the range of incidence is between 8.9 and 39% based on RIFLE (Risk Injury failure loss end stage kidney disease) or AKIN (Acute Kidney Injury Network) criteria. The advent of novel biomarkers of kidney injury has opened a new era of early detection and prognosis prediction for AKI. NGAL is a small molecule of 178 amino acids that belongs to the super family of lipocalins, which are proteins specialized in binding and transporting small hydrophobic molecules. The expression of NGAL raises 1000 fold in humans and rodents in response to renal tubular injury and it appears so rapidly in the urine and serum that it is useful as an early biomarker of renal failure. The role of plasma NGAL to classify AKI severity and predict the need for RRT (renal replacement therapy) after cardiac surgery has been suggested. Although study subjects were more or less from same cohort (All undergone cardiac surgery), previous studies showed that NGAL raised differently in different proportion. NGAL as an early AKI marker has successfully passed through the pre-clinical, assay development and initial clinical testing stages. It is badly need to enter in a consensus about the cutoff value of NGAL which should help the physician about leveling a case as AKI or non AKI and their consequence management.

  4. Association of urinary KIM-1, L-FABP, NAG and NGAL with incident end-stage renal disease and mortality in American Indians with type 2 diabetes mellitus.

    Science.gov (United States)

    Fufaa, Gudeta D; Weil, E Jennifer; Nelson, Robert G; Hanson, Robert L; Bonventre, Joseph V; Sabbisetti, Venkata; Waikar, Sushrut S; Mifflin, Theodore E; Zhang, Xiaoming; Xie, Dawei; Hsu, Chi-Yuan; Feldman, Harold I; Coresh, Josef; Vasan, Ramachandran S; Kimmel, Paul L; Liu, Kathleen D

    2015-01-01

    Kidney injury molecule 1 (KIM-1), liver fatty acid-binding protein (L-FABP), N-acetyl-β-D-glucosaminidase (NAG) and neutrophil gelatinase-associated lipocalin (NGAL) are urinary biomarkers of renal tubular injury. We examined their association with incident end-stage renal disease (ESRD) and all-cause mortality in American Indians with type 2 diabetes. Biomarker concentrations were measured in baseline urine samples in 260 Pima Indians who were followed for a median of 14 years. HRs were reported per SD of creatinine (Cr)-normalised log-transformed KIM-1, NAG and NGAL, and for three categories of L-FABP. During follow-up, 74 participants developed ESRD and 101 died. Median concentrations of KIM-1/Cr, NAG/Cr and NGAL/Cr and the proportion of detectable L-FABP were highest in those with macroalbuminuria (p associated with ESRD (HR 1.59, 95% CI 1.20, 2.11) and mortality (HR 1.39, 95% CI 1.06, 1.82); L-FABP/Cr was inversely associated with ESRD (HR [for highest vs lowest tertile] 0.40, 95% CI 0.19, 0.83). Addition of NGAL/Cr to models that included albuminuria and glomerular filtration rate increased the c-statistic for predicting ESRD from 0.828 to 0.833 (p = 0.001) and for death from 0.710 to 0.722 (p = 0.018). Addition of L-FABP/Cr increased the c-statistic for ESRD from 0.828 to 0.832 (p = 0.042). In Pima Indians with type 2 diabetes, urinary concentrations of NGAL and L-FABP are associated with important health outcomes, but they are unlikely to add to risk prediction with standard markers in a clinically meaningful way given the small increase in the c-statistic.

  5. The Role of NGAL in Peritoneal Dialysis Effluent in Early Diagnosis of Peritonitis: Case-Control Study in Peritoneal Dialysis Patients.

    Science.gov (United States)

    Martino, Francesca; Scalzotto, Elisa; Giavarina, Davide; Rodighiero, Maria Pia; Crepaldi, Carlo; Day, Sonya; Ronco, Claudio

    2015-01-01

    Peritoneal dialysis (PD) is frequently complicated by high rates of peritonitis, which result in hospitalization, technique failure, transfer to hemodialysis, and increased mortality. Early diagnosis, and identification of contributing factors are essential components to increasing effectiveness of care. In previous reports, neutrophil gelatinase-associated lipocalin (NGAL), a lipocalin which is a key player in innate immunity and rapidly detectable in peritoneal dialysis effluent (PDE), has been demonstrated to be a useful tool in the early diagnosis of peritonitis. This study investigates predictive value of PDE NGAL concentration as a prognostic indicator for PD-related peritonitis. A case-control study with 182 PD patients was conducted. Plasma and PDE were analyzed for the following biomarkers: C-reactive protein (CRP), blood procalcitonin (PCT), leucocytes and NGAL in PDE. The cases consisted of patients with suspected peritonitis, while controls were the patients who came to our ambulatory clinic for routine visits without any sign of peritonitis. The episodes of peritonitis were defined in agreement with International Society for Peritoneal Dialysis guidelines. Continuous variables were presented as the median values and interquartile range (IQR). Mann-Whitney U test was used to compare continuous variables. Univariate and multivariate logistic regression were used to evaluate the association of biomarkers with peritonitis. Receiver operating characteristic (ROC) curve analysis was used to calculate area under curve (AUC) for biomarkers. Finally we evaluated sensitivity, and specificity for each biomarker. All statistical analyses were performed with SPSS version 17.0 (SPSS Inc., Chicago, IL, USA). During the 19-month study, of the 182 patients, 80 had a clinical diagnosis of peritonitis. C-reactive protein levels (p peritonitis. In univariate analysis, CRP (odds ratio [OR] 1,339; p = 0.001), PCT (OR 2,473; p peritonitis. In multivariate regression analysis

  6. Urinary neutrophil gelatinase-associated lipocalin (NGAL) excretion increases in normal pregnancy but not in preeclampsia

    DEFF Research Database (Denmark)

    Ødum, Lars; Andersen, Anita Sylvest; Hviid, Thomas Vauvert F

    2014-01-01

    BACKGROUND: Neutrophil gelatinase-associated lipocalin (NGAL) serum values have been shown to increase in preeclampsia. The goal of the present study was to evaluate changes in urinary NGAL concentrations during uncomplicated pregnancy and in cases of preeclampsia and hypertension. METHODS: Fifty......-one pregnant women who developed preeclampsia and 28 diagnosed with essential or gestational hypertension were investigated for urinary NGAL concentrations during pregnancy. As controls, 100 healthy pregnant women with uncomplicated singleton pregnancies were randomly selected. Urinary NGAL as well as urinary...... creatinine and albumin were measured by a standardized clinical chemistry platform (ARCHITECT®; Abbott Diagnostics, Abbott Park, IL, USA). RESULTS: Urinary NGAL concentrations increased during pregnancy in healthy pregnant women, whereas this increase was not detected in preeclampsia. In order to correct...

  7. Neutrophil gelatinase-associated lipocalin (NGAL/Lcn2) is upregulated in gastric mucosa infected with Helicobacter pylori

    DEFF Research Database (Denmark)

    Alpízar-Alpízar, Warner; Laerum, Ole Didrik; Illemann, Martin

    2009-01-01

    characterized here the pattern of expression of NGAL/Lcn2 in gastric mucosa (45 non-neoplastic and 38 neoplastic tissue samples) and explored the connection between NGAL/Lcn2 expression and H. pylori infection. Immunohistochemical analysis showed high NGAL/Lcn2 expression in normal and gastritis-affected mucosa...... compared to low expression in intestinal metaplasia, dysplasia, and gastric cancer. In normal and gastritis-affected mucosa (n=36 tissue samples), NGAL/Lcn2 was more frequently seen in epithelial cells located at the neck and base of the glands in H. pylori-positive cases than in similar epithelial cells...... of noninfected cases (Fisher's exact test, p=0.04). In conclusion, the high expression of NGAL/Lcn2 in normal and gastritis-affected mucosa infected with H. pylori suggests that NGAL/Lcn2 is upregulated locally in response to this bacterial infection. It is discussed whether this may have a causal relation...

  8. Urinary NGAL, KIM-1 and L-FABP concentrations in antenatal hydronephrosis.

    Science.gov (United States)

    Noyan, Aytul; Parmaksiz, Gonul; Dursun, Hasan; Ezer, Semire Serin; Anarat, Ruksan; Cengiz, Nurcan

    2015-10-01

    The clinical tests currently in use for obstructive nephropathy (such as renal ultrasonography, differential radionuclide renal scans and urinary creatinine concentration data) are not efficient predictors of the subsequent clinical course. Novel and simple biomarkers are required which, if proven, could be clinically beneficial in determining if a patient is eligible for surgery or reno-protective therapy. More recently, the interest of clinicians has focused on the potential of urinary neutrophil gelatinase-associated lipocalin (uNGAL), urinary kidney injury molecule-1 (uKIM-1) and urinary liver-type fatty acid-binding proteins (uL-FABP) as biomarkers for renal function in children with hydronephrosis (HN). The purpose of this study was to investigate possible clinical applications of uNGAL, uKIM-1 and uL-FABP as beneficial non-invasive biomarkers to determine whether or not surgical intervention is required in children with HN. Renal ultrasonography and radionuclide renal scans were used as diagnostic tools to detect HN. Patients were divided into two groups based on the antero-posterior diameter of their renal pelvis and the presence of dysfunction. Group 1 included 26 children with severe HN (with dysfunction), and group 2 consisted of 36 children with mild HN (without dysfunction). Urine samples were collected from 62 children with HN and 20 healthy children. Hydronephrosis was more common in males than in females, with a male to female ratio of 9:1 in the study sample. The incidence of left kidney involvement (32 patients) was slightly higher than right kidney involvement (28 patients). Compared with controls and group 2, the ratio of uNGAL to creatinine was significantly higher in group 1 (p hydronephrosis and dysfunction had significantly increased uNGAL, and uNGAL/Cr concentrations. However, uKIM-1, uKIM-1/Cr, uL-FABP and uL-FABP/Cr concentrations were not significantly different when compared with controls. These results support the use of uNGAL

  9. Characterization of insulin-like growth factor I receptors in the median eminence of the brain and their modulation by food restriction

    International Nuclear Information System (INIS)

    Bohannon, N.J.; Corp, E.S.; Wilcox, B.J.; Figlewicz, D.P.; Dorsa, D.M.; Baskin, D.G.

    1988-01-01

    High affinity binding sites for 125I-labeled [Thr59]insulin-like growth factor I (IGF-I) were measured in rat median eminence by in vitro autoradiography with slide-mounted sections of frozen rat brain. Specific binding of 0.1 nM iodo-[Thr59]IGF-I to brain slices reached maximum by 12 h at 4 C and was unchanged at 24 h. Densitometry by computer digital image analysis of autoradiographic images indicated that specific binding of iodo-[Thr59]IGF-I to the median eminence was reversible. The specificity of binding was evaluated with competition of iodo-[Thr59]IGF-I with unlabeled [Thr59]IGF-I, rat IGF-II (multiplication-stimulating activity), and porcine insulin. All were recognized by the binding site, but the rank order of potency was [Thr59]IGF-I greater than IGF-II greater than insulin. Somatostatin was completely ineffective. Further, an antibody against the rat IGF-II receptor did not block binding of iodo-[Thr59]IGF-I to the median eminence. Fourteen days of food restriction (75% of food intake of controls) resulted in significant weight loss and reduction of plasma immunoreactive IGF-I in six food-restricted rats (0.9 +/- 0.1 U/ml) compared with values in six controls (2.6 +/- 0.5 U/ml; P less than 0.001). Binding of 125I-labeled [Thr59]IGF-I in the median eminence was significantly increased in the food-restricted rats, primarily due to an increase in the concentration of iodo-[Thr59]IGF-I-binding sites in the median eminence; the affinity (Kd) of binding was unchanged. The results indicate that the median eminence has type I IGF-I receptors, which become more numerous under metabolic conditions associated with decreased caloric intake and lowered plasma IGF-I levels

  10. The role of neutrophil gelatinase associated lipocalin (NGAL) as biological constituent linking depression and cardiovascular disease.

    Science.gov (United States)

    Gouweleeuw, L; Naudé, P J W; Rots, M; DeJongste, M J L; Eisel, U L M; Schoemaker, R G

    2015-05-01

    Depression is more common in patients with cardiovascular disease than in the general population. Conversely, depression is a risk factor for developing cardiovascular disease. Comorbidity of these two pathologies worsens prognosis. Several mechanisms have been indicated in the link between cardiovascular disease and depression, including inflammation. Systemic inflammation can have long-lasting effects on the central nervous system, which could be associated with depression. NGAL is an inflammatory marker and elevated plasma levels are associated with both cardiovascular disease and depression. While patients with depression show elevated NGAL levels, in patients with comorbid heart failure, NGAL levels are significantly higher and associated with depression scores. Systemic inflammation evokes NGAL expression in the brain. This is considered a proinflammatory effect as it is involved in microglia activation and reactive astrocytosis. Animal studies support a direct link between NGAL and depression/anxiety associated behavior. In this review we focus on the role of NGAL in linking depression and cardiovascular disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Lipocalin 2 regulation by thermal stresses: Protective role of Lcn2/NGAL against cold and heat stresses

    International Nuclear Information System (INIS)

    Roudkenar, Mehryar Habibi; Halabian, Raheleh; Roushandeh, Amaneh Mohammadi; Nourani, Mohammad Reza; Masroori, Nasser; Ebrahimi, Majid; Nikogoftar, Mahin; Rouhbakhsh, Mehdi; Bahmani, Parisa; Najafabadi, Ali Jahanian; Shokrgozar, Mohammad Ali

    2009-01-01

    Environmental temperature variations are the most common stresses experienced by a wide range of organisms. Lipocalin 2 (Lcn2/NGAL) is expressed in various normal and pathologic conditions. However, its precise functions have not been fully determined. Here we report the induction of Lcn2 by thermal stresses in vivo, and its role following exposure to cold and heat stresses in vitro. Induction of Lcn2 in liver, heart and kidney was detected by RT-PCR, Western blot and immunohistochemistry following exposure of mice to heat and cold stresses. When CHO and HEK293T cells overexpressing NGAL were exposed to cold stress, cell proliferation was higher compared to controls. Down-regulatrion of NGAL by siRNA in A549 cells resulted in less proliferation when exposed to cold stress compared to control cells. The number of apoptotic cells and expression of pro-apoptotic proteins were lower in the NGAL overexpressing CHO and HEK293T cells, but were higher in the siRNA-transfected A549 cells compared to controls, indicating that NGAL protects cells against cold stress. Following exposure of the cells to heat stress, ectopic expression of NGAL protected cells while addition of exogenous recombinant NGAL to the cell culture medium exacerbated the toxicity of heat stress specially when there was low or no endogenous expression of NGAL. It had a dual effect on apoptosis following heat stress. NGAL also increased the expression of HO-1. Lcn2/NGAL may have the potential to improve cell proliferation and preservation particularly to prevent cold ischemia injury of transplanted organs or for treatment of some cancers by hyperthermia.

  12. Lipocalin 2 regulation by thermal stresses: Protective role of Lcn2/NGAL against cold and heat stresses

    Energy Technology Data Exchange (ETDEWEB)

    Roudkenar, Mehryar Habibi, E-mail: roudkenar@ibto.ir [Research Center, Iranian Blood Transfusion Organization, Tehran (Iran, Islamic Republic of); Halabian, Raheleh [Research Center, Iranian Blood Transfusion Organization, Tehran (Iran, Islamic Republic of); Roushandeh, Amaneh Mohammadi [Department of Anatomy, Faculty of Medicine, Medical University of Tabriz, Tabriz (Iran, Islamic Republic of); Nourani, Mohammad Reza [Chemical Injury Research Center, Baqiyatallah Medical Science University, Tehran (Iran, Islamic Republic of); Masroori, Nasser [Research Center, Iranian Blood Transfusion Organization, Tehran (Iran, Islamic Republic of); Ebrahimi, Majid [Research Center, Iranian Blood Transfusion Organization, Tehran (Iran, Islamic Republic of); Chemical Injury Research Center, Baqiyatallah Medical Science University, Tehran (Iran, Islamic Republic of); Nikogoftar, Mahin; Rouhbakhsh, Mehdi; Bahmani, Parisa [Research Center, Iranian Blood Transfusion Organization, Tehran (Iran, Islamic Republic of); Najafabadi, Ali Jahanian [Department of Molecular Biology, Pasteur Institute of Iran, Tehran (Iran, Islamic Republic of); Shokrgozar, Mohammad Ali [National Cell Bank of Iran, Pasteur institute of Iran, Tehran (Iran, Islamic Republic of)

    2009-11-01

    Environmental temperature variations are the most common stresses experienced by a wide range of organisms. Lipocalin 2 (Lcn2/NGAL) is expressed in various normal and pathologic conditions. However, its precise functions have not been fully determined. Here we report the induction of Lcn2 by thermal stresses in vivo, and its role following exposure to cold and heat stresses in vitro. Induction of Lcn2 in liver, heart and kidney was detected by RT-PCR, Western blot and immunohistochemistry following exposure of mice to heat and cold stresses. When CHO and HEK293T cells overexpressing NGAL were exposed to cold stress, cell proliferation was higher compared to controls. Down-regulatrion of NGAL by siRNA in A549 cells resulted in less proliferation when exposed to cold stress compared to control cells. The number of apoptotic cells and expression of pro-apoptotic proteins were lower in the NGAL overexpressing CHO and HEK293T cells, but were higher in the siRNA-transfected A549 cells compared to controls, indicating that NGAL protects cells against cold stress. Following exposure of the cells to heat stress, ectopic expression of NGAL protected cells while addition of exogenous recombinant NGAL to the cell culture medium exacerbated the toxicity of heat stress specially when there was low or no endogenous expression of NGAL. It had a dual effect on apoptosis following heat stress. NGAL also increased the expression of HO-1. Lcn2/NGAL may have the potential to improve cell proliferation and preservation particularly to prevent cold ischemia injury of transplanted organs or for treatment of some cancers by hyperthermia.

  13. IGF-1 and Survival in ESRD

    Science.gov (United States)

    Jia, Ting; Gama Axelsson, Thiane; Heimbürger, Olof; Bárány, Peter; Stenvinkel, Peter; Qureshi, Abdul Rashid

    2014-01-01

    Summary Background and objectives IGF-1 deficiency links to malnutrition in CKD patients; however, it is not clear to what extent it associates with survival among these patients. Design, setting, participants, & measurements Serum IGF-1 and other biochemical, clinical (subjective global assessment), and densitometric (dual energy x-ray absorptiometry) markers of nutritional status and mineral and bone metabolism were measured in a cohort of 365 Swedish clinically stable CKD stage 5 patients (median age of 53 years) initiating dialysis between 1994 and 2009; in 207 patients, measurements were also taken after 1 year of dialysis. Deaths were registered during a median follow-up of 5 years. Associations of mortality with baseline IGF-1 and changes of IGF-1 after 1 year of dialysis were evaluated by Cox models. Results At baseline, IGF-1 concentrations associated negatively with age, diabetes mellitus, cardiovascular disease, poor nutritional status, IL-6, and osteoprotegerin and positively with body fat mass, bone mineral density, serum phosphate, calcium, and fibroblast growth factor-23. At 1 year, IGF-1 had increased by 33%. In multivariate regression, low age, diabetes mellitus, and high serum phosphate and calcium associated with IGF-1 at baseline, and in a mixed model, these factors, together with high fat body mass, associated with changes of IGF-1 during the first 1 year of dialysis. Adjusting for calendar year of inclusion, age, sex, diabetes mellitus, cardiovascular disease, IL-6, and poor nutritional status, a 1 SD higher level of IGF-1 at baseline associated with lower mortality risk (hazard ratio, 0.57; 95% confidence interval, 0.32 to 0.98). Persistently low or decreasing IGF-1 levels during the first 1 year on dialysis predicted worse survival (adjusted hazard ratio, 2.19; 95% confidence interval, 1.06 to 4.50). Conclusion In incident dialysis patients, low serum IGF-1 associates with body composition and markers of mineral and bone metabolism, and it

  14. Role of oncogene 24p3 neutrophil gelatinase-associated lipocalin (NGAL) in digestive system cancers.

    Science.gov (United States)

    Michalak, Łukasz; Bulska, Magdalena; Kudłacz, Katarzyna; Szcześniak, Piotr

    2016-01-04

    Neutrophil gelatinase-associated lipocalin, known also as 24p3 lipocalin, lipocalin-2 or uterocalin (in mouse), is a small secretory protein binding small molecular weight ligands which takes part in numerous processes including apoptosis induction in leukocytes, iron transport, smell, and prostaglandins and retinol transport [19]. It was discovered in activated neutrophils as a covalent peptide associated with human gelatinase neutrophils [7]. Neutrophil lipocalin is secreted physiologically in the digestive system, respiratory tract, renal tubular cells, liver or immunity system. Systematic (circulated in plasma) neutrophil gelatinase come from multiple sources; it may be synthesized in the liver, secreted from activated neutrophils or macrophages, or derive from atherosclerosis or inflammatory endothelial cells [17]. NGAL is stored secondarily in granulates with lactoferrin, calprotectin or MAC-1, which take part in neutrophils' action and migration [13,19]. NGAL participates in acute and chronic inflammation (production of NGAL is indicated by factors conducive to cancer progression) [13,21]. NGAL levels increase in inflammatory or endothelial damage. NGAL level is measured in blood or urine. It is known as a kidney failure factor [7,20]. NGAL is therefore one of the most promising new generation biomarkers in clinical nephrology [6]. The role of NGAL in digestive system neoplasms has not been explored in detail. However, overexpression of this marker was proved in neoplasms such as esophageal carcinoma, stomach cancer, pancreatic cancer or colon cancer, which may indicate an association between concentration and neoplasm [3].

  15. Does maternal hydronephrosis have an impact on urinary neutrophil gelatinase-associated lipocalin (uNGAL) levels?

    Science.gov (United States)

    Pabuccu, Emre G; Caglar, Gamze Sinem; Kiseli, Mine; Yarci Gursoy, Asli; Candar, Tuba; Tangal, Semih; Ergun, İhsan

    2017-03-01

    To determine urinary neutrophil gelatinase-associated lipocalin (uNGAL) levels and creatinine clearance values in women with different degrees of asymptomatic hydronephrosis during pregnancy. A total of 44 pregnant women with different degrees of hydronephrosis and 46 without hydronephrosis were consecutively enrolled in this prospective study. Basic serum and urine parameters, uNGAL levels, and creatinine clearance values were evaluated. All results were compared between the two groups. Regression analysis was used to determine independent predictors, which were mostly related to hydronephrosis. Demographic data, basal laboratory parameters, and creatinine clearance values were similar, whereas significantly higher uNGAL levels were detected in women with hydronephrosis compared to those without hydronephrosis (45.3 versus 33.2 ng/mL, respectively) (p = 0.004). An increasing trend in uNGAL levels was detected with increasing degrees of hydronephrosis; as it was not statistically significant (p = 0.163). Linear regression analysis revealed that the parameter of "pelvic diameter" was found as a significant independent factor influencing uNGAL concentrations (β = 0.289; 95% CI: 0.522-3.061; p = 0.006). Other independent variables were not found to influence uNGAL concentrations (p > 0.05). The results obtained from this study indicate a significant increase of urinary concentration of NGAL in the presence of asymptomatic maternal hydronephrosis. This impact is likely to be more profound in those with severe hydronephrosis although this has not been specifically investigated. This theory needs to be validated in larger populations.

  16. Epicardial adipose tissue thickness and NGAL levels in women with polycystic ovary syndrome.

    Science.gov (United States)

    Sahin, Serap Baydur; Cure, Medine Cumhur; Ugurlu, Yavuz; Ergul, Elif; Gur, Emine Uslu; Alyildiz, Nese; Bostan, Mehmet

    2014-02-16

    Polycystic ovary syndrome (PCOS) is associated with an increased cardiovascular disease (CVD) risk and early atherosclerosis. Epicardial adipose tissue thickness (EATT) is clinically related to subclinical atherosclerosis. In the present study, considering the major role of neutrophil gelatinase-associated lipocalin (NGAL) which is an acute phase protein rapidly releasing upon inflammation and tissue injury, we aimed to evaluate NGAL levels and EATT in PCOS patients and assess their relationship with cardiometabolic factors. 64 patients with PCOS and 50 age- and body mass index-matched healthy controls were included in the study. We evaluated anthropometric, hormonal and metabolic parameters. EATT was measured by echocardiography above the free wall of the right ventricle. Serum NGAL and high-sensitive C- reactive protein (hsCRP) levels were measured by ELISA. Mean EATT was 0,38 +/-0,16 mm in the PCOS group and 0,34 +/-0,36 mm in the control group (p = 0,144). In the obese PCOS group (n = 44) EAT was thicker compared to the obese control group (n = 41) (p = 0.026). Mean NGAL levels of the patients with PCOS were 101,98 +/-21,53 pg/ml, while mean NGAL levels were 107,40 +/-26,44 pg/ml in the control group (p = 0,228). We found a significant positive correlation between EATT and age, BMI, waist circumference, fasting insulin, HOMA-IR, triglyceride and hsCRP levels in PCOS group. Thickness of the epicardial adipose tissue can be used to follow the risk of CVD development in obese PCOS cases. However serum NGAL levels do not differ in patients with PCOS and control group.

  17. Relationship of neutrophil gelatinase-associated lipocalin (NGAL) and procalcitonin levels with the presence and severity of the preeclampsia.

    Science.gov (United States)

    Artunc-Ulkumen, Burcu; Guvenc, Yesim; Goker, Asli; Gozukara, Ceyhun

    2015-11-01

    The aim of the present study was to evaluate changes in maternal serum neutrophil gelatinase-associated lipocalin (NGAL) and procalcitonin (PCT) concentrations in preeclampsia. This case-control study consisted of 40 preeclamptic and 40 healthy singleton pregnancies matched for age and body mass index. Serum NGAL and PCT levels were compared between the groups. Diagnostic performance and clinical association of these markers were evaluated. NGAL and PCT concentrations were significantly higher in preeclamptic group (p preeclampsia. There were significant positive correlation between these markers and mean arterial pressure (MAP) and spot urine protein excretion. There was negative correlation between NGAL and apgar scores and fetal birth weight. Pregnancies with higher NGAL (OR: 4.89; 95% CI: 1.81-13.21) and higher PCT (OR: 6.67; 95% CI: 2.44-18.21) concentrations had higher risk for preeclampsia. NGAL and PCT may be potential biomarkers for preeclampsia. Their levels increase significantly in preeclampsia and they are related to the severity of the disease. These results are in agreement with the generalized endothelial damage and persistant inflammatory status in preeclampsia. NGAL may also be an indicator for adverse neonatal outcomes with decreased placental hypoperfusion.

  18. Both IL-1β and TNF-α Regulate NGAL Expression in Polymorphonuclear Granulocytes of Chronic Hemodialysis Patients

    Directory of Open Access Journals (Sweden)

    Adriana Arena

    2010-01-01

    Full Text Available Background. NGAL is involved in modulation of the inflammatory response and is found in the sera of uremic patients. We investigated whether hemodiafiltration (HDF could influence the ability of polymorphonuclear granulocytes (PMGs to release NGAL. The involvement of interleukin- (IL-1β and tumor necrosis factor- (TNF-α on NGAL release was evaluated. Methods. We studied end-stage renal disease (ESRD patients at the start of dialysis (Pre-HDF and at the end of treatment (Post-HDF and 18 healthy subjects (HSs. Peripheral venous blood was taken from HDF patients at the start of dialysis and at the end of treatment. Results. PMGs obtained from ESRD patients were hyporesponsive to LPS treatment, with respect to PMG from HS. IL-1β and TNF-α produced by PMG from post-HDF patients were higher than those obtained by PMG from pre-HDF. Neutralization of IL-1β, but not of TNF-α, determined a clear-cut production of NGAL in PMG from healthy donors. On the contrary, specific induction of NGAL in PMG from uremic patients was dependent on the presence in supernatants of IL-1β and TNF-α. Conclusion. Our data demonstrate that in PMG from healthy subjects, NGAL production was supported solely by IL-1β, whereas in PMG from HDF patients, NGAL production was supported by IL-1β, TNF-α.

  19. Estimated Prestroke Peak VO2 Is Related to Circulating IGF-1 Levels During Acute Stroke.

    Science.gov (United States)

    Mattlage, Anna E; Rippee, Michael A; Abraham, Michael G; Sandt, Janice; Billinger, Sandra A

    2017-01-01

    Background Insulin-like growth factor-1 (IGF-1) is neuroprotective after stroke and is regulated by insulin-like binding protein-3 (IGFBP-3). In healthy individuals, exercise and improved aerobic fitness (peak oxygen uptake; peak VO 2 ) increases IGF-1 in circulation. Understanding the relationship between estimated prestroke aerobic fitness and IGF-1 and IGFBP-3 after stroke may provide insight into the benefits of exercise and aerobic fitness on stroke recovery. Objective The purpose of this study was to determine the relationship of IGF-1 and IGFBP-3 to estimated prestroke peak VO 2 in individuals with acute stroke. We hypothesized that (1) estimated prestroke peak VO 2 would be related to IGF-1 and IGFBP-3 and (2) individuals with higher than median IGF-1 levels will have higher estimated prestroke peak VO 2 compared to those with lower than median levels. Methods Fifteen individuals with acute stroke had blood sampled within 72 hours of hospital admission. Prestroke peak VO 2 was estimated using a nonexercise prediction equation. IGF-1 and IGFBP-3 levels were quantified using enzyme-linked immunoassay. Results Estimated prestroke peak VO 2 was significantly related to circulating IGF-1 levels (r = .60; P = .02) but not IGFBP-3. Individuals with higher than median IGF-1 (117.9 ng/mL) had significantly better estimated aerobic fitness (32.4 ± 6.9 mL kg -1 min -1 ) than those with lower than median IGF-1 (20.7 ± 7.8 mL kg -1 min -1 ; P = .03). Conclusions Improving aerobic fitness prior to stroke may be beneficial by increasing baseline IGF-1 levels. These results set the groundwork for future clinical trials to determine whether high IGF-1 and aerobic fitness are beneficial to stroke recovery by providing neuroprotection and improving function. © The Author(s) 2016.

  20. Evaluation of the ARCHITECT urine NGAL assay: Assay performance, specimen handling requirements and biological variability

    NARCIS (Netherlands)

    Grenier, F.C.; Ali, S.; Syed, H.; Workman, R.; Martens, F.; Liao, M.; Wang, Y.; Wong, P.Y.

    2010-01-01

    Objectives: NGAL (Neutrophil Gelatinase-Associated Lipocalin) has emerged as a new biomarker for the identification of acute kidney injury. Reliable clinical evaluations require a simple, robust test method for NGAL, and knowledge of specimen handling and specimen stability characteristics. We

  1. Predictive value of NGAL for use of renal replacement therapy in patients with severe sepsis

    DEFF Research Database (Denmark)

    Hjortrup, P B; Haase, N; Treschow, F

    2015-01-01

    intensive care units (ICUs) in adult ICU patients with severe sepsis needing fluid resuscitation and a sub-study of the 6S trial. Plasma and urine were sampled at baseline and NGAL was measured using particle-enhanced turbidimetric immunoassay (The NGAL Test). Outcome measures were use of RRT in ICU...

  2. [KIM-1 and NGAL as potential biomarkers for the diagnosis and cancer progression].

    Science.gov (United States)

    Marchewka, Zofia; Tacik, Aneta; Piwowar, Agnieszka

    2016-04-18

    On the basis of scientific literature, there is growing evidence that KIM-1 and NGAL are interesting and promising biomarkers not only in acute and chronic inflammatory processes but also in oncogenesis. There are a number of studies which investigate their possible use in diagnosis, treatment and monitoring of therapy effectiveness. The results of recent research suggests that they may play an important role in standard oncology practice. Simultaneous measurement of KIM-1 and NGAL in urine can play a crucial role in carcinogenesis assessment and cancer progression. In the future, they can become rapid diagnostic indicators, which allow one to determine cancer subtype leading to biopsy replacement and therapy improvement. In the present work, beside biochemical characteristics of KIM-1 and NGAL, we will also discuss their role in the diagnosis and assessment of development of cancer.

  3. KIM-1 and NGAL as potential biomarkers for the diagnosis and cancer progression

    Directory of Open Access Journals (Sweden)

    Zofia Marchewka

    2016-04-01

    Full Text Available On the basis of scientific literature, there is growing evidence that KIM-1 and NGAL are interesting and promising biomarkers not only in acute and chronic inflammatory processes but also in oncogenesis. There are a number of studies which investigate their possible use in diagnosis, treatment and monitoring of therapy effectiveness. The results of recent research suggests that they may play an important role in standard oncology practice. Simultaneous measurement of KIM-1 and NGAL in urine can play a crucial role in carcinogenesis assessment and cancer progression. In the future, they can become rapid diagnostic indicators, which allow one to determine cancer subtype leading to biopsy replacement and therapy improvement. In the present work, beside biochemical characteristics of KIM-1 and NGAL, we will also discuss their role in the diagnosis and assessment of development of cancer.

  4. Urine NGAL Predicts Severity of Acute Kidney Injury After Cardiac Surgery: A Prospective Study

    OpenAIRE

    Bennett, Michael; Dent, Catherine L.; Ma, Qing; Dastrala, Sudha; Grenier, Frank; Workman, Ryan; Syed, Hina; Ali, Salman; Barasch, Jonathan; Devarajan, Prasad

    2008-01-01

    Background and objectives: The authors have previously shown that urine neutrophil gelatinase-associated lipocalin (NGAL), measured by a research ELISA, is an early predictive biomarker of acute kidney injury (AKI) after cardiopulmonary bypass (CPB). In this study, whether an NGAL immunoassay developed for a standardized clinical platform (ARCHITECT analyzer®, Abbott Diagnostics Division, Abbott Laboratories, Abbott Park, IL) can predict AKI after CPB was tested.

  5. Urinary NGAL and hematic ADMA levels: an early sign of cardio-renal syndrome in young adults born preterm?

    Science.gov (United States)

    Bassareo, Pier Paolo; Fanos, Vassilios; Mussap, Michele; Flore, Giovanna; Noto, Antonio; Puddu, Melania; Saba, Luca; Mercuro, Giuseppe

    2013-10-01

    Prematurity at birth is a known risk factor for the development of an early chronic renal disease. Urinary neutrophil gelatinase-associated lipocalin (NGAL) is a well established biomarker of kidney injury, while high blood levels of asymmetric dimethylarginine (ADMA) are associated with the future development of adverse cardiovascular events and cardiac death. (1) to verify the presence of statistically significant differences between urinary NGAL and hematic ADMA levels in young adults born preterm at extremely low birth weight (<1000 g; ex-ELBW) and those of a control group of healthy adults born at term (C) (2) to seek correlations between NGAL and ADMA levels, which would indicate the presence of an early cardio-renal involvement in ex-ELBW. Twelve ex-ELBW subjects (six males and six female, mean age: 23.9 ± 3.2 years) were compared with 12 C (six males and six female). Urinary NGAL and hematic ADMA levels were assessed. Urinary NGAL levels were higher in ex- ELBW subjects compared to C (p < 0.05), as well as hematic ADMA concentrations (p < 0.05). A statistically significant correlation was found between urinary NGAL and ADMA (r = -0.60, p < 0.04). Our preliminary findings support the hypothesis that in ex-ELBW subjects the development of an early chronic kidney disease contributes towards inducing an increase in the atherosclerotic process and in the risk of future adverse cardiovascular events.

  6. Interleukin-18 and NGAL in assessment of ESWL treatment safety in children with urolithiasis.

    Science.gov (United States)

    Jobs, Katarzyna; Straż-Żebrowska, Ewa; Placzyńska, Małgorzata; Zdanowski, Robert; Kalicki, Bolesław; Lewicki, Sławomir; Jung, Anna

    2014-01-01

    Urolithiasis is recurrent chronic disease and a complex nephro-urological problem. Currently it is diagnosed in very young children, even infants in the first quarter of life. Until recently the main method of treatment for stones, which for various reasons did not pass spontaneously, was open surgery. At present, the main method replacing open surgery is extracorporeal shock wave lithotripsy (ESWL). Usefulness of common known indicators of the renal function to assess the safety of ESWL procedure is evaluated and verified. The basic markers are serum creatinine, cystatin C, urea, glomerular filtration rate and albuminuria assessment. Unfortunately all these methods show little sensitivity in the case of acute injury processes. There are efforts to use new biomarkers of renal tubular activity, which include among others interleukin 18 (IL-18) and neutrophil gelatinase-associated lipocalin (NGAL). The aim of the study was to assess the safety of ESWL by means of albumin to creatinine ratio, serum cystatin C levels and concentration of two new markers: IL -18 and NGAL. Albumin to creatinine ratio (p = 0.28) and serum cystatin C (p = 0.63) collected before and 48 hours after ESWL did not show statistically significant differences. Similarly, both new markers (IL -18 and NGAL) showed no significant differences (urine IL -18 p = 0.31; serum NGAL p = 0.11; urine NGAL p = 0.29). In conclusion, serum cystatin C tests, urine albumin to creatinine ratio and new early markers of renal tubular injury confirmed the safety of the extracorporeal shock wave lithotripsy (ESWL) and show that the procedure does not cause any episode of acute renal injury.

  7. Plasma NGAL predicts early acute kidney injury no earlier than s-creatinine or cystatin C in severely burned patients.

    Science.gov (United States)

    Rakkolainen, Ilmari; Vuola, Jyrki

    2016-03-01

    Neutrophil gelatinase-associated lipocalin (NGAL) is a novel biomarker used in acute kidney injury (AKI) diagnostics. Studies on burn patients have highlighted it as a promising biomarker for early detection of AKI. This study was designed to discover whether plasma NGAL is as a biomarker superior to serum creatinine and cystatin C in detecting AKI in severely burned patients. Nineteen subjects were enrolled from March 2013 to September 2014 in the Helsinki Burn Centre. Serum creatinine, cystatin C, and plasma NGAL were collected from the patients at admission and every 12h during the first 48h and thereafter daily until seven days following admission. AKI was defined by acute kidney injury network criteria. Nine (47%) developed AKI during their intensive care unit stay and two (11%) underwent renal replacement therapy. All biomarkers were significantly higher in the AKI group but serum creatinine- and cystatin C values reacted more rapidly to changes in kidney function than did plasma NGAL. Plasma NGAL tended to rise on average 72h±29h (95% CI) later in patients with early AKI than did serum creatinine. Area-under-the-curve values calculated for each biomarker were 0.92 for serum creatinine, 0.87 for cystatin C, and 0.62 for plasma NGAL predicting AKI by the receiver-operating-characteristic method. This study demonstrated serum creatinine and cystatin C as faster and more reliable biomarkers than plasma NGAL in detecting early AKI within one week of injury in patients with severe burns. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  8. Clinical significance of NGAL and KIM-1 for acute kidney injury in patients with scrub typhus.

    Directory of Open Access Journals (Sweden)

    In O Sun

    Full Text Available The aim of this study is to investigate the clinical significance of neutrophil gelatinase-associated lipocalin (NGAL and kidney injury molecule-1 (KIM-1 for acute kidney injury (AKI in patients with scrub typhus.From 2014 to 2015, 145 patients were diagnosed with scrub typhus. Of these, we enrolled 138 patients who were followed up until renal recovery or for at least 3 months. We measured serum and urine NGAL and KIM-1 levels and evaluated prognostic factors affecting scrub typhus-associated AKI.Of the 138 patients, 25 had scrub typhus-associated AKI. The incidence of AKI was 18.1%; of which 11.6%, 4.3%, and 2.2% were classified as risk, injury, and failure, respectively, according to RIFLE criteria. Compared with patients in the non-AKI group, patients in the AKI group were older and showed higher total leukocyte counts and hypoalbuminemia or one or more comorbidities such as hypertension (72% vs 33%, p<0.01, diabetes (40% vs 14%, p<0.01, or chronic kidney disease (32% vs 1%, p<0.01. In addition, serum NGAL values (404± 269 vs 116± 78 ng/mL, P<0.001, KIM-1 values (0.80± 0.52 vs 0.33± 0.68 ng/mL, P<0.001, urine NGAL/creatinine values (371± 672 vs 27± 39 ng/mg, P<0.001 and urine KIM-1/creatinine values (4.04± 2.43 vs 2.38± 1.89 ng/mg, P<0.001 were higher in the AKI group than in the non-AKI group. By multivariate logistic regression, serum NGAL and the presence of chronic kidney disease were significant predictors of AKI.Serum NGAL might be an additive predictor for scrub typhus-associated AKI.

  9. Decreased IGF-1 concentration during the first trimester of pregnancy in women with normal somatotroph function.

    Science.gov (United States)

    Persechini, Marie-Laure; Gennero, Isabelle; Grunenwald, Solange; Vezzosi, Delphine; Bennet, Antoine; Caron, Philippe

    2015-08-01

    A decrease of insulin-like growth factor-I levels (IGF-I) has been reported during the first trimester of pregnancy in women with acromegaly before the secretion of placental growth hormone (GH) progressively increases IGF-1 concentration. To evaluate variations of concentrations of IGF-1, insulin-like growth factor (IGF)-binding protein-3 (IGF-BP3) and GH during the first trimester of pregnancy in women with normal somatotroph function. Sixteen women (median age 31 years) with as who were followed for benign thyroid disorders (n = 15) or prolactin-secreting microadenoma (n = 1) were evaluated before and in the first trimester of pregnancy. Serum concentrations of GH, IGF-1, IGF-BP3, TSH and estradiol (E2) were measured before and in the first trimester (5.4 ± 2.2 weeks of gestation). Before pregnancy, somatotroph and thyroid functions (median TSH 1.2 mU/L) were normal in all women. At the first trimester IGF-1 levels decreased significantly (before = 210 ng/mL, first trimester = 145 ng/mL, p function, IGF-1 levels decrease in the first trimester of pregnancy without changes in GH or IGF-BP3 levels. These results confirm liver resistance to GH as a consequence of the physiological increase of estrogens during the first trimester.

  10. Effect Of IGF-1 On Expression Of Gh Receptor, IGF-1, IGF-1 ...

    African Journals Online (AJOL)

    ... and the skin expression of growth hormone receptor (GHR), insulin-like growth factor1 (IGF-1), insulin-like growth factor receptor (IGF- R), KAP3.2 and KAP6-1 mRNA were measured by RT-PCR. The results indicated that IGF-1 could degrade GHR gene expression, have no effect of IGF-1 and IGF-1R gene expression, ...

  11. A role for IGF-1R-targeted therapies in small-cell lung cancer?

    LENUS (Irish Health Repository)

    Gately, Kathy

    2012-02-01

    BACKGROUND: Small-cell lung cancer (SCLC) is an aggressive disease with a poor prognosis. The insulin-like growth factor-1 receptor (IGF-1R) is an autocrine growth factor and an attractive therapeutic target in many solid tumors, but particularly in lung cancer. PATIENTS AND METHODS: This study examined tumor samples from 23 patients diagnosed with SCLC, 11 resected specimens and 12 nodal biopsies obtained by mediastinoscopy, for expression of IGF-1R using the monoclonal rabbit anti-IGF-1R (clone G11, Ventana Medical Systems, Tucson, AZ) and standard immunohistochemistry (IHC). RESULTS: All 23 tumor samples expressed IGF-1R with a range of stain intensity from weak (1+) to strong (3+). Ten tumors had a score of 3+, 7 tumors 2+, and 6 tumors 1+. Patient survival data were available for all 23 patients. Two patients died < 30 days post biopsy, therefore, the intensity of anti-IGF-1R immunostaining for 21 patients was correlated to survival. Patients with 3+ immunostaining had a poorer prognosis (P = .003). The overall survival of patients who underwent surgical resection was significantly better (median survival not reached) than patients who were not resected (median survival, 7.4 months) (P = .006). CONCLUSION: IGF-1R targeted therapies may have a role in the treatment of SCLC in combination with chemotherapy or as maintenance therapy. Further studies on the clinical benefit of targeting IGF-1R in SCLC are needed.

  12. IGF-I and IGFBP2 in peripheral artery disease

    DEFF Research Database (Denmark)

    Urbonaviciene, Grazina; Frystyk, Jan; Urbonavicius, Sigitas

    2014-01-01

    BACKGROUND AND OBJECTIVES: The search for novel risk factors of cardiovascular disease (CVD) has provided valuable clinical data concerning underlying mechanism of disease. Increasing evidence indicates a possible involvement of insulin-like growth factor-I (IGF-I) and its binding protein 2 (IGFBP......-2) in the pathogenesis of CVD disorders. The aim of this study was to examine the relationship between levels of IGF-I and IGFBP-2 with all-cause and CVD mortality in a prospective study of patients with lower-extremity peripheral artery disease (PAD). METHODS AND MATERIAL: Serum IGF-I and IGFBP-2...... levels were obtained in 440 patients (257 males) with symptomatic PAD. Patients were followed for a median of 6.1 (IQ 5.1-7.2) years. The relationship between times to lethal outcome and baseline serum IGF-I and IFGBP-2 levels were examined by Cox proportional hazard analysis. The role of IFGBP-2...

  13. IGF-1 levels are significantly correlated with patient-reported measures of sexual function.

    Science.gov (United States)

    Pastuszak, A W; Liu, J S; Vij, A; Mohamed, O; Sathyamoorthy, K; Lipshultz, L I; Khera, M

    2011-01-01

    Growth hormone (GH) supplementation may help to preserve erectile function. We assessed whether serum insulin-like growth factor 1 (IGF-1) levels, a surrogate for GH levels, correlate with sexual function scores in 65 men who completed the Sexual Health Inventory for Men (SHIM) and Expanded Prostate Cancer Index Composite (EPIC) questionnaires, and had serum IGF-1 and testosterone levels determined. Median±s.d. IGF-1 level, SHIM and EPIC scores were 235.0±86.4, 19.5±8.7 and 56.4±28.3 mg ml(-1), respectively. IGF-1 levels and total SHIM score correlate significantly (r=0.31, P=0.02), as do IGF-1 levels and all individual SHIM question scores, and IGF-1 levels and the sexual domain of the EPIC questionnaire (r=0.30, P=0.02). No correlation was observed between IGF-1 levels and Gleason score, IGF-1 and testosterone level or SHIM score and testosterone level. These data support a potential role for the GH axis in erectile function.

  14. IGF-I, IGF-II, and Insulin Stimulate Different Gene Expression Responses through Binding to the IGF-I Receptor

    DEFF Research Database (Denmark)

    Versteyhe, Soetkin; Klaproth, Birgit; Borup, Rehannah

    2013-01-01

    Insulin and the insulin-like growth factors (IGF)-I and -II are closely related peptides important for regulation of metabolism, growth, differentiation, and development. The IGFs exert their main effects through the IGF-I receptor. Although the insulin receptor is the main physiological receptor...... for insulin, this peptide hormone can also bind at higher concentrations to the IGF-I receptor and exert effects through it. We used microarray gene expression profiling to investigate the gene expression regulated by IGF-I, IGF-II, and insulin after stimulation of the IGF-I receptor. Fibroblasts from mice......, knockout for IGF-II and the IGF-II/cation-independent mannose-6-phosphate receptor, and expressing functional IGF-I but no insulin receptors, were stimulated for 4 h with equipotent saturating concentrations of insulin, IGF-I, and IGF-II. Each ligand specifically regulated a group of transcripts...

  15. Célula del SMF modificada genéticamente para sobreexpresar NGAL y su uso como medicamento

    OpenAIRE

    Hotter, Georgina; Jung, Michaela; Solà, Anna M.

    2009-01-01

    Célula del SMF modificada genéticamente para sobreexpresar NGAL y su uso como medicamento. La presente invención se encuadra dentro del campo de la biomedicina. Específicamente, la presente invención se refiere a una célula del Sistema Mononuclear Fagocítico o SMF, preferiblemente un monocito o un macrófago, modificada genéticamente para sobreexpresar la lipocalina asociada a gelatinasa de neutrófilos (NGAL, en sus siglas en inglés), a un método para su obtención y a s...

  16. A rapid and user-friendly assay to detect the Neutrophil gelatinase-associated lipocalin (NGAL) using up-converting nanoparticles.

    Science.gov (United States)

    Lei, Lijiang; Zhu, Jin; Xia, Gangqiang; Feng, Hui; Zhang, Hongman; Han, Yuwang

    2017-01-01

    NGAL is a promising novel biomarker for acute kidney injury (AKI) and chronic kidney disease (CKD). More rapid and user-friendly methods are needed for the timely monitoring of NGAL in human urine and serum. UCP technology-based lateral flow assay (UPT-LFA) was developed for rapid, user-friendly and quantitative detection of the NGAL in human serum specimens and urine specimens. Under optimal conditions, the UPT-LFA displayed a rapid response to NGAL with a LOD of 7.68ng/mL and detection range from 7.68 to 1000ng/mL. The UPT-LFA method was compared with commercial immunoturbidimetry (103 urine specimens), and by ELISA (26 serum specimens), respectively. The results demonstrated that the UPT-LFA was consistent with immunoturbidimetry assay, reporting a 97.92% of positive and 92.73% of negative coincidence rates, respectively. Meanwhile, the concordance rate between UPT-LFA and ELISA, as shown by correlative regression analysis, was also high (R 2 =0.95). The whole assay can be completed within 30min compared to 4h consuming with ELISA. The research implies that, the UPT-LFA provides a potential to be used in point of care testing (POCT) to define early acute kidney injury with advantages of user-friendly and rapid testing, promising this new assay a bright future. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. IGF-1R mRNA expression is increased in obese children.

    Science.gov (United States)

    Ricco, Rafaela Cristina; Ricco, Rubens Garcia; Queluz, Mariangela Carletti; de Paula, Mariana Teresa Sarti; Atique, Patricia Volpon; Custódio, Rodrigo José; Tourinho Filho, Hugo; Del Roio Liberatori, Raphael; Martinelli, Carlos Eduardo

    2018-04-01

    Obese children are often taller than age-matched subjects. Reports on GH and IGF-I levels in obese individuals are controversial, with normal and reduced GH-IGF-I levels having been reported in this group of patients. Thus, the aim of this study was to analyse insulin-like growth factor type 1 receptor (IGF-IR) mRNA expression in obese children. Forty-seven pre-pubertal children were included in this study: 29 were obese and taller than their target height, and 18 were normal eutrophic controls. Fasting blood samples were collected for IGF-IR mRNA expression in isolated lymphocytes and serum IGF-I, ALS, IGFBP-3, and IGFBP-1 concentration analysis. Relative IGF-IR gene expression (2 -ΔΔCT ) was significantly (P=0.025) higher in obese children (median 1.87) than in controls (1.15). Fourteen of the 29 obese subjects showed 2 -ΔΔCT values greater than or equal to 2, while only 2 individuals in the control group showed values above 2 (P=0.01). Obese children showed significantly (P=0.01) higher IGF-I concentrations than the control group (237ng/ml and 144ng/ml, respectively). Among obese patients, 65.5% had IGF-I values above the 75 percentile of the control group (P=0.02). ALS concentration was significantly (P=0.04) higher in the obese group, while IGFBP-3 levels were similar in obese and control children. IGFBP-1 concentration was lower in obese children, while insulin levels and HOMA-IR index were higher than in controls. The higher IGF-IR mRNA expression observed in obese children, associated with the higher IGF-I and ALS and the lower IGFBP-1 levels, suggest that the higher stature observed in these children may be due to increased IGF-I bioactivity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Plasma neutrophil gelatinase associated lipocalin (NGAL) is associated with kidney function in uraemic patients before and after kidney transplantation

    DEFF Research Database (Denmark)

    Magnusson, Nils Erik; Hornum, Mads; Jørgensen, Kaj Anker

    2012-01-01

    Neutrophil gelatinase associated lipocalin (NGAL) is a biomarker of kidney injury. We examined plasma levels of NGAL in a cohort of 57 kidney allograft recipients (Tx group, 39 ± 13 years), a uraemic group of 40 patients remaining on the waiting list (47 ± 11 years) and a control group of 14...... healthy subjects matched for age, sex and body mass index (BMI). The kidney graft recipients were studied at baseline before transplantation and 3 and 12 months after transplantation and the uraemic group at baseline and after 12 months....

  19. Autocrine IGF-1 Action in Adipocytes Controls Systemic IGF-1 Concentrations and Growth

    OpenAIRE

    Kl?ting, Nora; Koch, Linda; Wunderlich, Thomas; Kern, Matthias; Ruschke, Karen; Krone, Wilhelm; Br?ning, Jens C.; Bl?her, Matthias

    2008-01-01

    OBJECTIVE?IGF-1 and the IGF-1 receptor (IGF-1R) have been implicated in the regulation of adipocyte differentiation and lipid accumulation in vitro. RESEARCH DESIGN AND METHODS?To investigate the role of IGF-1 receptor in vivo, we have inactivated the Igf-1r gene in adipose tissue (IGF-1RaP2Cre mice) using conditional gene targeting strategies. RESULTS?Conditional IGF-1R inactivation resulted in increased adipose tissue mass with a predominantly increased lipid accumulation in epigonadal fat ...

  20. Expression of IGF-I, IGF-I receptor and IGF binding proteins-1, -2, -3, -4 and -5 in human atherectomy specimens.

    Science.gov (United States)

    Grant, M B; Wargovich, T J; Ellis, E A; Tarnuzzer, R; Caballero, S; Estes, K; Rossing, M; Spoerri, P E; Pepine, C

    1996-12-17

    The molecular and cellular processes that induce rapid atherosclerotic plaque progression in patients with unstable angina and initiate restenosis following coronary interventional procedures are uncertain. We examined primary (de novo) and restenotic lesions retrieved at the time of directional coronary atherectomy for expression of insulin-like-growth factor-I (IGF-I). IGF-I receptor, and five IGF binding proteins (IGFBPs), IGFBP-1, IGFBP-2, IGFBP-3, IGFBP-4, and IGFBP-5 in smooth muscle cells (SMCs) using colloidal gold immunocytochemistry. IGF-1, its receptor and binding proteins were not detected in SMCs of normal coronary arteries. IGF-I localized primarily in synthetic smooth muscle cells (sSMCs) in both de novo and restenotic plaques. IGF-I receptor localized on sSMCs and their processes and colocalized with IGF-I. Although morphometric analysis of IGF-I and IGF-I receptor immunoreactivity in sSMCs of de novo and restenotic lesions showed comparable levels of IGF-I (3.2 +/- 1.0 and 2.9 +/- 0.9, respectively). IGF-I receptor was significantly higher in de novo lesions as compared to restenotic lesions (10.7 +/- 2.5 and 4.2 +/- 1.3, P system.

  1. IGF binding proteins.

    Science.gov (United States)

    Bach, Leon A

    2017-12-18

    Insulin-like growth factor binding proteins (IGFBPs) 1-6 bind IGFs but not insulin with high affinity. They were initially identified as serum carriers and passive inhibitors of IGF actions. However, subsequent studies showed that, although IGFBPs inhibit IGF actions in many circumstances, they may also potentiate these actions. IGFBPs are widely expressed in most tissues, and they are flexible endocrine and autocrine/paracrine regulators of IGF activity, which is essential for this important physiological system. More recently, individual IGFBPs have been shown to have IGF-independent actions. Mechanisms underlying these actions include (i) interaction with non-IGF proteins in compartments including the extracellular space and matrix, the cell surface and intracellularly; (ii) interaction with and modulation of other growth factor pathways including EGF, TGF- and VEGF; and (iii) direct or indirect transcriptional effects following nuclear entry of IGFBPs. Through these IGF-dependent and IGF-independent actions, IGFBPs modulate essential cellular processes including proliferation, survival, migration, senescence, autophagy and angiogenesis. They have been implicated in a range of disorders including malignant, metabolic, neurological and immune diseases. A more complete understanding of their cellular roles may lead to the development of novel IGFBP-based therapeutic opportunities.

  2. Gender and age influence the relationship between serum GH and IGF-I in patients with acromegaly.

    Science.gov (United States)

    Parkinson, C; Renehan, A G; Ryder, W D J; O'Dwyer, S T; Shalet, S M; Trainer, P J

    2002-07-01

    In patients with acromegaly serum IGF-I is increasingly used as a marker of disease activity. As a result, the relationship between serum GH and IGF-I is of profound interest. Healthy females secrete three times more GH than males but have broadly similar serum IGF-I levels, and women with GH deficiency require 30-50% more exogenous GH to maintain the same serum IGF-I as GH-deficient men. In a selected cohort of patients with active acromegaly, studied off medical therapy using a single fasting serum GH and IGF-I measurement, we have reported previously that, for a given GH level, women have significantly lower circulating IGF-I. To evaluate the influence of age and gender on the relationship between serum GH and IGF-I in an unselected cohort of patients with acromegaly independent of disease control and medical therapy. Sixty (34 male) unselected patients with acromegaly (median age 51 years (range 24-81 years) attending a colonoscopy screening programme were studied. Forty-five had previously received pituitary radiotherapy. Patients had varying degrees of disease control and received medical therapy where appropriate. Mean serum GH was calculated from an eight-point day profile (n = 45) and values obtained during a 75-g oral glucose tolerance test (n = 15). Serum IGF-I, IGFBP-3 and acid-labile subunit were measured and the dependency of these factors on covariates such as log10 mean serum GH, sex, age and prior radiotherapy was assessed using regression techniques. The median calculated GH value was 4.7 mU/l (range 1-104). A significant linear association was observed between serum IGF-I and log10 mean serum GH for the cohort (R = 0.5, P fall by 0.37 nmol/l per year (P = 0.04, 95% CI 0.015-0.72). In keeping with previous observations of relative GH resistance in normal and GH-deficient females we have observed lower serum IGF-I levels for equivalent mean serum GH levels in females patients with acromegaly. This gender-dependent difference is independent of

  3. IGF-II receptors and IGF-II-stimulated glucose transport in human fat cells

    International Nuclear Information System (INIS)

    Sinha, M.K.; Buchanan, C.; Raineri-Maldonado, C.; Khazanie, P.; Atkinson, S.; DiMarchi, R.; Caro, J.F.

    1990-01-01

    Insulin-like growth factor II (IGF-II) receptors have been described in rat but not in human adipocytes. In both species, IGF-II has been reported to stimulate glucose transport by interacting with the insulin receptor. In this study, we have unequivocally demonstrated the presence of IGF-II receptors in human adipocytes. 125I-labeled IGF-II specifically binds to intact adipocytes, membranes, and lectin-purified detergent solubilized extracts. Through the use of 0.5 mM disuccinimidyl suberate, 125I-IGF-II is cross-linked to a 260-kDa protein that is identified as the IGF-II receptor by displacement experiments with unlabeled IGF-II, IGF-I, and insulin and either by immunoprecipitation or by Western blot analysis with mannose 6-phosphate receptor antibodies. The concentrations of IGF-II required for half-maximal and maximal stimulation of glucose transport in human adipocytes are 35 and 100 times more than that of insulin. The possibility of IGF-II stimulating glucose transport by interacting predominantly with the insulin receptor is suggested by the following: (1) the concentration of IGF-II that inhibits half of insulin binding is only 20 times more than that of insulin; (2) the lack of an additive effect of IGF-II and insulin for maximal stimulation of glucose transport; (3) the ability of monoclonal insulin receptor antibodies to decrease glucose transport stimulated by submaximal concentrations of both IGF-II and insulin; and (4) the ability of IGF-II to stimulate insulin receptor autophosphorylation albeit at a reduced potency when compared with insulin

  4. Short communication: Relationship between urinary neutrophil gelatinase-associated lipocalin and noninfectious pyuria in dogs.

    Science.gov (United States)

    Proverbio, D; Spada, E; Baggiani, L; Bagnagatti De Giorgi, G; Ferro, E; Martino, P A; Perego, R

    2015-01-01

    Neutrophil gelatinase-associated lipocalin (NGAL) is a neutrophil-derived protein whose concentration increases in plasma and urine with ongoing renal damage. Urinary leucocytes can be a potential source of urinary NGAL. The aim of this study is to investigate the effects of urinary neutrophil count and other urinary parameters on urinary NGAL values in urine with negative culture. Urinalysis, urine culture, and determination of urinary NGAL were performed on 33 clinically healthy nonproteinuric dogs with negative urinoculture. The median uNGAL concentration in dogs in this study population was 9.74 ng/mL (IQR 1.93-25.43 ng/mL). In samples with WBCs > 5 hpf (mean 15.9, 6-50 leucocytes/hpf), median uNGAL value was significantly higher than that in samples with WBCs dogs with negative urinoculture. The present study suggests that noninfectious pyuria is significantly correlated with urinary NGAL values and might influence uNGAL values.

  5. Placental IGF-1 and IGFBP-3 expression correlate with umbilical cord blood PAH and PBDE levels from prenatal exposure to electronic waste

    International Nuclear Information System (INIS)

    Xu, Xijin; Yekeen, Taofeek Akangbe; Xiao, Qiongna; Wang, Yuangping; Lu, Fangfang; Huo, Xia

    2013-01-01

    Electronic waste recycling produces Polycyclic Aromatic Hydrocarbons (PAHs) and Polybrominated Diphenyl Ethers (PBDEs) which may affect fetal growth and development by altering the insulin-like-growth factor (IGF) system. Questionnaires were administered to pregnant women (Guiyu, an e-waste site, n = 101; control, n = 53), and umbilical cord blood (UCB) and placentas were collected upon delivery. PBDEs and PAHs in UCB and placental IGF-1 and IGFBP-3 mRNA levels were analyzed using GC–MS and real-time PCR, respectively. Infant birth length and Apgar scores were lower in Guiyu. All PAHs (except Fl, Chr, IP, BbF and BP), total 16-PAHs, total/individual PBDEs, placental IGF-1 (median 0.23 vs 0.19; P < 0.05) and IGFBP-3 (median 1.91 vs 0.68; P < 0.001) levels were significantly higher in Guiyu. Spearman correlation showed that BDE-154, BDE-209 and ∑5ring-PAHs positively correlate with IGF-1 while PBDEs, 4 rings and total PAHs correlate with IGFBP-3 expression. Increased placental IGF-1 level might indirectly affect fetal growth and development. -- Highlights: •PAHs and PBDEs from e-waste may affect fetal growth via alteration of IGF system. •Infant birth length and Apgar scores were lower in Guiyu compared to Chaoan. •Most PAHs, all PBDEs, IGF-1 and IGFBP-3 levels were significantly higher in Guiyu. •IGF-1 positively correlates with BDE-154, BDE-209 and ∑5ring-PAHs. •The observed increase in IGF-1 might indirectly affect fetal growth and development. -- The correlation between POPs and placental IGF-1 and IGFBP-3 assessed provides more information on the human health risk associated with electronic waste

  6. Longitudinal infusion of a complex of insulin-like growth factor-I and IGF-binding protein-3 in five preterm infants: pharmacokinetics and short-term safety.

    Science.gov (United States)

    Ley, David; Hansen-Pupp, Ingrid; Niklasson, Aimon; Domellöf, Magnus; Friberg, Lena E; Borg, Jan; Löfqvist, Chatarina; Hellgren, Gunnel; Smith, Lois E H; Hård, Anna-Lena; Hellström, Ann

    2013-01-01

    In preterm infants, low levels of insulin-like growth factor-I (IGF-I) and IGF binding protein 3 (IGFBP-3) are associated with impaired brain growth and retinopathy of prematurity (ROP). Treatment with IGF-I/IGFBP-3 may be beneficial for brain development and may decrease the prevalence of ROP. In a phase II pharmacokinetics and safety study, five infants (three girls) with a median (range) gestational age (GA) of 26 wk + 6 d (26 wk + 0 d to 27 wk + 2 d) and birth weight of 990 (900-1,212) g received continuous intravenous infusion of recombinant human (rh)IGF-I/rhIGFBP-3. Treatment was initiated during the first postnatal day and continued for a median (range) duration of 168 (47-168) h in dosages between 21 and 111 µg/kg/24 h. Treatment with rhIGF-I/rhIGFBP-3 was associated with higher serum IGF-I and IGFBP-3 concentrations (P model-predicted endogenous levels. Of 74 IGF-I samples measured during study drug infusion, 37 (50%) were within the target range, 4 (5%) were above, and 33 (45%) were below. The predicted dose of rhIGF-I/rhIGFBP-3 required to establish circulating levels of IGF-I within the intrauterine range in a 1,000 g infant was 75-100 µg/kg/24 h. No hypoglycemia or other adverse effects were recorded. In this study, continuous intravenous infusion of rhIGF-I/rhIGFBP-3 was effective in increasing serum concentrations of IGF-I and IGFBP-3, and was found to be safe.

  7. The IGF2 Locus

    Science.gov (United States)

    Insulin-like growth factor 2 (IGF2) is a peptide hormone regulating various cellular processes such as proliferation and apoptosis. IGF2 is vital to embryo development. The IGF2 locus covers approximately 150-kb genomic region on human chromosome 11, containing two imprinted genes, IGF2 and H19, sha...

  8. Gastric cancer: the role of insulin-like growth factor 2 (IGF 2) and its receptors (IGF 1R and M6-P/IGF 2R).

    Science.gov (United States)

    Pavelić, Kresimir; Kolak, Toni; Kapitanović, Sanja; Radosević, Senka; Spaventi, Sime; Kruslin, Bozo; Pavelić, Jasminka

    2003-11-01

    Insulin-like growth factor 2 (IGF 2) appears to be involved in the progression of many tumours. It binds to at least two different types of receptor: IGF type 1 (IGF 1R) and mannose 6-phosphate/IGF type 2 (M6-P/IGF 2R). Ligand binding to IGF 1R provokes mitogenic and anti-apoptotic effects. M6-P/IGF 2R has a tumour suppressor function--it mediates IGF 2 degradation. Mutation of M6-P/IGF 2R causes both diminished growth suppression and augmented growth stimulation. The aim of this study was to investigate the role of IGF 2 and its receptors (IGF 1R and IGF 2R) in human gastric cancer. The expression of IGF 2 and its receptors was measured in order to analyse the possible correlation between the activity of these genes and cell proliferation in two different gastric tumour types: diffuse and intestinal. The effect of IGF 1 receptor blockage on cell proliferation and anchorage-independent cell growth was also examined. Increased expression of IGF 2 and IGF 1R genes (at the mRNA and protein level) was found in gastric cancer when compared with non-tumour tissue. Furthermore, there was a significant difference between IGF 2 expression in the more aggressive diffuse type and that in the intestinal type of gastric cancer. Moreover, the IGF 2 peptide level in the culture media obtained from the diffuse type of cancer cells was significantly higher when compared with the intestinal type. The level of IGF 2 peptide in the conditioned media strongly correlated with [3H]thymidine incorporation and cell proliferation. On the contrary, IGF 2R mRNA expression was much higher in the intestinal type of cancer than in the diffuse type. In addition, IGF 2R protein expression was substantially lower with progression of the diffuse cancer type to a higher stage. The alphaIR3 monoclonal antibody strongly inhibited [3H]thymidine incorporation and decreased the number of colonies in soft agar of cells overexpressing IGF 2. These findings suggest that members of the IGF family are involved

  9. IGF-I and branchial IGF receptor expression and localization during salinity acclimation in striped bass

    DEFF Research Database (Denmark)

    Tipsmark, Christian Kølbaek; Luckenbach, John Adam; Madsen, Steffen

    2007-01-01

    The initial response of the IGF-I system and the expression and cellular localization of IGF type-I receptor (IGF-IR) were studied in the gill of a euryhaline teleost during salinity acclimation. Exposure of striped bass (Morone saxatilis) to hyperosmotic and hypoosmotic challenges induced small...... in either plasma IGF-I, liver, or gill IGF-I mRNA, or gill IGF-IR mRNA levels. In a separate experiment, FW-acclimated fish were injected with saline or IGF-I prior to a 24-h SW challenge. Rapid regain of osmotic balance following SW transfer was hindered by IGF-I. Immunohistochemistry revealed...

  10. Maternal insulin-like growth factors 1 and 2 (IGF-1, IGF-2) and IGF BP-3 and the hypertensive disorders of pregnancy.

    LENUS (Irish Health Repository)

    Cooley, Sharon M

    2012-02-01

    OBJECTIVE: To investigate the relationship between levels of insulin-like growth factors 1 and 2 (IGF-1, IGF-2) and insulin-like growth factor binding protein 3 (IGFBP-3) in antenatal maternal serum and gestational hypertension and pre-eclampsia (PET). METHODS: Prospective cohort study of 1650 low-risk Caucasian women in a University teaching hospital in London. Statistical analysis was performed using commercial software (SPSS for Windows, version 6.1, SPSS, Chicago, IL), with P < 0.05 as significant. Maternal IGF 1, IGF 2 and IGF BP-3 were assessed on maternal blood at booking. Blood pressure was checked at each visit in conjunction with urine analysis. The Davey & MacGillivray 1988 classification system was used in making the diagnosis of PET. RESULTS: There was no significant correlation between maternal IGF-1 or IGFBP-3 levels and gestational hypertension or PET. However, a significant positive correlation does exist between maternal IGF-2 levels and PET. CONCLUSIONS: Maternal IGF-2 has a significant positive correlation with PET.

  11. Binding of IGF I and IGF I-stimulated phosphorylation in canine renal basolateral membranes

    International Nuclear Information System (INIS)

    Hammerman, M.R.; Gavin, J.R. III.

    1986-01-01

    To characterize the interaction of the renal proximal tubular cell with insulin like growth factor I (IGF I), we measured binding of 125 I-IGF I to proximal tubular basolateral membranes from dog kidney and induced IGF I-stimulated phosphorylation of basolateral membranes. Specific binding of 125 I-IGF I to basolateral membranes was observed that was half-maximal at between 10(-9) and 10(-8) M IGF I. 125 I-IGF I was affinity cross-linked to a 135,000 Mr protein in basolateral membranes that was distinct from the alpha-subunit of the insulin receptor and from the IGF II receptor. IGF I-stimulated phosphorylation of a 92,000 Mr protein was effected in detergent-solubilized membranes incubated with 100 microM [gamma- 32 P]ATP. The 32 P-labeled protein was distinct from the beta-subunit of the insulin receptor, the 32 P phosphorylation of which was stimulated by insulin. We conclude that specific receptors for IGF I are present in the basolateral membrane of the renal proximal tubular cell. Physiological actions of IGF I at this nephron site may occur through the binding of this peptide circulating in plasma, to specific basolateral membrane receptors, followed by IGF I stimulated phosphorylation

  12. Urinary KIM-1, NGAL and L-FABP for the diagnosis of AKI in patients with acute coronary syndrome or heart failure undergoing coronary angiography.

    Science.gov (United States)

    Torregrosa, Isidro; Montoliu, Carmina; Urios, Amparo; Andrés-Costa, María Jesús; Giménez-Garzó, Carla; Juan, Isabel; Puchades, María Jesús; Blasco, María Luisa; Carratalá, Arturo; Sanjuán, Rafael; Miguel, Alfonso

    2015-11-01

    Acute kidney injury (AKI) is a common complication after coronary angiography. Early biomarkers of this disease are needed since increase in serum creatinine levels is a late marker. To assess the usefulness of urinary kidney injury molecule-1 (uKIM-1), neutrophil gelatinase-associated lipocalin (uNGAL) and liver-type fatty acid-binding protein (uL-FABP) for early detection of AKI in these patients, comparing their performance with another group of cardiac surgery patients. Biomarkers were measured in 193 patients, 12 h after intervention. In the ROC analysis, AUC for KIM-1, NGAL and L-FABP was 0.713, 0.958 and 0.642, respectively, in the coronary angiography group, and 0.716, 0.916 and 0.743 in the cardiac surgery group. Urinary KIM-1 12 h after intervention is predictive of AKI in adult patients undergoing coronary angiography, but NGAL shows higher sensitivity and specificity. L-FABP provides inferior discrimination for AKI than KIM-1 or NGAL in contrast to its performance after cardiac surgery. This is the first study showing the predictive capacity of KIM-1 for AKI after coronary angiography. Further studies are still needed to answer relevant questions about the clinical utility of biomarkers for AKI in different clinical settings.

  13. HFpEF and HFrEF Display Different Phenotypes as Assessed by IGF-1 and IGFBP-1.

    Science.gov (United States)

    Faxén, Ulrika Ljung; Hage, Camilla; Benson, Lina; Zabarovskaja, Stanislava; Andreasson, Anna; Donal, Erwan; Daubert, Jean-Claude; Linde, Cecilia; Brismar, Kerstin; Lund, Lars H

    2017-04-01

    Anabolic drive is impaired in heart failure with reduced ejection fraction (HFrEF) but insufficiently studied in heart failure with preserved ejection fraction (HFpEF). Insulin-like growth factor 1 (IGF-1) mediates growth hormone effects and IGF binding protein 1 (IGFBP-1) regulates IGF-1 activity. We tested the hypothesis that HFpEF and HFrEF are similar with regard to IGF-1 and IGFBP-1. In patients with HFpEF (n = 79), HFrEF (n = 85), and controls (n = 136), we analyzed serum IGF-1 and IGFBP-1 concentrations, correlations, and associations with outcome. Age-standardized scores of IGF-1 were higher in HFpEF, median arbitrary units (interquartile range); 1.21 (0.57-1.96) vs HFrEF, 0.09 (-1.40-1.62), and controls, 0.22 (-0.47-0.96), P overall IGF-1 was associated with outcomes in HFrEF, hazard ratio per natural logarithmic increase in IGF-1 SD score 0.51 (95% confidence interval 0.32-0.82, P = .005), but not significantly in HFpEF. IGFBP-1 was not associated with outcomes in either HFpEF nor HFrEF. HFpEF and HFrEF phenotypes were similar with regard to increased IGFBP-1 concentrations but differed regarding IGF-1 levels and prognostic role. HFrEF and HFpEF may display different impairment in anabolic drive. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. IRS-1 acts as an endocytic regulator of IGF-I receptor to facilitate sustained IGF signaling.

    Science.gov (United States)

    Yoneyama, Yosuke; Lanzerstorfer, Peter; Niwa, Hideaki; Umehara, Takashi; Shibano, Takashi; Yokoyama, Shigeyuki; Chida, Kazuhiro; Weghuber, Julian; Hakuno, Fumihiko; Takahashi, Shin-Ichiro

    2018-04-11

    Insulin-like growth factor-I receptor (IGF-IR) preferentially regulates the long-term IGF activities including growth and metabolism. Kinetics of ligand-dependent IGF-IR endocytosis determines how IGF induces such downstream signaling outputs. Here, we find that the insulin receptor substrate (IRS)-1 modulates how long ligand-activated IGF-IR remains at the cell surface before undergoing endocytosis in mammalian cells. IRS-1 interacts with the clathrin adaptor complex AP2. IRS-1, but not an AP2-binding-deficient mutant, delays AP2-mediated IGF-IR endocytosis after the ligand stimulation. Mechanistically, IRS-1 inhibits the recruitment of IGF-IR into clathrin-coated structures; for this reason, IGF-IR avoids rapid endocytosis and prolongs its activity on the cell surface. Accelerating IGF-IR endocytosis via IRS-1 depletion induces the shift from sustained to transient Akt activation and augments FoxO-mediated transcription. Our study establishes a new role for IRS-1 as an endocytic regulator of IGF-IR that ensures sustained IGF bioactivity, independent of its classic role as an adaptor in IGF-IR signaling. © 2018, Yoneyama et al.

  15. IGF-I abuse in sport.

    Science.gov (United States)

    Guha, Nishan; Dashwood, Alexander; Thomas, Nicholas J; Skingle, Alexander J; Sönksen, Peter H; Holt, Richard I G

    2009-09-01

    It is widely believed that growth hormone (GH) is abused by athletes for its anabolic and lipolytic effects. Many of the physiological effects of GH are mediated by the production of insulin-like growth factor-I (IGF-I). Both GH and IGF-I appear on the World Anti-Doping Agency list of prohibited substances. Little is known, however, about the prevalence of abuse with exogenous IGF-I. IGF-I has effects on carbohydrate, lipid and protein metabolism and some of these actions could prove beneficial to competitive athletes. No studies have demonstrated a positive effect of IGF-I on physical performance in healthy individuals but this has not yet been studied in appropriately designed trials. Two pharmaceutical preparations of IGF-I have recently become available for the treatment of growth disorders in children. This availability is likely to increase the prevalence of IGF-I abuse. Combining IGF-I with its binding protein IGFBP-3 in one preparation has the potential to reduce the side-effect profile but the adverse effects of long term IGF-I abuse are currently unknown. Detection of abuse with IGF-I is a major challenge for anti-doping authorities. It is extremely difficult to distinguish the exogenous recombinant form of the hormone from endogenously-produced IGF-I. One approach currently being investigated is based on measuring markers of GH and IGF-I action. This has already proved successful in the fight against GH abuse and, it is hoped, will subsequently lead to a similar test for detection of IGF-I abuse.

  16. Insulin-like growth factor (IGF-I and IGF binding proteins axis in diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Min Sun Kim

    2015-06-01

    Full Text Available Increasing evidence suggests an important role of the insulin-like growth factor (IGF-IGF binding protein (IGFBP axis in the maintenance of normal glucose and lipid metabolism. Significant changes occur in the local IGF-I-IGFBPs environment in response to the diabetic milieu. A significant reduction of serum IGF-I levels was observed in patients with type 1 diabetes mellitus (T1DM. Inversely, considerably increased serum levels of IGF-I and IGFBP-3 levels were detected in individuals with glucose intolerance including T2DM. Recently, several prospective studies indicated that baseline levels of IGF-I and IGFBPs are associated with the development of diabetes. These findings suggest that disturbances in insulin and IGF-I-IGFBP axis can affect the development of glucose intolerance including diabetes.

  17. Metabolic Fingerprints of Circulating IGF-1 and the IGF-1/IGFBP-3 Ratio

    DEFF Research Database (Denmark)

    Knacke, Henrike; Pietzner, Maik; Do, Kieu Trinh

    2016-01-01

    OBJECTIVE: IGF-1 is known for its various physiological and severe pathophysiological effects on human metabolism; however, underlying molecular mechanisms still remain unsolved. To reveal possible molecular mechanisms mediating these effects, for the first time, we associated serum IGF-1 levels...... with multifluid untargeted metabolomics data. METHODS: Plasma/urine samples of 995 nondiabetic participants of the Study of Health in Pomerania were characterized by mass spectrometry. Sex-specific linear regression analyses were performed to assess the association of IGF-1 and IGF-1/IGF binding protein 3 ratio...... with metabolites. Additionally, the predictive ability of the plasma and urine metabolome for IGF-1 was assessed by orthogonal partial least squares analyses. RESULTS AND CONCLUSIONS: We revealed a multifaceted image of associated metabolites with large sex differences. Confirming previous reports, we detected...

  18. Structural analysis of the interaction of IGF I with the IGF types 1 and 2 and insulin receptors

    International Nuclear Information System (INIS)

    Cascieri, M.A.; Chicchi, G.G.; Hayes, N.S.; Green, B.G.; Applebaum, J.A.; Bayne, M.L.

    1987-01-01

    A synthetic gene for human IGF I has been synthesized which directs the synthesis and secretion of fully active human IGF I (rIGF I) from yeast. rIGF I inhibits binding of 125 I-IGF I to type 1 IGF receptors from human placenta (IGF-R1, IC50 = 4 nM), binding of 125 I-insulin to insulin receptors (IR, IC50 = 881 nM), binding of 125 I-MSA to type 2 IGF receptors from rat liver (IGF-R2, IC50 = 80 nM), and binding of 125 I-IGF I to crude human serum binding protein (hBP, IC50 = 0.42 nM). rIGF I is equipotent to human IGF I in stimulating glucose transport in murine BC3H1 cells and in stimulating DNA synthesis in rat A10 cells. Site directed mutagenesis of the synthetic gene is being used to characterize the structural requirements for binding to these receptors. IGF I (FFY) B(23-25) is equipotent to rIGF I at the IGF-R1 (6.9 nM), the IGF-R2 (36 nM), and the IR (841 nM) and is less potent at the hBP (1.7 nM). In contrast, IGF I(SFY) B(23-25) is 20-fold less potent than rIGF I at the IGF-R1 and is 10-fold less potent than rIGF I at hBP. This peptide is greater than 10-fold less active at the IGF-R2 and the IR. This peptide is a full agonist in the cell assays but 20-50 fold less potent than rIGF I. These data are consistent with the hypothesis that the F to S change destabilizes the tertiary structure of IGF I

  19. Early detection and intervention using neutrophil gelatinase-associated lipocalin (NGAL) may improve renal outcome of acute contrast media induced nephropathy: a randomized controlled trial in patients undergoing intra-arterial angiography (ANTI-CIN Study).

    Science.gov (United States)

    Schilcher, Gernot; Ribitsch, Werner; Otto, Ronald; Portugaller, Rupert H; Quehenberger, Franz; Truschnig-Wilders, Martini; Zweiker, Robert; Stiegler, Philipp; Brodmann, Marianne; Weinhandl, Klemens; Horina, Joerg H

    2011-08-17

    Patients with pre-existing impaired renal function are prone to develop acute contrast media induced nephropathy (CIN). Neutrophil gelatinase-associated lipocalin (NGAL), a new biomarker predictive for acute kidney injury (AKI), has been shown to be useful for earlier diagnosis of CIN; however, urinary NGAL values may be markedly increased in chronic renal failure at baseline. Results from those studies suggested that urinary NGAL values may not be helpful for the clinician. An intravenous volume load is a widely accepted prophylactic measure and possibly a reasonable intervention to prevent deterioration of renal function. The aim of our study is to evaluate NGAL as an early predictor of CIN and to investigate the clinical benefit of early post-procedural i.v. hydration. The study will follow a prospective, open-label, randomized controlled design. Patients requiring intra-arterial contrast media (CM) application will be included and receive standardized, weight-based, intravenous hydration before investigation. Subjects with markedly increased urinary NGAL values after CM application will be randomized into one of two study groups. Group A will receive 3-4 ml/kg BW/h 0.9% saline intravenously for 6 hours. Group B will undergo only standard treatment consisting of unrestricted oral fluid intake. The primary outcome measure will be CIN defined by an increase greater than 25% of baseline serum creatinine. Secondary outcomes will include urinary NGAL values, cystatin C values, contrast media associated changes in cardiac parameters such as NT-pro-BNP/troponin T, changes in urinary cytology, need for renal replacement treatment, length of stay in hospital and death.We assume that 20% of the included patients will show a definite rise in urinary NGAL. Prospective statistical power calculations indicate that the study will have 80% statistical power to detect a clinically significant decrease of CIN of 40% in the treatment arm if 1200 patients are recruited into the

  20. Clinical significance of NGAL and KIM-1 for acute kidney injury in patients with scrub typhus.

    Science.gov (United States)

    Sun, In O; Shin, Sung Hye; Cho, A Young; Yoon, Hyun Ju; Chang, Mi Yok; Lee, Kwang Young

    2017-01-01

    The aim of this study is to investigate the clinical significance of neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1) for acute kidney injury (AKI) in patients with scrub typhus. From 2014 to 2015, 145 patients were diagnosed with scrub typhus. Of these, we enrolled 138 patients who were followed up until renal recovery or for at least 3 months. We measured serum and urine NGAL and KIM-1 levels and evaluated prognostic factors affecting scrub typhus-associated AKI. Of the 138 patients, 25 had scrub typhus-associated AKI. The incidence of AKI was 18.1%; of which 11.6%, 4.3%, and 2.2% were classified as risk, injury, and failure, respectively, according to RIFLE criteria. Compared with patients in the non-AKI group, patients in the AKI group were older and showed higher total leukocyte counts and hypoalbuminemia or one or more comorbidities such as hypertension (72% vs 33%, pscrub typhus-associated AKI.

  1. Potentials of plasma NGAL and MIC-1 as biomarker(s in the diagnosis of lethal pancreatic cancer.

    Directory of Open Access Journals (Sweden)

    Sukhwinder Kaur

    Full Text Available Pancreatic cancer (PC is lethal malignancy with very high mortality rate. Absence of sensitive and specific marker(s is one of the major factors for poor prognosis of PC patients. In pilot studies using small set of patients, secreted acute phase proteins neutrophil gelatinase associated lipocalin (NGAL and TGF-β family member macrophage inhibitory cytokine-1 (MIC-1 are proposed as most potential biomarkers specifically elevated in the blood of PC patients. However, their performance as diagnostic markers for PC, particularly in pre-treatment patients, remains unknown. In order to evaluate the diagnostic efficacy of NGAL and MIC-1, their levels were measured in plasma samples from patients with pre-treatment PC patients (n = 91 and compared it with those in healthy control (HC individuals (n = 24 and patients with chronic pancreatitis (CP, n = 23. The diagnostic performance of these two proteins was further compared with that of CA19-9, a tumor marker commonly used to follow PC progression. The levels of all three biomarkers were significantly higher in PC compared to HCs. The mean (± standard deviation, SD plasma NGAL, CA19-9 and MIC-1 levels in PC patients was 111.1 ng/mL (2.2, 219.2 U/mL (7.8 and 4.5 ng/mL (4.1, respectively. In comparing resectable PC to healthy patients, all three biomarkers were found to have comparable sensitivities (between 64%-81% but CA19-9 and NGAL had a higher specificity (92% and 88%, respectively. For distinguishing resectable PC from CP patients, CA19-9 and MIC-1 were most specific (74% and 78% respectively. CA19-9 at an optimal cut-off of 54.1 U/ml is highly specific in differentiating resectable (stage 1/2 pancreatic cancer patients from controls in comparison to its clinical cut-off (37.1 U/ml. Notably, the addition of MIC-1 to CA19-9 significantly improved the ability to distinguish resectable PC cases from CP (p = 0.029. Overall, MIC-1 in combination with CA19-9 improved the diagnostic

  2. Impact of IGF-1, IGF-1R, and IGFBP-3 promoter methylation on the risk and prognosis of esophageal carcinoma.

    Science.gov (United States)

    Ye, Peng; Qu, Chang-Fa; Hu, Xue-Lin

    2016-05-01

    The aim of this study is to investigate IGF-1, IGF-1R, and IGFBP-3 methylations in esophageal carcinoma (EC) patients and their relationship with the development and prognosis of EC. This study population consisted of 264 patients (case group) whom EC radical resection was performed and 283 healthy individuals (control group). Methylation-specific PCR (MSP) detected the methylation status of IGF-1, IGF-1R, and IGFBP-3 in the peripheral blood in both groups. The expressions of IGF-1, IGF-1R, and IGFBP-3 in EC and adjacent normal tissues were detected by immunohistochemistry (IHC). The methylation rates of IGF-1, IGF-1R, IGFBP3, and IGF-1 + IGF1R + IGFBP3 in the case group were higher than those in the control group (all P IGF-1, IGF-1R, IGFBP3, and IGF-1 + IGF1R + IGFBP3 IGF-1 among patients of different clinicopathological features (all P IGF-1 and IGF-1R in EC were significantly higher than those in adjacent normal tissues (both P IGF-1 and IGF1R gene promoter methylation was positively correlated with the positive expressions of IGF-1 (r = 0.139, P = 0.024) and IGF-1R (r = 0.135, P = 0.028), while the IGFBP3 methylation was negatively correlated with the positive expression of IGFBP3 (r = -0.133, P = 0.031). The positive expressions of IGF-1, IGF-1R, and IGFBP-3 were related to different clinicopathological features (all P IGF-1, IGF-1R, and IGF-1 + IGF1R + IGFBP3 ; expressions of IGF-1 and IGF-1R protein; infiltration depth; and lymph node metastasis (LNM) were independent factors of EC prognosis. Our study demonstrated that methylation of IGF-1, IGF1R, IGFBP3, and IGF-1 + IGF1R + IGFBP3 was closely linked with the occurrence of EC and patients' clinicopathological features. Besides, the methylation status of the target genes and the expressions of IGF-1 and IGF-1R protein were independent factors of EC prognosis, which could provide a direction for the prognosis and treatment of EC.

  3. IGF-1-dependent subunit communication of the IGF-1 holoreceptor: Interactions between αβ heterodimeric receptor halves

    International Nuclear Information System (INIS)

    Wilden, P.A.; Treadway, J.L.; Morrison, B.D.; Pessin, J.E.

    1989-01-01

    Examination of 125 I-IGF-1 affinity cross-linking and β-subunit autophosphorylation has indicated that IGF-1 induces a covalent association of isolated αβ heterodimeric IGF-1 receptors into an α 2 β 2 heterotetrameric state, in a similar manner to that observed for the insulin receptor. The formation of the α 2 β 2 heterotetrameric IGF-1 receptor complex from the partially purified αβ heterodimers was time dependent with half-maximal formation in approximately 30 min at saturating IGF-1 concentrations. The IGF-1-dependent association of the partially purified αβ heterodimers into an α 2 β 2 heterotetrameric state was specific for the IGF-1 receptors since IGF-1 was unable to stimulate the protein kinase activity of the purified αβ heterodimeric insulin receptor complex. Incubation of the α 2 β 2 heterotetrameric IGF-1 holoreceptor with the specific sulfhydryl agent iodoacetamide (IAN) did not alter 125 I-IGF-1 binding or IGF-1 stimulation of protein kinase activity. However, IAN treatment of the αβ heterodimeric IGF-1 receptors inhibited the IGF-1 dependent covalent formation of the disulfide-linked α 2 β 2 heterotetrameric complex. These data indicate that IGF-1 induces the covalent association of isolated αβ heterodimeric IGF-1 receptor complexes into a disulfide-linked α 2 β 2 heterotetrameric state whereas Mn/MgATP induces a noncovalent association. Therefore, unlike the insulin receptor in which noncovalent association is sufficient for kinase activation, only the covalent assembly of the IGF-1 receptor αβ heterodimers into the α 2 β 2 heterotetrameric holoreceptor complex is associated with ligand-stimulated protein kinase activation

  4. Cyclic glycine-proline regulates IGF-1 homeostasis by altering the binding of IGFBP-3 to IGF-1

    Science.gov (United States)

    Guan, Jian; Gluckman, Peter; Yang, Panzao; Krissansen, Geoff; Sun, Xueying; Zhou, Yongzhi; Wen, Jingyuan; Phillips, Gemma; Shorten, Paul R.; McMahon, Chris D.; Wake, Graeme C.; Chan, Wendy H. K.; Thomas, Mark F.; Ren, April; Moon, Steve; Liu, Dong-Xu

    2014-03-01

    The homeostasis of insulin-like growth factor-1 (IGF-1) is essential for metabolism, development and survival. Insufficient IGF-1 is associated with poor recovery from wounds whereas excessive IGF-1 contributes to growth of tumours. We have shown that cyclic glycine-proline (cGP), a metabolite of IGF-1, can normalise IGF-1 function by showing its efficacy in improving the recovery from ischemic brain injury in rats and inhibiting the growth of lymphomic tumours in mice. Further investigation in cell culture suggested that cGP promoted the activity of IGF-1 when it was insufficient, but inhibited the activity of IGF-1 when it was excessive. Mathematical modelling revealed that the efficacy of cGP was a modulated IGF-1 effect via changing the binding of IGF-1 to its binding proteins, which dynamically regulates the balance between bioavailable and non-bioavailable IGF-1. Our data reveal a novel mechanism of auto-regulation of IGF-1, which has physiological and pathophysiological consequences and potential pharmacological utility.

  5. Relative IGF-1 and IGF-2 gene expression in maternal and fetal tissues from diabetic swine

    International Nuclear Information System (INIS)

    Wolverton, C.K.; Leaman, D.W.; White, M.E.; Ramsay, T.G.

    1990-01-01

    Fourteen pregnant, crossbred gilts were utilized in this study. Seven gilts were injected with alloxan (50 mg/kg) at day 75 of gestation to induce diabetes. Gilts underwent caesarean section on day 105 of gestation. Samples were collected from maternal skeletal muscle, adipose tissue, uterus and endometrium; and from fetal skeletal muscle, adipose tissue, placenta, liver, lung, kidney, heart, brain and spleen. Tissues were frozen in liquid nitrogen for later analysis of IGF-1 and IGF-2 gene expression. Samples were pooled and total RNA was isolated using the guanidine isothiocynate method. Total mRNA was analyzed by dot blot hybridization. Blots were probed with 32 P-cDNA for porcine IGF-1 and rat IGF-2. IGF-1 gene expression in maternal tissues was unaffected by diabetes. Maternal diabetes increased IGF-2 mRNA in maternal adipose tissue but exhibited no effect in muscle or uterus. Expression of IGF-2 by maternal endometrium was decreased by diabetes. Maternal diabetes induced an increase in IGF-1 gene expression in muscle and placenta while causing an increase in IGF-2 expression in fetal liver and placenta. IGF-2 mRNA was lower in lung from fetuses of diabetic mothers than in controls. These results suggest that maternal diabetes alters IGF-1 and IGF-2 gene expression in specific tissues and differential regulation of these genes appears to exist in the mother and developing fetus

  6. S-nitrosylation of the IGF-1 receptor disrupts the cell proliferative action of IGF-1.

    Science.gov (United States)

    Okada, Kazushi; Zhu, Bao-Ting

    2017-09-30

    The insulin-like growth factor 1 receptor (IGF-1R) is a disulfide-linked heterotetramer containing two α-subunits and two β-subunits. Earlier studies demonstrate that nitric oxide (NO) can adversely affect IGF-1 action in the central nervous system. It is known that NO can induce S-nitrosylation of the cysteine residues in proteins, thereby partly contributing to the regulation of protein function. In the present study, we sought to determine whether S-nitrosylation of the cysteine residues in IGF-1R is an important post-translational modification that regulates its response to IGF-1. Using cultured SH-SY5Y human neuroblastoma cells as an in vitro model, we found that treatment of cells with S-nitroso-cysteine (SNOC), a NO donor that can nitrosylate the cysteine residues in proteins, induces S-nitrosylation of the β subunit of IGF-1R but not its α-subunit. IGF-1Rβ S-nitrosylation by SNOC is coupled with increased dissociation of the IGF-1R protein complex. In addition, disruption of the IGF-1R function resulting from S-nitrosylation of the IGF-1Rβ subunit is associated with disruption of the phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling pathways. Further, we observed that SNOC-induced IGF-1Rβ S-nitrosylation results in a dose-dependent inhibition of cell proliferation and survival. Together, these results suggest that elevated nitrosative stress may result in dysfunction of cellular IGF-1R signaling through S-nitrosylation of the cysteine residues in the IGF-1Rβ subunit, thereby disrupting the downstream PI3K and MAPK signaling functions and ultimately resulting in inhibition of cell proliferation and survival. Copyright © 2017. Published by Elsevier Inc.

  7. Clinical significance of serum circulating insulin-like growth factor-1 (IGF-1) mRNA in hepatocellular carcinoma.

    Science.gov (United States)

    Karabulut, S; Duranyıldız, D; Tas, F; Gezer, U; Akyüz, F; Serilmez, M; Ozgür, E; Yasasever, C T; Vatansever, S; Aykan, N F

    2014-03-01

    The principal aim of our study was to investigate the usefulness of serum protein and circulating mRNA of insulin-like growth factor-1 (IGF-1) as a diagnostic and prognostic tool in hepatocellular carcinoma (HCC). Fifty-four HCC patients and age- and sex-matched 20 healthy controls were enrolled into this study. Pretreatment serum IGF-1 and IGF-1 mRNA were determined by the solid-phase sandwich ELISA and quantitative RT-PCR method, respectively. The median age at diagnosis was 60 years, range 36-77 years; where majority of group were male (n = 48, 88.8%). All patients had cirrhotic history. Forty-six percent (n = 25) of patients had Child-Pugh score A, 30% (n = 16) had score B or C. All of the patients were treated with local therapies and none of them received sorafenib. The baseline serum IGF-1 mRNA levels were significantly higher in HCC patients than in the control group (p = 0.04), whereas no significant difference was observed for IGF-1 protein levels between the two group (p = 0.18). Patients with history of HBV infection, who were not treated, and who received multiple palliative treatment for HCC had higher serum IGF-1 mRNA levels (p = 0.03, 0.03, and 0.05, respectively). Poor performance status (p IGF-1 nor serum IGF-1 mRNA had significantly adverse effect on survival (p = 0.53 and 0.42, respectively).

  8. The Insulin-like Growth Factor (IGF)-I E-Peptides Modulate Cell Entry of the Mature IGF-I Protein

    OpenAIRE

    Pfeffer, Lindsay A.; Brisson, Becky K.; Lei, Hanqin; Barton, Elisabeth R.

    2009-01-01

    Insulin-like growth factor (IGF)-I is a critical protein for cell development and growth. Alternative splicing of the igf1 gene gives rise to multiple isoforms. In rodents, proIGF-IA and proIGF-IB have different carboxy-terminal extensions called the E-peptides (EA and EB) and upon further posttranslational processing, produce the identical mature IGF-I protein. Rodent EB has been reported to have mitogenic and motogenic effects independent of IGF-I. However, effects of EA or EB on mature IGF...

  9. Comparison of acid ethanol extraction and acid gel filtration prior to IGF-I and IGF-II radioimmunoassays

    International Nuclear Information System (INIS)

    Bang, P.; Eriksson, U.; Wivall, I.-L.; Hall, K.; Sara, V.

    1991-01-01

    Insulin-like growth factor binding proteins interfere in the IGF-I and -II radioimmunoassays. In an attempt to overcome this problem, we have compared the use of truncated IGF-I, with reduced IGFBP affinity, and IGF-I as radioligands for IGF-I RIA measurements in serum separated by acid gel filtration or acid ethanol extraction followed by cryo-precipitation. With truncated IGF-I as radioligand the IGF-I measurements in acid gel filtrates and acid ethanol extracts were significantly correlated in healthy subjects (N=42, r=0.91, p<0.001) and in patients with acromegaly (N=10, r=0.85, p<0.01), GH deficiency (N=10, r=0.88, p<0.001) or Type I diabetes mellitus (N=10, r=0.90, p<0.001). In contrast, the IGF-I concentrations in acid ethanol extracts determined with IGF-I as radioligand did not correlate with those in acid gel filtrates using truncated IGF-I radioligand in patients with acromegaly (r=0.61, NS) or GH deficiency (r=0.46, NS). In the latter group the mean IGF-I concentrations measured in acid ethanol extracts were erroneously elevated by 112%. Low-affinity antibodies used for IGF-II RIA determinations failed to give reliable results in acid ethanol extracts from patients with Type I diabetes mellitus or GH deficiency. In conclusion, erroneously high IGF-I concentrations owing to binding of the radioligand to IGFBPs not completely removed by acid ethanol extraction can be avoided by the use of truncated IGF-I as radioligand. (author)

  10. IGF-1 receptor and IGF binding protein-3 might predict prognosis of patients with resectable pancreatic cancer

    International Nuclear Information System (INIS)

    Hirakawa, Toshiki; Yashiro, Masakazu; Murata, Akihiro; Hirata, Keiichiro; Kimura, Kenjiro; Amano, Ryosuke; Yamada, Nobuya; Nakata, Bunzo; Hirakawa, Kosei

    2013-01-01

    The present study aimed to elucidate the clinicopathologic role of insulin-like growth factor-1 receptor (IGF1R) and IGF binding protein-3 (IGFBP3) in patients with pancreatic cancer. The function of IGFBP3 is controversial, because both inhibition and facilitation of the action of IGF as well as IGF-independent effects have been reported. In this study, IGF1R and IGFBP3 expression was examined, and their potential roles as prognostic markers in patients with pancreatic cancer were evaluated. Clinicopathological features of 122 patients with curatively resected pancreatic cancer were retrospectively reviewed, and expression of IGF1R and IGFBP3 was immunohistochemically analyzed. Expression of IGF1R and IGFBP3 was observed in 50 (41.0%) and 37 (30.3%) patients, respectively. IGF1R expression was significantly associated with histological grade (p = 0.037). IGFBP3 expression had a significant association with tumor location (p = 0.023), and a significant inverse association with venous invasion (p = 0.037). Tumors with IGF1R-positive and IGFBP3-negative expression (n = 32) were significantly frequently Stage II and III (p = 0.011). The prognosis for IGF1R positive patients was significantly poorer than that for IGF1R negative patients (p = 0.0181). IGFBP3 protein expression did not correlate significantly with patient survival. The subset of patients with both positive IGF1R and negative IGFBP3 had worse overall survival (8.8 months versus 12.6 months, respectively, p < 0.001). IGF1R signaling might be associated with tumor aggressiveness, and IGFBP3 might show antiproliferative effects in pancreatic cancer. Both high IGF1R expression and low IGFBP3 expression represent useful prognostic markers for patients with curatively resected pancreatic cancer

  11. Novel cross-talk between IGF-IR and DDR1 regulates IGF-IR trafficking, signaling and biological responses

    Science.gov (United States)

    Sacco, Antonella; Morcavallo, Alaide; Vella, Veronica; Voci, Concetta; Spatuzza, Michela; Xu, Shi-Qiong; Iozzo, Renato V.; Vigneri, Riccardo; Morrione, Andrea; Belfiore, Antonino

    2015-01-01

    The insulin-like growth factor-I receptor (IGF-IR), plays a key role in regulating mammalian development and growth, and is frequently deregulated in cancer contributing to tumor initiation and progression. Discoidin domain receptor 1 (DDR1), a collagen receptor tyrosine-kinase, is as well frequently overexpressed in cancer and implicated in cancer progression. Thus, we investigated whether a functional cross-talk between the IGF-IR and DDR1 exists and plays any role in cancer progression. Using human breast cancer cells we found that DDR1 constitutively associated with the IGF-IR. However, this interaction was enhanced by IGF-I stimulation, which promoted rapid DDR1 tyrosine-phosphorylation and co-internalization with the IGF-IR. Significantly, DDR1 was critical for IGF-IR endocytosis and trafficking into early endosomes, IGF-IR protein expression and IGF-I intracellular signaling and biological effects, including cell proliferation, migration and colony formation. These biological responses were inhibited by DDR1 silencing and enhanced by DDR1 overexpression. Experiments in mouse fibroblasts co-transfected with the human IGF-IR and DDR1 gave similar results and indicated that, in the absence of IGF-IR, collagen-dependent phosphorylation of DDR1 is impaired. These results demonstrate a critical role of DDR1 in the regulation of IGF-IR action, and identify DDR1 as a novel important target for breast cancers that overexpress IGF-IR. PMID:25840417

  12. Aging, Atherosclerosis, and IGF-1

    Science.gov (United States)

    Higashi, Yusuke; Sukhanov, Sergiy; Anwar, Asif; Shai, Shaw-Yung

    2012-01-01

    Insulin-like growth factor 1 (IGF-1) is an endocrine and autocrine/paracrine growth factor that circulates at high levels in the plasma and is expressed in most cell types. IGF-1 has major effects on development, cell growth and differentiation, and tissue repair. Recent evidence indicates that IGF-1 reduces atherosclerosis burden and improves features of atherosclerotic plaque stability in animal models. Potential mechanisms for this atheroprotective effect include IGF-1–induced reduction in oxidative stress, cell apoptosis, proinflammatory signaling, and endothelial dysfunction. Aging is associated with increased vascular oxidative stress and vascular disease, suggesting that IGF-1 may exert salutary effects on vascular aging processes. In this review, we will provide a comprehensive update on IGF-1's ability to modulate vascular oxidative stress and to limit atherogenesis and the vascular complications of aging. PMID:22491965

  13. IGF-II Promotes Stemness of Neural Restricted Precursors

    Science.gov (United States)

    Ziegler, Amber N.; Schneider, Joel S.; Qin, Mei; Tyler, William A.; Pintar, John E.; Fraidenraich, Diego; Wood, Teresa L.; Levison, Steven W.

    2016-01-01

    Insulin-like growth factor (IGF)-I and IGF-II regulate brain development and growth through the IGF type 1 receptor (IGF-1R). Less appreciated is that IGF-II, but not IGF-I, activates a splice variant of the insulin receptor (IR) known as IR-A. We hypothesized that IGF-II exerts distinct effects from IGF-I on neural stem/progenitor cells (NSPs) via its interaction with IR-A. Immunofluorescence revealed high IGF-II in the medial region of the subventricular zone (SVZ) comprising the neural stem cell niche, with IGF-II mRNA predominant in the adjacent choroid plexus. The IGF-1R and the IR isoforms were differentially expressed with IR-A predominant in the medial SVZ, whereas the IGF-1R was more abundant laterally. Similarly, IR-A was more highly expressed by NSPs, whereas the IGF-1R was more highly expressed by lineage restricted cells. In vitro, IGF-II was more potent in promoting NSP expansion than either IGF-I or standard growth medium. Limiting dilution and differentiation assays revealed that IGF-II was superior to IGF-I in promoting stemness. In vivo, NSPs propagated in IGF-II migrated to and took up residence in periventricular niches while IGF-I-treated NSPs predominantly colonized white matter. Knockdown of IR or IGF-1R using shRNAs supported the conclusion that the IGF-1R promotes progenitor proliferation, whereas the IR is important for self-renewal. Q-PCR revealed that IGF-II increased Oct4, Sox1, and FABP7 mRNA levels in NSPs. Our data support the conclusion that IGF-II promotes the self-renewal of neural stem/progenitors via the IR. By contrast, IGF-1R functions as a mitogenic receptor to increase precursor abundance. PMID:22593020

  14. Nutritional regulation of IGF-II, but not IGF-I, is age dependent in sheep.

    Science.gov (United States)

    Oldham, J M; Martyn, J A; Hua, K M; MacDonald, N A; Hodgkinson, S C; Bass, J J

    1999-12-01

    In post-natal animals, plasma concentrations of IGF-I are tightly regulated by nutritional status. The current study reports that plasma levels of IGF-II in sheep are also regulated by nutrition, but whether plasma IGF-II is increased, decreased or remains the same, depends on the age of the animal. Ewe lambs, ranging in age from 2 days to 2 years, were fed or fasted for lengths of time between 24 and 72 h. Blood samples were taken at intervals of 24 h throughout the treatment period and immediately before slaughter. Plasma concentrations of IGF-I increased with advancing age in fed animals (Panimals matured (Pnutrition (Panimals (Panimals (Pnutritional sensitivity of serum IGF-binding proteins (BPs) also changed with age. The 29 kDa BP, which we presume to be BP1, was elevated by fasting in young animals and reduced slightly in older animals. BP2 was increased to a similar magnitude by fasting at all ages. BP3 was depressed by fasting in young animals and showed little change in adults. In contrast, a 24 kDa BP, which is probably BP4, showed little change in young animals and was reduced substantially in older sheep. In conclusion, the response of plasma IGF-II to fasting suggests that this peptide has functions in mediating nutritional stress which depend on the age of the animal, and also that the role of IGF-II may differ from that of IGF-I in adults.

  15. The GH-IGF1 axis and longevity. The paradigm of IGF1 deficiency.

    Science.gov (United States)

    Laron, Zvi

    2008-01-01

    Primary or secondary IGF1 deficiency has been implicated in shortening of lifespan. This paper reviews available data on the influence of IGF1 deficiency on lifespan and longevity in animals and man. It has been shown that inactivation of the IGF1 gene or of the GH receptor in both invertebrates (C-elegans, flies-Drosphila) and rodents (mice and rats), leading to IGF1 deficiency, prolong life, particularly in females. In man, evaluation of the 2 largest cohorts of patients with Laron syndrome (inactive GH receptor resulting in IGF1 deficiency) in Israel and Ecuador revealed that despite their dwarfism and marked obesity, patients are alive at the ages of 75-78 years, with some having reached even more advanced ages. It is assumed that a major contributing factor is their protection from cancer, a major cause of death in the general population.

  16. Pancreatic Fibroblasts Stimulate the Motility of Pancreatic Cancer Cells through IGF1/IGF1R Signaling under Hypoxia.

    Directory of Open Access Journals (Sweden)

    Toshiki Hirakawa

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC is characterized by its hypovascularity, with an extremely poor prognosis because of its highly invasive nature. PDAC proliferates with abundant stromal cells, suggesting that its invasive activity might be controlled by intercellular interactions between cancer cells and fibroblasts. Using four PDAC cell lines and two pancreas cancer-associated fibroblasts (CAFs, the expression of insulin-like growth factor-1 (IGF1 and IGF1 receptor (IGF1R was evaluated by RT-PCR, FACScan, western blot, or ELISA. Correlation between IGF1R and the hypoxia marker carbonic anhydrase 9 (CA9 was examined by immunohistochemical staining of 120 pancreatic specimens. The effects of CAFs, IGF1, and IGF1R inhibitors on the motility of cancer cells were examined by wound-healing assay or invasion assay under normoxia (20% O2 and hypoxia (1% O2. IGF1R expression was significantly higher in RWP-1, MiaPaCa-2, and OCUP-AT cells than in Panc-1 cells. Hypoxia increased the expression level of IGF1R in RWP-1, MiaPaCa-2, and OCUP-AT cells. CA9 expression was correlated with IGF1R expression in pancreatic specimens. CAFs produced IGF1 under hypoxia, but PDAC cells did not. A conditioned medium from CAFs, which expressed αSMA, stimulated the migration and invasion ability of MiaPaCa-2, RWP-1, and OCUP-AT cells. The motility of all PDAC cells was greater under hypoxia than under normoxia. The motility-stimulating ability of CAFs was decreased by IGF1R inhibitors. These findings might suggest that pancreas CAFs stimulate the invasion activity of PDAC cells through paracrine IGF1/IGF1R signaling, especially under hypoxia. Therefore the targeting of IGF1R signaling might represent a promising therapeutic approach in IGF1R-dependent PDAC.

  17. Phosphatidylinositol 3-Kinase (PI3K) Activity Bound to Insulin-like Growth Factor-I (IGF-I) Receptor, which Is Continuously Sustained by IGF-I Stimulation, Is Required for IGF-I-induced Cell Proliferation*

    Science.gov (United States)

    Fukushima, Toshiaki; Nakamura, Yusaku; Yamanaka, Daisuke; Shibano, Takashi; Chida, Kazuhiro; Minami, Shiro; Asano, Tomoichiro; Hakuno, Fumihiko; Takahashi, Shin-Ichiro

    2012-01-01

    Continuous stimulation of cells with insulin-like growth factors (IGFs) in G1 phase is a well established requirement for IGF-induced cell proliferation; however, the molecular components of this prolonged signaling pathway that is essential for cell cycle progression from G1 to S phase are unclear. IGF-I activates IGF-I receptor (IGF-IR) tyrosine kinase, followed by phosphorylation of substrates such as insulin receptor substrates (IRS) leading to binding of signaling molecules containing SH2 domains, including phosphatidylinositol 3-kinase (PI3K) to IRS and activation of the downstream signaling pathways. In this study, we found prolonged (>9 h) association of PI3K with IGF-IR induced by IGF-I stimulation. PI3K activity was present in this complex in thyrocytes and fibroblasts, although tyrosine phosphorylation of IRS was not yet evident after 9 h of IGF-I stimulation. IGF-I withdrawal in mid-G1 phase impaired the association of PI3K with IGF-IR and suppressed DNA synthesis the same as when PI3K inhibitor was added. Furthermore, we demonstrated that Tyr1316-X-X-Met of IGF-IR functioned as a PI3K binding sequence when this tyrosine is phosphorylated. We then analyzed IGF signaling and proliferation of IGF-IR−/− fibroblasts expressing exogenous mutant IGF-IR in which Tyr1316 was substituted with Phe (Y1316F). In these cells, IGF-I stimulation induced tyrosine phosphorylation of IGF-IR and IRS-1/2, but mutated IGF-IR failed to bind PI3K and to induce maximal phosphorylation of GSK3β and cell proliferation in response to IGF-I. Based on these results, we concluded that PI3K activity bound to IGF-IR, which is continuously sustained by IGF-I stimulation, is required for IGF-I-induced cell proliferation. PMID:22767591

  18. Bioactive insulin-like growth factor (IGF) I and IGF-binding protein-1 in anorexia nervosa

    DEFF Research Database (Denmark)

    Støving, René; Chen, Jian-Wen; Glintborg, Dorte

    2007-01-01

    CONTEXT: Regulation of IGF-I activity appears crucial in anorexia nervosa (AN) during adaptation to chronic starvation as well as during the regenerative processes on nutritional restoration. OBJECTIVE: The objective of this study was to examine the relationship between IGF-I bioactivity and IGF...

  19. Unbound (bioavailable IGF1 enhances somatic growth

    Directory of Open Access Journals (Sweden)

    Sebastien Elis

    2011-09-01

    Understanding insulin-like growth factor-1 (IGF1 biology is of particular importance because, apart from its role in mediating growth, it plays key roles in cellular transformation, organ regeneration, immune function, development of the musculoskeletal system and aging. IGF1 bioactivity is modulated by its binding to IGF-binding proteins (IGFBPs and the acid labile subunit (ALS, which are present in serum and tissues. To determine whether IGF1 binding to IGFBPs is necessary to facilitate normal growth and development, we used a gene-targeting approach and generated two novel knock-in mouse models of mutated IGF1, in which the native Igf1 gene was replaced by Des-Igf1 (KID mice or R3-Igf1 (KIR mice. The KID and KIR mutant proteins have reduced affinity for the IGFBPs, and therefore present as unbound IGF1, or ‘free IGF1’. We found that both KID and KIR mice have reduced serum IGF1 levels and a concomitant increase in serum growth hormone levels. Ternary complex formation of IGF1 with the IGFBPs and the ALS was markedly reduced in sera from KID and KIR mice compared with wild type. Both mutant mice showed increased body weight, body and bone lengths, and relative lean mass. We found selective organomegaly of the spleen, kidneys and uterus, enhanced mammary gland complexity, and increased skeletal acquisition. The KID and KIR models show unequivocally that IGF1-complex formation with the IGFBPs is fundamental for establishing normal body and organ size, and that uncontrolled IGF bioactivity could lead to pathological conditions.

  20. A moderate elevation of circulating levels of IGF-I does not alter ErbB2 induced mammary tumorigenesis

    International Nuclear Information System (INIS)

    Dearth, Robert K; Kuiatse, Isere; Wang, Yu-Fen; Liao, Lan; Hilsenbeck, Susan G; Brown, Powel H; Xu, Jianming; Lee, Adrian V

    2011-01-01

    Epidemiological evidence suggests that moderately elevated levels of circulating insulin-like growth factor-I (IGF-I) are associated with increased risk of breast cancer in women. How circulating IGF-I may promote breast cancer incidence is unknown, however, increased IGF-I signaling is linked to trastuzumab resistance in ErbB2 positive breast cancer. Few models have directly examined the effect of moderately high levels of circulating IGF-I on breast cancer initiation and progression. The purpose of this study was to assess the ability of circulating IGF-I to independently initiate mammary tumorigenesis and/or accelerate the progression of ErbB2 mediated mammary tumor growth. We crossed heterozygous TTR-IGF-I mice with heterozygous MMTV-ErbB2 mice to generate 4 different genotypes: TTR-IGF-I/MMTV-ErbB2 (bigenic), TTR-IGF-I only, MMTV-ErbB2 only, and wild type (wt). Virgin females were palpated twice a week and harvested when tumors reached 1000 mm 3 . For study of normal development, blood and tissue were harvested at 4, 6 and 9 weeks of age in TTR-IGF-I and wt mice. TTR-IGF-I and TTR-IGF-I/ErbB2 bigenic mice showed a moderate 35% increase in circulating total IGF-I compared to ErbB2 and wt control mice. Elevation of circulating IGF-I had no effect upon pubertal mammary gland development. The transgenic increase in IGF-I alone wasn't sufficient to initiate mammary tumorigenesis. Elevated circulating IGF-I had no effect upon ErbB2-induced mammary tumorigenesis or metastasis, with median time to tumor formation being 30 wks and 33 wks in TTR-IGF-I/ErbB2 bigenic and ErbB2 mice respectively (p = 0.65). Levels of IGF-I in lysates from ErbB2/TTR-IGF-I tumors compared to ErbB2 was elevated in a similar manner to the circulating IGF-I, however, there was no effect on the rate of tumor growth (p = 0.23). There were no morphological differences in tumor type (solid adenocarcinomas) between bigenic and ErbB2 mammary glands. Using the first transgenic animal model to

  1. Cyclic glycine-proline regulates IGF-1 homeostasis by altering the binding of IGFBP-3 to IGF-1

    OpenAIRE

    Guan, Jian; Gluckman, Peter; Yang, Panzao; Krissansen, Geoff; Sun, Xueying; Zhou, Yongzhi; Wen, Jingyuan; Phillips, Gemma; Shorten, Paul R.; McMahon, Chris D.; Wake, Graeme C.; Chan, Wendy H. K.; Thomas, Mark F.; Ren, April; Moon, Steve

    2014-01-01

    The homeostasis of insulin-like growth factor-1 (IGF-1) is essential for metabolism, development and survival. Insufficient IGF-1 is associated with poor recovery from wounds whereas excessive IGF-1 contributes to growth of tumours. We have shown that cyclic glycine-proline (cGP), a metabolite of IGF-1, can normalise IGF-1 function by showing its efficacy in improving the recovery from ischemic brain injury in rats and inhibiting the growth of lymphomic tumours in mice. Further investigation ...

  2. Regulation of insulin-like growth factor (IGF) I receptor expression during muscle cell differentiation. Potential autocrine role of IGF-II.

    OpenAIRE

    Rosenthal, S M; Brunetti, A; Brown, E J; Mamula, P W; Goldfine, I D

    1991-01-01

    Muscle is an important target tissue for insulin-like growth factor (IGF) action. The presence of specific, high affinity IGF receptors, as well as the expression of IGF peptides and binding proteins by muscle suggest that a significant component of IGF action in this tissue is mediated through autocrine and/or paracrine mechanisms. To explore autocrine/paracrine action of IGFs in muscle, we studied the regulation of the IGF-I receptor and the expression of IGF peptides during differentiation...

  3. Early programming of the IGF-I axis

    DEFF Research Database (Denmark)

    Larnkjær, Anni; Ingstrup, Helga Kristensen; Schack-Nielsen, Lene

    2009-01-01

    -I production. Conversely, studies suggest that later in childhood, those breastfed are taller and have higher IGF-I levels. Therefore, it has been suggested that the IGF-I axis may be programmed by diet during infancy. The association between IGF-I in infancy and later life is not known. OBJECTIVE: To examine...... for gender, breastfeeding, and other covariates. Likelihood ratio test based on residual log likelihood was applied for analysis including all measurements during infancy. RESULTS: There was an inverse association between IGF-I at 9 months and 17 years (r=-0.39, P=0.014, and n=40). A 1 ng/ml higher IGF...... covariates except IGF-I at 2 months which was significantly negatively associated with IGF-I at 17 years (P=0.030) corresponding to a 0.96 ng/ml lower IGF-I concentration at 17 years per ng/ml IGF-I at 2 months. Inclusion of all measurements during infancy showed a negative association with 17-year values (r...

  4. Comparisons of mRNA expression for insulin-like growth factor (IGF) type 2 receptor (IGF2R) and IGF-1 in small ovarian follicles between cattle selected and not selected for twin ovulations

    Science.gov (United States)

    Both IGF-1 and -2 stimulate ovarian follicular cell proliferation and antral follicle development. Actions of IGF-1 and -2 are mediated through the IGF type 1 receptor, whereas binding of IGF-2 to the IGF2R results in its degradation. Information on the role of IGF2R in regulating bovine follicula...

  5. Neutrophil Gelatinase-Associated Lipocalin Concentration in Vaginal Fluid: Relation to Bacterial Vaginosis and Vulvovaginal Candidiasis.

    Science.gov (United States)

    Beghini, Joziani; Giraldo, Paulo C; Linhares, Iara M; Ledger, William J; Witkin, Steven S

    2015-08-01

    Neutrophil gelatinase-associated lipocalin (NGAL) is a component of innate immunity that prevents iron uptake by microorganisms. We evaluated whether NGAL was present in vaginal fluid and whether concentrations were altered in women with bacterial vaginosis (BV) or vulvovaginal candidiasis (VVC). Vaginal secretions from 52 women with VVC, 43 with BV, and 77 healthy controls were assayed by enzyme-linked immunosorbent assay for NGAL and for concentrations of L-lactic acid. The median concentration of NGAL in vaginal fluid was significantly higher in control women (561 pg/mL) than in women with BV (402 pg/mL; P = .0116) and lower in women with VVC (741 pg/mL; P = .0017). Median lactic acid levels were similar in controls (0.11 mmol/L) and women with VVC (0.13 mmol/L) and were lower in women with BV (0.02 mmol/L; P vaginal NGAL levels that might facilitate the growth of bacteria associated with BV. © The Author(s) 2015.

  6. IGF-I generation test in prepubertal children with Noonan syndrome due to mutations in the PTPN11 gene.

    Science.gov (United States)

    Bertelloni, Silvano; Baroncelli, Giampiero I; Dati, Eleonora; Ghione, Silvia; Baldinotti, Fulvia; Toschi, Benedetta; Simi, Paolo

    2013-01-01

    Short stature represents one of the main features of children with Noonan syndrome. The reason for impaired growth remains largely unknown. To assess GH and IGF1 secretion in children with Noonan syndrome. 12 prepubertal children with Noonan syndrome due to mutations in the PTPN11 gene [7 males, 6 females; median age, years: 8.6 (range 5.1-13.4)] were studied; 12 prepubertal children with short stature (SS) [7 males, 5 females; median age, years: 8.1 (range 4.8-13.1)] served as the control group. GH secretion after arginine stimulation test; IGF1 generation test by measurement of IGF1 levels before and after recombinant GH (rGH) administration (0.05 mg/kg/day for 4 days). Baseline and stimulated peak values of GH were not significantly different between the two groups. At +120 minutes, GH levels remained significantly higher (p = 0.0121) in comparison with baseline values in children with Noonan syndrome. Baseline IGFI levels in patients and in SS controls were not significantly different, in contrast to values after the rGH generation test [205 ng/mL (interquartiles 138.2-252.5 ng/mL) and 284.5 ng/mL (interquartiles 172-476 ng/mL), respectively; p = 0.0248]. IGF1 values were significantly related to height (baseline: r = 773, p = 0.0320; peak: r = 0.591, p = 0.0428) in children with Noonan syndrome. Blunted increase of IGF1 after the rGH generation test was present in children with Noonan syndrome due to mutations in the PTPN11 gene in comparison with SS children. This finding may be due to partial GH resistance in the former likely related to altered Ras-MAPK signaling pathway.

  7. Insulin-like growth factor-I (IGF-1), IGF-binding protein-3 (IGFBP-3) and mammographic features.

    Science.gov (United States)

    Izzo, L; Meggiorini, M L; Nofroni, I; Pala, A; De Felice, C; Meloni, P; Simari, T; Izzo, S; Pugliese, F; Impara, L; Merlini, G; Di Cello, P; Cipolla, V; Forcione, A R; Paliotta, A; Domenici, L; Bolognese, A

    2012-05-01

    The IGF system has recently been shown to play an important role in the regulation of breast tumor cell proliferation. However, also breast density is currently considered as the strongest breast cancer risk factor. It is not yet clear whether these factors are interrelated and if and how they are influenced by menopausal status. The purpose of this study was to examine the possible effects of IGF-1 and IGFBP-3 and IGF-1/IGFBP-3 molar ratio on mammographic density stratified by menopausal status. A group of 341 Italian women were interviewed to collect the following data: family history of breast cancer, reproductive and menstrual factors, breast biopsies, previous administration of hormonal contraceptive therapy, hormone replacement therapy (HRT) in menopause and lifestyle information. A blood sample was drawn for determination of IGF-1, IGFBP-3 levels. IGF-1/ IGFBP-3 molar ratio was then calculated. On the basis of recent mammograms the women were divided into two groups: dense breast (DB) and non-dense breast (NDB). Student's t-test was employed to assess the association between breast density and plasma level of IGF-1, IGFBP-3 and molar ratio. To assess if this relationship was similar in subgroups of pre- and postmenopausal women, the study population was stratified by menopausal status and Student's t-test was performed. Finally, multivariate analysis was employed to evaluate if there were confounding factors that might influence the relationship between growth factors and breast density. The analysis of the relationship between mammographic density and plasma level of IGF-1, IGFBP-3 and IGF-1/ IGFBP-3 molar ratio showed that IGF-1 levels and molar ratio varied in the two groups resulting in higher mean values in the DB group (IGF-1: 109.6 versus 96.6 ng/ml; p= 0.001 and molar ratio 29.4 versus 25.5 ng/ml; p= 0.001) whereas IGFBP-3 showed similar values in both groups (DB and NDB). Analysis of plasma level of IGF-1, IGFBP-3 and IGF-1/IGFBP-3 molar ratio

  8. IGF-1 and insulin as growth hormones.

    Science.gov (United States)

    Laron, Zvi

    2004-01-01

    IGF-1 generated in the liver is the anabolic effector and linear growth promoting hormone of the pituitary growth hormone (GH). This is evidenced by dwarfism in states of congenital IGF-1 deficiency, Igf1 gene mutation/deletions or knockouts, and in Laron syndrome (LS), due to GH receptor gene mutations/deletions or IGF-1 receptor blocking. In a positive way, daily IGF-1 administration to stunted patients with LS or hGH gene deletion accelerates linear growth velocity. IGF-1 acts on the proliferative cells of the epiphyseal cartilage. IGF-1 also induces organ and tissue growth; its absence causing organomicria. Insulin shares a common ancestry with IGF-1 and with 45% amino acid homology, as well as very close relationships in the structure of its receptors and post-receptor cascade, also acts as a growth hormone. It has protein anabolic activity and stimulates IGF-1 synthesis. Pancreas agenesis causes short babies, and obese children with hyperinsulinism, with or without pituitary GH, have an accelerated growth rate and skeletal maturation; so do babies with macrosomia. Whether the insulin growth effect is direct, or mediated by IGF-1 or leptin is controversial.

  9. The pro-Forms of Insulin-Like Growth Factor I (IGF-I) Are Predominant in Skeletal Muscle and Alter IGF-I Receptor Activation

    Science.gov (United States)

    Durzyńska, Julia; Philippou, Anastassios; Brisson, Becky K.; Nguyen-McCarty, Michelle

    2013-01-01

    IGF-I is a key regulator of muscle development and growth. The pre-pro-peptide produced by the Igf1gene undergoes several posttranslational processing steps to result in a secreted mature protein, which is thought to be the obligate ligand for the IGF-I receptor (IGF-IR). The goals of this study were to determine what forms of IGF-I exist in skeletal muscle, and whether the mature IGF-I protein was the only form able to activate the IGF-IR. We measured the proportion of IGF-I species in murine skeletal muscle and found that the predominant forms were nonglycosylated pro-IGF-I and glycosylated pro-IGF-I, which retained the C-terminal E peptide extension, instead of mature IGF-I. These forms were validated using samples subjected to viral expression of IGF-I combined with furin and glycosidase digestion. To determine whether the larger molecular weight IGF-I forms were also ligands for the IGF-IR, we generated each specific form through transient transfection of 3T3 cells and used the enriched media to perform kinase receptor activation assays. Compared with mature IGF-I, nonglycosylated pro-IGF-I had similar ability to activate the IGF-IR, whereas glycosylation of pro-IGF-I significantly reduced receptor activation. Thus, it is important to understand not only the quantity, but also the proportion of IGF-I forms produced, to evaluate the true biological activity of this growth factor. PMID:23407451

  10. Genetic and Dietary Determinants of Insulin-Like Growth Factor (IGF)-1 and IGF Binding Protein (BP)-3 Levels among Chinese Women

    Science.gov (United States)

    Li, Hui; McCullough, Lauren E.; Qi, Ya-na; Li, Jia-yuan; Zhang, Jing; Miller, Erline; Yang, Chun-xia; Smith, Jennifer S.

    2014-01-01

    Background Higher insulin-like growth factor (IGF)-1 and lower IGF binding protein (BP)-3 levels have been associated with higher commoncancer risk, including breast cancer. Dietary factors, genetic polymorphisms, and the combination of both may influence circulating IGF-1 and IGFBP-3 serum concentrations. Methods From September 2011 to July 2012, we collected demographic, reproductive and dietary data on 143 women (≥40 years). We genotyped IGF-1 rs1520220 and IGFBP-3 rs2854744 and measured circulating IGF-1 and IGFBP-3 levels in serum. Covariance analyses were used to estimate the associations of serum levels of IGF-1 and IGFBP-3, and the molar ratio of IGF-1to IGFBP-3 with IGF-1 rs1520220 and IGFBP-3 rs2854744 genotypes. We subsequently assessed the combined influence of genetics and diet (daily intake of protein, fat and soy isoflavones) on IGF-1 and IGFBP-3 levels. Results Among women aged less than 50 years, circulating IGF-1 serum levels were significantly lower for those with CC genotype for IGF-1 rs1520220 than levels for those with the GC or GG genotypes (in recessive model: P = 0.007).In gene-diet analyses among these women, we found carrying CC genotype for IGF-1 rs1520220 and high soy isoflavone intake tend to be associated with lower circulating IGF-1 levels synthetically (P = 0.002). Women with GG or GC genotypes for IGF-1 rs1520220 and with low intake of soy isoflavones had the highest levels of circulating IGF-1 (geometric mean [95% CI]: 195 [37, 1021] µg/L). Comparatively, women with both the CC genotype and high soy intake had the lowest levels of circulating IGF-1 (geometric mean [95% CI]: 120 [38,378] µg/L). Conclusions IGF-1 serum levels are significantly lower among women with the CC genotype for IGF-1-rs1520220. High soy isoflavone intake may interact with carrying CC genotype for IGF-1-rs1520220 to lower women's serum IGF-1 levels more. PMID:25285521

  11. E-Peptides Control Bioavailability of IGF-1

    Science.gov (United States)

    Piszczek, Agnieszka; Perlas, Emarald; Winn, Nadine; Nastasi, Tommaso; Rosenthal, Nadia

    2012-01-01

    Insulin-like growth factor 1 (IGF-1) is a potent cytoprotective growth factor that has attracted considerable attention as a promising therapeutic agent. Transgenic over-expression of IGF-1 propeptides facilitates protection and repair in a broad range of tissues, although transgenic mice over-expressing IGF-1 propeptides display little or no increase in IGF-1 serum levels, even with high levels of transgene expression. IGF-1 propeptides are encoded by multiple alternatively spliced transcripts including C-terminal extension (E) peptides, which are highly positively charged. In the present study, we use decellularized mouse tissue to show that the E-peptides facilitate in vitro binding of murine IGF-1 to the extracellular matrix (ECM) with varying affinities. This property is independent of IGF-1, since proteins consisting of the E-peptides fused to relaxin, a related member of the insulin superfamily, bound equally avidly to decellularized ECM. Thus, the E-peptides control IGF-1 bioavailability by preventing systemic circulation, offering a potentially powerful way to tether IGF-1 and other therapeutic proteins to the site of synthesis and/or administration. PMID:23251442

  12. Determination of LongR3-IGF-I, R3-IGF-I, Des1-3 IGF-I and their metabolites in human plasma samples by means of LC-MS.

    Science.gov (United States)

    Thomas, Andreas; Walpurgis, Katja; Delahaut, Philippe; Fichant, Eric; Schänzer, Wilhelm; Thevis, Mario

    2017-08-01

    According to the regulations of the World Anti-Doping Agency (WADA), growth promoting peptides such as the insulin-like growth factor-I (IGF-I) and its synthetic analogues belong to the class of prohibited compounds. While several assays to quantify endogenous IGF-I have been established, the potential misuse of synthetic analogues such as LongR 3 -IGF-I, R 3 -IGF-I and Des1-3-IGF-I remains a challenge and superior pharmacokinetic properties have been described for these analogues. Within the present study, it was demonstrated that the target peptides can be successfully detected in plasma samples by means of magnetic beads-based immunoaffinity purification and subsequent nanoscale liquid chromatographic separation with high resolution mass spectrometric detection. Noteworthy, the usage of a specific antibody for LongR 3 -IGF-I enables the determination in low ng/mL levels despite the presence of an enormous excess of endogenous human IGF-I. In addition, different metabolism studies (in-vitro and in-vivo) were performed using sophisticated strategies such as incubation with skin tissue microsomes, degradation in biological fluids (for all analogues), and administration to rats (for LongR 3 -IGF-I). Herewith, several C-and N-terminally truncated metabolites were identified and their relevancy was additionally confirmed by in-vivo experiments with rodents. Especially for LongR 3 -IGF-I, a metabolite ((Des1-11)-LongR 3 -IGF-I) was identified that prolonged the detectability in-vivo by a factor of approximately 2. The method was validated for qualitative interpretation considering the parameters specificity, identification capability, recovery (26-60%), limit of detection (0.5ng/mL), imprecision (IGF-I was used as internal standard to control all sample preparation steps. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Mechanisms Underlying Testicular Damage and Dysfunction in Mice With Partial IGF-1 Deficiency and the Effectiveness of IGF-1 Replacement Therapy.

    Science.gov (United States)

    Castilla-Cortázar, Inma; Gago, Alberto; Muñoz, Úrsula; Ávila-Gallego, Elena; Guerra-Menéndez, Lucía; Sádaba, María Cruz; García-Magariño, Mariano; Olleros Santos-Ruiz, María; Aguirre, G A; Puche, Juan Enrique

    2015-12-01

    To determine whether insulin-like growth factor (IGF-1) deficiency can cause testicular damage and to examine changes of the testicular morphology and testicular function-related gene expression caused by IGF-1 deficiency. Therefore, this study aims to determine the benefits of low doses of IGF-1 and to explore the mechanisms underlying the IGF-1 replacement therapy. A murine model of IGF-1 deficiency was used to avoid any factor that could contribute to testicular damage. Testicular weight, score of histopathological damage, and gene expressions were studied in 3 experimental groups of mice: controls (wild-type Igf1(+/+)), heterozygous Igf1(+/-) with partial IGF-1 deficiency, and heterozygous Igf1(+/-) treated with IGF-1. Results show that the partial IGF-1 deficiency induced testicular damage and altered expression of genes involved in IGF-1 and growth hormone signaling and regulation, testicular hormonal function, extracellular matrix establishment and its regulation, angiogenesis, fibrogenesis, inflammation, and cytoprotection. In addition, proteins involved in tight junction expression were found to be reduced. However, low doses of IGF-1 restored the testicular damage and most of these parameters. IGF-1 deficiency caused the damage of the blood-testis barrier and testicular structure and induced the abnormal testicular function-related gene expressions. However, low doses of IGF-1 constitute an effective replacement therapy that restores the described testicular damage. Data herein show that (1) cytoprotective activities of IGF-1 seem to be mediated by heat shock proteins and that (2) connective tissue growth factor could play a relevant role together with IGF-1 in the extracellular matrix establishment. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Antibody-based therapeutics against components of the IGF system

    OpenAIRE

    Feng, Yang; Dimitrov, Dimiter S.

    2012-01-01

    The insulin-like growth factor I (IGF-I) receptor (IGF-1R) is overexpressed in most human neoplasms tested so far. Many tumors in young patients produce high levels of the IGF-1R ligands, IGF-I and IGF-II. Given the complexity of the IGF signaling pathway, its complete inhibition may require combination therapies with antibodies targeting both IGF-1R and IGF-II.

  15. Circulating levels of IGF-1, IGFBP-3, and IGF-1/IGFBP-3 molar ratio and colorectal adenomas: A meta-analysis.

    Science.gov (United States)

    Yoon, Yeong Sook; Keum, NaNa; Zhang, Xuehong; Cho, Eunyoung; Giovannucci, Edward L

    2015-12-01

    Insulin-like growth factor-1(IGF-1) promotes cell proliferation and inhibits apoptosis, and is thereby implicated in carcinogenesis. Insulin-like growth factor binding protein-3 (IGFBP-3) may antagonize IGF-1 action, leading to inhibition of the potential tumorigenicity of IGF-1. We conducted this meta-analysis to estimate the association between IGF-1, IGFBP-3 and IGF-1/IGFBP-3 ratio and the risk of colorectal adenomas (CRAs). Further, we investigated whether this association was different between occurrent and recurrent CRA, by adjustment for obesity, and by advanced CRA. Pubmed and Embase were searched up to April, 2015 to identify relevant observational studies and summary odds ratio (OR) and the corresponding 95% confidence interval (95% CI) was estimated using a random-effects model. A total of 12 studies (11 studies including 3038 cases for IGF-1, 12 studies including 3208 cases for IGFBP-3, and 7 studies including 1867 cases for IGF-1/IGFBP-3 ratio) were included in this meta-analysis. The summary ORs of occurrent CRA for the highest versus lowest category of IGF-1, IGFBP-3 and IGF-1/IGFBP-3 ratio were 1.13 (95% CI: 0.95-1.34), 0.99 (0.84-1.16), and 1.05 (0.86-1.29), respectively. Higher IGF-1 and IGF-1/IGFBP-3 ratio were significantly associated with decreased risk of recurrent CRA (OR for IGF-1=0.60 [95% CI: 0.42-0.85]; IGF-1/IGFBP-3 ratio=0.65 [0.44-0.96]). A stratified analysis by advancement of occurrent CRA produced a significant summary OR of IGF-1 for advanced CRA (OR=2.21 [1.08-4.52]) but not for non-advanced CRA (OR=0.89 [0.55-1.45]). We did not find significant publication bias or heterogeneity. Circulating levels of IGF-1, IGFBP-3 and their molar ratio were not associated with the risk of occurrence of CRA, but IGF-1 was associated with the increased risk for occurrence of advanced CRA. Copyright © 2015. Published by Elsevier Ltd.

  16. Insulin-like growth factor (IGF) binding protein from human decidua inhibits the binding and biological action of IGF-I in cultured choriocarcinoma cells

    International Nuclear Information System (INIS)

    Ritvos, O.; Ranta, T.; Jalkanen, J.; Suikkari, A.M.; Voutilainen, R.; Bohn, H.; Rutanen, E.M.

    1988-01-01

    The placenta expresses genes for insulin-like growth factors (IGFs) and possesses IGF-receptors, suggesting that placental growth is regulated by IGFs in an autocrine manner. We have previously shown that human decidua, but not placenta, synthesizes and secretes a 34 K IGF-binding protein (34 K IGF-BP) called placental protein 12. We now used human choriocarcinoma JEG-3 cell monolayer cultures and recombinant (Thr59)IGF-I as a model to study whether the decidual 34 K IGF-BP is able to modulate the receptor binding and biological activity of IGFs in trophoblasts. JEG-3 cells, which possess type I IGF receptors, were unable to produce IGF-BPs. Purified 34 K IGF-BP specifically bound [125I]iodo-(Thr59)IGF-I. Multiplication-stimulating activity had 2.5% the potency of (Thr59)IGF-I, and insulin had no effect on the binding of [125I] iodo-(Thr59)IGF-I. 34 K IGF-BP inhibited the binding of [125I] iodo-(Thr59)IGF-I to JEG-3 monolayers in a concentration-dependent manner by forming with the tracer a soluble complex that could not bind to the cell surface as demonstrated by competitive binding and cross-linking experiments. After incubating the cell monolayers with [125I]iodo-(Thr59)IGF-I in the presence of purified binding protein, followed by cross-linking, no affinity labeled bands were seen on autoradiography. In contrast, an intensely labeled band at 40 K was detected when the incubation medium was analyzed, suggesting that (Thr59)IGF-I and 34 K IGF-BP formed a complex in a 1:1 molar ratio. Also, 34 K IGF-BP inhibited both basal and IGF-I-stimulated uptake of alpha-[3H]aminoisobutyric acid in JEG-3 cells. RNA analysis revealed that IGF-II is expressed in JEG-3 cells

  17. Maternal insulin-like growth factors 1 and 2 (IGF-1, IGF-2) and IGF BP-3 and the hypertensive disorders of pregnancy.

    LENUS (Irish Health Repository)

    Cooley, Sharon M

    2010-07-01

    To investigate the relationship between levels of insulin-like growth factors 1 and 2 (IGF-1, IGF-2) and insulin-like growth factor binding protein 3 (IGFBP-3) in antenatal maternal serum and gestational hypertension and pre-eclampsia (PET).

  18. IGF-I stimulates ERβ and aromatase expression via IGF1R/PI3K/AKT-mediated transcriptional activation in endometriosis.

    Science.gov (United States)

    Zhou, Yan; Zeng, Cheng; Li, Xin; Wu, Pei-Li; Yin, Ling; Yu, Xiao-Lan; Zhou, Ying-Fang; Xue, Qing

    2016-08-01

    Estrogen receptor beta (ERβ, encoded by ESR2 gene) and cytochrome P450 aromatase (encoded by CYP19A1 gene) play critical roles in endometriosis, and the levels of insulin-like growth factor-I (IGF-I) in the peritoneal fluid are significantly higher in patients with endometriosis compared with those in normal women. However, the effects and mechanisms of IGF-I on ERβ and aromatase expression remain to be fully elucidated. In this study, human endometriotic stromal cells (ESCs) and endometrial cells (EMs) derived from ovarian endometriomas and eutopic endometrial tissues. ESCs were cultured with IGF-I, signal pathway inhibitors, and siRNAs. ERβ and aromatase expression were measured by real-time PCR and Western, respectively. The binding of c-Jun and CREB to the ESR2 and CYP19A1 promoters was assessed by chromatin immunoprecipitation assay. Animal experiments were performed in a xenograft mouse model. Levels of IGF-I mRNA in ESCs were markedly higher than those in EMs. IGF-I upregulated ERβ and aromatase expression in ESCs after stimulation of the IGF1R/PI3K/AKT pathway. Following IGF-I treatment, a marked increase in c-Jun and CREB phosphorylation occurred, enhancing binding to the ESR2 and CYP19A1 promoters. An IGF1R inhibitor in vivo reduced IGF-I-induced endometriosis graft growth and ERβ and aromatase expression. In conclusion, this is the first report to describe a mechanistic analysis of ERβ and aromatase expression regulated by IGF-I in ESCs. Moreover, an IGF1R inhibitor impeded ectopic lesion growth in nude mice. These findings suggest that an inhibitor of IGF1R might have therapeutic potential as an antiendometriotic drug. Level of IGF-I mRNA in ESCs is markedly higher than that in EMs. IGF-I up-regulates ERβ and aromatase expression via IGF1R/PI3K/AKT pathway. C-Jun and CREB are recruited to ESR2 or CYP19A1 promoter by IGF-I stimulation. IGF-1R inhibitors in vivo impede the growth of ectopic lesions in nude mice.

  19. Urinary Biomarkers KIM-1 and NGAL for Detection of Chronic Kidney Disease of Uncertain Etiology (CKDu) among Agricultural Communities in Sri Lanka

    Science.gov (United States)

    Mohammed Abdul, Khaja Shameem; Eakanayake, Eakanayake M. D. V.; Jayasinghe, Sudheera Sammanthi; Jayasumana, Channa; Asanthi, Hewa Bandulage; Perera, Hettiarachigae S. D.; Chaminda, Gamage G. Tushara; Chandana, Ediriweera P. S.; Siribaddana, Sisira H.

    2016-01-01

    Chronic Kidney Disease of uncertain etiology (CKDu) is an emerging epidemic among farming communities in rural Sri Lanka. Victims do not exhibit common causative factors, however, histopathological studies revealed that CKDu is a tubulointerstitial disease. Urine albumin or albumin-creatinine ratio is still being used as a traditional diagnostic tool to identify CKDu, but accuracy and prevalence data generated are questionable. Urinary biomarkers have been used in similar nephropathy and are widely recognised for their sensitivity, specificity and accuracy in determining CKDu and early renal injury. However, these biomarkers have never been used in diagnosing CKDu in Sri Lanka. Male farmers (n = 1734) were recruited from 4 regions in Sri Lanka i.e. Matara and Nuwara Eliya (farming locations with no CKDu prevalence) and two CKDu emerging locations from Hambantota District in Southern Sri Lanka; Angunakolapelessa (EL1) and Bandagiriya (EL2). Albuminuria (ACR ≥ 30mg/g); serum creatinine based estimation of glomerular filtration rate (eGFR); creatinine normalized urinary kidney injury molecule (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) were measured. Fourteen new CKDu cases (18%) from EL1 and nine CKDu cases (9%) from EL2 were recognized for the first time from EL1, EL2 locations, which were previously considered as non-endemic of the disease and associated with persistent albuminuria (ACR ≥ 30mg/g Cr). No CKDu cases were identified in non-endemic study locations in Matara (CM) and Nuwara Eliya (CN). Analysis of urinary biomarkers showed urinary KIM-1 and NGAL were significantly higher in new CKDu cases in EL1 and EL2. However, we also reported significantly higher KIM-1 and NGAL in apparently healthy farmers in EL 1 and EL 2 with comparison to both control groups. These observations may indicate possible early renal damage in absence of persistent albuminuria and potential capabilities of urinary KIM-1 and NGAL in early detection of renal injury

  20. Urinary Biomarkers KIM-1 and NGAL for Detection of Chronic Kidney Disease of Uncertain Etiology (CKDu among Agricultural Communities in Sri Lanka.

    Directory of Open Access Journals (Sweden)

    Pallagae Mangala C S De Silva

    2016-09-01

    Full Text Available Chronic Kidney Disease of uncertain etiology (CKDu is an emerging epidemic among farming communities in rural Sri Lanka. Victims do not exhibit common causative factors, however, histopathological studies revealed that CKDu is a tubulointerstitial disease. Urine albumin or albumin-creatinine ratio is still being used as a traditional diagnostic tool to identify CKDu, but accuracy and prevalence data generated are questionable. Urinary biomarkers have been used in similar nephropathy and are widely recognised for their sensitivity, specificity and accuracy in determining CKDu and early renal injury. However, these biomarkers have never been used in diagnosing CKDu in Sri Lanka. Male farmers (n = 1734 were recruited from 4 regions in Sri Lanka i.e. Matara and Nuwara Eliya (farming locations with no CKDu prevalence and two CKDu emerging locations from Hambantota District in Southern Sri Lanka; Angunakolapelessa (EL1 and Bandagiriya (EL2. Albuminuria (ACR ≥ 30mg/g; serum creatinine based estimation of glomerular filtration rate (eGFR; creatinine normalized urinary kidney injury molecule (KIM-1 and neutrophil gelatinase-associated lipocalin (NGAL were measured. Fourteen new CKDu cases (18% from EL1 and nine CKDu cases (9% from EL2 were recognized for the first time from EL1, EL2 locations, which were previously considered as non-endemic of the disease and associated with persistent albuminuria (ACR ≥ 30mg/g Cr. No CKDu cases were identified in non-endemic study locations in Matara (CM and Nuwara Eliya (CN. Analysis of urinary biomarkers showed urinary KIM-1 and NGAL were significantly higher in new CKDu cases in EL1 and EL2. However, we also reported significantly higher KIM-1 and NGAL in apparently healthy farmers in EL 1 and EL 2 with comparison to both control groups. These observations may indicate possible early renal damage in absence of persistent albuminuria and potential capabilities of urinary KIM-1 and NGAL in early detection of renal

  1. Urinary Biomarkers KIM-1 and NGAL for Detection of Chronic Kidney Disease of Uncertain Etiology (CKDu) among Agricultural Communities in Sri Lanka.

    Science.gov (United States)

    De Silva, Pallagae Mangala C S; Mohammed Abdul, Khaja Shameem; Eakanayake, Eakanayake M D V; Jayasinghe, Sudheera Sammanthi; Jayasumana, Channa; Asanthi, Hewa Bandulage; Perera, Hettiarachigae S D; Chaminda, Gamage G Tushara; Chandana, Ediriweera P S; Siribaddana, Sisira H

    2016-09-01

    Chronic Kidney Disease of uncertain etiology (CKDu) is an emerging epidemic among farming communities in rural Sri Lanka. Victims do not exhibit common causative factors, however, histopathological studies revealed that CKDu is a tubulointerstitial disease. Urine albumin or albumin-creatinine ratio is still being used as a traditional diagnostic tool to identify CKDu, but accuracy and prevalence data generated are questionable. Urinary biomarkers have been used in similar nephropathy and are widely recognised for their sensitivity, specificity and accuracy in determining CKDu and early renal injury. However, these biomarkers have never been used in diagnosing CKDu in Sri Lanka. Male farmers (n = 1734) were recruited from 4 regions in Sri Lanka i.e. Matara and Nuwara Eliya (farming locations with no CKDu prevalence) and two CKDu emerging locations from Hambantota District in Southern Sri Lanka; Angunakolapelessa (EL1) and Bandagiriya (EL2). Albuminuria (ACR ≥ 30mg/g); serum creatinine based estimation of glomerular filtration rate (eGFR); creatinine normalized urinary kidney injury molecule (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) were measured. Fourteen new CKDu cases (18%) from EL1 and nine CKDu cases (9%) from EL2 were recognized for the first time from EL1, EL2 locations, which were previously considered as non-endemic of the disease and associated with persistent albuminuria (ACR ≥ 30mg/g Cr). No CKDu cases were identified in non-endemic study locations in Matara (CM) and Nuwara Eliya (CN). Analysis of urinary biomarkers showed urinary KIM-1 and NGAL were significantly higher in new CKDu cases in EL1 and EL2. However, we also reported significantly higher KIM-1 and NGAL in apparently healthy farmers in EL 1 and EL 2 with comparison to both control groups. These observations may indicate possible early renal damage in absence of persistent albuminuria and potential capabilities of urinary KIM-1 and NGAL in early detection of renal injury

  2. Curcumin inhibits urothelial tumor development by suppressing IGF2 and IGF2-mediated PI3K/AKT/mTOR signaling pathway.

    Science.gov (United States)

    Tian, Binqiang; Zhao, Yingmei; Liang, Tao; Ye, Xuxiao; Li, Zuowei; Yan, Dongliang; Fu, Qiang; Li, Yonghui

    2017-08-01

    We have previously reported that curcumin inhibits urothelial tumor development in a rat bladder carcinogenesis model. In this study, we report that curcumin inhibits urothelial tumor development by suppressing IGF2 and IGF2-mediated PI3K/AKT/mTOR signaling pathway. Curcumin inhibits IGF2 expression at the transcriptional level and decreases the phosphorylation levels of IGF1R and IRS-1 in bladder cancer cells and N-methyl-N-nitrosourea (MNU)-induced urothelial tumor tissue. Ectopic expression of IGF2 and IGF1R, but not IGF1, in bladder cancer cells restored this process, suggesting that IGF2 is a target of curcumin. Moreover, introduction of constitutively active AKT1 abolished the inhibitory effect of curcumin on cell proliferation, migration, and restored the phosphorylation levels of 4E-BP1 and S6K1, suggesting that curcumin functions via suppressing IGF2-mediated AKT/mTOR signaling pathway. In summary, our results reveal that suppressing IGF2 and IGF2-mediated PI3K/AKT/mTOR signaling pathway is one of the mechanisms of action of curcumin. Our findings suggest a new therapeutic strategy against human bladder cancer caused by aberrant activation of IGF2, which are useful for translational application of curcumin.

  3. Comparison of acid ethanol extraction and acid gel filtration prior to IGF-I and IGF-II radioimmunoassays; Improvement of determinations in acid ethanol extracts by the use of truncated IGF-I as radioligand

    Energy Technology Data Exchange (ETDEWEB)

    Bang, P; Eriksson, U; Wivall, I -L; Hall, K [Department of Endocrinology, Karolinska Institute, Stockholm (Sweden); Sara, V [Department of Pathology, Karolinska Institute, Stockholm (Sweden)

    1991-01-01

    Insulin-like growth factor binding proteins interfere in the IGF-I and -II radioimmunoassays. In an attempt to overcome this problem, we have compared the use of truncated IGF-I, with reduced IGFBP affinity, and IGF-I as radioligands for IGF-I RIA measurements in serum separated by acid gel filtration or acid ethanol extraction followed by cryo-precipitation. With truncated IGF-I as radioligand the IGF-I measurements in acid gel filtrates and acid ethanol extracts were significantly correlated in healthy subjects (N=42, r=0.91, p<0.001) and in patients with acromegaly (N=10, r=0.85, p<0.01), GH deficiency (N=10, r=0.88, p<0.001) or Type I diabetes mellitus (N=10, r=0.90, p<0.001). In contrast, the IGF-I concentrations in acid ethanol extracts determined with IGF-I as radioligand did not correlate with those in acid gel filtrates using truncated IGF-I radioligand in patients with acromegaly (r=0.61, NS) or GH deficiency (r=0.46, NS). In the latter group the mean IGF-I concentrations measured in acid ethanol extracts were erroneously elevated by 112%. Low-affinity antibodies used for IGF-II RIA determinations failed to give reliable results in acid ethanol extracts from patients with Type I diabetes mellitus or GH deficiency. In conclusion, erroneously high IGF-I concentrations owing to binding of the radioligand to IGFBPs not completely removed by acid ethanol extraction can be avoided by the use of truncated IGF-I as radioligand. (author).

  4. Biochemical characterization of individual human glycosylated pro-insulin-like growth factor (IGF)-II and big-IGF-II isoforms associated with cancer.

    Science.gov (United States)

    Greenall, Sameer A; Bentley, John D; Pearce, Lesley A; Scoble, Judith A; Sparrow, Lindsay G; Bartone, Nicola A; Xiao, Xiaowen; Baxter, Robert C; Cosgrove, Leah J; Adams, Timothy E

    2013-01-04

    Insulin-like growth factor II (IGF-II) is a major embryonic growth factor belonging to the insulin-like growth factor family, which includes insulin and IGF-I. Its expression in humans is tightly controlled by maternal imprinting, a genetic restraint that is lost in many cancers, resulting in up-regulation of both mature IGF-II mRNA and protein expression. Additionally, increased expression of several longer isoforms of IGF-II, termed "pro" and "big" IGF-II, has been observed. To date, it is ambiguous as to what role these IGF-II isoforms have in initiating and sustaining tumorigenesis and whether they are bioavailable. We have expressed each individual IGF-II isoform in their proper O-glycosylated format and established that all bind to the IGF-I receptor and both insulin receptors A and B, resulting in their activation and subsequent stimulation of fibroblast proliferation. We also confirmed that all isoforms are able to be sequestered into binary complexes with several IGF-binding proteins (IGFBP-2, IGFBP-3, and IGFBP-5). In contrast to this, ternary complex formation with IGFBP-3 or IGFBP-5 and the auxillary protein, acid labile subunit, was severely diminished. Furthermore, big-IGF-II isoforms bound much more weakly to purified ectodomain of the natural IGF-II scavenging receptor, IGF-IIR. IGF-II isoforms thus possess unique biological properties that may enable them to escape normal sequestration avenues and remain bioavailable in vivo to sustain oncogenic signaling.

  5. Biochemical Characterization of Individual Human Glycosylated pro-Insulin-like Growth Factor (IGF)-II and big-IGF-II Isoforms Associated with Cancer

    Science.gov (United States)

    Greenall, Sameer A.; Bentley, John D.; Pearce, Lesley A.; Scoble, Judith A.; Sparrow, Lindsay G.; Bartone, Nicola A.; Xiao, Xiaowen; Baxter, Robert C.; Cosgrove, Leah J.; Adams, Timothy E.

    2013-01-01

    Insulin-like growth factor II (IGF-II) is a major embryonic growth factor belonging to the insulin-like growth factor family, which includes insulin and IGF-I. Its expression in humans is tightly controlled by maternal imprinting, a genetic restraint that is lost in many cancers, resulting in up-regulation of both mature IGF-II mRNA and protein expression. Additionally, increased expression of several longer isoforms of IGF-II, termed “pro” and “big” IGF-II, has been observed. To date, it is ambiguous as to what role these IGF-II isoforms have in initiating and sustaining tumorigenesis and whether they are bioavailable. We have expressed each individual IGF-II isoform in their proper O-glycosylated format and established that all bind to the IGF-I receptor and both insulin receptors A and B, resulting in their activation and subsequent stimulation of fibroblast proliferation. We also confirmed that all isoforms are able to be sequestered into binary complexes with several IGF-binding proteins (IGFBP-2, IGFBP-3, and IGFBP-5). In contrast to this, ternary complex formation with IGFBP-3 or IGFBP-5 and the auxillary protein, acid labile subunit, was severely diminished. Furthermore, big-IGF-II isoforms bound much more weakly to purified ectodomain of the natural IGF-II scavenging receptor, IGF-IIR. IGF-II isoforms thus possess unique biological properties that may enable them to escape normal sequestration avenues and remain bioavailable in vivo to sustain oncogenic signaling. PMID:23166326

  6. No increase in kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin excretion following intravenous contrast enhanced-CT

    Energy Technology Data Exchange (ETDEWEB)

    Kooiman, Judith [Leiden University Medical Center, Department of Thrombosis and Haemostasis, Leiden (Netherlands); Leiden University Medical Center, Department of Nephrology, Leiden (Netherlands); Peppel, Wilke R. van de; Huisman, Menno V. [Leiden University Medical Center, Department of Thrombosis and Haemostasis, Leiden (Netherlands); Sijpkens, Yvo W.J. [Bronovo Hospital, Department of Nephrology, The Hague (Netherlands); Brulez, Harald F.H. [Sint Lucas Andreas Hospital, Department of Nephrology, Amsterdam (Netherlands); Vries, P.M. de [St. Antonius Hospital, Department of Vascular Surgery, Nieuwegein (Netherlands); Nicolaie, Mioara A.; Putter, H. [Leiden University Medical Center, Department of Medical Statistics and Bioinformatics, Leiden (Netherlands); Kooij, W. van der; Kooten, Cees van; Rabelink, Ton J. [Leiden University Medical Center, Department of Nephrology, Leiden (Netherlands)

    2015-07-15

    To analyze kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (N-GAL) excretion post-intravenous contrast enhanced-CT (CE-CT) in patients with chronic kidney disease (CKD). Patients were enrolled in a trial on hydration regimes to prevent contrast-induced acute kidney injury (CI-AKI). Blood and urine samples were taken at baseline, 4 - 6, and 48 - 96 h post CE-CT. Urinary KIM-1 and N-GAL values were normalized for urinary creatinine levels, presented as medians with 2.5 - 97.5 percentiles. Of the enrolled 511 patients, 10 (2 %) were lost to follow-up. CI-AKI occurred in 3.9 % of patients (20/501). Median KIM-1 values were 1.2 (0.1 - 7.7) at baseline, 1.3 (0.1 - 8.6) at 4 - 6 h, and 1.3 ng/mg (0.1 - 8.1) at 48 - 96 h post CE-CT (P = 0.39). Median N-GAL values were 41.0 (4.4 - 3,174.4), 48.9 (5.7 - 3,406.1), and 37.8 μg/mg (3.5 - 3,200.4), respectively (P = 0.07). The amount of KIM-1 and N-GAL excretion in follow-up was similar for patients with and without CI-AKI (P-value KIM-1 0.08, P-value N-GAL 0.73). Neither patient characteristics at baseline including severe CKD, medication use, nor contrast dose were associated with increased excretion of KIM-1 or N-GAL during follow-up. KIM-1 and N-GAL excretion were unaffected by CE-CT both in patients with and without CI-AKI, suggesting that CI-AKI was not accompanied by tubular injury. (orig.)

  7. IGF-1 levels, complex formation, and IGF bioactivity in growth hormone-treated children with Prader-Willi syndrome

    NARCIS (Netherlands)

    Bakker, N. E.; Van Doorn, J.; Renes, J. S.; Donker, G. H.; Hokken-Koelega, A. C S

    2015-01-01

    Context: Children with Prader-Willi syndrome (PWS) attain high-serum immunoreactive IGF-1 levels during a standard-dose GH treatment, which leads to concern, but lowering the dose deteriorates their body composition. Objective: The objective of the study was to evaluate serum IGF-1, IGF binding

  8. Adiponectin, Leptin, IGF-1, and Tumor Necrosis Factor Alpha As Potential Serum Biomarkers for Non-Invasive Diagnosis of Colorectal Adenoma in African Americans.

    Science.gov (United States)

    Ashktorab, Hassan; Soleimani, Akbar; Nichols, Alexandra; Sodhi, Komal; Laiyemo, Adeyinka O; Nunlee-Bland, Gail; Nouraie, Seyed Mehdi; Brim, Hassan

    2018-01-01

    The potential role of adiponectin, leptin, IGF-1, and tumor necrosis factor alpha (TNF-α) as biomarkers in colorectal adenoma is not clear. Therefore, we aimed to investigate the blood serum levels of these biomarkers in colorectal adenoma. The case-control study consisted of serum from 180 African American patients with colon adenoma (cases) and 198 healthy African Americans (controls) at Howard University Hospital. We used ELISA for adiponectin, leptin, IGF-1, and TNF-α detection and quantification. Statistical analysis was performed by t -test and multivariate logistic regression. The respective differences in median leptin, adiponectin, IGF-1, and TNF-α levels between control and case groups (13.9 vs. 16.4), (11.3 vs. 46.0), (4.5 vs. 12.9), and (71.4 vs. 130.8) were statistically significant ( P  IGF-1 were 2.0 (95% CI = 1.6-2.5; P  IGF-1 concentrations with age ( r  = 0.17, P  IGF-1, and leptin concentration with body mass index (BMI) ( r  = 0.44, P  IGF-1, and TNF-α high levels correlate with higher risk of colon adenoma and can thus be used for colorectal adenomas risk assessment.

  9. Cross-talk between Integrin α6β4 and Insulin-like Growth Factor-1 Receptor (IGF1R) through Direct α6β4 Binding to IGF1 and Subsequent α6β4-IGF1-IGF1R Ternary Complex Formation in Anchorage-independent Conditions*

    OpenAIRE

    Fujita, Masaaki; Ieguchi, Katsuaki; Davari, Parastoo; Yamaji, Satoshi; Taniguchi, Yukimasa; Sekiguchi, Kiyotoshi; Takada, Yoko K.; Takada, Yoshikazu

    2012-01-01

    Background: Integrin αvβ3-extracellular matrix interaction and/or αvβ3 binding to insulin-like growth factor-1 (IGF1; and integrin-IGF1-IGF1 receptor ternary complex formation) is critical for IGF signaling.

  10. IGF-1 receptor inhibition by picropodophyllin in medulloblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Ohshima-Hosoyama, Sachiko; Hosoyama, Tohru; Nelon, Laura D. [Greehey Children' s Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229 (United States); Keller, Charles, E-mail: keller@ohsu.edu [Greehey Children' s Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229 (United States); Department of Pediatrics, University of Texas Health Science Center, San Antonio, TX 78229 (United States); Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229 (United States)

    2010-09-03

    Research highlights: {yields} Igf1r is overexpressed and activated in a Sonic Hedgehog driven model of medulloblastoma. {yields} Picropodophyllin targets and abrogates IGF signaling in medulloblastoma. {yields} Picropodophyllin inhibits medulloblastoma tumor cell growth by induction of apoptosis. -- Abstract: The insulin-like growth factor-1 receptor (Igf1r) is a multifunctional membrane-associated tyrosine kinase associated with regulation of transformation, proliferation, differentiation and apoptosis. Increased IGF pathway activity has been reported in human and murine medulloblastoma. Tumors from our genetically-engineered medulloblastoma mouse model over-express Igf1r, and thus this mouse model is a good platform with which to study the role of Igf1r in tumor progression. We hypothesize that inhibition of IGF pathway in medulloblastoma can slow or inhibit tumor growth and metastasis. To test our hypothesis, we tested the role of IGF in tumor growth in vitro by treatment with the tyrosine kinase small molecule inhibitor, picropodophyllin (PPP), which strongly inhibits the IGF pathway. Our results demonstrate that PPP-mediated downregulation of the IGF pathway inhibits mouse tumor cell growth and induces apoptotic cell death in vitro in primary medulloblastoma cultures that are most reflective of tumor cell behavior in vivo.

  11. IGF-1 receptor inhibition by picropodophyllin in medulloblastoma

    International Nuclear Information System (INIS)

    Ohshima-Hosoyama, Sachiko; Hosoyama, Tohru; Nelon, Laura D.; Keller, Charles

    2010-01-01

    Research highlights: → Igf1r is overexpressed and activated in a Sonic Hedgehog driven model of medulloblastoma. → Picropodophyllin targets and abrogates IGF signaling in medulloblastoma. → Picropodophyllin inhibits medulloblastoma tumor cell growth by induction of apoptosis. -- Abstract: The insulin-like growth factor-1 receptor (Igf1r) is a multifunctional membrane-associated tyrosine kinase associated with regulation of transformation, proliferation, differentiation and apoptosis. Increased IGF pathway activity has been reported in human and murine medulloblastoma. Tumors from our genetically-engineered medulloblastoma mouse model over-express Igf1r, and thus this mouse model is a good platform with which to study the role of Igf1r in tumor progression. We hypothesize that inhibition of IGF pathway in medulloblastoma can slow or inhibit tumor growth and metastasis. To test our hypothesis, we tested the role of IGF in tumor growth in vitro by treatment with the tyrosine kinase small molecule inhibitor, picropodophyllin (PPP), which strongly inhibits the IGF pathway. Our results demonstrate that PPP-mediated downregulation of the IGF pathway inhibits mouse tumor cell growth and induces apoptotic cell death in vitro in primary medulloblastoma cultures that are most reflective of tumor cell behavior in vivo.

  12. Bone Growth Mechanical Stimulus and IGF-I

    National Research Council Canada - National Science Library

    Gilsanz, Vicente

    2003-01-01

    .... This study also examines the possible relations between the cross-sectional properties of bone and circulating levels of IGF-I, IGF-binding protein-3, and IGF-I genotypes in teenagers ages 15 to 20...

  13. Disposition of radiolabelled insulin-like growth factor I (IGF-I), IGF-II and their N-terminal truncated variants in rats

    International Nuclear Information System (INIS)

    Yamamoto, Hiroyuki; Kato, Yuzuru; Murphy, L.J.

    1996-01-01

    Serum half life, tissue uptake and urinary excretion of N-terminal truncated IGF variants and their intact precursors were compared to see whether the variants regulate the bioavailability of those growth factors. IGF-I, des(1-3) IGF-I, IGF-II and des(1-6) IGF-II were labeled with 125 I and intravenously administered to SD rats. Blood from femoral artery and urine from implanted bladder catheter were collected at appropriate intervals until sacrifice of animals at 2 hr after administration. Tissues were dissected out and all of these samples were measured for their radioactivity with a gamma counter. The half lives of des(1-3) IGF-I, IGF-I, des(1-6) IGF-II and IGF-II were 20.5, 228.3, 21.3 and 181.7 min, respectively. Maximal accumulation of all peptides was found in the kidney. 125 I-IGF-I and -II showed the following distribution pattern; levels were higher in the kidney>pancreas>small intestine>liver>duodenum>stomach>lung>spleen>heart>large intestine>testis>brain>skeletal muscle. Skeletal muscle, kidney and testis showed a preferential uptake of the variants. Urinary excretion of the variants were much greater. Thus the variants were more rapidly cleared from circulation. The physiological significance of tissue distribution of 4 peptides remains to be further investigated. (K.H.)

  14. The single IGF-1 partial deficiency is responsible for mitochondrial dysfunction and is restored by IGF-1 replacement therapy.

    Science.gov (United States)

    Olleros Santos-Ruiz, M; Sádaba, M C; Martín-Estal, I; Muñoz, U; Sebal Neira, C; Castilla-Cortázar, I

    2017-08-01

    We previously described in cirrhosis and aging, both conditions of IGF-1 deficiency, a clear hepatic mitochondrial dysfunction with increased oxidative damage. In both conditions, the hepatic mitochondrial function was improved with low doses of IGF-1. The aim of this work was to explore if the only mere IGF-1 partial deficiency, without any exogenous insult, is responsible for hepatic mitochondrial dysfunction. Heterozygous (igf1 +/- ) mice were divided into two groups: untreated and treated mice with low doses of IGF-1. WT group was used as controls. Parameters of hepatic mitochondrial function were determined by flow cytometry, antioxidant enzyme activities were determined by spectrophotometry, and electron chain transport enzyme levels were determined by immunohistochemistry and immunofluorescence analyses. Liver expression of genes coding for proteins involved in mitochondrial protection and apoptosis was studied by microarray analysis and RT-qPCR. Hz mice showed a significant reduction in hepatic mitochondrial membrane potential (MMP) and ATPase activity, and an increase in intramitochondrial free radical production and proton leak rates, compared to controls. These parameters were normalized by IGF-1 replacement therapy. No significant differences were found between groups in oxygen consumption and antioxidant enzyme activities, except for catalase, whose activity was increased in both Hz groups. Relevant genes coding for proteins involved in mitochondrial protection and survival were altered in Hz group and were reverted to normal in Hz+IGF-1 group. The mere IGF-1 partial deficiency is per se associated with hepatic mitochondrial dysfunction sensitive to IGF-1 replacement therapy. Results in this work prove that IGF-1 is involved in hepatic mitochondrial protection, because it is able to reduce free radical production, oxidative damage and apoptosis. All these IGF-1 actions are mediated by the modulation of the expression of genes encoding citoprotective

  15. Relationships Between IGF-1, IGF-Binding Proteins and Diet in African American and Caucasian Men

    National Research Council Canada - National Science Library

    Agurs-Collins, Tanya

    2003-01-01

    .... The proposed study will help to explain the increased risk of prostate cancer for African American men and the role of specific nutrients in influencing IGF-1 and IGF-binding protein concentrations...

  16. Relationships Between IGF-1, IGF-Binding Proteins and Diet in African American and Caucasian Men

    National Research Council Canada - National Science Library

    Agura-Collins, Tanya

    2001-01-01

    .... The proposed study will help to explain the increased risk of prostate cancer for African American men and the role of specific nutrients in influencing IGF-1 and IGF-binding protein concentrations...

  17. Relationships Between IGF-1, IGF-Binding Proteins and Diet in African American and Caucasian Men

    National Research Council Canada - National Science Library

    Agurs-Collins, Tanya

    2002-01-01

    .... The proposed study will help to explain the increased risk of prostate cancer for African American men and the role of specific nutrients in influencing IGF-1 and IGF-binding protein concentrations...

  18. IGF-IR targeted therapy: Past, present and future

    NARCIS (Netherlands)

    J.A.M.J.L. Janssen (Joseph); A.J. Varewijck (Aimee)

    2014-01-01

    textabstractThe IGF-I receptor (IGF-IR) has been studied as an anti-cancer target. However, monotherapy trials with IGF-IR targeted antibodies or with IGF-IR specific tyrosine kinase inhibitors have, overall, been very disappointing in the clinical setting. This review discusses potential reasons

  19. Role of IGF-1/IGF-1R in regulation of invasion in DU145 prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Setya Hemani

    2008-07-01

    Full Text Available Abstract Background Prostate cancer progression to androgen independence is the primary cause of mortality by this tumor type. The IGF-1/IGF-1R axis is well known to contribute to prostate cancer initiation, but its contribution to invasiveness and the downstream signalling mechanisms that are involved are unclear at present. Results We examined the invasive response of androgen independent DU145 prostate carcinoma cells to IGF-1 stimulation using Matrigel assays. We then examined the signaling mechanisms and protease activities that are associated with this response. IGF-1 significantly increased the invasive capacity of DU145 cells in vitro, and this increase was inhibited by blocking IGF-1R. We further demonstrated that specific inhibitors of the MAPK and PI3-K pathways decrease IGF-1-mediated invasion. To determine potential molecular mechanisms for this change in invasive capacity, we examined changes in expression and activity of matrix metalloproteinases. We observed that IGF-1 increases the enzymatic activity of MMP-2 and MMP-9 in DU145 cells. These changes in activity are due to differences in expression in the case of MMP-9 but not in the case of MMP-2. This observation is corroborated by the fact that correlated changes of expression in a regulator of MMP-2, TIMP-2, were also seen. Conclusion This work identifies a specific effect of IGF-1 on the invasive capacity of DU145 prostate cancer cells, and furthermore delineates mechanisms that contribute to this effect.

  20. Impaired IGF1R signaling in cells expressing longevity-associated human IGF1R alleles

    OpenAIRE

    Tazearslan, Cagdas; Huang, Jing; Barzilai, Nir; Suh, Yousin

    2011-01-01

    Dampening of insulin/insulin like growth factor-1 (IGF1) signaling results in extension of lifespan in invertebrate as well as murine models. The impact of this evolutionarily conserved pathway on modulation of human lifespan remains unclear. We previously identified two IGF1R mutations (Ala-37-Thr and Arg-407-His) that are enriched in Ashkenazi Jewish centenarians as compared to younger controls and are associated with reduced activity of the IGF1 receptor as measured in immortalized lymphoc...

  1. What Happened to the IGF Binding Proteins?

    Science.gov (United States)

    Bach, Leon A

    2018-02-01

    Insulinlike growth factor (IGF) binding proteins (IGFBPs) 1 to 6 are high-affinity regulators of IGF activity. They generally inhibit IGF actions by preventing binding to the IGF-I receptor but can also enhance their actions under some conditions. Posttranslational modifications such as glycosylation and phosphorylation modulate IGFBP properties, and IGFBP proteolysis results in IGF release. IGFBPs have more recently been shown to have IGF-independent actions. A number of mechanisms are involved, including modulation of other growth factor pathways, nuclear localization and transcriptional regulation, interaction with the sphingolipid pathway, and binding to non-IGF biomolecules in the extracellular space and matrix, on the cell surface and intracellularly. IGFBPs modulate important biological processes, including cell proliferation, survival, migration, senescence, autophagy, and angiogenesis. Their actions have been implicated in growth, metabolism, cancer, stem cell maintenance and differentiation, and immune regulation. Recent studies have shown that epigenetic mechanisms are involved in the regulation of IGFBP abundance. A more complete understanding of IGFBP biology is necessary to further define their cellular roles and determine their therapeutic potential. Copyright © 2018 Endocrine Society.

  2. Serum Levels Of Free And Total Insulin-Like Growth Factor (IGF)-1 And IGF Binding Protein-3 In Normal And Growth Hormone Deficient Children

    International Nuclear Information System (INIS)

    Shousha, M.A.; Soliman, S.E.T.; Hafez, M.H.

    2006-01-01

    Serum levels of total insulin-like growth factor-1 (IGF-1) and IGF-binding protein-3 (IGFBP-3) reflect the endogenous GH secretion in healthy children, which makes them good diagnostic markers for screening growth hormone deficiency (GHD) in short children, although some controversy still exists. Only a minor fraction of the total IGF-1 circulates in its free form, which is believed to be the biologically active form. Serum levels of free IGF-1, total IGF-I and IGFBP-3 were measured in 144 healthy children (72 boys and 72 girls, aged from 0 to 16 years) and in 12 pre-pubertal GH deficient (GHD) children to study the correlation between the age and free IGF-1, total IGF-1 and IGFBP-3 levels. In healthy subjects (both sexes), serum free IGF-1, total IGF-1 and IGFBP-3 levels were low in infancy, increasing during puberty and declining thereafter. Free IGF-1 in serum occupied about 0.97-1.45 % of the total IGF-1 values, and the ratios of free IGF-1 to total IGF-1 were significantly increased in the pubertal age groups than in the pre-pubertal age groups. Serum levels of free IGF-1 showed significant positive correlation with those of total IGF-I and IGFBP-3. Serum free IGF-1, total IGF-1 and IGFBP-3 levels in patients with GHD were decreased significantly with increasing the degree of hypopituitarism. These observations suggest that the increase in serum free IGF-1 level during puberty was caused by a dramatic increase in total IGF-1 rather than IGFBP-3. Also, high levels of these hormones may play an important role in pubertal growth spurt and may become a useful tool for diagnosing GHD and predicting growth response to long term GH therapy

  3. Serum levels of free and total insulin-link growth factor (IGF)-1 and (IGF) binding protein-3 in normal and growth hormone deficient children

    International Nuclear Information System (INIS)

    Shousha, M.A.; Soliman, S.E.T.; Hafez, H.M.

    2008-01-01

    Serum levels of total insulin-like growth factor- 1 (IGF-1) and IGF-binding protein-3 (IGFBP-3) reflect endogenous GH secretion in healthy children, which makes them good diagnostic markers for screening GH deficiency (GHD) in short children, although some controversy still exists. Only a minor fraction of the total IGF-1 circulates in its free form, which is believed to be the biologically active form. Serum levels of free IGF-1, total IGF-I and IGFBP-3 were measured in 144 healthy children (72 boys and 72 girls, aged from 0 to 16 years) and in 12 prepubertal GH. deficient (GHD) children to study correlation between the age and free IGF-1, total IGF-1 and IGFBP-3 levels. In healthy subjects (both sexes), serum free IGF-1, total IGF-1 and IGFBP-3 levels were low in infancy, increasing during puberty and declining thereafter. Free IGF-1 in serum occupied about 0.97. 1.45 % of the total IGF-1 values, and the ratios of free IGF-1 to total IGF-1 were significantly increased in the pubertal age groups than in the prepubertal age groups. Serum levels of free IGF-1 showed significant positive correlation with those of total IGF-I and IGFBP-3. Serum free IGF-1, total IGF-1 and IGFBP-3 levels in patients with GHD decreased significantly with increasing degree of hypopituitarism. These observations suggest that the increase in serum free IGF-1 level during puberty was caused by a dramatic increase in total IGF-1 rather than IGFBP-3. Also, high levels of these hormones may play an important role in pubertal growth spurt and may become a useful tool for diagnosing GHD and predicting growth response to long term GH therapy

  4. Serum levels of IGF-1 and IGF-BP3 are associated with event-free survival in adult Ewing sarcoma patients treated with chemotherapy

    Directory of Open Access Journals (Sweden)

    de Groot S

    2017-06-01

    Full Text Available Stefanie de Groot,1 Hans Gelderblom,1 Marta Fiocco,2,3 Judith VMG Bovée,4 Jacobus JM van der Hoeven,1 Hanno Pijl,5 Judith R Kroep1 1Department of Medical Oncology, 2Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, 3Mathematical Department, Leiden University, 4Department of Pathology, 5Department of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands Background: Activation of the insulin-like growth factor 1 (IGF-1 pathway is involved in cell growth and proliferation and is associated with tumorigenesis, tumor progression, and therapy resistance in solid tumors. We examined whether variability in serum levels of IGF-1, IGF-2, and IGF-binding protein 3 (IGF-BP3 can predict event-free survival (EFS and overall survival (OS in Ewing sarcoma patients treated with chemotherapy.Patients and methods: Serum levels of IGF-1, IGF-2, and IGF-BP3 of 22 patients with localized or metastasized Ewing sarcoma treated with six cycles of vincristine/ifosfamide/doxorubicin/etoposide (VIDE chemotherapy were recorded. Baseline levels were compared with presixth cycle levels using paired t-tests and were tested for associations with EFS and OS. Continuous variables were dichotomized according to the Contal and O’Quigley procedure. Survival analyses were performed using Cox regression analysis.Results: High baseline IGF-1 and IGF-BP3 serum levels were associated with EFS (hazard ratio [HR] 0.075, 95% confidence interval [CI] 0.009–0.602 and HR 0.090, 95% CI 0.011–0.712, respectively in univariate and multivariate analyses (HR 0.063, 95% CI 0.007–0.590 and HR 0.057, 95% CI 0.005–0.585, respectively. OS was improved, but this was not statistically significant. IGF-BP3 and IGF-2 serum levels increased during treatment with VIDE chemotherapy (P=0.055 and P=0.023, respectively.Conclusion: High circulating serum levels of IGF-1 and IGF-BP3 and the molar ratio of IGF-1:IGF-BP3 serum levels were associated

  5. A polymorphism in the IGF-I gene influences the age-related decline in circulating total IGF-I levels

    NARCIS (Netherlands)

    I. Rietveld (Ingrid); J.A.M.J.L. Janssen (Joseph); A. Hofman (Albert); C.M. van Duijn (Cornelia); S.W.J. Lamberts (Steven); H.A.P. Pols (Huib)

    2003-01-01

    markdownabstractOBJECTIVE: Recent studies have demonstrated an association between a 192 bp polymorphism of the IGF-I gene and total IGF-I serum levels, birth weight, body height and the risk of developing diabetes and cardiovascular diseases later on in life. This IGF-I gene polymorphism in the

  6. Anabolic effects of IGF-1 signaling on the skeleton

    Science.gov (United States)

    Tahimic, Candice G. T.; Wang, Yongmei; Bikle, Daniel D.

    2013-01-01

    This review focuses on the anabolic effects of IGF-1 signaling on the skeleton, emphasizing the requirement for IGF-1 signaling in normal bone formation and remodeling. We first discuss the genomic context, splicing variants, and species conservation of the IGF-1 locus. The modulation of IGF-1 action by growth hormone (GH) is then reviewed while also discussing the current model which takes into account the GH-independent actions of IGF-1. Next, the skeletal phenotypes of IGF-1-deficient animals are described in both embryonic and postnatal stages of development, which include severe dwarfism and an undermineralized skeleton. We then highlight two mechanisms by which IGF-1 exerts its anabolic action on the skeleton. Firstly, the role of IGF-1 signaling in the modulation of anabolic effects of parathyroid hormone (PTH) on bone will be discussed, presenting in vitro and in vivo studies that establish this concept and the proposed underlying molecular mechanisms involving Indian hedgehog (Ihh) and the ephrins. Secondly, the crosstalk of IGF-1 signaling with mechanosensing pathways will be discussed, beginning with the observation that animals subjected to skeletal unloading by hindlimb elevation are unable to mitigate cessation of bone growth despite infusion with IGF-1 and the failure of IGF-1 to activate its receptor in bone marrow stromal cell cultures from unloaded bone. Disrupted crosstalk between IGF-1 signaling and the integrin mechanotransduction pathways is discussed as one of the potential mechanisms for this IGF-1 resistance. Next, emerging paradigms on bone-muscle crosstalk are examined, focusing on the potential role of IGF-1 signaling in modulating such interactions. Finally, we present a future outlook on IGF research. PMID:23382729

  7. Shifting the IGF-axis: An age-related decline in human tear IGF-1 correlates with clinical signs of dry eye.

    Science.gov (United States)

    Patel, Roshni; Zhu, Meifang; Robertson, Danielle M

    2018-02-06

    The human corneal epithelium expresses both the insulin-like growth factor type 1 receptor (IGF-1R) and the IGF-1R/insulin receptor (INSR) hybrid. Despite the previous identification of IGF-1 in human tear fluid, little is known regarding the regulation of IGF-1 in tear fluid and its role in corneal epithelial homeostasis. In the present study, we investigated the impact of biological parameters on the concentration of human tear levels of IGF-1. Tear levels of IGF-1 were measured in 41 healthy, human volunteers without any reported symptoms of dry eye. All volunteers underwent standard biomicroscopic examination of the cornea and tear film. In a subgroup of volunteers, corneal staining with sodium fluorescein, tear film break up time and tear production using a Schirmer's test strip were measured to assess clinical signs of dry eye. Tears were collected from the inferior tear meniscus using glass microcapillary tubes and IGF-1 levels were measured using a solid phase sandwich ELISA. Tear levels of IGF-1 were highest in young adults and significantly decreased in older adults (P = 0.003). There were no differences in tear IGF-1 between males and females (P = 0.628). Tear IGF-1 levels were correlated with tear film break up time (R = 0.738) and tear production (R = 0.826). These data indicate that there is a progressive decline in tear IGF-1 due to aging that is associated with clinical signs of dry eye. This effect is likely due to age-related changes in the lacrimal gland. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Effects of insulin-like growth factor-1 (IGF-1) and amifostine in spinal cord reirradiation

    International Nuclear Information System (INIS)

    Nieder, C.; Andratschke, N.; Price, R.E.; Rivera, B.; Ang, K. Kian

    2005-01-01

    Purpose: To test whether insulin-like growth factor-1 (IGF-1) and amifostine modulate the reirradiation tolerance of rat cervical spinal cord. Initial experiments by the authors' group suggested that administration of each agent alone significantly increased the median latent time to radiation myelopathy (RM) in previously unirradiated animals but did not change the dose-response relationship. Because of different modes of action, a follow-up study was undertaken to test the combined treatment. Material and Methods: The cervical spinal cord of 51 adult Fisher F-344 rats received a single fraction of 16 Gy, which corresponds to approximately 75% of the median paresis dose (ED 50 ), followed 5 months later by a second radiation dose, which ranged from 17 to 21 Gy. The study animals received a single intrathecal injection of 0.3 mg amifostine into the cisterna magna 30-60 min before reirradiation plus three subcutaneous doses of IGF-1 (700 μg) starting from 24 h before to 24 h after reirradiation. Control animals received saline injections via the same routes. Animals were followed until RM developed or until 12 months from reirradiation. Histopathologic examinations were performed post mortem. Results: No animals showed any neurologic abnormalities before reirradiation. RM occurred in controls versus treated rats after a mean latency of 218 versus 314 days (19 Gy; p=0.11) and 104 versus 186 days (21 Gy; p=0.002) from second dose (Figure 1). ED 50 was 18.2 versus 19.4 Gy (p=0.15; Figure 2). Treatment with IGF-1 and amifostine did not significantly influence the rates of tumor induction or intercurrent death. Conclusion: IGF-1 and amifostine significantly reduced RM rates after 21 Gy. The shift of the dose-response curve suggests an increase of the ED 50 for single-dose treatment by approximately 7%. Thus, brief therapeutic intervention might slightly decrease radiation-induced neurotoxicity in a retreatment situation. (orig.)

  9. Effects of insulin-like growth factor-1 (IGF-1) and amifostine in spinal cord reirradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nieder, C.; Andratschke, N. [TU Muenchen (Germany). Dept. of Radiation Oncology; Price, R.E.; Rivera, B. [University of Texas M.D. Anderson Cancer Center, Houston, TX (United States). Dept. of Veterinary Medicine and Surgery; Ang, K. Kian [University of Texas M.D. Anderson Cancer Center, Houston, TX (United States). Dept. of Radiation Oncology

    2005-11-01

    Purpose: To test whether insulin-like growth factor-1 (IGF-1) and amifostine modulate the reirradiation tolerance of rat cervical spinal cord. Initial experiments by the authors' group suggested that administration of each agent alone significantly increased the median latent time to radiation myelopathy (RM) in previously unirradiated animals but did not change the dose-response relationship. Because of different modes of action, a follow-up study was undertaken to test the combined treatment. Material and Methods: The cervical spinal cord of 51 adult Fisher F-344 rats received a single fraction of 16 Gy, which corresponds to approximately 75% of the median paresis dose (ED{sub 50}), followed 5 months later by a second radiation dose, which ranged from 17 to 21 Gy. The study animals received a single intrathecal injection of 0.3 mg amifostine into the cisterna magna 30-60 min before reirradiation plus three subcutaneous doses of IGF-1 (700 {mu}g) starting from 24 h before to 24 h after reirradiation. Control animals received saline injections via the same routes. Animals were followed until RM developed or until 12 months from reirradiation. Histopathologic examinations were performed post mortem. Results: No animals showed any neurologic abnormalities before reirradiation. RM occurred in controls versus treated rats after a mean latency of 218 versus 314 days (19 Gy; p=0.11) and 104 versus 186 days (21 Gy; p=0.002) from second dose (Figure 1). ED{sub 50} was 18.2 versus 19.4 Gy (p=0.15; Figure 2). Treatment with IGF-1 and amifostine did not significantly influence the rates of tumor induction or intercurrent death. Conclusion: IGF-1 and amifostine significantly reduced RM rates after 21 Gy. The shift of the dose-response curve suggests an increase of the ED{sub 50} for single-dose treatment by approximately 7%. Thus, brief therapeutic intervention might slightly decrease radiation-induced neurotoxicity in a retreatment situation. (orig.)

  10. Isolation of an inhibitory insulin-like growth factor (IGF) binding protein from bone cell-conditioned medium: A potential local regulator of IGF action

    International Nuclear Information System (INIS)

    Mohan, S.; Bautista, C.M.; Wergedal, J.; Baylink, D.J.

    1989-01-01

    Inhibitory insulin-like growth factor binding protein (In-IGF-BP) has been purified to homogeneity from medium conditioned by TE89 human osteosarcoma cells by two different methods using Sephadex G-100 gel filtration, FPLC Mono Q ion-exchange, HPLC C 4 reverse-phase, HPLC CN reverse-phase and affinity chromatographies. In-IGF-BP thus purified appeared to be homogeneous and unique by the following criteria. (i) N-terminal sequence analysis yielded a unique sequence (Asp-Glu-Ala-Ile-His-Cys-Pro-Pro-Glu-Ser-Glu-Ala-Lys-Leu-Ala). (ii) Amino acid composition of In-IGF-BP revealed marked differences with the amino acid compositions of other known PBs. (iii) In-IGF-BP exhibited a single band with molecular mass of 25 kDa under reducing conditions on sodium dodecyl sulfate/polyacrylamide gels. IGF-I and IGF-II but not insulin displaced the binding of 125 I-labeled IGF-I or 125 I-labeled IGF-II binding to In-IGF-BP. In-IGF-BP inhibited basal, IGF-stimulated bone cell proliferation and serum-stimulated bone cell proliferation. Forskolin increases synthesis of In-IGF-BP in TE85 human osteosarcoma cells in a dose-dependent manner. Based on these findings, the authors conclude that In-IGF-BP is a protein that has a unique sequence and significant biological actions on bone cells

  11. c-myb stimulates cell growth by regulation of insulin-like growth factor (IGF) and IGF-binding protein-3 in K562 leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min-Sun; Kim, Sun-Young; Arunachalam, Sankarganesh [Department of Pediatrics, School of Medicine, Chonbuk National University, Jeonju 561-712 (Korea, Republic of); Hwang, Pyoung-Han [Department of Pediatrics, School of Medicine, Chonbuk National University, Jeonju 561-712 (Korea, Republic of); Research Institute of Clinical Medicine, School of Medicine, Chonbuk National University, Jeonju 561-712 (Korea, Republic of); Yi, Ho-Keun [Department of Biochemistry, School of Dentistry, Chonbuk National University, Jeonju 561-712 (Korea, Republic of); Nam, Sang-Yun [Department of Alternative Therapy, School of Alternative Medicine and Health Science, Jeonju University, Jeonju 561-712 (Korea, Republic of); Lee, Dae-Yeol, E-mail: leedy@chonbuk.ac.kr [Department of Pediatrics, School of Medicine, Chonbuk National University, Jeonju 561-712 (Korea, Republic of); Research Institute of Clinical Medicine, School of Medicine, Chonbuk National University, Jeonju 561-712 (Korea, Republic of)

    2009-07-17

    c-myb plays an important role in the regulation of cell growth and differentiation, and is highly expressed in immature hematopoietic cells. The human chronic myelogenous leukemia cell K562, highly expresses IGF-I, IGF-II, IGF-IR, and IGF-induced cellular proliferation is mediated by IGF-IR. To characterize the impact of c-myb on the IGF-IGFBP-3 axis in leukemia cells, we overexpressed c-myb using an adenovirus gene transfer system in K562 cells. The overexpression of c-myb induced cell proliferation, compared to control, and c-myb induced cell growth was inhibited by anti-IGF-IR antibodies. c-myb overexpression resulted in a significant increase in the expression of IGF-I, IGF-II, and IGF-IR, and a decrease in IGFBP-3 expression. By contrast, disruption of c-myb function by DN-myb overexpression resulted in significant reduction of IGF-I, IGF-II, IGF-IR, and elevation of IGFBP-3 expression. In addition, exogenous IGFBP-3 inhibited the proliferation of K562 cells, and c-myb induced cell growth was blocked by IGFBP-3 overexpression in a dose-dependent manner. The growth-promoting effects of c-myb were mediated through two major intracellular signaling pathways, Akt and Erk. Activation of Akt and Erk by c-myb was completely blocked by IGF-IR and IGFBP-3 antibodies. These findings suggest that c-myb stimulates cell growth, in part, by regulating expression of the components of IGF-IGFBP axis in K562 cells. In addition, disruption of c-myb function by DN-myb may provide a useful strategy for treatment of leukemia.

  12. c-myb stimulates cell growth by regulation of insulin-like growth factor (IGF) and IGF-binding protein-3 in K562 leukemia cells

    International Nuclear Information System (INIS)

    Kim, Min-Sun; Kim, Sun-Young; Arunachalam, Sankarganesh; Hwang, Pyoung-Han; Yi, Ho-Keun; Nam, Sang-Yun; Lee, Dae-Yeol

    2009-01-01

    c-myb plays an important role in the regulation of cell growth and differentiation, and is highly expressed in immature hematopoietic cells. The human chronic myelogenous leukemia cell K562, highly expresses IGF-I, IGF-II, IGF-IR, and IGF-induced cellular proliferation is mediated by IGF-IR. To characterize the impact of c-myb on the IGF-IGFBP-3 axis in leukemia cells, we overexpressed c-myb using an adenovirus gene transfer system in K562 cells. The overexpression of c-myb induced cell proliferation, compared to control, and c-myb induced cell growth was inhibited by anti-IGF-IR antibodies. c-myb overexpression resulted in a significant increase in the expression of IGF-I, IGF-II, and IGF-IR, and a decrease in IGFBP-3 expression. By contrast, disruption of c-myb function by DN-myb overexpression resulted in significant reduction of IGF-I, IGF-II, IGF-IR, and elevation of IGFBP-3 expression. In addition, exogenous IGFBP-3 inhibited the proliferation of K562 cells, and c-myb induced cell growth was blocked by IGFBP-3 overexpression in a dose-dependent manner. The growth-promoting effects of c-myb were mediated through two major intracellular signaling pathways, Akt and Erk. Activation of Akt and Erk by c-myb was completely blocked by IGF-IR and IGFBP-3 antibodies. These findings suggest that c-myb stimulates cell growth, in part, by regulating expression of the components of IGF-IGFBP axis in K562 cells. In addition, disruption of c-myb function by DN-myb may provide a useful strategy for treatment of leukemia.

  13. Gene Expression of IGF1, IGF1R, and IGFBP3 in Epiretinal Membranes of Patients with Proliferative Diabetic Retinopathy: Preliminary Study

    Directory of Open Access Journals (Sweden)

    Dorota Romaniuk

    2013-01-01

    Full Text Available The molecular mechanism formation of secondary epiretinal membranes (ERMs after proliferative diabetic retinopathy (PDR or primary idiopathic ERMs is still poorly understood. Therefore, the present study focused on the assessment of IGF1, IGF1R, and IGFBP3 mRNA levels in ERMs and PBMCs from patients with PDR. The examined group comprised 6 patients with secondary ERMs after PDR and the control group consisted of 11 patients with idiopathic ERMs. Quantification of IGF1, IGF1R, and IGFBP3 mRNAs was performed by real-time QRT-PCR technique. In ERMs, IGF1 and IGF1R mRNA levels were significantly higher in patients with diabetes compared to control subjects. In PBMCs, there were no statistically significant differences of IGF1, IGF1R, and IGFBP3 expression between diabetic and nondiabetic patients. In conclusion, our study indicated IGF1 and IGF1R differential expression in ERMs, but not in PBMCs, of diabetic and nondiabetic patients, suggesting that these factors can be involved in the pathogenesis or progression of proliferative vitreoretinal disorders. This trial is registered with NCT00841334.

  14. Organ-Specific and Age-Dependent Expression of Insulin-like Growth Factor-I (IGF-I) mRNA Variants: IGF-IA and IB mRNAs in the Mouse

    OpenAIRE

    Ohtsuki, Takashi; Otsuki, Mariko; Murakami, Yousuke; Maekawa, Tetsuya; Yamamoto, Takashi; Akasaka, Koji; Takeuchi, Sakae; Takahashi, Sumio

    2005-01-01

    Insulin-like growth factor-I (IGF-I) gene generates several IGF-I mRNA variants by alternative splicing. Two promoters are present in mouse IGF-I gene. Each promoter encodes two IGF-I mRNA variants (IGF-IA and IGF-IB mRNAs). Variants differ by the presence (IGF-IB) or absence (IGF-IA) of a 52-bp insert in the E domain-coding region. Functional differences among IGF-I mRNAs, and regulatory mechanisms for alternative splicing of IGF-I mRNA are not yet known. We analyzed the expression of mouse ...

  15. Evaluation of the effects of fasting associated dehydration on maternal NGAL levels and fetal renal artery Doppler parameters.

    Science.gov (United States)

    Bayoglu Tekin, Yesim; Guvendag Guven, Emine Seda; Mete Ural, Ulku; Yazici, Zihni Acar; Kirbas, Aynur; Kir Sahin, Figen

    2016-01-01

    The aim of this study was to evaluate maternal neutrophil gelatinase-asssociated lipocalin (NGAL) levels and fetal renal artery (fRA) Doppler flow indices in pregnant women fasting in Ramadan in respect of dehydration in long hot summer days as a marker of hypoperfusion and early renal injury. A cross-sectional observational study was carried out at a University Hospital. Fasting pregnant women and non-fasting age, gravidity and gestational age-matched women were evaluated for hematologic, blood biochemistry and urine parameters in the first and fourth weeks of the Ramadan. Umbilical artery and fRA Doppler flows were studied in each evaluation. Blood urea nitrogen, potassium and hematocrit levels, blood and urine NGAL levels were significantly higher, and fRA Doppler indices increased in fasting women (p fasting women had no significant alterations in each evaluation (p > 0.05). Adequate maternal vascular volume is essential for the maintenance of healthy pregnancy. Fasting during the long and hot summer days leads to fluid deprivation and dehydration which was found to be related to subclinical maternal renal dysfunction and increased fRA Doppler indices.

  16. Normal Values of Circulating IGF-I Bioactivity in the Healthy Population: Comparison with five widely used IGF-I immunoassays

    NARCIS (Netherlands)

    M.P. Brugts (Michael); M.B. Ranke (Michael); L.J. Hofland (Leo); K. van der Wansem (Katy); K. Weber (Karin); J. Frystyk (Jan); S.W.J. Lamberts (Steven); J.A.M.J.L. Janssen (Joseph)

    2008-01-01

    textabstractBackground: IGF-I immunoassays are primarily used to estimate IGF-I bioactivity. Recently, an IGFI specific Kinase Receptor Activation Assay (KIRA) has been developed as an alternative method. However, no normative values have been established for the IGF-I KIRA. Objective: To

  17. Insulin-Like Growth Factor (IGF System in Liver Diseases

    Directory of Open Access Journals (Sweden)

    Agnieszka Adamek

    2018-04-01

    Full Text Available Hepatocyte differentiation, proliferation, and apoptosis are affected by growth factors produced in liver. Insulin-like growth factor 1 and 2 (IGF1 and IGF2 act in response to growth hormone (GH. Other IGF family components include at least six binding proteins (IGFBP1 to 6, manifested by both IGFs develop due to interaction through the type 1 receptor (IGF1R. The data based on animal models and/or in vitro studies suggest the role of IGF system components in cellular aspects of hepatocarcinogenesis (cell cycle progression, uncontrolled proliferation, cell survival, migration, inhibition of apoptosis, protein synthesis and cell growth, and show that systemic IGF1 administration can reduce fibrosis and ameliorate general liver function. In epidemiologic and clinicopathological studies on chronic liver disease (CLD, lowered serum levels, decreased tissue expression of IGF1, elevated production of IGF1R and variable IGF2 expression has been noted, from the start of preneoplastic alterations up to the developed hepatocellular carcinoma (HCC stage. These changes result in well-known clinical symptoms of IGF1 deficiency. This review summarized the current data of the complex role of IGF system components in the most common CLD (nonalcoholic fatty liver disease, cirrhosis, and hepatocellular carcinoma. Better recognition and understanding of this system can contribute to discovery of new and improved versions of current preventive and therapeutic actions in CLD.

  18. IGF-1/IGF-1R/hsa-let-7c axis regulates the committed differentiation of stem cells from apical papilla

    Science.gov (United States)

    Ma, Shu; Liu, Genxia; Jin, Lin; Pang, Xiyao; Wang, Yanqiu; Wang, Zilu; Yu, Yan; Yu, Jinhua

    2016-01-01

    Insulin-like growth factor-1 (IGF-1) and its receptor IGF-1R play a paramount role in tooth/bone formation while hsa-let-7c actively participates in the osteogenic differentiation of mesenchymal stem cells. However, the interaction between IGF-1/IGF-1R and hsa-let-7c on the committed differentiation of stem cells from apical papilla (SCAPs) remains unclear. In this study, human SCAPs were isolated and treated with IGF-1 and hsa-let-7c over/low-expression viruses. The odonto/osteogenic differentiation of these stem cells and the involvement of mitogen-activated protein kinase (MAPK) pathway were subsequently investigated. Alizarin red staining showed that hsa-let-7c low-expression can significantly promote the mineralization of IGF-1 treated SCAPs, while hsa-let-7c over-expression can decrease the calcium deposition of IGF-1 treated SCAPs. Western blot assay and real-time reverse transcription polymerase chain reaction further demonstrated that the expression of odonto/osteogenic markers (ALP, RUNX2/RUNX2, OSX/OSX, OCN/OCN, COL-I/COL-I, DSPP/DSP, and DMP-1/DMP-1) in IGF-1 treated SCAPs were significantly upregulated in Let-7c-low group. On the contrary, hsa-let-7c over-expression could downregulate the expression of these odonto/osteogenic markers. Moreover, western blot assay showed that the JNK and p38 MAPK signaling pathways were activated in Let-7c-low SCAPs but inhibited in Let-7c-over SCAPs. Together, the IGF-1/IGF-1R/hsa-let-7c axis can control the odonto/osteogenic differentiation of IGF-1-treated SCAPs via the regulation of JNK and p38 MAPK signaling pathways. PMID:27833148

  19. No Effect of NGAL/lipocalin-2 on Aggressiveness of Cancer in the MMTV-PyMT/FVB/N Mouse Model for Breast Cancer

    DEFF Research Database (Denmark)

    Cramer, Elisabeth P; Glenthøj, Andreas; Häger, Mattias

    2012-01-01

    tumor volume, or to the number of metastases. Histology and gelatinolytic activity of the mammary tumors did not differ between wild-type and lipocalin-2-deficient mice. We conclude that NGAL/lipocalin-2 does not invariably affect the aggressiveness of breast cancers as assessed in mouse models, thus......NGAL/lipocalin-2 is a siderophore-binding protein that is highly expressed in several cancers. It is suggested to confer a proliferative advantage to cancer cells. Its expression has been correlated with aggressiveness of breast cancer as determined both in patients and in mouse breast cancer...... models. This was recently confirmed in two mouse models of spontaneous breast cancer in wild-type and lipocalin-2-deficient mice. We used a similar strategy using a different mouse strain. Lipocalin-2-deficient mice and mouse mammary tumor virus-polyoma middle T antigen (MMTV-PyMT) mice were crossed...

  20. Insulin-like growth factor II (IGF II) in human brain: regional distribution of IGF II and of higher molecular mass forms

    International Nuclear Information System (INIS)

    Haselbacher, G.K.; Schwab, M.E.; Pasi, A.; Humbel, R.E.

    1985-01-01

    Twenty-four distinct areas of human brain were analyzed for the presence of insulin-like growth factor (IGF). As reported for cerebrospinal fluid, only IGF II-like immunoreactivity, but no significant amounts of IGF I-like immunoreactivity, could be found. Upon gel permeation chromatography, two to five distinct size classes were separated on the basis of their immunoreactivity. Radioimmunoassays and a bioassay also gave results indistinguishable from those of serum IGF II. The highest amounts of IGF II-like immunoreactivity occur in the anterior pituitary. This is up to 100 times more than in most other brain regions analyzed. The higher molecular mass immunoreactive species were partially characterized. After immunoaffinity purification, the 38- and 26-kDa species are active in a bioassay. Specific IGF-binding protein activity could be shown after purification of the 38- and 26-kDa species on an IGF-affinity column. The 13-kDa species released significant amounts of 7.5-kDa material. The results are interpreted as evidence for the presence of IGF II synthesized locally in human brain

  1. The role of the IGF axis in IGFBP-1 and IGF-I induced renal enlargement in Snell dwarf mice

    NARCIS (Netherlands)

    M. van Kleffens (Marjolein); D.J. Lindenbergh-Kortleve (Dicky); J.G. Koster; J.W. van Neck (Han); A. Flyvbjerg (Allan); R. Rasch; S.L.S. Drop (Stenvert); S.C. van Buul-Offers

    2001-01-01

    textabstractInsulin-like growth factor (IGF) binding protein-1 (IGFBP-1) is generally believed to inhibit IGF action in the circulation. In contrast, IGFBP-1 has been reported to interact with cell surfaces and enhance IGF-I action locally in some tissues. Renal IGFBP-1 levels are

  2. Experimental approach to IGF-1 therapy in CCl4-induced acute liver damage in healthy controls and mice with partial IGF-1 deficiency.

    Science.gov (United States)

    Morales-Garza, Luis A; Puche, Juan E; Aguirre, Gabriel A; Muñoz, Úrsula; García-Magariño, Mariano; De la Garza, Rocío G; Castilla-Cortazar, Inma

    2017-05-04

    Cell necrosis, oxidative damage, and fibrogenesis are involved in cirrhosis development, a condition in which insulin-like growth factor 1 (IGF-1) levels are diminished. This study evaluates whether the exogenous administration of low doses of IGF-1 can induce hepatoprotection in acute carbon tetrachloride (CCl 4 )-induced liver damage compared to healthy controls (Wt Igf +/+ ). Additionally, the impact of IGF-1 deficiency on a damaged liver was investigated in mice with a partial deficit of this hormone (Hz Igf1 +/- ). Three groups of 25 ± 5-week-old healthy male mice (Wt Igf +/+ ) were included in the protocol: untreated controls (Wt). Controls that received CCl 4 (Wt + CCl 4 ) and Wt + CCl 4 were treated subcutaneously with IGF-1 (2 µg/100 g body weight/day) for 10 days (Wt + CCl 4  + IGF1). In parallel, three IGF-1-deficient mice (Hz Igf1 +/- ) groups were studied: untreated Hz, Hz + CCl 4 , and Hz + CCl 4  + IGF-1. Microarray and real-time quantitative polymerase chain reaction (RT-qPCR) analyses, serum aminotransferases levels, liver histology, and malondialdehyde (MDA) levels were assessed at the end of the treatment in all groups. All data represent mean ± SEM. An altered gene coding expression pattern for proteins of the extracellular matrix, fibrosis, and cellular protection were found, as compared to healthy controls, in which IGF-1 therapy normalized in the series including healthy mice. Liver histology showed that Wt + CCl 4  + IGF1 mice had less oxidative damage, fibrosis, lymphocytic infiltrate, and cellular changes when compared to the Wt + CCl 4 . Moreover, there was a correlation between MDA levels and the histological damage score (Pearson's r = 0.858). In the IGF-1-deficient mice series, similar findings were identified, denoting a much more vulnerable hepatic parenchyma. IGF1 treatment improved the biochemistry, histology, and genetic expression of pro-regenerative and cytoprotective factors in both series

  3. The fetal programming effect of prenatal smoking on Igf1r and Igf1 methylation is organ- and sex-specific.

    Science.gov (United States)

    Meyer, Karolin F; Verkaik-Schakel, Rikst Nynke; Timens, Wim; Kobzik, Lester; Plösch, Torsten; Hylkema, Machteld N

    2017-01-01

    The impact of prenatal smoke exposure (PSE) on DNA methylation has been demonstrated in blood samples from children of smoking mothers, but evidence for sex-dependent smoke-induced effects is limited. As the identified differentially methylated genes can be associated with developmental processes, and insulin-like growth factors (IGFs) play a critical role in prenatal tissue growth, we hypothesized that PSE induces fetal programming of Igf1r and Igf1. Using a mouse model of smoking during pregnancy, we show that PSE alters promoter methylation of Igf1r and Igf1 and deregulates their gene expression in lung and liver of fetal (E17.5) and neonatal (D3) mouse offspring. By further comparing female versus male, lung versus liver, or fetal versus neonatal time point, our results demonstrate that CpG site-specific aberrant methylation patterns sex-dependently vary per organ and time point. Moreover, PSE reduces gene expression of Igf1r and Igf1, dependent on organ, sex, and offspring's age. Our results indicate that PSE may be a source of organ-specific rather than general systemic fetal programming. This is exemplified here by gene promoter methylation and mRNA levels of Igf1r and Igf1, together with a sex- and organ-specific naturally established correlation of both parameters that is affected by prenatal smoke exposure. Moreover, the comparison of fetuses with neonates suggests a CpG site-dependent reversibility/persistence of PSE-induced differential methylation patterns.

  4. Telomerase activity promotes osteoblast differentiation by modulating IGF-signaling pathway

    DEFF Research Database (Denmark)

    Saeed, Hamid; Qiu, Weimin; Li, Chen

    2015-01-01

    -regulation of several components of insulin-like growth factor (IGF) signaling. Specifically, a significant increase in IGF-induced AKT phosphorylation and alkaline phosphatase (ALP) activity were observed in hMSC-TERT. Enhanced ALP activity was reduced in presence of IGF1 receptor inhibitor: picropodophyllin....... In addition, telomerase deficiency caused significant reduction in IGF signaling proteins in osteoblastic cells cultured from telomerase deficient mice (Terc (-/-)). The low bone mass exhibited by Terc (-/-) mice was associated with significant reduction in serum levels of IGF1 and IGFBP3 as well as reduced...... skeletal mRNA expression of Igf1, Igf2, Igf2r, Igfbp5 and Igfbp6. IGF1-induced osteoblast differentiation was also impaired in Terc (-/-) MSC. In conclusion, our data demonstrate that impaired IGF/AKT signaling contributes to the observed decreased bone mass and bone formation exhibited by telomerase...

  5. Prenatal stress affects insulin-like growth factor-1 (IGF-1) level and IGF-1 receptor phosphorylation in the brain of adult rats.

    Science.gov (United States)

    Basta-Kaim, Agnieszka; Szczesny, Ewa; Glombik, Katarzyna; Stachowicz, Katarzyna; Slusarczyk, Joanna; Nalepa, Irena; Zelek-Molik, Agnieszka; Rafa-Zablocka, Katarzyna; Budziszewska, Boguslawa; Kubera, Marta; Leskiewicz, Monika; Lason, Wladyslaw

    2014-09-01

    It has been shown that stressful events occurring in early life have a powerful influence on the development of the central nervous system. Insulin-like growth factor-1 (IGF-1) promotes the growth, differentiation and survival of both neurons and glial cells and is thought to exert antidepressant-like activity. Thus, it is possible that disturbances in the function of the IGF-1 system may be responsible for disturbances observed over the course of depression. Prenatal stress was used as a valid model of depression. Adult male offspring of control and stressed rat dams were subjected to behavioural testing (forced swim test). The level of IGF-1 in the blood and the expression of IGF-1, IGF-1R, and IRS-1/2 in the hippocampus and frontal cortex using RT-PCR, ELISA and western blotting were measured. In addition the effect of intracerebroventricularly administered IGF-1 and/or the IGF-1R receptor antagonist JB1 in the forced swim test was studied. Prenatally stressed rats showed depressive like behaviour, including increased immobility time as well as decreased mobility and climbing. Intracerebroventricular administration of IGF-1 reversed these effects in stressed animals, whereas concomitant administration of the IGF-1R antagonist JB1 completely blocked the effects. Biochemical analysis of homogenates from the hippocampus and frontal cortex revealed decreases in IGF-1 level and IGF-1R phosphorylation along with disturbances in IRS-1 phosphorylation. These findings reveal that prenatal stress alters IGF-1 signalling, which may contribute to the behavioural changes observed in depression. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  6. IGF-1 facilitates thrombopoiesis primarily through Akt activation.

    Science.gov (United States)

    Chen, Shilei; Hu, Mengjia; Shen, Mingqiang; Wang, Song; Wang, Cheng; Chen, Fang; Tang, Yong; Wang, Xinmiao; Zeng, Hao; Chen, Mo; Gao, Jining; Wang, Fengchao; Su, Yongping; Xu, Yang; Wang, Junping

    2018-05-25

    It is known that insulin-like growth factor-1 (IGF-1) also functions as a hematopoietic factor, while its direct effect on thrombopoiesis remains unclear. In this study, we show that IGF-1 is able to promote CD34+ cell differentiation toward megakaryocytes (MKs), as well as the facilitation of proplatelet formation (PPF) and platelet production from cultured MKs. The in vivo study demonstrates that IGF-1 administration accelerates platelet recovery in mice after 6.0Gy of irradiation and in mice that received bone marrow transplantation (BMT) following 10.0Gy of lethal irradiation. Subsequent investigations reveal that ERK1/2 and Akt activation mediate the effect of IGF-1 on thrombopoiesis. Notably, Akt activation induced by IGF-1 is more apparent than that of ERK1/2, compared with that of thrombopoietin (TPO) treatment. Moreover, the effect of IGF-1 on thrombopoiesis is independent of TPO signaling, because IGF-1 treatment can also lead to a significant increase of platelet counts in homozygous TPO receptor mutant mice. Further analysis indicates that the activation of Akt triggered by IGF-1 requires the assistance of steroid receptor coactivator-3 (SRC-3). Therefore, our data reveal a distinct role of IGF-1 in regulating thrombopoiesis, providing new insights into TPO-independent regulation of platelet generation. Copyright © 2018 American Society of Hematology.

  7. IGF system targeted therapy: Therapeutic opportunities for ovarian cancer.

    Science.gov (United States)

    Liefers-Visser, J A L; Meijering, R A M; Reyners, A K L; van der Zee, A G J; de Jong, S

    2017-11-01

    The insulin-like growth factor (IGF) system comprises multiple growth factor receptors, including insulin-like growth factor 1 receptor (IGF-1R), insulin receptor (IR) -A and -B. These receptors are activated upon binding to their respective growth factor ligands, IGF-I, IGF-II and insulin, and play an important role in development, maintenance, progression, survival and chemotherapeutic response of ovarian cancer. In many pre-clinical studies anti-IGF-1R/IR targeted strategies proved effective in reducing growth of ovarian cancer models. In addition, anti-IGF-1R targeted strategies potentiated the efficacy of platinum based chemotherapy. Despite the vast amount of encouraging and promising pre-clinical data, anti-IGF-1R/IR targeted strategies lacked efficacy in the clinic. The question is whether targeting the IGF-1R/IR signaling pathway still holds therapeutic potential. In this review we address the complexity of the IGF-1R/IR signaling pathway, including receptor heterodimerization within and outside the IGF system and downstream signaling. Further, we discuss the implications of this complexity on current targeted strategies and indicate therapeutic opportunities for successful targeting of the IGF-1R/IR signaling pathway in ovarian cancer. Multiple-targeted approaches circumventing bidirectional receptor tyrosine kinase (RTK) compensation and prevention of system rewiring are expected to have more therapeutic potential. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  8. Correlation between GH and IGF-1 during treatment for acromegaly.

    Science.gov (United States)

    Oldfield, Edward H; Jane, John A; Thorner, Michael O; Pledger, Carrie L; Sheehan, Jason P; Vance, Mary Lee

    2017-06-01

    OBJECTIVE The relationship between growth hormone (GH) and insulin-like growth factor-1 (IGF-1) in patients with acromegaly as serial levels drop over time after treatment has not been examined previously. Knowledge of this relationship is important to correlate pretreatment levels that best predict response to treatment. To examine the correlation between GH and IGF-1 and IGF-1 z-scores over a wide range of GH levels, the authors examined serial GH and IGF-1 levels at intervals before and after surgery and radiosurgery for acromegaly. METHODS This retrospective analysis correlates 414 pairs of GH and IGF-1 values in 93 patients with acromegaly. RESULTS Absolute IGF-1 levels increase linearly with GH levels only up to a GH of 4 ng/ml, and with IGF-1 z-scores only to a GH level of 1 ng/ml. Between GH levels of 1 and 10 ng/ml, increases in IGF-1 z-scores relative to changes in GH diminish and then plateau at GH concentrations of about 10 ng/ml. From patient to patient there is a wide range of threshold GH levels beyond which IGF-1 increases are no longer linear, GH levels at which the IGF-1 response plateaus, IGF-1 levels at similar GH values after the IGF-1 response plateaus, and of IGF-1 levels at similar GH levels. CONCLUSIONS In acromegaly, although IGF-1 levels represent a combination of the integrated effects of GH secretion and GH action, the tumor produces GH, not IGF-1. Nonlinearity between GH and IGF-1 occurs at GH levels far below those previously recognized. To monitor tumor activity and tumor viability requires measurement of GH levels.

  9. Branchial expression and localization of the insulin-like growth factor 1 (IGF-1) receptor and changes in plasma IGF-1 and IGF-1 binding protein in striped bass during salinity acclimation

    DEFF Research Database (Denmark)

    Tipsmark, Christian Kølbæk; Madsen, Steffen; Borski, Russell

    2006-01-01

    In euryhaline teleosts the insulin-like growth factor 1 (IGF-1)/growth hormone axis is known to affect salinity tolerance and gill Na,K-ATPase activity. However, virtually nothing is known on expression and cellular localization of the IGF-1 receptor (IGF-1R) in the teleost gill during salinity a...

  10. Serum insulin-like growth factor I (IGF-I) and IGF-binding protein 3 levels are increased in central precocious puberty

    DEFF Research Database (Denmark)

    Juul, A; Scheike, Thomas Harder; Nielsen, C T

    1995-01-01

    between IGF-I and IGFBP-3 (i.e. free biologically active IGF-I) declined concomitantly with a decrease in growth velocity. Serum levels of IGF-I and IGFBP-3 (expressed as the SD score for bone age), but not those of estradiol, correlated with height velocity before and during treatment (r = 0.34; P ...Central precocious puberty (CPP) is characterized by early activation of the pituitary-gonadal axis, which leads to increased growth velocity and development of secondary sexual characteristics. It is generally believed that gonadal sex steroids stimulate pulsatile GH secretion, which, in turn......, stimulates insulin-like growth factor I (IGF-I) and IGF-binding protein 3 (IGFBP-3) production. However, little is known about GH, IGF-I, and IGFBP-3 serum levels in children with precocious puberty. Treatment of CPP by GnRH agonists has become the treatment of choice. However, the effect of long term...

  11. Changes in circulating level of IGF-I and IGF-binding protein-1 from the first to second trimester as predictors of preeclampsia

    DEFF Research Database (Denmark)

    Vatten, Lars J; Nilsen, Tom I L; Juul, Anders

    2008-01-01

    To assess whether circulating IGF-I and IGF-binding protein-1 (IGFBP-1) in the first and second trimester are associated with subsequent risk of preterm and term preeclampsia.......To assess whether circulating IGF-I and IGF-binding protein-1 (IGFBP-1) in the first and second trimester are associated with subsequent risk of preterm and term preeclampsia....

  12. A Longitudinal Study of Growth, Sex Steroids, and IGF-1 in Boys With Physiological Gynecomastia.

    Science.gov (United States)

    Mieritz, Mikkel G; Rakêt, Lars L; Hagen, Casper P; Nielsen, John E; Talman, Maj-Lis M; Petersen, Jørgen H; Sommer, Stefan H; Main, Katharina M; Jørgensen, Niels; Juul, Anders

    2015-10-01

    Physiological gynecomastia is common and affects a large proportion of otherwise healthy adolescent boys. It is thought to be caused by an imbalance between estrogen and testosterone, although this is rarely evident in analyses of serum. This study aimed to describe the frequency of physiological gynecomastia and to determine possible etiological factors (eg, auxology and serum hormone levels) in a longitudinal setup. A prospective cohort study of 106 healthy Danish boys (5.8-16.4 years) participated in the longitudinal part of the COPENHAGEN Puberty Study. The boys were examined every 6 months during an 8-year follow-up. Median number of examinations was 10 (2-15). Blood samples were analyzed for FSH, LH, testosterone, estradiol, SHBG, inhibin B, anti-Müllerian hormone, IGF-1, and IGF binding protein-3 by immunoassays. Auxological parameters, pubertal development, and the presence of gynecomastia were evaluated at each visit. Fifty-two of 106 boys (49%) developed gynecomastia, of which 10 (19%) presented with intermittent gynecomastia. Boys with physiological gynecomastia reached peak height velocity at a significantly younger age than boys who did not develop gynecomastia (13.5 versus 13.9 years, P = .027), and they had significantly higher serum levels of IGF-1 (P = .000), estradiol (P = .013), free testosterone (P Gynecomastia is frequent in pubertal boys. Increased IGF-1 levels and pubertal growth appear to be associated, whereas changes in estrogen to testosterone ratio seem negligible.

  13. Serum insulin-like growth factor-I (IGF-I) levels during long-term IGF-I treatment of children and adults with primary GH resistance (Laron syndrome).

    Science.gov (United States)

    Laron, Z; Klinger, B; Silbergeld, A

    1999-01-01

    Serum IGF-I levels were measured in 14 patients (9 children and 5 adults) with Laron syndrome (LS) during long-term treatment by IGF-I. Recombinant IGF-I (FK-780, Fujisawa Pharmaceutical Co. Ltd., Japan) was administered once daily subcutaneously before breakfast for 3-5 years to the children and for 9 months to the adults. The initial daily dose was 150 micrograms/kg for children and 120 micrograms/kg for adults. Before initiation of treatment the mean overnight fasting levels of serum IGF-I in the children was 3.2 +/- 0.8 nmol/l (mean +/- SEM), rising to 10 +/- 1.7 nmol/l during long-term treatment even on a dose of 120 micrograms/kg/day. The serum IGF-I levels 4 hours after injection rose from 31.2 +/- 3.5 to 48 +/- 2 nmol/l. In the adult patients, the initial basal IGF-I was 4.1 +/- 0.7 nmol/l, rising to 16.1 +/- 3.84 nmol/l after 8-9 months treatment. Serum IGF-I levels at 4 hours after injection rose in the adult patients from 24.1 +/- 5.8 up to 66.8 +/- 15.4 nmol/l. A progressively increasing half-life during long term exogenous administration of IGF-I to patients with Laron syndrome was demonstrated by following serum IGF-I dynamics after injection. Based on the fact that no antibodies to IGF-I were detected and on findings in previous studies, it is speculated that the increasing serum IGF-I levels during long-term IGF-I treatment are caused by an increase in serum IGFBP-3 induced by chronic IGF-I administration. It is concluded that treatment with IGF-I necessitates regular monitoring of serum IGF-I levels; in patients in whom the age adjusted maximal levels are exceeded, a reduction of the daily IGF-I dose is indicated to avoid undesirable effects.

  14. Interstitial fluid contains higher in vitro IGF bioactivity than serum

    DEFF Research Database (Denmark)

    Espelund, Ulrick; Søndergaard, Klaus; Bjerring, Peter

    2012-01-01

    MEASURE: Serum and SBF concentrations of bioactive IGF (determined in vitro by specific IGF-I receptor (IGF-IR) phosphorylation assay), immunoreactive IGF and IGF binding protein (IGFBP) levels, Western ligand blotting (WLB) of IGFBPs and IGFBP-3 Western immunoblotting (WiB). RESULTS: The ability of SBF...... to phosphorylate the IGF-IR in vitro was 41±27% higher than that of serum (P=0.007 by repeated measures ANOVA). By contrast, immunoreactive IGF and IGFBP-concentrations were approximately 50% lower in SBF than in serum (all P≤0.002). A marked difference in the composition of IGFBPs between serum and SBF...... was observed, including 3-fold elevated amounts of IGFBP-3 fragments in SBF (Pvitro IGF bioactivity was higher in SBF than in serum. This may...

  15. Monoclonal antibody to the type I insulin-like growth factor (IGF-I) receptor blocks IGF-I receptor-mediated DNA synthesis: clarification of the mitogenic mechanisms of IGF-I and insulin in human skin fibroblasts

    International Nuclear Information System (INIS)

    Flier, J.S.; Usher, P.; Moses, A.C.

    1986-01-01

    Insulin and insulin-like growth factor type I (IGF-I) stimulate an overlapping spectrum of biological responses in human skin fibroblasts. Although insulin and IGF-I are known to stimulate the incorporation of [ 3 H]thymidine into DNA in these cells, the identify of the receptor(s) that mediates this effect has not been fully clarified. The mouse anti-human IGF-I receptor antibody αIR-3 binds with specificity to IGF-I but not to insulin receptors in human placental membranes; it also specifically inhibits the binding of 125 I-labeled IGF-I but not 125 I-labeled insulin to suspensions of human skin fibroblasts in a dose-dependent manner. αIR-3 competitively inhibits IGF-I-mediated stimulation of [ 3 H]thymidine incorporation into DNA. This inhibition is dependent on the concentration of αIR-3 and in the presence of a fixed antibody concentration can be partially overcome by high concentrations of IGF-I. In contrast, at concentrations of 3 H]thymidine incorporation is not inhibited by αIR-3. However, the incremental effects of higher concentrations (> 1 μg/ml) of insulin on [ 3 H]thymidine incorporation are inhibited by αIR-3. αIR-3 is a highly specific antagonist of IGF-I receptor-mediated mitogenesis in human skin fibroblasts. By using this antibody, it is shown directly that insulin can act through the IGF-I receptor to stimulate DNA synthesis but can also activate this effect through the insulin receptor itself

  16. IGF-1: The Jekyll & Hyde of the aging brain.

    Science.gov (United States)

    Gubbi, Sriram; Quipildor, Gabriela Farias; Barzilai, Nir; Huffman, Derek M; Milman, Sofiya

    2018-05-08

    The IGF-1 signaling pathway has emerged as a major regulator of the aging process, from rodents to humans. However, given the pleiotropic actions of IGF-1, its role in the aging brain remains complex and controversial. While IGF-1 is clearly essential for normal development of the central nervous system, conflicting evidence has emerged from preclinical and human studies regarding its relationship to cognitive function, as well as cerebrovascular and neurodegenerative disorders. This review delves into the current state of the evidence examining the role of IGF-1 in the aging brain, encompassing preclinical and clinical studies. A broad examination of the data indicates that IGF-1 may indeed play opposing roles in the aging brain, depending on the underlying pathology and context. Some evidence suggests that in the setting of neurodegenerative diseases that manifest with abnormal protein deposition in the brain, such as Alzheimer's disease, reducing IGF-1 signaling may serve a protective role by slowing disease progression and augmenting clearance of pathologic proteins to maintain cellular homeostasis. In contrast, inducing IGF-1 deficiency has also been implicated in dysregulated function of cognition and the neurovascular system, suggesting that some IGF-1 signaling may be necessary for normal brain function. Furthermore, states of acute neuronal injury, which necessitate growth, repair and survival signals to persevere, typically demonstrate salutary effects of IGF-1 in that context. Appreciating the dual, at times opposing "Dr. Jekyll" and "Mr. Hyde" characteristics of IGF-1 in the aging brain, will bring us closer to understanding its impact and devising more targeted IGF-1-related interventions.

  17. Insulin-like growth factor (IGF)-I binding to a cell membrane associated IGF binding protein-3 acid-labile subunit complex in human anterior pituitary gland

    NARCIS (Netherlands)

    Wilczak, N; Kuhl, N; Chesik, D; Geerts, A; Luiten, P; De Keyser, J

    The binding characteristics of [(125) I]insulin-like growth factor (IGF)-I were studied in human brain and pituitary gland. Competition binding studies with DES(1-3)IGF-I and R-3 -IGF-I, which display high affinity for the IGF-I receptor and low affinity for IGF binding proteins (IGFBPs), were

  18. IGF-I Stimulates Cooperative Interaction between the IGF-I Receptor and CSK Homologous Kinase that Regulates SHPS-1 Phosphorylation in Vascular Smooth Muscle Cells

    Science.gov (United States)

    Radhakrishnan, Yashwanth; Shen, Xinchun; Maile, Laura A.; Xi, Gang

    2011-01-01

    IGF-I plays an important role in smooth muscle cell proliferation and migration. In vascular smooth muscle cells cultured in 25 mm glucose, IGF-I stimulated a significant increase in Src homology 2 domain containing protein tyrosine phosphatase substrate-1 (SHPS-1) phosphorylation compared with 5 mm glucose and this increase was required for smooth muscle cell proliferation. A proteome-wide screen revealed that carboxyl-terminal SRC kinase homologous kinase (CTK) bound directly to phosphotyrosines in the SHPS-1 cytoplasmic domain. Because the kinase(s) that phosphorylates these tyrosines in response to IGF-I is unknown, we determined the roles of IGF-I receptor (IGF-IR) and CTK in mediating SHPS-1 phosphorylation. After IGF-I stimulation, CTK was recruited to IGF-IR and subsequently to phospho-SHPS-1. Expression of an IGF-IR mutant that eliminated CTK binding reduced CTK transfer to SHPS-1, SHPS-1 phosphorylation, and cell proliferation. IGF-IR phosphorylated SHPS-1, which provided a binding site for CTK. CTK recruitment to SHPS-1 resulted in a further enhancement of SHPS-1 phosphorylation. CTK knockdown also impaired IGF-I-stimulated SHPS-1 phosphorylation and downstream signaling. Analysis of specific tyrosines showed that mutation of tyrosines 428/452 in SHPS-1 to phenylalanine reduced SHPS-1 phosphorylation but allowed CTK binding. In contrast, the mutation of tyrosines 469/495 inhibited IGF-IR-mediated the phosphorylation of SHPS-1 and CTK binding, suggesting that IGF-IR phosphorylated Y469/495, allowing CTK binding, and that CTK subsequently phosphorylated Y428/452. Based on the above findings, we conclude that after IGF-I stimulation, CTK is recruited to IGF-IR and its recruitment facilitates CTK's subsequent association with phospho-SHPS-1. This results in the enhanced CTK transfer to SHPS-1, and the two kinases then fully phosphorylate SHPS-1, which is necessary for IGF-I stimulated cellular proliferation. PMID:21799000

  19. IGF-1 signaling mediated cell-specific skeletal mechano-transduction.

    Science.gov (United States)

    Tian, Faming; Wang, Yongmei; Bikle, Daniel D

    2018-02-01

    Mechanical loading preserves bone mass and stimulates bone formation, whereas skeletal unloading leads to bone loss. In addition to osteocytes, which are considered the primary sensor of mechanical load, osteoblasts, and bone specific mesenchymal stem cells also are involved. The skeletal response to mechanical signals is a complex process regulated by multiple signaling pathways including that of insulin-like growth factor-1 (IGF-1). Conditional osteocyte deletion of IGF-1 ablates the osteogenic response to mechanical loading. Similarly, osteocyte IGF-1 receptor (IGF-1R) expression is necessary for reloading-induced periosteal bone formation. Transgenic overexpression of IGF-1 in osteoblasts results in enhanced responsiveness to in vivo mechanical loading in mice, a response which is eliminated by osteoblastic conditional disruption of IGF-1 in vivo. Bone marrow derived stem cells (BMSC) from unloaded bone fail to respond to IGF-1 in vitro. IGF-1R is required for the transduction of a mechanical stimulus to downstream effectors, transduction which is lost when the IGF-1R is deleted. Although the molecular mechanisms are not yet fully elucidated, the IGF signaling pathway and its interactions with potentially interlinked signaling cascades involving integrins, the estrogen receptor, and wnt/β-catenin play an important role in regulating adaptive response of cancer bone cells to mechanical stimuli. In this review, we discuss recent advances investigating how IGF-1 and other interlinked molecules and signaling pathways regulate skeletal mechano-transduction involving different bone cells, providing an overview of the IGF-1 signaling mediated cell-specific response to mechanical stimuli. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:576-583, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  20. Postpartum IGF-I and IGFBP-2 levels are prospectively associated with the development of type 2 diabetes in women with previous gestational diabetes mellitus.

    Science.gov (United States)

    Lappas, M; Jinks, D; Shub, A; Willcox, J C; Georgiou, H M; Permezel, M

    2016-12-01

    Women with previous gestational diabetes mellitus (GDM) are at greater risk of developing type 2 diabetes. In the general population, the insulin-like growth factor (IGF) system has been implicated in the development of type 2 diabetes. The aim of this study was to determine if circulating IGF-I, IGF-II, IGFBP-1 and IGFBP-2 levels 12weeks following a GDM pregnancy are associated with an increased risk of developing type 2 diabetes. IGF-I, IGF-II, IGFBP-1 and IGFBP-2 levels were measured in 98 normal glucose tolerant women, 12weeks following an index GDM pregnancy using enzyme immunoassay. Women were assessed for up to 10years for the development of overt type 2 diabetes. Among the 98 women with previous GDM, 21 (21%) developed diabetes during the median follow-up period of 8.5years. After adjusting for age and BMI, IGF-I and IGFBP-2 were significantly associated with the development of type 2 diabetes. In a clinical model of prediction of type 2 diabetes that included age, BMI, pregnancy fasting glucose and postnatal fasting glucose, the addition of IGF-I and IGFBP-2 resulted in an improvement in the net reclassification index of 17.8%. High postpartum IGF-I and low postpartum IGFBP-2 levels are a significant risk factor for the development of type 2 diabetes in women with a previous history of GDM. This is the first report that identifies IGF-I and IGFBP-2 as a potential biomarker for the prediction of type 2 diabetes in women with a history of GDM. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Role of IGF-I in follistatin-induced skeletal muscle hypertrophy.

    Science.gov (United States)

    Barbé, Caroline; Kalista, Stéphanie; Loumaye, Audrey; Ritvos, Olli; Lause, Pascale; Ferracin, Benjamin; Thissen, Jean-Paul

    2015-09-15

    Follistatin, a physiological inhibitor of myostatin, induces a dramatic increase in skeletal muscle mass, requiring the type 1 IGF-I receptor/Akt/mTOR pathway. The aim of the present study was to investigate the role of IGF-I and insulin, two ligands of the IGF-I receptor, in the follistatin hypertrophic action on skeletal muscle. In a first step, we showed that follistatin increases muscle mass while being associated with a downregulation of muscle IGF-I expression. In addition, follistatin retained its full hypertrophic effect toward muscle in hypophysectomized animals despite very low concentrations of circulating and muscle IGF-I. Furthermore, follistatin did not increase muscle sensitivity to IGF-I in stimulating phosphorylation of Akt but, surprisingly, decreased it once hypertrophy was present. Taken together, these observations indicate that increased muscle IGF-I production or sensitivity does not contribute to the muscle hypertrophy caused by follistatin. Unlike low IGF-I, low insulin, as obtained by streptozotocin injection, attenuated the hypertrophic action of follistatin on skeletal muscle. Moreover, the full anabolic response to follistatin was restored in this condition by insulin but also by IGF-I infusion. Therefore, follistatin-induced muscle hypertrophy requires the activation of the insulin/IGF-I pathway by either insulin or IGF-I. When insulin or IGF-I alone is missing, follistatin retains its full anabolic effect, but when both are deficient, as in streptozotocin-treated animals, follistatin fails to stimulate muscle growth. Copyright © 2015 the American Physiological Society.

  2. Serum from Chronic Hepatitis B Patients Promotes Growth and Proliferation via the IGF-II/IGF-IR/MEK/ERK Signaling Pathway in Hepatocellular Carcinoma Cells.

    Science.gov (United States)

    Ji, Yuanyuan; Wang, Zhidong; Chen, Haiyan; Zhang, Lei; Zhuo, Fei; Yang, Qingqing

    2018-05-09

    Chronic hepatitis B virus (HBV) infection (CHB) plays a central role in the etiology of hepatocellular carcinoma (HCC). Emerging evidence implicates insulin-like growth factor (IGF)-II as a major risk factor for the growth and development of HCC. However, the relationship between HBV infection and IGF-II functions remains to be elucidated. Levels of circulating IGF-II and IGF-I receptor (IGF-IR) in healthy donors (HDs) and CHB patients were tested by ELISA. Human HCC cell lines (HepG-2, SMMC-7721, MHCC97-H) were incubated with serum from HDs and CHB patients at various concentrations for 24, 48, and 72 h. MTT and plate colony formation assays, BrdU ELISA, ELISA, small-interfering RNA (siRNA) transfection, quantitative real-time PCR, and western blot were applied to assess the functional and molecular mechanisms in HCC cell lines. Serum levels of IGF-II and IGF-IR were significantly higher in CHB patients than in HDs. Additionally, serum from CHB patients directly induced cell growth, proliferation, IGF-II secretion, and HDGF-related protein-2 (HRP-2) and nuclear protein 1 (NUPR1) mRNA and protein expression in HCC cells. Moreover, serum from CHB patients increased IGF-II-induced cell growth, proliferation, and HRP-2 and NUPR1 mRNA and protein expression in HCC cells. Blockade of IGF-IR clearly inhibited the above effects. Most importantly, interference with IGF-II function markedly repressed the cell proliferation and HRP-2 and NUPR1 mRNA and protein expression induced by serum from CHB patients. Furthermore, serum from CHB patients induced ERK phosphorylation via IGF-IR, with the MEK inhibitor PD98059 significantly decreasing CHB patient serum-induced IGF-II secretion, cell proliferation, and HRP-2 and NUPR1 mRNA and protein expression. Serum from CHB patients increases cell growth and proliferation and enhances HRP-2 and NUPR1 expression in HCC cells via the IGF-II/IGF-IR/MEK/ERK signaling pathway. These findings help to explain the molecular mechanisms

  3. Human GH Receptor-IGF-1 Receptor Interaction: Implications for GH Signaling

    Science.gov (United States)

    Gan, Yujun; Buckels, Ashiya; Liu, Ying; Zhang, Yue; Paterson, Andrew J.; Jiang, Jing; Zinn, Kurt R.

    2014-01-01

    GH signaling yields multiple anabolic and metabolic effects. GH binds the transmembrane GH receptor (GHR) to activate the intracellular GHR-associated tyrosine kinase, Janus kinase 2 (JAK2), and downstream signals, including signal transducer and activator of transcription 5 (STAT5) activation and IGF-1 gene expression. Some GH effects are partly mediated by GH-induced IGF-1 via IGF-1 receptor (IGF-1R), a tyrosine kinase receptor. We previously demonstrated in non-human cells that GH causes formation of a GHR-JAK2-IGF-1R complex and that presence of IGF-1R (even without IGF-1 binding) augments proximal GH signaling. In this study, we use human LNCaP prostate cancer cells as a model system to further study the IGF-1R's role in GH signaling. GH promoted JAK2 and GHR tyrosine phosphorylation and STAT5 activation in LNCaP cells. By coimmunoprecipitation and a new split luciferase complementation assay, we find that GH augments GHR/IGF-1R complex formation, which is inhibited by a Fab of an antagonistic anti-GHR monoclonal antibody. Short hairpin RNA-mediated IGF-1R silencing in LNCaP cells reduced GH-induced GHR, JAK2, and STAT5 phosphorylation. Similarly, a soluble IGF-1R extracellular domain fragment (sol IGF-1R) interacts with GHR in response to GH and blunts GH signaling. Sol IGF-1R also markedly inhibits GH-induced IGF-1 gene expression in both LNCaP cells and mouse primary osteoblast cells. On the basis of these and other findings, we propose a model in which IGF-1R augments GH signaling by allowing a putative IGF-1R-associated molecule that regulates GH signaling to access the activated GHR/JAK2 complex and envision sol IGF-1R as a dominant-negative inhibitor of this IGF-1R-mediated augmentation. Physiological implications of this new model are discussed. PMID:25211187

  4. Development and clinical evaluation of a novel immunoassay for the binary complex of IGF-I and IGF-binding protein-1 in human serum

    DEFF Research Database (Denmark)

    Frystyk, Jan; Højlund, Kurt; Rasmussen, Kirsten Nyborg

    2002-01-01

    Correlation studies have suggested that IGF-binding protein (IGFBP)-1 is a dynamic regulator of free IGF-I. To further study this, we developed a monoclonal immunofluorometric assay specific for the binary complex of IGF-I and IGFBP-1 in human serum. An IGFBP-1 antibody, which recognizes all...... phospho-forms of IGFBP-1, was used for coating. An europium-labeled IGF-I antibody served as tracer. Assay incubation was performed at conditions approaching those in vivo (i.e. pH 7.4, 37 C). The assay was highly specific: no signal was obtained unless both IGF-I and IGFBP-1 were present and neither...... IGFBP-2, -3, -4, nor IGF-II caused any cross-reaction. The linear standard curve covered 3 orders of magnitude, and within and in-between assay coefficients of variation were less than 5 and 15%, respectively. To study the dynamic relationship between free IGF-I and binary complex formation, seven...

  5. Insulin-like growth factors (IGFs) as autocrine/paracrine regulators of granulosa cell differentiation and growth: Studies with a neutralizing monoclonal antibody to IGF-I

    International Nuclear Information System (INIS)

    Mondschein, J.S.; Canning, S.F.; Miller, D.Q.; Hammond, J.M.

    1989-01-01

    Evidence that granulosa cells secrete and respond to insulin-like growth factors (IGFs) suggests, but does not prove, the importance of IGFs as intraovarian regulators. To further assess the role of these peptides in ovarian function, a neutralizing monoclonal antibody to IGF-I was employed to block the actions of IGFs in porcine follicular fluid and in granulosa cell-conditioned medium. In one series of experiments, granulosa cells from immature porcine follicles were cultured in medium containing porcine follicular fluid that had been charcoal-treated to remove steroids. As noted before, fluid from large follicles (LFF) stimulated progesterone production in a dose-dependent manner. The stimulatory effect of LFF (30% v/v) could be inhibited by greater than 50% by the anti-IGF monoclonal antibody. This inhibitory action was specific for the anti-IGF antibody and could be overcome by the addition of excess exogenous IGFs. In another series of experiments, granulosa cells were made dependent on endogenously produced IGFs by culturing them in a serum-free medium without exogenous growth factors. The effects of follicle-stimulating hormone (FSH), estradiol (E2), growth hormone (GH), and combinations thereof on progesterone production were inhibited by approximately 50% by the anti-IGF antibody. The effects of IGFs on indices of cell growth (judged by the criterion of being inhibited by the anti-IGF antibody) were less dramatic. A modest 18% increase in cell number was observed with FSH and E2 treatment in serum-free medium; this effect was virtually abolished by the antibody

  6. Insulin-like growth factors (IGFs) as autocrine/paracrine regulators of granulosa cell differentiation and growth: Studies with a neutralizing monoclonal antibody to IGF-I

    Energy Technology Data Exchange (ETDEWEB)

    Mondschein, J.S.; Canning, S.F.; Miller, D.Q.; Hammond, J.M. (Pennsylvania State Univ., Hershey (USA))

    1989-07-01

    Evidence that granulosa cells secrete and respond to insulin-like growth factors (IGFs) suggests, but does not prove, the importance of IGFs as intraovarian regulators. To further assess the role of these peptides in ovarian function, a neutralizing monoclonal antibody to IGF-I was employed to block the actions of IGFs in porcine follicular fluid and in granulosa cell-conditioned medium. In one series of experiments, granulosa cells from immature porcine follicles were cultured in medium containing porcine follicular fluid that had been charcoal-treated to remove steroids. As noted before, fluid from large follicles (LFF) stimulated progesterone production in a dose-dependent manner. The stimulatory effect of LFF (30% v/v) could be inhibited by greater than 50% by the anti-IGF monoclonal antibody. This inhibitory action was specific for the anti-IGF antibody and could be overcome by the addition of excess exogenous IGFs. In another series of experiments, granulosa cells were made dependent on endogenously produced IGFs by culturing them in a serum-free medium without exogenous growth factors. The effects of follicle-stimulating hormone (FSH), estradiol (E2), growth hormone (GH), and combinations thereof on progesterone production were inhibited by approximately 50% by the anti-IGF antibody. The effects of IGFs on indices of cell growth (judged by the criterion of being inhibited by the anti-IGF antibody) were less dramatic. A modest 18% increase in cell number was observed with FSH and E2 treatment in serum-free medium; this effect was virtually abolished by the antibody.

  7. Insulin-like growth factors (IGFs) and IGF binding proteins in active Crohn’s disease treated with omega-3 or omega-6 fatty acids and corticosteroids

    DEFF Research Database (Denmark)

    Eivindson, Martin; Grønbæk, Henning; Nielsen, J.N.

    2005-01-01

    of the present study was to examine the effects of enteral nutrition, Impact Powder, as adjuvant therapy to corticosteroid treatment on changes in the GH/IGF-I axis in patients with Crohn's disease (CD). MATERIAL AND METHODS: The patients were randomized to 3-IP (omega-3-fatty acid (FA), 3 g/day) or 6-IP (omega...... with previously published studies and may be explained by corticosteroid treatment; however, we cannot exclude an additional effect of omega3-/omega6 FA as adjuvant enteral nutrition.......-6-FA, 9 g/day). Changes in total IGF-I (tIGF-I) and total IGF-II (tIGF-II), free IGF-I (fIGF-I), IGF binding proteins (IGFBP-1 and IGFBP-3), IGFBP-3 protease activity and insulin levels were examined in 31 patients with active CD (CDAI: 186-603) during treatment with prednisolone (40 mg for 1 week...

  8. Effect of Modified and accumulated decoction on serum ER, PR, sex hormone, IGF-I and IGF-I in patients with uterine fibroids

    Directory of Open Access Journals (Sweden)

    Yi-Sha Li

    2017-11-01

    Full Text Available Objective: To study the effect of Modified and accumulated Decoction on serum ER, PR, sex hormone, IGF-I and IGF-I in patients with uterine fibroids. Method: A total of 90 patients with uterine fibroids in our hospital from January 2015 to January 2017 were enrolled in this study. The subjects were divided into the control group (n=45 and the treatment group (n=45 randomly. The control group was treated with mifepristone, the treatment group was treated with Modified and accumulated Decoction combined with mifepristone, and both the two groups were treated for 3 months. The uterine fibroid volume and uterine volume of the two groups before and after treatment were compared. The serum ER, PR, P, E 2 , LH, FSH, IGF-I and IGF-IR of the two groups before and after treatment were compared. Result: There were no significantly differences of the uterine fibroid volume and uterine volume of the two groups before treatment. The uterine fibroid volume and uterine volume of the two groups after treatment were significantly less than before treatment, and that of the treatment group after treatment were significantly less than the control group. There were no significantly differences among the serum ER, PR, P, E 2 , LH, FSH, IGF-I and IGF-IR of the two groups before treatment. The serum ER, PR, P, E 2 , LH, FSH, IGF-I and IGF-IR of the two groups after treatment were significantly lower than before treatment, and that of the treatment group after treatment were significantly lower than the control group. Conclusion: Modified and accumulated Decoction combined with mifepristonecan significantly reduce the uterine fibroid volume, improve the serum ER, PR, sex hormone, IGF-I and IGF-I levels of the patients with uterine fibroids, and it was worthy clinical application.

  9. Circadian variation in serum free and total insulin-like growth factor (IGF)-I and IGF-II in untreated and treated acromegaly and growth hormone deficiency

    DEFF Research Database (Denmark)

    Skjaerbaek, Christian; Frystyk, Jan; Kaal, Andreas

    2000-01-01

    to the nocturnal increase in IGF binding protein-1. In this study we have investigated the circadian variation in circulating free IGF-I and IGF-II in patients with acromegaly and patients with adult onset growth hormone deficiency. PATIENTS: Seven acromegalic patients were studied with and without treatment...... no significant circadian variations in free IGF-I or free IGF-II in either of the two occasions. In contrast, there was a significant circadian variation of total IGF-I after adjustment for changes in plasma volume in both treated and untreated acromegaly and GH deficiency in all cases with a peak between 0300 h...

  10. Insulin-like growth factor 1 (IGF1) and its active peptide (1-3)IGF1 enhance the expression of synaptic markers in neuronal circuits through different cellular mechanisms.

    LENUS (Irish Health Repository)

    Corvin, Aiden P

    2012-06-27

    Insulin-like growth factor-1 (IGF1) and its active peptide (1-3)IGF1 modulate brain growth and plasticity and are candidate molecules for treatment of brain disorders. IGF1 N-terminal portion is naturally cleaved to generate the tri-peptide (1-3)IGF1 (glycine-praline-glutamate). IGF1 and (1-3)IGF have been proposed as treatment for neuropathologies, yet their effect on nerve cells has not been directly compared. In this study we examine the effects of IGF1 and (1-3)IGF1 in primary cortical cultures and measure the expression levels of markers for intracellular pathways and synaptic function. We find that both treatments activate the IGF1 receptor and enhance the expression of synaptic markers, however, they activate different intracellular pathways. Furthermore, (1-3)IGF1 administration increases the expression of endogenous IGF1, suggesting a direct interaction between the two molecules. The results show that the two molecules increase the expression of synaptic proteins through activating different cellular mechanisms.

  11. Exercise and obesity in fibromyalgia: beneficial roles of IGF-1 and resistin?

    Science.gov (United States)

    Bjersing, Jan L; Erlandsson, Malin; Bokarewa, Maria I; Mannerkorpi, Kaisa

    2013-02-27

    Severe fatigue is a major health problem in fibromyalgia (FM). Obesity is common in FM, but the influence of adipokines and growth factors is not clear. The aim was to examine effects of exercise on fatigue, in lean, overweight and obese FM patients. In a longitudinal study, 48 FM patients (median 52 years) exercised for 15 weeks. Nine patients were lean (body mass index, BMI 18.5 to 24.9), 26 overweight (BMI 25 to 29.9) and 13 obese. Fatigue was rated on a 0 to 100 mm scale (fibromyalgia impact questionnaire [FIQ] fatigue) and multidimensional fatigue inventory (MFI-20) general fatigue (MFIGF). Higher levels in FIQ fatigue and MFIGF indicate greater degree of fatigue. Free and total IGF-1, neuropeptides, adipokines were determined in serum and cerebrospinal fluid (CSF). Baseline FIQ fatigue correlated negatively with serum leptin (r=-0.345; P=0.016) and nerve growth factor (NGF; r=-0.412; P=0.037). In lean patients, baseline MFIGF associated negatively with serum resistin (r=-0.694; P=0.038). FIQ Fatigue associated negatively with CSF resistin (r=-0.365; P=0.073). Similarly, FIQ fatigue (r=-0.444; P=0.026) and MFIGF correlated negatively with CSF adiponectin (r=-0.508; P=0.01). In lean patients, FIQ fatigue (P=0.046) decreased after 15 weeks. After 30 weeks, MFIGF decreased significantly in lean (MFIGF: P=0.017), overweight (MFIGF: P=0.001), and obese patients (MFIGF: P=0.016). After 15 weeks, total IGF-1 increased in lean (P=0.043) patients. ∆Total IGF-1 differed significantly between lean and obese patients (P=0.010). ∆Total IGF-1 related negatively with ∆MFIGF after 15 weeks (r=-0.329; P=0.050). After 30 weeks, ∆FIQ fatigue negatively correlated with ∆NGF (r=-0.463; P=0.034) and positively with ∆neuropeptide Y (NPY) (r=0.469; P=0.032). Resistin increased after 30 weeks (P=0.034). ∆MFIGF correlated negatively with ∆resistin (r=-0.346; P=0.031), being strongest in obese patients (r=-0.815; P=0.007). In obese patients, ∆FIQ fatigue after 30 weeks

  12. Development and clinical evaluation of a novel immunoassay for the binary complex of IGF-I and IGF-binding protein-1 in human serum

    DEFF Research Database (Denmark)

    Frystyk, Jan; Højlund, Kurt; Rasmussen, Kirsten Nyborg

    2002-01-01

    Correlation studies have suggested that IGF-binding protein (IGFBP)-1 is a dynamic regulator of free IGF-I. To further study this, we developed a monoclonal immunofluorometric assay specific for the binary complex of IGF-I and IGFBP-1 in human serum. An IGFBP-1 antibody, which recognizes all...... phospho-forms of IGFBP-1, was used for coating. An europium-labeled IGF-I antibody served as tracer. Assay incubation was performed at conditions approaching those in vivo (i.e. pH 7.4, 37 C). The assay was highly specific: no signal was obtained unless both IGF-I and IGFBP-1 were present and neither...

  13. INSULIN-LIKE GROWTH FACTOR (IGF-1 IN CNS AND CEREBROVASCULAR AGING

    Directory of Open Access Journals (Sweden)

    William E Sonntag

    2013-07-01

    Full Text Available Insulin-like growth factor-1 (IGF-1 is an important anabolic hormone that decreases with age. In the past two decades extensive research has determined that the reduction in IGF-1 is an important component of the age-related decline in cognitive function in multiple species including humans. Deficiency in circulating IGF-1 results in impairment in processing speed and deficiencies in both spatial and working memory. Replacement of IGF-1 or factors that increase IGF-1 to old animals and humans reverses many of these cognitive deficits. Despite the overwhelming evidence for IGF-1 as an important neurotrophic agent, the specific mechanisms through which IGF-1 acts have remained elusive. Recent evidence indicates that IGF-1 is both produced by and has important actions on the cerebrovasculature as well as neurons and glia. Nevertheless, the specific regulation and actions of brain- and vascular-derived IGF-1 is poorly understood. The diverse effects of IGF-1 discovered thus far reveal a complex endocrine and paracrine system essential for integrating many of the functions necessary for brain health. Identification of the mechanisms of IGF-1 actions will undoubtedly provide critical insight into regulation of brain function in general and the causes of cognitive decline with age.

  14. Bone Growth, Mechanical Stimulus and IGF-I

    National Research Council Canada - National Science Library

    Gilsanz, Vicente

    2002-01-01

    ... exercise intervention or no intervention. This study also examines the possible relations between the cross-sectional properties of bone and circulating levels of IGF-I, JGF-binding protein-3, and IGF-I genotypes in teenagers...

  15. Role of Ubiquitination in IGF-1 Receptor Signaling and Degradation

    OpenAIRE

    Sehat, Bita; Andersson, Sandra; Vasilcanu, Radu; Girnita, Leonard; Larsson, Olle

    2007-01-01

    BACKGROUND: The insulin-like growth factor 1 receptor (IGF-1R) plays numerous crucial roles in cancer biology. The majority of knowledge on IGF-1R signaling is concerned with its role in the activation of the canonical phosphatidyl inositol-3 kinase (PI3K)/Akt and MAPK/ERK pathways. However, the role of IGF-1R ubiquitination in modulating IGF-1R function is an area of current research. In light of this we sought to determine the relationship between IGF-1R phosphorylation, ubiquitination, and...

  16. Effect of GH/IGF-1 on Bone Metabolism and Osteoporsosis

    Directory of Open Access Journals (Sweden)

    Vittorio Locatelli

    2014-01-01

    Full Text Available Background. Growth hormone (GH and insulin-like growth factor (IGF-1 are fundamental in skeletal growth during puberty and bone health throughout life. GH increases tissue formation by acting directly and indirectly on target cells; IGF-1 is a critical mediator of bone growth. Clinical studies reporting the use of GH and IGF-1 in osteoporosis and fracture healing are outlined. Methods. A Pubmed search revealed 39 clinical studies reporting the effects of GH and IGF-1 administration on bone metabolism in osteopenic and osteoporotic human subjects and on bone healing in operated patients with normal GH secretion. Eighteen clinical studies considered the effect with GH treatment, fourteen studies reported the clinical effects with IGF-1 administration, and seven related to the GH/IGF-1 effect on bone healing. Results. Both GH and IGF-1 administration significantly increased bone resorption and bone formation in the most studies. GH/IGF-1 administration in patients with hip or tibial fractures resulted in increased bone healing, rapid clinical improvements. Some conflicting results were evidenced. Conclusions. GH and IGF-1 therapy has a significant anabolic effect. GH administration for the treatment of osteoporosis and bone fractures may greatly improve clinical outcome. GH interacts with sex steroids in the anabolic process. GH resistance process is considered.

  17. Effect of GH/IGF-1 on Bone Metabolism and Osteoporsosis

    Science.gov (United States)

    Locatelli, Vittorio; Bianchi, Vittorio E.

    2014-01-01

    Background. Growth hormone (GH) and insulin-like growth factor (IGF-1) are fundamental in skeletal growth during puberty and bone health throughout life. GH increases tissue formation by acting directly and indirectly on target cells; IGF-1 is a critical mediator of bone growth. Clinical studies reporting the use of GH and IGF-1 in osteoporosis and fracture healing are outlined. Methods. A Pubmed search revealed 39 clinical studies reporting the effects of GH and IGF-1 administration on bone metabolism in osteopenic and osteoporotic human subjects and on bone healing in operated patients with normal GH secretion. Eighteen clinical studies considered the effect with GH treatment, fourteen studies reported the clinical effects with IGF-1 administration, and seven related to the GH/IGF-1 effect on bone healing. Results. Both GH and IGF-1 administration significantly increased bone resorption and bone formation in the most studies. GH/IGF-1 administration in patients with hip or tibial fractures resulted in increased bone healing, rapid clinical improvements. Some conflicting results were evidenced. Conclusions. GH and IGF-1 therapy has a significant anabolic effect. GH administration for the treatment of osteoporosis and bone fractures may greatly improve clinical outcome. GH interacts with sex steroids in the anabolic process. GH resistance process is considered. PMID:25147565

  18. The relationship between maternal insulin-like growth factors 1 and 2 (IGF-1, IGF-2) and IGFBP-3 to gestational age and preterm delivery.

    LENUS (Irish Health Repository)

    Cooley, Sharon M

    2012-02-01

    AIMS: To investigate the relationship between levels of insulin-like growth factors 1 and 2 (IGF-1, IGF-2), and insulin-like growth factor binding protein 3 (IGFBP-3) in antenatal maternal serum and gestational age at delivery. METHODS: Prospective cohort study of 1650 low-risk Caucasian women in a London University teaching hospital. Maternal IGF-1, IGF-2 and IGFBP-3 were measured in maternal blood at booking and analyzed with respect to gestational age at delivery. RESULTS: There was no significant association between maternal IGF-1 or IGF-2 and preterm birth (PTB). A significant reduction in mean IGFBP-3 levels was noted with delivery <32 completed weeks (P=0.02). CONCLUSION: Maternal mean IGFBP-3 levels are significantly reduced in cases complicated by delivery <32 completed weeks.

  19. Neutrophil gelatinase-associated lipocalin (NGAL) and matrix metalloproteinases as novel stress markers in children and young adults on chronic dialysis

    OpenAIRE

    Musiał, Kinga; Zwolińska, Danuta

    2010-01-01

    Phenomena related to chronic kidney disease, such as atherosclerosis, aggravate with the introduction of dialysis. Matrix metalloproteinases (MMP) and factors modifying their activity, such as their tissue inhibitors (TIMP) or neutrophil gelatinase-associated lipocalin (NGAL), take part in the matrix turnover and the endothelial damage characteristic for atherogenesis. However, there are no data on the associations between these parameters and other known pro-atherogenic factors, or on the im...

  20. The Association between IGF-1 Polymorphisms, IGF-1 Serum Levels, and Cognitive Functions in Healthy Adults: The Amsterdam Growth and Health Longitudinal Study

    NARCIS (Netherlands)

    Licht, C.M.M.; van Turenhout, L.C.; Deijen, J.B.; Koppes, L.L.J.; van Mechelen, W.; Twisk, J.W.R.; Drent, M.L.

    2014-01-01

    Several studies have demonstrated an association between polymorphisms in the insulin-like growth factor-1 (IGF-1) gene and IGF-1 serum levels. IGF-1 levels have been associated with cognitive functioning in older persons and growth hormone deficient patients. The present study investigates whether

  1. The association between IGF-1 polymorphisms, IGF-1 serum levels, and cognitive functions in healthy adults: The amsterdam growth and health longitudinal study

    NARCIS (Netherlands)

    Licht, C.M.M.; Turenhout, L.C. van; Deijen, J.B.; Koppes, L.L.J.; Mechelen, W. van; Twisk, J.W.R.; Drent, M.L.

    2014-01-01

    Several studies have demonstrated an association between polymorphisms in the insulin-like growth factor-1 (IGF-1) gene and IGF-1 serum levels. IGF-1 levels have been associated with cognitive functioning in older persons and growth hormone deficient patients. The present study investigates whether

  2. The association between IGF-1 polymorphisms, IGF-1 serum levels, and cognitive functions in healthy adults: the Amsterdam Growth and Health longitudinal study.

    NARCIS (Netherlands)

    Licht, C.M.M.; Turenhout, L.C. van; Deijen, J.B.; Koppes, L.L.J.; Mechelen, W. van; Twisk, J.W.R.; Drent, M.L.

    2014-01-01

    Several studies have demonstrated an association between polymorphisms in the insulin-like growth factor-1 (IGF-1) gene and IGF-1 serum levels. IGF-1 levels have been associated with cognitive functioning in older persons and growth hormone deficient patients. The present study investigates whether

  3. Circulating IGF1 regulates hippocampal IGF1 levels and brain gene expression during adolescence

    OpenAIRE

    Yan, Han; Mitschelen, Matthew; Bixler, Georgina V; Brucklacher, Robert M; Farley, Julie A; Han, Song; Freeman, Willard M; Sonntag, William E

    2011-01-01

    GH and its anabolic mediator, IGF1, are important not only in somatic growth but also in the regulation of brain function. Even though GH treatment has been used clinically to improve body composition and exercise capacity in adults, its influence on central nervous system function has only recently been recognized. This is also the case for children with childhood-onset GH deficiency (GHD) where GH has been used to stimulate bone growth and enhance final adult height. Circulating IGF1 is tra...

  4. IGF-1, oxidative stress, and atheroprotection

    Science.gov (United States)

    Higashi, Yusuke; Sukhanov, Sergiy; Anwar, Asif; Shai, Shaw-Yung; Delafontaine, Patrice

    2009-01-01

    Atherosclerosis is a chronic inflammatory disease in which early endothelial dysfunction and subintimal modified lipoprotein deposition progress to complex, advanced lesions that are predisposed to erosion, rupture and thrombosis. Oxidative stress plays a critical role not only in initial lesion formation but also in lesion progression and destabilization. While growth factors are thought to promote vascular smooth muscle cell proliferation and migration, thereby increasing neointima, recent animal studies indicate that IGF-1 exerts pleiotropic anti-oxidant effects along with anti-inflammatory effects that together reduce atherosclerotic burden. This review discusses the effects of IGF-1 in vascular injury and atherosclerosis models, emphasizing the relationship between oxidative stress and potential atheroprotective actions of IGF-1. PMID:20071192

  5. Ascites Neutrophil Gelatinase-Associated Lipocalin Identifies Spontaneous Bacterial Peritonitis and Predicts Mortality in Hospitalized Patients with Cirrhosis.

    Science.gov (United States)

    Cullaro, Giuseppe; Kim, Grace; Pereira, Marcus R; Brown, Robert S; Verna, Elizabeth C

    2017-12-01

    Neutrophil gelatinase-associated lipocalin (NGAL) is a marker of both tissue injury and infection. Urine NGAL levels strongly predict acute kidney injury and mortality in patients with cirrhosis, but ascites NGAL is not well characterized. We hypothesized that ascites NGAL level is a marker of spontaneous bacterial peritonitis (SBP) and mortality risk in patients with cirrhosis. Hospitalized patients with cirrhosis and ascites undergoing diagnostic paracentesis were prospectively enrolled and followed until death or discharge. Patients with secondary peritonitis, prior transplantation, or active colitis were excluded. NGAL was measured in the ascites and serum. Ascites NGAL level was evaluated as a marker of SBP (defined as ascites absolute neutrophil count > 250 cells/mm 3 ) and predictor of in-patient mortality. A total of 146 patients were enrolled, and of these, 29 patients (20%) had SBP. Baseline characteristics were similar between subjects with and without SBP. Median (IQR) ascites NGAL was significantly higher in patients with SBP compared to those without SBP (221.3 [145.9-392.9] vs. 139.2 [73.9-237.2], p peritonitis in hospitalized patient with cirrhosis and an independent predictor of short-term in-hospital mortality, even controlling for SBP and MELD.

  6. The association between peripheral total IGF-1, IGFBP-3, and IGF-1/IGFBP-3 and functional and cognitive outcomes in the Mayo Clinic Study of Aging.

    Science.gov (United States)

    Wennberg, Alexandra M V; Hagen, Clinton E; Machulda, Mary M; Hollman, John H; Roberts, Rosebud O; Knopman, David S; Petersen, Ronald C; Mielke, Michelle M

    2018-06-01

    Levels of insulin-like growth factor (IGF)-1, IGF-binding protein (IGFBP)-3, and their ratio in the blood may be useful for monitoring those at risk of cognitive and functional decline. However, the association between IGF measures and functional and cognitive outcomes has been mixed, and the associations may vary by sex. The present study investigated the cross-sectional, sex-specific associations between serum measures total IGF-1, IGFBP-3, and the IGF-1/IGFBP-3 ratio, gait speed, and cognition in 1320 cognitively unimpaired participants aged 50-95 years enrolled in the Mayo Clinic Study of Aging. We used multivariable linear regression models to determine the association between IGF measures and gait speed or cognitive test performance by sex. IGF measures were not associated with cognitive or functional performance among men. Among women, higher levels of log total IGF-1 and IGFBP-3 were associated with better performance in attention, visuospatial, and global cognitive domains, independent of the gait speed. These findings suggest that among women, IGF measures are associated with cognition, and these associations are independent of function. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Role of IGF-I Signaling in Muscle Bone Interactions

    Science.gov (United States)

    Bikle, Daniel D; Tahimic, Candice; Chang, Wenhan; Wang, Yongmei; Philippou, Anastassios; Barton, Elisabeth R.

    2015-01-01

    Skeletal muscle and bone rely on a number of growth factors to undergo development, modulate growth, and maintain physiological strength. A major player in these actions is insulin-like growth factor I (IGF-I). However, because this growth factor can directly enhance muscle mass and bone density, it alters the state of the musculoskeletal system indirectly through mechanical crosstalk between these two organ systems. Thus, there are clearly synergistic actions of IGF-I that extend beyond the direct activity through its receptor. This review will cover the production and signaling of IGF-I as it pertains to muscle and bone, the chemical and mechanical influences that arise from IGF-I activity, and the potential for therapeutic strategies based on IGF-I. PMID:26453498

  8. Compensatory insulin receptor (IR) activation on inhibition of insulin-like growth factor-1 receptor (IGF-1R): rationale for cotargeting IGF-1R and IR in cancer.

    Science.gov (United States)

    Buck, Elizabeth; Gokhale, Prafulla C; Koujak, Susan; Brown, Eric; Eyzaguirre, Alexandra; Tao, Nianjun; Rosenfeld-Franklin, Maryland; Lerner, Lorena; Chiu, M Isabel; Wild, Robert; Epstein, David; Pachter, Jonathan A; Miglarese, Mark R

    2010-10-01

    Insulin-like growth factor-1 receptor (IGF-1R) is a receptor tyrosine kinase (RTK) and critical activator of the phosphatidylinositol 3-kinase-AKT pathway. IGF-1R is required for oncogenic transformation and tumorigenesis. These observations have spurred anticancer drug discovery and development efforts for both biological and small-molecule IGF-1R inhibitors. The ability for one RTK to compensate for another to maintain tumor cell viability is emerging as a common resistance mechanism to antitumor agents targeting individual RTKs. As IGF-1R is structurally and functionally related to the insulin receptor (IR), we asked whether IR is tumorigenic and whether IR-AKT signaling contributes to resistance to IGF-1R inhibition. Both IGF-1R and IR(A) are tumorigenic in a mouse mammary tumor model. In human tumor cells coexpressing IGF-1R and IR, bidirectional cross talk was observed following either knockdown of IR expression or treatment with a selective anti-IGF-1R antibody, MAB391. MAB391 treatment resulted in a compensatory increase in phospho-IR, which was associated with resistance to inhibition of IRS1 and AKT. In contrast, treatment with OSI-906, a small-molecule dual inhibitor of IGF-1R/IR, resulted in enhanced reduction in phospho-IRS1/phospho-AKT relative to MAB391. Insulin or IGF-2 activated the IR-AKT pathway and decreased sensitivity to MAB391 but not to OSI-906. In tumor cells with an autocrine IGF-2 loop, both OSI-906 and an anti-IGF-2 antibody reduced phospho-IR/phospho-AKT, whereas MAB391 was ineffective. Finally, OSI-906 showed superior efficacy compared with MAB391 in human tumor xenograft models in which both IGF-1R and IR were phosphorylated. Collectively, these data indicate that cotargeting IGF-1R and IR may provide superior antitumor efficacy compared with targeting IGF-1R alone.

  9. IGF-1 receptor haploinsufficiency leads to age-dependent development of metabolic syndrome.

    Science.gov (United States)

    Thakur, Sachin; Garg, Neha; Zhang, Ning; Hussey, Sophie E; Musi, Nicolas; Adamo, Martin L

    2017-05-13

    Individuals born small for gestational age (SGA) are at a higher risk of developing the metabolic syndrome later in life. IGF-1 resistance has been reported in placentae from SGA births and mutations in the Igf1 receptor gene have been reported in several cohorts of SGA subjects. We have used the Igf1r heterozygous (Igf1r +/- ) male mouse as a model to investigate the mechanisms by which Igf1r haploinsufficiency leads to insulin resistance. Despite exhibiting IGF-1 resistance, insulin signaling is enhanced in young Igf1r +/- mice but is attenuated in the muscle of old Igf1r +/- mice. Although smaller than WT (wild type) mice, old-aged Igf1r +/- had increased adiposity and exhibit increased lipogenesis. We hypothesize that IGF-1 resistance initially causes a transient increase in insulin signaling thereby promoting a lipogenic phenotype, which subsequently leads to insulin resistance. Copyright © 2017. Published by Elsevier Inc.

  10. IGF-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice.

    Science.gov (United States)

    Toth, Peter; Tucsek, Zsuzsanna; Tarantini, Stefano; Sosnowska, Danuta; Gautam, Tripti; Mitschelen, Matthew; Koller, Akos; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2014-12-01

    Aging impairs autoregulatory protection in the brain, exacerbating hypertension-induced cerebromicrovascular injury, neuroinflammation, and development of vascular cognitive impairment. Despite the importance of the age-related decline in circulating insulin-like growth factor-1 (IGF-1) levels in cerebrovascular aging, the effects of IGF-1 deficiency on functional adaptation of cerebral arteries to high blood pressure remain elusive. To determine whether IGF-1 deficiency impairs autoregulatory protection, hypertension was induced in control and IGF-1-deficient mice (Igf1(f/f)+TBG-iCre-AAV8) by chronic infusion of angiotensin-II. In hypertensive control mice, cerebral blood flow (CBF) autoregulation was extended to higher pressure values and the pressure-induced tone of middle cerebral arteries (MCAs) was increased. In hypertensive IGF-1-deficient mice, autoregulation was markedly disrupted, and MCAs did not show adaptive increases in myogenic tone. In control mice, the mechanism of adaptation to hypertension involved upregulation of TRPC channels in MCAs and this mechanism was impaired in hypertensive IGF-1-deficient mice. Likely downstream consequences of cerebrovascular autoregulatory dysfunction in hypertensive IGF-1-deficient mice included exacerbated disruption of the blood-brain barrier and neuroinflammation (microglia activation and upregulation of proinflammatory cytokines and chemokines), which were associated with impaired hippocampal cognitive function. Collectively, IGF-1 deficiency impairs autoregulatory protection in the brain of hypertensive mice, potentially exacerbating cerebromicrovascular injury and neuroinflammation mimicking the aging phenotype.

  11. Autophagy resolves early retinal inflammation in Igf1-deficient mice

    Directory of Open Access Journals (Sweden)

    Ana I. Arroba

    2016-09-01

    Full Text Available Insulin-like growth factor-1 (IGF-1 is a growth factor with differentiating, anti-apoptotic and metabolic functions in the periphery, and anti-inflammatory properties in the nervous system. Mice that have mutations in the Igf1 gene, rendering the gene product inactive (Igf1−/−, present with age-related visual loss accompanied by structural alterations in the first synapses of the retinal pathway. Recent advances have revealed a crucial role of autophagy in immunity and inflammation. Keeping in mind this close relationship, we aimed to decipher these processes in the context of the defects that occur during ageing in the retina of Igf1−/− mice. Tnfa and Il1b mRNAs, and phosphorylation of JNK and p38 MAPK were elevated in the retinas of 6- and 12-month old Igf1−/− mice compared to those in age-matched Igf1+/+ controls. In 6-month-old Igf1−/− retinas, increased mRNA levels of the autophagy mediators Becn1, Atg9, Atg5 and Atg4, decreased p62 (also known as SQSTM1 protein expression together with an increased LC3-II:LC3-I ratio reflected active autophagic flux. However, in retinas from 12-month-old Igf1−/− mice, Nlrp3 mRNA, processing of the IL1β pro-form and immunostaining of active caspase-1 were elevated compared to those in age-matched Igf1+/+ controls, suggesting activation of the inflammasome. This effect concurred with accumulation of autophagosomes and decreased autophagic flux in the retina. Microglia localization and status of activation in the retinas of 12-month-old Igf1+/+ and Igf1−/− mice, analyzed by immunostaining of Cd11b and Iba-1, showed a specific distribution pattern in the outer plexiform layer (OPL, inner plexiform layer (IPL and inner nuclear layer (INL, and revealed an increased number of activated microglia cells in the retina of 12-month-old blind Igf1−/− mice. Moreover, reactive gliosis was exclusively detected in the retinas from 12-month-old blind Igf1−/− mice. In conclusion, this study

  12. Circulating levels of IGF-1 directly regulate bone growth and density

    Science.gov (United States)

    Yakar, Shoshana; Rosen, Clifford J.; Beamer, Wesley G.; Ackert-Bicknell, Cheryl L.; Wu, Yiping; Liu, Jun-Li; Ooi, Guck T.; Setser, Jennifer; Frystyk, Jan; Boisclair, Yves R.; LeRoith, Derek

    2002-01-01

    IGF-1 is a growth-promoting polypeptide that is essential for normal growth and development. In serum, the majority of the IGFs exist in a 150-kDa complex including the IGF molecule, IGF binding protein 3 (IGFBP-3), and the acid labile subunit (ALS). This complex prolongs the half-life of serum IGFs and facilitates their endocrine actions. Liver IGF-1–deficient (LID) mice and ALS knockout (ALSKO) mice exhibited relatively normal growth and development, despite having 75% and 65% reductions in serum IGF-1 levels, respectively. Double gene disrupted mice were generated by crossing LID+ALSKO mice. These mice exhibited further reductions in serum IGF-1 levels and a significant reduction in linear growth. The proximal growth plates of the tibiae of LID+ALSKO mice were smaller in total height as well as in the height of the proliferative and hypertrophic zones of chondrocytes. There was also a 10% decrease in bone mineral density and a greater than 35% decrease in periosteal circumference and cortical thickness in these mice. IGF-1 treatment for 4 weeks restored the total height of the proximal growth plate of the tibia. Thus, the double gene disruption LID+ALSKO mouse model demonstrates that a threshold concentration of circulating IGF-1 is necessary for normal bone growth and suggests that IGF-1, IGFBP-3, and ALS play a prominent role in the pathophysiology of osteoporosis. PMID:12235108

  13. Relationship between serum IGF-1 and skeletal muscle IGF-1 mRNA expression to phosphocreatine recovery after exercise in obese men with reduced GH.

    Science.gov (United States)

    Hamarneh, Sulaiman R; Murphy, Caitlin A; Shih, Cynthia W; Frontera, Walter; Torriani, Martin; Irazoqui, Javier E; Makimura, Hideo

    2015-02-01

    GH and IGF-1 are believed to be physiological regulators of skeletal muscle mitochondria. The objective of this study was to examine the relationship between GH/IGF-1 and skeletal muscle mitochondria in obese subjects with reduced GH secretion in more detail. Fifteen abdominally obese men with reduced GH secretion were treated for 12 weeks with recombinant human GH. Subjects underwent (31)P-magnetic resonance spectroscopy to assess phosphocreatine (PCr) recovery as an in vivo measure of skeletal muscle mitochondrial function and percutaneous muscle biopsies to assess mRNA expression of IGF-1 and mitochondrial-related genes at baseline and 12 weeks. At baseline, skeletal muscle IGF-1 mRNA expression was significantly associated with PCr recovery (r = 0.79; P = .01) and nuclear respiratory factor-1 (r = 0.87; P = .001), mitochondrial transcription factor A (r = 0.86; P = .001), peroxisome proliferator-activated receptor (PPAR)γ (r = 0.72; P = .02), and PPARα (r = 0.75; P = .01) mRNA expression, and trended to an association with PPARγ coactivator 1-α (r = 0.59; P = .07) mRNA expression. However, serum IGF-1 concentration was not associated with PCr recovery or any mitochondrial gene expression (all P > .10). Administration of recombinant human GH increased both serum IGF-1 (change, 218 ± 29 μg/L; P IGF-1 mRNA in muscle (fold change, 2.1 ± 0.3; P = .002). Increases in serum IGF-1 were associated with improvements in total body fat (r = -0.53; P = .04), trunk fat (r = -0.55; P = .03), and lean mass (r = 0.58; P = .02), but not with PCr recovery (P > .10). Conversely, increase in muscle IGF-1 mRNA was associated with improvements in PCr recovery (r = 0.74; P = .02), but not with body composition parameters (P > .10). These data demonstrate a novel association of skeletal muscle mitochondria with muscle IGF-1 mRNA expression, but independent of serum IGF-1 concentrations.

  14. Elevated Serum Levels of IGF-1 Are Sufficient to Establish Normal Body Size and Skeletal Properties Even in the Absence of Tissue IGF-1

    OpenAIRE

    Elis, Sebastien; Courtland, Hayden-William; Wu, Yingjie; Rosen, Clifford J; Sun, Hui; Jepsen, Karl J; Majeska, Robert J; Yakar, Shoshana

    2010-01-01

    Use of recombinant insulin-like growth factor 1 (IGF-1) as a treatment for primary IGF-1 deficiency in children has become increasingly common. When untreated, primary IGF-1 deficiency may lead to a range of metabolic disorders, including lipid abnormalities, insulin resistance, and decreased bone density. To date, results of this therapy are considered encouraging; however, our understanding of the role played by IGF-1 during development remains limited. Studies on long-term treatment with r...

  15. The Direct Binding of Insulin-like Growth Factor-1 (IGF-1) to Integrin αvβ3 Is Involved in IGF-1 Signaling*

    OpenAIRE

    Saegusa, Jun; Yamaji, Satoshi; Ieguchi, Katsuaki; Wu, Chun-Yi; Lam, Kit S.; Liu, Fu-Tong; Takada, Yoko K.; Takada, Yoshikazu

    2009-01-01

    It has been proposed that ligand occupancy of integrin αvβ3 with extracellular matrix ligands (e.g. vitronectin) plays a critical role in insulin-like growth factor-1 (IGF-1) signaling. We found that expression of αvβ3 enhanced IGF-1-induced proliferation of Chinese hamster ovary cells in serum-free conditions (in the absence of vitronectin). We hypothesized that the direct integrin binding to IGF-1 may play a role in IGF-1 signaling. We demonstrated that αvβ3 specifically and directly bound ...

  16. IGF-1 prevents simvastatin-induced myotoxicity in C2C12 myotubes.

    Science.gov (United States)

    Bonifacio, Annalisa; Sanvee, Gerda M; Brecht, Karin; Kratschmar, Denise V; Odermatt, Alex; Bouitbir, Jamal; Krähenbühl, Stephan

    2017-05-01

    Statins are generally well tolerated, but treatment with these drugs may be associated with myopathy. The mechanisms of statin-associated myopathy are not completely understood. Statins inhibit AKT phosphorylation by an unclear mechanism, whereas insulin-like growth factor (IGF-1) activates the IGF-1/AKT signaling pathway and promotes muscle growth. The aims of the study were to investigate mechanisms of impaired AKT phosphorylation by simvastatin and to assess effects of IGF-1 on simvastatin-induced myotoxicity in C2C12 myotubes. C2C12 mouse myotubes were exposed to 10 μM simvastatin and/or 10 ng/mL IGF-1 for 18 h. Simvastatin inhibited the IGF-1/AKT signaling pathway, resulting in increased breakdown of myofibrillar proteins, impaired protein synthesis and increased apoptosis. Simvastatin inhibited AKT S473 phosphorylation, indicating reduced activity of mTORC2. In addition, simvastatin impaired stimulation of AKT T308 phosphorylation by IGF-1, indicating reduced activation of the IGF-1R/PI3K pathway by IGF-1. Nevertheless, simvastatin-induced myotoxicity could be at least partially prevented by IGF-1. The protective effects of IGF-1 were mediated by activation of the IGF-1R/AKT signaling cascade. Treatment with IGF-1 also suppressed muscle atrophy markers, restored protein synthesis and inhibited apoptosis. These results were confirmed by normalization of myotube morphology and protein content of C2C12 cells exposed to simvastatin and treated with IGF-1. In conclusion, impaired activity of AKT can be explained by reduced function of mTORC2 and of the IGF-1R/PI3K pathway. IGF-1 can prevent simvastatin-associated cytotoxicity and metabolic effects on C2C12 cells. The study gives insight into mechanisms of simvastatin-associated myotoxicity and provides potential targets for therapeutic intervention.

  17. The effect of HMB ingestion on the IGF-I and IGF binding protein response to high intensity military training.

    Science.gov (United States)

    Redd, Michael J; Hoffman, Jay R; Gepner, Yftach; Stout, Jeffrey R; Hoffman, Mattan W; Ben-Dov, Daniel; Funk, Shany; Church, David D; Avital, Guy; Chen, Yacov; Frankel, Hagai; Ostfeld, Ishay

    2017-02-01

    Insulin-like growth factor-I (IGF-I) is a metabolic and anabolic biomarker that has been proposed to reflect physiological adaptations resulting from multistressor environments. The bioactivity of IGF-I is regulated by seven different insulin-like growth factor binding proteins (IGFBPs) which act not only as carriers of IGF-1, but also function as a modulator of IGF-I availability and activity. Supplementing with β-hydroxy-β-methylbutyrate (HMB) has been shown to enhance physiological outcomes associated with intense training, and has been reported to augment the IGF-1 response. The purpose of this study was to examine the effect of 23days of HMB supplementation on circulating levels of IGF-I and IGFBPs in combat soldiers during highly intense military training. Thirteen male soldiers from an elite infantry unit volunteered to participate in this double-blind, parallel design study. Soldiers were provided 3g·day -1 of either HMB (n=6) or placebo (PL; n=7). During the study soldiers performed advanced military training with periods of restricted sleep and severe environmental stressors. Blood samples were obtained prior to (PRE) and approximately 18h following the final supplement consumption (POST). No significant differences were observed for circulating IGF-1 concentrations between HMB and PL (p=0.568). In addition, no differences were seen between the groups for IGFBP-1 (p=1.000), IGFBP-2 (p=0.855), IGFBP-3 (p=0.520), IGFBP-4 (p=0.103), IGFBP-5 (p=0.886), or IGFBP-6 (p=0.775). A significant difference was noted between HMB (169.9±23.0ng·ml -1 ) and PL (207.2±28.0ng·ml -1 ) for IGFBP-7 at POST (p=0.042). Although the results of this study do not support the influence of HMB supplementation on circulating concentrations of IGF-1 or IGFBPs1-6 during high intensity military training, it does present initial evidence that it may lower circulating IGFBP-7 concentrations. This may provide some indication of a reduced stress response, but further investigation on

  18. IGF-IR internalizes with Caveolin-1 and PTRF/Cavin in HaCat cells.

    Directory of Open Access Journals (Sweden)

    Barbara Salani

    Full Text Available BACKGROUND: Insulin-like growth factor-I receptor (IGF-IR is a tyrosine kinase receptor (RTK associated with caveolae, invaginations of the plasma membrane that regulate vesicular transport, endocytosis and intracellular signaling. IGF-IR internalization represents a key mechanism of down-modulation of receptors number on plasma membrane. IGF-IR interacts directly with Caveolin-1 (Cav-1, the most relevant protein of caveolae. Recently it has been demonstrated that the Polymerase I and Transcript Release Factor I (PTRF/Cavin is required for caveolae biogenesis and function. The role of Cav-1 and PTRF/Cavin in IGF-IR internalization is still to be clarified. METHODOLOGY/PRINCIPAL FINDINGS: We have investigated the interaction of IGF-IR with Cav-1 and PTRF/Cavin in the presence of IGF1in human Hacat cells. We show that IGF-IR internalization triggers Cav-1 and PTRF/Cavin translocation from plasma membrane to cytosol and increases IGF-IR interaction with these proteins. In fact, Cav-1 and PTRF/Cavin co-immunoprecipitate with IGF-IR during receptor internalization. We found a different time course of co-immunoprecipitation between IGF-IR and Cav-1 compared to IGF-IR and PTRF/Cavin. Cav-1 and PTRF/Cavin silencing by siRNA differently affect surface IGF-IR levels following IGF1 treatment: Cav-1 and PTRF/Cavin silencing significantly affect IGF-IR rate of internalization, while PTRF/Cavin silencing also decreases IGF-IR plasma membrane recovery. Since Cav-1 phosphorylation could have a role in IGF-IR internalization, the mutant Cav-1Y14F lacking Tyr14 was transfected. Cav-1Y14F transfected cells showed a reduced internalization of IGF-IR compared with cells expressing wild type Cav-1. Receptor internalization was not impaired by Clathrin silencing. These findings support a critical role of caveolae in IGF-IR intracellular traveling. CONCLUSIONS/SIGNIFICANCE: These data indicate that Caveolae play a role in IGF-IR internalization. Based on these findings

  19. Serum tree IGF-I, total IGF-I, IGFBP-1 and IGFBP-3 levels in an elderly population : relation to age and sex steroid levels

    NARCIS (Netherlands)

    Janssen, JAMJL; Stolk, RP; Pols, HAP; Grobbee, DE; de Jong, FH; Lamberts, SWJ

    BACKGROUND Most previous studies concerning the relationship between IGF-I and age used assays measuring total IGF-I, Although free IGF-I is considered of greater biological relevance, little is known about its relationship with sex steroids levels in elderly healthy subjects, MEASUREMENTS In a

  20. Insulin and IGF-II, but not IGF-I, stimulate the in vitro regeneration of adult frog sciatic sensory axons

    DEFF Research Database (Denmark)

    Edbladh, M; Svenningsen, Åsa Fex; Ekström, P A

    1994-01-01

    We used the in vitro regenerating frog sciatic nerve to look for effects of insulin and insulin-like growth factors I and II (IGF-I, IGF-II) on regeneration of sensory axons and on injury induced support cell proliferation in the outgrowth region. In nerves cultured for 11 days, a physiological...... dose (10 ng/ml, approximately 2 nM) of insulin or IGF-II increased ganglionic protein synthesis (by 20% and 50%, respectively) as well as the level of newly formed, radiolabelled axonal material distal to a crush injury (both by 80%), compared to untreated, paired controls. In addition, insulin...... increased the outgrowth distance of the furthest regenerating sensory axons by 10%. The preparation was particularly sensitive to insulin during the first 5 days of culturing. Furthermore, both insulin and IGF-II were found to inhibit proliferation of support cells in the outgrowth region in a manner...

  1. DNA methylation of IGF2DMR and H19 is associated with fetal and infant growth: the generation R study.

    Directory of Open Access Journals (Sweden)

    Marieke I Bouwland-Both

    Full Text Available Changes in epigenetic programming of embryonic growth genes during pregnancy seem to affect fetal growth. Therefore, in a population-based prospective birth cohort in the Netherlands, we examined associations between fetal and infant growth and DNA methylation of IGF2DMR, H19 and MTHFR. For this study, we selected 69 case children born small-for-gestational age (SGA, birth weight <-2SDS and 471 control children. Fetal growth was assessed with serial ultrasound measurements. Information on birth outcomes was retrieved from medical records. Infant weight was assessed at three and six months. Methylation was assessed in DNA extracted from umbilical cord white blood cells. Analyses were performed using linear mixed models with DNA methylation as dependent variable. The DNA methylation levels of IGF2DMR and H19 in the control group were, median (90% range, 53.6% (44.5-61.6 and 30.0% (25.6-34.2 and in the SGA group 52.0% (43.9-60.9 and 30.5% (23.9-32.9, respectively. The MTHFR region was found to be hypomethylated with limited variability in the control and SGA group, 2.5% (1.4-4.0 and 2.4% (1.5-3.8, respectively. SGA was associated with lower IGF2DMR DNA methylation (β = -1.07, 95% CI -1.93; -0.21, P-value = 0.015, but not with H19 methylation. A weight gain in the first three months after birth was associated with lower IGF2DMR DNA methylation (β = -0.53, 95% CI -0.91; -0.16, P-value = 0.005. Genetic variants in the IGF2/H19 locus were associated with IGF2DMR DNA methylation (P-value<0.05, but not with H19 methylation. Furthermore, our results suggest a possibility of mediation of DNA methylation in the association between the genetic variants and SGA. To conclude, IGF2DMR and H19 DNA methylation is associated with fetal and infant growth.

  2. Changes in circulating level of IGF-I and IGF-binding protein-1 from the first to second trimester as predictors of preeclampsia

    DEFF Research Database (Denmark)

    Vatten, Lars J; Nilsen, Tom I L; Juul, Anders

    2008-01-01

    OBJECTIVE: To assess whether circulating IGF-I and IGF-binding protein-1 (IGFBP-1) in the first and second trimester are associated with subsequent risk of preterm and term preeclampsia. METHODS: Nested case-control study within a cohort of 29 948 pregnant women. Cases were women, who later...... developed preeclampsia, and controls were randomly selected women, who did not develop preeclampsia. IGF-I and IGFBP-1 were measured with ELISA in maternal blood samples that were collected in the first and second trimesters. We assessed associations of IGF-I and IGFBP-1 concentrations with later...... development of preterm (before the 37th week of gestation) and term preeclampsia. RESULTS: An increase in IGF-I from the first to second trimester was associated with higher risk of preterm preeclampsia; the odds ratio (OR) for the highest compared with lowest quartile of increase was 4.9 (95% confidence...

  3. The effect of growth hormone on bioactive IGF in overweight/obese women.

    Science.gov (United States)

    Dichtel, Laura E; Bjerre, Mette; Schorr, Melanie; Bredella, Miriam A; Gerweck, Anu V; Russell, Brian M; Frystyk, Jan; Miller, Karen K

    2018-03-10

    Overweight/obesity is characterized by decreased growth hormone (GH) secretion whereas circulating IGF-I levels are less severely reduced. Yet, the activity of the circulating IGF-system appears to be normal in overweight/obese subjects, as estimated by the ability of serum to activate the IGF-I receptor in vitro (bioactive IGF). We hypothesized that preservation of bioactive IGF in overweight/obese women is regulated by an insulin-mediated suppression of IGF-binding protein-1 (IGFBP-1) and IGFBP-2, and by suppression of IGFBP-3, mediated by low GH. We additionally hypothesized that increases in bioactive IGF would drive changes in body composition with low-dose GH administration. Cross-sectional analysis and 3-month interim analysis of a 6-month randomized, placebo-controlled study of GH administration in 50 overweight/obese women without diabetes mellitus. Bioactive IGF (kinase receptor activation assay) and body composition (DXA) were measured. Prior to treatment, IGFBP-3 (r = -0.33, p = 0.02), but neither IGFBP-1 nor IGFBP-2, associated inversely with bioactive IGF. In multivariate analysis, lower IGFBP-3 correlated with lower peak stimulated GH (r = 0.45, p = 0.05) and higher insulin sensitivity (r = -0.74, p = 0.003). GH administration resulted in an increase in mean serum IGF-I concentrations (144 ± 56 to 269 ± 66 μg/L, p IGF (1.29 ± 0.39 to 2.60 ± 1.12 μg/L, p IGF, but not total IGF-I concentration, predicted an increase in lean mass (r = 0.31, p = 0.03) and decrease in total adipose tissue/BMI (r = -0.43, p = 0.003). Our data suggest that in overweight/obesity, insulin sensitivity and GH have opposing effects on IGF bioactivity through effects on IGFBP-3. Furthermore, increases in bioactive IGF, rather than IGF-I concentration, predicted GH administration-related body composition changes. NCT00131378. Copyright © 2018. Published by Elsevier Ltd.

  4. The IGF-Axis and Diabetic Retinopathy Before and After Gastric Bypass Surgery

    DEFF Research Database (Denmark)

    Brynskov, Troels; Laugesen, Caroline Schmidt; Floyd, Andrea Karen

    2017-01-01

    at the two postoperative visits (p ≤ 0.001). Total IGF-I showed no significant changes. HbA1c, glucose, HOMA-IR and lipids improved after surgery. Two patients did not complete the 12-month visit. CONCLUSIONS: In obese T2D patients, bioactive IGF is a potential biomarker for DR and levels tended to increase....... We aimed to evaluate baseline imbalances in the circulating IGF-system and changes after LGB in patients with T2D. METHODS: Prospective ocular examinations and measurement of the IGF-axis before and 3 and 12 months after LGB. IGF-bioactivity was measured by cell-based IGF-I receptor (IGF-IR) kinase...

  5. PAPP-A proteolytic activity enhances IGF bioactivity in ascites from women with ovarian carcinoma

    DEFF Research Database (Denmark)

    Thomsen, Jacob; Hjortebjerg, Rikke; Espelund, Ulrick

    2015-01-01

    Pregnancy-associated plasma protein-A (PAPP-A) stimulates insulin-like growth factor (IGF) action through proteolysis of IGF-binding protein (IGFBP)-4. In experimental animals, PAPP-A accelerates ovarian tumor growth by this mechanism. To investigate the effect of PAPP-A in humans, we compared.......03). Ascites was more potent than serum in activating the IGF-I receptor (IGF-IR) in vitro (+31%, P IGF-I, and lower levels of IGF-II (P ... of IGF-IR in all but one tumor, whereas all tumors expressed PAPP-A, IGFBP-4, IGF-I and IGF-II. Addition of recombinant PAPP-A to ascites increased the cleavage of IGFBP-4 and enhanced IGF-IR activation (P IGFs and these proteins...

  6. Differential binding of 125I-IGF-I preparations to human fibroblast monolayers

    International Nuclear Information System (INIS)

    Conover, C.A.; Misra, P.; Hintz, R.L.; Rosenfeld, R.G.

    1988-01-01

    Specific, high affinity binding of 125 I-IGF-I to the type IIGF receptor on human fibroblast monolyaers was not altered by varying feeding schedules, serum lots, washing procedures, or incubation times and temperatures. However, markedly different competitive binding curves were obtained when different iodinated IGF-I preparations were used. Five of six radioligands bound preferentially to the type IIGF receptor on human fibroblast monolayers, with 50% displacement at 4-8 μg/l unlabelled IGF-I; with one radioligand a paradoxical 20-200% increase in 125 I-IGF-I binding was observed at low concentrations of unlabelled IGF-I, while concentrations as high as 100 μg/l IGF-I failed to displace this radioligand. The latter binding pattern cannot be accounted for by 125 -I-IGF-I binding to the type II IGF receptor. These data indicate that various radioligands may have preferential affinities for different IGF-I binding sites on human fibroblast monolayers. (author)

  7. PAPP-A proteolytic activity enhances IGF bioactivity in ascites from women with ovarian carcinoma

    Science.gov (United States)

    Thomsen, Jacob; Hjortebjerg, Rikke; Espelund, Ulrick; Ørtoft, Gitte; Vestergaard, Poul; Magnusson, Nils E.; Conover, Cheryl A.; Tramm, Trine; Hager, Henrik; Høgdall, Claus; Høgdall, Estrid; Oxvig, Claus; Frystyk, Jan

    2015-01-01

    Pregnancy-associated plasma protein-A (PAPP-A) stimulates insulin-like growth factor (IGF) action through proteolysis of IGF-binding protein (IGFBP)-4. In experimental animals, PAPP-A accelerates ovarian tumor growth by this mechanism. To investigate the effect of PAPP-A in humans, we compared serum and ascites from 22 women with ovarian carcinoma. We found that ascites contained 46-fold higher PAPP-A levels as compared to serum (P IGF-I receptor (IGF-IR) in vitro (+31%, P IGF-I, and lower levels of IGF-II (P IGF-IR in all but one tumor, whereas all tumors expressed PAPP-A, IGFBP-4, IGF-I and IGF-II. Addition of recombinant PAPP-A to ascites increased the cleavage of IGFBP-4 and enhanced IGF-IR activation (P IGFs and these proteins are also present in ascites. We suggest that both soluble PAPP-A in ascites and tissue-associated PAPP-A serve to increase IGF bioactivity and, thereby, to stimulate IGF-IR-mediated tumor growth. PMID:26336825

  8. Membrane-associated insulin-like growth factor (IGF binding structures in placental cells

    Directory of Open Access Journals (Sweden)

    ROMANA MASNIKOSA

    2003-11-01

    Full Text Available The biological activities of IGF-I and –II are mediated mainly by the type 1 IGF receptor (IGF 1R and controlled by their interaction with soluble proteins, the IGF binding proteins (IGFBPs. Although there is a growing body of evidence that some IGFBPs may be cell surface-bound, published data concerning cell association of IGFBP-1 are scarce and none of them concern placental cells. The cell membranes used in this study were isolated from term human placentae. Detergent-solubilized membranes were shown to contain two types of IGF binding structures that were separated by gel filtration on a Sephadex G-100 column. Proteins in the first peak were eluted at V0 (Mr > 100 kD and they bound IGF-I with greater specificity and affinity than IGF-II and insulin. Most likely, they represented the IGF 1R. Small proteins (Mr ~ 45 kD were eluted with the membrane proteins in the second maximum. They were able to bind IGF-I and IGF-II, but not insulin. The identity of these proteins was shown to be IGFBP-1 on the basis of their reaction with specific anti-IGFBP-1 antibodies. To the best of our knowledge, the existence of IGFBP-1 associated with human placental cell membranes has not been reported in the literature before. Colocalisation of IGFBP-1 with IGF 1R in cell membranes could provide efficient modulation of IGF 1R receptor-ligand interactions.

  9. Distribution of IGF receptors in the plasma membrane of proximal tubular cells

    International Nuclear Information System (INIS)

    Hammerman, M.R.; Rogers, S.

    1987-01-01

    To characterize the distribution of receptors for insulin-like growth factors I and II (IGF I and II) in the plasma membrane of the renal proximal tubular cell, the authors measured binding of 125 I-labeled IGF I and 125 I-labeled IGF II to proximal tubular basolateral and brush-border membranes and characterized IGF I-stimulated phosphorylation of detergent-solubilized membranes. 125 I-IGF bound primarily to a 135,000 relative molecular weight (M r ) protein and IGF II to a 260,000 M r protein in isolated membranes. Binding of 125 I-IGF I was severalfold greater in basolateral than in brush-border membranes. IGF I-stimulated phosphorylation of the 92,000 M r β-subunit of its receptors could be demonstrated only in basolateral membranes. These findings are consistent with an asymmetrical distribution of receptors for IGF I in the plasma membrane of the renal proximal tubular cell, localization being primary on the basolateral side. In contrast, binding of 125 I-IGF II to isolated basolateral and brush-border membranes was equivalent, suggesting that receptors for this peptide are distributed more symmetrically in the plasma membrane. The findings suggest that the action of IGF I in proximal tubule are mediated via interaction of circulating peptide with specific receptors in the basolateral membrane. However, the findings established the potential for actions of IGF II to be exerted in proximal tubule via interaction with both basolateral and/or brush-border membrane receptors

  10. Possible effects of insulin-like growth factor-I, IGF-binding protein-3 and IGF-1/IGFBP-3 molar ratio on mammographic density: a cross-sectional study.

    Science.gov (United States)

    Meggiorini, M L; Cipolla, V; Borgoni, G; Nofroni, I; Pala, A; de Felice, C

    2012-01-01

    The purpose of this study was to examine the possible effects of IGF-1, IGFBP-3 and IGF-1/IGFBP-3 molar ratio on mammographic density and assess whether this relationship was similar in subgroups of pre- and postmenopausal women. A group of 341 Italian women of childbearing age or naturally postmenopausal who had performed mammographic examination at the section of radiology of our department a maximum three months prior to recruitment were enrolled. A blood sample was drawn for determination of IGF-1, IGFBP-3 levels and IGF-1/IGFBP-3 molar ratio was calculated. On the basis of recent mammograms the women were divided into two groups: dense breast (DB) and non-dense breast (NDB). To assess the association between mammographic density and IGF-1, IGFBP-3 and Molar ratio Student's t-test was employed before and after stratified by menopausal status. The analysis of the relationship between mammographic density and plasma levels of IGF-1, IGFBP-3 and IGF-1/IGFBP-3 molar ratio showed that IGF-1 levels and molar ratio varied in the two groups resulting in higher mean values in the DB group whereas IGFBP-3 showed similar values in both groups (DB and NDB). After stratification of the study population by menopausal status, no association was found. Our study provides strong evidence of a crude association between breast density, and plasma levels of IGF-1 and molar ratio. IGF-1 and molar ratio might increase mammographic density and thus the risk of developing breast cancer.

  11. IGF-1 promotes the development and cytotoxic activity of human NK cells

    Science.gov (United States)

    Ni, Fang; Sun, Rui; Fu, Binqing; Wang, Fuyan; Guo, Chuang; Tian, Zhigang; Wei, Haiming

    2013-01-01

    Insulin-like growth factor 1 (IGF-1) is a critical regulator of many physiological functions, ranging from longevity to immunity. However, little is known about the role of IGF-1 in natural killer cell development and function. Here, we identify an essential role for IGF-1 in the positive regulation of human natural killer cell development and cytotoxicity. Specifically, we show that human natural killer cells have the ability to produce IGF-1 and that differential endogenous IGF-1 expression leads to disparate cytotoxicity in human primary natural killer cells. Moreover, miR-483-3p is identified as a critical regulator of IGF-1 expression in natural killer cells. Overexpression of miR-483-3p has an effect similar to IGF-1 blockade and decreased natural killer cell cytotoxicity, whereas inhibition of miR-483-3p has the opposite effect, which is reversible with IGF-1 neutralizing antibody. These findings indicate that IGF-1 and miR-483-3p belong to a new class of natural killer cell functional modulators and strengthen the prominent role of IGF-1 in innate immunity. PMID:23403580

  12. Serum insulin-like growth factor I (IGF-I) and IGF-binding protein 3 levels are increased in central precocious puberty

    DEFF Research Database (Denmark)

    Juul, A; Scheike, Thomas Harder; Nielsen, C T

    1995-01-01

    Central precocious puberty (CPP) is characterized by early activation of the pituitary-gonadal axis, which leads to increased growth velocity and development of secondary sexual characteristics. It is generally believed that gonadal sex steroids stimulate pulsatile GH secretion, which, in turn......, stimulates insulin-like growth factor I (IGF-I) and IGF-binding protein 3 (IGFBP-3) production. However, little is known about GH, IGF-I, and IGFBP-3 serum levels in children with precocious puberty. Treatment of CPP by GnRH agonists has become the treatment of choice. However, the effect of long term...

  13. Comparison of IGF-1 (insulin like growth factor-1) levels in bovine serum sampled three times during the day using validated equine IGF-1 elisa

    OpenAIRE

    Mrkun J.; Kosec M.; Zrimšek Petra

    2009-01-01

    Cows in negative energy balance exhibit reduced fertility, mediated by metabolic signals that influence the reproductive system. Measurement of IGF-1 contributes to the diagnosis of negative energy balance. The aim of this study was to investigate possible variations in IGF-1 levels in samples taken at different times of the day. Equine IGF-1 ELISA was used for measuring IGF-1 in bovine samples. Statistical analysis was applied to the results. Using scatter diagrams fitted with Deming regress...

  14. (igf1/igf1r) with milk production tr

    African Journals Online (AJOL)

    Gosia

    2016-06-15

    Jun 15, 2016 ... fragment length polymorphism (PCR-RFLP) (TaiI and MspI restriction enzymes) and amplification-created restriction site (ACRS) (SnaBI ... is the first association study based on polymorphisms of the primary genes encoding the IGF-1 system in a small herd of .... However, protein content was highest in milk ...

  15. IGF-1 protects cardiac myocytes from hyperosmotic stress-induced apoptosis via CREB

    International Nuclear Information System (INIS)

    Maldonado, Carola; Cea, Paola; Adasme, Tatiana; Collao, Andres; Diaz-Araya, Guillermo; Chiong, Mario; Lavandero, Sergio

    2005-01-01

    Hyperosmotic stress stimulates a rapid and pronounced apoptosis in cardiac myocytes which is attenuated by insulin-like growth factor-1 (IGF-1). Because in these cells IGF-1 induces intracellular Ca 2+ increase, we assessed whether the cyclic AMP response element-binding protein (CREB) is activated by IGF-1 through Ca 2+ -dependent signalling pathways. In cultured cardiac myocytes, IGF-1 induced phosphorylation (6.5 ± 1.0-fold at 5 min), nuclear translocation (30 min post-stimulus) and DNA binding activity of CREB. IGF-1-induced CREB phosphorylation was mediated by MEK1/ERK, PI3-K, p38-MAPK, as well as Ca 2+ /calmodulin kinase and calcineurin. Exposure of cardiac myocytes to hyperosmotic stress (sorbitol 600 mOsm) decreased IGF-1-induced CREB activation Moreover, overexpression of a dominant negative CREB abolished the anti-apoptotic effects of IGF-1. Our results suggest that IGF-1 activates CREB through a complex signalling pathway, and this transcription factor plays an important role in the anti-apoptotic action of IGF-1 in cultured cardiac myocytes

  16. R1507, an Anti-Insulin-Like Growth Factor-1 Receptor (IGF-1R) Antibody, and EWS/FLI-1 siRNA in Ewing's Sarcoma: Convergence at the IGF/IGFR/Akt Axis

    Science.gov (United States)

    Rodon, Jordi; Sun, Michael; Kuenkele, Klaus-Peter; Parsons, Henrique A.; Trent, Jonathan C.; Kurzrock, Razelle

    2011-01-01

    A subset of patients with Ewing's sarcoma responds to anti-insulin-like growth factor-1 receptor (IGF-1R) antibodies. Mechanisms of sensitivity and resistance are unknown. We investigated whether an anti-IGF-1R antibody acts via a pathway that could also be suppressed by small interfering (si) RNA against the EWS/FLI-1 fusion protein, the hallmark of Ewing's sarcoma. The growth of two Ewing's sarcoma cell lines (TC-32 and TC-71) was inhibited by the fully human anti-IGF-1R antibody, R1507 (clonogenic and MTT assays). TC-32 and TC-71 cells express high levels of IGF-2, while RD-ES and A4573 Ewing's cell lines, which were less responsive to R1507 in our assays, express low or undetectable IGF-2, respectively. TC-71 cells also expressed high levels of IGF-1R, and R1507 decreased steady-state levels of this receptor by internalization/degradation, an effect which was associated with a decrease in p-IGF-1R, p-IRS-1, and p-Akt. EWS/FLI-1 siRNA also decreased p-Akt, due to its ability to increase IGF-BP3 levels and subsequently decrease IGF-1 and IGF-2 levels, thus inhibiting signaling through p-IGF-1R. This inhibition correlated with growth suppression and apoptosis. The attenuation of Akt activation was confirmed in TC-71 and HEK-293 (human embryonic kidney) cells by transfecting them with IGF-1R siRNA. We conclude that antibodies and siRNA to IGF-1R, as well as siRNA to EWS/FLI-1, act via intersecting IGF/IGF-1R signals that suppress a common point in this pathway, namely the phosphorylation of Akt. PMID:22022506

  17. R1507, an anti-insulin-like growth factor-1 receptor (IGF-1R antibody, and EWS/FLI-1 siRNA in Ewing's sarcoma: convergence at the IGF/IGFR/Akt axis.

    Directory of Open Access Journals (Sweden)

    Helen J Huang

    Full Text Available A subset of patients with Ewing's sarcoma responds to anti-insulin-like growth factor-1 receptor (IGF-1R antibodies. Mechanisms of sensitivity and resistance are unknown. We investigated whether an anti-IGF-1R antibody acts via a pathway that could also be suppressed by small interfering (si RNA against the EWS/FLI-1 fusion protein, the hallmark of Ewing's sarcoma. The growth of two Ewing's sarcoma cell lines (TC-32 and TC-71 was inhibited by the fully human anti-IGF-1R antibody, R1507 (clonogenic and MTT assays. TC-32 and TC-71 cells express high levels of IGF-2, while RD-ES and A4573 Ewing's cell lines, which were less responsive to R1507 in our assays, express low or undetectable IGF-2, respectively. TC-71 cells also expressed high levels of IGF-1R, and R1507 decreased steady-state levels of this receptor by internalization/degradation, an effect which was associated with a decrease in p-IGF-1R, p-IRS-1, and p-Akt. EWS/FLI-1 siRNA also decreased p-Akt, due to its ability to increase IGF-BP3 levels and subsequently decrease IGF-1 and IGF-2 levels, thus inhibiting signaling through p-IGF-1R. This inhibition correlated with growth suppression and apoptosis. The attenuation of Akt activation was confirmed in TC-71 and HEK-293 (human embryonic kidney cells by transfecting them with IGF-1R siRNA. We conclude that antibodies and siRNA to IGF-1R, as well as siRNA to EWS/FLI-1, act via intersecting IGF/IGF-1R signals that suppress a common point in this pathway, namely the phosphorylation of Akt.

  18. Native and Complexed IGF-1: Biodistribution and Pharmacokinetics in Infantile Neuronal Ceroid Lipofuscinosis

    Directory of Open Access Journals (Sweden)

    Tuulia Huhtala

    2012-01-01

    Full Text Available Infantile neuronal ceroid lipofuscinosis (INCL is a severe neurodegenerative disorder of childhood characterized by selective death of cortical neurons. Insulin-like growth factor 1 (IGF-1 is important in embryonic development and is considered as a potential therapeutic agent for several disorders of peripheral and central nervous systems. In circulation IGF-1 is mainly bound to its carrier protein IGFBP-3. As a therapeutic agent IGF-1 has shown to be more active as free than complexed form. However, this may cause side effects during the prolonged treatment. In addition to IGFBP-3 the bioavailability of IGF-1 can be modulated by using mesoporous silicon nanoparticles (NPs which are optimal carriers for sustained release of unstable peptide hormones like IGF-1. In this study we compared biodistribution, pharmacokinetics, and bioavailability of radiolabeled free IGF-1, IGF-1/IGFBP-3, and IGF-1/NP complexes in a Cln1-/- knockout mouse model. IGF-1/NP was mainly accumulated in liver and spleen in all studied time points, whereas minor and more constant amounts were measured in other organs compared to free IGF-1 or IGF-1/IGFBP-3. Also concentration of IGF-1/NP in blood was relatively high and stable during studied time points suggesting continuous release of IGF-1 from the particles.

  19. Compensatory growth assessment by plasma IGF-I hormone ...

    African Journals Online (AJOL)

    USER

    2010-06-21

    Jun 21, 2010 ... feeding diets and regimes will be evaluated in future studies. Key words: Compensatory growth, food coefficient ratio, food intake, IGF-I, rainbow trout, special growth .... Blood was sampled for IGF-I hormone concentration.

  20. Insulin-like Growth Factor 1 (IGF-1) Stabilizes Nascent Blood Vessels*

    Science.gov (United States)

    Jacobo, Sarah Melissa P.; Kazlauskas, Andrius

    2015-01-01

    Here we report that VEGF-A and IGF-1 differ in their ability to stabilize newly formed blood vessels and endothelial cell tubes. Although VEGF-A failed to support an enduring vascular response, IGF-1 stabilized neovessels generated from primary endothelial cells derived from various vascular beds and mouse retinal explants. In these experimental systems, destabilization/regression was driven by lysophosphatidic acid (LPA). Because previous studies have established that Erk antagonizes LPA-mediated regression, we considered whether Erk was an essential component of IGF-dependent stabilization. Indeed, IGF-1 lost its ability to stabilize neovessels when the Erk pathway was inhibited pharmacologically. Furthermore, stabilization was associated with prolonged Erk activity. In the presence of IGF-1, Erk activity persisted longer than in the presence of VEGF or LPA alone. These studies reveal that VEGF and IGF-1 can have distinct inputs in the angiogenic process. In contrast to VEGF, IGF-1 stabilizes neovessels, which is dependent on Erk activity and associated with prolonged activation. PMID:25564613

  1. IGF-I replacement therapy in children with congenital IGF-I deficiency (Laron syndrome) maintains heart dimension and function.

    Science.gov (United States)

    Scheinowitz, Mickey; Feinberg, Micha S; Laron, Zvi

    2009-06-01

    Untreated patients with congenital growth hormone deficiency (GHD) and IGF-I deficiency are characterized not only by dwarfism but also by acromicria and organomicria, such as the heart. We assessed cardiac dimensions and function in very young patients with Laron syndrome (LS) undergoing IGF-I replacement therapy. Two to seven echocardiographic measurements were performed during IGF-I replacement therapy on male (n=4) and female (n=4) LS -patients, mean+/-SD age of 7.1+/-3.6 years (range 1.6-11.6 years), weight 16.1+/-9.7 kg, and height 89.9+/-18.5 cm. As aged- and gender-matched controls served 44 healthy children, age: 8.7+/-5.5 years, weight: 36.1+/-22.4 kg, and height: 129.7+/-33.1cm. Data of LS patients were normalized to body surface area and compared to the control group as well as nomograms of normal echocardiographic parameters for this age group. Left ventricular diastolic and systolic dimensions (LVDD/ LVSD, mm) and LV mass (gr) were significantly smaller in boys and girls with IGF-I treated LS compared with controls while the shortening fraction (%) and intraventricular septum thickness (mm) were similar. When compared with standard values for this age group, all treated LS patients were within 1 standard deviation of the mean. IGF-I therapy of young patients with Laron syndrome maintain LV dimensions and function within the normal range of aged-matched controls.

  2. Low Circulating IGF-I Bioactivity in Elderly Men is associated with Increased Mortality

    NARCIS (Netherlands)

    M.P. Brugts (Michael); A.W. van den Beld (Annewieke); L.J. Hofland (Leo); K. van der Wansem (Katy); P.M. van Koetsveld (Peter); J. Frystyk (Jan); S.W.J. Lamberts (Steven); J.A.M.J.L. Janssen (Joseph)

    2008-01-01

    textabstractContext: Low IGF-I signaling activity prolongs lifespan in certain animal models, but the precise role of IGF-I in human survival remains controversial. The IGF-I kinase receptor activation assay (IGF-I KIRA) is a novel method for measuring IGF-I bioactivity in human serum. We

  3. Human conditions of insulin-like growth factor-I (IGF-I) deficiency

    Science.gov (United States)

    2012-01-01

    Insulin-like growth factor I (IGF-I) is a polypeptide hormone produced mainly by the liver in response to the endocrine GH stimulus, but it is also secreted by multiple tissues for autocrine/paracrine purposes. IGF-I is partly responsible for systemic GH activities although it possesses a wide number of own properties (anabolic, antioxidant, anti-inflammatory and cytoprotective actions). IGF-I is a closely regulated hormone. Consequently, its logical therapeutical applications seems to be limited to restore physiological circulating levels in order to recover the clinical consequences of IGF-I deficiency, conditions where, despite continuous discrepancies, IGF-I treatment has never been related to oncogenesis. Currently the best characterized conditions of IGF-I deficiency are Laron Syndrome, in children; liver cirrhosis, in adults; aging including age-related-cardiovascular and neurological diseases; and more recently, intrauterine growth restriction. The aim of this review is to summarize the increasing list of roles of IGF-I, both in physiological and pathological conditions, underlying that its potential therapeutical options seem to be limited to those proven states of local or systemic IGF-I deficiency as a replacement treatment, rather than increasing its level upper the normal range. PMID:23148873

  4. Human conditions of insulin-like growth factor-I (IGF-I deficiency

    Directory of Open Access Journals (Sweden)

    Puche Juan E

    2012-11-01

    Full Text Available Abstract Insulin-like growth factor I (IGF-I is a polypeptide hormone produced mainly by the liver in response to the endocrine GH stimulus, but it is also secreted by multiple tissues for autocrine/paracrine purposes. IGF-I is partly responsible for systemic GH activities although it possesses a wide number of own properties (anabolic, antioxidant, anti-inflammatory and cytoprotective actions. IGF-I is a closely regulated hormone. Consequently, its logical therapeutical applications seems to be limited to restore physiological circulating levels in order to recover the clinical consequences of IGF-I deficiency, conditions where, despite continuous discrepancies, IGF-I treatment has never been related to oncogenesis. Currently the best characterized conditions of IGF-I deficiency are Laron Syndrome, in children; liver cirrhosis, in adults; aging including age-related-cardiovascular and neurological diseases; and more recently, intrauterine growth restriction. The aim of this review is to summarize the increasing list of roles of IGF-I, both in physiological and pathological conditions, underlying that its potential therapeutical options seem to be limited to those proven states of local or systemic IGF-I deficiency as a replacement treatment, rather than increasing its level upper the normal range.

  5. Insulin and IGF-II, but not IGF-I, stimulate the in vitro regeneration of adult frog sciatic sensory axons

    DEFF Research Database (Denmark)

    Edbladh, M; Svenningsen, Åsa Fex; Ekström, P A

    1994-01-01

    We used the in vitro regenerating frog sciatic nerve to look for effects of insulin and insulin-like growth factors I and II (IGF-I, IGF-II) on regeneration of sensory axons and on injury induced support cell proliferation in the outgrowth region. In nerves cultured for 11 days, a physiological...

  6. Serum levels of bioactive IGF1 and physiological markers of ageing in healthy adults.

    Science.gov (United States)

    Vestergaard, Poul Frølund; Hansen, Mette; Frystyk, Jan; Espelund, Ulrick; Christiansen, Jens S; Jørgensen, Jens Otto Lunde; Fisker, Sanne

    2014-02-01

    Senescent changes in body composition and muscle strength are accompanied by reduced production of GH and IGF1, but the causal relationship remains elusive. We speculate that serum bioactive IGF1, measured by the IGF1 kinase receptor activation assay, is closer related to human physiological ageing than total IGF1 measured by immunoassay. We conducted a cross-sectional study in 150 adult males and females, between 20 and 70 years. After an overnight fasting, serum levels of bioactive IGF1, total IGF1 and IGF-binding protein 1 (IGFBP1) and IGFBP3 were assessed. Furthermore, body composition and muscle strength was measured. Total IGF1 levels were higher in females (P=0.048). Bioactive IGF1 were identical in males and females (P=0.31), decreasing with age. Total IGF1 tended to decrease more with age compared with bioactive IGF1 (-1.48 vs -0.89 percent/year, P=0.052). Total body fat (TBF) was lower and BMI was higher in males (Page. Knee extension and elbow flexion force were higher in males (P=0.001 and P=0.001), but decreased with age in both genders.  Total but not bioactive IGF1 was positively correlated to TBF, knee extension and muscle function in males. In multiple linear regression, only age predicted total IGF1, whereas age and IGFBP1 predicted bioactive IGF1. Bioactive IGF1 tends to decrease to a lesser extent than total IGF1 with age and was not correlated with measures of body composition or muscle strength. Therefore, levels of circulating bioactive IGF1 does not appear to be a better biomarker of physiological ageing than total IGF1.

  7. Cell surface GRP78 facilitates hepatoma cells proliferation and migration by activating IGF-IR.

    Science.gov (United States)

    Yin, Yancun; Chen, Chen; Chen, Jinliang; Zhan, Renhui; Zhang, Qiang; Xu, Xiaoyan; Li, Defang; Li, Minjing

    2017-07-01

    The 78kDa glucose regulated protein (GRP78) is a multifunctional chaperone that is involved in a variety of cellular processes. Insulin like growth factor I receptor (IGF-IR) often aberrant expresses in many types of tumor cells. The IGF-IR signaling plays key roles in carcinogenesis and maintenance of the malignant phenotype. The crosstalk between GRP78 and IGF-IR molecules has not well been illuminated. Here, we demonstrated a reciprocal regulation of GRP78 expression and IGF-IR pathway activation. IGF-I induced GRP78 expression in hepatoma cells. IGF-IR knockdown or IGF-IR inhibitor repressed GRP78 expression. Both phosphatidylinositol 3-kianase (PI3K) and mitogen-activated protein kinase (MAPK) pathways involved in IGF-I induction of GRP78 expression. Interestingly, treatment of hepatoma cells with IGF-I re-distributes GRP78 from endoplasmic reticulum (ER) to cell surface and promotes its physical interaction with IGF-IR. Also, GRP78 promotes IGF-IR phosphorylation and activation. Blocked of GRP78 by small interfering RNA or inhibition of GRP78 function by (-)-epigallocatechin gallate (EGCG) blocks IGF-I induced IGF-IR phosphorylation and its downstream signaling. Further, blocked cell surface GRP78 with antibody inhibits IGF-I stimulated cellular proliferation and migration. These data reveal an essential role for the molecular chaperone GRP78 in IGF-IR signaling and implicate the use of GRP78 inhibitors in blocking IGF-IR signaling in hepatoma cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Potency of full-length MGF to induce maximal activation of the IGF-I R Is similar to recombinant human IGF-I at high equimolar concentrations

    NARCIS (Netherlands)

    J.A.M.J.L. Janssen (Joseph); L.J. Hofland (Leo); C.J. Strasburger; E.S.R.D. Van Dungen (Elisabeth S.R. Den); M. Thevis (Mario)

    2016-01-01

    textabstractAims To compare full-length mechano growth factor (full-length MGF) with human recombinant insulin-like growth factor-I (IGF-I) and human recombinant insulin (HI) in their ability to activate the human IGF-I receptor (IGF-IR), the human insulin receptor (IR-A) and the human insulin

  9. Comparison of two dose regimens of growth hormone (GH) with different target IGF-1 levels on glucose metabolism, lipid profile, cardiovascular function and anthropometric parameters in gh-deficient adults.

    Science.gov (United States)

    Cenci, Maria Claudia Peixoto; Soares, Débora Vieira; Spina, Luciana Diniz Carneiro; Brasil, Rosane Resende de Lima Oliveira; Lobo, Priscila Marise; Michmacher, Eduardo; Vaisman, Mario; Boguszewski, Cesar Luiz; Conceição, Flávia Lúcia

    2012-01-01

    To compare the effects of two regimens of GH therapy with different target IGF-1 levels on anthropometric parameters, glucose metabolism, lipid profile and cardiac function in adults with GH deficiency (GHD). Retrospective analysis of 14 GHD adults from Clementino Fraga Filho University Hospital, Rio de Janeiro, Brazil, who were treated with a GH regimen aimed at maintaining serum IGF-1 levels between the median and upper reference limit (high dose group - HDGH) and 18 GHD adults from Federal University Hospital, Curitiba, Brazil, who received a fixed GH dose of 0.2mg/day in the first year of treatment, followed by titration to maintain serum IGF-1 levels between the median and lower reference limit (low dose group - LDGH). All patients were followed for 2 years with analysis of anthropometric parameters, serum levels of IGF-1, glucose, insulin, HOMA-IR, lipid profile, and transthoracic echocardiography. Changes on weight, BMI and waist circumference were similar between the two groups. Insulin levels increased and HOMA-IR worsened in the LDGH group at 1year and improved thereafter. Total cholesterol and triglycerides did not change with therapy. LDL cholesterol reduced in both groups, while HDL-cholesterol significantly increased only in the HDGH group (p=0.007 vs LDGH). No significant variations on echocardiographic parameters were observed. The HDGH and LDGH regimens resulted in similar changes on anthropometric, echocardiographic, glucose and lipid parameters in GHD adults, except for increase in HDL cholesterol that was only observed in the HDGH regimen. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Urinary neutrophil gelatinase associated lipocalin as a biomarker in ifosfamide induced chronic renal failure.

    Science.gov (United States)

    Kesik, V; Demirkaya, E; Buyukpamukçu, M

    2015-12-01

    Neutrophil gelatinase associated lipocalin (NGAL) have been used with great success in acute renal failure and in some cases in chronic nephrotoxicity. In this work, we aimed to investigate urinary NGAL as an early marker of chronic renal failure (CRF). We investigated urinary NGAL of 29 children treated with ifosfamide chemotherapy and compared them with those of 12 healthy children. Urinary β2 microglobulin, serum cystatin C, and creatinine clearance analyses were also studied. The median age was 11 years (4-21) and median remission time was 4.3 years (1.8-14.4). The cumulative dose of ifosfamide was 36 g. Glomerular filtration rate was decreased in 41.4% and urine β2 microglobulin levels and serum cystatin C levels were elevated in 31% of the patients. As the remission time increased, serum creatinine and cystatin C levels were also increased. The sensitivity for β2 microglobulin and cystatin C in demonstrating CRF was 35.2% and 23% and specificity was 33.2% and 50% respectively. The 24-hour urine NGAL cut-off level for demonstrating CRF was found to be 1.065 ng/mL/24 hours. The sensitivity and specificity for this cut-off value were 83% and 77%, respectively. NGAL levels were significantly higher in the study group as compared with the control group. Although ifosfamide treatment was suggested to be safe with no complication of renal failure under a dose of 80 g/m2, chronic renal failure and deficits in glomerular and tubular function could be seen when the remission time increased. Elevated NGAL levels may be a good option in determining CRF.

  11. Suckling induced insulin-like growth factor-1 (IGF-1) release in mother rats.

    Science.gov (United States)

    Lékó, András H; Cservenák, Melinda; Dobolyi, Árpád

    2017-12-01

    Lactation involves significant neuroendocrine changes. The elevated prolactin (PRL) release from the pituitary, induced markedly by suckling, is the most relevant example. Suckling also causes a significant and rapid elevation in growth hormone (GH) levels. GH is necessary for milk synthesis as milk yield is stopped completely in the absence of PRL and GH, while the absence of PRL alone causes only a 50% reduction. Insulin-like growth factor-1 (IGF-1) plays an important role in the GH axis. GH exerts its effects through IGF-1 in the periphery, for example in the mammary gland. In addition, IGF-1 is responsible for the long-loop feedback control of GH secretion. IGF-1 secretion has not been established yet in mothers. Therefore, in the present study, we investigated the effect of suckling on serum IGF-1 level in rat mothers and correlated it with serum PRL levels. We examined a potential mechanism of the regulation of IGF-1 level during suckling by administering IGF-1 into the lateral ventricle of rat mothers continuously for 12days, or acutely, right before the start of suckling. We described that suckling affected IGF-1 release based on one-way repeated measures ANOVA (F=10.8 and pIGF-1 level 30min after the start of suckling (pIGF-1 release. The prolonged central IGF-1 administration diminished the suckling-induced IGF-1 surge (F=9.19 and pIGF-1 release either by elevating PRL or GH. Long-loop feedback via IGF-1 in the GH axis can diminish this action. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Sustained IGF-1 Secretion by Adipose-Derived Stem Cells Improves Infarcted Heart Function.

    Science.gov (United States)

    Bagno, Luiza L; Carvalho, Deivid; Mesquita, Fernanda; Louzada, Ruy A; Andrade, Bruno; Kasai-Brunswick, Taís H; Lago, Vivian M; Suhet, Grazielle; Cipitelli, Debora; Werneck-de-Castro, João Pedro; Campos-de-Carvalho, Antonio C

    2016-01-01

    The mechanism by which stem cell-based therapy improves heart function is still unknown, but paracrine mechanisms seem to be involved. Adipose-derived stem cells (ADSCs) secrete several factors, including insulin-like growth factor-1 (IGF-1), which may contribute to myocardial regeneration. Our aim was to investigate whether the overexpression of IGF-1 in ADSCs (IGF-1-ADSCs) improves treatment of chronically infarcted rat hearts. ADSCs were transduced with a lentiviral vector to induce IGF-1 overexpression. IGF-1-ADSCs transcribe100- to 200-fold more IGF-1 mRNA levels compared to nontransduced ADSCs. IGF-1 transduction did not alter ADSC immunophenotypic characteristics even under hypoxic conditions. However, IGF-1-ADSCs proliferate at higher rates and release greater amounts of growth factors such as IGF-1, vascular endothelial growth factor (VEGF), and hepatocyte growth factor (HGF) under normoxic and hypoxic conditions. Importantly, IGF-1 secreted by IGF-1-ADSCs is functional given that Akt-1 phosphorylation was remarkably induced in neonatal cardiomyocytes cocultured with IGF-1-ADSCs, and this increase was prevented with phosphatidylinositol 3-kinase (PI3K) inhibitor treatment. Next, we tested IGF-1-ADSCs in a rat myocardial infarction (MI) model. MI was performed by coronary ligation, and 4 weeks after MI, animals received intramyocardial injections of either ADSCs (n = 7), IGF-1-ADSCs (n = 7), or vehicle (n = 7) into the infarcted border zone. Left ventricular function was evaluated by echocardiography before and after 6 weeks of treatment, and left ventricular hemodynamics were assessed 7 weeks after cell injection. Notably, IGF-1-ADSCs improved left ventricular ejection fraction and cardiac contractility index, but did not reduce scar size when compared to the ADSC-treated group. In summary, transplantation of ADSCs transduced with IGF-1 is a superior therapeutic approach to treat MI compared to nontransduced ADSCs, suggesting that gene and cell

  13. IGF-I levels reflect hypopituitarism severity in adults with pituitary dysfunction.

    Science.gov (United States)

    Tirosh, Amit; Toledano, Yoel; Masri-Iraqi, Hiba; Eizenberg, Yoav; Tzvetov, Gloria; Hirsch, Dania; Benbassat, Carlos; Robenshtok, Eyal; Shimon, Ilan

    2016-08-01

    To evaluate the utility of Insulin-like growth factor I (IGF-I) standard deviation score (SDS) as a surrogate marker of severity of hypopituitarism in adults with pituitary pathology. We performed a retrospective data analysis, including 269 consecutive patients with pituitary disease attending a tertiary endocrine clinic in 1990-2015. The medical files were reviewed for the complete pituitary hormone profile, including IGF-I, and clinical data. Age-adjusted assay reference ranges of IGF-I were used to calculate IGF-I SDS for each patient. The main outcome measures were positive and negative predictive values of low and high IGF-I SDS, respectively, for the various pituitary hormone deficiencies. IGF-I SDS correlated negatively with the number of altered pituitary axes (p hypopituitarism in adults with pituitary disease, and thus can serve as a marker of hypopituitarism severity.

  14. IGF-1 promotes the development and cytotoxic activity of human NK cells

    OpenAIRE

    Ni, Fang; Sun, Rui; Fu, Binqing; Wang, Fuyan; Guo, Chuang; Tian, Zhigang; Wei, Haiming

    2013-01-01

    Insulin-like growth factor 1 (IGF-1) is a critical regulator of many physiological functions, ranging from longevity to immunity. However, little is known about the role of IGF-1 in natural killer cell development and function. Here, we identify an essential role for IGF-1 in the positive regulation of human natural killer cell development and cytotoxicity. Specifically, we show that human natural killer cells have the ability to produce IGF-1 and that differential endogenous IGF-1 expression...

  15. The Association Between IGF-I and Insulin Resistance

    DEFF Research Database (Denmark)

    Friedrich, Nele; Thuesen, Betina; Jørgensen, Torben

    2012-01-01

    OBJECTIVEIGF-I has an almost 50% amino acid sequence homology with insulin and elicits nearly the same hypoglycemic response. Studies showed that low and high IGF-I levels are related to impaired glucose tolerance and to a higher risk of type 2 diabetes. The aim of the current study was to evaluate...... the association between IGF-I level and insulin resistance in a Danish general population.RESEARCH DESIGN AND METHODSIncluded were 3,354 adults, aged 19-72 years, from the cross-sectional Health2006 study. The homeostasis model assessment of insulin resistance (HOMA-IR) was used as the index to estimate insulin...... with intermediate (Q3) IGF-I levels. These associations remained statistically significant after the exclusion of subjects with type 2 diabetes and by using the updated computer HOMA2-IR model.CONCLUSIONSLow- and high-normal IGF-I levels are both related to insulin resistance. The biological mechanism...

  16. Ocena stężenia ludzkiej obojętnochłonnej lipokaliny (NGAL w surowicy i moczu dzieci z wadami układu moczowego, poddanych badaniu z użyciem dożylnego środka kontrastowego - doniesienie wstępne

    Directory of Open Access Journals (Sweden)

    Katarzyna Jobs

    2010-06-01

    Full Text Available Badania z użyciem dożylnych środków kontrastowych są często niezbędne w diagnostyce różnych schorzeń. Jednocześnie, mimo stosowania coraz bezpieczniejszych preparatów, po ich podaniu nadal obserwuje się, przeważnie przejściowe, pogorszenie funkcji nerek nazywane nefropatią pokontrastową. Wielokrotne epizody ostrego uszkodzenia funkcji nerek (AKI mogą z czasem doprowadzić do przewlekłej choroby nerek. W ostatnich latach odkryto nowy, czuły parametr, oceniający ostre uszkodzenie funkcji nerek bardzo wcześnie, bo już w ciągu kilku godzili po zadziałaniu czynnika szkodliwego. Jest nim stężenie we krwi i, przede wszystkim, w porcji moczu ludzkiej obojętnochłonnej lipokaliny (NGAL. Celem pracy jest wstępna ocena stężenia NGAL u pacjentów badanych z użyciem dożylnego środka cieniującego. Materia! stanowiło 7 pacjentów z wadami układu moczowego (5 dziewczynek, 2 chłopców w średnim wieku 8,5 roku, u których wykonano urografię. Wszyscy badani mieli prawidłową czynność nerek, nie stwierdzano u nich mikroalbuminurii. Wyniki: Przed podaniem kontrastu średnie stężenie NGAL w surowicy wynosiło 69,9 ng/ml, w porcji moczu - 15,8 ng/ml. Po 4 godzinach od podania kontrastu średnie stężenie NGAL w porcji moczu podniosło się do 44,18 ng/ml. Po 48 godzinach średnie stężenie NGAL w surowicy wynosiło 54,31 ng/ml, w porcji moczu średnie stężenie obniżyło się do 31,18 ng/ml. Wnioski: Zwraca uwagę fakt potrojenia stężenia NGAL w porcji moczu po 4 godzinach od podania dożylnego kontrastu i utrzymywania się wyższych stężeń po 48 godzinach od badania, co może świadczyć o negatywnym wpływie środka kontrastowego na czynność nerek nawet u pacjentów bez cech przewlekłej choroby nerek.

  17. Hepatoprotection and neuroprotection induced by low doses of IGF-II in aging rats

    Directory of Open Access Journals (Sweden)

    Barhoum Rima

    2011-07-01

    Full Text Available Abstract Background GH and IGFs serum levels decline with age. Age-related changes appear to be associated to decreases in these anabolic hormones. We have previously demonstrated that IGF-I replacement therapy improves insulin resistance, lipid metabolism and reduces oxidative damage (in brain and liver in aging rats. Using the same experimental model, the aim of this work was to study whether the exogenous administration of IGF-II, at low doses, acts analogous to IGF-I in aging rats. Methods Three experimental groups were included in this study: young healthy controls (yCO, 17 weeks old; untreated old rats (O, 103 weeks old; and aging rats treated with IGF-II (O+IGF-II, 2 μg * 100 g body weight-1 * day-1 for 30 days. Analytical parameters were determined in serum by routine laboratory methods using an autoanalyzer (Cobas Mira; Roche Diagnostic System, Basel, Switzerland. Serum levels of hormones (testosterone, IGF-I and insulin were assessed by RIA. Serum Total Antioxidant Status was evaluated using a colorimetric assay. Mitochondrial membrane potential was evaluated using rhodamine 123 dye (adding different substrates to determine the different states. ATP synthesis in isolated mitochondria was determined by an enzymatic method. Results Compared with young controls, untreated old rats showed a reduction of IGF-I and testosterone levels with a decrease of serum total antioxidant status (TAS. IGF-II therapy improved serum antioxidant capability without modifying testosterone and IGF-I circulating concentrations. In addition, IGF-II treatment reduced oxidative damage in brain and liver, improving antioxidant enzyme activities and mitochondrial function. IGF-II was also able to reduce cholesterol and triglycerides levels increasing free fatty acids concentrations. Conclusions We demonstrate that low doses of IGF-II induce hepatoprotective, neuroprotective and metabolic effects, improving mitochondrial function, without affecting testosterone and

  18. Human IGF-I propeptide A promotes articular chondrocyte biosynthesis and employs glycosylation-dependent heparin binding.

    Science.gov (United States)

    Shi, Shuiliang; Kelly, Brian J; Wang, Congrong; Klingler, Ken; Chan, Albert; Eckert, George J; Trippel, Stephen B

    2018-03-01

    Insulin-like growth factor I (IGF-I) is a key regulator of chondrogenesis, but its therapeutic application to articular cartilage damage is limited by rapid elimination from the repair site. The human IGF-I gene gives rise to three IGF-I propeptides (proIGF-IA, proIGF-IB and proIGF-IC) that are cleaved to create mature IGF-I. In this study, we elucidate the processing of IGF-I precursors by articular chondrocytes, and test the hypotheses that proIGF-I isoforms bind to heparin and regulate articular chondrocyte biosynthesis. Human IGF-I propeptides and mutants were overexpressed in bovine articular chondrocytes. IGF-I products were characterized by ELISA, western blot and FPLC using a heparin column. The biosynthetic activity of IGF-I products on articular chondrocytes was assayed for DNA and glycosaminoglycan that the cells produced. Secreted IGF-I propeptides stimulated articular chondrocyte biosynthetic activity to the same degree as mature IGF-I. Of the three IGF-I propeptides, only one, proIGF-IA, strongly bound to heparin. Interestingly, heparin binding of proIGF-IA depended on N-glycosylation at Asn92 in the EA peptide. To our knowledge, this is the first demonstration that N-glycosylation determines the binding of a heparin-binding protein to heparin. The biosynthetic and heparin binding abilities of proIGF-IA, coupled with its generation of IGF-I, suggest that proIGF-IA may have therapeutic value for articular cartilage repair. These data identify human pro-insulin-like growth factor IA as a bifunctional protein. Its combined ability to bind heparin and augment chondrocyte biosynthesis makes it a promising therapeutic agent for cartilage damage due to trauma and osteoarthritis. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Endocrine and Local IGF-I in the Bony Fish Immune System.

    Science.gov (United States)

    Franz, Anne-Constance; Faass, Oliver; Köllner, Bernd; Shved, Natallia; Link, Karl; Casanova, Ayako; Wenger, Michael; D'Cotta, Helena; Baroiller, Jean-François; Ullrich, Oliver; Reinecke, Manfred; Eppler, Elisabeth

    2016-01-26

    A role for GH and IGF-I in the modulation of the immune system has been under discussion for decades. Generally, GH is considered a stimulator of innate immune parameters in mammals and teleost fish. The stimulatory effects in humans as well as in bony fish often appear to be correlated with elevated endocrine IGF-I (liver-derived), which has also been shown to be suppressed during infection in some studies. Nevertheless, data are still fragmentary. Some studies point to an important role of GH and IGF-I particularly during immune organ development and constitution. Even less is known about the potential relevance of local (autocrine/paracrine) IGF-I within adult and developing immune organs, and the distinct localization of IGF-I in immune cells and tissues of mammals and fish has not been systematically defined. Thus far, IGF-I has been localized in different mammalian immune cell types, particularly macrophages and granulocytes, and in supporting cells, but not in T-lymphocytes. In the present study, we detected IGF-I in phagocytic cells isolated from rainbow trout head kidney and, in contrast to some findings in mammals, in T-cells of a channel catfish cell line. Thus, although numerous analogies among mammals and teleosts exist not only for the GH/IGF-system, but also for the immune system, there are differences that should be further investigated. For instance, it is unclear whether the primarily reported role of GH/IGF-I in the innate immune response is due to the lack of studies focusing on the adaptive immune system, or whether it truly preferentially concerns innate immune parameters. Infectious challenges in combination with GH/IGF-I manipulations are another important topic that has not been sufficiently addressed to date, particularly with respect to developmental and environmental influences on fish growth and health.

  20. Endocrine and Local IGF-I in the Bony Fish Immune System

    Directory of Open Access Journals (Sweden)

    Anne-Constance Franz

    2016-01-01

    Full Text Available A role for GH and IGF-I in the modulation of the immune system has been under discussion for decades. Generally, GH is considered a stimulator of innate immune parameters in mammals and teleost fish. The stimulatory effects in humans as well as in bony fish often appear to be correlated with elevated endocrine IGF-I (liver-derived, which has also been shown to be suppressed during infection in some studies. Nevertheless, data are still fragmentary. Some studies point to an important role of GH and IGF-I particularly during immune organ development and constitution. Even less is known about the potential relevance of local (autocrine/paracrine IGF-I within adult and developing immune organs, and the distinct localization of IGF-I in immune cells and tissues of mammals and fish has not been systematically defined. Thus far, IGF-I has been localized in different mammalian immune cell types, particularly macrophages and granulocytes, and in supporting cells, but not in T-lymphocytes. In the present study, we detected IGF-I in phagocytic cells isolated from rainbow trout head kidney and, in contrast to some findings in mammals, in T-cells of a channel catfish cell line. Thus, although numerous analogies among mammals and teleosts exist not only for the GH/IGF-system, but also for the immune system, there are differences that should be further investigated. For instance, it is unclear whether the primarily reported role of GH/IGF-I in the innate immune response is due to the lack of studies focusing on the adaptive immune system, or whether it truly preferentially concerns innate immune parameters. Infectious challenges in combination with GH/IGF-I manipulations are another important topic that has not been sufficiently addressed to date, particularly with respect to developmental and environmental influences on fish growth and health.

  1. Dietary protein-induced hepatic IGF-1 secretion mediated by PPARγ activation.

    Science.gov (United States)

    Wan, Xiaojuan; Wang, Songbo; Xu, Jingren; Zhuang, Lu; Xing, Kongping; Zhang, Mengyuan; Zhu, Xiaotong; Wang, Lina; Gao, Ping; Xi, Qianyun; Sun, Jiajie; Zhang, Yongliang; Li, Tiejun; Shu, Gang; Jiang, Qingyan

    2017-01-01

    Dietary protein or amino acid (AA) is a crucial nutritional factor to regulate hepatic insulin-like growth factor-1 (IGF-1) expression and secretion. However, the underlying intracellular mechanism by which dietary protein or AA induces IGF-1 expression remains unknown. We compared the IGF-1 gene expression and plasma IGF-1 level of pigs fed with normal crude protein (CP, 20%) and low-protein levels (LP, 14%). RNA sequencing (RNA-seq) was performed to detect transcript expression in the liver in response to dietary protein. The results showed that serum concentrations and mRNA levels of IGF-1 in the liver were higher in the CP group than in the LP group. RNA-seq analysis identified a total of 1319 differentially expressed transcripts (667 upregulated and 652 downregulated), among which the terms "oxidative phosphorylation", "ribosome", "gap junction", "PPAR signaling pathway", and "focal adhesion" were enriched. In addition, the porcine primary hepatocyte and HepG2 cell models also demonstrated that the mRNA and protein levels of IGF-1 and PPARγ increased with the increasing AA concentration in the culture. The PPARγ activator troglitazone increased IGF-1 gene expression and secretion in a dose dependent manner. Furthermore, inhibition of PPARγ effectively reversed the effects of the high AA concentration on the mRNA expression of IGF-1 and IGFBP-1 in HepG2 cells. Moreover, the protein levels of IGF-1 and PPARγ, as well as the phosphorylation of mTOR, significantly increased in HepG2 cells under high AA concentrations. mTOR phosphorylation can be decreased by the mTOR antagonist, rapamycin. The immunoprecipitation results also showed that high AA concentrations significantly increased the interaction of mTOR and PPARγ. In summary, PPARγ plays an important role in the regulation of IGF-1 secretion and gene expression in response to dietary protein.

  2. IGF-1, IGFBP-1, and IGFBP-3 polymorphisms predict circulating IGF levels but not breast cancer risk: findings from the Breast and Prostate Cancer Cohort Consortium (BPC3.

    Directory of Open Access Journals (Sweden)

    Alpa V Patel

    2008-07-01

    Full Text Available IGF-1 has been shown to promote proliferation of normal epithelial breast cells, and the IGF pathway has also been linked to mammary carcinogenesis in animal models. We comprehensively examined the association between common genetic variation in the IGF1, IGFBP1, and IGFBP3 genes in relation to circulating IGF-I and IGFBP-3 levels and breast cancer risk within the NCI Breast and Prostate Cancer Cohort Consortium (BPC3. This analysis included 6,912 breast cancer cases and 8,891 matched controls (n = 6,410 for circulating IGF-I and 6,275 for circulating IGFBP-3 analyses comprised primarily of Caucasian women drawn from six large cohorts. Linkage disequilibrium and haplotype patterns were characterized in the regions surrounding IGF1 and the genes coding for two of its binding proteins, IGFBP1 and IGFBP3. In total, thirty haplotype-tagging single nucleotide polymorphisms (htSNP were selected to provide high coverage of common haplotypes; the haplotype structure was defined across four haplotype blocks for IGF1 and three for IGFBP1 and IGFBP3. Specific IGF1 SNPs individually accounted for up to 5% change in circulating IGF-I levels and individual IGFBP3 SNPs were associated up to 12% change in circulating IGFBP-3 levels, but no associations were observed between these polymorphisms and breast cancer risk. Logistic regression analyses found no associations between breast cancer and any htSNPs or haplotypes in IGF1, IGFBP1, or IGFBP3. No effect modification was observed in analyses stratified by menopausal status, family history of breast cancer, body mass index, or postmenopausal hormone therapy, or for analyses stratified by stage at diagnosis or hormone receptor status. In summary, the impact of genetic variation in IGF1 and IGFBP3 on circulating IGF levels does not appear to substantially influence breast cancer risk substantially among primarily Caucasian postmenopausal women.

  3. Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways

    Directory of Open Access Journals (Sweden)

    Radhakrishnan Sridhar

    2010-05-01

    Full Text Available Abstract Background Obesity is a global phenomenon and is associated with various types of cancer, including colon cancer. There is a growing interest for safe and effective bioactive compounds that suppress the risk for obesity-promoted colon cancer. Resveratrol (trans-3, 4', 5,-trihydroxystilbene, a stilbenoid found in the skin of red grapes and peanuts suppresses many types of cancers by regulating cell proliferation and apoptosis through a variety of mechanisms, however, resveratrol effects on obesity-promoted colon cancer are not clearly established. Methods We investigated the anti-proliferative effects of resveratrol on HT-29 and SW480 human colon cancer cells in the presence and absence of insulin like growth factor-1 (IGF-1; elevated during obesity and elucidated the mechanisms of action using IGF-1R siRNA in HT-29 cells which represents advanced colon carcinogenesis. Results Resveratrol (100-150 μM exhibited anti-proliferative properties in HT-29 cells even after IGF-1 exposure by arresting G0/G1-S phase cell cycle progression through p27 stimulation and cyclin D1 suppression. Treatment with resveratrol suppressed IGF-1R protein levels and concurrently attenuated the downstream Akt/Wnt signaling pathways that play a critical role in cell proliferation. Targeted suppression of IGF-1R using IGF-1R siRNA also affected these signaling pathways in a similar manner. Resveratrol treatment induced apoptosis by activating tumor suppressor p53 protein, whereas IGF-1R siRNA treatment did not affect apoptosis. Our data suggests that resveratrol not only suppresses cell proliferation by inhibiting IGF-1R and its downstream signaling pathways similar to that of IGF-1R siRNA but also enhances apoptosis via activation of the p53 pathway. Conclusions For the first time, we report that resveratrol suppresses colon cancer cell proliferation and elevates apoptosis even in the presence of IGF-1 via suppression of IGF-1R/Akt/Wnt signaling pathways and

  4. Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways

    International Nuclear Information System (INIS)

    Vanamala, Jairam; Reddivari, Lavanya; Radhakrishnan, Sridhar; Tarver, Chris

    2010-01-01

    Obesity is a global phenomenon and is associated with various types of cancer, including colon cancer. There is a growing interest for safe and effective bioactive compounds that suppress the risk for obesity-promoted colon cancer. Resveratrol (trans-3, 4', 5,-trihydroxystilbene), a stilbenoid found in the skin of red grapes and peanuts suppresses many types of cancers by regulating cell proliferation and apoptosis through a variety of mechanisms, however, resveratrol effects on obesity-promoted colon cancer are not clearly established. We investigated the anti-proliferative effects of resveratrol on HT-29 and SW480 human colon cancer cells in the presence and absence of insulin like growth factor-1 (IGF-1; elevated during obesity) and elucidated the mechanisms of action using IGF-1R siRNA in HT-29 cells which represents advanced colon carcinogenesis. Resveratrol (100-150 μM) exhibited anti-proliferative properties in HT-29 cells even after IGF-1 exposure by arresting G 0 /G 1 -S phase cell cycle progression through p27 stimulation and cyclin D1 suppression. Treatment with resveratrol suppressed IGF-1R protein levels and concurrently attenuated the downstream Akt/Wnt signaling pathways that play a critical role in cell proliferation. Targeted suppression of IGF-1R using IGF-1R siRNA also affected these signaling pathways in a similar manner. Resveratrol treatment induced apoptosis by activating tumor suppressor p53 protein, whereas IGF-1R siRNA treatment did not affect apoptosis. Our data suggests that resveratrol not only suppresses cell proliferation by inhibiting IGF-1R and its downstream signaling pathways similar to that of IGF-1R siRNA but also enhances apoptosis via activation of the p53 pathway. For the first time, we report that resveratrol suppresses colon cancer cell proliferation and elevates apoptosis even in the presence of IGF-1 via suppression of IGF-1R/Akt/Wnt signaling pathways and activation of p53, suggesting its potential role as a

  5. A Human Variant of Glucose-Regulated Protein 94 That Inefficiently Supports IGF Production

    DEFF Research Database (Denmark)

    Marzec, Michal; Hawkes, Colin P; Eletto, Davide

    2016-01-01

    IGFs are critical for normal intrauterine and childhood growth and sustaining health throughout life. We showed previously that the production of IGF-1 and IGF-2 requires interaction with the chaperone glucose-regulated protein 94 (GRP94) and that the amount of secreted IGFs is proportional...... in a child with primary IGF deficiency and was later shown to be a noncommon single-nucleotide polymorphism with frequencies of 1%-4% in various populations. When tested in the grp94(-/-) cell-based complementation assay, P300L supported only approximately 58% of IGF secretion relative to wild-type GRP94....... Furthermore, recombinant P300L showed impaired nucleotide binding activity. These in vitro data strongly support a causal relationship between the GRP94 variant and the decreased concentration of circulating IGF-1, as observed in human carriers of P300L. Thus, mutations in GRP94 that affect its IGF chaperone...

  6. Central insulin-like growth factor-1 (IGF-1) restores whole-body insulin action in a model of age-related insulin resistance and IGF-1 decline.

    Science.gov (United States)

    Huffman, Derek M; Farias Quipildor, Gabriela; Mao, Kai; Zhang, Xueying; Wan, Junxiang; Apontes, Pasha; Cohen, Pinchas; Barzilai, Nir

    2016-02-01

    Low insulin-like growth factor-1 (IGF-1) signaling is associated with improved longevity, but is paradoxically linked with several age-related diseases in humans. Insulin-like growth factor-1 has proven to be particularly beneficial to the brain, where it confers protection against features of neuronal and cognitive decline. While aging is characterized by central insulin resistance in the face of hyperinsulinemia, the somatotropic axis markedly declines in older humans. Thus, we hypothesized that increasing IGF-1 in the brain may prove to be a novel therapeutic alternative to overcome central insulin resistance and restore whole-body insulin action in aging. Utilizing hyperinsulinemic-euglycemic clamps, we show that old insulin-resistant rats with age-related declines in IGF-1 level demonstrate markedly improved whole-body insulin action, when treated with central IGF-1, as compared to central vehicle or insulin (P IGF-1, but not insulin, suppressed hepatic glucose production and increased glucose disposal rates in aging rats (P IGF-1 action in the brain and periphery provides a 'balance' between its beneficial and detrimental actions. Therefore, we propose that strategies aimed at 'tipping the balance' of IGF-1 action centrally are the optimal approach to achieve healthy aging and longevity in humans. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  7. IGF1 stimulates greater muscle hypertrophy in the absence of myostatin in male mice.

    Science.gov (United States)

    Hennebry, Alexander; Oldham, Jenny; Shavlakadze, Tea; Grounds, Miranda D; Sheard, Philip; Fiorotto, Marta L; Falconer, Shelley; Smith, Heather K; Berry, Carole; Jeanplong, Ferenc; Bracegirdle, Jeremy; Matthews, Kenneth; Nicholas, Gina; Senna-Salerno, Mônica; Watson, Trevor; McMahon, Christopher D

    2017-08-01

    Insulin-like growth factors (IGFs) and myostatin have opposing roles in regulating the growth and size of skeletal muscle, with IGF1 stimulating, and myostatin inhibiting, growth. However, it remains unclear whether these proteins have mutually dependent, or independent, roles. To clarify this issue, we crossed myostatin null ( Mstn -/- ) mice with mice overexpressing Igf1 in skeletal muscle ( Igf1 + ) to generate six genotypes of male mice; wild type ( Mstn +/+ ), Mstn +/- , Mstn -/- , Mstn +/+ :Igf1 + , Mstn +/- :Igf1 + and Mstn -/- :Igf1 + Overexpression of Igf1 increased the mass of mixed fibre type muscles (e.g. Quadriceps femoris ) by 19% over Mstn +/+ , 33% over Mstn +/- and 49% over Mstn -/- ( P  Myostatin regulated the number, while IGF1 regulated the size of myofibres, and the deletion of Mstn and Igf1 + independently increased the proportion of fast type IIB myosin heavy chain isoforms in T. anterior (up to 10% each, P  myostatin is absent and IGF1 is in excess. Finally, we show that myostatin and IGF1 regulate skeletal muscle size, myofibre type and gonadal fat through distinct mechanisms that involve increasing the total abundance and phosphorylation status of AKT and rpS6. © 2017 Society for Endocrinology.

  8. No preclinical rationale for IGF1R directed therapy in chondrosarcoma of bone.

    Science.gov (United States)

    Peterse, Elisabeth F P; Cleven, Arjen H G; De Jong, Yvonne; Briaire-de Bruijn, Inge; Fletcher, Jonathan A; Danen, Erik H J; Cleton-Jansen, Anne-Marie; Bovée, Judith V M G

    2016-07-14

    Chondrosarcoma is a malignant cartilage forming bone tumour for which no effective systemic treatment is available. Previous studies illustrate the need for a better understanding of the role of the IGF pathway in chondrosarcoma to determine if it can be a target for therapy, which was therefore explored in this study. Expression of mediators of IGF1R signalling and phosphorylation status of IRS1 was determined in chondrosarcoma cell lines by qRT-PCR and western blot. The effect of activation and inhibition of IGF1R signalling on downstream targets was assessed by western blot. Ten chondrosarcoma cell lines were treated with OSI-906 (IGF1R and IR dual inhibitor) after which cell proliferation and migration were determined by a viability assay and the xCELLigence system, respectively. In addition, four chondrosarcoma cell lines were treated with a combination of doxorubicin and OSI-906. By immunohistochemistry, IGF1R expression levels were determined in tissue microarrays of 187 cartilage tumours and ten paraffin embedded cell lines. Mediators of IGF1R signalling are heterogeneously expressed and phosphorylated IRS1 was detected in 67 % of the tested chondrosarcoma cell lines, suggesting that IGF1R signalling is active in a subset of chondrosarcoma cell lines. In the cell lines with phosphorylated IRS1, inhibition of IGF1R signalling decreased phosphorylated Akt levels and increased IGF1R expression, but it did not influence MAPK or S6 activity. In line with these findings, treatment with IGF1R/IR inhibitors did not impact proliferation or migration in any of the chondrosarcoma cell lines, even upon stimulation with IGF1. Although synergistic effects of IGF1R/IR inhibition with doxorubicin are described for other cancers, our results demonstrate that this was not the case for chondrosarcoma. In addition, we found minimal IGF1R expression in primary tumours in contrast to the high expression detected in chondrosarcoma cell lines, even if both were derived from the

  9. Insulin-like growth factor 1 (IGF-1): a growth hormone

    Science.gov (United States)

    Laron, Z

    2001-01-01

    Aim—To contribute to the debate about whether growth hormone (GH) and insulin-like growth factor 1 (IGF-1) act independently on the growth process. Methods—To describe growth in human and animal models of isolated IGF-1 deficiency (IGHD), such as in Laron syndrome (LS; primary IGF-1 deficiency and GH resistance) and IGF-1 gene or GH receptor gene knockout (KO) mice. Results—Since the description of LS in 1966, 51 patients were followed, many since infancy. Newborns with LS are shorter (42–47 cm) than healthy babies (49–52 cm), suggesting that IGF-1 has some influence on intrauterine growth. Newborn mice with IGF-1 gene KO are 30% smaller. The postnatal growth rate of patients with LS is very slow, the distance from the lowest normal centile increasing progressively. If untreated, the final height is 100–136 cm for female and 109–138 cm for male patients. They have acromicia, organomicria including the brain, heart, gonads, genitalia, and retardation of skeletal maturation. The availability of biosynthetic IGF-1 since 1988 has enabled it to be administered to children with LS. It accelerated linear growth rates to 8–9 cm in the first year of treatment, compared with 10–12 cm/year during GH treatment of IGHD. The growth rate in following years was 5–6.5 cm/year. Conclusion—IGF-1 is an important growth hormone, mediating the protein anabolic and linear growth promoting effect of pituitary GH. It has a GH independent growth stimulating effect, which with respect to cartilage cells is possibly optimised by the synergistic action with GH. PMID:11577173

  10. IGF-1 deficiency impairs neurovascular coupling in mice: implications for cerebromicrovascular aging.

    Science.gov (United States)

    Toth, Peter; Tarantini, Stefano; Ashpole, Nicole M; Tucsek, Zsuzsanna; Milne, Ginger L; Valcarcel-Ares, Noa M; Menyhart, Akos; Farkas, Eszter; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2015-12-01

    Aging is associated with marked deficiency in circulating IGF-1, which has been shown to contribute to age-related cognitive decline. Impairment of moment-to-moment adjustment of cerebral blood flow (CBF) via neurovascular coupling is thought to play a critical role in the genesis of age-related cognitive impairment. To establish the link between IGF-1 deficiency and cerebromicrovascular impairment, neurovascular coupling mechanisms were studied in a novel mouse model of IGF-1 deficiency (Igf1(f/f) -TBG-Cre-AAV8) and accelerated vascular aging. We found that IGF-1-deficient mice exhibit neurovascular uncoupling and show a deficit in hippocampal-dependent spatial memory test, mimicking the aging phenotype. IGF-1 deficiency significantly impaired cerebromicrovascular endothelial function decreasing NO mediation of neurovascular coupling. IGF-1 deficiency also impaired glutamate-mediated CBF responses, likely due to dysregulation of astrocytic expression of metabotropic glutamate receptors and impairing mediation of CBF responses by eicosanoid gliotransmitters. Collectively, we demonstrate that IGF-1 deficiency promotes cerebromicrovascular dysfunction and neurovascular uncoupling mimicking the aging phenotype, which are likely to contribute to cognitive impairment. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  11. IGF-I and GH: potential use in gene doping.

    Science.gov (United States)

    Harridge, Stephen D R; Velloso, Cristiana P

    2009-08-01

    Gene doping is the term given to the potential misuse of gene therapy for the purposes of enhancing athletic performance. Insulin like growth factor-I (IGF-I), the prime target of growth hormone action, is one candidate gene for improving performance. In recent years a number of transgenic and somatic gene transfer studies on animals have shown that upregulation of IGF-I stimulates muscle growth and improves function. This increase in muscle IGF-I is not reflected in measurable increases in circulating IGF-I. Whilst the responses obtained in the animal studies would appear to give clear benefits for performance, the transfer of such techniques to humans still presents many technical challenges. Further challenges will also be faced by the anti doping authorities in detecting the endogenously produced products of enhanced gene expression.

  12. Independent regulation of skeletal growth by Ihh and IGF signaling.

    Science.gov (United States)

    Long, Fanxin; Joeng, Kyu-Sang; Xuan, Shouhong; Efstratiadis, Argiris; McMahon, Andrew P

    2006-10-01

    The insulin-like growth factors (IGFs) play a major role in regulating the systemic growth of mammals. However, it is unclear to what extent their systemic and/or local functions act in concert with other local growth factors controlling the sizes of individual organs. We have specifically addressed whether growth control of the skeleton by IGFs interacts genetically with that by Indian hedgehog (Ihh), a locally produced growth signal for the endochondral skeleton. Here, we report that disruption of both IGF and Ihh signaling resulted in additive reduction in the size of the embryonic skeleton. Thus, IGF and Ihh signaling appear to control the growth of the skeleton in parallel pathways.

  13. IGF binding protein alterations on periplaque oligodendrocytes in multiple sclerosis : Implications for remyelination

    NARCIS (Netherlands)

    Wilczak, Nadine; Chesik, Daniel; Hoekstra, Dick; De Keyser, Jacques

    Why myelin repair greatly fails in multiple sclerosis (MS) is unclear. The insulin-like growth factor (IGF) system plays vital roles in oligodendrocyte development, survival, and myelin synthesis. We used immunohistochemistry to study IGF-I, IGF-I receptors and IGF binding proteins (IGFBPs) 1-6 on

  14. Matrix metalloproteinase-1 facilitates MSC migration via cleavage of IGF-2/IGFBP2 complex.

    Science.gov (United States)

    Guan, Shou P; Lam, Alan T L; Newman, Jennifer P; Chua, Kevin L M; Kok, Catherine Y L; Chong, Siao T; Chua, Melvin L K; Lam, Paula Y P

    2018-01-01

    The specific mechanism underlying the tumor tropism of human mesenchymal stem cells (MSCs) for cancer is not well defined. We previously showed that the migration potential of MSCs correlated with the expression and protease activity of matrix metalloproteinase (MMP)-1. Furthermore, highly tumor-tropic MSCs expressed higher levels of MMP-1 and insulin-like growth factor (IGF)-2 than poorly migrating MSCs. In this study, we examined the functional roles of IGF-2 and MMP-1 in mediating the tumor tropism of MSCs. Exogenous addition of either recombinant IGF-2 or MMP-1 could stimulate MSC migration. The correlation between IGF-2, MMP-1 expression, and MSC migration suggests that MMP-1 may play a role in regulating MSC migration via the IGF-2 signaling cascade. High concentrations of IGF binding proteins (IGFBPs) can inhibit IGF-stimulated functions by blocking its binding to its receptors and proteolysis of IGFBP is an important mechanism for the regulation of IGF signaling. We thus hypothesized that MMP-1 acts as an IGFBP2 proteinase, resulting in the cleavage of IGF-2/IGFBP2 complex and extracellular release of free IGF-2. Indeed, our results showed that conditioned media from highly migrating MSCs, which expressed high levels of MMP-1, cleaved the IGF-2/IGFBP2 complex. Taken together, these results showed that the MMP-1 secreted by highly tumor-tropic MSCs cleaved IGF-2/IGFBP2 complex. Free IGF-2 released from the complex may facilitate MSC migration toward tumor.

  15. Investigation on the role of IGF-1 signal transduction in the biological radiation responses

    Energy Technology Data Exchange (ETDEWEB)

    Jung, U Hee; Jo, Sung Kee; Park, Hae Ran; Oh, Soo Jin; Cho, Eun Hee; Eom, Hyun Soo; Ju, Eun Jin

    2009-05-15

    Effects of {gamma}-irradiation on the IGF-1 related gene expressions and activations in various cell lines - Various expression patterns of IGF-1 and IGF-1R following {gamma}-irradiation were observed according to the cell lines - The increased expressions of IGF-1 and IGF-1R were observed in Balb/3T3 and NIH/3T3 cells - Among the IGF-1 downstream signaling molecules, the phosphorylated ERK5 were not changed by {gamma}-irradiation in all three examined cell lines, whereas the phosphorylated p65 were increased by {gamma} -irradiation in all cell lines. The role of IGF-1 and p38 signaling in {gamma}-irradiated mouse embryonic fibroblast (MEF) cells - In MEF cells, IGF-1 signaling molecules were decreased and p21/phosphorylated p38 were increased by {gamma}-irradiation - The experiments with IGF-1R inhibitor (AG1024) and p38 inhibitor (SB203580) revealed that IGF-1 signaling is involved but not essential in radiation-induced cell growth arrest and senescence and that p38 MAP kinase play a important role in this cellular radiation response. The role of IGF-1 and p38 signaling in {gamma}-irradiated mouse fibroblast (NIH/3T3) cell - In NIH/3T3 cells, IGF-1 signaling molecules and p21/phosphorylated p38 were increased by {gamma} -irradiation. - However, the experiments with IGF-1R inhibitor (AG1024) and p38 inhibitor (SB203580) revealed that IGF-1 and p38 signaling do not play a crucial role in radiation-induced cell growth arrest and senescence in NIH/3T3 cells. Effects of {gamma}-irradiation on the expressions and activations on the genes related to the IGF-1 signaling in mouse tissues - In {gamma}-irradiated mice, the increased expressions of IGF-1 and IGF-1R were observed in the lung and kidney at 2 months after irradiation, and in all the tissues examined (lung, liver and kidney) at 6 months after irradiation. - In the lung of {gamma}-irradiated mice at 6 months after irradiation, the increases of IGF-1R, phosphorylated FOXO3a, p65, p38, p21 were observed. - The

  16. Investigation on the role of IGF-1 signal transduction in the biological radiation responses

    International Nuclear Information System (INIS)

    Jung, U Hee; Jo, Sung Kee; Park, Hae Ran; Oh, Soo Jin; Cho, Eun Hee; Eom, Hyun Soo; Ju, Eun Jin

    2009-05-01

    Effects of γ-irradiation on the IGF-1 related gene expressions and activations in various cell lines - Various expression patterns of IGF-1 and IGF-1R following γ-irradiation were observed according to the cell lines - The increased expressions of IGF-1 and IGF-1R were observed in Balb/3T3 and NIH/3T3 cells - Among the IGF-1 downstream signaling molecules, the phosphorylated ERK5 were not changed by γ-irradiation in all three examined cell lines, whereas the phosphorylated p65 were increased by γ -irradiation in all cell lines. The role of IGF-1 and p38 signaling in γ-irradiated mouse embryonic fibroblast (MEF) cells - In MEF cells, IGF-1 signaling molecules were decreased and p21/phosphorylated p38 were increased by γ-irradiation - The experiments with IGF-1R inhibitor (AG1024) and p38 inhibitor (SB203580) revealed that IGF-1 signaling is involved but not essential in radiation-induced cell growth arrest and senescence and that p38 MAP kinase play a important role in this cellular radiation response. The role of IGF-1 and p38 signaling in γ-irradiated mouse fibroblast (NIH/3T3) cell - In NIH/3T3 cells, IGF-1 signaling molecules and p21/phosphorylated p38 were increased by γ -irradiation. - However, the experiments with IGF-1R inhibitor (AG1024) and p38 inhibitor (SB203580) revealed that IGF-1 and p38 signaling do not play a crucial role in radiation-induced cell growth arrest and senescence in NIH/3T3 cells. Effects of γ-irradiation on the expressions and activations on the genes related to the IGF-1 signaling in mouse tissues - In γ-irradiated mice, the increased expressions of IGF-1 and IGF-1R were observed in the lung and kidney at 2 months after irradiation, and in all the tissues examined (lung, liver and kidney) at 6 months after irradiation. - In the lung of γ-irradiated mice at 6 months after irradiation, the increases of IGF-1R, phosphorylated FOXO3a, p65, p38, p21 were observed. - The patterns of altered expressions showed significant

  17. IGF-I and NEFA concentrations in fetal fluids of term pregnancy dogs.

    Science.gov (United States)

    Meloni, Tea; Comin, Antonella; Rota, Alessandro; Peric, Tanja; Contri, Alberto; Veronesi, Maria Cristina

    2014-06-01

    Insulin-like growth factor-I (IGF-I) and non-esterified fatty acids (NEFA) play an essential role in fetal growth and development. To date, fetal fluids IGF-I and NEFA levels at term canine pregnancy are unknown and could be related to the neonatal development and breed size. For these reasons, the aims of the present study were as follows: (1) to evaluate IGF-I and NEFA concentrations in fetal fluids collected from normally developed and viable newborn puppies born at term of normal pregnancies; (2) to assess possible differences between IGF-I and NEFA levels in amniotic compared with allantoic fluid; (3) to detect possible relationship between breed body size and IGF-I and NEFA amniotic and allantoic concentrations; (4) to evaluate possible differences in IGF-I fetal fluids levels between male and female puppies; and (5) to assess possible correlations between the two hormones in each type of fluid. The study enrolled 25 pure breed bitches submitted to elective Cesarean section at term because of the high risk of dystocia or previous troubles at parturition. At surgery, amniotic and allantoic fluids were collected and assayed for IGF-I and NEFA. IGF-I and NEFA amounts in both amniotic and allantoic fluids of different breed size bitches (small: ≤10 kg; medium: 11-25 kg; large: 26-40 kg) were detected, as well as the effect of gender on IGF-I levels. On a total of 73 amniotic and 76 allantoic samples collected by normal, viable, and mature newborns, the mean IGF-I concentration was significantly higher in amniotic than in allantoic fluid in all three groups, but the amniotic IGF-I levels were significantly lower in small and medium size bitches when compared with large ones. No significant differences were found in allantoic IGF-I concentrations among size groups. A significant effect of the puppy gender on IGF-I content in both fetal fluids was not reported. Regarding NEFA, in all the three groups, the mean NEFA concentration did not significantly differ

  18. [Association between IGF system and PAPP-A in coronary atherosclerosis].

    Science.gov (United States)

    Fierro-Macías, Alfonso Eduardo; Floriano-Sánchez, Esaú; Mena-Burciaga, Victoria Michelle; Gutiérrez-Leonard, Hugo; Lara-Padilla, Eleazar; Abarca-Rojano, Edgar; Fierro-Almanzán, Alfonso Edmundo

    2016-01-01

    Atherosclerosis is a condition that involves multiple pathophysiological mechanisms and whose knowledge has not been fully elucidated. Often, scientific advances on the atherogenic pathophysiology generate that molecules not previously considered in the scene of this disease, were attributed actions on the onset or progression of it. A representative example is the study of a new mechanism involved in the atherogenic process, consisting of the association between the insulin-like growth factor (IGF) system and pregnancy-associated plasma protein-A (PAPP-A). Insulin-like growth factor system is a family of peptides that include 3 peptide hormones, 4 transmembrane receptors and 6 binding proteins. Insulin-like growth factor-1 (IGF-1) is the main ligand of the IGF system involved in coronary atherosclerosis. IGF-1 exerts its effects via activation of the IGF-1R receptor on vascular smooth muscle cells or macrophages. In vascular smooth muscle cells promotes migration and prevents apoptosis which increases plaque stability while in macrophages reduces reverse cholesterol transport leading to the formation of foam cells. Regulation of IGF-1 endothelial bioavailability is carried out by IGFBP proteases, mainly by PAPP-A. In this review, we address the mechanisms between IGF system and PAPP-A in atherosclerosis with emphasis on molecular effects on vascular smooth muscle cells and macrophages. Copyright © 2016 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  19. The trajectory of IGF-1 across age and duration of type 1 diabetes.

    Science.gov (United States)

    Palta, Mari; LeCaire, Tamara J; Sadek-Badawi, Mona; Herrera, Victor M; Danielson, Kirstie K

    2014-11-01

    Individuals with type 1 diabetes may have low IGF-1, related to insulinopenia and insulin resistance. There are few longitudinal studies of IGF-1 levels to establish its pattern in type 1 diabetes with duration and age, and to examine whether IGF-1 tracks within individuals over time. We examine age and duration trends, and the relationship of IGF-1 to gender, glycaemic control, insulin level and other factors. Participants in the Wisconsin Diabetes Registry Study, an incident cohort study of type 1 diabetes diagnosed May 1987-April 1992, were followed for up to 18 years with IGF-1 samples up to age 45 for women and age 37 for men. IGF-1 is lower with type 1 diabetes than in normative samples. Although, the pattern across age resembles that in normative samples with a peak in adolescence and slow decline after age 20, the adolescent peak is delayed for women with type 1 diabetes. There was low to moderate tracking of IGF-1 within an individual. Higher insulin dose was associated with higher IGF-1 as was puberty, and female gender. Adjusted for these factors, IGF-1 declined rapidly across early diabetes duration. Lower HbA1c was most strongly related to higher IGF-1 at Tanner stages 1 and 2. IGF-1 is low in type 1 diabetes, with a delayed adolescent peak in women and is especially influenced by glycaemic control in early and pre-adolescence. High variability within an individual is likely a challenge in investigating associations between IGF-1 and long-term outcomes, and may explain contradictory findings. Copyright © 2014 John Wiley & Sons, Ltd.

  20. Insulin-Like Growth Factor (IGF Binding Protein-2, Independently of IGF-1, Induces GLUT-4 Translocation and Glucose Uptake in 3T3-L1 Adipocytes

    Directory of Open Access Journals (Sweden)

    Biruhalem Assefa

    2017-01-01

    Full Text Available Insulin-like growth factor binding protein-2 (IGFBP-2 is the predominant IGF binding protein produced during adipogenesis and is known to increase the insulin-stimulated glucose uptake (GU in myotubes. We investigated the IGFBP-2-induced changes in basal and insulin-stimulated GU in adipocytes and the underlying mechanisms. We further determined the role of insulin and IGF-1 receptors in mediating the IGFBP-2 and the impact of IGFBP-2 on the IGF-1-induced GU. Fully differentiated 3T3-L1 adipocytes were treated with IGFBP-2 in the presence and absence of insulin and IGF-1. Insulin, IGF-1, and IGFBP-2 induced a dose-dependent increase in GU. IGFBP-2 increased the insulin-induced GU after long-term incubation. The IGFBP-2-induced impact on GU was neither affected by insulin or IGF-1 receptor blockage nor by insulin receptor knockdown. IGFBP-2 significantly increased the phosphorylation of PI3K, Akt, AMPK, TBC1D1, and PKCζ/λ and induced GLUT-4 translocation. Moreover, inhibition of PI3K and AMPK significantly reduced IGFBP-2-stimulated GU. In conclusion, IGFBP-2 stimulates GU in 3T3-L1 adipocytes through activation of PI3K/Akt, AMPK/TBC1D1, and PI3K/PKCζ/λ/GLUT-4 signaling. The stimulatory effect of IGFBP-2 on GU is independent of its binding to IGF-1 and is possibly not mediated through the insulin or IGF-1 receptor. This study highlights the potential role of IGFBP-2 in glucose metabolism.

  1. Evidence for the possible biological significance of the igf-1 gene alternative splicing in prostate cancer

    Directory of Open Access Journals (Sweden)

    Anastassios ePhilippou

    2013-03-01

    Full Text Available Insulin-like growth factor I (IGF-I has been implicated in the pathogenesis of prostate cancer (PCa, since it plays a key role in cell proliferation, differentiation and apoptosis. The IGF-I actions are mediated mainly via its binding to the type I IGF receptor (IGF-IR, however IGF-I signaling via insulin receptor (IR and hybrid IGF-I/IR is also evident. Different IGF-I mRNA splice variants, namely IGF-IEa, IGF-IEb and IGF-IEc, are expressed in human cells and tissues. These transcripts encode several IGF-I precursor proteins which contain the same bioactive product (mature IGF-I, however, they differ by the length of their signal peptides on the amino-terminal end and the structure of the extension peptides (E-peptides on the carboxy-terminal end. There is an increasing interest in the possible different role of the IGF-I transcripts and their respective non-(matureIGF-I products in the regulation of distinct biological activities. Moreover, there is strong evidence of a differential expression profile of the IGF-I splice variants in normal vs. PCa tissues and PCa cells, implying that the expression pattern of the various IGF-I transcripts and their respective protein products may possess different functions in cancer biology. Herein, the evidence that the IGF-IEc transcript regulates PCa growth via Ec-peptide specific and IGF-IR/IR-independent signaling is discussed.

  2. Zebrafish IGF genes: gene duplication, conservation and divergence, and novel roles in midline and notochord development.

    Directory of Open Access Journals (Sweden)

    Shuming Zou

    Full Text Available Insulin-like growth factors (IGFs are key regulators of development, growth, and longevity. In most vertebrate species including humans, there is one IGF-1 gene and one IGF-2 gene. Here we report the identification and functional characterization of 4 distinct IGF genes (termed as igf-1a, -1b, -2a, and -2b in zebrafish. These genes encode 4 structurally distinct and functional IGF peptides. IGF-1a and IGF-2a mRNAs were detected in multiple tissues in adult fish. IGF-1b mRNA was detected only in the gonad and IGF-2b mRNA only in the liver. Functional analysis showed that all 4 IGFs caused similar developmental defects but with different potencies. Many of these embryos had fully or partially duplicated notochords, suggesting that an excess of IGF signaling causes defects in the midline formation and an expansion of the notochord. IGF-2a, the most potent IGF, was analyzed in depth. IGF-2a expression caused defects in the midline formation and expansion of the notochord but it did not alter the anterior neural patterning. These results not only provide new insights into the functional conservation and divergence of the multiple igf genes but also reveal a novel role of IGF signaling in midline formation and notochord development in a vertebrate model.

  3. Effect of milk proteins on linear growth and IGF variables in overweight adolescents

    DEFF Research Database (Denmark)

    Larnkjær, Anni; Arnberg, Karina; Michaelsen, Kim F

    2014-01-01

    Milk may stimulate growth acting via insulin-like growth factor-I (IGF-I) secretion but the effect in adolescents is less examined. This study investigates the effect of milk proteins on linear growth, IGF-I, IGF binding protein-3 (IGFBP-3) and IGF-I/IGFBP-3 ratio in overweight adolescents....

  4. IGF-1 colocalizes with muscle satellite cells following acute exercise in humans.

    Science.gov (United States)

    Grubb, Amanda; Joanisse, Sophie; Moore, Daniel R; Bellamy, Leeann M; Mitchell, Cameron J; Phillips, Stuart M; Parise, Gianni

    2014-04-01

    Insulin-like growth factor-1 (IGF-1) regulates stem cell proliferation and differentiation in vitro. The aim of this study was to quantify the change in satellite cell (SC) specific IGF-1 colocalization following exercise. We observed a significant increase (p IGF-1 colocalization from baseline to 72 h after a bout of resistance exercise. This strongly supports a role for IGF-1 in human SC function following exercise.

  5. No preclinical rationale for IGF1R directed therapy in chondrosarcoma of bone

    International Nuclear Information System (INIS)

    Peterse, Elisabeth F. P.; Cleven, Arjen H. G.; De Jong, Yvonne; Briaire-de Bruijn, Inge; Fletcher, Jonathan A.; Danen, Erik H. J.; Cleton-Jansen, Anne-Marie; Bovée, Judith V. M. G.

    2016-01-01

    Chondrosarcoma is a malignant cartilage forming bone tumour for which no effective systemic treatment is available. Previous studies illustrate the need for a better understanding of the role of the IGF pathway in chondrosarcoma to determine if it can be a target for therapy, which was therefore explored in this study. Expression of mediators of IGF1R signalling and phosphorylation status of IRS1 was determined in chondrosarcoma cell lines by qRT-PCR and western blot. The effect of activation and inhibition of IGF1R signalling on downstream targets was assessed by western blot. Ten chondrosarcoma cell lines were treated with OSI-906 (IGF1R and IR dual inhibitor) after which cell proliferation and migration were determined by a viability assay and the xCELLigence system, respectively. In addition, four chondrosarcoma cell lines were treated with a combination of doxorubicin and OSI-906. By immunohistochemistry, IGF1R expression levels were determined in tissue microarrays of 187 cartilage tumours and ten paraffin embedded cell lines. Mediators of IGF1R signalling are heterogeneously expressed and phosphorylated IRS1 was detected in 67 % of the tested chondrosarcoma cell lines, suggesting that IGF1R signalling is active in a subset of chondrosarcoma cell lines. In the cell lines with phosphorylated IRS1, inhibition of IGF1R signalling decreased phosphorylated Akt levels and increased IGF1R expression, but it did not influence MAPK or S6 activity. In line with these findings, treatment with IGF1R/IR inhibitors did not impact proliferation or migration in any of the chondrosarcoma cell lines, even upon stimulation with IGF1. Although synergistic effects of IGF1R/IR inhibition with doxorubicin are described for other cancers, our results demonstrate that this was not the case for chondrosarcoma. In addition, we found minimal IGF1R expression in primary tumours in contrast to the high expression detected in chondrosarcoma cell lines, even if both were derived from the

  6. Postprandial hyperglycemia corrected by IGF-I (Increlex®) in Laron syndrome.

    Science.gov (United States)

    Latrech, Hanane; Simon, Albane; Beltrand, Jacques; Souberbielle, Jean-Claude; Belmejdoub, Ghizlane; Polak, Michel

    2012-01-01

    Laron syndrome is caused by a mutation in the growth hormone (GH) receptor and manifests as insulin-like growth factor-I (IGF-I) deficiency, severe short stature, and early hypoglycemia. We report a case with postprandial hyperglycemia, an abnormality not reported previously. Postprandial hyperglycemia was due to chronic IGF-I deficiency, and was reversed by IGF-I replacement therapy. A Moroccan girl referred for short stature at 7 years and 8 months of age had dwarfism [height, 78 cm (-9 SDs); weight, 10 kg (-4 SDs)], hypoglycemia, and truncal obesity. Her serum IGF-I level was very low, and her baseline serum GH level was elevated to 47 mIU/l. Molecular analysis showed a homozygous mutation in the GH receptor gene. Continuous glucose monitoring before treatment showed asymptomatic hypoglycemia with postprandial hyperglycemia (2.5 g/l, 13.75 mmol/l). Treatment with recombinant human IGF-I (mecasermin, Increlex®) was started. The blood glucose profile improved with 0.04 µg/kg/day and returned to normal with 0.12 µg/kg/day. Postprandial hyperglycemia is a metabolic consequence of chronic IGF-I deficiency. The beneficial effect of IGF-I replacement therapy may be ascribable to improved postprandial transfer of glucose. Copyright © 2012 S. Karger AG, Basel.

  7. Stress-altered synaptic plasticity and DAMP signaling in the hippocampus-PFC axis; elucidating the significance of IGF-1/IGF-1R/CaMKIIα expression in neural changes associated with a prolonged exposure therapy.

    Science.gov (United States)

    Ogundele, Olalekan M; Ebenezer, Philip J; Lee, Charles C; Francis, Joseph

    2017-06-14

    Traumatic stress patients showed significant improvement in behavior after a prolonged exposure to an unrelated stimulus. This treatment method attempts to promote extinction of the fear memory associated with the initial traumatic experience. However, the subsequent prolonged exposure to such stimulus creates an additional layer of neural stress. Although the mechanism remains unclear, prolonged exposure therapy (PET) likely involves changes in synaptic plasticity, neurotransmitter function and inflammation; especially in parts of the brain concerned with the formation and retrieval of fear memory (Hippocampus and Prefrontal Cortex: PFC). Since certain synaptic proteins are also involved in danger-associated molecular pattern signaling (DAMP), we identified the significance of IGF-1/IGF-1R/CaMKIIα expression as a potential link between the concurrent progression of synaptic and inflammatory changes in stress. Thus, a comparison between IGF-1/IGF-1R/CaMKIIα, synaptic and DAMP proteins in stress and PET may highlight the significance of PET on synaptic morphology and neuronal inflammatory response. In behaviorally characterized Sprague-Dawley rats, there was a significant decline in neural IGF-1 (pIGF-1R expression. These animals showed a significant loss of presynaptic markers (synaptophysin; pIGF-1 (pIGF-1R was recorded in the Stress-PET group (pIGF-1/IGF-1R, an increase in activated hippocampal and cortical microglia was seen in stress (pIGF1/IGF-1R/CaMKIIα. Firstly, we showed a direct relationship between IGF-1/IGF-1R expression, presynaptic function (synaptophysin) and neurotransmitter activity in stress and PET. Secondly, we identified the possible role of CaMKIIα in post-synaptic function and regulation of small ion conductance channels. Lastly, we highlighted some of the possible links between IGF1/IGF-1R/CaMKIIα, the expression of DAMP proteins, Microglia activation, and its implication on synaptic plasticity during stress and PET. Copyright © 2017

  8. IGF-1: an endogenous link between traumatic brain injury and Alzheimer disease?

    Science.gov (United States)

    Zheng, Ping; Tong, Wusong

    2017-08-01

    There is a growing body of evidence that the insulin-like growth factor-1 (IGF-1) is dynamically involved in the regulation of body homeostasis and glucose regulation. Traumatic brain injury (TBI) is considered to be a risk factor for Alzheimer's disease (AD). As alterations of IGF-1 have been implicated in both TBI and AD and the IGF-1 signaling also mediates the neuronal excitability and synaptic plasticity in both diseases, we propose that IGF-1 may act as the endogenous connection between TBI and AD. Growing evidence suggests that dysfunction of this pathway contributes to the progressive loss of neurons in Alzheimer's disease (AD), one of the most frequent neurodegenerative disorders. These findings have led to numerous studies in preclinical models of neurodegenerative disorders targeting IGF-1 signaling with currently available antidiabetics. These studies have shown that exogenous administration of IGF-1 reverses signaling abnormalities and has neuroprotective effects. In the first part of this review, we discuss physiological functions of IGF-1 signaling pathway including its distribution within the brain and its relationship with TBI and AD. In the second part, we undertake a comprehensive overview of IGF-1 signaling in TBI and AD, respectively. We then detail targeted IGF-1 in preclinical models of neurodegeneration and the design of clinical trials that have used anti-diabetics for treating AD patients. We close with future considerations that treat relevant issues for successful translation of these encouraging preclinical results into clinical sessions.

  9. Serum insulin-like growth factor II (IGF-II) in chronic heart failure

    International Nuclear Information System (INIS)

    Tong Lijun; Chen Donghai; Ji Naijun; Fan Bifu; Wang Chengyao; Mei Yibin; Li Fuyuan; Kao Yan

    2004-01-01

    Objective: To investigate the clinical significance of changes of serum insulin-like growth factor II (IGF-II) levels in patients with chronic heart failure. Methods: Serum IGF-II levels were measured with RIA in 132 cases of chronic heart failure and 45 controls. Results: Serum IGF-II levels were significantly higher in patients with chronic heart failure than those in the controls (t=0.033, P<0.001). IGF-II levels were highest in grade IV CHF patients (vs grade II t=3.963, P<0.01; vs grade III, t=3.578, P<0.01). In the twelve patients died in hospital, the serum IGF-II levels were significantly higher than those patients recovered (t=7.141, P<0.01). Conclusion: Serum IGF-II levels were increased in CHF patients and were highest in the most severe cases. (authors)

  10. IGF-I enhances cellular senescence via the reactive oxygen species-p53 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Handayaningsih, Anastasia-Evi; Takahashi, Michiko; Fukuoka, Hidenori; Iguchi, Genzo; Nishizawa, Hitoshi; Yamamoto, Masaaki; Suda, Kentaro [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan); Takahashi, Yutaka, E-mail: takahash@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Cellular senescence plays an important role in tumorigenesis and aging process. Black-Right-Pointing-Pointer We demonstrated IGF-I enhanced cellular senescence in primary confluent cells. Black-Right-Pointing-Pointer IGF-I enhanced cellular senescence in the ROS and p53-dependent manner. Black-Right-Pointing-Pointer These results may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging. -- Abstract: Cellular senescence is characterized by growth arrest, enlarged and flattened cell morphology, the expression of senescence-associated {beta}-galactosidase (SA-{beta}-gal), and by activation of tumor suppressor networks. Insulin-like growth factor-I (IGF-I) plays a critical role in cellular growth, proliferation, tumorigenesis, and regulation of aging. In the present study, we show that IGF-I enhances cellular senescence in mouse, rat, and human primary cells in the confluent state. IGF-I induced expression of a DNA damage marker, {gamma}H2AX, the increased levels of p53 and p21 proteins, and activated SA-{beta}-gal. In the confluent state, an altered downstream signaling of IGF-I receptor was observed. Treatment with a reactive oxygen species (ROS) scavenger, N-acetylcystein (NAC) significantly suppressed induction of these markers, indicating that ROS are involved in the induction of cellular senescence by IGF-I. In p53-null mouse embryonic fibroblasts, the IGF-I-induced augmentation of SA-{beta}-gal and p21 was inhibited, demonstrating that p53 is required for cellular senescence induced by IGF-I. Thus, these data reveal a novel pathway whereby IGF-I enhances cellular senescence in the ROS and p53-dependent manner and may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging.

  11. IGF-I enhances cellular senescence via the reactive oxygen species–p53 pathway

    International Nuclear Information System (INIS)

    Handayaningsih, Anastasia-Evi; Takahashi, Michiko; Fukuoka, Hidenori; Iguchi, Genzo; Nishizawa, Hitoshi; Yamamoto, Masaaki; Suda, Kentaro; Takahashi, Yutaka

    2012-01-01

    Highlights: ► Cellular senescence plays an important role in tumorigenesis and aging process. ► We demonstrated IGF-I enhanced cellular senescence in primary confluent cells. ► IGF-I enhanced cellular senescence in the ROS and p53-dependent manner. ► These results may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging. -- Abstract: Cellular senescence is characterized by growth arrest, enlarged and flattened cell morphology, the expression of senescence-associated β-galactosidase (SA-β-gal), and by activation of tumor suppressor networks. Insulin-like growth factor-I (IGF-I) plays a critical role in cellular growth, proliferation, tumorigenesis, and regulation of aging. In the present study, we show that IGF-I enhances cellular senescence in mouse, rat, and human primary cells in the confluent state. IGF-I induced expression of a DNA damage marker, γH2AX, the increased levels of p53 and p21 proteins, and activated SA-β-gal. In the confluent state, an altered downstream signaling of IGF-I receptor was observed. Treatment with a reactive oxygen species (ROS) scavenger, N-acetylcystein (NAC) significantly suppressed induction of these markers, indicating that ROS are involved in the induction of cellular senescence by IGF-I. In p53-null mouse embryonic fibroblasts, the IGF-I-induced augmentation of SA-β-gal and p21 was inhibited, demonstrating that p53 is required for cellular senescence induced by IGF-I. Thus, these data reveal a novel pathway whereby IGF-I enhances cellular senescence in the ROS and p53-dependent manner and may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging.

  12. Importance of circulating IGF-1 for normal cardiac morphology, function and post infarction remodeling.

    Science.gov (United States)

    Scharin Täng, M; Redfors, B; Lindbom, M; Svensson, J; Ramunddal, T; Ohlsson, C; Shao, Y; Omerovic, E

    2012-12-01

    IGF-1 plays an important role in cardiovascular homeostasis, and plasma levels of IGF-1 correlate inversely with systolic function in heart failure. It is not known to what extent circulating IGF-1 secreted by the liver and local autocrine/paracrine IGF-1 expressed in the myocardium contribute to these beneficial effects on cardiac function and morphology. In the present study, we used a mouse model of liver-specific inducible deletion of the IGF-1 gene (LI-IGF-1 -/- mouse) in an attempt to evaluate the importance of circulating IGF-I on cardiac morphology and function under normal and pathological conditions, with an emphasis on its regulatory role in myocardial phosphocreatine metabolism. Echocardiography was performed in LI-IGF-1 -/- and control mice at rest and during dobutamine stress, both at baseline and post myocardial infarction (MI). High-energy phosphate metabolites were compared between LI-IGF-1 -/- and control mice at 4 weeks post MI. We found that LI-IGF-1 -/- mice had significantly greater left ventricular dimensions at baseline and showed a greater relative increase in cardiac dimensions, as well as deterioration of cardiac function, post MI. Myocardial creatine content was 17.9% lower in LI-IGF-1 -/- mice, whereas there was no detectable difference in high-energy nucleotides. These findings indicate an important role of circulating IGF-1 in preserving cardiac structure and function both in physiological settings and post MI. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. IGF-1 induces the epithelial-mesenchymal transition via Stat5 in hepatocellular carcinoma.

    Science.gov (United States)

    Zhao, Chuanzong; Wang, Qian; Wang, Ben; Sun, Qi; He, Zhaobin; Hong, Jianguo; Kuehn, Florian; Liu, Enyu; Zhang, Zongli

    2017-12-19

    It has been reported that the epithelial-mesenchymal transition (EMT) plays an important role in hepatocellular carcinoma (HCC). However, the relationship between the insulin-like growth factor-1 (IGF-1) and EMT of HCC was not fully elucidated. In the present work, we found that the expression of N-cadherin, Vimentin, Snail1, Snail2, and Twist1 was positively associated with IGF-1R expression, while E-cadherin expression was negatively associated with IGF-1 expression in human HCC samples. Furthermore, we observed that IGF-1 up-regulated the expression of N-cadherin, Vimentin, Snail1, Snail2 and Twist1, and down-regulated the expression of E-cadherin. In addition, Stat5 was induced in IGF-1-treated HepG2 and Hep3B cells, and Stat5 inhibition or siRNA significantly affected IGF-1-induced EMT in HepG2 and Hep3B cells. In conclusion, IGF-1 induces EMT of HCC via Stat5 signaling pathway. Thus, IGF-1/Stat5 can be recommended as a potential and novel therapeutic strategy for HCC patients.

  14. Factor de crecimiento semejante a la insulina tipo I (IGF-I y cirrosis hepática Insulin-like growth factor I (IGF-I and liver cirrhosis

    Directory of Open Access Journals (Sweden)

    M. Conchillo

    2007-03-01

    Full Text Available El factor de crecimiento semejante a la insulina tipo I (IGF-I es una hormona polipeptídica segregada en múltiples tejidos por efecto de la hormona de crecimiento (GH. Es responsable de parte de las acciones de la GH y además tiene efecto hipoglucemiante y anabolizante. El 90% del IGF-I circulante es de origen hepático y ejerce efectos autocrinos, paracrinos y endocrinos, estos últimos en múltiples tejidos. En la cirrosis hepática se produce una disminución progresiva de la producción hepática de IGF-I que llega a ser indetectable en la enfermedad avanzada. Algunas de las complicaciones de la cirrosis, fundamentalmente nutricionales y metabólicas (resistencia a insulina, desnutrición, osteopenia, hipogonadismo, alteraciones intestinales podrían estar, al menos en parte, relacionadas con esta carencia de IGF-I dado que algunas acciones de IGF-I representan la imagen inversa de las complicaciones de la cirrosis. A pesar de ello, nunca se había propuesto tratamiento sustitutivo con IGF-I en la cirrosis. En una serie de estudios experimentales realizados en ratas cirróticas se demostró que el tratamiento con dosis bajas de IGF-I recombinante produce dos tipos de efectos en la cirrosis experimental: a mejoría del hígado, dado que mejora la función hepatocelular, la hipertensión portal y la fibrosis hepática; y b mejoría de las alteraciones extrahepáticas de la cirrosis dado que mejora la eficiencia del alimento ingerido, la masa muscular, la masa ósea, la función y estructura gonadales y la función y estructura intestinales con normalización de la malabsorción de azúcares y aminoácidos y la mejoría de la función intestinal de barrera manifestada por disminución de la endotoxemia y la translocación bacteriana. Posteriormente el primer ensayo clínico piloto, aleatorizado, doble ciego y controlado con placebo llevado a cabo en un número reducido de pacientes cirróticos demostró aumento de la albúmina sérica y

  15. IGF-1 Regulates Vertebral Bone Aging Through Sex-Specific and Time-Dependent Mechanisms.

    Science.gov (United States)

    Ashpole, Nicole M; Herron, Jacquelyn C; Mitschelen, Matthew C; Farley, Julie A; Logan, Sreemathi; Yan, Han; Ungvari, Zoltan; Hodges, Erik L; Csiszar, Anna; Ikeno, Yuji; Humphrey, Mary Beth; Sonntag, William E

    2016-02-01

    Advanced aging is associated with increased risk of bone fracture, especially within the vertebrae, which exhibit significant reductions in trabecular bone structure. Aging is also associated with a reduction in circulating levels of insulin-like growth factor (IGF-1). Studies have suggested that the reduction in IGF-1 compromises healthspan, whereas others report that loss of IGF-1 is beneficial because it increases healthspan and lifespan. To date, the effect of decreases in circulating IGF-1 on vertebral bone aging has not been thoroughly investigated. Here, we delineate the consequences of a loss of circulating IGF-1 on vertebral bone aging in male and female Igf(f/f) mice. IGF-1 was reduced at multiple specific time points during the mouse lifespan: early in postnatal development (crossing albumin-cyclic recombinase [Cre] mice with Igf(f/f) mice); and in early adulthood and in late adulthood using hepatic-specific viral vectors (AAV8-TBG-Cre). Vertebrae bone structure was analyzed at 27 months of age using micro-computed tomography (μCT) and quantitative bone histomorphometry. Consistent with previous studies, both male and female mice exhibited age-related reductions in vertebral bone structure. In male mice, reduction of circulating IGF-1 induced at any age did not diminish vertebral bone loss. Interestingly, early-life loss of IGF-1 in females resulted in a 67% increase in vertebral bone volume fraction, as well as increased connectivity density and increased trabecular number. The maintenance of bone structure in the early-life IGF-1-deficient females was associated with increased osteoblast surface and an increased ratio of osteoprotegerin/receptor-activator of NF-κB-ligand (RANKL) levels in circulation. Within 3 months of a loss of IGF-1, there was a 2.2-fold increase in insulin receptor expression within the vertebral bones of our female mice, suggesting that local signaling may compensate for the loss of circulating IGF-1. Together, these data

  16. Higher Maternal Protein Intake during Pregnancy Is Associated with Lower Cord Blood Concentrations of Insulin-like Growth Factor (IGF)-II, IGF Binding Protein 3, and Insulin, but Not IGF-I, in a Cohort of Women with High Protein Intake.

    Science.gov (United States)

    Switkowski, Karen M; Jacques, Paul F; Must, Aviva; Hivert, Marie-France; Fleisch, Abby; Gillman, Matthew W; Rifas-Shiman, Sheryl; Oken, Emily

    2017-07-01

    Background: Prenatal exposure to dietary protein may program growth-regulating hormones, consequently influencing early-life growth patterns and later risk of associated chronic diseases. The insulin-like growth factor (IGF) axis is of particular interest in this context given its influence on pre- and postnatal growth and its sensitivity to the early nutritional environment. Objective: Our objective was to examine associations of maternal protein intake during pregnancy with cord blood concentrations of IGF-I, IGF-II, IGF binding protein-3 (IGFBP-3), and insulin. Methods: We studied 938 mother-child pairs from early pregnancy through delivery in the Project Viva cohort. Using multivariable linear regression models adjusted for maternal race/ethnicity, education, income, smoking, parity, height, and gestational weight gain and for child sex, we examined associations of second-trimester maternal protein intake [grams per kilogram (weight before pregnancy) per day], as reported on a food frequency questionnaire, with IGF-I, IGF-II, IGFBP-3, and insulin concentrations in cord blood. We also examined how these associations may differ by child sex and parity. Results: Mothers were predominantly white (71%), college-educated (64%), and nonsmokers (67%). Mean ± SD protein intake was 1.35 ± 0.35 g ⋅ kg -1 ⋅ d -1 Each 1-SD increment in second-trimester protein intake corresponded to a change of -0.50 ng/mL (95% CI: -2.26, 1.26 ng/mL) in IGF-I and -0.91 μU/mL (95% CI: -1.45, -0.37 μU/mL) in insulin. Child sex and parity modified associations of maternal protein intake with IGF-II and IGFBP-3: protein intake was inversely associated with IGF-II in girls ( P -interaction = 0.04) and multiparous mothers ( P -interaction = 0.05), and with IGFBP-3 in multiparous mothers ( P -interaction = 0.04). Conclusions: In a cohort of pregnant women with relatively high mean protein intakes, higher intake was associated with lower concentrations of growth-promoting hormones in cord

  17. The proto-oncogene product c-Crk associates with insulin receptor substrate-1 and 4PS. Modulation by insulin growth factor-I (IGF) and enhanced IGF-I signaling.

    Science.gov (United States)

    Beitner-Johnson, D; Blakesley, V A; Shen-Orr, Z; Jimenez, M; Stannard, B; Wang, L M; Pierce, J; LeRoith, D

    1996-04-19

    The Crk proto-oncogene product is an SH2 and SH3 domain-containing adaptor protein which we have previously shown to become rapidly tyrosine phosphorylated in response to stimulation with insulin-like growth factor I (IGF-I) in NIH-3T3 cells. In order to further characterize the role of Crk in the IGF-I signaling pathway, NIH-3T3 and 293 cells were stably transfected with an expression vector containing the Crk cDNA. The various resultant 3T3-Crk clones expressed Crk at approximately 2-15-fold higher levels than parental 3T3 cells. In 3T3-Crk cells, Crk immunoreactivity was detected in insulin receptor substrate-1 (IRS-1) immunoprecipitates. Stimulation with IGF-I resulted in a dissociation of Crk protein from IRS-1. In contrast, the association of the related adaptor protein Grb2 with IRS-1 was enhanced by IGF-I stimulation. Similar results were obtained in stably transfected 293-Crk cells, which express both IRS-1 and the IRS-1-related signaling protein 4PS. In these cells, IRS-1 and 4PS both associated with Crk, and this association was also decreased by IGF-I treatment, whereas the association of Grb2 with IRS-1 and 4PS was enhanced by IGF-I. Overexpression of Crk also enhanced IGF-I-induced mitogenesis of NIH-3T3 cells, as measured by [3H]thymidine incorporation. The levels of IGF-I-induced mitogenesis were proportional to the level of Crk expression. These results suggest that Crk is a positive effector of IGF-I signaling, and may mediate its effects via interaction with IRS-1 and/or 4PS.

  18. Insulin/IGF-driven cancer cell-stroma crosstalk as a novel therapeutic target in pancreatic cancer.

    Science.gov (United States)

    Mutgan, Ayse Ceren; Besikcioglu, H Erdinc; Wang, Shenghan; Friess, Helmut; Ceyhan, Güralp O; Demir, Ihsan Ekin

    2018-02-23

    Pancreatic ductal adenocarcinoma (PDAC) is unrivalled the deadliest gastrointestinal cancer in the western world. There is substantial evidence implying that insulin and insulin-like growth factor (IGF) signaling axis prompt PDAC into an advanced stage by enhancing tumor growth, metastasis and by driving therapy resistance. Numerous efforts have been made to block Insulin/IGF signaling pathway in cancer therapy. However, therapies that target the IGF1 receptor (IGF-1R) and IGF subtypes (IGF-1 and IGF-2) have been repeatedly unsuccessful. This failure may not only be due to the complexity and homology that is shared by Insulin and IGF receptors, but also due to the complex stroma-cancer interactions in the pancreas. Shedding light on the interactions between the endocrine/exocrine pancreas and the stroma in PDAC is likely to steer us toward the development of novel treatments. In this review, we highlight the stroma-derived IGF signaling and IGF-binding proteins as potential novel therapeutic targets in PDAC.

  19. Impact of IGF-I release kinetics on bone healing: a preliminary study in sheep.

    Science.gov (United States)

    Luginbuehl, Vera; Zoidis, Evangelos; Meinel, Lorenz; von Rechenberg, Brigitte; Gander, Bruno; Merkle, Hans P

    2013-09-01

    Spatiotemporal release of growth factors from a delivery device can profoundly affect the efficacy of bone growth induction. Here, we report on a delivery platform based on the encapsulation of insulin-like growth factor I (IGF-I) in different poly(D,L-lactide) (PLA) and poly(D,L-lactide-co-glycolide) (PLGA) microsphere (MS) formulations to control IGF-I release kinetics. In vitro IGF-I release profiles generally exhibited an initial burst (14-36% of total IGF-I content), which was followed by a more or less pronounced dormant phase with little release (2 to 34 days), and finally, a third phase of re-increased IGF-I release. The osteoinductive potential of these different IGF-I PL(G)A MS formulations was tested in studies using 8-mm metaphyseal drill hole bone defects in sheep. Histomorphometric analysis at 3 and 6 weeks after surgery showed that new bone formation was improved in the defects locally treated with IGF-I PL(G)A MS (n=5) as compared to defects filled with IGF-I-free PL(G)A MS (n=4). The extent of new bone formation was affected by the particular release kinetics, although a definitive relationship was not evident. Local administration of IGF-I resulted in down-regulation of inflammatory marker genes in all IGF-I treated defects. The over-expression of growth factor genes in response to IGF-I delivery was restricted to formulations that produced osteogenic responses. These experiments demonstrate the osteoinductive potential of sustained IGF-I delivery and show the importance of delivery kinetics for successful IGF-I-based therapies. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Salivary and serum insulin-like growth factor (IGF-1) assays in anorexic patients.

    Science.gov (United States)

    Paszynska, Elzbieta; Dmitrzak-Weglarz, Monika; Slopien, Agnieszka; Tyszkiewicz-Nwafor, Marta; Rajewski, Andrzej

    2016-12-01

    The purpose of this study was to measure the salivary and serum free IGF-1 concentration of patients with anorexia nervosa (AN) in comparison to an average population. A controlled clinical trial was designed for an age- and gender-matched group of 121 AN patients and 77 healthy individuals. A clinical examination was made and blood and salivary samples were taken during the acute stage of AN (BMI measuring free IGF-1 was used. Anorexic patients had significant reductions in salivary unstimulated flow rate (UFR), pH and free IGF-1 levels in their saliva and serum. Significant correlations between serum IGF-1 and BMI; salivary IGF-1 and UFR and pH were detected. Salivary and serum IGF-1 analyses appear to be a reliable biochemical indicator of malnutrition in AN patients. Measurement of salivary IGF-1 levels would allow new perspectives in monitoring AN in its early stages.

  1. Nuclear targeting of IGF-1 receptor in orbital fibroblasts from Graves' disease: apparent role of ADAM17.

    Directory of Open Access Journals (Sweden)

    Neil Hoa

    Full Text Available Insulin-like growth factor-1 receptor (IGF-1R comprises two subunits, including a ligand binding domain on extra- cellular IGF-1Rα and a tyrosine phosphorylation site located on IGF-1Rβ. IGF-1R is over-expressed by orbital fibroblasts in the autoimmune syndrome, Graves' disease (GD. When activated by IGF-1 or GD-derived IgG (GD-IgG, these fibroblasts produce RANTES and IL-16, while those from healthy donors do not. We now report that IGF-1 and GD-IgG provoke IGF-1R accumulation in the cell nucleus of GD fibroblasts where it co-localizes with chromatin. Nuclear IGF-1R is detected with anti-IGF-1Rα-specific mAb and migrates to approximately 110 kDa, consistent with its identity as an IGF-1R fragment. Nuclear IGF-1R migrating as a 200 kDa protein and consistent with an intact receptor was undetectable when probed with either anti-IGF-1Rα or anti-IGF-1Rβ mAbs. Nuclear redistribution of IGF-1R is absent in control orbital fibroblasts. In GD fibroblasts, it can be abolished by an IGF-1R-blocking mAb, 1H7 and by physiological concentrations of glucocorticoids. When cell-surface IGF-1R is cross-linked with (125I IGF-1, (125I-IGF-1/IGF-1R complexes accumulate in the nuclei of GD fibroblasts. This requires active ADAM17, a membrane associated metalloproteinase, and the phosphorylation of IGF-1R. In contrast, virally encoded IGF-1Rα/GFP fusion protein localizes equivalently in nuclei in both control and GD fibroblasts. This result suggests that generation of IGF-1R fragments may limit the accumulation of nuclear IGF-1R. We thus identify a heretofore-unrecognized behavior of IGF-1R that appears limited to GD-derived fibroblasts. Nuclear IGF-1R may play a role in disease pathogenesis.

  2. The transcription factor MEF2C mediates cardiomyocyte hypertrophy induced by IGF-1 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, Juan Pablo; Collao, Andres; Chiong, Mario; Maldonado, Carola; Adasme, Tatiana; Carrasco, Loreto; Ocaranza, Paula; Bravo, Roberto; Gonzalez, Leticia; Diaz-Araya, Guillermo [Centro FONDAP Estudios Moleculares de la Celula, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Facultad de Ciencias Quimicas y Farmaceuticas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Hidalgo, Cecilia [Centro FONDAP Estudios Moleculares de la Celula, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Lavandero, Sergio, E-mail: slavander@uchile.cl [Centro FONDAP Estudios Moleculares de la Celula, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Facultad de Ciencias Quimicas y Farmaceuticas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile)

    2009-10-09

    Myocyte enhancer factor 2C (MEF2C) plays an important role in cardiovascular development and is a key transcription factor for cardiac hypertrophy. Here, we describe MEF2C regulation by insulin-like growth factor-1 (IGF-1) and its role in IGF-1-induced cardiac hypertrophy. We found that IGF-1 addition to cultured rat cardiomyocytes activated MEF2C, as evidenced by its increased nuclear localization and DNA binding activity. IGF-1 stimulated MEF2 dependent-gene transcription in a time-dependent manner, as indicated by increased MEF2 promoter-driven reporter gene activity; IGF-1 also induced p38-MAPK phosphorylation, while an inhibitor of p38-MAPK decreased both effects. Additionally, inhibitors of phosphatidylinositol 3-kinase and calcineurin prevented IGF-1-induced MEF2 transcriptional activity. Via MEF2C-dependent signaling, IGF-1 also stimulated transcription of atrial natriuretic factor and skeletal {alpha}-actin but not of fos-lux reporter genes. These novel data suggest that MEF2C activation by IGF-1 mediates the pro-hypertrophic effects of IGF-1 on cardiac gene expression.

  3. The transcription factor MEF2C mediates cardiomyocyte hypertrophy induced by IGF-1 signaling

    International Nuclear Information System (INIS)

    Munoz, Juan Pablo; Collao, Andres; Chiong, Mario; Maldonado, Carola; Adasme, Tatiana; Carrasco, Loreto; Ocaranza, Paula; Bravo, Roberto; Gonzalez, Leticia; Diaz-Araya, Guillermo; Hidalgo, Cecilia; Lavandero, Sergio

    2009-01-01

    Myocyte enhancer factor 2C (MEF2C) plays an important role in cardiovascular development and is a key transcription factor for cardiac hypertrophy. Here, we describe MEF2C regulation by insulin-like growth factor-1 (IGF-1) and its role in IGF-1-induced cardiac hypertrophy. We found that IGF-1 addition to cultured rat cardiomyocytes activated MEF2C, as evidenced by its increased nuclear localization and DNA binding activity. IGF-1 stimulated MEF2 dependent-gene transcription in a time-dependent manner, as indicated by increased MEF2 promoter-driven reporter gene activity; IGF-1 also induced p38-MAPK phosphorylation, while an inhibitor of p38-MAPK decreased both effects. Additionally, inhibitors of phosphatidylinositol 3-kinase and calcineurin prevented IGF-1-induced MEF2 transcriptional activity. Via MEF2C-dependent signaling, IGF-1 also stimulated transcription of atrial natriuretic factor and skeletal α-actin but not of fos-lux reporter genes. These novel data suggest that MEF2C activation by IGF-1 mediates the pro-hypertrophic effects of IGF-1 on cardiac gene expression.

  4. IGF-1, IGFBP-3 and ALS in adult patients with chronic kidney disease.

    Science.gov (United States)

    Lepenies, Julia; Wu, Zida; Stewart, Paul M; Strasburger, Christian J; Quinkler, Marcus

    2010-04-01

    Insulin-like growth factor I (IGF-1) is for the most part bound in a ternary complex with IGF-binding protein-3 (IGFBP-3) and acid-labile subunit (ALS). This ternary complex is a storage form of IGF-1 in blood and passes not through the renal glomerulus. Little information is available in regard to the components of the ternary complex in adult renal disease. To investigate levels of serum IGF-1, IGFBP-3 and ALS in relation to renal function and extent of proteinuria. We measured IGF-1, IGFBP-3 and ALS concentrations in 137 patients who were investigated due to proteinuria and/or haematuria and/or renal impairment. The patients received renal biopsies and the histological diagnosis was documented. Urinary albumin excretion and relevant clinical parameter were evaluated. IGF-1 showed a highly positive correlation to IGFBP-3 and ALS, and the latter to IGFBP-3. IGF-1, IGFBP-3 and ALS decreased with increasing age. IGF-1 and IGFBP-3 showed no significant change depending on the creatinine clearance. However, ALS decreased with decreasing renal function. In patients with heavy proteinuria ALS levels, but not IGF-1 and IGFBP-3 levels, decreased significantly. Patients with chronic ischaemic renal damage and diabetic glomerulopathy showed higher IGF-1 and IGFBP-3 levels compared to patients with thin glomerular basement membrane disease despite their older age. IGF-1 and IGFBP-3 levels seem to be independent of renal function and severity of proteinuria. However, ALS levels are altered in renal failure and nephrotic syndrome, which may be due to increased renal loss or diminished hepatic production or both. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  5. IGF-Binding Proteins: Why Do They Exist and Why Are There So Many?

    Directory of Open Access Journals (Sweden)

    John B. Allard

    2018-04-01

    Full Text Available Insulin-like growth factors (IGFs are key growth-promoting peptides that act as both endocrine hormones and autocrine/paracrine growth factors. In the bloodstream and in local tissues, most IGF molecules are bound by one of the members of the IGF-binding protein (IGFBP family, of which six distinct types exist. These proteins bind to IGF with an equal or greater affinity than the IGF1 receptor and are thus in a key position to regulate IGF signaling globally and locally. Binding to an IGFBP increases the half-life of IGF in the circulation and blocks its potential binding to the insulin receptor. In addition to these classical roles, IGFBPs have been shown to modulate IGF signaling locally under various conditions. Although members of the IGFBP family share significant sequence homology, they each have unique structural features and play distinct roles. These IGFBP genes also have different modes of regulation and distinct expression patterns. Some IGFBPs have been found to bind to their own receptors or to translocate into the interior compartments of cells where they may execute IGF-independent actions. In spite of this functional and regulatory diversity, it has been puzzling that loss-of-function studies have yielded relatively little information about the physiological functions of IGFBPs. In this review, we suggest that evolution has tended to retain an array of IGFBPs in order to facilitate fine-tuning of IGF signaling. We explore the emerging explanation that many IGFBP functions have evolved to allow the targeted adjustment of IGF signaling under stressful or irregular conditions, which would likely not be revealed in a standard laboratory setting.

  6. IGF-1 levels may increase paradoxically with dopamine agonist treatment for prolactinomas.

    Science.gov (United States)

    Akirov, Amit; Greenman, Yona; Glaser, Benjamin; S'chigol, Irena; Mansiterski, Yossi; Eizenberg, Yoav; Shraga-Slutzky, Ilana; Shimon, Ilan

    2018-05-04

    Hyperprolactinemia is common in acromegaly and in these patients, insulin-like growth factor (IGF)-1 level may decrease with dopamine agonist. We report a series of patients with prolactinoma and a paradoxical increase of IGF-1 levels during cabergoline treatment. Clinical characteristics and response to treatment of patients with prolactinomas, in whom normal or slightly elevated baseline IGF-1 levels increased with cabergoline. The cohort consisted of ten prolactinoma patients (nine males, mean age 48 ± 14 years). Mean adenoma size was 23.8 ± 16.2 mm, with cavernous sinus invasion in eight. In five patients baseline IGF-1 levels were normal and in four levels were 1.2-1.5-fold the upper limit of the normal (ULN). One patient had IGF-1 measured shortly after initiating cabergoline and it was 1.4 × ULN. During cabergoline treatment (dose range 0.5-2 mg/week) PRL normalization was achieved in all and tumor shrinkage occurred in seven patients. The mean IGF-1 increase on cabergoline was 1.7 ± 0.4 × ULN. Cabergoline dose reduction or interruption was attempted in five patients and resulted in decreased IGF-1 levels in all, including normalization in two patients. Three patients were eventually diagnosed with acromegaly, one was referred for pituitary surgery followed by complete remission, another patient was switched to somatostatin analogue, and the third was treated by combination of somatostatin analogues with pegvisomant, with reduction of IGF-1 in all these patients. IGF-1 levels may increase to clinically significant levels during cabergoline treatment for PRL-adenoma. We suggest IGF-1 monitoring in all patients treated with dopamine agonists and not only in those presenting symptoms of acromegaly.

  7. IGF-I bioactivity might reflect different aspects of quality of life than total IGF-I in gh-deficient patients during GH treatment

    NARCIS (Netherlands)

    A.J. Varewijck (Aimee); S.W.J. Lamberts (Steven); S.J.C.M.M. Neggers (Bas); L.J. Hofland (Leo); J.A.M.J.L. Janssen (Joseph)

    2013-01-01

    textabstractContext: No relationship has been found between improvement in quality of life (QOL) and total IGF-I during GH therapy. Aim: Our aim was to investigate the relationship between IGF-I bioactivity and QOL in GH-deficient (GHD) patients receiving GH for 12 months. Methods: Of 106 GHD

  8. Distribution and levels of [125I]IGF-I, [125I]IGF-II and [125I]insulin receptor binding sites in the hippocampus of aged memory-unimpaired and -impaired rats

    International Nuclear Information System (INIS)

    Quirion, R.; Rowe, W.; Kar, S.; Dore, S.

    1997-01-01

    The insulin-like growth factors (IGF-I and IGF-II) and insulin are localized within distinct brain regions and their respective functions are mediated by specific membrane receptors. High densities of binding sites for these growth factors are discretely and differentially distributed throughout the brain, with prominent levels localized to the hippocampal formation. IGFs and insulin, in addition to their growth promoting actions, are considered to play important roles in the development and maintenance of normal cell functions throughout life. We compared the anatomical distribution and levels of IGF and insulin receptors in young (five month) and aged (25 month) memory-impaired and memory-unimpaired male Long-Evans rats as determined in the Morris water maze task in order to determine if alterations in IGF and insulin activity may be related to the emergence of cognitive deficits in the aged memory-impaired rat. In the hippocampus, [ 125 I]IGF-I receptors are concentrated primarily in the dentate gyrus (DG) and the CA3 sub-field while high amounts of [ 125 I]IGF-II binding sites are localized to the pyramidal cell layer, and the granular cell layer of the DG. [ 125 I]insulin binding sites are mostly found in the molecular layer of the DG and the CA1 sub-field. No significant differences were found in [ 125 I]IGF-I, [ 125 I]IGF-II or [ 125 I]insulin binding levels in any regions or laminae of the hippocampus of young vs aged rats, and deficits in cognitive performance did not relate to altered levels of these receptors in aged memory-impaired vs aged memory-unimpaired rats. Other regions, including various cortical areas, were also examined and failed to reveal any significant differences between the three groups studied.It thus appears that IGF-I, IGF-II and insulin receptor sites are not markedly altered during the normal ageing process in the Long-Evans rat, in spite of significant learning deficits in a sub-group (memory-impaired) of aged animals. Hence

  9. Low Levels of IGF-1 Contribute to Alveolar Macrophage Dysfunction in Cystic Fibrosis1

    Science.gov (United States)

    Bessich, Jamie L.; Nymon, Amanda B.; Moulton, Lisa A; Dorman, Dana; Ashare, Alix

    2013-01-01

    Alveolar macrophages are major contributors to lung innate immunity. Although alveolar macrophages from CFTR−/− mice have impaired function, no study has investigated primary alveolar macrophages in adults with cystic fibrosis (CF). CF patients have low levels of insulin-like growth factor 1 (IGF-1), and our prior studies demonstrate a relationship between IGF-1 and macrophage function. We hypothesize that reduced IGF-1 in CF leads to impaired alveolar macrophage function and chronic infections. Serum and bronchoalveolar lavage (BAL) samples were obtained from 8 CF subjects and 8 healthy subjects. Macrophages were isolated from BAL fluid. We measured the ability of alveolar macrophages to kill Pseudomonas aeruginosa. Subsequently, macrophages were incubated with IGF-1 prior to inoculation with bacteria to determine the effect of IGF-1 on bacterial killing. We found a significant decrease in bacterial killing by CF alveolar macrophages compared to controls. CF subjects had lower serum and BAL IGF-1 levels compared to healthy controls. Exposure to IGF-1 enhanced alveolar macrophage macrophages in both groups. Finally, exposing healthy alveolar macrophages to CF BAL fluid decreased bacterial killing, and this was reversed by the addition of IGF-1, while IGF-1 blockade worsened bacterial killing. Our studies demonstrate that alveolar macrophage function is impaired in patients with CF. Reductions in IGF-1 levels in CF contribute to the impaired alveolar macrophage function. Exposure to IGF-1 ex vivo, results in improved function of CF alveolar macrophages. Further studies are needed to determine whether alveolar macrophage function can be enhanced in vivo with IGF-1 treatment. PMID:23698746

  10. Role of IGF-1R in ameliorating apoptosis of GNE deficient cells.

    Science.gov (United States)

    Singh, Reema; Chaudhary, Priyanka; Arya, Ranjana

    2018-05-09

    Sialic acids (SAs) are nine carbon acidic amino sugars, found at the outermost termini of glycoconjugates performing various physiological and pathological functions. SA synthesis is regulated by UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) that catalyzes rate limiting steps. Mutations in GNE result in rare genetic disorders, GNE myopathy and Sialuria. Recent studies indicate an alternate role of GNE in cell apoptosis and adhesion, besides SA biosynthesis. In the present study, using a HEK cell-based model for GNE myopathy, the role of Insulin-like Growth Factor Receptor (IGF-1R) as cell survival receptor protein was studied to counter the apoptotic effect of non-functional GNE. In the absence of functional GNE, IGF-1R was hyposialylated and transduced a downstream signal upon IGF-1 (IGF-1R ligand) treatment. IGF-1 induced activation of IGF-1R led to AKT (Protein Kinase B) phosphorylation that may phosphorylate BAD (BCL2 Associated Death Promoter) and its dissociation from BCL2 to prevent apoptosis. However, reduced ERK (Extracellular signal-regulated kinases) phosphorylation in GNE deficient cells after IGF-1 treatment suggests downregulation of the ERK pathway. A balance between the ERK and AKT pathways may determine the cell fate towards survival or apoptosis. Our study suggests that IGF-1R activation may rescue apoptotic cell death of GNE deficient cell lines and has potential as therapeutic target.

  11. The effect of epidermal growth factor and IGF-I infusion on hepatic and renal expression of the IGF-system in adult female rats

    NARCIS (Netherlands)

    J.W. van Neck (Han); E.M. Berghout; L. Vinter-Jensen; C.A.H. Groffen; V. Cingel-Ristic; N.F. Dits (Natasja); S.L.S. Drop (Stenvert); A. Flyvbjerg (Allan)

    2000-01-01

    textabstractSystemic administration of epidermal growth factor (EGF) in neonatal rats results in reduced body weight gain and decreased circulating levels of IGF-I, suggesting its involvement in EGF-induced growth retardation. We investigated the effect of EGF and/or IGF-I

  12. Paternal Insulin-like Growth Factor 2 (Igf2 Regulates Stem Cell Activity During Adulthood

    Directory of Open Access Journals (Sweden)

    Vilma Barroca

    2017-02-01

    Full Text Available Insulin-like Growth Factor 2 (IGF2 belongs to the IGF/Insulin pathway, a highly conserved evolutionarily network that regulates growth, aging and lifespan. Igf2 is highly expressed in the embryo and in cancer cells. During mouse development, Igf2 is expressed in all sites where hematopoietic stem cells (HSC successively expand, then its expression drops at weaning and becomes undetectable when adult HSC have reached their niches in bones and start to self-renew. In the present study, we aim to discover the role of IGF2 during adulthood. We show that Igf2 is specifically expressed in adult HSC and we analyze HSC from adult mice deficient in Igf2 transcripts. We demonstrate that Igf2 deficiency avoids the age-related attrition of the HSC pool and that Igf2 is necessary for tissue homeostasis and regeneration. Our study reveals that the expression level of Igf2 is critical to maintain the balance between stem cell self-renewal and differentiation, presumably by regulating the interaction between HSC and their niche. Our data have major clinical interest for transplantation: understanding the changes in adult stem cells and their environments will improve the efficacy of regenerative medicine and impact health- and life-span.

  13. IGF2BP3 Modulates the Interaction of Invasion-Associated Transcripts with RISC

    Directory of Open Access Journals (Sweden)

    Hanane Ennajdaoui

    2016-05-01

    Full Text Available Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3 expression correlates with malignancy, but its role(s in pathogenesis remains enigmatic. We interrogated the IGF2BP3-RNA interaction network in pancreatic ductal adenocarcinoma (PDAC cells. Using a combination of genome-wide approaches, we have identified 164 direct mRNA targets of IGF2BP3. These transcripts encode proteins enriched for functions such as cell migration, proliferation, and adhesion. Loss of IGF2BP3 reduced PDAC cell invasiveness and remodeled focal adhesion junctions. Individual nucleotide resolution crosslinking immunoprecipitation (iCLIP revealed significant overlap of IGF2BP3 and microRNA (miRNA binding sites. IGF2BP3 promotes association of the RNA-induced silencing complex (RISC with specific transcripts. Our results show that IGF2BP3 influences a malignancy-associated RNA regulon by modulating miRNA-mRNA interactions.

  14. IGF2BP3 Modulates the Interaction of Invasion-Associated Transcripts with RISC.

    Science.gov (United States)

    Ennajdaoui, Hanane; Howard, Jonathan M; Sterne-Weiler, Timothy; Jahanbani, Fereshteh; Coyne, Doyle J; Uren, Philip J; Dargyte, Marija; Katzman, Sol; Draper, Jolene M; Wallace, Andrew; Cazarez, Oscar; Burns, Suzanne C; Qiao, Mei; Hinck, Lindsay; Smith, Andrew D; Toloue, Masoud M; Blencowe, Benjamin J; Penalva, Luiz O F; Sanford, Jeremy R

    2016-05-31

    Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) expression correlates with malignancy, but its role(s) in pathogenesis remains enigmatic. We interrogated the IGF2BP3-RNA interaction network in pancreatic ductal adenocarcinoma (PDAC) cells. Using a combination of genome-wide approaches, we have identified 164 direct mRNA targets of IGF2BP3. These transcripts encode proteins enriched for functions such as cell migration, proliferation, and adhesion. Loss of IGF2BP3 reduced PDAC cell invasiveness and remodeled focal adhesion junctions. Individual nucleotide resolution crosslinking immunoprecipitation (iCLIP) revealed significant overlap of IGF2BP3 and microRNA (miRNA) binding sites. IGF2BP3 promotes association of the RNA-induced silencing complex (RISC) with specific transcripts. Our results show that IGF2BP3 influences a malignancy-associated RNA regulon by modulating miRNA-mRNA interactions. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Eco RI RFLP in the human IGF II gene

    Energy Technology Data Exchange (ETDEWEB)

    Cocozza, S; Garofalo, S; Robledo, R; Monticelli, A; Conti, A; Chiarotti, L; Frunzio, R; Bruni, C B; Varrone, S

    1988-03-25

    The probe was a 500 bp cDNA containing exons 2-3 and 4 of the human IGF II gene. The clone was isolated by screening a human liver cDNA library with synthetic oligonucleotides. Eco RI digestion of genomic DNA and hybridization with the IGF II probe detects a two allele polymorphism with allelic fragments of 13.5 kb and 10.5 kb. The frequency was studied 38 unrelated Caucasians: Human IGF II gene was localized on the short arm of chromosome 11 (p15) by in situ hybridization. Codominant segregation was observed in 2 Caucasian families (10 individuals).

  16. Crosstalk between adiponectin and IGF-IR in breast cancer

    Directory of Open Access Journals (Sweden)

    Loredana eMauro

    2015-07-01

    Full Text Available Obesity is a chronic and multifactorial disorder that is reaching epidemic proportions. It is characterized by an enlarged mass of adipose tissue caused by a combination of size increase of preexisting adipocytes (hypertrophy and de novo adipocyte differentiation (hyperplasia. Obesity is related to many metabolic disorders like hypertension, type 2 diabetes, metabolic syndrome, cardiovascular disease, and it is associated with an increased risk of cancer development in different tissues including breast. Adipose tissue is now regarded as not just a storage reservoir for excess energy, but rather as an endocrine organ, secreting a large number of bioactive molecules called adipokines. Among these, adiponectin represents the most abundant adipose tissue-excreted protein, which exhibits insulin-sensitizing, anti-inflammatory and antiatherogenic properties. The serum concentrations of adiponectin are inversely correlated with body mass index. Recently, low levels of plasma adiponectin have been associated with an increased risk for obesity-related cancers and development of more aggressive phenotype, concomitantly with alterations in the bioavailability of Insulin-like Growth Factor-I (IGF-I and IGF-I Receptor (IGF-IR signaling pathways. In this review we discuss the cross-talk between adiponectin/AdipoR1 and IGF-I/IGF-IR in breast cancer.

  17. Effects of short-term caloric restriction on circulating free IGF-I, acid-labile subunit, IGF-binding proteins (IGFBPs)-1-4, and IGFBPs-1-3 protease activity in obese subjects

    DEFF Research Database (Denmark)

    Rasmussen, Michael Højby; Juul, Anders; Kjems, Lise Lund

    2006-01-01

    , no published data exist on free IGF-I levels, acid labile subunit (ALS), or IGFBP protease activity in relation to GH release during a hypocaloric diet. The main purpose of this study was to determine free IGF-I, ALS, IGFBPs-1-4, and IGFBPs-1-3 protease activity in relation to 24-h GH release before and after......Decreased levels of GH and total IGF-I have been reported in obesity. It has been hypothesized that increased free (biologically active) IGF-I levels generated from IGF-binding protein (IGFBP) protease activity could be the mechanism for the low GH release in dieting obese subjects. However...... a short-term very low-calorie diet (VLCD)....

  18. Effects of short-term caloric restriction on circulating free IGF-I, acid-labile subunit, IGF-binding proteins (IGFBPs)-1-4, and IGFBPs-1-3 protease activity in obese subjects

    DEFF Research Database (Denmark)

    Rasmussen, Michael Højby; Juul, Anders; Kjems, Lise Lund

    2006-01-01

    Decreased levels of GH and total IGF-I have been reported in obesity. It has been hypothesized that increased free (biologically active) IGF-I levels generated from IGF-binding protein (IGFBP) protease activity could be the mechanism for the low GH release in dieting obese subjects. However......, no published data exist on free IGF-I levels, acid labile subunit (ALS), or IGFBP protease activity in relation to GH release during a hypocaloric diet. The main purpose of this study was to determine free IGF-I, ALS, IGFBPs-1-4, and IGFBPs-1-3 protease activity in relation to 24-h GH release before and after...... a short-term very low-calorie diet (VLCD)....

  19. The relationship between maternal insulin-like growth factors 1 and 2 (IGF-1, IGF-2) and IGFBP-3 to gestational age and preterm delivery.

    LENUS (Irish Health Repository)

    Cooley, Sharon M

    2010-05-01

    To investigate the relationship between levels of insulin-like growth factors 1 and 2 (IGF-1, IGF-2), and insulin-like growth factor binding protein 3 (IGFBP-3) in antenatal maternal serum and gestational age at delivery.

  20. Experimental Alcohol-Related Peripheral Neuropathy: Role of Insulin/IGF Resistance

    Directory of Open Access Journals (Sweden)

    James Gilchrist

    2012-08-01

    Full Text Available The mechanisms of alcohol-related peripheral neuropathy (ALPN are poorly understood. We hypothesize that, like alcohol-related liver and brain degeneration, ALPN may be mediated by combined effects of insulin/IGF resistance and oxidative stress. Adult male Long Evans rats were chronically pair-fed with diets containing 0% or 37% ethanol (caloric, and subjected to nerve conduction studies. Chronic ethanol feeding slowed nerve conduction in the tibial (p = 0.0021 motor nerve, and not plantar sensory nerve, but it did not affect amplitude. Histological studies of the sciatic nerve revealed reduced nerve fiber diameters with increased regenerative sprouts, and denervation myopathy in ethanol-fed rats. qRT-PCR analysis demonstrated reduced mRNA levels of insulin, IGF-1, and IGF-2 polypeptides, IGF-1 receptor, and IRS2, and ELISAs revealed reduced immunoreactivity for insulin and IGF-1 receptors, IRS-1, IRS-4, myelin-associated glycoprotein, and tau in sciatic nerves of ethanol-fed rats (all p < 0.05 or better. The findings suggest that ALPN is characterized by (1 slowed conduction velocity with demyelination, and a small component of axonal degeneration; (2 impaired trophic factor signaling due to insulin and IGF resistance; and (3 degeneration of myelin and axonal cytoskeletal proteins. Therefore, ALPN is likely mediated by molecular and signal transduction abnormalities similar to those identified in alcoholic liver and brain degeneration.

  1. Preeclampsia is associated with hypermethylation of IGF-1 promoter mediated by DNMT1.

    Science.gov (United States)

    Ma, Min; Zhou, Qiong-Jie; Xiong, Yu; Li, Bin; Li, Xiao-Tian

    2018-01-01

    Previous studies have demonstrated a dynamic epigenetic regulation of genes expression in placenta trophoblasts and a dynamic imbalance of DNA methylation and hydroxymethylation. Reduced IGF-1 has been observed in preeclampsia. This study was to investigate the interactive roles between IGF-1 and the global DNA methylation/hydroxymethylation, and the status of DNA methylation/hydroxymethylation and associated enzymes such as DNMTs and TETs in peeeclamptic placentas and hypoxic trophoblasts. It was found that IGF-1 was decreased in preeclamptic placentas and hypoxic trophoblasts when compared to the control group using immunohistochemisty, western blot, qRT-PCR and ELISA. Pyrophosphate sequencing showed IGF-1 promoter was significantly hypermethylated in preeclamptic placentas, which was responsible for reduced IGF-1 expression. Preeclamptic placentas and hypoxic trophoblasts were hypermethylated and hypohydroxymethylated accompanied by remarkably higher 5mC, DNMT1 and DNMT3b, and lower DNMT3a, 5hmC, TET1, TET2 and TET3 detected by immunohistochemisty, western blot, qRT-PCR and ELISA. Pearson's correlation confirmed a statistically significant negative correlation between IGF-1 and DNMT1. Furthermore, both treatment with 5-Aza-dc and DNMT1-siRNA significantly increased the expression of IGF-1 in HTR8 cells, indicating the potential mechanism of DNMT1-mediated DNA methylation in IGF-1 regulation. However, IGF-1 didn't change DNA methylation or hydroxymethylation. These findings suggest that preeclampsia is associated with hypermethylation of IGF-1 promoter mediated by DNMT1 and provide new insights into the diagnosis and treatment of preeclampsia.

  2. Lycopene inhibits IGF-I signal transduction and growth in normal prostate epithelial cells by decreasing DHT-modulated IGF-I production in co-cultured reactive stromal cells.

    Science.gov (United States)

    Liu, Xunxian; Allen, Jeffrey D; Arnold, Julia T; Blackman, Marc R

    2008-04-01

    Prostate stromal and epithelial cell communication is important in prostate functioning and cancer development. Primary human stromal cells from normal prostate stromal cells (PRSC) maintain a smooth muscle phenotype, whereas those from prostate cancer (6S) display reactive and fibroblastic characteristics. Dihydrotestosterone (DHT) stimulates insulin-like growth factor-I (IGF-I) production by 6S but not PSRC cells. Effects of reactive versus normal stroma on normal human prostate epithelial (NPE or PREC) cells are poorly understood. We co-cultured NPE plus 6S or PRSC cells to compare influences of different stromal cells on normal epithelium. Because NPE and PREC cells lose androgen receptor (AR) expression in culture, DHT effects must be modulated by associated stromal cells. When treated with camptothecin (CM), NPE cells, alone and in stromal co-cultures, displayed a dose-dependent increase in DNA fragmentation. NPE/6S co-cultures exhibited reduced CM-induced cell death with exposure to DHT, whereas NPE/PRSC co-cultures exhibited CM-induced cell death regardless of DHT treatment. DHT blocked CM-induced, IGF-I-mediated, NPE death in co-cultured NPE/6S cells without, but not with, added anti-IGF-I and anti-IGF-R antibodies. Lycopene consumption is inversely related to human prostate cancer risk and inhibits IGF-I and androgen signaling in rat prostate cancer. In this study, lycopene, in dietary concentrations, reversed DHT effects of 6S cells on NPE cell death, decreased 6S cell IGF-I production by reducing AR and beta-catenin nuclear localization and inhibited IGF-I-stimulated NPE and PREC growth, perhaps by attenuating IGF-I's effects on serine phosphorylation of Akt and GSK3beta and tyrosine phosphorylation of GSK3. This study expands the understanding of the preventive mechanisms of lycopene in prostate cancer.

  3. IGF-1 Protects Dopamine Neurons Against Oxidative Stress: Association with Changes in Phosphokinases

    Science.gov (United States)

    El Ayadi, Amina; Zigmond, Michael J.; Smith, Amanda D.

    2016-01-01

    Insulin-like growth factor-1 (IGF-1) is an endogenous peptide transported across the blood brain barrier that is protective in several brain injury models, including an acute animal model of Parkinson’s disease (PD). Motor deficits in PD are due largely to the progressive loss of nigrostriatal dopaminergic neurons. Thus, we examined the neuroprotective potential of IGF-1 in a progressive model of dopamine deficiency in which 6-hydroxydopamine (6-OHDA) is infused into the striatum. Rats received intrastriatal IGF-1 (5 or 50 μg) 6 hrs prior to infusion of 4 μg 6-OHDA into the same site and were sacrificed 1 or 4 wks later. Both concentrations of IGF-1 protected tyrosine hydroxylase (TH) immunoreactive terminals in striatum at 4 wks but not at 1 wk, indicating that IGF-induced restoration of the dopaminergic phenotype occurred over several weeks. TH-immunoreactive cell loss was only attenuated with 50 μg IGF-1. We then examined the effect of striatal IGF-1 on the Ras/ERK1/2 and PI3K/Akt pathways to ascertain if their activation correlated with IGF-1-induced protection. Striatal and nigral levels of phospho-ERK1/2 (pERK1/2) were maximal 6 hrs after IGF-1 infusion and, with the exception of an increase in nigral pERK2 at 48 hrs, returned to basal levels by 7 days. Phospho-Akt (Ser473) was elevated 6–24 hrs post-IGF-1 infusion in both striatum and substantia nigra concomitant with inhibition of pro-death GSK-3β, a downstream target of Akt. These results suggest that IGF-1 can protect the nigrostriatal pathway in a progressive PD model and that this protection is preceded by activation of key pro-survival signaling cascades PMID:26894890

  4. [Effects of pulsed magnetic field on insulin-like growth factor-1 (IGF-1) in cerebrospinal fluid and effects of IGF-1 on functional recovery].

    Science.gov (United States)

    Song, Cheng-xian; Fan, Jian-zhong; Wu, Hong-ying; Wei, Yi; Zhen, Jian-rong

    2010-10-01

    To study the effects of pulsed magnetic field on insulin-like growth factor-1 (IGF-1) level in the cerebrospinal fluid (CSF) and the association of IGF-1 alterations with the activities of daily living (ADL) of patients with brain injury. Sixty-five patients with brain injury were divided randomly into the control group (n=30) and magnetic therapy group (n=35), both receiving conventional therapy and in the latter group, daily pulsed magnetic field treatment (20-40 mT, 50 Hz, 20 min per time, 1 time per day) for 14 consecutive days were administered. On the first and 14th days of the treatment, 2 ml CSF was collected from the cases patients for IGF-1 measurement by radioimmunoassay, and Barthel index (BI) was used to assess the ADL of the patients. After a 14-day treatment, IGF-1 level in the CSF were significantly increased in the magnetic group in comparison with the level before the treatment and with those in the control group (P0.05). The scores of BI increased significantly in both groups after the treatment (Pmagnetic therapy group (P<0.05). A significant positive correlation was found between IGF-1 level in the CSF and BI in these patients (r=0.283, P=0.022). Pulsed magnetic field might increase IGF-1 level in the CSF of patients with brain injury to promote the recovery of the patients ADL, suggesting its potential clinical value in the treatment of brain injury.

  5. Systemic analysis of different colorectal cancer cell lines and TCGA datasets identified IGF-1R/EGFR-PPAR-CASPASE axis as important indicator for radiotherapy sensitivity.

    Science.gov (United States)

    Chen, Lin; Zhu, Zhe; Gao, Wei; Jiang, Qixin; Yu, Jiangming; Fu, Chuangang

    2017-09-05

    Insulin-like growth factor 1 receptor (IGF-1R) is proved to contribute the development of many types of cancers. But, little is known about its roles in radio-resistance of colorectal cancer (CRC). Here, we demonstrated that low IGF-1R expression value was associated with the better radiotherapy sensitivity of CRC. Besides, through Quantitative Real-time PCR (qRT-PCR), the elevated expression value of epidermal growth factor receptor (EGFR) was observed in CRC cell lines (HT29, RKO) with high radio-sensitivity compared with those with low sensitivity (SW480, LOVO). The irradiation induced apoptosis rates of wild type and EGFR agonist (EGF) or IGF-1R inhibitor (NVP-ADW742) treated HT29 and SW480 cells were quantified by flow cytometry. As a result, the apoptosis rate of EGF and NVP-ADW742 treated HT29 cells was significantly higher than that of those wild type ones, which indicated that high EGFR and low IGF-1R expression level in CRC was associated with the high sensitivity to radiotherapy. We next conducted systemic bioinformatics analysis of genome-wide expression profiles of CRC samples from the Cancer Genome Atlas (TCGA). Differential expression analysis between IGF-1R and EGFR abnormal CRC samples, i.e. CRC samples with higher IGF-1R and lower EGFR expression levels based on their median expression values, and the rest of CRC samples identified potential genes contribute to radiotherapy sensitivity. Functional enrichment of analysis of those differential expression genes (DEGs) in the Database for Annotation, Visualization and Integrated Discovery (DAVID) indicated PPAR signaling pathway as an important pathway for the radio-resistance of CRC. Our study identified the potential biomarkers for the rational selection of radiotherapy for CRC patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Genomic imprinting of IGF2 in marsupials is methylation dependent

    Directory of Open Access Journals (Sweden)

    Imumorin Ikhide

    2008-05-01

    Full Text Available Abstract Background- Parent-specific methylation of specific CpG residues is critical to imprinting in eutherian mammals, but its importance to imprinting in marsupials and, thus, the evolutionary origins of the imprinting mechanism have been the subject of controversy. This has been particularly true for the imprinted Insulin-like Growth Factor II (IGF2, a key regulator of embryonic growth in vertebrates and a focal point of the selective forces leading to genomic imprinting. The presence of the essential imprinting effector, DNMT3L, in marsupial genomes and the demonstration of a differentially methylated region (DMR in the retrotransposon-derived imprinted gene, PEG10, in tammar wallaby argue for a role for methylation in imprinting, but several studies have found no evidence of parent-specific methylation at other imprinted loci in marsupials. Results- We performed the most extensive search to date for allele-specific patterns of CpG methylation within CpG isochores or CpG enriched segments across a 22 kilobase region surrounding the IGF2 gene in the South American opossum Monodelphis domestica. We identified a previously unknown 5'-untranslated exon for opossum IGF2, which is flanked by sequences defining a putative neonatal promoter, a DMR and an active Matrix Attachment Region (MAR. Demethylation of this DMR in opossum neonatal fibroblasts results in abherrant biallelic expression of IGF2. Conclusion- The demonstration of a DMR and an active MAR in the 5' flank of opossum IGF2 mirrors the regulatory features of the 5' flank of Igf2 in mice. However, demethylation induced activation of the maternal allele of IGF2 in opossum differs from the demethylation induced repression of the paternal Igf2 allele in mice. While it can now be concluded that parent-specific DNA methylation is an epigentic mark common to Marsupialia and Eutheria, the molecular mechanisms of transcriptional silencing at imprinted loci have clearly evolved along independent

  7. The association between insulin-like growth factor 1 (IGF-1), IGF-binding proteins (IGFBPs), and the carboxyterminal propeptide of type I procollagen (PICP) in pre- and postmenopausal women with rheumatoid arthritis.

    Science.gov (United States)

    Szeremeta, A; Jura-Półtorak, A; Komosińska-Vassev, K; Zoń-Giebel, A; Kapołka, D; Olczyk, K

    2017-05-01

    To assess the association between plasma levels of the insulin-like growth factor (IGF) system including IGF-1, IGF-binding proteins (IGFBPs) including IGFBP-1, total (t-)IGFBP-3 and functional (f-)IGFBP-3, and the carboxyterminal propeptide of type I procollagen (PICP) in pre- and postmenopausal women with rheumatoid arthritis (RA). Plasma concentrations of IGF-1, IGFBP-1, t-IGFBP-3, f-IGFBP-3, and PICP were measured by immunoassay. No significant difference was observed in plasma IGF-1 levels between pre- and postmenopausal subjects. Plasma levels of IGFBP-1 were elevated in RA. PICP and f-IGFBP-3 were greatly affected by menopausal status. Of the three IGFBPs tested, only f-IGFBP-3 plasma levels in RA women correlated negatively with age and disease duration. A positive correlation was demonstrated between PICP and erythrocyte sedimentation rate (ESR) in RA. Moreover, there was no correlation between PICP and IGF-1 and any of the IGFBPs in RA women. Considerable disruption of the IGF system in RA was found to be related to disease activity and duration. Changes in the IGF-IGFBP axis and PICP levels were different in pre- and postmenopausal women with RA. Elevated plasma PICP concentrations may indicate an increased rate of bone formation in postmenopausal RA women. Additionally, the observed changes in the IGF/IGFBP system did not affect bone formation during RA.

  8. IGF1 regulates RUNX1 expression via IRS1/2: Implications for antler chondrocyte differentiation

    OpenAIRE

    Yang, Zhan-Qing; Zhang, Hong-Liang; Duan, Cui-Cui; Geng, Shuang; Wang, Kai; Yu, Hai-Fan; Yue, Zhan-Peng; Guo, Bin

    2017-01-01

    Although IGF1 is important for the proliferation and differentiation of chondrocytes, its underlying molecular mechanism is still unknown. Here we addressed the physiologic function of IGF1 in antler cartilage and explored the interplay of IGF1, IRS1/2 and RUNX1 in chondrocyte differentiation. The results showed that IGF1 was highly expressed in antler chondrocytes. Exogenous rIGF1 could increase the proliferation of chondrocytes and cell proportion in the S phase, whereas IGF1R inhibitor PQ4...

  9. Type 1 IGF receptor translocates to the nucleus of human tumor cells

    OpenAIRE

    Aleksic, Tamara; Chitnis, Meenali M.; Perestenko, Olga V.; Gao, Shan; Thomas, Peter H.; Turner, Gareth D.; Protheroe, Andrew S.; Howarth, Mark; Macaulay, Valentine M.

    2010-01-01

    The type 1 insulin-like growth factor receptor (IGF-1R) is a transmembrane glycoprotein comprising two extracellular α subunits and two β subunits with tyrosine kinase activity. The IGF-1R is frequently upregulated in cancers, and signals from the cell surface to promote proliferation and cell survival. Recent attention has focused on the IGF-1R as a target for cancer treatment. Here we report that the nuclei of human tumor cells contain IGF-1R, detectable using multiple antibodies to α- and ...

  10. Association of tRNA methyltransferase NSUN2/IGF-II molecular signature with ovarian cancer survival.

    Science.gov (United States)

    Yang, Jia-Cheng; Risch, Eric; Zhang, Meiqin; Huang, Chan; Huang, Huatian; Lu, Lingeng

    2017-09-01

    To investigate the association between NSUN2/IGF-II signature and ovarian cancer survival. Using a publicly accessible dataset of RNA sequencing and clinical follow-up data, we performed Classification and Regression Tree and survival analyses. Patients with NSUN2 high IGF-II low had significantly superior overall and disease progression-free survival, followed by NSUN2 low IGF-II low , NSUN2 high IGF-II high and NSUN2 low IGF-II high (p IGF-II signature with the risks of death and relapse remained significant in multivariate Cox regression models. Random-effects meta-analyses show the upregulated NSUN2 and IGF-II expression in ovarian cancer versus normal tissues. The NSUN2/IGF-II signature associates with heterogeneous outcome and may have clinical implications in managing ovarian cancer.

  11. Complement component 1, q subcomponent binding protein (C1QBP) in lipid rafts mediates hepatic metastasis of pancreatic cancer by regulating IGF-1/IGF-1R signaling.

    Science.gov (United States)

    Shi, Haojun; Fang, Winston; Liu, Minda; Fu, Deliang

    2017-10-01

    Pancreatic cancer shows a remarkable predilection for hepatic metastasis. Complement component 1, q subcomponent binding protein (C1QBP) can mediate growth factor-induced cancer cell chemotaxis and distant metastasis by activation of receptor tyrosine kinases. Coincidentally, insulin-like growth factor-1 (IGF-1) derived from the liver and cancer cells itself has been recognized as a critical inducer of hepatic metastasis. However, the mechanism underlying IGF-1-dependent hepatic metastasis of pancreatic cancer, in which C1QBP may be involved, remains unknown. In the study, we demonstrated a significant association between C1QBP expression and hepatic metastasis in patients with pancreatic cancer. IGF-1 induced the translocation of C1QBP from cytoplasm to lipid rafts and further drove the formation of CD44 variant 6 (CD44v6)/C1QBP complex in pancreatic cancer cells. C1QBP interacting with CD44v6 in lipid rafts promoted phosphorylation of IGF-1R and thus activated downstream PI3K and MAPK signaling pathways which mediated metastatic potential of pancreatic cancer cells including proliferation, apoptosis, invasion, adhesion and energy metabolism. Furthermore, C1QBP knockdown suppressed hepatic metastasis of pancreatic cancer cells in nude mice. We therefore conclude that C1QBP in lipid rafts serves a key regulator of IGF-1/IGF-1R-induced hepatic metastasis from pancreatic cancer. Our findings about C1QBP in lipid rafts provide a novel strategy to block IGF-1/IGF-1R signaling in pancreatic cancer and a reliable premise for more efficient combined modality therapies. © 2017 UICC.

  12. MiR-223 suppresses cell proliferation by targeting IGF-1R.

    Directory of Open Access Journals (Sweden)

    Cheng You Jia

    Full Text Available To study the roles of microRNA-223 (miR-223 in regulation of cell growth, we established a miR-223 over-expression model in HeLa cells infected with miR-223 by Lentivirus pLL3.7 system. We observed in this model that miR-223 significantly suppressed the proliferation, growth rate, colony formation of HeLa cells in vitro, and in vivo tumorigenicity or tumor formation in nude mice. To investigate the mechanisms involved, we scanned and examined the potential and putative target molecules of miR-223 by informatics, quantitative PCR and Western blot, and found that insulin-like growth factor-1 receptor (IGF-1R was the functional target of miR-223 inhibition of cell proliferation. Targeting IGF-1R by miR-223 was not only seen in HeLa cells, but also in leukemia and hepatoma cells. The downstream pathway, Akt/mTOR/p70S6K, to which the signal was mediated by IGF-1R, was inhibited as well. The relative luciferase activity of the reporter containing wild-type 3'UTR(3'untranslated region of IGF-1R was significantly suppressed, but the mutant not. Silence of IGF-1R expression by vector-based short hairpin RNA resulted in the similar inhibition with miR-223. Contrarily, rescued IGF-1R expression in the cells that over-expressed miR-223, reversed the inhibition caused by miR-223 via introducing IGF-1R cDNA that didn't contain the 3'UTR. Meanwhile, we also noted that miR-223 targeted Rasa1, but the downstream molecules mediated by Rasa1 was neither targeted nor regulated. Therefore we believed that IGF-1R was the functional target for miR-223 suppression of cell proliferation and its downstream PI3K/Akt/mTOR/p70S6K pathway suppressed by miR-223 was by targeting IGF-1R.

  13. IGF-1 has sexually dimorphic, pleiotropic, and time-dependent effects on healthspan, pathology, and lifespan.

    Science.gov (United States)

    Ashpole, Nicole M; Logan, Sreemathi; Yabluchanskiy, Andriy; Mitschelen, Matthew C; Yan, Han; Farley, Julie A; Hodges, Erik L; Ungvari, Zoltan; Csiszar, Anna; Chen, Sixia; Georgescu, Constantin; Hubbard, Gene B; Ikeno, Yuji; Sonntag, William E

    2017-04-01

    Reduced circulating levels of IGF-1 have been proposed as a conserved anti-aging mechanism that contributes to increased lifespan in diverse experimental models. However, IGF-1 has also been shown to be essential for normal development and the maintenance of tissue function late into the lifespan. These disparate findings suggest that IGF-1 may be a pleiotropic modulator of health and aging, as reductions in IGF-1 may be beneficial for one aspect of aging, but detrimental for another. We postulated that the effects of IGF-1 on tissue health and function in advanced age are dependent on the tissue, the sex of the animal, and the age at which IGF-1 is manipulated. In this study, we examined how alterations in IGF-1 levels at multiple stages of development and aging influence overall lifespan, healthspan, and pathology. Specifically, we investigated the effects of perinatal, post-pubertal, and late-adult onset IGF-1 deficiency using genetic and viral approaches in both male and female igf f/f C57Bl/6 mice. Our results support the concept that IGF-1 levels early during lifespan establish the conditions necessary for subsequent healthspan and pathological changes that contribute to aging. Nevertheless, these changes are specific for each sex and tissue. Importantly, late-life IGF-1 deficiency (a time point relevant for human studies) reduces cancer risk but does not increase lifespan. Overall, our results indicate that the levels of IGF-1 during development influence late-life pathology, suggesting that IGF-1 is a developmental driver of healthspan, pathology, and lifespan.

  14. Paternal Insulin-like Growth Factor 2 (Igf2) Regulates Stem Cell Activity During Adulthood.

    Science.gov (United States)

    Barroca, Vilma; Lewandowski, Daniel; Jaracz-Ros, Agnieszka; Hardouin, Sylvie-Nathalie

    2017-02-01

    Insulin-like Growth Factor 2 (IGF2) belongs to the IGF/Insulin pathway, a highly conserved evolutionarily network that regulates growth, aging and lifespan. Igf2 is highly expressed in the embryo and in cancer cells. During mouse development, Igf2 is expressed in all sites where hematopoietic stem cells (HSC) successively expand, then its expression drops at weaning and becomes undetectable when adult HSC have reached their niches in bones and start to self-renew. In the present study, we aim to discover the role of IGF2 during adulthood. We show that Igf2 is specifically expressed in adult HSC and we analyze HSC from adult mice deficient in Igf2 transcripts. We demonstrate that Igf2 deficiency avoids the age-related attrition of the HSC pool and that Igf2 is necessary for tissue homeostasis and regeneration. Our study reveals that the expression level of Igf2 is critical to maintain the balance between stem cell self-renewal and differentiation, presumably by regulating the interaction between HSC and their niche. Our data have major clinical interest for transplantation: understanding the changes in adult stem cells and their environments will improve the efficacy of regenerative medicine and impact health- and life-span. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Novel functional polymorphism in IGF-1 gene associated with multiple sclerosis: A new insight to MS.

    Science.gov (United States)

    Shahbazi, Majid; Abdolmohammadi, Reza; Ebadi, Hamid; Farazmandfar, Touraj

    2017-04-01

    Interactions between several genes and environment may play a role in susceptibility to multiple sclerosis (MS). The IGF-1 plays a key role in proliferation, maintenance and survival of nerve cells. Therefore, we hypothesized that IGF-1 may be a target for prediction and control MS. We aimed to analysis IGF-1 gene promoter sequence, to investigate the effect of the single nucleotide variants on IGF-1 expression and its association with MS. We enrolled 339 MS patients and 431 healthy controls. A specific region in IGF-1 gene promoter was investigated by SSCP analysis. All samples were genotyped by SSP-PCR. In-vitro and in-vivo IGF-1 production was measured by ELISA assay. IGF-1 expression in PBMCs was measured using real-time PCR. We identified a T to C single nucleotide substitution at position -1089 and a C to T at position -383 from transcription start site in the IGF-1 gene promoter. There was a significant association between MS and genotypes IGF-1(-383) C/T (p=0.001) and IGF-1(-383) C/C (pMS (p=0.001). In-vitro and in-vivo IGF-1 level showed that IGF-1 production in samples with genotype IGF-1(-383) C/C significantly was less than T/T (p=0.004) but not T/C (p=0.220). According to IGF-1 roles in CNS and our results, this study suggests that low IGF-1 level may be associated with susceptibility to MS. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Role of heterotrimeric G protein and calcium in cardiomyocyte hypertrophy induced by IGF-1.

    Science.gov (United States)

    Carrasco, Loreto; Cea, Paola; Rocco, Paola; Peña-Oyarzún, Daniel; Rivera-Mejias, Pablo; Sotomayor-Flores, Cristian; Quiroga, Clara; Criollo, Alfredo; Ibarra, Cristian; Chiong, Mario; Lavandero, Sergio

    2014-04-01

    In the heart, insulin-like growth factor-1 (IGF-1) is a peptide with pro-hypertrophic and anti-apoptotic actions. The pro-hypertrophic properties of IGF-1 have been attributed to the extracellular regulated kinase (ERK) pathway. Recently, we reported that IGF-1 also increases intracellular Ca(2+) levels through a pertussis toxin (PTX)-sensitive G protein. Here we investigate whether this Ca(2+) signal is involved in IGF-1-induced cardiomyocyte hypertrophy. Our results show that the IGF-1-induced increase in Ca(2+) level is abolished by the IGF-1 receptor tyrosine kinase inhibitor AG538, PTX and the peptide inhibitor of Gβγ signaling, βARKct. Increases in the activities of Ca(2+) -dependent enzymes calcineurin, calmodulin kinase II (CaMKII), and protein kinase Cα (PKCα) were observed at 5 min after IGF-1 exposure. AG538, PTX, βARKct, and the dominant negative PKCα prevented the IGF-1-dependent phosphorylation of ERK1/2. Participation of calcineurin and CaMKII in ERK phosphorylation was discounted. IGF-1-induced cardiomyocyte hypertrophy, determined by cell size and β-myosin heavy chain (β-MHC), was prevented by AG538, PTX, βARKct, dominant negative PKCα, and the MEK1/2 inhibitor PD98059. Inhibition of calcineurin with CAIN did not abolish IGF-1-induced cardiac hypertrophy. We conclude that IGF-1 induces hypertrophy in cultured cardiomyocytes by activation of the receptor tyrosine kinase activity/βγ-subunits of a PTX-sensitive G protein/Ca(2+) /PKCα/ERK pathway without the participation of calcineurin. © 2013 Wiley Periodicals, Inc.

  17. Serum Levels of Gelatinase Associated Lipocalin as Indicator of the Inflammatory Status in Coronary Artery Disease

    Directory of Open Access Journals (Sweden)

    Nikolaos Kafkas

    2012-01-01

    Full Text Available Background. Atherosclerosis is a chronic inflammatory disease and the acute clinical manifestations represent acute on chronic inflammation. Neutrophil gelatinase-associated lipocalin (NGAL is found in the granules of human neutrophils, with many diverse functions. The aim of this study was to evaluate the hypothesis that levels NGAL in blood may reflect the inflammatory process in various stages of coronary artery disease. Methods. We studied 140 patients, with SA 40, UA 35, NSTEMI 40, and STEMI 25, and 20 healthy controls. Serum NGAL was measured upon admission and before coronary angiography. Results. Significant differences were observed in median serum-NGAL(ng/mL between patients with SA (79.23 (IQR, 37.50–100.32, when compared with UA (108.00 (68.34–177.59, NSTEMI (166.49 (109.24–247.20, and STEMI (178.63 (111.18–305.92 patients and controls (50.31 (44.30–69.78 with significant incremental value from SA to STEMI. We observed a positive and significant correlation between serum-NGAL and hs-CRP (spearman coefficient rho = 0.685, <0.0001 as well as with neutrophil counts (r = 0.511, <0.0001. Conclusions. In patients with coronary artery disease serum levels of NGAL increase and reflect the degree of inflammatory process. In patients with acute coronary syndromes, serum levels of NGAL have high negative predictive value and reflecting the inflammatory status could show the severity of coronary clinical syndrome.

  18. Serum IGF-1 affects skeletal acquisition in a temporal and compartment-specific manner.

    Directory of Open Access Journals (Sweden)

    Hayden-William Courtland

    2011-03-01

    Full Text Available Insulin-like growth factor-1 (IGF-1 plays a critical role in the development of the growing skeleton by establishing both longitudinal and transverse bone accrual. IGF-1 has also been implicated in the maintenance of bone mass during late adulthood and aging, as decreases in serum IGF-1 levels appear to correlate with decreases in bone mineral density (BMD. Although informative, mouse models to date have been unable to separate the temporal effects of IGF-1 depletion on skeletal development. To address this problem, we performed a skeletal characterization of the inducible LID mouse (iLID, in which serum IGF-1 levels are depleted at selected ages. We found that depletion of serum IGF-1 in male iLID mice prior to adulthood (4 weeks decreased trabecular bone architecture and significantly reduced transverse cortical bone properties (Ct.Ar, Ct.Th by 16 weeks (adulthood. Likewise, depletion of serum IGF-1 in iLID males at 8 weeks of age, resulted in significantly reduced transverse cortical bone properties (Ct.Ar, Ct.Th by 32 weeks (late adulthood, but had no effect on trabecular bone architecture. In contrast, depletion of serum IGF-1 after peak bone acquisition (at 16 weeks resulted in enhancement of trabecular bone architecture, but no significant changes in cortical bone properties by 32 weeks as compared to controls. These results indicate that while serum IGF-1 is essential for bone accrual during the postnatal growth phase, depletion of IGF-1 after peak bone acquisition (16 weeks is compartment-specific and does not have a detrimental effect on cortical bone mass in the older adult mouse.

  19. Igf-I regulates pheochromocytoma cell proliferation and survival in vitro and in vivo.

    Science.gov (United States)

    Fernández, María Celia; Venara, Marcela; Nowicki, Susana; Chemes, Héctor E; Barontini, Marta; Pennisi, Patricia A

    2012-08-01

    IGFs are involved in malignant transformation and growth of several tissues, including the adrenal medulla. The present study was designed to evaluate the impact of IGF-I on pheochromocytoma development. We used a murine pheochromocytoma (MPC) cell line (MPC4/30) and an animal model with a reduction of 75% in circulating IGF-I levels [liver-IGF-I-deficient (LID) mice] to perform studies in vitro and in vivo. We found that, in culture, IGF-I stimulation increases proliferation, migration, and anchorage-independent growth, whereas it inhibits apoptosis of MPC cells. When injected to control and to LID mice, MPC cells grow and form tumors with features of pheochromocytoma. Six weeks after cell inoculation, all control mice developed sc tumors. In contrast, in 73% of LID mice, tumor development was delayed to 7-12 wk, and the remaining 27% did not develop tumors up to 12 wk after inoculation. LID mice harboring MPC cells and treated with recombinant human IGF-I (LID+) developed tumors as controls. Tumors developed in control, LID, and LID+ mice had similar histology and were similarly positive for IGF-I receptor expression. The apoptotic index was higher in tumors from LID mice compared with those from control mice, whereas vascular density was decreased. In summary, our work demonstrates that IGF-I has a critical role in maintaining tumor phenotype and survival of already transformed pheochromocytoma cells and is required for the initial establishment of these tumors, providing encouragement to carry on research studies to address the IGF-I/IGF-I receptor system as a target of therapeutic strategies for pheochromocytoma treatment in the future.

  20. Low serum levels of free and total insulin-like growth factor I (IGF-I) in patients with anorexia nervosa are not associated with increased IGF-binding protein-3 proteolysis

    DEFF Research Database (Denmark)

    Støving, R K; Flyvbjerg, A; Frystyk, J

    1999-01-01

    Patients with anorexia nervosa (AN) are GH resistant, with elevated GH levels and low serum levels of total insulin-like growth factor I (IGF-I). IGF-I action is modulated by IGF-binding proteins (IGFBPs), and a variety of catabolic states has been characterized by the presence of increased IGFBP-3...

  1. IGF-1 and Chondroitinase ABC Augment Nerve Regeneration after Vascularized Composite Limb Allotransplantation.

    Directory of Open Access Journals (Sweden)

    Nataliya V Kostereva

    Full Text Available Impaired nerve regeneration and inadequate recovery of motor and sensory function following peripheral nerve repair remain the most significant hurdles to optimal functional and quality of life outcomes in vascularized tissue allotransplantation (VCA. Neurotherapeutics such as Insulin-like Growth Factor-1 (IGF-1 and chondroitinase ABC (CH have shown promise in augmenting or accelerating nerve regeneration in experimental models and may have potential in VCA. The aim of this study was to evaluate the efficacy of low dose IGF-1, CH or their combination (IGF-1+CH on nerve regeneration following VCA. We used an allogeneic rat hind limb VCA model maintained on low-dose FK506 (tacrolimus therapy to prevent rejection. Experimental animals received neurotherapeutics administered intra-operatively as multiple intraneural injections. The IGF-1 and IGF-1+CH groups received daily IGF-1 (intramuscular and intraneural injections. Histomorphometry and immunohistochemistry were used to evaluate outcomes at five weeks. Overall, compared to controls, all experimental groups showed improvements in nerve and muscle (gastrocnemius histomorphometry. The IGF-1 group demonstrated superior distal regeneration as confirmed by Schwann cell (SC immunohistochemistry as well as some degree of extrafascicular regeneration. IGF-1 and CH effectively promote nerve regeneration after VCA as confirmed by histomorphometric and immunohistochemical outcomes.

  2. Role of IGF1R in breast cancer subtypes, stemness, and lineage differentiation

    Directory of Open Access Journals (Sweden)

    Susan M Farabaugh

    2015-04-01

    Full Text Available Insulin-like growth factor (IGF signaling is fundamental for growth and survival. A large body of evidence (laboratory, epidemiological, and clinical implicates the exploitation of this pathway in cancer. Up to 50% of breast tumors express the activated form of the IGF1 receptor (IGF1R. Breast cancers are categorized into subtypes based upon hormone and ERRB2 receptor expression and/or gene expression profiling. Even though IGF1R influences tumorigenic phenotypes and drug resistance across all breast cancer subtypes, it has specific expression and function in each. In some subtypes, IGF1R levels correlate with a favorable prognosis, while in others it is associated with recurrence and poor prognosis, suggesting different actions based upon cellular and molecular contexts. In this review, we examine IGF1R expression and function as it relates to breast cancer subtype and therapy-acquired resistance. Additionally, we discuss the role of IGF1R in stem cell maintenance and lineage differentiation and how these cell fate influences may alter the differentiation potential and cellular composition of breast tumors.

  3. DNA methylation modulates H19 and IGF2 expression in porcine female eye

    Directory of Open Access Journals (Sweden)

    Dongxu Wang

    2017-03-01

    Full Text Available Abstract The sexually dimorphic expression of H19/IGF2 is evolutionarily conserved. To investigate whether the expression of H19/IGF2 in the female porcine eye is sex-dependent, gene expression and methylation status were evaluated using quantitative real-time PCR (qPCR and bisulfite sequencing PCR (BSP. We hypothesized that H19/IGF2 might exhibit a different DNA methylation status in the female eye. In order to evaluate our hypothesis, parthenogenetic (PA cells were used for analysis by qPCR and BSP. Our results showed that H19 and IGF2 were over-expressed in the female eye compared with the male eye (3-fold and 2-fold, respectively. We observed a normal monoallelic methylation pattern for H19 differentially methylated regions (DMRs. Compared with H19 DMRs, IGF2 DMRs showed a different methylation pattern in the eye. Taken together, these results suggest that elevated expression of H19/IGF2 is caused by a specific chromatin structure that is regulated by the DNA methylation status of IGF2 DMRs in the female eye.

  4. DNA methylation modulates H19 and IGF2 expression in porcine female eye

    Science.gov (United States)

    Wang, Dongxu; Wang, Guodong; Yang, Hao; Liu, Haibo; Li, Cuie; Li, Xiaolan; Lin, Chao; Song, Yuning; Li, Zhanjun; Liu, Dianfeng

    2017-01-01

    Abstract The sexually dimorphic expression of H19/IGF2 is evolutionarily conserved. To investigate whether the expression of H19/IGF2 in the female porcine eye is sex-dependent, gene expression and methylation status were evaluated using quantitative real-time PCR (qPCR) and bisulfite sequencing PCR (BSP). We hypothesized that H19/IGF2 might exhibit a different DNA methylation status in the female eye. In order to evaluate our hypothesis, parthenogenetic (PA) cells were used for analysis by qPCR and BSP. Our results showed that H19 and IGF2 were over-expressed in the female eye compared with the male eye (3-fold and 2-fold, respectively). We observed a normal monoallelic methylation pattern for H19 differentially methylated regions (DMRs). Compared with H19 DMRs, IGF2 DMRs showed a different methylation pattern in the eye. Taken together, these results suggest that elevated expression of H19/IGF2 is caused by a specific chromatin structure that is regulated by the DNA methylation status of IGF2 DMRs in the female eye. PMID:28266684

  5. 1.42 A crystal structure of mini-IGF-1(2): an analysis of the disulfide isomerization property and receptor binding property of IGF-1 based on the three-dimensional structure

    International Nuclear Information System (INIS)

    Yun Caihong; Tang Yuehua; Feng Youmin; An Xiaomin; Chang Wenrui; Liang Dongcai

    2004-01-01

    Insulin and insulin-like growth factor 1 (IGF-1) share a homologous sequence, a similar three-dimensional structure and weakly overlapping biological activity, but IGF-1 folds into two thermodynamically stable disulfide isomers, while insulin folds into one unique stable tertiary structure. This is a very interesting phenomenon in which one amino acid sequence encodes two three-dimensional structures, and its molecular mechanism has remained unclear for a long time. In this study, the crystal structure of mini-IGF-1(2), a disulfide isomer of an artificial analog of IGF-1, was solved by the SAD/SIRAS method using our in-house X-ray source. Evidence was found in the structure showing that the intra-A-chain/domain disulfide bond of some molecules was broken; thus, it was proposed that disulfide isomerization begins with the breakdown of this disulfide bond. Furthermore, based on the structural comparison of IGF-1 and insulin, a new assumption was made that in insulin the several hydrogen bonds formed between the N-terminal region of the B-chain and the intra-A-chain disulfide region of the A-chain are the main reason for the stability of the intra-A-chain disulfide bond and for the prevention of disulfide isomerization, while Phe B1 and His B5 are very important for the formation of these hydrogen bonds. Moreover, the receptor binding property of IGF-1 was analyzed in detail based on the structural comparison of mini-IGF-1(2), native IGF-1, and small mini-IGF-1

  6. Growth hormone mediates pubertal skeletal development independent of hepatic IGF-1 production.

    Science.gov (United States)

    Courtland, Hayden-William; Sun, Hui; Beth-On, Mordechay; Wu, Yingjie; Elis, Sebastien; Rosen, Clifford J; Yakar, Shoshana

    2011-04-01

    Deficiencies in either growth hormone (GH) or insulin-like growth factor 1 (IGF-1) are associated with reductions in bone size during growth in humans and animal models. Liver-specific IGF-1-deficient (LID) mice, which have 75% reductions in serum IGF-1, were created previously to separate the effects of endocrine (serum) IGF-1 from autocrine/paracrine IGF-1. However, LID mice also have two- to threefold increases in GH, and this may contribute to the observed pubertal skeletal phenotype. To clarify the role of GH in skeletal development under conditions of significantly reduced serum IGF-1 levels (but normal tissue IGF-1 levels), we studied the skeletal response of male LID and control mice to GH inhibition by pegvisomant from 4 to 8 weeks of age. Treatment of LID mice with pegvisomant resulted in significant reductions in body weight, femur length (Le), and femur total area (Tt.Ar), as well as further reductions in serum IGF-1 levels by 8 weeks of age, compared with the mean values of vehicle-treated LID mice. Reductions in both Tt.Ar and Le were proportional after treatment with pegvisomant. On the other hand, the relative amount of cortical tissue formed (RCA) in LID mice treated with pegvisomant was significantly less than that in both vehicle-treated LID and control mice, indicating that antagonizing GH action, either directly (through GH receptor signaling inhibition) or indirectly (through further reductions in serum/tissue IGF-1 levels), results in disproportionate reductions in the amount of cortical bone formed. This resulted in bones with significantly reduced mechanical properties (femoral whole-bone stiffness and work to failure were markedly decreased), suggesting that compensatory increases of GH in states of IGF-1 deficiency (LID mice) act to protect against a severe inhibition of bone modeling during growth, which otherwise would result in bones that are too weak for normal and/or extreme loading conditions. Copyright © 2011 American Society for

  7. IGF-1 Prevents Diastolic and Systolic Dysfunction Associated with Cardiomyopathy and Preserves Adrenergic Sensitivity

    Science.gov (United States)

    Roof, Steve R.; Boslett, James; Russell, Duncan; del Rio, Carlos; Alecusan, Joe; Zweier, Jay L.; Ziolo, Mark T.; Hamlin, Robert; Mohler, Peter J.; Curran, Jerry

    2015-01-01

    Aims Insulin-like growth factor 1 (IGF-1)-dependent signaling promotes exercise-induced physiological cardiac hypertrophy. However, the in vivo therapeutic potential of IGF-1 for heart disease is not well established. Here we test the potential therapeutic benefits of IGF-1 on cardiac function using an in vivo model of chronic catecholamine-induced cardiomyopathy. Methods Rats were perfused with isoproterenol via osmotic pump (1 mg/kg/day) and treated with 2 mg/kg IGF-1 (2 mg/kg/day, 6 days a week) for 2 or 4 weeks. Echocardiography, ECG, and blood pressure were assessed. In vivo pressure-volume loop studies were conducted at 4 weeks. Heart sections were analyzed for fibrosis and apoptosis, and relevant biochemical signaling cascades were assessed. Results After 4 weeks, diastolic function (EDPVR, EDP, tau, E/A ratio), systolic function (PRSW, ESPVR, dP/dtmax), and structural remodeling (LV chamber diameter, wall thickness) were all adversely affected in isoproterenol-treated rats. All these detrimental effects were attenuated in rats treated with Iso+IGF-1. Isoproterenol-dependent effects on BP were attenuated by IGF-1 treatment. Adrenergic sensitivity was blunted in isoproterenol-treated rats but was preserved by IGF-1 treatment. Immunoblots indicate that cardioprotective p110α signaling and activated Akt are selectively upregulated in Iso+IGF-1 treated hearts. Expression of iNOS was significantly increased in both the Iso and Iso+IGF-1 groups, however tetrahydrobiopterin (BH4) levels were decreased in the Iso group and maintained by IGF-1 treatment. Conclusion IGF-1 treatment attenuates diastolic and systolic dysfunction associated with chronic catecholamine-induced cardiomyopathy while preserving adrenergic sensitivity and promoting BH4 production. These data support the potential use of IGF-1 therapy for clinical applications for cardiomyopathies. PMID:26399932

  8. High fat-diet and saturated fatty acid palmitate inhibits IGF-1 function in chondrocytes.

    Science.gov (United States)

    Nazli, S A; Loeser, R F; Chubinskaya, S; Willey, J S; Yammani, R R

    2017-09-01

    Insulin-like growth factor-1 (IGF-1) promotes matrix synthesis and cell survival in cartilage. Chondrocytes from aged and osteoarthritic cartilage have a reduced response to IGF-1. The purpose of this study was to determine the effect of free fatty acids (FFA) present in a high-fat diet on IGF-1 function in cartilage and the role of endoplasmic reticulum (ER) stress. C57BL/6 male mice were maintained on either a high-fat (60% kcal from fat) or a low-fat (10% kcal from fat) diet for 4 months. Mice were then sacrificed; femoral head cartilage caps were collected and treated with IGF-1 to measure proteoglycan (PG) synthesis. Cultured human chondrocytes were treated with 500 μM FFA palmitate or oleate, followed by stimulation with (100 ng/ml) IGF-1 overnight to measure CHOP (a protein marker for ER stress) and PG synthesis. Human chondrocytes were pre-treated with palmitate or 1 mM 4-phenyl butyric acid (PBA) or 1 μM C-Jun N terminal Kinase (JNK) inhibitor, and IGF-1 function (PG synthesis and signaling) was measured. Cartilage explants from mice on the high fat-diet showed reduced IGF-1 mediated PG synthesis compared to a low-fat group. Treatment of human chondrocytes with palmitate induced expression of CHOP, activated JNK and inhibited IGF-1 function. PBA, a small molecule chemical chaperone that alleviates ER stress rescued IGF-1 function and a JNK inhibitor rescued IGF-1 signaling. Palmitate-induced ER stress inhibited IGF-1 function in chondrocytes/cartilage via activating the mitogen-activated protein (MAP) kinase JNK. This is the first study to demonstrate that ER stress is metabolic factor that regulates IGF-1 function in chondrocytes. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  9. The GH/IGF-1 axis in ageing and longevity

    Science.gov (United States)

    List, Edward O.; Berryman, Darlene E.; Murrey, John W.

    2014-01-01

    Secretion of growth hormone (GH), and consequently that of insulin-like growth factor 1 (IGF-1), declines over time until only low levels can be detected in individuals aged ≥60 years. This phenomenon, which is known as the ‘somatopause’, has led to recombinant human GH being widely promoted and abused as an antiageing drug, despite lack of evidence of efficacy. By contrast, several mutations that decrease the tone of the GH/IGF-1 axis are associated with extended longevity in mice. In humans, corresponding or similar mutations have been identified, but whether these mutations alter longevity has yet to be established. The powerful effect of reduced GH activity on lifespan extension in mice has generated the hypothesis that pharmaceutically inhibiting, rather than increasing, GH action might delay ageing. Moreover, mice as well as humans with reduced activity of the GH/IGF-1 axis are protected from cancer and diabetes mellitus, two major ageing-related morbidities. Here, we review data on mouse strains with alterations in the GH/IGF-1 axis and their effects on lifespan. The outcome of corresponding or similar mutations in humans is described, as well as the potential mechanisms underlying increased longevity and the therapeutic benefits and risks of medical disruption of the GH/IGF-1 axis in humans. PMID:23591370

  10. Targeted mass spectrometry analysis of the proteins IGF1, IGF2, IBP2, IBP3 and A2GL by blood protein precipitation

    DEFF Research Database (Denmark)

    Such-Sanmartín, Gerard; Bache, Nicolai; Callesen, Anne K

    2015-01-01

    aggravated when using fast high-throughput methods, which are necessary for analysis of hundreds and thousands of samples in clinical laboratories. The blood proteins IGF1, IGF2, IBP2, IBP3 and A2GL have been proposed as indirect biomarkers for detection of GH administration and as putative biomarkers...

  11. Sex, Sport, IGF-1 and the Community Effect in Height Hypothesis

    Directory of Open Access Journals (Sweden)

    Barry Bogin

    2015-05-01

    Full Text Available We test the hypothesis that differences in social status between groups of people within a population may induce variation in insulin-like growth factor-1(IGF-1 levels and, by extension, growth in height. This is called the community effect in height hypothesis. The relationship between IGF-1, assessed via finger-prick dried blood spot, and elite level sport competition outcomes were analysed for a sample of 116 undergraduate men and women. There was a statistically significant difference between winners and losers of a competition. Winners, as a group, had higher average pre-game and post-game IGF-1 levels than losers. We proposed this type of difference as a proxy for social dominance. We found no evidence that winners increased in IGF-1 levels over losers or that members of the same team were more similar in IGF-1 levels than they were to players from other teams. These findings provide limited support toward the community effect in height hypothesis. The findings are discussed in relation to the action of the growth hormone/IGF-1 axis as a transducer of multiple bio-social influences into a coherent signal which allows the growing human to adjust and adapt to local ecological conditions.

  12. Functional Median Polish

    KAUST Repository

    Sun, Ying

    2012-08-03

    This article proposes functional median polish, an extension of univariate median polish, for one-way and two-way functional analysis of variance (ANOVA). The functional median polish estimates the functional grand effect and functional main factor effects based on functional medians in an additive functional ANOVA model assuming no interaction among factors. A functional rank test is used to assess whether the functional main factor effects are significant. The robustness of the functional median polish is demonstrated by comparing its performance with the traditional functional ANOVA fitted by means under different outlier models in simulation studies. The functional median polish is illustrated on various applications in climate science, including one-way and two-way ANOVA when functional data are either curves or images. Specifically, Canadian temperature data, U. S. precipitation observations and outputs of global and regional climate models are considered, which can facilitate the research on the close link between local climate and the occurrence or severity of some diseases and other threats to human health. © 2012 International Biometric Society.

  13. Monoclonal antibodies directed to human insulin-like growth factor I (IGF I)

    International Nuclear Information System (INIS)

    Laubli, U.K.; Baier, W.; Celio, M.R.; Binz, H.; Humbel, R.E.

    1982-01-01

    Mouse hybridomas secreting antibodies to human insulin-like growth factor I (IGF I) were produced by fusion of spleen cells of hyperimmunised mice with FO mouse-myeloma cells. Eight clones producing antibodies against human IGF I have been isolated, two of which have been characterised. One was used in a radioimmunoassay, the other for immunopurification of IGF. (Auth.)

  14. Differences in IGF-axis protein expression and survival among multiethnic breast cancer patients

    International Nuclear Information System (INIS)

    Hernandez, Brenda Y; Wilkens, Lynne R; Le Marchand, Loïc; Horio, David; Chong, Clayton D; Loo, Lenora W M

    2015-01-01

    There is limited knowledge about the biological basis of racial/ethnic disparities in breast cancer outcomes. Aberrations in IGF signaling induced by obesity and other factors may contribute to these disparities. This study examines the expression profiles of the insulin-like growth factor (IGF)-axis proteins and the association with breast cancer survival across a multiethnic population. We examined the expression profiles of the IGF1, IGF1R, IGFBP2 (IGF-binding proteins), and IGFBP3 proteins in breast tumor tissue and their relationships with all-cause and breast cancer-specific survival up to 17 years postdiagnosis in a multiethnic series of 358 patients in Hawaii, USA. Native Hawaiians, Caucasians, and Japanese were compared. Covariates included demographic and clinical factors and ER/PR/HER2 (estrogen receptor/progesterone receptor/human epidermal growth factor receptor-2) status. In Native Hawaiian patients, IGFBP2 and IGFBP3 expression were each independently associated with overall and breast cancer mortality (IGFB2: HR mort = 10.96, 95% CI: 2.18–55.19 and HR mort = 35.75, 95% CI: 3.64–350.95, respectively; IGFBP3: HR mort = 5.16, 95% CI: 1.27–20.94 and HR mort = 8.60, 95% CI: 1.84–40.15, respectively). IGF1R expression was also positively associated with all-cause mortality in Native Hawaiians. No association of IGF-axis protein expression and survival was observed in Japanese or Caucasian patients. The interaction of race/ethnicity and IGFBP3 expression on mortality risk was significant. IGF-axis proteins may have variable influence on breast cancer progression across different racial/ethnic groups. Expression of binding proteins and receptors in breast tumors may influence survival in breast cancer patients by inducing aberrations in IGF signaling and/or through IGF-independent mechanisms. Additional studies to evaluate the role of the IGF-axis in breast cancer are critical to improve targeted breast cancer treatment strategies

  15. Insulin-like growth factor 1 (IGF-1 enhances the protein expression of CFTR.

    Directory of Open Access Journals (Sweden)

    Ha Won Lee

    Full Text Available Low levels of insulin-like growth factor 1 (IGF-1 have been observed in the serum of cystic fibrosis (CF patients. However, the effects of low serum IGF-1 on the cystic fibrosis transmembrane conductance regulator (CFTR, whose defective function is the primary cause of cystic fibrosis, have not been studied. Here, we show in human cells that IGF-1 increases the steady-state levels of mature wildtype CFTR in a CFTR-associated ligand (CAL- and TC10-dependent manner; moreover, IGF-1 increases CFTR-mediated chloride transport. Using an acceptor photobleaching fluorescence resonance energy transfer (FRET assay, we have confirmed the binding of CAL and CFTR in the Golgi. We also show that CAL overexpression inhibits forskolin-induced increases in the cell-surface expression of CFTR. We found that IGF-1 activates TC10, and active TC10 alters the functional association between CAL and CFTR. Furthermore, IGF-1 and active TC10 can reverse the CAL-mediated reduction in the cell-surface expression of CFTR. IGF-1 does not increase the expression of ΔF508 CFTR, whose processing is arrested in the ER. This finding is consistent with our observation that IGF-1 alters the functional interaction of CAL and CFTR in the Golgi. However, when ΔF508 CFTR is rescued with low temperature or the corrector VRT-325 and proceeds to the Golgi, IGF-1 can increase the expression of the rescued ΔF508 CFTR. Our data support a model indicating that CAL-CFTR binding in the Golgi inhibits CFTR trafficking to the cell surface, leading CFTR to the degradation pathway instead. IGF-1-activated TC10 changes the interaction of CFTR and CAL, allowing CFTR to progress to the plasma membrane. These findings offer a potential strategy using a combinational treatment of IGF-1 and correctors to increase the post-Golgi expression of CFTR in cystic fibrosis patients bearing the ΔF508 mutation.

  16. Thyroid hormone modulates insulin-like growth factor-I(IGF-I) and IGF-binding protein-3, without mediation by growth hormone, in patients with autoimmune thyroid diseases.

    Science.gov (United States)

    Inukai, T; Takanashi, K; Takebayashi, K; Fujiwara, Y; Tayama, K; Takemura, Y

    1999-10-01

    The expression and synthesis of insulin-like growth factor-1 (IGF-I) and IGF-binding protein-3 (IGFBP-3) are regulated by various hormones and nutritional conditions. We evaluated the effects of thyroid hormones on serum levels of IGF-I and IGFBP-3 levels in patients with autoimmune thyroid diseases including 54 patients with Graves' disease and 17 patients with Hashimoto's thyroiditis, and in 32 healthy age-matched control subjects. Patients were subdivided into hyperthyroid, euthyroid and hypothyroid groups that were untreated, or were treated with methylmercaptoimidazole (MMI) or L-thyroxine (L-T4). Serum levels of growth hormone (GH), IGF-I and IGFBP-3 were determined by radioimmunoassay. Serum GH levels did not differ significantly between the hyperthyroid and the age-matched euthyroid patients with Graves' disease. The serum levels of IGF-I and IGFBP-3 showed a significant positive correlation in the patients (R=0.616, Phyperthyroid patients with Graves' disease or in those with Hashimoto's thyroiditis induced by excess L-T4 administration than in control subjects. Patients with hypothyroid Graves' disease induced by the excess administration of MMI showed significantly lower IGFBP-3 levels as compared to those in healthy controls (Phormone modulates the synthesis and/or the secretion of IGF-I and IGFBP-3, and this function is not mediated by GH.

  17. The ratio between serum levels of insulin-like growth factor (IGF)-I and the IGF binding proteins (IGFBP-1, 2 and 3) decreases with age in healthy adults and is increased in acromegalic patients

    DEFF Research Database (Denmark)

    Juul, A; Main, K; Blum, W F

    1994-01-01

    Several in-vitro studies have suggested that the biological actions of IGF-I can be modified by the presence of specific IGF binding proteins. In man, the 24-hour serum levels of IGF-I and IGFBP-3 remain constant, but short-term changes in the IGF-I/IGFBP-3 ratio have been described following GH...... administration. Serum levels of IGF-I and IGFBP-3 decrease with age in normal adults and are elevated in active acromegaly due to excessive GH secretion. However, the individual ratios between serum levels of IGF-I and IGFBP-3 in acromegalic and healthy adults have not been described previously....

  18. Overexpression of IGF-I in skeletal muscle of transgenic mice does not prevent unloading-induced atrophy

    Science.gov (United States)

    Criswell, D. S.; Booth, F. W.; DeMayo, F.; Schwartz, R. J.; Gordon, S. E.; Fiorotto, M. L.

    1998-01-01

    This study examined the association between local insulin-like growth factor I (IGF-I) overexpression and atrophy in skeletal muscle. We hypothesized that endogenous skeletal muscle IGF-I mRNA expression would decrease with hindlimb unloading (HU) in mice, and that transgenic mice overexpressing human IGF-I (hIGF-I) specifically in skeletal muscle would exhibit less atrophy after HU. Male transgenic mice and nontransgenic mice from the parent strain (FVB) were divided into four groups (n = 10/group): 1) transgenic, weight-bearing (IGF-I/WB); 2) transgenic, hindlimb unloaded (IGF-I/HU); 3) nontransgenic, weight-bearing (FVB/WB); and 4) nontransgenic, hindlimb unloaded (FVB/HU). HU groups were hindlimb unloaded for 14 days. Body mass was reduced (P < 0.05) after HU in both IGF-I (-9%) and FVB mice (-13%). Contrary to our hypothesis, we found that the relative abundance of mRNA for the endogenous rodent IGF-I (rIGF-I) was unaltered by HU in the gastrocnemius (GAST) muscle of wild-type FVB mice. High-level expression of hIGF-I peptide and mRNA was confirmed in the GAST and tibialis anterior (TA) muscles of the transgenic mice. Nevertheless, masses of the GAST and TA muscles were reduced (P < 0.05) in both FVB/HU and IGF-I/HU groups compared with FVB/WB and IGF-I/WB groups, respectively, and the percent atrophy in mass of these muscles did not differ between FVB and IGF-I mice. Therefore, skeletal muscle atrophy may not be associated with a reduction of endogenous rIGF-I mRNA level in 14-day HU mice. We conclude that high local expression of hIGF-I mRNA and peptide in skeletal muscle alone cannot attenuate unloading-induced atrophy of fast-twitch muscle in mice.

  19. Experimental data for insulin-like growth factor-1 (IGF-1) and basic fibroblast growth factor (bFGF) in prevention of radiation myelopathy; Experimentelle Daten zum Einsatz von Insulin-Like Growth Factor-1 (IGF-1) und Basic Fibroblast Growth Factor (bFGF) zur Praevention einer Strahlenmyelopathie

    Energy Technology Data Exchange (ETDEWEB)

    Nieder, C. [Technische Univ. Muenchen (Germany). Klinik und Poliklinik fuer Strahlentherapie und Radiologische Onkologie; Price, R.E.; Rivera, B. [The Univ. of Texas, M. D. Anderson Cancer Center, Houston, TX (United States). Dept. of Veterinary Medicine and Surgery; Andratschke, N.; Kian Ang, K. [The Univ. of Texas, M. D. Anderson Cancer Center, Houston, TX (United States). Dept. of Experimental Radiation Oncology

    2002-03-01

    Background: Current models of radiation myelopathy provide a rationale for growth factor-based prevention strategies. Thus, we tested whether insulin-like growth factor-1 (IGF-1) and basic fibroblast growth factor (bFGF) alone or in combination modulate radiation tolerance of the rat cervical spinal cord. Materials and Methods: The cervical spinal cord of 68 adult Fisher F344 rats received a total dose of 30-36 Gy, given as a single fraction of 16 Gy followed by a second radiation dose of 14-20 Gy. Continuous intrathecal infusion of bFGF (44 rats) or saline (24 rats) into the cisterna magna was given concomitantly. A further experiment included 14 additional rats which were treated with subcutaneous injection of IGF-1 parallel to irradiation with a total dose of 34 Gy or 36 Gy. 20 rats received combined treatment, i.e. intrathecal infusion of bFGF plus subcutaneous injection of IGF-1, starting 24 hours before irradiation (total dose 33 Gy or 36 Gy) for a total of 4 days. Animals were followed until myelopathy developed or for a maximum of 12 months. Histopathologic examinations were performed post mortem. Results: Treatment with bFGF alone or IGF-1 alone increased the median time to myelopathy significantly. In the 36-Gy group, after combination treatment a comparable prolongation of latency was seen. Moreover, rats treated with 33 Gy and combined bFGF plus IGF-1 showed a significantly reduced risk of myelopathy, too (p = 0.0015). (orig.) [German] Hintergrund: Aktuelle Modelle zur Pathogenese der Strahlenmyelopathie lassen den praeventiven Einsatz von Wachstumsfaktoren sinnvoll erscheinen. Daher sollte ueberprueft werden, ob Insulin-Like Growth Factor-1 (IGF-1) und Basic Fibroblast Growth Factor (bFGF) als Einzelsubstanzen oder in Kombination die Strahlentoleranz des zervikalen Rueckenmarks von Ratten beeinflussen. Material und Methoden: Das Zervikalmark von 68 erwachsenen Fisher-F344-Ratten wurde mit zwei Einzelfraktionen bis insgesamt 30-36 Gy bestrahlt (16 Gy

  20. IGF-1 Has Plaque-Stabilizing Effects in Atherosclerosis by Altering Vascular Smooth Muscle Cell Phenotype

    Science.gov (United States)

    von der Thüsen, Jan H.; Borensztajn, Keren S.; Moimas, Silvia; van Heiningen, Sandra; Teeling, Peter; van Berkel, Theo J.C.; Biessen, Erik A.L.

    2011-01-01

    Insulin-like growth factor-1 (IGF-1) signaling is important for the maintenance of plaque stability in atherosclerosis due to its effects on vascular smooth muscle cell (vSMC) phenotype. To investigate this hypothesis, we studied the effects of the highly inflammatory milieu of the atherosclerotic plaque on IGF-1 signaling and stability-related phenotypic parameters of murine vSMCs in vitro, and the effects of IGF-1 supplementation on plaque phenotype in an atherosclerotic mouse model. M1-polarized, macrophage-conditioned medium inhibited IGF-1 signaling by ablating IGF-1 and increasing IGF-binding protein 3, increased vSMC apoptosis, and decreased proliferation. Expression of α-actin and col3a1 genes was strongly attenuated by macrophage-conditioned medium, whereas expression of matrix-degrading enzymes was increased. Importantly, all of these effects could be corrected by supplementation with IGF-1. In vivo, treatment with the stable IGF-1 analog Long R3 IGF-1 in apolipoprotein E knockout mice reduced stenosis and core size, and doubled cap/core ratio in early atherosclerosis. In advanced plaques, Long R3 IGF-1 increased the vSMC content of the plaque by more than twofold and significantly reduced the rate of intraplaque hemorrhage. We believe that IGF-1 in atherosclerotic plaques may have a role in preventing plaque instability, not only by modulating smooth muscle cell turnover, but also by altering smooth muscle cell phenotype. PMID:21281823

  1. IGF-II is up-regulated and myofibres are hypertrophied in regenerating soleus of mice lacking FGF6

    International Nuclear Information System (INIS)

    Armand, Anne-Sophie; Lecolle, Sylvie; Launay, Thierry; Pariset, Claude; Fiore, Frederic; Della Gaspera, Bruno; Birnbaum, Daniel; Chanoine, Christophe; Charbonnier, Frederic

    2004-01-01

    Important functions in myogenesis have been proposed for FGF6, a member of the fibroblast growth factor family accumulating almost exclusively in the myogenic lineage. However, the use of FGF6(-/-) mutant mice gave contradictory results and the role of FGF6 during myogenesis remains largely unclear. Using FGF6(-/-) mice, we first analysed the morphology of the regenerated soleus following cardiotoxin injection and showed hypertrophied myofibres in soleus of the mutant mice as compared to wild-type mice. Secondly, to examine the function of the IGF family in the hypertrophy process, we used semiquantitative and real-time RT-PCR assays and Western blots to monitor the expression of the insulin-like growth factors (IGF-I and IGF-II), their receptors [type I IGF receptor (IGF1R) and IGF-II receptor (IGF2R)], and of a binding protein IGFBP-5 in regenerating soleus muscles of FGF6(-/-) knockout mice vs. wild-type mice. In the mutant, both IGF-II and IGF2R, but not IGF-I and IGF1R, were strongly up-regulated, whereas IGFBP5 was down-regulated, strongly suggesting that, in the absence of FGF6, the mechanisms leading to myofibre hypertrophy were mediated specifically by an IGF-II/IGF2R signalling pathway distinct from the classic mechanism involving IGF-I and IGF1R previously described for skeletal muscle hypertrophy. The potential regulating role of IGFBP5 on IGF-II expression is also discussed. This report shows for the first time a specific role for FGF6 in the regulation of myofibre size during a process of in vivo myogenesis

  2. Type 1 IGF Receptor Localization in Paediatric Gliomas: Significant Association with WHO Grading and Clinical Outcome.

    Science.gov (United States)

    Clément, Florencia; Martin, Ayelen; Venara, Marcela; de Luján Calcagno, Maria; Mathó, Cecilia; Maglio, Silvana; Lombardi, Mercedes García; Bergadá, Ignacio; Pennisi, Patricia A

    2018-06-01

    Nuclear localization of insulin-like growth factor receptor type 1 (IGF-1R) has been described as adverse prognostic factor in some cancers. We studied the expression and localization of IGF-1R in paediatric patients with gliomas, as well as its association with World Health Organization (WHO) grading and survival. We conducted a single cohort, prospective study of paediatric patients with gliomas. Samples were taken at the time of the initial surgery; IGF-1R expression and localization were characterized by immunohistochemistry (IHC), subcellular fractionation and western blotting. Tumours (47/53) showed positive staining for IGF-1R by IHC. IGF-1R nuclear labelling was observed in 10/47 cases. IGF-1R staining was mostly non-nuclear in low-grade tumours, while IGF-1R nuclear labelling was predominant in high-grade gliomas (p = 0.0001). Survival was significantly longer in patients with gliomas having non-nuclear IGF-1R localization than in patients with nuclear IGF-1R tumours (p = 0.016). In gliomas, IGF-1R nuclear localization was significantly associated with both high-grade tumours and increased risk of death. Based on a prospective design, we provide evidence of a potential usefulness of intracellular localization of IGF-1R as prognostic factor in paediatric patients with gliomas.

  3. Impaired Insulin/IGF Signaling in Experimental Alcohol-Related Myopathy

    Directory of Open Access Journals (Sweden)

    Elizabeth Silbermann

    2012-08-01

    Full Text Available Alcohol-related myopathy (Alc-M is highly prevalent among heavy drinkers, although its pathogenesis is not well understood. We hypothesize that Alc-M is mediated by combined effects of insulin/IGF resistance and oxidative stress, similar to the effects of ethanol on liver and brain. We tested this hypothesis using an established model in which adult rats were pair-fed for 8 weeks with isocaloric diets containing 0% (N = 8 or 35.5% (N = 13 ethanol by caloric content. Gastrocnemius muscles were examined by histology, morphometrics, qRT-PCR analysis, and ELISAs. Chronic ethanol feeding reduced myofiber size and mRNA expression of IGF-1 polypeptide, insulin, IGF-1, and IGF-2 receptors, IRS-1, and IRS-2. Multiplex ELISAs demonstrated ethanol-associated inhibition of insulin, IRS-1, Akt, and p70S6K signaling, and increased activation of GSK-3β. In addition, ethanol-exposed muscles had increased 4-hydroxy-2-nonenal immunoreactivity, reflecting lipid peroxidation, and reduced levels of mitochondrial Complex IV, Complex V, and acetylcholinesterase. These results demonstrate that experimental Alc-M is associated with inhibition of insulin/IGF/IRS and downstream signaling that mediates metabolism and cell survival, similar to findings in alcoholic liver and brain degeneration. Moreover, the increased oxidative stress, which could be mediated by mitochondrial dysfunction, may have led to inhibition of acetylcholinesterase, which itself is sufficient to cause myofiber atrophy and degeneration.

  4. Effects of IGFS on blood lipid metabolism in experimental hyperlipidemia rats

    International Nuclear Information System (INIS)

    Zhao Yanwei; Tianjin Medical College of Chinese People's Armed Police Force, Tianjin; Yu Xiaofeng; Xu Huali; Qu Shaochun; Sui Dayuan

    2005-01-01

    Objective: To observe the effects of injection of ginseng fruit saponins (IGFS) on total cholesterol (TC), lipoprotein cholesterol metabolism and antioxidative activity in experimental hyperlipidemia rats. Methods: The TC, lipoprotein cholesterol and lipidperoxidation (LPO) contents, prostacycline (PGI 2 ) and thromboxane (TXA 2 ) levels, superoxidedismutase (SOD) activity and blood viscosity were measured respectively in hyperlipidemia rats which had been given IGFS 10, 20 and 40 mg·kg -1 ·d - '1 ip, respectively, for fifteen days. In addition, fat accumulation in liver was observed. Results: The triglyceride (TG), TC, low density lipoprotein cholesterol (LDL-c) in serum, TXA 2 in plasma, LPO in serum and liver and blood viscosity were decreased significantly, and PGI 2 in plasma and SOD in serum and liver were significantly increased after administration with IGFS (20 and 40 mg·kg -1 ·d -1 ) in experimental hyperlipidemia rats. Moreover, IGFS decreased ratios of TC/HDL-c and LDL-c/HDL-c, increased the ratio of PGI 2 /TXA 2 and inhibit fat accumulation in liver. The content of high density lipoprotein cholesterol (HDL-c) in serum were significantly increased after administration IGFS (40 mg·kg -1 · -1 ) in experimental hyperlipidemia rats. Conclusions: IGFS can inhibit arterioscleros by improving cholesterol and lipoprotein cholesterol metabolism, suppressing LPO and increasing antioxidation. (authors)

  5. AKT signaling mediates IGF-I survival actions on otic neural progenitors.

    Directory of Open Access Journals (Sweden)

    Maria R Aburto

    Full Text Available BACKGROUND: Otic neurons and sensory cells derive from common progenitors whose transition into mature cells requires the coordination of cell survival, proliferation and differentiation programmes. Neurotrophic support and survival of post-mitotic otic neurons have been intensively studied, but the bases underlying the regulation of programmed cell death in immature proliferative otic neuroblasts remains poorly understood. The protein kinase AKT acts as a node, playing a critical role in controlling cell survival and cell cycle progression. AKT is activated by trophic factors, including insulin-like growth factor I (IGF-I, through the generation of the lipidic second messenger phosphatidylinositol 3-phosphate by phosphatidylinositol 3-kinase (PI3K. Here we have investigated the role of IGF-dependent activation of the PI3K-AKT pathway in maintenance of otic neuroblasts. METHODOLOGY/PRINCIPAL FINDINGS: By using a combination of organotypic cultures of chicken (Gallus gallus otic vesicles and acoustic-vestibular ganglia, Western blotting, immunohistochemistry and in situ hybridization, we show that IGF-I-activation of AKT protects neural progenitors from programmed cell death. IGF-I maintains otic neuroblasts in an undifferentiated and proliferative state, which is characterised by the upregulation of the forkhead box M1 (FoxM1 transcription factor. By contrast, our results indicate that post-mitotic p27(Kip-positive neurons become IGF-I independent as they extend their neuronal processes. Neurons gradually reduce their expression of the Igf1r, while they increase that of the neurotrophin receptor, TrkC. CONCLUSIONS/SIGNIFICANCE: Proliferative otic neuroblasts are dependent on the activation of the PI3K-AKT pathway by IGF-I for survival during the otic neuronal progenitor phase of early inner ear development.

  6. Recombinant human IGF-1 produced by transgenic plant cell suspension culture enhances new bone formation in calvarial defects.

    Science.gov (United States)

    Poudel, Sher Bahadur; Bhattarai, Govinda; Kook, Sung-Ho; Shin, Yun-Ji; Kwon, Tae-Ho; Lee, Seung-Youp; Lee, Jeong-Chae

    2017-10-01

    Transgenic plant cell suspension culture systems have been utilized extensively as convenient and efficient expression systems for the production of recombinant human growth factors. We produced insulin-like growth factor-1 using a plant suspension culture system (p-IGF-1) and explored its effect on new bone formation in calvarial defects. We also compared the bone regenerating potential of p-IGF-1 with commercial IGF-1 derived from Escherichia coli (e-IGF-1). Male C57BL/6 mice underwent calvarial defect surgery, and the defects were loaded with absorbable collagen sponge (ACS) only (ACS group) or ACS impregnated with 13μg of p-IGF-1 (p-IGF-1 group) or e-IGF-1 (e-IGF-1 group). The sham group did not receive any treatment with ACS or IGFs after surgery. Live μCT and histological analyses showed critical-sized bone defects in the sham group, whereas greater bone formation was observed in the p-IGF-1 and e-IGF-1 groups than the ACS group both 5 and 10weeks after surgery. Bone mineral density, bone volume, and bone surface values were also higher in the IGF groups than in the ACS group. Local delivery of p-IGF-1 or e-IGF-1 more greatly enhanced the expression of osteoblast-specific markers, but inhibited osteoclast formation, in newly formed bone compared with ACS control group. Specifically, p-IGF-1 treatment induced higher expression of alkaline phosphatase, osteocalcin, and osteopontin in the defect site than did e-IGF-1. Furthermore, treatment with p-IGF-1, but not e-IGF-1, increased mineralization of MC3T3-E1 cells, with the attendant upregulation of osteogenic marker genes. Collectively, our findings suggest the potential of p-IGF-1 in promoting the processes required for bone regeneration. Copyright © 2017. Published by Elsevier Ltd.

  7. Insulin Resistance Negatively Influences the Muscle-Dependent IGF-1-Bone Mass Relationship in Premenarcheal Girls.

    Science.gov (United States)

    Kindler, J M; Pollock, N K; Laing, E M; Jenkins, N T; Oshri, A; Isales, C; Hamrick, M; Lewis, R D

    2016-01-01

    IGF-1 promotes bone growth directly and indirectly through its effects on skeletal muscle. Insulin and IGF-1 share a common cellular signaling process; thus, insulin resistance may influence the IGF-1-muscle-bone relationship. We sought to determine the effect of insulin resistance on the muscle-dependent relationship between IGF-1 and bone mass in premenarcheal girls. This was a cross-sectional study conducted at a university research center involving 147 girls ages 9 to 11 years. Glucose, insulin, and IGF-1 were measured from fasting blood samples. Homeostasis model assessment of insulin resistance (HOMA-IR) was calculated from glucose and insulin. Fat-free soft tissue (FFST) mass and bone mineral content (BMC) were measured by dual-energy x-ray absorptiometry. Our primary outcome was BMC/height. In our path model, IGF-1 predicted FFST mass (b = 0.018; P = .001), which in turn predicted BMC/height (b = 0.960; P IGF-1 predicted BMC/height (b = 0.001; P = .002), but not after accounting for the mediator of this relationship, FFST mass. The HOMA-IR by IGF-1 interaction negatively predicted FFST mass (b = -0.044; P = .034). HOMA-IR had a significant and negative effect on the muscle-dependent relationship between IGF-1 and BMC/height (b = -0.151; P = .047). Lean body mass is an important intermediary factor in the IGF-1-bone relationship. For this reason, bone development may be compromised indirectly via suboptimal IGF-1-dependent muscle development in insulin-resistant children.

  8. INFLUENCE OF INTRAMUSCULAR APPLICATION OF AUTOLOGOUS CONDITIONED PLASMA ON SYSTEMIC CIRCULATING IGF-1

    Directory of Open Access Journals (Sweden)

    Gert Schippinger

    2011-09-01

    Full Text Available Platelet-rich plasma (PRP to increase levels of platelets and growth factors has been used for the treatment of sports injuries suggesting to improve healing and regeneration. This method offers some potential especially for elite athletes. However, the insulin like growth factor-1 (IGF-1 is prohibited by the World Anti Doping Agency and, in addition, there may be a possible link between increased levels of IGF-1 and cancer risk. Aim of the study was to evaluate a systemic increase of IGF-1 after local intramuscular administration of PRP in young healthy moderately trained male subjects. Blood samples were drawn and PRP preparation was performed by means of centrifugation. Enriched plasma was injected into the gluteus muscle. Venous blood was collected and serum prepared before as well as after 0.5, 3 and 24 hours after PRP administration. IGF-1 analysis was performed applying an ELISA test kit. No significant systemic increase of mean IGF-1 was found after the PRP injection. Only one subject showed an increase after 24 h, but all IGF-1 values were found within reference limits. We conclude that a single intramuscular application of PRP does not significantly increase systemic IGF-1 levels. Therefore, a single application of PRP is safe with respect to systemic IGF-1 response and cancer risk and this should be allowed for treatment of muscle injuries in elite athletes

  9. Essential role of flotillin-1 palmitoylation in the intracellular localization and signaling function of IGF-1 receptor.

    Science.gov (United States)

    Jang, Donghwan; Kwon, Hayeong; Jeong, Kyuho; Lee, Jaewoong; Pak, Yunbae

    2015-06-01

    Here, we explored flotillin-1-mediated regulation of insulin-like growth factor-1 (IGF-1) signaling. Flotillin-1-deficient cells exhibited a reduction in the activation of IGF-1 receptor (IGF-1R), ERK1/2 and Akt pathways, and the transcriptional activation of Elk-1 and the proliferation in response to IGF-1 were reduced in these cells. We found that IGF-1-independent flotillin-1 palmitoylation at Cys34 in the endoplasmic reticulum (ER) was required for the ER exit and the plasma membrane localization of flotillin-1 and IGF-1R. IGF-1-dependent depalmitoylation and repalmitoylation of flotillin-1 sustained tyrosine kinase activation of the plasma-membrane-targeted IGF-1R. Dysfunction and blocking the turnover of flotillin-1 palmitoylation abrogated cancer cell proliferation after IGF-1R signaling activation. Our data show that flotillin-1 palmitoylation is a new mechanism by which the intracellular localization and activation of IGF-1R are controlled. © 2015. Published by The Company of Biologists Ltd.

  10. Favorable prognostic value of SOCS2 and IGF-I in breast cancer

    International Nuclear Information System (INIS)

    Haffner, Michael C; Petridou, Barbara; Peyrat, Jean Phillipe; Révillion, Françoise; Müller-Holzner, Elisabeth; Daxenbichler, Günter; Marth, Christian; Doppler, Wolfgang

    2007-01-01

    Suppressor of cytokine signaling (SOCS) proteins comprise a protein family, which has initially been described as STAT induced inhibitors of the Jak/Stat pathway. Recent in vivo and in vitro studies suggest that SOCS proteins are also implicated in cancer. The STAT5 induced IGF-I acts as an endocrine and para/autocrine growth and differentiation factor in mammary gland development. Whereas high levels of circulating IGF-I have been associated with increased cancer risk, the role of autocrine acting IGF-I is less clear. The present study is aimed to elucidate the clinicopathological features associated with SOCS1, SOCS2, SOCS3, CIS and IGF-I expression in breast cancer. We determined the mRNA expression levels of SOCS1, SOCS2, SOCS3, CIS and IGF-I in 89 primary breast cancers by reverse transcriptase PCR. SOCS2 protein expression was further evaluated by immuno-blot and immunohistochemistry. SOCS2 expression inversely correlated with histopathological grade and ER positive tumors exhibited higher SOCS2 levels. Patients with high SOCS2 expression lived significantly longer (108.7 vs. 77.7 months; P = 0.015) and high SOCS2 expression proved to be an independent predictor for good prognosis (HR = 0.45, 95% CI 0.23 – 0.91, P = 0.026). In analogy to SOCS2, high IGF-I expression was an independent predictor for good prognosis in the entire patient cohort. In the subgroup of patients with lymph-node negative disease, high IGF-I was a strong predictor for favorable outcome in terms of overall survival and relapse free survival (HR = 0.075, 95% CI 0.014 – 0.388, P = 0.002). This is the first report on the favorable prognostic value of high SOCS2 expression in primary mammary carcinomas. Furthermore a strong association of high IGF-I expression levels with good prognosis was observed especially in lymph-node negative patients. Our results suggest that high expression of the STAT5 target genes SOCS2 and IGF-I is a feature of differentiated and less malignant tumors

  11. Differential Role of Insulin/IGF-1 Receptor Signaling in Muscle Growth and Glucose Homeostasis

    Directory of Open Access Journals (Sweden)

    Brian T. O’Neill

    2015-05-01

    Full Text Available Insulin and insulin-like growth factor 1 (IGF-1 are major regulators of muscle protein and glucose homeostasis. To determine how these pathways interact, we generated mice with muscle-specific knockout of IGF-1 receptor (IGF1R and insulin receptor (IR. These MIGIRKO mice showed >60% decrease in muscle mass. Despite a complete lack of insulin/IGF-1 signaling in muscle, MIGIRKO mice displayed normal glucose and insulin tolerance. Indeed, MIGIRKO mice showed fasting hypoglycemia and increased basal glucose uptake. This was secondary to decreased TBC1D1 resulting in increased Glut4 and Glut1 membrane localization. Interestingly, overexpression of a dominant-negative IGF1R in muscle induced glucose intolerance in MIGIRKO animals. Thus, loss of insulin/IGF-1 signaling impairs muscle growth, but not whole-body glucose tolerance due to increased membrane localization of glucose transporters. Nonetheless, presence of a dominant-negative receptor, even in the absence of functional IR/IGF1R, induces glucose intolerance, indicating that interactions between these receptors and other proteins in muscle can impair glucose homeostasis.

  12. The relationship between serum IGF-1, handgrip strength, physical performance and falls in elderly men and women.

    Science.gov (United States)

    Van Nieuwpoort, Caroline; Vlot, Mariska; Schaap, Laura; Lips, Paul; Drent, Madeleine

    2018-05-22

    Human aging is accompanied by a decrease in growth hormone secretion and serum IGF-1 levels. Also, loss of muscle mass, strength and impairment of physical performance, ending in a state of frailty, are seen in elderly. We aimed to investigate whether handgrip strength, physical performance and recurrent falls are related to serum IGF-1 levels in community dwelling elderly. Observational cohort study (cross-sectional and prospective). We studied the association between IGF-1 and handgrip strength, physical performance and falls in participants of the Longitudinal Aging Study Amsterdam. 1292 participants were included (633 men, 659 women). Serum IGF-1 levels were divided into quartiles (IGF-1-Q1 to IGF-1-Q4). Data on falls were collected prospectively for a period of three years. All analyses were stratified for age and physical activity and adjusted for relevant confounders. Men with a low physical activity score in IGF-1-Q1 and IGF-1-Q2 of the younger age group had a lower handgrip strength compared to IGF-1-Q4. In younger more active males in IGF-1-Q2 physical performance was worse. Recurrent fallers were less prevalent in older, low active males with low IGF-1 levels. In females, recurrent fallers were more prevalent in older, more active females in IGF-1-Q2. IGF-1 quartile may predict changes in handgrip strength and physical performance in men and women. Our results indicate that lower IGF-1 levels are associated with lower handgrip strength and worse physical performance, but less recurrent fallers especially in men. Associations were often more robust in IGF-1-Q2. Future studies on this topic are desirable.

  13. Diagnostic value of a single determination of serum insulin-like growth factor-1 (IGF-1) and IGF binding protein-3 (IGFBP-3) levels in children with growth hormone deficiency (GHD)

    International Nuclear Information System (INIS)

    Lin Gang; Yao Wei; Pan Furong

    2005-01-01

    Objective: To explore the diagnostic value of a single determination of IGF-1 and IGFBP-3 levels for children with GHD. Methods: Serum IGF-1 and IGFBP-3 levels were determined with IRMA in 32 children with GHD, 35 children with idiopathic short-small syndrome (ISS) and 30 controls. Results: Serum IGF-1 and IGFBP-3 levels in children with GHD were significantly lower than those in children with ISS and controls (P 0.05). Conclusion: Determination of serum IGF-1 and IGFBP-3 levels could be applied for screening and diagnosis of GHD, even possibly replacing the classic GH provocative test. (authors)

  14. Detection of exogenous gene doping of IGF-I by a real-time quantitative PCR assay.

    Science.gov (United States)

    Zhang, Jin-Ju; Xu, Jing-Feng; Shen, Yong-Wei; Ma, Shi-Jiao; Zhang, Ting-Ting; Meng, Qing-Lin; Lan, Wen-Jun; Zhang, Chun; Liu, Xiao-Mei

    2017-07-01

    Gene doping can be easily concealed since its product is similar to endogenous protein, making its effective detection very challenging. In this study, we selected insulin-like growth factor I (IGF-I) exogenous gene for gene doping detection. First, the synthetic IGF-I gene was subcloned to recombinant adeno-associated virus (rAAV) plasmid to produce recombinant rAAV2/IGF-I-GFP vectors. Second, in an animal model, rAAV2/IGF-I-GFP vectors were injected into the thigh muscle tissue of mice, and then muscle and blood specimens were sampled at different time points for total DNA isolation. Finally, real-time quantitative PCR was employed to detect the exogenous gene doping of IGF-I. In view of the characteristics of endogenous IGF-I gene sequences, a TaqMan probe was designed at the junction of exons 2 and 3 of IGF-I gene to distinguish it from the exogenous IGF-I gene. In addition, an internal reference control plasmid and its probe were used in PCR to rule out false-positive results through comparison of their threshold cycle (Ct) values. Thus, an accurate exogenous IGF-I gene detection approach was developed in this study. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  15. Partial IGF-1 deficiency induces brain oxidative damage and edema, which are ameliorated by replacement therapy.

    Science.gov (United States)

    Puche, Juan E; Muñoz, Úrsula; García-Magariño, Mariano; Sádaba, María C; Castilla-Cortázar, Inma

    2016-01-01

    Insulin-like growth factor 1 (IGF-1) induces multiple cytoprotective effects on every tissue, including the brain. Since the mechanisms by which IGF-1 produces neuroprotection are not fully understood, the aim of this work was to delve into the underlying mechanisms. IGF-1 deficient mice (Hz) were compared with wild type (WT) and Hz mice treated with low doses of IGF-1 (2 µg/100 g body weight/day) for 10 days (Hz + IGF). Gene expression, quantitative PCR, histology, and magnetic resonance imaging were performed in the three groups. IGF-1 deficiency induced increased oxidative damage determined by markers of lipid peroxidation and hypoxia, as well as gene expression of heat shock proteins, antioxidant enzymes, and molecules involved in inflammation, apoptosis, and mitochondrial protection. These changes correlated with edema and learning impairment in Hz mice. IGF-1 therapy improved all these alterations. In conclusion, IGF-1 deficiency is responsible for increased brain oxidative damage, edema, and impaired learning and memory capabilities which are rescued by IGF-1 replacement therapy. © 2016 International Union of Biochemistry and Molecular Biology.

  16. Estrogen-IGF-1 interactions in neuroprotection: Ischemic Stroke as a case study

    Science.gov (United States)

    Sohrabji, Farida

    2014-01-01

    The steroid hormone 17b-estradiol and the peptide hormone insulin-like growth factor (IGF)-1 independently exert neuroprotective actions in neurologic diseases such as stroke. Only a few studies have directly addressed the interaction between the two hormone systems, however, there is a large literature that indicates potentially greater interactions between the 17b-estradiol and IGF-1 systems. The present review focuses on key issues related to this interaction including IGF-1 and sex differences and common activation of second messenger systems. Using ischemic stroke as a case study, this review also focuses on independent and cooperative actions of estrogen and IGF-1 on neuroprotection, blood brain barrier integrity, angiogenesis, inflammation and post-stroke epilepsy. Finally, the review also focuses on the astrocyte, a key mediator of post stroke repair, as a local source of 17b-estradiol and IGF-1. This review thus highlights areas where significant new research is needed to clarify the interactions between these two neuroprotectants. PMID:24882635

  17. Serum IGF-1, IGFBP-3 and their ratio: Potential biochemical growth maturity indicators.

    Science.gov (United States)

    Jain, Nimisha; Tripathi, Tulika; Gupta, S K; Rai, Priyank; Kanase, Anup; Kalra, Shilpa

    2017-12-01

    Determination of skeletal maturation and remaining growth potential is an essential part of treatment planning in orthodontics. The aim of our study was to determine the relationship between IGF-1 levels, IGFBP-3 levels with CVM staging to track the pre pubertal and pubertal growth spurts in female patients in North Indian population. This cross-sectional study was conducted on ninety female subjects in the age group of 8-20 years. Blood samples were collected and centrifuged and serum samples were then analysed by Human IGF-1 and IGFBP-3 enzyme-linked immunosorbent assay kits, specific for IGF-1 and IGFBP-3, respectively. CVM staging on lateral cephalometric radiograph was determined for all patients. Analysis of variance test followed by a post hoc test was used to compare mean IGF-1 and IGFBP-3 corresponding to six stages of cervical vertebrae maturation stages. Linear Pearson's correlations were performed to determine the trends of IGF-1, IGFBP-3, and its ratio relating to CVM stage. The kappa statistic was used to measure inter and intra examiner reliability. P value IGF-1 levels were found to be highest (403.3 ± 12.3 ng/ml) at CVMI3 stage of CVMI. The post-hoc test revealed a significant difference in IGF-1 levels between all stages of CVMI, thereby indicating a specific range of IGF-1 levels for a specific skeletal stage. Mean serum IGFBP-3 levels were found to be highest (5186.8 ± 1384.2 ng/ml) at CVMI4 stage of CVMI. The mean serum IGFBP-3 levels at CVMI4 were found to be significantly higher than the levels at all other CVMI stages except CVMI3 stage. IGF-1 and IGFBP-3 can serve as a potential biochemical indicator for assessment of skeletal maturity.

  18. Brain IGF-1 receptors control mammalian growth and lifespan through a neuroendocrine mechanism.

    Directory of Open Access Journals (Sweden)

    Laurent Kappeler

    2008-10-01

    Full Text Available Mutations that decrease insulin-like growth factor (IGF and growth hormone signaling limit body size and prolong lifespan in mice. In vertebrates, these somatotropic hormones are controlled by the neuroendocrine brain. Hormone-like regulations discovered in nematodes and flies suggest that IGF signals in the nervous system can determine lifespan, but it is unknown whether this applies to higher organisms. Using conditional mutagenesis in the mouse, we show that brain IGF receptors (IGF-1R efficiently regulate somatotropic development. Partial inactivation of IGF-1R in the embryonic brain selectively inhibited GH and IGF-I pathways after birth. This caused growth retardation, smaller adult size, and metabolic alterations, and led to delayed mortality and longer mean lifespan. Thus, early changes in neuroendocrine development can durably modify the life trajectory in mammals. The underlying mechanism appears to be an adaptive plasticity of somatotropic functions allowing individuals to decelerate growth and preserve resources, and thereby improve fitness in challenging environments. Our results also suggest that tonic somatotropic signaling entails the risk of shortened lifespan.

  19. AAV-mediated pancreatic overexpression of Igf1 counteracts progression to autoimmune diabetes in mice.

    Science.gov (United States)

    Mallol, Cristina; Casana, Estefania; Jimenez, Veronica; Casellas, Alba; Haurigot, Virginia; Jambrina, Claudia; Sacristan, Victor; Morró, Meritxell; Agudo, Judith; Vilà, Laia; Bosch, Fatima

    2017-07-01

    Type 1 diabetes is characterized by autoimmune destruction of β-cells leading to severe insulin deficiency. Although many improvements have been made in recent years, exogenous insulin therapy is still imperfect; new therapeutic approaches, focusing on preserving/expanding β-cell mass and/or blocking the autoimmune process that destroys islets, should be developed. The main objective of this work was to test in non-obese diabetic (NOD) mice, which spontaneously develop autoimmune diabetes, the effects of local expression of Insulin-like growth factor 1 (IGF1), a potent mitogenic and pro-survival factor for β-cells with immunomodulatory properties. Transgenic NOD mice overexpressing IGF1 specifically in β-cells (NOD-IGF1) were generated and phenotyped. In addition, miRT-containing, IGF1-encoding adeno-associated viruses (AAV) of serotype 8 (AAV8-IGF1-dmiRT) were produced and administered to 4- or 11-week-old non-transgenic NOD females through intraductal delivery. Several histological, immunological, and metabolic parameters were measured to monitor disease over a period of 28-30 weeks. In transgenic mice, local IGF1 expression led to long-term suppression of diabetes onset and robust protection of β-cell mass from the autoimmune insult. AAV-mediated pancreatic-specific overexpression of IGF1 in adult animals also dramatically reduced diabetes incidence, both when vectors were delivered before pathology onset or once insulitis was established. Transgenic NOD-IGF1 and AAV8-IGF1-dmiRT-treated NOD animals had much less islet infiltration than controls, preserved β-cell mass, and normal insulinemia. Transgenic and AAV-treated islets showed less expression of antigen-presenting molecules, inflammatory cytokines, and chemokines important for tissue-specific homing of effector T cells, suggesting IGF1 modulated islet autoimmunity in NOD mice. Local expression of Igf1 by AAV-mediated gene transfer counteracts progression to diabetes in NOD mice. This study suggests a

  20. Increased cardiogenesis in P19-GFP teratocarcinoma cells expressing the propeptide IGF-1Ea

    Energy Technology Data Exchange (ETDEWEB)

    Poudel, Bhawana [Heart Science Centre, National Heart and Lung Institute, Imperial College, London (United Kingdom); Bilbao, Daniel [EMBL, Mouse Biology Unit, Monterotondo (Italy); Sarathchandra, Padmini; Germack, Renee [Heart Science Centre, National Heart and Lung Institute, Imperial College, London (United Kingdom); Rosenthal, Nadia [Heart Science Centre, National Heart and Lung Institute, Imperial College, London (United Kingdom); Australian Regenerative Medicine Institute, Monash University, Melbourne (Australia); Santini, Maria Paola, E-mail: m.santini@imperial.ac.uk [Heart Science Centre, National Heart and Lung Institute, Imperial College, London (United Kingdom)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer In this study, we explored the function of IGF-1Ea propeptide in inducing cardiogenesis of stem cells. Black-Right-Pointing-Pointer IGF-1Ea promoted cardiac mesodermal induction in uncommitted cells. Black-Right-Pointing-Pointer Under differentiation condition, IGF-1Ea increased expression of cardiac differentiation markers. Black-Right-Pointing-Pointer Furthermore, it promoted formation of finely organized sarcomeric structure. Black-Right-Pointing-Pointer IGF-1Ea propeptide may be a good candidate to improve production of cardiomyocytes from pluripotent cells. -- Abstract: The mechanism implicated in differentiation of endogenous cardiac stem cells into cardiomyocytes to regenerate the heart tissue upon an insult remains elusive, limiting the therapeutical goals to exogenous cell injection and/or gene therapy. We have shown previously that cardiac specific overexpression of the insulin-like growth factor 1 propeptide IGF-1Ea induces beneficial myocardial repair after infarct. Although the mechanism is still under investigation, the possibility that this propeptide may be involved in promoting stem cell differentiation into the cardiac lineage has yet to be explored. To investigate whether IGF-1Ea promote cardiogenesis, we initially modified P19 embryonal carcinoma cells to express IGF-1Ea. Taking advantage of their cardiomyogenic nature, we analyzed whether overexpression of this propeptide affected cardiac differentiation program. The data herein presented showed for the first time that constitutively overexpressed IGF-1Ea increased cardiogenic differentiation program in both undifferentiated and DMSO-differentiated cells. In details, IGF-1Ea overexpression promoted localization of alpha-actinin in finely organized sarcomeric structure compared to control cells and upregulated the cardiac mesodermal marker NKX-2.5 and the ventricular structural protein MLC2v. Furthermore, activated IGF-1 signaling promoted cardiac

  1. Increased cardiogenesis in P19-GFP teratocarcinoma cells expressing the propeptide IGF-1Ea

    International Nuclear Information System (INIS)

    Poudel, Bhawana; Bilbao, Daniel; Sarathchandra, Padmini; Germack, Renee; Rosenthal, Nadia; Santini, Maria Paola

    2011-01-01

    Highlights: ► In this study, we explored the function of IGF-1Ea propeptide in inducing cardiogenesis of stem cells. ► IGF-1Ea promoted cardiac mesodermal induction in uncommitted cells. ► Under differentiation condition, IGF-1Ea increased expression of cardiac differentiation markers. ► Furthermore, it promoted formation of finely organized sarcomeric structure. ► IGF-1Ea propeptide may be a good candidate to improve production of cardiomyocytes from pluripotent cells. -- Abstract: The mechanism implicated in differentiation of endogenous cardiac stem cells into cardiomyocytes to regenerate the heart tissue upon an insult remains elusive, limiting the therapeutical goals to exogenous cell injection and/or gene therapy. We have shown previously that cardiac specific overexpression of the insulin-like growth factor 1 propeptide IGF-1Ea induces beneficial myocardial repair after infarct. Although the mechanism is still under investigation, the possibility that this propeptide may be involved in promoting stem cell differentiation into the cardiac lineage has yet to be explored. To investigate whether IGF-1Ea promote cardiogenesis, we initially modified P19 embryonal carcinoma cells to express IGF-1Ea. Taking advantage of their cardiomyogenic nature, we analyzed whether overexpression of this propeptide affected cardiac differentiation program. The data herein presented showed for the first time that constitutively overexpressed IGF-1Ea increased cardiogenic differentiation program in both undifferentiated and DMSO-differentiated cells. In details, IGF-1Ea overexpression promoted localization of alpha-actinin in finely organized sarcomeric structure compared to control cells and upregulated the cardiac mesodermal marker NKX-2.5 and the ventricular structural protein MLC2v. Furthermore, activated IGF-1 signaling promoted cardiac mesodermal induction in undifferentiated cells independently of cell proliferation. This analysis suggests that IGF-1Ea may be a

  2. Gut microbiota induce IGF-1 and promote bone formation and growth

    Science.gov (United States)

    Yan, Jing; Herzog, Jeremy W.; Tsang, Kelly; Brennan, Caitlin A.; Bower, Maureen A.; Garrett, Wendy S.; Sartor, Balfour R.; Charles, Julia F.

    2016-01-01

    Appreciation of the role of the gut microbiome in regulating vertebrate metabolism has exploded recently. However, the effects of gut microbiota on skeletal growth and homeostasis have only recently begun to be explored. Here, we report that colonization of sexually mature germ-free (GF) mice with conventional specific pathogen-free (SPF) gut microbiota increases both bone formation and resorption, with the net effect of colonization varying with the duration of colonization. Although colonization of adult mice acutely reduces bone mass, in long-term colonized mice, an increase in bone formation and growth plate activity predominates, resulting in equalization of bone mass and increased longitudinal and radial bone growth. Serum levels of insulin-like growth factor 1 (IGF-1), a hormone with known actions on skeletal growth, are substantially increased in response to microbial colonization, with significant increases in liver and adipose tissue IGF-1 production. Antibiotic treatment of conventional mice, in contrast, decreases serum IGF-1 and inhibits bone formation. Supplementation of antibiotic-treated mice with short-chain fatty acids (SCFAs), products of microbial metabolism, restores IGF-1 and bone mass to levels seen in nonantibiotic-treated mice. Thus, SCFA production may be one mechanism by which microbiota increase serum IGF-1. Our study demonstrates that gut microbiota provide a net anabolic stimulus to the skeleton, which is likely mediated by IGF-1. Manipulation of the microbiome or its metabolites may afford opportunities to optimize bone health and growth. PMID:27821775

  3. Serum insulin-like growth factor-1 (IGF-1) during CF pulmonary exacerbation: trends and biomarker correlations.

    Science.gov (United States)

    Gifford, A H; Nymon, A B; Ashare, A

    2014-04-01

    Cystic fibrosis (CF) is characterized by low circulating levels of insulin-like growth factor-1 (IGF-1), a hormone produced by the liver that governs anabolism and influences immune cell function. Because treatment of CF pulmonary exacerbation (CFPE) often improves body weight and lung function, we questioned whether serum IGF-1 trends were emblematic of these responses. Initially, we compared serum levels between healthy adults with CF and controls of similar age. We then measured serum IGF-1 throughout the CFPE cycle. We also investigated correlations among IGF-1 and other serum biomarkers during CFPE. Anthopometric, spirometric, and demographic data were collected. Serum IGF-1 concentrations were measured by ELISA. CF subjects in their usual state of health had lower serum IGF-1 levels than controls. Serum IGF-1 concentrations fell significantly from baseline at the beginning of CFPE. Treatment with intravenous antibiotics was associated with significant improvement in serum IGF-1 levels, body mass index (BMI), and percent-predicted forced expiratory volume in 1 sec (FEV1 %). At early and late CFPE, serum IGF-1 was directly correlated with FEV1 %, serum iron, hemoglobin concentration, and transferrin saturation (TSAT) and indirectly correlated with alpha-1-antitrypsin. This study not only supports the paradigm that CF is characterized by IGF-1 deficiency but also that trends in lung function, nutritional status, and serum IGF-1 are related. Improvements in all three parameters after antibiotics for CFPE likely highlight the connection between lung function and nutritional status in CF. Close correlations among IGF-1 and iron-related hematologic parameters suggest that IGF-1 may participate in CF iron homeostasis, another process that is known to be influenced by CFPE. © 2013 Wiley Periodicals, Inc.

  4. IGF-Regulated Genes in Prostate Cancer

    National Research Council Canada - National Science Library

    Roberts, Charles

    2003-01-01

    We hypothesized that genes that are differentially expressed as a result of the decreased IGF-I receptor gene expression seen in metastatic prostate cancer contribute to prostate cancer progression...

  5. IGF-Regulated Genes in Prostate Cancer

    National Research Council Canada - National Science Library

    Roberts, Charles T., Jr

    2005-01-01

    We hypothesized that genes that are differentially expressed as a result of the decreased IGF-I receptor gene expression seen in metastatic prostate cancer contribute to prostate cancer progression...

  6. Cyclic-glycine-proline accelerates mammary involution by promoting apoptosis and inhibiting IGF-1 function.

    Science.gov (United States)

    Singh-Mallah, Gagandeep; McMahon, Christopher D; Guan, Jian; Singh, Kuljeet

    2017-12-01

    In rodents, post-lactational involution of mammary glands is characterized by the loss of mammary epithelial cells via apoptosis, which is associated with a decline in the expression of insulin-like growth factor-1 (IGF-1). Overexpression of IGF-1 delays involution by inhibiting apoptosis of epithelial cells and preserving the remaining secretory alveoli. Cyclic-glycine-proline (cGP), a metabolite of IGF-1, normalizes IGF-1 function under pathological conditions by regulating the bioavailability of IGF-1. The present study investigated the effect of cGP on the physiological decline in IGF-1 function during post-lactational mammary involution. Rat dams were gavaged with either cGP (3 mg/kg) or saline once per day from post-natal d8-22. Before collecting tissue on post-natal d23, a pair of mammary glands were sealed on d20 (72 hr-engorgement, thus representative of late-involution) and d22 (24 hr-engorgement, thus representative of mid-involution), while the remaining glands were allowed to involute naturally (early-involution). During early-involution, cGP accelerated the loss of mammary cells through apoptosis, resulting in an earlier clearance of intact secretory alveoli compared with the control group. This coincided with an earlier up-regulation of the cell survival factors, Bcl-xl and IGF-1R, in the early-involution cGP glands compared with the control glands. During late-involution, cGP reduced the bioactivity of IGF-1, which was evident through decreased phosphorylation of IGF-1R in the regressed alveoli. Maternal administration of cGP did not alter milk production and composition during early-, peak-, or late-stage of lactation. These data show that cGP accelerates post-lactational involution by promoting apoptosis and the physiological decline in IGF-1 function. © 2017 Wiley Periodicals, Inc.

  7. Effects of dietary genistein on GH/IGF-I axis of Nile tilapia Oreochromis niloticus

    Science.gov (United States)

    Chen, Dong; Wang, Wei; Ru, Shaoguo

    2016-09-01

    There is considerable concern that isoflavones, such as genistein in fish feed composed of soybean protein, aff ects somatic growth in fish. Our previous works demonstrated that 30 and 300 μg/g dietary genistein had no significant eff ect on growth performance in Nile tilapia ( Oreochromis niloticus), but the higher level of genistein (3 000 μg/g) significantly depressed growth. This study was conducted to further examine the eff ects of dietary genistein on the endocrine disruption on growth hormone/insulin-like growth factor-I (GH/IGF-I) axis in Nile tilapia ( O. niloticus). Juvenile fish were fed by hand twice daily to satiation with one of four isonitrogenous and isoenergetic diets, each containing either 0, 30, 300 or 3 000 μg/g genistein. Following an 8-week feeding period, plasma GH and IGF-I levels were investigated by radioimmunoassay and gene expression levels of gh, ghrelin, gnrhs, ghr, npy, npyrs, pacap, ghrs, i gf-I, igf-Ir, and igfbp3 were examined by real-time PCR. The results show that no significant change in plasma GH and IGF-I levels in fish fed with diets containing 30 μg/g and 300 μg/g genistein. mRNA expression of genes along the GH/IGF-I axis remained unaff ected, except for igf-Ir, which was stimulated by the 300 μg/g genistein diet. While in fish fed the 3 000 μg/g genistein diet, the plasma GH and IGF-I levels decreased, and mRNA expression of gh, ghr2, npyr1, igf-I, and igf-Ir were also significantly depressed. In contrast, npy and igfbp3 mRNA expression were enhanced. This study provides convincing evidence for growth impediment by genistein by disturbing the GH/IGF-I axis in Nile tilapia O. niloticus.

  8. Plasma levels of IGF-1 and IGFBP-3 in patients with brain tumor

    International Nuclear Information System (INIS)

    Zhang Bin; Wu Yiwei; Li Xiangdong

    2004-01-01

    Objective: To determinate the plasma levels of Insulin like growth factor-1 (IGF-1) and Insulin like Growth Factor Binding Protein-3 (IGFBP-3) in patients with glioma and meningioma. Methods: IGF-1 and IGFBP-3 Immunoradiometric assay on coated tubes kits (BIOCODE-HYCEL Belgium) were used to determinate the plasma levels of IGF-1 and IGFBP-3 in 41 cases of glioma (12 cases age 40), 14 cases of meningioma(age>40), and 22 cases of healthy subjects (10 cases age 40). All the diagnosis of patients was confirmed by pathology. Cap-Ria 16 Gamma Counter (CAPINTEC, INC U.S.A) was used to count the radioactivity. Results: Plasma levels of IGF-1 and IGFBP-3 in patients with glioma were 322.20±80.89 ng/mL, 1524.63±373.18 ng/mL (age 40), respectively. Plasma levels of IGF-1 and IGFBP-3 in patients with meningioma were 211.06±75.11 ng/mL, 1403.08±350.78 ng/mL (age >40); control groups were 272.46±49.67 ng/mL, 1453.38±378.73 ng/mL (age 40), respectively. Plasma levels of IGF-1 and IGFBP-3 in patients with glioma(age>40) were significantly higher than in controls (P 0.05). Conclusion: IGF-1 is a risk factor for glioma and play important role in the pathophysiological process of glioma. Endogenous regulation of the balance between IGF-1 and IGFBP-3 may be a model of regulation of cellular growth in tumor cells. (authors)

  9. Identification of thioredoxin-interacting protein (TXNIP) as a downstream target for IGF1 action.

    Science.gov (United States)

    Nagaraj, Karthik; Lapkina-Gendler, Lena; Sarfstein, Rive; Gurwitz, David; Pasmanik-Chor, Metsada; Laron, Zvi; Yakar, Shoshana; Werner, Haim

    2018-01-30

    Laron syndrome (LS), or primary growth hormone (GH) insensitivity, is the best-characterized entity among the congenital insulin-like growth factor 1 (IGF1) deficiencies. Life-long exposure to minute endogenous IGF1 levels is linked to low stature as well as a number of endocrine and metabolic abnormalities. While elevated IGF1 is correlated with increased cancer incidence, epidemiological studies revealed that patients with LS do not develop tumors. The mechanisms associated with cancer protection in LS are yet to be discovered. Recent genomic analyses identified a series of metabolic genes that are overrepresented in patients with LS. Given the augmented expression of these genes in a low IGF1 milieu, we hypothesized that they may constitute targets for IGF1 action. Thioredoxin-interacting protein (TXNIP) plays a critical role in cellular redox control by thioredoxin. TXNIP serves as a glucose and oxidative stress sensor, being commonly silenced by genetic or epigenetic events in cancer cells. Consistent with its enhanced expression in LS, we provide evidence that TXNIP gene expression is negatively regulated by IGF1. These results were corroborated in animal studies. In addition, we show that oxidative and glucose stresses led to marked increases in TXNIP expression. Supplementation of IGF1 attenuated TXNIP levels, suggesting that IGF1 exerts its antiapoptotic effect via inhibition of TXNIP Augmented TXNIP expression in LS may account for cancer protection in this condition. Finally, TXNIP levels could be potentially useful in the clinic as a predictive or diagnostic biomarker for IGF1R-targeted therapies.

  10. IGF-1 modulates gene expression of proteins involved in inflammation, cytoskeleton, and liver architecture.

    Science.gov (United States)

    Lara-Diaz, V J; Castilla-Cortazar, I; Martín-Estal, I; García-Magariño, M; Aguirre, G A; Puche, J E; de la Garza, R G; Morales, L A; Muñoz, U

    2017-05-01

    Even though the liver synthesizes most of circulating IGF-1, it lacks its receptor under physiological conditions. However, according to previous studies, a damaged liver expresses the receptor. For this reason, herein, we examine hepatic histology and expression of genes encoding proteins of the cytoskeleton, extracellular matrix, and cell-cell molecules and inflammation-related proteins. A partial IGF-1 deficiency murine model was used to investigate IGF-1's effects on liver by comparing wild-type controls, heterozygous igf1 +/- , and heterozygous mice treated with IGF-1 for 10 days. Histology, microarray for mRNA gene expression, RT-qPCR, and lipid peroxidation were assessed. Microarray analyses revealed significant underexpression of igf1 in heterozygous mice compared to control mice, restoring normal liver expression after treatment, which then normalized its circulating levels. IGF-1 receptor mRNA was overexpressed in Hz mice liver, while treated mice displayed a similar expression to that of the controls. Heterozygous mice showed overexpression of several genes encoding proteins related to inflammatory and acute-phase proteins and underexpression or overexpression of genes which coded for extracellular matrix, cytoskeleton, and cell junction components. Histology revealed an altered hepatic architecture. In addition, liver oxidative damage was found increased in the heterozygous group. The mere IGF-1 partial deficiency is associated with relevant alterations of the hepatic architecture and expression of genes involved in cytoskeleton, hepatocyte polarity, cell junctions, and extracellular matrix proteins. Moreover, it induces hepatic expression of the IGF-1 receptor and elevated acute-phase and inflammation mediators, which all resulted in liver oxidative damage.

  11. IGF-II promotes neuroprotection and neuroplasticity recovery in a long-lasting model of oxidative damage induced by glucocorticoids.

    Science.gov (United States)

    Martín-Montañez, E; Millon, C; Boraldi, F; Garcia-Guirado, F; Pedraza, C; Lara, E; Santin, L J; Pavia, J; Garcia-Fernandez, M

    2017-10-01

    Insulin-like growth factor-II (IGF-II) is a naturally occurring hormone that exerts neurotrophic and neuroprotective properties in a wide range of neurodegenerative diseases and ageing. Accumulating evidence suggests that the effects of IGF-II in the brain may be explained by its binding to the specific transmembrane receptor, IGFII/M6P receptor (IGF-IIR). However, relatively little is known regarding the role of IGF-II through IGF-IIR in neuroprotection. Here, using adult cortical neuronal cultures, we investigated whether IGF-II exhibits long-term antioxidant effects and neuroprotection at the synaptic level after oxidative damage induced by high and transient levels of corticosterone (CORT). Furthermore, the involvement of the IGF-IIR was also studied to elucidate its role in the neuroprotective actions of IGF-II. We found that neurons treated with IGF-II after CORT incubation showed reduced oxidative stress damage and recovered antioxidant status (normalized total antioxidant status, lipid hydroperoxides and NAD(P) H:quinone oxidoreductase activity). Similar results were obtained when mitochondria function was analysed (cytochrome c oxidase activity, mitochondrial membrane potential and subcellular mitochondrial distribution). Furthermore, neuronal impairment and degeneration were also assessed (synaptophysin and PSD-95 expression, presynaptic function and FluoroJade B® stain). IGF-II was also able to recover the long-lasting neuronal cell damage. Finally, the effects of IGF-II were not blocked by an IGF-IR antagonist, suggesting the involvement of IGF-IIR. Altogether these results suggest that, in or model, IGF-II through IGF-IIR is able to revert the oxidative damage induced by CORT. In accordance with the neuroprotective role of the IGF-II/IGF-IIR reported in our study, pharmacotherapy approaches targeting this pathway may be useful for the treatment of diseases associated with cognitive deficits (i.e., neurodegenerative disorders, depression, etc

  12. IGF-IEc expression is increased in secondary compared to primary foci in neuroendocrine neoplasms.

    Science.gov (United States)

    Alexandraki, Krystallenia I; Philippou, Anastassios; Boutzios, Georgios; Theohari, Irini; Koutsilieris, Michael; Delladetsima, Ioanna Kassiani; Kaltsas, Gregory A

    2017-10-03

    Different Insulin-like growth factor-I (IGF-I) mRNA transcripts are produced by alternative splicing and particularly the IGF-IEc isoform has been implicated in the development and/or progression of various types of cancer. In the present study, we examined the potential role of IGF-IEc expression as a new immunohistochemical marker of aggressiveness in neuroendocrine neoplasms (NENs). We utilized immunohistochemical analysis in tissue specimens of 47 patients with NENs, to evaluate the expression of IGF-IEc (%) and Ki-67 proliferation index (%). Specimens from patients with tumors of different tissue origin, of either primary or metastatic lesions and of different grade were examined. Cytoplasmic IGF-IEc staining was found in 23 specimens of NENs or NECs: 10 pancreatic, 4 small bowel, 3 gastric, 1 lung, 1 uterine and 4 poorly differentiated of unknown primary origin. Ki-67 and IGF-IEc expression was positively correlated in all the samples studied (r=0.31, p=0.03). IGF-1Ec expression was more prevalent in specimens originating from metastatic foci with high Ki-67 compared to primary sites with low Ki-67 expression (p=0.036). These findings suggest a possible role of IGF-IEc in NEN tumorigenesis and progression to metastases that could be used as an additional new marker of a more aggressive behavior and a potential drugable target.

  13. Elevated serum IGF-1 level enhances retinal and choroidal thickness in untreated acromegaly patients.

    Science.gov (United States)

    Zhang, Xia; Ma, Jin; Wang, Yuhan; Li, Lüe; Gao, Lu; Guo, Xiaopeng; Xing, Bing; Zhong, Yong

    2018-03-01

    1) To compare the retinal, choroidal, Haller's layer, and Sattler's/choriocapillaris thicknesses of untreated acromegaly patients without chiasm compression or diabetes mellitus and healthy controls. 2) To evaluate the correlations of retinal and choroidal thicknesses with serum growth hormone (GH) and insulin-like growth factor 1 (IGF) burden. This prospective, case-control study included 27 untreated acromegaly patients and 27 sex-matched and age-matched controls. Subfoveal choroidal, Haller's layer and Sattler's/choriocapillaris thicknesses were determined by enhanced-depth imaging optical coherence tomography (EDI-OCT). Foveal and macular retinal thicknesses were determined with SD-OCT. GH and IGF-1 burdens were defined as the product of disease duration and treatment-naïve serum GH and IGF-1 levels. Compared with healthy controls, patients with acromegaly exhibited significantly increased foveal retinal (p = 0.003), subfoveal choroidal (p IGF-1 level (p = 0.03) and IGF-1 burden (p = 0.009). No significant correlations were detected between choroidal thickness and GH burden (p = 0.44). Retinal thickness was not significantly correlated with any factor. The choroidal thickness of acromegaly patients was greater than that of healthy controls and was significantly correlated with disease duration, IGF-1 level and IGF-1 burden, indicating that excessive serum IGF-1 and its exposure time have a combined effect on choroidal thickness.

  14. The International Gravity Field Service (IGFS): Present Day Activities And Future Plans

    Science.gov (United States)

    Barzaghi, R.; Vergos, G. S.

    2016-12-01

    IGFS is a unified "umbrella" IAG service that coordinates the servicing of the geodetic and geophysical community with gravity field related data, software and information. The combined data of the IGFS entities will include global geopotential models, terrestrial, airborne, satellite and marine gravity observations, Earth tide data, GPS/levelling data, digital models of terrain and bathymetry, as well as ocean gravity field and geoid from satellite altimetry. The IGFS structure is based on the Gravity Services, the "operating arms" of IGFS. These Services related to IGFS are: BGI (Bureau Gravimetrique International), Toulouse, France ISG (International Service for the Geoid), Politecnico di Milano, Milano, Italy IGETS (International Geodynamics and Earth Tides Service), EOST, Strasbourg, France ICGEM (International Center for Global Earth Models), GFZ, Potsdam, Germany IDEMS (International Digital Elevation Model Service), ESRI, Redlands, CA, USA The Central Bureau, hosted at the Aristotle Thessaloniki University, is in charge for all the interactions among the services and the other IAG bodies, particularly GGOS. In this respect, connections with the GGOS Bureaus of Products and Standards and of Networks and Observations have been recently strengthened in order to align the Gravity services to the GGOS standards. IGFS is also strongly involved in the most relevant projects related to the gravity field such as the establishment of the new Global Absolute Gravity Reference System and of the International Height Reference System. These projects, along with the organization of Geoid Schools devoted to methods for gravity and geoid estimate, will play a central role in the IGFS future actions in the framework of GGOS.

  15. Possible roles of insulin, IGF-1 and IGFBPs in initiation and progression of colorectal cancer

    Science.gov (United States)

    Jiang, Bo; Zhang, Xin; Du, Li-Li; Wang, Yan; Liu, Dong-Bo; Han, Cun-Zhi; Jing, Jie-Xian; Zhao, Xian-Wen; Xu, Xiao-Qin

    2014-01-01

    AIM: To investigate the roles of serum insulin, insulin-like growth factor-1 (IGF-1), and insulin-like growth factor binding proteins (IGFBPs) in the initiation and progression of colorectal cancer. METHODS: We determined serum insulin, IGF-1 and IGFBPs levels in 615 colorectal cancer patients and 650 control healthy donors by enzyme-linked immunosorbent assay (ELISA). In the meantime, their body mass index (BMI) and waist-to-hip ratio (WHR) were measured. RESULTS: Serum levels of insulin and IGF-1 as well as IGF-1/IGFBP-3 ratio in pre-operation patients were significantly elevated, but the level of IGFBP-3 was significantly decreased compared with normal controls and post-operation patients (P 0.05) in the levels of insulin, IGF-1, IGFBP-1, IGFBP-3 and IGF-1/IGFBP-3 between the patients with and without hepatic as well as distal abdominal metastases. WHR and BMI of colon cancer patients were positively and significantly correlated with the levels of insulin and IGF-1/IGFBP-3. In contrast, WHR and BMI were negatively correlated with IGFBP-3 level. CONCLUSION: The elevation of insulin, IGF-1 as well as IGF-1/IGFBP-3 ratio and the reduction of IGFBP-3 may be related to the initiation of colorectal cancer, but they are not related to the progression and outcome of the disease. PMID:24587638

  16. Association between Insulin Like Growth Factor-1 (IGF-1) gene ...

    African Journals Online (AJOL)

    The insulin-like growth factor-1 (IGF1) is a key regulator of muscle development and metabolism in birds and other vertebrate. Our objective was to determine the association between IGF1 gene polymorphism and carcass traits in FUNAAB Alpha chicken. Genomic DNA was extracted from the blood of 50 normal feathered ...

  17. IGF-I and IGFBP-3 levels and their correlations with ...

    African Journals Online (AJOL)

    Background: Colorectal cancer is one of the most frequently seen cancers worldwide. Currently, CEA is the most commonly used tumor marker in colorectal cancer. The changes in IGF/IGFBP equilibrium is also known to cause carcinogenesis. In this study, we aimed to monitor IGF-I/IGFBP-3 levels, the changes in ...

  18. Targeting chondrosarcoma and osteosarcoma cell metabolism : the IGF pathway and beyond

    NARCIS (Netherlands)

    Peterse, E.F.P.

    2018-01-01

    Thesis explored potential new therapeutic strategies by identifying cellular pathways that are essential for chondrosarcoma and osteosarcoma cell survival. Although clinical trials with IGF1R inhibitors have disappointing results in osteosarcoma, this thesis strengthens the view that the IGF

  19. Receptors for insulin-like growth factor II (IGF-II) in the rat kidney glomerulus

    International Nuclear Information System (INIS)

    Haskell, J.F.; Pillion, D.J.; Meezan, E.

    1986-01-01

    Renal glomeruli were isolated by a technique involving renal perfusion with a solution containing magnetic iron oxide particles, followed by homogenization, sieving and isolation over a strong magnet. Isolated glomeruli were treated with 1% Triton X-100 to solubilize plasma membrane components while insoluble basement membrane components were removed by centrifugation. [ 125 I]Insulin-like growth factor-II (IGF-II) binding to this preparation was competitively inhibited by increasing amounts of unlabelled IGF-II, with 50% inhibition of binding observed at an IGF-II concentration of 1 ng/ml. [ 125 I]IGF-II was covalently cross-linked to its receptor with disuccinimidyl suberate in two tissues known to contain IGF-II receptors, the rat chondrosarcoma chondrocyte and the rat kidney tubule, as well as in rat renal glomeruli. In all three cases, a specific high-molecular weight (Mr = 255,000) band could be identified on autoradiograms of dodecyl sulfate polyacrylamide gels. These results indicate that the rat glomerulus contains a high-affinity receptor for IGF-II. This finding is consistent with the hypothesis that IGF-II plays a role in glomerular growth and differentiation

  20. Rosiglitazone Inhibits Adrenocortical Cancer Cell Proliferation by Interfering with the IGF-IR Intracellular Signaling

    Directory of Open Access Journals (Sweden)

    Luconi Michaela

    2008-07-01

    Full Text Available Rosiglitazone (RGZ, a thiazolidinedione ligand of the peroxisome proliferator-activated receptor (PPAR-γ, has been recently described as possessing antitumoral properties. We investigated RGZ effect on cell proliferation in two cell line models (SW13 and H295R of human adrenocortical carcinoma (ACC and its interaction with the signaling pathways of the activated IGF-I receptor (IGF-IR. We demonstrate a high expression of IGF-IR in the two cell lines and in ACC. Cell proliferation is stimulated by IGF-I in a dose- and time-dependent manner and is inhibited by RGZ. The analysis of the main intracellular signaling pathways downstream of the activated IGF-IR, phosphatidyl inositol 3-kinase (PI3K-Akt, and extracellular signal-regulated kinase (ERK1/2 cascades reveals that RGZ rapidly interferes with the Akt and ERK1/2 phosphorylation/activation which mediates IGF-I stimulated proliferation. In conclusion, our results suggest that RGZ exerts an inhibitory effect on human ACC cell proliferation by interfering with the PI3K/Akt and ERK1/2 signaling pathways downstream of the activated IGF-IR.

  1. Regulation of IGF-1 signaling by microRNAs

    Directory of Open Access Journals (Sweden)

    Hwa Jin eJung

    2015-01-01

    Full Text Available The insulin-like growth factor 1 (IGF-1 signaling pathway regulates critical biological processes including development, homeostasis, and aging. Dysregulation of this pathway has been implicated in a myriad of diseases such as cancers, neurodegenerative diseases, and metabolic disorders, making the IGF-1 signaling pathway a prime target to develop therapeutic and intervention strategies. Recently, small non-coding RNA molecules in ~22 nucleotide length, microRNAs (miRNAs, have emerged as a new regulator of biological processes in virtually all organ systems and increasing studies are linking altered miRNA function to disease mechanisms. A miRNA binds to 3’UTRs of multiple target genes and coordinately down-regulates their expression, thereby exerting a profound influence on gene regulatory networks. Here we review the components of the IGF-1 signaling pathway that are known targets of miRNA regulation, and highlight recent studies that suggest therapeutic potential of these miRNAs against various diseases.

  2. Deficiency of liver-derived insulin-like growth factor-I (IGF-I) does not interfere with the skin wound healing rate

    Science.gov (United States)

    Narayanan, Sampath; Grünler, Jacob; Sunkari, Vivekananda Gupta; Calissendorff, Freja S.; Ansurudeen, Ishrath; Illies, Christopher; Svensson, Johan; Jansson, John-Olov; Ohlsson, Claes; Brismar, Kerstin; Catrina, Sergiu-Bogdan

    2018-01-01

    Objective IGF-I is a growth factor, which is expressed in virtually all tissues. The circulating IGF-I is however derived mainly from the liver. IGF-I promotes wound healing and its levels are decreased in wounds with low regenerative potential such as diabetic wounds. However, the contribution of circulating IGF-I to wound healing is unknown. Here we investigated the role of systemic IGF-I on wound healing rate in mice with deficiency of liver-derived IGF-I (LI-IGF-I-/- mice) during normal (normoglycemic) and impaired wound healing (diabetes). Methods LI-IGF-I-/- mice with complete inactivation of the IGF-I gene in the hepatocytes were generated using the Cre/loxP recombination system. This resulted in a 75% reduction of circulating IGF-I. Diabetes was induced with streptozocin in both LI-IGF-I-/- and control mice. Wounds were made on the dorsum of the mice, and the wound healing rate and histology were evaluated. Serum IGF-I and GH were measured by RIA and ELISA respectively. The expression of IGF-I, IGF-II and the IGF-I receptor in the skin were evaluated by qRT-PCR. The local IGF-I protein expression in different cell types of the wounds during wound healing process was analyzed using immunohistochemistry. Results The wound healing rate was similar in LI-IGF-I-/- mice to that in controls. Diabetes significantly delayed the wound healing rate in both LI-IGF-I-/- and control mice. However, no significant difference was observed between diabetic animals with normal or reduced hepatic IGF-I production. The gene expression of IGF-I, IGF-II and IGF-I receptor in skin was not different between any group of animals tested. Local IGF-I levels in the wounds were similar between of LI-IGF-I-/- and WT mice although a transient reduction of IGF-I expression in leukocytes in the wounds of LI-IGF-I-/- was observed seven days post wounding. Conclusion Deficiency in the liver-derived IGF-I does not affect wound healing in mice, neither in normoglycemic conditions nor in

  3. Accelerated Telomere Shortening in Acromegaly; IGF-I Induces Telomere Shortening and Cellular Senescence.

    Science.gov (United States)

    Matsumoto, Ryusaku; Fukuoka, Hidenori; Iguchi, Genzo; Odake, Yukiko; Yoshida, Kenichi; Bando, Hironori; Suda, Kentaro; Nishizawa, Hitoshi; Takahashi, Michiko; Yamada, Shozo; Ogawa, Wataru; Takahashi, Yutaka

    2015-01-01

    Patients with acromegaly exhibit reduced life expectancy and increased prevalence of age-related diseases, such as diabetes, hypertension, and cardiovascular disease. However, the underlying mechanism has not been fully elucidated. Telomere shortening is reportedly associated with reduced life expectancy and increased prevalence of these age-related diseases. We measured telomere length in patients with acromegaly using quantitative PCR method. The effect of GH and IGF-I on telomere length and cellular senescence was examined in human skin fibroblasts. Patients with acromegaly exhibited shorter telomere length than age-, sex-, smoking-, and diabetes-matched control patients with non-functioning pituitary adenoma (0.62 ± 0.23 vs. 0.75 ± 0.35, respectively, P = 0.047). In addition, telomere length in acromegaly was negatively correlated with the disease duration (R2 = 0.210, P = 0.003). In vitro analysis revealed that not GH but IGF-I induced telomere shortening in human skin fibroblasts. Furthermore, IGF-I-treated cells showed increased senescence-associated β-galactosidase activity and expression of p53 and p21 protein. IGF-I-treated cells reached the Hayflick limit earlier than GH- or vehicle-treated cells, indicating that IGF-I induces cellular senescence. Shortened telomeres in acromegaly and cellular senescence induced by IGF-I can explain, in part, the underlying mechanisms by which acromegaly exhibits an increased morbidity and mortality in association with the excess secretion of IGF-I.

  4. IGF-IR promotes prostate cancer growth by stabilizing α5β1 integrin protein levels.

    Directory of Open Access Journals (Sweden)

    Aejaz Sayeed

    Full Text Available Dynamic crosstalk between growth factor receptors, cell adhesion molecules and extracellular matrix is essential for cancer cell migration and invasion. Integrins are transmembrane receptors that bind extracellular matrix proteins and enable cell adhesion and cytoskeletal organization. They also mediate signal transduction to regulate cell proliferation and survival. The type 1 insulin-like growth factor receptor (IGF-IR mediates tumor cell growth, adhesion and inhibition of apoptosis in several types of cancer. We have previously demonstrated that β1 integrins regulate anchorage-independent growth of prostate cancer (PrCa cells by regulating IGF-IR expression and androgen receptor-mediated transcriptional functions. Furthermore, we have recently reported that IGF-IR regulates the expression of β1 integrins in PrCa cells. We have dissected the mechanism through which IGF-IR regulates β1 integrin expression in PrCa. Here we report that IGF-IR is crucial for PrCa cell growth and that β1 integrins contribute to the regulation of proliferation by IGF-IR. We demonstrate that β1 integrin regulation by IGF-IR does not occur at the mRNA level. Exogenous expression of a CD4 - β1 integrin cytoplasmic domain chimera does not interfere with such regulation and fails to stabilize β1 integrin expression in the absence of IGF-IR. This appears to be due to the lack of interaction between the β1 cytoplasmic domain and IGF-IR. We demonstrate that IGF-IR stabilizes the β1 subunit by protecting it from proteasomal degradation. The α5 subunit, one of the binding partners of β1, is also downregulated along with β1 upon IGF-IR knockdown while no change is observed in the expression of the α2, α3, α4, α6 and α7 subunits. Our results reveal a crucial mechanistic role for the α5β1 integrin, downstream of IGF-IR, in regulating cancer growth.

  5. Relationship between cord blood IGF-I, IGFBP-3 levels and intrauterine growth retardation (IUGR)

    International Nuclear Information System (INIS)

    Yu Suqing; Chu Kaiqiu; Chen Shengjie

    2008-01-01

    Objective: To study the cord blood insulin-like growth factor-I (IGF-I) and its binding protein-3 (IGFBP-3) levels in neonates with intrauterine growth retardation (IUGR). Methods: Cord serum IGF-I (with RIA) and IGFBP-3 (with IRMA) levels were measured in 22 neonates with IUGR and 64 neonates with appropriate gestational age (AGA). Results: Cord blood IGF-I and IGFBP-3 levels in IUGR neonates were significantly lower than those in AGA neonates (P<0.001). Among the 86 neonates studied in this article, 44 were born pre-term and 42 were born full term. From the data, we could see that the cord blood IGF-I and IGFBP-3 levels in pre-term neonates were significantly lower than those in full-term neonates (P also <0.001). IGF-I and IGFBP-3 levels were mutually positively correlated (P<0.01). Conclusion: Cord blood IGF-I and IGFBP-3 levels were useful indicator of neonates growth. (authors)

  6. Hypothalamic neurogenesis persists in the aging brain and is controlled by energy-sensing IGF-I pathway.

    Science.gov (United States)

    Chaker, Zayna; George, Caroline; Petrovska, Marija; Caron, Jean-Baptiste; Lacube, Philippe; Caillé, Isabelle; Holzenberger, Martin

    2016-05-01

    Hypothalamic tanycytes are specialized glial cells lining the third ventricle. They are recently identified as adult stem and/or progenitor cells, able to self-renew and give rise to new neurons postnatally. However, the long-term neurogenic potential of tanycytes and the pathways regulating lifelong cell replacement in the adult hypothalamus are largely unexplored. Using inducible nestin-CreER(T2) for conditional mutagenesis, we performed lineage tracing of adult hypothalamic stem and/or progenitor cells (HySC) and demonstrated that new neurons continue to be born throughout adult life. This neurogenesis was targeted to numerous hypothalamic nuclei and produced different types of neurons in the dorsal periventricular regions. Some adult-born neurons integrated the median eminence and arcuate nucleus during aging and produced growth hormone releasing hormone. We showed that adult hypothalamic neurogenesis was tightly controlled by insulin-like growth factors (IGF). Knockout of IGF-1 receptor from hypothalamic stem and/or progenitor cells increased neuronal production and enhanced α-tanycyte self-renewal, preserving this stem cell-like population from age-related attrition. Our data indicate that adult hypothalamus retains the capacity of cell renewal, and thus, a substantial degree of structural plasticity throughout lifespan. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Favorable prognostic value of SOCS2 and IGF-I in breast cancer

    Directory of Open Access Journals (Sweden)

    Daxenbichler Günter

    2007-07-01

    Full Text Available Abstract Background Suppressor of cytokine signaling (SOCS proteins comprise a protein family, which has initially been described as STAT induced inhibitors of the Jak/Stat pathway. Recent in vivo and in vitro studies suggest that SOCS proteins are also implicated in cancer. The STAT5 induced IGF-I acts as an endocrine and para/autocrine growth and differentiation factor in mammary gland development. Whereas high levels of circulating IGF-I have been associated with increased cancer risk, the role of autocrine acting IGF-I is less clear. The present study is aimed to elucidate the clinicopathological features associated with SOCS1, SOCS2, SOCS3, CIS and IGF-I expression in breast cancer. Methods We determined the mRNA expression levels of SOCS1, SOCS2, SOCS3, CIS and IGF-I in 89 primary breast cancers by reverse transcriptase PCR. SOCS2 protein expression was further evaluated by immuno-blot and immunohistochemistry. Results SOCS2 expression inversely correlated with histopathological grade and ER positive tumors exhibited higher SOCS2 levels. Patients with high SOCS2 expression lived significantly longer (108.7 vs. 77.7 months; P = 0.015 and high SOCS2 expression proved to be an independent predictor for good prognosis (HR = 0.45, 95% CI 0.23 – 0.91, P = 0.026. In analogy to SOCS2, high IGF-I expression was an independent predictor for good prognosis in the entire patient cohort. In the subgroup of patients with lymph-node negative disease, high IGF-I was a strong predictor for favorable outcome in terms of overall survival and relapse free survival (HR = 0.075, 95% CI 0.014 – 0.388, P = 0.002. Conclusion This is the first report on the favorable prognostic value of high SOCS2 expression in primary mammary carcinomas. Furthermore a strong association of high IGF-I expression levels with good prognosis was observed especially in lymph-node negative patients. Our results suggest that high expression of the STAT5 target genes SOCS2 and IGF

  8. A Novel Role of IGF1 in Apo2L/TRAIL-Mediated Apoptosis of Ewing Tumor Cells

    Directory of Open Access Journals (Sweden)

    Frans van Valen

    2012-01-01

    Full Text Available Insulin-like growth factor 1 (IGF1 reputedly opposes chemotoxicity in Ewing sarcoma family of tumor (ESFT cells. However, the effect of IGF1 on apoptosis induced by apoptosis ligand 2 (Apo2L/tumor necrosis factor (TNF- related apoptosis-inducing ligand (TRAIL remains to be established. We find that opposite to the partial survival effect of short-term IGF1 treatment, long-term IGF1 treatment amplified Apo2L/TRAIL-induced apoptosis in Apo2L/TRAIL-sensitive but not resistant ESFT cell lines. Remarkably, the specific IGF1 receptor (IGF1R antibody α-IR3 was functionally equivalent to IGF1. Short-term IGF1 incubation of cells stimulated survival kinase AKT and increased X-linked inhibitor of apoptosis (XIAP protein which was associated with Apo2L/TRAIL resistance. In contrast, long-term IGF1 incubation resulted in repression of XIAP protein through ceramide (Cer formation derived from de novo synthesis which was associated with Apo2L/TRAIL sensitization. Addition of ceramide synthase (CerS inhibitor fumonisin B1 during long-term IGF1 treatment reduced XIAP repression and Apo2L/TRAIL-induced apoptosis. Noteworthy, the resistance to conventional chemotherapeutic agents was maintained in cells following chronic IGF1 treatment. Overall, the results suggest that chronic IGF1 treatment renders ESFT cells susceptible to Apo2L/TRAIL-induced apoptosis and may have important implications for the biology as well as the clinical management of refractory ESFT.

  9. SiRNA-mediated IGF-1R inhibition sensitizes human colon cancer SW480 cells to radiation

    International Nuclear Information System (INIS)

    Yavari, Kamal; Taghikhani, Mohammad; Mesbah-Namin, Seyed A.; Maragheh, Mohammad Ghannadi; Babaei, Mohammad Hosein; Arfaee, Ali Jabbary; Madani, Hossein; Mirzaei, Hamid Reza

    2010-01-01

    Purpose. Insulin like growth factor receptor 1 (IGF-1R) is well-documented to play a key role in radiation response and tumor radiosensitivity, thus offering an attractive clinic drug target to enhance tumor sensitivity to anti-cancer radiotherapy. Material and methods. Human colon carcinoma SW480 cells were transfected with the specific small interference RNA (siRNA) expression vector (pkD-shRNA-IGF-1R-V2) designed to target IGF-1R mRNA. The expression of IGF-1R mRNA and its protein among the transfected and untransfected cells were detected by semi-quantitative RT-PCR and ELISA assay. The changes in cell radiosensitivity were examined by MTT assay. Results. Transfection of mammalian expression vector pkD containing IGF-1R siRNA was shown to reduce IGF-1R mRNA levels by up to 95%. ELISA assay detected a similar inhibition of IGF-1R protein levels in cells transfected with IGF-1R siRNA. SW480 cells transfected with the expression vector for siRNA significantly rendered cells more sensitive to radiation and the highest radiation enhancement ratio was 2.02 ± 0.08. Conclusion. These data provide the first evidence that specific siRNA fragment (pkD-shRNA-IGF-1R-V2) targeting human IGF-1R mRNA is able to enhance colon cancer radiosensitivity. Also results indicated that, combining IGF-1R siRNA and radiation significantly enhances antitumor efficacy compared with either modality alone

  10. Lipocalina associada à gelatinase de neutrófilos (NGAL e calprotectina no tecido laminar de equinos após obstrução jejunal, tratados ou não com hidrocortisona

    Directory of Open Access Journals (Sweden)

    Luciane M. Laskoski

    2012-09-01

    Full Text Available A laminite é uma doença podal grave que acomete os equídeos, sendo responsável por intenso sofrimento. Neste estudo foram pesquisadas a presença de calprotectina por meio da imunoistoquímica, e de lipocalina associada à gelatinase de neutrófilos (NGAL, por zimografia, no tecido laminar do casco de equinos após obstrução intestinal. Os animais foram divididos em quatro grupos: Grupo controle (Gc, contendo sete animais normais, sem procedimento cirúrgico; Grupo Instrumentado (Gi, contendo cinco animais, os quais passaram por todo o procedimento cirúrgico sem sofrerem obstrução intestinal; Grupo Não Tratado (Gnt, contendo quatro equinos submetidos a obstrução intestinal do jejuno por distensão de balão intraluminal, sem tratamento; e Grupo Tratado (Gt, contendo quatro equinos submetidos a obstrução intestinal, e tratados preventivamente com hidrocortisona. Houve imunomarcação de calprotectina em todos os grupos experimentais, com aumento nos equinos do grupo distendido em relação ao Gc. Com relação ao NGAL, houve aumento também do Gnt e do Gi em relação ao Gc. O Gt não diferiu dos demais. Conclui-se que a distensão do intestino delgado pode promover acúmulos de leucócitos nos cascos de equinos e que o NGAL é um método viável para se detectar infiltração neutrofílica em equinos. Novos estudos deverão ser realizados para se verificar possível benefício anti-inflamatório da hidrocortisona no casco de equinos com obstrução intestinal.

  11. Role of insulin-like growth factor-1 (IGF-1) pathway in the pathogenesis of Graves' orbitopathy

    DEFF Research Database (Denmark)

    Smith, Terry J; Hegedüs, Laszlo; Douglas, Raymond S

    2012-01-01

    with GD. These abnormal patterns of IGF-1R display are also found in rheumatoid arthritis and carry functional consequences. In addition, activating IgGs capable of displacing IGF-1 from IGF-1R have also been detected in patients with these diseases. IGF-1R forms a complex with TSHR which is necessary...

  12. Rab9-dependent autophagy is required for the IGF-IIR triggering mitophagy to eliminate damaged mitochondria.

    Science.gov (United States)

    Huang, Chih-Yang; Kuo, Wei-Wen; Ho, Tsung-Jung; Chiang, Shu-Fen; Pai, Pei-Ying; Lin, Jing-Ying; Lin, Ding-Yu; Kuo, Chia-Hua; Huang, Chih-Yang

    2018-03-25

    Mitochondria dysfunction is the major characteristic of mitophagy, which is essential in mitochondrial quality control. However, excessive mitophagy contributes to cell death in a number of diseases, including ischemic stroke and hepatotoxicity. Insulin-like growth factor II (IGF-II) and its receptor (IGF-IIR) play vital roles in the development of heart failure during hypertension. We found that IGF-II triggers IGF-IIR receptor activation, causing mitochondria dysfunction, resulting in mitophagy, and cardiomyocyte cell death. These results indicated that IGF-IIR activation triggers mitochondria fragmentation, leading to autophagosome formation, and loss of mitochondria content. These results are associated with Parkin-dependent mitophagy. Additionally, autophagic proteins Atg5, and Atg7 deficiency did not suppress IGF-IIR-induced mitophagy. However, Rab9 knockdown reduced mitophagy and maintained mitochondrial function. These constitutive mitophagies through IGF-IIR activation trigger mitochondria loss and mitochondrial ROS accumulation for cardiomyocyte viability decrease. Together, our results indicate that IGF-IIR predominantly induces mitophagy through the Rab9-dependent alternative autophagy. © 2018 Wiley Periodicals, Inc.

  13. Maternal BMI, IGF-I Levels, and Birth Weight in African American and White Infants

    Directory of Open Access Journals (Sweden)

    Adriana C. Vidal

    2013-01-01

    Full Text Available At birth, elevated IGF-I levels have been linked to birth weight extremes; high birth weight and low birth weight are risk factors for adult-onset chronic diseases including obesity, cardiovascular disease, and type 2 diabetes. We examined associations between plasma IGF-I levels and birth weight among infants born to African American and White obese and nonobese women. Prepregnancy weight and height were assessed among 251 pregnant women and anthropometric measurements of full term infants (≥37 weeks of gestation were taken at birth. Circulating IGF-I was measured by ELISA in umbilical cord blood plasma. Linear regression models were utilized to examine associations between birth weight and high IGF-I, using the bottom two tertiles as referents. Compared with infants with lower IGF-I levels (≤3rd tertile, those with higher IGF-I levels (>3rd tertile were 130 g heavier at birth, (β-coefficient=230, se=58.0, P=0.0001, after adjusting for gender, race/ethnicity, gestational age, delivery route, maternal BMI and smoking. Stratified analyses suggested that these associations are more pronounced in infants born to African American women and women with BMI ≥30 kg/m2; the cross product term for IGF-I and maternal BMI was statistically significant (P≤0.0004. Our findings suggest that the association between IGF-I levels and birth weight depends more on maternal obesity than African American race/ethnicity.

  14. IGFBP-1 and IGF-I as markers for advanced fibrosis in NAFLD - a pilot study.

    Science.gov (United States)

    Hagström, Hannes; Stål, Per; Hultcrantz, Rolf; Brismar, Kerstin; Ansurudeen, Ishrath

    2017-12-01

    Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease globally. Advanced fibrosis (stage 3-4) is the most robust marker for future mortality, but diagnosis requires liver biopsy. Current non-invasive scoring systems aimed to identify advanced fibrosis are imperfect. Insulin-like growth factor I (IGF-I) and its binding protein IGFBP-1 are liver derived proteins, that are involved in various liver disorders. The aim of this study was to examine the possible association between advanced fibrosis and IGF-I and IGFBP-1 in NAFLD. Fasting blood samples were obtained from 52 patients diagnosed with NAFLD by liver biopsy. Total IGF-I and IGFBP-1 concentrations were determined in serum by in-house radio-immuno-assays. IGF-I levels were age-standardized (IGF-SD). A logistic regression model was used to investigate the association of IGF-SD and IGFBP-1 with advanced fibrosis (stage 3-4). Patients with advanced fibrosis (stage 3-4 vs. 0-2) had lower IGF-SD (-1.17 vs. 0.11, p = .01) and higher mean levels of IGFBP-1 (29.9 vs. 18.8 µg/l, p = .02). IGFBP-1 was associated with presence of advanced fibrosis (OR 1.04 per unit increase, 95%CI 1.0-1.07, p = .05), while IGF-1 was negatively associated with advanced fibrosis (OR 0.63 per standard deviation, 95%CI 0.44-0.92, p = .02). This pilot study suggests an association between serum IGFBP-1 and IGF-I levels with advanced fibrosis in NAFLD patients. IGFBP1 and IGF-1 could be of interest as future biomarkers. Similar studies in larger cohorts are needed.

  15. IGF1 Receptor Targeted Theranostic Nanoparticles for Targeted and Image-Guided Therapy of Pancreatic Cancer.

    Science.gov (United States)

    Zhou, Hongyu; Qian, Weiping; Uckun, Fatih M; Wang, Liya; Wang, Y Andrew; Chen, Hongyu; Kooby, David; Yu, Qian; Lipowska, Malgorzata; Staley, Charles A; Mao, Hui; Yang, Lily

    2015-08-25

    Overcoming resistance to chemotherapy is a major and unmet medical challenge in the treatment of pancreatic cancer. Poor drug delivery due to stromal barriers in the tumor microenvironment and aggressive tumor biology are additional impediments toward a more successful treatment of pancreatic cancer. In attempts to address these challenges, we developed IGF1 receptor (IGF1R)-directed, multifunctional theranostic nanoparticles for targeted delivery of therapeutic agents into IGF1R-expressing drug-resistant tumor cells and tumor-associated stromal cells. These nanoparticles were prepared by conjugating recombinant human IGF1 to magnetic iron oxide nanoparticles (IONPs) carrying the anthracycline doxorubicin (Dox) as the chemotherapeutic payload. Intravenously administered IGF1-IONPs exhibited excellent tumor targeting and penetration in an orthotopic patient-derived xenograft (PDX) model of pancreatic cancer featuring enriched tumor stroma and heterogeneous cancer cells. IGF1R-targeted therapy using the theranostic IGF1-IONP-Dox significantly inhibited the growth of pancreatic PDX tumors. The effects of the intratumoral nanoparticle delivery and therapeutic responses in the orthotopic pancreatic PDX tumors could be detected by magnetic resonance imaging (MRI) with IONP-induced contrasts. Histological analysis showed that IGF1R-targeted delivery of Dox significantly inhibited cell proliferation and induced apoptotic cell death of pancreatic cancer cells. Therefore, further development of IGF1R-targeted theranostic IONPs and MRI-guided cancer therapy as a precision nanomedicine may provide the basis for more effective treatment of pancreatic cancer.

  16. Progesterone and dexamethasone differentially regulate the IGF-system in glial cells

    NARCIS (Netherlands)

    Chesik, Daniel; De Keyser, Jacques

    2010-01-01

    IGF-1 is an important factor for myelin synthesis and hence possesses therapeutic potential in treating demyelinating disease such as multiple sclerosis. However, IGF-1 poorly crosses the blood-brain barrier. In this study, we investigated the effects of the sex steroid progesterone and the

  17. Stimulation of proteoglycans by IGF I and II in microvessel and large vessel endothelial cells

    International Nuclear Information System (INIS)

    Bar, R.S.; Dake, B.L.; Stueck, S.

    1987-01-01

    Endothelial cells were cultured from bovine capillaries and pulmonary arteries, and the effect of insulinlike growth factor (IGF) I and II (multiplication-stimulating activity) and insulin on the synthesis of proteoglycans was determined. IGF I and II stimulated 35 SO 4 incorporation into proteoglycans in a dose-dependent manner in both microvessel and pulmonary artery endothelial cells with maximum threefold increases. In pulmonary artery cells, the IGFs caused a general stimulation of all classes of glycosaminoglycan-containing proteoglycans. In microvessel endothelial cells, the IGFs appeared to preferentially increase heparan sulfate-containing proteoglycans. Insulin, at concentrations up to 10 -6 M, had no effect on the synthesis of proteoglycans in either microvessel or pulmonary arterial endothelial cells. Thus, the IGFs stimulate the synthesis of proteoglycans in both microvessel and large vessel endothelial cells, a property that is not mimicked by insulin. Because vascular endothelial cells are bathed by IGFs in vivo, such IGF-mediated functions are likely to be significant in both the normal physiology of vascular endothelium and in disease states such as diabetes mellitus

  18. Interaction of IGF2 and PTEN in ( M alignant Breast T issues

    Directory of Open Access Journals (Sweden)

    Preetha J Shetty

    2012-07-01

    Full Text Available Background: Breast Cancer (BC is one of the leading malignancies affecting women worldwide. Epigenetic mechanisms regulate gene expression playing an important role in the pathophysiology of cancer. In the present study IGF2 and PTEN genes in AKT pathway were selected for evaluation. Objective: To investigate the role of methylation and interaction of IGF2 and PTEN and in the pathoetiology of BC. Methods: Paraffin embedded archival breast tumor and adjacent normal tissue samples were used for carrying out PCR based methylation assay, genomic PCR, immunohistochemistry and qRT PCR. Results: In-Silico study indicated the absence of hormone responsive elements in the promoters of the selected genes. Methylation results indicated significant loss of methylation in IGF2 exon 9 CpG cluster and significant gain of PTEN promoter methylation in tumors. Immunohistochemistry revealed enhanced cytoplasmic expression o f IGF2 protein (p< 0.0001 and decreased nuclear localization of PTEN protein (p=0.0069 in the breast tumors. RT-PCR results indicated an increased IGF2 (p=0.024 and decreased PTEN transcripts (p<0.0001 in the tumors. Conclusion: Increased IGF2 in normal tissues increases PTEN which acts as a negative regulator of AKT pathway in the cytoplasm controlling excessive proliferation while in tumors this regulation is lost. PTEN acts as a negative regulator of MAPK pathway in the nucleus, plays an important role in cell cycle arrest in normal breast tissue. Reduction of PTEN in tumor tissue affects this pathway leading to cell survival. IGF2 and PTEN have a role in breast cancer and these molecular factors can be used for targeting therapy in future.

  19. IGF1 as predictor of all cause mortality and cardiovascular disease in an elderly population

    DEFF Research Database (Denmark)

    Andreassen, Mikkel; Raymond, Ilan; Kistorp, Caroline

    2009-01-01

    BACKGROUND: IGF1 is believed to influence ageing and development of cardiovascular disease (CVD) through complex mechanisms. Reduced IGF1 levels might be causally associated with conditions accompanying ageing including development of CVD. However, in animal models reduced GH-IGF1 signalling...... increases lifespan. Reduced IGF1 activity might also be associated with longevity in humans. OBJECTIVE: The objective was to investigate if plasma IGF1 levels were associated with all cause mortality, and the development of chronic heart failure (CHF) and a major CV event. PATIENTS AND DESIGN: A population...... systolic function and without prevalent CVD. Outcomes were ascertained after 5 years using hospital discharge diagnoses. RESULTS: Adjustment for risk factors IGF1 values in the fourth quartile versus values below the fourth quartile was associated with increased mortality (n=103), hazard ratio (HR) 1...

  20. Adipose Tissue-Derived Stem Cell Secreted IGF-1 Protects Myoblasts from the Negative Effect of Myostatin

    Directory of Open Access Journals (Sweden)

    Sebastian Gehmert

    2014-01-01

    Full Text Available Myostatin, a TGF-β family member, is associated with inhibition of muscle growth and differentiation and might interact with the IGF-1 signaling pathway. Since IGF-1 is secreted at a bioactive level by adipose tissue-derived mesenchymal stem cells (ASCs, these cells (ASCs provide a therapeutic option for Duchenne Muscular Dystrophy (DMD. But the protective effect of stem cell secreted IGF-1 on myoblast under high level of myostatin remains unclear. In the present study murine myoblasts were exposed to myostatin under presence of ASCs conditioned medium and investigated for proliferation and apoptosis. The protective effect of IGF-1 was further examined by using IGF-1 neutralizing and receptor antibodies as well as gene silencing RNAi technology. MyoD expression was detected to identify impact of IGF-1 on myoblasts differentiation when exposed to myostatin. IGF-1 was accountable for 43.6% of the antiapoptotic impact and 48.8% for the proliferative effect of ASCs conditioned medium. Furthermore, IGF-1 restored mRNA and protein MyoD expression of myoblasts under risk. Beside fusion and transdifferentiation the beneficial effect of ASCs is mediated by paracrine secreted cytokines, particularly IGF-1. The present study underlines the potential of ASCs as a therapeutic option for Duchenne muscular dystrophy and other dystrophic muscle diseases.

  1. Depletion of the type 1 IGF receptor delays repair of radiation-induced DNA double strand breaks

    International Nuclear Information System (INIS)

    Turney, Benjamin W.; Kerr, Martin; Chitnis, Meenali M.; Lodhia, Kunal; Wang, Yong; Riedemann, Johann; Rochester, Mark; Protheroe, Andrew S.; Brewster, Simon F.; Macaulay, Valentine M.

    2012-01-01

    Background and purpose: IGF-1R depletion sensitizes prostate cancer cells to ionizing radiation and DNA-damaging cytotoxic drugs. This study investigated the hypothesis that IGF-1R regulates DNA double strand break (DSB) repair. Methods: We tested effects of IGF-1R siRNA transfection on the repair of radiation-induced DSBs by immunoblotting and immunofluorescence for γH2AX, and pulsed-field gel electrophoresis. Homologous recombination (HR) was quantified by reporter assays, and cell cycle distribution by flow cytometry. Results: We confirmed that IGF-1R depletion sensitized DU145 and PC3 prostate cancer cells to ionizing radiation. DU145 control transfectants resolved radiation-induced DSBs within 24 h, while IGF-1R depleted cells contained 30–40% unrepaired breaks at 24 h. IGF-1R depletion induced significant reduction in DSB repair by HR, although the magnitude of the repair defect suggests additional contributory factors. Radiation-induced G2-M arrest was attenuated by IGF-1R depletion, potentially suppressing cell cycle-dependent processes required for HR. In contrast, IGF-1R depletion induced only minor radiosensitization in LNCaP cells, and did not influence repair. Cell cycle profiles were similar to DU145, so were unlikely to account for differences in repair responses. Conclusions: These data indicate a role for IGF-1R in DSB repair, at least in part via HR, and support use of IGF-1R inhibitors with DNA damaging cancer treatments.

  2. Depletion of the type 1 IGF receptor delays repair of radiation-induced DNA double strand breaks.

    Science.gov (United States)

    Turney, Benjamin W; Kerr, Martin; Chitnis, Meenali M; Lodhia, Kunal; Wang, Yong; Riedemann, Johann; Rochester, Mark; Protheroe, Andrew S; Brewster, Simon F; Macaulay, Valentine M

    2012-06-01

    IGF-1R depletion sensitizes prostate cancer cells to ionizing radiation and DNA-damaging cytotoxic drugs. This study investigated the hypothesis that IGF-1R regulates DNA double strand break (DSB) repair. We tested effects of IGF-1R siRNA transfection on the repair of radiation-induced DSBs by immunoblotting and immunofluorescence for γH2AX, and pulsed-field gel electrophoresis. Homologous recombination (HR) was quantified by reporter assays, and cell cycle distribution by flow cytometry. We confirmed that IGF-1R depletion sensitized DU145 and PC3 prostate cancer cells to ionizing radiation. DU145 control transfectants resolved radiation-induced DSBs within 24 h, while IGF-1R depleted cells contained 30-40% unrepaired breaks at 24 h. IGF-1R depletion induced significant reduction in DSB repair by HR, although the magnitude of the repair defect suggests additional contributory factors. Radiation-induced G2-M arrest was attenuated by IGF-1R depletion, potentially suppressing cell cycle-dependent processes required for HR. In contrast, IGF-1R depletion induced only minor radiosensitization in LNCaP cells, and did not influence repair. Cell cycle profiles were similar to DU145, so were unlikely to account for differences in repair responses. These data indicate a role for IGF-1R in DSB repair, at least in part via HR, and support use of IGF-1R inhibitors with DNA damaging cancer treatments. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. Accelerated Telomere Shortening in Acromegaly; IGF-I Induces Telomere Shortening and Cellular Senescence.

    Directory of Open Access Journals (Sweden)

    Ryusaku Matsumoto

    Full Text Available Patients with acromegaly exhibit reduced life expectancy and increased prevalence of age-related diseases, such as diabetes, hypertension, and cardiovascular disease. However, the underlying mechanism has not been fully elucidated. Telomere shortening is reportedly associated with reduced life expectancy and increased prevalence of these age-related diseases.We measured telomere length in patients with acromegaly using quantitative PCR method. The effect of GH and IGF-I on telomere length and cellular senescence was examined in human skin fibroblasts.Patients with acromegaly exhibited shorter telomere length than age-, sex-, smoking-, and diabetes-matched control patients with non-functioning pituitary adenoma (0.62 ± 0.23 vs. 0.75 ± 0.35, respectively, P = 0.047. In addition, telomere length in acromegaly was negatively correlated with the disease duration (R2 = 0.210, P = 0.003. In vitro analysis revealed that not GH but IGF-I induced telomere shortening in human skin fibroblasts. Furthermore, IGF-I-treated cells showed increased senescence-associated β-galactosidase activity and expression of p53 and p21 protein. IGF-I-treated cells reached the Hayflick limit earlier than GH- or vehicle-treated cells, indicating that IGF-I induces cellular senescence.Shortened telomeres in acromegaly and cellular senescence induced by IGF-I can explain, in part, the underlying mechanisms by which acromegaly exhibits an increased morbidity and mortality in association with the excess secretion of IGF-I.

  4. Accelerated Telomere Shortening in Acromegaly; IGF-I Induces Telomere Shortening and Cellular Senescence

    Science.gov (United States)

    Matsumoto, Ryusaku; Fukuoka, Hidenori; Iguchi, Genzo; Odake, Yukiko; Yoshida, Kenichi; Bando, Hironori; Suda, Kentaro; Nishizawa, Hitoshi; Takahashi, Michiko; Yamada, Shozo; Ogawa, Wataru; Takahashi, Yutaka

    2015-01-01

    Objective Patients with acromegaly exhibit reduced life expectancy and increased prevalence of age-related diseases, such as diabetes, hypertension, and cardiovascular disease. However, the underlying mechanism has not been fully elucidated. Telomere shortening is reportedly associated with reduced life expectancy and increased prevalence of these age-related diseases. Methods We measured telomere length in patients with acromegaly using quantitative PCR method. The effect of GH and IGF-I on telomere length and cellular senescence was examined in human skin fibroblasts. Results Patients with acromegaly exhibited shorter telomere length than age-, sex-, smoking-, and diabetes-matched control patients with non-functioning pituitary adenoma (0.62 ± 0.23 vs. 0.75 ± 0.35, respectively, P = 0.047). In addition, telomere length in acromegaly was negatively correlated with the disease duration (R 2 = 0.210, P = 0.003). In vitro analysis revealed that not GH but IGF-I induced telomere shortening in human skin fibroblasts. Furthermore, IGF-I-treated cells showed increased senescence-associated β-galactosidase activity and expression of p53 and p21 protein. IGF-I-treated cells reached the Hayflick limit earlier than GH- or vehicle-treated cells, indicating that IGF-I induces cellular senescence. Conclusion Shortened telomeres in acromegaly and cellular senescence induced by IGF-I can explain, in part, the underlying mechanisms by which acromegaly exhibits an increased morbidity and mortality in association with the excess secretion of IGF-I. PMID:26448623

  5. IGF-IR Signaling in Breast Cancer

    National Research Council Canada - National Science Library

    Surmacz, Ewa

    1997-01-01

    Experimental and clinical evidence suggests that the insulin-like growth factor (IGF) system is involved in the growth of breast cancer cells in vitro and may be important in breast cancer etiology and progression...

  6. Crosstalk between TEMs and endothelial cells modulates angiogenesis and metastasis via IGF1-IGF1R signalling in epithelial ovarian cancer.

    Science.gov (United States)

    Wang, Xinjing; Zhu, Qinyi; Lin, Yingying; Wu, Li; Wu, Xiaoli; Wang, Kai; He, Qizhi; Xu, Congjian; Wan, Xiaoping; Wang, Xipeng

    2017-10-24

    Epithelial ovarian cancer (EOC) is the leading cause of death from gynaecologic malignancies and has a poor prognosis due to metastasis. Drugs targeting the angiogenesis pathway significantly improve patient outcome. However, the key factors linking angiogenesis and metastasis have not been elucidated. In this study, we found Tie2 expressing monocytes (CD14 + Tie2 + , TEMs) as key contributors to angiogenesis and metastasis of EOC. Tissue slides were evaluated by immunofluorescence for the presence of total tissue macrophages and TEMs. The correlation between microvascular density (MVD) values and the TEMs number or ratio was calculated in both ovarian cancer tissues and peritoneum. The rate of TEMs in monocytes was evaluated in the peripheral blood of female healthy donors, benign cysts patients, and EOC patients using flow cytometry. The TEMs rate in ascites from EOC patients was also evaluated by flow cytometry. The concentration of Ang2, as the ligand of Tie2, was examined by ELISA in serum samples of EOC patients, benign cysts patients, and ascites samples of EOC patients. The effects of Ang2 on the migration and the cytokine expression of TEMs were further examined. The pro- angiogenesis activity of TEMs via IGF1 was performed in both in vivo and in vitro. And the IGF1 blocking test was performed using neutralising antibody. TEMs were significantly higher in tumour foci, peripheral blood and ascites in EOC patients. The proportion of TEMs among total tissue macrophages was positively correlated with tumour MVD. In vivo animal results showed that TEMs promoted EOC angiogenesis and metastasis. Further functional and mechanisms studies revealed that concentration of angiopoietin 2 (Ang2), a ligand of Tie2, was elevated in EOC ascites which further recruit TEMs in a dose-dependent manner as a powerful chemokine to TEMs. Recruited TEMs promoted endothelial cell function through IGF1-activated downstream signalling. Blocking secreted IGF1 using inhibiting antibody

  7. Targeting Extracellular DNA to Deliver IGF-1 to the Injured Heart

    Science.gov (United States)

    Khan, Raffay S.; Martinez, Mario D.; Sy, Jay C.; Pendergrass, Karl D.; Che, Pao-Lin; Brown, Milton E.; Cabigas, E. Bernadette; Dasari, Madhuri; Murthy, Niren; Davis, Michael E.

    2014-03-01

    There is a great need for the development of therapeutic strategies that can target biomolecules to damaged myocardium. Necrosis of myocardium during a myocardial infarction (MI) is characterized by extracellular release of DNA, which can serve as a potential target for ischemic tissue. Hoechst, a histological stain that binds to double-stranded DNA can be conjugated to a variety of molecules. Insulin-like growth factor-1 (IGF-1), a small protein/polypeptide with a short circulating-half life is cardioprotective following MI but its clinical use is limited by poor delivery, as intra-myocardial injections have poor retention and chronic systemic presence has adverse side effects. Here, we present a novel delivery vehicle for IGF-1, via its conjugation to Hoechst for targeting infarcted tissue. Using a mouse model of ischemia-reperfusion, we demonstrate that intravenous delivery of Hoechst-IGF-1 results in activation of Akt, a downstream target of IGF-1 and protects from cardiac fibrosis and dysfunction following MI.

  8. Serum IGF-1 is insufficient to restore skeletal size in the total absence of the growth hormone receptor

    Science.gov (United States)

    Wu, Yingjie; Sun, Hui; Basta-Pljakic, Jelena; Cardoso, Luis; Kennedy, Oran D; Jasper, Hector; Domené, Horacio; Karabatas, Liliana; Guida, Clara; Schaffler, Mitchell B; Rosen, Clifford J; Yakar, Shoshana

    2013-01-01

    States of growth hormone (GH) resistance, such those observed in Laron’s dwarf patients, are characterized by mutations in the GH receptor (GHR), decreased serum and tissue IGF-1 levels, impaired glucose tolerance, and impaired skeletal acquisition. IGF-1 replacement therapy in such patients increases growth velocity but does not normalize growth. Herein we combined the GH-resistant (GHR knockout, GHRKO) mouse model with mice expressing the hepatic Igf-1 transgene (HIT) to generate the GHRKO-HIT mouse model. In GHRKOHIT mice, serum IGF-1 levels were restored via transgenic expression of Igf-1 allowing us to study how endocrine IGF-1 affects growth, metabolic homeostasis, and skeletal integrity. We show that in a GH-resistant state, normalization of serum IGF-1 improved body adiposity and restored glucose tolerance but was insufficient to support normal skeletal growth, resulting in an osteopenic skeletal phenotype. The inability of serum IGF-1 to restore skeletal integrity in the total absence of GHR likely resulted from reduced skeletal Igf-1 gene expression, blunted GH-mediated effects on the skeleton that are independent of serum or tissue IGF-1, and from poor delivery of IGF-1 to the tissues. These findings are consistent with clinical data showing that IGF-I replacement therapy in patients with Laron’s syndrome does not achieve full skeletal growth. PMID:23456957

  9. Characterization of IGF-II isoforms in binge eating disorder and its group psychological treatment.

    Directory of Open Access Journals (Sweden)

    Giorgio Tasca

    Full Text Available Binge eating disorder (BED affects 3.5% of the population and is characterized by binge eating for at least 2 days a week for 6 months. Treatment options include cognitive behavioral therapy, interpersonal psychotherapy, and pharmacotherapy which are associated with varied success. Little is known about the biology of BED. Since there is evidence that the insulin like growth factor system is implicated in regulation of body weight, insulin sensitivity and feeding behavior, we speculated it may be involved in BED.A cross-sectional comparison was made between three groups of women: overweight with BED, overweight without BED and normal weight without BED. Women were assigned to Group Psychodynamic Interpersonal Psychotherapy. Blood was collected before therapy, at completion and at 6 months follow up for evaluation of IGF-II using Western blot.97 overweight women with BED contributed to the cross-sectional comparison. The two control groups comprised 53 overweight women without BED, and 50 age matched normal weight women without BED. Obese women had significantly lower Big IGF-II than normal weight women, p = .028; Overweight women with BED had higher Mature IGF-II than normal weight women, p<.05. Big IGF-II showed a significant decreasing slope from pre- to post- to six months post-group psychological treatment, unrelated to changes in BMI (p = .008.Levels of IGF-II isoforms differed significantly between overweight and normal weight women. Overweight women with BED display abnormal levels of circulating IGF-II isoforms. BED is characterized by elevated mature IGF-II, an isoform shown to carry significant bioactivity. This finding is not related to BMI or to changes in body weight. The results also provide preliminary evidence that BIG IGF-II is sensitive to change due to group psychological treatment. We suggest that abnormalities in IGF-II processing may be involved in the neurobiology of BED.

  10. Chromosome 15 structural abnormalities: effect on IGF1R gene expression and function

    Directory of Open Access Journals (Sweden)

    Rossella Cannarella

    2017-09-01

    Full Text Available Insulin-like growth factor 1 receptor (IGF1R, mapping on the 15q26.3 chromosome, is required for normal embryonic and postnatal growth. The aim of the present study was to evaluate the IGF1R gene expression and function in three unrelated patients with chromosome 15 structural abnormalities. We report two male patients with the smallest 15q26.3 chromosome duplication described so far, and a female patient with ring chromosome 15 syndrome. Patient one, with a 568 kb pure duplication, had overgrowth, developmental delay, mental and psychomotor retardation, obesity, cryptorchidism, borderline low testis volume, severe oligoasthenoteratozoospermia and gynecomastia. We found a 1.8-fold increase in the IGF1R mRNA and a 1.3-fold increase in the IGF1R protein expression (P < 0.05. Patient two, with a 650 kb impure duplication, showed overgrowth, developmental delay, mild mental retardation, precocious puberty, low testicular volume and severe oligoasthenoteratozoospermia. The IGF1R mRNA and protein expression was similar to that of the control. Patient three, with a 46,XX r(15 (p10q26.2 karyotype, displayed intrauterine growth retardation, developmental delay, mental and psychomotor retardation. We found a <0.5-fold decrease in the IGF1R mRNA expression and an undetectable IGF1R activity. After reviewing the previously 96 published cases of chromosome 15q duplication, we found that neurological disorders, congenital cardiac defects, typical facial traits and gonadal abnormalities are the prominent features in patients with chromosome 15q duplication. Interestingly, patients with 15q deletion syndrome display similar features. We speculate that both the increased and decreased IGF1R gene expression may play a role in the etiology of neurological and gonadal disorders.

  11. Activity-Dependent IGF-1 Exocytosis is Controlled by the Ca2+-Sensor Synaptotagmin-10

    Science.gov (United States)

    Cao, Peng; Maximov, Anton; Südhof, Thomas C.

    2011-01-01

    Synaptotagmins Syt1, Syt2, Syt7, and Syt9 act as Ca2+-sensors for synaptic and neuroendocrine exocytosis, but the function of other synaptotagmins remains unknown. Here, we show that olfactory bulb neurons secrete IGF-1 by an activity-dependent pathway of exocytosis, and that Syt10 functions as the Ca2+-sensor that triggers IGF-1 exocytosis in these neurons. Deletion of Syt10 impaired activity-dependent IGF-1 secretion in olfactory bulb neurons, resulting in smaller neurons and an overall decrease in synapse numbers. Exogenous IGF-1 completely reversed the Syt10 knockout phenotype. Syt10 co-localized with IGF-1 in somatodendritic vesicles of olfactory bulb neurons, and Ca2+-binding to Syt10 caused these vesicles to undergo exocytosis, thereby secreting IGF-1. Thus, Syt10 controls a previously unrecognized pathway of Ca2+-dependent exocytosis that is spatially and temporally distinct from Ca2+-dependent synaptic vesicle exocytosis controlled by Syt1 in the same neurons, and two different synaptotagmins regulate distinct Ca2+-dependent membrane fusion reactions during exocytosis in the same neuron. PMID:21496647

  12. IGF-1 Receptor Differentially Regulates Spontaneous and Evoked Transmission via Mitochondria at Hippocampal Synapses

    Science.gov (United States)

    Gazit, Neta; Vertkin, Irena; Shapira, Ilana; Helm, Martin; Slomowitz, Edden; Sheiba, Maayan; Mor, Yael; Rizzoli, Silvio; Slutsky, Inna

    2016-01-01

    Summary The insulin-like growth factor-1 receptor (IGF-1R) signaling is a key regulator of lifespan, growth, and development. While reduced IGF-1R signaling delays aging and Alzheimer’s disease progression, whether and how it regulates information processing at central synapses remains elusive. Here, we show that presynaptic IGF-1Rs are basally active, regulating synaptic vesicle release and short-term plasticity in excitatory hippocampal neurons. Acute IGF-1R blockade or transient knockdown suppresses spike-evoked synaptic transmission and presynaptic cytosolic Ca2+ transients, while promoting spontaneous transmission and resting Ca2+ level. This dual effect on transmitter release is mediated by mitochondria that attenuate Ca2+ buffering in the absence of spikes and decrease ATP production during spiking activity. We conclude that the mitochondria, activated by IGF-1R signaling, constitute a critical regulator of information processing in hippocampal neurons by maintaining evoked-to-spontaneous transmission ratio, while constraining synaptic facilitation at high frequencies. Excessive IGF-1R tone may contribute to hippocampal hyperactivity associated with Alzheimer’s disease. Video Abstract PMID:26804996

  13. Changes in GH/IGF-1 axis in intrauterine growth retardation: consequences of fetal programming?

    Science.gov (United States)

    Setia, S; Sridhar, M G

    2009-11-01

    Fetal growth is a complex process that depends on the genotype and epigenotype of the fetus, maternal nutrition, the availability of nutrients and oxygen to the fetus, intrauterine insults, and a variety of growth factors and proteins of maternal and fetal/placental origin. In the fetus, growth hormone (GH) plays little or no role in regulating fetal growth, and insulin-like growth factors (IGFs) control growth directly independent of fetal GH secretion. Placental growth hormone (PGH) is the prime regulator of maternal serum IGF-1 during pregnancy. Total as well as free PGH and IGFs are significantly lower in pregnancies with intrauterine growth retardation (IUGR). The GH/IGF axis is significantly affected by intrauterine growth retardation and some of these alterations may lead to permanent pathological programming of the IGF axis. Alterations in the IGF axis may play a role in the future occurrence of insulin resistance and hypertension. In this review we focus on the regulation of fetal growth and the role of fetal programming in the late consequences of a poor fetal environment reflected in IUGR.

  14. Differential requirement for nitric oxide in IGF-1-induced anti-apoptotic, anti-oxidant and anti-atherosclerotic effects

    Science.gov (United States)

    Sukhanov, Sergiy; Higashi, Yusuke; Shai, Shaw-Yung; Blackstock, Christopher; Galvez, Sarah; Vaughn, Charlotte; Titterington, Jane; Delafontaine, Patrick

    2011-01-01

    We have shown previously that insulin like-growth factor I (IGF-1) suppressed atherosclerosis in Apoe−/− mice and activated endothelial nitric oxide (NO) synthase. To determine whether IGF-1-induced atheroprotection depends on NO, IGF-1- or saline-infused mice were treated with L-NAME, the pan-NO synthase inhibitor or with D-NAME (control). IGF-1 reduced atherosclerosis in both the D-NAME and L-NAME groups suggesting that IGF-1’s anti-atherogenic effect was NO-independent. IGF-1 increased plaque smooth muscle cells, suppressed cell apoptosis and downregulated lipoprotein lipase and these effects were also NO-independent. On the contrary, IGF-1 decreased oxidative stress and suppressed TNF-α levels and these effects were blocked by L-NAME. Thus IGF-1’s anti-oxidant effect is dependent on its ability to increase NO but is distinct from its anti-atherosclerotic effect which is NO-independent. PMID:21872589

  15. Serum insulin-like growth factor 1(IGF-I) and prostatic cancer risk a retrospective study

    International Nuclear Information System (INIS)

    Li Liren; Liu Jiumin; Lu Bailing

    2001-01-01

    Objective: To investigate the relationship between serum IGF-I levels and prostatic cancer. Methods: Serum IGF-I levels were determined by immunoradiometric assay (IRMA) in 30 cases of prostatic cancer, 30 cases of benign prostatic hyperplasia (BPH) and 30 healthy subjects as controls. Results: The mean levels of serum IGF-I in prostatic cancer (148 +- 49.6 μg/L) were significantly higher than those in BPH (91.0 +- 32.8 μg/L) and healthy subjects (105 +- 25.6 μg/L) (P 0.05). The IGF-I levels were not relates to BHP, but increased values of IGF-I were associated with increased risk of prostatic cancer. The odds ratio was 11.23 for patients of prostatic cancer compared with healthy subjects, (95 percent confidence interval 3.09 - 40.7). Conclusion: This finding suggests that high IGF-I may be associated with increase risk of prostate cancer in human

  16. Kinase inhibitors of the IGF-1R as a potential therapeutic agent for rheumatoid arthritis.

    Science.gov (United States)

    Tsushima, Hiroshi; Morimoto, Shinji; Fujishiro, Maki; Yoshida, Yuko; Hayakawa, Kunihiro; Hirai, Takuya; Miyashita, Tomoko; Ikeda, Keigo; Yamaji, Ken; Takamori, Kenji; Takasaki, Yoshinari; Sekigawa, Iwao; Tamura, Naoto

    2017-08-01

    We have previously shown that the inhibition of connective tissue growth factor (CTGF) is a potential therapeutic strategy against rheumatoid arthritis (RA). CTGF consists of four distinct modules, including the insulin-like growth factor binding protein (IGFBP). In serum, insulin-like growth factors (IGFs) bind IGFBPs, interact with the IGF-1 receptor (IGF-1 R), and regulate anabolic effects and bone metabolism. We investigated the correlation between IGF-1 and the pathogenesis of RA, and the inhibitory effect on osteoclastogenesis and angiogenesis of the small molecular weight kinase inhibitor of the IGF-1 R, NVP-AEW541, against pathogenesis of RA in vitro. Cell proliferation was evaluated by cell count and immunoblotting. The expression of IGF-1 and IGF-1 R was evaluated by RT-PCR. Osteoclastogenesis was evaluated using tartrate-resistant acid phosphatase staining, a bone resorption assay, and osteoclast-specific enzyme production. Angiogenesis was evaluated by a tube formation assay using human umbilical vein endothelial cells (HUVECs). The proliferation of MH7A cells was found to be inhibited in the presence of NVP-AEW541, and the phosphorylation of extracellular signal-regulated kinase (ERK) and Akt was downregulated in MH7A cells. IGF-1 and IGF-1 R mRNA expression levels were upregulated during formation of M-colony stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL)-mediated osteoclast formation. Moreover, osteoclastogenesis was suppressed in the presence of NVP-AEW541. The formation of the tubular network was enhanced by IGF-1, and this effect was neutralized by NVP-ARE541. Our findings suggest that NVP-AEW541 may be utilized as a potential therapeutic agent in the treatment of RA.

  17. Reduced utility of serum IGF-1 levels in predicting retinopathy of prematurity reflects maternal ethnicity.

    Science.gov (United States)

    Reddy, M Ashwin; Patel, Himanshu I; Karim, Shah M; Lock, Helen; Perry, Leslie; Bunce, Catey; Kempley, Steve; Sinha, Ajay K

    2016-04-01

    To validate known risk factors and identify a threshold level for serum insulin-like growth factor 1 (IGF-1) in the development of severe retinopathy of prematurity (ROP) in an ethnically diverse population at a tertiary neonatal unit, 2011-2013. A prospective cohort masked study was conducted. Serum IGF-1 levels at 31, 32 and 33 weeks were measured and risk factor data collected including gestational age (GA), birth weight (BW), absolute weight gain (AWG) and maternal ethnicity. The eventual ROP outcome was divided into two groups: minimal ROP (Stages 0 and 1) and severe ROP (Stage 2 or worse including Type 1 ROP). 36 patients were recruited: 14 had minimal ROP and 22 severe ROP. Significant differences between the groups were found in GA, BW, AWG and IGF-1 at 32 and 33 weeks. There was minimal rise in IGF-1 in Stage 2 patients and/or black patients (p=0.0013) between 32 and 33 weeks but no pragmatic threshold level of IGF-1 that could distinguish between minimal or severe ROP. There were significant differences in GA, BW, AWG and IGF-1 at 32 and 33 weeks between those babies with severe ROP and those with minimal ROP. However, there was no threshold level of IGF-1 at a time point between 31 and 33 weeks that can be used to exclude a large proportion of babies from screening. We also found ethnic differences in IGF-1 levels with infants born to black mothers having significantly lower IGF-1 levels at 32 and 33 weeks gestation. The determination of ROP risk using IGF-1 is a race-specific phenomenon. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  18. Insulin-like growth factor (IGF)-I obliterates the pregnancy-associated protection against mammary carcinogenesis in rats: evidence that IGF-I enhances cancer progression through estrogen receptor-α activation via the mitogen-activated protein kinase pathway

    International Nuclear Information System (INIS)

    Thordarson, Gudmundur; Slusher, Nicole; Leong, Harriet; Ochoa, Dafne; Rajkumar, Lakshmanaswamy; Guzman, Raphael; Nandi, Satyabrata; Talamantes, Frank

    2004-01-01

    Pregnancy protects against breast cancer development in humans and rats. Parous rats have persistently reduced circulating levels of growth hormone, which may affect the activity of the growth hormone/insulin-like growth factor (IGF)-I axis. We investigated the effects of IGF-I on parity-associated protection against mammary cancer. Three groups of rats were evaluated in the present study: IGF-I-treated parous rats; parous rats that did not receive IGF-I treatment; and age-matched virgin animals, which also did not receive IGF-I treatment. Approximately 60 days after N-methyl-N-nitrosourea injection, IGF-I treatment was discontinued and all of the animal groups were implanted with a silastic capsule containing 17β-estradiol and progesterone. The 17β-estradiol plus progesterone treatment continued for 135 days, after which the animals were killed. IGF-I treatment of parous rats increased mammary tumor incidence to 83%, as compared with 16% in parous rats treated with 17β-estradiol plus progesterone only. Tumor incidence and average number of tumors per animal did not differ between IGF-I-treated parous rats and age-matched virgin rats. At the time of N-methyl-N-nitrosourea exposure, DNA content was lowest but the α-lactalbumin concentration highest in the mammary glands of untreated parous rats in comparison with age-matched virgin and IGF-I-treated parous rats. The protein levels of estrogen receptor-α in the mammary gland was significantly higher in the age-matched virgin animals than in untreated parous and IGF-I-treated parous rats. Phosphorylation (activation) of the extracellular signal-regulated kinase-1/2 (ERK1/2) and expression of the progesterone receptor were both increased in IGF-I-treated parous rats, as compared with those in untreated parous and age-matched virgin rats. Expressions of cyclin D 1 and transforming growth factor-β 3 in the mammary gland were lower in the age-matched virgin rats than in the untreated parous and IGF-I-treated parous

  19. Comparison of Efficacy of Endogenous and Exogenous IGF-I in Stimulating Matrix Production in Neonatal and Mature Chondrocytes.

    Science.gov (United States)

    Aguilar, Izath N; Trippel, Stephen B; Shi, Shuiliang; Bonassar, Lawrence J

    2015-10-01

    The goal of this study was to compare the efficacy of endogenous upregulation of IGF-I by gene therapy and exogenous addition of insulin-like growth factor I (IGF-I) in enhancing proteoglycan synthesis by skeletally mature and neonatal chondrocytes. Chondrocyte transplantation therapy is a common treatment for focal cartilage lesions, with both mature and neonatal chondrocytes used as a cell source. Additionally, gene therapy strategies to upregulate growth factors such as IGF-I have been proposed to augment chondrocyte transplantation therapies. Both skeletally mature and neonatal chondrocytes were exposed to either an adeno-associated virus-based plasmid containing the IGF-I gene or exogenous IGF-I. Analysis of IGF-I and glycosaminoglycan production using a 4-parameter dose-response model established a clear connection between the amount of IGF-I produced by cells and their biosynthetic response. Both neonatal and mature chondrocytes showed this relationship, but the sensitivities were quite different, with EC50 of 0.57 ng/mL for neonatal chondrocytes and EC50 of 8.70 ng/mL IGF-I for skeletally mature chondrocytes. These data suggest that IGF-I gene therapy may be more effective with younger cell sources. Both cell types were less sensitive to exogenous IGF-I than endogenous IGF-I.

  20. Systemic administration of IGF-I enhances healing in collagenous extracellular matrices: evaluation of loaded and unloaded ligaments

    Science.gov (United States)

    Provenzano, Paolo P; Alejandro-Osorio, Adriana L; Grorud, Kelley W; Martinez, Daniel A; Vailas, Arthur C; Grindeland, Richard E; Vanderby, Ray

    2007-01-01

    Background Insulin-like growth factor-I (IGF-I) plays a crucial role in wound healing and tissue repair. We tested the hypotheses that systemic administration of IGF-I, or growth hormone (GH), or both (GH+IGF-I) would improve healing in collagenous connective tissue, such as ligament. These hypotheses were examined in rats that were allowed unrestricted activity after injury and in animals that were subjected to hindlimb disuse. Male rats were assigned to three groups: ambulatory sham-control, ambulatory-healing, and hindlimb unloaded-healing. Ambulatory and hindlimb unloaded animals underwent surgical disruption of their knee medial collateral ligaments (MCLs), while sham surgeries were performed on control animals. Healing animals subcutaneously received systemic doses of either saline, GH, IGF-I, or GH+IGF-I. After 3 weeks, mechanical properties, cell and matrix morphology, and biochemical composition were examined in control and healing ligaments. Results Tissues from ambulatory animals receiving only saline had significantly greater strength than tissue from saline receiving hindlimb unloaded animals. Addition of IGF-I significantly improved maximum force and ultimate stress in tissues from both ambulatory and hindlimb unloaded animals with significant increases in matrix organization and type-I collagen expression. Addition of GH alone did not have a significant effect on either group, while addition of GH+IGF-I significantly improved force, stress, and modulus values in MCLs from hindlimb unloaded animals. Force, stress, and modulus values in tissues from hindlimb unloaded animals receiving IGF-I or GH+IGF-I exceeded (or were equivalent to) values in tissues from ambulatory animals receiving only saline with greatly improved structural organization and significantly increased type-I collagen expression. Furthermore, levels of IGF-receptor were significantly increased in tissues from hindlimb unloaded animals treated with IGF-I. Conclusion These results

  1. Systemic administration of IGF-I enhances healing in collagenous extracellular matrices: evaluation of loaded and unloaded ligaments

    Directory of Open Access Journals (Sweden)

    Martinez Daniel A

    2007-03-01

    Full Text Available Abstract Background Insulin-like growth factor-I (IGF-I plays a crucial role in wound healing and tissue repair. We tested the hypotheses that systemic administration of IGF-I, or growth hormone (GH, or both (GH+IGF-I would improve healing in collagenous connective tissue, such as ligament. These hypotheses were examined in rats that were allowed unrestricted activity after injury and in animals that were subjected to hindlimb disuse. Male rats were assigned to three groups: ambulatory sham-control, ambulatory-healing, and hindlimb unloaded-healing. Ambulatory and hindlimb unloaded animals underwent surgical disruption of their knee medial collateral ligaments (MCLs, while sham surgeries were performed on control animals. Healing animals subcutaneously received systemic doses of either saline, GH, IGF-I, or GH+IGF-I. After 3 weeks, mechanical properties, cell and matrix morphology, and biochemical composition were examined in control and healing ligaments. Results Tissues from ambulatory animals receiving only saline had significantly greater strength than tissue from saline receiving hindlimb unloaded animals. Addition of IGF-I significantly improved maximum force and ultimate stress in tissues from both ambulatory and hindlimb unloaded animals with significant increases in matrix organization and type-I collagen expression. Addition of GH alone did not have a significant effect on either group, while addition of GH+IGF-I significantly improved force, stress, and modulus values in MCLs from hindlimb unloaded animals. Force, stress, and modulus values in tissues from hindlimb unloaded animals receiving IGF-I or GH+IGF-I exceeded (or were equivalent to values in tissues from ambulatory animals receiving only saline with greatly improved structural organization and significantly increased type-I collagen expression. Furthermore, levels of IGF-receptor were significantly increased in tissues from hindlimb unloaded animals treated with IGF

  2. Role of IGF-1 in cortical plasticity and functional deficit induced by sensorimotor restriction.

    Science.gov (United States)

    Mysoet, Julien; Dupont, Erwan; Bastide, Bruno; Canu, Marie-Hélène

    2015-09-01

    In the adult rat, sensorimotor restriction by hindlimb unloading (HU) is known to induce impairments in motor behavior as well as a disorganization of somatosensory cortex (shrinkage of the cortical representation of the hindpaw, enlargement of the cutaneous receptive fields, decreased cutaneous sensibility threshold). Recently, our team has demonstrated that IGF-1 level was decreased in the somatosensory cortex of rats submitted to a 14-day period of HU. To determine whether IGF-1 is involved in these plastic mechanisms, a chronic cortical infusion of this substance was performed by means of osmotic minipump. When administered in control rats, IGF-1 affects the size of receptive fields and the cutaneous threshold, but has no effect on the somatotopic map. In addition, when injected during the whole HU period, IGF-1 is interestingly implied in cortical changes due to hypoactivity: the shrinkage of somatotopic representation of hindlimb is prevented, whereas the enlargement of receptive fields is reduced. IGF-1 has no effect on the increase in neuronal response to peripheral stimulation. We also explored the functional consequences of IGF-1 level restoration on tactile sensory discrimination. In HU rats, the percentage of paw withdrawal after a light tactile stimulation was decreased, whereas it was similar to control level in HU-IGF-1 rats. Taken together, the data clearly indicate that IGF-1 plays a key-role in cortical plastic mechanisms and in behavioral alterations induced by a decrease in sensorimotor activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Serum insulin-like growth factor II (IGF-II) and adrenomedullin (ADM) in coronary heart disease

    International Nuclear Information System (INIS)

    Tong Lijun; Ji Naijun; Fan Bifu; Wang Chengyao; Mei Yibin; Chen Donghai; Li Fuyuan

    2005-01-01

    Objective: To investigate the changes of serum insulin-like growth factor (IGF-II) and adrenomedullin (ADM) levels in patients with coronary heart disease (CHD). Methods: Serum IGF-II and ADM levels were measured with RIA in 90 CHD patients and 40 controls. Results: Serum IGF-II and ADM levels were significantly higher in CHD patients than those in controls (P 0.05). Serum IGF-II and ADM levels were significantly higher in the patients complicated with myocardial infarction (MI) than those in patients without this complication (t=2.831, t=2.328, both P 0.05). Conclusion: Serum IGF-II and ADM levels were increased in CHD patients, most markedly in those complicated with MI. (authors)

  4. Synergistic effect of DHT and IGF-1 hyperstimulation in human peripheral blood lymphocytes.

    Science.gov (United States)

    Imperlini, Esther; Spaziani, Sara; Mancini, Annamaria; Caterino, Marianna; Buono, Pasqualina; Orrù, Stefania

    2015-06-01

    The abuse of mixed or combined performance-enhancing drugs is widespread among athletes and amateurs, adults and adolescents. Clinical studies demonstrated that misuse of these doping agents is associated with serious adverse effects to many organs in human. Previously, we demonstrated in human peripheral blood lymphocytes that high doses of anabolic androgenic steroids, such as dihydrotestosterone (DHT) and growth factors, such as insulin-like growth factor-1 (IGF-1), have effects at gene and protein levels. Supraphysiological treatments of DHT and IGF-1 affected the expression of genes involved in skeletal muscle disorders as well as in cell-mediated immunological response. At protein level, DHT hyperdosage affects cell motility and apoptosis; IGF-1 hyperstimulation triggers an active cytoskeletal reorganization and an overproduction of immune response- and inflammation-related cytokines. In this study, we investigate the combined effects of DHT and IGF-1 hyperdosage in peripheral blood lymphocytes using a differential proteomic approach. DHT and IGF-1 combined treatment affects cell adhesion, migration, and survival through modulation of expression levels of cytokines and paxillin-signaling-related proteins, and activation of several pathways downstream focal adhesion kinase. Our results indicate a synergistic effect of DHT and IGF-1 which has potential implications for health risk factors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Analysis artefacts of the INS-IGF2 fusion transcript

    DEFF Research Database (Denmark)

    Wernersson, Rasmus; Frogne, Thomas; Rescan, Claude

    2015-01-01

    Background: In gene expression analysis, overlapping genes, splice variants, and fusion transcripts are potential sources of data analysis artefacts, depending on how the observed intensity is assigned to one, or more genes. We here exemplify this by an in-depth analysis of the INS-IGF2 fusion...... transcript, which has recently been reported to be among the highest expressed transcripts in human pancreatic beta cells and its protein indicated as a novel autoantigen in Type 1 Diabetes. Results: Through RNA sequencing and variant specific qPCR analyses we demonstrate that the true abundance of INS-IGF2...... is >20,000 fold lower than INS in human beta cells, and we suggest an explanation to the nature of the artefacts which have previously led to overestimation of the gene expression level in selected studies. We reinvestigated the previous reported findings of detection of INS-IGF2 using antibodies both...

  6. Enhanced contractile force generation by artificial skeletal muscle tissues using IGF-I gene-engineered myoblast cells.

    Science.gov (United States)

    Sato, Masanori; Ito, Akira; Kawabe, Yoshinori; Nagamori, Eiji; Kamihira, Masamichi

    2011-09-01

    The aim of this study was to investigate whether insulin-like growth factor (IGF)-I gene delivery to myoblast cells promotes the contractile force generated by hydrogel-based tissue-engineered skeletal muscles in vitro. Two retroviral vectors allowing doxycycline (Dox)-inducible expression of the IGF-I gene were transduced into mouse myoblast C2C12 cells to evaluate the effects of IGF-I gene expression on these cells. IGF-I gene expression stimulated the proliferation of C2C12 cells, and a significant increase in the growth rate was observed for IGF-I-transduced C2C12 cells with Dox addition, designated C2C12/IGF (Dox+) cells. Quantitative morphometric analyses showed that the myotubes induced from C2C12/IGF (Dox+) cells had a larger area and a greater width than control myotubes induced from normal C2C12 cells. Artificial skeletal muscle tissues were prepared from the respective cells using hydrogels composed of type I collagen and Matrigel. Western blot analyses revealed that the C2C12/IGF (Dox+) tissue constructs showed activation of a skeletal muscle hypertrophy marker (Akt) and enhanced expression of muscle-specific markers (myogenin, myosin heavy chain and tropomyosin). Moreover, the creatine kinase activity was increased in the C2C12/IGF (Dox+) tissue constructs. The C2C12/IGF (Dox+) tissue constructs contracted in response to electrical pulses, and generated a significantly higher physical force than the control C2C12 tissue constructs. These findings indicate that IGF-I gene transfer has the potential to yield functional skeletal muscle substitutes that are capable of in vivo restoration of the load-bearing function of injured muscle or acting as in vitro electrically-controlled bio-actuators. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. The role for IGF-1-derived small neuropeptides as a therapeutic target for neurological disorders.

    Science.gov (United States)

    Guan, Jian; Harris, Paul; Brimble, Margaret; Lei, Yang; Lu, Jun; Yang, Yang; Gunn, Alistair J

    2015-06-01

    Exogenous IGF-1 protects the brain from ischemic injury and improves function. However, its clinical application to neurological disorders is limited by its large molecular size, poor central uptake and mitogenic potential. In this review, the authors have discussed the efficacy, pharmacokinetics and mechanisms of IGF-1 derivatives on protecting acute brain injury, preventing memory impairment and improving recovery from neurological degenerative conditions evaluated in various animal models. We have included natural metabolites of IGF-1, glycine-proline-glutamate (GPE), cleaved from N-terminal IGF-1 and cyclic glycine-proline (cGP) as well as the structural analogues of GPE and cGP, glycine-2-methyl-proline-glutamate and cyclo-l-glycyl-l-2-allylproline, respectively. In addition, the regulatory role for cGP in bioavailability of IGF-1 has also been discussed. These small neuropeptides provide effective neuroprotection by offering an improved pharmacokinetic profile and more practical route of administration compared with IGF-1 administration. Developing modified neuropeptides to overcome the limitations of their endogenous counterparts represents a novel strategy of pharmaceutical discovery for neurological disorders. The mechanism of action may involve a regulation of IGF-1 bioavailability.

  8. Long-term IGF-I treatment of children with Laron syndrome increases adiposity.

    Science.gov (United States)

    Laron, Zvi; Ginsberg, Shira; Lilos, Pnina; Arbiv, Mira; Vaisman, Nahum

    2006-02-01

    Laron syndrome (LS) is an autosomal recessive disease caused by deletions or mutations in the GH receptor gene leading to an inability of insulin-like growth factor I (IGF-I) generation. Among the major resulting body changes are dwarfism and obesity. The only effective treatment is daily administration of biosynthetic IGF-I. Body composition determination by DEXA (dual energy X-ray absorptiometry) of three girls with LS treated by IGF-I for 1, 3 and 11 1/2 years, respectively, revealed that concomitantly with the increase in growth there was a significant increase in body adipose tissue to double or triple the normal values. Due to the underdevelopment of the muscular and skeletal systems body mass index (BMI) did not accurately reflect the degree of obesity. In conclusion, IGF-I similar to insulin, exerts an adipogenic effect.

  9. A dynamic ribosomal biogenesis response is not required for IGF-1-mediated hypertrophy of human primary myotubes.

    Science.gov (United States)

    Crossland, Hannah; Timmons, James A; Atherton, Philip J

    2017-12-01

    Increased ribosomal DNA transcription has been proposed to limit muscle protein synthesis, making ribosome biogenesis central to skeletal muscle hypertrophy. We examined the relationship between ribosomal RNA (rRNA) production and IGF-1-mediated myotube hypertrophy in vitro Primary skeletal myotubes were treated with IGF-1 (50 ng/ml) with or without 0.5 µM CX-5461 (CX), an inhibitor of RNA polymerase I. Myotube diameter, total protein, and RNA and DNA levels were measured along with markers of RNA polymerase I regulatory factors and regulators of protein synthesis. CX treatment reduced 45S pre-rRNA expression (-64 ± 5% vs. IGF-1; P IGF-1; P IGF-1-treated myotubes. IGF-1-mediated increases in myotube diameter (1.27 ± 0.09-fold, P IGF-1 treatment did not prevent early increases in AKT (+203 ± 39% vs. CX; P IGF-1, myotube diameter and protein accretion were sustained. Thus, while ribosome biogenesis represents a potential site for the regulation of skeletal muscle protein synthesis and muscle mass, it does not appear to be a prerequisite for IGF-1-induced myotube hypertrophy in vitro. -Crossland, H., Timmons, J. A., Atherton, P. J. A dynamic ribosomal biogenesis response is not required for IGF-1-mediated hypertrophy of human primary myotubes. © The Author(s).

  10. GH/IGF-I Transgene Expression on Muscle Homeostasis

    Science.gov (United States)

    Schwartz, Robert J.

    1999-01-01

    We propose to test the hypothesis that the growth hormone/ insulin like growth factor-I axis through autocrine/paracrine mechanisms may provide long term muscle homeostasis under conditions of prolonged weightlessness. As a key alternative to hormone replacement therapy, ectopic production of hGH, growth hormone releasing hormone (GHRH), and IGF-I will be studied for its potential on muscle mass impact in transgenic mice under simulated microgravity. Expression of either hGH or IGF-I would provide a chronic source of a growth-promoting protein whose biosynthesis or secretion is shut down in space. Muscle expression of the IGF-I transgene has demonstrated about a 20% increase in hind limb muscle mass over control nontransgenic litter mates. These recent experiments, also establish the utility of hind-limb suspension in mice as a workable model to study atrophy in weight bearing muscles. Thus, transgenic mice will be used in hind-limb suspension models to determine the role of GH/IGF-I on maintenance of muscle mass and whether concentric exercises might act in synergy with hormone treatment. As a means to engineer and ensure long-term protein production that would be workable in humans, gene therapy technology will be used by to monitor muscle mass preservation during hind-limb suspension, after direct intramuscular injection of a genetically engineered muscle-specific vector expressing GHRH. Effects of this gene-based therapy will be assessed in both fast twitch (medial gastrocnemius) and slow twitch muscle (soleus). End-points include muscle size, ultrastructure, fiber type, and contractile function, in normal animals, hind limb suspension, and reambutation.

  11. Insulin-like growth factor-II (IGF II) receptor from rat brain is of lower apparent molecular weight than the IGF II receptor from rat liver

    International Nuclear Information System (INIS)

    McElduff, A.; Poronnik, P.; Baxter, R.C.

    1987-01-01

    The binding subunits of the insulin and insulin-like growth factor-I (IGF I) receptors from rat brain are of lower molecular weight than the corresponding receptor in rat liver, possibly due to variations in sialic acid content. We have compared the IGF II receptor from rat brain and rat liver. The brain receptor is of smaller apparent mol wt (about 10 K) on sodium dodecyl sulfate polyacrylamide gel electrophoresis. This size difference is independent of ligand binding as it persists in iodinated and specifically immunoprecipitated receptors. From studies of wheat germ agglutinin binding and the effect of neuraminidase on receptor mobility, we conclude that this difference is not simply due to variations in sialic acid content. Treatment with endoglycosidase F results in reduction in the molecular size of both liver and brain receptors and after this treatment the aglycoreceptors are of similar size. We conclude that in rat brain tissue the IGF II receptor like the binding subunits of the insulin and IGF I receptors is of lower molecular size than the corresponding receptors in rat liver. This difference is due to differences in N-linked glycosylation

  12. Free and total insulin-like growth factor I (IGF-I), IGF-binding protein-1 (IGFBP-1), and IGFBP-3 and their relationships to the presence of diabetic retinopathy and glomerular hyperfiltration in insulin-dependent diabetes mellitus

    NARCIS (Netherlands)

    J.A.M.J.L. Janssen (Joseph); M.L. Jacobs (Marloes); F.H.M. Derkx (Frans); R.F.A. Weber (Robert); A-J. van der Lely (Aart-Jan); S.W.J. Lamberts (Steven)

    1997-01-01

    textabstractThe existing literature on serum insulin-like growth factor I (IGF-I) levels in insulin-dependent diabetes mellitus (IDDM) is conflicting. Free IGF-I may have greater physiological and clinical relevance than total IGF-I. Recently, a validated method has

  13. Effects of 2-year calorie restriction on circulating levels of IGF-1, IGF-binding proteins and cortisol in non-obese men and women: a randomized clinical trial

    Science.gov (United States)

    Young-onset calorie restriction (CR) in rodents decreases serum IGF-1 concentration and increases serum corticosterone levels, which have been hypothesized to play major roles in mediating its anti-cancer and anti-aging effects. However, little is known on the effects of CR on the IGF-1 system and c...

  14. IGF-I and IGFBP-3 polymorphisms in relation to circulating levels among African American and Caucasian women

    Science.gov (United States)

    D’Aloisio, Aimee A.; Schroeder, Jane C.; North, Kari E.; Poole, Charles; West, Suzanne L.; Travlos, Gregory S.; Baird, Donna D.

    2010-01-01

    Circulating insulin-like growth factor-one (IGF-I) and IGF binding protein-3 (IGFBP-3) levels have been associated with common diseases. Although family-based studies suggest that genetic variation contributes to circulating IGF-I and IGFBP-3 levels, analyses of associations with multiple IGF-I and IGFBP-3 single nucleotide polymorphisms (SNPs) have been limited, especially among African Americans. We evaluated 30 IGF-I and 15 IGFBP-3 SNPs and estimated diplotypes in association with plasma IGF-I and IGFBP-3 among 984 premenopausal African American and Caucasian women. In both races, IGFBP-3 rs2854746 (Ala32Gly) was positively associated with plasma IGFBP-3 (CC versus GG mean difference among Caucasians = 631 ng/ml, 95% confidence interval: 398, 864; African Americans = 897 ng/ml, 95% confidence interval: 656, 1138), and IGFBP-3 diplotypes with the rs2854746 GG genotype had lower mean IGFBP-3 levels than referent diplotypes with the CG genotype, while IGFBP-3 diplotypes with the CC genotype had higher mean IGFBP-3 levels. IGFBP-3 rs2854744 (−202 A/C) was in strong linkage disequilibrium with rs2854746 in Caucasians only, but was associated with plasma IGFBP-3 in both races. Eight additional IGFBP-3 SNPs were associated with 5% or greater differences in mean IGFBP-3 levels, with generally consistent associations between races. Twelve IGF-I SNPs were associated with 10% or greater differences in mean IGF-I levels, but associations were generally discordant between races. Diplotype associations with plasma IGF-I did not parallel IGF-I SNP associations. Our study supports that common IGFBP-3 SNPs, especially rs2854746, influence plasma IGFBP-3 levels among African Americans and Caucasians, but provides less evidence that IGF-I SNPs affect plasma IGF-I levels. PMID:19240240

  15. Increased linear bone growth by GH in the absence of SOCS2 is independent of IGF-1.

    Science.gov (United States)

    Dobie, Ross; Ahmed, Syed F; Staines, Katherine A; Pass, Chloe; Jasim, Seema; MacRae, Vicky E; Farquharson, Colin

    2015-11-01

    Growth hormone (GH) signaling is essential for postnatal linear bone growth, but the relative importance of GHs actions on the liver and/or growth plate cartilage remains unclear. The importance of liver derived insulin like-growth factor-1 (IGF-1) for endochondral growth has recently been challenged. Here, we investigate linear growth in Suppressor of Cytokine Signaling-2 (SOCS2) knockout mice, which have enhanced growth despite normal systemic GH/IGF-1 levels. Wild-type embryonic ex vivo metatarsals failed to exhibit increased linear growth in response to GH, but displayed increased Socs2 transcript levels (P growth over a 12 day period. Despite this increase, IGF-1 transcript and protein levels were not increased in response to GH. In accordance with these data, IGF-1 levels were unchanged in GH-challenged postnatal Socs2(-/-) conditioned medium despite metatarsals showing enhanced linear growth. Growth-plate Igf1 mRNA levels were not elevated in juvenile Socs2(-/-) mice. GH did however elevate IGF-binding protein 3 levels in conditioned medium from GH challenged metatarsals and this was more apparent in Socs2(-/-) metatarsals. GH did not enhance the growth of Socs2(-/-) metatarsals when the IGF receptor was inhibited, suggesting that IGF receptor mediated mechanisms are required. IGF-2 may be responsible as IGF-2 promoted metatarsal growth and Igf2 expression was elevated in Socs2(-/-) (but not WT) metatarsals in response to GH. These studies emphasise the critical importance of SOCS2 in regulating GHs ability to promote bone growth. Also, GH appears to act directly on the metatarsals of Socs2(-/-) mice, promoting growth via a mechanism that is independent of IGF-1. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.

  16. Relaxation of IGF2/H19 imprinting in Wilms tumour is associated with a switch in DNA methylation

    Energy Technology Data Exchange (ETDEWEB)

    Reeve, A.E.; Taniguchi, T.; Sullivan, M.J.; Ogawa, O. [Univ. of Otago, Dunedin (New Zealand)

    1994-09-01

    We and others have recently shown that the normal imprinting of the insulin-like growth factor 2 (IGF2) gene is disrupted in Wilms tumor. The process of relaxation of IGF2 imprinting leads to the activation of transcription of the normally silent maternally inherited IGF2 allele such that both alleles of the IGF2 gene are transcribed. Relaxation of IGF2 imprinting has also been detected as a constitutional event in patients with the Beckwith-Wiedemann syndrom and a patient with gigantism and Wilms tumor. We have now shown that in Wilms tumors in which imprinting is relaxed, IGF2 is transcribed from the maternal allele and there is a concomitant transcriptional inactivation of the H19 maternal allele. Furthermore, the patterns of methylation of the IGF2 and H19 gene are reversed on the maternal chromosome. Relaxation of imprinting in Wilms tumors appear, therefore, to be associated with a switch in gene expression and methylation at the IGF2/H19 locus. The data supports the notion of a disrupted IGF2/H19 imprinting switch in Wilms tumor.

  17. Genetic Mutations, Birth Lengths, Weights and Head Circumferences of Children with IGF-I Receptor Defects. Comparison with other Congenital Defects in the GH/IGF-I axis.

    Science.gov (United States)

    Essakow, Jenna Lee; Lauterpacht, Aharon; Lilos, Pearl; Kauli, Rivka; Laron, Zvi

    2016-09-01

    In recent years more and more genetic defects along the GHRH-GH-IGF-I axis have been reported. Mutations of the IGF-I receptor (R) are a rare abnormality of whom only the heterozygote progenies survive. To summarize, from the literature, data on birth length, weight and head circumference of neonates with IGF-I-R mutations, and to correlate the data with that of other types of mutations in the GH/IGF-I axis. Sixty seven neonates from 24 published articles were included and forty seven different mutations of the IGF-I (R) located on chromosome 15 have been identified. Mean (±SD) birth length (BL), available for 26, (10 M, 16F) neonates with a gestational age of 34-41weeks, was 44.2±4cm; one was premature (30cm at 31 weeks). There was a significant correlation between birth length and gestational age (GA) r=0.71 (p>.001). Mean birth weight (BW) of 41 neonates (18M, 23F) was 2388±743gr. Two premature neonates weighed 650gr and 950gr respectively. The BW correlated significantly with gestational age, (males: r=0.68; p=0.007, females: r=0.49; p=0.024). The BMI of 25 neonates ranged from 6 to 13. In 22 records marked microcephaly was ascertained or stated. Nine of 16 mothers were short (133 -148cm), m±SD = 150.5±7.3cm. Copyright© of YS Medical Media ltd.

  18. Forkhead box A1 (FOXA1) is a key mediator of insulin-like growth factor I (IGF-I) activity.

    Science.gov (United States)

    Potter, Adam S; Casa, Angelo J; Lee, Adrian V

    2012-01-01

    The insulin-like growth factor receptor (IGF-IR) has been implicated in a number of human tumors, including breast cancer. Data from human breast tumors has demonstrated that IGF-IR is over-expressed and hyper-phosphorylated. Additionally, microarray analysis has shown that IGF-I treatment of MCF7 cells leads to a gene signature comprised of induced and repressed genes, which correlated with luminal B tumors. FOXA1, a forkhead family transcription factor, has been shown to be crucial for mammary ductal morphogenesis, similar to IGF-IR, and expressed at high levels in luminal subtype B breast tumors. Here, we investigated the relationship between FOXA1 and IGF-I action in breast cancer cells. We show that genes regulated by IGF-I are enriched for FOXA1 binding sites, and knock down of FOXA1 blocked the ability of IGF-I to regulate gene expression. IGF-I treatment of MCF7 cells increased the half-life of FOXA1 protein and this increase in half-life appeared to be dependent on canonical IGF-I signal transduction through both MAPK and AKT pathways. Finally, knock down of FOXA1 led to a decreased ability of IGF-I to induce proliferation and protect against apoptosis. Together, these results demonstrate that IGF-I can increase the stability of FOXA1 protein expression and place it as a critical mediator of IGF-I regulation of gene expression and IGF-I-mediated biological responses. Copyright © 2011 Wiley Periodicals, Inc.

  19. IGF-1 contributes to the expansion of melanoma-initiating cells through an epithelial-mesenchymal transition process.

    Science.gov (United States)

    Le Coz, Vincent; Zhu, Chaobin; Devocelle, Aurore; Vazquez, Aimé; Boucheix, Claude; Azzi, Sandy; Gallerne, Cindy; Eid, Pierre; Lecourt, Séverine; Giron-Michel, Julien

    2016-12-13

    Melanoma is a particularly virulent human cancer, due to its resistance to conventional treatments and high frequency of metastasis. Melanomas contain a fraction of cells, the melanoma-initiating cells (MICs), responsible for tumor propagation and relapse. Identification of the molecular pathways supporting MICs is, therefore, vital for the development of targeted treatments. One factor produced by melanoma cells and their microenvironment, insulin-like growth factor-1 (IGF- 1), is linked to epithelial-mesenchymal transition (EMT) and stemness features in several cancers.We evaluated the effect of IGF-1 on the phenotype and chemoresistance of B16-F10 cells. IGF-1 inhibition in these cells prevented malignant cell proliferation, migration and invasion, and lung colony formation in immunodeficient mice. IGF-1 downregulation also markedly inhibited EMT, with low levels of ZEB1 and mesenchymal markers (N-cadherin, CD44, CD29, CD105) associated with high levels of E-cadherin and MITF, the major regulator of melanocyte differentiation. IGF-1 inhibition greatly reduced stemness features, including the expression of key stem markers (SOX2, Oct-3/4, CD24 and CD133), and the functional characteristics of MICs (melanosphere formation, aldehyde dehydrogenase activity, side population). These features were associated with a high degree of sensitivity to mitoxantrone treatment.In this study, we deciphered new connections between IGF-1 and stemness features and identified IGF-1 as instrumental for maintaining the MIC phenotype. The IGF1/IGF1-R nexus could be targeted for the development of more efficient anti-melanoma treatments. Blocking the IGF-1 pathway would improve the immune response, decrease the metastatic potential of tumor cells and sensitize melanoma cells to conventional treatments.

  20. Studies on Expression of IGF-II Gene in Deciduas Derived from Medical Abortion Patients

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective To determine the effect of insulin-like growth factor-Ⅱ (IGF-Ⅱ ) upon the maintenance of decidua in early pregnancy and its relationship with progesterone, as well as its role in medical abortion. Materials & Methods Decidua tissue was obtained from 28 women who undergoing surgical abortion and 39 for medical abortion respectively at 5~7 weeks of gestation. The extracted total RNA was reversely transcripted and amplified by PCR with spe cific primers (IGF-Ⅱ and β-actin). The products were semi-quantitated by MIAS 300 system and qualitatively analyzed by southern blotting. Results The expression of IGF-Ⅱ gene in decidua from surgical abortion was signif icantly higher than that from medical abortion (P<0.05). The average IGF-Ⅱ gene transcription values were 1. 54±0.79 and 0.72±0.39 respectively. The results of southern blotting proved qualitatively that the RT-PCR products were IGF-Ⅱ cDNA. Conclusion IGF-Ⅱ plays a role in the maintenance of decidua in early pregnancy. It may act as a mediator of progestin. It's also involved in the molecular mechanism of mifepristone.

  1. Alternative splicing and expression of the insulin-like growth factor (IGF-1) gene in osteoblasts under mechanical stretch

    Institute of Scientific and Technical Information of China (English)

    XIAN Chengyu; WANG Yuanliang; ZHANG Bingbing; TANG Liling; PAN Jun; LUO Yanfeng; JIANG Peng; LI Dajun

    2006-01-01

    Insulin-like growth factor 1 (IGF-1) promotes osteoblasts differentiation and bone formation,and its expression is induced by mechanical stretch,thus IGF-1 has been considered an effector molecule that links mechanical stimulation and local tissue responses. In this study, a mechanical stretching device was designed to apply physiological level static or cyclic stretching stimulation to osteoblasts.Different isoforms of IGF-1 mRNA were amplified by RT-PCR from the cells using respective primers and these amplified products were sequenced. An isoform of IGF-1 splicing product was found to be selectively produced by osteoblasts under stretching stimulation. This IGF-1 isoform had identical sequence with the mechano growth factor (MGF) which was originally identified in muscle cells. Regulations of the expression of the liver-type IGF (L.IGF-1) and MGF in osteoblasts under stretch stimulation were further studied using semi-quantitative RT-PCR.Stretch stimulation was found to promot the expression of IGF-1 (L.IGF-1 and MGF), and for both isoforms expression was more effectively stimulated by cyclic stretch than static stretch. MGF was detected only in osteoblasts subjected to mechanical stretch,suggesting MGF was a stretch sensitive growth factor.Expression of MGF peaked earlier than that of L.IGF-1, which was similar to their regulation in muscie and suggested similar roles of MGF and L.IGF-1in bone as in muscle cells. The functions of MGF and L.IGF-1 in osteoblasts shall be established by further experimental studies.

  2. The potential role of IGF-I receptor mRNA in rats with diabetic retinopathy

    Institute of Scientific and Technical Information of China (English)

    匡洪宇; 邹伟; 刘丹; 史榕荇; 程丽华; 殷慧清; 刘晓民

    2003-01-01

    Objective To evaluate the potential role of insulin-like growth factor-1 receptor mRNA(IGF-IR mRNA) in the onset and development of retinopathy in diabetic rats.Methods A diabetic model was duplicated in Wistar rats. The early changes in the retina were examined using light and transmission electron microscopy. Expression of IGF-IR mRNA was analyzed using in situ hybridization.Results Weak expression of IGF-IR mRNA(5%) was found in retinas of normal rats, but was significantly increased (15% and 18%) in the retinas of diabetic rats after 3 and 6 months of diabetes (P<0.01). In situ hybridization and morphological study demonstrated that there was a positive correlation between IGF-IR mRNA expression and retinal changes at various stages.Conclusion Increased IGF-IR mRNA might play an important role in the onset and development of diabetic retinopathy.

  3. Targeting the IGF-1R: The Tale of The Tortoise and The Hare

    Directory of Open Access Journals (Sweden)

    Caitrin eCrudden

    2015-04-01

    Full Text Available The insulin-like growth factor type 1 receptor (IGF-1R plays a key role in the development and maintenance of cancer. Since the first links between growth factor receptors and oncogenes were noted over three decades ago, targeting the IGF-1R has been of great interest. This review follows the progress from inception through intense pharmaceutical development, disappointing clinical trials and recent updates to the signaling paradigm. In light of major developments in signaling understanding and activation complexities, we examine reasons for failure of first line targeting approaches. Recent findings include the fact that the IGF-1R can signal in the absence of the ligand, in the absence of kinase activity and utilizes components of the GPCR system. With recognition of the unappreciated complexities that this first wave of targeting approaches encountered, we advocate recognition of IGF-1R as a valid target for cancer treatment and look to future directions, where both research and pharmaceutical strengths can lend themselves to finally unearthing anti-IGF-1R potential.

  4. Doxorubicin plus the IGF-1R antibody cixutumumab in soft tissue sarcoma: a phase I study using the TITE-CRM model.

    Science.gov (United States)

    Chugh, R; Griffith, K A; Davis, E J; Thomas, D G; Zavala, J D; Metko, G; Brockstein, B; Undevia, S D; Stadler, W M; Schuetze, S M

    2015-07-01

    Insulin-like growth factor receptor (IGF-1R) has been studied as an oncologic target in soft tissue sarcoma (STS), but its role in sarcoma biology is unclear. Anti-IGF-1R antibody cixutumumab demonstrated acceptable toxicity but limited activity as a single agent in STS. We carried out a dose-escalation study of cixutumumab with doxorubicin to evaluate safety and dosing of the combination. Eligible patients with advanced STS were treated with cixutumumab intravenously on days 1/8/15 at one of three dose levels (A: 1 mg/kg, B: 3 mg/kg, C: 6 mg/kg) with doxorubicin at 75 mg/m(2) as a 48 h infusion on day 1 of a 21 day cycle. After six cycles of the combination, patients could receive cixutumumab alone. The Time-to-Event Continual Reassessment Method was used to estimate the probability of dose-limiting toxicity (DLT) and to assign patients to the dose with an estimated probability of DLT≤20%. Between September 2008 and January 2012, 30 patients with advanced STS received a median of six cycles of therapy (range <1-22). Two DLTs were observed, grade 3 mucositis (dose level B) and grade 4 hyperglycemia (dose level C). Grade 2 and 3 reduced left ventricular ejection fraction was seen in three and two patients, respectively. Five partial responses were observed, and estimated progression-free survival was 5.3 months (95% confidence interval 3.0-6.3) in 26 response-assessable patients. Immunohistochemical staining of 11 available tumor samples for IGF-1R and phospho-IGF-1R was not significantly different among responders and non-responders, and serum analysis of select single-nucleotide polymorphisms did not predict for cardiotoxicity. The maximum tolerated dose was doxorubicin 75 mg/m(2) on day 1 and cixitumumab 6 mg/kg on days 1/8/15 of a 21 day cycle. Cardiac toxicity was observed and should be monitored in subsequent studies, which should be considered in STS only if a predictive biomarker of benefit to anti-IGF-1R therapy is identified. Clinical

  5. Overexpression of IGF-I receptor in HeLa cells enhances in vivo radioresponse

    International Nuclear Information System (INIS)

    Kaneko, Haruna; Yu, Dong; Miura, Masahiko

    2007-01-01

    Insulin-like growth factor I receptor (IGF-IR) is a transmembrane receptor tyrosine kinase whose activation strongly promotes cell growth and survival. We previously reported that IGF-IR activity confers intrinsic radioresistance in mouse embryo fibroblasts in vitro. However, it is still unclear whether tumor cells overexpressing IGF-IR exhibit radioresistance in vivo. For this purpose, we established HeLa cells that overexpress IGF-IR (HeLa-R), subcutaneously transplanted these cells into nude mice, and examined radioresponse in the resulting solid tumors. HeLa-R cells exhibited typical in vitro phenotypes generally observed in IGF-IR-overexpressing cells, as well as significant intrinsic radioresistance in vitro compared with parent cells. As expected, the transplanted HeLa-R tumors grew at a remarkably higher rate than parent tumors. Histological analysis revealed that HeLa-R tumors expressed more VEGF and had a higher density of tumor vessels. Unexpectedly, a marked growth delay was observed in HeLa-R tumors following 10 Gy of X-irradiation. Immunostaining of HeLa-R tumors for the hypoxia marker pimonidazole revealed a significantly lower level of hypoxic cells. Moreover, clamp hypoxia significantly increased radioresistance in HeLa-R tumors. Tumor microenvironments in vivo generated by the IGF-IR expression thus could be a major factor in determining the tumor radioresponse in vivo

  6. Platycodon grandiflorum (PG) reverses angiotensin II-induced apoptosis by repressing IGF-IIR expression.

    Science.gov (United States)

    Lin, Yuan-Chuan; Lin, Chih-Hsueh; Yao, Hsien-Tsung; Kuo, Wei-Wen; Shen, Chia-Yao; Yeh, Yu-Lan; Ho, Tsung-Jung; Padma, V Vijaya; Lin, Yu-Chen; Huang, Chih-Yang; Huang, Chih-Yang

    2017-06-09

    Platycodon grandiflorum (PG) is a Chinese medical plant used for decades as a traditional prescription to eliminate phlegm, relieve cough, reduce inflammation and lower blood pressure. PG also has a significant effect on the cardiovascular systems. The aqueous extract of Platycodon grandiflorum (JACQ.) A. DC. root was screened for inhibiting Ang II-induced IGF-IIR activation and apoptosis pathway in H9c2 cardiomyocytes. The effects were also studied in spontaneously hypertensive rats (five groups, n=5) using low and high doses of PG for 50 days. The Ang II-induced IGF-IIR activation was analyzed by luciferase reporter, RT-PCR, western blot and surface IGF-IIR expression assay. Furthermore, the major active constituent of PG was carried out by high performance liquid chromatography-mass spectrometry (HPLC-MS). Our results indicate that a crude extract of PG significantly suppresses the Ang II-induced IGF-IIR signaling pathway to prevent cardiomyocyte apoptosis. PG extract inhibits Ang II-mediated JNK activation and SIRT1 degradation to reduce IGF-IIR activity. Moreover, PG maintains SIRT1 stability to enhance HSF1-mediated IGF-IIR suppression, which prevents cardiomyocyte apoptosis. In animal models, the administration of PG markedly reduced this apoptotic pathway in the heart of SHRs. Taken together, PG may be considered as an effective treatment for cardiac diseases in hypertensive patients. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  7. IGF-1R signaling in chondrocytes modulates growth plate development by interacting with the PTHrP/Ihh pathway.

    Science.gov (United States)

    Wang, Yongmei; Cheng, Zhiqiang; Elalieh, Hashem Z; Nakamura, Eiichiro; Nguyen, Minh-Thanh; Mackem, Susan; Clemens, Thomas L; Bikle, Daniel D; Chang, Wenhan

    2011-07-01

    Systemic derangements and perinatal death of generalized insulin-like growth factor 1 (IGF-1) and IGF-1 receptor (IGF-1R) knockout mice preclude definitive assessment of IGF-1R actions in growth-plate (GP) chondrocytes. We generated cartilage-specific Igf1r knockout ((Cart) Igf1r(-/-)) mice to investigate local control of chondrocyte differentiation in the GP by this receptor. These mice died shortly after birth and showed disorganized chondrocyte columns, delayed ossification and vascular invasion, decreased cell proliferation, increased apoptosis, and increased expression of parathyroid hormone-related protein (Pthrp) RNA and protein in their GPs. The increased Pthrp expression in the knockout GPs likely was due to an increase in gene transcription, as determined by the increased activity of a LacZ reporter that was inserted downstream of the endogenous PTHrP promoter and bred into the knockout mice. To circumvent the early death of (Cart) Igf1r(-/-) mice and investigate the role of IGF-1R during postnatal growth, we made tamoxifen (Tam)-inducible, cartilage-specific Igf1r knockout ((TamCart) Igf1r(-/-)) mice. At 2 weeks of age and 7 to 8 days after Tam injection, the (TamCart) Igf1r(-/-) mice showed growth retardation with a disorganized GP, reduced chondrocyte proliferation, decreased type 2 collagen and Indian Hedgehog (Ihh) expression, but increased expression of PTHrP. Consistent with in vivo observations, in vitro knockout of the Igf1r gene by adenoviral expression of Cre recombinase suppressed cell proliferation, promoted apoptosis, and increased Pthrp expression. Our data indicate that the IGF-1R in chondrocytes controls cell growth, survival, and differentiation in embryonic and postnatal GPs in part by suppression of Pthrp expression. Copyright © 2011 American Society for Bone and Mineral Research.

  8. A Novel igf3 Gene in Common Carp (Cyprinus carpio): Evidence for Its Role in Regulating Gonadal Development.

    Science.gov (United States)

    Song, Feibiao; Wang, Lanmei; Zhu, Wenbin; Fu, Jianjun; Dong, Juanjuan; Dong, Zaijie

    2016-01-01

    Since the insulin-like growth factor 3 (igf3) gene was recently discovered in fish ovary, its function in the gonads has received much attention. In this study, we isolated two igf3 subtypes from common carp (Cyprinus carpio), which comprised full-length cDNA of 707 and 1153 nucleotides encoding 205 and 198 amino acids (aa), respectively. The Igf3 aa sequence had the highest gene homology of 72% with the corresponding sequence in zebrafish (Danio rerio). Phylogenetic tree construction revealed that the C. carpio igf3 gene was first clustered with D. rerio and then with other teleost species. Igf3 mRNA was widely expressed, with expression being highest in the gonads and blood. In the gonad development stage, igf3a mRNA expression was highest in the maturity and recession stage of the ovary, and decline phase of the testis, while igf3b was highest in the recession and fully mature periods of the ovaries and testes, respectively. Western blotting of testis protein samples showed two bands of approximately 21 kDa and 34 kDa corresponding to the calculated molecular mass of the two Igf3 subtypes; no signal was detected in the ovary. The Igf3 protein was localized in the ovary granulosa cells and testis spermatogonium and spermatids. 17β-Ethinylestradiol treatment increased both ovary and testis igf3 mRNA expression. These findings suggest that Igf3 may play an important role in C. carpio gonadal development.

  9. Cardiac remodeling after myocardial infarction is impaired in IGF-1 deficient mice

    NARCIS (Netherlands)

    Palmen, M.; Daemen, M. J.; Bronsaer, R.; Dassen, W. R.; Zandbergen, H. R.; Kockx, M.; Smits, J. F.; van der Zee, R.; Doevendans, P. A.

    2001-01-01

    To obtain more insight in the role of IGF-1 in cardiac remodeling and function after experimental myocardial infarction. We hypothesized that cardiac remodeling is altered in IGF-1 deficient mice, which may affect cardiac function. A myocardial infarction was induced by surgical coronary artery

  10. IGF-1 induces SOCS-2 but not SOCS-1 and SOCS-3 transcription in juvenile Nile tilapia (Oreochromis niloticus).

    Science.gov (United States)

    Liu, Cai-Zhi; Luo, Yuan; Limbu, Samwel Mchele; Chen, Li-Qiao; Du, Zhen-Yu

    2018-05-20

    Insulin-like growth factor-1 (IGF-1) plays a crucial role in regulating growth in vertebrates whereas suppressors of cytokine signaling (SOCS) act as feedback inhibitors of the GH/IGF-1 axis. Although SOCS-2 binds the IGF-1 receptor and inhibits IGF-1-induced STAT3 activation, presently there is no clear evidence as to whether IGF-1 could induce SOCS gene expression. The current study aimed to determine whether IGF-1 could induce the transcription of SOCS in juvenile Nile tilapia ( Oreochromis niloticus ). We show that there is a common positive relationship between the mRNA expression of IGF-I and SOCS-2 under different nutritional statuses and stimulants, but not the mRNA expression of SOCS-1 and SOCS-3 Furthermore, rhIGF-1 treatment and transcriptional activity assay confirmed the hypothesis that IGF-1 could induce SOCS-2 expression, whereas it had no effect or even decreased the expression of SOCS-1 and SOCS-3 Overall, we obtained evidence that the transcription of SOCS-2, but not SOCS-1 or SOCS-3, could be induced by IGF signaling, suggesting that SOCS-2 serves as a feedback suppressor of the IGF-1 axis in juvenile Nile tilapia. © 2018. Published by The Company of Biologists Ltd.

  11. Plasma and tissue insulin-like growth factor-I receptor (IGF-IR) as a prognostic marker for prostate cancer and anti-IGF-IR agents as novel therapeutic strategy for refractory cases: a review.

    Science.gov (United States)

    Ozkan, Emine Elif

    2011-09-15

    Cancer database analysis indicates that prostate cancer is one of the most seen cancers in men meanwhile composing the leading cause of morbidity and mortality among developed countries. Current available therapies are surgery, radiotherapy and androgene ablation for prostate carcinoma. The response rate is as high nearly 90% however, most of these recur or become refractory and androgene independent (AI). Therefore recent studies intensified on molecular factors playing role on development of prostate carcinoma and novel treatment strategies targetting these factors and their receptors. Insulin-like growth factor-I (IGF-I) and its primary receptor insulin-like growth factor receptor-I (IGF-IR) are among these factors. Biologic functions and role in malign progression are primarily achieved via IGF-IR which is a type 2 tyrosine kinase receptor. IGF-IR plays an important role in mitogenesis, angiogenesis, transformation, apoptosis and cell motility. It also generates intensive proliferative signals leading to carcinogenesis in prostate tissue. So IGF-IR and its associated signalling system have provoked considerable interest over recent years as a novel therapeutic target in cancer. In this paper it is aimed to sum up the lately published literature searching the relation of IGF-IR and prostate cancer in terms of incidence, pathologic features, and prognosis. This is followed by a discussion of the different possible targets within the IGF-1R system, and drugs developed to interact at each target. A systems-based approach is then used to review the in vitro and in vivo data in the published literature of the following compounds targeting IGF-1R components using specific examples: growth hormone releasing hormone antagonists (e.g. JV-1-38), growth hormone receptor antagonists (e.g. pegvisomant), IGF-1R antibodies (e.g. CP-751,871, AVE1642/EM164, IMC-A12, SCH-717454, BIIB022, AMG 479, MK-0646/h7C10), and IGF-1R tyrosine kinase inhibitors (e.g. BMS-536942, BMS-554417

  12. Diabetic retinopathy in two patients with congenital IGF-I deficiency (Laron syndrome).

    Science.gov (United States)

    Laron, Zvi; Weinberger, Dov

    2004-07-01

    Animal and clinical studies have shown that excessive amounts of growth hormone or insulin-like growth factor-I (IGF-I) promote the development of diabetes and diabetic retinopathy. Forthwith, we present two patients with congenital IGF-I deficiency who developed type II diabetes and subsequently retinopathy. Eighteen adult patients with classical Laron syndrome (8 males, 10 females, aged 20-62 years) were followed by us since childhood or underwent fundus photography with a Nikon NF 505 instrument. Three had been treated in childhood with IGF-I, the rest were never treated, including the two patients reported. Two never-treated patients were diagnosed with type II diabetes (DM) at ages 39 and 41 respectively. There was no diabetes in the families. Oral treatment was followed by insulin injections. Metabolic control was not optimal and one patient developed proliferative diabetic retinopathy, necessitating laser surgery. He also has nephropathy and severe neuropathy. The other patient has background diabetic retinopathy and has developed, progressively, exudates, microaneurisms, hemorrhages and clinically significant macular edema. He also has subacute ischemic heart disease. Our findings show that congenital IGF-I deficiency, similar to excess, causes vascular complications of DM, denoting also that vascular endothelial growth factor can induce neovascularization in the presence of congenital IGF-I deficiency.

  13. Free and total insulin-like growth factor I (IGF-I), IGF-binding protein-1 (IGFBP-1), and IGFBP-3 and their relationships to the presence of diabetic retinopathy and glomerular hyperfiltration in insulin-dependent diabetes mellitus

    NARCIS (Netherlands)

    J.A.M.J.L. Janssen (Joseph); M.L. Jacobs (Marloes); F.H.M. Derkx (Frans); R.F.A. Weber (Rob); A-J. van der Lely (Aart-Jan); S.W.J. Lamberts (Steven)

    1997-01-01

    textabstractThe existing literature on serum insulin-like growth factor I (IGF-I) levels in insulin-dependent diabetes mellitus (IDDM) is conflicting. Free IGF-I may have greater physiological and clinical relevance than total IGF- I. Recently, a validated method has been developed to measure free

  14. IGF-1 attenuates LPS induced pro-inflammatory cytokines expression in buffalo (Bubalus bubalis) granulosa cells.

    Science.gov (United States)

    Onnureddy, K; Ravinder; Onteru, Suneel Kumar; Singh, Dheer

    2015-03-01

    Interaction between immune and endocrine system is a diverse process influencing cellular function and homeostasis in animals. Negative energy balance (NEB) during postpartum period in dairy animals usually suppresses these systems resulting in reproductive tract infection and infertility. These negative effects could be due to competition among endocrine and immune signaling pathways for common signaling molecules. The present work studied the effect of IGF-1 (50 ng/ml) on LPS (1 μg/ml) mediated pro-inflammatory cytokine expression (IL-1β, TNF-α, IL-6) and aromatase (CYP19A1) genes' expressions as well as proliferation of buffalo granulosa cells. The crosstalk between LPS and IGF-1 was also demonstrated through studying the activities of downstream signaling molecules (ERK1/2, Akt, NF-κB) by western blot and immunostaining. Gene expression analysis showed that IGF-1 significantly reduced the LPS induced expression of IL-1β, TNF-α and IL-6. LPS alone inhibited the CYP19A1 expression. However, co-treatment with IGF-1 reversed the inhibitory effect of LPS on CYP19A1 expression. LPS alone did not affect granulosa cell proliferation, but co-treatment with IGF-1, and IGF-1 alone enhanced the proliferation. Western blot results demonstrated that LPS caused the nuclear translocation of the NF-κB and increased the phosphorylation of ERK1/2 and Akt maximum at 15 min and 60 min, respectively. Nonetheless, co-treatment with IGF-1 delayed LPS induced phosphorylation of ERK1/2 (peak at 120 min), while promoting early Akt phosphorylation (peak at 5 min) with no effect on NF-κB translocation. Overall, IGF-1 delayed and reversed the effects of LPS, suggesting that high IGF-1 levels may combat infection during critical periods like NEB in postpartum dairy animals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Subcutaneous administration of insulin-like growth factor (IGF)-II/IGF binding protein-2 complex stimulates bone formation and prevents loss of bone mineral density in a rat model of disuse osteoporosis

    Science.gov (United States)

    Conover, Cheryl A.; Johnstone, Edward W.; Turner, Russell T.; Evans, Glenda L.; John Ballard, F. John; Doran, Patrick M.; Khosla, Sundeep

    2002-01-01

    Elevated serum levels of insulin-like growth factor binding protein-2 (IGFBP-2) and a precursor form of IGF-II are associated with marked increases in bone formation and skeletal mass in patients with hepatitis C-associated osteosclerosis. In vitro studies indicate that IGF-II in complex with IGFBP-2 has high affinity for bone matrix and is able to stimulate osteoblast proliferation. The purpose of this study was to determine the ability of the IGF-II/IGFBP-2 complex to increase bone mass in vivo. Osteopenia of the femur was induced by unilateral sciatic neurectomy in rats. At the time of surgery, 14-day osmotic minipumps containing vehicle or 2 microg IGF-II+9 microg IGFBP-2/100g body weight/day were implanted subcutaneously in the neck. Bone mineral density (BMD) measurements were taken the day of surgery and 14 days later using a PIXImus small animal densitometer. Neurectomy of the right hindlimb resulted in a 9% decrease in right femur BMD (P<0.05 vs. baseline). This loss in BMD was completely prevented by treatment with IGF-II/IGFBP-2. On the control limb, there was no loss of BMD over the 14 days and IGF-II/IGFBP-2 treatment resulted in a 9% increase in left femur BMD (P<0.05). Bone histomorphometry indicated increases in endocortical and cancellous bone formation rates and in trabecular thickness. These results demonstrate that short-term administration of the IGF-II/IGFBP-2 complex can prevent loss of BMD associated with disuse osteoporosis and stimulate bone formation in adult rats. Furthermore, they provide proof of concept for a novel anabolic approach to increasing bone mass in humans with osteoporosis.

  16. Regulation of human trophoblast GLUT1 glucose transporter by insulin-like growth factor I (IGF-I.

    Directory of Open Access Journals (Sweden)

    Marc U Baumann

    Full Text Available Glucose transport to the fetus across the placenta takes place via glucose transporters in the opposing faces of the barrier layer, the microvillous and basal membranes of the syncytiotrophoblast. While basal membrane content of the GLUT1 glucose transporter appears to be the rate-limiting step in transplacental transport, the factors regulating transporter expression and activity are largely unknown. In view of the many studies showing an association between IGF-I and fetal growth, we investigated the effects of IGF-I on placental glucose transport and GLUT1 transporter expression. Treatment of BeWo choriocarcinoma cells with IGF-I increased cellular GLUT1 protein. There was increased basolateral (but not microvillous uptake of glucose and increased transepithelial transport of glucose across the BeWo monolayer. Primary syncytial cells treated with IGF-I also demonstrated an increase in GLUT1 protein. Term placental explants treated with IGF-I showed an increase in syncytial basal membrane GLUT1 but microvillous membrane GLUT1 was not affected. The placental dual perfusion model was used to assess the effects of fetally perfused IGF-I on transplacental glucose transport and syncytial GLUT1 content. In control perfusions there was a decrease in transplacental glucose transport over the course of the perfusion, whereas in tissues perfused with IGF-I through the fetal circulation there was no change. Syncytial basal membranes from IGF-I perfused tissues showed an increase in GLUT1 content. These results demonstrate that IGF-I, whether acting via microvillous or basal membrane receptors, increases the basal membrane content of GLUT1 and up-regulates basal membrane transport of glucose, leading to increased transepithelial glucose transport. These observations provide a partial explanation for the mechanism by which IGF-I controls nutrient supply in the regulation of fetal growth.

  17. Clinical significance of changes of serum expression of IGF-I in patients with astrocytoma

    International Nuclear Information System (INIS)

    Liu Jianbo; Ding Dongmei; Yang Fubing

    2005-01-01

    Objective: To investigate the serum expression of IGF-I in patients with astrocytoma of different degrees of malignancy as well as the changes of levels after operative removal of the tumor. Methods: Serum IGF-I contents were measured with IRMA in 16 patients with Grade I-II astrocytoma and 14 patients with Grade III-IV astrocytoma both before and after operation as well as in 30 controls. Results: The serum contents of IGF-I in both groups of patients were significantly higher than those in controls (P<0.05). The levels in Grade III-IV patients were significantly higher than those in Grade I-II patients (P < 0.05 ). After operation, the levels dropped significantly (vs before operation, P<0.05). Conclusion: The serum contents of IGF - I in patients with astrocytoma were positively correlated with the degree of malignancy. Post-operative decrease of IGF-I contents was related to the decrease of tumor burden. (authors)

  18. Function of Matrix IGF-1 in Coupling Bone Resorption and Formation

    Science.gov (United States)

    Crane, Janet L.; Cao, Xu

    2013-01-01

    Balancing bone resorption and formation is the quintessential component for the prevention of osteoporosis. Signals that determine the recruitment, replication, differentiation, function, and apoptosis of osteoblasts and osteoclasts direct bone remodeling and determine whether bone tissue is gained, lost, or balanced. Therefore understanding the signaling pathways involved in the coupling process will help develop further targets for osteoporosis therapy, by blocking bone resorption or enhancing bone formation in a space and time dependent manner. Insulin-like growth factor type 1 (IGF-1) has long been known to play a role in bone strength. It is one of the most abundant substances in the bone matrix, circulates systemically and is secreted locally, and has a direct relationship with bone mineral density. Recent data has helped further our understanding of the direct role of IGF-1 signaling in coupling bone remodeling which will be discussed in this review. The bone marrow microenvironment plays a critical role in the fate of MSCs and HSCs and thus how IGF-1 interacts with other factors in the microenvironment are equally important. While previous clinical trials with IGF-1 administration have been unsuccessful at enhancing bone formation, advances in basic science studies have provided insight into further mechanisms that should be considered for future trials. Additional basic science studies dissecting the regulation and the function of matrix IGF-1 in modeling and remodeling will continue to provide further insight for future directions for anabolic therapies for osteoporosis. PMID:24068256

  19. Function of matrix IGF-1 in coupling bone resorption and formation.

    Science.gov (United States)

    Crane, Janet L; Cao, Xu

    2014-02-01

    Balancing bone resorption and formation is the quintessential component for the prevention of osteoporosis. Signals that determine the recruitment, replication, differentiation, function, and apoptosis of osteoblasts and osteoclasts direct bone remodeling and determine whether bone tissue is gained, lost, or balanced. Therefore, understanding the signaling pathways involved in the coupling process will help develop further targets for osteoporosis therapy, by blocking bone resorption or enhancing bone formation in a space- and time-dependent manner. Insulin-like growth factor type 1 (IGF-1) has long been known to play a role in bone strength. It is one of the most abundant substances in the bone matrix, circulates systemically and is secreted locally, and has a direct relationship with bone mineral density. Recent data has helped further our understanding of the direct role of IGF-1 signaling in coupling bone remodeling which will be discussed in this review. The bone marrow microenvironment plays a critical role in the fate of mesenchymal stem cells and hematopoietic stem cells and thus how IGF-1 interacts with other factors in the microenvironment are equally important. While previous clinical trials with IGF-1 administration have been unsuccessful at enhancing bone formation, advances in basic science studies have provided insight into further mechanisms that should be considered for future trials. Additional basic science studies dissecting the regulation and the function of matrix IGF-1 in modeling and remodeling will continue to provide further insight for future directions for anabolic therapies for osteoporosis.

  20. Growth hormone dose in growth hormone-deficient adults is not associated with IGF-1 gene polymorphisms

    NARCIS (Netherlands)

    S. Meyer (Silke); S. Schaefer (Stephan); D. Ivan (Diana); L. Stolk (Lisette); P.P. Arp (Pascal); A.G. Uitterlinden (André); P.P. Nawroth (Peter); U. Plöckinger (Ursula); G.K. Stalla (Günter); U. Tuschy (Ulrich); M.M. Weber (Matthias); W.J. Weise (Wolfgang); A. Pfützner (Andreas); P. Kann (Peter)

    2009-01-01

    textabstractAims: Several SNPs and a microsatellite cytosine-adenine repeat promoter polymorphisms of the IGF-1 gene have been reported to be associated with circulating IGF-1 serum concentrations. Variance in IGF-1 concentrations due to genetic variations may affect different response to growth

  1. The impact of the IGF-1 system of cancer cells on radiation response - An in vitro study.

    Science.gov (United States)

    Venkatachalam, Senthiladipan; Mettler, Esther; Fottner, Christian; Miederer, Matthias; Kaina, Bernd; Weber, Matthias M

    2017-12-01

    Overexpression of the insulin-like growth factor-1 receptor (IGF-1R) is associated with increased cell proliferation, differentiation, transformation, and tumorigenicity. Additionally, signaling involved in the resistance of cancer cells to radiotherapy originates from IGF-1R. The purpose of this study was to investigate the role of the IGF-1 system in the radiation response and further evaluate its effect on the expression of DNA repair pathway genes. To inhibit the IGF-1 system, we stably transfected the Caco-2 cell line to express a kinase-deficient IGF-1R mutant. We then studied the effects of this mutation on cell growth, the response to radiation, and clonogenic survival, as well as using a cell viability assay to examine DNA damage and repair. Finally, we performed immunofluorescence for γ-H2AX to examine double-strand DNA breaks and evaluated the expression of 84 key genes involved in DNA repair with a real-time PCR array. Mutant IGF-1R cells exhibited significantly blunted cell growth and viability, compared to wild-type cells, as well as reduced clonogenic survival after γ-irradiation. However, mutant IGF-1R cells did not show any significant delays in the repair of radiation-induced DNA double-strand breaks. Furthermore, expression of mutant IGF-1R significantly down-regulated the mRNA levels of BRCA2, a major protein involved in homologous recombination DNA repair. These results indicate that blocking the IGF-1R-mediated signaling cascade, through the expression of a kinase-deficient IGF-1R mutant, reduces cell growth and sensitizes cancer cells to ionizing radiation. Therefore, the IGF-1R system could be a potential target to enhance radio-sensitivity and the efficacy of cancer treatments.

  2. Insulin-like Growth Factor 1 (IGF-1) as a marker of cognitive decline in normal ageing: A review.

    Science.gov (United States)

    Frater, Julanne; Lie, David; Bartlett, Perry; McGrath, John J

    2018-03-01

    Insulin-like Growth Factor 1 (IGF-1) and its signaling pathway play a primary role in normal growth and ageing, however serum IGF-1 is known to reduce with advancing age. Recent findings suggest IGF-1 is essential for neurogenesis in the adult brain, and this reduction of IGF-1 with ageing may contribute to age-related cognitive decline. Experimental studies have shown manipulation of the GH/GF-1 axis can slow rates of cognitive decline in animals, making IGF-1 a potential biomarker of cognition, and/or its signaling pathway a possible therapeutic target to prevent or slow age-related cognitive decline. A systematic literature review and qualitative narrative summary of current evidence for IGF-1 as a biomarker of cognitive decline in the ageing brain was undertaken. Results indicate IGF-1 concentrations do not confer additional diagnostic information for those with cognitive decline, and routine clinical measurement of IGF-1 is not currently justified. In cases of established cognitive impairment, it remains unclear whether increasing circulating or brain IGF-1 may reverse or slow down the rate of further decline. Advances in neuroimaging, genetics, neuroscience and the availability of large well characterized biobanks will facilitate research exploring the role of IGF-1 in both normal ageing and age-related cognitive decline. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits

    DEFF Research Database (Denmark)

    Teumer, Alexander; Qi, Qibin; Nethander, Maria

    2016-01-01

    The growth hormone/insulin-like growth factor (IGF) axis can be manipulated in animal models to promote longevity, and IGF-related proteins including IGF-I and IGF-binding protein-3 (IGFBP-3) have also been implicated in risk of human diseases including cardiovascular diseases, diabetes, and cancer......-associated variant rs2153960 (FOXO3) was observed to be a genomewide significant SNP for IGF-I concentrations. Bioinformatics analysis suggested enrichment of putative regulatory elements among these IGF-I- and IGFBP-3-associated loci, particularly of rs646776 at CELSR2. In conclusion, this study identified several...

  4. The role of the IGF-1 Ec in myoskeletal system and osteosarcoma pathophysiology.

    Science.gov (United States)

    Armakolas, Nikolaos; Armakolas, Athanasios; Antonopoulos, Athanasios; Dimakakos, Andreas; Stathaki, Martha; Koutsilieris, Michael

    2016-12-01

    Growth hormone (GH) regulated mainly liver-produced insulin-like growth factor 1 (IGF-1) is a key molecule in embryonic & post embryonic development that is also involved in cancer biology. Herein we review new insights of the role of igf-1 gene products and of the IGF-1Ec isoform in muscle and bone development/repair and its role in osteosarcoma pathophysiology, underlying the possible role of the Ec peptide as a future therapeutic target. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Evidence That Graves' Ophthalmopathy Immunoglobulins Do Not Directly Activate IGF-1 Receptors.

    Science.gov (United States)

    Marcus-Samuels, Bernice; Krieger, Christine C; Boutin, Alisa; Kahaly, George J; Neumann, Susanne; Gershengorn, Marvin C

    2018-05-01

    Graves' ophthalmopathy (GO) pathogenesis involves thyrotropin (TSH) receptor (TSHR)-stimulating autoantibodies. Whether there are autoantibodies that directly stimulate insulin-like growth factor 1 receptors (IGF-1Rs), stimulating insulin-like growth factor receptor antibodies (IGFRAbs), remains controversial. This study attempted to determine whether there are stimulating IGFRAbs in patients with GO. Immunoglobulins (Igs) were purified from normal volunteers (NV-Igs) and patients with GO (GO-Igs). The effects of TSH, IGF-1, NV-Igs, and GO-Igs on pAKT and pERK1/2, members of pathways used by IGF-1R and TSHR, were compared in orbital fibroblasts from GO patients (GOFs) and U2OS-TSHR cells overexpressing TSHRs, and U2OS cells that express TSHRs at very low endogenous levels. U2OS-TSHR and U2OS cells were used because GOFs are not easily manipulated using molecular techniques such as transfection, and U2OS cells because they express TSHRs at levels that do not measurably stimulate signaling. Thus, comparing U2OS-TSHR and U2OS cells permits specifically distinguishing signaling mediated by the TSHR and IGF-1R. In GOFs, all GO-Igs stimulated pERK1/2 formation and 69% stimulated pAKT. In U2OS-TSHR cells, 15% of NV-IGs and 83% of GO-Igs stimulated increases in pERK1/2, whereas all NV-Igs and GO-Igs stimulated increases in pAKT. In U2OS cells, 70% of GO-Igs stimulated small increases in pAKT. Knockdown of IGF-1R caused a 65 ± 6.3% decrease in IGF-1-stimulated pAKT but had no effect on GO-Igs stimulation of pAKT. Thus, GO-Igs contain factor(s) that stimulate pAKT formation. However, this factor(s) does not directly activate IGF-1R. Based on the findings analyzing these two signaling pathways, it is concluded there is no evidence of stimulating IGFRAbs in GO patients.

  6. IGF-I Gene Therapy in Aging Rats Modulates Hippocampal Genes Relevant to Memory Function.

    Science.gov (United States)

    Pardo, Joaquín; Abba, Martin C; Lacunza, Ezequiel; Ogundele, Olalekan M; Paiva, Isabel; Morel, Gustavo R; Outeiro, Tiago F; Goya, Rodolfo G

    2018-03-14

    In rats, learning and memory performance decline during normal aging, which makes this rodent species a suitable model to evaluate therapeutic strategies. In aging rats, insulin-like growth factor-I (IGF-I), is known to significantly improve spatial memory accuracy as compared to control counterparts. A constellation of gene expression changes underlie the hippocampal phenotype of aging but no studies on the effects of IGF-I on the hippocampal transcriptome of old rodents have been documented. Here, we assessed the effects of IGF-I gene therapy on spatial memory performance in old female rats and compared them with changes in the hippocampal transcriptome. In the Barnes maze test, experimental rats showed a significantly higher exploratory frequency of the goal hole than controls. Hippocampal RNA-sequencing showed that 219 genes are differentially expressed in 28-month-old rats intracerebroventricularly injected with an adenovector expressing rat IGF-I as compared with placebo adenovector-injected counterparts. From the differentially expressed genes, 81 were down and 138 upregulated. From those genes, a list of functionally relevant genes, concerning hippocampal IGF-I expression, synaptic plasticity as well as neuronal function was identified. Our results provide an initial glimpse at the molecular mechanisms underlying the neuroprotective actions of IGF-I in the aging brain.

  7. Elevated IGFBP3 levels in diabetic tears: a negative regulator of IGF-1 signaling in the corneal epithelium.

    Science.gov (United States)

    Wu, Yu-Chieh; Buckner, Benjamin R; Zhu, Meifang; Cavanagh, H Dwight; Robertson, Danielle M

    2012-04-01

    To determine the ratio of IGFBP3:IGF-1 in normal and diabetic human tears, and in telomerase-immortalized human corneal epithelial cells (hTCEpi) cultured under elevated glucose conditions and to correlate these changes with total and phosphorylated levels of IGF-1R. Tear samples were collected noninvasively from diabetic subjects and non-diabetic controls; corneal sensitivity was assessed using a Cochet-Bonnet Aesthesiometer. Conditioned media were collected following culture of hTCEpi cells in normal (5 mM) and elevated (25 mM) glucose conditions; mannitol was used as an osmotic control. IGFBP3, IGF-1, and phosphorylated IGF-1R levels were assessed by ELISA. IGFBP3 and IGF-1R mRNA were assessed by real-time polymerase chain reaction (PCR). Total and phosphorylated IGF-1R expression in whole cell lysates was assessed by western blot. There was a 2.8-fold increase in IGFBP3 in diabetic tears compared to non-diabetic controls (P=0.006); IGF-1 levels were not significantly altered. No difference in corneal sensitivity was detected between groups. The concentration of IGFBP3 in tears was independent of IGF-1. Consistent with human tear measurements in vivo, IGFBP3 secretion was increased 2.2 fold (Ptears compared to normal controls blocked phosphorylation of the IGF-1R by IGF-1 (Ptears may attenuate IGF-1R signaling in the diabetic cornea. A long-term increase in IGFBP3 may contribute to epithelial compromise and the pathogenesis of ocular surface complications reported in diabetes. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Involvement of Igf1r in Bronchiolar Epithelial Regeneration: Role during Repair Kinetics after Selective Club Cell Ablation.

    Directory of Open Access Journals (Sweden)

    Icíar P López

    Full Text Available Regeneration of lung epithelium is vital for maintaining airway function and integrity. An imbalance between epithelial damage and repair is at the basis of numerous chronic lung diseases such as asthma, COPD, pulmonary fibrosis and lung cancer. IGF (Insulin-like Growth Factors signaling has been associated with most of these respiratory pathologies, although their mechanisms of action in this tissue remain poorly understood. Expression profiles analyses of IGF system genes performed in mouse lung support their functional implication in pulmonary ontogeny. Immuno-localization revealed high expression levels of Igf1r (Insulin-like Growth Factor 1 Receptor in lung epithelial cells, alveolar macrophages and smooth muscle. To further understand the role of Igf1r in pulmonary homeostasis, two distinct lung epithelial-specific Igf1r mutant mice were generated and studied. The lack of Igf1r disturbed airway epithelial differentiation in adult mice, and revealed enhanced proliferation and altered morphology in distal airway club cells. During recovery after naphthalene-induced club cell injury, the kinetics of terminal bronchiolar epithelium regeneration was hindered in Igf1r mutants, revealing increased proliferation and delayed differentiation of club and ciliated cells. Amid airway restoration, lungs of Igf1r deficient mice showed increased levels of Igf1, Insr, Igfbp3 and epithelial precursor markers, reduced amounts of Scgb1a1 protein, and alterations in IGF signaling mediators. These results support the role of Igf1r in controlling the kinetics of cell proliferation and differentiation during pulmonary airway epithelial regeneration after injury.

  9. Efficient and sustained IGF-1 expression in the adipose tissue-derived stem cells mediated via a lentiviral vector.

    Science.gov (United States)

    Chen, Ting; Huang, Dangsheng; Chen, Guanghui; Yang, Tingshu; Yi, Jun; Tian, Miao

    2015-02-01

    The adipose tissue-derived stem cells (ADSCs) represent a significant area of the cell therapy. Genetic modification of ADSCs may further improve their therapeutic potential. Here, we aimed to generate a lentiviral vector expressing insulin-like growth factor-I (IGF-1) and investigate the impact of IGF-1 transduction on the properties of cultured ADSCs. Isolated rat ADSCs were assessed by flow cytometric analysis. IGF-1 was cloned and inserted into the pLenO-DCE plasmid to acquire pLenO-DCE-IGF-1 plasmid. Lentivirus was enveloped with pRsv-REV, pMDlg-pRRE and pMD2G plasmids in 293T cells. The ADSCs were transfected with the vectors. And then IGF-1-induced anti-apoptosis was evaluated by annexin V-FITC. Besides, proliferation of cells was detected by MTT assay and EdU. Moreover, Akt phosphorylation was evaluated by Western blotting analysis. Stable expression of IGF-1 in ADSCs was confirmed. ADSCs were positive for CD90 and CD29, but negative for CD31, CD34 and CD45. The transduction of IGF-1 to the ADSCs caused a dramatic increase in P-Akt expression. Over-expression of IGF-1 in ADSCs could improve the paracine of IGF-1 in a time-dependent manner, but could not promote the proliferation of ADSCs. This study indicated that lentiviral vectors offered a promising mean of delivering IGF-1 to the ADSCs. Lentiviral-mediated over-expression of therapeutic IGF-1 gene in ADSCs could prolong the anti-apoptosis effect of IGF-1, which might be induced by the activation of the PI3K/Akt pathway. And our data would improve the efficacy of ADSC-based therapies.

  10. SUMO-modified insulin-like growth factor 1 receptor (IGF-1R) increases cell cycle progression and cell proliferation.

    Science.gov (United States)

    Lin, Yingbo; Liu, Hongyu; Waraky, Ahmed; Haglund, Felix; Agarwal, Prasoon; Jernberg-Wiklund, Helena; Warsito, Dudi; Larsson, Olle

    2017-10-01

    Increasing number of studies have shown nuclear localization of the insulin-like growth factor 1 receptor (nIGF-1R) in tumor cells and its links to adverse clinical outcome in various cancers. Any obvious cell physiological roles of nIGF-1R have, however, still not been disclosed. Previously, we reported that IGF-1R translocates to cell nucleus and modulates gene expression by binding to enhancers, provided that the receptor is SUMOylated. In this study, we constructed stable transfectants of wild type IGF1R (WT) and triple-SUMO-site-mutated IGF1R (TSM) using igf1r knockout mouse fibroblasts (R-). Cell clones (R-WT and R-TSM) expressing equal amounts of IGF-1R were selected for experiments. Phosphorylation of IGF-1R, Akt, and Erk upon IGF-1 stimulation was equal in R-WT and R-TSM. WT was confirmed to enter nuclei. TSM did also undergo nuclear translocation, although to a lesser extent. This may be explained by that TSM heterodimerizes with insulin receptor, which is known to translocate to cell nuclei. R-WT proliferated substantially faster than R-TSM, which did not differ significantly from the empty vector control. Upon IGF-1 stimulation G1-S-phase progression of R-WT increased from 12 to 38%, compared to 13 to 20% of R-TSM. The G1-S progression of R-WT correlated with increased expression of cyclin D1, A, and CDK2, as well as downregulation of p27. This suggests that SUMO-IGF-1R affects upstream mechanisms that control and coordinate expression of cell cycle regulators. Further studies to identify such SUMO-IGF-1R dependent mechanisms seem important. © 2017 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals Inc.

  11. IGF1 as a Potential Treatment for Rett Syndrome: Safety Assessment in Six Rett Patients

    Directory of Open Access Journals (Sweden)

    Giorgio Pini

    2012-01-01

    Full Text Available Rett syndrome (RTT is a devastating neurodevelopmental disorder that affects one in ten thousand girls and has no cure. The majority of RTT patients display mutations in the gene that codes for the methyl-CpG-binding protein 2 (MeCP2. Clinical observations and neurobiological analysis of mouse models suggest that defects in the expression of MeCP2 protein compromise the development of the central nervous system, especially synaptic and circuit maturation. Thus, agents that promote brain development and synaptic function, such as insulin-like growth factor 1 (IGF1, are good candidates for ameliorating the symptoms of RTT. IGF1 and its active peptide, (1–3 IGF1, cross the blood brain barrier, and (1–3 IGF1 ameliorates the symptoms of RTT in a mouse model of the disease; therefore they are ideal treatments for neurodevelopmental disorders, including RTT. We performed a pilot study to establish whether there are major risks associated with IGF1 administration in RTT patients. Six young girls with classic RTT received IGF1 subcutaneous injections twice a day for six months, and they were regularly monitored by their primary care physicians and by the unit for RTT in Versilia Hospital (Italy. This study shows that there are no risks associated with IGF1 administration.

  12. Low Levels of IGF-1 Contribute to Alveolar Macrophage Dysfunction in Cystic Fibrosis1

    OpenAIRE

    Bessich, Jamie L.; Nymon, Amanda B.; Moulton, Lisa A; Dorman, Dana; Ashare, Alix

    2013-01-01

    Alveolar macrophages are major contributors to lung innate immunity. Although alveolar macrophages from CFTR−/− mice have impaired function, no study has investigated primary alveolar macrophages in adults with cystic fibrosis (CF). CF patients have low levels of insulin-like growth factor 1 (IGF-1), and our prior studies demonstrate a relationship between IGF-1 and macrophage function. We hypothesize that reduced IGF-1 in CF leads to impaired alveolar macrophage function and chronic infectio...

  13. Subcutaneous administration of insulin-like growth factor (IGF)-II/IGF binding protein-2 complex stimulates bone formation and prevents loss of bone mineral density in a rat model of disuse osteoporosis

    Science.gov (United States)

    Conover, Cheryl A.; Johnstone, Edward W.; Turner, Russell T.; Evans, Glenda L.; John Ballard, F. John; Doran, Patrick M.; Khosla, Sundeep

    2002-01-01

    Elevated serum levels of insulin-like growth factor binding protein-2 (IGFBP-2) and a precursor form of IGF-II are associated with marked increases in bone formation and skeletal mass in patients with hepatitis C-associated osteosclerosis. In vitro studies indicate that IGF-II in complex with IGFBP-2 has high affinity for bone matrix and is able to stimulate osteoblast proliferation. The purpose of this study was to determine the ability of the IGF-II/IGFBP-2 complex to increase bone mass in vivo. Osteopenia of the femur was induced by unilateral sciatic neurectomy in rats. At the time of surgery, 14-day osmotic minipumps containing vehicle or 2 microg IGF-II+9 microg IGFBP-2/100g body weight/day were implanted subcutaneously in the neck. Bone mineral density (BMD) measurements were taken the day of surgery and 14 days later using a PIXImus small animal densitometer. Neurectomy of the right hindlimb resulted in a 9% decrease in right femur BMD (Ploss in BMD was completely prevented by treatment with IGF-II/IGFBP-2. On the control limb, there was no loss of BMD over the 14 days and IGF-II/IGFBP-2 treatment resulted in a 9% increase in left femur BMD (Ploss of BMD associated with disuse osteoporosis and stimulate bone formation in adult rats. Furthermore, they provide proof of concept for a novel anabolic approach to increasing bone mass in humans with osteoporosis.

  14. miR-598 acts as a tumor suppressor in human gastric cancer by targeting IGF-1R.

    Science.gov (United States)

    Liu, Na; Yang, Hua; Wang, Hong

    2018-01-01

    In recent years, the aberrant expression of miR-598 in tumorigenesis has been demonstrated, as well as the fact that the IGF-1R pathway is also involved in the development of human gastric cancer (GC). The present study aimed to investigate the molecular mechanisms underlying miR-598-regulated IGF-1R expression in human GC. We analyzed the expression of miR-598 and IGF-1R in GC samples and cells, and evaluated the clinical significance of miR-598 and IGF-1R in GC patients. Furthermore, in vitro and in vivo assays were used to investigate the molecular mechanisms of miR-598 and IGF-1R. miR-598 expression was frequently downregulated in GC tissues and cells, and significantly correlated with poor prognosis, vascular invasion, TNM stage, and lymph node metastases as well as IGF-1R expression. The overexpression of miR-598 obviously inhibited cell proliferation, migration, invasion, and induced cell cycle arrest in the G1/S phase, and increased the apoptosis of GC cells. The overexpression of miR-598 also significantly inhibited ERK1/2 and Akt phosphorylation level. In vivo assay validated the inhibitory effect of miR-598 on tumor growth. Further studies showed that miR-598 inhibited IGF-1R protein expression by directly targeting its 3'-UTR. Besides, over-expression of IGF-1R reversed the inhibitory effects of miR-598, while suppression of IGF-1R expression showed inverse effects. miR-598 suppresses GC cell proliferation, migration and invasion by directly targeting IGF-1R expression. Thus, miR-598 may be a useful target for GC patients.

  15. The IGF-I/IGFBP-3 system in gingival crevicular fluid and dependence on application of fixed force.

    Science.gov (United States)

    Toia, M; Galazzo, R; Maioli, C; Granata, R; Scarlatti, F

    2005-12-01

    During application of orthodontic force on the tooth, various molecular parameters associated with tissue remodeling are changed. IGF-I is a regulatory protein produced during periodontal regeneration. IGF binding proteins-3 (IGFBP-3), a specific IGF-I binding protein, is the major regulatory factor of IGF-I activity. We tested the hypothesis that changes in the IGF-I/ IGFBP-3 system occur during fixed force application to the tooth and that these changes are detectable in the gingival crevicular fluid (GCF). IGFBP-3 and IGF-I secretion into gingival crevicular fluid (GCF) was analyzed by Western blotting and immunoradiometric assay (IRMA), respectively, in GCF of 6 healthy subjects just prior to and during orthodontics treatment using fixed appliances. We observed a significant time-dependent decrease of IGFBP-3 content in GCF during orthodontic treatment (4 h and 10 days). Reduction in levels of intact, glycosylated 47 kDa form of IGFBP-3 was associated with its degradation and the appearance of intermediate breakdown products. IGF-I levels were significantly increased 4 h after application of orthodontic force, while they were significantly reduced 10 days after the start of treatment. IGFBP-3 secretion into GCF and its molecular structure are modified by the fixed force of orthodontic treatment. Alterations in IGFBP-3 appear to be unrelated to the binding to IGF-I, suggesting an IGF-independent role of this binding protein in tooth movement.

  16. Astragalus Extract Mixture HT042 Increases Longitudinal Bone Growth Rate by Upregulating Circulatory IGF-1 in Rats

    Directory of Open Access Journals (Sweden)

    Donghun Lee

    2017-01-01

    Full Text Available Astragalus extract mixture HT042 is a standardized ingredient of health functional food approved by Korean FDA with a claim of “height growth of children.” HT042 stimulates bone growth rate and increases local IGF-1 expression in growth plate of rats which can be considered as direct stimulation of GH and its paracrine/autocrine actions. However, it remains unclear whether HT042 stimulates circulatory IGF-1 which also plays a major role to stimulate bone growth. To determine the effects on circulatory IGF-1, IGF-1 and IGFBP-3 expressions and phosphorylation of JAK2/STAT5 were evaluated in the liver after 10 days of HT042 administration. HT042 upregulated liver IGF-1 and IGFBP-3 mRNA expression, IGF-1 protein expression, and phosphorylation of JAK2/STAT5. HT042 also increased bone growth rate and proliferative zonal height in growth plate. In conclusion, HT042 stimulates bone growth rate via increment of proliferative rate by upregulation of liver IGF-1 and IGFBP-3 mRNA followed by IGF-1 protein expression through phosphorylation of JAK2/STAT5, which can be regarded as normal functioning of GH-dependent endocrine pathway.

  17. Differential basal and exercise-induced IGF-I system responses to resistance vs. calisthenic-based military readiness training programs.

    Science.gov (United States)

    Nindl, Bradley C; Alemany, Joseph A; Rarick, Kevin R; Eagle, Shawn R; Darnell, Mathew E; Allison, Katelyn F; Harman, Everett A

    2017-02-01

    The purpose of this study was to: 1) evaluate differential responses of the IGF-I system to either a calisthenic- or resistance exercise-based program and 2) determine if this chronic training altered the IGF-I system during an acute resistance exercise protocol. Thirty-two volunteers were randomly assigned into a resistance exercise-based training (RT) group (n=15, 27±5y, 174±6cm, 81±12kg) or a calisthenic-based training group (CT) (n=17, 29±5y, 179±8cm, 85±10kg) and all underwent 8weeks of exercise training (1.5h/d, 5d/wk). Basal blood was sampled pre- (Week 0), mid- (Week 4) and post-training (Week 8) and assayed for IGF-I system analytes. An acute resistance exercise protocol (AREP) was conducted preand post-training consisting of 6 sets of 10 repetitions in the squat with two minutes of rest in between sets and the IGF-I system analytes measured. A repeated measures ANOVA (p≤0.05) was used for statistical analysis. No interaction or within-subject effects were observed for basal total IGF-I, free IGF-I, or IGFBP-1. IGFBP-2 (pre; 578.6±295.7post-training; 14.3±1.9μg/mL; p=0.01). An interaction was observed for the RT group as IGFBP-3 increased from pre to mid (3462.4±216.4 vs. 3962.2±227.9ng/mL), but was not significant at the post-training time point (3770.3±228.7ng/mL). AREP caused all analytes except free IGF-I (40% decrease) to increase (17-27%; p=0.001) during exercise, returning to baseline concentration into recovery. Post-training, bioavailable IGF-I recovered more rapidly post-exercise. 8wks of chronic physical training resulted in increased basal IGFBP-2 and IGFBP-3, decreased ALS, increased pre-AREP free IGF-I and a more rapid free IGF-I recovery post-AREP. While total IGF-I was insensitive to chronic physical training, changes were observed with circulating IGFBPs and bioavailable IGF-I. To glean the most robust information on the effects of exercise training, studies must move beyond relying solely on total IGF-I measures and should

  18. Studies on Expression of IGF-Ⅱ Gene in Deciduas De-rived from Medical Abortion Patients

    Institute of Scientific and Technical Information of China (English)

    刘峻; 汪玉宝; 毛叶萌; 毛全福; 杜晓岩

    2000-01-01

    Objective To determine the effect of insulin-like growth factor- Ⅱ (IGF- Ⅱ ) upon the maintenance of decidua in early pregnancy and its relationship with progesterone, as well as its role in medical abortion.Materials & Methods Decidua tissue was obtained from 28 women who undergoing surgical abortion and 39 for medical abortion respectively at 5~7 weeks of gestation.The extracted total RNA was reversely transeripted and amplified by PCR with spe-cific primers (IGF- Ⅱ and β-actin). The products were semi-quantitated by MIAS 300 system and qualitatively analyzed by southern blotting.Results The expression of IGF- Ⅱ gene in decidua from surgical abortion was signif-icantly higher than that from medical abortion (P<0. 05). The average IGF- Ⅱ gene transcription values were 1.54±0. 79 and 0. 72± 0. 39 respectively. The results of southern blotting proved qualitatively that the RT-PCR products were IGF- Ⅱ cDNA.Conclusion IGF- Ⅱ plays a role in the maintenance of decidua in early pregnancy. It may act as a mediator of progestin. It's also involved in the molecular mechanism of mifepristone.

  19. Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits

    NARCIS (Netherlands)

    A. Teumer (Alexander); Q. Qi; M. Nethander (Maria); H. Aschard (Hugues); S. Bandinelli (Stefania); M. Beekman (Marian); S.I. Berndt (Sonja); M. Bidlingmaier (Martin); L. Broer (Linda); A.R. Cappola (Anne); Ceda, G.P. (Gian Paolo); S.J. Chanock (Stephen); M.-H. Chen (Ming-Huei); Chen, T.C. (Tai C.); Y.D. Chen (Y.); Chung, J. (Jonathan); Del Greco Miglianico, F. (Fabiola); J. Eriksson (Joel); L. Ferrucci (Luigi); N. Friedrich (Nele); C. Gnewuch (Carsten); M. Goodarzi (Mark); N. Grarup (Niels); Guo, T. (Tingwei); Hammer, E. (Elke); R.B. Hayes (Richard); A.A. Hicks (Andrew); A. Hofman (Albert); J.J. Houwing-Duistermaat (Jeanine); Hu, F. (Frank); D. Hunter (David); L.L.N. Husemoen (Lise Lotte); A.J. Isaacs (Aaron); K.B. Jacobs (Kevin); J.A.M.J.L. Janssen (Joseph); J.-O. Jansson (John-Olov); Jehmlich, N. (Nico); Johnson, S. (Simon); A. Juul (Anders); M. Karlsson (Magnus); T.O. Kilpeläinen (Tuomas); P. Kovacs (Peter); P. Kraft (Peter); Li, C. (Chao); A. Linneberg (Allan); Y. Liu (YongMei); R.J.F. Loos (Ruth); M. Lorentzon (Mattias); Y. Lu (Yingchang); M. Maggio (Marcello); R. Mägi (Reedik); J.B. Meigs (James); D. Mellström (Dan); M. Nauck (Matthias); A.B. Newman (Anne B.); M.N. Pollak (Michael); P.P. Pramstaller (Peter Paul); I. Prokopenko (Inga); B.M. Psaty (Bruce); M. Reincke (Martin); E.B. Rimm (Eric B.); Rotter, J.I. (Jerome I.); Saint Pierre, A. (Aude); C. Schurmann (Claudia); S. Seshadri (Sudha); Sjögren, K. (Klara); P.E. Slagboom (Eline); Strickler, H.D. (Howard D.); M. Stumvoll (Michael); Y. Suh (Yousin); Q. Sun (Qi); Zhang, C. (Cuilin); Svensson, J. (Johan); T. Tanaka (Toshiko); Tare, A. (Archana); A. Tönjes (Anke); H.-W. Uh (Hae-Won); C.M. van Duijn (Cornelia); D. van Heemst (Diana); L. Vandenput (Liesbeth); R.S. Vasan (Ramachandran Srini); U. Völker (Uwe); S.M. Willems (Sara); C. Ohlsson (Claes); H. Wallaschofski (Henri); R.C. Kaplan (Robert)

    2016-01-01

    textabstractThe growth hormone/insulin-like growth factor (IGF) axis can be manipulated in animal models to promote longevity, and IGF-related proteins including IGF-I and IGF-binding protein-3 (IGFBP-3) have also been implicated in risk of human diseases including cardiovascular diseases, diabetes,

  20. Superoxide anion radicals induce IGF-1 resistance through concomitant activation of PTP1B and PTEN

    Science.gov (United States)

    Singh, Karmveer; Maity, Pallab; Krug, Linda; Meyer, Patrick; Treiber, Nicolai; Lucas, Tanja; Basu, Abhijit; Kochanek, Stefan; Wlaschek, Meinhard; Geiger, Hartmut; Scharffetter-Kochanek, Karin

    2015-01-01

    The evolutionarily conserved IGF-1 signalling pathway is associated with longevity, metabolism, tissue homeostasis, and cancer progression. Its regulation relies on the delicate balance between activating kinases and suppressing phosphatases and is still not very well understood. We report here that IGF-1 signalling in vitro and in a murine ageing model in vivo is suppressed in response to accumulation of superoxide anions () in mitochondria, either by chemical inhibition of complex I or by genetic silencing of -dismutating mitochondrial Sod2. The -dependent suppression of IGF-1 signalling resulted in decreased proliferation of murine dermal fibroblasts, affected translation initiation factors and suppressed the expression of α1(I), α1(III), and α2(I) collagen, the hallmarks of skin ageing. Enhanced led to activation of the phosphatases PTP1B and PTEN, which via dephosphorylation of the IGF-1 receptor and phosphatidylinositol 3,4,5-triphosphate dampened IGF-1 signalling. Genetic and pharmacologic inhibition of PTP1B and PTEN abrogated -induced IGF-1 resistance and rescued the ageing skin phenotype. We thus identify previously unreported signature events with , PTP1B, and PTEN as promising targets for drug development to prevent IGF-1 resistance-related pathologies. PMID:25520316