WorldWideScience

Sample records for identify mutations lowered

  1. Identifying pathways affected by cancer mutations.

    Science.gov (United States)

    Iengar, Prathima

    2017-12-16

    Mutations in 15 cancers, sourced from the COSMIC Whole Genomes database, and 297 human pathways, arranged into pathway groups based on the processes they orchestrate, and sourced from the KEGG pathway database, have together been used to identify pathways affected by cancer mutations. Genes studied in ≥15, and mutated in ≥10 samples of a cancer have been considered recurrently mutated, and pathways with recurrently mutated genes have been considered affected in the cancer. Novel doughnut plots have been presented which enable visualization of the extent to which pathways and genes, in each pathway group, are targeted, in each cancer. The 'organismal systems' pathway group (including organism-level pathways; e.g., nervous system) is the most targeted, more than even the well-recognized signal transduction, cell-cycle and apoptosis, and DNA repair pathway groups. The important, yet poorly-recognized, role played by the group merits attention. Pathways affected in ≥7 cancers yielded insights into processes affected. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Identifying uniformly mutated segments within repeats.

    Science.gov (United States)

    Sahinalp, S Cenk; Eichler, Evan; Goldberg, Paul; Berenbrink, Petra; Friedetzky, Tom; Ergun, Funda

    2004-12-01

    Given a long string of characters from a constant size alphabet we present an algorithm to determine whether its characters have been generated by a single i.i.d. random source. More specifically, consider all possible n-coin models for generating a binary string S, where each bit of S is generated via an independent toss of one of the n coins in the model. The choice of which coin to toss is decided by a random walk on the set of coins where the probability of a coin change is much lower than the probability of using the same coin repeatedly. We present a procedure to evaluate the likelihood of a n-coin model for given S, subject a uniform prior distribution over the parameters of the model (that represent mutation rates and probabilities of copying events). In the absence of detailed prior knowledge of these parameters, the algorithm can be used to determine whether the a posteriori probability for n=1 is higher than for any other n>1. Our algorithm runs in time O(l4logl), where l is the length of S, through a dynamic programming approach which exploits the assumed convexity of the a posteriori probability for n. Our test can be used in the analysis of long alignments between pairs of genomic sequences in a number of ways. For example, functional regions in genome sequences exhibit much lower mutation rates than non-functional regions. Because our test provides means for determining variations in the mutation rate, it may be used to distinguish functional regions from non-functional ones. Another application is in determining whether two highly similar, thus evolutionarily related, genome segments are the result of a single copy event or of a complex series of copy events. This is particularly an issue in evolutionary studies of genome regions rich with repeat segments (especially tandemly repeated segments).

  3. Identifying driver mutations in sequenced cancer genomes

    DEFF Research Database (Denmark)

    Raphael, Benjamin J; Dobson, Jason R; Oesper, Layla

    2014-01-01

    High-throughput DNA sequencing is revolutionizing the study of cancer and enabling the measurement of the somatic mutations that drive cancer development. However, the resulting sequencing datasets are large and complex, obscuring the clinically important mutations in a background of errors, nois...... patterns of mutual exclusivity. These techniques, coupled with advances in high-throughput DNA sequencing, are enabling precision medicine approaches to the diagnosis and treatment of cancer....

  4. Somatic mutations in histiocytic sarcoma identified by next generation sequencing.

    Science.gov (United States)

    Liu, Qingqing; Tomaszewicz, Keith; Hutchinson, Lloyd; Hornick, Jason L; Woda, Bruce; Yu, Hongbo

    2016-08-01

    Histiocytic sarcoma is a rare malignant neoplasm of presumed hematopoietic origin showing morphologic and immunophenotypic evidence of histiocytic differentiation. Somatic mutation importance in the pathogenesis or disease progression of histiocytic sarcoma was largely unknown. To identify somatic mutations in histiocytic sarcoma, we studied 5 histiocytic sarcomas [3 female and 2 male patients; mean age 54.8 (20-72), anatomic sites include lymph node, uterus, and pleura] and matched normal tissues from each patient as germ line controls. Somatic mutations in 50 "Hotspot" oncogenes and tumor suppressor genes were examined using next generation sequencing. Three (out of five) histiocytic sarcoma cases carried somatic mutations in BRAF. Among them, G464V [variant frequency (VF) of 43.6 %] and G466R (VF of 29.6 %) located at the P loop potentially interfere with the hydrophobic interaction between P and activating loops and ultimately activation of BRAF. Also detected was BRAF somatic mutation N581S (VF of 7.4 %), which was located at the catalytic loop of BRAF kinase domain: its role in modifying kinase activity was unclear. A similar mutational analysis was also performed on nine acute monocytic/monoblastic leukemia cases, which did not identify any BRAF somatic mutations. Our study detected several BRAF mutations in histiocytic sarcomas, which may be important in understanding the tumorigenesis of this rare neoplasm and providing mechanisms for potential therapeutical opportunities.

  5. Key clinical features to identify girls with CDKL5 mutations.

    Science.gov (United States)

    Bahi-Buisson, Nadia; Nectoux, Juliette; Rosas-Vargas, Haydeé; Milh, Mathieu; Boddaert, Nathalie; Girard, Benoit; Cances, Claude; Ville, Dorothée; Afenjar, Alexandra; Rio, Marlène; Héron, Delphine; N'guyen Morel, Marie Ange; Arzimanoglou, Alexis; Philippe, Christophe; Jonveaux, Philippe; Chelly, Jamel; Bienvenu, Thierry

    2008-10-01

    Mutations in the human X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been shown to cause infantile spasms as well as Rett syndrome (RTT)-like phenotype. To date, less than 25 different mutations have been reported. So far, there are still little data on the key clinical diagnosis criteria and on the natural history of CDKL5-associated encephalopathy. We screened the entire coding region of CDKL5 for mutations in 183 females with encephalopathy with early seizures by denaturing high liquid performance chromatography and direct sequencing, and we identified in 20 unrelated girls, 18 different mutations including 7 novel mutations. These mutations were identified in eight patients with encephalopathy with RTT-like features, five with infantile spasms and seven with encephalopathy with refractory epilepsy. Early epilepsy with normal interictal EEG and severe hypotonia are the key clinical features in identifying patients likely to have CDKL5 mutations. Our study also indicates that these patients clearly exhibit some RTT features such as deceleration of head growth, stereotypies and hand apraxia and that these RTT features become more evident in older and ambulatory patients. However, some RTT signs are clearly absent such as the so called RTT disease profile (period of nearly normal development followed by regression with loss of acquired fine finger skill in early childhood and characteristic intensive eye communication) and the characteristic evolution of the RTT electroencephalogram. Interestingly, in addition to the overall stereotypical symptomatology (age of onset and evolution of the disease) resulting from CDKL5 mutations, atypical forms of CDKL5-related conditions have also been observed. Our data suggest that phenotypic heterogeneity does not correlate with the nature or the position of the mutations or with the pattern of X-chromosome inactivation, but most probably with the functional transcriptional and/or translational consequences of CDKL5

  6. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Krauthammer, Michael; Kong, Yong; Ha, Byung Hak; Evans, Perry; Bacchiocchi, Antonella; McCusker, James P.; Cheng, Elaine; Davis, Matthew J.; Goh, Gerald; Choi, Murim; Ariyan, Stephan; Narayan, Deepak; Dutton-Regester, Ken; Capatana, Ana; Holman, Edna C.; Bosenberg, Marcus; Sznol, Mario; Kluger, Harriet M.; Brash, Douglas E.; Stern, David F.; Materin, Miguel A.; Lo, Roger S.; Mane, Shrikant; Ma, Shuangge; Kidd, Kenneth K.; Hayward, Nicholas K.; Lifton, Richard P.; Schlessinger, Joseph; Boggon, Titus J.; Halaban, Ruth (Yale-MED); (UCLA); (Queens)

    2012-10-11

    We characterized the mutational landscape of melanoma, the form of skin cancer with the highest mortality rate, by sequencing the exomes of 147 melanomas. Sun-exposed melanomas had markedly more ultraviolet (UV)-like C>T somatic mutations compared to sun-shielded acral, mucosal and uveal melanomas. Among the newly identified cancer genes was PPP6C, encoding a serine/threonine phosphatase, which harbored mutations that clustered in the active site in 12% of sun-exposed melanomas, exclusively in tumors with mutations in BRAF or NRAS. Notably, we identified a recurrent UV-signature, an activating mutation in RAC1 in 9.2% of sun-exposed melanomas. This activating mutation, the third most frequent in our cohort of sun-exposed melanoma after those of BRAF and NRAS, changes Pro29 to serine (RAC1{sup P29S}) in the highly conserved switch I domain. Crystal structures, and biochemical and functional studies of RAC1{sup P29S} showed that the alteration releases the conformational restraint conferred by the conserved proline, causes an increased binding of the protein to downstream effectors, and promotes melanocyte proliferation and migration. These findings raise the possibility that pharmacological inhibition of downstream effectors of RAC1 signaling could be of therapeutic benefit.

  7. Exome sequencing identifies ZNF644 mutations in high myopia.

    Directory of Open Access Journals (Sweden)

    Yi Shi

    2011-06-01

    Full Text Available Myopia is the most common ocular disorder worldwide, and high myopia in particular is one of the leading causes of blindness. Genetic factors play a critical role in the development of myopia, especially high myopia. Recently, the exome sequencing approach has been successfully used for the disease gene identification of Mendelian disorders. Here we show a successful application of exome sequencing to identify a gene for an autosomal dominant disorder, and we have identified a gene potentially responsible for high myopia in a monogenic form. We captured exomes of two affected individuals from a Han Chinese family with high myopia and performed sequencing analysis by a second-generation sequencer with a mean coverage of 30× and sufficient depth to call variants at ∼97% of each targeted exome. The shared genetic variants of these two affected individuals in the family being studied were filtered against the 1000 Genomes Project and the dbSNP131 database. A mutation A672G in zinc finger protein 644 isoform 1 (ZNF644 was identified as being related to the phenotype of this family. After we performed sequencing analysis of the exons in the ZNF644 gene in 300 sporadic cases of high myopia, we identified an additional five mutations (I587V, R680G, C699Y, 3'UTR+12 C>G, and 3'UTR+592 G>A in 11 different patients. All these mutations were absent in 600 normal controls. The ZNF644 gene was expressed in human retinal and retinal pigment epithelium (RPE. Given that ZNF644 is predicted to be a transcription factor that may regulate genes involved in eye development, mutation may cause the axial elongation of eyeball found in high myopia patients. Our results suggest that ZNF644 might be a causal gene for high myopia in a monogenic form.

  8. Newly identified CHO ERCC3/XPB mutations and phenotype characterization

    Science.gov (United States)

    Rybanská, Ivana; Gurský, Ján; Fašková, Miriam; Salazar, Edmund P.; Kimlíčková-Polakovičová, Erika; Kleibl, Karol; Thompson, Larry H.; Piršel, Miroslav

    2010-01-01

    Nucleotide excision repair (NER) is a complex multistage process involving many interacting gene products to repair a wide range of DNA lesions. Genetic defects in NER cause human hereditary diseases including xeroderma pigmentosum (XP), Cockayne syndrome (CS), trichothiodystrophy and a combined XP/CS overlapping symptom. One key gene product associated with all these disorders is the excision repair cross-complementing 3/xeroderma pigmentosum B (ERCC3/XPB) DNA helicase, a subunit of the transcription factor IIH complex. ERCC3 is involved in initiation of basal transcription and global genome repair as well as in transcription-coupled repair (TCR). The hamster ERCC3 gene shows high degree of homology with the human ERCC3/XPB gene. We identified new mutations in the Chinese hamster ovary cell ERCC3 gene and characterized the role of hamster ERCC3 protein in DNA repair of ultraviolet (UV)-induced and oxidative DNA damage. All but one newly described mutations are located in the protein C-terminal region around the last intron–exon boundary. Due to protein truncations or frameshifts, they lack amino acid Ser751, phosphorylation of which prevents the 5′ incision of the UV-induced lesion during NER. Thus, despite the various locations of the mutations, their phenotypes are similar. All ercc3 mutants are extremely sensitive to UV-C light and lack recovery of RNA synthesis (RRS), confirming a defect in TCR of UV-induced damage. Their limited global genome NER capacity averages ∼8%. We detected modest sensitivity of ercc3 mutants to the photosensitizer Ro19-8022, which primarily introduces 8-oxoguanine lesions into DNA. Ro19-8022-induced damage interfered with RRS, and some of the ercc3 mutants had delayed kinetics. All ercc3 mutants showed efficient base excision repair (BER). Thus, the positions of the mutations have no effect on the sensitivity to, and repair of, Ro19-8022-induced DNA damage, suggesting that the ERCC3 protein is not involved in BER. PMID:19942596

  9. Exome sequencing identifies a novel SMCHD1 mutation in facioscapulohumeral muscular dystrophy 2.

    Science.gov (United States)

    Mitsuhashi, Satomi; Boyden, Steven E; Estrella, Elicia A; Jones, Takako I; Rahimov, Fedik; Yu, Timothy W; Darras, Basil T; Amato, Anthony A; Folkerth, Rebecca D; Jones, Peter L; Kunkel, Louis M; Kang, Peter B

    2013-12-01

    FSHD2 is a rare form of facioscapulohumeral muscular dystrophy (FSHD) characterized by the absence of a contraction in the D4Z4 macrosatellite repeat region on chromosome 4q35 that is the hallmark of FSHD1. However, hypomethylation of this region is common to both subtypes. Recently, mutations in SMCHD1 combined with a permissive 4q35 allele were reported to cause FSHD2. We identified a novel p.Lys275del SMCHD1 mutation in a family affected with FSHD2 using whole-exome sequencing and linkage analysis. This mutation alters a highly conserved amino acid in the ATPase domain of SMCHD1. Subject III-11 is a male who developed asymmetrical muscle weakness characteristic of FSHD at 13 years. Physical examination revealed marked bilateral atrophy at biceps brachii, bilateral scapular winging, some asymmetrical weakness at tibialis anterior and peroneal muscles, and mild lower facial weakness. Biopsy of biceps brachii in subject II-5, the father of III-11, demonstrated lobulated fibers and dystrophic changes. Endomysial and perivascular inflammation was found, which has been reported in FSHD1 but not FSHD2. Given the previous report of SMCHD1 mutations in FSHD2 and the clinical presentations consistent with the FSHD phenotype, we conclude that the SMCHD1 mutation is the likely cause of the disease in this family. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Exome sequencing identifies SUCO mutations in mesial temporal lobe epilepsy.

    Science.gov (United States)

    Sha, Zhiqiang; Sha, Longze; Li, Wenting; Dou, Wanchen; Shen, Yan; Wu, Liwen; Xu, Qi

    2015-03-30

    Mesial temporal lobe epilepsy (mTLE) is the main type and most common medically intractable form of epilepsy. Severity of disease-based stratified samples may help identify new disease-associated mutant genes. We analyzed mRNA expression profiles from patient hippocampal tissue. Three of the seven patients had severe mTLE with generalized-onset convulsions and consciousness loss that occurred over many years. We found that compared with other groups, patients with severe mTLE were classified into a distinct group. Whole-exome sequencing and Sanger sequencing validation in all seven patients identified three novel SUN domain-containing ossification factor (SUCO) mutations in severely affected patients. Furthermore, SUCO knock down significantly reduced dendritic length in vitro. Our results indicate that mTLE defects may affect neuronal development, and suggest that neurons have abnormal development due to lack of SUCO, which may be a generalized-onset epilepsy-related gene. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Key Clinical Features to Identify Girls with "CDKL5" Mutations

    Science.gov (United States)

    Bahi-Buisson, Nadia; Nectoux, Juliette; Rosas-Vargas, Haydee; Milh, Mathieu; Boddaert, Nathalie; Girard, Benoit; Cances, Claude; Ville, Dorothee; Afenjar, Alexandra; Rio, Marlene; Heron, Delphine; Morel, Marie Ange N'Guyen; Arzimanoglou, Alexis; Philippe, Christophe; Jonveaux, Philippe; Chelly, Jamel; Bienvenu, Thierry

    2008-01-01

    Mutations in the human X-linked cyclin-dependent kinase-like 5 ("CDKL5") gene have been shown to cause infantile spasms as well as Rett syndrome (RTT)-like phenotype. To date, less than 25 different mutations have been reported. So far, there are still little data on the key clinical diagnosis criteria and on the natural history of…

  12. Mutation analysis of the WFS1 gene in seven Danish Wolfram syndrome families; four new mutations identified

    DEFF Research Database (Denmark)

    Hansen, Lars; Eiberg, Hans Rudolf Lytchoff; Barrett, Timothy

    2005-01-01

    loss (LFSNHL). WFS1 variants were identified in eight subjects from seven families with WS, leading to the identification of four novel mutations, Q194X (nonsense), H313Y (missense), L313fsX360 (duplication frame shift) and F883fsX951 (deletion frame shift), and four previously reported mutations, A133...

  13. [Suspected pathogenic mutation identified in two cases with oculocutaneous albinism].

    Science.gov (United States)

    He, Jiangmei; Zheng, Meiling; Zhang, Guilin; Hua, Ailing

    2015-08-01

    To detect potential mutations in genes related with non-syndromic oculocutaneous albinism I-IV and ocular albinism type I in two couples who had given births to children with albinism. All exons of the non-syndromic albinism related genes TYR, OCA2, TYRP-1, MITF, SLC45A2 and GPR143 were subjected to deep sequencing. The results were verified with Sanger sequencing. For the two female carriers, the coding region of the TYR gene was found to harbor a frameshift mutation c.925_926insC, which was also suspected to have been pathogenic. In one of the male partners, a nonsense mutations c.832C>T was found, which was also known to be pathogenic. Another male partner was found to harbor a TYR gene mutation c.346C>T, which was also known to be a pathogenic nonsense mutation. The coding region of the TYR gene c.925_926insC (p.Thr309ThrfsX9) probably underlies the OCA1 disease phenotype.

  14. Hotspots of missense mutation identify novel neurodevelopmental disorder genes and functional domains

    Science.gov (United States)

    Geisheker, Madeleine R.; Heymann, Gabriel; Wang, Tianyun; Coe, Bradley P.; Turner, Tychele N.; Stessman, Holly A.F.; Hoekzema, Kendra; Kvarnung, Malin; Shaw, Marie; Friend, Kathryn; Liebelt, Jan; Barnett, Christopher; Thompson, Elizabeth M.; Haan, Eric; Guo, Hui; Anderlid, Britt-Marie; Nordgren, Ann; Lindstrand, Anna; Vandeweyer, Geert; Alberti, Antonino; Avola, Emanuela; Vinci, Mirella; Giusto, Stefania; Pramparo, Tiziano; Pierce, Karen; Nalabolu, Srinivasa; Michaelson, Jacob J.; Sedlacek, Zdenek; Santen, Gijs W.E.; Peeters, Hilde; Hakonarson, Hakon; Courchesne, Eric; Romano, Corrado; Kooy, R. Frank; Bernier, Raphael A.; Nordenskjöld, Magnus; Gecz, Jozef; Xia, Kun; Zweifel, Larry S.; Eichler, Evan E.

    2017-01-01

    Although de novo missense mutations have been predicted to account for more cases of autism than gene-truncating mutations, most research has focused on the latter. We identified the properties of de novo missense mutations in patients with neurodevelopmental disorders (NDDs) and highlight 35 genes with excess missense mutations. Additionally, 40 amino acid sites were recurrently mutated in 36 genes, and targeted sequencing of 20 sites in 17,689 NDD patients identified 21 new patients with identical missense mutations. One recurrent site (p.Ala636Thr) occurs in a glutamate receptor subunit, GRIA1. This same amino acid substitution in the homologous but distinct mouse glutamate receptor subunit Grid2 is associated with Lurcher ataxia. Phenotypic follow-up in five individuals with GRIA1 mutations shows evidence of specific learning disabilities and autism. Overall, we find significant clustering of de novo mutations in 200 genes, highlighting specific functional domains and synaptic candidate genes important in NDD pathology. PMID:28628100

  15. Mutation screening of the HGD gene identifies a novel alkaptonuria mutation with significant founder effect and high prevalence.

    Science.gov (United States)

    Sakthivel, Srinivasan; Zatkova, Andrea; Nemethova, Martina; Surovy, Milan; Kadasi, Ludevit; Saravanan, Madurai P

    2014-05-01

    Alkaptonuria (AKU) is an autosomal recessive disorder; caused by the mutations in the homogentisate 1, 2-dioxygenase (HGD) gene located on Chromosome 3q13.33. AKU is a rare disorder with an incidence of 1: 250,000 to 1: 1,000,000, but Slovakia and the Dominican Republic have a relatively higher incidence of 1: 19,000. Our study focused on studying the frequency of AKU and identification of HGD gene mutations in nomads. HGD gene sequencing was used to identify the mutations in alkaptonurics. For the past four years, from subjects suspected to be clinically affected, we found 16 positive cases among a randomly selected cohort of 41 Indian nomads (Narikuravar) settled in the specific area of Tamil Nadu, India. HGD gene mutation analysis showed that 11 of these patients carry the same homozygous splicing mutation c.87 + 1G > A; in five cases, this mutation was found to be heterozygous, while the second AKU-causing mutation was not identified in these patients. This result indicates that the founder effect and high degree of consanguineous marriages have contributed to AKU among nomads. Eleven positive samples were homozygous for a novel mutation c.87 + 1G > A, that abolishes an intron 2 donor splice site and most likely causes skipping of exon 2. The prevalence of AKU observed earlier seems to be highly increased in people of nomadic origin. © 2014 John Wiley & Sons Ltd/University College London.

  16. Novel mutations in the homogentisate 1,2 dioxygenase gene identified in Jordanian patients with alkaptonuria.

    Science.gov (United States)

    Al-sbou, Mohammed

    2012-06-01

    This study was conducted to identify mutations in the homogentisate 1,2 dioxygenase gene (HGD) in alkaptonuria patients among Jordanian population. Blood samples were collected from four alkaptonuria patients, four carriers, and two healthy volunteers. DNA was isolated from peripheral blood. All 14 exons of the HGD gene were amplified using the polymerase chain reaction (PCR) technique. The PCR products were then purified and analyzed by sequencing. Five mutations were identified in our samples. Four of them were novel C1273A, T1046G, 551-552insG, T533G and had not been previously reported, and one mutation T847C has been described before. The types of mutations identified were two missense mutations, one splice site mutation, one frameshift mutation, and one polymorphism. We present the first molecular study of the HGD gene in Jordanian alkaptonuria patients. This study provides valuable information about the molecular basis of alkaptonuria in Jordanian population.

  17. ASPM mutations identified in patients with primary microcephaly and seizures

    OpenAIRE

    Shen, J; Eyaid, W; Mochida, G; Al-Moayyad, F; Bodell, A; Woods, C; Walsh, C

    2005-01-01

    Background: Human autosomal recessive primary microcephaly (MCPH) is a heterogeneous disorder with at least six genetic loci (MCPH1–6), with MCPH5, caused by ASPM mutation, being the most common. Despite the high prevalence of epilepsy in microcephaly patients, microcephaly with frequent seizures has been excluded from the ascertainment of MCPH. Here, we report a pedigree with multiple affected individuals with microcephaly and seizures.

  18. Common mutations identified in the MLH1 gene in familial Lynch syndrome

    Directory of Open Access Journals (Sweden)

    Jisha Elias

    2017-12-01

    In this study we identified three families with Lynch syndrome from a rural cancer center in western India (KCHRC, Goraj, Gujarat, where 70-75 CRC patients are seen annually. DNA isolated from the blood of consented family members of all three families (8-10 members/family was subjected to NGS sequencing methods on an Illumina HiSeq 4000 platform. We identified unique mutations in the MLH1 gene in all three HNPCC family members. Two of the three unrelated families shared a common mutation (154delA and 156delA. Total 8 members of a family were identified as carriers for 156delA mutation of which 5 members were unaffected while 3 were affected (age of onset: 1 member <30yrs & 2 were>40yr. The family with 154delA mutation showed 2 affected members (>40yr carrying the mutations.LYS618DEL mutation found in 8 members of the third family showed that both affected and unaffected carried the mutation. Thus the common mutations identified in the MLH1 gene in two unrelated families had a high risk for lynch syndrome especially above the age of 40.

  19. Sex-related hearing impairment in Wolfram syndrome patients identified by inactivating WFS1 mutations

    NARCIS (Netherlands)

    Pennings, RJE; Huygen, PLM; van den Ouweland, JMW; Cryns, K; Dikkeschei, LD; Van Camp, G; Cremers, CWRJ

    2004-01-01

    This study examined the audiovestibular profile of 11 Wolfram syndrome patients (4 males, 7 females) from 7 families, with identified WFS1 mutations, and the audiometric profile of 17 related heterozygous carriers of WFS1 mutations. Patients with Wolfram syndrome showed a downsloping audiogram and

  20. Sex-related hearing impairment in Wolfram syndrome patients identified by inactivating WFS1 mutations.

    NARCIS (Netherlands)

    Pennings, R.J.E.; Huygen, P.L.M.; Ouweland, J.M.W. van den; Cryns, K.; Dikkeschei, L.D.; Camp, G. van; Cremers, C.W.R.J.

    2004-01-01

    This study examined the audiovestibular profile of 11 Wolfram syndrome patients (4 males, 7 females) from 7 families, with identified WFS1 mutations, and the audiometric profile of 17 related heterozygous carriers of WFS1 mutations. Patients with Wolfram syndrome showed a downsloping audiogram and

  1. Deep mutational scanning identifies sites in influenza nucleoprotein that affect viral inhibition by MxA.

    Directory of Open Access Journals (Sweden)

    Orr Ashenberg

    2017-03-01

    Full Text Available The innate-immune restriction factor MxA inhibits influenza replication by targeting the viral nucleoprotein (NP. Human influenza virus is more resistant than avian influenza virus to inhibition by human MxA, and prior work has compared human and avian viral strains to identify amino-acid differences in NP that affect sensitivity to MxA. However, this strategy is limited to identifying sites in NP where mutations that affect MxA sensitivity have fixed during the small number of documented zoonotic transmissions of influenza to humans. Here we use an unbiased deep mutational scanning approach to quantify how all single amino-acid mutations to NP affect MxA sensitivity in the context of replication-competent virus. We both identify new sites in NP where mutations affect MxA resistance and re-identify mutations known to have increased MxA resistance during historical adaptations of influenza to humans. Most of the sites where mutations have the greatest effect are almost completely conserved across all influenza A viruses, and the amino acids at these sites confer relatively high resistance to MxA. These sites cluster in regions of NP that appear to be important for its recognition by MxA. Overall, our work systematically identifies the sites in influenza nucleoprotein where mutations affect sensitivity to MxA. We also demonstrate a powerful new strategy for identifying regions of viral proteins that affect inhibition by host factors.

  2. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia

    Science.gov (United States)

    Puente, Xose S.; Pinyol, Magda; Quesada, Víctor; Conde, Laura; Ordóñez, Gonzalo R.; Villamor, Neus; Escaramis, Georgia; Jares, Pedro; Beà, Sílvia; González-Díaz, Marcos; Bassaganyas, Laia; Baumann, Tycho; Juan, Manel; López-Guerra, Mónica; Colomer, Dolors; Tubío, José M. C.; López, Cristina; Navarro, Alba; Tornador, Cristian; Aymerich, Marta; Rozman, María; Hernández, Jesús M.; Puente, Diana A.; Freije, José M. P.; Velasco, Gloria; Gutiérrez-Fernández, Ana; Costa, Dolors; Carrió, Anna; Guijarro, Sara; Enjuanes, Anna; Hernández, Lluís; Yagüe, Jordi; Nicolás, Pilar; Romeo-Casabona, Carlos M.; Himmelbauer, Heinz; Castillo, Ester; Dohm, Juliane C.; de Sanjosé, Silvia; Piris, Miguel A.; de Alava, Enrique; Miguel, Jesús San; Royo, Romina; Gelpí, Josep L.; Torrents, David; Orozco, Modesto; Pisano, David G.; Valencia, Alfonso; Guigó, Roderic; Bayés, Mónica; Heath, Simon; Gut, Marta; Klatt, Peter; Marshall, John; Raine, Keiran; Stebbings, Lucy A.; Futreal, P. Andrew; Stratton, Michael R.; Campbell, Peter J.; Gut, Ivo; López-Guillermo, Armando; Estivill, Xavier; Montserrat, Emili; López-Otín, Carlos; Campo, Elías

    2012-01-01

    Chronic lymphocytic leukaemia (CLL), the most frequent leukaemia in adults in Western countries, is a heterogeneous disease with variable clinical presentation and evolution1,2. Two major molecular subtypes can be distinguished, characterized respectively by a high or low number of somatic hypermutations in the variable region of immunoglobulin genes3,4. The molecular changes leading to the pathogenesis of the disease are still poorly understood. Here we performed whole-genome sequencing of four cases of CLL and identified 46 somatic mutations that potentially affect gene function. Further analysis of these mutations in 363 patients with CLL identified four genes that are recurrently mutated: notch 1 (NOTCH1), exportin 1 (XPO1), myeloid differentiation primary response gene 88 (MYD88) and kelch-like 6 (KLHL6). Mutations in MYD88 and KLHL6 are predominant in cases of CLL with mutated immunoglobulin genes, whereas NOTCH1 and XPO1 mutations are mainly detected in patients with unmutated immunoglobulins. The patterns of somatic mutation, supported by functional and clinical analyses, strongly indicate that the recurrent NOTCH1, MYD88 and XPO1 mutations are oncogenic changes that contribute to the clinical evolution of the disease. To our knowledge, this is the first comprehensive analysis of CLL combining whole-genome sequencing with clinical characteristics and clinical outcomes. It highlights the usefulness of this approach for the identification of clinically relevant mutations in cancer. PMID:21642962

  3. Familial adenomatous polyposis patients without an identified APC germline mutation have a severe phenotype

    DEFF Research Database (Denmark)

    Bisgaard, M L; Ripa, R; Knudsen, Anne Louise

    2004-01-01

    BACKGROUND: Development of more than 100 colorectal adenomas is diagnostic of the dominantly inherited autosomal disease familial adenomatous polyposis (FAP). Germline mutations can be identified in the adenomatous polyposis coli (APC) gene in approximately 80% of patients. The APC protein...... comprises several regions and domains for interaction with other proteins, and specific clinical manifestations are associated with the mutation assignment to one of these regions or domains. AIMS: The phenotype in patients without an identified causative APC mutation was compared with the phenotype...... in patients with a known APC mutation and with the phenotypes characteristic of patients with mutations in specific APC regions and domains. PATIENTS: Data on 121 FAP probands and 149 call up patients from 70 different families were extracted from the Danish Polyposis register. METHODS: Differences in 16...

  4. GNAq mutations are not identified in papillary thyroid carcinomas and hyperfunctioning thyroid nodules.

    Science.gov (United States)

    Cassol, Clarissa A; Guo, Miao; Ezzat, Shereen; Asa, Sylvia L

    2010-12-01

    Activating mutations of GNAq protein in a hotspot at codon 209 have been recently described in uveal melanomas. Since these neoplasms share with thyroid carcinomas a high frequency of MAP kinase pathway-activating mutations, we hypothesized whether GNAq mutations could also play a role in the development of thyroid carcinomas. Additionally, activating mutations of another subtype of G protein (GNAS1) are frequently found in hyperfunctioning thyroid adenomas, making it plausible that GNAq-activating mutations could also be found in some of these nodules. To investigate thyroid papillary carcinomas and thyroid hyperfunctioning nodules for GNAq mutations in exon 5, codon 209, a total of 32 RET/PTC, BRAF, and RAS negative thyroid papillary carcinomas and 13 hyperfunctioning thyroid nodules were evaluated. No mutations were identified. Although plausible, GNAq mutations seem not to play an important role in the development of thyroid follicular neoplasms, either benign hyperfunctioning nodules or malignant papillary carcinomas. Our results are in accordance with the literature, in which no GNAq hotspot mutations were found in thyroid papillary carcinomas, as well as in an extensive panel of other tumors. The molecular basis for MAP-kinase pathway activation in RET-PTC/BRAF/RAS negative thyroid carcinomas remains to be determined.

  5. Deep sequencing of uveal melanoma identifies a recurrent mutation in PLCB4

    DEFF Research Database (Denmark)

    Johansson, Peter; Aoude, Lauren G; Wadt, Karin

    2016-01-01

    Next generation sequencing of uveal melanoma (UM) samples has identified a number of recurrent oncogenic or loss-of-function mutations in key driver genes including: GNAQ, GNA11, EIF1AX, SF3B1 and BAP1. To search for additional driver mutations in this tumor type we carried out whole......, instead, a BRCA mutation signature predominated. In addition to mutations in the known UM driver genes, we found a recurrent mutation in PLCB4 (c.G1888T, p.D630Y, NM_000933), which was validated using Sanger sequencing. The identical mutation was also found in published UM sequence data (1 of 56 tumors......-genome or whole-exome sequencing of 28 tumors or primary cell lines. These samples have a low mutation burden, with a mean of 10.6 protein changing mutations per sample (range 0 to 53). As expected for these sun-shielded melanomas the mutation spectrum was not consistent with an ultraviolet radiation signature...

  6. Domain-restricted mutation analysis to identify novel driver events in human cancer

    Directory of Open Access Journals (Sweden)

    Sanket Desai

    2017-10-01

    Full Text Available Analysis of mutational spectra across various cancer types has given valuable insights into tumorigenesis. Different approaches have been used to identify novel drivers from the set of somatic mutations, including the methods which use sequence conservation, geometric localization and pathway information. Recent computational methods suggest use of protein domain information for analysis and understanding of the functional consequence of non-synonymous mutations. Similarly, evidence suggests recurrence at specific position in proteins is robust indicators of its functional impact. Building on this, we performed a systematic analysis of TCGA exome derived somatic mutations across 6089 PFAM domains and significantly mutated domains were identified using randomization approach. Multiple alignment of individual domain allowed us to prioritize for conserved residues mutated at analogous positions across different proteins in a statistically disciplined manner. In addition to the known frequently mutated genes, this analysis independently identifies low frequency Meprin and TRAF-Homology (MATH domain in Speckle Type BTB/POZ (SPOP protein, in prostate adenocarcinoma. Results from this analysis will help generate hypotheses about the downstream molecular mechanism resulting in cancer phenotypes.

  7. New Mutation Identified in the SRY Gene High Mobility Group (HMG

    Directory of Open Access Journals (Sweden)

    Feride İffet Şahin

    2013-06-01

    Full Text Available Mutations in the SRY gene prevent the differentiation of the fetal gonads to testes and cause developing female phenotype, and as a result sex reversal and pure gonadal dysgenesis (Swyer syndrome can be developed. Different types of mutations identified in the SRY gene are responsible for 15% of the gonadal dysgenesis. In this study, we report a new mutation (R132P in the High Mobility Group (HMG region of SRY gene was detected in a patient with primary amenorrhea who has 46,XY karyotype. This mutation leads to replacement of the polar and basic arginine with a nonpolar hydrophobic proline residue at aminoacid 132 in the nuclear localization signal region of the protein. With this case report we want to emphasize the genetic approach to the patients with gonadal dysgenesis. If Y chromosome is detected during cytogenetic analysis, revealing the presence of the SRY gene and identification of mutations in this gene by sequencing analysis is become important in.

  8. Whole exome analysis identifies frequent CNGA1 mutations in Japanese population with autosomal recessive retinitis pigmentosa.

    Directory of Open Access Journals (Sweden)

    Satoshi Katagiri

    Full Text Available OBJECTIVE: The purpose of this study was to investigate frequent disease-causing gene mutations in autosomal recessive retinitis pigmentosa (arRP in the Japanese population. METHODS: In total, 99 Japanese patients with non-syndromic and unrelated arRP or sporadic RP (spRP were recruited in this study and ophthalmic examinations were conducted for the diagnosis of RP. Among these patients, whole exome sequencing analysis of 30 RP patients and direct sequencing screening of all CNGA1 exons of the other 69 RP patients were performed. RESULTS: Whole exome sequencing of 30 arRP/spRP patients identified disease-causing gene mutations of CNGA1 (four patients, EYS (three patients and SAG (one patient in eight patients and potential disease-causing gene variants of USH2A (two patients, EYS (one patient, TULP1 (one patient and C2orf71 (one patient in five patients. Screening of an additional 69 arRP/spRP patients for the CNGA1 gene mutation revealed one patient with a homozygous mutation. CONCLUSIONS: This is the first identification of CNGA1 mutations in arRP Japanese patients. The frequency of CNGA1 gene mutation was 5.1% (5/99 patients. CNGA1 mutations are one of the most frequent arRP-causing mutations in Japanese patients.

  9. Strategic Floodplain Reconnection Along the Lower Tisza and Lower Illinois Rivers: Identifying Opportunities, Tradeoffs, and Limitations

    Science.gov (United States)

    Guida, R.; Remo, J. W.; Secchi, S.; Swanson, T.; Kiss, T.

    2015-12-01

    During the late 19th and into the 20th Centuries, the Tisza and Illinois Rivers were highly altered through the construction of levees and dams to reclaim their floodplain-wetland systems for agriculture and to facilitate navigation. In recent decades, flood levels have continued to rise due to aggradation on the confined floodplains reducing flood-conveyance capacity. As a result, "Room for the River" proposals have gained more prominence. Our overarching hypothesis is that strategically reconnecting these rivers to their floodplains will reduce flood levels and increase ecological habitat while limiting socioeconomic impacts. In this study, we assessed several reconnection scenarios, including levee setbacks and removals, for the Lower Tisza River (LTR; Hungary) and the Lower Illinois River (LIR; Illinois, USA). To model water-surface elevations (WSELs) for the 5- through 500-year flood events, we employed HEC-RAS (1D) and SOBEK (1D/2D) hydraulic models. To determine socioeconomic tradeoffs using these modeled WSELs, we developed a corresponding suite of expected annual damages (EADs) using FEMA's Hazus-MH flood-loss modeling software for buildings and integrated geospatial and soil productivity indices to estimate agricultural losses. To assess ecosystem benefits of reconnection along the LTR, we used historic wetland extent as a proxy for increasing needed floodplain habitats. For the LIR, we performed habitat screening using Land Capability Potential Index and other assessment tools to estimate potential ecosystem benefits. Results indicate that levee removal and/or setbacks may reduce flood heights up to 1.6 m along the LTR and over 1.0 m along the LIR. While urban areas have the highest EADs, several lower-production agricultural areas show potential for reducing flood heights while minimizing damages. Strategic-floodplain reconnection benefits along the LTR and LIR include over half of historically-significant wetlands being reconnected and the creation of

  10. Molecular profiling of appendiceal epithelial tumors using massively parallel sequencing to identify somatic mutations.

    Science.gov (United States)

    Liu, Xiaoying; Mody, Kabir; de Abreu, Francine B; Pipas, J Marc; Peterson, Jason D; Gallagher, Torrey L; Suriawinata, Arief A; Ripple, Gregory H; Hourdequin, Kathryn C; Smith, Kerrington D; Barth, Richard J; Colacchio, Thomas A; Tsapakos, Michael J; Zaki, Bassem I; Gardner, Timothy B; Gordon, Stuart R; Amos, Christopher I; Wells, Wendy A; Tsongalis, Gregory J

    2014-07-01

    Some epithelial neoplasms of the appendix, including low-grade appendiceal mucinous neoplasm and adenocarcinoma, can result in pseudomyxoma peritonei (PMP). Little is known about the mutational spectra of these tumor types and whether mutations may be of clinical significance with respect to therapeutic selection. In this study, we identified somatic mutations using the Ion Torrent AmpliSeq Cancer Hotspot Panel v2. Specimens consisted of 3 nonneoplastic retention cysts/mucocele, 15 low-grade mucinous neoplasms (LAMNs), 8 low-grade/well-differentiated mucinous adenocarcinomas with pseudomyxoma peritonei, and 12 adenocarcinomas with/without goblet cell/signet ring cell features. Barcoded libraries were prepared from up to 10 ng of extracted DNA and multiplexed on single 318 chips for sequencing. Data analysis was performed using Golden Helix SVS. Variants that remained after the analysis pipeline were individually interrogated using the Integrative Genomics Viewer. A single Janus kinase 3 (JAK3) mutation was detected in the mucocele group. Eight mutations were identified in the V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) and GNAS complex locus (GNAS) genes among LAMN samples. Additional gene mutations were identified in the AKT1 (v-akt murine thymoma viral oncogene homolog 1), APC (adenomatous polyposis coli), JAK3, MET (met proto-oncogene), phosphatidylinositol-4,5-bisphosphate 3-kinase (PIK3CA), RB1 (retinoblastoma 1), STK11 (serine/threonine kinase 11), and tumor protein p53 (TP53) genes. Among the PMPs, 6 mutations were detected in the KRAS gene and also in the GNAS, TP53, and RB1 genes. Appendiceal cancers showed mutations in the APC, ATM (ataxia telangiectasia mutated), KRAS, IDH1 [isocitrate dehydrogenase 1 (NADP+)], NRAS [neuroblastoma RAS viral (v-ras) oncogene homolog], PIK3CA, SMAD4 (SMAD family member 4), and TP53 genes. Our results suggest molecular heterogeneity among epithelial tumors of the appendix. Next generation sequencing efforts

  11. Targeted next-generation sequencing analysis identifies novel mutations in families with severe familial exudative vitreoretinopathy

    Science.gov (United States)

    Huang, Xiao-Yan; Zhuang, Hong; Wu, Ji-Hong; Li, Jian-Kang; Hu, Fang-Yuan; Zheng, Yu; Tellier, Laurent Christian Asker M.; Zhang, Sheng-Hai; Gao, Feng-Juan; Zhang, Jian-Guo

    2017-01-01

    Purpose Familial exudative vitreoretinopathy (FEVR) is a genetically and clinically heterogeneous disease, characterized by failure of vascular development of the peripheral retina. The symptoms of FEVR vary widely among patients in the same family, and even between the two eyes of a given patient. This study was designed to identify the genetic defect in a patient cohort of ten Chinese families with a definitive diagnosis of FEVR. Methods To identify the causative gene, next-generation sequencing (NGS)-based target capture sequencing was performed. Segregation analysis of the candidate variant was performed in additional family members by using Sanger sequencing and quantitative real-time PCR (QPCR). Results Of the cohort of ten FEVR families, six pathogenic variants were identified, including four novel and two known heterozygous mutations. Of the variants identified, four were missense variants, and two were novel heterozygous deletion mutations [LRP5, c.4053 DelC (p.Ile1351IlefsX88); TSPAN12, EX8Del]. The two novel heterozygous deletion mutations were not observed in the control subjects and could give rise to a relatively severe FEVR phenotype, which could be explained by the protein function prediction. Conclusions We identified two novel heterozygous deletion mutations [LRP5, c.4053 DelC (p.Ile1351IlefsX88); TSPAN12, EX8Del] using targeted NGS as a causative mutation for FEVR. These genetic deletion variations exhibit a severe form of FEVR, with tractional retinal detachments compared with other known point mutations. The data further enrich the mutation spectrum of FEVR and enhance our understanding of genotype–phenotype correlations to provide useful information for disease diagnosis, prognosis, and effective genetic counseling. PMID:28867931

  12. Screening of 1331 Danish breast and/or ovarian cancer families identified 40 novel BRCA1 and BRCA2 mutations

    DEFF Research Database (Denmark)

    Hansen, Thomas V O; Jønson, Lars; Steffensen, Ane Y

    2011-01-01

    Germ-line mutations in the tumour suppressor genes BRCA1 and BRCA2 predispose to breast and ovarian cancer. Since 1999 we have performed mutational screening of breast and/or ovarian cancer patients in East Denmark. During this period we have identified 40 novel sequence variations in BRCA1...... and BRCA2 in high risk breast and/or ovarian cancer families. The mutations were detected via pre-screening using dHPLC or high-resolution melting and direct sequencing. We identified 16 variants in BRCA1, including 9 deleterious frame-shift mutations, 2 intronic variants, 4 missense mutations, and 1......, the presumed significance of the missense mutations was predicted in silico using the align GVGD algorithm. In conclusion, the mutation screening identified 40 novel variants in the BRCA1 and BRCA2 genes and thereby extends the knowledge of the BRCA1/BRCA2 mutation spectrum. Nineteen of the mutations were...

  13. Whole-genome sequencing identifies recurrent somatic NOTCH2 mutations in splenic marginal zone lymphoma.

    Science.gov (United States)

    Kiel, Mark J; Velusamy, Thirunavukkarasu; Betz, Bryan L; Zhao, Lili; Weigelin, Helmut G; Chiang, Mark Y; Huebner-Chan, David R; Bailey, Nathanael G; Yang, David T; Bhagat, Govind; Miranda, Roberto N; Bahler, David W; Medeiros, L Jeffrey; Lim, Megan S; Elenitoba-Johnson, Kojo S J

    2012-08-27

    Splenic marginal zone lymphoma (SMZL), the most common primary lymphoma of spleen, is poorly understood at the genetic level. In this study, using whole-genome DNA sequencing (WGS) and confirmation by Sanger sequencing, we observed mutations identified in several genes not previously known to be recurrently altered in SMZL. In particular, we identified recurrent somatic gain-of-function mutations in NOTCH2, a gene encoding a protein required for marginal zone B cell development, in 25 of 99 (∼25%) cases of SMZL and in 1 of 19 (∼5%) cases of nonsplenic MZLs. These mutations clustered near the C-terminal proline/glutamate/serine/threonine (PEST)-rich domain, resulting in protein truncation or, rarely, were nonsynonymous substitutions affecting the extracellular heterodimerization domain (HD). NOTCH2 mutations were not present in other B cell lymphomas and leukemias, such as chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL; n = 15), mantle cell lymphoma (MCL; n = 15), low-grade follicular lymphoma (FL; n = 44), hairy cell leukemia (HCL; n = 15), and reactive lymphoid hyperplasia (n = 14). NOTCH2 mutations were associated with adverse clinical outcomes (relapse, histological transformation, and/or death) among SMZL patients (P = 0.002). These results suggest that NOTCH2 mutations play a role in the pathogenesis and progression of SMZL and are associated with a poor prognosis.

  14. Ethnic disparity in 21-hydroxylase gene mutations identified in Pakistani congenital adrenal hyperplasia patients

    Directory of Open Access Journals (Sweden)

    Jabbar Abdul

    2011-02-01

    Full Text Available Abstract Background Congenital adrenal hyperplasia (CAH is a group of autosomal recessive disorders caused by defects in the steroid 21 hydroxylase gene (CYP21A2. We studied the spectrum of mutations in CYP21A2 gene in a multi-ethnic population in Pakistan to explore the genetics of CAH. Methods A cross sectional study was conducted for the identification of mutations CYP21A2 and their phenotypic associations in CAH using ARMS-PCR assay. Results Overall, 29 patients were analyzed for nine different mutations. The group consisted of two major forms of CAH including 17 salt wasters and 12 simple virilizers. There were 14 phenotypic males and 15 females representing all the major ethnic groups of Pakistan. Parental consanguinity was reported in 65% cases and was equally distributed in the major ethnic groups. Among 58 chromosomes analyzed, mutations were identified in 45 (78.6% chromosomes. The most frequent mutation was I2 splice (27% followed by Ile173Asn (26%, Arg 357 Trp (19%, Gln319stop, 16% and Leu308InsT (12%, whereas Val282Leu was not observed in this study. Homozygosity was seen in 44% and heterozygosity in 34% cases. I2 splice mutation was found to be associated with SW in the homozygous. The Ile173Asn mutation was identified in both SW and SV forms. Moreover, Arg357Trp manifested SW in compound heterozygous state. Conclusion Our study showed that CAH exists in our population with ethnic difference in the prevalence of mutations examined.

  15. Whole exome sequencing identifies mutations in Usher syndrome genes in profoundly deaf Tunisian patients.

    Science.gov (United States)

    Riahi, Zied; Bonnet, Crystel; Zainine, Rim; Lahbib, Saida; Bouyacoub, Yosra; Bechraoui, Rym; Marrakchi, Jihène; Hardelin, Jean-Pierre; Louha, Malek; Largueche, Leila; Ben Yahia, Salim; Kheirallah, Moncef; Elmatri, Leila; Besbes, Ghazi; Abdelhak, Sonia; Petit, Christine

    2015-01-01

    Usher syndrome (USH) is an autosomal recessive disorder characterized by combined deafness-blindness. It accounts for about 50% of all hereditary deafness blindness cases. Three clinical subtypes (USH1, USH2, and USH3) are described, of which USH1 is the most severe form, characterized by congenital profound deafness, constant vestibular dysfunction, and a prepubertal onset of retinitis pigmentosa. We performed whole exome sequencing in four unrelated Tunisian patients affected by apparently isolated, congenital profound deafness, with reportedly normal ocular fundus examination. Four biallelic mutations were identified in two USH1 genes: a splice acceptor site mutation, c.2283-1G>T, and a novel missense mutation, c.5434G>A (p.Glu1812Lys), in MYO7A, and two previously unreported mutations in USH1G, i.e. a frameshift mutation, c.1195_1196delAG (p.Leu399Alafs*24), and a nonsense mutation, c.52A>T (p.Lys18*). Another ophthalmological examination including optical coherence tomography actually showed the presence of retinitis pigmentosa in all the patients. Our findings provide evidence that USH is under-diagnosed in Tunisian deaf patients. Yet, early diagnosis of USH is of utmost importance because these patients should undergo cochlear implant surgery in early childhood, in anticipation of the visual loss.

  16. Two Novel Mutations Identified in an African-American Child with Chediak-Higashi Syndrome

    Directory of Open Access Journals (Sweden)

    Kerry Morrone

    2010-01-01

    Full Text Available Background. Chediak-Higashi syndrome (CHS is a rare, autosomal recessive disorder characterized by oculocutaneous albinism, immunodeficiency, coagulopathy and late-onset, progressive neurological dysfunction. It also has an “accelerated phase” characterized by hemophagocytic lymphohistiocytosis (HLH. The disease is caused by mutations in the CHS1/LYST gene located on chromosome 1, which affects lysosome morphology and function. We report the case of an African-American child with CHS in Case. This 16-month old African-American girl presented with fever and lethargy. The proband had pale skin compared to her parents, with light brown eyes, silvery hair and massive hepatosplenomegaly. Her laboratory evaluation was remarkable for pancytopenia, high serum ferritin and an elevated LDH. Bone marrow aspirate revealed large inclusions in granulocytes and erythrophagocytosis consistent with HLH. Genetic evaluation revealed two novel nonsense mutations in the CHS1 gene: c.3622C>T (p.Q1208X and c.11002G>T (p.E3668X. Conclusions. Our patient is one of the few cases of CHS reported in the African American population. We identified 2 nonsense mutations in the CHS1 gene, the first mutation analysis published of an African-American child with Chediak-Higashi Syndrome. These two mutations predict a severe phenotype and thus identification of these mutations has an important clinical significance in CHS.

  17. Whole exome sequencing identifies mutations in Usher syndrome genes in profoundly deaf Tunisian patients.

    Directory of Open Access Journals (Sweden)

    Zied Riahi

    Full Text Available Usher syndrome (USH is an autosomal recessive disorder characterized by combined deafness-blindness. It accounts for about 50% of all hereditary deafness blindness cases. Three clinical subtypes (USH1, USH2, and USH3 are described, of which USH1 is the most severe form, characterized by congenital profound deafness, constant vestibular dysfunction, and a prepubertal onset of retinitis pigmentosa. We performed whole exome sequencing in four unrelated Tunisian patients affected by apparently isolated, congenital profound deafness, with reportedly normal ocular fundus examination. Four biallelic mutations were identified in two USH1 genes: a splice acceptor site mutation, c.2283-1G>T, and a novel missense mutation, c.5434G>A (p.Glu1812Lys, in MYO7A, and two previously unreported mutations in USH1G, i.e. a frameshift mutation, c.1195_1196delAG (p.Leu399Alafs*24, and a nonsense mutation, c.52A>T (p.Lys18*. Another ophthalmological examination including optical coherence tomography actually showed the presence of retinitis pigmentosa in all the patients. Our findings provide evidence that USH is under-diagnosed in Tunisian deaf patients. Yet, early diagnosis of USH is of utmost importance because these patients should undergo cochlear implant surgery in early childhood, in anticipation of the visual loss.

  18. Comparative analysis of primary versus relapse/refractory DLBCL identifies shifts in mutation spectrum.

    Science.gov (United States)

    Greenawalt, Danielle M; Liang, Winnie S; Saif, Sakina; Johnson, Justin; Todorov, Petar; Dulak, Austin; Enriquez, Daniel; Halperin, Rebecca; Ahmed, Ambar; Saveliev, Vladislav; Carpten, John; Craig, David; Barrett, J Carl; Dougherty, Brian; Zinda, Michael; Fawell, Stephen; Dry, Jonathan R; Byth, Kate

    2017-11-21

    Current understanding of the mutation spectrum of relapsed/refractory (RR) tumors is limited. We performed whole exome sequencing (WES) on 47 diffuse large B cell lymphoma (DLBCL) tumors that persisted after R-CHOP treatment, 8 matched to primary biopsies. We compared genomic alterations from the RR cohort against two treatment-naïve DLBCL cohorts (n=112). While the overall number and types of mutations did not differ significantly, we identified frequency changes in DLBCL driver genes. The overall frequency of MYD88 mutant samples increased (12% to 19%), but we noted a decrease in p.L265P (8% to 4%) and increase in p.S219C mutations (2% to 6%). CARD11 p.D230N, PIM1 p.K115N and CD79B p.Y196C mutations were not observed in the RR cohort, although these mutations were prominent in the primary DLBCL samples. We observed an increase in BCL2 mutations (21% to 38% of samples), BCL2 amplifications (3% to 6% of samples) and CREBBP mutations (31% to 42% of samples) in the RR cohort, supported by acquisition of mutations in these genes in relapsed compared to diagnostic biopsies from the same patient. These increases may reflect the genetic characteristics of R-CHOP RR tumors expected to be enriched for during clinical trial enrollment. These findings hold significance for a number of emerging targeted therapies aligned to genetic targets and biomarkers in DLBCL, reinforcing the importance of time-of-treatment biomarker screening during DLBCL therapy selection.

  19. An effect from anticipation also in hereditary nonpolyposis colorectal cancer families without identified mutations

    DEFF Research Database (Denmark)

    Timshel, Susanne; Therkildsen, Christina; Bendahl, Pär-Ola

    2009-01-01

    the Amsterdam criteria for HNPCC and showed normal MMR function and/or lack of disease-predisposing MMR gene mutation. In total, 319 cancers from 212 parent-child pairs in 99 families were identified. A paired t-test and a bivariate statistical model were used to assess anticipation. Both methods demonstrated...

  20. Mutational analysis of EGFR and related signaling pathway genes in lung adenocarcinomas identifies a novel somatic kinase domain mutation in FGFR4.

    Directory of Open Access Journals (Sweden)

    Jenifer L Marks

    2007-05-01

    Full Text Available Fifty percent of lung adenocarcinomas harbor somatic mutations in six genes that encode proteins in the EGFR signaling pathway, i.e., EGFR, HER2/ERBB2, HER4/ERBB4, PIK3CA, BRAF, and KRAS. We performed mutational profiling of a large cohort of lung adenocarcinomas to uncover other potential somatic mutations in genes of this signaling pathway that could contribute to lung tumorigenesis.We analyzed genomic DNA from a total of 261 resected, clinically annotated non-small cell lung cancer (NSCLC specimens. The coding sequences of 39 genes were screened for somatic mutations via high-throughput dideoxynucleotide sequencing of PCR-amplified gene products. Mutations were considered to be somatic only if they were found in an independent tumor-derived PCR product but not in matched normal tissue. Sequencing of 9MB of tumor sequence identified 239 putative genetic variants. We further examined 22 variants found in RAS family genes and 135 variants localized to exons encoding the kinase domain of respective proteins. We identified a total of 37 non-synonymous somatic mutations; 36 were found collectively in EGFR, KRAS, BRAF, and PIK3CA. One somatic mutation was a previously unreported mutation in the kinase domain (exon 16 of FGFR4 (Glu681Lys, identified in 1 of 158 tumors. The FGFR4 mutation is analogous to a reported tumor-specific somatic mutation in ERBB2 and is located in the same exon as a previously reported kinase domain mutation in FGFR4 (Pro712Thr in a lung adenocarcinoma cell line.This study is one of the first comprehensive mutational analyses of major genes in a specific signaling pathway in a sizeable cohort of lung adenocarcinomas. Our results suggest the majority of gain-of-function mutations within kinase genes in the EGFR signaling pathway have already been identified. Our findings also implicate FGFR4 in the pathogenesis of a subset of lung adenocarcinomas.

  1. Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1

    DEFF Research Database (Denmark)

    Carvill, Gemma L; Heavin, Sinéad B; Yendle, Simone C

    2013-01-01

    Epileptic encephalopathies are a devastating group of epilepsies with poor prognosis, of which the majority are of unknown etiology. We perform targeted massively parallel resequencing of 19 known and 46 candidate genes for epileptic encephalopathy in 500 affected individuals (cases) to identify...... CHD2 and SYNGAP1 mutations are new causes of epileptic encephalopathies, accounting for 1.2% and 1% of cases, respectively. We also expand the phenotypic spectra explained by SCN1A, SCN2A and SCN8A mutations. To our knowledge, this is the largest cohort of cases with epileptic encephalopathies...

  2. Potential ligand-binding residues in rat olfactory receptors identified by correlated mutation analysis

    Science.gov (United States)

    Singer, M. S.; Oliveira, L.; Vriend, G.; Shepherd, G. M.

    1995-01-01

    A family of G-protein-coupled receptors is believed to mediate the recognition of odor molecules. In order to identify potential ligand-binding residues, we have applied correlated mutation analysis to receptor sequences from the rat. This method identifies pairs of sequence positions where residues remain conserved or mutate in tandem, thereby suggesting structural or functional importance. The analysis supported molecular modeling studies in suggesting several residues in positions that were consistent with ligand-binding function. Two of these positions, dominated by histidine residues, may play important roles in ligand binding and could confer broad specificity to mammalian odor receptors. The presence of positive (overdominant) selection at some of the identified positions provides additional evidence for roles in ligand binding. Higher-order groups of correlated residues were also observed. Each group may interact with an individual ligand determinant, and combinations of these groups may provide a multi-dimensional mechanism for receptor diversity.

  3. Pathogenic mutations in TULP1 responsible for retinitis pigmentosa identified in consanguineous familial cases

    Science.gov (United States)

    Ullah, Inayat; Kabir, Firoz; Iqbal, Muhammad; Gottsch, Clare Brooks S.; Naeem, Muhammad Asif; Assir, Muhammad Zaman; Khan, Shaheen N.; Akram, Javed; Riazuddin, Sheikh; Ayyagari, Radha; Hejtmancik, J. Fielding

    2016-01-01

    Purpose To identify pathogenic mutations responsible for autosomal recessive retinitis pigmentosa (arRP) in consanguineous familial cases. Methods Seven large familial cases with multiple individuals diagnosed with retinitis pigmentosa were included in the study. Affected individuals in these families underwent ophthalmic examinations to document the symptoms and confirm the initial diagnosis. Blood samples were collected from all participating members, and genomic DNA was extracted. An exclusion analysis with microsatellite markers spanning the TULP1 locus on chromosome 6p was performed, and two-point logarithm of odds (LOD) scores were calculated. All coding exons along with the exon–intron boundaries of TULP1 were sequenced bidirectionally. We constructed a single nucleotide polymorphism (SNP) haplotype for the four familial cases harboring the K489R allele and estimated the likelihood of a founder effect. Results The ophthalmic examinations of the affected individuals in these familial cases were suggestive of RP. Exclusion analyses confirmed linkage to chromosome 6p harboring TULP1 with positive two-point LOD scores. Subsequent Sanger sequencing identified the single base pair substitution in exon14, c.1466A>G (p.K489R), in four families. Additionally, we identified a two-base deletion in exon 4, c.286_287delGA (p.E96Gfs77*); a homozygous splice site variant in intron 14, c.1495+4A>C; and a novel missense variation in exon 15, c.1561C>T (p.P521S). All mutations segregated with the disease phenotype in the respective families and were absent in ethnically matched control chromosomes. Haplotype analysis suggested (p<10−6) that affected individuals inherited the causal mutation from a common ancestor. Conclusions Pathogenic mutations in TULP1 are responsible for the RP phenotype in seven familial cases with a common ancestral mutation responsible for the disease phenotype in four of the seven families. PMID:27440997

  4. Clinical and molecular characterization of a novel INS mutation identified in patients with MODY phenotype.

    Science.gov (United States)

    Piccini, Barbara; Artuso, Rosangela; Lenzi, Lorenzo; Guasti, Monica; Braccesi, Giulia; Barni, Federica; Casalini, Emilio; Giglio, Sabrina; Toni, Sonia

    2016-11-01

    Correct diagnosis of Maturity-Onset Diabetes of the Young (MODY) is based on genetic tests requiring an appropriate subject selection by clinicians. Mutations in the insulin (INS) gene rarely occur in patients with MODY. This study is aimed at determining the genetic background and clinical phenotype in patients with suspected MODY. 34 patients with suspected MODY, negative for mutations in the GCK, HNF1α, HNF4α, HNF1β and PDX1 genes, were screened by next generation sequencing (NGS). A heterozygous INS mutation was identified in 4 members of the same family. First genetic tests performed identified two heterozygous silent nucleotide substitutions in MODY3/HNF1α gene. An ineffective attempt to suspend insulin therapy, administering repaglinide and sulphonylureas, was made. DNA was re-sequenced by NGS investigating a set of 102 genes. Genes implicated in the pathway of pancreatic β-cells, candidate genes for type 2 diabetes mellitus and genes causative of diabetes in mice were selected. A novel heterozygous variant in human preproinsulin INS gene (c.125T > C) was found in the affected family members. The new INS mutation broadens the spectrum of possible INS phenotypes. Screening for INS mutations is warranted not only in neonatal diabetes but also in MODYx patients and in selected patients with type 1 diabetes mellitus negative for autoantibodies. Subjects with complex diseases without a specific phenotype should be studied by NGS because Sanger sequencing is ineffective and time consuming in detecting rare variants. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. A Mononucleotide Markers Panel to Identify hMLH1/hMSH2 Germline Mutations

    Directory of Open Access Journals (Sweden)

    M. Pedroni

    2007-01-01

    Full Text Available Hereditary NonPolyposis Colorectal Cancer (Lynch syndrome is an autosomal dominant disease caused by germline mutations in a class of genes deputed to maintain genomic integrity during cell replication, mutations result in a generalized genomic instability, particularly evident at microsatellite loci (Microsatellite Instability, MSI. MSI is present in 85–90% of colorectal cancers that occur in Lynch Syndrome. To standardize the molecular diagnosis of MSI, a panel of 5 microsatellite markers was proposed (known as the “Bethesda panel”. Aim of our study is to evaluate if MSI testing with two mononucleotide markers, such as BAT25 and BAT26, was sufficient to identify patients with hMLH1/hMSH2 germline mutations. We tested 105 tumours for MSI using both the Bethesda markers and the two mononucleotide markers BAT25 and BAT26. Moreover, immunohistochemical evaluation of MLH1 and MSH2 proteins was executed on the tumours with at least one unstable microsatellite, whereas germline hMLH1/hMSH2 mutations were searched for all cases showing two or more unstable microsatellites.

  6. Functional characterization of rare missense mutations in MLH1 and MSH2 identified in Danish colorectal cancer patients

    DEFF Research Database (Denmark)

    Christensen, Lise Lotte; Kariola, Reetta; Korhonen, Mari K

    2009-01-01

    Recently, we have performed a population based study to analyse the frequency of colorectal cancer related MLH1 and MSH2 missense mutations in the Danish population. Half of the analyzed mutations were rare and most likely only present in the families where they were identified originally. Some...... of the missense mutations were located in conserved regions in the MLH1 and MSH2 proteins indicating a relation to disease development. In the present study, we functionally characterized 10 rare missense mutations in MLH1 and MSH2 identified in 13 Danish CRC families. To elucidate the pathogenicity...

  7. Mutation analysis with random DNA identifiers (MARDI) catalogs Pig-a mutations in heterogeneous pools of CD48-deficient T cells derived from DMBA-treated rats.

    Science.gov (United States)

    Revollo, Javier R; Crabtree, Nathaniel M; Pearce, Mason G; Pacheco-Martinez, M Monserrat; Dobrovolsky, Vasily N

    2016-03-01

    Identification of mutations induced by xenotoxins is a common task in the field of genetic toxicology. Mutations are often detected by clonally expanding potential mutant cells and genotyping each viable clone by Sanger sequencing. Such a "clone-by-clone" approach requires significant time and effort, and sometimes is even impossible to implement. Alternative techniques for efficient mutation identification would greatly benefit both basic and regulatory genetic toxicology research. Here, we report the development of Mutation Analysis with Random DNA Identifiers (MARDI), a novel high-fidelity Next Generation Sequencing (NGS) approach that circumvents clonal expansion and directly catalogs mutations in pools of mutant cells. MARDI uses oligonucleotides carrying Random DNA Identifiers (RDIs) to tag progenitor DNA molecules before PCR amplification, enabling clustering of descendant DNA molecules and eliminating NGS- and PCR-induced sequencing artifacts. When applied to the Pig-a cDNA analysis of heterogeneous pools of CD48-deficient T cells derived from DMBA-treated rats, MARDI detected nearly all Pig-a mutations that were previously identified by conventional clone-by-clone analysis and discovered many additional ones consistent with DMBA exposure: mostly A to T transversions, with the mutated A located on the non-transcribed DNA strand. © 2015 Wiley Periodicals, Inc.

  8. Exome sequencing identifies rare deleterious mutations in DNA repair genes FANCC and BLM as potential breast cancer susceptibility alleles.

    Directory of Open Access Journals (Sweden)

    Ella R Thompson

    2012-09-01

    Full Text Available Despite intensive efforts using linkage and candidate gene approaches, the genetic etiology for the majority of families with a multi-generational breast cancer predisposition is unknown. In this study, we used whole-exome sequencing of thirty-three individuals from 15 breast cancer families to identify potential predisposing genes. Our analysis identified families with heterozygous, deleterious mutations in the DNA repair genes FANCC and BLM, which are responsible for the autosomal recessive disorders Fanconi Anemia and Bloom syndrome. In total, screening of all exons in these genes in 438 breast cancer families identified three with truncating mutations in FANCC and two with truncating mutations in BLM. Additional screening of FANCC mutation hotspot exons identified one pathogenic mutation among an additional 957 breast cancer families. Importantly, none of the deleterious mutations were identified among 464 healthy controls and are not reported in the 1,000 Genomes data. Given the rarity of Fanconi Anemia and Bloom syndrome disorders among Caucasian populations, the finding of multiple deleterious mutations in these critical DNA repair genes among high-risk breast cancer families is intriguing and suggestive of a predisposing role. Our data demonstrate the utility of intra-family exome-sequencing approaches to uncover cancer predisposition genes, but highlight the major challenge of definitively validating candidates where the incidence of sporadic disease is high, germline mutations are not fully penetrant, and individual predisposition genes may only account for a tiny proportion of breast cancer families.

  9. Targeted exome sequencing identified novel USH2A mutations in Usher syndrome families.

    Directory of Open Access Journals (Sweden)

    Xiu-Feng Huang

    Full Text Available Usher syndrome (USH is a leading cause of deaf-blindness in autosomal recessive trait. Phenotypic and genetic heterogeneities in USH make molecular diagnosis much difficult. This is a pilot study aiming to develop an approach based on next-generation sequencing to determine the genetic defects in patients with USH or allied diseases precisely and effectively. Eight affected patients and twelve unaffected relatives from five unrelated Chinese USH families, including 2 pseudo-dominant ones, were recruited. A total of 144 known genes of inherited retinal diseases were selected for deep exome resequencing. Through systematic data analysis using established bioinformatics pipeline and segregation analysis, a number of genetic variants were released. Eleven mutations, eight of them were novel, in the USH2A gene were identified. Biparental mutations in USH2A were revealed in 2 families with pseudo-dominant inheritance. A proband was found to have triple mutations, two of them were supposed to locate in the same chromosome. In conclusion, this study revealed the genetic defects in the USH2A gene and demonstrated the robustness of targeted exome sequencing to precisely and rapidly determine genetic defects. The methodology provides a reliable strategy for routine gene diagnosis of USH.

  10. Whole exome sequencing identifies RAI1 mutation in a morbidly obese child diagnosed with ROHHAD syndrome.

    Science.gov (United States)

    Thaker, Vidhu V; Esteves, Kristyn M; Towne, Meghan C; Brownstein, Catherine A; James, Philip M; Crowley, Laura; Hirschhorn, Joel N; Elsea, Sarah H; Beggs, Alan H; Picker, Jonathan; Agrawal, Pankaj B

    2015-05-01

    The current obesity epidemic is attributed to complex interactions between genetic and environmental factors. However, a limited number of cases, especially those with early-onset severe obesity, are linked to single gene defects. Rapid-onset obesity with hypothalamic dysfunction, hypoventilation and autonomic dysregulation (ROHHAD) is one of the syndromes that presents with abrupt-onset extreme weight gain with an unknown genetic basis. To identify the underlying genetic etiology in a child with morbid early-onset obesity, hypoventilation, and autonomic and behavioral disturbances who was clinically diagnosed with ROHHAD syndrome. Design/Setting/Intervention: The index patient was evaluated at an academic medical center. Whole-exome sequencing was performed on the proband and his parents. Genetic variants were validated by Sanger sequencing. We identified a novel de novo nonsense mutation, c.3265 C>T (p.R1089X), in the retinoic acid-induced 1 (RAI1) gene in the proband. Mutations in the RAI1 gene are known to cause Smith-Magenis syndrome (SMS). On further evaluation, his clinical features were not typical of either SMS or ROHHAD syndrome. This study identifies a de novo RAI1 mutation in a child with morbid obesity and a clinical diagnosis of ROHHAD syndrome. Although extreme early-onset obesity, autonomic disturbances, and hypoventilation are present in ROHHAD, several of the clinical findings are consistent with SMS. This case highlights the challenges in the diagnosis of ROHHAD syndrome and its potential overlap with SMS. We also propose RAI1 as a candidate gene for children with morbid obesity.

  11. Prevalence of mutations and functional analyses of melanocortin 4 receptor variants identified among 750 men with juvenile-onset obesity

    DEFF Research Database (Denmark)

    Larsen, Lesli H; Echwald, Søren Morgenthaler; Sørensen, Thorkild I A

    2005-01-01

    )) for mutations in MC4R. A total of 14 different mutations were identified of which two, Ala219Val and Leu325Phe, were novel variants. The variant receptor, Leu325Phe, was unable to bind [Nle4,d-Phe7]-alphaMSH, whereas the Ala219Val variant showed a significantly impaired melanotan II induction of cAMP, compared...

  12. Exome sequencing identifies CTSK mutations in patients originally diagnosed as intermediate osteopetrosis☆

    Science.gov (United States)

    Pangrazio, Alessandra; Puddu, Alessandro; Oppo, Manuela; Valentini, Maria; Zammataro, Luca; Vellodi, Ashok; Gener, Blanca; Llano-Rivas, Isabel; Raza, Jamal; Atta, Irum; Vezzoni, Paolo; Superti-Furga, Andrea; Villa, Anna; Sobacchi, Cristina

    2014-01-01

    Autosomal Recessive Osteopetrosis is a genetic disorder characterized by increased bone density due to lack of resorption by the osteoclasts. Genetic studies have widely unraveled the molecular basis of the most severe forms, while cases of intermediate severity are more difficult to characterize, probably because of a large heterogeneity. Here, we describe the use of exome sequencing in the molecular diagnosis of 2 siblings initially thought to be affected by “intermediate osteopetrosis”, which identified a homozygous mutation in the CTSK gene. Prompted by this finding, we tested by Sanger sequencing 25 additional patients addressed to us for recessive osteopetrosis and found CTSK mutations in 4 of them. In retrospect, their clinical and radiographic features were found to be compatible with, but not typical for, Pycnodysostosis. We sought to identify modifier genes that might have played a role in the clinical manifestation of the disease in these patients, but our results were not informative. In conclusion, we underline the difficulties of differential diagnosis in some patients whose clinical appearance does not fit the classical malignant or benign picture and recommend that CTSK gene be included in the molecular diagnosis of high bone density conditions. PMID:24269275

  13. Exome sequencing identifies CTSK mutations in patients originally diagnosed as intermediate osteopetrosis.

    Science.gov (United States)

    Pangrazio, Alessandra; Puddu, Alessandro; Oppo, Manuela; Valentini, Maria; Zammataro, Luca; Vellodi, Ashok; Gener, Blanca; Llano-Rivas, Isabel; Raza, Jamal; Atta, Irum; Vezzoni, Paolo; Superti-Furga, Andrea; Villa, Anna; Sobacchi, Cristina

    2014-02-01

    Autosomal Recessive Osteopetrosis is a genetic disorder characterized by increased bone density due to lack of resorption by the osteoclasts. Genetic studies have widely unraveled the molecular basis of the most severe forms, while cases of intermediate severity are more difficult to characterize, probably because of a large heterogeneity. Here, we describe the use of exome sequencing in the molecular diagnosis of 2 siblings initially thought to be affected by "intermediate osteopetrosis", which identified a homozygous mutation in the CTSK gene. Prompted by this finding, we tested by Sanger sequencing 25 additional patients addressed to us for recessive osteopetrosis and found CTSK mutations in 4 of them. In retrospect, their clinical and radiographic features were found to be compatible with, but not typical for, Pycnodysostosis. We sought to identify modifier genes that might have played a role in the clinical manifestation of the disease in these patients, but our results were not informative. In conclusion, we underline the difficulties of differential diagnosis in some patients whose clinical appearance does not fit the classical malignant or benign picture and recommend that CTSK gene be included in the molecular diagnosis of high bone density conditions. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Somatic mosaicism of a CDKL5 mutation identified by next-generation sequencing.

    Science.gov (United States)

    Kato, Takeshi; Morisada, Naoya; Nagase, Hiroaki; Nishiyama, Masahiro; Toyoshima, Daisaku; Nakagawa, Taku; Maruyama, Azusa; Fu, Xue Jun; Nozu, Kandai; Wada, Hiroko; Takada, Satoshi; Iijima, Kazumoto

    2015-10-01

    CDKL5-related encephalopathy is an X-linked dominantly inherited disorder that is characterized by early infantile epileptic encephalopathy or atypical Rett syndrome. We describe a 5-year-old Japanese boy with intractable epilepsy, severe developmental delay, and Rett syndrome-like features. Onset was at 2 months, when his electroencephalogram showed sporadic single poly spikes and diffuse irregular poly spikes. We conducted a genetic analysis using an Illumina® TruSight™ One sequencing panel on a next-generation sequencer. We identified two epilepsy-associated single nucleotide variants in our case: CDKL5 p.Ala40Val and KCNQ2 p.Glu515Asp. CDKL5 p.Ala40Val has been previously reported to be responsible for early infantile epileptic encephalopathy. In our case, the CDKL5 heterozygous mutation showed somatic mosaicism because the boy's karyotype was 46,XY. The KCNQ2 variant p.Glu515Asp is known to cause benign familial neonatal seizures-1, and this variant showed paternal inheritance. Although we believe that the somatic mosaic CDKL5 mutation is mainly responsible for the neurological phenotype in the patient, the KCNQ2 variant might have some neurological effect. Genetic analysis by next-generation sequencing is capable of identifying multiple variants in a patient. Copyright © 2015 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  15. Two novel mutations in the homogentisate-1,2-dioxygenase gene identified in Chinese Han Child with Alkaptonuria.

    Science.gov (United States)

    Li, Hongying; Zhang, Kaihui; Xu, Qun; Ma, Lixia; Lv, Xin; Sun, Ruopeng

    2015-03-01

    Alkaptonuria (AKU) is an autosomal recessive disorder of tyrosine metabolism, which is caused by a defect in the enzyme homogentisate 1,2-dioxygenase (HGD) with subsequent accumulation of homogentisic acid. Presently, more than 100 HGD mutations have been identified as the cause of the inborn error of metabolism across different populations worldwide. However, the HGD mutation is very rarely reported in Asia, especially China. In this study, we present mutational analyses of HGD gene in one Chinese Han child with AKU, which had been identified by gas chromatography-mass spectrometry detection of organic acids in urine samples. PCR and DNA sequencing of the entire coding region as well as exon-intron boundaries of HGD have been performed. Two novel mutations were identified in the HGD gene in this AKU case, a frameshift mutation of c.115delG in exon 3 and the splicing mutation of IVS5+3 A>C, a donor splice site of the exon 5 and exon-intron junction. The identification of these mutations in this study further expands the spectrum of known HGD gene mutations and contributes to prenatal molecular diagnosis of AKU.

  16. An effect from anticipation also in hereditary nonpolyposis colorectal cancer families without identified mutations

    DEFF Research Database (Denmark)

    Timshel, Susanne; Therkildsen, Christina; Bendahl, Pär-Ola

    2009-01-01

    Optimal prevention of hereditary cancer is central and requires initiation of surveillance programmes and/or prophylactic measures at a safe age. Anticipation, expressed as an earlier age at onset in successive generations, has been demonstrated in hereditary nonpolyposis colorectal cancer (HNPCC......). We specifically addressed anticipation in phenotypic HNPCC families without disease-predisposing mismatch repair (MMR) defects since risk estimates and age at onset are particularly difficult to determine in this cohort. The national Danish HNPCC register was used to identify families who fulfilled...... the Amsterdam criteria for HNPCC and showed normal MMR function and/or lack of disease-predisposing MMR gene mutation. In total, 319 cancers from 212 parent-child pairs in 99 families were identified. A paired t-test and a bivariate statistical model were used to assess anticipation. Both methods demonstrated...

  17. A Mismatch EndoNuclease Array-Based Methodology (MENA) for Identifying Known SNPs or Novel Point Mutations.

    Science.gov (United States)

    Comeron, Josep M; Reed, Jordan; Christie, Matthew; Jacobs, Julia S; Dierdorff, Jason; Eberl, Daniel F; Manak, J Robert

    2016-04-05

    Accurate and rapid identification or confirmation of single nucleotide polymorphisms (SNPs), point mutations and other human genomic variation facilitates understanding the genetic basis of disease. We have developed a new methodology (called MENA (Mismatch EndoNuclease Array)) pairing DNA mismatch endonuclease enzymology with tiling microarray hybridization in order to genotype both known point mutations (such as SNPs) as well as identify previously undiscovered point mutations and small indels. We show that our assay can rapidly genotype known SNPs in a human genomic DNA sample with 99% accuracy, in addition to identifying novel point mutations and small indels with a false discovery rate as low as 10%. Our technology provides a platform for a variety of applications, including: (1) genotyping known SNPs as well as confirming newly discovered SNPs from whole genome sequencing analyses; (2) identifying novel point mutations and indels in any genomic region from any organism for which genome sequence information is available; and (3) screening panels of genes associated with particular diseases and disorders in patient samples to identify causative mutations. As a proof of principle for using MENA to discover novel mutations, we report identification of a novel allele of the beethoven (btv) gene in Drosophila, which encodes a ciliary cytoplasmic dynein motor protein important for auditory mechanosensation.

  18. Whole-exome sequencing of muscle-invasive bladder cancer identifies recurrent mutations of UNC5C and prognostic importance of DNA repair gene mutations on survival.

    Science.gov (United States)

    Yap, Kai Lee; Kiyotani, Kazuma; Tamura, Kenji; Antic, Tatjana; Jang, Miran; Montoya, Magdeline; Campanile, Alexa; Yew, Poh Yin; Ganshert, Cory; Fujioka, Tomoaki; Steinberg, Gary D; O'Donnell, Peter H; Nakamura, Yusuke

    2014-12-15

    Because of suboptimal outcomes in muscle-invasive bladder cancer even with multimodality therapy, determination of potential genetic drivers offers the possibility of improving therapeutic approaches and discovering novel prognostic indicators. Using pTN staging, we case-matched 81 patients with resected ≥pT2 bladder cancers for whom perioperative chemotherapy use and disease recurrence status were known. Whole-exome sequencing was conducted in 43 cases to identify recurrent somatic mutations and targeted sequencing of 10 genes selected from the initial screening in an additional 38 cases was completed. Mutational profiles along with clinicopathologic information were correlated with recurrence-free survival (RFS) in the patients. We identified recurrent novel somatic mutations in the gene UNC5C (9.9%), in addition to TP53 (40.7%), KDM6A (21.0%), and TSC1 (12.3%). Patients who were carriers of somatic mutations in DNA repair genes (one or more of ATM, ERCC2, FANCD2, PALB2, BRCA1, or BRCA2) had a higher overall number of somatic mutations (P = 0.011). Importantly, after a median follow-up of 40.4 months, carriers of somatic mutations (n = 25) in any of these six DNA repair genes had significantly enhanced RFS compared with noncarriers [median, 32.4 vs. 14.8 months; hazard ratio of 0.46, 95% confidence interval (CI), 0.22-0.98; P = 0.0435], after adjustment for pathologic pTN staging and independent of adjuvant chemotherapy usage. Better prognostic outcomes of individuals carrying somatic mutations in DNA repair genes suggest these mutations as favorable prognostic events in muscle-invasive bladder cancer. Additional mechanistic investigation into the previously undiscovered role of UNC5C in bladder cancer is warranted. ©2014 American Association for Cancer Research.

  19. Social Health Insurance-Based Simultaneous Screening for 154 Mutations in 19 Deafness Genes Efficiently Identified Causative Mutations in Japanese Hearing Loss Patients.

    Directory of Open Access Journals (Sweden)

    Kentaro Mori

    Full Text Available Sensorineural hearing loss is one of the most common neurosensory disorders in humans. The incidence of SNHL is estimated to be 1 in 500-1000 newborns. In more than half of these patients, the hearing loss is associated with genetic causes. In Japan, genetic testing for the patients with SNHL using the Invader assay to screen for 46 mutations in 13 deafness genes was approved by the Ministry of Health, Labour and Welfare for inclusion in social health insurance coverage in 2012. Furthermore, from August 2015, this genetic testing has been expanded to screen for 154 mutations in 19 deafness genes using targeted genomic enrichment with massively parallel DNA sequencing combined with the Invader assay and TaqMan genotyping. For this study we analyzed 717 unrelated Japanese hearing loss patients. The total allele frequency of 154 mutations in 19 deafness genes was 32.64% (468/1434 and the total numbers of cases associated with at least one mutation was 44.07% (316/717. Among these, we were able to diagnose 212 (30% patients, indicating that the present screening could efficiently identify causative mutations in hearing loss patients. It is noteworthy that 27 patients (3.8% had coexistent multiple mutations in different genes. Five of these 27 patients (0.7%, 5/717 overall were diagnosed with genetic hearing loss affected by concomitant with responsible mutations in more than two different genes. For patients identified with multiple mutations in different genes, it is necessary to consider that several genes might have an impact on their phenotypes.

  20. Frameshift mutational target gene analysis identifies similarities and differences in constitutional mismatch repair-deficiency and Lynch syndrome.

    Science.gov (United States)

    Maletzki, Claudia; Huehns, Maja; Bauer, Ingrid; Ripperger, Tim; Mork, Maureen M; Vilar, Eduardo; Klöcking, Sabine; Zettl, Heike; Prall, Friedrich; Linnebacher, Michael

    2017-07-01

    Mismatch-repair deficient (MMR-D) malignancies include Lynch Syndrome (LS), which is secondary to germline mutations in one of the MMR genes, and the rare childhood-form of constitutional mismatch repair-deficiency (CMMR-D); caused by bi-allelic MMR gene mutations. A hallmark of LS-associated cancers is microsatellite instability (MSI), characterized by coding frameshift mutations (cFSM) in target genes. By contrast, tumors arising in CMMR-D patients are thought to display a somatic mutation pattern differing from LS. This study has the main goal to identify cFSM in MSI target genes relevant in CMMR-D and to compare the spectrum of common somatic mutations, including alterations in DNA polymerases POLE and D1 between LS and CMMR-D. CMMR-D-associated tumors harbored more somatic mutations compared to LS cases, especially in the TP53 gene and in POLE and POLD1, where novel mutations were additionally identified. Strikingly, MSI in classical mononucleotide markers BAT40 and CAT25 was frequent in CMMR-D cases. MSI-target gene analysis revealed mutations in CMMR-D-associated tumors, some of them known to be frequently hit in LS, such as RNaseT2, HT001, and TGFβR2. Our results imply a general role for these cFSM as potential new drivers of MMR-D tumorigenesis. © 2017 Wiley Periodicals, Inc.

  1. Evaluation of current prediction models for Lynch syndrome: updating the PREMM5 model to identify PMS2 mutation carriers.

    Science.gov (United States)

    Goverde, A; Spaander, M C W; Nieboer, D; van den Ouweland, A M W; Dinjens, W N M; Dubbink, H J; Tops, C J; Ten Broeke, S W; Bruno, M J; Hofstra, R M W; Steyerberg, E W; Wagner, A

    2018-07-01

    Until recently, no prediction models for Lynch syndrome (LS) had been validated for PMS2 mutation carriers. We aimed to evaluate MMRpredict and PREMM5 in a clinical cohort and for PMS2 mutation carriers specifically. In a retrospective, clinic-based cohort we calculated predictions for LS according to MMRpredict and PREMM5. The area under the operator receiving characteristic curve (AUC) was compared between MMRpredict and PREMM5 for LS patients in general and for different LS genes specifically. Of 734 index patients, 83 (11%) were diagnosed with LS; 23 MLH1, 17 MSH2, 31 MSH6 and 12 PMS2 mutation carriers. Both prediction models performed well for MLH1 and MSH2 (AUC 0.80 and 0.83 for PREMM5 and 0.79 for MMRpredict) and fair for MSH6 mutation carriers (0.69 for PREMM5 and 0.66 for MMRpredict). MMRpredict performed fair for PMS2 mutation carriers (AUC 0.72), while PREMM5 failed to discriminate PMS2 mutation carriers from non-mutation carriers (AUC 0.51). The only statistically significant difference between PMS2 mutation carriers and non-mutation carriers was proximal location of colorectal cancer (77 vs. 28%, p PMS2 mutation carriers (AUC 0.77) and overall (AUC 0.81 vs. 0.72). We validated these results in an external cohort of 376 colorectal cancer patients, including 158 LS patients. MMRpredict and PREMM5 cannot adequately identify PMS2 mutation carriers. Adding location of colorectal cancer to PREMM5 may improve the performance of this model, which should be validated in larger cohorts.

  2. Identifying EGFR-Expressed Cells and Detecting EGFR Multi-Mutations at Single-Cell Level by Microfluidic Chip

    Science.gov (United States)

    Li, Ren; Zhou, Mingxing; Li, Jine; Wang, Zihua; Zhang, Weikai; Yue, Chunyan; Ma, Yan; Peng, Hailin; Wei, Zewen; Hu, Zhiyuan

    2018-03-01

    EGFR mutations companion diagnostics have been proved to be crucial for the efficacy of tyrosine kinase inhibitor targeted cancer therapies. To uncover multiple mutations occurred in minority of EGFR-mutated cells, which may be covered by the noises from majority of un-mutated cells, is currently becoming an urgent clinical requirement. Here we present the validation of a microfluidic-chip-based method for detecting EGFR multi-mutations at single-cell level. By trapping and immunofluorescently imaging single cells in specifically designed silicon microwells, the EGFR-expressed cells were easily identified. By in situ lysing single cells, the cell lysates of EGFR-expressed cells were retrieved without cross-contamination. Benefited from excluding the noise from cells without EGFR expression, the simple and cost-effective Sanger's sequencing, but not the expensive deep sequencing of the whole cell population, was used to discover multi-mutations. We verified the new method with precisely discovering three most important EGFR drug-related mutations from a sample in which EGFR-mutated cells only account for a small percentage of whole cell population. The microfluidic chip is capable of discovering not only the existence of specific EGFR multi-mutations, but also other valuable single-cell-level information: on which specific cells the mutations occurred, or whether different mutations coexist on the same cells. This microfluidic chip constitutes a promising method to promote simple and cost-effective Sanger's sequencing to be a routine test before performing targeted cancer therapy.[Figure not available: see fulltext.

  3. A Common Ancestral Mutation in CRYBB3 Identified in Multiple Consanguineous Families with Congenital Cataracts.

    Directory of Open Access Journals (Sweden)

    Xiaodong Jiao

    Full Text Available This study was performed to investigate the genetic determinants of autosomal recessive congenital cataracts in large consanguineous families.Affected individuals underwent a detailed ophthalmological examination and slit-lamp photographs of the cataractous lenses were obtained. An aliquot of blood was collected from all participating family members and genomic DNA was extracted from white blood cells. Initially, a genome-wide scan was performed with genomic DNAs of family PKCC025 followed by exclusion analysis of our familial cohort of congenital cataracts. Protein-coding exons of CRYBB1, CRYBB2, CRYBB3, and CRYBA4 were sequenced bidirectionally. A haplotype was constructed with SNPs flanking the causal mutation for affected individuals in all four families, while the probability that the four familial cases have a common founder was estimated using EM and CHM-based algorithms. The expression of Crybb3 in the developing murine lens was investigated using TaqMan assays.The clinical and ophthalmological examinations suggested that all affected individuals had nuclear cataracts. Genome-wide linkage analysis localized the causal phenotype in family PKCC025 to chromosome 22q with statistically significant two-point logarithm of odds (LOD scores. Subsequently, we localized three additional families, PKCC063, PKCC131, and PKCC168 to chromosome 22q. Bidirectional Sanger sequencing identified a missense variation: c.493G>C (p.Gly165Arg in CRYBB3 that segregated with the disease phenotype in all four familial cases. This variation was not found in ethnically matched control chromosomes, the NHLBI exome variant server, or the 1000 Genomes or dbSNP databases. Interestingly, all four families harbor a unique disease haplotype that strongly suggests a common founder of the causal mutation (p<1.64E-10. We observed expression of Crybb3 in the mouse lens as early as embryonic day 15 (E15, and expression remained relatively steady throughout development.Here, we

  4. A novel mutation in the BCHE gene and phenotype identified in a child with low butyrylcholinesterase activity: a case report.

    Science.gov (United States)

    Yu, Rentao; Guo, Yanzhi; Dan, Yunjie; Tan, Wenting; Mao, Qing; Deng, Guohong

    2018-04-10

    Butyrylcholinesterase (BChE), an ester hydrolase produced mainly by the liver, hydrolyzes certain short-acting neuromuscular blocking agents, like succinylcholine and mivacurium that are widely used during anesthesia. Patients with BChE deficiency are possibly in danger of postanesthetic apnea. Hereditary BChE deficiency results from the mutations of BCHE gene located on chromosome 3, 3q26.1-q26.2, between nucleotides 165,490,692-165,555,260. This study describes a novel mutation in a child with BChE deficiency. In general, this child appeared healthy and well-developed with a normal appearance. However, the results of Wechsler Intelligence Scale showed that the full-scale intelligence quotient (FIQ) was 53, classified into the group with the minor defect. The BChE activity was 32.0 U/L, considerably lower than the normal lower limit (reference range: 5000-12,000 U/L). Sanger sequencing showed that there were 2 mutations in the exon 2 of BCHE gene of this child. One is a heterozygous mutation rs764588882 (NM_000055.3: c.401_402insA, p.Asn134Lysfs*23). The other one is a heterozygous mutation (NM_000055.3: c.73A > T, p.Lys25Ter) that has never been reported before. The two mutations lead to a premature stop of transcription. Double heterozygous recessive mutations are the cause of BChE deficiency of this boy in this study, including a novel mutation c.73A > T. Intellectual disability is a new phenotype that is probably associated with this mutation.

  5. Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms.

    Science.gov (United States)

    Milosevic Feenstra, Jelena D; Nivarthi, Harini; Gisslinger, Heinz; Leroy, Emilie; Rumi, Elisa; Chachoua, Ilyas; Bagienski, Klaudia; Kubesova, Blanka; Pietra, Daniela; Gisslinger, Bettina; Milanesi, Chiara; Jäger, Roland; Chen, Doris; Berg, Tiina; Schalling, Martin; Schuster, Michael; Bock, Christoph; Constantinescu, Stefan N; Cazzola, Mario; Kralovics, Robert

    2016-01-21

    Essential thrombocythemia (ET) and primary myelofibrosis (PMF) are chronic diseases characterized by clonal hematopoiesis and hyperproliferation of terminally differentiated myeloid cells. The disease is driven by somatic mutations in exon 9 of CALR or exon 10 of MPL or JAK2-V617F in >90% of the cases, whereas the remaining cases are termed "triple negative." We aimed to identify the disease-causing mutations in the triple-negative cases of ET and PMF by applying whole-exome sequencing (WES) on paired tumor and control samples from 8 patients. We found evidence of clonal hematopoiesis in 5 of 8 studied cases based on clonality analysis and presence of somatic genetic aberrations. WES identified somatic mutations in 3 of 8 cases. We did not detect any novel recurrent somatic mutations. In 3 patients with clonal hematopoiesis analyzed by WES, we identified a somatic MPL-S204P, a germline MPL-V285E mutation, and a germline JAK2-G571S variant. We performed Sanger sequencing of the entire coding region of MPL in 62, and of JAK2 in 49 additional triple-negative cases of ET or PMF. New somatic (T119I, S204F, E230G, Y591D) and 1 germline (R321W) MPL mutation were detected. All of the identified MPL mutations were gain-of-function when analyzed in functional assays. JAK2 variants were identified in 5 of 57 triple-negative cases analyzed by WES and Sanger sequencing combined. We could demonstrate that JAK2-V625F and JAK2-F556V are gain-of-function mutations. Our results suggest that triple-negative cases of ET and PMF do not represent a homogenous disease entity. Cases with polyclonal hematopoiesis might represent hereditary disorders. © 2016 by The American Society of Hematology.

  6. High-throughput genotyping in metastatic esophageal squamous cell carcinoma identifies phosphoinositide-3-kinase and BRAF mutations.

    Directory of Open Access Journals (Sweden)

    Chi Hoon Maeng

    Full Text Available Given the high incidence of metastatic esophageal squamous cell carcinoma, especially in Asia, we screened for the presence of somatic mutations using OncoMap platform with the aim of defining subsets of patients who may be potential candidate for targeted therapy.We analyzed 87 tissue specimens obtained from 80 patients who were pathologically confirmed with esophageal squamous cell carcinoma and received 5-fluoropyrimidine/platinum-based chemotherapy. OncoMap 4.0, a mass-spectrometry based assay, was used to interrogate 471 oncogenic mutations in 41 commonly mutated genes. Tumor specimens were prepared from primary cancer sites in 70 patients and from metastatic sites in 17 patients. In order to test the concordance between primary and metastatic sites from the patient for mutations, we analyzed 7 paired (primary-metastatic specimens. All specimens were formalin-fixed paraffin embedded tissues and tumor content was >70%.In total, we have detected 20 hotspot mutations out of 80 patients screened. The most frequent mutation was PIK3CA mutation (four E545K, five H1047R and one H1047L (N = 10, 11.5% followed by MLH1 V384D (N = 7, 8.0%, TP53 (R306, R175H and R273C (N = 3, 3.5%, BRAF V600E (N = 1, 1.2%, CTNNB1 D32N (N = 1, 1.2%, and EGFR P733L (N = 1, 1.2%. Distributions of somatic mutations were not different according to anatomic sites of esophageal cancer (cervical/upper, mid, lower. In addition, there was no difference in frequency of mutations between primary-metastasis paired samples.Our study led to the detection of potentially druggable mutations in esophageal SCC which may guide novel therapies in small subsets of esophageal cancer patients.

  7. Targeted/exome sequencing identified mutations in ten Chinese patients diagnosed with Noonan syndrome and related disorders

    Directory of Open Access Journals (Sweden)

    Shanshan Xu

    2017-10-01

    Full Text Available Abstract Background Noonan syndrome (NS and Noonan syndrome with multiple lentigines (NSML are autosomal dominant developmental disorders. NS and NSML are caused by abnormalities in genes that encode proteins related to the RAS-MAPK pathway, including PTPN11, RAF1, BRAF, and MAP2K. In this study, we diagnosed ten NS or NSML patients via targeted sequencing or whole exome sequencing (TS/WES. Methods TS/WES was performed to identify mutations in ten Chinese patients who exhibited the following manifestations: potential facial dysmorphisms, short stature, congenital heart defects, and developmental delay. Sanger sequencing was used to confirm the suspected pathological variants in the patients and their family members. Results TS/WES revealed three mutations in the PTPN11 gene, three mutations in RAF1 gene, and four mutations in BRAF gene in the NS and NSML patients who were previously diagnosed based on the abovementioned clinical features. All the identified mutations were determined to be de novo mutations. However, two patients who carried the same mutation in the RAF1 gene presented different clinical features. One patient with multiple lentigines was diagnosed with NSML, while the other patient without lentigines was diagnosed with NS. In addition, a patient who carried a hotspot mutation in the BRAF gene was diagnosed with NS instead of cardiofaciocutaneous syndrome (CFCS. Conclusions TS/WES has emerged as a useful tool for definitive diagnosis and accurate genetic counseling of atypical cases. In this study, we analyzed ten Chinese patients diagnosed with NS and related disorders and identified their correspondingPTPN11, RAF1, and BRAF mutations. Among the target genes, BRAF showed the same degree of correlation with NS incidence as that of PTPN11 or RAF1.

  8. Exome Sequencing Identifies a Novel MAP3K14 Mutation in Recessive Atypical Combined Immunodeficiency

    Directory of Open Access Journals (Sweden)

    Nikola Schlechter

    2017-11-01

    Full Text Available Primary immunodeficiency disorders (PIDs render patients vulnerable to infection with a wide range of microorganisms and thus provide good in vivo models for the assessment of immune responses during infectious challenges. Priming of the immune system, especially in infancy, depends on different environmental exposures and medical practices. This may determine the timing and phenotype of clinical appearance of immune deficits as exemplified with early exposure to Bacillus Calmette-Guérin (BCG vaccination and dissemination in combined immunodeficiencies. Varied phenotype expression poses a challenge to identification of the putative immune deficit. Without the availability of genomic diagnosis and data analysis resources and with limited capacity for functional definition of immune pathways, it is difficult to establish a definitive diagnosis and to decide on appropriate treatment. This study describes the use of exome sequencing to identify a homozygous recessive variant in MAP3K14, NIKVal345Met, in a patient with combined immunodeficiency, disseminated BCG-osis, and paradoxically elevated lymphocytes. Laboratory testing confirmed hypogammaglobulinemia with normal CD19, but failed to confirm a definitive diagnosis for targeted treatment decisions. NIKVal345Met is predicted to be deleterious and pathogenic by two in silico prediction tools and is situated in a gene crucial for effective functioning of the non-canonical nuclear factor-kappa B signaling pathway. Functional analysis of NIKVal345Met- versus NIKWT-transfected human embryonic kidney-293T cells showed that this mutation significantly affects the kinase activity of NIK leading to decreased levels of phosphorylated IkappaB kinase-alpha (IKKα, the target of NIK. BCG-stimulated RAW264.7 cells transfected with NIKVal345Met also presented with reduced levels of phosphorylated IKKα, significantly increased p100 levels and significantly decreased p52 levels compared to cells transfected

  9. Functional examination of MLH1, MSH2, and MSH6 intronic mutations identified in Danish colorectal cancer patients.

    Science.gov (United States)

    Petersen, Sanne M; Dandanell, Mette; Rasmussen, Lene J; Gerdes, Anne-Marie; Krogh, Lotte N; Bernstein, Inge; Okkels, Henrik; Wikman, Friedrik; Nielsen, Finn C; Hansen, Thomas V O

    2013-10-03

    Germ-line mutations in the DNA mismatch repair genes MLH1, MSH2, and MSH6 predispose to the development of colorectal cancer (Lynch syndrome or hereditary nonpolyposis colorectal cancer). These mutations include disease-causing frame-shift, nonsense, and splicing mutations as well as large genomic rearrangements. However, a large number of mutations, including missense, silent, and intronic variants, are classified as variants of unknown clinical significance. Intronic MLH1, MSH2, or MSH6 variants were investigated using in silico prediction tools and mini-gene assay to asses the effect on splicing. We describe in silico and in vitro characterization of nine intronic MLH1, MSH2, or MSH6 mutations identified in Danish colorectal cancer patients, of which four mutations are novel. The analysis revealed aberrant splicing of five mutations (MLH1 c.588 + 5G > A, MLH1 c.677 + 3A > T, MLH1 c.1732-2A > T, MSH2 c.1276 + 1G > T, and MSH2 c.1662-2A > C), while four mutations had no effect on splicing compared to wild type (MLH1 c.117-34A > T, MLH1 c.1039-8 T > A, MSH2 c.2459-18delT, and MSH6 c.3439-16C > T). In conclusion, we classify five MLH1/MSH2 mutations as pathogenic, whereas four MLH1/MSH2/MSH6 mutations are classified as neutral. This study supports the notion that in silico prediction tools and mini-gene assays are important for the classification of intronic variants, and thereby crucial for the genetic counseling of patients and their family members.

  10. Mutations in the newly identified RAX regulatory sequence are not a frequent cause of micro/anophthalmia.

    Science.gov (United States)

    Chassaing, Nicolas; Vigouroux, Adeline; Calvas, Patrick

    2009-06-01

    Microphthalmia and anophthalmia are at the severe end of the spectrum of abnormalities in ocular development. A few genes (SOX2, OTX2, RAX, and CHX10) have been implicated in isolated micro/anophthalmia, but causative mutations of these genes explain less than a quarter of these developmental defects. A specifically conserved SOX2/OTX2-mediated RAX expression regulatory sequence has recently been identified. We postulated that mutations in this sequence could lead to micro/anophthalmia, and thus we performed molecular screening of this regulatory element in patients suffering from micro/anophthalmia. Fifty-one patients suffering from nonsyndromic microphthalmia (n = 40) or anophthalmia (n = 11) were included in this study after negative molecular screening for SOX2, OTX2, RAX, and CHX10 mutations. Mutation screening of the RAX regulatory sequence was performed by direct sequencing for these patients. No mutations were identified in the highly conserved RAX regulatory sequence in any of the 51 patients. Mutations in the newly identified RAX regulatory sequence do not represent a frequent cause of nonsyndromic micro/anophthalmia.

  11. Eight Mutations of Three Genes (EDA, EDAR, and WNT10A) Identified in Seven Hypohidrotic Ectodermal Dysplasia Patients.

    Science.gov (United States)

    Zeng, Binghui; Xiao, Xue; Li, Sijie; Lu, Hui; Lu, Jiaxuan; Zhu, Ling; Yu, Dongsheng; Zhao, Wei

    2016-09-19

    Hypohidrotic ectodermal dysplasia (HED) is characterized by abnormal development of the teeth, hair, and sweat glands. Ectodysplasin A (EDA), Ectodysplasin A receptor (EDAR), and EDAR-associated death domain (EDARADD) are candidate genes for HED, but the relationship between WNT10A and HED has not yet been validated. In this study, we included patients who presented at least two of the three ectodermal dysplasia features. The four genes were analyzed in seven HED patients by PCR and Sanger sequencing. Five EDA and one EDAR heterozygous mutations were identified in families 1-6. Two WNT10A heterozygous mutations were identified in family 7 as a compound heterozygote. c.662G>A (p.Gly221Asp) in EDA and c.354T>G (p.Tyr118*) in WNT10A are novel mutations. Bioinformatics analyses results confirmed the pathogenicity of the two novel mutations. In family 7, we also identified two single-nucleotide polymorphisms (SNPs) that were predicted to affect the splicing of EDAR. Analysis of the patient's total RNA revealed normal splicing of EDAR. This ascertained that the compound heterozygous WNT10A mutations are the genetic defects that led to the onset of HED. Our data revealed the genetic basis of seven HED patients and expended the mutational spectrum. Interestingly, we confirmed WNT10A as a candidate gene of HED and we propose WNT10A to be tested in EDA-negative HED patients.

  12. Whole exome sequencing identifies novel mutation in eight Chinese children with isolated tetralogy of Fallot.

    Science.gov (United States)

    Liu, Lin; Wang, Hong-Dan; Cui, Cun-Ying; Qin, Yun-Yun; Fan, Tai-Bing; Peng, Bang-Tian; Zhang, Lian-Zhong; Wang, Cheng-Zeng

    2017-12-05

    Tetralogy of Fallot is the most common cyanotic congenital heart disease. However, its pathogenesis remains to be clarified. The purpose of this study was to identify the genetic variants in Tetralogy of Fallot by whole exome sequencing. Whole exome sequencing was performed among eight small families with Tetralogy of Fallot. Differential single nucleotide polymorphisms and small InDels were found by alignment within families and between families and then were verified by Sanger sequencing. Tetralogy of Fallot-related genes were determined by analysis using Gene Ontology /pathway, Online Mendelian Inheritance in Man, PubMed and other databases. A total of sixteen differential single nucleotide polymorphisms loci and eight differential small InDels were discovered. The sixteen differential single nucleotide polymorphisms loci were located on Chr 1, 2, 4, 5, 11, 12, 15, 22 and X. Among the sixteen single nucleotide polymorphisms loci, six has not been reported. The eight differential small InDels were located on Chr 2, 4, 9, 12, 17, 19 and X, whereas of the eight differential small InDels, two has not been reported. Analysis using Gene Ontology /pathway, Online Mendelian Inheritance in Man, PubMed and other databases revealed that PEX5 , NACA , ATXN2 , CELA1 , PCDHB4 and CTBP1 were associated with Tetralogy of Fallot. Our findings identify PEX5 , NACA , ATXN2 , CELA1 , PCDHB4 and CTBP1 mutations as underlying genetic causes of isolated tetralogy of Fallot.

  13. Exome-wide Association Study Identifies GREB1L Mutations in Congenital Kidney Malformations.

    Science.gov (United States)

    Sanna-Cherchi, Simone; Khan, Kamal; Westland, Rik; Krithivasan, Priya; Fievet, Lorraine; Rasouly, Hila Milo; Ionita-Laza, Iuliana; Capone, Valentina P; Fasel, David A; Kiryluk, Krzysztof; Kamalakaran, Sitharthan; Bodria, Monica; Otto, Edgar A; Sampson, Matthew G; Gillies, Christopher E; Vega-Warner, Virginia; Vukojevic, Katarina; Pediaditakis, Igor; Makar, Gabriel S; Mitrotti, Adele; Verbitsky, Miguel; Martino, Jeremiah; Liu, Qingxue; Na, Young-Ji; Goj, Vinicio; Ardissino, Gianluigi; Gigante, Maddalena; Gesualdo, Loreto; Janezcko, Magdalena; Zaniew, Marcin; Mendelsohn, Cathy Lee; Shril, Shirlee; Hildebrandt, Friedhelm; van Wijk, Joanna A E; Arapovic, Adela; Saraga, Marijan; Allegri, Landino; Izzi, Claudia; Scolari, Francesco; Tasic, Velibor; Ghiggeri, Gian Marco; Latos-Bielenska, Anna; Materna-Kiryluk, Anna; Mane, Shrikant; Goldstein, David B; Lifton, Richard P; Katsanis, Nicholas; Davis, Erica E; Gharavi, Ali G

    2017-11-02

    Renal agenesis and hypodysplasia (RHD) are major causes of pediatric chronic kidney disease and are highly genetically heterogeneous. We conducted whole-exome sequencing in 202 case subjects with RHD and identified diagnostic mutations in genes known to be associated with RHD in 7/202 case subjects. In an additional affected individual with RHD and a congenital heart defect, we found a homozygous loss-of-function (LOF) variant in SLIT3, recapitulating phenotypes reported with Slit3 inactivation in the mouse. To identify genes associated with RHD, we performed an exome-wide association study with 195 unresolved case subjects and 6,905 control subjects. The top signal resided in GREB1L, a gene implicated previously in Hoxb1 and Shha signaling in zebrafish. The significance of the association, which was p = 2.0 × 10 -5 for novel LOF, increased to p = 4.1 × 10 -6 for LOF and deleterious missense variants combined, and augmented further after accounting for segregation and de novo inheritance of rare variants (joint p = 2.3 × 10 -7 ). Finally, CRISPR/Cas9 disruption or knockdown of greb1l in zebrafish caused specific pronephric defects, which were rescued by wild-type human GREB1L mRNA, but not mRNA containing alleles identified in case subjects. Together, our study provides insight into the genetic landscape of kidney malformations in humans, presents multiple candidates, and identifies SLIT3 and GREB1L as genes implicated in the pathogenesis of RHD. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  14. Recently Identified Mutations in the Ebola Virus-Makona Genome Do Not Alter Pathogenicity in Animal Models

    Directory of Open Access Journals (Sweden)

    Andrea Marzi

    2018-05-01

    Full Text Available Summary: Ebola virus (EBOV, isolate Makona, the causative agent of the West African EBOV epidemic, has been the subject of numerous investigations to determine the genetic diversity and its potential implication for virus biology, pathogenicity, and transmissibility. Despite various mutations that have emerged over time through multiple human-to-human transmission chains, their biological relevance remains questionable. Recently, mutations in the glycoprotein GP and polymerase L, which emerged and stabilized early during the outbreak, have been associated with improved viral fitness in cell culture. Here, we infected mice and rhesus macaques with EBOV-Makona isolates carrying or lacking those mutations. Surprisingly, all isolates behaved very similarly independent of the genotype, causing severe or lethal disease in mice and macaques, respectively. Likewise, we could not detect any evidence for differences in virus shedding. Thus, no specific biological phenotype could be associated with these EBOV-Makona mutations in two animal models. : Marzi et al. demonstrate that recently identified mutations in the EBOV-Makona genome, which appeared during the West African epidemic, do not significantly alter pathogenicity in IFNAR−/− mice and rhesus macaques. Other factors may have been more important for increased case numbers, case fatalities, and human-to-human transmission during this unprecedented epidemic. Keywords: Ebola virus, Ebola Makona, glycoprotein GP, polymerase L, GP mutation A82V, L mutation D759G, West African epidemic, pathogenicity

  15. Exome Sequencing Identified a Recessive RDH12 Mutation in a Family with Severe Early-Onset Retinitis Pigmentosa

    Directory of Open Access Journals (Sweden)

    Bo Gong

    2015-01-01

    Full Text Available Retinitis pigmentosa (RP is the most important hereditary retinal disease caused by progressive degeneration of the photoreceptor cells. This study is to identify gene mutations responsible for autosomal recessive retinitis pigmentosa (arRP in a Chinese family using next-generation sequencing technology. A Chinese family with 7 members including two individuals affected with severe early-onset RP was studied. All patients underwent a complete ophthalmic examination. Exome sequencing was performed on a single RP patient (the proband of this family and direct Sanger sequencing on other family members and normal controls was followed to confirm the causal mutations. A homozygous mutation c.437Tidentified as being related to the phenotype of this arRP family. This homozygous mutation was detected in the two affected patients, but not present in other family members and 600 normal controls. Another three normal members in the family were found to carry this heterozygous missense mutation. Our results emphasize the importance of c.437Tmutation in the pathogenesis and clinical diagnosis of RP.

  16. Phenotype/genotype correlation in a case series of Stargardt's patients identifies novel mutations in the ABCA4 gene.

    Science.gov (United States)

    Gemenetzi, M; Lotery, A J

    2013-11-01

    To investigate phenotypic variability in terms of best-corrected visual acuity (BCVA) in patients with Stargardt disease (STGD) and confirmed ABCA4 mutations. Entire coding region analysis of the ABCA4 gene by direct sequencing of seven patients with clinical findings of STGD seen in the Retina Clinics of Southampton Eye Unit between 2002 and 2011.Phenotypic variables recorded were BCVA, fluorescein angiographic appearance, electrophysiology, and visual fields. All patients had heterozygous amino acid-changing variants (missense mutations) in the ABCA4 gene. A splice sequence change was found in a 30-year-old patient with severly affected vision. Two novel sequence changes were identified: a missense mutation in a mildly affected 44-year-old patient and a frameshift mutation in a severly affected 34-year-old patient. The identified ABCA4 mutations were compatible with the resulting phenotypes in terms of BCVA. Higher BCVAs were recorded in patients with missense mutations. Sequence changes, predicted to have more deleterious effect on protein function, resulted in a more severe phenotype. This case series of STGD patients demonstrates novel genotype/phenotype correlations, which may be useful to counselling of patients. This information may prove useful in selection of candidates for clinical trials in ABCA4 disease.

  17. Cross-comparison of the genome sequences from human, chimpanzee, Neanderthal and a Denisovan hominin identifies novel potentially compensated mutations

    Directory of Open Access Journals (Sweden)

    Zhang Guojie

    2011-07-01

    Full Text Available Abstract The recent publication of the draft genome sequences of the Neanderthal and a ~50,000-year-old archaic hominin from Denisova Cave in southern Siberia has ushered in a new age in molecular archaeology. We previously cross-compared the human, chimpanzee and Neanderthal genome sequences with respect to a set of disease-causing/disease-associated missense and regulatory mutations (Human Gene Mutation Database and succeeded in identifying genetic variants which, although apparently pathogenic in humans, may represent a 'compensated' wild-type state in at least one of the other two species. Here, in an attempt to identify further 'potentially compensated mutations' (PCMs of interest, we have compared our dataset of disease-causing/disease-associated mutations with their corresponding nucleotide positions in the Denisovan hominin, Neanderthal and chimpanzee genomes. Of the 15 human putatively disease-causing mutations that were found to be compensated in chimpanzee, Denisovan or Neanderthal, only a solitary F5 variant (Val1736Met was specific to the Denisovan. In humans, this missense mutation is associated with activated protein C resistance and an increased risk of thromboembolism and recurrent miscarriage. It is unclear at this juncture whether this variant was indeed a PCM in the Denisovan or whether it could instead have been associated with disease in this ancient hominin.

  18. Whole-Exome Sequencing Identified a Novel Compound Heterozygous Mutation of LRRC6 in a Chinese Primary Ciliary Dyskinesia Patient

    Directory of Open Access Journals (Sweden)

    Lv Liu

    2018-01-01

    Full Text Available Primary ciliary dyskinesia (PCD is a clinical rare peculiar disorder, mainly featured by respiratory infection, tympanitis, nasosinusitis, and male infertility. Previous study demonstrated it is an autosomal recessive disease and by 2017 almost 40 pathologic genes have been identified. Among them are the leucine-rich repeat- (LRR- containing 6 (LRRC6 codes for a 463-amino-acid cytoplasmic protein, expressed distinctively in motile cilia cells, including the testis cells and the respiratory epithelial cells. In this study, we applied whole-exome sequencing combined with PCD-known genes filtering to explore the genetic lesion of a PCD patient. A novel compound heterozygous mutation in LRRC6 (c.183T>G/p.N61K; c.179-1G>A was identified and coseparated in this family. The missense mutation (c.183T>G/p.N61K may lead to a substitution of asparagine by lysine at position 61 in exon 3 of LRRC6. The splice site mutation (c.179-1G>A may cause a premature stop codon in exon 4 and decrease the mRNA levels of LRRC6. Both mutations were not present in our 200 local controls, dbSNP, and 1000 genomes. Three bioinformatics programs also predicted that both mutations are deleterious. Our study not only further supported the importance of LRRC6 in PCD, but also expanded the spectrum of LRRC6 mutations and will contribute to the genetic diagnosis and counseling of PCD patients.

  19. A novel common large genomic deletion and two new missense mutations identified in the Romanian phenylketonuria population.

    Science.gov (United States)

    Gemperle-Britschgi, Corinne; Iorgulescu, Daniela; Mager, Monica Alina; Anton-Paduraru, Dana; Vulturar, Romana; Thöny, Beat

    2016-01-15

    The mutation spectrum for the phenylalanine hydroxylase (PAH) gene was investigated in a cohort of 84 hyperphenylalaninemia (HPA) patients from Romania identified through newborn screening or neurometabolic investigations. Differential diagnosis identified 81 patients with classic PAH deficiency while 3 had tetrahydropterin-cofactor deficiency and/or remained uncertain due to insufficient specimen. PAH-genetic analysis included a combination of Sanger sequencing of exons and exon–intron boundaries, MLPA and NGS with genomic DNA, and cDNA analysis from immortalized lymphoblasts. A diagnostic efficiency of 99.4% was achieved, as for one allele (out of a total of 162 alleles) no mutation could be identified. The most prevalent mutation was p.Arg408Trp which was found in ~ 38% of all PKU alleles. Three novel mutations were identified, including the two missense mutations p.Gln226Lys and p.Tyr268Cys that were both disease causing by prediction algorithms, and the large genomic deletion EX6del7831 (c.509 + 4140_706 + 510del7831) that resulted in skipping of exon 6 based on PAH-cDNA analysis in immortalized lymphocytes. The genomic deletion was present in a heterozygous state in 12 patients, i.e. in ~ 8% of all the analyzed PKU alleles, and might have originated from a Romanian founder.

  20. Whole-genome sequencing in autism identifies hot spots for de novo germline mutation

    DEFF Research Database (Denmark)

    Michaelson, Jacob J.; Shi, Yujian; Gujral, Madhusudan

    2012-01-01

    De novo mutation plays an important role in autism spectrum disorders (ASDs). Notably, pathogenic copy number variants (CNVs) are characterized by high mutation rates. We hypothesize that hypermutability is a property of ASD genes and may also include nucleotide-substitution hot spots. We...

  1. Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer

    NARCIS (Netherlands)

    Peifer, Martin; Fernandez-Cuesta, Lynnette; Sos, Martin L.; George, Julie; Seidel, Danila; Kasper, Lawryn H.; Plenker, Dennis; Leenders, Frauke; Sun, Ruping; Zander, Thomas; Menon, Roopika; Koker, Mirjam; Dahmen, Ilona; Mueller, Christian; Di Cerbo, Vincenzo; Schildhaus, Hans-Ulrich; Altmueller, Janine; Baessmann, Ingelore; Becker, Christian; de Wilde, Bram; Vandesompele, Jo; Boehm, Diana; Ansen, Sascha; Gabler, Franziska; Wilkening, Ines; Heynck, Stefanie; Heuckmann, Johannes M.; Lu, Xin; Carter, Scott L.; Cibulskis, Kristian; Banerji, Shantanu; Getz, Gad; Park, Kwon-Sik; Rauh, Daniel; Gruetter, Christian; Fischer, Matthias; Pasqualucci, Laura; Wright, Gavin; Wainer, Zoe; Russell, Prudence; Petersen, Iver; Chen, Yuan; Stoelben, Erich; Ludwig, Corinna; Schnabel, Philipp; Hoffmann, Hans; Muley, Thomas; Brockmann, Michael; Engel-Riedel, Walburga; Muscarella, Lucia A.; Fazio, Vito M.; Groen, Harry; Timens, Wim; Sietsma, Hannie; Thunnissen, Erik; Smit, Egbert; Heideman, Danielle A. M.; Snijders, Peter J. F.; Cappuzzo, Federico; Ligorio, Claudia; Damiani, Stefania; Field, John; Solberg, Steinar; Brustugun, Odd Terje; Lund-Iversen, Marius; Saenger, Joerg; Clement, Joachim H.; Soltermann, Alex; Moch, Holger; Weder, Walter; Solomon, Benjamin; Soria, Jean-Charles; Validire, Pierre; Besse, Benjamin; Brambilla, Elisabeth; Brambilla, Christian; Lantuejoul, Sylvie; Lorimier, Philippe; Schneider, Peter M.; Hallek, Michael; Pao, William; Meyerson, Matthew; Sage, Julien; Shendure, Jay; Schneider, Robert; Buettner, Reinhard; Wolf, Juergen; Nuernberg, Peter; Perner, Sven; Heukamp, Lukas C.; Brindle, Paul K.; Haas, Stefan; Thomas, Roman K.

    2012-01-01

    Small-cell lung cancer (SCLC) is an aggressive lung tumor subtype with poor prognosis(1-3). We sequenced 29 SCLC exomes, 2 genomes and 15 transcriptomes and found an extremely high mutation rate of 7.4 +/- 1 protein-changing mutations per million base pairs. Therefore, we conducted integrated

  2. Exome sequencing identifies highly recurrent MED12 somatic mutations in breast fibroadenoma.

    Science.gov (United States)

    Lim, Weng Khong; Ong, Choon Kiat; Tan, Jing; Thike, Aye Aye; Ng, Cedric Chuan Young; Rajasegaran, Vikneswari; Myint, Swe Swe; Nagarajan, Sanjanaa; Nasir, Nur Diyana Md; McPherson, John R; Cutcutache, Ioana; Poore, Gregory; Tay, Su Ting; Ooi, Wei Siong; Tan, Veronique Kiak Mien; Hartman, Mikael; Ong, Kong Wee; Tan, Benita K T; Rozen, Steven G; Tan, Puay Hoon; Tan, Patrick; Teh, Bin Tean

    2014-08-01

    Fibroadenomas are the most common breast tumors in women under 30 (refs. 1,2). Exome sequencing of eight fibroadenomas with matching whole-blood samples revealed recurrent somatic mutations solely in MED12, which encodes a Mediator complex subunit. Targeted sequencing of an additional 90 fibroadenomas confirmed highly frequent MED12 exon 2 mutations (58/98, 59%) that are probably somatic, with 71% of mutations occurring in codon 44. Using laser capture microdissection, we show that MED12 fibroadenoma mutations are present in stromal but not epithelial mammary cells. Expression profiling of MED12-mutated and wild-type fibroadenomas revealed that MED12 mutations are associated with dysregulated estrogen signaling and extracellular matrix organization. The fibroadenoma MED12 mutation spectrum is nearly identical to that of previously reported MED12 lesions in uterine leiomyoma but not those of other tumors. Benign tumors of the breast and uterus, both of which are key target tissues of estrogen, may thus share a common genetic basis underpinned by highly frequent and specific MED12 mutations.

  3. Integrated sequence analysis pipeline provides one-stop solution for identifying disease-causing mutations.

    Science.gov (United States)

    Hu, Hao; Wienker, Thomas F; Musante, Luciana; Kalscheuer, Vera M; Kahrizi, Kimia; Najmabadi, Hossein; Ropers, H Hilger

    2014-12-01

    Next-generation sequencing has greatly accelerated the search for disease-causing defects, but even for experts the data analysis can be a major challenge. To facilitate the data processing in a clinical setting, we have developed a novel medical resequencing analysis pipeline (MERAP). MERAP assesses the quality of sequencing, and has optimized capacity for calling variants, including single-nucleotide variants, insertions and deletions, copy-number variation, and other structural variants. MERAP identifies polymorphic and known causal variants by filtering against public domain databases, and flags nonsynonymous and splice-site changes. MERAP uses a logistic model to estimate the causal likelihood of a given missense variant. MERAP considers the relevant information such as phenotype and interaction with known disease-causing genes. MERAP compares favorably with GATK, one of the widely used tools, because of its higher sensitivity for detecting indels, its easy installation, and its economical use of computational resources. Upon testing more than 1,200 individuals with mutations in known and novel disease genes, MERAP proved highly reliable, as illustrated here for five families with disease-causing variants. We believe that the clinical implementation of MERAP will expedite the diagnostic process of many disease-causing defects. © 2014 WILEY PERIODICALS, INC.

  4. Structural and functional analysis of APOA5 mutations identified in patients with severe hypertriglyceridemia[S

    Science.gov (United States)

    Mendoza-Barberá, Elena; Julve, Josep; Nilsson, Stefan K.; Lookene, Aivar; Martín-Campos, Jesús M.; Roig, Rosa; Lechuga-Sancho, Alfonso M.; Sloan, John H.; Fuentes-Prior, Pablo; Blanco-Vaca, Francisco

    2013-01-01

    During the diagnosis of three unrelated patients with severe hypertriglyceridemia, three APOA5 mutations [p.(Ser232_Leu235)del, p.Leu253Pro, and p.Asp332ValfsX4] were found without evidence of concomitant LPL, APOC2, or GPIHBP1 mutations. The molecular mechanisms by which APOA5 mutations result in severe hypertriglyceridemia remain poorly understood, and the functional impairment/s induced by these specific mutations was not obvious. Therefore, we performed a thorough structural and functional analysis that included follow-up of patients and their closest relatives, measurement of apoA-V serum concentrations, and sequencing of the APOA5 gene in 200 nonhyperlipidemic controls. Further, we cloned, overexpressed, and purified both wild-type and mutant apoA-V variants and characterized their capacity to activate LPL. The interactions of recombinant wild-type and mutated apoA-V variants with liposomes of different composition, heparin, LRP1, sortilin, and SorLA/LR11 were also analyzed. Finally, to explore the possible structural consequences of these mutations, we developed a three-dimensional model of full-length, lipid-free human apoA-V. A complex, wide array of impairments was found in each of the three mutants, suggesting that the specific residues affected are critical structural determinants for apoA-V function in lipoprotein metabolism and, therefore, that these APOA5 mutations are a direct cause of hypertriglyceridemia. PMID:23307945

  5. A novel APOC2 gene mutation identified in a Chinese patient with severe hypertriglyceridemia and recurrent pancreatitis.

    Science.gov (United States)

    Jiang, Jingjing; Wang, Yuhui; Ling, Yan; Kayoumu, Abudurexiti; Liu, George; Gao, Xin

    2016-01-16

    The severe forms of hypertriglyceridemia are usually caused by genetic defects. In this study, we described a Chinese female with severe hypertriglyceridemia caused by a novel homozygous mutation in the APOC2 gene. Lipid profiles of the pedigree were studied in detail. LPL and HL activity were also measured. The coding regions of 5 candidate genes (namely LPL, APOC2, APOA5, LMF1, and GPIHBP1) were sequenced using genomic DNA from peripheral leucocytes. The ApoE gene was also genotyped. Serum triglyceride level was extremely high in the proband, compared with other family members. Plasma LPL activity was also significantly reduced in the proband. Serum ApoCII was very low in the proband as well as in the heterozygous mutation carriers. A novel mutation (c.86A > CC) was identified on exon 3 [corrected] of the APOC2 gene, which converted the Asp [corrected] codon at position 29 into Ala, followed by a termination codon (TGA). This study presented the first case of ApoCII deficiency in the Chinese population, with a novel mutation c.86A > CC in the APOC2 gene identified. Serum ApoCII protein might be a useful screening test for identifying mutation carriers.

  6. Spontaneous mutation of Dock7 results in lower trabecular bone mass and impaired periosteal expansion in aged female Misty mice.

    Science.gov (United States)

    Le, Phuong T; Bishop, Kathleen A; Maridas, David E; Motyl, Katherine J; Brooks, Daniel J; Nagano, Kenichi; Baron, Roland; Bouxsein, Mary L; Rosen, Clifford J

    2017-12-01

    Misty mice (m/m) have a loss of function mutation in Dock7 gene, a guanine nucleotide exchange factor, resulting in low bone mineral density, uncoupled bone remodeling and reduced bone formation. Dock7 has been identified as a modulator of osteoblast number and in vitro osteogenic differentiation in calvarial osteoblast culture. In addition, m/m exhibit reduced preformed brown adipose tissue innervation and temperature as well as compensatory increase in beige adipocyte markers. While the low bone mineral density phenotype is in part due to higher sympathetic nervous system (SNS) drive in young mice, it is unclear what effect aging would have in mice homozygous for the mutation in the Dock7 gene. We hypothesized that age-related trabecular bone loss and periosteal envelope expansion would be altered in m/m. To test this hypothesis, we comprehensively characterized the skeletal phenotype of m/m at 16, 32, 52, and 78wks of age. When compared to age-matched wild-type control mice (+/+), m/m had lower areal bone mineral density (aBMD) and areal bone mineral content (aBMC). Similarly, both femoral and vertebral BV/TV, Tb.N, and Conn.D were decreased in m/m while there was also an increase in Tb.Sp. As low bone mineral density and decreased trabecular bone were already present at 16wks of age in m/m and persisted throughout life, changes in age-related trabecular bone loss were not observed highlighting the role of Dock7 in controlling trabecular bone acquisition or bone loss prior to 16wks of age. Cortical thickness was also lower in the m/m across all ages. Periosteal and endosteal circumferences were higher in m/m compared to +/+ at 16wks. However, endosteal and periosteal expansion were attenuated in m/m, resulting in m/m having lower periosteal and endosteal circumferences by 78wks of age compared to +/+, highlighting the critical role of Dock7 in appositional bone expansion. Histomorphometry revealed that osteoblasts were nearly undetectable in m/m and marrow

  7. Functional characterization of a CRH missense mutation identified in an ADNFLE family.

    Directory of Open Access Journals (Sweden)

    Veronica Sansoni

    Full Text Available Nocturnal frontal lobe epilepsy has been historically considered a channelopathy caused by mutations in subunits of the neuronal nicotinic acetylcholine receptor or in a recently reported potassium channel. However, these mutations account for only a minority of patients, and the existence of at least a new locus for the disease has been demonstrated. In 2005, we detected two nucleotide variations in the promoter of the CRH gene coding for the corticotropin releasing hormone in 7 patients. These variations cosegregated with the disease and were demonstrated to alter the cellular levels of this hormone. Here, we report the identification in an Italian affected family of a novel missense mutation (hpreproCRH p.Pro30Arg located in the region of the CRH coding for the protein pro-sequence. The mutation was detected in heterozygosity in the two affected individuals. In vitro assays demonstrated that this mutation results in reduced levels of protein secretion in the short time thus suggesting that mutated people could present an altered capability to respond immediately to stress agents.

  8. VWF mutations and new sequence variations identified in healthy controls are more frequent in the African-American population.

    Science.gov (United States)

    Bellissimo, Daniel B; Christopherson, Pamela A; Flood, Veronica H; Gill, Joan Cox; Friedman, Kenneth D; Haberichter, Sandra L; Shapiro, Amy D; Abshire, Thomas C; Leissinger, Cindy; Hoots, W Keith; Lusher, Jeanne M; Ragni, Margaret V; Montgomery, Robert R

    2012-03-01

    Diagnosis and classification of VWD is aided by molecular analysis of the VWF gene. Because VWF polymorphisms have not been fully characterized, we performed VWF laboratory testing and gene sequencing of 184 healthy controls with a negative bleeding history. The controls included 66 (35.9%) African Americans (AAs). We identified 21 new sequence variations, 13 (62%) of which occurred exclusively in AAs and 2 (G967D, T2666M) that were found in 10%-15% of the AA samples, suggesting they are polymorphisms. We identified 14 sequence variations reported previously as VWF mutations, the majority of which were type 1 mutations. These controls had VWF Ag levels within the normal range, suggesting that these sequence variations might not always reduce plasma VWF levels. Eleven mutations were found in AAs, and the frequency of M740I, H817Q, and R2185Q was 15%-18%. Ten AA controls had the 2N mutation H817Q; 1 was homozygous. The average factor VIII level in this group was 99 IU/dL, suggesting that this variation may confer little or no clinical symptoms. This study emphasizes the importance of sequencing healthy controls to understand ethnic-specific sequence variations so that asymptomatic sequence variations are not misidentified as mutations in other ethnic or racial groups.

  9. Mitochondrial Point Mutation m.3243A>G Associates With Lower Bone Mineral Density, Thinner Cortices, and Reduced Bone Strength

    DEFF Research Database (Denmark)

    Langdahl, Jakob Høgild; Frederiksen, Anja Lisbeth; Hansen, Stinus Jørn

    2017-01-01

    Mitochondrial dysfunction is associated with several clinical manifestations including diabetes mellitus (DM), neurological disorders, renal and hepatic diseases, and myopathy. Although mitochondrial dysfunction is associated with increased bone resorption and decreased bone formation in mouse...... at the lumbar spine, total hip, and femoral neck in cases. Mean lumbar spine, total hip, and femoral neck T-scores were -1.5, -1.3, and -1.6 in cases, respectively, and -0.8, -0.3, and -0.7 in controls (all p G mutation was associated with lower BMD, cortical but not trabecular density...

  10. Whole-exome sequencing identifies USH2A mutations in a pseudo-dominant Usher syndrome family.

    Science.gov (United States)

    Zheng, Sui-Lian; Zhang, Hong-Liang; Lin, Zhen-Lang; Kang, Qian-Yan

    2015-10-01

    Usher syndrome (USH) is an autosomal recessive (AR) multi-sensory degenerative disorder leading to deaf-blindness. USH is clinically subdivided into three subclasses, and 10 genes have been identified thus far. Clinical and genetic heterogeneities in USH make a precise diagnosis difficult. A dominant‑like USH family in successive generations was identified, and the present study aimed to determine the genetic predisposition of this family. Whole‑exome sequencing was performed in two affected patients and an unaffected relative. Systematic data were analyzed by bioinformatic analysis to remove the candidate mutations via step‑wise filtering. Direct Sanger sequencing and co‑segregation analysis were performed in the pedigree. One novel and two known mutations in the USH2A gene were identified, and were further confirmed by direct sequencing and co‑segregation analysis. The affected mother carried compound mutations in the USH2A gene, while the unaffected father carried a heterozygous mutation. The present study demonstrates that whole‑exome sequencing is a robust approach for the molecular diagnosis of disorders with high levels of genetic heterogeneity.

  11. Somatic mutations in stilbene estrogen-induced Syrian hamster kidney tumors identified by DNA fingerprinting

    Directory of Open Access Journals (Sweden)

    Roy Deodutta

    2004-01-01

    Full Text Available Abstract Kidney tumors from stilbene estrogen (diethylstilbestrol-treated Syrian hamsters were screened for somatic genetic alterations by Random Amplified Polymorphic DNA-polymerase chain-reaction (RAPD-PCR fingerprinting. Fingerprints from tumor tissue were generated by single arbitrary primers and compared with fingerprints for normal tissue from the same animal, as well as normal and tumor tissues from different animals. Sixty one of the arbitrary primers amplified 365 loci that contain approximately 476 kbp of the hamster genome. Among these amplified DNA fragments, 44 loci exhibited either qualitative or quantitative differences between the tumor tissues and normal kidney tissues. RAPD-PCR loci showing decreased and increased intensities in tumor tissue DNA relative to control DNA indicate that loci have undergone allelic losses and gains, respectively, in the stilbene estrogen-induced tumor cell genome. The presence or absence of the amplified DNA fragments indicate homozygous insertions or deletions in the kidney tumor DNA compared to the age-matched normal kidney tissue DNA. Seven of 44 mutated loci also were present in the kidney tissues adjacent to tumors (free of macroscopic tumors. The presence of mutated loci in uninvolved (non-tumor surrounding tissue adjacent to tumors from stilbene estrogen-treated hamsters suggests that these mutations occurred in the early stages of carcinogenesis. The cloning and sequencing of RAPD amplified loci revealed that one mutated locus had significant sequence similarity with the hamster Cyp1A1 gene. The results show the ability of RAPD-PCR to detect and isolate, in a single step, DNA sequences representing genetic alterations in stilbene estrogen-induced cancer cells, including losses of heterozygosity, and homozygous deletion and insertion mutations. RAPD-PCR provides an alternative molecular approach for studying cancer cytogenetics in stilbene estrogen-induced tumors in humans and experimental

  12. A novel nonsense mutation of the GPR143 gene identified in a Chinese pedigree with ocular albinism.

    Directory of Open Access Journals (Sweden)

    Naihong Yan

    Full Text Available BACKGROUND: The purpose of this study was to elucidate the molecular basis of ocular albinism type I in a Chinese pedigree. METHODOLOGY/PRINCIPAL FINDINGS: Complete ophthalmologic examinations were performed on 4 patients, 7 carriers and 17 unaffected individuals in this five-generation family. All coding exons of four-point-one (4.1, ezrin, radixin, moesin (FERM domain-containing 7 (FRMD7 and G protein-coupled receptor 143 (GPR143 genes were amplified by polymerase chain reaction (PCR, sequenced and compared with a reference database. Ocular albinism and nystagmus were found in all patients of this family. Macular hypoplasia was present in the patients including the proband. A novel nonsense hemizygous mutation c.807T>A in the GPR143 gene was identified in four patients and the heterozygous mutation was found in seven asymptomatic individuals. This mutation is a substitution of tyrosine for adenine which leads to a premature stop codon at position 269 (p.Y269X of GPR143. CONCLUSIONS/SIGNIFICANCE: This is the first report that p.Y269X mutation of GPR143 gene is responsible for the pathogenesis of familial ocular albinism. These results expand the mutation spectrum of GPR143, and demonstrate the clinical characteristics of ocular albinism type I in Chinese population.

  13. Somatic mutation profiles of MSI and MSS colorectal cancer identified by whole exome next generation sequencing and bioinformatics analysis.

    Directory of Open Access Journals (Sweden)

    Bernd Timmermann

    Full Text Available BACKGROUND: Colorectal cancer (CRC is with approximately 1 million cases the third most common cancer worldwide. Extensive research is ongoing to decipher the underlying genetic patterns with the hope to improve early cancer diagnosis and treatment. In this direction, the recent progress in next generation sequencing technologies has revolutionized the field of cancer genomics. However, one caveat of these studies remains the large amount of genetic variations identified and their interpretation. METHODOLOGY/PRINCIPAL FINDINGS: Here we present the first work on whole exome NGS of primary colon cancers. We performed 454 whole exome pyrosequencing of tumor as well as adjacent not affected normal colonic tissue from microsatellite stable (MSS and microsatellite instable (MSI colon cancer patients and identified more than 50,000 small nucleotide variations for each tissue. According to predictions based on MSS and MSI pathomechanisms we identified eight times more somatic non-synonymous variations in MSI cancers than in MSS and we were able to reproduce the result in four additional CRCs. Our bioinformatics filtering approach narrowed down the rate of most significant mutations to 359 for MSI and 45 for MSS CRCs with predicted altered protein functions. In both CRCs, MSI and MSS, we found somatic mutations in the intracellular kinase domain of bone morphogenetic protein receptor 1A, BMPR1A, a gene where so far germline mutations are associated with juvenile polyposis syndrome, and show that the mutations functionally impair the protein function. CONCLUSIONS/SIGNIFICANCE: We conclude that with deep sequencing of tumor exomes one may be able to predict the microsatellite status of CRC and in addition identify potentially clinically relevant mutations.

  14. Whole exome analysis identifies dominant COL4A1 mutations in patients with complex ocular phenotypes involving microphthalmia.

    Science.gov (United States)

    Deml, B; Reis, L M; Maheshwari, M; Griffis, C; Bick, D; Semina, E V

    2014-11-01

    Anophthalmia/microphthalmia (A/M) is a developmental ocular malformation defined as complete absence or reduction in size of the eye. A/M is a heterogenous disorder with numerous causative genes identified; however, about half the cases lack a molecular diagnosis. We undertook whole exome sequencing in an A/M family with two affected siblings, two unaffected siblings, and unaffected parents; the ocular phenotype was isolated with only mild developmental delay/learning difficulties reported and a normal brain magnetic resonance imaging (MRI) in the proband at 16 months. No pathogenic mutations were identified in 71 known A/M genes. Further analysis identified a shared heterozygous mutation in COL4A1, c.2317G>A, p.(Gly773Arg) that was not seen in the unaffected parents and siblings. Analysis of 24 unrelated A/M exomes identified a novel c.2122G>A, p.(Gly708Arg) mutation in an additional patient with unilateral microphthalmia, bilateral microcornea and Peters anomaly; the mutation was absent in the unaffected mother and the unaffected father was not available. Mutations in COL4A1 have been linked to a spectrum of human disorders; the most consistent feature is cerebrovascular disease with variable ocular anomalies, kidney and muscle defects. This study expands the spectrum of COL4A1 phenotypes and indicates screening in patients with A/M regardless of MRI findings or presumed inheritance pattern. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. A Novel Locus Harbouring a Functional CD164 Nonsense Mutation Identified in a Large Danish Family with Nonsyndromic Hearing Impairment

    DEFF Research Database (Denmark)

    Nyegaard, Mette; Rendtorff, Nanna D; Nielsen, Morten S

    2015-01-01

    Nonsyndromic hearing impairment (NSHI) is a highly heterogeneous condition with more than eighty known causative genes. However, in the clinical setting, a large number of NSHI families have unexplained etiology, suggesting that there are many more genes to be identified. In this study we used SNP......-based linkage analysis and follow up microsatellite markers to identify a novel locus (DFNA66) on chromosome 6q15-21 (LOD 5.1) in a large Danish family with dominantly inherited NSHI. By locus specific capture and next-generation sequencing, we identified a c.574C>T heterozygous nonsense mutation (p.R192......-genome and exome sequence data. The predicted effect of the mutation was a truncation of the last six C-terminal residues of the cytoplasmic tail of CD164, including a highly conserved canonical sorting motif (YXX phi). In whole blood from an affected individual, we found by RT-PCR both the wild...

  16. Novel BICD2 mutation in a Japanese family with autosomal dominant lower extremity-predominant spinal muscular atrophy-2.

    Science.gov (United States)

    Yoshioka, Mieko; Morisada, Naoya; Toyoshima, Daisaku; Yoshimura, Hajime; Nishio, Hisahide; Iijima, Kazumoto; Takeshima, Yasuhiro; Uehara, Tomoko; Kosaki, Kenjiro

    2018-04-01

    The most common form of spinal muscular atrophy (SMA) is a recessive disorder caused by SMN1 mutations in 5q13, whereas the genetic etiologies of non-5q SMA are very heterogenous and largely remain to be elucidated. We present a father and son with atrophy and weakness of the lower leg muscles since infancy. Genetic studies in this family revealed a novel BICD2 mutation causing autosomal dominant lower extremity-predominant SMA type 2. The proband was the father, aged 30, and the son was aged 3. Both of them were born uneventfully to nonconsanguineous parents. While the father first walked at the age of 19 months, the son was unable to walk at age 3 years. In both, knee and ankle reflexes were absent and sensation was intact. Serum creatine kinase levels were normal. The son showed congenital arthrogryposis and underwent orthopedic corrections for talipes calcaneovalgus. Investigation of the father at the age of 5 years revealed normal results on nerve conduction studies and sural nerve biopsy. Electromyography showed chronic neurogenic change, and muscle biopsy showed features suggestive of denervation. The father was diagnosed clinically with a sporadic distal SMA. Follow-up studies showed very slow progression. Next-generation and Sanger sequencing revealed a deleterious mutation in BICD2: c.1667A>G, p.Tyr556Cys, in this family. BICD2 is a cytoplasmic conserved motor-adaptor protein involved in anterograde and retrograde transport along the microtubules. Next-generation sequencing will further clarify the genetic basis of non-5q SMA. Copyright © 2017 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  17. Targeted high-throughput sequencing identifies mutations in atlastin-1 as a cause of hereditary sensory neuropathy type I.

    Science.gov (United States)

    Guelly, Christian; Zhu, Peng-Peng; Leonardis, Lea; Papić, Lea; Zidar, Janez; Schabhüttl, Maria; Strohmaier, Heimo; Weis, Joachim; Strom, Tim M; Baets, Jonathan; Willems, Jan; De Jonghe, Peter; Reilly, Mary M; Fröhlich, Eleonore; Hatz, Martina; Trajanoski, Slave; Pieber, Thomas R; Janecke, Andreas R; Blackstone, Craig; Auer-Grumbach, Michaela

    2011-01-07

    Hereditary sensory neuropathy type I (HSN I) is an axonal form of autosomal-dominant hereditary motor and sensory neuropathy distinguished by prominent sensory loss that leads to painless injuries. Unrecognized, these can result in delayed wound healing and osteomyelitis, necessitating distal amputations. To elucidate the genetic basis of an HSN I subtype in a family in which mutations in the few known HSN I genes had been excluded, we employed massive parallel exon sequencing of the 14.3 Mb disease interval on chromosome 14q. We detected a missense mutation (c.1065C>A, p.Asn355Lys) in atlastin-1 (ATL1), a gene that is known to be mutated in early-onset hereditary spastic paraplegia SPG3A and that encodes the large dynamin-related GTPase atlastin-1. The mutant protein exhibited reduced GTPase activity and prominently disrupted ER network morphology when expressed in COS7 cells, strongly supporting pathogenicity. An expanded screen in 115 additional HSN I patients identified two further dominant ATL1 mutations (c.196G>C [p.Glu66Gln] and c.976 delG [p.Val326TrpfsX8]). This study highlights an unexpected major role for atlastin-1 in the function of sensory neurons and identifies HSN I and SPG3A as allelic disorders.

  18. Novel Mutation of LRP6 Identified in Chinese Han Population Links Canonical WNT Signaling to Neural Tube Defects.

    Science.gov (United States)

    Shi, Zhiwen; Yang, Xueyan; Li, Bin-Bin; Chen, Shuxia; Yang, Luming; Cheng, Liangping; Zhang, Ting; Wang, Hongyan; Zheng, Yufang

    2018-01-15

    Neural tube defects (NTDs), the second most frequent cause of human congenital abnormalities, are debilitating birth defects due to failure of neural tube closure. It has been shown that noncanonical WNT/planar cell polarity (PCP) signaling is required for convergent extension (CE), the initiation step of neural tube closure (NTC). But the effect of canonical WNT//β-catenin signaling during NTC is still elusive. LRP6 (low density lipoprotein receptor related proteins 6) was identified as a co-receptor for WNT/β-catenin signaling, but recent studies showed that it also can mediate WNT/PCP signaling. In this study, we screened mutations in the LRP6 gene in 343 NTDs and 215 ethnically matched normal controls of Chinese Han population. Three rare missense mutations (c.1514A>G, p.Y505C); c.2984A>G, p.D995G; and c.4280C>A, p.P1427Q) of the LRP6 gene were identified in Chinese NTD patients. The Y505C mutation is a loss-of-function mutation on both WNT/β-catenin and PCP signaling. The D995G mutation only partially lost inhibition on PCP signaling without affecting WNT/β-catenin signaling. The P1427Q mutation dramatically increased WNT/β-catenin signaling but only mildly loss of inhibition on PCP signaling. All three mutations failed to rescue CE defects caused by lrp6 morpholino oligos knockdown in zebrafish. Of interest, when overexpressed, D995G did not induce any defects, but Y505C and P1427Q caused more severe CE defects in zebrafish. Our results suggested that over-active canonical WNT signaling induced by gain-of-function mutation in LRP6 could also contribute to human NTDs, and a balanced WNT/β-catenin and PCP signaling is probably required for proper neural tube development. Birth Defects Research 110:63-71, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. RNA-based mutation analysis identifies an unusual MSH6 splicing defect and circumvents PMS2 pseudogene interference.

    Science.gov (United States)

    Etzler, J; Peyrl, A; Zatkova, A; Schildhaus, H-U; Ficek, A; Merkelbach-Bruse, S; Kratz, C P; Attarbaschi, A; Hainfellner, J A; Yao, S; Messiaen, L; Slavc, I; Wimmer, K

    2008-02-01

    Heterozygous germline mutations in one of the mismatch repair (MMR) genes MLH1, MSH2, MSH6, and PMS2 cause hereditary nonpolyposis colorectal cancer (HNPCC) or Lynch syndrome, a dominantly inherited cancer susceptibility syndrome. Recent reports provide evidence for a novel recessively inherited cancer syndrome with constitutive MMR deficiency due to biallelic germline mutations in one of the MMR genes. MMR-deficiency (MMR-D) syndrome is characterized by childhood brain tumors, hematological and/or gastrointestinal malignancies, and signs of neurofibromatosis type 1 (NF1). We established an RNA-based mutation detection assay for the four MMR genes, since 1) a number of splicing defects may escape detection by the analysis of genomic DNA, and 2) DNA-based mutation detection in the PMS2 gene is severely hampered by the presence of multiple highly similar pseudogenes, including PMS2CL. Using this assay, which is based on direct cDNA sequencing of RT-PCR products, we investigated two families with children suspected to suffer from MMR-D syndrome. We identified a homozygous complex MSH6 splicing alteration in the index patients of the first family and a novel homozygous PMS2 mutation (c.182delA) in the index patient of the second family. Furthermore, we demonstrate, by the analysis of a PMS2/PMS2CL "hybrid" allele carrier, that RNA-based PMS2 testing effectively avoids the caveats of genomic DNA amplification approaches; i.e., pseudogene coamplification as well as allelic dropout, and will, thus, allow more sensitive mutation analysis in MMR deficiency and in HNPCC patients with PMS2 defects. (c) 2007 Wiley-Liss, Inc.

  20. Correlation between Waardenburg syndrome phenotype and genotype in a population of individuals with identified PAX3 mutations.

    Science.gov (United States)

    DeStefano, A L; Cupples, L A; Arnos, K S; Asher, J H; Baldwin, C T; Blanton, S; Carey, M L; da Silva, E O; Friedman, T B; Greenberg, J; Lalwani, A K; Milunsky, A; Nance, W E; Pandya, A; Ramesar, R S; Read, A P; Tassabejhi, M; Wilcox, E R; Farrer, L A

    1998-05-01

    Waardenburg syndrome (WS) type 1 is an autosomal dominant disorder characterized by sensorineural hearing loss, pigmentary abnormalities of the eye, hair, and skin, and dystopia canthorum. The phenotype is variable and affected individuals may exhibit only one or a combination of several of the associated features. To assess the relationship between phenotype and gene defect, clinical and genotype data on 48 families (271 WS individuals) collected by members of the Waardenburg Consortium were pooled. Forty-two unique mutations in the PAX3 gene, previously identified in these families, were grouped in five mutation categories: amino acid (AA) substitution in the paired domain, AA substitution in the homeodomain, deletion of the Ser-Thr-Pro-rich region, deletion of the homeodomain and the Ser-Thr-Pro-rich region, and deletion of the entire gene. These mutation classes are based on the structure of the PAX3 gene and were chosen to group mutations predicted to have similar defects in the gene product. Association between mutation class and the presence of hearing loss, eye pigment abnormality, skin hypopigmentation, or white forelock was evaluated using generalized estimating equations, which allowed for incorporation of a correlation structure that accounts for potential similarity among members of the same family. Odds for the presence of eye pigment abnormality, white forelock, and skin hypopigmentation were 2, 8, and 5 times greater, respectively, for individuals with deletions of the homeodomain and the Pro-Ser-Thr-rich region compared to individuals with an AA substitution in the homeodomain. Odds ratios that differ significantly from 1.0 for these traits may indicate that the gene products resulting from different classes of mutations act differently in the expression of WS. Although a suggestive association was detected for hearing loss with an odds ratio of 2.6 for AA substitution in the paired domain compared with AA substitution in the homeodomain, this odds

  1. Genetic screening of the FLCN gene identify six novel variants and a Danish founder mutation

    DEFF Research Database (Denmark)

    Rossing, Maria; Albrechtsen, Anders; Skytte, Anne-Bine

    2016-01-01

    Pathogenic germline mutations in the folliculin (FLCN) tumor suppressor gene predispose to Birt-Hogg-Dubé (BHD) syndrome, a rare disease characterized by the development of cutaneous hamartomas (fibrofolliculomas), multiple lung cysts, spontaneous pneumothoraces and renal cell cancer. In this stu...... understanding of BHD syndrome and management of BHD patients.Journal of Human Genetics advance online publication, 13 October 2016; doi:10.1038/jhg.2016.118....

  2. Frequency of Somatic TP53 Mutations in Combination with Known Pathogenic Mutations in Colon Adenocarcinoma, Non–Small Cell Lung Carcinoma, and Gliomas as Identified by Next-Generation Sequencing

    Directory of Open Access Journals (Sweden)

    Zahra Shajani-Yi

    2018-03-01

    Full Text Available The tumor suppressor gene TP53 is the most frequently mutated gene in human cancer. It encodes p53, a DNA-binding transcription factor that regulates multiple genes involved in DNA repair, metabolism, cell cycle arrest, apoptosis, and senescence. TP53 is associated with human cancer by mutations that lead to a loss of wild-type p53 function as well as mutations that confer alternate oncogenic functions that enable them to promote invasion, metastasis, proliferation, and cell survival. Identifying the discrete TP53 mutations in tumor cells may help direct therapies that are more effective. In this study, we identified the frequency of individual TP53 mutations in patients with colon adenocarcinoma (48%, non–small cell lung carcinoma (NSCLC (36%, and glioma/glioblastoma (28% at our institution using next-generation sequencing. We also identified the occurrence of somatic mutations in numerous actionable genes including BRAF, EGFR, KRAS, IDH1, and PIK3CA that occurred concurrently with these TP53 mutations. Of the 480 tumors examined that contained one or more mutations in the TP53 gene, 219 were colon adenocarcinomas, 215 were NSCLCs, and 46 were gliomas/glioblastomas. Among the patients positive for TP53 mutations diagnosed with colon adenocarcinoma, 50% also showed at least one mutation in pathogenic genes of which 14% were BRAF, 33% were KRAS, and 3% were NRAS. Forty-seven percent of NSCLC patients harboring TP53 mutations also had a mutation in at least one actionable pathogenic variant with the following frequencies: BRAF: 4%, EGFR: 10%, KRAS: 28%, and PIK3CA: 4%. Fifty-two percent of patients diagnosed with glioma/glioblastoma with a positive TP53 mutation had at least one concurrent mutation in a known pathogenic gene of which 9% were CDKN2A, 41% were IDH1, and 11% were PIK3CA.

  3. Lymphatic filariasis: a method to identify subclinical lower limb change in PNG adolescents.

    Science.gov (United States)

    Gordon, Susan; Melrose, Wayne; Warner, Jeffrey; Buttner, Petra; Ward, Leigh

    2011-07-01

    Lymphedema related to lymphatic filariasis (LF) is a disabling condition that commonly manifests in adolescence. Fifty-three adolescents, 25 LF infected and 28 LF non-infected, in age and sex-matched groups, using the Binax ICT rapid card test for filarial antigen were recruited to the study. None of the participants had overt signs of lymphedema. Lymphedema assessment measures were used to assess lower limb tissue compressibility (tonometry), limb circumference (tape measure), intra- and extra-cellular fluid distribution (bioimpedance) and joint range of motion (goniometry). The mean tonometric measurements from the left, right, and dominant posterior thighs were significantly larger in participants with LF compared to participants who had tested negative for LF (p = 0.005, p = 0.004, and p = 0.003, respectively) indicating increased tissue compressibility in those adolescents with LF. ROC curve analysis to define optimal cut-off of the tonometry measurements indicated that at 3.5, sensitivity of this potential screening test is 100% (95%-CI = 86.3%, 100%) and specificity is 21.4% (95%-CI = 8.3%, 41.0%). It is proposed that this cut-off can be used to indicate tissue change characteristic of LF in an at-risk population of PNG adolescents. Further longitudinal research is required to establish if all those with tissue change subsequently develop lymphedema. However, thigh tonometry to identify early tissue change in LF positive adolescents may enable early intervention to minimize progression of lymphedema and prioritization of limited resources to those at greatest risk of developing lifetime morbidity.

  4. Lymphatic Filariasis: A Method to Identify Subclinical Lower Limb Change in PNG Adolescents

    Science.gov (United States)

    Gordon, Susan; Melrose, Wayne; Warner, Jeffrey; Buttner, Petra; Ward, Leigh

    2011-01-01

    Lymphedema related to lymphatic filariasis (LF) is a disabling condition that commonly manifests in adolescence. Fifty-three adolescents, 25 LF infected and 28 LF non-infected, in age and sex-matched groups, using the Binax ICT rapid card test for filarial antigen were recruited to the study. None of the participants had overt signs of lymphedema. Lymphedema assessment measures were used to assess lower limb tissue compressibility (tonometry), limb circumference (tape measure), intra- and extra-cellular fluid distribution (bioimpedance) and joint range of motion (goniometry). The mean tonometric measurements from the left, right, and dominant posterior thighs were significantly larger in participants with LF compared to participants who had tested negative for LF (p = 0.005, p = 0.004, and p = 0.003, respectively) indicating increased tissue compressibility in those adolescents with LF. ROC curve analysis to define optimal cut-off of the tonometry measurements indicated that at 3.5, sensitivity of this potential screening test is 100% (95%-CI = 86.3%, 100%) and specificity is 21.4% (95%-CI = 8.3%, 41.0%). It is proposed that this cut-off can be used to indicate tissue change characteristic of LF in an at-risk population of PNG adolescents. Further longitudinal research is required to establish if all those with tissue change subsequently develop lymphedema. However, thigh tonometry to identify early tissue change in LF positive adolescents may enable early intervention to minimize progression of lymphedema and prioritization of limited resources to those at greatest risk of developing lifetime morbidity. PMID:21811644

  5. RUMINANT NUTRITION SYMPOSIUM: Use of genomics and transcriptomics to identify strategies to lower ruminal methanogenesis.

    Science.gov (United States)

    McAllister, T A; Meale, S J; Valle, E; Guan, L L; Zhou, M; Kelly, W J; Henderson, G; Attwood, G T; Janssen, P H

    2015-04-01

    Globally, methane (CH4) emissions account for 40% to 45% of greenhouse gas emissions from ruminant livestock, with over 90% of these emissions arising from enteric fermentation. Reduction of carbon dioxide to CH4 is critical for efficient ruminal fermentation because it prevents the accumulation of reducing equivalents in the rumen. Methanogens exist in a symbiotic relationship with rumen protozoa and fungi and within biofilms associated with feed and the rumen wall. Genomics and transcriptomics are playing an increasingly important role in defining the ecology of ruminal methanogenesis and identifying avenues for its mitigation. Metagenomic approaches have provided information on changes in abundances as well as the species composition of the methanogen community among ruminants that vary naturally in their CH4 emissions, their feed efficiency, and their response to CH4 mitigators. Sequencing the genomes of rumen methanogens has provided insight into surface proteins that may prove useful in the development of vaccines and has allowed assembly of biochemical pathways for use in chemogenomic approaches to lowering ruminal CH4 emissions. Metagenomics and metatranscriptomic analysis of entire rumen microbial communities are providing new perspectives on how methanogens interact with other members of this ecosystem and how these relationships may be altered to reduce methanogenesis. Identification of community members that produce antimethanogen agents that either inhibit or kill methanogens could lead to the identification of new mitigation approaches. Discovery of a lytic archaeophage that specifically lyses methanogens is 1 such example. Efforts in using genomic data to alter methanogenesis have been hampered by a lack of sequence information that is specific to the microbial community of the rumen. Programs such as Hungate1000 and the Global Rumen Census are increasing the breadth and depth of our understanding of global ruminal microbial communities, steps that

  6. Two Novel Mutations Associated With Ataxia-Telangiectasia Identified Using an Ion AmpliSeq Inherited Disease Panel

    Directory of Open Access Journals (Sweden)

    Maria V. Kuznetsova

    2017-10-01

    Full Text Available Ataxia-telangiectasia (A-T, or Louis-Bar syndrome, is a rare neurodegenerative disorder associated with immunodeficiency. For families with at least one affected child, timely A-T genotyping during any subsequent pregnancy allows the parents to make an informed decision about whether to continue to term when the fetus is affected. Mutations in the ATM gene, which is 150 kb long, give rise to A-T; more than 600 pathogenic variants in ATM have been characterized since 1990 and new mutations continue to be discovered annually. Therefore, limiting genetic screening to previously known SNPs by PCR or hybridization with microarrays may not identify the specific pathogenic genotype in ATM for a given A-T family. However, recent developments in next-generation sequencing technology offer prompt high-throughput full-length sequencing of genomic fragments of interest. This allows the identification of the whole spectrum of mutations in a gene, including any novel ones. We report two A-T families with affected children and current pregnancies. Both families are consanguineous and originate from Caucasian regions of Russia and Azerbaijan. Before our study, no ATM mutations had been identified in the older children of these families. We used ion semiconductor sequencing and an Ion AmpliSeq™ Inherited Disease Panel to perform complete ATM gene sequencing in a single member of each family. Then we compared the experimentally determined genotype with the affected/normal phenotype distribution in the whole family to provide unambiguous evidence of pathogenic mutations responsible for A-T. A single novel SNP was allocated to each family. In the first case, we found a mononucleotide deletion, and in the second, a mononucleotide insertion. Both mutations lead to truncation of the ATM protein product. Identification of the pathogenic mutation in each family was performed in a timely fashion, allowing the fetuses to be tested and diagnosed. The parents chose to

  7. Functional analysis of a nonstop mutation in MITF gene identified in a patient with Waardenburg syndrome type 2.

    Science.gov (United States)

    Sun, Jie; Hao, Ziqi; Luo, Hunjin; He, Chufeng; Mei, Lingyun; Liu, Yalan; Wang, Xueping; Niu, Zhijie; Chen, Hongsheng; Li, Jia-Da; Feng, Yong

    2017-07-01

    Waardenburg syndrome (WS) is an autosomal dominant inherited neurogenic disorder with the combination of various degrees of sensorineural deafness and pigmentary abnormalities affecting the skin, hair and eye. The four subtypes of WS were defined on the basis of the presence or absence of additional symptoms. Mutation of human microphthalmia-associated transcription factor (MITF) gene gives rise to WS2. Here, we identified a novel WS-associated mutation at the stop codon of MITF (p.X420Y) in a Chinese WS2 patient. This mutation resulted in an extension of extra 33 amino-acid residues in MITF. The mutant MITF appeared in both the nucleus and the cytoplasm, whereas the wild-type MITF was localized in the nucleus exclusively. The mutation led to a reduction in the transcriptional activities, whereas the DNA-binding activity was not altered. We show that the foremost mechanism was haploinsufficiency for the mild phenotypes of WS2 induced in X420Y MITF.

  8. Identifying activating mutations in the EGFR gene: prognostic and therapeutic implications in non-small cell lung cancer.

    Science.gov (United States)

    Lopes, Gabriel Lima; Vattimo, Edoardo Filippo de Queiroz; Castro Junior, Gilberto de

    2015-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide. Promising new therapies have recently emerged from the development of molecular targeted drugs; particularly promising are those blocking the signal transduction machinery of cancer cells. One of the most widely studied cell signaling pathways is that of EGFR, which leads to uncontrolled cell proliferation, increased cell angiogenesis, and greater cell invasiveness. Activating mutations in the EGFR gene (deletions in exon 19 and mutation L858R in exon 21), first described in 2004, have been detected in approximately 10% of all non-squamous non-small cell lung cancer (NSCLC) patients in Western countries and are the most important predictors of a response to EGFR tyrosine-kinase inhibitors (EGFR-TKIs). Studies of the EGFR-TKIs gefitinib, erlotinib, and afatinib, in comparison with platinum-based regimens, as first-line treatments in chemotherapy-naïve patients have shown that the EGFR-TKIs produce gains in progression-free survival and overall response rates, although only in patients whose tumors harbor activating mutations in the EGFR gene. Clinical trials have also shown EGFR-TKIs to be effective as second- and third-line therapies in advanced NSCLC. Here, we review the main aspects of EGFR pathway activation in NSCLC, underscore the importance of correctly identifying activating mutations in the EGFR gene, and discuss the main outcomes of EGFR-TKI treatment in NSCLC.

  9. Identifying activating mutations in the EGFR gene: prognostic and therapeutic implications in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Gabriel Lima Lopes

    2015-08-01

    Full Text Available AbstractLung cancer is the leading cause of cancer-related deaths worldwide. Promising new therapies have recently emerged from the development of molecular targeted drugs; particularly promising are those blocking the signal transduction machinery of cancer cells. One of the most widely studied cell signaling pathways is that of EGFR, which leads to uncontrolled cell proliferation, increased cell angiogenesis, and greater cell invasiveness. Activating mutations in the EGFR gene (deletions in exon 19 and mutation L858R in exon 21, first described in 2004, have been detected in approximately 10% of all non-squamous non-small cell lung cancer (NSCLC patients in Western countries and are the most important predictors of a response to EGFR tyrosine-kinase inhibitors (EGFR-TKIs. Studies of the EGFR-TKIs gefitinib, erlotinib, and afatinib, in comparison with platinum-based regimens, as first-line treatments in chemotherapy-naïve patients have shown that the EGFR-TKIs produce gains in progression-free survival and overall response rates, although only in patients whose tumors harbor activating mutations in the EGFR gene. Clinical trials have also shown EGFR-TKIs to be effective as second- and third-line therapies in advanced NSCLC. Here, we review the main aspects of EGFR pathway activation in NSCLC, underscore the importance of correctly identifying activating mutations in the EGFR gene, and discuss the main outcomes of EGFR-TKI treatment in NSCLC.

  10. Identifying activating mutations in the EGFR gene: prognostic and therapeutic implications in non-small cell lung cancer *

    Science.gov (United States)

    Lopes, Gabriel Lima; Vattimo, Edoardo Filippo de Queiroz; de Castro, Gilberto

    2015-01-01

    Abstract Lung cancer is the leading cause of cancer-related deaths worldwide. Promising new therapies have recently emerged from the development of molecular targeted drugs; particularly promising are those blocking the signal transduction machinery of cancer cells. One of the most widely studied cell signaling pathways is that of EGFR, which leads to uncontrolled cell proliferation, increased cell angiogenesis, and greater cell invasiveness. Activating mutations in the EGFR gene (deletions in exon 19 and mutation L858R in exon 21), first described in 2004, have been detected in approximately 10% of all non-squamous non-small cell lung cancer (NSCLC) patients in Western countries and are the most important predictors of a response to EGFR tyrosine-kinase inhibitors (EGFR-TKIs). Studies of the EGFR-TKIs gefitinib, erlotinib, and afatinib, in comparison with platinum-based regimens, as first-line treatments in chemotherapy-naïve patients have shown that the EGFR-TKIs produce gains in progression-free survival and overall response rates, although only in patients whose tumors harbor activating mutations in the EGFR gene. Clinical trials have also shown EGFR-TKIs to be effective as second- and third-line therapies in advanced NSCLC. Here, we review the main aspects of EGFR pathway activation in NSCLC, underscore the importance of correctly identifying activating mutations in the EGFR gene, and discuss the main outcomes of EGFR-TKI treatment in NSCLC. PMID:26398757

  11. A novel mutation in the WFS1 gene identified in a Taiwanese family with low-frequency hearing impairment

    Directory of Open Access Journals (Sweden)

    Chung Shing-Fang

    2007-05-01

    Full Text Available Abstract Background Wolfram syndrome gene 1 (WFS1 accounts for most of the familial nonsyndromic low-frequency sensorineural hearing loss (LFSNHL which is characterized by sensorineural hearing losses equal to and below 2000 Hz. The current study aimed to contribute to our understanding of the molecular basis of LFSNHL in an affected Taiwanese family. Methods The Taiwanese family with LFSNHL was phenotypically characterized using audiologic examination and pedigree analysis. Genetic characterization was performed by direct sequencing of WFS1 and mutation analysis. Results Pure tone audiometry confirmed that the family members affected with LFSNHL had a bilateral sensorineural hearing loss equal to or below 2000 Hz. The hearing loss threshold of the affected members showed no progression, a characteristic that was consistent with a mutation in the WFS1 gene located in the DFNA6/14/38 locus. Pedigree analysis showed a hereditarily autosomal dominant pattern characterized by a full penetrance. Among several polymorphisms, a missense mutation Y669H (2005T>C in exon 8 of WFS1 was identified in members of a Taiwanese family diagnosed with LFSNHL but not in any of the control subjects. Conclusion We discovered a novel heterozygous missense mutation in exon 8 of WFS1 (i.e., Y669H which is likely responsible for the LFSNHL phenotype in this particular Taiwanese family.

  12. Evolutionary Analysis Predicts Sensitive Positions of MMP20 and Validates Newly- and Previously-Identified MMP20 Mutations Causing Amelogenesis Imperfecta.

    Science.gov (United States)

    Gasse, Barbara; Prasad, Megana; Delgado, Sidney; Huckert, Mathilde; Kawczynski, Marzena; Garret-Bernardin, Annelyse; Lopez-Cazaux, Serena; Bailleul-Forestier, Isabelle; Manière, Marie-Cécile; Stoetzel, Corinne; Bloch-Zupan, Agnès; Sire, Jean-Yves

    2017-01-01

    Amelogenesis imperfecta (AI) designates a group of genetic diseases characterized by a large range of enamel disorders causing important social and health problems. These defects can result from mutations in enamel matrix proteins or protease encoding genes. A range of mutations in the enamel cleavage enzyme matrix metalloproteinase-20 gene ( MMP20 ) produce enamel defects of varying severity. To address how various alterations produce a range of AI phenotypes, we performed a targeted analysis to find MMP20 mutations in French patients diagnosed with non-syndromic AI. Genomic DNA was isolated from saliva and MMP20 exons and exon-intron boundaries sequenced. We identified several homozygous or heterozygous mutations, putatively involved in the AI phenotypes. To validate missense mutations and predict sensitive positions in the MMP20 sequence, we evolutionarily compared 75 sequences extracted from the public databases using the Datamonkey webserver. These sequences were representative of mammalian lineages, covering more than 150 million years of evolution. This analysis allowed us to find 324 sensitive positions (out of the 483 MMP20 residues), pinpoint functionally important domains, and build an evolutionary chart of important conserved MMP20 regions. This is an efficient tool to identify new- and previously-identified mutations. We thus identified six functional MMP20 mutations in unrelated families, finding two novel mutated sites. The genotypes and phenotypes of these six mutations are described and compared. To date, 13 MMP20 mutations causing AI have been reported, making these genotypes and associated hypomature enamel phenotypes the most frequent in AI.

  13. Pyrimethamine significantly lowers cerebrospinal fluid Cu/Zn superoxide dismutase in amyotrophic lateral sclerosis patients with SOD1 mutations.

    Science.gov (United States)

    Lange, Dale J; Shahbazi, Mona; Silani, Vincenzo; Ludolph, Albert C; Weishaupt, Jochen H; Ajroud-Driss, Senda; Fields, Kara G; Remanan, Rahul; Appel, Stanley H; Morelli, Claudia; Doretti, Alberto; Maderna, Luca; Messina, Stefano; Weiland, Ulrike; Marklund, Stefan L; Andersen, Peter M

    2017-06-01

    Cu/Zn superoxide dismutase (SOD1) reduction prolongs survival in SOD1-transgenic animal models. Pyrimethamine produces dose-dependent SOD1 reduction in cell culture systems. A previous phase 1 trial showed pyrimethamine lowers SOD1 levels in leukocytes in patients with SOD1 mutations. This study investigated whether pyrimethamine lowered SOD1 levels in the cerebrospinal fluid (CSF) in patients carrying SOD1 mutations linked to familial amyotrophic lateral sclerosis (fALS/SOD1). A multicenter (5 sites), open-label, 9-month-duration, dose-ranging study was undertaken to determine the safety and efficacy of pyrimethamine to lower SOD1 levels in the CSF in fALS/SOD1. All participants underwent 3 lumbar punctures, blood draw, clinical assessment of strength, motor function, quality of life, and adverse effect assessments. SOD1 levels were measured in erythrocytes and CSF. Pyrimethamine was measured in plasma and CSF. Appel ALS score, ALS Functional Rating Scale-Revised, and McGill Quality of Life Single-Item Scale were measured at screening, visit 6, and visit 9. We enrolled 32 patients; 24 completed 6 visits (18 weeks), and 21 completed all study visits. A linear mixed effects model showed a significant reduction in CSF SOD1 at visit 6 (p < 0.001) with a mean reduction of 13.5% (95% confidence interval [CI] = 8.4-18.5) and at visit 9 (p < 0.001) with a mean reduction of 10.5% (95% CI = 5.2-15.8). Pyrimethamine is safe and well tolerated in ALS. Pyrimethamine is capable of producing a significant reduction in total CSF SOD1 protein content in patients with ALS caused by different SOD1 mutations. Further long-term studies are warranted to assess clinical efficacy. Ann Neurol 2017;81:837-848. © 2017 The Authors. Annals of Neurology published by Wiley Periodicals, Inc. on behalf of American Neurological Association.

  14. Analysis of 30 putative BRCA1 splicing mutations in hereditary breast and ovarian cancer families identifies exonic splice site mutations that escape in silico prediction.

    Directory of Open Access Journals (Sweden)

    Barbara Wappenschmidt

    Full Text Available Screening for pathogenic mutations in breast and ovarian cancer genes such as BRCA1/2, CHEK2 and RAD51C is common practice for individuals from high-risk families. However, test results may be ambiguous due to the presence of unclassified variants (UCV in the concurrent absence of clearly cancer-predisposing mutations. Especially the presence of intronic or exonic variants within these genes that possibly affect proper pre-mRNA processing poses a challenge as their functional implications are not immediately apparent. Therefore, it appears necessary to characterize potential splicing UCV and to develop appropriate classification tools. We investigated 30 distinct BRCA1 variants, both intronic and exonic, regarding their spliceogenic potential by commonly used in silico prediction algorithms (HSF, MaxEntScan along with in vitro transcript analyses. A total of 25 variants were identified spliceogenic, either causing/enhancing exon skipping or activation of cryptic splice sites, or both. Except from a single intronic variant causing minor effects on BRCA1 pre-mRNA processing in our analyses, 23 out of 24 intronic variants were correctly predicted by MaxEntScan, while HSF was less accurate in this cohort. Among the 6 exonic variants analyzed, 4 severely impair correct pre-mRNA processing, while the remaining two have partial effects. In contrast to the intronic alterations investigated, only half of the spliceogenic exonic variants were correctly predicted by HSF and/or MaxEntScan. These data support the idea that exonic splicing mutations are commonly disease-causing and concurrently prone to escape in silico prediction, hence necessitating experimental in vitro splicing analysis.

  15. Acquired RhD mosaicism identifies fibrotic transformation of thrombopoietin receptor-mutated essential thrombocythemia.

    Science.gov (United States)

    Montemayor-Garcia, Celina; Coward, Rebecca; Albitar, Maher; Udani, Rupa; Jain, Prachi; Koklanaris, Eleftheria; Battiwalla, Minoo; Keel, Siobán; Klein, Harvey G; Barrett, A John; Ito, Sawa

    2017-09-01

    Acquired copy-neutral loss of heterozygosity has been described in myeloid malignant progression with an otherwise normal karyotype. A 65-year-old woman with MPL-mutated essential thrombocythemia and progression to myelofibrosis was noted upon routine pretransplant testing to have mixed field reactivity with anti-D and an historic discrepancy in RhD type. The patient had never received transfusions or transplantation. Gel immunoagglutination revealed group A red blood cells and a mixed-field reaction for the D phenotype, with a predominant D-negative population and a small subset of circulating red blood cells carrying the D antigen. Subsequent genomic microarray single nucleotide polymorphism profiling revealed copy-neutral loss of heterozygosity of chromosome 1 p36.33-p34.2, a known molecular mechanism underlying fibrotic progression of MPL-mutated essential thrombocythemia. The chromosomal region affected by this copy-neutral loss of heterozygosity encompassed the RHD, RHCE, and MPL genes. We propose a model of chronological molecular events that is supported by RHD zygosity assays in peripheral lymphoid and myeloid-derived cells. Copy-neutral loss of heterozygosity events that lead to clonal selection and myeloid malignant progression may also affect the expression of adjacent unrelated genes, including those encoding for blood group antigens. Detection of mixed-field reactions and investigation of discrepant blood typing results are important for proper transfusion support of these patients and can provide useful surrogate markers of myeloproliferative disease progression. © 2017 AABB.

  16. Exome sequencing identifies compound heterozygous mutations in CYP4V2 in a pedigree with retinitis pigmentosa.

    Directory of Open Access Journals (Sweden)

    Yun Wang

    Full Text Available Retinitis pigmentosa (RP is a heterogeneous group of progressive retinal degenerations characterized by pigmentation and atrophy in the mid-periphery of the retina. Twenty two subjects from a four-generation Chinese family with RP and thin cornea, congenital cataract and high myopia is reported in this study. All family members underwent complete ophthalmologic examinations. Patients of the family presented with bone spicule-shaped pigment deposits in retina, retinal vascular attenuation, retinal and choroidal dystrophy, as well as punctate opacity of the lens, reduced cornea thickness and high myopia. Peripheral venous blood was obtained from all patients and their family members for genetic analysis. After mutation analysis in a few known RP candidate genes, exome sequencing was used to analyze the exomes of 3 patients III2, III4, III6 and the unaffected mother II2. A total of 34,693 variations shared by 3 patients were subjected to several filtering steps against existing variation databases. Identified variations were verified in the rest family members by PCR and Sanger sequencing. Compound heterozygous c.802-8_810del17insGC and c.1091-2A>G mutations of the CYP4V2 gene, known as genetic defects for Bietti crystalline corneoretinal dystrophy, were identified as causative mutations for RP of this family.

  17. Targeted next generation sequencing identifies functionally deleterious germline mutations in novel genes in early-onset/familial prostate cancer.

    Directory of Open Access Journals (Sweden)

    Paula Paulo

    2018-04-01

    Full Text Available Considering that mutations in known prostate cancer (PrCa predisposition genes, including those responsible for hereditary breast/ovarian cancer and Lynch syndromes, explain less than 5% of early-onset/familial PrCa, we have sequenced 94 genes associated with cancer predisposition using next generation sequencing (NGS in a series of 121 PrCa patients. We found monoallelic truncating/functionally deleterious mutations in seven genes, including ATM and CHEK2, which have previously been associated with PrCa predisposition, and five new candidate PrCa associated genes involved in cancer predisposing recessive disorders, namely RAD51C, FANCD2, FANCI, CEP57 and RECQL4. Furthermore, using in silico pathogenicity prediction of missense variants among 18 genes associated with breast/ovarian cancer and/or Lynch syndrome, followed by KASP genotyping in 710 healthy controls, we identified "likely pathogenic" missense variants in ATM, BRIP1, CHEK2 and TP53. In conclusion, this study has identified putative PrCa predisposing germline mutations in 14.9% of early-onset/familial PrCa patients. Further data will be necessary to confirm the genetic heterogeneity of inherited PrCa predisposition hinted in this study.

  18. Comparative genomic analysis identified a mutation related to enhanced heterologous protein production in the filamentous fungus Aspergillus oryzae.

    Science.gov (United States)

    Jin, Feng-Jie; Katayama, Takuya; Maruyama, Jun-Ichi; Kitamoto, Katsuhiko

    2016-11-01

    Genomic mapping of mutations using next-generation sequencing technologies has facilitated the identification of genes contributing to fundamental biological processes, including human diseases. However, few studies have used this approach to identify mutations contributing to heterologous protein production in industrial strains of filamentous fungi, such as Aspergillus oryzae. In a screening of A. oryzae strains that hyper-produce human lysozyme (HLY), we previously isolated an AUT1 mutant that showed higher production of various heterologous proteins; however, the underlying factors contributing to the increased heterologous protein production remained unclear. Here, using a comparative genomic approach performed with whole-genome sequences, we attempted to identify the genes responsible for the high-level production of heterologous proteins in the AUT1 mutant. The comparative sequence analysis led to the detection of a gene (AO090120000003), designated autA, which was predicted to encode an unknown cytoplasmic protein containing an alpha/beta-hydrolase fold domain. Mutation or deletion of autA was associated with higher production levels of HLY. Specifically, the HLY yields of the autA mutant and deletion strains were twofold higher than that of the control strain during the early stages of cultivation. Taken together, these results indicate that combining classical mutagenesis approaches with comparative genomic analysis facilitates the identification of novel genes involved in heterologous protein production in filamentous fungi.

  19. TumorTracer: a method to identify the tissue of origin from the somatic mutations of a tumor specimen

    DEFF Research Database (Denmark)

    Marquard, Andrea Marion; Birkbak, Nicolai Juul; Thomas, Cecilia Engel

    2015-01-01

    A substantial proportion of cancer cases present with a metastatic tumor and require further testing to determine the primary site; many of these are never fully diagnosed and remain cancer of unknown primary origin (CUP). It has been previously demonstrated that the somatic point mutations......-copy-number classifier on three independent data sets: 1669 newly available public tumors of various types, a cohort of 91 breast metastases, and a set of 24 specimens from 9 lung cancer patients subjected to multiregion sequencing. The cross-validation accuracy was highest when all three types of information were used...... detected in a tumor can be used to identify its site of origin with limited accuracy. We hypothesized that higher accuracy could be achieved by a classification algorithm based on the following feature sets: 1) the number of nonsynonymous point mutations in a set of 232 specific cancer-associated genes, 2...

  20. Analysis of SOX10 mutations identified in Waardenburg-Hirschsprung patients: Differential effects on target gene regulation.

    Science.gov (United States)

    Chan, Kwok Keung; Wong, Corinne Kung Yen; Lui, Vincent Chi Hang; Tam, Paul Kwong Hang; Sham, Mai Har

    2003-10-15

    SOX10 is a member of the SOX gene family related by homology to the high-mobility group (HMG) box region of the testis-determining gene SRY. Mutations of the transcription factor gene SOX10 lead to Waardenburg-Hirschsprung syndrome (Waardenburg-Shah syndrome, WS4) in humans. A number of SOX10 mutations have been identified in WS4 patients who suffer from different extents of intestinal aganglionosis, pigmentation, and hearing abnormalities. Some patients also exhibit signs of myelination deficiency in the central and peripheral nervous systems. Although the molecular bases for the wide range of symptoms displayed by the patients are still not clearly understood, a few target genes for SOX10 have been identified. We have analyzed the impact of six different SOX10 mutations on the activation of SOX10 target genes by yeast one-hybrid and mammalian cell transfection assays. To investigate the transactivation activities of the mutant proteins, three different SOX target binding sites were introduced into luciferase reporter gene constructs and examined in our series of transfection assays: consensus HMG domain protein binding sites; SOX10 binding sites identified in the RET promoter; and Sox10 binding sites identified in the P0 promoter. We found that the same mutation could have different transactivation activities when tested with different target binding sites and in different cell lines. The differential transactivation activities of the SOX10 mutants appeared to correlate with the intestinal and/or neurological symptoms presented in the patients. Among the six mutant SOX10 proteins tested, much reduced transactivation activities were observed when tested on the SOX10 binding sites from the RET promoter. Of the two similar mutations X467K and 1400del12, only the 1400del12 mutant protein exhibited an increase of transactivation through the P0 promoter. While the lack of normal SOX10 mediated activation of RET transcription may lead to intestinal aganglionosis

  1. Whole-Exome Sequencing Identifies Homozygous AFG3L2 Mutations in a Spastic Ataxia-Neuropathy Syndrome Linked to Mitochondrial m-AAA Proteases

    Science.gov (United States)

    Martinelli, Paola; Cherukuri, Praveen F.; Teer, Jamie K.; Hansen, Nancy F.; Cruz, Pedro; Mullikin for the NISC Comparative Sequencing Program, James C.; Blakesley, Robert W.; Golas, Gretchen; Kwan, Justin; Sandler, Anthony; Fuentes Fajardo, Karin; Markello, Thomas; Tifft, Cynthia; Blackstone, Craig; Rugarli, Elena I.; Langer, Thomas; Gahl, William A.; Toro, Camilo

    2011-01-01

    We report an early onset spastic ataxia-neuropathy syndrome in two brothers of a consanguineous family characterized clinically by lower extremity spasticity, peripheral neuropathy, ptosis, oculomotor apraxia, dystonia, cerebellar atrophy, and progressive myoclonic epilepsy. Whole-exome sequencing identified a homozygous missense mutation (c.1847G>A; p.Y616C) in AFG3L2, encoding a subunit of an m-AAA protease. m-AAA proteases reside in the mitochondrial inner membrane and are responsible for removal of damaged or misfolded proteins and proteolytic activation of essential mitochondrial proteins. AFG3L2 forms either a homo-oligomeric isoenzyme or a hetero-oligomeric complex with paraplegin, a homologous protein mutated in hereditary spastic paraplegia type 7 (SPG7). Heterozygous loss-of-function mutations in AFG3L2 cause autosomal-dominant spinocerebellar ataxia type 28 (SCA28), a disorder whose phenotype is strikingly different from that of our patients. As defined in yeast complementation assays, the AFG3L2Y616C gene product is a hypomorphic variant that exhibited oligomerization defects in yeast as well as in patient fibroblasts. Specifically, the formation of AFG3L2Y616C complexes was impaired, both with itself and to a greater extent with paraplegin. This produced an early-onset clinical syndrome that combines the severe phenotypes of SPG7 and SCA28, in additional to other “mitochondrial” features such as oculomotor apraxia, extrapyramidal dysfunction, and myoclonic epilepsy. These findings expand the phenotype associated with AFG3L2 mutations and suggest that AFG3L2-related disease should be considered in the differential diagnosis of spastic ataxias. PMID:22022284

  2. Whole-exome sequencing identifies homozygous AFG3L2 mutations in a spastic ataxia-neuropathy syndrome linked to mitochondrial m-AAA proteases.

    Directory of Open Access Journals (Sweden)

    Tyler Mark Pierson

    2011-10-01

    Full Text Available We report an early onset spastic ataxia-neuropathy syndrome in two brothers of a consanguineous family characterized clinically by lower extremity spasticity, peripheral neuropathy, ptosis, oculomotor apraxia, dystonia, cerebellar atrophy, and progressive myoclonic epilepsy. Whole-exome sequencing identified a homozygous missense mutation (c.1847G>A; p.Y616C in AFG3L2, encoding a subunit of an m-AAA protease. m-AAA proteases reside in the mitochondrial inner membrane and are responsible for removal of damaged or misfolded proteins and proteolytic activation of essential mitochondrial proteins. AFG3L2 forms either a homo-oligomeric isoenzyme or a hetero-oligomeric complex with paraplegin, a homologous protein mutated in hereditary spastic paraplegia type 7 (SPG7. Heterozygous loss-of-function mutations in AFG3L2 cause autosomal-dominant spinocerebellar ataxia type 28 (SCA28, a disorder whose phenotype is strikingly different from that of our patients. As defined in yeast complementation assays, the AFG3L2(Y616C gene product is a hypomorphic variant that exhibited oligomerization defects in yeast as well as in patient fibroblasts. Specifically, the formation of AFG3L2(Y616C complexes was impaired, both with itself and to a greater extent with paraplegin. This produced an early-onset clinical syndrome that combines the severe phenotypes of SPG7 and SCA28, in additional to other "mitochondrial" features such as oculomotor apraxia, extrapyramidal dysfunction, and myoclonic epilepsy. These findings expand the phenotype associated with AFG3L2 mutations and suggest that AFG3L2-related disease should be considered in the differential diagnosis of spastic ataxias.

  3. Gene expression profiling and candidate gene resequencing identifies pathways and mutations important for malignant transformation caused by leukemogenic fusion genes.

    Science.gov (United States)

    Novak, Rachel L; Harper, David P; Caudell, David; Slape, Christopher; Beachy, Sarah H; Aplan, Peter D

    2012-12-01

    NUP98-HOXD13 (NHD13) and CALM-AF10 (CA10) are oncogenic fusion proteins produced by recurrent chromosomal translocations in patients with acute myeloid leukemia (AML). Transgenic mice that express these fusions develop AML with a long latency and incomplete penetrance, suggesting that collaborating genetic events are required for leukemic transformation. We employed genetic techniques to identify both preleukemic abnormalities in healthy transgenic mice as well as collaborating events leading to leukemic transformation. Candidate gene resequencing revealed that 6 of 27 (22%) CA10 AMLs spontaneously acquired a Ras pathway mutation and 8 of 27 (30%) acquired an Flt3 mutation. Two CA10 AMLs acquired an Flt3 internal-tandem duplication, demonstrating that these mutations can be acquired in murine as well as human AML. Gene expression profiles revealed a marked upregulation of Hox genes, particularly Hoxa5, Hoxa9, and Hoxa10 in both NHD13 and CA10 mice. Furthermore, mir196b, which is embedded within the Hoxa locus, was overexpressed in both CA10 and NHD13 samples. In contrast, the Hox cofactors Meis1 and Pbx3 were differentially expressed; Meis1 was increased in CA10 AMLs but not NHD13 AMLs, whereas Pbx3 was consistently increased in NHD13 but not CA10 AMLs. Silencing of Pbx3 in NHD13 cells led to decreased proliferation, increased apoptosis, and decreased colony formation in vitro, suggesting a previously unexpected role for Pbx3 in leukemic transformation. Published by Elsevier Inc.

  4. Recurrent TERT promoter mutations identified in a large-scale study of multiple tumor types are associated with increased TERT expression and telomerase activation

    Science.gov (United States)

    Huang, Dong-Sheng; Wang, Zhaohui; He, Xu-Jun; Diplas, Bill H.; Yang, Rui; Killela, Patrick J.; Liang, Junbo; Meng, Qun; Ye, Zai-Yuan; Wang, Wei; Jiang, Xiao-Ting; Xu, Li; He, Xiang-Lei; Zhao, Zhong-Sheng; Xu, Wen-Juan; Wang, Hui-Ju; Ma, Ying-Yu; Xia, Ying-Jie; Li, Li; Zhang, Ru-Xuan; Jin, Tao; Zhao, Zhong-Kuo; Xu, Ji; Yu, Sheng; Wu, Fang; Wang, Si-Zhen; Jiao, Yu-Chen; Yan, Hai; Tao, Hou-Quan

    2015-01-01

    Background Several somatic mutation hotspots were recently identified in the TERT promoter region in human cancers. Large scale studies of these mutations in multiple tumor types are limited, in particular in Asian populations. This study aimed to: analyze TERT promoter mutations in multiple tumor types in a large Chinese patient cohort, investigate novel tumor types and assess the functional significance of the mutations. Methods TERT promoter mutation status was assessed by Sanger sequencing for 13 different tumor types and 799 tumor tissues from Chinese cancer patients. Thymic epithelial tumors, gastrointestinal leiomyoma, and gastric schwannoma were included, for which the TERT promoter has not been previously sequenced. Functional studies included TERT expression by RT-qPCR, telomerase activity by the TRAP assay, and promoter activity by the luciferase reporter assay. Results TERT promoter mutations were highly frequent in glioblastoma (83.9%), urothelial carcinoma (64.5%), oligodendroglioma (70.0%), medulloblastoma (33.3%), and hepatocellular carcinoma (31.4%). C228T and C250T were the most common mutations. In urothelial carcinoma, several novel rare mutations were identified. TERT promoter mutations were absent in GIST, thymic epithelial tumors, gastrointestinal leiomyoma, gastric schwannoma, cholangiocarcinoma, gastric and pancreatic cancer. TERT promoter mutations highly correlated with upregulated TERT mRNA expression and telomerase activity in adult gliomas. These mutations differentially enhanced the transcriptional activity of the TERT core promoter. Conclusions TERT promoter mutations are frequent in multiple tumor types and have similar distributions in Chinese cancer patients. The functional significance of these mutations reflect the importance to telomere maintenance and hence tumorigenesis, making them potential therapeutic targets. PMID:25843513

  5. ENU mutagenesis identifies mice with morbid obesity and severe hyperinsulinemia caused by a novel mutation in leptin.

    Directory of Open Access Journals (Sweden)

    Chen-Jee Hong

    Full Text Available BACKGROUND: Obesity is a multifactorial disease that arises from complex interactions between genetic predisposition and environmental factors. Leptin is central to the regulation of energy metabolism and control of body weight in mammals. METHODOLOGY/PRINCIPAL FINDINGS: To better recapitulate the complexity of human obesity syndrome, we applied N-ethyl-N-nitrosourea (ENU mutagenesis in combination with a set of metabolic assays in screening mice for obesity. Mapping revealed linkage to the chromosome 6 within a region containing mouse Leptin gene. Sequencing on the candidate genes identified a novel T-to-A mutation in the third exon of Leptin gene, which translates to a V145E amino acid exchange in the leptin propeptide. Homozygous Leptin(145E/145E mutant mice exhibited morbid obesity, accompanied by adipose hypertrophy, energy imbalance, and liver steatosis. This was further associated with severe insulin resistance, hyperinsulinemia, dyslipidemia, and hyperleptinemia, characteristics of human obesity syndrome. Hypothalamic leptin actions in inhibition of orexigenic peptides NPY and AgRP and induction of SOCS1 and SOCS3 were attenuated in Leptin(145E/145E mice. Administration of exogenous wild-type leptin attenuated hyperphagia and body weight increase in Leptin(145E/145E mice. However, mutant V145E leptin coimmunoprecipitated with leptin receptor, suggesting that the V145E mutation does not affect the binding of leptin to its receptor. Molecular modeling predicted that the mutated residue would form hydrogen bond with the adjacent residues, potentially affecting the structure and formation of an active complex with leptin receptor within that region. CONCLUSIONS/SIGNIFICANCE: Thus, our evolutionary, structural, and in vivo metabolic information suggests the residue 145 as of special function significance. The mouse model harboring leptin V145E mutation will provide new information on the current understanding of leptin biology and novel mouse

  6. Panel-based whole exome sequencing identifies novel mutations in microphthalmia and anophthalmia patients showing complex Mendelian inheritance patterns.

    Science.gov (United States)

    Riera, Marina; Wert, Ana; Nieto, Isabel; Pomares, Esther

    2017-11-01

    Microphthalmia and anophthalmia (MA) are congenital eye abnormalities that show an extremely high clinical and genetic complexity. In this study, we evaluated the implementation of whole exome sequencing (WES) for the genetic analysis of MA patients. This approach was used to investigate three unrelated families in which previous single-gene analyses failed to identify the molecular cause. A total of 47 genes previously associated with nonsyndromic MA were included in our panel. WES was performed in one affected patient from each family using the AmpliSeq TM Exome technology and the Ion Proton TM platform. A novel heterozygous OTX2 missense mutation was identified in a patient showing bilateral anophthalmia who inherited the variant from a parent who was a carrier, but showed no sign of the condition. We also describe a new PAX6 missense variant in an autosomal-dominant pedigree affected by mild bilateral microphthalmia showing high intrafamiliar variability, with germline mosaicism determined to be the most plausible molecular cause of the disease. Finally, a heterozygous missense mutation in RBP4 was found to be responsible in an isolated case of bilateral complex microphthalmia. This study highlights that panel-based WES is a reliable and effective strategy for the genetic diagnosis of MA. Furthermore, using this technique, the mutational spectrum of these diseases was broadened, with novel variants identified in each of the OTX2, PAX6, and RBP4 genes. Moreover, we report new cases of reduced penetrance, mosaicism, and variable phenotypic expressivity associated with MA, further demonstrating the heterogeneity of such disorders. © 2017 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.

  7. Identifiability of tree-child phylogenetic networks under a probabilistic recombination-mutation model of evolution.

    Science.gov (United States)

    Francis, Andrew; Moulton, Vincent

    2018-06-07

    Phylogenetic networks are an extension of phylogenetic trees which are used to represent evolutionary histories in which reticulation events (such as recombination and hybridization) have occurred. A central question for such networks is that of identifiability, which essentially asks under what circumstances can we reliably identify the phylogenetic network that gave rise to the observed data? Recently, identifiability results have appeared for networks relative to a model of sequence evolution that generalizes the standard Markov models used for phylogenetic trees. However, these results are quite limited in terms of the complexity of the networks that are considered. In this paper, by introducing an alternative probabilistic model for evolution along a network that is based on some ground-breaking work by Thatte for pedigrees, we are able to obtain an identifiability result for a much larger class of phylogenetic networks (essentially the class of so-called tree-child networks). To prove our main theorem, we derive some new results for identifying tree-child networks combinatorially, and then adapt some techniques developed by Thatte for pedigrees to show that our combinatorial results imply identifiability in the probabilistic setting. We hope that the introduction of our new model for networks could lead to new approaches to reliably construct phylogenetic networks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Novel mutations and phenotypic associations identified through APC, MUTYH, NTHL1, POLD1, POLE gene analysis in Indian Familial Adenomatous Polyposis cohort.

    Science.gov (United States)

    Khan, Nikhat; Lipsa, Anuja; Arunachal, Gautham; Ramadwar, Mukta; Sarin, Rajiv

    2017-05-22

    Colo-Rectal Cancer is a common cancer worldwide with 5-10% cases being hereditary. Familial Adenomatous Polyposis (FAP) syndrome is due to germline mutations in the APC or rarely MUTYH gene. NTHL1, POLD1, POLE have been recently reported in previously unexplained FAP cases. Unlike the Caucasian population, FAP phenotype and its genotypic associations have not been widely studied in several geoethnic groups. We report the first FAP cohort from South Asia and the only non-Caucasian cohort with comprehensive analysis of APC, MUTYH, NTHL1, POLD1, POLE genes. In this cohort of 112 individuals from 53 FAP families, we detected germline APC mutations in 60 individuals (45 families) and biallelic MUTYH mutations in 4 individuals (2 families). No NTHL1, POLD1, POLE mutations were identified. Fifteen novel APC mutations and a new Indian APC mutational hotspot at codon 935 were identified. Eight very rare FAP phenotype or phenotypes rarely associated with mutations outside specific APC regions were observed. APC genotype-phenotype association studies in different geo-ethnic groups can enrich the existing knowledge about phenotypic consequences of distinct APC mutations and guide counseling and risk management in different populations. A stepwise cost-effective mutation screening approach is proposed for genetic testing of south Asian FAP patients.

  9. An innovative strategy for the molecular diagnosis of Usher syndrome identifies causal biallelic mutations in 93% of European patients.

    Science.gov (United States)

    Bonnet, Crystel; Riahi, Zied; Chantot-Bastaraud, Sandra; Smagghe, Luce; Letexier, Mélanie; Marcaillou, Charles; Lefèvre, Gaëlle M; Hardelin, Jean-Pierre; El-Amraoui, Aziz; Singh-Estivalet, Amrit; Mohand-Saïd, Saddek; Kohl, Susanne; Kurtenbach, Anne; Sliesoraityte, Ieva; Zobor, Ditta; Gherbi, Souad; Testa, Francesco; Simonelli, Francesca; Banfi, Sandro; Fakin, Ana; Glavač, Damjan; Jarc-Vidmar, Martina; Zupan, Andrej; Battelino, Saba; Martorell Sampol, Loreto; Claveria, Maria Antonia; Catala Mora, Jaume; Dad, Shzeena; Møller, Lisbeth B; Rodriguez Jorge, Jesus; Hawlina, Marko; Auricchio, Alberto; Sahel, José-Alain; Marlin, Sandrine; Zrenner, Eberhart; Audo, Isabelle; Petit, Christine

    2016-12-01

    Usher syndrome (USH), the most prevalent cause of hereditary deafness-blindness, is an autosomal recessive and genetically heterogeneous disorder. Three clinical subtypes (USH1-3) are distinguishable based on the severity of the sensorineural hearing impairment, the presence or absence of vestibular dysfunction, and the age of onset of the retinitis pigmentosa. A total of 10 causal genes, 6 for USH1, 3 for USH2, and 1 for USH3, and an USH2 modifier gene, have been identified. A robust molecular diagnosis is required not only to improve genetic counseling, but also to advance gene therapy in USH patients. Here, we present an improved diagnostic strategy that is both cost- and time-effective. It relies on the sequential use of three different techniques to analyze selected genomic regions: targeted exome sequencing, comparative genome hybridization, and quantitative exon amplification. We screened a large cohort of 427 patients (139 USH1, 282 USH2, and six of undefined clinical subtype) from various European medical centers for mutations in all USH genes and the modifier gene. We identified a total of 421 different sequence variants predicted to be pathogenic, about half of which had not been previously reported. Remarkably, we detected large genomic rearrangements, most of which were novel and unique, in 9% of the patients. Thus, our strategy led to the identification of biallelic and monoallelic mutations in 92.7% and 5.8% of the USH patients, respectively. With an overall 98.5% mutation characterization rate, the diagnosis efficiency was substantially improved compared with previously reported methods.

  10. Common mutations identified in the MLH1 gene in familial Lynch syndrome

    OpenAIRE

    Jisha Elias; Coral Karunakaran; Snigdha Majumder; Malini Manoharan; Rakshit Shah; Yogesh Mistry; Rajesh Ramanuj; Niraj Bhatt; Arati Khanna- Gupta

    2017-01-01

    Lynch syndrome (Hereditary Non Polyposis Colorectal Cancer, HNPCC) is one of the most common hereditary familial colorectal cancers (CRC) with an autosomal dominant pattern of inheritance. It accounts for 2-5% of the total CRCs reported worldwide. Although a lower incidence for CRCs have been observed in India, the last decade has shown a remarkable increase of CRC incidences (2-4 %). Features of Lynch syndrome associated colorectal cancer include early age of cancer onset, accelerated car...

  11. Novel EDA or EDAR Mutations Identified in Patients with X-Linked Hypohidrotic Ectodermal Dysplasia or Non-Syndromic Tooth Agenesis

    Directory of Open Access Journals (Sweden)

    Binghui Zeng

    2017-10-01

    Full Text Available Abstract: Both X-linked hypohidrotic ectodermal dysplasia (XLHED and non-syndromic tooth agenesis (NSTA result in symptoms of congenital tooth loss. This study investigated genetic causes in two families with XLHED and four families with NSTA. We screened for mutations of WNT10A, EDA, EDAR, EDARADD, PAX9, MSX1, AXIN2, LRP6, and WNT10B through Sanger sequencing. Whole exome sequencing was performed for the proband of NSTA Family 4. Novel mutation c.1051G>T (p.Val351Phe and the known mutation c.467G>A (p.Arg156His of Ectodysplasin A (EDA were identified in families with XLHED. Novel EDA receptor (EDAR mutation c.73C>T (p.Arg25*, known EDA mutation c.491A>C (p.Glu164Ala, and known Wnt family member 10A (WNT10A mutations c.511C>T (p.Arg171Cys and c.742C>T (p.Arg248* were identified in families with NSTA. The novel EDA and EDAR mutations were predicted as being pathogenic through bioinformatics analyses and structural modeling. Two variants of WNT10A, c.374G>A (p.Arg125Lys and c.125A>G (p.Asn42Ser, were found in patients with NSTA. The two WNT10A variants were predicted to affect the splicing of message RNA, but minigene experiments showed normal splicing of mutated minigenes. This study uncovered the genetic foundations with respect to six families with XLHED or NSTA. We identified six mutations, of which two were novel mutations of EDA and EDAR. This is the first report of a nonsense EDAR mutation leading to NSTA.

  12. Investigations regarding the lowering of specific intellectual property risks identified in the production process

    Directory of Open Access Journals (Sweden)

    Pakocs Ramona

    2017-01-01

    Full Text Available The main purpose of this research is to decrease the emergence of specific intellectual property risks within the production process as well as increasing risk management performance of IP by preventing them. In order to achieve this, previous studies regarding the main specific intellectual property risks from industrial companies were analyzed together with their managerial methods as well as the possibility of reducing their emergence. As a result of the research conducted were identified five types of intellectual property risks that have a high potential of emergence in the production process, namely: the risk of production of goods in violation of IP rights; the know-how, production knowledge and trade secret disclosure risk; the technological risk of unprotected utility models; the technological risk of unprotected integrated circuits topographies and finally the risk of product counterfeit. In order to achieve the main purpose of our investigation, we have proposed new formulas for estimating the specific intellectual property risks identified in the production process. Their purpose was to minimalize the risk’s negative effects on industrial companies and to increase the managerial performance from the intellectual property domain through a new type of management appropriately named: intellectual property management. The research is finalized with a case study regarding the lapse of rights of a patented invention. Based on a case analysis, it was proved that the exploitation of an invention without a contract represents a counterfeit.

  13. TP53 mutations identify younger mantle cell lymphoma patients who do not benefit from intensive chemoimmunotherapy

    DEFF Research Database (Denmark)

    Eskelund, Christian W.; Dahl, Christina; Hansen, Jakob W.

    2017-01-01

    Despite recent advances in lymphoma treatment, mantle cell lymphoma (MCL) remains incurable, and we are still unable to identify patients who will not benefit from the current standard of care. Here, we explore the prognostic value of recurrent genetic aberrations in diagnostic bone marrow (BM...

  14. Exome-wide rare variant analysis identifies TUBA4A mutations associated with familial ALS

    NARCIS (Netherlands)

    Smith, Bradley N.; Ticozzi, Nicola; Fallini, Claudia; Gkazi, Athina Soragia; Topp, Simon; Kenna, Kevin P.; Scotter, Emma L.; Kost, Jason; Keagle, Pamela; Miller, Jack W.; Calini, Daniela; Vance, Caroline; Danielson, Eric W.; Troakes, Claire; Tiloca, Cinzia; Al-Sarraj, Safa; Lewis, Elizabeth A.; King, Andrew; Colombrita, Claudia; Pensato, Viviana; Castellotti, Barbara; de Belleroche, Jacqueline; Baas, Frank; ten Asbroek, Anneloor L. M. A.; Sapp, Peter C.; McKenna-Yasek, Diane; McLaughlin, Russell L.; Polak, Meraida; Asress, Seneshaw; Esteban-Pérez, Jesús; Muñoz-Blanco, José Luis; Simpson, Michael; van Rheenen, Wouter; Diekstra, Frank P.; Lauria, Giuseppe; Duga, Stefano; Corti, Stefania; Cereda, Cristina; Corrado, Lucia; Sorarù, Gianni; Morrison, Karen E.; Williams, Kelly L.; Nicholson, Garth A.; Blair, Ian P.; Dion, Patrick A.; Leblond, Claire S.; Rouleau, Guy A.; Hardiman, Orla; Veldink, Jan H.; van den Berg, Leonard H.

    2014-01-01

    Exome sequencing is an effective strategy for identifying human disease genes. However, this methodology is difficult in late-onset diseases where limited availability of DNA from informative family members prohibits comprehensive segregation analysis. To overcome this limitation, we performed an

  15. Diagnostic Accuracy of the Slump Test for Identifying Neuropathic Pain in the Lower Limb.

    Science.gov (United States)

    Urban, Lawrence M; MacNeil, Brian J

    2015-08-01

    Diagnostic accuracy study with nonconsecutive enrollment. To assess the diagnostic accuracy of the slump test for neuropathic pain (NeP) in those with low to moderate levels of chronic low back pain (LBP), and to determine whether accuracy of the slump test improves by adding anatomical or qualitative pain descriptors. Neuropathic pain has been linked with poor outcomes, likely due to inadequate diagnosis, which precludes treatment specific for NeP. Current diagnostic approaches are time consuming or lack accuracy. A convenience sample of 21 individuals with LBP, with or without radiating leg pain, was recruited. A standardized neurosensory examination was used to determine the reference diagnosis for NeP. Afterward, the slump test was administered to all participants. Reports of pain location and quality produced during the slump test were recorded. The neurosensory examination designated 11 of the 21 participants with LBP/sciatica as having NeP. The slump test displayed high sensitivity (0.91), moderate specificity (0.70), a positive likelihood ratio of 3.03, and a negative likelihood ratio of 0.13. Adding the criterion of pain below the knee significantly increased specificity to 1.00 (positive likelihood ratio = 11.9). Pain-quality descriptors did not improve diagnostic accuracy. The slump test was highly sensitive in identifying NeP within the study sample. Adding a pain-location criterion improved specificity. Combining the diagnostic outcomes was very effective in identifying all those without NeP and half of those with NeP. Limitations arising from the small and narrow spectrum of participants with LBP/sciatica sampled within the study prevent application of the findings to a wider population. Diagnosis, level 4-.

  16. Evolutionary Analysis Predicts Sensitive Positions of MMP20 and Validates Newly- and Previously-Identified MMP20 Mutations Causing Amelogenesis Imperfecta

    Directory of Open Access Journals (Sweden)

    Barbara Gasse

    2017-06-01

    Full Text Available Amelogenesis imperfecta (AI designates a group of genetic diseases characterized by a large range of enamel disorders causing important social and health problems. These defects can result from mutations in enamel matrix proteins or protease encoding genes. A range of mutations in the enamel cleavage enzyme matrix metalloproteinase-20 gene (MMP20 produce enamel defects of varying severity. To address how various alterations produce a range of AI phenotypes, we performed a targeted analysis to find MMP20 mutations in French patients diagnosed with non-syndromic AI. Genomic DNA was isolated from saliva and MMP20 exons and exon-intron boundaries sequenced. We identified several homozygous or heterozygous mutations, putatively involved in the AI phenotypes. To validate missense mutations and predict sensitive positions in the MMP20 sequence, we evolutionarily compared 75 sequences extracted from the public databases using the Datamonkey webserver. These sequences were representative of mammalian lineages, covering more than 150 million years of evolution. This analysis allowed us to find 324 sensitive positions (out of the 483 MMP20 residues, pinpoint functionally important domains, and build an evolutionary chart of important conserved MMP20 regions. This is an efficient tool to identify new- and previously-identified mutations. We thus identified six functional MMP20 mutations in unrelated families, finding two novel mutated sites. The genotypes and phenotypes of these six mutations are described and compared. To date, 13 MMP20 mutations causing AI have been reported, making these genotypes and associated hypomature enamel phenotypes the most frequent in AI.

  17. A Dutch family with autosomal recessively inherited lower motor neuron predominant motor neuron disease due to optineurin mutations

    NARCIS (Netherlands)

    Beeldman, Emma; van der Kooi, Anneke J.; de Visser, Marianne; van Maarle, Merel C.; van Ruissen, Fred; Baas, Frank

    2015-01-01

    Approximately 10% of motor neuron disease (MND) patients report a familial predisposition for MND. Autosomal recessively inherited MND is less common and is most often caused by mutations in the superoxide dismutase 1 (SOD1) gene. In 2010, autosomal recessively inherited mutations in the optineurin

  18. Physical Examination Tools Used to Identify Swollen and Tender Lower Limb Joints in Juvenile Idiopathic Arthritis: A Scoping Review.

    Science.gov (United States)

    Fellas, Antoni; Singh-Grewal, Davinder; Santos, Derek; Coda, Andrea

    2018-01-01

    Juvenile idiopathic arthritis (JIA) is the most common form of rheumatic disease in childhood and adolescents, affecting between 16 and 150 per 100,000 young persons below the age of 16. The lower limb is commonly affected in JIA, with joint swelling and tenderness often observed as a result of active synovitis. The objective of this scoping review is to identify the existence of physical examination (PE) tools to identify and record swollen and tender lower limb joints in children with JIA. Two reviewers individually screened the eligibility of titles and abstracts retrieved from the following online databases: MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, and CINAHL. Studies that proposed and validated a comprehensive lower limb PE tool were included in this scoping review. After removal of duplicates, 1232 citations were retrieved, in which twelve were identified as potentially eligible. No studies met the set criteria for inclusion. Further research is needed in developing and validating specific PE tools for clinicians such as podiatrists and other allied health professionals involved in the management of pathological lower limb joints in children diagnosed with JIA. These lower limb PE tools may be useful in conjunction with existing disease activity scores to optimise screening of the lower extremity and monitoring the efficacy of targeted interventions.

  19. Novel compound heterozygous mutations in the GPR98 (USH2C) gene identified by whole exome sequencing in a Moroccan deaf family.

    Science.gov (United States)

    Bousfiha, Amale; Bakhchane, Amina; Charoute, Hicham; Detsouli, Mustapha; Rouba, Hassan; Charif, Majida; Lenaers, Guy; Barakat, Abdelhamid

    2017-10-01

    In the present work, we identified two novel compound heterozygote mutations in the GPR98 (G protein-coupled receptor 98) gene causing Usher syndrome. Whole-exome sequencing was performed to study the genetic causes of Usher syndrome in a Moroccan family with three affected siblings. We identify two novel compound heterozygote mutations (c.1054C > A, c.16544delT) in the GPR98 gene in the three affected siblings carrying post-linguale bilateral moderate hearing loss with normal vestibular functions and before installing visual disturbances. This is the first time that mutations in the GPR98 gene are described in the Moroccan deaf patients.

  20. Germline MLH1 Mutations Are Frequently Identified in Lynch Syndrome Patients With Colorectal and Endometrial Carcinoma Demonstrating Isolated Loss of PMS2 Immunohistochemical Expression.

    Science.gov (United States)

    Dudley, Beth; Brand, Randall E; Thull, Darcy; Bahary, Nathan; Nikiforova, Marina N; Pai, Reetesh K

    2015-08-01

    Current guidelines on germline mutation testing for patients suspected of having Lynch syndrome are not entirely clear in patients with tumors demonstrating isolated loss of PMS2 immunohistochemical expression. We analyzed the clinical and pathologic features of patients with tumors demonstrating isolated loss of PMS2 expression in an attempt to (1) determine the frequency of germline MLH1 and PMS2 mutations and (2) correlate mismatch-repair protein immunohistochemistry and tumor histology with germline mutation results. A total of 3213 consecutive colorectal carcinomas and 215 consecutive endometrial carcinomas were prospectively analyzed for DNA mismatch-repair protein expression by immunohistochemistry. In total, 32 tumors from 31 patients demonstrated isolated loss of PMS2 immunohistochemical expression, including 16 colorectal carcinomas and 16 endometrial carcinomas. Microsatellite instability (MSI) polymerase chain reaction was performed in 29 tumors from 28 patients with the following results: 28 tumors demonstrated high-level MSI, and 1 tumor demonstrated low-level MSI. Twenty of 31 (65%) patients in the study group had tumors demonstrating histopathology associated with high-level MSI. Seventeen patients underwent germline mutation analysis with the following results: 24% with MLH1 mutations, 35% with PMS2 mutations, 12% with PMS2 variants of undetermined significance, and 29% with no mutations in either MLH1 or PMS2. Three of the 4 patients with MLH1 germline mutations had a mutation that results in decreased stability and quantity of the MLH1 protein that compromises the MLH1-PMS2 protein complex, helping to explain the presence of immunogenic but functionally inactive MLH1 protein within the tumor. The high frequency of MLH1 germline mutations identified in our study has important implications for testing strategies in patients suspected of having Lynch syndrome and indicates that patients with tumors demonstrating isolated loss of PMS2 expression

  1. Fine-Scale Mapping at 9p22.2 Identifies Candidate Causal Variants That Modify Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers.

    Directory of Open Access Journals (Sweden)

    Elena Vigorito

    Full Text Available Population-based genome wide association studies have identified a locus at 9p22.2 associated with ovarian cancer risk, which also modifies ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. We conducted fine-scale mapping at 9p22.2 to identify potential causal variants in BRCA1 and BRCA2 mutation carriers. Genotype data were available for 15,252 (2,462 ovarian cancer cases BRCA1 and 8,211 (631 ovarian cancer cases BRCA2 mutation carriers. Following genotype imputation, ovarian cancer associations were assessed for 4,873 and 5,020 SNPs in BRCA1 and BRCA 2 mutation carriers respectively, within a retrospective cohort analytical framework. In BRCA1 mutation carriers one set of eight correlated candidate causal variants for ovarian cancer risk modification was identified (top SNP rs10124837, HR: 0.73, 95%CI: 0.68 to 0.79, p-value 2× 10-16. These variants were located up to 20 kb upstream of BNC2. In BRCA2 mutation carriers one region, up to 45 kb upstream of BNC2, and containing 100 correlated SNPs was identified as candidate causal (top SNP rs62543585, HR: 0.69, 95%CI: 0.59 to 0.80, p-value 1.0 × 10-6. The candidate causal in BRCA1 mutation carriers did not include the strongest associated variant at this locus in the general population. In sum, we identified a set of candidate causal variants in a region that encompasses the BNC2 transcription start site. The ovarian cancer association at 9p22.2 may be mediated by different variants in BRCA1 mutation carriers and in the general population. Thus, potentially different mechanisms may underlie ovarian cancer risk for mutation carriers and the general population.

  2. Mutational analysis of the yeast TRAPP subunit Trs20p identifies roles in endocytic recycling and sporulation.

    Directory of Open Access Journals (Sweden)

    Hichem Mahfouz

    Full Text Available Trs20p is a subunit of the evolutionarily conserved TRAPP (TRAnsport Protein Particle complex that mediates various aspects of membrane trafficking. Three TRAPP complexes have been identified in yeast with roles in ER-to-Golgi trafficking, post-Golgi and endosomal-to-Golgi transport and in autophagy. The role of Trs20p, which is essential for viability and a component of all three complexes, and how it might function within each TRAPP complex, has not been clarified to date. To begin to address the role of Trs20p we generated different mutants by random mutagenesis but, surprisingly, no defects were observed in diverse anterograde transport pathways or general secretion in Trs20 temperature-sensitive mutants. Instead, mutation of Trs20 led to defects in endocytic recycling and a block in sporulation/meiosis. The phenotypes of different mutants appear to be separable suggesting that the mutations affect the function of Trs20 in different TRAPP complexes.

  3. Microfluidic screening and whole-genome sequencing identifies mutations associated with improved protein secretion by yeast

    DEFF Research Database (Denmark)

    Huang, Mingtao; Bai, Yunpeng; Sjostrom, Staffan L.

    2015-01-01

    There is an increasing demand for biotech-based production of recombinant proteins for use as pharmaceuticals in the food and feed industry and in industrial applications. Yeast Saccharomyces cerevisiae is among preferred cell factories for recombinant protein production, and there is increasing...... interest in improving its protein secretion capacity. Due to the complexity of the secretory machinery in eukaryotic cells, it is difficult to apply rational engineering for construction of improved strains. Here we used high-throughput microfluidics for the screening of yeast libraries, generated by UV...... mutagenesis. Several screening and sorting rounds resulted in the selection of eight yeast clones with significantly improved secretion of recombinant a-amylase. Efficient secretion was genetically stable in the selected clones. We performed whole-genome sequencing of the eight clones and identified 330...

  4. Functional examination of MLH1, MSH2, and MSH6 intronic mutations identified in Danish colorectal cancer patients

    DEFF Research Database (Denmark)

    Petersen, Sanne M; Dandanell, Mette; Rasmussen, Lene J

    2013-01-01

    Germ-line mutations in the DNA mismatch repair genes MLH1, MSH2, and MSH6 predispose to the development of colorectal cancer (Lynch syndrome or hereditary nonpolyposis colorectal cancer). These mutations include disease-causing frame-shift, nonsense, and splicing mutations as well as large genomi...

  5. Massively Parallel Sequencing of a Chinese Family with DFNA9 Identified a Novel Missense Mutation in the LCCL Domain of COCH

    Directory of Open Access Journals (Sweden)

    Xiaodong Gu

    2016-01-01

    Full Text Available DFNA9 is a late-onset, progressive, autosomal dominantly inherited sensorineural hearing loss with vestibular dysfunction, which is caused by mutations in the COCH (coagulation factor C homology gene. In this study, we investigated a Chinese family segregating autosomal dominant nonsyndromic sensorineural hearing loss. We identified a missense mutation c.T275A p.V92D in the LCCL domain of COCH cosegregating with the disease and absent in 100 normal hearing controls. This mutation leads to substitution of the hydrophobic valine to an acidic amino acid aspartic acid. Our data enriched the mutation spectrum of DFNA9 and implied the importance for mutation screening of COCH in age related hearing loss with vestibular dysfunctions.

  6. Somatic loss of function mutations in neurofibromin 1 and MYC associated factor X genes identified by exome-wide sequencing in a wild-type GIST case

    International Nuclear Information System (INIS)

    Belinsky, Martin G.; Rink, Lori; Cai, Kathy Q.; Capuzzi, Stephen J.; Hoang, Yen; Chien, Jeremy; Godwin, Andrew K.; Mehren, Margaret von

    2015-01-01

    Approximately 10–15 % of gastrointestinal stromal tumors (GISTs) lack gain of function mutations in the KIT and platelet-derived growth factor receptor alpha (PDGFRA) genes. An alternate mechanism of oncogenesis through loss of function of the succinate-dehydrogenase (SDH) enzyme complex has been identified for a subset of these “wild type” GISTs. Paired tumor and normal DNA from an SDH-intact wild-type GIST case was subjected to whole exome sequencing to identify the pathogenic mechanism(s) in this tumor. Selected findings were further investigated in panels of GIST tumors through Sanger DNA sequencing, quantitative real-time PCR, and immunohistochemical approaches. A hemizygous frameshift mutation (p.His2261Leufs*4), in the neurofibromin 1 (NF1) gene was identified in the patient’s GIST; however, no germline NF1 mutation was found. A somatic frameshift mutation (p.Lys54Argfs*31) in the MYC associated factor X (MAX) gene was also identified. Immunohistochemical analysis for MAX on a large panel of GISTs identified loss of MAX expression in the MAX-mutated GIST and in a subset of mainly KIT-mutated tumors. This study suggests that inactivating NF1 mutations outside the context of neurofibromatosis may be the oncogenic mechanism for a subset of sporadic GIST. In addition, loss of function mutation of the MAX gene was identified for the first time in GIST, and a broader role for MAX in GIST progression was suggested. The online version of this article (doi:10.1186/s12885-015-1872-y) contains supplementary material, which is available to authorized users

  7. Prognostic value of IDH1 mutations identified with PCR-RFLP assay in acute myeloid leukemia patients

    International Nuclear Information System (INIS)

    Elsayed, Gh.M.; Zaher, A.; Elnoshokaty, E.H.; Nassar, H.R.; Moneer, M.M.

    2014-01-01

    Background: Somatic mutations in isocitrate dehydrogenase 1 (1DH1) gene occur frequently in primary brain tumors. Recently theses mutations were demonstrated in acute myeloid leukemia (AML). So far, assessment of these mutations relied on the DNA sequencing technique. Aim of the work: The aim of this study was to detect somatic mutations in IDH1 gene using mismatched primers suitable for endonuclease based detection, without the need for DNA sequencing, and to estimate its prognostic value, on patients with de novo AML. Methods: Residual DNA extracted from pretreatment bone marrow (BM) samples of 100 patients with de novo AML was used. The polymerase chain reaction-restriction fragment length polymorphism method (PCR-RFLP) was adapted to IDHl gene, codon 132 mutations screening. Results: The frequency of IDH1 mutations was 13%. In the non-acute promyelocytic leukemia group (non-APL), IDH1 mutations were significantly associated with FLT3-ITD negative patients (p = 0.03). Patients with 1DH1 mutations did not achieve complete remission (CR). There was a trend for shorter overall survival (OS) in patients with IDH1 mutation compared to those with wild type (p = 0.08). Conclusion: IDH1 mutations are recurring genetic alterations in AML and they may have unfavorable impact on clinical outcome in adult AML. The PCR-RFLP method allows for a fast, inexpensive, and sensitive method for the detection of IDF11 mutations in AML.

  8. Next-generation sequencing identifies a novel compound heterozygous mutation in MYO7A in a Chinese patient with Usher Syndrome 1B.

    Science.gov (United States)

    Wei, Xiaoming; Sun, Yan; Xie, Jiansheng; Shi, Quan; Qu, Ning; Yang, Guanghui; Cai, Jun; Yang, Yi; Liang, Yu; Wang, Wei; Yi, Xin

    2012-11-20

    Targeted enrichment and next-generation sequencing (NGS) have been employed for detection of genetic diseases. The purpose of this study was to validate the accuracy and sensitivity of our method for comprehensive mutation detection of hereditary hearing loss, and identify inherited mutations involved in human deafness accurately and economically. To make genetic diagnosis of hereditary hearing loss simple and timesaving, we designed a 0.60 MB array-based chip containing 69 nuclear genes and mitochondrial genome responsible for human deafness and conducted NGS toward ten patients with five known mutations and a Chinese family with hearing loss (never genetically investigated). Ten patients with five known mutations were sequenced using next-generation sequencing to validate the sensitivity of the method. We identified four known mutations in two nuclear deafness causing genes (GJB2 and SLC26A4), one in mitochondrial DNA. We then performed this method to analyze the variants in a Chinese family with hearing loss and identified compound heterozygosity for two novel mutations in gene MYO7A. The compound heterozygosity identified in gene MYO7A causes Usher Syndrome 1B with severe phenotypes. The results support that the combination of enrichment of targeted genes and next-generation sequencing is a valuable molecular diagnostic tool for hereditary deafness and suitable for clinical application. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Recurrent mutation testing of BRCA1 and BRCA2 in Asian breast cancer patients identify carriers in those with presumed low risk by family history.

    Science.gov (United States)

    Kang, Peter Choon Eng; Phuah, Sze Yee; Sivanandan, Kavitta; Kang, In Nee; Thirthagiri, Eswary; Liu, Jian Jun; Hassan, Norhashimah; Yoon, Sook-Yee; Thong, Meow Keong; Hui, Miao; Hartman, Mikael; Yip, Cheng Har; Mohd Taib, Nur Aishah; Teo, Soo Hwang

    2014-04-01

    Although the breast cancer predisposition genes BRCA1 and BRCA2 were discovered more than 20 years ago, there remains a gap in the availability of genetic counselling and genetic testing in Asian countries because of cost, access and inaccurate reporting of family history of cancer. In order to improve access to testing, we developed a rapid test for recurrent mutations in our Asian populations. In this study, we designed a genotyping assay with 55 BRCA1 and 44 BRCA2 mutations previously identified in Asian studies, and validated this assay in 267 individuals who had previously been tested by full sequencing. We tested the prevalence of these mutations in additional breast cancer cases. Using this genotyping approach, we analysed recurrent mutations in 533 Malaysian breast cancer cases with Malays, 3 BRCA1 and 2 BRCA2 mutations in Chinese and 1 BRCA1 mutation in Indians account for 60, 24 and 20 % of carrier families, respectively. By contrast, haplotype analyses suggest that a recurrent BRCA2 mutation (c.262_263delCT) found in 5 unrelated Malay families has at least 3 distinct haplotypes. Taken together, our data suggests that panel testing may help to identify carriers, particularly Asian BRCA2 carriers, who do not present with a priori strong family history characteristics.

  10. Whole exome sequencing identifies a POLRID mutation segregating in a father and two daughters with findings of Klippel-Feil and Treacher Collins syndromes.

    Science.gov (United States)

    Giampietro, Philip F; Armstrong, Linlea; Stoddard, Alex; Blank, Robert D; Livingston, Janet; Raggio, Cathy L; Rasmussen, Kristen; Pickart, Michael; Lorier, Rachel; Turner, Amy; Sund, Sarah; Sobrera, Nara; Neptune, Enid; Sweetser, David; Santiago-Cornier, Alberto; Broeckel, Ulrich

    2015-01-01

    We report on a father and his two daughters diagnosed with Klippel-Feil syndrome (KFS) but with craniofacial differences (zygomatic and mandibular hypoplasia and cleft palate) and external ear abnormalities suggestive of Treacher Collins syndrome (TCS). The diagnosis of KFS was favored, given that the neck anomalies were the predominant manifestations, and that the diagnosis predated later recognition of the association between spinal segmentation abnormalities and TCS. Genetic heterogeneity and the rarity of large families with KFS have limited the ability to identify mutations by traditional methods. Whole exome sequencing identified a nonsynonymous mutation in POLR1D (subunit of RNA polymerase I and II): exon2:c.T332C:p.L111P. Mutations in POLR1D are present in about 5% of individuals diagnosed with TCS. We propose that this mutation is causal in this family, suggesting a pathogenetic link between KFS and TCS. © 2014 Wiley Periodicals, Inc.

  11. Whole-Exome Sequencing Identifies ALMS1, IQCB1, CNGA3, and MYO7A Mutations in Patients with Leber Congenital Amaurosis

    OpenAIRE

    Wang, Xia; Wang, Hui; Cao, Ming; Li, Zhe; Chen, Xianfeng; Patenia, Claire; Gore, Athurva; Abboud, Emad B.; Al-Rajhi, Ali A.; Lewis, Richard A.; Lupski, James R.; Mardon, Graeme; Zhang, Kun; Muzny, Donna; Gibbs, Richard A.

    2011-01-01

    It has been well documented that mutations in the same retinal disease gene can result in different clinical phenotypes due to difference in the mutant allele and/or genetic background. To evaluate this, a set of consanguineous patient families with Leber congenital amaurosis (LCA) that do not carry mutations in known LCA disease genes was characterized through homozygosity mapping followed by targeted exon/whole-exome sequencing to identify genetic variations. Among these families, a total o...

  12. Fine-Scale Mapping at 9p22.2 Identifies Candidate Causal Variants That Modify Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers

    DEFF Research Database (Denmark)

    Vigorito, Elena; Kuchenbaecker, Karoline B; Beesley, Jonathan

    2016-01-01

    Population-based genome wide association studies have identified a locus at 9p22.2 associated with ovarian cancer risk, which also modifies ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. We conducted fine-scale mapping at 9p22.2 to identify potential causal variants in BRCA1 and BRCA2...... mutation carriers. Genotype data were available for 15,252 (2,462 ovarian cancer cases) BRCA1 and 8,211 (631 ovarian cancer cases) BRCA2 mutation carriers. Following genotype imputation, ovarian cancer associations were assessed for 4,873 and 5,020 SNPs in BRCA1 and BRCA 2 mutation carriers respectively...... of BNC2. In BRCA2 mutation carriers one region, up to 45 kb upstream of BNC2, and containing 100 correlated SNPs was identified as candidate causal (top SNP rs62543585, HR: 0.69, 95%CI: 0.59 to 0.80, p-value 1.0 × 10-6). The candidate causal in BRCA1 mutation carriers did not include the strongest...

  13. Targeted sequencing identifies associations between IL7R-JAK mutations and epigenetic modulators in T-cell acute lymphoblastic leukemia

    Science.gov (United States)

    Vicente, Carmen; Schwab, Claire; Broux, Michaël; Geerdens, Ellen; Degryse, Sandrine; Demeyer, Sofie; Lahortiga, Idoya; Elliott, Alannah; Chilton, Lucy; La Starza, Roberta; Mecucci, Cristina; Vandenberghe, Peter; Goulden, Nicholas; Vora, Ajay; Moorman, Anthony V.; Soulier, Jean; Harrison, Christine J.; Clappier, Emmanuelle; Cools, Jan

    2015-01-01

    T-cell acute lymphoblastic leukemia is caused by the accumulation of multiple oncogenic lesions, including chromosomal rearrangements and mutations. To determine the frequency and co-occurrence of mutations in T-cell acute lymphoblastic leukemia, we performed targeted re-sequencing of 115 genes across 155 diagnostic samples (44 adult and 111 childhood cases). NOTCH1 and CDKN2A/B were mutated/deleted in more than half of the cases, while an additional 37 genes were mutated/deleted in 4% to 20% of cases. We found that IL7R-JAK pathway genes were mutated in 27.7% of cases, with JAK3 mutations being the most frequent event in this group. Copy number variations were also detected, including deletions of CREBBP or CTCF and duplication of MYB. FLT3 mutations were rare, but a novel extracellular mutation in FLT3 was detected and confirmed to be transforming. Furthermore, we identified complex patterns of pairwise associations, including a significant association between mutations in IL7R-JAK genes and epigenetic regulators (WT1, PRC2, PHF6). Our analyses showed that IL7R-JAK genetic lesions did not confer adverse prognosis in T-cell acute lymphoblastic leukemia cases enrolled in the UK ALL2003 trial. Overall, these results identify interconnections between the T-cell acute lymphoblastic leukemia genome and disease biology, and suggest a potential clinical application for JAK inhibitors in a significant proportion of patients with T-cell acute lymphoblastic leukemia. PMID:26206799

  14. Mutational analysis to identify the residues essential for the inhibition of N-acetyl glutamate kinase of Corynebacterium glutamicum.

    Science.gov (United States)

    Huang, Yuanyuan; Zhang, Hao; Tian, Hongming; Li, Cheng; Han, Shuangyan; Lin, Ying; Zheng, Suiping

    2015-09-01

    N-acetyl glutamate kinase (NAGK) is a key enzyme in the synthesis of L-arginine that is inhibited by its end product L-arginine in Corynebacterium glutamicum (C. glutamicum). In this study, the potential binding sites of arginine and the residues essential for its inhibition were identified by homology modeling, inhibitor docking, and site-directed mutagenesis. The allosteric inhibition of NAGK was successfully alleviated by a mutation, as determined through analysis of mutant enzymes, which were overexpressed in vivo in C. glutamicum ATCC14067. Analysis of the mutant enzymes and docking analysis demonstrated that residue W23 positions an arginine molecule, and the interaction between arginine and residues L282, L283, and T284 may play an important role in the remote inhibitory process. Based on the results of the docking analysis of the effective mutants, we propose a linkage mechanism for the remote allosteric regulation of NAGK activity, in which residue R209 may play an essential role. In this study, the structure of the arginine-binding site of C. glutamicum NAGK (CgNAGK) was successfully predicted and the roles of the relevant residues were identified, providing new insight into the allosteric regulation of CgNAGK activity and a solid platform for the future construction of an optimized L-arginine producing strain.

  15. Fine-Scale Mapping at 9p22.2 Identifies Candidate Causal Variants That Modify Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers

    NARCIS (Netherlands)

    Vigorito, E.; Kuchenbaecker, K.B.; Beesley, J.; Adlard, J.; Agnarsson, B.A.; Andrulis, I.L.; Arun, B.K.; Barjhoux, L.; Belotti, M.; Benitez, J.; Berger, A.; Bojesen, A.; Bonanni, B.; Brewer, C.; Caldes, T.; Caligo, M.A.; Campbell, I.; Chan, S.B.; Claes, K.B.; Cohn, D.E.; Cook, J.; Daly, M.B.; Damiola, F.; Davidson, R.; Pauw, A. de; Delnatte, C.; Diez, O.; Domchek, S.M.; Dumont, M.; Durda, K.; Dworniczak, B.; Easton, D.F.; Eccles, D.; Edwinsdotter Ardnor, C.; Eeles, R.; Ejlertsen, B.; Ellis, S.; Evans, D.G.; Feliubadalo, L.; Fostira, F.; Foulkes, W.D.; Friedman, E.; Frost, D.; Gaddam, P.; Ganz, P.A.; Garber, J.; Garcia-Barberan, V.; Gauthier-Villars, M.; Gehrig, A.; Gerdes, A.M.; Giraud, S.; Godwin, A.K.; Goldgar, D.E.; Hake, C.R.; Hansen, T.V.; Healey, S.; Hodgson, S.; Hogervorst, F.B.; Houdayer, C.; Hulick, P.J.; Imyanitov, E.N.; Isaacs, C.; Izatt, L.; Izquierdo, A.; Jacobs, L; Jakubowska, A.; Janavicius, R.; Jaworska-Bieniek, K.; Jensen, U.B.; John, E.M.; Vijai, J.; Karlan, B.Y.; Kast, K.; Khan, S.; Kwong, A.; Laitman, Y.; Lester, J.; Lesueur, F.; Liljegren, A.; Lubinski, J.; Mai, P.L.; Manoukian, S.; Mazoyer, S.; Meindl, A.; Mensenkamp, A.R.; Montagna, M.; Nathanson, K.L.; Neuhausen, S.L.; Nevanlinna, H.; Niederacher, D.; Olah, E.; Olopade, O.I.; Ong, K.R.; Osorio, A.; Park, S.K.; Paulsson-Karlsson, Y.; Pedersen, I.S.; Peissel, B.; Peterlongo, P.; et al.,

    2016-01-01

    Population-based genome wide association studies have identified a locus at 9p22.2 associated with ovarian cancer risk, which also modifies ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. We conducted fine-scale mapping at 9p22.2 to identify potential causal variants in BRCA1 and BRCA2

  16. Fine-Scale Mapping at 9p22.2 Identifies Candidate Causal Variants That Modify Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers

    DEFF Research Database (Denmark)

    Vigorito, Elena; Kuchenbaecker, Karoline B; Beesley, Jonathan

    2016-01-01

    Population-based genome wide association studies have identified a locus at 9p22.2 associated with ovarian cancer risk, which also modifies ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. We conducted fine-scale mapping at 9p22.2 to identify potential causal variants in BRCA1 and BRCA2 ...

  17. Dominant mutations in S. cerevisiae PMS1 identify the Mlh1-Pms1 endonuclease active site and an exonuclease 1-independent mismatch repair pathway.

    Directory of Open Access Journals (Sweden)

    Catherine E Smith

    2013-10-01

    Full Text Available Lynch syndrome (hereditary nonpolypsis colorectal cancer or HNPCC is a common cancer predisposition syndrome. Predisposition to cancer in this syndrome results from increased accumulation of mutations due to defective mismatch repair (MMR caused by a mutation in one of the mismatch repair genes MLH1, MSH2, MSH6 or PMS2/scPMS1. To better understand the function of Mlh1-Pms1 in MMR, we used Saccharomyces cerevisiae to identify six pms1 mutations (pms1-G683E, pms1-C817R, pms1-C848S, pms1-H850R, pms1-H703A and pms1-E707A that were weakly dominant in wild-type cells, which surprisingly caused a strong MMR defect when present on low copy plasmids in an exo1Δ mutant. Molecular modeling showed these mutations caused amino acid substitutions in the metal coordination pocket of the Pms1 endonuclease active site and biochemical studies showed that they inactivated the endonuclease activity. This model of Mlh1-Pms1 suggested that the Mlh1-FERC motif contributes to the endonuclease active site. Consistent with this, the mlh1-E767stp mutation caused both MMR and endonuclease defects similar to those caused by the dominant pms1 mutations whereas mutations affecting the predicted metal coordinating residue Mlh1-C769 had no effect. These studies establish that the Mlh1-Pms1 endonuclease is required for MMR in a previously uncharacterized Exo1-independent MMR pathway.

  18. Dominant mutations in S. cerevisiae PMS1 identify the Mlh1-Pms1 endonuclease active site and an exonuclease 1-independent mismatch repair pathway.

    Science.gov (United States)

    Smith, Catherine E; Mendillo, Marc L; Bowen, Nikki; Hombauer, Hans; Campbell, Christopher S; Desai, Arshad; Putnam, Christopher D; Kolodner, Richard D

    2013-10-01

    Lynch syndrome (hereditary nonpolypsis colorectal cancer or HNPCC) is a common cancer predisposition syndrome. Predisposition to cancer in this syndrome results from increased accumulation of mutations due to defective mismatch repair (MMR) caused by a mutation in one of the mismatch repair genes MLH1, MSH2, MSH6 or PMS2/scPMS1. To better understand the function of Mlh1-Pms1 in MMR, we used Saccharomyces cerevisiae to identify six pms1 mutations (pms1-G683E, pms1-C817R, pms1-C848S, pms1-H850R, pms1-H703A and pms1-E707A) that were weakly dominant in wild-type cells, which surprisingly caused a strong MMR defect when present on low copy plasmids in an exo1Δ mutant. Molecular modeling showed these mutations caused amino acid substitutions in the metal coordination pocket of the Pms1 endonuclease active site and biochemical studies showed that they inactivated the endonuclease activity. This model of Mlh1-Pms1 suggested that the Mlh1-FERC motif contributes to the endonuclease active site. Consistent with this, the mlh1-E767stp mutation caused both MMR and endonuclease defects similar to those caused by the dominant pms1 mutations whereas mutations affecting the predicted metal coordinating residue Mlh1-C769 had no effect. These studies establish that the Mlh1-Pms1 endonuclease is required for MMR in a previously uncharacterized Exo1-independent MMR pathway.

  19. Spectrum of benzo[a]pyrene-induced mutations in the Pig-a gene of L5178YTk+/- cells identified with next generation sequencing.

    Science.gov (United States)

    Revollo, Javier; Wang, Yiying; McKinzie, Page; Dad, Azra; Pearce, Mason; Heflich, Robert H; Dobrovolsky, Vasily N

    2017-12-01

    We used Sanger sequencing and next generation sequencing (NGS) for analysis of mutations in the endogenous X-linked Pig-a gene of clonally expanded L5178YTk +/- cells. The clones developed from single cells that were sorted on a flow cytometer based upon the expression pattern of the GPI-anchored marker, CD90, on their surface. CD90-deficient and CD90-proficient cells were sorted from untreated cultures and CD90-deficient cells were sorted from cultures treated with benzo[a]pyrene (B[a]P). Pig-a mutations were identified in all clones developed from CD90-deficient cells; no Pig-a mutations were found in clones of CD90-proficient cells. The spectrum of B[a]P-induced Pig-a mutations was dominated by basepair substitutions, small insertions and deletions at G:C, or at sequences rich in G:C content. We observed high concordance between Pig-a mutations determined by Sanger sequencing and by NGS, but NGS was able to identify mutations in samples that were difficult to analyze by Sanger sequencing (e.g., mixtures of two mutant clones). Overall, the NGS method is a cost and labor efficient high throughput approach for analysis of a large number of mutant clones. Published by Elsevier B.V.

  20. Evaluation of current prediction models for Lynch syndrome: updating the PREMM5 model to identify PMS2 mutation carriers

    NARCIS (Netherlands)

    A. Goverde (Anne); M.C.W. Spaander (Manon); D. Nieboer (Daan); A.M.W. van den Ouweland (Ans); W.N.M. Dinjens (Winand); H.J. Dubbink (Erik Jan); C. Tops (Cmj); S.W. Ten Broeke (Sanne W.); M.J. Bruno (Marco); R.M.W. Hofstra (Robert); E.W. Steyerberg (Ewout); A. Wagner (Anja)

    2017-01-01

    textabstractUntil recently, no prediction models for Lynch syndrome (LS) had been validated for PMS2 mutation carriers. We aimed to evaluate MMRpredict and PREMM5 in a clinical cohort and for PMS2 mutation carriers specifically. In a retrospective, clinic-based cohort we calculated predictions for

  1. [Lower urinary tract dysfunction and neuropathological findings of the neural circuits controlling micturition in familial amyotrophic lateral sclerosis with L106V mutation in the SOD1 gene].

    Science.gov (United States)

    Hineno, Akiyo; Oyanagi, Kiyomitsu; Nakamura, Akinori; Shimojima, Yoshio; Yoshida, Kunihiro; Ikeda, Shu-Ichi

    2016-01-01

    We report lower urinary tract dysfunction and neuropathological findings of the neural circuits controlling micturition in the patients with familial amyotrophic lateral sclerosis having L106V mutation in the SOD1 gene. Ten of 20 patients showed lower urinary tract dysfunction and 5 patients developed within 1 year after the onset of weakness. In 8 patients with an artificial respirator, 6 patients showed lower urinary tract dysfunction. Lower urinary tract dysfunction and respiratory failure requiring an artificial respirator occurred simultaneously in 3 patients. Neuronal loss and gliosis were observed in the neural circuits controlling micturition, such as frontal lobe, thalamus, hypothalamus, striatum, periaqueductal gray, ascending spinal tract, lateral corticospinal tract, intermediolateral nucleus and Onufrowicz' nucleus. Lower urinary tract dysfunction, especially storage symptoms, developed about 1 year after the onset of weakness, and the dysfunction occurred simultaneously with artificial respirator use in the patients.

  2. Whole Genome Sequencing Identifies a Missense Mutation in HES7 Associated with Short Tails in Asian Domestic Cats.

    Science.gov (United States)

    Xu, Xiao; Sun, Xin; Hu, Xue-Song; Zhuang, Yan; Liu, Yue-Chen; Meng, Hao; Miao, Lin; Yu, He; Luo, Shu-Jin

    2016-08-25

    Domestic cats exhibit abundant variations in tail morphology and serve as an excellent model to study the development and evolution of vertebrate tails. Cats with shortened and kinked tails were first recorded in the Malayan archipelago by Charles Darwin in 1868 and remain quite common today in Southeast and East Asia. To elucidate the genetic basis of short tails in Asian cats, we built a pedigree of 13 cats segregating at the trait with a founder from southern China and performed linkage mapping based on whole genome sequencing data from the pedigree. The short-tailed trait was mapped to a 5.6 Mb region of Chr E1, within which the substitution c. 5T > C in the somite segmentation-related gene HES7 was identified as the causal mutation resulting in a missense change (p.V2A). Validation in 245 unrelated cats confirmed the correlation between HES7-c. 5T > C and Chinese short-tailed feral cats as well as the Japanese Bobtail breed, indicating a common genetic basis of the two. In addition, some of our sampled kinked-tailed cats could not be explained by either HES7 or the Manx-related T-box, suggesting at least three independent events in the evolution of domestic cats giving rise to short-tailed traits.

  3. Mutations in Ovis aries TMEM154 are associated with lower small ruminant lentivirus proviral concentration in one sheep flock.

    Science.gov (United States)

    Alshanbari, F A; Mousel, M R; Reynolds, J O; Herrmann-Hoesing, L M; Highland, M A; Lewis, G S; White, S N

    2014-08-01

    Small ruminant lentivirus (SRLV), also called ovine progressive pneumonia virus or maedi-visna, is present in 24% of US sheep. Like human immunodeficiency virus, SRLV is a macrophage-tropic lentivirus that causes lifelong infection. The production impacts from SRLV are due to a range of disease symptoms, including pneumonia, arthritis, mastitis, body condition wasting and encephalitis. There is no cure and no effective vaccine for preventing SRLV infection. However, breed differences in prevalence and proviral concentration indicate a genetic basis for susceptibility to SRLV. Animals with high blood proviral concentration show increased tissue lesion severity, so proviral concentration represents a live animal test for control post-infection in terms of proviral replication and disease severity. Recently, it was found that sheep with two copies of TMEM154 haplotype 1 (encoding lysine at position 35) had lower odds of SRLV infection. In this study, we examined the relationship between SRLV control post-infection and variants in two genes, TMEM154 and CCR5, in four flocks containing 1403 SRLV-positive sheep. We found two copies of TMEM154 haplotype 1 were associated with lower SRLV proviral concentration in one flock (P < 0.02). This identified the same favorable diplotype for SRLV control post-infection as for odds of infection. However, frequencies of haplotypes 2 and 3 were too low in the other three flocks to test. The CCR5 promoter deletion did not have consistent association with SRLV proviral concentration. Future work in flocks with more balanced allele frequencies is needed to confirm or refute TMEM154 association with control of SRLV post-infection. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Animal Genetics published by John Wiley & Sons Ltd on behalf of Stichting International Foundation for Animal Genetics.

  4. A Novel KCNJ2 Mutation Identified in an Autistic Proband Affects the Single Channel Properties of Kir2.1

    Directory of Open Access Journals (Sweden)

    Anna Binda

    2018-03-01

    Full Text Available Inwardly rectifying potassium channels (Kir have been historically associated to several cardiovascular disorders. In particular, loss-of-function mutations in the Kir2.1 channel have been reported in cases affected by Andersen-Tawil syndrome while gain-of-function mutations in the same channel cause the short QT3 syndrome. Recently, a missense mutation in Kir2.1, as well as mutations in the Kir4.1, were reported to be involved in autism spectrum disorders (ASDs suggesting a role of potassium channels in these diseases and introducing the idea of the existence of K+ channel ASDs. Here, we report the identification in an Italian affected family of a novel missense mutation (p.Phe58Ser in the KCNJ2 gene detected in heterozygosity in a proband affected by autism and borderline for short QT syndrome type 3. The mutation is located in the N-terminal region of the gene coding for the Kir2.1 channel and in particular in a very conserved domain. In vitro assays demonstrated that this mutation results in an increase of the channel conductance and in its open probability. This gain-of-function of the protein is consistent with the autistic phenotype, which is normally associated to an altered neuronal excitability.

  5. Whole-exome re-sequencing in a family quartet identifies POP1 mutations as the cause of a novel skeletal dysplasia.

    Directory of Open Access Journals (Sweden)

    Evgeny A Glazov

    2011-03-01

    Full Text Available Recent advances in DNA sequencing have enabled mapping of genes for monogenic traits in families with small pedigrees and even in unrelated cases. We report the identification of disease-causing mutations in a rare, severe, skeletal dysplasia, studying a family of two healthy unrelated parents and two affected children using whole-exome sequencing. The two affected daughters have clinical and radiographic features suggestive of anauxetic dysplasia (OMIM 607095, a rare form of dwarfism caused by mutations of RMRP. However, mutations of RMRP were excluded in this family by direct sequencing. Our studies identified two novel compound heterozygous loss-of-function mutations in POP1, which encodes a core component of the RNase mitochondrial RNA processing (RNase MRP complex that directly interacts with the RMRP RNA domains that are affected in anauxetic dysplasia. We demonstrate that these mutations impair the integrity and activity of this complex and that they impair cell proliferation, providing likely molecular and cellular mechanisms by which POP1 mutations cause this severe skeletal dysplasia.

  6. A novel missense mutation in the HECT domain of NEDD4L identified in a girl with periventricular nodular heterotopia, polymicrogyria and cleft palate.

    Science.gov (United States)

    Kato, Koji; Miya, Fuyuki; Hori, Ikumi; Ieda, Daisuke; Ohashi, Kei; Negishi, Yutaka; Hattori, Ayako; Okamoto, Nobuhiko; Kato, Mitsuhiro; Tsunoda, Tatsuhiko; Yamasaki, Mami; Kanemura, Yonehiro; Kosaki, Kenjiro; Saitoh, Shinji

    2017-09-01

    We identified a novel de novo heterozygous missense mutation in the NEDD4L gene (NM_015277: c.2617G>A; p.Glu873Lys) through whole-exome sequencing in a 3-year-old girl showing severe global developmental delay, infantile spasms, cleft palate, periventricular nodular heterotopia and polymicrogyria. Mutations in the HECT domain of NEDD4L have been reported in patients with a neurodevelopmental disorder along with similar brain malformations. All patients reported with NEDD4L HECT domain mutations showed periventricular nodular heterotopia, and most had seizures, cortex anomalies, cleft palate and syndactyly. The unique constellation of clinical features in patients with NEDD4L mutations might help clinically distinguish them from patients with other genetic mutations including FLNA, which is a well-known causative gene of periventricular nodular heterotopia. Although mutations in the HECT domain of NEDD4L that lead to AKT-mTOR pathway deregulation in forced expression system were reported, our western blot analysis did not show an increased level of AKT-mTOR activity in lymphoblastoid cell lines (LCLs) derived from the patient. In contrast to the forced overexpression system, AKT-mTOR pathway deregulation in LCLs derived from our patient seems to be subtle.

  7. Whole Exome Sequencing Identified a Novel Heterozygous Mutation in HMBS Gene in a Chinese Patient With Acute Intermittent Porphyria With Rare Type of Mild Anemia

    Directory of Open Access Journals (Sweden)

    Yongjiang Zheng

    2018-04-01

    Full Text Available Acute intermittent porphyria (AIP is a rare hereditary metabolic disease with an autosomal dominant mode of inheritance. Germline mutations of HMBS gene causes AIP. Mutation of HMBS gene results into the partial deficiency of the heme biosynthetic enzyme hydroxymethylbilane synthase. AIP is clinically manifested with abdominal pain, vomiting, and neurological complaints. Additionally, an extreme phenotypic heterogeneity has been reported in AIP patients with mutations in HMBS gene. Here, we investigated a Chinese patient with AIP. The proband is a 28-year-old Chinese male manifested with severe stomach ache, constipation, nausea and depression. Proband’s father and mother is normal. Proband’s blood sample was collected and genomic DNA was extracted. Whole exome sequencing and Sanger sequencing identified a heterozygous novel single nucleotide deletion (c.809delC in exon 12 of HMBS gene in the proband. This mutation leads to frameshift followed by formation of a truncated (p.Ala270Valfs∗2 HMBS protein with 272 amino acids comparing with the wild type HMBS protein of 361 amino acids. This mutation has not been found in proband’s unaffected parents as well as in 100 healthy normal control. According to the variant interpretation guidelines of American College of Medical Genetics and Genomics (ACMG, this variant is classified as “likely pathogenic” variant. Our findings expand the mutational spectra of HMBS gene related AIP which are significant for screening and genetic diagnosis for AIP.

  8. A novel glycated hemoglobin A1c-lowering traditional Chinese medicinal formula, identified by translational medicine study.

    Directory of Open Access Journals (Sweden)

    Hsin-Yi Lo

    Full Text Available Diabetes is a chronic metabolic disorder that has a significant impact on the health care system. The reduction of glycated hemoglobin A1c is highly associated with the improvements of glycemic control and diabetic complications. In this study, we identified a traditional Chinese medicinal formula with a HbA1c-lowering potential from clinical evidences. By surveying 9,973 diabetic patients enrolled in Taiwan Diabetic Care Management Program, we found that Chu-Yeh-Shih-Kao-Tang (CYSKT significantly reduced HbA1c values in diabetic patients. CYSKT reduced the levels of HbA1c and fasting blood glucose, and stimulated the blood glucose clearance in type 2 diabetic mice. CYSKT affected the expressions of genes associated with insulin signaling pathway, increased the amount of phosphorylated insulin receptor in cells and tissues, and stimulated the translocation of glucose transporter 4. Moreover, CYSKT affected the expressions of genes related to diabetic complications, improved the levels of renal function indexes, and increased the survival rate of diabetic mice. In conclusion, this was a translational medicine study that applied a "bedside-to-bench" approach to identify a novel HbA1c-lowering formula. Our findings suggested that oral administration of CYSKT affected insulin signaling pathway, decreased HbA1c and blood glucose levels, and consequently reduced mortality rate in type 2 diabetic mice.

  9. Molecular grading of tumors of the upper urothelial tract using FGFR3 mutation status identifies patients with favorable prognosis

    OpenAIRE

    Fernandez, Cecilia; Lyle,Stephen; Hsieh,; Shuber,Anthony

    2012-01-01

    Stephen R Lyle,1 Chung-Cheng Hsieh,1 Cecilia A Fernandez,2 Anthony P Shuber21University of Massachusetts, Worcester, MA, 2Predictive Biosciences Inc., Lexington, MA, USABackground: Mutations in FGFR3 have been shown to occur in tumors of the upper urothelial tract and may be indicative of a good prognosis. In bladder tumors, the combination of FGFR3 mutation status and Ki-67 level has been used to define a tumor's molecular grade and predict survival. Pathological evaluation of upper ...

  10. A Novel PRKAR1A Mutation Identified in a Patient with Isolated Primary Pigmented Nodular Adrenocortical Disease

    Directory of Open Access Journals (Sweden)

    Sira Korpaisarn

    2017-08-01

    Full Text Available Primary pigmented nodular adrenocortical disease (PPNAD is a rare cause of Cushing syndrome, especially the isolated form without Carney complex, associated with germline mutations in PRKAR1A, the protein kinase A regulatory subunit type 1 alpha gene. We report a 31-year-old female who presented with secondary amenorrhea, cushingoid appearance, and hypertension without Carney complex. Biochemical laboratory examinations confirmed the ACTH-independent adrenal Cushing syndrome with negative Liddle test. A small right adrenal adenoma of 0.8 cm was shown on computed tomography while magnetic resonance imaging revealed nodularity of both adrenal glands. The histological report confirmed PPNAD using laparoscopic right adrenalectomy, and subsequent left adrenalectomy was performed 6 months later. She had inherited heterozygosity of a novel germline mutation of the PRKAR1A gene (g.114213T>G or c.709-5T>G. This splice site mutation results in exon 8 skipping. Her father carrying the same mutation had no clinical features of either PPNAD or Carney complex. This novel PRKAR1A gene mutation, c.709-5T>G, is reported here for the first time manifesting as an incomplete clinical expression of the isolated form of PPNAD and being inherited with low penetrance unlike other inherited mutations of the Carney complex which have a penetrance of almost 100%.

  11. Enriched whole genome sequencing identified compensatory mutations in the RNA polymerase gene of rifampicin-resistant Mycobacterium leprae strains.

    Science.gov (United States)

    Lavania, Mallika; Singh, Itu; Turankar, Ravindra P; Gupta, Anuj Kumar; Ahuja, Madhvi; Pathak, Vinay; Sengupta, Utpal

    2018-01-01

    Despite more than three decades of multidrug therapy (MDT), leprosy remains a major public health issue in several endemic countries, including India. The emergence of drug resistance in Mycobacterium leprae (M. leprae) is a cause of concern and poses a threat to the leprosy-control program, which might ultimately dampen the achievement of the elimination program of the country. Rifampicin resistance in clinical strains of M. leprae are supposed to arise from harboring bacterial strains with mutations in the 81-bp rifampicin resistance determining region (RRDR) of the rpoB gene. However, complete dynamics of rifampicin resistance are not explained only by this mutation in leprosy strains. To understand the role of other compensatory mutations and transmission dynamics of drug-resistant leprosy, a genome-wide sequencing of 11 M. leprae strains - comprising five rifampicin-resistant strains, five sensitive strains, and one reference strain - was done in this study. We observed the presence of compensatory mutations in two rifampicin-resistant strains in rpoC and mmpL7 genes, along with rpoB , that may additionally be responsible for conferring resistance in those strains. Our findings support the role for compensatory mutation(s) in RNA polymerase gene(s), resulting in rifampicin resistance in relapsed leprosy patients.

  12. TBX1 mutation identified by exome sequencing in a Japanese family with 22q11.2 deletion syndrome-like craniofacial features and hypocalcemia.

    Directory of Open Access Journals (Sweden)

    Tsutomu Ogata

    Full Text Available BACKGROUND: Although TBX1 mutations have been identified in patients with 22q11.2 deletion syndrome (22q11.2DS-like phenotypes including characteristic craniofacial features, cardiovascular anomalies, hypoparathyroidism, and thymic hypoplasia, the frequency of TBX1 mutations remains rare in deletion-negative patients. Thus, it would be reasonable to perform a comprehensive genetic analysis in deletion-negative patients with 22q11.2DS-like phenotypes. METHODOLOGY/PRINCIPAL FINDINGS: We studied three subjects with craniofacial features and hypocalcemia (group 1, two subjects with craniofacial features alone (group 2, and three subjects with normal phenotype within a single Japanese family. Fluorescence in situ hybridization analysis excluded chromosome 22q11.2 deletion, and genomewide array comparative genomic hybridization analysis revealed no copy number change specific to group 1 or groups 1+2. However, exome sequencing identified a heterozygous TBX1 frameshift mutation (c.1253delA, p.Y418fsX459 specific to groups 1+2, as well as six missense variants and two in-frame microdeletions specific to groups 1+2 and two missense variants specific to group 1. The TBX1 mutation resided at exon 9C and was predicted to produce a non-functional truncated protein missing the nuclear localization signal and most of the transactivation domain. CONCLUSIONS/SIGNIFICANCE: Clinical features in groups 1+2 are well explained by the TBX1 mutation, while the clinical effects of the remaining variants are largely unknown. Thus, the results exemplify the usefulness of exome sequencing in the identification of disease-causing mutations in familial disorders. Furthermore, the results, in conjunction with the previous data, imply that TBX1 isoform C is the biologically essential variant and that TBX1 mutations are associated with a wide phenotypic spectrum, including most of 22q11.2DS phenotypes.

  13. Novel mutations in CRB1 gene identified in a chinese pedigree with retinitis pigmentosa by targeted capture and next generation sequencing

    Science.gov (United States)

    Lo, David; Weng, Jingning; Liu, xiaohong; Yang, Juhua; He, Fen; Wang, Yun; Liu, Xuyang

    2016-01-01

    PURPOSE To detect the disease-causing gene in a Chinese pedigree with autosomal-recessive retinitis pigmentosa (ARRP). METHODS All subjects in this family underwent a complete ophthalmic examination. Targeted-capture next generation sequencing (NGS) was performed on the proband to detect variants. All variants were verified in the remaining family members by PCR amplification and Sanger sequencing. RESULTS All the affected subjects in this pedigree were diagnosed with retinitis pigmentosa (RP). The compound heterozygous c.138delA (p.Asp47IlefsX24) and c.1841G>T (p.Gly614Val) mutations in the Crumbs homolog 1 (CRB1) gene were identified in all the affected patients but not in the unaffected individuals in this family. These mutations were inherited from their parents, respectively. CONCLUSION The novel compound heterozygous mutations in CRB1 were identified in a Chinese pedigree with ARRP using targeted-capture next generation sequencing. After evaluating the significant heredity and impaired protein function, the compound heterozygous c.138delA (p.Asp47IlefsX24) and c.1841G>T (p.Gly614Val) mutations are the causal genes of early onset ARRP in this pedigree. To the best of our knowledge, there is no previous report regarding the compound mutations. PMID:27806333

  14. Virulence-associated genome mutations of murine rotavirus identified by alternating serial passages in mice and cell cultures.

    Science.gov (United States)

    Tsugawa, Takeshi; Tatsumi, Masatoshi; Tsutsumi, Hiroyuki

    2014-05-01

    Although significant clinical efficacy and safety of rotavirus vaccines were recently revealed in many countries, the mechanism of their attenuation is not well understood. We passaged serially a cell culture-adapted murine rotavirus EB strain in mouse pups or in cell cultures alternately and repeatedly and fully sequenced all 11 genes of 21 virus samples passaged in mice or in cell cultures. Sequence analysis revealed that mouse-passaged viruses that regained virulence almost consistently acquired four kinds of amino acid (aa) substitutions in VP4 and substitution in aa 37 (Val to Ala) in NSP4. In addition, they gained and invariably conserved the 3' consensus sequence in NSP1. The molecular changes occurred along with the acquisition of virulence during passages in mice and then disappeared following passages in cell cultures. Intraperitoneal injection of recombinant NSP4 proteins confirmed the aa 37 site as important for its diarrheagenic activity in mice. These genome changes are likely to be correlated with rotavirus virulence. Serial passage of a virulent wild-type virus in vitro often results in loss of virulence of the virus in an original animal host, while serial passage of a cell culture-adapted avirulent virus in vivo often gains virulence in an animal host. Actually, live attenuated virus vaccines were originally produced by serial passage in cell cultures. Although clinical efficacy and safety of rotavirus vaccines were recently revealed, the mechanism of their attenuation is not well understood. We passaged serially a murine rotavirus by alternating switch of host (mice or cell cultures) repeatedly and sequenced the eleven genes of the passaged viruses to identify mutations associated with the emergence or disappearance of virulence. Sequence analysis revealed that changes in three genes (VP4, NSP1, and NSP4) were associated with virulence in mice. Intraperitoneal injection of recombinant NSP4 proteins confirmed its diarrheagenic activity in mice

  15. Virulence-Associated Genome Mutations of Murine Rotavirus Identified by Alternating Serial Passages in Mice and Cell Cultures

    Science.gov (United States)

    Tatsumi, Masatoshi; Tsutsumi, Hiroyuki

    2014-01-01

    ABSTRACT Although significant clinical efficacy and safety of rotavirus vaccines were recently revealed in many countries, the mechanism of their attenuation is not well understood. We passaged serially a cell culture-adapted murine rotavirus EB strain in mouse pups or in cell cultures alternately and repeatedly and fully sequenced all 11 genes of 21 virus samples passaged in mice or in cell cultures. Sequence analysis revealed that mouse-passaged viruses that regained virulence almost consistently acquired four kinds of amino acid (aa) substitutions in VP4 and substitution in aa 37 (Val to Ala) in NSP4. In addition, they gained and invariably conserved the 3′ consensus sequence in NSP1. The molecular changes occurred along with the acquisition of virulence during passages in mice and then disappeared following passages in cell cultures. Intraperitoneal injection of recombinant NSP4 proteins confirmed the aa 37 site as important for its diarrheagenic activity in mice. These genome changes are likely to be correlated with rotavirus virulence. IMPORTANCE Serial passage of a virulent wild-type virus in vitro often results in loss of virulence of the virus in an original animal host, while serial passage of a cell culture-adapted avirulent virus in vivo often gains virulence in an animal host. Actually, live attenuated virus vaccines were originally produced by serial passage in cell cultures. Although clinical efficacy and safety of rotavirus vaccines were recently revealed, the mechanism of their attenuation is not well understood. We passaged serially a murine rotavirus by alternating switch of host (mice or cell cultures) repeatedly and sequenced the eleven genes of the passaged viruses to identify mutations associated with the emergence or disappearance of virulence. Sequence analysis revealed that changes in three genes (VP4, NSP1, and NSP4) were associated with virulence in mice. Intraperitoneal injection of recombinant NSP4 proteins confirmed its

  16. Association between GWAS-identified lung adenocarcinoma susceptibility loci and EGFR mutations in never-smoking Asian women, and comparison with findings from Western populations

    NARCIS (Netherlands)

    Seow, Wei Jie; Matsuo, Keitaro; Hsiung, Chao Agnes; Shiraishi, Kouya; Song, Minsun; Kim, Hee Nam; Wong, Maria Pik; Hong, Yun-Chul; Hosgood, H. Dean; Wang, Zhaoming; Chang, I-Shou; Wang, Jiu-Cun; Chatterjee, Nilanjan; Tucker, Margaret; Wei, Hu; Mitsudomi, Tetsuya; Zheng, Wei; Kim, Jin Hee; Zhou, Baosen; Caporaso, Neil E; Albanes, Demetrius; Shin, Min-Ho; Chung, Lap Ping; An, She-Juan; Wang, Ping; Zheng, Hong; Yatabe, Yasushi; Zhang, Xu-Chao; Kim, Young Tae; Shu, Xiao Ou; Kim, Young-Chul; Bassig, Bryan A.; Chang, Jiang; Ho, James Chung Man; Ji, Bu Tian; Kubo, Michiaki; Daigo, Yataro; Ito, Hidemi; Momozawa, Yukihide; Ashikawa, Kyota; Kamatani, Yoichiro; Honda, Takayuki; Sakamoto, Hiromi; Kunitoh, Hideo; Tsuta, Koji; Watanabe, Shun-Ichi; Nokihara, Hiroshi; Miyagi, Yohei; Nakayama, Haruhiko; Matsumoto, Shingo; Tsuboi, Masahiro; Goto, Koichi; Yin, Zhihua; Shi, Jianxin; Takahashi, Atsushi; Goto, Akiteru; Minamiya, Yoshihiro; Shimizu, Kimihiro; Tanaka, Kazumi; Wu, Tangchun; Wei, Fusheng; Wong, Jason Y Y; Matsuda, Fumihiko; Su, Jian; Kim, Yeul Hong; Oh, In-Jae; Song, Fengju; Lee, Victor Ho Fun; Su, Wu-Chou; Chen, Yuh-Min; Chang, Gee-Chen; Chen, Kuan-Yu; Huang, Ming-Shyan; Yang, Pan-Chyr; Lin, Hsien-Chih; Xiang, Yong-Bing; Seow, Adeline; Park, Jae Yong; Kweon, Sun-Seog; Chen, Chien-Jen; Li, Haixin; Gao, Yu Tang; Wu, Chen; Qian, Biyun; Lu, Daru; Liu, Jianjun; Jeon, Hyo-Sung; Hsiao, Chin-Fu; Sung, Jae Sook; Tsai, Ying-Huang; Jung, Yoo Jin; Guo, Huan; Hu, Zhibin; Wang, Wen-Chang; Chung, Charles C.; Lawrence, Charles; Burdett, Laurie; Yeager, Meredith; Jacobs, Kevin B.; Hutchinson, Amy; Berndt, Sonja I.; He, Xingzhou; Wu, Wei; Wang, Junwen; Li, Yuqing; Choi, Jin Eun; Park, Kyong Hwa; Sung, Sook Whan; Liu, Li; Kang, Chang Hyun; Hu, Lingmin; Chen, Chung-Hsing; Yang, Tsung-Ying; Xu, Jun; Guan, Peng; Tan, Wen; Wang, Chih-Liang; Sihoe, Alan Dart Loon; Chen, Ying; Choi, Yi Young; Hung, Jen-Yu; Kim, Jun Suk; Yoon, Ho-Il; Cai, Qiuyin; Lin, Chien-Chung; Park, In Kyu; Xu, Ping; Dong, Jing; Kim, Christopher; He, Qincheng; Perng, Reury-Perng; Chen, Chih-Yi; Vermeulen, Roel; Wu, Junjie; Lim, Wei-Yen; Chen, Kun-Chieh; Chan, John K C; Chu, Minjie; Li, Yao-Jen; Li, Jihua; Chen, Hongyan; Yu, Chong-Jen; Jin, Li; Lo, Yen-Li; Chen, Ying-Hsiang; Fraumeni, Joseph F.; Liu, Jie; Yamaji, Taiki; Yang, Yang; Hicks, Belynda; Wyatt, Kathleen; Li, Shengchao A; Dai, Juncheng; Ma, Hongxia; Jin, Guangfu; Song, Bao; Wang, Zhehai; Cheng, Sensen; Li, Xuelian; Ren, Yangwu; Cui, Ping; Iwasaki, Motoki; Shimazu, Taichi; Tsugane, Shoichiro; Zhu, Junjie; Jiang, Gening; Fei, Ke; Wu, Guoping; Chien, Li-Hsin; Chen, Hui-Ling; Su, Yu-Chun; Tsai, Fang-Yu; Chen, Yi-Song; Yu, Jinming; Stevens, Victoria L; Laird-Offringa, Ite A; Marconett, Crystal N; Lin, Dongxin; Chen, Kexin; Wu, Yi-Long; Landi, Maria Teresa; Shen, Hongbing; Rothman, Nathaniel; Kohno, Takashi; Chanock, Stephen J.; Lan, Qing

    2017-01-01

    To evaluate associations by EGFR mutation status for lung adenocarcinoma risk among never-smoking Asian women, we conducted a meta-analysis of 11 loci previously identified in genome-wide association studies (GWAS). Genotyping in an additional 10,780 never-smoking cases and 10,938 never-smoking

  17. Targeted next-generation sequencing identifies a homozygous nonsense mutation in ABHD12, the gene underlying PHARC, in a family clinically diagnosed with Usher syndrome type 3

    Science.gov (United States)

    2012-01-01

    Background Usher syndrome (USH) is an autosomal recessive genetically heterogeneous disorder with congenital sensorineural hearing impairment and retinitis pigmentosa (RP). We have identified a consanguineous Lebanese family with two affected members displaying progressive hearing loss, RP and cataracts, therefore clinically diagnosed as USH type 3 (USH3). Our study was aimed at the identification of the causative mutation in this USH3-like family. Methods Candidate loci were identified using genomewide SNP-array-based homozygosity mapping followed by targeted enrichment and next-generation sequencing. Results Using a capture array targeting the three identified homozygosity-by-descent regions on chromosomes 1q43-q44, 20p13-p12.2 and 20p11.23-q12, we identified a homozygous nonsense mutation, p.Arg65X, in ABHD12 segregating with the phenotype. Conclusion Mutations of ABHD12, an enzyme hydrolyzing an endocannabinoid lipid transmitter, cause PHARC (polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and early-onset cataract). After the identification of the ABHD12 mutation in this family, one patient underwent neurological examination which revealed ataxia, but no polyneuropathy. ABHD12 is not known to be related to the USH protein interactome. The phenotype of our patient represents a variant of PHARC, an entity that should be taken into account as differential diagnosis for USH3. Our study demonstrates the potential of comprehensive genetic analysis for improving the clinical diagnosis. PMID:22938382

  18. Targeted next-generation sequencing identifies a homozygous nonsense mutation in ABHD12, the gene underlying PHARC, in a family clinically diagnosed with Usher syndrome type 3.

    Science.gov (United States)

    Eisenberger, Tobias; Slim, Rima; Mansour, Ahmad; Nauck, Markus; Nürnberg, Gudrun; Nürnberg, Peter; Decker, Christian; Dafinger, Claudia; Ebermann, Inga; Bergmann, Carsten; Bolz, Hanno Jörn

    2012-09-02

    Usher syndrome (USH) is an autosomal recessive genetically heterogeneous disorder with congenital sensorineural hearing impairment and retinitis pigmentosa (RP). We have identified a consanguineous Lebanese family with two affected members displaying progressive hearing loss, RP and cataracts, therefore clinically diagnosed as USH type 3 (USH3). Our study was aimed at the identification of the causative mutation in this USH3-like family. Candidate loci were identified using genomewide SNP-array-based homozygosity mapping followed by targeted enrichment and next-generation sequencing. Using a capture array targeting the three identified homozygosity-by-descent regions on chromosomes 1q43-q44, 20p13-p12.2 and 20p11.23-q12, we identified a homozygous nonsense mutation, p.Arg65X, in ABHD12 segregating with the phenotype. Mutations of ABHD12, an enzyme hydrolyzing an endocannabinoid lipid transmitter, cause PHARC (polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and early-onset cataract). After the identification of the ABHD12 mutation in this family, one patient underwent neurological examination which revealed ataxia, but no polyneuropathy. ABHD12 is not known to be related to the USH protein interactome. The phenotype of our patient represents a variant of PHARC, an entity that should be taken into account as differential diagnosis for USH3. Our study demonstrates the potential of comprehensive genetic analysis for improving the clinical diagnosis.

  19. Targeted next-generation sequencing identifies a homozygous nonsense mutation in ABHD12, the gene underlying PHARC, in a family clinically diagnosed with Usher syndrome type 3

    Directory of Open Access Journals (Sweden)

    Eisenberger Tobias

    2012-09-01

    Full Text Available Abstract Background Usher syndrome (USH is an autosomal recessive genetically heterogeneous disorder with congenital sensorineural hearing impairment and retinitis pigmentosa (RP. We have identified a consanguineous Lebanese family with two affected members displaying progressive hearing loss, RP and cataracts, therefore clinically diagnosed as USH type 3 (USH3. Our study was aimed at the identification of the causative mutation in this USH3-like family. Methods Candidate loci were identified using genomewide SNP-array-based homozygosity mapping followed by targeted enrichment and next-generation sequencing. Results Using a capture array targeting the three identified homozygosity-by-descent regions on chromosomes 1q43-q44, 20p13-p12.2 and 20p11.23-q12, we identified a homozygous nonsense mutation, p.Arg65X, in ABHD12 segregating with the phenotype. Conclusion Mutations of ABHD12, an enzyme hydrolyzing an endocannabinoid lipid transmitter, cause PHARC (polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and early-onset cataract. After the identification of the ABHD12 mutation in this family, one patient underwent neurological examination which revealed ataxia, but no polyneuropathy. ABHD12 is not known to be related to the USH protein interactome. The phenotype of our patient represents a variant of PHARC, an entity that should be taken into account as differential diagnosis for USH3. Our study demonstrates the potential of comprehensive genetic analysis for improving the clinical diagnosis.

  20. Exome sequencing identifies mutations in ABCD1 and DACH2 in two brothers with a distinct phenotype.

    Science.gov (United States)

    Zhang, Yanliang; Liu, Yanhui; Li, Ya; Duan, Yong; Zhang, Keyun; Wang, Junwang; Dai, Yong

    2014-09-19

    We report on two brothers with a distinct syndromic phenotype and explore the potential pathogenic cause. Cytogenetic tests and exome sequencing were performed on the two brothers and their parents. Variants detected by exome sequencing were validated by Sanger sequencing. The main phenotype of the two brothers included congenital language disorder, growth retardation, intellectual disability, difficulty in standing and walking, and urinary and fecal incontinence. To the best of our knowledge, no similar phenotype has been reported previously. No abnormalities were detected by G-banding chromosome analysis or array comparative genomic hybridization. However, exome sequencing revealed novel mutations in the ATP-binding cassette, sub-family D member 1 (ABCD1) and Dachshund homolog 2 (DACH2) genes in both brothers. The ABCD1 mutation was a missense mutation c.1126G > C in exon 3 leading to a p.E376Q substitution. The DACH2 mutation was also a missense mutation c.1069A > T in exon 6, leading to a p.S357C substitution. The mother was an asymptomatic heterozygous carrier. Plasma levels of very-long-chain fatty acids were increased in both brothers, suggesting a diagnosis of adrenoleukodystrophy (ALD); however, their phenotype was not compatible with any reported forms of ALD. DACH2 plays an important role in the regulation of brain and limb development, suggesting that this mutation may be involved in the phenotype of the two brothers. The distinct phenotype demonstrated by these two brothers might represent a new form of ALD or a new syndrome. The combination of mutations in ABCD1 and DACH2 provides a plausible mechanism for this phenotype.

  1. Enriched whole genome sequencing identified compensatory mutations in the RNA polymerase gene of rifampicin-resistant Mycobacterium leprae strains

    Directory of Open Access Journals (Sweden)

    Lavania M

    2018-01-01

    Full Text Available Mallika Lavania,1 Itu Singh,1 Ravindra P Turankar,1 Anuj Kumar Gupta,2 Madhvi Ahuja,1 Vinay Pathak,1 Utpal Sengupta1 1Stanley Browne Laboratory, The Leprosy Mission Trust India, TLM Community Hospital Nand Nagari, 2Agilent Technologies India Pvt Ltd, Jasola District Centre, New Delhi, India Abstract: Despite more than three decades of multidrug therapy (MDT, leprosy remains a major public health issue in several endemic countries, including India. The emergence of drug resistance in Mycobacterium leprae (M. leprae is a cause of concern and poses a threat to the leprosy-control program, which might ultimately dampen the achievement of the elimination program of the country. Rifampicin resistance in clinical strains of M. leprae are supposed to arise from harboring bacterial strains with mutations in the 81-bp rifampicin resistance determining region (RRDR of the rpoB gene. However, complete dynamics of rifampicin resistance are not explained only by this mutation in leprosy strains. To understand the role of other compensatory mutations and transmission dynamics of drug-resistant leprosy, a genome-wide sequencing of 11 M. leprae strains – comprising five rifampicin-resistant strains, five sensitive strains, and one reference strain – was done in this study. We observed the presence of compensatory mutations in two rifampicin-resistant strains in rpoC and mmpL7 genes, along with rpoB, that may additionally be responsible for conferring resistance in those strains. Our findings support the role for compensatory mutation(s in RNA polymerase gene(s, resulting in rifampicin resistance in relapsed leprosy patients. Keywords: leprosy, rifampicin resistance, compensatory mutations, next generation sequencing, relapsed, MDT, India

  2. Efficient Culture Adaptation of Hepatitis C Virus Recombinants with Genotype-Specific Core-NS2 by Using Previously Identified Mutations

    DEFF Research Database (Denmark)

    Scheel, Troels Kasper Høyer; Gottwein, Judith M; Carlsen, Thomas H R

    2011-01-01

    Hepatitis C virus (HCV) is an important cause of chronic liver disease, and interferon-based therapy cures only 40 to 80% of patients, depending on HCV genotype. Research was accelerated by genotype 2a (strain JFH1) infectious cell culture systems. We previously developed viable JFH1-based...... (HC-TN and DH6), 1b (DH1 and DH5), and 3a (DBN) isolates, using previously identified adaptive mutations. Introduction of mutations from isolates of the same subtype either led to immediate efficient virus production or accelerated culture adaptation. The DH6 and DH5 recombinants without introduced...... mutations did not adapt to culture. Universal adaptive effects of mutations in NS3 (Q1247L, I1312V, K1398Q, R1408W, and Q1496L) and NS5A (V2418L) were investigated for JFH1-based genotype 1 to 5 core-NS2 recombinants; several mutations conferred adaptation to H77C (1a), J4 (1b), S52 (3a), and SA13 (5a...

  3. Exome sequencing in schizophrenic patients with high levels of homozygosity identifies novel and extremely rare mutations in the GABA/glutamatergic pathways.

    Directory of Open Access Journals (Sweden)

    Edoardo Giacopuzzi

    Full Text Available Inbreeding is a known risk factor for recessive Mendelian diseases and previous studies have suggested that it could also play a role in complex disorders, such as psychiatric diseases. Recent inbreeding results in the presence of long runs of homozygosity (ROHs along the genome, which are also defined as autozygosity regions. Genetic variants in these regions have two alleles that are identical by descent, thus increasing the odds of bearing rare recessive deleterious mutations due to a homozygous state. A recent study showed a suggestive enrichment of long ROHs in schizophrenic patients, suggesting that recent inbreeding could play a role in the disease. To better understand the impact of autozygosity on schizophrenia risk, we selected, from a cohort of 180 Italian patients, seven subjects with extremely high numbers of large ROHs that were likely due to recent inbreeding and characterized the mutational landscape within their ROHs using Whole Exome Sequencing and, gene set enrichment analysis. We identified a significant overlap (17%; empirical p-value = 0.0171 between genes inside ROHs affected by low frequency functional homozygous variants (107 genes and the group of most promising candidate genes mutated in schizophrenia. Moreover, in four patients, we identified novel and extremely rare damaging mutations in the genes involved in neurodevelopment (MEGF8 and in GABA/glutamatergic synaptic transmission (GAD1, FMN1, ANO2. These results provide insights into the contribution of rare recessive mutations and inbreeding as risk factors for schizophrenia. ROHs that are likely due to recent inbreeding harbor a combination of predisposing low-frequency variants and extremely rare variants that have a high impact on pivotal biological pathways implicated in the disease. In addition, this study confirms that focusing on patients with high levels of homozygosity could be a useful prioritization strategy for discovering new high-impact mutations in

  4. Exome sequencing in schizophrenic patients with high levels of homozygosity identifies novel and extremely rare mutations in the GABA/glutamatergic pathways.

    Science.gov (United States)

    Giacopuzzi, Edoardo; Gennarelli, Massimo; Minelli, Alessandra; Gardella, Rita; Valsecchi, Paolo; Traversa, Michele; Bonvicini, Cristian; Vita, Antonio; Sacchetti, Emilio; Magri, Chiara

    2017-01-01

    Inbreeding is a known risk factor for recessive Mendelian diseases and previous studies have suggested that it could also play a role in complex disorders, such as psychiatric diseases. Recent inbreeding results in the presence of long runs of homozygosity (ROHs) along the genome, which are also defined as autozygosity regions. Genetic variants in these regions have two alleles that are identical by descent, thus increasing the odds of bearing rare recessive deleterious mutations due to a homozygous state. A recent study showed a suggestive enrichment of long ROHs in schizophrenic patients, suggesting that recent inbreeding could play a role in the disease. To better understand the impact of autozygosity on schizophrenia risk, we selected, from a cohort of 180 Italian patients, seven subjects with extremely high numbers of large ROHs that were likely due to recent inbreeding and characterized the mutational landscape within their ROHs using Whole Exome Sequencing and, gene set enrichment analysis. We identified a significant overlap (17%; empirical p-value = 0.0171) between genes inside ROHs affected by low frequency functional homozygous variants (107 genes) and the group of most promising candidate genes mutated in schizophrenia. Moreover, in four patients, we identified novel and extremely rare damaging mutations in the genes involved in neurodevelopment (MEGF8) and in GABA/glutamatergic synaptic transmission (GAD1, FMN1, ANO2). These results provide insights into the contribution of rare recessive mutations and inbreeding as risk factors for schizophrenia. ROHs that are likely due to recent inbreeding harbor a combination of predisposing low-frequency variants and extremely rare variants that have a high impact on pivotal biological pathways implicated in the disease. In addition, this study confirms that focusing on patients with high levels of homozygosity could be a useful prioritization strategy for discovering new high-impact mutations in genetically

  5. USH1G with unique retinal findings caused by a novel truncating mutation identified by genome-wide linkage analysis

    Science.gov (United States)

    Taibah, Khalid; Bin-Khamis, Ghada; Kennedy, Shelley; Hemidan, Amal; Al-Qahtani, Faisal; Tabbara, Khalid; Mubarak, Bashayer Al; Ramzan, Khushnooda; Meyer, Brian F.; Al-Owain, Mohammed

    2012-01-01

    Purpose Usher syndrome (USH) is an autosomal recessive disorder divided into three distinct clinical subtypes based on the severity of the hearing loss, manifestation of vestibular dysfunction, and the age of onset of retinitis pigmentosa and visual symptoms. To date, mutations in seven different genes have been reported to cause USH type 1 (USH1), the most severe form. Patients diagnosed with USH1 are known to be ideal candidates to benefit from cochlear implantation. Methods Genome-wide linkage analysis using Affymetrix GeneChip Human Mapping 10K arrays were performed in three cochlear implanted Saudi siblings born from a consanguineous marriage, clinically diagnosed with USH1 by comprehensive clinical, audiological, and ophthalmological examinations. From the linkage results, the USH1G gene was screened for mutations by direct sequencing of the coding exons. Results We report the identification of a novel p.S243X truncating mutation in USH1G that segregated with the disease phenotype and was not present in 300 ethnically matched normal controls. We also report on the novel retinal findings and the outcome of cochlear implantation in the affected individuals. Conclusions In addition to reporting a novel truncating mutation, this report expands the retinal phenotype in USH1G and presents the first report of successful cochlear implants in this disease. PMID:22876113

  6. ATRX mutation in two adult brothers with non-specific moderate intellectual disability identified by exome sequencing.

    Science.gov (United States)

    Moncini, S; Bedeschi, M F; Castronovo, P; Crippa, M; Calvello, M; Garghentino, R R; Scuvera, G; Finelli, P; Venturin, M

    2013-12-01

    In this report, we describe two adult brothers affected by moderate non-specific intellectual disability (ID). They showed minor facial anomalies, not clearly ascribable to any specific syndromic patterns, microcephaly, brachydactyly and broad toes. Both brothers presented seizures. Karyotype, subtelomeric and FMR1 analysis were normal in both cases. We performed array-CGH analysis that revealed no copy-number variations potentially associated with ID. Subsequent exome sequence analysis allowed the identification of the ATRX c.109C>T (p.R37X) mutation in both the affected brothers. Sanger sequencing confirmed the presence of the mutation in the brothers and showed that the mother is a healthy carrier. Mutations in the ATRX gene cause the X-linked alpha thalassemia/mental retardation (ATR-X) syndrome (MIM #301040), a severe clinical condition usually associated with profound ID, facial dysmorphism and alpha thalassemia. However, the syndrome is clinically heterogeneous and some mutations, including the c.109C>T, are associated with a broad phenotypic spectrum, with patients displaying a less severe phenotype with only mild-moderate ID. In the case presented here, exome sequencing provided an effective strategy to achieve the molecular diagnosis of ATR-X syndrome, which otherwise would have been difficult to consider due to the mild non-specific phenotype and the absence of a family history with typical severe cases.

  7. Exome Capture and Massively Parallel Sequencing Identifies a Novel HPSE2 Mutation in a Saudi Arabian Child with Ochoa (Urofacial) Syndrome

    Science.gov (United States)

    Al Badr, Wisam; Al Bader, Suha; Otto, Edgar; Hildebrandt, Friedhelm; Ackley, Todd; Peng, Weiping; Xu, Jishu; Li, Jun; Owens, Kailey M.; Bloom, David; Innis, Jeffrey W.

    2011-01-01

    We describe a child of Middle Eastern descent by first-cousin mating with idiopathic neurogenic bladder and high grade vesicoureteral reflux at 1 year of age, whose characteristic facial grimace led to the diagnosis of Ochoa (Urofacial) syndrome at age 5 years. We used homozygosity mapping, exome capture and paired end sequencing to identify the disease causing mutation in the proband. We reviewed the literature with respect to the urologic manifestations of Ochoa syndrome. A large region of marker homozygosity was observed at 10q24, consistent with known autosomal recessive inheritance, family consanguinity and previous genetic mapping in other families with Ochoa syndrome. A homozygous mutation was identified in the proband in HPSE2: c.1374_1378delTGTGC, a deletion of 5 nucleotides in exon 10 that is predicted to lead to a frameshift followed by replacement of 132 C-terminal amino acids with 153 novel amino acids (p.Ala458Alafsdel132ins153). This mutation is novel relative to very recently published mutations in HPSE2 in other families. Early intervention and recognition of Ochoa syndrome with control of risk factors and close surveillance will decrease complications and renal failure. PMID:21450525

  8. Persistence of nondysplastic Barrett's esophagus identifies patients at lower risk for esophageal adenocarcinoma: results from a large multicenter cohort.

    Science.gov (United States)

    Gaddam, Srinivas; Singh, Mandeep; Balasubramanian, Gokulakrishnan; Thota, Prashanthi; Gupta, Neil; Wani, Sachin; Higbee, April D; Mathur, Sharad C; Horwhat, John D; Rastogi, Amit; Young, Patrick E; Cash, Brooks D; Bansal, Ajay; Vargo, John J; Falk, Gary W; Lieberman, David A; Sampliner, Richard E; Sharma, Prateek

    2013-09-01

    Recent population-based studies have shown a low risk of esophageal adenocarcinoma (EAC) in patients with nondysplastic Barrett's esophagus (NDBE). We evaluated whether persistence of NDBE over multiple consecutive surveillance endoscopic examinations could be used in risk stratification of patients with Barrett's esophagus (BE). We performed a multicenter outcomes study of a large cohort of patients with BE. Based on the number of consecutive surveillance endoscopies showing NDBE, we identified 5 groups of patients. Patients in group 1 were found to have NDBE at their first esophagogastroduodenoscopy (EGD). Patients in group 2 were found to have NDBE on their first 2 consecutive EGDs. Similarly, patients in groups 3, 4, and 5 were found to have NDBE on 3, 4, and 5 consecutive surveillance EGDs. A logistic regression model was built to determine whether persistence of NDBE independently protected against development of cancer. Of a total of 3515 patients with BE, 1401 patients met the inclusion criteria (93.3% white; 87.5% men; median age, 60 ±17 years). The median follow-up period was 5 ± 3.9 years (7846 patient-years). The annual risk of EAC in groups 1 to 5 was 0.32%, 0.27%, 0.16%, 0.2%, and 0.11%, respectively (P for trend = .03). After adjusting for age, sex, and length of BE, persistence of NDBE, based on multiple surveillance endoscopies, was associated with a gradually lower likelihood of progression to EAC. Persistence of NDBE over several endoscopic examinations identifies patients who are at low risk for development of EAC. These findings support lengthening surveillance intervals or discontinuing surveillance of patients with persistent NDBE. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.

  9. Two novel exonic point mutations in HEXA identified in a juvenile Tay-Sachs patient: role of alternative splicing and nonsense-mediated mRNA decay.

    Science.gov (United States)

    Levit, A; Nutman, D; Osher, E; Kamhi, E; Navon, R

    2010-06-01

    We have identified three mutations in the beta-hexoseaminidase A (HEXA) gene in a juvenile Tay-Sachs disease (TSD) patient, which exhibited a reduced level of HEXA mRNA. Two mutations are novel, c.814G>A (p.Gly272Arg) and c.1305C>T (p.=), located in exon 8 and in exon 11, respectively. The third mutation, c.1195A>G (p.Asn399Asp) in exon 11, has been previously characterized as a common polymorphism in African-Americans. Hex A activity measured in TSD Glial cells, transfected with HEXA cDNA constructs bearing these mutations, was unaltered from the activity level measured in normal HEXA cDNA. Analysis of RT-PCR products revealed three aberrant transcripts in the patient, one where exon 8 was absent, one where exon 11 was absent and a third lacking both exons 10 and 11. All three novel transcripts contain frameshifts resulting in premature termination codons (PTCs). Transfection of mini-gene constructs carrying the c.814G>A and c.1305C>T mutations proved that the two mutations result in exon skipping. mRNAs that harbor a PTC are detected and degraded by the nonsense-mediated mRNA decay (NMD) pathway to prevent synthesis of abnormal proteins. However, although NMD is functional in the patient's fibroblasts, aberrant transcripts are still present. We suggest that the level of correctly spliced transcripts as well as the efficiency in which NMD degrade the PTC-containing transcripts, apparently plays an important role in the phenotype severity of the unique patient and thus should be considered as a potential target for drug therapy.

  10. Whole-exome sequencing identifies novel compound heterozygous mutations in USH2A in Spanish patients with autosomal recessive retinitis pigmentosa.

    Science.gov (United States)

    Méndez-Vidal, Cristina; González-Del Pozo, María; Vela-Boza, Alicia; Santoyo-López, Javier; López-Domingo, Francisco J; Vázquez-Marouschek, Carmen; Dopazo, Joaquin; Borrego, Salud; Antiñolo, Guillermo

    2013-01-01

    Retinitis pigmentosa (RP) is an inherited retinal dystrophy characterized by extreme genetic and clinical heterogeneity. Thus, the diagnosis is not always easily performed due to phenotypic and genetic overlap. Current clinical practices have focused on the systematic evaluation of a set of known genes for each phenotype, but this approach may fail in patients with inaccurate diagnosis or infrequent genetic cause. In the present study, we investigated the genetic cause of autosomal recessive RP (arRP) in a Spanish family in which the causal mutation has not yet been identified with primer extension technology and resequencing. We designed a whole-exome sequencing (WES)-based approach using NimbleGen SeqCap EZ Exome V3 sample preparation kit and the SOLiD 5500×l next-generation sequencing platform. We sequenced the exomes of both unaffected parents and two affected siblings. Exome analysis resulted in the identification of 43,204 variants in the index patient. All variants passing filter criteria were validated with Sanger sequencing to confirm familial segregation and absence in the control population. In silico prediction tools were used to determine mutational impact on protein function and the structure of the identified variants. Novel Usher syndrome type 2A (USH2A) compound heterozygous mutations, c.4325T>C (p.F1442S) and c.15188T>G (p.L5063R), located in exons 20 and 70, respectively, were identified as probable causative mutations for RP in this family. Family segregation of the variants showed the presence of both mutations in all affected members and in two siblings who were apparently asymptomatic at the time of family ascertainment. Clinical reassessment confirmed the diagnosis of RP in these patients. Using WES, we identified two heterozygous novel mutations in USH2A as the most likely disease-causing variants in a Spanish family diagnosed with arRP in which the cause of the disease had not yet been identified with commonly used techniques. Our data

  11. Disease-associated mutations identify a novel region in human STING necessary for the control of type I interferon signaling

    OpenAIRE

    Melki, Isabelle; Rose, Yoann; Uggenti, Carolina; Van Eyck, Lien; Frémond, Marie-Louise; Kitabayashi, Naoki; Rice, Gillian I; Jenkinson, Emma M; Boulai, Anaïs; Jeremiah, Nadia; Gattorno, Marco; Volpi, Sefano; Sacco, Olivero; Terheggen-Lagro, Suzanne W J; Tiddens, Harm A W M

    2017-01-01

    BACKGROUND: Gain-of-function mutations in transmembrane protein 173 (TMEM173) encoding stimulator of interferon genes (STING) underlie a recently described type I interferonopathy called STING-associated vasculopathy with onset in infancy (SAVI).OBJECTIVES: We sought to define the molecular and cellular pathology relating to 3 individuals variably exhibiting the core features of the SAVI phenotype including systemic inflammation, destructive skin lesions, and interstitial lung disease.METHODS...

  12. APOA5 Q97X Mutation Identified through homozygosity mapping causes severe hypertriglyceridemia in a Chilean consanguineous family

    Directory of Open Access Journals (Sweden)

    Dussaillant Catalina

    2012-11-01

    Full Text Available Abstract Background Severe hypertriglyceridemia (HTG has been linked to defects in LPL, APOC2, APOA5, LMF1 and GBIHBP1 genes. However, a number of severe HTG cases are probably caused by as yet unidentified mutations. Very high triglyceride plasma levels (>112 mmol/L at diagnosis were found in two sisters of a Chilean consanguineous family, which is strongly suggestive of a recessive highly penetrant mutation. The aim of this study was to determine the genetic locus responsible for the severe HTG in this family. Methods We carried out a genome-wide linkage study with nearly 300,000 biallelic markers (Illumina Human CytoSNP-12 panel. Using the homozygosity mapping strategy, we searched for chromosome regions with excess of homozygous genotypes in the affected cases compared to non-affected relatives. Results A large homozygous segment was found in the long arm of chromosome 11, with more than 2,500 consecutive homozygous SNP shared by the proband with her affected sister, and containing the APOA5/A4/C3/A1 cluster. Direct sequencing of the APOA5 gene revealed a known homozygous nonsense Q97X mutation (p.Gln97Ter found in both affected sisters but not in non-affected relatives nor in a sample of unrelated controls. Conclusion The Q97X mutation of the APOA5 gene in homozygous status is responsible for the severe hypertriglyceridemia in this family. We have shown that homozygosity mapping correctly pinpointed the genomic region containing the gene responsible for severe hypertriglyceridemia in this consanguineous Chilean family.

  13. APOA5 Q97X mutation identified through homozygosity mapping causes severe hypertriglyceridemia in a Chilean consanguineous family.

    Science.gov (United States)

    Dussaillant, Catalina; Serrano, Valentina; Maiz, Alberto; Eyheramendy, Susana; Cataldo, Luis Rodrigo; Chavez, Matías; Smalley, Susan V; Fuentes, Marcela; Rigotti, Attilio; Rubio, Lorena; Lagos, Carlos F; Martinez, José Alfredo; Santos, José Luis

    2012-11-15

    Severe hypertriglyceridemia (HTG) has been linked to defects in LPL, APOC2, APOA5, LMF1 and GBIHBP1 genes. However, a number of severe HTG cases are probably caused by as yet unidentified mutations. Very high triglyceride plasma levels (>112 mmol/L at diagnosis) were found in two sisters of a Chilean consanguineous family, which is strongly suggestive of a recessive highly penetrant mutation. The aim of this study was to determine the genetic locus responsible for the severe HTG in this family. We carried out a genome-wide linkage study with nearly 300,000 biallelic markers (Illumina Human CytoSNP-12 panel). Using the homozygosity mapping strategy, we searched for chromosome regions with excess of homozygous genotypes in the affected cases compared to non-affected relatives. A large homozygous segment was found in the long arm of chromosome 11, with more than 2,500 consecutive homozygous SNP shared by the proband with her affected sister, and containing the APOA5/A4/C3/A1 cluster. Direct sequencing of the APOA5 gene revealed a known homozygous nonsense Q97X mutation (p.Gln97Ter) found in both affected sisters but not in non-affected relatives nor in a sample of unrelated controls. The Q97X mutation of the APOA5 gene in homozygous status is responsible for the severe hypertriglyceridemia in this family. We have shown that homozygosity mapping correctly pinpointed the genomic region containing the gene responsible for severe hypertriglyceridemia in this consanguineous Chilean family.

  14. Novel mutation identified in severe early-onset tumor necrosis factor receptor-associated periodic syndrome: a case report.

    Science.gov (United States)

    Radhakrishna, Suhas M; Grimm, Amy; Broderick, Lori

    2017-04-20

    Tumor Necrosis Factor Receptor-Associated Periodic Syndrome (TRAPS) is the second most common heritable autoinflammatory disease, typically presenting in pre-school aged children with fever episodes lasting 1-3 weeks. Systemic symptoms can include rash, myalgia, ocular inflammation, and serositis. Here we report an unusual presentation of TRAPS in a 7 month old girl who presented with only persistent fever. She was initially diagnosed with incomplete Kawasaki Disease and received IVIG and infliximab; however, her fevers quickly recurred. Subsequent testing revealed a urinary tract infection, but she did not improve despite appropriate therapy. As fever continued, she developed significant abdominal distension with imaging concerning for appendicitis, followed by hyperthermia and hemodynamic instability. Given her protracted clinical course and maternal history of a poorly defined inflammatory condition, an autoinflammatory disease was considered. Therapy with anakinra was initiated, resulting in rapid resolution of fever and normalization of inflammatory markers. She was found to have a previously unreported mutation, Thr90Pro, in the TNFRSF1A gene associated with TRAPS. This novel mutation was also confirmed in the patient's mother and maternal uncle. This report reviews a severe case of TRAPS in infancy associated with a novel mutation, Thr90Pro, in the TNFRSF1A gene, and emphasizes that autoinflammatory disease should be considered in the differential of infants with fever of unknown origin.

  15. Disease-associated mutations identify a novel region in human STING necessary for the control of type I interferon signaling.

    Science.gov (United States)

    Melki, Isabelle; Rose, Yoann; Uggenti, Carolina; Van Eyck, Lien; Frémond, Marie-Louise; Kitabayashi, Naoki; Rice, Gillian I; Jenkinson, Emma M; Boulai, Anaïs; Jeremiah, Nadia; Gattorno, Marco; Volpi, Sefano; Sacco, Olivero; Terheggen-Lagro, Suzanne W J; Tiddens, Harm A W M; Meyts, Isabelle; Morren, Marie-Anne; De Haes, Petra; Wouters, Carine; Legius, Eric; Corveleyn, Anniek; Rieux-Laucat, Frederic; Bodemer, Christine; Callebaut, Isabelle; Rodero, Mathieu P; Crow, Yanick J

    2017-08-01

    Gain-of-function mutations in transmembrane protein 173 (TMEM173) encoding stimulator of interferon genes (STING) underlie a recently described type I interferonopathy called STING-associated vasculopathy with onset in infancy (SAVI). We sought to define the molecular and cellular pathology relating to 3 individuals variably exhibiting the core features of the SAVI phenotype including systemic inflammation, destructive skin lesions, and interstitial lung disease. Genetic analysis, conformational studies, in vitro assays and ex vivo flow-cytometry were performed. Molecular and in vitro data demonstrate that the pathology in these patients is due to amino acid substitutions at positions 206, 281, and 284 of the human STING protein. These mutations confer cGAMP-independent constitutive activation of type I interferon signaling through TBK1 (TANK-binding kinase), independent from the alternative STING pathway triggered by membrane fusion of enveloped RNA viruses. This constitutive activation was abrogated by ex vivo treatment with the janus kinase 1/2 inhibitor ruxolitinib. Structural analysis indicates that the 3 disease-associated mutations at positions 206, 281, and 284 of the STING protein define a novel cluster of amino acids with functional importance in the regulation of type I interferon signaling. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  16. Mutations in MARS identified in a specific type of pulmonary alveolar proteinosis alter methionyl-tRNA synthetase activity.

    Science.gov (United States)

    Comisso, Martine; Hadchouel, Alice; de Blic, Jacques; Mirande, Marc

    2018-05-18

    Biallelic missense mutations in MARS are responsible for rare but severe cases of pulmonary alveolar proteinosis (PAP) prevalent on the island of La Réunion. MARS encodes cytosolic methionyl-tRNA synthetase (MetRS), an essential translation factor. The multisystemic effects observed in patients with this form of PAP are consistent with a loss-of-function defect in an ubiquitously expressed enzyme. The pathophysiological mechanisms involved in MARS-related PAP are currently unknown. In this work, we analyzed the effect of the PAP-related mutations in MARS on the thermal stability and on the catalytic parameters of the MetRS mutants, relative to wild-type. The effect of these mutations on the structural integrity of the enzyme as a member of the cytosolic multisynthetase complex was also investigated. Our results establish that the PAP-related substitutions in MetRS impact the tRNA Met -aminoacylation reaction especially at the level of methionine recognition, and suggest a direct link between the loss of activity of the enzyme and the pathological disorders in PAP. © 2018 Federation of European Biochemical Societies.

  17. Whole-exome sequencing identified a homozygous FNBP4 mutation in a family with a condition similar to microphthalmia with limb anomalies.

    Science.gov (United States)

    Kondo, Yukiko; Koshimizu, Eriko; Megarbane, Andre; Hamanoue, Haruka; Okada, Ippei; Nishiyama, Kiyomi; Kodera, Hirofumi; Miyatake, Satoko; Tsurusaki, Yoshinori; Nakashima, Mitsuko; Doi, Hiroshi; Miyake, Noriko; Saitsu, Hirotomo; Matsumoto, Naomichi

    2013-07-01

    Microphthalmia with limb anomalies (MLA), also known as Waardenburg anophthalmia syndrome or ophthalmoacromelic syndrome, is a rare autosomal recessive disorder. Recently, we and others successfully identified SMOC1 as the causative gene for MLA. However, there are several MLA families without SMOC1 abnormality, suggesting locus heterogeneity in MLA. We aimed to identify a pathogenic mutation in one Lebanese family having an MLA-like condition without SMOC1 mutation by whole-exome sequencing (WES) combined with homozygosity mapping. A c.683C>T (p.Thr228Met) in FNBP4 was found as a primary candidate, drawing the attention that FNBP4 and SMOC1 may potentially modulate BMP signaling. Copyright © 2013 Wiley Periodicals, Inc.

  18. A Novel Nonsense Mutation in the DMP1 Gene Identified by a Genome-Wide Association Study Is Responsible for Inherited Rickets in Corriedale Sheep

    Science.gov (United States)

    Blair, Hugh T.; Thompson, Keith G.; Rothschild, Max F.; Garrick, Dorian J.

    2011-01-01

    Inherited rickets of Corriedale sheep is characterized by decreased growth rate, thoracic lordosis and angular limb deformities. Previous outcross and backcross studies implicate inheritance as a simple autosomal recessive disorder. A genome wide association study was conducted using the Illumina OvineSNP50 BeadChip on 20 related sheep comprising 17 affected and 3 carriers. A homozygous region of 125 consecutive single-nucleotide polymorphism (SNP) loci was identified in all affected sheep, covering a region of 6 Mb on ovine chromosome 6. Among 35 candidate genes in this region, the dentin matrix protein 1 gene (DMP1) was sequenced to reveal a nonsense mutation 250C/T on exon 6. This mutation introduced a stop codon (R145X) and could truncate C-terminal amino acids. Genotyping by PCR-RFLP for this mutation showed all 17 affected sheep were “T T” genotypes; the 3 carriers were “C T”; 24 phenotypically normal related sheep were either “C T” or “C C”; and 46 unrelated normal control sheep from other breeds were all “C C”. The other SNPs in DMP1 were not concordant with the disease and can all be ruled out as candidates. Previous research has shown that mutations in the DMP1 gene are responsible for autosomal recessive hypophosphatemic rickets in humans. Dmp1_knockout mice exhibit rickets phenotypes. We believe the R145X mutation to be responsible for the inherited rickets found in Corriedale sheep. A simple diagnostic test can be designed to identify carriers with the defective “T” allele. Affected sheep could be used as animal models for this form of human rickets, and for further investigation of the role of DMP1 in phosphate homeostasis. PMID:21747952

  19. A novel nonsense mutation in the DMP1 gene identified by a genome-wide association study is responsible for inherited rickets in Corriedale sheep.

    Directory of Open Access Journals (Sweden)

    Xia Zhao

    Full Text Available Inherited rickets of Corriedale sheep is characterized by decreased growth rate, thoracic lordosis and angular limb deformities. Previous outcross and backcross studies implicate inheritance as a simple autosomal recessive disorder. A genome wide association study was conducted using the Illumina OvineSNP50 BeadChip on 20 related sheep comprising 17 affected and 3 carriers. A homozygous region of 125 consecutive single-nucleotide polymorphism (SNP loci was identified in all affected sheep, covering a region of 6 Mb on ovine chromosome 6. Among 35 candidate genes in this region, the dentin matrix protein 1 gene (DMP1 was sequenced to reveal a nonsense mutation 250C/T on exon 6. This mutation introduced a stop codon (R145X and could truncate C-terminal amino acids. Genotyping by PCR-RFLP for this mutation showed all 17 affected sheep were "T T" genotypes; the 3 carriers were "C T"; 24 phenotypically normal related sheep were either "C T" or "C C"; and 46 unrelated normal control sheep from other breeds were all "C C". The other SNPs in DMP1 were not concordant with the disease and can all be ruled out as candidates. Previous research has shown that mutations in the DMP1 gene are responsible for autosomal recessive hypophosphatemic rickets in humans. Dmp1_knockout mice exhibit rickets phenotypes. We believe the R145X mutation to be responsible for the inherited rickets found in Corriedale sheep. A simple diagnostic test can be designed to identify carriers with the defective "T" allele. Affected sheep could be used as animal models for this form of human rickets, and for further investigation of the role of DMP1 in phosphate homeostasis.

  20. Reduction in hepatic drug metabolizing CYP3A4 activities caused by P450 oxidoreductase mutations identified in patients with disordered steroid metabolism

    International Nuclear Information System (INIS)

    Flueck, Christa E.; Mullis, Primus E.; Pandey, Amit V.

    2010-01-01

    Research highlights: → Cytochrome P450 3A4 (CYP3A4), metabolizes 50% of drugs in clinical use and requires NADPH-P450 reductase (POR). → Mutations in human POR cause congenital adrenal hyperplasia from diminished activities of steroid metabolizing P450s. → We are reporting that mutations in POR may reduce CYP3A4 activity. → POR mutants Y181D, A457H, Y459H, V492E and R616X lost 99%, while A287P, C569Y and V608F lost 60-85% CYP3A4 activity. → Reduction of CYP3A4 activity may cause increased risk of drug toxicities/adverse drug reactions in patients with POR mutations. -- Abstract: Cytochrome P450 3A4 (CYP3A4), the major P450 present in human liver metabolizes approximately half the drugs in clinical use and requires electrons supplied from NADPH through NADPH-P450 reductase (POR, CPR). Mutations in human POR cause a rare form of congenital adrenal hyperplasia from diminished activities of steroid metabolizing P450s. In this study we examined the effect of mutations in POR on CYP3A4 activity. We used purified preparations of wild type and mutant human POR and in vitro reconstitution with purified CYP3A4 to perform kinetic studies. We are reporting that mutations in POR identified in patients with disordered steroidogenesis/Antley-Bixler syndrome (ABS) may reduce CYP3A4 activity, potentially affecting drug metabolism in individuals carrying mutant POR alleles. POR mutants Y181D, A457H, Y459H, V492E and R616X had more than 99% loss of CYP3A4 activity, while POR mutations A287P, C569Y and V608F lost 60-85% activity. Loss of CYP3A4 activity may result in increased risk of drug toxicities and adverse drug reactions in patients with POR mutations.

  1. Fabry Disease: prevalence of affected males and heterozygotes with pathogenic GLA mutations identified by screening renal, cardiac and stroke clinics, 1995-2017.

    Science.gov (United States)

    Doheny, Dana; Srinivasan, Ram; Pagant, Silvere; Chen, Brenden; Yasuda, Makiko; Desnick, Robert J

    2018-04-01

    Fabry Disease (FD), an X linked lysosomal storage disease due to pathogenic α-galactosidase A ( GLA ) mutations, results in two major subtypes, the early-onset Type 1 'Classic' and the Type 2 'Later-Onset' phenotypes. To identify previously unrecognised patients, investigators screened cardiac, renal and stroke clinics by enzyme assays. However, some screening studies did not perform confirmatory GLA mutation analyses, and many included recently recognised 'benign/likely-benign' variants, thereby inflating prevalence estimates. Online databases were searched for all FD screening studies in high-risk clinics (1995-2017). Studies reporting GLA mutations were re-analysed for pathogenic mutations, sex and phenotype. Phenotype-specific and sex-specific prevalence rates were determined. Of 67 studies, 63 that screened 51363patients (33943M and 17420F) and provided GLA mutations were reanalysed for disease-causing mutations. Of reported GLA mutations, benign variants occurred in 47.9% of males and 74.1% of females. The following were the revised prevalence estimates: among 36820 (23954M and 12866F) haemodialysis screenees, 0.21% males and 0.15% females; among 3074 (2031M and 1043F) renal transplant screenees, 0.25% males and no females; among 5491 (4054M and 1437F) cardiac screenees, 0.94% males and 0.90% females; and among 5978 (3904M and 2074F) stroke screenees, 0.13% males and 0.14% females. Among male and female screenees with pathogenic mutations, the type 1 Classic phenotype was predominant (~60%), except more male cardiac patients (75%) had type 2 Later-Onset phenotype. Compared with previous findings, reanalysis of 63 studies increased the screenee numbers (~3.4-fold), eliminated 20 benign/likely benign variants, and provided more accurate sex-specific and phenotype-specific prevalence estimates, ranging from ~0.13% of stroke to ~0.9% of cardiac male or female screenees. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article

  2. Impacted Lower Second Permanent Molars at the Ramus and Coronoid Process: A New Clinical Symptom of the WNT10A Mutation in Ectodermal Dysplasia.

    Science.gov (United States)

    Sfeir, Elia; Aboujaoude, Samia

    2017-01-01

    Hidrotic ectodermal dysplasia (ED) with the WNT10A mutation produces variable dentofacial symptoms. The aim of this study was to describe a new clinical symptom, i.e., specific to the WNT10A mutation in hidrotic ED. The study investigated the migratory trend of the lower second permanent molars to the ramus or coronoid process. To the best of authors' knowledge, no data in the literature describe this trend in cases of hidrotic ED. A three-generation family pedigree was established for seven families after the diagnosis of hidrotic ED in a 10-year-old boy. Thereafter, a genetic and clinical study was conducted on three families with at least one individual affected by hidrotic ED (20 individuals). We selected the children with molar germs 37 and 47. The eruption axes of these germs were then traced on the panoramic images at the initial time (T 0 ) and 1 year later (T 0 + 1 year), and the deviations between these axes were measured. A significant familial consanguinity was shown. Eight subjects presented with the hidrotic ED phenotype. Among them, three individuals carried germs 37 and 47. Over time, the measured deviations between the eruption axes of the latter displayed, in the majority of the cases, a distal inclination toward the ramus. A larger sample size is mandatory to assess the frequencies and treatment modalities. The presence of germs in the lower second permanent molars in patients with hidrotic ED is an important clinical symptom that should be monitored to detect and prevent ectopic migration of these teeth. In hidrotic ED cases, the study of the presence of the second lower permanent germs must include clinical and radiological examinations. Establishing an inter-ceptive treatment is necessary to prevent the migration of the molars in question. How to cite this article: Sfeir E, Aboujaoude S. Impacted Lower Second Permanent Molars at the Ramus and Coronoid Process: A New Clinical Symptom of the WNT10A Mutation in Ectodermal Dysplasia. Int J Clin

  3. Identification of three novel OA1 gene mutations identified in three families misdiagnosed with congenital nystagmus and carrier status determination by real-time quantitative PCR assay

    Directory of Open Access Journals (Sweden)

    Hamel Christian

    2003-01-01

    Full Text Available Abstract Background X-linked ocular albinism type 1 (OA1 is caused by mutations in OA1 gene, which encodes a membrane glycoprotein localised to melanosomes. OA1 mainly affects pigment production in the eye, resulting in optic changes associated with albinism including hypopigmentation of the retina, nystagmus, strabismus, foveal hypoplasia, abnormal crossing of the optic fibers and reduced visual acuity. Affected Caucasian males usually appear to have normal skin and hair pigment. Results We identified three previously undescribed mutations consisting of two intragenic deletions (one encompassing exon 6, the other encompassing exons 7–8, and a point mutation (310delG in exon 2. We report the development of a new method for diagnosis of heterozygous deletions in OA1 gene based on measurement of gene copy number using real-time quantitative PCR from genomic DNA. Conclusion The identification of OA1 mutations in families earlier reported as families with hereditary nystagmus indicate that ocular albinism type 1 is probably underdiagnosed. Our method of real-time quantitative PCR of OA1 exons with DMD exon as external standard performed on the LightCycler™ allows quick and accurate carrier-status assessment for at-risk females.

  4. Genome-wide association study in BRCA1 mutation carriers identifies novel loci associated with breast and ovarian cancer risk.

    Directory of Open Access Journals (Sweden)

    Fergus J Couch

    Full Text Available BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer, with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7 × 10(-8, HR = 1.14, 95% CI: 1.09-1.20. In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4 × 10(-8, HR = 1.27, 95% CI: 1.17-1.38 and 4q32.3 (rs4691139, P = 3.4 × 10(-8, HR = 1.20, 95% CI: 1.17-1.38. The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific association. The 17q21.31 locus was also associated with ovarian cancer risk in 8,211 BRCA2 carriers (P = 2×10(-4. These loci may lead to an improved understanding of the etiology of breast and ovarian tumors in BRCA1 carriers. Based on the joint distribution of the known BRCA1 breast cancer risk-modifying loci, we estimated that the breast cancer lifetime risks for the 5% of BRCA1 carriers at lowest risk are 28%-50% compared to 81%-100% for the 5% at highest risk. Similarly, based on the known ovarian cancer risk-modifying loci, the 5% of BRCA1 carriers at lowest risk have an estimated lifetime risk of developing ovarian cancer of 28% or lower, whereas the 5% at highest risk will have a risk of 63% or higher. Such differences in risk may have important implications for risk prediction and clinical management for BRCA1 carriers.

  5. Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk

    Science.gov (United States)

    Wang, Xianshu; McGuffog, Lesley; Lee, Andrew; Olswold, Curtis; Kuchenbaecker, Karoline B.; Soucy, Penny; Fredericksen, Zachary; Barrowdale, Daniel; Dennis, Joe; Gaudet, Mia M.; Dicks, Ed; Kosel, Matthew; Healey, Sue; Sinilnikova, Olga M.; Lee, Adam; Bacot, François; Vincent, Daniel; Hogervorst, Frans B. L.; Peock, Susan; Stoppa-Lyonnet, Dominique; Jakubowska, Anna; Investigators, kConFab; Radice, Paolo; Schmutzler, Rita Katharina; Domchek, Susan M.; Piedmonte, Marion; Singer, Christian F.; Friedman, Eitan; Thomassen, Mads; Hansen, Thomas V. O.; Neuhausen, Susan L.; Szabo, Csilla I.; Blanco, Ignacio; Greene, Mark H.; Karlan, Beth Y.; Garber, Judy; Phelan, Catherine M.; Weitzel, Jeffrey N.; Montagna, Marco; Olah, Edith; Andrulis, Irene L.; Godwin, Andrew K.; Yannoukakos, Drakoulis; Goldgar, David E.; Caldes, Trinidad; Nevanlinna, Heli; Osorio, Ana; Terry, Mary Beth; Daly, Mary B.; van Rensburg, Elizabeth J.; Hamann, Ute; Ramus, Susan J.; Ewart Toland, Amanda; Caligo, Maria A.; Olopade, Olufunmilayo I.; Tung, Nadine; Claes, Kathleen; Beattie, Mary S.; Southey, Melissa C.; Imyanitov, Evgeny N.; Tischkowitz, Marc; Janavicius, Ramunas; John, Esther M.; Kwong, Ava; Diez, Orland; Balmaña, Judith; Barkardottir, Rosa B.; Arun, Banu K.; Rennert, Gad; Teo, Soo-Hwang; Ganz, Patricia A.; Campbell, Ian; van der Hout, Annemarie H.; van Deurzen, Carolien H. M.; Seynaeve, Caroline; Gómez Garcia, Encarna B.; van Leeuwen, Flora E.; Meijers-Heijboer, Hanne E. J.; Gille, Johannes J. P.; Ausems, Margreet G. E. M.; Blok, Marinus J.; Ligtenberg, Marjolijn J. L.; Rookus, Matti A.; Devilee, Peter; Verhoef, Senno; van Os, Theo A. M.; Wijnen, Juul T.; Frost, Debra; Ellis, Steve; Fineberg, Elena; Platte, Radka; Evans, D. Gareth; Izatt, Louise; Eeles, Rosalind A.; Adlard, Julian; Eccles, Diana M.; Cook, Jackie; Brewer, Carole; Douglas, Fiona; Hodgson, Shirley; Morrison, Patrick J.; Side, Lucy E.; Donaldson, Alan; Houghton, Catherine; Rogers, Mark T.; Dorkins, Huw; Eason, Jacqueline; Gregory, Helen; McCann, Emma; Murray, Alex; Calender, Alain; Hardouin, Agnès; Berthet, Pascaline; Delnatte, Capucine; Nogues, Catherine; Lasset, Christine; Houdayer, Claude; Leroux, Dominique; Rouleau, Etienne; Prieur, Fabienne; Damiola, Francesca; Sobol, Hagay; Coupier, Isabelle; Venat-Bouvet, Laurence; Castera, Laurent; Gauthier-Villars, Marion; Léoné, Mélanie; Pujol, Pascal; Mazoyer, Sylvie; Bignon, Yves-Jean; Złowocka-Perłowska, Elżbieta; Gronwald, Jacek; Lubinski, Jan; Durda, Katarzyna; Jaworska, Katarzyna; Huzarski, Tomasz; Spurdle, Amanda B.; Viel, Alessandra; Peissel, Bernard; Bonanni, Bernardo; Melloni, Giulia; Ottini, Laura; Papi, Laura; Varesco, Liliana; Tibiletti, Maria Grazia; Peterlongo, Paolo; Volorio, Sara; Manoukian, Siranoush; Pensotti, Valeria; Arnold, Norbert; Engel, Christoph; Deissler, Helmut; Gadzicki, Dorothea; Gehrig, Andrea; Kast, Karin; Rhiem, Kerstin; Meindl, Alfons; Niederacher, Dieter; Ditsch, Nina; Plendl, Hansjoerg; Preisler-Adams, Sabine; Engert, Stefanie; Sutter, Christian; Varon-Mateeva, Raymonda; Wappenschmidt, Barbara; Weber, Bernhard H. F.; Arver, Brita; Stenmark-Askmalm, Marie; Loman, Niklas; Rosenquist, Richard; Einbeigi, Zakaria; Nathanson, Katherine L.; Rebbeck, Timothy R.; Blank, Stephanie V.; Cohn, David E.; Rodriguez, Gustavo C.; Small, Laurie; Friedlander, Michael; Bae-Jump, Victoria L.; Fink-Retter, Anneliese; Rappaport, Christine; Gschwantler-Kaulich, Daphne; Pfeiler, Georg; Tea, Muy-Kheng; Lindor, Noralane M.; Kaufman, Bella; Shimon Paluch, Shani; Laitman, Yael; Skytte, Anne-Bine; Gerdes, Anne-Marie; Pedersen, Inge Sokilde; Moeller, Sanne Traasdahl; Kruse, Torben A.; Jensen, Uffe Birk; Vijai, Joseph; Sarrel, Kara; Robson, Mark; Kauff, Noah; Mulligan, Anna Marie; Glendon, Gord; Ozcelik, Hilmi; Ejlertsen, Bent; Nielsen, Finn C.; Jønson, Lars; Andersen, Mette K.; Ding, Yuan Chun; Steele, Linda; Foretova, Lenka; Teulé, Alex; Lazaro, Conxi; Brunet, Joan; Pujana, Miquel Angel; Mai, Phuong L.; Loud, Jennifer T.; Walsh, Christine; Lester, Jenny; Orsulic, Sandra; Narod, Steven A.; Herzog, Josef; Sand, Sharon R.; Tognazzo, Silvia; Agata, Simona; Vaszko, Tibor; Weaver, Joellen; Stavropoulou, Alexandra V.; Buys, Saundra S.; Romero, Atocha; de la Hoya, Miguel; Aittomäki, Kristiina; Muranen, Taru A.; Duran, Mercedes; Chung, Wendy K.; Lasa, Adriana; Dorfling, Cecilia M.; Miron, Alexander; Benitez, Javier; Senter, Leigha; Huo, Dezheng; Chan, Salina B.; Sokolenko, Anna P.; Chiquette, Jocelyne; Tihomirova, Laima; Friebel, Tara M.; Agnarsson, Bjarni A.; Lu, Karen H.; Lejbkowicz, Flavio; James, Paul A.; Hall, Per; Dunning, Alison M.; Tessier, Daniel; Cunningham, Julie; Slager, Susan L.; Wang, Chen; Hart, Steven; Stevens, Kristen; Simard, Jacques; Pastinen, Tomi; Pankratz, Vernon S.; Offit, Kenneth; Antoniou, Antonis C.

    2013-01-01

    BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7×10−8, HR = 1.14, 95% CI: 1.09–1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4×10−8, HR = 1.27, 95% CI: 1.17–1.38) and 4q32.3 (rs4691139, P = 3.4×10−8, HR = 1.20, 95% CI: 1.17–1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific association. The 17q21.31 locus was also associated with ovarian cancer risk in 8,211 BRCA2 carriers (P = 2×10−4). These loci may lead to an improved understanding of the etiology of breast and ovarian tumors in BRCA1 carriers. Based on the joint distribution of the known BRCA1 breast cancer risk-modifying loci, we estimated that the breast cancer lifetime risks for the 5% of BRCA1 carriers at lowest risk are 28%–50% compared to 81%–100% for the 5% at highest risk. Similarly, based on the known ovarian cancer risk-modifying loci, the 5% of BRCA1 carriers at lowest risk have an estimated lifetime risk of developing ovarian cancer of 28% or lower, whereas the 5% at highest risk will have a risk of 63% or higher. Such differences in risk may have important implications for risk prediction and clinical management for BRCA1 carriers. PMID:23544013

  6. MPL mutations in myeloproliferative disorders

    DEFF Research Database (Denmark)

    Beer, Philip A.; Campbell, Peter J.; Scott, Linda M.

    2008-01-01

    Activating mutations of MPL exon 10 have been described in a minority of patients with idiopathic myelofibrosis (IMF) or essential thrombocythemia (ET), but their prevalence and clinical significance are unclear. Here we demonstrate that MPL mutations outside exon 10 are uncommon in platelet c......DNA and identify 4 different exon 10 mutations in granulocyte DNA from a retrospective cohort of 200 patients with ET or IMF. Allele-specific polymerase chain reaction was then used to genotype 776 samples from patients with ET entered into the PT-1 studies. MPL mutations were identified in 8.5% of JAK2 V617F......(-) patients and a single V617F(+) patient. Patients carrying the W515K allele had a significantly higher allele burden than did those with the W515L allele, suggesting a functional difference between the 2 variants. Compared with V617F(+) ET patients, those with MPL mutations displayed lower hemoglobin...

  7. In silico characterization of a novel pathogenic deletion mutation identified in XPA gene in a Pakistani family with severe xeroderma pigmentosum.

    Science.gov (United States)

    Nasir, Muhammad; Ahmad, Nafees; Sieber, Christian M K; Latif, Amir; Malik, Salman Akbar; Hameed, Abdul

    2013-09-24

    Xeroderma Pigmentosum (XP) is a rare skin disorder characterized by skin hypersensitivity to sunlight and abnormal pigmentation. The aim of this study was to investigate the genetic cause of a severe XP phenotype in a consanguineous Pakistani family and in silico characterization of any identified disease-associated mutation. The XP complementation group was assigned by genotyping of family for known XP loci. Genotyping data mapped the family to complementation group A locus, involving XPA gene. Mutation analysis of the candidate XP gene by DNA sequencing revealed a novel deletion mutation (c.654del A) in exon 5 of XPA gene. The c.654del A, causes frameshift, which pre-maturely terminates protein and result into a truncated product of 222 amino acid (aa) residues instead of 273 (p.Lys218AsnfsX5). In silico tools were applied to study the likelihood of changes in structural motifs and thus interaction of mutated protein with binding partners. In silico analysis of mutant protein sequence, predicted to affect the aa residue which attains coiled coil structure. The coiled coil structure has an important role in key cellular interactions, especially with DNA damage-binding protein 2 (DDB2), which has important role in DDB-mediated nucleotide excision repair (NER) system. Our findings support the fact of genetic and clinical heterogeneity in XP. The study also predicts the critical role of DDB2 binding region of XPA protein in NER pathway and opens an avenue for further research to study the functional role of the mutated protein domain.

  8. A novel de novo activating mutation in STAT3 identified in a patient with common variable immunodeficiency (CVID).

    Science.gov (United States)

    Russell, Mark A; Pigors, Manuela; Houssen, Maha E; Manson, Ania; Kelsell, David; Longhurst, Hilary; Morgan, Noel G

    2018-02-01

    Common variable immunodeficiency (CVID) is characterised by repeated infection associated with primary acquired hypogammaglobulinemia. CVID frequently has a complex aetiology but, in certain cases, it has a monogenic cause. Recently, variants within the gene encoding the transcription factor STAT3 were implicated in monogenic CVID. Here, we describe a patient presenting with symptoms synonymous with CVID, who displayed reduced levels of IgG and IgA, repeated viral infections and multiple additional co-morbidities. Whole-exome sequencing revealed a de novo novel missense mutation in the coiled-coil domain of STAT3 (c.870A>T; p.K290N). Accordingly, the K290N variant of STAT3 was generated, and a STAT3 responsive dual-luciferase reporter assay revealed that the variant strongly enhances STAT3 transcriptional activity both under basal and stimulated (with IL-6) conditions. Overall, these data complement earlier studies in which CVID-associated STAT3 mutations are predicted to enhance transcriptional activity, suggesting that such patients may respond favourably to IL-6 receptor antagonists (e.g. tocilizumab). Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Identifying potential functional impact of mutations and polymorphisms: Linking heart failure, increased risk of arrhythmias and sudden cardiac death.

    Directory of Open Access Journals (Sweden)

    BENOIT eJAGU

    2013-09-01

    Full Text Available Researchers and clinicians have discovered several important concepts regarding the mechanisms responsible for increased risk of arrhythmias, heart failure and sudden cardiac death. One major step in defining the molecular basis of normal and abnormal cardiac electrical behaviour has been the identification of single mutations that greatly increase the risk for arrhythmias and sudden cardiac death by changing channel-gating characteristics. Indeed, mutations in several genes encoding ion channels, such as SCN5A, which encodes the major cardiac Na+ channel, have emerged as the basis for a variety of inherited cardiac arrhythmias such as long QT syndrome, Brugada syndrome, progressive cardiac conduction disorder, sinus node dysfunction or sudden infant death syndrome. In addition, genes encoding ion channel accessory proteins, like anchoring or chaperone proteins, which modify the expression, the regulation of endocytosis and the degradation of ion channel α-subunits have also been reported as susceptibility genes for arrhythmic syndromes. The regulation of ion channel protein expression also depends on a fine-tuned balance among different other mechanisms, such as gene transcription, RNA processing, post-transcriptional control of gene expression by miRNA, protein synthesis, assembly and post-translational modification and trafficking.

  10. Novel mutation of FKBP10 in a pediatric patient with osteogenesis imperfecta type XI identified by clinical exome sequencing

    Science.gov (United States)

    Velasco, Harvy Mauricio; Morales, Jessica L

    2017-01-01

    Osteogenesis imperfecta (OI) is a hereditary disease characterized by bone fragility caused by mutations in the proteins that support the formation of the extracellular matrix in the bone. The diagnosis of OI begins with clinical suspicion, from phenotypic findings at birth, low-impact fractures during childhood or family history that may lead to it. However, the variability in the semiology of the disease does not allow establishing an early diagnosis in all cases, and unfortunately, specific clinical data provided by the literature only report 28 patients with OI type XI. This information is limited and heterogeneous, and therefore, detailed information on the natural history of this disease is not yet available. This paper reports the case of a male patient who, despite undergoing multidisciplinary management, did not have a diagnosis for a long period of time, and could only be given one with the use of whole-exome sequencing. The use of the next-generation sequencing in patients with ultrarare genetic diseases, including skeletal dysplasias, should be justified when clear clinical criteria and an improvement in the quality of life of the patients and their families are intended while reducing economic and time costs. Thus, this case report corresponds to the 29th patient affected with OI type XI, and the 18th mutation in FKBP10, causative of this pathology. PMID:29158687

  11. CpG island methylator phenotype identifies high risk patients among microsatellite stable BRAF mutated colorectal cancers.

    Science.gov (United States)

    Vedeld, Hege Marie; Merok, Marianne; Jeanmougin, Marine; Danielsen, Stine A; Honne, Hilde; Presthus, Gro Kummeneje; Svindland, Aud; Sjo, Ole H; Hektoen, Merete; Eknaes, Mette; Nesbakken, Arild; Lothe, Ragnhild A; Lind, Guro E

    2017-09-01

    The prognostic value of CpG island methylator phenotype (CIMP) in colorectal cancer remains unsettled. We aimed to assess the prognostic value of this phenotype analyzing a total of 1126 tumor samples obtained from two Norwegian consecutive colorectal cancer series. CIMP status was determined by analyzing the 5-markers CAGNA1G, IGF2, NEUROG1, RUNX3 and SOCS1 by quantitative methylation specific PCR (qMSP). The effect of CIMP on time to recurrence (TTR) and overall survival (OS) were determined by uni- and multivariate analyses. Subgroup analyses were conducted according to MSI and BRAF mutation status, disease stage, and also age at time of diagnosis (CIMP positive tumors demonstrated significantly shorter TTR and worse OS compared to those with CIMP negative tumors (multivariate hazard ratio [95% CI] 1.86 [1.31-2.63] and 1.89 [1.34-2.65], respectively). In stratified analyses, CIMP tumors showed significantly worse outcome among patients with microsatellite stable (MSS, P CIMP is significantly associated with inferior outcome for colorectal cancer patients, and can stratify the poor prognostic patients with MSS BRAF mutated tumors. © 2017 The Authors International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC.

  12. Whole-exome sequencing, without prior linkage, identifies a mutation in LAMB3 as a cause of dominant hypoplastic amelogenesis imperfecta.

    Science.gov (United States)

    Poulter, James A; El-Sayed, Walid; Shore, Roger C; Kirkham, Jennifer; Inglehearn, Chris F; Mighell, Alan J

    2014-01-01

    The conventional approach to identifying the defective gene in a family with an inherited disease is to find the disease locus through family studies. However, the rapid development and decreasing cost of next generation sequencing facilitates a more direct approach. Here, we report the identification of a frameshift mutation in LAMB3 as a cause of dominant hypoplastic amelogenesis imperfecta (AI). Whole-exome sequencing of three affected family members and subsequent filtering of shared variants, without prior genetic linkage, sufficed to identify the pathogenic variant. Simultaneous analysis of multiple family members confirms segregation, enhancing the power to filter the genetic variation found and leading to rapid identification of the pathogenic variant. LAMB3 encodes a subunit of Laminin-5, one of a family of basement membrane proteins with essential functions in cell growth, movement and adhesion. Homozygous LAMB3 mutations cause junctional epidermolysis bullosa (JEB) and enamel defects are seen in JEB cases. However, to our knowledge, this is the first report of dominant AI due to a LAMB3 mutation in the absence of JEB.

  13. Association between GWAS-identified lung adenocarcinoma susceptibility loci and EGFR mutations in never-smoking Asian women, and comparison with findings from Western populations.

    Science.gov (United States)

    Seow, Wei Jie; Matsuo, Keitaro; Hsiung, Chao Agnes; Shiraishi, Kouya; Song, Minsun; Kim, Hee Nam; Wong, Maria Pik; Hong, Yun-Chul; Hosgood, H Dean; Wang, Zhaoming; Chang, I-Shou; Wang, Jiu-Cun; Chatterjee, Nilanjan; Tucker, Margaret; Wei, Hu; Mitsudomi, Tetsuya; Zheng, Wei; Kim, Jin Hee; Zhou, Baosen; Caporaso, Neil E; Albanes, Demetrius; Shin, Min-Ho; Chung, Lap Ping; An, She-Juan; Wang, Ping; Zheng, Hong; Yatabe, Yasushi; Zhang, Xu-Chao; Kim, Young Tae; Shu, Xiao-Ou; Kim, Young-Chul; Bassig, Bryan A; Chang, Jiang; Ho, James Chung Man; Ji, Bu-Tian; Kubo, Michiaki; Daigo, Yataro; Ito, Hidemi; Momozawa, Yukihide; Ashikawa, Kyota; Kamatani, Yoichiro; Honda, Takayuki; Sakamoto, Hiromi; Kunitoh, Hideo; Tsuta, Koji; Watanabe, Shun-Ichi; Nokihara, Hiroshi; Miyagi, Yohei; Nakayama, Haruhiko; Matsumoto, Shingo; Tsuboi, Masahiro; Goto, Koichi; Yin, Zhihua; Shi, Jianxin; Takahashi, Atsushi; Goto, Akiteru; Minamiya, Yoshihiro; Shimizu, Kimihiro; Tanaka, Kazumi; Wu, Tangchun; Wei, Fusheng; Wong, Jason Y Y; Matsuda, Fumihiko; Su, Jian; Kim, Yeul Hong; Oh, In-Jae; Song, Fengju; Lee, Victor Ho Fun; Su, Wu-Chou; Chen, Yuh-Min; Chang, Gee-Chen; Chen, Kuan-Yu; Huang, Ming-Shyan; Yang, Pan-Chyr; Lin, Hsien-Chih; Xiang, Yong-Bing; Seow, Adeline; Park, Jae Yong; Kweon, Sun-Seog; Chen, Chien-Jen; Li, Haixin; Gao, Yu-Tang; Wu, Chen; Qian, Biyun; Lu, Daru; Liu, Jianjun; Jeon, Hyo-Sung; Hsiao, Chin-Fu; Sung, Jae Sook; Tsai, Ying-Huang; Jung, Yoo Jin; Guo, Huan; Hu, Zhibin; Wang, Wen-Chang; Chung, Charles C; Lawrence, Charles; Burdett, Laurie; Yeager, Meredith; Jacobs, Kevin B; Hutchinson, Amy; Berndt, Sonja I; He, Xingzhou; Wu, Wei; Wang, Junwen; Li, Yuqing; Choi, Jin Eun; Park, Kyong Hwa; Sung, Sook Whan; Liu, Li; Kang, Chang Hyun; Hu, Lingmin; Chen, Chung-Hsing; Yang, Tsung-Ying; Xu, Jun; Guan, Peng; Tan, Wen; Wang, Chih-Liang; Sihoe, Alan Dart Loon; Chen, Ying; Choi, Yi Young; Hung, Jen-Yu; Kim, Jun Suk; Yoon, Ho-Il; Cai, Qiuyin; Lin, Chien-Chung; Park, In Kyu; Xu, Ping; Dong, Jing; Kim, Christopher; He, Qincheng; Perng, Reury-Perng; Chen, Chih-Yi; Vermeulen, Roel; Wu, Junjie; Lim, Wei-Yen; Chen, Kun-Chieh; Chan, John K C; Chu, Minjie; Li, Yao-Jen; Li, Jihua; Chen, Hongyan; Yu, Chong-Jen; Jin, Li; Lo, Yen-Li; Chen, Ying-Hsiang; Fraumeni, Joseph F; Liu, Jie; Yamaji, Taiki; Yang, Yang; Hicks, Belynda; Wyatt, Kathleen; Li, Shengchao A; Dai, Juncheng; Ma, Hongxia; Jin, Guangfu; Song, Bao; Wang, Zhehai; Cheng, Sensen; Li, Xuelian; Ren, Yangwu; Cui, Ping; Iwasaki, Motoki; Shimazu, Taichi; Tsugane, Shoichiro; Zhu, Junjie; Jiang, Gening; Fei, Ke; Wu, Guoping; Chien, Li-Hsin; Chen, Hui-Ling; Su, Yu-Chun; Tsai, Fang-Yu; Chen, Yi-Song; Yu, Jinming; Stevens, Victoria L; Laird-Offringa, Ite A; Marconett, Crystal N; Lin, Dongxin; Chen, Kexin; Wu, Yi-Long; Landi, Maria Teresa; Shen, Hongbing; Rothman, Nathaniel; Kohno, Takashi; Chanock, Stephen J; Lan, Qing

    2017-01-15

    To evaluate associations by EGFR mutation status for lung adenocarcinoma risk among never-smoking Asian women, we conducted a meta-analysis of 11 loci previously identified in genome-wide association studies (GWAS). Genotyping in an additional 10,780 never-smoking cases and 10,938 never-smoking controls from Asia confirmed associations with eight known single nucleotide polymorphisms (SNPs). Two new signals were observed at genome-wide significance (P Asian women and highlight the importance of how the germline could inform risk for specific tumour mutation patterns, which could have important translational implications. Published by Oxford University Press 2016. This work is written by US Government employees and is in the public domain in the US.

  14. Site-Mutation of Hydrophobic Core Residues Synchronically Poise Super Interleukin 2 for Signaling: Identifying Distant Structural Effects through Affordable Computations

    Directory of Open Access Journals (Sweden)

    Longcan Mei

    2018-03-01

    Full Text Available A superkine variant of interleukin-2 with six site mutations away from the binding interface developed from the yeast display technique has been previously characterized as undergoing a distal structure alteration which is responsible for its super-potency and provides an elegant case study with which to get insight about how to utilize allosteric effect to achieve desirable protein functions. By examining the dynamic network and the allosteric pathways related to those mutated residues using various computational approaches, we found that nanosecond time scale all-atom molecular dynamics simulations can identify the dynamic network as efficient as an ensemble algorithm. The differentiated pathways for the six core residues form a dynamic network that outlines the area of structure alteration. The results offer potentials of using affordable computing power to predict allosteric structure of mutants in knowledge-based mutagenesis.

  15. Apoptosis-inducing signal sequence mutation in carbonic anhydrase IV identified in patients with the RP17 form of retinitis pigmentosa

    Science.gov (United States)

    Rebello, George; Ramesar, Rajkumar; Vorster, Alvera; Roberts, Lisa; Ehrenreich, Liezle; Oppon, Ekow; Gama, Dumisani; Bardien, Soraya; Greenberg, Jacquie; Bonapace, Giuseppe; Waheed, Abdul; Shah, Gul N.; Sly, William S.

    2004-01-01

    Genetic and physical mapping of the RP17 locus on 17q identified a 3.6-megabase candidate region that includes the gene encoding carbonic anhydrase IV (CA4), a glycosylphosphatidylinositol-anchored protein that is highly expressed in the choriocapillaris of the human eye. By sequencing candidate genes in this region, we identified a mutation that causes replacement of an arginine with a tryptophan (R14W) in the signal sequence of the CA4 gene at position -5 relative to the signal sequence cleavage site. This mutation was found to cosegregate with the disease phenotype in two large families and was not found in 36 unaffected family members or 100 controls. Expression of the mutant cDNA in COS-7 cells produced several findings, suggesting a mechanism by which the mutation can explain the autosomal dominant disease. In transfected COS-7 cells, the R14W mutation (i) reduced the steady-state level of carbonic anhydrase IV activity expressed by 28% due to a combination of decreased synthesis and accelerated turnover; (ii) led to up-regulation of immunoglobulin-binding protein, double-stranded RNA-regulated protein kinase-like ER kinase, and CCAAT/enhancer-binding protein homologous protein, markers of the unfolded protein response and endoplasmic reticulum stress; and (iii) induced apoptosis, as evidenced by annexin V binding and terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling staining, in most cells expressing the mutant, but not the WT, protein. We suggest that a high level of expression of the mutant allele in the endothelial cells of the choriocapillaris leads to apoptosis, leading in turn to ischemia in the overlying retina and producing autosomal dominant retinitis pigmentosa. PMID:15090652

  16. An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers.

    Science.gov (United States)

    Blein, Sophie; Bardel, Claire; Danjean, Vincent; McGuffog, Lesley; Healey, Sue; Barrowdale, Daniel; Lee, Andrew; Dennis, Joe; Kuchenbaecker, Karoline B; Soucy, Penny; Terry, Mary Beth; Chung, Wendy K; Goldgar, David E; Buys, Saundra S; Janavicius, Ramunas; Tihomirova, Laima; Tung, Nadine; Dorfling, Cecilia M; van Rensburg, Elizabeth J; Neuhausen, Susan L; Ding, Yuan Chun; Gerdes, Anne-Marie; Ejlertsen, Bent; Nielsen, Finn C; Hansen, Thomas Vo; Osorio, Ana; Benitez, Javier; Conejero, Raquel Andrés; Segota, Ena; Weitzel, Jeffrey N; Thelander, Margo; Peterlongo, Paolo; Radice, Paolo; Pensotti, Valeria; Dolcetti, Riccardo; Bonanni, Bernardo; Peissel, Bernard; Zaffaroni, Daniela; Scuvera, Giulietta; Manoukian, Siranoush; Varesco, Liliana; Capone, Gabriele L; Papi, Laura; Ottini, Laura; Yannoukakos, Drakoulis; Konstantopoulou, Irene; Garber, Judy; Hamann, Ute; Donaldson, Alan; Brady, Angela; Brewer, Carole; Foo, Claire; Evans, D Gareth; Frost, Debra; Eccles, Diana; Douglas, Fiona; Cook, Jackie; Adlard, Julian; Barwell, Julian; Walker, Lisa; Izatt, Louise; Side, Lucy E; Kennedy, M John; Tischkowitz, Marc; Rogers, Mark T; Porteous, Mary E; Morrison, Patrick J; Platte, Radka; Eeles, Ros; Davidson, Rosemarie; Hodgson, Shirley; Cole, Trevor; Godwin, Andrew K; Isaacs, Claudine; Claes, Kathleen; De Leeneer, Kim; Meindl, Alfons; Gehrig, Andrea; Wappenschmidt, Barbara; Sutter, Christian; Engel, Christoph; Niederacher, Dieter; Steinemann, Doris; Plendl, Hansjoerg; Kast, Karin; Rhiem, Kerstin; Ditsch, Nina; Arnold, Norbert; Varon-Mateeva, Raymonda; Schmutzler, Rita K; Preisler-Adams, Sabine; Markov, Nadja Bogdanova; Wang-Gohrke, Shan; de Pauw, Antoine; Lefol, Cédrick; Lasset, Christine; Leroux, Dominique; Rouleau, Etienne; Damiola, Francesca; Dreyfus, Hélène; Barjhoux, Laure; Golmard, Lisa; Uhrhammer, Nancy; Bonadona, Valérie; Sornin, Valérie; Bignon, Yves-Jean; Carter, Jonathan; Van Le, Linda; Piedmonte, Marion; DiSilvestro, Paul A; de la Hoya, Miguel; Caldes, Trinidad; Nevanlinna, Heli; Aittomäki, Kristiina; Jager, Agnes; van den Ouweland, Ans Mw; Kets, Carolien M; Aalfs, Cora M; van Leeuwen, Flora E; Hogervorst, Frans Bl; Meijers-Heijboer, Hanne Ej; Oosterwijk, Jan C; van Roozendaal, Kees Ep; Rookus, Matti A; Devilee, Peter; van der Luijt, Rob B; Olah, Edith; Diez, Orland; Teulé, Alex; Lazaro, Conxi; Blanco, Ignacio; Del Valle, Jesús; Jakubowska, Anna; Sukiennicki, Grzegorz; Gronwald, Jacek; Lubinski, Jan; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Agnarsson, Bjarni A; Maugard, Christine; Amadori, Alberto; Montagna, Marco; Teixeira, Manuel R; Spurdle, Amanda B; Foulkes, William; Olswold, Curtis; Lindor, Noralane M; Pankratz, Vernon S; Szabo, Csilla I; Lincoln, Anne; Jacobs, Lauren; Corines, Marina; Robson, Mark; Vijai, Joseph; Berger, Andreas; Fink-Retter, Anneliese; Singer, Christian F; Rappaport, Christine; Kaulich, Daphne Geschwantler; Pfeiler, Georg; Tea, Muy-Kheng; Greene, Mark H; Mai, Phuong L; Rennert, Gad; Imyanitov, Evgeny N; Mulligan, Anna Marie; Glendon, Gord; Andrulis, Irene L; Tchatchou, Sandrine; Toland, Amanda Ewart; Pedersen, Inge Sokilde; Thomassen, Mads; Kruse, Torben A; Jensen, Uffe Birk; Caligo, Maria A; Friedman, Eitan; Zidan, Jamal; Laitman, Yael; Lindblom, Annika; Melin, Beatrice; Arver, Brita; Loman, Niklas; Rosenquist, Richard; Olopade, Olufunmilayo I; Nussbaum, Robert L; Ramus, Susan J; Nathanson, Katherine L; Domchek, Susan M; Rebbeck, Timothy R; Arun, Banu K; Mitchell, Gillian; Karlan, Beth Y; Lester, Jenny; Orsulic, Sandra; Stoppa-Lyonnet, Dominique; Thomas, Gilles; Simard, Jacques; Couch, Fergus J; Offit, Kenneth; Easton, Douglas F; Chenevix-Trench, Georgia; Antoniou, Antonis C; Mazoyer, Sylvie; Phelan, Catherine M; Sinilnikova, Olga M; Cox, David G

    2015-04-25

    Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers. We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals. We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk. This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects.

  17. Targeted next-generation sequencing identifies a novel nonsense mutation in SPTB for hereditary spherocytosis: A case report of a Korean family.

    Science.gov (United States)

    Shin, Soyoung; Jang, Woori; Kim, Myungshin; Kim, Yonggoo; Park, Suk Young; Park, Joonhong; Yang, Young Jun

    2018-01-01

    Hereditary spherocytosis (HS) is an inherited disorder characterized by the presence of spherical-shaped red blood cells (RBCs) on the peripheral blood (PB) smear. To date, a number of mutations in 5 genes have been identified and the mutations in SPTB gene account for about 20% patients. A 65-year-old female had been diagnosed as hemolytic anemia 30 years ago, based on a history of persistent anemia and hyperbilirubinemia for several years. She received RBC transfusion several times and a cholecystectomy roughly 20 years ago before. Round, densely staining spherical-shaped erythrocytes (spherocytes) were frequently found on the PB smear. Numerous spherocytes were frequently found in the PB smears of symptomatic family members, her 3rd son and his 2 grandchildren. One heterozygous mutation of SPTB was identified by targeted next-generation sequencing (NGS). The nonsense mutation, c.1956G>A (p.Trp652*), in exon 13 was confirmed by Sanger sequencing and thus the proband was diagnosed with HS. The proband underwent a splenectomy due to transfusion-refractory anemia and splenomegaly. After the splenectomy, her hemoglobin level improved to normal range (14.1 g/dL) and her bilirubin levels decreased dramatically (total bilirubin 1.9 mg/dL; direct bilirubin 0.6 mg/dL). We suggest that NGS of causative genes could be a useful diagnostic tool for the genetically heterogeneous RBC membrane disorders, especially in cases with a mild or atypical clinical manifestation. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  18. Exome sequencing identifies a novel mutation of the GDI1 gene in a Chinese non-syndromic X-linked intellectual disability family

    Directory of Open Access Journals (Sweden)

    Yongheng Duan

    2017-08-01

    Full Text Available Abstract X-linked intellectual disability (XLID has been associated with various genes. Diagnosis of XLID, especially for non-syndromic ones (NS-XLID, is often hampered by the heterogeneity of this disease. Here we report the case of a Chinese family in which three males suffer from intellectual disability (ID. The three patients shared the same phenotype: no typical clinical manifestation other than IQ score ≤ 70. For a genetic diagnosis for this family we carried out whole exome sequencing on the proband, and validated 16 variants of interest in the genomic DNA of all the family members. A missense mutation (c.710G > T, which mapped to exon 6 of the Rab GDP-Dissociation Inhibitor 1 (GDI1 gene, was found segregating with the ID phenotype, and this mutation changes the 237th position in the guanosine diphosphate dissociation inhibitor (GDI protein from glycine to valine (p. Gly237Val. Through molecular dynamics simulations we found that this substitution results in a conformational change of GDI, possibly affecting the Rab-binding capacity of this protein. In conclusion, our study identified a novel GDI1 mutation that is possibly NS-XLID causative, and showed that whole exome sequencing provides advantages for detecting novel ID-associated variants and can greatly facilitate the genetic diagnosis of the disease.

  19. In silico reversal of repeat-induced point mutation (RIP identifies the origins of repeat families and uncovers obscured duplicated genes

    Directory of Open Access Journals (Sweden)

    Hane James K

    2010-11-01

    Full Text Available Abstract Background Repeat-induced point mutation (RIP is a fungal genome defence mechanism guarding against transposon invasion. RIP mutates the sequence of repeated DNA and over time renders the affected regions unrecognisable by similarity search tools such as BLAST. Results DeRIP is a new software tool developed to predict the original sequence of a RIP-mutated region prior to the occurrence of RIP. In this study, we apply deRIP to the genome of the wheat pathogen Stagonospora nodorum SN15 and predict the origin of several previously uncharacterised classes of repetitive DNA. Conclusions Five new classes of transposon repeats and four classes of endogenous gene repeats were identified after deRIP. The deRIP process is a new tool for fungal genomics that facilitates the identification and understanding of the role and origin of fungal repetitive DNA. DeRIP is open-source and is available as part of the RIPCAL suite at http://www.sourceforge.net/projects/ripcal.

  20. Genome-wide association analysis identifies a mutation in the thiamine transporter 2 (SLC19A3 gene associated with Alaskan Husky encephalopathy.

    Directory of Open Access Journals (Sweden)

    Karen M Vernau

    Full Text Available Alaskan Husky Encephalopathy (AHE has been previously proposed as a mitochondrial encephalopathy based on neuropathological similarities with human Leigh Syndrome (LS. We studied 11 Alaskan Husky dogs with AHE, but found no abnormalities in respiratory chain enzyme activities in muscle and liver, or mutations in mitochondrial or nuclear genes that cause LS in people. A genome wide association study was performed using eight of the affected dogs and 20 related but unaffected control AHs using the Illumina canine HD array. SLC19A3 was identified as a positional candidate gene. This gene controls the uptake of thiamine in the CNS via expression of the thiamine transporter protein THTR2. Dogs have two copies of this gene located within the candidate interval (SLC19A3.2 - 43.36-43.38 Mb and SLC19A3.1 - 43.411-43.419 Mb on chromosome 25. Expression analysis in a normal dog revealed that one of the paralogs, SLC19A3.1, was expressed in the brain and spinal cord while the other was not. Subsequent exon sequencing of SLC19A3.1 revealed a 4bp insertion and SNP in the second exon that is predicted to result in a functional protein truncation of 279 amino acids (c.624 insTTGC, c.625 C>A. All dogs with AHE were homozygous for this mutation, 15/41 healthy AH control dogs were heterozygous carriers while 26/41 normal healthy AH dogs were wild type. Furthermore, this mutation was not detected in another 187 dogs of different breeds. These results suggest that this mutation in SLC19A3.1, encoding a thiamine transporter protein, plays a critical role in the pathogenesis of AHE.

  1. Manipulating the fidelity of lower extremity visual feedback to identify obstacle negotiation strategies in immersive virtual reality.

    Science.gov (United States)

    Kim, Aram; Zhou, Zixuan; Kretch, Kari S; Finley, James M

    2017-07-01

    The ability to successfully navigate obstacles in our environment requires integration of visual information about the environment with estimates of our body's state. Previous studies have used partial occlusion of the visual field to explore how information about the body and impending obstacles are integrated to mediate a successful clearance strategy. However, because these manipulations often remove information about both the body and obstacle, it remains to be seen how information about the lower extremities alone is utilized during obstacle crossing. Here, we used an immersive virtual reality (VR) interface to explore how visual feedback of the lower extremities influences obstacle crossing performance. Participants wore a head-mounted display while walking on treadmill and were instructed to step over obstacles in a virtual corridor in four different feedback trials. The trials involved: (1) No visual feedback of the lower extremities, (2) an endpoint-only model, (3) a link-segment model, and (4) a volumetric multi-segment model. We found that the volumetric model improved success rate, placed their trailing foot before crossing and leading foot after crossing more consistently, and placed their leading foot closer to the obstacle after crossing compared to no model. This knowledge is critical for the design of obstacle negotiation tasks in immersive virtual environments as it may provide information about the fidelity necessary to reproduce ecologically valid practice environments.

  2. Mutations in FGF17, IL17RD, DUSP6, SPRY4, and FLRT3 Are Identified in Individuals with Congenital Hypogonadotropic Hypogonadism

    DEFF Research Database (Denmark)

    Miraoui, Hichem; Dwyer, Andrew A.; Sykiotis, Gerasimos P.

    2013-01-01

    signaling and can be mutated in CHH. We therefore hypothesized that mutations in genes encoding a broader range of modulators of the FGFR1 pathway might contribute to the genetics of CHH as causal or modifier mutations. Thus, we aimed to (1) investigate whether CHH individuals harbor mutations in members...

  3. Genomic approach to therapeutic target validation identifies a glucose-lowering GLP1R variant protective for coronary heart disease

    Science.gov (United States)

    Scott, Robert A.; Freitag, Daniel F.; Li, Li; Chu, Audrey Y.; Surendran, Praveen; Young, Robin; Grarup, Niels; Stancáková, Alena; Chen, Yuning; V.Varga, Tibor; Yaghootkar, Hanieh; Luan, Jian'an; Zhao, Jing Hua; Willems, Sara M.; Wessel, Jennifer; Wang, Shuai; Maruthur, Nisa; Michailidou, Kyriaki; Pirie, Ailith; van der Lee, Sven J.; Gillson, Christopher; Olama, Ali Amin Al; Amouyel, Philippe; Arriola, Larraitz; Arveiler, Dominique; Aviles-Olmos, Iciar; Balkau, Beverley; Barricarte, Aurelio; Barroso, Inês; Garcia, Sara Benlloch; Bis, Joshua C.; Blankenberg, Stefan; Boehnke, Michael; Boeing, Heiner; Boerwinkle, Eric; Borecki, Ingrid B.; Bork-Jensen, Jette; Bowden, Sarah; Caldas, Carlos; Caslake, Muriel; Cupples, L. Adrienne; Cruchaga, Carlos; Czajkowski, Jacek; den Hoed, Marcel; Dunn, Janet A.; Earl, Helena M.; Ehret, Georg B.; Ferrannini, Ele; Ferrieres, Jean; Foltynie, Thomas; Ford, Ian; Forouhi, Nita G.; Gianfagna, Francesco; Gonzalez, Carlos; Grioni, Sara; Hiller, Louise; Jansson, Jan-Håkan; Jørgensen, Marit E.; Jukema, J. Wouter; Kaaks, Rudolf; Kee, Frank; Kerrison, Nicola D.; Key, Timothy J.; Kontto, Jukka; Kote-Jarai, Zsofia; Kraja, Aldi T.; Kuulasmaa, Kari; Kuusisto, Johanna; Linneberg, Allan; Liu, Chunyu; Marenne, Gaëlle; Mohlke, Karen L.; Morris, Andrew P.; Muir, Kenneth; Müller-Nurasyid, Martina; Munroe, Patricia B.; Navarro, Carmen; Nielsen, Sune F.; Nilsson, Peter M.; Nordestgaard, Børge G.; Packard, Chris J.; Palli, Domenico; Panico, Salvatore; Peloso, Gina M.; Perola, Markus; Peters, Annette; Poole, Christopher J.; Quirós, J. Ramón; Rolandsson, Olov; Sacerdote, Carlotta; Salomaa, Veikko; Sánchez, María-José; Sattar, Naveed; Sharp, Stephen J.; Sims, Rebecca; Slimani, Nadia; Smith, Jennifer A.; Thompson, Deborah J.; Trompet, Stella; Tumino, Rosario; van der A, Daphne L.; van der Schouw, Yvonne T.; Virtamo, Jarmo; Walker, Mark; Walter, Klaudia; Abraham, Jean E.; Amundadottir, Laufey T.; Aponte, Jennifer L.; Butterworth, Adam S.; Dupuis, Josée; Easton, Douglas F.; Eeles, Rosalind A.; Erdmann, Jeanette; Franks, Paul W.; Frayling, Timothy M.; Hansen, Torben; Howson, Joanna M. M.; Jørgensen, Torben; Kooner, Jaspal; Laakso, Markku; Langenberg, Claudia; McCarthy, Mark I.; Pankow, James S.; Pedersen, Oluf; Riboli, Elio; Rotter, Jerome I.; Saleheen, Danish; Samani, Nilesh J.; Schunkert, Heribert; Vollenweider, Peter; O'Rahilly, Stephen; Deloukas, Panos; Danesh, John; Goodarzi, Mark O.; Kathiresan, Sekar; Meigs, James B.; Ehm, Margaret G.; Wareham, Nicholas J.; Waterworth, Dawn M.

    2016-01-01

    Regulatory authorities have indicated that new drugs to treat type 2 diabetes (T2D) should not be associated with an unacceptable increase in cardiovascular risk. Human genetics may be able to inform development of antidiabetic therapies by predicting cardiovascular and other health endpoints. We therefore investigated the association of variants in 6 genes that encode drug targets for obesity or T2D with a range of metabolic traits in up to 11,806 individuals by targeted exome sequencing, and follow-up in 39,979 individuals by targeted genotyping, with additional in silico follow up in consortia. We used these data to first compare associations of variants in genes encoding drug targets with the effects of pharmacological manipulation of those targets in clinical trials. We then tested the association those variants with disease outcomes, including coronary heart disease, to predict cardiovascular safety of these agents. A low-frequency missense variant (Ala316Thr;rs10305492) in the gene encoding glucagon-like peptide-1 receptor (GLP1R), the target of GLP1R agonists, was associated with lower fasting glucose and lower T2D risk, consistent with GLP1R agonist therapies. The minor allele was also associated with protection against heart disease, thus providing evidence that GLP1R agonists are not likely to be associated with an unacceptable increase in cardiovascular risk. Our results provide an encouraging signal that these agents may be associated with benefit, a question currently being addressed in randomised controlled trials. Genetic variants associated with metabolic traits and multiple disease outcomes can be used to validate therapeutic targets at an early stage in the drug development process. PMID:27252175

  4. Molecular dynamics simulations of site point mutations in the TPR domain of cyclophilin 40 identify conformational states with distinct dynamic and enzymatic properties

    Science.gov (United States)

    Gur, Mert; Blackburn, Elizabeth A.; Ning, Jia; Narayan, Vikram; Ball, Kathryn L.; Walkinshaw, Malcolm D.; Erman, Burak

    2018-04-01

    Cyclophilin 40 (Cyp40) is a member of the immunophilin family that acts as a peptidyl-prolyl-isomerase enzyme and binds to the heat shock protein 90 (Hsp90). Its structure comprises an N-terminal cyclophilin domain and a C-terminal tetratricopeptide (TPR) domain. Cyp40 is overexpressed in prostate cancer and certain T-cell lymphomas. The groove for Hsp90 binding on the TPR domain includes residues Lys227 and Lys308, referred to as the carboxylate clamp, and is essential for Cyp40-Hsp90 binding. In this study, the effect of two mutations, K227A and K308A, and their combinative mutant was investigated by performing a total of 5.76 μs of all-atom molecular dynamics (MD) simulations in explicit solvent. All simulations, except the K308A mutant, were found to adopt two distinct (extended or compact) conformers defined by different cyclophilin-TPR interdomain distances. The K308A mutant was only observed in the extended form which is observed in the Cyp40 X-ray structure. The wild-type, K227A, and combined mutant also showed bimodal distributions. The experimental melting temperature, Tm, values of the mutants correlate with the degree of compactness with the K308A extended mutant having a marginally lower melting temperature. Another novel measure of compactness determined from the MD data, the "coordination shell volume," also shows a direct correlation with Tm. In addition, the MD simulations show an allosteric effect with the mutations in the remote TPR domain having a pronounced effect on the molecular motions of the enzymatic cyclophilin domain which helps rationalise the experimentally observed increase in enzyme activity measured for all three mutations.

  5. Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk

    NARCIS (Netherlands)

    F.J. Couch (Fergus); X. Wang (Xing); L. McGuffog (Lesley); A. Lee (Andrew); C. Olswold (Curtis); K.B. Kuchenbaecker (Karoline); P. Soucy (Penny); Z. Fredericksen (Zachary); D. Barrowdale (Daniel); J. Dennis (Joe); M.M. Gaudet (Mia); E. Dicks (Ed); M. Kosel (Matthew); S. Healey (Sue); O. Sinilnikova (Olga); F. Bacot (Francois); D. Vincent (Daniel); F.B.L. Hogervorst (Frans); S. Peock (Susan); D. Stoppa-Lyonnet (Dominique); A. Jakubowska (Anna); P. Radice (Paolo); R.K. Schmutzler (Rita); S.M. Domchek (Susan); M. Piedmonte (Marion); C.F. Singer (Christian); E. Friedman (Eitan); M. Thomassen (Mads); T.V.O. Hansen (Thomas); S.L. Neuhausen (Susan); C. Szabo (Csilla); I. Blanco (Ignacio); M.H. Greene (Mark); B.Y. Karlan (Beth); J. Garber; C. Phelan (Catherine); J.N. Weitzel (Jeffrey); M. Montagna (Marco); E. Olah; I.L. Andrulis (Irene); A.K. Godwin (Andrew); D. Yannoukakos (Drakoulis); D. Goldgar (David); T. Caldes (Trinidad); H. Nevanlinna (Heli); A. Osorio (Ana); M.-B. Terry (Mary-Beth); M.B. Daly (Mary); E.J. van Rensburg (Elizabeth); U. Hamann (Ute); S.J. Ramus (Susan); A. Ewart-Toland (Amanda); M.A. Caligo (Maria); O.I. Olopade (Olofunmilayo); N. Tung (Nadine); K. Claes (Kathleen); M.S. Beattie (Mary); M.C. Southey (Melissa); E.N. Imyanitov (Evgeny); M. Tischkowitz (Marc); R. Janavicius (Ramunas); E.M. John (Esther); A. Kwong (Ava); O. Diez (Orland); J. Balmana (Judith); R.B. Barkardottir (Rosa); B.K. Arun (Banu); G. Rennert (Gad); S.-H. Teo (Soo-Hwang); P.A. Ganz (Patricia); I. Campbell (Ian); A.H. van der Hout (Annemarie); C.H.M. van Deurzen (Carolien); C.M. Seynaeve (Caroline); E.B. Gómez García (Encarna); F.E. van Leeuwen (F.); H. Meijers-Heijboer (Hanne); J.J. Gille (Johan); M.G.E.M. Ausems (Margreet); M.J. Blok (Marinus); M.J. Ligtenberg (Marjolijn); M.A. Rookus (Matti); P. Devilee (Peter); S. Verhoef; T.A.M. van Os (Theo); J.T. Wijnen (Juul); D. Frost (Debra); S. Ellis (Steve); E. Fineberg (Elena); R. Platte (Radka); D.G. Evans (Gareth); L. Izatt (Louise); R. Eeles (Rosalind); J.W. Adlard (Julian); D. Eccles (Diana); J. Cook (Jackie); C. Brewer (C.); F. Douglas (Fiona); S.V. Hodgson (Shirley); P.J. Morrison (Patrick); L. Side (Lucy); A. Donaldson (Alan); C. Houghton (Catherine); M.T. Rogers (Mark); H. Dorkins (Huw); J. Eason (Jacqueline); H. Gregory (Helen); E. McCann (Emma); A. Murray (Alexandra); A. Calender (Alain); A. Hardouin (Agnès); P. Berthet (Pascaline); C.D. Delnatte (Capucine); C. Nogues (Catherine); C. Lasset (Christine); C. Houdayer (Claude); D. Leroux (Dominique); E. Rouleau (Etienne); F. Prieur (Fabienne); F. Damiola (Francesca); H. Sobol (Hagay); I. Coupier (Isabelle); L. Vénat-Bouvet (Laurence); L. Castera (Laurent); M. Gauthier-Villars (Marion); M. Léone (Mélanie); P. Pujol (Pascal); S. Mazoyer (Sylvie); Y.-J. Bignon (Yves-Jean); E. Złowocka-Perłowska (Elzbieta); J. Gronwald (Jacek); J. Lubinski (Jan); K. Durda (Katarzyna); K. Jaworska (Katarzyna); T. Huzarski (Tomasz); A.B. Spurdle (Amanda); A. Viel (Alessandra); B. Peissel (Bernard); B. Bonnani (Bernardo); G. Melloni (Giulia); L. Ottini (Laura); L. Papi (Laura); L. Varesco (Liliana); M.G. Tibiletti (Maria Grazia); P. Peterlongo (Paolo); S. Volorio (Sara); S. Manoukian (Siranoush); V. Pensotti (Valeria); N. Arnold (Norbert); C. Engel (Christoph); H. Deissler (Helmut); D. Gadzicki (Dorothea); P.A. Gehrig (Paola A.); K. Kast (Karin); K. Rhiem (Kerstin); A. Meindl (Alfons); D. Niederacher (Dieter); N. Ditsch (Nina); H. Plendl (Hansjoerg); S. Preisler-Adams (Sabine); S. Engert (Stefanie); C. Sutter (Christian); R. Varon-Mateeva (Raymonda); B. Wapenschmidt (Barbara); B.H.F. Weber (Bernhard); B. Arver (Brita Wasteson); M. Stenmark-Askmalm (M.); N. Loman (Niklas); R. Rosenquist (R.); Z. Einbeigi (Zakaria); K.L. Nathanson (Katherine); R. Rebbeck (Timothy); S.V. Blank (Stephanie); D.E. Cohn (David); G.C. Rodriguez (Gustavo); L. Small (Laurie); M. Friedlander (Michael); V.L. Bae-Jump (Victoria L.); A. Fink-Retter (Anneliese); C. Rappaport (Christine); D. Gschwantler-Kaulich (Daphne); G. Pfeiler (Georg); M.-K. Tea; N.M. Lindor (Noralane); B. Kaufman (Bella); S. Shimon Paluch (Shani); Y. Laitman (Yael); A.-B. Skytte (Anne-Bine); A-M. Gerdes (Anne-Marie); I.S. Pedersen (Inge Sokilde); S.T. Moeller (Sanne Traasdahl); T.A. Kruse (Torben); U.B. Jensen; J. Vijai (Joseph); K. Sarrel (Kara); M. Robson (Mark); N. Kauff (Noah); A.M. Mulligan (Anna Marie); G. Glendon (Gord); H. Ozcelik (Hilmi); B. Ejlertsen (Bent); F.C. Nielsen (Finn); L. Jønson (Lars); M.K. Andersen (Mette); Y.C. Ding (Yuan); L. Steele (Linda); L. Foretova (Lenka); A. Teulé (A.); C. Lazaro (Conxi); J. Brunet (Joan); M.A. Pujana (Miguel); P.L. Mai (Phuong); J.T. Loud (Jennifer); C.S. Walsh (Christine); K.J. Lester (Kathryn); S. Orsulic (Sandra); S. Narod (Steven); J. Herzog (Josef); S.R. Sand (Sharon); S. Tognazzo (Silvia); S. Agata (Simona); T. Vaszko (Tibor); J. Weaver (JoEllen); A. Stavropoulou (Alexandra); S.S. Buys (Saundra); A. Romero (Alfonso); M. de La Hoya (Miguel); K. Aittomäki (Kristiina); T.A. Muranen (Taru); M. Durán (Mercedes); W.K. Chung (Wendy); A. Lasa (Adriana); C.M. Dorfling (Cecelia); A. Miron (Alexander); J. Benítez (Javier); L. Senter (Leigha); D. Huo (Dezheng); S. Chan (Salina); A. Sokolenko (Anna); J. Chiquette (Jocelyne); L. Tihomirova (Laima); M.O.W. Friebel (Mark ); B.A. Agnarsson (Bjarni); K.H. Lu (Karen); F. Lejbkowicz (Flavio); P.A. James (Paul ); A.S. Hall (Alistair); A.M. Dunning (Alison); Y. Tessier (Yann); J. Cunningham (Jane); S. Slager (Susan); C. Wang (Chen); S. Hart (Stewart); K. Stevens (Kristen); J. Simard (Jacques); T. Pastinen (Tomi); V.S. Pankratz (Shane); K. Offit (Kenneth); D.F. Easton (Douglas); G. Chenevix-Trench (Georgia); A.C. Antoniou (Antonis); H. Thorne (Heather); E. Niedermayr (Eveline); Å. Borg (Åke); H. Olsson; H. Jernström (H.); K. Henriksson (Karin); K. Harbst (Katja); M. Soller (Maria); U. Kristoffersson (Ulf); A. Öfverholm (Anna); M. Nordling (Margareta); P. Karlsson (Per); A. von Wachenfeldt (Anna); A. Liljegren (Annelie); A. Lindblom (Annika); G.B. Bustinza; J. Rantala (Johanna); B. Melin (Beatrice); C.E. Ardnor (Christina Edwinsdotter); M. Emanuelsson (Monica); H. Ehrencrona (Hans); M.H. Pigg (Maritta ); S. Liedgren (Sigrun); M.A. Rookus (M.); S. Verhoef (S.); F.E. van Leeuwen (F.); M.K. Schmidt (Marjanka); J.L. de Lange (J.); J.M. Collée (Margriet); A.M.W. van den Ouweland (Ans); M.J. Hooning (Maartje); C.J. van Asperen (Christi); J.T. Wijnen (Juul); R.A.E.M. Tollenaar (Rob); P. Devilee (Peter); T.C.T.E.F. van Cronenburg; C.M. Kets; A.R. Mensenkamp (Arjen); R.B. van der Luijt (Rob); C.M. Aalfs (Cora); T.A.M. van Os (Theo); Q. Waisfisz (Quinten); E.J. Meijers-Heijboer (Hanne); E.B. Gomez Garcia (Encarna); J.C. Oosterwijk (Jan); M.J. Mourits (Marjan); G.H. de Bock (Geertruida); S.D. Ellis (Steve); E. Fineberg (Elena); Z. Miedzybrodzka (Zosia); L. Jeffers (Lisa); T.J. Cole (Trevor); K.-R. Ong (Kai-Ren); J. Hoffman (Jonathan); M. James (Margaret); J. Paterson (Joan); A. Taylor (Amy); A. Murray (Anna); M.J. Kennedy (John); D.E. Barton (David); M.E. Porteous (Mary); S. Drummond (Sarah); C. Brewer (Carole); E. Kivuva (Emma); A. Searle (Anne); S. Goodman (Selina); R. Davidson (Rosemarie); V. Murday (Victoria); N. Bradshaw (Nicola); L. Snadden (Lesley); M. Longmuir (Mark); C. Watt (Catherine); S. Gibson (Sarah); E. Haque (Eshika); E. Tobias (Ed); A. Duncan (Alexis); L. Izatt (Louise); C. Jacobs (Chris); C. Langman (Caroline); A.F. Brady (Angela); S.A. Melville (Scott); K. Randhawa (Kashmir); J. Barwell (Julian); G. Serra-Feliu (Gemma); I.O. Ellis (Ian); F. Lalloo (Fiona); J. Taylor (James); A. Male (Alison); C. Berlin (Cheryl); R. Collier (Rebecca); F. Douglas (Fiona); O. Claber (Oonagh); I. Jobson (Irene); L.J. Walker (Lisa); D. McLeod (Diane); D. Halliday (Dorothy); S. Durell (Sarah); B. Stayner (Barbara); S. Shanley (Susan); N. Rahman (Nazneen); R. Houlston (Richard); A. Stormorken (Astrid); E.K. Bancroft (Elizabeth); E. Page (Elizabeth); A. Ardern-Jones (Audrey); K. Kohut (Kelly); J. Wiggins (Jennifer); E. Castro (Elena); S.R. Killick; S. Martin (Sue); D. Rea (Dan); A. Kulkarni (Anjana); O. Quarrell (Oliver); C. Bardsley (Cathryn); S. Goff (Sheila); G. Brice (Glen); L. Winchester (Lizzie); C. Eddy (Charlotte); V. Tripathi (Vishakha); V. Attard (Virginia); A. Lehmann (Anna); A. Lucassen (Anneke); G. Crawford (Gabe); D. McBride (Donna); S. Smalley (Sarah); S. Mazoyer (Sylvie); F. Damiola (Francesca); L. Barjhoux (Laure); C. Verny-Pierre (Carole); S. Giraud (Sophie); D. Stoppa-Lyonnet (Dominique); B. Buecher (Bruno); V. Moncoutier (Virginie); M. Belotti (Muriel); C. Tirapo (Carole); A. de Pauw (Antoine); B. Bressac-de Paillerets (Brigitte); O. Caron (Olivier); Y.-J. Bignon (Yves-Jean); N. Uhrhammer (Nancy); V. Bonadona (Valérie); S. Handallou (Sandrine); A. hardouin (Agnès); H. Sobol (Hagay); V. Bourdon (Violaine); T. Noguchi (Tetsuro); A. Remenieras (Audrey); F. Eisinger (François); J.-P. Peyrat; J. Fournier (Joëlle); F. Révillion (Françoise); P. Vennin (Philippe); C. Adenis (Claude); R. Lidereau (Rosette); L. Demange (Liliane); D.W. Muller (Danièle); J.P. Fricker (Jean Pierre); E. Barouk-Simonet (Emmanuelle); F. Bonnet (Françoise); V. Bubien (Virginie); N. Sevenet (Nicolas); M. Longy (Michel); C. Toulas (Christine); R. Guimbaud (Rosine); L. Gladieff (Laurence); V. Feillel (Viviane); H. Dreyfus (Hélène); C. Rebischung (Christine); M. Peysselon (Magalie); F. Coron (Fanny); L. Faivre (Laurence); M. Lebrun (Marine); C. Kientz (Caroline); S.F. Ferrer; M. Frenay (Marc); I. Mortemousque (Isabelle); F. Coulet (Florence); C. Colas (Chrystelle); F. Soubrier; J. Sokolowska (Johanna); M. Bronner (Myriam); H. Lynch (Henry); C.L. Snyder (Carrie); M. Angelakos (Maggie); J. Maskiell (Judi); G.S. Dite (Gillian)

    2013-01-01

    textabstractBRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer),

  6. Genome-wide association study in BRCA1 mutation carriers identifies novel loci associated with breast and ovarian cancer risk

    NARCIS (Netherlands)

    Couch, Fergus J.; Wang, Xianshu; McGuffog, Lesley; Lee, Andrew; Olswold, Curtis; Kuchenbaecker, Karoline B.; Soucy, Penny; Fredericksen, Zachary; Barrowdale, Daniel; Dennis, Joe; Gaudet, Mia M.; Dicks, Ed; Kosel, Matthew; Healey, Sue; Sinilnikova, Olga M.; Lee, Adam; Bacot, François; Vincent, Daniel; Hogervorst, Frans B. L.; Peock, Susan; Stoppa-Lyonnet, Dominique; Jakubowska, Anna; Radice, Paolo; Schmutzler, Rita Katharina; Domchek, Susan M.; Piedmonte, Marion; Singer, Christian F.; Friedman, Eitan; Thomassen, Mads; Hansen, Thomas V. O.; Neuhausen, Susan L.; Szabo, Csilla I.; Blanco, Ignacio; Greene, Mark H.; Karlan, Beth Y.; Garber, Judy; Phelan, Catherine M.; Weitzel, Jeffrey N.; Montagna, Marco; Olah, Edith; Andrulis, Irene L.; Godwin, Andrew K.; Yannoukakos, Drakoulis; Goldgar, David E.; Caldes, Trinidad; Nevanlinna, Heli; Osorio, Ana; Terry, Mary Beth; Daly, Mary B.; van Rensburg, Elizabeth J.; Hamann, Ute; Ramus, Susan J.; Toland, Amanda Ewart; Caligo, Maria A.; Olopade, Olufunmilayo I.; Tung, Nadine; Claes, Kathleen; Beattie, Mary S.; Southey, Melissa C.; Imyanitov, Evgeny N.; Tischkowitz, Marc; Janavicius, Ramunas; John, Esther M.; Kwong, Ava; Diez, Orland; Balmaña, Judith; Barkardottir, Rosa B.; Arun, Banu K.; Rennert, Gad; teo, Soo-Hwang; Ganz, Patricia A.; Campbell, Ian; van der Hout, Annemarie H.; van Deurzen, Carolien H. M.; Seynaeve, Caroline; Gómez Garcia, Encarna B.; van Leeuwen, Flora E.; Meijers-Heijboer, Hanne E. J.; Gille, Johannes J. P.; Ausems, Margreet G. E. M.; Blok, Marinus J.; Ligtenberg, Marjolijn J. L.; Rookus, Matti A.; Devilee, Peter; Verhoef, Senno; van Os, Theo A. M.; Wijnen, Juul T.; Frost, Debra; Ellis, Steve; Fineberg, Elena; Platte, Radka; Evans, D. Gareth; Izatt, Louise; Eeles, Rosalind A.; Adlard, Julian; Eccles, Diana M.; Cook, Jackie; Brewer, Carole; Douglas, Fiona; Hodgson, Shirley; Morrison, Patrick J.; Side, Lucy E.; Donaldson, Alan; Houghton, Catherine; Rogers, Mark T.; Dorkins, Huw; Eason, Jacqueline; Gregory, Helen; McCann, Emma; Murray, Alex; Calender, Alain; Hardouin, Agnès; Berthet, Pascaline; Delnatte, Capucine; Nogues, Catherine; Lasset, Christine; Houdayer, Claude; Leroux, Dominique; Rouleau, Etienne; Prieur, Fabienne; Damiola, Francesca; Sobol, Hagay; Coupier, Isabelle; Venat-Bouvet, Laurence; Castera, Laurent; Gauthier-Villars, Marion; Léoné, Mélanie; Pujol, Pascal; Mazoyer, Sylvie; Bignon, Yves-Jean; Złowocka-Perłowska, Elżbieta; Gronwald, Jacek; Lubinski, Jan; Durda, Katarzyna; Jaworska, Katarzyna; Huzarski, Tomasz; Spurdle, Amanda B.; Viel, Alessandra; Peissel, Bernard; Bonanni, Bernardo; Melloni, Giulia; Ottini, Laura; Papi, Laura; Varesco, Liliana; Tibiletti, Maria Grazia; Peterlongo, Paolo; Volorio, Sara; Manoukian, Siranoush; Pensotti, Valeria; Arnold, Norbert; Engel, Christoph; Deissler, Helmut; Gadzicki, Dorothea; Gehrig, Andrea; Kast, Karin; Rhiem, Kerstin; Meindl, Alfons; Niederacher, Dieter; Ditsch, Nina; Plendl, Hansjoerg; Preisler-Adams, Sabine; Engert, Stefanie; Sutter, Christian; Varon-Mateeva, Raymonda; Wappenschmidt, Barbara; Weber, Bernhard H. F.; Arver, Brita; Stenmark-Askmalm, Marie; Loman, Niklas; Rosenquist, Richard; Einbeigi, Zakaria; Nathanson, Katherine L.; Rebbeck, Timothy R.; Blank, Stephanie V.; Cohn, David E.; Rodriguez, Gustavo C.; Small, Laurie; Friedlander, Michael; Bae-Jump, Victoria L.; Fink-Retter, Anneliese; Rappaport, Christine; Gschwantler-Kaulich, Daphne; Pfeiler, Georg; tea, Muy-Kheng; Lindor, Noralane M.; Kaufman, Bella; Shimon Paluch, Shani; Laitman, Yael; Skytte, Anne-Bine; Gerdes, Anne-Marie; Pedersen, Inge Sokilde; Moeller, Sanne Traasdahl; Kruse, Torben A.; Jensen, Uffe Birk; Vijai, Joseph; Sarrel, Kara; Robson, Mark; Kauff, Noah; Mulligan, Anna Marie; Glendon, Gord; Ozcelik, Hilmi; Ejlertsen, Bent; Nielsen, Finn C.; Jønson, Lars; Andersen, Mette K.; Ding, Yuan Chun; Steele, Linda; Foretova, Lenka; Teulé, Alex; Lazaro, Conxi; Brunet, Joan; Pujana, Miquel Angel; Mai, Phuong L.; Loud, Jennifer T.; Walsh, Christine; Lester, Jenny; Orsulic, Sandra; Narod, Steven A.; Herzog, Josef; Sand, Sharon R.; Tognazzo, Silvia; Agata, Simona; Vaszko, Tibor; Weaver, Joellen; Stavropoulou, Alexandra V.; Buys, Saundra S.; Romero, Atocha; de la Hoya, Miguel; Aittomäki, Kristiina; Muranen, Taru A.; Duran, Mercedes; Chung, Wendy K.; Lasa, Adriana; Dorfling, Cecilia M.; Miron, Alexander; Benitez, Javier; Senter, Leigha; Huo, Dezheng; Chan, Salina B.; Sokolenko, Anna P.; Chiquette, Jocelyne; Tihomirova, Laima; Friebel, Tara M.; Agnarsson, Bjarni A.; Lu, Karen H.; Lejbkowicz, Flavio; James, Paul A.; Hall, Per; Dunning, Alison M.; Tessier, Daniel; Cunningham, Julie; Slager, Susan L.; Wang, Chen; Hart, Steven; Stevens, Kristen; Simard, Jacques; Pastinen, Tomi; Pankratz, Vernon S.; Offit, Kenneth; Easton, Douglas F.; Chenevix-Trench, Georgia; Antoniou, Antonis C.

    2013-01-01

    BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a

  7. Genome-wide association study in BRCA1 mutation carriers identifies novel loci associated with breast and ovarian cancer risk

    DEFF Research Database (Denmark)

    Couch, Fergus J; Wang, Xianshu; McGuffog, Lesley

    2013-01-01

    BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a fur...

  8. Identifying and Evaluating Options for Improving Sediment Management and Fish Passage at Hydropower Dams in the Lower Mekong River Basin

    Science.gov (United States)

    Wild, T. B.; Reed, P. M.; Loucks, D. P.

    2015-12-01

    The Mekong River basin in Southeast Asia is undergoing intensive and pervasive hydropower development to satisfy demand for increased energy and income to support its growing population of 60 million people. Just 20 years ago this river flowed freely. Today some 30 large dams exist in the basin, and over 100 more are being planned for construction. These dams will alter the river's natural water, sediment and nutrient flows, thereby impacting river morphology and ecosystems, and will fragment fish migration pathways. In doing so, they will degrade one of the world's most valuable and productive freshwater fish habitats. For those dams that have not yet been constructed, there still exist opportunities to modify their siting, design and operation (SDO) to potentially achieve a more balanced set of tradeoffs among hydropower production, sediment/nutrient passage and fish passage. We introduce examples of such alternative SDO opportunities for Sambor Dam in Cambodia, planned to be constructed on the main stem of the Mekong River. To evaluate the performance of such alternatives, we developed a Python-based simulation tool called PySedSim. PySedSim is a daily time step mass balance model that identifies the relative tradeoffs among hydropower production, and flow and sediment regime alteration, associated with reservoir sediment management techniques such as flushing, sluicing, bypassing, density current venting and dredging. To date, there has been a very limited acknowledgement or evaluation of the significant uncertainties that impact the evaluation of SDO alternatives. This research is formalizing a model diagnostic assessment of the key assumptions and parametric uncertainties that strongly influence PySedSim SDO evaluations. Using stochastic hydrology and sediment load data, our diagnostic assessment evaluates and compares several Sambor Dam alternatives using several performance measures related to energy production, sediment trapping and regime alteration, and

  9. A retrospective population-based cohort study identifying target areas for prevention of acute lower respiratory infections in children

    Directory of Open Access Journals (Sweden)

    Richmond Peter

    2010-12-01

    Full Text Available Abstract Background Acute lower respiratory infections (ALRI are a major cause of hospitalisation in young children. Many factors can lead to increased risk of ALRI in children and predispose a child to hospitalisation, but population attributable fractions for different risk factors and how these fractions differ between Indigenous and non-Indigenous children is unknown. This study investigates population attributable fractions of known infant and maternal risk factors for ALRI to inform prevention strategies that target high-risk groups or particular risk factors. Methods A retrospective population-based data linkage study of 245,249 singleton births in Western Australia. Population attributable fractions of known maternal and infant risk factors for hospitalisation with ALRI between 1996 and 2005 were calculated using multiple logistic regression. Results The overall ALRI hospitalisation rate was 16.1/1,000 person-years for non-Aboriginal children and 93.0/1,000 for Aboriginal children. Male gender, being born in autumn, gestational age Conclusions The population attributable fractions estimated in this study should help in guiding public health interventions to prevent ALRI. A key risk factor for all children is maternal smoking during pregnancy, and multiple previous pregnancies and autumnal births are important high-risk groups. Specific key target areas are reducing elective caesareans in non-Aboriginal women and reducing teenage pregnancies and improving access to services and living conditions for the Aboriginal population.

  10. Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival.

    Science.gov (United States)

    Nicolau, Monica; Levine, Arnold J; Carlsson, Gunnar

    2011-04-26

    High-throughput biological data, whether generated as sequencing, transcriptional microarrays, proteomic, or other means, continues to require analytic methods that address its high dimensional aspects. Because the computational part of data analysis ultimately identifies shape characteristics in the organization of data sets, the mathematics of shape recognition in high dimensions continues to be a crucial part of data analysis. This article introduces a method that extracts information from high-throughput microarray data and, by using topology, provides greater depth of information than current analytic techniques. The method, termed Progression Analysis of Disease (PAD), first identifies robust aspects of cluster analysis, then goes deeper to find a multitude of biologically meaningful shape characteristics in these data. Additionally, because PAD incorporates a visualization tool, it provides a simple picture or graph that can be used to further explore these data. Although PAD can be applied to a wide range of high-throughput data types, it is used here as an example to analyze breast cancer transcriptional data. This identified a unique subgroup of Estrogen Receptor-positive (ER(+)) breast cancers that express high levels of c-MYB and low levels of innate inflammatory genes. These patients exhibit 100% survival and no metastasis. No supervised step beyond distinction between tumor and healthy patients was used to identify this subtype. The group has a clear and distinct, statistically significant molecular signature, it highlights coherent biology but is invisible to cluster methods, and does not fit into the accepted classification of Luminal A/B, Normal-like subtypes of ER(+) breast cancers. We denote the group as c-MYB(+) breast cancer.

  11. Next generation of adeno-associated virus 2 vectors: Point mutations in tyrosines lead to high-efficiency transduction at lower doses

    Science.gov (United States)

    Zhong, Li; Li, Baozheng; Mah, Cathryn S.; Govindasamy, Lakshmanan; Agbandje-McKenna, Mavis; Cooper, Mario; Herzog, Roland W.; Zolotukhin, Irene; Warrington, Kenneth H.; Weigel-Van Aken, Kirsten A.; Hobbs, Jacqueline A.; Zolotukhin, Sergei; Muzyczka, Nicholas; Srivastava, Arun

    2008-01-01

    Recombinant adeno-associated virus 2 (AAV2) vectors are in use in several Phase I/II clinical trials, but relatively large vector doses are needed to achieve therapeutic benefits. Large vector doses also trigger an immune response as a significant fraction of the vectors fails to traffic efficiently to the nucleus and is targeted for degradation by the host cell proteasome machinery. We have reported that epidermal growth factor receptor protein tyrosine kinase (EGFR-PTK) signaling negatively affects transduction by AAV2 vectors by impairing nuclear transport of the vectors. We have also observed that EGFR-PTK can phosphorylate AAV2 capsids at tyrosine residues. Tyrosine-phosphorylated AAV2 vectors enter cells efficiently but fail to transduce effectively, in part because of ubiquitination of AAV capsids followed by proteasome-mediated degradation. We reasoned that mutations of the surface-exposed tyrosine residues might allow the vectors to evade phosphorylation and subsequent ubiquitination and, thus, prevent proteasome-mediated degradation. Here, we document that site-directed mutagenesis of surface-exposed tyrosine residues leads to production of vectors that transduce HeLa cells ≈10-fold more efficiently in vitro and murine hepatocytes nearly 30-fold more efficiently in vivo at a log lower vector dose. Therapeutic levels of human Factor IX (F.IX) are also produced at an ≈10-fold reduced vector dose. The increased transduction efficiency of tyrosine-mutant vectors is due to lack of capsid ubiquitination and improved intracellular trafficking to the nucleus. These studies have led to the development of AAV vectors that are capable of high-efficiency transduction at lower doses, which has important implications in their use in human gene therapy. PMID:18511559

  12. Oral and craniofacial manifestations and two novel missense mutations of the NTRK1 gene identified in the patient with congenital insensitivity to pain with anhidrosis.

    Directory of Open Access Journals (Sweden)

    Li Gao

    Full Text Available Congenital insensitivity to pain with anhidrosis (CIPA is a rare inherited disorder of the peripheral nervous system resulting from mutations in neurotrophic tyrosine kinase receptor 1 gene (NTRK1, which encodes the high-affinity nerve growth factor receptor TRKA. Here, we investigated the oral and craniofacial manifestations of a Chinese patient affected by autosomal-recessive CIPA and identified compound heterozygosity in the NTRK1 gene. The affected boy has multisystemic disorder with lack of reaction to pain stimuli accompanied by self-mutilation behavior, the inability to sweat leading to defective thermoregulation, and mental retardation. Oral and craniofacial manifestations included a large number of missing teeth, nasal malformation, submucous cleft palate, severe soft tissue injuries, dental caries and malocclusion. Histopathological evaluation of the skin sample revealed severe peripheral nerve fiber loss as well as mild loss and absent innervation of sweat glands. Ultrastructural and morphometric studies of a shed tooth revealed dental abnormalities, including hypomineralization, dentin hypoplasia, cementogenesis defects and a dysplastic periodontal ligament. Genetic analysis revealed a compound heterozygosity--c.1561T>C and c.2057G>A in the NTRK1 gene. This report extends the spectrum of NTRK1 mutations observed in patients diagnosed with CIPA and provides additional insight for clinical and molecular diagnosis.

  13. Exome Sequencing Identified a Splice Site Mutation in FHL1 that Causes Uruguay Syndrome, an X-Linked Disorder With Skeletal Muscle Hypertrophy and Premature Cardiac Death.

    Science.gov (United States)

    Xue, Yuan; Schoser, Benedikt; Rao, Aliz R; Quadrelli, Roberto; Vaglio, Alicia; Rupp, Verena; Beichler, Christine; Nelson, Stanley F; Schapacher-Tilp, Gudrun; Windpassinger, Christian; Wilcox, William R

    2016-04-01

    Previously, we reported a rare X-linked disorder, Uruguay syndrome in a single family. The main features are pugilistic facies, skeletal deformities, and muscular hypertrophy despite a lack of exercise and cardiac ventricular hypertrophy leading to premature death. An ≈19 Mb critical region on X chromosome was identified through identity-by-descent analysis of 3 affected males. Exome sequencing was conducted on one affected male to identify the disease-causing gene and variant. A splice site variant (c.502-2A>G) in the FHL1 gene was highly suspicious among other candidate genes and variants. FHL1A is the predominant isoform of FHL1 in cardiac and skeletal muscle. Sequencing cDNA showed the splice site variant led to skipping of exons 6 of the FHL1A isoform, equivalent to the FHL1C isoform. Targeted analysis showed that this splice site variant cosegregated with disease in the family. Western blot and immunohistochemical analysis of muscle from the proband showed a significant decrease in protein expression of FHL1A. Real-time polymerase chain reaction analysis of different isoforms of FHL1 demonstrated that the FHL1C is markedly increased. Mutations in the FHL1 gene have been reported in disorders with skeletal and cardiac myopathy but none has the skeletal or facial phenotype seen in patients with Uruguay syndrome. Our data suggest that a novel FHL1 splice site variant results in the absence of FHL1A and the abundance of FHL1C, which may contribute to the complex and severe phenotype. Mutation screening of the FHL1 gene should be considered for patients with uncharacterized myopathies and cardiomyopathies. © 2016 American Heart Association, Inc.

  14. Production of Human Cu,Zn SOD with Higher Activity and Lower Toxicity in E. coli via Mutation of Free Cysteine Residues

    Directory of Open Access Journals (Sweden)

    Kun Zhang

    2017-01-01

    Full Text Available Although, as an antioxidant enzyme, human Cu,Zn superoxide dismutase 1 (hSOD1 can mitigate damage to cell components caused by free radicals generated by aerobic metabolism, large-scale manufacturing and clinical use of hSOD1 are still limited by the challenge of rapid and inexpensive production of high-quality eukaryotic hSOD1 in recombinant forms. We have demonstrated previously that it is a promising strategy to increase the expression levels of soluble hSOD1 so as to increase hSOD1 yields in E. coli. In this study, a wild-type hSOD1 (wtSOD1 and three mutant SOD1s (mhSOD1s, in which free cysteines were substituted with serine, were constructed and their expression in soluble form was measured. Results show that the substitution of Cys111 (mhSOD1/C111S increased the expression of soluble hSOD1 in E. coli whereas substitution of the internal Cys6 (mhSOD1/C6S decreased it. Besides, raised levels of soluble expression led to an increase in hSOD1 yields. In addition, mhSOD1/C111S expressed at a higher soluble level showed lower toxicity and stronger whitening and antiradiation activities than those of wtSOD1. Taken together, our data demonstrate that C111S mutation in hSOD1 is an effective strategy to develop new SOD1-associated reagents and that mhSOD1/C111S is a satisfactory candidate for large-scale production.

  15. Transcriptome analysis of an apple (Malus × domestica) yellow fruit somatic mutation identifies a gene network module highly associated with anthocyanin and epigenetic regulation.

    Science.gov (United States)

    El-Sharkawy, Islam; Liang, Dong; Xu, Kenong

    2015-12-01

    Using RNA-seq, this study analysed an apple (Malus×domestica) anthocyanin-deficient yellow-skin somatic mutant 'Blondee' (BLO) and its red-skin parent 'Kidd's D-8' (KID), the original name of 'Gala', to understand the molecular mechanisms underlying the mutation. A total of 3299 differentially expressed genes (DEGs) were identified between BLO and KID at four developmental stages and/or between two adjacent stages within BLO and/or KID. A weighted gene co-expression network analysis (WGCNA) of the DEGs uncovered a network module of 34 genes highly correlated (r=0.95, P=9.0×10(-13)) with anthocyanin contents. Although 12 of the 34 genes in the WGCNA module were characterized and known of roles in anthocyanin, the remainder 22 appear to be novel. Examining the expression of ten representative genes in the module in 14 diverse apples revealed that at least eight were significantly correlated with anthocyanin variation. MdMYB10 (MDP0000259614) and MdGST (MDP0000252292) were among the most suppressed module member genes in BLO despite being undistinguishable in their corresponding sequences between BLO and KID. Methylation assay of MdMYB10 and MdGST in fruit skin revealed that two regions (MR3 and MR7) in the MdMYB10 promoter exhibited remarkable differences between BLO and KID. In particular, methylation was high and progressively increased alongside fruit development in BLO while was correspondingly low and constant in KID. The methylation levels in both MR3 and MR7 were negatively correlated with anthocyanin content as well as the expression of MdMYB10 and MdGST. Clearly, the collective repression of the 34 genes explains the loss-of-colour in BLO while the methylation in MdMYB10 promoter is likely causal for the mutation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. Exome analysis identified a novel mutation in the RBP4 gene in a consanguineous pedigree with retinal dystrophy and developmental abnormalities.

    Directory of Open Access Journals (Sweden)

    Catherine Cukras

    Full Text Available Retinitis Pigmentosa (RP is a common form of retinal degeneration characterized by photoreceptor degeneration and retinal pigment epithelium (RPE atrophy causing loss of visual field and acuities. Exome sequencing identified a novel homozygous splice site variant (c.111+1G>A in the gene encoding retinol binding protein 4 (RBP4. This change segregated with early onset, progressive, and severe autosomal recessive retinitis pigmentosa (arRP in an eight member consanguineous pedigree of European ancestry. Additionally, one patient exhibited developmental abnormalities including patent ductus arteriosus and chorioretinal and iris colobomas. The second patient developed acne from young age and extending into the 5(th decade. Both patients had undetectable levels of RBP4 in the serum suggesting that this mutation led to either mRNA or protein instability resulting in a null phenotype. In addition, the patients exhibited severe vitamin A deficiency, and diminished serum retinol levels. Circulating transthyretin levels were normal. This study identifies the RBP4 splice site change as the cause of RP in this pedigree. The presence of developmental abnormalities and severe acne in patients with retinal degeneration may indicate the involvement of genes that regulate vitamin A absorption, transport and metabolism.

  17. Exome analysis identified a novel mutation in the RBP4 gene in a consanguineous pedigree with retinal dystrophy and developmental abnormalities.

    Science.gov (United States)

    Cukras, Catherine; Gaasterland, Terry; Lee, Pauline; Gudiseva, Harini V; Chavali, Venkata R M; Pullakhandam, Raghu; Maranhao, Bruno; Edsall, Lee; Soares, Sandra; Reddy, G Bhanuprakash; Sieving, Paul A; Ayyagari, Radha

    2012-01-01

    Retinitis Pigmentosa (RP) is a common form of retinal degeneration characterized by photoreceptor degeneration and retinal pigment epithelium (RPE) atrophy causing loss of visual field and acuities. Exome sequencing identified a novel homozygous splice site variant (c.111+1G>A) in the gene encoding retinol binding protein 4 (RBP4). This change segregated with early onset, progressive, and severe autosomal recessive retinitis pigmentosa (arRP) in an eight member consanguineous pedigree of European ancestry. Additionally, one patient exhibited developmental abnormalities including patent ductus arteriosus and chorioretinal and iris colobomas. The second patient developed acne from young age and extending into the 5(th) decade. Both patients had undetectable levels of RBP4 in the serum suggesting that this mutation led to either mRNA or protein instability resulting in a null phenotype. In addition, the patients exhibited severe vitamin A deficiency, and diminished serum retinol levels. Circulating transthyretin levels were normal. This study identifies the RBP4 splice site change as the cause of RP in this pedigree. The presence of developmental abnormalities and severe acne in patients with retinal degeneration may indicate the involvement of genes that regulate vitamin A absorption, transport and metabolism.

  18. Prognostic factors for specific lower extremity and spinal musculoskeletal injuries identified through medical screening and training load monitoring in professional football (soccer): a systematic review

    Science.gov (United States)

    Sergeant, Jamie C; Parkes, Matthew J; Callaghan, Michael J

    2017-01-01

    Background Medical screening and load monitoring procedures are commonly used in professional football to assess factors perceived to be associated with injury. Objectives To identify prognostic factors (PFs) and models for lower extremity and spinal musculoskeletal injuries in professional/elite football players from medical screening and training load monitoring processes. Methods The MEDLINE, AMED, EMBASE, CINAHL Plus, SPORTDiscus and PubMed electronic bibliographic databases were searched (from inception to January 2017). Prospective and retrospective cohort studies of lower extremity and spinal musculoskeletal injury incidence in professional/elite football players aged between 16 and 40 years were included. The Quality in Prognostic Studies appraisal tool and the modified Grading of Recommendations Assessment, Development and Evaluation synthesis approach was used to assess the quality of the evidence. Results Fourteen studies were included. 16 specific lower extremity injury outcomes were identified. No spinal injury outcomes were identified. Meta-analysis was not possible due to heterogeneity and study quality. All evidence related to PFs and specific lower extremity injury outcomes was of very low to low quality. On the few occasions where multiple studies could be used to compare PFs and outcomes, only two factors demonstrated consensus. A history of previous hamstring injuries (HSI) and increasing age may be prognostic for future HSI in male players. Conclusions The assumed ability of medical screening tests to predict specific musculoskeletal injuries is not supported by the current evidence. Screening procedures should currently be considered as benchmarks of function or performance only. The prognostic value of load monitoring modalities is unknown. PMID:29177074

  19. Analysis of IgV gene mutations in B cell chronic lymphocytic leukaemia according to antigen-driven selection identifies subgroups with different prognosis and usage of the canonical somatic hypermutation machinery.

    Science.gov (United States)

    Degan, Massimo; Bomben, Riccardo; Bo, Michele Dal; Zucchetto, Antonella; Nanni, Paola; Rupolo, Maurizio; Steffan, Agostino; Attadia, Vincenza; Ballerini, Pier Ferruccio; Damiani, Daniela; Pucillo, Carlo; Poeta, Giovanni Del; Colombatti, Alfonso; Gattei, Valter

    2004-07-01

    Cases of B-cell chronic lymphocytic leukaemia (B-CLL) with mutated (M) IgV(H) genes have a better prognosis than unmutated (UM) cases. We analysed the IgV(H) mutational status of B-CLL according to the features of a canonical somatic hypermutation (SHM) process, correlating this data with survival. In a series of 141 B-CLLs, 124 cases were examined for IgV(H) gene per cent mutations and skewing of replacement/silent mutations in the framework/complementarity-determining regions as evidence of antigen-driven selection; this identified three B-CLL subsets: significantly mutated (sM), with evidence of antigen-driven selection, not significantly mutated (nsM) and UM, without such evidence and IgV(H) gene per cent mutations above or below the 2% cut-off. sM B-CLL patients had longer survival within the good prognosis subgroup that had more than 2% mutations of IgV(H) genes. sM, nsM and UM B-CLL were also characterized for the biased usage of IgV(H) families, intraclonal IgV(H) gene diversification, preference of mutations to target-specific nucleotides or hotspots, and for the expression of enzymes involved in SHM (translesion DNA polymerase zeta and eta and activation-induced cytidine deaminase). These findings indicate the activation of a canonical SHM process in nsM and sM B-CLLs and underscore the role of the antigen in defining the specific clinical and biological features of B-CLL.

  20. Benign and Deleterious Cystic Fibrosis Transmembrane Conductance Regulator Mutations Identified by Sequencing in Positive Cystic Fibrosis Newborn Screen Children from California.

    Science.gov (United States)

    Salinas, Danieli B; Sosnay, Patrick R; Azen, Colleen; Young, Suzanne; Raraigh, Karen S; Keens, Thomas G; Kharrazi, Martin

    2016-01-01

    Of the 2007 Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) mutations, 202 have been assigned disease liability. California's racially diverse population, along with CFTR sequencing as part of newborn screening model, provides the opportunity to examine the phenotypes of children with uncategorized mutations to help inform disease liability and penetrance. We conducted a retrospective cohort study based on children screened from 2007 to 2011 and followed for two to six years. Newborns that screened positive were divided into three genotype groups: those with two CF-causing mutations (CF-C); those with one mutation of varying clinic consequence (VCC); and those with one mutation of unknown disease liability (Unknown). Sweat chloride tests, pancreatic sufficiency status, and Pseudomonas aeruginosa colonization were compared. Children with two CF-causing mutations had a classical CF phenotype, while 5% of VCC (4/78) and 11% of Unknown (27/244) met diagnostic criteria of CF. Children carrying Unknown mutations 2215insG with D836Y, and T1036N had early and classical CF phenotype, while others carrying 1525-42G>A, L320V, L967S, R170H, and 296+28A>G had a benign clinical presentation, suggesting that these are non-CF causing. While most infants with VCC and Unknown CFTR mutations do not meet diagnostic criteria for CF, a small proportion do. These findings highlight the range of genotypes and phenotypes in the first few years of life following CF newborn screening when CFTR sequencing is performed.

  1. Benign and Deleterious Cystic Fibrosis Transmembrane Conductance Regulator Mutations Identified by Sequencing in Positive Cystic Fibrosis Newborn Screen Children from California.

    Directory of Open Access Journals (Sweden)

    Danieli B Salinas

    Full Text Available Of the 2007 Cystic Fibrosis Transmembrane Conductance Regulator (CFTR mutations, 202 have been assigned disease liability. California's racially diverse population, along with CFTR sequencing as part of newborn screening model, provides the opportunity to examine the phenotypes of children with uncategorized mutations to help inform disease liability and penetrance.We conducted a retrospective cohort study based on children screened from 2007 to 2011 and followed for two to six years. Newborns that screened positive were divided into three genotype groups: those with two CF-causing mutations (CF-C; those with one mutation of varying clinic consequence (VCC; and those with one mutation of unknown disease liability (Unknown. Sweat chloride tests, pancreatic sufficiency status, and Pseudomonas aeruginosa colonization were compared.Children with two CF-causing mutations had a classical CF phenotype, while 5% of VCC (4/78 and 11% of Unknown (27/244 met diagnostic criteria of CF. Children carrying Unknown mutations 2215insG with D836Y, and T1036N had early and classical CF phenotype, while others carrying 1525-42G>A, L320V, L967S, R170H, and 296+28A>G had a benign clinical presentation, suggesting that these are non-CF causing.While most infants with VCC and Unknown CFTR mutations do not meet diagnostic criteria for CF, a small proportion do. These findings highlight the range of genotypes and phenotypes in the first few years of life following CF newborn screening when CFTR sequencing is performed.

  2. Suppressor mutations identify amino acids in PAA-1/PR65 that facilitate regulatory RSA-1/B″ subunit targeting of PP2A to centrosomes in C. elegans.

    Science.gov (United States)

    Lange, Karen I; Heinrichs, Jeffrey; Cheung, Karen; Srayko, Martin

    2013-01-15

    Protein phosphorylation and dephosphorylation is a key mechanism for the spatial and temporal regulation of many essential developmental processes and is especially prominent during mitosis. The multi-subunit protein phosphatase 2A (PP2A) enzyme plays an important, yet poorly characterized role in dephosphorylating proteins during mitosis. PP2As are heterotrimeric complexes comprising a catalytic, structural, and regulatory subunit. Regulatory subunits are mutually exclusive and determine subcellular localization and substrate specificity of PP2A. At least 3 different classes of regulatory subunits exist (termed B, B', B″) but there is no obvious similarity in primary sequence between these classes. Therefore, it is not known how these diverse regulatory subunits interact with the same holoenzyme to facilitate specific PP2A functions in vivo. The B″ family of regulatory subunits is the least understood because these proteins lack conserved structural domains. RSA-1 (regulator of spindle assembly) is a regulatory B″ subunit required for mitotic spindle assembly in Caenorhabditis elegans. In order to address how B″ subunits interact with the PP2A core enzyme, we focused on a conditional allele, rsa-1(or598ts), and determined that this mutation specifically disrupts the protein interaction between RSA-1 and the PP2A structural subunit, PAA-1. Through genetic screening, we identified a putative interface on the PAA-1 structural subunit that interacts with a defined region of RSA-1/B″. In the context of previously published results, these data propose a mechanism of how different PP2A B-regulatory subunit families can bind the same holoenzyme in a mutually exclusive manner, to perform specific tasks in vivo.

  3. Suppressor mutations identify amino acids in PAA-1/PR65 that facilitate regulatory RSA-1/B″ subunit targeting of PP2A to centrosomes in C. elegans

    Directory of Open Access Journals (Sweden)

    Karen I. Lange

    2012-11-01

    Protein phosphorylation and dephosphorylation is a key mechanism for the spatial and temporal regulation of many essential developmental processes and is especially prominent during mitosis. The multi-subunit protein phosphatase 2A (PP2A enzyme plays an important, yet poorly characterized role in dephosphorylating proteins during mitosis. PP2As are heterotrimeric complexes comprising a catalytic, structural, and regulatory subunit. Regulatory subunits are mutually exclusive and determine subcellular localization and substrate specificity of PP2A. At least 3 different classes of regulatory subunits exist (termed B, B′, B″ but there is no obvious similarity in primary sequence between these classes. Therefore, it is not known how these diverse regulatory subunits interact with the same holoenzyme to facilitate specific PP2A functions in vivo. The B″ family of regulatory subunits is the least understood because these proteins lack conserved structural domains. RSA-1 (regulator of spindle assembly is a regulatory B″ subunit required for mitotic spindle assembly in Caenorhabditis elegans. In order to address how B″ subunits interact with the PP2A core enzyme, we focused on a conditional allele, rsa-1(or598ts, and determined that this mutation specifically disrupts the protein interaction between RSA-1 and the PP2A structural subunit, PAA-1. Through genetic screening, we identified a putative interface on the PAA-1 structural subunit that interacts with a defined region of RSA-1/B″. In the context of previously published results, these data propose a mechanism of how different PP2A B-regulatory subunit families can bind the same holoenzyme in a mutually exclusive manner, to perform specific tasks in vivo.

  4. Combination of isocitrate dehydrogenase 1 (IDH1) mutation and podoplanin expression in brain tumors identifies patients at high or low risk of venous thromboembolism.

    Science.gov (United States)

    Mir Seyed Nazari, Pegah; Riedl, Julia; Preusser, Matthias; Posch, Florian; Thaler, Johannes; Marosi, Christine; Birner, Peter; Ricken, Gerda; Hainfellner, Johannes A; Pabinger, Ingrid; Ay, Cihan

    2018-04-19

    Venous thromboembolism (VTE) is a frequent complication in primary brain tumor patients. Independent studies revealed that podoplanin expression in brain tumors is associated with increased VTE risk, while the isocitrate dehydrogenase 1 (IDH1) mutation is associated with very low VTE risk. To investigate the interrelation between intratumoral podoplanin expression and IDH1 mutation, and their mutual impact on VTE development. In a prospective cohort study, intratumoral IDH1 R132H mutation and podoplanin were determined in brain tumor specimens (mainly glioma) by immunohistochemistry. Primary endpoint of the study was symptomatic VTE during a 2-year follow-up. All brain tumors that expressed podoplanin to a medium-high extent showed also an IDH1 wildtype status. A score based on IDH1 status and podoplanin expression levels allowed predicting risk of VTE. Patients with wildtype IDH1 brain tumors and high podoplanin expression had a significantly increased VTE risk compared to those with mutant IDH1 tumors and no podoplanin expression (6-month risk 18.2% vs. 0%). IDH1 mutation and podoplanin overexpression seem to be exclusive. While brain tumor patients with IDH1 mutation are at very low VTE risk, the risk of VTE in patients with IDH1 wildtype tumors is strongly linked to podoplanin expression levels. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers

    NARCIS (Netherlands)

    Blein, Sophie; Bardel, Claire; Danjean, Vincent; McGuffog, Lesley; Healey, Sue; Barrowdale, Daniel; Lee, Andrew; Dennis, Joe; Kuchenbaecker, Karoline B.; Soucy, Penny; Terry, Mary Beth; Chung, Wendy K.; Goldgar, David E.; Buys, Saundra S.; Janavicius, Ramunas; Tihomirova, Laima; Tung, Nadine; Dorfling, Cecilia M.; van Rensburg, Elizabeth J.; Neuhausen, Susan L.; Ding, Yuan Chun; Gerdes, Anne-Marie; Ejlertsen, Bent; Nielsen, Finn C.; Hansen, Thomas vO; Osorio, Ana; Benitez, Javier; Conejero, Raquel Andrés; Segota, Ena; Weitzel, Jeffrey N.; Thelander, Margo; Peterlongo, Paolo; Radice, Paolo; Pensotti, Valeria; Dolcetti, Riccardo; Bonanni, Bernardo; Peissel, Bernard; Zaffaroni, Daniela; Scuvera, Giulietta; Manoukian, Siranoush; Varesco, Liliana; Capone, Gabriele L.; Papi, Laura; Ottini, Laura; Yannoukakos, Drakoulis; Konstantopoulou, Irene; Garber, Judy; Hamann, Ute; Donaldson, Alan; Brady, Angela; Brewer, Carole; Foo, Claire; Evans, D. Gareth; Frost, Debra; Eccles, Diana; Douglas, Fiona; Cook, Jackie; Adlard, Julian; Barwell, Julian; Walker, Lisa; Izatt, Louise; Side, Lucy E.; Kennedy, M. John; Tischkowitz, Marc; Rogers, Mark T.; Porteous, Mary E.; Morrison, Patrick J.; Platte, Radka; Eeles, Ros; Davidson, Rosemarie; Hodgson, Shirley; Cole, Trevor; Godwin, Andrew K.; Isaacs, Claudine; Claes, Kathleen; de Leeneer, Kim; Meindl, Alfons; Gehrig, Andrea; Wappenschmidt, Barbara; Sutter, Christian; Engel, Christoph; Niederacher, Dieter; Steinemann, Doris; Plendl, Hansjoerg; Kast, Karin; Rhiem, Kerstin; Ditsch, Nina; Arnold, Norbert; Varon-Mateeva, Raymonda; Schmutzler, Rita K.; Preisler-Adams, Sabine; Markov, Nadja Bogdanova; Wang-Gohrke, Shan; de Pauw, Antoine; Lefol, Cédrick; Lasset, Christine; Leroux, Dominique; Rouleau, Etienne; Damiola, Francesca; Dreyfus, Hélène; Barjhoux, Laure; Golmard, Lisa; Uhrhammer, Nancy; Bonadona, Valérie; Sornin, Valérie; Bignon, Yves-Jean; Carter, Jonathan; van Le, Linda; Piedmonte, Marion; DiSilvestro, Paul A.; de la Hoya, Miguel; Caldes, Trinidad; Nevanlinna, Heli; Aittomäki, Kristiina; Jager, Agnes; van den Ouweland, Ans Mw; Kets, Carolien M.; Aalfs, Cora M.; van Leeuwen, Flora E.; Hogervorst, Frans Bl; Meijers-Heijboer, Hanne Ej; Oosterwijk, Jan C.; van Roozendaal, Kees Ep; Rookus, Matti A.; Devilee, Peter; van der Luijt, Rob B.; Olah, Edith; Diez, Orland; Teulé, Alex; Lazaro, Conxi; Blanco, Ignacio; del Valle, Jesús; Jakubowska, Anna; Sukiennicki, Grzegorz; Gronwald, Jacek; Lubinski, Jan; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Agnarsson, Bjarni A.; Maugard, Christine; Amadori, Alberto; Montagna, Marco; Teixeira, Manuel R.; Spurdle, Amanda B.; Foulkes, William; Olswold, Curtis; Lindor, Noralane M.; Pankratz, Vernon S.; Szabo, Csilla I.; Lincoln, Anne; Jacobs, Lauren; Corines, Marina; Robson, Mark; Vijai, Joseph; Berger, Andreas; Fink-Retter, Anneliese; Singer, Christian F.; Rappaport, Christine; Kaulich, Daphne Geschwantler; Pfeiler, Georg; tea, Muy-Kheng; Greene, Mark H.; Mai, Phuong L.; Rennert, Gad; Imyanitov, Evgeny N.; Mulligan, Anna Marie; Glendon, Gord; Andrulis, Irene L.; Tchatchou, Sandrine; Toland, Amanda Ewart; Pedersen, Inge Sokilde; Thomassen, Mads; Kruse, Torben A.; Jensen, Uffe Birk; Caligo, Maria A.; Friedman, Eitan; Zidan, Jamal; Laitman, Yael; Lindblom, Annika; Melin, Beatrice; Arver, Brita; Loman, Niklas; Rosenquist, Richard; Olopade, Olufunmilayo I.; Nussbaum, Robert L.; Ramus, Susan J.; Nathanson, Katherine L.; Domchek, Susan M.; Rebbeck, Timothy R.; Arun, Banu K.; Mitchell, Gillian; Karlan, Beth Y.; Lester, Jenny; Orsulic, Sandra; Stoppa-Lyonnet, Dominique; Thomas, Gilles; Simard, Jacques; Couch, Fergus J.; Offit, Kenneth; Easton, Douglas F.; Chenevix-Trench, Georgia; Antoniou, Antonis C.; Mazoyer, Sylvie; Phelan, Catherine M.; Sinilnikova, Olga M.; Cox, David G.

    2015-01-01

    Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria.

  6. An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers

    NARCIS (Netherlands)

    Blein, Sophie; Bardel, Claire; Danjean, Vincent; McGuffog, Lesley; Healey, Sue; Barrowdale, Daniel; Lee, Andrew; Dennis, Joe; Kuchenbaecker, Karoline B.; Soucy, Penny; Terry, Mary Beth; Chung, Wendy K.; Goldgar, David E.; Buys, Saundra S.; Janavicius, Ramunas; Tihomirova, Laima; Tung, Nadine; Dorfling, Cecilia M.; van Rensburg, Elizabeth J.; Neuhausen, Susan L.; Ding, Yuan Chun; Gerdes, Anne-Marie; Ejlertsen, Bent; Nielsen, Finn C.; Hansen, Thomas V. O.; Osorio, Ana; Benitez, Javier; Andres Conejero, Raquel; Segota, Ena; Weitzel, Jeffrey N.; Thelander, Margo; Peterlongo, Paolo; Radice, Paolo; Pensotti, Valeria; Dolcetti, Riccardo; Bonanni, Bernardo; Peissel, Bernard; Zaffaroni, Daniela; Scuvera, Giulietta; Manoukian, Siranoush; Varesco, Liliana; Capone, Gabriele L.; Papi, Laura; Ottini, Laura; Yannoukakos, Drakoulis; Konstantopoulou, Irene; Garber, Judy; Hamann, Ute; Donaldson, Alan; Brady, Angela; Brewer, Carole; Foo, Claire; Evans, D. Gareth; Frost, Debra; Eccles, Diana; Douglas, Fiona; Cook, Jackie; Adlard, Julian; Barwell, Julian; Walker, Lisa; Izatt, Louise; Side, Lucy E.; Kennedy, M. John; Tischkowitz, Marc; Rogers, Mark T.; Porteous, Mary E.; Morrison, Patrick J.; Platte, Radka; Eeles, Ros; Davidson, Rosemarie; Hodgson, Shirley; Cole, Trevor; Godwin, Andrew K.; Isaacs, Claudine; Claes, Kathleen; De Leeneer, Kim; Meindl, Alfons; Gehrig, Andrea; Wappenschmidt, Barbara; Sutter, Christian; Engel, Christoph; Niederacher, Dieter; Steinemann, Doris; Plendl, Hansjoerg; Kast, Karin; Rhiem, Kerstin; Ditsch, Nina; Arnold, Norbert; Varon-Mateeva, Raymonda; Schmutzler, Rita K.; Preisler-Adams, Sabine; Markov, Nadja Bogdanova; Wang-Gohrke, Shan; de Pauw, Antoine; Lefol, Cedrick; Lasset, Christine; Leroux, Dominique; Rouleau, Etienne; Damiola, Francesca; Dreyfus, Helene; Barjhoux, Laure; Golmard, Lisa; Uhrhammer, Nancy; Bonadona, Valerie; Sornin, Valerie; Bignon, Yves-Jean; Carter, Jonathan; Van Le, Linda; Piedmonte, Marion; DiSilvestro, Paul A.; de la Hoya, Miguel; Caldes, Trinidad; Nevanlinna, Heli; Aittomaki, Kristiina; Jager, Agnes; van den Ouweland, Ans M. W.; Kets, Carolien M.; Aalfs, Cora M.; van Leeuwen, Flora E.; Hogervorst, Frans B. L.; Meijers-Heijboer, Hanne E. J.; Oosterwijk, Jan C.; van Roozendaal, Kees E. P.; Rookus, Matti A.; Devilee, Peter; van der Luijt, Rob B.; Olah, Edith; Diez, Orland; Teule, Alex; Lazaro, Conxi; Blanco, Ignacio; Del Valle, Jesus; Jakubowska, Anna; Sukiennicki, Grzegorz; Gronwald, Jacek; Lubinski, Jan; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Agnarsson, Bjarni A.; Maugard, Christine; Amadori, Alberto; Montagna, Marco; Teixeira, Manuel R.; Spurdle, Amanda B.; Foulkes, William; Olswold, Curtis; Lindor, Noralane M.; Pankratz, Vernon S.; Szabo, Csilla I.; Lincoln, Anne; Jacobs, Lauren; Corines, Marina; Robson, Mark; Vijai, Joseph; Berger, Andreas; Fink-Retter, Anneliese; Singer, Christian F.; Rappaport, Christine; Kaulich, Daphne Geschwantler; Pfeiler, Georg; Tea, Muy-Kheng; Greene, Mark H.; Mai, Phuong L.; Rennert, Gad; Imyanitov, Evgeny N.; Mulligan, Anna Marie; Glendon, Gord; Andrulis, Irene L.; Tchatchou, Sandrine; Toland, Amanda Ewart; Pedersen, Inge Sokilde; Thomassen, Mads; Kruse, Torben A.; Jensen, Uffe Birk; Caligo, Maria A.; Friedman, Eitan; Zidan, Jamal; Laitman, Yael; Lindblom, Annika; Melin, Beatrice; Arver, Brita; Loman, Niklas; Rosenquist, Richard; Olopade, Olufunmilayo I.; Nussbaum, Robert L.; Ramus, Susan J.; Nathanson, Katherine L.; Domchek, Susan M.; Rebbeck, Timothy R.; Arun, Banu K.; Mitchell, Gillian; Karlan, Beth Y.; Lester, Jenny; Orsulic, Sandra; Stoppa-Lyonnet, Dominique; Thomas, Gilles; Simard, Jacques; Couch, Fergus J.; Offit, Kenneth; Easton, Douglas F.; Chenevix-Trench, Georgia; Antoniou, Antonis C.; Mazoyer, Sylvie; Phelan, Catherine M.; Sinilnikova, Olga M.; Cox, David G.

    2015-01-01

    Introduction: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are

  7. An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers

    NARCIS (Netherlands)

    S. Blein (Sophie); C. Bardel (Claire); V. Danjean (Vincent); L. McGuffog (Lesley); S. Healey (Sue); D. Barrowdale (Daniel); A. Lee (Andrew); J. Dennis (Joe); K.B. Kuchenbaecker (Karoline); P. Soucy (Penny); M.B. Terry (Mary Beth); W. Chung (Wendy); D. Goldgar (David); S.S. Buys (Saundra); R. Janavicius (Ramunas); L. Tihomirova (Laima); N. Tung (Nadine); C.M. Dorfling (Cecilia); E.J. van Rensburg (Elizabeth); S.L. Neuhausen (Susan); Y.C. Ding (Yuan); A-M. Gerdes (Anne-Marie); B. Ejlertsen (Bent); F. Nielsen (Finn); T.V.O. Hansen (Thomas); A. Osorio (Ana); J. Benítez (Javier); R.A. Conejero (Raquel Andrés); E. Segota (Ena); J.N. Weitzel (Jeffrey); M. Thelander (Margo); P. Peterlongo (Paolo); P. Radice (Paolo); V. Pensotti (Valeria); R. Dolcetti (Riccardo); B. Bonnani (Bernardo); B. Peissel (Bernard); D. Zaffaroni (D.); G. Scuvera (Giulietta); S. Manoukian (Siranoush); L. Varesco (Liliana); G.L. Capone (Gabriele L.); L. Papi (Laura); L. Ottini (Laura); D. Yannoukakos (Drakoulis); I. Konstantopoulou (I.); J. Garber (Judy); U. Hamann (Ute); A. Donaldson (Alan); A. Brady (A.); C. Brewer (Carole); C. Foo (Claire); D.G. Evans (Gareth); D. Frost (Debra); D. Eccles (Diana); F. Douglas (Fiona); J. Cook (Jackie); L. Adlard; J. Barwell (Julian); L.J. Walker (Lisa); L. Izatt (Louise); L. Side (Lucy); M.J. Kennedy (John); M. Tischkowitz (Marc); M.T. Rogers (Mark); M.E. Porteous (Mary); P.J. Morrison (Patrick); R. Platte (Radka); R. Eeles (Ros); R. Davidson (Rosemarie); S. Hodgson (Shirley); T.J. Cole (Trevor); A.K. Godwin (Andrew); C. Isaacs (Claudine); K.B.M. Claes (Kathleen B.M.); K. De Leeneer (Kim); A. Meindl (Alfons); P.A. Gehrig (Paola A.); B. Wapenschmidt (Barbara); C. Sutter (Christian); C. Engel (Christoph); D. Niederacher (Dieter); D. Steinemann (Doris); H. Plendl (Hansjoerg); K. Kast (Karin); K. Rhiem (Kerstin); N. Ditsch (Nina); N. Arnold (Norbert); R. Varon-Mateeva (Raymonda); R.K. Schmutzler (Rita); S. Preisler-Adams (Sabine); N.B. Markov (Nadja Bogdanova); S. Wang-Gohrke (Shan); A. de Pauw (Antoine); C. Lefol (Cédrick); C. Lasset (Christine); D. Leroux (Dominique); E. Rouleau (Etienne); F. Damiola (Francesca); H. Dreyfus (Hélène); L. Barjhoux (Laure); L. Golmard (Lisa); N. Uhrhammer (Nancy); V. Bonadona (Valérie); V. Sornin (Valérie); Y.-J. Bignon (Yves-Jean); J. Carter (Jonathan); L. van Le (Linda); M. Piedmonte (Marion); P. DiSilvestro (Paul); M. de La Hoya (Miguel); T. Caldes (Trinidad); H. Nevanlinna (Heli); K. Aittomäki (Kristiina); A. Jager (Agnes); A.M.W. van den Ouweland (Ans); C.M. Kets; C.M. Aalfs (Cora); F.E. van Leeuwen (F.); F.B.L. Hogervorst (Frans); E.J. Meijers-Heijboer (Hanne); J.C. Oosterwijk (Jan); K.E. van Roozendaal (Kees); M.A. Rookus (M.); P. Devilee (Peter); R.B. van der Luijt (Rob); E. Olah; O. Díez (Orland); A. Teulé (A.); C. Lazaro (Conxi); I. Blanco (Ignacio); J. Del Valle (Jesús); A. Jakubowska (Anna); G. Sukiennicki (Grzegorz); J. Gronwald (Jacek); J. Lubinski (Jan); K. Durda (Katarzyna); K. Jaworska-Bieniek (Katarzyna); B.A. Agnarsson (Bjarni); C. Maugard; A. Amadori (Alberto); M. Montagna (Marco); P.J. Teixeira; A.B. Spurdle (Amanda); W.D. Foulkes (William); C. Olswold (Curtis); N.M. Lindor (Noralane); V.S. Pankratz (Shane); C. Szabo (Csilla); A. Lincoln (Anne); L. Jacobs (Lauren); M. Corines (Marina); M. Robson (Mark); J. Vijai (Joseph); A. Berger (Andreas); A. Fink-Retter (Anneliese); C.F. Singer (Christian); C. Rappaport (Christine); D.G. Kaulich (Daphne Gschwantler); G. Pfeiler (Georg); M.-K. Tea; M.H. Greene (Mark); P.L. Mai (Phuong); G. Rennert (Gad); E.N. Imyanitov (Evgeny); A.M. Mulligan (Anna Marie); G. Glendon (Gord); I.L. Andrulis (Irene); S. Tchatchou (Sandrine); A.E. Toland (Amanda); I.S. Pedersen (Inge Sokilde); M. Thomassen (Mads); T.A. Kruse (Torben); U.B. Jensen; M.A. Caligo (Maria); E. Friedman (Eitan); J. Zidan (Jamal); Y. Laitman (Yael); A. Lindblom (Annika); B. Melin (Beatrice); B. Arver (Brita Wasteson); N. Loman (Niklas); R. Rosenquist (R.); O.I. Olopade (Olofunmilayo); R. Nussbaum (Robert); S.J. Ramus (Susan); K.L. Nathanson (Katherine); S.M. Domchek (Susan); R. Rebbeck (Timothy); B.K. Arun (Banu); G. Mitchell (Gillian); B.Y. Karlan (Beth); K.J. Lester (Kathryn); S. Orsulic (Sandra); D. Stoppa-Lyonnet (Dominique); G. Thomas (Gilles); J. Simard (Jacques); F.J. Couch (Fergus); K. Offit (Kenneth); D.F. Easton (Douglas); G. Chenevix-Trench (Georgia); A.C. Antoniou (Antonis C.); S. Mazoyer (Sylvie); C. Phelan (Catherine); O. Sinilnikova (Olga); D.G. Cox (David)

    2015-01-01

    textabstractIntroduction: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of

  8. Germline mutations in BMP9 are not identified in a series of Danish and French patients with hereditary hemorrhagic telangiectasia

    DEFF Research Database (Denmark)

    Tørring, P. M.; Dupuis-Girod, S.; Giraud, S

    2016-01-01

    undiscovered HHT causative genes. A new vascular-anomaly syndrome caused by mutations in BMP9 has recently been published. Three patients suspected of HHT, with familial nose bleedings and dermal manifestations not characteristic for HHT, were described. Although, it was concluded that these patients probably...

  9. An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers.

    NARCIS (Netherlands)

    Blein, S.; Bardel, C.; Danjean, V.; McGuffog, L.; Healey, S.; Barrowdale, D.; Lee, A.; Dennis, J.; Kuchenbaecker, K.B.; Soucy, P.; Terry, M.B.; Chung, W.K.; Goldgar, D.E.; Buys, S.S.; Janavicius, R.; Tihomirova, L.; Tung, N.; Dorfling, C.M.; Rensburg, E.J. van; Neuhausen, S.L.; Ding, Y.C.; Gerdes, A.M.; Ejlertsen, B.; Nielsen, F.C.; Hansen, T.V.; Osorio, A.; Benitez, J.; Conejero, R.A.; Segota, E.; Weitzel, J.N.; Thelander, M.; Peterlongo, P.; Radice, P.; Pensotti, V.; Dolcetti, R.; Bonanni, B.; Peissel, B.; Zaffaroni, D.; Scuvera, G.; Manoukian, S.; Varesco, L.; Capone, G.L.; Papi, L.; Ottini, L.; Yannoukakos, D.; Konstantopoulou, I.; Garber, J.; Hamann, U.; Donaldson, A.; Brady, A.; Brewer, C.; Foo, C.; Evans, D.G.; Frost, D.; Eccles, D.; Douglas, F.; Cook, J.; Adlard, J.; Barwell, J.; Walker, L.; Izatt, L.; Side, L.E.; Kennedy, M.J.; Tischkowitz, M.; Rogers, M.T.; Porteous, M.E.; Morrison, P.J.; Platte, R.; Eeles, R.; Davidson, R.; Hodgson, S.; Cole, T.; Godwin, A.K.; Isaacs, C.; Claes, K.; Leeneer, K. De; Meindl, A.; Gehrig, A.; Wappenschmidt, B.; Sutter, C.; Engel, C.; Niederacher, D.; Steinemann, D.; Plendl, H.; Kast, K.; Rhiem, K.; Ditsch, N.; Arnold, N.; Varon-Mateeva, R.; Schmutzler, R.K.; Preisler-Adams, S.; Markov, N.B.; Wang-Gohrke, S.; Pauw, A. de; Lefol, C.; Lasset, C.; Leroux, D.; Rouleau, E.; Damiola, F.; Dreyfus, H.; Barjhoux, L.; Golmard, L.; Uhrhammer, N.; Bonadona, V.; Sornin, V.; Bignon, Y.J.; Carter, J.; Le, L; Piedmonte, M.; DiSilvestro, P.A.; Hoya, M. de la; Caldes, T.; Nevanlinna, H.; Aittomaki, K.; Jager, A.; Ouweland, A.M. van den; Kets, C.M.; Aalfs, C.M.; Leeuwen, F.E. van; Hogervorst, F.B.; Meijers-Heijboer, H.E.; Oosterwijk, J.C.; Roozendaal, K.E. van; Rookus, M.A.; Devilee, P.; Luijt, R.B. van der; Olah, E.; Diez, O.; Teule, A.; Lazaro, C.; Blanco, I.; Valle, J.; Jakubowska, A.; Sukiennicki, G.; Gronwald, J.; Lubinski, J.; Durda, K.; Jaworska-Bieniek, K.; Agnarsson, B.A.; Maugard, C.; Amadori, A.; Montagna, M.; Teixeira, M.R.; Spurdle, A.B.; Foulkes, W.; Olswold, C.; Lindor, N.M.; Pankratz, V.S.; Szabo, C.I.; Lincoln, A.; Jacobs, L.; Corines, M.; Robson, M.; Vijai, J.; Berger, A.; Fink-Retter, A.; Singer, C.F.; Rappaport, C.; Kaulich, D.G.; Pfeiler, G.; Tea, M.K.; Greene, M.H.; Mai, P.L.; Rennert, G.; Imyanitov, E.N.; Mulligan, A.M.; Glendon, G.; Andrulis, I.L.; Tchatchou, S.; Toland, A.E.; Pedersen, I.S.; Thomassen, M.; Kruse, T.A.; Jensen, U.B.; Caligo, M.A.; Friedman, E.; Zidan, J.; Laitman, Y.; Lindblom, A.; Melin, B.; Arver, B.; Loman, N.; Rosenquist, R.; Olopade, O.I.; Nussbaum, R.L.; Ramus, S.J.; Nathanson, K.L.; Domchek, S.M.; Rebbeck, T.R.; Arun, B.K.; Mitchell, G.; Karlan, B.Y.; Lester, J.; Orsulic, S.; Stoppa-Lyonnet, D.; Thomas, G; Simard, J.; Couch, F.J.; Offit, K.; Easton, D.F.; Chenevix-Trench, G.; Antoniou, A.C.; Mazoyer, S.; Phelan, C.M.; Sinilnikova, O.M.; Cox, D.G.

    2015-01-01

    INTRODUCTION: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are

  10. Exome sequencing identifies DYNC2H1 mutations as a common cause of asphyxiating thoracic dystrophy (Jeune syndrome) without major polydactyly, renal or retinal involvement

    Science.gov (United States)

    Schmidts, Miriam; Arts, Heleen H; Bongers, Ernie M H F; Yap, Zhimin; Oud, Machteld M; Antony, Dinu; Duijkers, Lonneke; Emes, Richard D; Stalker, Jim; Yntema, Jan-Bart L; Plagnol, Vincent; Hoischen, Alexander; Gilissen, Christian; Forsythe, Elisabeth; Lausch, Ekkehart; Veltman, Joris A; Roeleveld, Nel; Superti-Furga, Andrea; Kutkowska-Kazmierczak, Anna; Kamsteeg, Erik-Jan; Elçioğlu, Nursel; van Maarle, Merel C; Graul-Neumann, Luitgard M; Devriendt, Koenraad; Smithson, Sarah F; Wellesley, Diana; Verbeek, Nienke E; Hennekam, Raoul C M; Kayserili, Hulya; Scambler, Peter J; Beales, Philip L; Knoers, Nine VAM; Roepman, Ronald; Mitchison, Hannah M

    2013-01-01

    Background Jeune asphyxiating thoracic dystrophy (JATD) is a rare, often lethal, recessively inherited chondrodysplasia characterised by shortened ribs and long bones, sometimes accompanied by polydactyly, and renal, liver and retinal disease. Mutations in intraflagellar transport (IFT) genes cause JATD, including the IFT dynein-2 motor subunit gene DYNC2H1. Genetic heterogeneity and the large DYNC2H1 gene size have hindered JATD genetic diagnosis. Aims and methods To determine the contribution to JATD we screened DYNC2H1 in 71 JATD patients JATD patients combining SNP mapping, Sanger sequencing and exome sequencing. Results and conclusions We detected 34 DYNC2H1 mutations in 29/71 (41%) patients from 19/57 families (33%), showing it as a major cause of JATD especially in Northern European patients. This included 13 early protein termination mutations (nonsense/frameshift, deletion, splice site) but no patients carried these in combination, suggesting the human phenotype is at least partly hypomorphic. In addition, 21 missense mutations were distributed across DYNC2H1 and these showed some clustering to functional domains, especially the ATP motor domain. DYNC2H1 patients largely lacked significant extra-skeletal involvement, demonstrating an important genotype–phenotype correlation in JATD. Significant variability exists in the course and severity of the thoracic phenotype, both between affected siblings with identical DYNC2H1 alleles and among individuals with different alleles, which suggests the DYNC2H1 phenotype might be subject to modifier alleles, non-genetic or epigenetic factors. Assessment of fibroblasts from patients showed accumulation of anterograde IFT proteins in the ciliary tips, confirming defects similar to patients with other retrograde IFT machinery mutations, which may be of undervalued potential for diagnostic purposes. PMID:23456818

  11. A Systems Approach to Identifying Exploration and Development Opportunities in the Illinois Basin: Digital Portifolio of Plays in Underexplored Lower Paleozoic Rocks [Part 1 of 2

    Energy Technology Data Exchange (ETDEWEB)

    Seyler, Beverly; Harris, David; Keith, Brian; Huff, Bryan; Lasemi, Yaghoob

    2008-06-30

    This study examined petroleum occurrence in Ordovician, Silurian and Devonian reservoirs in the Illinois Basin. Results from this project show that there is excellent potential for additional discovery of petroleum reservoirs in these formations. Numerous exploration targets and exploration strategies were identified that can be used to increase production from these underexplored strata. Some of the challenges to exploration of deeper strata include the lack of subsurface data, lack of understanding of regional facies changes, lack of understanding the role of diagenetic alteration in developing reservoir porosity and permeability, the shifting of structural closures with depth, overlooking potential producing horizons, and under utilization of 3D seismic techniques. This study has shown many areas are prospective for additional discoveries in lower Paleozoic strata in the Illinois Basin. This project implemented a systematic basin analysis approach that is expected to encourage exploration for petroleum in lower Paleozoic rocks of the Illinois Basin. The study has compiled and presented a broad base of information and knowledge needed by independent oil companies to pursue the development of exploration prospects in overlooked, deeper play horizons in the Illinois Basin. Available geologic data relevant for the exploration and development of petroleum reservoirs in the Illinois Basin was analyzed and assimilated into a coherent, easily accessible digital play portfolio. The primary focus of this project was on case studies of existing reservoirs in Devonian, Silurian, and Ordovician strata and the application of knowledge gained to future exploration and development in these underexplored strata of the Illinois Basin. In addition, a review of published reports and exploration in the New Albany Shale Group, a Devonian black shale source rock, in Illinois was completed due to the recent increased interest in Devonian black shales across the United States. The New

  12. OBSCN Mutations Associated with Dilated Cardiomyopathy and Haploinsufficiency.

    Directory of Open Access Journals (Sweden)

    Steven Marston

    Full Text Available Studies of the functional consequences of DCM-causing mutations have been limited to a few cases where patients with known mutations had heart transplants. To increase the number of potential tissue samples for direct investigation we performed whole exon sequencing of explanted heart muscle samples from 30 patients that had a diagnosis of familial dilated cardiomyopathy and screened for potentially disease-causing mutations in 58 HCM or DCM-related genes.We identified 5 potentially disease-causing OBSCN mutations in 4 samples; one sample had two OBSCN mutations and one mutation was judged to be not disease-related. Also identified were 6 truncating mutations in TTN, 3 mutations in MYH7, 2 in DSP and one each in TNNC1, TNNI3, MYOM1, VCL, GLA, PLB, TCAP, PKP2 and LAMA4. The mean level of obscurin mRNA was significantly greater and more variable in healthy donor samples than the DCM samples but did not correlate with OBSCN mutations. A single obscurin protein band was observed in human heart myofibrils with apparent mass 960 ± 60 kDa. The three samples with OBSCN mutations had significantly lower levels of obscurin immunoreactive material than DCM samples without OBSCN mutations (45±7, 48±3, and 72±6% of control level.Obscurin levels in DCM controls, donor heart and myectomy samples were the same.OBSCN mutations may result in the development of a DCM phenotype via haploinsufficiency. Mutations in the obscurin gene should be considered as a significant causal factor of DCM, alone or in concert with other mutations.

  13. Administrative Algorithms to identify Avascular necrosis of bone among patients undergoing upper or lower extremity magnetic resonance imaging: a validation study.

    Science.gov (United States)

    Barbhaiya, Medha; Dong, Yan; Sparks, Jeffrey A; Losina, Elena; Costenbader, Karen H; Katz, Jeffrey N

    2017-06-19

    Studies of the epidemiology and outcomes of avascular necrosis (AVN) require accurate case-finding methods. The aim of this study was to evaluate performance characteristics of a claims-based algorithm designed to identify AVN cases in administrative data. Using a centralized patient registry from a US academic medical center, we identified all adults aged ≥18 years who underwent magnetic resonance imaging (MRI) of an upper/lower extremity joint during the 1.5 year study period. A radiologist report confirming AVN on MRI served as the gold standard. We examined the sensitivity, specificity, positive predictive value (PPV) and positive likelihood ratio (LR + ) of four algorithms (A-D) using International Classification of Diseases, 9th edition (ICD-9) codes for AVN. The algorithms ranged from least stringent (Algorithm A, requiring ≥1 ICD-9 code for AVN [733.4X]) to most stringent (Algorithm D, requiring ≥3 ICD-9 codes, each at least 30 days apart). Among 8200 patients who underwent MRI, 83 (1.0% [95% CI 0.78-1.22]) had AVN by gold standard. Algorithm A yielded the highest sensitivity (81.9%, 95% CI 72.0-89.5), with PPV of 66.0% (95% CI 56.0-75.1). The PPV of algorithm D increased to 82.2% (95% CI 67.9-92.0), although sensitivity decreased to 44.6% (95% CI 33.7-55.9). All four algorithms had specificities >99%. An algorithm that uses a single billing code to screen for AVN among those who had MRI has the highest sensitivity and is best suited for studies in which further medical record review confirming AVN is feasible. Algorithms using multiple billing codes are recommended for use in administrative databases when further AVN validation is not feasible.

  14. Diagnostic screening identifies a wide range of mutations involving the SHOX gene, including a common 47.5 kb deletion 160 kb downstream with a variable phenotypic effect.

    Science.gov (United States)

    Bunyan, David J; Baker, Kevin R; Harvey, John F; Thomas, N Simon

    2013-06-01

    Léri-Weill dyschondrosteosis (LWD) results from heterozygous mutations of the SHOX gene, with homozygosity or compound heterozygosity resulting in the more severe form, Langer mesomelic dysplasia (LMD). These mutations typically take the form of whole or partial gene deletions, point mutations within the coding sequence, or large (>100 kb) 3' deletions of downstream regulatory elements. We have analyzed the coding sequence of the SHOX gene and its downstream regulatory regions in a cohort of 377 individuals referred with symptoms of LWD, LMD or short stature. A causative mutation was identified in 68% of the probands with LWD or LMD (91/134). In addition, a 47.5 kb deletion was found 160 kb downstream of the SHOX gene in 17 of the 377 patients (12% of the LWD referrals, 4.5% of all referrals). In 14 of these 17 patients, this was the only potentially causative abnormality detected (13 had symptoms consistent with LWD and one had short stature only), but the other three 47.5 kb deletions were found in patients with an additional causative SHOX mutation (with symptoms of LWD rather than LMD). Parental samples were available on 14/17 of these families, and analysis of these showed a more variable phenotype ranging from apparently unaffected to LWD. Breakpoint sequence analysis has shown that the 47.5 kb deletion is identical in all 17 patients, most likely due to an ancient founder mutation rather than recurrence. This deletion was not seen in 471 normal controls (P<0.0001), providing further evidence for a phenotypic effect, albeit one with variable penetration. Copyright © 2013 Wiley Periodicals, Inc.

  15. Identify temporal trend of air temperature and its impact on forest stream flow in Lower Mississippi River Alluvial Valley using wavelet analysis.

    Science.gov (United States)

    Ouyang, Ying; Parajuli, Prem B; Li, Yide; Leininger, Theodor D; Feng, Gary

    2017-08-01

    Characterization of stream flow is essential to water resource management, water supply planning, environmental protection, and ecological restoration; while air temperature variation due to climate change can exacerbate stream flow and add instability to the flow. In this study, the wavelet analysis technique was employed to identify temporal trend of air temperature and its impact upon forest stream flows in Lower Mississippi River Alluvial Valley (LMRAV). Four surface water monitoring stations, which locate near the headwater areas with very few land use disturbances and the long-term data records (60-90 years) in the LMRAV, were selected to obtain stream discharge and air temperature data. The wavelet analysis showed that air temperature had an increasing temporal trend around its mean value during the past several decades in the LMRAV, whereas stream flow had a decreasing temporal trend around its average value at the same time period in the same region. Results of this study demonstrated that the climate in the LMRAV did get warmer as time elapsed and the streams were drier as a result of warmer air temperature. This study further revealed that the best way to estimate the temporal trends of air temperature and stream flow was to perform the wavelet transformation around their mean values. Published by Elsevier Ltd.

  16. University of Texas MD Anderson Cancer Center: High-Throughput Screening Identifying Driving Mutations in Endometrial Cancer | Office of Cancer Genomics

    Science.gov (United States)

    Recent advances in next-generation sequencing technology have enabled the unprecedented characterization of a full spectrum of somatic alterations in cancer genomes. Given the large numbers of somatic mutations typically detected by this approach, a key challenge in the downstream analysis is to distinguish “drivers” that functionally contribute to tumorigenesis from “passengers” that occur as the consequence of genomic instability.

  17. Clinical flow cytometric screening of SAP and XIAP expression accurately identifies patients with SH2D1A and XIAP/BIRC4 mutations.

    Science.gov (United States)

    Gifford, Carrie E; Weingartner, Elizabeth; Villanueva, Joyce; Johnson, Judith; Zhang, Kejian; Filipovich, Alexandra H; Bleesing, Jack J; Marsh, Rebecca A

    2014-07-01

    X-linked lymphoproliferative disease is caused by mutations in two genes, SH2D1A and XIAP/BIRC4. Flow cytometric methods have been developed to detect the gene products, SAP and XIAP. However, there is no literature describing the accuracy of flow cytometric screening performed in a clinical lab setting. We reviewed the clinical flow cytometric testing results for 656 SAP and 586 XIAP samples tested during a 3-year period. Genetic testing was clinically performed as directed by the managing physician in 137 SAP (21%) and 115 XIAP (20%) samples. We included these samples for analyses of flow cytometric test accuracy. SH2D1A mutations were detected in 15/137 samples. SAP expression was low in 13/15 (sensitivity 87%, CI 61-97%). Of the 122 samples with normal sequencing, SAP was normal in 109 (specificity 89%, CI 82-94%). The positive predictive values (PPVs) and the negative predictive values (NPVs) were 50% and 98%, respectively. XIAP/BIRC4 mutations were detected in 19/115 samples. XIAP expression was low in 18/19 (sensitivity 95%, CI 73-100%). Of the 96 samples with normal sequencing, 59 had normal XIAP expression (specificity 61%, CI 51-71%). The PPVs and NPVs were 33% and 98%, respectively. Receiver-operating characteristic analysis was able to improve the specificity to 75%. Clinical flow cytometric screening tests for SAP and XIAP deficiencies offer good sensitivity and specificity for detecting genetic mutations, and are characterized by high NPVs. We recommend these tests for patients suspected of having X-linked lymphoproliferative disease type 1 (XLP1) or XLP2. © 2014 Clinical Cytometry Society.

  18. Compound heterozygous mutations in electron transfer flavoprotein dehydrogenase identified in a young Chinese woman with late-onset glutaric aciduria type II

    OpenAIRE

    Xue, Ying; Zhou, Yun; Zhang, Keqin; Li, Ling; Kayoumu, Abudurexiti; Chen, Liye; Wang, Yuhui; Lu, Zhiqiang

    2017-01-01

    Background Glutaric aciduria type II (GA II) is an autosomal recessive disorder affecting fatty acid and amino acid metabolism. The late-onset form of GA II disorder is almost exclusively associated with mutations in the electron transfer flavoprotein dehydrogenase (ETFDH) gene. Till now, the clinical features of late-onset GA II vary widely and pose a great challenge for diagnosis. The aim of the current study is to characterize the clinical phenotypes and genetic basis of a late-onset GAII ...

  19. The perturbation of tryptophan fluorescence by phenylalanine to alanine mutations identifies the hydrophobic core in a subset of bacterial Ig-like domains.

    Science.gov (United States)

    Raman, Rajeev; Ptak, Christopher P; Hsieh, Ching-Lin; Oswald, Robert E; Chang, Yung-Fu; Sharma, Yogendra

    2013-07-09

    Many host-parasite interactions are mediated via surface-exposed proteins containing bacterial immunoglobulin-like (Big) domains. Here, we utilize the spectral properties of a conserved Trp to provide evidence that, along with a Phe, these residues are positioned within the hydrophobic core of a subset of Big_2 domains. The mutation of the Phe to Ala decreases Big_2 domain stability and impairs the ability of LigBCen2 to bind to the host protein, fibronectin.

  20. Mutations Related to Antiretroviral Resistance Identified by Ultra-Deep Sequencing in HIV-1 Infected Children under Structured Interruptions of HAART.

    Directory of Open Access Journals (Sweden)

    Jose Manuel Vazquez-Guillen

    Full Text Available Although Structured Treatment Interruptions (STI are currently not considered an alternative strategy for antiretroviral treatment, their true benefits and limitations have not been fully established. Some studies suggest the possibility of improving the quality of life of patients with this strategy; however, the information that has been obtained corresponds mostly to studies conducted in adults, with a lack of knowledge about its impact on children. Furthermore, mutations associated with antiretroviral resistance could be selected due to sub-therapeutic levels of HAART at each interruption period. Genotyping methods to determine the resistance profiles of the infecting viruses have become increasingly important for the management of patients under STI, thus low-abundance antiretroviral drug-resistant mutations (DRM's at levels under limit of detection of conventional genotyping (<20% of quasispecies could increase the risk of virologic failure. In this work, we analyzed the protease and reverse transcriptase regions of the pol gene by ultra-deep sequencing in pediatric patients under STI with the aim of determining the presence of high- and low-abundance DRM's in the viral rebounds generated by the STI. High-abundance mutations in protease and high- and low-abundance mutations in reverse transcriptase were detected but no one of these are directly associated with resistance to antiretroviral drugs. The results could suggest that the evaluated STI program is virologically safe, but strict and carefully planned studies, with greater numbers of patients and interruption/restart cycles, are still needed to evaluate the selection of DRM's during STI.

  1. Mutator activity in Schizophyllum commune

    Energy Technology Data Exchange (ETDEWEB)

    Shneyour, Y.; Koltin, Y. (Tel Aviv Univ. (Israel). Dept. of Microbiology)

    1983-01-01

    A strain with an elevated level of spontaneous mutations and an especially high rate of reversion at a specific locus (pab/sup -/) was identified. The mutator trait is recessive. UV sensitivity and the absence of a UV-specific endonucleolytic activity were associated with the enhancement of the mutation rate in mutator strains. The endonuclease associated with the regulation of the mutation rate also acted on single-stranded DNA. The molecular weight of this enzyme is about 38,000 daltons.

  2. Exome Sequencing Identifies a Novel LMNA Splice-Site Mutation and Multigenic Heterozygosity of Potential Modifiers in a Family with Sick Sinus Syndrome, Dilated Cardiomyopathy, and Sudden Cardiac Death.

    Directory of Open Access Journals (Sweden)

    Michael V Zaragoza

    Full Text Available The goals are to understand the primary genetic mechanisms that cause Sick Sinus Syndrome and to identify potential modifiers that may result in intrafamilial variability within a multigenerational family. The proband is a 63-year-old male with a family history of individuals (>10 with sinus node dysfunction, ventricular arrhythmia, cardiomyopathy, heart failure, and sudden death. We used exome sequencing of a single individual to identify a novel LMNA mutation and demonstrated the importance of Sanger validation and family studies when evaluating candidates. After initial single-gene studies were negative, we conducted exome sequencing for the proband which produced 9 gigabases of sequencing data. Bioinformatics analysis showed 94% of the reads mapped to the reference and identified 128,563 unique variants with 108,795 (85% located in 16,319 genes of 19,056 target genes. We discovered multiple variants in known arrhythmia, cardiomyopathy, or ion channel associated genes that may serve as potential modifiers in disease expression. To identify candidate mutations, we focused on ~2,000 variants located in 237 genes of 283 known arrhythmia, cardiomyopathy, or ion channel associated genes. We filtered the candidates to 41 variants in 33 genes using zygosity, protein impact, database searches, and clinical association. Only 21 of 41 (51% variants were validated by Sanger sequencing. We selected nine confirmed variants with minor allele frequencies G, a novel heterozygous splice-site mutation as the primary mutation with rare or novel variants in HCN4, MYBPC3, PKP4, TMPO, TTN, DMPK and KCNJ10 as potential modifiers and a mechanism consistent with haploinsufficiency.

  3. Cross-Neutralising Nanobodies Bind to a Conserved Pocket in the Hemagglutinin Stem Region Identified Using Yeast Display and Deep Mutational Scanning.

    Directory of Open Access Journals (Sweden)

    Tiziano Gaiotto

    Full Text Available Cross-neutralising monoclonal antibodies against influenza hemagglutinin (HA are of considerable interest as both therapeutics and diagnostic tools. We have recently described five different single domain antibodies (nanobodies which share this cross-neutralising activity and suggest their small size, high stability, and cleft binding properties may present distinct advantages over equivalent conventional antibodies. We have used yeast display in combination with deep mutational scanning to give residue level resolution of positions in the antibody-HA interface which are crucial for binding. In addition, we have mapped positions within HA predicted to have minimal effect on antibody binding when mutated. Our cross-neutralising nanobodies were shown to bind to a highly conserved pocket in the HA2 domain of A(H1N1pdm09 influenza virus overlapping with the fusion peptide suggesting their mechanism of action is through the inhibition of viral membrane fusion. We also note that the epitope overlaps with that of CR6261 and F10 which are human monoclonal antibodies in clinical development as immunotherapeutics. Although all five nanobodies mapped to the same highly conserved binding pocket we observed differences in the size of the epitope footprint which has implications in comparing the relative genetic barrier each nanobody presents to a rapidly evolving influenza virus. To further refine our epitope map, we have re-created naturally occurring mutations within this HA stem epitope and tested their effect on binding using yeast display. We have shown that a D46N mutation in the HA2 stem domain uniquely interferes with binding of R2b-E8. Further testing of this substitution in the context of full length purified HA from 1918 H1N1 pandemic (Spanish flu, 2009 H1N1 pandemic (swine flu and highly pathogenic avian influenza H5N1 demonstrated binding which correlated with D46 whereas binding to seasonal H1N1 strains carrying N46 was absent. In addition, our

  4. Enhancement of B-cell receptor signaling by a point mutation of adaptor protein 3BP2 identified in human inherited disease cherubism.

    Science.gov (United States)

    Ogi, Kazuhiro; Nakashima, Kenji; Chihara, Kazuyasu; Takeuchi, Kenji; Horiguchi, Tomoko; Fujieda, Shigeharu; Sada, Kiyonao

    2011-09-01

    Tyrosine phosphorylation of adaptor protein c-Abl-Src homology 3 (SH3) domain-binding protein-2 (3BP2, also referred to SH3BP2) positively regulates the B-cell antigen receptor (BCR)-mediated signal transduction, leading to the activation of nuclear factor of activated T cells (NFAT). Here we showed the effect of the proline to arginine substitution of 3BP2 in which is the most common mutation in patients with cherubism (P418R) on B-cell receptor signaling. Comparing to the wild type, overexpression of the mutant form of 3BP2 (3BP2-P416R, corresponding to P418R in human protein) enhanced BCR-mediated activation of NFAT. 3BP2-P416R increased the signaling complex formation with Syk, phospholipase C-γ2 (PLC-γ2), and Vav1. In contrast, 3BP2-P416R could not change the association with the negative regulator 14-3-3. Loss of the association mutant that was incapable to associate with 14-3-3 could not mimic BCR-mediated NFAT activation in Syk-deficient cells. Moreover, BCR-mediated phosphorylation of extracellular signal regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) was not affected by P416R mutation. These results showed that P416R mutation of 3BP2 causes the gain of function in B cells by increasing the interaction with specific signaling molecules. © 2011 The Authors. Journal compilation © 2011 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.

  5. Muscle imaging in patients with tubular aggregate myopathy caused by mutations in STIM1

    DEFF Research Database (Denmark)

    Tasca, Giorgio; D'Amico, Adele; Monforte, Mauro

    2015-01-01

    Tubular aggregate myopathy is a genetically heterogeneous disease characterized by tubular aggregates as the hallmark on muscle biopsy. Mutations in STIM1 have recently been identified as one genetic cause in a number of tubular aggregate myopathy cases. To characterize the pattern of muscle...... involvement in this disease, upper and lower girdles and lower limbs were imaged in five patients with mutations in STIM1, and the scans were compared with two patients with tubular aggregate myopathy not caused by mutations in STIM1. A common pattern of involvement was found in STIM1-mutated patients...... of thigh and posterior leg with sparing of gracilis, tibialis anterior and, to a lesser extent, short head of biceps femoris. Mutations in STIM1 are associated with a homogeneous involvement on imaging despite variable clinical features. Muscle imaging can be useful in identifying STIM1-mutated patients...

  6. Systematic Analysis of Splice-Site-Creating Mutations in Cancer

    Directory of Open Access Journals (Sweden)

    Reyka G. Jayasinghe

    2018-04-01

    Full Text Available Summary: For the past decade, cancer genomic studies have focused on mutations leading to splice-site disruption, overlooking those having splice-creating potential. Here, we applied a bioinformatic tool, MiSplice, for the large-scale discovery of splice-site-creating mutations (SCMs across 8,656 TCGA tumors. We report 1,964 originally mis-annotated mutations having clear evidence of creating alternative splice junctions. TP53 and GATA3 have 26 and 18 SCMs, respectively, and ATRX has 5 from lower-grade gliomas. Mutations in 11 genes, including PARP1, BRCA1, and BAP1, were experimentally validated for splice-site-creating function. Notably, we found that neoantigens induced by SCMs are likely several folds more immunogenic compared to missense mutations, exemplified by the recurrent GATA3 SCM. Further, high expression of PD-1 and PD-L1 was observed in tumors with SCMs, suggesting candidates for immune blockade therapy. Our work highlights the importance of integrating DNA and RNA data for understanding the functional and the clinical implications of mutations in human diseases. : Jayasinghe et al. identify nearly 2,000 splice-site-creating mutations (SCMs from over 8,000 tumor samples across 33 cancer types. They provide a more accurate interpretation of previously mis-annotated mutations, highlighting the importance of integrating data types to understand the functional and the clinical implications of splicing mutations in human disease. Keywords: splicing, RNA, mutations of clinical relevance

  7. Targeted next generation sequencing identified a novel mutation in MYO7A causing Usher syndrome type 1 in an Iranian consanguineous pedigree.

    Science.gov (United States)

    Kooshavar, Daniz; Razipour, Masoumeh; Movasat, Morteza; Keramatipour, Mohammad

    2018-01-01

    Usher syndrome (USH) is characterized by congenital hearing loss and retinitis pigmentosa (RP) with a later onset. It is an autosomal recessive trait with clinical and genetic heterogeneity which makes the molecular diagnosis much difficult. In this study, we introduce a pedigree with two affected members with USH type 1 and represent a cost and time effective approach for genetic diagnosis of USH as a genetically heterogeneous disorder. Target region capture in the genes of interest, followed by next generation sequencing (NGS) was used to determine the causative mutations in one of the probands. Then segregation analysis in the pedigree was conducted using PCR-Sanger sequencing. Targeted NGS detected a novel homozygous nonsense variant c.4513G > T (p.Glu1505Ter) in MYO7A. The variant is segregating in the pedigree with an autosomal recessive pattern. In this study, a novel stop gained variant c.4513G > T (p.Glu1505Ter) in MYO7A was found in an Iranian pedigree with two affected members with USH type 1. Bioinformatic as well as pedigree segregation analyses were in line with pathogenic nature of this variant. Targeted NGS panel was showed to be an efficient method for mutation detection in hereditary disorders with locus heterogeneity. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Screening for germline BRCA1, BRCA2, TP53 and CHEK2 mutations in families at-risk for hereditary breast cancer identified in a population-based study from Southern Brazil

    Directory of Open Access Journals (Sweden)

    Edenir Inêz Palmero

    2016-01-01

    Full Text Available Abstract In Brazil, breast cancer is a public health care problem due to its high incidence and mortality rates. In this study, we investigated the prevalence of hereditary breast cancer syndromes (HBCS in a population-based cohort in Brazils southernmost capital, Porto Alegre. All participants answered a questionnaire about family history (FH of breast, ovarian and colorectal cancer and those with a positive FH were invited for genetic cancer risk assessment (GCRA. If pedigree analysis was suggestive of HBCS, genetic testing of the BRCA1, BRCA2, TP53, and CHEK2 genes was offered. Of 902 women submitted to GCRA, 214 had pedigrees suggestive of HBCS. Fifty of them underwent genetic testing: 18 and 40 for BRCA1/BRCA2 and TP53 mutation screening, respectively, and 7 for CHEK2 1100delC testing. A deleterious BRCA2 mutation was identified in one of the HBOC probands and the CHEK2 1100delC mutation occurred in one of the HBCC families. No deleterious germline alterations were identified in BRCA1 or TP53. Although strict inclusion criteria and a comprehensive testing approach were used, the suspected genetic risk in these families remains unexplained. Further studies in a larger cohort are necessary to better understand the genetic component of hereditary breast cancer in Southern Brazil.

  9. Molecular evaluation of a novel missense mutation & an insertional truncating mutation in SUMF1 gene

    Directory of Open Access Journals (Sweden)

    Udhaya H Kotecha

    2014-01-01

    Full Text Available Background & objectives: Multiple suphphatase deficiency (MSD is an autosomal recessive disorder affecting the post translational activation of all enzymes of the sulphatase family. To date, approximately 30 different mutations have been identified in the causative gene, sulfatase modifying factor 1 (SUMF1. We describe here the mutation analysis of a case of MSD. Methods: The proband was a four year old boy with developmental delay followed by neuroregression. He had coarse facies, appendicular hypertonia, truncal ataxia and ichthyosis limited to both lower limbs. Radiographs showed dysostosis multiplex. Clinical suspicion of MSD was confirmed by enzyme analysis of four enzymes of the sulphatase group. Results: The patient was compound heterozygote for a c.451A>G (p.K151E substitution in exon 3 and a single base insertion mutation (c.690_691 InsT in exon 5 in the SUMF1 gene. The bioinformatic analysis of the missense mutation revealed no apparent effect on the overall structure. However, the mutated 151-amino acid residue was found to be adjacent to the substrate binding and the active site residues, thereby affecting the substrate binding and/or catalytic activity, resulting in almost complete loss of enzyme function. Conclusions: The two mutations identified in the present case were novel. This is perhaps the first report of an insertion mutation in SUMF1 causing premature truncation of the protein.

  10. Novel ZBTB24 Mutation Associated with Immunodeficiency, Centromere Instability, and Facial Anomalies Type-2 Syndrome Identified in a Patient with Very Early Onset Inflammatory Bowel Disease.

    Science.gov (United States)

    Conrad, Máire A; Dawany, Noor; Sullivan, Kathleen E; Devoto, Marcella; Kelsen, Judith R

    2017-12-01

    Very early onset inflammatory bowel disease, diagnosed in children ≤5 years old, can be the initial presentation of some primary immunodeficiencies. In this study, we describe a 17-month-old boy with recurrent infections, growth failure, facial anomalies, and inflammatory bowel disease. Immune evaluation, whole-exome sequencing, karyotyping, and methylation array were performed to evaluate the child's constellation of symptoms and examination findings. Whole-exome sequencing revealed that the child was homozygous for a novel variant in ZBTB24, the gene associated with immunodeficiency, centromere instability, and facial anomalies type-2 syndrome. This describes the first case of inflammatory bowel disease associated with immunodeficiency, centromere instability, and facial anomalies type-2 syndrome in a child with a novel disease-causing mutation in ZBTB24 found on whole-exome sequencing.

  11. Skeletal Muscle Magnetic Resonance Imaging of the Lower Limbs in Late-onset Lipid Storage Myopathy with Electron Transfer Flavoprotein Dehydrogenase Gene Mutations

    Institute of Scientific and Technical Information of China (English)

    Xin-Yi Liu; Ming Jin; Zhi-Qiang Wang; Dan-Ni Wang; Jun-Jie He; Min-Ting Lin; Hong-Xia Fu

    2016-01-01

    Background:Lipid storage myopathy (LSM) is a genetically heterogeneous group with variable clinical phenotypes.Late-onset multiple acyl-coenzyme A dehydrogenation deficiency (MADD) is a rather common form of LSM in China.Diagnosis and clinical management of it remain challenging,especially without robust muscle biopsy result and genetic detection.As the noninvasion and convenience,muscle magnetic resonance imaging (MRI) is a helpful assistant,diagnostic tool for neuromuscular disorders.However,the disease-specific MRI patterns of muscle involved and its diagnostic value in late-onset MADD have not been systematic analyzed.Methods:We assessed the MRI pattern and fat infiltration degree of the lower limb muscles in 28 late-onset MADD patients,combined with detailed clinical features and gene spectrum.Fat infiltration degree of the thigh muscle was scored while that ofgluteus was described as obvious or not.Associated muscular atrophy was defined as obvious muscle bulk reduction.Results:The mean scores were significantly different among the anterior,medial,and posterior thigh muscle groups.The mean of fat infiltration scores on posterior thigh muscle group was significantly higher than either anterior or medial thigh muscle group (P < 0.001).Moreover,the mean score on medial thigh muscle group was significantly higher than that of anterior thigh muscle group (P < 0.01).About half of the patients displayed fat infiltration and atrophy in gluteus muscles.Of 28 patients,12 exhibited atrophy in medial and/or posterior thigh muscle groups,especially in posterior thigh muscle group.Muscle edema pattern was not found in all the patients.Conclusions:Late-onset MADD patients show a typical muscular imaging pattern of fat infiltration and atrophy on anterior,posterior,and medial thigh muscle groups,with major involvement of posterior thigh muscle group and gluteus muscles and a sparing involvement of anterior thigh compartment.Our findings also suggest that muscle MRI of

  12. Detection of Ultra-Rare Mitochondrial Mutations in Breast Stem Cells by Duplex Sequencing.

    Directory of Open Access Journals (Sweden)

    Eun Hyun Ahn

    Full Text Available Long-lived adult stem cells could accumulate non-repaired DNA damage or mutations that increase the risk of tumor formation. To date, studies on mutations in stem cells have concentrated on clonal (homoplasmic mutations and have not focused on rarely occurring stochastic mutations that may accumulate during stem cell dormancy. A major challenge in investigating these rare mutations is that conventional next generation sequencing (NGS methods have high error rates. We have established a new method termed Duplex Sequencing (DS, which detects mutations with unprecedented accuracy. We present a comprehensive analysis of mitochondrial DNA mutations in human breast normal stem cells and non-stem cells using DS. The vast majority of mutations occur at low frequency and are not detectable by NGS. The most prevalent point mutation types are the C>T/G>A and A>G/T>C transitions. The mutations exhibit a strand bias with higher prevalence of G>A, T>C, and A>C mutations on the light strand of the mitochondrial genome. The overall rare mutation frequency is significantly lower in stem cells than in the corresponding non-stem cells. We have identified common and unique non-homoplasmic mutations between non-stem and stem cells that include new mutations which have not been reported previously. Four mutations found within the MT-ND5 gene (m.12684G>A, m.12705C>T, m.13095T>C, m.13105A>G are present in all groups of stem and non-stem cells. Two mutations (m.8567T>C, m.10547C>G are found only in non-stem cells. This first genome-wide analysis of mitochondrial DNA mutations may aid in characterizing human breast normal epithelial cells and serve as a reference for cancer stem cell mutation profiles.

  13. High-fidelity target sequencing of individual molecules identified using barcode sequences: de novo detection and absolute quantitation of mutations in plasma cell-free DNA from cancer patients.

    Science.gov (United States)

    Kukita, Yoji; Matoba, Ryo; Uchida, Junji; Hamakawa, Takuya; Doki, Yuichiro; Imamura, Fumio; Kato, Kikuya

    2015-08-01

    Circulating tumour DNA (ctDNA) is an emerging field of cancer research. However, current ctDNA analysis is usually restricted to one or a few mutation sites due to technical limitations. In the case of massively parallel DNA sequencers, the number of false positives caused by a high read error rate is a major problem. In addition, the final sequence reads do not represent the original DNA population due to the global amplification step during the template preparation. We established a high-fidelity target sequencing system of individual molecules identified in plasma cell-free DNA using barcode sequences; this system consists of the following two steps. (i) A novel target sequencing method that adds barcode sequences by adaptor ligation. This method uses linear amplification to eliminate the errors introduced during the early cycles of polymerase chain reaction. (ii) The monitoring and removal of erroneous barcode tags. This process involves the identification of individual molecules that have been sequenced and for which the number of mutations have been absolute quantitated. Using plasma cell-free DNA from patients with gastric or lung cancer, we demonstrated that the system achieved near complete elimination of false positives and enabled de novo detection and absolute quantitation of mutations in plasma cell-free DNA. © The Author 2015. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  14. Mutational analysis of the EMCV 2A protein identifies a nuclear localization signal and an eIF4E binding site

    International Nuclear Information System (INIS)

    Groppo, Rachel; Brown, Bradley A.; Palmenberg, Ann C.

    2011-01-01

    Cardioviruses have a unique 2A protein (143 aa). During genome translation, the encephalomyocarditis virus (EMCV) 2A is released through a ribosome skipping event mitigated through C-terminal 2A sequences and by subsequent N-terminal reaction with viral 3C pro . Although viral replication is cytoplasmic, mature 2A accumulates in nucleoli shortly after infection. Some protein also transiently associates with cytoplasmic 40S ribosomal subunits, an activity contributing to inhibition of cellular cap-dependent translation. Cardiovirus sequences predict an eIF4E binding site (aa 126-134) and a nuclear localization signal (NLS, aa 91-102), within 2A, both of which are functional during EMCV infection. Point mutations preventing eIF4E:2A interactions gave small-plaque phenotype viruses, but still inhibited cellular cap-dependent translation. Deletions within the NLS motif relocalized 2A to the cytoplasm and abrogated the inhibition of cap-dependent translation. A fusion protein linking the 2A NLS to eGFP was sufficient to redirect the reporter to the nucleus but not into nucleoli.

  15. Distinct Viral and Mutational Spectrum of Endemic Burkitt Lymphoma.

    Directory of Open Access Journals (Sweden)

    Francesco Abate

    2015-10-01

    Full Text Available Endemic Burkitt lymphoma (eBL is primarily found in children in equatorial regions and represents the first historical example of a virus-associated human malignancy. Although Epstein-Barr virus (EBV infection and MYC translocations are hallmarks of the disease, it is unclear whether other factors may contribute to its development. We performed RNA-Seq on 20 eBL cases from Uganda and showed that the mutational and viral landscape of eBL is more complex than previously reported. First, we found the presence of other herpesviridae family members in 8 cases (40%, in particular human herpesvirus 5 and human herpesvirus 8 and confirmed their presence by immunohistochemistry in the adjacent non-neoplastic tissue. Second, we identified a distinct latency program in EBV involving lytic genes in association with TCF3 activity. Third, by comparing the eBL mutational landscape with published data on sporadic Burkitt lymphoma (sBL, we detected lower frequencies of mutations in MYC, ID3, TCF3 and TP53, and a higher frequency of mutation in ARID1A in eBL samples. Recurrent mutations in two genes not previously associated with eBL were identified in 20% of tumors: RHOA and cyclin F (CCNF. We also observed that polyviral samples showed lower numbers of somatic mutations in common altered genes in comparison to sBL specimens, suggesting dual mechanisms of transformation, mutation versus virus driven in sBL and eBL respectively.

  16. Distinct Viral and Mutational Spectrum of Endemic Burkitt Lymphoma.

    Science.gov (United States)

    Abate, Francesco; Ambrosio, Maria Raffaella; Mundo, Lucia; Laginestra, Maria Antonella; Fuligni, Fabio; Rossi, Maura; Zairis, Sakellarios; Gazaneo, Sara; De Falco, Giulia; Lazzi, Stefano; Bellan, Cristiana; Rocca, Bruno Jim; Amato, Teresa; Marasco, Elena; Etebari, Maryam; Ogwang, Martin; Calbi, Valeria; Ndede, Isaac; Patel, Kirtika; Chumba, David; Piccaluga, Pier Paolo; Pileri, Stefano; Leoncini, Lorenzo; Rabadan, Raul

    2015-10-01

    Endemic Burkitt lymphoma (eBL) is primarily found in children in equatorial regions and represents the first historical example of a virus-associated human malignancy. Although Epstein-Barr virus (EBV) infection and MYC translocations are hallmarks of the disease, it is unclear whether other factors may contribute to its development. We performed RNA-Seq on 20 eBL cases from Uganda and showed that the mutational and viral landscape of eBL is more complex than previously reported. First, we found the presence of other herpesviridae family members in 8 cases (40%), in particular human herpesvirus 5 and human herpesvirus 8 and confirmed their presence by immunohistochemistry in the adjacent non-neoplastic tissue. Second, we identified a distinct latency program in EBV involving lytic genes in association with TCF3 activity. Third, by comparing the eBL mutational landscape with published data on sporadic Burkitt lymphoma (sBL), we detected lower frequencies of mutations in MYC, ID3, TCF3 and TP53, and a higher frequency of mutation in ARID1A in eBL samples. Recurrent mutations in two genes not previously associated with eBL were identified in 20% of tumors: RHOA and cyclin F (CCNF). We also observed that polyviral samples showed lower numbers of somatic mutations in common altered genes in comparison to sBL specimens, suggesting dual mechanisms of transformation, mutation versus virus driven in sBL and eBL respectively.

  17. Loss-of-Function Mutations in APOC3, Triglycerides, and Coronary Disease

    Science.gov (United States)

    2014-01-01

    Background Plasma triglyceride levels are heritable and are correlated with the risk of coronary heart disease. Sequencing of the protein-coding regions of the human genome (the exome) has the potential to identify rare mutations that have a large effect on phenotype. Methods We sequenced the protein-coding regions of 18,666 genes in each of 3734 participants of European or African ancestry in the Exome Sequencing Project. We conducted tests to determine whether rare mutations in coding sequence, individually or in aggregate within a gene, were associated with plasma triglyceride levels. For mutations associated with triglyceride levels, we subsequently evaluated their association with the risk of coronary heart disease in 110,970 persons. Results An aggregate of rare mutations in the gene encoding apolipoprotein C3 (APOC3) was associated with lower plasma triglyceride levels. Among the four mutations that drove this result, three were loss-of-function mutations: a nonsense mutation (R19X) and two splice-site mutations (IVS2+1G→A and IVS3+1G→T). The fourth was a missense mutation (A43T). Approximately 1 in 150 persons in the study was a heterozygous carrier of at least one of these four mutations. Triglyceride levels in the carriers were 39% lower than levels in noncarriers (Ptriglycerides and APOC3. Carriers of these mutations were found to have a reduced risk of coronary heart disease. (Funded by the National Heart, Lung, and Blood Institute and others.) PMID:24941081

  18. Rare and unexpected beta thalassemic mutations in Qazvin ...

    African Journals Online (AJOL)

    About 13 beta-globin mutations encompass 70 - 90% of mutation spectrum in Iran. These mutations are called common beta-globin mutations. The rest are rare or unknown mutations. The objective of this study was to identify and describe rare or unknown beta-globin mutations in Qazvin province. EDTAcontaining venous ...

  19. Rare and unexpected beta thalassemic mutations in Qazvin ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-01-04

    Jan 4, 2010 ... About 13 beta-globin mutations encompass 70 - 90% of mutation spectrum in Iran. These mutations are called common beta-globin mutations. The rest are rare or unknown mutations. The objective of this study was to identify and describe rare or unknown beta-globin mutations in Qazvin province. EDTA-.

  20. Science evaluation of the environmental impact statement for the lower Churchill hydroelectric generation project to identify deficiencies with respect to fish and fish habitat

    International Nuclear Information System (INIS)

    Clarke, K.

    2009-01-01

    This report evaluated an environmental impact statement (EIS) submitted by a company proposing to develop a hydroelectric generation project in the lower Churchill River in Labrador. Construction of the facilities will alter the aquatic environment of the river as well as the receiving environment of lakes. The alterations are expected to have an impact on fish and fish habitats. The study evaluated the methods used to describe and predict impacts in the aquatic environment and examined models used for predictions in order to assess uncertainty levels. Results of the evaluation demonstrated that additional efforts are needed to document local knowledge of fish use and fish habitat, and that the magnitude of expected changes to fish habitat must be considered relative to the loss of fish habitat. The study also highlighted areas within the EIS that will require further clarification. A number of the studies used in the EIS had small sample sizes that increased the uncertainty of predictions made using the data. Uncertainties related to potential changes in flushing rates and morphological features was also needed. The impact of direct fish mortality from turbine operations was not addressed in a population context, and further information is needed to evaluate potential project-related effects on a species-by-species basis. 3 refs., 4 tabs.

  1. An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Blein, Sophie; Bardel, Claire; Danjean, Vincent

    2015-01-01

    of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected......, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk. CONCLUSIONS: This study illustrates how...... original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects....

  2. Using areas of known occupancy to identify sources of variation in detection probability of raptors: taking time lowers replication effort for surveys.

    Science.gov (United States)

    Murn, Campbell; Holloway, Graham J

    2016-10-01

    Species occurring at low density can be difficult to detect and if not properly accounted for, imperfect detection will lead to inaccurate estimates of occupancy. Understanding sources of variation in detection probability and how they can be managed is a key part of monitoring. We used sightings data of a low-density and elusive raptor (white-headed vulture Trigonoceps occipitalis ) in areas of known occupancy (breeding territories) in a likelihood-based modelling approach to calculate detection probability and the factors affecting it. Because occupancy was known a priori to be 100%, we fixed the model occupancy parameter to 1.0 and focused on identifying sources of variation in detection probability. Using detection histories from 359 territory visits, we assessed nine covariates in 29 candidate models. The model with the highest support indicated that observer speed during a survey, combined with temporal covariates such as time of year and length of time within a territory, had the highest influence on the detection probability. Averaged detection probability was 0.207 (s.e. 0.033) and based on this the mean number of visits required to determine within 95% confidence that white-headed vultures are absent from a breeding area is 13 (95% CI: 9-20). Topographical and habitat covariates contributed little to the best models and had little effect on detection probability. We highlight that low detection probabilities of some species means that emphasizing habitat covariates could lead to spurious results in occupancy models that do not also incorporate temporal components. While variation in detection probability is complex and influenced by effects at both temporal and spatial scales, temporal covariates can and should be controlled as part of robust survey methods. Our results emphasize the importance of accounting for detection probability in occupancy studies, particularly during presence/absence studies for species such as raptors that are widespread and

  3. Genome-wide methylation profiling identifies an essential role of reactive oxygen species in pediatric glioblastoma multiforme and validates a methylome specific for H3 histone family 3A with absence of G-CIMP/isocitrate dehydrogenase 1 mutation.

    Science.gov (United States)

    Jha, Prerana; Pia Patric, Irene Rosita; Shukla, Sudhanshu; Pathak, Pankaj; Pal, Jagriti; Sharma, Vikas; Thinagararanjan, Sivaarumugam; Santosh, Vani; Suri, Vaishali; Sharma, Mehar Chand; Arivazhagan, Arimappamagan; Suri, Ashish; Gupta, Deepak; Somasundaram, Kumaravel; Sarkar, Chitra

    2014-12-01

    Pediatric glioblastoma multiforme (GBM) is rare, and there is a single study, a seminal discovery showing association of histone H3.3 and isocitrate dehydrogenase (IDH)1 mutation with a DNA methylation signature. The present study aims to validate these findings in an independent cohort of pediatric GBM, compare it with adult GBM, and evaluate the involvement of important functionally altered pathways. Genome-wide methylation profiling of 21 pediatric GBM cases was done and compared with adult GBM data (GSE22867). We performed gene mutation analysis of IDH1 and H3 histone family 3A (H3F3A), status evaluation of glioma cytosine-phosphate-guanine island methylator phenotype (G-CIMP), and Gene Ontology analysis. Experimental evaluation of reactive oxygen species (ROS) association was also done. Distinct differences were noted between methylomes of pediatric and adult GBM. Pediatric GBM was characterized by 94 hypermethylated and 1206 hypomethylated cytosine-phosphate-guanine (CpG) islands, with 3 distinct clusters, having a trend to prognostic correlation. Interestingly, none of the pediatric GBM cases showed G-CIMP/IDH1 mutation. Gene Ontology analysis identified ROS association in pediatric GBM, which was experimentally validated. H3F3A mutants (36.4%; all K27M) harbored distinct methylomes and showed enrichment of processes related to neuronal development, differentiation, and cell-fate commitment. Our study confirms that pediatric GBM has a distinct methylome compared with that of adults. Presence of distinct clusters and an H3F3A mutation-specific methylome indicate existence of epigenetic subgroups within pediatric GBM. Absence of IDH1/G-CIMP status further indicates that findings in adult GBM cannot be simply extrapolated to pediatric GBM and that there is a strong need for identification of separate prognostic markers. A possible role of ROS in pediatric GBM pathogenesis is demonstrated for the first time and needs further evaluation. © The Author(s) 2014

  4. POU4F3 mutation screening in Japanese hearing loss patients: Massively parallel DNA sequencing-based analysis identified novel variants associated with autosomal dominant hearing loss.

    Directory of Open Access Journals (Sweden)

    Tomohiro Kitano

    Full Text Available A variant in a transcription factor gene, POU4F3, is responsible for autosomal dominant nonsyndromic hereditary hearing loss, DFNA15. To date, 14 variants, including a whole deletion of POU4F3, have been reported to cause HL in various ethnic groups. In the present study, genetic screening for POU4F3 variants was carried out for a large series of Japanese hearing loss (HL patients to clarify the prevalence and clinical characteristics of DFNA15 in the Japanese population. Massively parallel DNA sequencing of 68 target candidate genes was utilized in 2,549 unrelated Japanese HL patients (probands to identify genomic variations responsible for HL. The detailed clinical features in patients with POU4F3 variants were collected from medical charts and analyzed. Novel 12 POU4F3 likely pathogenic variants (six missense variants, three frameshift variants, and three nonsense variants were successfully identified in 15 probands (2.5% among 602 families exhibiting autosomal dominant HL, whereas no variants were detected in the other 1,947 probands with autosomal recessive or inheritance pattern unknown HL. To obtain the audiovestibular configuration of the patients harboring POU4F3 variants, we collected audiograms and vestibular symptoms of the probands and their affected family members. Audiovestibular phenotypes in a total of 24 individuals from the 15 families possessing variants were characterized by progressive HL, with a large variation in the onset age and severity with or without vestibular symptoms observed. Pure-tone audiograms indicated the most prevalent configuration as mid-frequency HL type followed by high-frequency HL type, with asymmetry observed in approximately 20% of affected individuals. Analysis of the relationship between age and pure-tone average suggested that individuals with truncating variants showed earlier onset and slower progression of HL than did those with non-truncating variants. The present study showed that variants

  5. Mutational analysis of GALT gene in Greek patients with galactosaemia: identification of two novel mutations and clinical evaluation.

    Science.gov (United States)

    Schulpis, Kleopatra H; Thodi, Georgia; Iakovou, Konstantinos; Chatzidaki, Maria; Dotsikas, Yannis; Molou, Elina; Triantafylli, Olga; Loukas, Yannis L

    2017-10-01

    Classical galactosaemia is an inborn error of metabolism due to the deficiency of the enzyme galactose-1-phosphate uridylyltransferase (GALT). The aim of the study was to identify the underlying mutations in Greek patients with GALT deficiency and evaluate their psychomotor and speech development. Patients with GALT deficiency (n = 17) were picked up through neonatal screening. Mutational analysis was conducted via Sanger sequencing, while in silico analysis was used in the cases of novel missense mutations. Psychomotor speech development tests were utilized for the clinical evaluation of the patients. Eleven different mutations in the GALT gene were detected in the patient cohort, including two novel ones. The most frequent mutation was p.Q188R (c.563 A > G). As for the novel mutations, p.M298I (c.894 G > A) was identified in four out of 32 independent alleles, while p.P115S (c.343 C > T) was identified once. Psychomotor evaluation revealed that most of the patients were found in the borderline area (Peabody test), while only two had speech delay problems. The WISK test revealed three patients at borderline limits and two were at lower than normal limits. The mutational spectrum of the GALT gene in Greek patients is presented for the first time. The mutation p.Q188R is the most frequent among Greek patients. Two novel mutations were identified and their potential pathogenicity was estimated. Regarding the phenotypic characteristics, psychomotor disturbances and speech delay were mainly observed among GALT-deficient patients.

  6. Hybrid Capture-Based Comprehensive Genomic Profiling Identifies Lung Cancer Patients with Well-Characterized Sensitizing Epidermal Growth Factor Receptor Point Mutations That Were Not Detected by Standard of Care Testing.

    Science.gov (United States)

    Suh, James H; Schrock, Alexa B; Johnson, Adrienne; Lipson, Doron; Gay, Laurie M; Ramkissoon, Shakti; Vergilio, Jo-Anne; Elvin, Julia A; Shakir, Abdur; Ruehlman, Peter; Reckamp, Karen L; Ou, Sai-Hong Ignatius; Ross, Jeffrey S; Stephens, Philip J; Miller, Vincent A; Ali, Siraj M

    2018-03-14

    In our recent study, of cases positive for epidermal growth factor receptor ( EGFR ) exon 19 deletions using comprehensive genomic profiling (CGP), 17/77 (22%) patients with prior standard of care (SOC) EGFR testing results available were previously negative for exon 19 deletion. Our aim was to compare the detection rates of CGP versus SOC testing for well-characterized sensitizing EGFR point mutations (pm) in our 6,832-patient cohort. DNA was extracted from 40 microns of formalin-fixed paraffin-embedded sections from 6,832 consecutive cases of non-small cell lung cancer (NSCLC) of various histologies (2012-2015). CGP was performed using a hybrid capture, adaptor ligation-based next-generation sequencing assay to a mean coverage depth of 576×. Genomic alterations (pm, small indels, copy number changes and rearrangements) involving EGFR were recorded for each case and compared with prior testing results if available. Overall, there were 482 instances of EGFR exon 21 L858R (359) and L861Q (20), exon 18 G719X (73) and exon 20 S768I (30) pm, of which 103 unique cases had prior EGFR testing results that were available for review. Of these 103 cases, CGP identified 22 patients (21%) with sensitizing EGFR pm that were not detected by SOC testing, including 9/75 (12%) patients with L858R, 4/7 (57%) patients with L861Q, 8/20 (40%) patients with G719X, and 4/7 (57%) patients with S768I pm (some patients had multiple EGFR pm). In cases with available clinical data, benefit from small molecule inhibitor therapy was observed. CGP, even when applied to low tumor purity clinical-grade specimens, can detect well-known EGFR pm in NSCLC patients that would otherwise not be detected by SOC testing. Taken together with EGFR exon 19 deletions, over 20% of patients who are positive for EGFR -activating mutations using CGP are previously negative by SOC EGFR mutation testing, suggesting that thousands of such patients per year in the U.S. alone could experience improved clinical

  7. Clonal mutations in primary human glial tumors: evidence in support of the mutator hypothesis

    Directory of Open Access Journals (Sweden)

    Sarkar Chitra

    2007-10-01

    Full Text Available Abstract Background A verifiable consequence of the mutator hypothesis is that even low grade neoplasms would accumulate a large number of mutations that do not influence the tumor phenotype (clonal mutations. In this study, we have attempted to quantify the number of clonal mutations in primary human gliomas of astrocytic cell origin. These alterations were identified in tumor tissue, microscopically confirmed to have over 70% neoplastic cells. Methods Random Amplified Polymorphic DNA (RAPD analysis was performed using a set of fifteen 10-mer primers of arbitrary but definite sequences in 17 WHO grade II astrocytomas (low grade diffuse astrocytoma or DA and 16 WHO grade IV astrocytomas (Glioblastoma Multiforme or GBM. The RAPD profile of the tumor tissue was compared with that of the leucocyte DNA of the same patient and alteration(s scored. A quantitative estimate of the overall genomic changes in these tumors was obtained by 2 different modes of calculation. Results The overall change in the tumors was estimated to be 4.24% in DA and 2.29% in GBM by one method and 11.96% and 6.03% in DA and GBM respectively by the other. The difference between high and lower grade tumors was statistically significant by both methods. Conclusion This study demonstrates the presence of extensive clonal mutations in gliomas, more in lower grade. This is consistent with our earlier work demonstrating that technique like RAPD analysis, unbiased for locus, is able to demonstrate more intra-tumor genetic heterogeneity in lower grade gliomas compared to higher grade. The results support the mutator hypothesis proposed by Loeb.

  8. Clonal mutations in primary human glial tumors: evidence in support of the mutator hypothesis

    International Nuclear Information System (INIS)

    Misra, Anjan; Chattopadhyay, Parthaprasad; Chosdol, Kunzang; Sarkar, Chitra; Mahapatra, Ashok K; Sinha, Subrata

    2007-01-01

    A verifiable consequence of the mutator hypothesis is that even low grade neoplasms would accumulate a large number of mutations that do not influence the tumor phenotype (clonal mutations). In this study, we have attempted to quantify the number of clonal mutations in primary human gliomas of astrocytic cell origin. These alterations were identified in tumor tissue, microscopically confirmed to have over 70% neoplastic cells. Random Amplified Polymorphic DNA (RAPD) analysis was performed using a set of fifteen 10-mer primers of arbitrary but definite sequences in 17 WHO grade II astrocytomas (low grade diffuse astrocytoma or DA) and 16 WHO grade IV astrocytomas (Glioblastoma Multiforme or GBM). The RAPD profile of the tumor tissue was compared with that of the leucocyte DNA of the same patient and alteration(s) scored. A quantitative estimate of the overall genomic changes in these tumors was obtained by 2 different modes of calculation. The overall change in the tumors was estimated to be 4.24% in DA and 2.29% in GBM by one method and 11.96% and 6.03% in DA and GBM respectively by the other. The difference between high and lower grade tumors was statistically significant by both methods. This study demonstrates the presence of extensive clonal mutations in gliomas, more in lower grade. This is consistent with our earlier work demonstrating that technique like RAPD analysis, unbiased for locus, is able to demonstrate more intra-tumor genetic heterogeneity in lower grade gliomas compared to higher grade. The results support the mutator hypothesis proposed by Loeb

  9. Consequences of Marfan mutations to expression of fibrillin gene and to the structure of microfibrils

    Energy Technology Data Exchange (ETDEWEB)

    Peltonen, L.; Karttunen, L.; Rantamaeki, T. [NPHI, Helsinki (Finland)] [and others

    1994-09-01

    Marfan syndrome (MFS) is a dominantly inherited connective tissue disorder which is caused by mutations in the fibrillin-1 gene (FBN1). Over 40 family-specific FBN1 mutations have been identified. We have characterized 18 different heterozygous mutations including amino acid substitutions, premature stop, and splicing defects leading to deletions or one insertion, and one compound heterozygote with two differently mutated FBN1 alleles inherited from his affected parents. To unravel the consequences of FBN1 mutations to the transcription of FBN1 gene, we have measured the steady state levels of mRNA transcribed from the normal and mutated alleles. The missense mutations do not affect the transcription of the allele while the nonsense mutation leads to lower steady state amount of mutated allele. For the dissection of molecular pathogenesis of FBN1 mutations we have performed rotary shadowing of the microfibrils produced by the cell cultures from MFS patients. The cells from the neonatal patients with established mutations produced only disorganized fibrillin aggregates but no clearly defined microfibrils could be detected, suggesting a major role of this gene region coding for exons 24-26 in stabilization and organization of the bead structure of microfibrils. From the cells of a rare compound heterozygote case carrying two different mutations, no detectable microfibrils could be detected whereas the cells of his parents with heterozygous mutations were able to form identifiable but disorganized microfibrils. In the cells of an MFS case caused by a premature stop removing the C-terminus of fibrillin, the microfibril assembly takes place but the appropriate packing of the microfibrils is disturbed suggesting that C-terminae are actually located within the interbead domain of the microfibrils.

  10. The clinical phenotype of Lynch syndrome due to germline PMS2 mutations

    Science.gov (United States)

    Senter, Leigha; Clendenning, Mark; Sotamaa, Kaisa; Hampel, Heather; Green, Jane; Potter, John D.; Lindblom, Annika; Lagerstedt, Kristina; Thibodeau, Stephen N.; Lindor, Noralane M.; Young, Joanne; Winship, Ingrid; Dowty, James G.; White, Darren M.; Hopper, John L.; Baglietto, Laura; Jenkins, Mark A.; de la Chapelle, Albert

    2009-01-01

    Background and Aims Although the clinical phenotype of Lynch syndrome (also known as Hereditary Nonpolyposis Colorectal Cancer) has been well described, little is known about disease in PMS2 mutation carriers. Now that mutation detection methods can discern mutations in PMS2 from mutations in its pseudogenes, more mutation carriers have been identified. Information about the clinical significance of PMS2 mutations is crucial for appropriate counseling. Here, we report the clinical characteristics of a large series of PMS2 mutation carriers. Methods We performed PMS2 mutation analysis using long range PCR and MLPA for 99 probands diagnosed with Lynch syndrome-associated tumors showing isolated loss of PMS2 by immunohistochemistry. Penetrance was calculated using a modified segregation analysis adjusting for ascertainment. Results Germline PMS2 mutations were detected in 62% of probands (n = 55 monoallelic; 6 biallelic). Among families with monoallelic PMS2 mutations, 65.5% met revised Bethesda guidelines. Compared with the general population, in mutation carriers, the incidence of colorectal cancer was 5.2 fold higher and the incidence of endometrial cancer was 7.5 fold higher. In North America, this translates to a cumulative cancer risk to age 70 of 15–20% for colorectal cancer, 15% for endometrial cancer, and 25–32% for any Lynch syndrome-associated cancer. No elevated risk for non-Lynch syndrome-associated cancers was observed. Conclusions PMS2 mutations contribute significantly to Lynch syndrome but the penetrance for monoallelic mutation carriers appears to be lower than that for the other mismatch repair genes. Modified counseling and cancer surveillance guidelines for PMS2 mutation carriers are proposed. PMID:18602922

  11. The clinical phenotype of Lynch syndrome due to germ-line PMS2 mutations.

    Science.gov (United States)

    Senter, Leigha; Clendenning, Mark; Sotamaa, Kaisa; Hampel, Heather; Green, Jane; Potter, John D; Lindblom, Annika; Lagerstedt, Kristina; Thibodeau, Stephen N; Lindor, Noralane M; Young, Joanne; Winship, Ingrid; Dowty, James G; White, Darren M; Hopper, John L; Baglietto, Laura; Jenkins, Mark A; de la Chapelle, Albert

    2008-08-01

    Although the clinical phenotype of Lynch syndrome (also known as hereditary nonpolyposis colorectal cancer) has been well described, little is known about disease in PMS2 mutation carriers. Now that mutation detection methods can discern mutations in PMS2 from mutations in its pseudogenes, more mutation carriers have been identified. Information about the clinical significance of PMS2 mutations is crucial for appropriate counseling. Here, we report the clinical characteristics of a large series of PMS2 mutation carriers. We performed PMS2 mutation analysis using long-range polymerase chain reaction and multiplex ligation-dependent probe amplification for 99 probands diagnosed with Lynch syndrome-associated tumors showing isolated loss of PMS2 by immunohistochemistry. Penetrance was calculated using a modified segregation analysis adjusting for ascertainment. Germ-line PMS2 mutations were detected in 62% of probands (n = 55 monoallelic; 6 biallelic). Among families with monoallelic PMS2 mutations, 65.5% met revised Bethesda guidelines. Compared with the general population, in mutation carriers, the incidence of colorectal cancer was 5.2-fold higher, and the incidence of endometrial cancer was 7.5-fold higher. In North America, this translates to a cumulative cancer risk to age 70 years of 15%-20% for colorectal cancer, 15% for endometrial cancer, and 25%-32% for any Lynch syndrome-associated cancer. No elevated risk for non-Lynch syndrome-associated cancers was observed. PMS2 mutations contribute significantly to Lynch syndrome, but the penetrance for monoallelic mutation carriers appears to be lower than that for the other mismatch repair genes. Modified counseling and cancer surveillance guidelines for PMS2 mutation carriers are proposed.

  12. Calreticulin Mutations in Myeloproliferative Neoplasms

    Directory of Open Access Journals (Sweden)

    Noa Lavi

    2014-10-01

    Full Text Available With the discovery of the JAK2V617F mutation in patients with Philadelphia chromosome-negative (Ph− myeloproliferative neoplasms (MPNs in 2005, major advances have been made in the diagnosis of MPNs, in understanding of their pathogenesis involving the JAK/STAT pathway, and finally in the development of novel therapies targeting this pathway. Nevertheless, it remains unknown which mutations exist in approximately one-third of patients with non-mutated JAK2 or MPL essential thrombocythemia (ET and primary myelofibrosis (PMF. At the end of 2013, two studies identified recurrent mutations in the gene encoding calreticulin (CALR using whole-exome sequencing. These mutations were revealed in the majority of ET and PMF patients with non-mutated JAK2 or MPL but not in polycythemia vera patients. Somatic 52-bp deletions (type 1 mutations and recurrent 5-bp insertions (type 2 mutations in exon 9 of the CALR gene (the last exon encoding the C-terminal amino acids of the protein calreticulin were detected and found always to generate frameshift mutations. All detected mutant calreticulin proteins shared a novel amino acid sequence at the C-terminal. Mutations in CALR are acquired early in the clonal history of the disease, and they cause activation of JAK/STAT signaling. The CALR mutations are the second most frequent mutations in Ph− MPN patients after the JAK2V617F mutation, and their detection has significantly improved the diagnostic approach for ET and PMF. The characteristics of the CALR mutations as well as their diagnostic, clinical, and pathogenesis implications are discussed in this review.

  13. Medium-chain acyl-CoA dehydrogenase (MCAD) mutations identified by MS/MS-based prospective screening of newborns differ from those observed in patients with clinical symptoms

    DEFF Research Database (Denmark)

    Andresen, B S; Dobrowolski, S F; O'Reilly, L

    2001-01-01

    Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is the most frequently diagnosed mitochondrial beta-oxidation defect, and it is potentially fatal. Eighty percent of patients are homozygous for a common mutation, 985A-->G, and a further 18% have this mutation in only one disease allele. In a...

  14. A prominent large high-density lipoprotein at birth enriched in apolipoprotein C-I identifies a new group of infancts of lower birth weight and younger gestational age

    Energy Technology Data Exchange (ETDEWEB)

    Kwiterovich Jr., Peter O.; Cockrill, Steven L.; Virgil, Donna G.; Garrett, Elizabeth; Otvos, James; Knight-Gibson, Carolyn; Alaupovic, Petar; Forte, Trudy; Farwig, Zachlyn N.; Macfarlane, Ronald D.

    2003-10-01

    Because low birth weight is associated with adverse cardiovascular risk and death in adults, lipoprotein heterogeneity at birth was studied. A prominent, large high-density lipoprotein (HDL) subclass enriched in apolipoprotein C-I (apoC-I) was found in 19 percent of infants, who had significantly lower birth weights and younger gestational ages and distinctly different lipoprotein profiles than infants with undetectable, possible or probable amounts of apoC-I-enriched HDL. An elevated amount of an apoC-I-enriched HDL identifies a new group of low birth weight infants.

  15. Integrating emotional and psychological support into the end-stage renal disease pathway: a protocol for mixed methods research to identify patients' lower-level support needs and how these can most effectively be addressed.

    Science.gov (United States)

    Taylor, Francesca; Taylor, Celia; Baharani, Jyoti; Nicholas, Johann; Combes, Gill

    2016-08-02

    As a result of difficulties related to their illness, diagnosis and treatment, patients with end-stage renal disease experience significant emotional and psychological problems, which untreated can have considerable negative impact on their health and wellbeing. Despite evidence that patients desire improved support, management of their psychosocial problems, particularly at the lower-level, remains sub-optimal. There is limited understanding of the specific support that patients need and want, from whom, and when, and also a lack of data on what helps and hinders renal staff in identifying and responding to their patients' support needs, and how barriers to doing so might be overcome. Through this research we therefore seek to determine what, when, and how, support for patients with lower-level emotional and psychological problems should be integrated into the end-stage renal disease pathway. The research will involve two linked, multicentre studies, designed to identify and consider the perspectives of patients at five different stages of the end-stage renal disease pathway (Study 1), and renal staff working with them (Study 2). A convergent, parallel mixed methods design will be employed for both studies, with quantitative and qualitative data collected separately. For each study, the data sets will be analysed separately and the results then compared or combined using interpretive analysis. A further stage of synthesis will employ data-driven thematic analysis to identify: triangulation and frequency of themes across pathway stages; patterns and plausible explanations of effects. There is an important need for this research given the high frequency of lower-level distress experienced by end-stage renal disease patients and lack of progress to date in integrating support for their lower-level psychosocial needs into the care pathway. Use of a mixed methods design across the two studies will generate a holistic patient and healthcare professional perspective that

  16. CHRNE Mutation and Congenital Myasthenia

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2009-01-01

    Full Text Available The CHRNE e1293insG mutation was identified in 14 (60% of 23 North African families with an early onset form of congenital myasthenic syndrome studied at centers in France, Tunisia, Algeria, and UK.

  17. Deep sequencing of natural and experimental populations of Drosophila melanogaster reveals biases in the spectrum of new mutations.

    Science.gov (United States)

    Assaf, Zoe June; Tilk, Susanne; Park, Jane; Siegal, Mark L; Petrov, Dmitri A

    2017-12-01

    Mutations provide the raw material of evolution, and thus our ability to study evolution depends fundamentally on having precise measurements of mutational rates and patterns. We generate a data set for this purpose using (1) de novo mutations from mutation accumulation experiments and (2) extremely rare polymorphisms from natural populations. The first, mutation accumulation (MA) lines are the product of maintaining flies in tiny populations for many generations, therefore rendering natural selection ineffective and allowing new mutations to accrue in the genome. The second, rare genetic variation from natural populations allows the study of mutation because extremely rare polymorphisms are relatively unaffected by the filter of natural selection. We use both methods in Drosophila melanogaster , first generating our own novel data set of sequenced MA lines and performing a meta-analysis of all published MA mutations (∼2000 events) and then identifying a high quality set of ∼70,000 extremely rare (≤0.1%) polymorphisms that are fully validated with resequencing. We use these data sets to precisely measure mutational rates and patterns. Highlights of our results include: a high rate of multinucleotide mutation events at both short (∼5 bp) and long (∼1 kb) genomic distances, showing that mutation drives GC content lower in already GC-poor regions, and using our precise context-dependent mutation rates to predict long-term evolutionary patterns at synonymous sites. We also show that de novo mutations from independent MA experiments display similar patterns of single nucleotide mutation and well match the patterns of mutation found in natural populations. © 2017 Assaf et al.; Published by Cold Spring Harbor Laboratory Press.

  18. Frequent POLE1 p.S297F mutation in Chinese patients with ovarian endometrioid carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Yang; Liu, Fa-Ying; Liu, Huai; Wang, Feng [Key Laboratory of Women' s Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006 (China); Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006 (China); Li, Wei [Key Laboratory of Women' s Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006 (China); Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006 (China); Graduate School of Nanchang University, Nanchang, Jiangxi 330031 (China); Huang, Mei-Zhen [Graduate School of Nanchang University, Nanchang, Jiangxi 330031 (China); Jiangxi Provincial Cancer Institute, Jiangxi Provincial Cancer Hospital, Nanchang, Jiangxi 330029 (China); Huang, Yan; Yuan, Xiao-Qun [Key Laboratory of Women' s Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006 (China); Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006 (China); Graduate School of Nanchang University, Nanchang, Jiangxi 330031 (China); Xu, Xiao-Yun [Graduate School of Nanchang University, Nanchang, Jiangxi 330031 (China); Jiangxi Provincial Cancer Institute, Jiangxi Provincial Cancer Hospital, Nanchang, Jiangxi 330029 (China); Huang, Ou-Ping, E-mail: huangouping@gmail.com [Jiangxi Provincial Cancer Institute, Jiangxi Provincial Cancer Hospital, Nanchang, Jiangxi 330029 (China); He, Ming, E-mail: jxhm56@hotmail.com [Department of Pharmacology and Molecular Therapeutics, Nanchang University School of Pharmaceutical Science, Nanchang 330006 (China)

    2014-03-15

    The catalytic subunit of DNA polymerase epsilon (POLE1) functions primarily in nuclear DNA replication and repair. Recently, POLE1 mutations were detected frequently in colorectal and endometrial carcinomas while with lower frequency in several other types of cancer, and the p.P286R and p.V411L mutations were the potential mutation hotspots in human cancers. Nevertheless, the mutation frequency of POLE1 in ovarian cancer still remains largely unknown. Here, we screened a total of 251 Chinese samples with distinct subtypes of ovarian carcinoma for the presence of POLE1 hotspot mutations by direct sequencing. A heterozygous somatic POLE1 mutation, p.S297F (c.890C>T), but not p.P286R and p.V411L hotspot mutations observed in other cancer types, was identified in 3 out of 37 (8.1%) patients with ovarian endometrioid carcinoma; this mutation was evolutionarily highly conserved from Homo sapiens to Schizosaccharomyces. Of note, the POLE1 mutation coexisted with mutation in the ovarian cancer-associated PPP2R1A (protein phosphatase 2, regulatory subunit A, α) gene in a 46-year-old patient, who was also diagnosed with ectopic endometriosis in the benign ovary. In addition, a 45-year-old POLE1-mutated ovarian endometrioid carcinoma patient was also diagnosed with uterine leiomyoma while the remaining 52-year-old POLE1-mutated patient showed no additional distinctive clinical manifestation. In contrast to high frequency of POLE1 mutations in ovarian endometrioid carcinoma, no POLE1 mutations were identified in patients with other subtypes of ovarian carcinoma. Our results showed for the first time that the POLE1 p.S297F mutation, but not p.P286R and p.V411L hotspot mutations observed in other cancer types, was frequent in Chinese ovarian endometrioid carcinoma, but absent in other subtypes of ovarian carcinoma. These results implicated that POLE1 p.S297F mutation might be actively involved in the pathogenesis of ovarian endometrioid carcinoma, but might not be actively

  19. Frequent POLE1 p.S297F mutation in Chinese patients with ovarian endometrioid carcinoma

    International Nuclear Information System (INIS)

    Zou, Yang; Liu, Fa-Ying; Liu, Huai; Wang, Feng; Li, Wei; Huang, Mei-Zhen; Huang, Yan; Yuan, Xiao-Qun; Xu, Xiao-Yun; Huang, Ou-Ping; He, Ming

    2014-01-01

    The catalytic subunit of DNA polymerase epsilon (POLE1) functions primarily in nuclear DNA replication and repair. Recently, POLE1 mutations were detected frequently in colorectal and endometrial carcinomas while with lower frequency in several other types of cancer, and the p.P286R and p.V411L mutations were the potential mutation hotspots in human cancers. Nevertheless, the mutation frequency of POLE1 in ovarian cancer still remains largely unknown. Here, we screened a total of 251 Chinese samples with distinct subtypes of ovarian carcinoma for the presence of POLE1 hotspot mutations by direct sequencing. A heterozygous somatic POLE1 mutation, p.S297F (c.890C>T), but not p.P286R and p.V411L hotspot mutations observed in other cancer types, was identified in 3 out of 37 (8.1%) patients with ovarian endometrioid carcinoma; this mutation was evolutionarily highly conserved from Homo sapiens to Schizosaccharomyces. Of note, the POLE1 mutation coexisted with mutation in the ovarian cancer-associated PPP2R1A (protein phosphatase 2, regulatory subunit A, α) gene in a 46-year-old patient, who was also diagnosed with ectopic endometriosis in the benign ovary. In addition, a 45-year-old POLE1-mutated ovarian endometrioid carcinoma patient was also diagnosed with uterine leiomyoma while the remaining 52-year-old POLE1-mutated patient showed no additional distinctive clinical manifestation. In contrast to high frequency of POLE1 mutations in ovarian endometrioid carcinoma, no POLE1 mutations were identified in patients with other subtypes of ovarian carcinoma. Our results showed for the first time that the POLE1 p.S297F mutation, but not p.P286R and p.V411L hotspot mutations observed in other cancer types, was frequent in Chinese ovarian endometrioid carcinoma, but absent in other subtypes of ovarian carcinoma. These results implicated that POLE1 p.S297F mutation might be actively involved in the pathogenesis of ovarian endometrioid carcinoma, but might not be actively

  20. Integrated tumor and germline whole-exome sequencing identifies mutations in MAPK and PI3K pathway genes in an adolescent with rosette-forming glioneuronal tumor of the fourth ventricle

    Science.gov (United States)

    Lin, Frank Y.; Bergstrom, Katie; Person, Richard; Bavle, Abhishek; Ballester, Leomar Y.; Scollon, Sarah; Raesz-Martinez, Robin; Jea, Andrew; Birchansky, Sherri; Wheeler, David A.; Berg, Stacey L.; Chintagumpala, Murali M.; Adesina, Adekunle M.; Eng, Christine; Roy, Angshumoy; Plon, Sharon E.; Parsons, D. Williams

    2016-01-01

    The integration of genome-scale studies such as whole-exome sequencing (WES) into the clinical care of children with cancer has the potential to provide insight into the genetic basis of an individual's cancer with implications for clinical management. This report describes the results of clinical tumor and germline WES for a patient with a rare tumor diagnosis, rosette-forming glioneuronal tumor of the fourth ventricle (RGNT). Three pathogenic gene alterations with implications for clinical care were identified: somatic activating hotspot mutations in FGFR1 (p.N546K) and PIK3CA (p.H1047R) and a germline pathogenic variant in PTPN11 (p.N308S) diagnostic for Noonan syndrome. The molecular landscape of RGNT is not well-described, but these data are consistent with prior observations regarding the importance of the interconnected MAPK and PI3K/AKT/mTOR signaling pathways in this rare tumor. The co-occurrence of FGFR1, PIK3CA, and PTPN11 alterations provides further evidence for consideration of RGNT as a distinct molecular entity from pediatric low-grade gliomas and suggests potential therapeutic strategies for this patient in the event of tumor recurrence as novel agents targeting these pathways enter pediatric clinical trials. Although RGNT has not been definitively linked with cancer predisposition syndromes, two prior cases have been reported in patients with RASopathies (Noonan syndrome and neurofibromatosis type 1 [NF1]), providing an additional link between these tumors and the mitogen-activated protein kinase (MAPK) signaling pathway. In summary, this case provides an example of the potential for genome-scale sequencing technologies to provide insight into the biology of rare tumors and yield both tumor and germline results of potential relevance to patient care. PMID:27626068

  1. Mutations in HPSE2 Cause Urofacial Syndrome

    Science.gov (United States)

    Daly, Sarah B.; Urquhart, Jill E.; Hilton, Emma; McKenzie, Edward A.; Kammerer, Richard A.; Lewis, Malcolm; Kerr, Bronwyn; Stuart, Helen; Donnai, Dian; Long, David A.; Burgu, Berk; Aydogdu, Ozgu; Derbent, Murat; Garcia-Minaur, Sixto; Reardon, Willie; Gener, Blanca; Shalev, Stavit; Smith, Rupert; Woolf, Adrian S.; Black, Graeme C.; Newman, William G.

    2010-01-01

    Urinary voiding dysfunction in childhood, manifesting as incontinence, dysuria, and urinary frequency, is a common condition. Urofacial syndrome (UFS) is a rare autosomal recessive disease characterized by facial grimacing when attempting to smile and failure of the urinary bladder to void completely despite a lack of anatomical bladder outflow obstruction or overt neurological damage. UFS individuals often have reflux of infected urine from the bladder to the upper renal tract, with a risk of kidney damage and renal failure. Whole-genome SNP mapping in one affected individual defined an autozygous region of 16 Mb on chromosome 10q23-q24, within which a 10 kb deletion encompassing exons 8 and 9 of HPSE2 was identified. Homozygous exonic deletions, nonsense mutations, and frameshift mutations in five further unrelated families confirmed HPSE2 as the causative gene for UFS. Mutations were not identified in four additional UFS patients, indicating genetic heterogeneity. We show that HPSE2 is expressed in the fetal and adult central nervous system, where it might be implicated in controlling facial expression and urinary voiding, and also in bladder smooth muscle, consistent with a role in renal tract morphology and function. Our findings have broader implications for understanding the genetic basis of lower renal tract malformations and voiding dysfunction. PMID:20560210

  2. Mutations in HPSE2 cause urofacial syndrome.

    Science.gov (United States)

    Daly, Sarah B; Urquhart, Jill E; Hilton, Emma; McKenzie, Edward A; Kammerer, Richard A; Lewis, Malcolm; Kerr, Bronwyn; Stuart, Helen; Donnai, Dian; Long, David A; Burgu, Berk; Aydogdu, Ozgu; Derbent, Murat; Garcia-Minaur, Sixto; Reardon, Willie; Gener, Blanca; Shalev, Stavit; Smith, Rupert; Woolf, Adrian S; Black, Graeme C; Newman, William G

    2010-06-11

    Urinary voiding dysfunction in childhood, manifesting as incontinence, dysuria, and urinary frequency, is a common condition. Urofacial syndrome (UFS) is a rare autosomal recessive disease characterized by facial grimacing when attempting to smile and failure of the urinary bladder to void completely despite a lack of anatomical bladder outflow obstruction or overt neurological damage. UFS individuals often have reflux of infected urine from the bladder to the upper renal tract, with a risk of kidney damage and renal failure. Whole-genome SNP mapping in one affected individual defined an autozygous region of 16 Mb on chromosome 10q23-q24, within which a 10 kb deletion encompassing exons 8 and 9 of HPSE2 was identified. Homozygous exonic deletions, nonsense mutations, and frameshift mutations in five further unrelated families confirmed HPSE2 as the causative gene for UFS. Mutations were not identified in four additional UFS patients, indicating genetic heterogeneity. We show that HPSE2 is expressed in the fetal and adult central nervous system, where it might be implicated in controlling facial expression and urinary voiding, and also in bladder smooth muscle, consistent with a role in renal tract morphology and function. Our findings have broader implications for understanding the genetic basis of lower renal tract malformations and voiding dysfunction.

  3. Frequencies, Laboratory Features, and Granulocyte Activation in Chinese Patients with CALR-Mutated Myeloproliferative Neoplasms.

    Directory of Open Access Journals (Sweden)

    Haixiu Guo

    Full Text Available Somatic mutations in the CALR gene have been recently identified as acquired alterations in myeloproliferative neoplasms (MPNs. In this study, we evaluated mutation frequencies, laboratory features, and granulocyte activation in Chinese patients with MPNs. A combination of qualitative allele-specific polymerase chain reaction and Sanger sequencing was used to detect three driver mutations (i.e., CALR, JAK2V617F, and MPL. CALR mutations were identified in 8.4% of cases with essential thrombocythemia (ET and 5.3% of cases with primary myelofibrosis (PMF. Moreover, 25% of polycythemia vera, 29.5% of ET, and 48.1% of PMF were negative for all three mutations (JAK2V617F, MPL, and CALR. Compared with those patients with JAK2V617F mutation, CALR-mutated ET patients displayed unique hematological phenotypes, including higher platelet counts, and lower leukocyte counts and hemoglobin levels. Significant differences were not found between Chinese PMF patients with mutants CALR and JAK2V617F in terms of laboratory features. Interestingly, patients with CALR mutations showed markedly decreased levels of leukocyte alkaline phosphatase (LAP expression, whereas those with JAK2V617F mutation presented with elevated levels. Overall, a lower mutant rate of CALR gene and a higher triple-negative rate were identified in the cohort of Chinese patients with MPNs. This result indicates that an undiscovered mutant gene may have a significant role in these patients. Moreover, these pathological features further imply that the disease biology varies considerably between mutants CALR and JAK2V617F.

  4. Identification of MPL R102P Mutation in Hereditary Thrombocytosis.

    Science.gov (United States)

    Bellanné-Chantelot, Christine; Mosca, Matthieu; Marty, Caroline; Favier, Rémi; Vainchenker, William; Plo, Isabelle

    2017-01-01

    The molecular basis of hereditary thrombocytosis is germline mutations affecting the thrombopoietin (TPO)/TPO receptor (MPL)/JAK2 signaling axis. Here, we report one family presenting two cases with a mild thrombocytosis. By sequencing JAK2 and MPL coding exons, we identified a germline MPL R102P heterozygous mutation in the proband and his daughter. Concomitantly, we detected high TPO levels in the serum of these two patients. The mutation was not found in three other unaffected cases from the family except in another proband's daughter who did not present thrombocytosis but had a high TPO level. The MPL R102P mutation was first described in congenital amegakaryocytic thrombocytopenia in a homozygous state with a loss-of-function activity. It was previously shown that MPL R102P was blocked in the endoplasmic reticulum without being able to translocate to the plasma membrane. Thus, this case report identifies for the first time that MPL R102P mutation can differently impact megakaryopoiesis: thrombocytosis or thrombocytopenia depending on the presence of the heterozygous or homozygous state, respectively. The paradoxical effect associated with heterozygous MPL R102P may be due to subnormal cell-surface expression of wild-type MPL in platelets inducing a defective TPO clearance. As a consequence, increased TPO levels may activate megakaryocyte progenitors that express a lower, but still sufficient level of MPL for the induction of proliferation.

  5. Identification of MPL R102P Mutation in Hereditary Thrombocytosis

    Directory of Open Access Journals (Sweden)

    Christine Bellanné-Chantelot

    2017-09-01

    Full Text Available The molecular basis of hereditary thrombocytosis is germline mutations affecting the thrombopoietin (TPO/TPO receptor (MPL/JAK2 signaling axis. Here, we report one family presenting two cases with a mild thrombocytosis. By sequencing JAK2 and MPL coding exons, we identified a germline MPL R102P heterozygous mutation in the proband and his daughter. Concomitantly, we detected high TPO levels in the serum of these two patients. The mutation was not found in three other unaffected cases from the family except in another proband’s daughter who did not present thrombocytosis but had a high TPO level. The MPL R102P mutation was first described in congenital amegakaryocytic thrombocytopenia in a homozygous state with a loss-of-function activity. It was previously shown that MPL R102P was blocked in the endoplasmic reticulum without being able to translocate to the plasma membrane. Thus, this case report identifies for the first time that MPL R102P mutation can differently impact megakaryopoiesis: thrombocytosis or thrombocytopenia depending on the presence of the heterozygous or homozygous state, respectively. The paradoxical effect associated with heterozygous MPL R102P may be due to subnormal cell-surface expression of wild-type MPL in platelets inducing a defective TPO clearance. As a consequence, increased TPO levels may activate megakaryocyte progenitors that express a lower, but still sufficient level of MPL for the induction of proliferation.

  6. Mutations in Splicing Factor Genes Are a Major Cause of Autosomal Dominant Retinitis Pigmentosa in Belgian Families

    Science.gov (United States)

    Coppieters, Frauke; Roels, Dimitri; De Jaegere, Sarah; Flipts, Helena; De Zaeytijd, Julie; Walraedt, Sophie; Claes, Charlotte; Fransen, Erik; Van Camp, Guy; Depasse, Fanny; Casteels, Ingele; de Ravel, Thomy

    2017-01-01

    Purpose Autosomal dominant retinitis pigmentosa (adRP) is characterized by an extensive genetic heterogeneity, implicating 27 genes, which account for 50 to 70% of cases. Here 86 Belgian probands with possible adRP underwent genetic testing to unravel the molecular basis and to assess the contribution of the genes underlying their condition. Methods Mutation detection methods evolved over the past ten years, including mutation specific methods (APEX chip analysis), linkage analysis, gene panel analysis (Sanger sequencing, targeted next-generation sequencing or whole exome sequencing), high-resolution copy number screening (customized microarray-based comparative genomic hybridization). Identified variants were classified following American College of Medical Genetics and Genomics (ACMG) recommendations. Results Molecular genetic screening revealed mutations in 48/86 cases (56%). In total, 17 novel pathogenic mutations were identified: four missense mutations in RHO, five frameshift mutations in RP1, six mutations in genes encoding spliceosome components (SNRNP200, PRPF8, and PRPF31), one frameshift mutation in PRPH2, and one frameshift mutation in TOPORS. The proportion of RHO mutations in our cohort (14%) is higher than reported in a French adRP population (10.3%), but lower than reported elsewhere (16.5–30%). The prevalence of RP1 mutations (10.5%) is comparable to other populations (3.5%-10%). The mutation frequency in genes encoding splicing factors is unexpectedly high (altogether 19.8%), with PRPF31 the second most prevalent mutated gene (10.5%). PRPH2 mutations were found in 4.7% of the Belgian cohort. Two families (2.3%) have the recurrent NR2E3 mutation p.(Gly56Arg). The prevalence of the recurrent PROM1 mutation p.(Arg373Cys) was higher than anticipated (3.5%). Conclusions Overall, we identified mutations in 48 of 86 Belgian adRP cases (56%), with the highest prevalence in RHO (14%), RP1 (10.5%) and PRPF31 (10.5%). Finally, we expanded the molecular

  7. Mutations causative of familial hypercholesterolaemia

    DEFF Research Database (Denmark)

    Benn, Marianne; Watts, Gerald F; Tybjærg-Hansen, Anne

    2016-01-01

    causing mutations in 98 098 participants from the general population, the Copenhagen General Population Study. METHODS AND RESULTS: We genotyped for LDLR[W23X;W66G;W556S] and APOB[R3500Q] accounting for 38.7% of pathogenic FH mutations in Copenhagen. Clinical FH assessment excluded mutation information......-cholesterol concentration to discriminate between mutation carriers and non-carriers was 4.4 mmol/L. CONCLUSION: Familial hypercholesterolaemia-causing mutations are estimated to occur in 1:217 in the general population and are best identified by a definite or probable phenotypic diagnosis of FH based on the DLCN criteria....... The prevalence of the four FH mutations was 0.18% (1:565), suggesting a total prevalence of FH mutations of 0.46% (1:217). Using the Dutch Lipid Clinic Network (DLCN) criteria, odds ratios for an FH mutation were 439 (95% CI: 170-1 138) for definite FH, 90 (53-152) for probable FH, and 18 (13-25) for possible FH...

  8. Critical mutation rate has an exponential dependence on population size in haploid and diploid populations.

    Directory of Open Access Journals (Sweden)

    Elizabeth Aston

    Full Text Available Understanding the effect of population size on the key parameters of evolution is particularly important for populations nearing extinction. There are evolutionary pressures to evolve sequences that are both fit and robust. At high mutation rates, individuals with greater mutational robustness can outcompete those with higher fitness. This is survival-of-the-flattest, and has been observed in digital organisms, theoretically, in simulated RNA evolution, and in RNA viruses. We introduce an algorithmic method capable of determining the relationship between population size, the critical mutation rate at which individuals with greater robustness to mutation are favoured over individuals with greater fitness, and the error threshold. Verification for this method is provided against analytical models for the error threshold. We show that the critical mutation rate for increasing haploid population sizes can be approximated by an exponential function, with much lower mutation rates tolerated by small populations. This is in contrast to previous studies which identified that critical mutation rate was independent of population size. The algorithm is extended to diploid populations in a system modelled on the biological process of meiosis. The results confirm that the relationship remains exponential, but show that both the critical mutation rate and error threshold are lower for diploids, rather than higher as might have been expected. Analyzing the transition from critical mutation rate to error threshold provides an improved definition of critical mutation rate. Natural populations with their numbers in decline can be expected to lose genetic material in line with the exponential model, accelerating and potentially irreversibly advancing their decline, and this could potentially affect extinction, recovery and population management strategy. The effect of population size is particularly strong in small populations with 100 individuals or less; the

  9. Correlation between 18F Fluorodeoxyglucose uptake and epidermal growth factor receptor mutations in advanced lung cancer

    International Nuclear Information System (INIS)

    Choi, Yun Jung; Cho, Byoung Chul; Jeong, Youg Hyu; Seo, Hyo Jung; Kim, Hyun Jeong; Cho, Arthur; Lee, Jae Hoon; Yun, Mi Jin; Jeon, Tae Joo; Lee, Jong Doo; Kang, Won Jun

    2012-01-01

    Mutations in the epidermal growth factor receptor (EGFR)gene have been identified as potential targets for the treatment and prognostic factors for non small cell lung cancer (NSCLC). We assessed the correlation between fluorodeoxyglucose (FDG) uptake and EGFR mutations, as well as their prognostic implications. A total of 163 patients with pathologically confirmed NSCLC were enrolled (99 males and 64 females; median age, 60 years). All patients underwent FDG positron emission tomography before treatment, and genetic studies of EGFR mutations were performed. The maximum standardized uptake value (SUVmax)of the primary lung cancer was measured and normalized with regard to liver uptake. The SUVmax between the wild type and EGFR mutant groups was compared. Survival was evaluated according to SUVmax and EGFR mutation status. EGFR mutations were found in 57 patients (60.8%). The SUVmax tended to be higher in wild type than mutant tumors, but was not significantly different (11.1±5.7 vs. 9.8±4.4, P=0.103). The SUVmax was significantly lower in patients with an exon 19 mutation than in those with either an exon 21 mutation or wild type (P=0.003 and 0.009, respectively). The EGFR mutation showed prolonged overall survival (OS) compared to wild type tumors (P=0.004). There was no significant difference in survival according to SUVmax. Both OS and progression free survival of patients with a mutation in exon 19 were significant longer than in patients with wild type tumors. In patients with NSCLC, a mutation in exon 19 was associated with a lower SUVmax and is a reliable predictor for good survival

  10. Mutations in galactosemia

    Energy Technology Data Exchange (ETDEWEB)

    Reichardt, J.K.V. [Univ. of Southern California School of Medicine, Los Angeles, CA (United States)

    1995-10-01

    This Letter raises four issues concerning two papers on galactosemia published in the March 1995 of the Journal. First, table 2 in the paper by Elsas et al. incorrectly attributes seven galactose-l-phosphate uridyl transferase (GALT) mutations (S135L, L195P, K285N, N314D, R333W, R333G, and K334R). The table also fails to mention that others have reported the same two findings attributed to {open_quotes}Leslie et al.; Elsas et al. and in press{close_quotes} and {open_quotes}Leslie et al.; Elsas et al.{close_quotes} The first finding on the prevalence of the Q188R galactosemia mutation in the G/G Caucasian population has also been described by Ng et al., and the second finding on the correlation of the N314D GALT mutation with the Duarte variant was reported by Lin et al. Second, Elsas et al. suggest that the E203K and N314D mutations may {open_quotes}produce intra-allelic complementation when in cis{close_quotes}. This speculation is supported by the activity data of individual III-2 but is inconsistent with the activities of three other individuals I-1, II-1, and III-1 of the same pedigree. The GALT activity measured in these three individuals suggests a dominant negative effect of E203K in E203K-N314D chromosomes, since they all have less than normal activity. Thus, the preponderance of the data in this paper is at odds with the authors speculation. It is worth recalling that Lin et al. also identified four N314D GALT mutations on 95 galactosemic chromosomes examined. A similar situation also appears to be the case in proband III-1 (with genotype E203K-N314D/IVSC) in the Elsas et al. paper. 9 refs.

  11. Glucokinase gene mutations: structural and genotype-phenotype analyses in MODY children from South Italy.

    Directory of Open Access Journals (Sweden)

    Nadia Tinto

    Full Text Available BACKGROUND: Maturity onset diabetes of the young type 2 (or GCK MODY is a genetic form of diabetes mellitus provoked by mutations in the glucokinase gene (GCK. METHODOLOGY/PRINCIPAL FINDINGS: We screened the GCK gene by direct sequencing in 30 patients from South Italy with suspected MODY. The mutation-induced structural alterations in the protein were analyzed by molecular modeling. The patients' biochemical, clinical and anamnestic data were obtained. Mutations were detected in 16/30 patients (53%; 9 of the 12 mutations identified were novel (p.Glu70Asp, p.Phe123Leu, p.Asp132Asn, p.His137Asp, p.Gly162Asp, p.Thr168Ala, p.Arg392Ser, p.Glu290X, p.Gln106_Met107delinsLeu and are in regions involved in structural rearrangements required for catalysis. The prevalence of mutation sites was higher in the small domain (7/12: approximately 59% than in the large (4/12: 33% domain or in the connection (1/12: 8% region of the protein. Mild diabetic phenotypes were detected in almost all patients [mean (SD OGTT = 7.8 mMol/L (1.8] and mean triglyceride levels were lower in mutated than in unmutated GCK patients (p = 0.04. CONCLUSIONS: The prevalence of GCK MODY is high in southern Italy, and the GCK small domain is a hot spot for MODY mutations. Both the severity of the GCK mutation and the genetic background seem to play a relevant role in the GCK MODY phenotype. Indeed, a partial genotype-phenotype correlation was identified in related patients (3 pairs of siblings but not in two unrelated children bearing the same mutation. Thus, the molecular approach allows the physician to confirm the diagnosis and to predict severity of the mutation.

  12. MDS-associated somatic mutations and clonal hematopoiesis are common in idiopathic cytopenias of undetermined significance.

    Science.gov (United States)

    Kwok, Brian; Hall, Jeff M; Witte, John S; Xu, Yin; Reddy, Prashanti; Lin, Keming; Flamholz, Rachel; Dabbas, Bashar; Yung, Aine; Al-Hafidh, Jenan; Balmert, Emily; Vaupel, Christine; El Hader, Carlos; McGinniss, Matthew J; Nahas, Shareef A; Kines, Julie; Bejar, Rafael

    2015-11-19

    Establishing a diagnosis in patients suspected of having a myelodysplastic syndrome (MDS) can be challenging and could be informed by the identification of somatic mutations. We performed a prospective study to examine the frequency and types of mutations encountered in 144 patients with unexplained cytopenias. Based on bone marrow findings, 17% were diagnosed with MDS, 15% with idiopathic cytopenias of undetermined significance (ICUS) and some evidence of dysplasia, and 69% with ICUS and no dysplasia. Bone marrow DNA was sequenced for mutations in 22 frequently mutated myeloid malignancy genes. Somatic mutations were identified in 71% of MDS patients, 62% of patients with ICUS and some dysplasia, and 20% of ICUS patients and no dysplasia. In total, 35% of ICUS patients carried a somatic mutation or chromosomal abnormality indicative of clonal hematopoiesis. We validated these results in a cohort of 91 lower-risk MDS and 249 ICUS cases identified over a 6-month interval. Mutations were found in 79% of those with MDS, in 45% of those with ICUS with dysplasia, and in 17% of those with ICUS without dysplasia. The spectrum of mutated genes was similar with the exception of SF3B1 which was rarely mutated in patients without dysplasia. Variant allele fractions were comparable between clonal ICUS (CCUS) and MDS as were mean age and blood counts. We demonstrate that CCUS is a more frequent diagnosis than MDS in cytopenic patients. Clinical and mutational features are similar in these groups and may have diagnostic utility once outcomes in CCUS patients are better understood. © 2015 by The American Society of Hematology.

  13. Mutations in the thyrotropin receptor signal transduction pathway in the hyperfunctioning thyroid nodules from multinodular goiters: a study in the Turkish population.

    Science.gov (United States)

    Gozu, Hulya; Avsar, Melike; Bircan, Rifat; Sahin, Serap; Deyneli, Oguzhan; Cirakoglu, Beyazit; Akalin, Sema

    2005-10-01

    Many studies have been carried out to determine G(s) alpha and TSHR mutations in autonomously functioning thyroid nodules. Variable prevalences for somatic constitutively activating TSHR mutations in hot nodules have been reported. Moreover, the increased prevalence of toxic multinodular goiters in iodine-deficient regions is well known. In Turkey, a country with high incidence rates of goiter due to iodine deficiency, the frequency of mutations in the thyrotropin receptor signal transduction pathway has not been evaluated up to now. In the present study, a part of the genes of the TSHR, G(s)alpha and the catalytic subunit of the PKA were checked for activating mutations. Thirty-five patients who underwent thyroidectomy for multinodular goiters were examined. Genomic DNAs were extracted from 58 hyperactive nodular specimens and surrounding normal thyroid tissues. Mutation screening was done by single-strand conformational polymorphism (SSCP) analysis. In those cases where a mutation was detected, the localization of the mutation was determined by automatic DNA sequencing. No G(s)alpha or PKA mutations were detected, whereas ten mutations (17%) were identified in the TSHR gene. All mutations were somatic and heterozygotic. In conclusion, the frequency of mutations in the cAMP signal transduction pathway was found to be lower than expected in the Turkish population most likely because of the use of SSCP as a screening method and sequencing only a part of TSHR exon 10.

  14. Fragment length analysis screening for detection of CEBPA mutations in intermediate-risk karyotype acute myeloid leukemia.

    Science.gov (United States)

    Fuster, Oscar; Barragán, Eva; Bolufer, Pascual; Such, Esperanza; Valencia, Ana; Ibáñez, Mariam; Dolz, Sandra; de Juan, Inmaculada; Jiménez, Antonio; Gómez, Maria Teresa; Buño, Ismael; Martínez, Joaquín; Cervera, José; Montesinos, Pau; Moscardó, Federico; Sanz, Miguel Ángel

    2012-01-01

    During last years, molecular markers have been increased as prognostic factors routinely screened in acute myeloid leukemia (AML). Recently, an increasing interest has been reported in introducing to clinical practice screening for mutations in the CCAAT/enhancer-binding protein α (CEBPA) gene in AML, as it seems to be a good prognostic factor. However, there is no reliable established method for assessing CEBPA mutations during the diagnostic work-up of AMLs. We describe here a straightforward and reliable fragment analysis method based in PCR capillary electrophoresis (PCR-CE) for screening of CEBPA mutations; moreover, we present the results obtained in 151 intermediate-risk karyotype AML patients (aged 16-80 years). The method gave a specificity of 100% and sensitivity of 93% with a lower detection limit of 1-5% for CEBPA mutations. The series found 19 mutations and four polymorphisms in 12 patients, seven of whom (58%) presented two mutations. The overall frequency of CEBPA mutations in AML was 8% (n = 12). CEBPA mutations showed no coincidence with FLT3-ITD or NPM1 mutations. CEBPA mutation predicted better disease-free survival in the group of patients without FLT3-ITD, NPM, or both genes mutated (HR 3.6, IC 95%; 1.0-13.2, p = 0.05) and better overall survival in patients younger than 65 of this group without molecular markers (HR 4.0, IC 95%; 1.0-17.4, p = 0.05). In conclusion, the fragment analysis method based in PCR-CE is a rapid, specific, and sensitive method for CEBPA mutation screening and our results confirm that CEBPA mutations can identify a subgroup of patients with favorable prognosis in AML with intermediate-risk karyotype.

  15. Expanding the mutation and clinical spectrum of Roberts syndrome.

    Science.gov (United States)

    Afifi, Hanan H; Abdel-Salam, Ghada M H; Eid, Maha M; Tosson, Angie M S; Shousha, Wafaa Gh; Abdel Azeem, Amira A; Farag, Mona K; Mehrez, Mennat I; Gaber, Khaled R

    2016-07-01

    Roberts syndrome and SC phocomelia syndrome are rare autosomal recessive genetic disorders representing the extremes of the spectrum of severity of the same condition, caused by mutations in ESCO2 gene. We report three new patients with Roberts syndrome from three unrelated consanguineous Egyptian families. All patients presented with growth retardation, mesomelic shortening of the limbs more in the upper than in the lower limbs and microcephaly. Patients were subjected to clinical, cytogenetic and radiologic examinations. Cytogenetic analysis showed the characteristic premature separation of centromeres and puffing of heterochromatic regions. Further, sequencing of the ESCO2 gene identified a novel mutation c.244_245dupCT (p.T83Pfs*20) in one family besides two previously reported mutations c.760_761insA (p.T254Nfs*27) and c.764_765delTT (p.F255Cfs*25). All mutations were in homozygous state, in exon 3. The severity of the mesomelic shortening of the limbs and craniofacial anomalies showed variability among patients. Interestingly, patient 1 had abnormal skin hypopigmentation. Serial fetal ultrasound examinations and measurements of long bones diagnosed two affected fetuses in two of the studied families. A literature review and case comparison was performed. In conclusion, we report a novel ESCO2 mutation and expand the clinical spectrum of Roberts syndrome. © 2015 Japanese Teratology Society.

  16. BRAF mutations in conjunctival melanoma

    DEFF Research Database (Denmark)

    Larsen, Ann-Cathrine; Dahl, Christina; Dahmcke, Christina M.

    2016-01-01

    with atypia. BRAF mutations were identified in 39 of 111 (35%) cases. The rate ratio of BRAF-mutated versus BRAF-wild-type melanoma did not change over time. BRAF mutations were associated with T1 stage (p = 0.007), young age (p = 0.001), male gender (p = 0.02), sun-exposed location (p = 0.01), mixed....../non-pigmented tumour colour (p = 0.02) and nevus origin (p = 0.005), but did not associate with prognosis. BRAF status in conjunctival melanoma and paired premalignant lesions corresponded in 19 of 20 cases. Immunohistochemistry detected BRAF V600E mutations with a sensitivity of 0.94 and a specificity of 1...

  17. HNPCC: Six new pathogenic mutations

    Directory of Open Access Journals (Sweden)

    Epplen Joerg T

    2004-06-01

    Full Text Available Abstract Background Hereditary non-polyposis colorectal cancer (HNPCC is an autosomal dominant disease with a high risk for colorectal and endometrial cancer caused by germline mutations in DNA mismatch-repair genes (MMR. HNPCC accounts for approximately 2 to 5% of all colorectal cancers. Here we present 6 novel mutations in the DNA mismatch-repair genes MLH1, MSH2 and MSH6. Methods Patients with clinical diagnosis of HNPCC were counselled. Tumor specimen were analysed for microsatellite instability and immunohistochemistry for MLH1, MSH2 and MSH6 protein was performed. If one of these proteins was not detectable in the tumor mutation analysis of the corresponding gene was carried out. Results We identified 6 frameshift mutations (2 in MLH1, 3 in MSH2, 1 in MSH6 resulting in a premature stop: two mutations in MLH1 (c.2198_2199insAACA [p.N733fsX745], c.2076_2077delTG [p.G693fsX702], three mutations in MSH2 (c.810_811delGT [p.C271fsX282], c.763_766delAGTGinsTT [p.F255fsX282], c.873_876delGACT [p.L292fsX298] and one mutation in MSH6 (c.1421_1422dupTG [p.C475fsX480]. All six tumors tested for microsatellite instability showed high levels of microsatellite instability (MSI-H. Conclusions HNPCC in families with MSH6 germline mutations may show an age of onset that is comparable to this of patients with MLH1 and MSH2 mutations.

  18. MLL2 mutation detection in 86 patients with Kabuki syndrome: a genotype-phenotype study.

    Science.gov (United States)

    Makrythanasis, P; van Bon, B W; Steehouwer, M; Rodríguez-Santiago, B; Simpson, M; Dias, P; Anderlid, B M; Arts, P; Bhat, M; Augello, B; Biamino, E; Bongers, E M H F; Del Campo, M; Cordeiro, I; Cueto-González, A M; Cuscó, I; Deshpande, C; Frysira, E; Izatt, L; Flores, R; Galán, E; Gener, B; Gilissen, C; Granneman, S M; Hoyer, J; Yntema, H G; Kets, C M; Koolen, D A; Marcelis, C l; Medeira, A; Micale, L; Mohammed, S; de Munnik, S A; Nordgren, A; Psoni, S; Reardon, W; Revencu, N; Roscioli, T; Ruiterkamp-Versteeg, M; Santos, H G; Schoumans, J; Schuurs-Hoeijmakers, J H M; Silengo, M C; Toledo, L; Vendrell, T; van der Burgt, I; van Lier, B; Zweier, C; Reymond, A; Trembath, R C; Perez-Jurado, L; Dupont, J; de Vries, B B A; Brunner, H G; Veltman, J A; Merla, G; Antonarakis, S E; Hoischen, A

    2013-12-01

    Recently, pathogenic variants in the MLL2 gene were identified as the most common cause of Kabuki (Niikawa-Kuroki) syndrome (MIM#147920). To further elucidate the genotype-phenotype correlation, we studied a large cohort of 86 clinically defined patients with Kabuki syndrome (KS) for mutations in MLL2. All patients were assessed using a standardized phenotype list and all were scored using a newly developed clinical score list for KS (MLL2-Kabuki score 0-10). Sequencing of the full coding region and intron-exon boundaries of MLL2 identified a total of 45 likely pathogenic mutations (52%): 31 nonsense, 10 missense and four splice-site mutations, 34 of which were novel. In five additional patients, novel, i.e. non-dbSNP132 variants of clinically unknown relevance, were identified. Patients with likely pathogenic nonsense or missense MLL2 mutations were usually more severely affected (median 'MLL2-Kabuki score' of 6) as compared to the patients without MLL2 mutations (median 'MLL2-Kabuki score' of 5), a significant difference (p < 0.0014). Several typical facial features such as large dysplastic ears, arched eyebrows with sparse lateral third, blue sclerae, a flat nasal tip with a broad nasal root, and a thin upper and a full lower lip were observed more often in mutation positive patients. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Mutation Analysis in Classical Phenylketonuria Patients Followed by Detecting Haplotypes Linked to Some PAH Mutations.

    Science.gov (United States)

    Dehghanian, Fatemeh; Silawi, Mohammad; Tabei, Seyed M B

    2017-02-01

    Deficiency of phenylalanine hydroxylase (PAH) enzyme and elevation of phenylalanine in body fluids cause phenylketonuria (PKU). The gold standard for confirming PKU and PAH deficiency is detecting causal mutations by direct sequencing of the coding exons and splicing involved sequences of the PAH gene. Furthermore, haplotype analysis could be considered as an auxiliary approach for detecting PKU causative mutations before direct sequencing of the PAH gene by making comparisons between prior detected mutation linked-haplotypes and new PKU case haplotypes with undetermined mutations. In this study, 13 unrelated classical PKU patients took part in the study detecting causative mutations. Mutations were identified by polymerase chain reaction (PCR) and direct sequencing in all patients. After that, haplotype analysis was performed by studying VNTR and PAHSTR markers (linked genetic markers of the PAH gene) through application of PCR and capillary electrophoresis (CE). Mutation analysis was performed successfully and the detected mutations were as follows: c.782G>A, c.754C>T, c.842C>G, c.113-115delTCT, c.688G>A, and c.696A>G. Additionally, PAHSTR/VNTR haplotypes were detected to discover haplotypes linked to each mutation. Mutation detection is the best approach for confirming PAH enzyme deficiency in PKU patients. Due to the relatively large size of the PAH gene and high cost of the direct sequencing in developing countries, haplotype analysis could be used before DNA sequencing and mutation detection for a faster and cheaper way via identifying probable mutated exons.

  20. Calreticulin Mutations in Bulgarian MPN Patients.

    Science.gov (United States)

    Pavlov, Ivan; Hadjiev, Evgueniy; Alaikov, Tzvetan; Spassova, Sylva; Stoimenov, Angel; Naumova, Elissaveta; Shivarov, Velizar; Ivanova, Milena

    2018-01-01

    Somatic mutations in JAK2, MPL and CALR are recurrently identified in most of the cases with Philadelphia chromosome negative myeloproliferative neoplasms (MPNs). We applied four molecular genetic methods for identification of CALR exon 9 mutations, including high resolution melt (HRM) analysis, Sanger sequencing, semiconductor target genes sequencing and whole exome sequencing. A total of 78 patients with myeloid malignancies were included in the study. We identified 14 CALR exon 9 mutated cases out of 78 studied patients with myeloid malignancies. All mutated patients were diagnosed with MPN being either PMF (n = 7) or ET (n = 7). Nine cases had type 1 mutations and 5 cases had type 2 mutations. CALR exon 9, MPL exon 10 and JAK2 p. V617F were mutually exclusive. There were no statistically significant differences in the hematological parameters between the cases with CALR and JAK2 or MPL mutations. Notably, all four techniques were fully concordant in the detection of CALR mutations. This is one of the few reports on the CALR mutations frequency in South-eastern populations. Our study shows that the frequency and patterns of these mutations is identical to those in the patients' cohorts from Western countries. Besides we demonstrated the utility of four different methods for their detection.

  1. Recurrent SETBP1 mutations in atypical chronic myeloid leukemia

    Science.gov (United States)

    Piazza, Rocco; Valletta, Simona; Winkelmann, Nils; Redaelli, Sara; Spinelli, Roberta; Pirola, Alessandra; Antolini, Laura; Mologni, Luca; Donadoni, Carla; Papaemmanuil, Elli; Schnittger, Susanne; Kim, Dong-Wook; Boultwood, Jacqueline; Rossi, Fabio; Gaipa, Giuseppe; De Martini, Greta P; di Celle, Paola Francia; Jang, Hyun Gyung; Fantin, Valeria; Bignell, Graham R; Magistroni, Vera; Haferlach, Torsten; Pogliani, Enrico Maria; Campbell, Peter J; Chase, Andrew J; Tapper, William J; Cross, Nicholas C P; Gambacorti-Passerini, Carlo

    2013-01-01

    Atypical chronic myeloid leukemia (aCML) shares clinical and laboratory features with CML, but it lacks the BCR-ABL1 fusion. We performed exome sequencing of eight aCMLs and identified somatic alterations of SETBP1 (encoding a p.Gly870Ser alteration) in two cases. Targeted resequencing of 70 aCMLs, 574 diverse hematological malignancies and 344 cancer cell lines identified SETBP1 mutations in 24 cases, including 17 of 70 aCMLs (24.3%; 95% confidence interval (CI) = 16–35%). Most mutations (92%) were located between codons 858 and 871 and were identical to changes seen in individuals with Schinzel-Giedion syndrome. Individuals with mutations had higher white blood cell counts (P = 0.008) and worse prognosis (P = 0.01). The p.Gly870Ser alteration abrogated a site for ubiquitination, and cells exogenously expressing this mutant exhibited higher amounts of SETBP1 and SET protein, lower PP2A activity and higher proliferation rates relative to those expressing the wild-type protein. In summary, mutated SETBP1 represents a newly discovered oncogene present in aCML and closely related diseases. PMID:23222956

  2. a photoreceptor gene mutation in an indigenous black african family

    African Journals Online (AJOL)

    MUTATION IN AN INDIGENOUS. BLACK AFRICAN FAMILY WITH. RETINITIS PIGMENTOSA. IDENTIFIED USING A RAPID. SCREENING APPROACH FOR. COMMON RHODOPSIN. MUTATIONS. JGreenberg, T Franz, R Goliath, R Ramesar. Hereditary retinal degenerations may be subdivided into those affecting ...

  3. Mutational landscape of EGFR-, MYC-, and Kras-driven genetically engineered mouse models of lung adenocarcinoma.

    Science.gov (United States)

    McFadden, David G; Politi, Katerina; Bhutkar, Arjun; Chen, Frances K; Song, Xiaoling; Pirun, Mono; Santiago, Philip M; Kim-Kiselak, Caroline; Platt, James T; Lee, Emily; Hodges, Emily; Rosebrock, Adam P; Bronson, Roderick T; Socci, Nicholas D; Hannon, Gregory J; Jacks, Tyler; Varmus, Harold

    2016-10-18

    Genetically engineered mouse models (GEMMs) of cancer are increasingly being used to assess putative driver mutations identified by large-scale sequencing of human cancer genomes. To accurately interpret experiments that introduce additional mutations, an understanding of the somatic genetic profile and evolution of GEMM tumors is necessary. Here, we performed whole-exome sequencing of tumors from three GEMMs of lung adenocarcinoma driven by mutant epidermal growth factor receptor (EGFR), mutant Kirsten rat sarcoma viral oncogene homolog (Kras), or overexpression of MYC proto-oncogene. Tumors from EGFR- and Kras-driven models exhibited, respectively, 0.02 and 0.07 nonsynonymous mutations per megabase, a dramatically lower average mutational frequency than observed in human lung adenocarcinomas. Tumors from models driven by strong cancer drivers (mutant EGFR and Kras) harbored few mutations in known cancer genes, whereas tumors driven by MYC, a weaker initiating oncogene in the murine lung, acquired recurrent clonal oncogenic Kras mutations. In addition, although EGFR- and Kras-driven models both exhibited recurrent whole-chromosome DNA copy number alterations, the specific chromosomes altered by gain or loss were different in each model. These data demonstrate that GEMM tumors exhibit relatively simple somatic genotypes compared with human cancers of a similar type, making these autochthonous model systems useful for additive engineering approaches to assess the potential of novel mutations on tumorigenesis, cancer progression, and drug sensitivity.

  4. Mutational landscape of EGFR-, MYC-, and Kras-driven genetically engineered mouse models of lung adenocarcinoma

    Science.gov (United States)

    McFadden, David G.; Politi, Katerina; Bhutkar, Arjun; Chen, Frances K.; Song, Xiaoling; Pirun, Mono; Santiago, Philip M.; Kim-Kiselak, Caroline; Platt, James T.; Lee, Emily; Hodges, Emily; Rosebrock, Adam P.; Bronson, Roderick T.; Socci, Nicholas D.; Hannon, Gregory J.; Jacks, Tyler; Varmus, Harold

    2016-01-01

    Genetically engineered mouse models (GEMMs) of cancer are increasingly being used to assess putative driver mutations identified by large-scale sequencing of human cancer genomes. To accurately interpret experiments that introduce additional mutations, an understanding of the somatic genetic profile and evolution of GEMM tumors is necessary. Here, we performed whole-exome sequencing of tumors from three GEMMs of lung adenocarcinoma driven by mutant epidermal growth factor receptor (EGFR), mutant Kirsten rat sarcoma viral oncogene homolog (Kras), or overexpression of MYC proto-oncogene. Tumors from EGFR- and Kras-driven models exhibited, respectively, 0.02 and 0.07 nonsynonymous mutations per megabase, a dramatically lower average mutational frequency than observed in human lung adenocarcinomas. Tumors from models driven by strong cancer drivers (mutant EGFR and Kras) harbored few mutations in known cancer genes, whereas tumors driven by MYC, a weaker initiating oncogene in the murine lung, acquired recurrent clonal oncogenic Kras mutations. In addition, although EGFR- and Kras-driven models both exhibited recurrent whole-chromosome DNA copy number alterations, the specific chromosomes altered by gain or loss were different in each model. These data demonstrate that GEMM tumors exhibit relatively simple somatic genotypes compared with human cancers of a similar type, making these autochthonous model systems useful for additive engineering approaches to assess the potential of novel mutations on tumorigenesis, cancer progression, and drug sensitivity. PMID:27702896

  5. Experimental evolution and the dynamics of genomic mutation rate modifiers.

    Science.gov (United States)

    Raynes, Y; Sniegowski, P D

    2014-11-01

    Because genes that affect mutation rates are themselves subject to mutation, mutation rates can be influenced by natural selection and other evolutionary forces. The population genetics of mutation rate modifier alleles has been a subject of theoretical interest for many decades. Here, we review experimental contributions to our understanding of mutation rate modifier dynamics. Numerous evolution experiments have shown that mutator alleles (modifiers that elevate the genomic mutation rate) can readily rise to high frequencies via genetic hitchhiking in non-recombining microbial populations. Whereas these results certainly provide an explanatory framework for observations of sporadically high mutation rates in pathogenic microbes and in cancer lineages, it is nonetheless true that most natural populations have very low mutation rates. This raises the interesting question of how mutator hitchhiking is suppressed or its phenotypic effect reversed in natural populations. Very little experimental work has addressed this question; with this in mind, we identify some promising areas for future experimental investigation.

  6. Case Report: Exome sequencing reveals recurrent RETSAT mutations and a loss-of-function POLDIP2 mutation in a rare undifferentiated tongue sarcoma [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Jason Y. K. Chan

    2018-04-01

    Full Text Available Soft tissue sarcoma of the tongue represents a very rare head and neck cancer with connective tissue features, and the genetics underlying this rare cancer are largely unknown. There are less than 20 cases reported in the literature thus far. Here, we reported the first whole-exome characterization (>×200 depth of an undifferentiated sarcoma of the tongue in a 31-year-old male. Even with a very good sequencing depth, only 19 nonsynonymous mutations were found, indicating a relatively low mutation rate of this rare cancer (lower than that of human papillomavirus (HPV-positive head and neck cancer. Yet, among the few genes that are somatically mutated in this HPV-negative undifferentiated tongue sarcoma, a noticeable deleterious frameshift mutation (with a very high allele frequency of >93% of a gene for DNA replication and repair, namely POLDIP2 (DNA polymerase delta interacting protein 2, and two recurrent mutations of the adipogenesis and adipocyte differentiation gene RETSAT (retinol saturase, were identified. Thus, somatic events likely affecting adipogenesis and differentiation, as well as potential stem mutations to POLDIP2, may be implicated in the formation of this rare cancer. This identified somatic whole-exome sequencing profile appears to be distinct from that of other reported adult sarcomas from The Cancer Genome Atlas, suggesting a potential unique genetic profile for this rare sarcoma of the tongue. Interestingly, this low somatic mutation rate is unexpectedly found to be accompanied by multiple tumor protein p53 and NOTCH1 germline mutations of the patient’s blood DNA. This may explain the very early age of onset of head and neck cancer, with likely hereditary predisposition. Our findings are, to our knowledge, the first to reveal a unique genetic profile of this very rare undifferentiated sarcoma of the tongue.

  7. Identification of Maturity-Onset Diabetes of the Young Caused by Glucokinase Mutations Detected Using Whole-Exome Sequencing

    Directory of Open Access Journals (Sweden)

    Eun-Hee Cho

    2017-05-01

    Full Text Available Glucokinase maturity-onset diabetes of the young (GCK-MODY represents a distinct subgroup of MODY that does not require hyperglycemia-lowering treatment and has very few diabetes-related complications. Three patients from two families who presented with clinical signs of GCK-MODY were evaluated. Whole-exome sequencing was performed and the effects of the identified mutations were assessed using bioinformatics tools, such as PolyPhen-2, SIFT, and in silico modeling. We identified two mutations: p.Leu30Pro and p.Ser383Leu. In silico analyses predicted that these mutations result in structural conformational changes, protein destabilization, and thermal instability. Our findings may inform future GCK-MODY diagnosis; furthermore, the two mutations detected in two Korean families with GCK-MODY improve our understanding of the genetic basis of the disease.

  8. Predictable Phenotypes of Antibiotic Resistance Mutations.

    Science.gov (United States)

    Knopp, M; Andersson, D I

    2018-05-15

    Antibiotic-resistant bacteria represent a major threat to our ability to treat bacterial infections. Two factors that determine the evolutionary success of antibiotic resistance mutations are their impact on resistance level and the fitness cost. Recent studies suggest that resistance mutations commonly show epistatic interactions, which would complicate predictions of their stability in bacterial populations. We analyzed 13 different chromosomal resistance mutations and 10 host strains of Salmonella enterica and Escherichia coli to address two main questions. (i) Are there epistatic interactions between different chromosomal resistance mutations? (ii) How does the strain background and genetic distance influence the effect of chromosomal resistance mutations on resistance and fitness? Our results show that the effects of combined resistance mutations on resistance and fitness are largely predictable and that epistasis remains rare even when up to four mutations were combined. Furthermore, a majority of the mutations, especially target alteration mutations, demonstrate strain-independent phenotypes across different species. This study extends our understanding of epistasis among resistance mutations and shows that interactions between different resistance mutations are often predictable from the characteristics of the individual mutations. IMPORTANCE The spread of antibiotic-resistant bacteria imposes an urgent threat to public health. The ability to forecast the evolutionary success of resistant mutants would help to combat dissemination of antibiotic resistance. Previous studies have shown that the phenotypic effects (fitness and resistance level) of resistance mutations can vary substantially depending on the genetic context in which they occur. We conducted a broad screen using many different resistance mutations and host strains to identify potential epistatic interactions between various types of resistance mutations and to determine the effect of strain

  9. Mutation Spectrum and Phenotypic Features in Noonan Syndrome with PTPN11 Mutations: Definition of Two Novel Mutations.

    Science.gov (United States)

    Atik, Tahir; Aykut, Ayca; Hazan, Filiz; Onay, Huseyin; Goksen, Damla; Darcan, Sukran; Tukun, Ajlan; Ozkinay, Ferda

    2016-06-01

    To evaluate the spectrum of PTPN11 gene mutations in Noonan syndrome patients and to study the genotype-phenotype associations. In this study, twenty Noonan syndrome patients with PTPN11 mutations were included. The patients underwent a detailed clinical and physical evaluation. To identify inherited cases, parents of all mutation positive patients were analyzed. Thirteen different PTPN11 mutations, two of them being novel, were detected in the study group. These mutations included eleven missense mutations: p.G60A, p.D61N, p.Y62D, p.Y63C, p.E69Q, p.Q79R, p.Y279C,p.N308D, p.N308S, p.M504V, p.Q510R and two novel missense mutations: p.I56V and p.I282M. The frequency of cardiac abnormalities and short stature were found to be 80 % and 80 %, respectively. Mental retardation was not observed in patients having exon 8 mutations. No significant correlations were detected between other phenotypic features and genotypes. By identifying genotype-phenotype correlations, this study provides information on phenotypes observed in NS patients with different PTPN11 mutations.

  10. Mutation update for the PORCN gene

    NARCIS (Netherlands)

    Lombardi, Maria Paola; Bulk, Saskia; Celli, Jacopo; Lampe, Anne; Gabbett, Michael T.; Ousager, Lillian Bomme; van der Smagt, Jasper J.; Soller, Maria; Stattin, Eva-Lena; Mannens, Marcel A. M. M.; Smigiel, Robert; Hennekam, Raoul C.

    2011-01-01

    Mutations in the PORCN gene were first identified in Goltz-Gorlin syndrome patients in 2007. Since then, several reports have been published describing a large variety of genetic defects resulting in the Goltz-Gorlin syndrome, and mutations or deletions were also reported in angioma serpiginosum,

  11. Epilepsy caused by CDKL5 mutations.

    Science.gov (United States)

    Castrén, Maija; Gaily, Eija; Tengström, Carola; Lähdetie, Jaana; Archer, Hayley; Ala-Mello, Sirpa

    2011-01-01

    Mutations in the cyclin-dependent kinase-like 5 gene (CDKL5) have been identified in female patients with early onset epileptic encephalopathy and severe mental retardation with a Rett-like phenotype. Subsequently CDKL5 mutations were shown to be associated with more diverse phenotypes including mild epilepsy and autism without epilepsy. Furthermore, CDKL5 mutations were found in patients with Angelman-like phenotype. The severity of epilepsy associated with CDKL5 mutations was recently shown to correlate with the type of CDKL5 mutations and epilepsy was identified to involve three distinct sequential stages. Here, we describe the phenotype of a severe form of neurodevelopmental disease in a female patient with a de novo nonsense mutation of the CDKL5 gene c.175C > T (p.R59X) affecting the catalytic domain of CDKL5 protein. Mutations in the CDKL5 gene are less common in males and can be associated with a genomic deletion as found in our male patient with a deletion of 0.3 Mb at Xp22.13 including the CDKL5 gene. We review phenotypes associated with CDKL5 mutations and examine putative relationships between the clinical epilepsy phenotype and the type of the mutation in the CDKL5 gene. © 2010 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  12. Correlation between {sup 18}F Fluorodeoxyglucose uptake and epidermal growth factor receptor mutations in advanced lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yun Jung; Cho, Byoung Chul; Jeong, Youg Hyu; Seo, Hyo Jung; Kim, Hyun Jeong; Cho, Arthur; Lee, Jae Hoon; Yun, Mi Jin; Jeon, Tae Joo; Lee, Jong Doo; Kang, Won Jun [Yonsei Univ., Health System, Seoul (Korea, Republic of)

    2012-09-15

    Mutations in the epidermal growth factor receptor (EGFR)gene have been identified as potential targets for the treatment and prognostic factors for non small cell lung cancer (NSCLC). We assessed the correlation between fluorodeoxyglucose (FDG) uptake and EGFR mutations, as well as their prognostic implications. A total of 163 patients with pathologically confirmed NSCLC were enrolled (99 males and 64 females; median age, 60 years). All patients underwent FDG positron emission tomography before treatment, and genetic studies of EGFR mutations were performed. The maximum standardized uptake value (SUVmax)of the primary lung cancer was measured and normalized with regard to liver uptake. The SUVmax between the wild type and EGFR mutant groups was compared. Survival was evaluated according to SUVmax and EGFR mutation status. EGFR mutations were found in 57 patients (60.8%). The SUVmax tended to be higher in wild type than mutant tumors, but was not significantly different (11.1{+-}5.7 vs. 9.8{+-}4.4, P=0.103). The SUVmax was significantly lower in patients with an exon 19 mutation than in those with either an exon 21 mutation or wild type (P=0.003 and 0.009, respectively). The EGFR mutation showed prolonged overall survival (OS) compared to wild type tumors (P=0.004). There was no significant difference in survival according to SUVmax. Both OS and progression free survival of patients with a mutation in exon 19 were significant longer than in patients with wild type tumors. In patients with NSCLC, a mutation in exon 19 was associated with a lower SUVmax and is a reliable predictor for good survival.

  13. Psychological distress in women at risk of hereditary breast/ovarian or HNPCC cancers in the absence of demonstrated mutations.

    Science.gov (United States)

    Geirdal, Amy Østertun; Reichelt, Jon G; Dahl, Alv A; Heimdal, Ketil; Maehle, Lovise; Stormorken, Astrid; Møller, Pål

    2005-01-01

    To examine psychological distress in women at risk of familial breast-ovarian cancer (FBOC) or hereditary non-polyposis colorectal cancer (HNPCC) with absence of demonstrated mutations in the family (unknown mutation). Two-hundred and fifty three consecutive women at risk of FBOC and 77 at risk of HNPCC and with no present or past history of cancer. They were aware of their risk and had received genetic counseling. Comparisons were made between these two groups, normal controls, and women who were identified to be BRCA1 mutation carriers. The questionnaires Beck Hopelessness Scale (BHS), General Health Questionnaire (GHQ-28), Hospital Anxiety and Depression Scale (HADS) and Impact of Event Scale (IES) were employed to assess psychological distress. No significant differences concerning psychological distress were observed between women with FBOC and women with HNPCC. Compared to mutation carriers for BRCA1, the level of anxiety and depression was significantly higher in the FBOC group with absence of demonstrated mutation. Compared to normal controls, the level of anxiety was higher, while the level of depression was lower in the groups with unknown mutation. Women in the absence of demonstrated mutations have higher anxiety and depression levels than women with known mutation-carrier status. Access to genetic testing may be of psychologically benefit to women at risk for FBOC or HNPCC.

  14. CCDC151 mutations cause primary ciliary dyskinesia by disruption of the outer dynein arm docking complex formation

    DEFF Research Database (Denmark)

    Hjeij, Rim; Onoufriadis, Alexandros; Watson, Christopher M

    2014-01-01

    disorder of ciliary and flagellar dysmotility characterized by chronic upper and lower respiratory infections and defects in laterality. Here, by combined high-throughput mapping and sequencing, we identified CCDC151 loss-of-function mutations in five affected individuals from three independent families...

  15. Precise estimates of mutation rate and spectrum in yeast

    Science.gov (United States)

    Zhu, Yuan O.; Siegal, Mark L.; Hall, David W.; Petrov, Dmitri A.

    2014-01-01

    Mutation is the ultimate source of genetic variation. The most direct and unbiased method of studying spontaneous mutations is via mutation accumulation (MA) lines. Until recently, MA experiments were limited by the cost of sequencing and thus provided us with small numbers of mutational events and therefore imprecise estimates of rates and patterns of mutation. We used whole-genome sequencing to identify nearly 1,000 spontaneous mutation events accumulated over ∼311,000 generations in 145 diploid MA lines of the budding yeast Saccharomyces cerevisiae. MA experiments are usually assumed to have negligible levels of selection, but even mild selection will remove strongly deleterious events. We take advantage of such patterns of selection and show that mutation classes such as indels and aneuploidies (especially monosomies) are proportionately much more likely to contribute mutations of large effect. We also provide conservative estimates of indel, aneuploidy, environment-dependent dominant lethal, and recessive lethal mutation rates. To our knowledge, for the first time in yeast MA data, we identified a sufficiently large number of single-nucleotide mutations to measure context-dependent mutation rates and were able to (i) confirm strong AT bias of mutation in yeast driven by high rate of mutations from C/G to T/A and (ii) detect a higher rate of mutation at C/G nucleotides in two specific contexts consistent with cytosine methylation in S. cerevisiae. PMID:24847077

  16. Impact of KRAS, BRAF and PI3KCA mutations in rectal carcinomas treated with neoadjuvant radiochemotherapy and surgery

    International Nuclear Information System (INIS)

    Derbel, Olfa; La Fouchardière, Christelle de; Wang, Qing; Desseigne, Françoise; Rivoire, Michel; Meeus, Pierre; Peyrat, Patrice; Stella, Mattia; Martel-Lafay, Isabelle; Lemaistre, Anne-Isabelle

    2013-01-01

    Conventional treatment for locally advanced rectal cancer usually combines neoadjuvant radiochemotherapy and surgery. Until recently, there have been limited predictive factors (clinical or biological) for rectal tumor response to conventional treatment. KRAS, BRAF and PIK3CA mutations are commonly found in colon cancers. In this study, we aimed to determine the mutation frequencies of KRAS, BRAF and PIK3CA and to establish whether such mutations may be used as prognostic and/or predictive factors in rectal cancer patients. We retrospectively reviewed the clinical and biological data of 98 consecutive operated patients between May 2006 and September 2009. We focused in patients who received surgery in our center after radiochemotherapy and in which tumor samples were available. In the 98 patients with a rectal cancer, the median follow-up time was 28.3 months (4–74). Eight out of ninety-eight patients experienced a local recurrence (8%) and 17/98 developed distant metastasis (17%). KRAS, BRAF and PIK3CA were identified respectively in 23 (23.5%), 2 (2%) and 4 (4%) patients. As described in previous studies, mutations in KRAS and BRAF were mutually exclusive. No patient with local recurrence exhibited KRAS or PIK3CA mutation and one harbored BRAF mutation (12.5%). Of the seventeen patients with distant metastasis (17%), 5 were presenting KRAS mutation (29%), one BRAF (5%) and one PIK3CA mutation (5%). No relationship was seen between PIK3CA, KRAS or BRAF mutation and local or distant recurrences. The frequencies of KRAS, BRAF and PIK3CA mutations in our study were lower than the average frequencies reported in colorectal cancers and no significant correlation was found between local/distant recurrences and KRAS, BRAF or PIK3CA mutations. Future studies with greater number of patients, longer follow-up time and greater power to predict associations are necessary to fully understand this relationship

  17. Whole-exome sequencing reveals the spectrum of gene mutations and the clonal evolution patterns in paediatric acute myeloid leukaemia.

    Science.gov (United States)

    Shiba, Norio; Yoshida, Kenichi; Shiraishi, Yuichi; Okuno, Yusuke; Yamato, Genki; Hara, Yusuke; Nagata, Yasunobu; Chiba, Kenichi; Tanaka, Hiroko; Terui, Kiminori; Kato, Motohiro; Park, Myoung-Ja; Ohki, Kentaro; Shimada, Akira; Takita, Junko; Tomizawa, Daisuke; Kudo, Kazuko; Arakawa, Hirokazu; Adachi, Souichi; Taga, Takashi; Tawa, Akio; Ito, Etsuro; Horibe, Keizo; Sanada, Masashi; Miyano, Satoru; Ogawa, Seishi; Hayashi, Yasuhide

    2016-11-01

    Acute myeloid leukaemia (AML) is a molecularly and clinically heterogeneous disease. Targeted sequencing efforts have identified several mutations with diagnostic and prognostic values in KIT, NPM1, CEBPA and FLT3 in both adult and paediatric AML. In addition, massively parallel sequencing enabled the discovery of recurrent mutations (i.e. IDH1/2 and DNMT3A) in adult AML. In this study, whole-exome sequencing (WES) of 22 paediatric AML patients revealed mutations in components of the cohesin complex (RAD21 and SMC3), BCORL1 and ASXL2 in addition to previously known gene mutations. We also revealed intratumoural heterogeneities in many patients, implicating multiple clonal evolution events in the development of AML. Furthermore, targeted deep sequencing in 182 paediatric AML patients identified three major categories of recurrently mutated genes: cohesion complex genes [STAG2, RAD21 and SMC3 in 17 patients (8·3%)], epigenetic regulators [ASXL1/ASXL2 in 17 patients (8·3%), BCOR/BCORL1 in 7 patients (3·4%)] and signalling molecules. We also performed WES in four patients with relapsed AML. Relapsed AML evolved from one of the subclones at the initial phase and was accompanied by many additional mutations, including common driver mutations that were absent or existed only with lower allele frequency in the diagnostic samples, indicating a multistep process causing leukaemia recurrence. © 2016 John Wiley & Sons Ltd.

  18. Novel Polymerase Gene Mutations for Human Adaptation in Clinical Isolates of Avian H5N1 Influenza Viruses.

    Directory of Open Access Journals (Sweden)

    Yasuha Arai

    2016-04-01

    Full Text Available A major determinant in the change of the avian influenza virus host range to humans is the E627K substitution in the PB2 polymerase protein. However, the polymerase activity of avian influenza viruses with a single PB2-E627K mutation is still lower than that of seasonal human influenza viruses, implying that avian viruses require polymerase mutations in addition to PB2-627K for human adaptation. Here, we used a database search of H5N1 clade 2.2.1 virus sequences with the PB2-627K mutation to identify other polymerase adaptation mutations that have been selected in infected patients. Several of the mutations identified acted cooperatively with PB2-627K to increase viral growth in human airway epithelial cells and mouse lungs. These mutations were in multiple domains of the polymerase complex other than the PB2-627 domain, highlighting a complicated avian-to-human adaptation pathway of avian influenza viruses. Thus, H5N1 viruses could rapidly acquire multiple polymerase mutations that function cooperatively with PB2-627K in infected patients for optimal human adaptation.

  19. The Mutational Robustness of Influenza A Virus.

    Directory of Open Access Journals (Sweden)

    Elisa Visher

    2016-08-01

    Full Text Available A virus' mutational robustness is described in terms of the strength and distribution of the mutational fitness effects, or MFE. The distribution of MFE is central to many questions in evolutionary theory and is a key parameter in models of molecular evolution. Here we define the mutational fitness effects in influenza A virus by generating 128 viruses, each with a single nucleotide mutation. In contrast to mutational scanning approaches, this strategy allowed us to unambiguously assign fitness values to individual mutations. The presence of each desired mutation and the absence of additional mutations were verified by next generation sequencing of each stock. A mutation was considered lethal only after we failed to rescue virus in three independent transfections. We measured the fitness of each viable mutant relative to the wild type by quantitative RT-PCR following direct competition on A549 cells. We found that 31.6% of the mutations in the genome-wide dataset were lethal and that the lethal fraction did not differ appreciably between the HA- and NA-encoding segments and the rest of the genome. Of the viable mutants, the fitness mean and standard deviation were 0.80 and 0.22 in the genome-wide dataset and best modeled as a beta distribution. The fitness impact of mutation was marginally lower in the segments coding for HA and NA (0.88 ± 0.16 than in the other 6 segments (0.78 ± 0.24, and their respective beta distributions had slightly different shape parameters. The results for influenza A virus are remarkably similar to our own analysis of CirSeq-derived fitness values from poliovirus and previously published data from other small, single stranded DNA and RNA viruses. These data suggest that genome size, and not nucleic acid type or mode of replication, is the main determinant of viral mutational fitness effects.

  20. A novel BRCA-1 mutation in Arab kindred from east Jerusalem with breast and ovarian cancer

    Directory of Open Access Journals (Sweden)

    Nissan Aviram

    2007-01-01

    Full Text Available Abstract Background The incidence of breast cancer (BC in Arab women is lower compared to the incidence in the Jewish population in Israel; still, it is the most common malignancy among Arab women. There is a steep rise in breast cancer incidence in the Arab population in Israel over the last 10 years that can be attributed to life style changes. But, the younger age of BC onset in Arab women compared with that of the Jewish population is suggestive of a genetic component in BC occurrence in that population. Methods We studied the family history of 31 women of Palestinian Arab (PA origin affected with breast (n = 28, ovarian (n = 3 cancer. We used denaturing high performance liquid chromatography (DHPLC to screen for mutations of BRCA1/2 in 4 women with a personal and family history highly suggestive of genetic predisposition. Results A novel BRCA1 mutation, E1373X in exon 12, was found in a patient affected with ovarian cancer. Four of her family members, 3 BC patients and a healthy individual were consequently also found to carry this mutation. Of the other 27 patients, which were screened for this specific mutation none was found to carry it. Conclusion We found a novel BRCA1 mutation in a family of PA origin with a history highly compatible with BRCA1 phenotype. This mutation was not found in additional 30 PA women affected with BC or OC. Therefore full BRCA1/2 screening should be offered to patients with characteristic family history. The significance of the novel BRCA1 mutation we identified should be studied in larger population. However, it is likely that the E1373X mutation is not a founder frequent mutation in the PA population.

  1. Estimating Exceptionally Rare Germline and Somatic Mutation Frequencies via Next Generation Sequencing.

    Directory of Open Access Journals (Sweden)

    Jordan Eboreime

    Full Text Available We used targeted next generation deep-sequencing (Safe Sequencing System to measure ultra-rare de novo mutation frequencies in the human male germline by attaching a unique identifier code to each target DNA molecule. Segments from three different human genes (FGFR3, MECP2 and PTPN11 were studied. Regardless of the gene segment, the particular testis donor or the 73 different testis pieces used, the frequencies for any one of the six different mutation types were consistent. Averaging over the C>T/G>A and G>T/C>A mutation types the background mutation frequency was 2.6x10-5 per base pair, while for the four other mutation types the average background frequency was lower at 1.5x10-6 per base pair. These rates far exceed the well documented human genome average frequency per base pair (~10-8 suggesting a non-biological explanation for our data. By computational modeling and a new experimental procedure to distinguish between pre-mutagenic lesion base mismatches and a fully mutated base pair in the original DNA molecule, we argue that most of the base-dependent variation in background frequency is due to a mixture of deamination and oxidation during the first two PCR cycles. Finally, we looked at a previously studied disease mutation in the PTPN11 gene and could easily distinguish true mutations from the SSS background. We also discuss the limits and possibilities of this and other methods to measure exceptionally rare mutation frequencies, and we present calculations for other scientists seeking to design their own such experiments.

  2. Mutations of NPM1 gene in de novo acute myeloid leukaemia: determination of incidence, distribution pattern and identification of two novel mutations in Indian population.

    Science.gov (United States)

    Ahmad, Firoz; Mandava, Swarna; Das, Bibhu Ranjan

    2009-06-01

    Mutations in the nucleophosmin (NPM1) gene have been recently described to occur in about one-third of acute myeloid leukaemias (AMLs) and represent the most frequent genetic alteration currently known in this subset, specially in those with normal karyotype. This study explored the prevalence and clinical profile of NPM1 mutations in a cohort of 200 Indian adult and children with AML. NPM1 mutations were observed in 19.5% of all population and 34.2% of those with normal karyotype. Adults had a significantly higher incidence of NPM1 mutations than children [38 of 161 (23.6%) vs. 1 of 39 (2.5%), p = 0.002]. NPM1 mutations were significantly associated with normal karyotype (p = 0.001), high WBC count (p = 0.034), AML-M4 subtype (p = 0.039) and a gradient increase of mutation rate with the increase in age groups. Sequence analysis of 39 mutated cases revealed typical mutations (types A, B, D, Nm and H*) as well as two novel variations (types F1 and F2). Majority of the patients had mutation type A (69.2%), followed by B (5.1%), D (15.3%), H* (2.5%) and Nm (2.5%) all involving COOH terminal of the NPM1 protein. In conclusion, this study represents the first report of NPM1 mutation from Indian population and confirms that the incidence of NPM1 mutations varies considerably globally, with slightly lower incidence in Indian population compared to western countries. The current study also served to identify two novel NPM1 mutants that add new insights into the heterogeneity of genomic insertions at exon 12. More ongoing larger studies are warranted to elucidate the molecular pathogenesis of AML that arises in this part of the world. Furthermore, we believe that in light of its high prevalence worldwide, inclusion of NPM1 mutation detection assay in diagnostic evaluations of AML may improve the efficacy of routine genetic characterization and allow assignment of patients to better-defined risk categories.

  3. Mutation update for the PORCN gene

    DEFF Research Database (Denmark)

    Lombardi, Maria Paola; Bulk, Saskia; Celli, Jacopo

    2011-01-01

    Mutations in the PORCN gene were first identified in Goltz-Gorlin syndrome patients in 2007. Since then, several reports have been published describing a large variety of genetic defects resulting in the Goltz-Gorlin syndrome, and mutations or deletions were also reported in angioma serpiginosum......, the pentalogy of Cantrell and Limb-Body Wall Complex. Here we present a review of the published mutations in the PORCN gene to date and report on seven new mutations together with the corresponding clinical data. Based on the review we have created a Web-based locus-specific database that lists all identified...... variants and allows the inclusion of future reports. The database is based on the Leiden Open (source) Variation Database (LOVD) software, and is accessible online at http://www.lovd.nl/porcn. At present, the database contains 106 variants, representing 68 different mutations, scattered along the whole...

  4. CtIP Mutations Cause Seckel and Jawad Syndromes.

    Directory of Open Access Journals (Sweden)

    Per Qvist

    2011-10-01

    Full Text Available Seckel syndrome is a recessively inherited dwarfism disorder characterized by microcephaly and a unique head profile. Genetically, it constitutes a heterogeneous condition, with several loci mapped (SCKL1-5 but only three disease genes identified: the ATR, CENPJ, and CEP152 genes that control cellular responses to DNA damage. We previously mapped a Seckel syndrome locus to chromosome 18p11.31-q11.2 (SCKL2. Here, we report two mutations in the CtIP (RBBP8 gene within this locus that result in expression of C-terminally truncated forms of CtIP. We propose that these mutations are the molecular cause of the disease observed in the previously described SCKL2 family and in an additional unrelated family diagnosed with a similar form of congenital microcephaly termed Jawad syndrome. While an exonic frameshift mutation was found in the Jawad family, the SCKL2 family carries a splicing mutation that yields a dominant-negative form of CtIP. Further characterization of cell lines derived from the SCKL2 family revealed defective DNA damage induced formation of single-stranded DNA, a critical co-factor for ATR activation. Accordingly, SCKL2 cells present a lowered apoptopic threshold and hypersensitivity to DNA damage. Notably, over-expression of a comparable truncated CtIP variant in non-Seckel cells recapitulates SCKL2 cellular phenotypes in a dose-dependent manner. This work thus identifies CtIP as a disease gene for Seckel and Jawad syndromes and defines a new type of genetic disease mechanism in which a dominant negative mutation yields a recessively inherited disorder.

  5. Splice Site Mutations in the ATP7A Gene

    DEFF Research Database (Denmark)

    Skjørringe, Tina; Tümer, Zeynep; Møller, Lisbeth Birk

    2011-01-01

    Menkes disease (MD) is caused by mutations in the ATP7A gene. We describe 33 novel splice site mutations detected in patients with MD or the milder phenotypic form, Occipital Horn Syndrome. We review these 33 mutations together with 28 previously published splice site mutations. We investigate 12...... mutations for their effect on the mRNA transcript in vivo. Transcriptional data from another 16 mutations were collected from the literature. The theoretical consequences of splice site mutations, predicted with the bioinformatics tool Human Splice Finder, were investigated and evaluated in relation...... to in vivo results. Ninety-six percent of the mutations identified in 45 patients with classical MD were predicted to have a significant effect on splicing, which concurs with the absence of any detectable wild-type transcript in all 19 patients investigated in vivo. Sixty-seven percent of the mutations...

  6. The CDC Hemophilia B mutation project mutation list: a new online resource.

    Science.gov (United States)

    Li, Tengguo; Miller, Connie H; Payne, Amanda B; Craig Hooper, W

    2013-11-01

    Hemophilia B (HB) is caused by mutations in the human gene F9. The mutation type plays a pivotal role in genetic counseling and prediction of inhibitor development. To help the HB community understand the molecular etiology of HB, we have developed a listing of all F9 mutations that are reported to cause HB based on the literature and existing databases. The Centers for Disease Control and Prevention (CDC) Hemophilia B Mutation Project (CHBMP) mutation list is compiled in an easily accessible format of Microsoft Excel and contains 1083 unique mutations that are reported to cause HB. Each mutation is identified using Human Genome Variation Society (HGVS) nomenclature standards. The mutation types and the predicted changes in amino acids, if applicable, are also provided. Related information including the location of mutation, severity of HB, the presence of inhibitor, and original publication reference are listed as well. Therefore, our mutation list provides an easily accessible resource for genetic counselors and HB researchers to predict inhibitors. The CHBMP mutation list is freely accessible at http://www.cdc.gov/hemophiliamutations.

  7. RNF43 is mutated less frequently in Lynch Syndrome compared with sporadic microsatellite unstable colorectal cancers.

    Science.gov (United States)

    Fennell, Lochlan J; Clendenning, Mark; McKeone, Diane M; Jamieson, Saara H; Balachandran, Samanthy; Borowsky, Jennifer; Liu, John; Kawamata, Futoshi; Bond, Catherine E; Rosty, Christophe; Burge, Matthew E; Buchanan, Daniel D; Leggett, Barbara A; Whitehall, Vicki L J

    2018-01-01

    The WNT signaling pathway is commonly altered during colorectal cancer development. The E3 ubiquitin ligase, RNF43, negatively regulates the WNT signal through increased ubiquitination and subsequent degradation of the Frizzled receptor. RNF43 has recently been reported to harbor frequent truncating frameshift mutations in sporadic microsatellite unstable (MSI) colorectal cancers. This study assesses the relative frequency of RNF43 mutations in hereditary colorectal cancers arising in the setting of Lynch syndrome. The entire coding region of RNF43 was Sanger sequenced in 24 colorectal cancers from 23 patients who either (i) carried a germline mutation in one of the DNA mismatch repair genes (MLH1, MSH6, MSH2, PMS2), or (ii) showed immunohistochemical loss of expression of one or more of the DNA mismatch repair proteins, was BRAF wild type at V600E, were under 60 years of age at diagnosis, and demonstrated no promoter region methylation for MLH1 in tumor DNA. A validation cohort of 44 colorectal cancers from mismatch repair germline mutation carriers from the Australasian Colorectal Cancer Family Registry (ACCFR) were sequenced for the most common truncating mutation hotspots (X117 and X659). RNF43 mutations were found in 9 of 24 (37.5%) Lynch syndrome colorectal cancers. The majority of mutations were frameshift deletions in the G659 G7 repeat tract (29%); 2 cancers (2/24, 8%) from the one patient harbored frameshift mutations at codon R117 (C6 repeat tract) within exon 3. In the ACCFR validation cohort, RNF43 hotspot mutations were identified in 19/44 (43.2%) of samples, which was not significantly different to the initial series. The proportion of mutant RNF43 in Lynch syndrome related colorectal cancers is significantly lower than the previously reported mutation rate found in sporadic MSI colorectal cancers. These findings identify further genetic differences between sporadic and hereditary colorectal cancers. This may be because Lynch Syndrome cancers

  8. Screening for calreticulin mutations in a cohort of patients suspected ...

    African Journals Online (AJOL)

    Of the 36 types of insertions and deletions identified, type 1 (a. 52-base pair deletion) and type 2 (a 5-base pair insertion) mutations account for >80% of CALR mutations.[7] Phenotypic differences between type 1 and type 2 carriers have been implicated. [3] All recurrent mutations cause a frameshift in the region encoding.

  9. SDHAF2 mutations in familial and sporadic paraganglioma and phaeochromocytoma.

    NARCIS (Netherlands)

    Bayley, J.P.M.; Kunst, H.P.M.; Cascon, A.; Sampietro, M.L.; Gaal, J.; Korpershoek, E.; Hinojar-Gutierrez, A.; Timmers, H.J.L.M.; Hoefsloot, L.H.; Hermsen, M.A.; Suarez, C.; Hussain, A.K.; Vriends, A.H.; Hes, F.J.; Jansen, J.C.; Tops, C.M.; Corssmit, E.P.; Knijff, P. de; Lenders, J.W.M.; Cremers, C.W.R.J.; Devilee, P.; Dinjens, W.N.; Krijger, R.R. de; Robledo, M.

    2010-01-01

    BACKGROUND: Paragangliomas and phaeochromocytomas are neuroendocrine tumours associated frequently with germline mutations of SDHD, SDHC, and SDHB. Previous studies have shown the imprinted SDHAF2 gene to be mutated in a large Dutch kindred with paragangliomas. We aimed to identify SDHAF2 mutation

  10. ENG mutational mosaicism in a family with hereditary hemorrhagic telangiectasia

    DEFF Research Database (Denmark)

    Tørring, Pernille M; Kjeldsen, Anette D; Ousager, Lilian Bomme

    2018-01-01

    mutation using Sanger sequencing. Analyzing her DNA by NGS HHT panel sequencing when extracted from both peripheral blood leukocytes, and cheek swabs, identified the familial ENG mutation at low levels. CONCLUSION: We provide evidence of ENG mutational mosaicism in an individual presenting with clinical...

  11. Mutation breeding in chickpea

    International Nuclear Information System (INIS)

    2009-01-01

    Chickpea is an important food legume in Turkey. Turkey is one of the most important gene centers in the world for legumes. The most widely known characteristic of chickpea is that it is an important vegetable protein source used in human and animal nutrition. However, the dry grains of chickpea, has 2-3 times more protein than our traditional food of wheat. In addition, cheakpea is also energy source because of its high carbohydrate content. It is very rich in some vitamin and mineral basis. In the plant breeding, mutation induction has become an effective way of supplementing existing germplasm and improving cultivars. Many successful examples of mutation induction have proved that mutation breeding is an effective and important approach to food legume improvement. The induced mutation technique in chickpea has proved successful and good results have been attained. Realizing the potential of induced mutations, a mutation breeding programme was initiated at the Nuclear Agriculture Section of the Saraykoey Nuclear Research and Training Center in 1994. The purpose of the study was to obtain high yielding chickpea mutants with large seeds, good cooking quality and high protein content. Beside this some characters such as higher adaptation ability, tolerant to cold and drought, increased machinery harvest type, higher yield, resistant to diseases especially to antracnose and pest were investigated too. Parents varieties were ILC-482, AK-7114 and AKCIN-91 (9 % seed moisture content and germination percentage 98 %) in these experiments. The irradiation doses were 0 (control), 50, 100, 150, 200, 250, 300, 350, 400, 500 ve 600 Gy for greenhouse experiments and 0 (control), 50, 100, 150, 200, 250, 300, 350 ve 400 Gy for field experiments, respectively. One thousand seeds for per treatment were sown in the field for the M 1 . At maturity, 3500 single plants were harvested and 20 seeds were taken from each M 1 plant and planted in the following season. During plant growth

  12. Characteristics and clinical correlates of MPL 515W>L/K mutation in essential thrombocythemia.

    Science.gov (United States)

    Vannucchi, Alessandro M; Antonioli, Elisabetta; Guglielmelli, Paola; Pancrazzi, Alessandro; Guerini, Vittoria; Barosi, Giovanni; Ruggeri, Marco; Specchia, Giorgina; Lo-Coco, Francesco; Delaini, Federica; Villani, Laura; Finotto, Silvia; Ammatuna, Emanuele; Alterini, Renato; Carrai, Valentina; Capaccioli, Gloria; Di Lollo, Simonetta; Liso, Vincenzo; Rambaldi, Alessandro; Bosi, Alberto; Barbui, Tiziano

    2008-08-01

    Among 994 patients with essential thrombocythemia (ET) who were genotyped for the MPLW515L/K mutation, 30 patients carrying the mutation were identified (3.0%), 8 of whom also displayed the JAK2V671F mutation. MPLW515L/K patients presented lower hemoglobin levels and higher platelet counts than did wild type (wt) MPL; these differences were highly significant compared with MPLwt/JAK2V617F-positive patients. Reduced hemoglobin and increased platelet levels were preferentially associated with the W515L and W515K alleles, respectively. MPL mutation was a significant risk factor for microvessel disturbances, suggesting platelet hyperreactivity associated with constitutively active MPL; arterial thromboses were increased only in comparison to MPLwt/JAK2wt patients. MPLW515L/K patients presented reduced total and erythroid bone marrow cellularity, whereas the numbers of megakaryocytes, megakaryocytic clusters, and small-sized megakaryocytes were all significantly increased. These data indicate that MPLW515L/K mutations do not define a distinct phenotype in ET, although some differences depended on the JAK2V617F mutational status of the counterpart.

  13. Spectrum of mutations in homozygous familial hypercholesterolemia in India, with four novel mutations.

    Science.gov (United States)

    Setia, Nitika; Saxena, Renu; Arora, Anjali; Verma, Ishwar C

    2016-12-01

    Homozygous familial hypercholesterolemia (FH) is a rare but serious, inherited disorder of lipid metabolism characterized by very high total and LDL cholesterol levels from birth. It presents as cutaneous and tendon xanthomas since childhood, with or without cardiac involvement. FH is commonly caused by mutations in three genes, i.e. LDL receptor (LDLR), apolipoprotein B (ApoB) and PCSK9. We aimed to determine the spectrum of mutations in cases of homozygous FH in Asian Indians and evaluate if there was any similarity to the mutations observed in Caucasians. Sixteen homozygous FH subjects from eleven families were analyzed for mutations by Sanger sequencing. Large rearrangements in LDLR gene were evaluated by multiplex ligation probe dependent amplification (MLPA) technique. Ten mutations were observed in LDLR gene, of which four mutations were novel. No mutation was detected in ApoB gene and common PCSK9 mutation (p.D374Y). Fourteen cases had homozygous mutations; one had compound heterozygous mutation, while no mutation was detected in one clinically homozygous case. We report an interesting "Triple hit" case with features of homozygous FH. The spectrum of mutations in the Asian Indian population is quite heterogeneous. Of the mutations identified, 40% were novel. No mutation was observed in exons 3, 9 and 14 of LDLR gene, which are considered to be hot spots in studies done on Asian Indians in South Africa. Early detection followed by aggressive therapy, and cascade screening of extended families has been initiated to reduce the morbidity and mortality in these patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Spectrum of small mutations in the dystrophin coding region

    Energy Technology Data Exchange (ETDEWEB)

    Prior, T.W.; Bartolo, C.; Pearl, D.K. [Ohio State Univ., Columbus, OH (United States)] [and others

    1995-07-01

    Duchenne and Becker muscular dystrophies (DMD and BMD) are caused by defects in the dystrophin gene. About two-thirds of the affected patients have large deletions or duplications, which occur in the 5` and central portion of the gene. The nondeletion/duplication cases are most likely the result of smaller mutations that cannot be identified by current diagnostic screening strategies. We screened {approximately} 80% of the dystrophin coding sequence for small mutations in 158 patients without deletions or duplications and identified 29 mutations. The study indicates that many of the DMD and the majority of the BMD small mutations lie in noncoding regions of the gene. All of the mutations identified were unique to single patients, and most of the mutations resulted in protein truncation. We did not find a clustering of small mutations similar to the deletion distribution but found > 40% of the small mutations 3` of exon 55. The extent of protein truncation caused by the 3` mutations did not determine the phenotype, since even the exon 76 nonsense mutation resulted in the severe DMD phenotype. Our study confirms that the dystrophin gene is subject to a high rate of mutation in CpG sequences. As a consequence of not finding any hotspots or prevalent small mutations, we conclude that it is presently not possible to perform direct carrier and prenatal diagnostics for many families without deletions or duplications. 71 refs., 2 figs., 2 tabs.

  15. Analytical profiling of mutations in quinolone resistance determining region of gyrA gene among UPEC.

    Directory of Open Access Journals (Sweden)

    Lesley R Varughese

    Full Text Available Mutations in gyrA are the primary cause of quinolone resistance encountered in gram-negative clinical isolates. The prospect of this work was to analyze the role of gyrA mutations in eliciting high quinolone resistance in uropathogenic E.coli (UPEC through molecular docking studies. Quinolone susceptibility testing of 18 E.coli strains isolated from UTI patients revealed unusually high resistance level to all the quinolones used; especially norfloxacin and ciprofloxacin. The QRDR of gyrA was amplified and sequenced. Mutations identified in gyrA of E.coli included Ser83Leu, Asp87Asn and Ala93Gly/Glu. Contrasting previous reports, we found Ser83Leu substitution in sensitive strains. Strains with S83L, D87N and A93E (A15 and A26 demonstrated norfloxacin MICs ≥1024mg/L which could be proof that Asp87Asn is necessary for resistance phenotype. Resistance to levofloxacin was comparatively lower in all the isolates. Docking of 4 quinolones (ciprofloxacin, ofloxacin, levofloxacin and norfloxacin to normal and mutated E.coli gyrase A protein demonstrated lower binding energies for the latter, with significant displacement of norfloxacin in the mutated GyrA complex and least displacement in case of levofloxacin.

  16. MT-CYB mutations in hypertrophic cardiomyopathy

    DEFF Research Database (Denmark)

    Hagen, Christian M; Aidt, Frederik H; Havndrup, Ole

    2013-01-01

    Mitochondrial dysfunction is a characteristic of heart failure. Mutations in mitochondrial DNA, particularly in MT-CYB coding for cytochrome B in complex III (CIII), have been associated with isolated hypertrophic cardiomyopathy (HCM). We hypothesized that MT-CYB mutations might play an important...... and m.15482T>C; p.S246P were identified. Modeling showed that the p.C93Y mutation leads to disruption of the tertiary structure of Cytb by helix displacement, interfering with protein-heme interaction. The p.S246P mutation induces a diproline structure, which alters local secondary structure and induces...... of HCM patients. We propose that further patients with HCM should be examined for mutations in MT-CYB in order to clarify the role of these variants....

  17. Connexin 50 Mutation Lowers Blood Pressure in Spontaneously Hypertensive Rat

    Czech Academy of Sciences Publication Activity Database

    Šeda, Ondřej; Liška, F.; Pravenec, Michal; Vernerová, Z.; Kazdová, L.; Křenová, D.; Zídek, Václav; Šedová, Lucie; Krupková, M.; Křen, V.

    2017-01-01

    Roč. 66, č. 1 (2017), s. 15-28 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GAP301/12/0696 Institutional support: RVO:68378050 ; RVO:67985823 Keywords : Connexin * Hypertension * Transcriptome * Animal models * Insulin resistance Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Cardiac and Cardiovascular systems; Cardiac and Cardiovascular systems (FGU-C) Impact factor: 1.461, year: 2016

  18. Deletion mutations of bacteriophage

    International Nuclear Information System (INIS)

    Ryo, Yeikou

    1975-01-01

    Resolution of mutation mechanism with structural changes of DNA was discussed through the studies using bacteriophage lambda. One of deletion mutations inductions of phage lambda is the irradiation of ultraviolet ray. It is not clear if the inductions are caused by errors in reparation of ultraviolet-induced damage or by the activation of int gene. Because the effective site of int gene lies within the regions unnecessary for existing, it is considered that int gene is connected to deletion mutations induction. A certain system using prophage complementarity enables to detect deletion mutations at essential hereditary sites and to solve the relations of deletion mutations with other recombination system, DNA reproduction and repairment system. Duplication and multiplication of hereditary elements were discussed. If lambda deletion mutations of the system, which can control recombination, reproduction and repairment of added DNA, are constructed, mutations mechanism with great changes of DNA structure can be solved by phage lambda. (Ichikawa, K.)

  19. Clinical spectrum and molecular diagnosis of Angelman and Prader-Willi syndrome patients with an imprinting mutation

    Energy Technology Data Exchange (ETDEWEB)

    Saitoh, S.; Cassidy, S.B.; Conroy, J.M. [Univ. of Hospitals of Cleveland, OH (United States)] [and others

    1997-01-20

    Recent studies have identified a new class of Prader-Willi syndrome (PWS) and Angelman syndrome (AS) patients who have biparental inheritance, but neither the typical deletion nor uniparental disomy (UPD) or translocation. However, these patients have uniparental DNA methylation throughout 15q11-q13, and thus appear to have a mutation in the imprinting process for this region. Here we describe detailed clinical findings of five AS imprinting mutation patients (three families) and two PWS imprinting mutation patients (one new family). All these patients have essentially the classical clinical phenotype for the respective syndrome, except that the incidence of microcephaly is lower in imprinting mutation AS patients than in deletion AS patients. Furthermore, imprinting mutation AS and PWS patients do not typically have hypopigmentation, which is commonly found in patients with the usual large deletion. Molecular diagnosis of these cases is initially achieved by DNA methylation analyses of the DN34/ZNF127, PW71 (D15S63), and SNRPN loci. The latter two probes have clear advantages in the simple molecular diagnostic analysis of PWS and AS patients with an imprinting mutation, as has been found for typical deletion or UPD PWS and AS cases. With the recent finding of inherited microdeletions in PWS and AS imprinting mutation families, our studies define a new class of these two syndromes. The clinical and molecular identification of these PWS and AS patients has important genetic counseling consequences. 49 refs., 4 figs., 3 tabs.

  20. Population-based statistical inference for temporal sequence of somatic mutations in cancer genomes.

    Science.gov (United States)

    Rhee, Je-Keun; Kim, Tae-Min

    2018-04-20

    It is well recognized that accumulation of somatic mutations in cancer genomes plays a role in carcinogenesis; however, the temporal sequence and evolutionary relationship of somatic mutations remain largely unknown. In this study, we built a population-based statistical framework to infer the temporal sequence of acquisition of somatic mutations. Using the model, we analyzed the mutation profiles of 1954 tumor specimens across eight tumor types. As a result, we identified tumor type-specific directed networks composed of 2-15 cancer-related genes (nodes) and their mutational orders (edges). The most common ancestors identified in pairwise comparison of somatic mutations were TP53 mutations in breast, head/neck, and lung cancers. The known relationship of KRAS to TP53 mutations in colorectal cancers was identified, as well as potential ancestors of TP53 mutation such as NOTCH1, EGFR, and PTEN mutations in head/neck, lung and endometrial cancers, respectively. We also identified apoptosis-related genes enriched with ancestor mutations in lung cancers and a relationship between APC hotspot mutations and TP53 mutations in colorectal cancers. While evolutionary analysis of cancers has focused on clonal versus subclonal mutations identified in individual genomes, our analysis aims to further discriminate ancestor versus descendant mutations in population-scale mutation profiles that may help select cancer drivers with clinical relevance.

  1. A Site Specific Model And Analysis Of The Neutral Somatic Mutation Rate In Whole-Genome Cancer Data

    DEFF Research Database (Denmark)

    Bertl, Johanna; Guo, Qianyun; Rasmussen, Malene Juul

    2017-01-01

    Detailed modelling of the neutral mutational process in cancer cells is crucial for identifying driver mutations and understanding the mutational mechanisms that act during cancer development. The neutral mutational process is very complex: whole-genome analyses have revealed that the mutation ra...

  2. Molecular spectrum of KRAS, NRAS, BRAF, PIK3CA, TP53, and APC somatic gene mutations in Arab patients with colorectal cancer: determination of frequency and distribution pattern

    Science.gov (United States)

    Al-Shamsi, Humaid O.; Jones, Jeremy; Fahmawi, Yazan; Dahbour, Ibrahim; Tabash, Aziz; Abdel-Wahab, Reham; Abousamra, Ahmed O. S.; Shaw, Kenna R.; Xiao, Lianchun; Hassan, Manal M.; Kipp, Benjamin R.; Kopetz, Scott; Soliman, Amr S.; McWilliams, Robert R.; Wolff, Robert A.

    2016-01-01

    Background The frequency rates of mutations such as KRAS, NRAS, BRAF, and PIK3CA in colorectal cancer (CRC) differ among populations. The aim of this study was to assess mutation frequencies in the Arab population and determine their correlations with certain clinicopathological features. Methods Arab patients from the Arab Gulf region and a population of age- and sex-matched Western patients with CRC whose tumors were evaluated with next-generation sequencing (NGS) were identified and retrospectively reviewed. The mutation rates of KRAS, NRAS, BRAF, PIK3CA, TP53, and APC were recorded, along with clinicopathological features. Other somatic mutation and their rates were also identified. Fisher’s exact test was used to determine the association between mutation status and clinical features. Results A total of 198 cases were identified; 99 Arab patients and 99 Western patients. Fifty-two point seven percent of Arab patients had stage IV disease at initial presentation, 74.2% had left-sided tumors. Eighty-nine point two percent had tubular adenocarcinoma and 10.8% had mucinous adenocarcinoma. The prevalence rates of KRAS, NRAS, BRAF, PIK3CA, TP53, APC, SMAD, FBXW7 mutations in Arab population were 44.4%, 4%, 4%, 13.1%, 52.5%, 27.3%, 2% and 3% respectively. Compared to 48.4%, 4%, 4%, 12.1%, 47.5%, 24.2%, 11.1% and 0% respectively in matched Western population. Associations between these mutations and patient clinicopathological features were not statistically significant. Conclusions This is the first study to report comprehensive hotspot mutations using NGS in Arab patients with CRC. The frequency of KRAS, NRAS, BRAF, TP53, APC and PIK3CA mutations were similar to reported frequencies in Western population except SMAD4 that had a lower frequency and higher frequency of FBXW7 mutation. PMID:28078112

  3. Two missense mutations, E123Q and K151E, identified in the ERG11 allele of an azole-resistant isolate of Candida kefyr recovered from a stem cell transplant patient for acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Célia Couzigou

    2014-07-01

    Full Text Available We report on the first cloning and nucleotide sequencing of an ERG11 allele from a clinical isolate of Candida kefyr cross-resistant to azole antifungals. It was recovered from a stem cell transplant patient, in an oncohematology unit exhibiting unexpected high prevalence of C. kefyr. Two amino acid substitutions were identified: K151E, whose role in fluconazole resistance was already demonstrated in Candida albicans, and E123Q, a new substitution never described so far in azole-resistant Candida yeast.

  4. Gene mutations in children with chronic pancreatitis.

    Science.gov (United States)

    Witt, H

    2001-01-01

    In the last few years, several genes have been identified as being associated with hereditary and idiopathic chronic pancreatitis (CP), i.e. PRSS1, CFTR and SPINK1. In this study, we investigated 164 unrelated children and adolescents with CP for mutations in disease-associated genes by direct DNA sequencing, SSCP, RFLP and melting curve analysis. In 15 patients, we detected a PRSS1 mutation (8 with A16V, 5 with R122H, 2 with N29I), and in 34 patients, a SPINK1 mutation (30 with N34S, 4 with others). SPINK1 mutations were predominantly found in patients without a family history (29/121). Ten patients were homozygous for N34S, SPINK1 mutations were most common in 'idiopathic' CP, whereas patients with 'hereditary' CP predominantly showed a PRSS1 mutation (R122H, N29I). In patients without a family history, the most common PRSS1 mutation was A16V (7/121). In conclusion, our data suggest that CP may be inherited in a dominant, recessive or multigenetic manner as a result of mutations in the above-mentioned or as yet unidentified genes. This challenges the concept of idiopathic CP as a nongenetic disorder and the differentiation between hereditary and idiopathic CP. Therefore, we propose to classify CP as either 'primary CP' (with or without a family history) or 'secondary CP' caused by toxic, metabolic or other factors.

  5. TFAP2B mutation and dental anomalies.

    Science.gov (United States)

    Tanasubsinn, Natchaya; Sittiwangkul, Rekwan; Pongprot, Yupada; Kawasaki, Katsushige; Ohazama, Atsushi; Sastraruji, Thanapat; Kaewgahya, Massupa; Kantaputra, Piranit Nik

    2017-08-01

    Mutations inTFAP2B has been reported in patients with isolated patent ductus arteriosus (PDA) and Char syndrome. We performed mutation analysis of TFAP2B in 43 patients with isolated PDA, 7 patients with PDA with other congenital heart defects and 286 patients with isolated tooth agenesis with or without other dental anomalies. The heterozygous c.1006G>A mutation was identified in 20 individuals. Those mutation carriers consisted of 1 patient with term PDA (1/43), 16 patients with isolated tooth agenesis with or without other dental anomalies (16/286; 5.6%), 1 patient with PDA and severe valvular aortic stenosis and tooth agenesis (1/4) and 2 normal controls (2/100; 1%). The mutation is predicted to cause an amino-acid substitution p.Val336Ile in the TFAP2B protein. Tfap2b expression during early mouse tooth development supports the association of TFAP2B mutation and dental anomalies. It is hypothesized that this incidence might have been the result of founder effect. Here we report for the first time that TFAP2B mutation is associated with tooth agenesis, microdontia, supernumerary tooth and root maldevelopment. In addition, we also found that TFAP2B mutations, the common causes of PDA in Caucasian, are not the common cause of PDA in Thai population.

  6. Mutations in the Norrie disease gene.

    Science.gov (United States)

    Schuback, D E; Chen, Z Y; Craig, I W; Breakefield, X O; Sims, K B

    1995-01-01

    We report our experience to date in mutation identification in the Norrie disease (ND) gene. We carried out mutational analysis in 26 kindreds in an attempt to identify regions presumed critical to protein function and potentially correlated with generation of the disease phenotype. All coding exons, as well as noncoding regions of exons 1 and 2, 636 nucleotides in the noncoding region of exon 3, and 197 nucleotides of 5' flanking sequence, were analyzed for single-strand conformation polymorphisms (SSCP) by polymerase chain reaction (PCR) amplification of genomic DNA. DNA fragments that showed altered SSCP band mobilities were sequenced to locate the specific mutations. In addition to three previously described submicroscopic deletions encompassing the entire ND gene, we have now identified 6 intragenic deletions, 8 missense (seven point mutations, one 9-bp deletion), 6 nonsense (three point mutations, three single bp deletions/frameshift) and one 10-bp insertion, creating an expanded repeat in the 5' noncoding region of exon 1. Thus, mutations have been identified in a total of 24 of 26 (92%) of the kindreds we have studied to date. With the exception of two different mutations, each found in two apparently unrelated kindreds, these mutations are unique and expand the genotype database. Localization of the majority of point mutations at or near cysteine residues, potentially critical in protein tertiary structure, supports a previous protein model for norrin as member of a cystine knot growth factor family (Meitinger et al., 1993). Genotype-phenotype correlations were not evident with the limited clinical data available, except in the cases of larger submicroscopic deletions associated with a more severe neurologic syndrome.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Mutations in RIT1 cause Noonan syndrome - additional functional evidence and expanding the clinical phenotype.

    Science.gov (United States)

    Koenighofer, M; Hung, C Y; McCauley, J L; Dallman, J; Back, E J; Mihalek, I; Gripp, K W; Sol-Church, K; Rusconi, P; Zhang, Z; Shi, G-X; Andres, D A; Bodamer, O A

    2016-03-01

    RASopathies are a clinically heterogeneous group of conditions caused by mutations in 1 of 16 proteins in the RAS-mitogen activated protein kinase (RAS-MAPK) pathway. Recently, mutations in RIT1 were identified as a novel cause for Noonan syndrome. Here we provide additional functional evidence for a causal role of RIT1 mutations and expand the associated phenotypic spectrum. We identified two de novo missense variants p.Met90Ile and p.Ala57Gly. Both variants resulted in increased MEK-ERK signaling compared to wild-type, underscoring gain-of-function as the primary functional mechanism. Introduction of p.Met90Ile and p.Ala57Gly into zebrafish embryos reproduced not only aspects of the human phenotype but also revealed abnormalities of eye development, emphasizing the importance of RIT1 for spatial and temporal organization of the growing organism. In addition, we observed severe lymphedema of the lower extremity and genitalia in one patient. We provide additional evidence for a causal relationship between pathogenic mutations in RIT1, increased RAS-MAPK/MEK-ERK signaling and the clinical phenotype. The mutant RIT1 protein may possess reduced GTPase activity or a diminished ability to interact with cellular GTPase activating proteins; however the precise mechanism remains unknown. The phenotypic spectrum is likely to expand and includes lymphedema of the lower extremities in addition to nuchal hygroma. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Mutation analysis of the COL1A1 and COL1A2 genes in Vietnamese patients with osteogenesis imperfecta.

    Science.gov (United States)

    Ho Duy, Binh; Zhytnik, Lidiia; Maasalu, Katre; Kändla, Ivo; Prans, Ele; Reimann, Ene; Märtson, Aare; Kõks, Sulev

    2016-08-12

    The genetics of osteogenesis imperfecta (OI) have not been studied in a Vietnamese population before. We performed mutational analysis of the COL1A1 and COL1A2 genes in 91 unrelated OI patients of Vietnamese origin. We then systematically characterized the mutation profiles of these two genes which are most commonly related to OI. Genomic DNA was extracted from EDTA-preserved blood according to standard high-salt extraction methods. Sequence analysis and pathogenic variant identification was performed with Mutation Surveyor DNA variant analysis software. Prediction of the pathogenicity of mutations was conducted using Alamut Visual software. The presence of variants was checked against Dalgleish's osteogenesis imperfecta mutation database. The sample consisted of 91 unrelated osteogenesis imperfecta patients. We identified 54 patients with COL1A1/2 pathogenic variants; 33 with COL1A1 and 21 with COL1A2. Two patients had multiple pathogenic variants. Seventeen novel COL1A1 and 10 novel COL1A2 variants were identified. The majority of identified COL1A1/2 pathogenic variants occurred in a glycine substitution (36/56, 64.3 %), usually serine (23/36, 63.9 %). We found two pathogenic variants of the COL1A1 gene c.2461G > A (p.Gly821Ser) in four unrelated patients and one, c.2005G > A (p.Ala669Thr), in two unrelated patients. Our data showed a lower number of collagen OI pathogenic variants in Vietnamese patients compared to reported rates for Asian populations. The OI mutational profile of the Vietnamese population is unique and related to the presence of a high number of recessive mutations in non-collagenous OI genes. Further analysis of OI patients negative for collagen mutations, is required.

  9. New mutations affecting induced mutagenesis in yeast.

    Science.gov (United States)

    Lawrence, C W; Krauss, B R; Christensen, R B

    1985-01-01

    Previously isolated mutations in baker's yeast, Saccharomyces cerevisiae, that impair induced mutagenesis were all identified with the aid of tests that either exclusively or predominantly detect base-pair substitutions. To avoid this bias, we have screened 11 366 potentially mutant clones for UV-induced reversion of the frameshift allele, his4-38, and have identified 10 mutants that give much reduced yields of revertants. Complementation and recombination tests show that 6 of these carry mutations at the previously known REV1, REV1 and REV3 loci, while the remaining 4 define 3 new genes, REV4 (2 mutations), REV5 and REV6. The rev4 mutations are readily suppressed in many genetic backgrounds and, like the rev5 mutation, impart only a limited deficiency for induced mutagenesis: it is likely, therefore that the REV4+ and REV5+ gene functions are only remotely concerned with this process. The rev6 mutants have a more general deficiency, however, as well as marked sensitivity to UV and an increased spontaneous mutation rate, properties that suggest the REV6 gene is directly involved in mutation induction. The REV5 gene is located about 1 cM proximal to CYC1 on chromosome X.

  10. DNA mutation motifs in the genes associated with inherited diseases.

    Directory of Open Access Journals (Sweden)

    Michal Růžička

    Full Text Available Mutations in human genes can be responsible for inherited genetic disorders and cancer. Mutations can arise due to environmental factors or spontaneously. It has been shown that certain DNA sequences are more prone to mutate. These sites are termed hotspots and exhibit a higher mutation frequency than expected by chance. In contrast, DNA sequences with lower mutation frequencies than expected by chance are termed coldspots. Mutation hotspots are usually derived from a mutation spectrum, which reflects particular population where an effect of a common ancestor plays a role. To detect coldspots/hotspots unaffected by population bias, we analysed the presence of germline mutations obtained from HGMD database in the 5-nucleotide segments repeatedly occurring in genes associated with common inherited disorders, in particular, the PAH, LDLR, CFTR, F8, and F9 genes. Statistically significant sequences (mutational motifs rarely associated with mutations (coldspots and frequently associated with mutations (hotspots exhibited characteristic sequence patterns, e.g. coldspots contained purine tract while hotspots showed alternating purine-pyrimidine bases, often with the presence of CpG dinucleotide. Using molecular dynamics simulations and free energy calculations, we analysed the global bending properties of two selected coldspots and two hotspots with a G/T mismatch. We observed that the coldspots were inherently more flexible than the hotspots. We assume that this property might be critical for effective mismatch repair as DNA with a mutation recognized by MutSα protein is noticeably bent.

  11. IFITM5 mutations and osteogenesis imperfecta.

    Science.gov (United States)

    Hanagata, Nobutaka

    2016-03-01

    Interferon-induced transmembrane protein 5 (IFITM5) is an osteoblast-specific membrane protein that has been shown to be a positive regulatory factor for mineralization in vitro. However, Ifitm5 knockout mice do not exhibit serious bone abnormalities, and thus the function of IFITM5 in vivo remains unclear. Recently, a single point mutation (c.-14C>T) in the 5' untranslated region of IFITM5 was identified in patients with osteogenesis imperfecta type V (OI-V). Furthermore, a single point mutation (c.119C>T) in the coding region of IFITM5 was identified in OI patients with more severe symptoms than patients with OI-V. Although IFITM5 is not directly involved in the formation of bone in vivo, the reason why IFITM5 mutations cause OI remains a major mystery. In this review, the current state of knowledge of OI pathological mechanisms due to IFITM5 mutations will be reviewed.

  12. Mutation Rates of STR Systems in Danes

    DEFF Research Database (Denmark)

    Andersen, Kim Emil; Bøttcher, Susanne Gammelgaard; Christensen, Susanne

    Danish paternity cases in the period 1999 to 2005 were investigated regarding mutation rates in STR loci. STR-typing was performed by the Applied Biosystems AmplfStr Profiler Plus kit in the period 1999 to early 2005, hereafter named the PP9, and by Applied Biosystems AmplfStr Identifier kit for ...... and kits. Sex and STR locus specific mutation rates were estimated with 95% confidence limits by the method of Clopper and Pearson (1934)....

  13. Induced mutations in castor

    International Nuclear Information System (INIS)

    Ganesan, K.; Javad Hussain, H.S.; Vindhiyavarman, P.

    2001-01-01

    Castor (Ricinus communis L.) is an important oilseed crop in India. To create variability mutations were induced in two cultivars 'TMV5' (maturing in 130-140 days) and 'CO1' (perennial type). Gamma rays and diethyl sulphate and ethidium bromide were used for seed treatment. Ten doses, from 100 to 1000 Gy were employed. For chemical mutagenesis five concentrations of mutagenes from 10 to 50 mM were tried. No economic mutants could be isolated after treatment with the chemical mutagens. The following economic mutants were identified in the dose 300 Gy of gamma rays. Annual types from perennial CO 1 castor CO 1 is a perennial variety (8-10 years) with bold seeds (100 seed weight 90 g) and high oil content (57%). Twenty-one lines were isolated with annual types (160-180 days) with high yield potential as well as bold seeds and high oil content. These mutants, identified in M 3 generation were bred true in subsequent generations up to M 8 generation. Critical evaluation of the mutants in yield evaluation trials is in progress

  14. Better plants through mutations

    International Nuclear Information System (INIS)

    1988-01-01

    This is a public relations film describing problems associated with the genetic improvement of crop plants through induced mutations. Mutations are the ultimate source of genetic variation in plants. Mutation induction is now established as a practical tool in plant breeding. The Joint FAO/IAEA Division and the IAEA's laboratory at Seibersdorf have supported research and practical implementation of mutation breeding of both seed propagated and vegetatively propagated plants. Plant biotechnology based on in vitro culture and recombinant DNA technology will make a further significant contribution to plant breeding

  15. Predictive models for mutations in mismatch repair genes: implication for genetic counseling in developing countries

    Directory of Open Access Journals (Sweden)

    Monteiro Santos Erika

    2012-02-01

    Full Text Available Abstract Background Lynch syndrome (LS is the most common form of inherited predisposition to colorectal cancer (CRC, accounting for 2-5% of all CRC. LS is an autosomal dominant disease characterized by mutations in the mismatch repair genes mutL homolog 1 (MLH1, mutS homolog 2 (MSH2, postmeiotic segregation increased 1 (PMS1, post-meiotic segregation increased 2 (PMS2 and mutS homolog 6 (MSH6. Mutation risk prediction models can be incorporated into clinical practice, facilitating the decision-making process and identifying individuals for molecular investigation. This is extremely important in countries with limited economic resources. This study aims to evaluate sensitivity and specificity of five predictive models for germline mutations in repair genes in a sample of individuals with suspected Lynch syndrome. Methods Blood samples from 88 patients were analyzed through sequencing MLH1, MSH2 and MSH6 genes. The probability of detecting a mutation was calculated using the PREMM, Barnetson, MMRpro, Wijnen and Myriad models. To evaluate the sensitivity and specificity of the models, receiver operating characteristic curves were constructed. Results Of the 88 patients included in this analysis, 31 mutations were identified: 16 were found in the MSH2 gene, 15 in the MLH1 gene and no pathogenic mutations were identified in the MSH6 gene. It was observed that the AUC for the PREMM (0.846, Barnetson (0.850, MMRpro (0.821 and Wijnen (0.807 models did not present significant statistical difference. The Myriad model presented lower AUC (0.704 than the four other models evaluated. Considering thresholds of ≥ 5%, the models sensitivity varied between 1 (Myriad and 0.87 (Wijnen and specificity ranged from 0 (Myriad to 0.38 (Barnetson. Conclusions The Barnetson, PREMM, MMRpro and Wijnen models present similar AUC. The AUC of the Myriad model is statistically inferior to the four other models.

  16. Predictive models for mutations in mismatch repair genes: implication for genetic counseling in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro Santos, Erika Maria [Graduation Program, AC Camargo Hospital, Sao Paulo (Brazil); International Center of Research and Training (CIPE), AC Camargo Hospital, Sao Paulo (Brazil); Silva Junior, Wilson Araujo da [Sao Paulo University, Department of Genetics, Medical School of Ribeirao Preto, Ribeirao Preto (Brazil); Carraro, Dirce Maria [Graduation Program, AC Camargo Hospital, Sao Paulo (Brazil); International Center of Research and Training (CIPE), AC Camargo Hospital, Sao Paulo (Brazil); Rossi, Benedito Mauro; Valentin, Mev Dominguez [Graduation Program, AC Camargo Hospital, Sao Paulo (Brazil); Carneiro, Felipe [Graduation Program, AC Camargo Hospital, Sao Paulo (Brazil); International Center of Research and Training (CIPE), AC Camargo Hospital, Sao Paulo (Brazil); Oliveira, Ligia Petrolini de [Graduation Program, AC Camargo Hospital, Sao Paulo (Brazil); Oliveira Ferreira, Fabio de; Junior, Samuel Aguiar [Graduation Program, AC Camargo Hospital, Sao Paulo (Brazil); Hereditary Colorectal Cancer Registry, AC Camargo Hospital, Sao Paulo (Brazil); Nakagawa, Wilson Toshihiko [Hereditary Colorectal Cancer Registry, AC Camargo Hospital, Sao Paulo (Brazil); Gomy, Israel [Graduation Program, AC Camargo Hospital, Sao Paulo (Brazil); Sao Paulo University, Department of Genetics, Medical School of Ribeirao Preto, Ribeirao Preto (Brazil); Faria Ferraz, Victor Evangelista de [Sao Paulo University, Department of Genetics, Medical School of Ribeirao Preto, Ribeirao Preto (Brazil)

    2012-02-09

    Lynch syndrome (LS) is the most common form of inherited predisposition to colorectal cancer (CRC), accounting for 2-5% of all CRC. LS is an autosomal dominant disease characterized by mutations in the mismatch repair genes mutL homolog 1 (MLH1), mutS homolog 2 (MSH2), postmeiotic segregation increased 1 (PMS1), post-meiotic segregation increased 2 (PMS2) and mutS homolog 6 (MSH6). Mutation risk prediction models can be incorporated into clinical practice, facilitating the decision-making process and identifying individuals for molecular investigation. This is extremely important in countries with limited economic resources. This study aims to evaluate sensitivity and specificity of five predictive models for germline mutations in repair genes in a sample of individuals with suspected Lynch syndrome. Blood samples from 88 patients were analyzed through sequencing MLH1, MSH2 and MSH6 genes. The probability of detecting a mutation was calculated using the PREMM, Barnetson, MMRpro, Wijnen and Myriad models. To evaluate the sensitivity and specificity of the models, receiver operating characteristic curves were constructed. Of the 88 patients included in this analysis, 31 mutations were identified: 16 were found in the MSH2 gene, 15 in the MLH1 gene and no pathogenic mutations were identified in the MSH6 gene. It was observed that the AUC for the PREMM (0.846), Barnetson (0.850), MMRpro (0.821) and Wijnen (0.807) models did not present significant statistical difference. The Myriad model presented lower AUC (0.704) than the four other models evaluated. Considering thresholds of ≥ 5%, the models sensitivity varied between 1 (Myriad) and 0.87 (Wijnen) and specificity ranged from 0 (Myriad) to 0.38 (Barnetson). The Barnetson, PREMM, MMRpro and Wijnen models present similar AUC. The AUC of the Myriad model is statistically inferior to the four other models.

  17. Predictive models for mutations in mismatch repair genes: implication for genetic counseling in developing countries

    International Nuclear Information System (INIS)

    Monteiro Santos, Erika Maria; Silva Junior, Wilson Araujo da; Carraro, Dirce Maria; Rossi, Benedito Mauro; Valentin, Mev Dominguez; Carneiro, Felipe; Oliveira, Ligia Petrolini de; Oliveira Ferreira, Fabio de; Junior, Samuel Aguiar; Nakagawa, Wilson Toshihiko; Gomy, Israel; Faria Ferraz, Victor Evangelista de

    2012-01-01

    Lynch syndrome (LS) is the most common form of inherited predisposition to colorectal cancer (CRC), accounting for 2-5% of all CRC. LS is an autosomal dominant disease characterized by mutations in the mismatch repair genes mutL homolog 1 (MLH1), mutS homolog 2 (MSH2), postmeiotic segregation increased 1 (PMS1), post-meiotic segregation increased 2 (PMS2) and mutS homolog 6 (MSH6). Mutation risk prediction models can be incorporated into clinical practice, facilitating the decision-making process and identifying individuals for molecular investigation. This is extremely important in countries with limited economic resources. This study aims to evaluate sensitivity and specificity of five predictive models for germline mutations in repair genes in a sample of individuals with suspected Lynch syndrome. Blood samples from 88 patients were analyzed through sequencing MLH1, MSH2 and MSH6 genes. The probability of detecting a mutation was calculated using the PREMM, Barnetson, MMRpro, Wijnen and Myriad models. To evaluate the sensitivity and specificity of the models, receiver operating characteristic curves were constructed. Of the 88 patients included in this analysis, 31 mutations were identified: 16 were found in the MSH2 gene, 15 in the MLH1 gene and no pathogenic mutations were identified in the MSH6 gene. It was observed that the AUC for the PREMM (0.846), Barnetson (0.850), MMRpro (0.821) and Wijnen (0.807) models did not present significant statistical difference. The Myriad model presented lower AUC (0.704) than the four other models evaluated. Considering thresholds of ≥ 5%, the models sensitivity varied between 1 (Myriad) and 0.87 (Wijnen) and specificity ranged from 0 (Myriad) to 0.38 (Barnetson). The Barnetson, PREMM, MMRpro and Wijnen models present similar AUC. The AUC of the Myriad model is statistically inferior to the four other models

  18. Stabilization of a nucleotide-binding domain of the cystic fibrosis transmembrane conductance regulator yields insight into disease-causing mutations.

    Science.gov (United States)

    Vernon, Robert M; Chong, P Andrew; Lin, Hong; Yang, Zhengrong; Zhou, Qingxian; Aleksandrov, Andrei A; Dawson, Jennifer E; Riordan, John R; Brouillette, Christie G; Thibodeau, Patrick H; Forman-Kay, Julie D

    2017-08-25

    Characterization of the second nucleotide-binding domain (NBD2) of the cystic fibrosis transmembrane conductance regulator (CFTR) has lagged behind research into the NBD1 domain, in part because NBD1 contains the F508del mutation, which is the dominant cause of cystic fibrosis. Research on NBD2 has also been hampered by the overall instability of the domain and the difficulty of producing reagents. Nonetheless, multiple disease-causing mutations reside in NBD2, and the domain is critical for CFTR function, because channel gating involves NBD1/NBD2 dimerization, and NBD2 contains the catalytically active ATPase site in CFTR. Recognizing the paucity of structural and biophysical data on NBD2, here we have defined a bioinformatics-based method for manually identifying stabilizing substitutions in NBD2, and we used an iterative process of screening single substitutions against thermal melting points to both produce minimally mutated stable constructs and individually characterize mutations. We present a range of stable constructs with minimal mutations to help inform further research on NBD2. We have used this stabilized background to study the effects of NBD2 mutations identified in cystic fibrosis (CF) patients, demonstrating that mutants such as N1303K and G1349D are characterized by lower stability, as shown previously for some NBD1 mutations, suggesting a potential role for NBD2 instability in the pathology of CF. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Usher syndrome in Denmark: mutation spectrum and some clinical observations.

    Science.gov (United States)

    Dad, Shzeena; Rendtorff, Nanna Dahl; Tranebjærg, Lisbeth; Grønskov, Karen; Karstensen, Helena Gásdal; Brox, Vigdis; Nilssen, Øivind; Roux, Anne-Françoise; Rosenberg, Thomas; Jensen, Hanne; Møller, Lisbeth Birk

    2016-09-01

    Usher syndrome (USH) is a genetically heterogeneous deafness-blindness syndrome, divided into three clinical subtypes: USH1, USH2 and USH3. Mutations in 21 out of 26 investigated Danish unrelated individuals with USH were identified, using a combination of molecular diagnostic methods. Before Next Generation Sequencing (NGS) became available mutations in nine individuals (1 USH1, 7 USH2, 1 USH3) were identified by Sanger sequencing of USH1C , USH2A or CLRN1 or by Arrayed Primer EXtension (APEX) method. Mutations in 12 individuals (7 USH1, 5 USH2) were found by targeted NGS of ten known USH genes. Five novel pathogenic variants were identified. We combined our data with previously published, and obtained an overview of the USH mutation spectrum in Denmark, including 100 unrelated individuals; 32 with USH1, 67 with USH2, and 1 with USH3. Macular edema was observed in 44 of 117 individuals. Olfactory function was tested in 12 individuals and found to be within normal range in all. Mutations that lead to USH1 were predominantly identified in MYO7A (75%), whereas all mutations in USH2 cases were identified in USH2A . The MYO7A mutation c.93C>A, p.(Cys31*) accounted for 33% of all USH1 mutations and the USH2A c.2299delG, p.(Glu767Serfs*21) variant accounted for 45% of all USH2 mutations in the Danish cohort.

  20. Avoiding dangerous missense: thermophiles display especially low mutation rates.

    Directory of Open Access Journals (Sweden)

    John W Drake

    2009-06-01

    Full Text Available Rates of spontaneous mutation have been estimated under optimal growth conditions for a variety of DNA-based microbes, including viruses, bacteria, and eukaryotes. When expressed as genomic mutation rates, most of the values were in the vicinity of 0.003-0.004 with a range of less than two-fold. Because the genome sizes varied by roughly 10(4-fold, the mutation rates per average base pair varied inversely by a similar factor. Even though the commonality of the observed genomic rates remains unexplained, it implies that mutation rates in unstressed microbes reach values that can be finely tuned by evolution. An insight originating in the 1920s and maturing in the 1960s proposed that the genomic mutation rate would reflect a balance between the deleterious effect of the average mutation and the cost of further reducing the mutation rate. If this view is correct, then increasing the deleterious impact of the average mutation should be countered by reducing the genomic mutation rate. It is a common observation that many neutral or nearly neutral mutations become strongly deleterious at higher temperatures, in which case they are called temperature-sensitive mutations. Recently, the kinds and rates of spontaneous mutations were described for two microbial thermophiles, a bacterium and an archaeon. Using an updated method to extrapolate from mutation-reporter genes to whole genomes reveals that the rate of base substitutions is substantially lower in these two thermophiles than in mesophiles. This result provides the first experimental support for the concept of an evolved balance between the total genomic impact of mutations and the cost of further reducing the basal mutation rate.

  1. Nanolock-Nanopore Facilitated Digital Diagnostics of Cancer Driver Mutation in Tumor Tissue.

    Science.gov (United States)

    Wang, Yong; Tian, Kai; Shi, Ruicheng; Gu, Amy; Pennella, Michael; Alberts, Lindsey; Gates, Kent S; Li, Guangfu; Fan, Hongxin; Wang, Michael X; Gu, Li-Qun

    2017-07-28

    Cancer driver mutations are clinically significant biomarkers. In precision medicine, accurate detection of these oncogenic changes in patients would enable early diagnostics of cancer, individually tailored targeted therapy, and precise monitoring of treatment response. Here we investigated a novel nanolock-nanopore method for single-molecule detection of a serine/threonine protein kinase gene BRAF V600E mutation in tumor tissues of thyroid cancer patients. The method lies in a noncovalent, mutation sequence-specific nanolock. We found that the nanolock formed on the mutant allele/probe duplex can separate the duplex dehybridization procedure into two sequential steps in the nanopore. Remarkably, this stepwise unzipping kinetics can produce a unique nanopore electric marker, with which a single DNA molecule of the cancer mutant allele can be unmistakably identified in various backgrounds of the normal wild-type allele. The single-molecule sensitivity for mutant allele enables both binary diagnostics and quantitative analysis of mutation occurrence. In the current configuration, the method can detect the BRAF V600E mutant DNA lower than 1% in the tumor tissues. The nanolock-nanopore method can be adapted to detect a broad spectrum of both transversion and transition DNA mutations, with applications from diagnostics to targeted therapy.

  2. Variable mutation rates as an adaptive strategy in replicator populations.

    Directory of Open Access Journals (Sweden)

    Michael Stich

    2010-06-01

    Full Text Available For evolving populations of replicators, there is much evidence that the effect of mutations on fitness depends on the degree of adaptation to the selective pressures at play. In optimized populations, most mutations have deleterious effects, such that low mutation rates are favoured. In contrast to this, in populations thriving in changing environments a larger fraction of mutations have beneficial effects, providing the diversity necessary to adapt to new conditions. What is more, non-adapted populations occasionally benefit from an increase in the mutation rate. Therefore, there is no optimal universal value of the mutation rate and species attempt to adjust it to their momentary adaptive needs. In this work we have used stationary populations of RNA molecules evolving in silico to investigate the relationship between the degree of adaptation of an optimized population and the value of the mutation rate promoting maximal adaptation in a short time to a new selective pressure. Our results show that this value can significantly differ from the optimal value at mutation-selection equilibrium, being strongly influenced by the structure of the population when the adaptive process begins. In the short-term, highly optimized populations containing little variability respond better to environmental changes upon an increase of the mutation rate, whereas populations with a lower degree of optimization but higher variability benefit from reducing the mutation rate to adapt rapidly. These findings show a good agreement with the behaviour exhibited by actual organisms that replicate their genomes under broadly different mutation rates.

  3. Spectrum of K ras mutations in Pakistani colorectal cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Murtaza, B.N.; Bibi, A. [School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore (Pakistan); Rashid, M.U.; Khan, Y.I. [Shaukat Khanum Memorial Cancer Hospital and Research Centre, Johar Town, Lahore (Pakistan); Chaudri, M.S. [Services Institute of Medical Sciences, Lahore (Pakistan); Shakoori, A.R. [School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore (Pakistan)

    2013-11-29

    The incidence of colorectal cancer (CRC) is increasing daily worldwide. Although different aspects of CRC have been studied in other parts of the world, relatively little or almost no information is available in Pakistan about different aspects of this disease at the molecular level. The present study was aimed at determining the frequency and prevalence of K ras gene mutations in Pakistani CRC patients. Tissue and blood samples of 150 CRC patients (64% male and 36% female) were used for PCR amplification of K ras and detection of mutations by denaturing gradient gel electrophoresis, restriction fragment length polymorphism analysis, and nucleotide sequencing. The K ras mutation frequency was found to be 13%, and the most prevalent mutations were found at codons 12 and 13. A novel mutation was also found at codon 31. The dominant mutation observed was a G to A transition. Female patients were more susceptible to K ras mutations, and these mutations were predominant in patients with a nonmetastatic stage of CRC. No significant differences in the prevalence of K ras mutations were observed for patient age, gender, or tumor type. It can be inferred from this study that Pakistani CRC patients have a lower frequency of K ras mutations compared to those observed in other parts of the world, and that K ras mutations seemed to be significantly associated with female patients.

  4. Spectrum of K ras mutations in Pakistani colorectal cancer patients

    International Nuclear Information System (INIS)

    Murtaza, B.N.; Bibi, A.; Rashid, M.U.; Khan, Y.I.; Chaudri, M.S.; Shakoori, A.R.

    2013-01-01

    The incidence of colorectal cancer (CRC) is increasing daily worldwide. Although different aspects of CRC have been studied in other parts of the world, relatively little or almost no information is available in Pakistan about different aspects of this disease at the molecular level. The present study was aimed at determining the frequency and prevalence of K ras gene mutations in Pakistani CRC patients. Tissue and blood samples of 150 CRC patients (64% male and 36% female) were used for PCR amplification of K ras and detection of mutations by denaturing gradient gel electrophoresis, restriction fragment length polymorphism analysis, and nucleotide sequencing. The K ras mutation frequency was found to be 13%, and the most prevalent mutations were found at codons 12 and 13. A novel mutation was also found at codon 31. The dominant mutation observed was a G to A transition. Female patients were more susceptible to K ras mutations, and these mutations were predominant in patients with a nonmetastatic stage of CRC. No significant differences in the prevalence of K ras mutations were observed for patient age, gender, or tumor type. It can be inferred from this study that Pakistani CRC patients have a lower frequency of K ras mutations compared to those observed in other parts of the world, and that K ras mutations seemed to be significantly associated with female patients

  5. EGFR Mutation Status in Uighur Lung Adenocarcinoma Patients

    Directory of Open Access Journals (Sweden)

    Li SHAN

    2013-02-01

    Full Text Available Background and objective Epidermal growth factor receptor (EGFR, a transmembrane protein, is a member of the tyrosine kinase family. Gefitinib, an EGFR tyrosine-kinase inhibitors, has shown a high response rate in the treatment of lung cancer in patients with EGFR mutation. However, significant differences in EGFR mutations exist among different ethnic groups. The aim of this study is to investigate the prevalence of EGFR mutations in Uighur lung adenocarcinoma patients by using a rapid and sensitive detection method and to analyze EGFR mutation differences compared with Han lung adenocarcinoma patients. Methods We examined lung adenocarcinoma tissues from 138 patients, including 68 Uighur lung adenocarcinoma patients and 70 Han lung adenocarcinoma patients, for EGFR mutations in exons 18, 19, 20, and 21 by using the amplification refractory mutation system (ARMS PCR method. The mutation differences between Uighur and Han lung adenocarcinoma were compared by using the chi-square test method. Results EGFR mutations were detected in 43 (31.2% of the 138 lung adenocarcinoma patients. EGFR mutations were detected in 11 (16.2% of the 68 Uighur lung adenocarcinoma patients and in 32 (45.7% of the 70 Han lung adenocarcinoma patients. Significant differences were observed in the EGFR mutations between Uighur lung adenocarcinoma patients and Han lung adenocarcinoma patients (P<0.001. Conclusion Our results indicate that the EGFR mutation in Uighur lung adenocarcinoma patients (16.2% is significantly lower than that in Han lung adenocarcinoma patients (45.7%.

  6. Mutation and premating isolation

    Science.gov (United States)

    Woodruff, R. C.; Thompson, J. N. Jr

    2002-01-01

    While premating isolation might be traceable to different genetic mechanisms in different species, evidence supports the idea that as few as one or two genes may often be sufficient to initiate isolation. Thus, new mutation can theoretically play a key role in the process. But it has long been thought that a new isolation mutation would fail, because there would be no other individuals for the isolation-mutation-carrier to mate with. We now realize that premeiotic mutations are very common and will yield a cluster of progeny carrying the same new mutant allele. In this paper, we discuss the evidence for genetically simple premating isolation barriers and the role that clusters of an isolation mutation may play in initiating allopatric, and even sympatric, species divisions.

  7. Novel FANCI mutations in Fanconi anemia with VACTERL association.

    Science.gov (United States)

    Savage, Sharon A; Ballew, Bari J; Giri, Neelam; Chandrasekharappa, Settara C; Ameziane, Najim; de Winter, Johan; Alter, Blanche P

    2016-02-01

    Fanconi anemia (FA) is an inherited bone marrow failure syndrome caused by mutations in DNA repair genes; some of these patients may have features of the VACTERL association. Autosomal recessive mutations in FANCI are a rare cause of FA. We identified FANCI mutations by next generation sequencing in three patients in our FA cohort among several whose mutated gene was unknown. Four of the six mutations are novel and all mutations are likely deleterious to protein function. There are now 16 reported cases of FA due to FANCI of whom 7 have at least 3 features of the VACTERL association (44%). This suggests that the VACTERL association in patients with FA may be seen in patients with FANCI mutations more often than previously recognized. © 2015 Wiley Periodicals, Inc.

  8. TOX3 mutations in breast cancer.

    Directory of Open Access Journals (Sweden)

    James Owain Jones

    Full Text Available TOX3 maps to 16q12, a region commonly lost in breast cancers and recently implicated in the risk of developing breast cancer. However, not much is known of the role of TOX3 itself in breast cancer biology. This is the first study to determine the importance of TOX3 mutations in breast cancers. We screened TOX3 for mutations in 133 breast tumours and identified four mutations (three missense, one in-frame deletion of 30 base pairs in six primary tumours, corresponding to an overall mutation frequency of 4.5%. One potentially deleterious missense mutation in exon 3 (Leu129Phe was identified in one tumour (genomic DNA and cDNA. Whilst copy number changes of 16q12 are common in breast cancer, our data show that mutations of TOX3 are present at low frequency in tumours. Our results support that TOX3 should be further investigated to elucidate its role in breast cancer biology.

  9. Alanyl-tRNA synthetase mutation in a family with dominant distal hereditary motor neuropathy

    Science.gov (United States)

    Zhao, Z.; Hashiguchi, A.; Sakiyama, Y.; Okamoto, Y.; Tokunaga, S.; Zhu, L.; Shen, H.; Takashima, H.

    2012-01-01

    Objective: To identify a new genetic cause of distal hereditary motor neuropathy (dHMN), which is also known as a variant of Charcot-Marie-Tooth disease (CMT), in a Chinese family. Methods: We investigated a Chinese family with dHMN clinically, electrophysiologically, and genetically. We screened for the mutations of 28 CMT or related pathogenic genes using an originally designed microarray resequencing DNA chip. Results: Investigation of the family history revealed an autosomal dominant transmission pattern. The clinical features of the family included mild weakness and wasting of the distal muscles of the lower limb and foot deformity, without clinical sensory involvement. Electrophysiologic studies revealed motor neuropathy. MRI of the lower limbs showed accentuated fatty infiltration of the gastrocnemius and vastus lateralis muscles. All 4 affected family members had a heterozygous missense mutation c.2677G>A (p.D893N) of alanyl-tRNA synthetase (AARS), which was not found in the 4 unaffected members and control subjects. Conclusion: An AARS mutation caused dHMN in a Chinese family. AARS mutations result in not only a CMT phenotype but also a dHMN phenotype. PMID:22573628

  10. Study on space mutation breeding of rice

    International Nuclear Information System (INIS)

    Xu Jianlong; Lin Yizi; Xi Yongan; Jiang Xingcun; Li Jinguo

    1997-01-01

    Air-dried seeds of rice variety ZR9 were carried by high altitude balloon (HAB) and recoverable satellite (RS) for space mutation. Mutagentic effects of high altitude environment (HAE) of 30∼38 km and outer space environment (OSE) of 218∼326 km above sea level on rice plant were studied. The results indicated that the germination percentage (GP) of seeds was obviously lower than that of the controls. the mutation in plant height (PH) and growth period duration (GPD) of SP 1 carried by HAB were induced. However, the GP of seeds and characters of SP 1 carried by RS had no evident change. More stronger segregation of major characters such as PH, GPD and length of panicle, appeared in the two SP 2 generations resulting from HAB and RS. And their mutation frequency were 4.31% and 4.10% respectively. Mutation lines selected from the two mutation progenies improved significantly in PH, GPD, disease resistance and yield. Therefore, space mutation could be considered as a new breeding method

  11. Characteristics of gene mutation in Chinese patients with hereditary hemochromatosis

    Directory of Open Access Journals (Sweden)

    LYU Tingxia

    2016-08-01

    Full Text Available ObjectiveTo investigate the characteristics of gene mutation in Chinese patients with hereditary hemochromatosis (HH. MethodsA total of 9 patients with HH who visited Beijing Friendship Hospital, Capital Medical University from January 2013 to December 2015 were enrolled. The genomic DNA was extracted, and PCR amplification and Sanger sequencing were performed for all the exons of four genotypes of HH, i.e., HFE (type Ⅰ, HJV (type ⅡA, HAMP (type ⅡB, TFR2 (type Ⅲ, and SLC40A1 (type Ⅳ to analyze gene mutations. A total of 50 healthy subjects were enrolled as control group to analyze the prevalence of identified gene mutations in a healthy population. ResultsOf all patients, 2 had H63D mutation of HFE gene in type Ⅰ HH, 1 had E3D mutation of HJV gene in type ⅡA HH, 2 had I238M mutation of TFR2 gene in type Ⅲ HH, and 1 had IVS 3+10 del GTT splice mutation of SLC40A1 gene in type Ⅳ HH. No patients had C282Y mutation of HFE gene in type Ⅰ HH which was commonly seen in European and American populations. Five patients had no missense mutation or splice mutation. In addition, it was found in a family that a HH patient had E3D mutation of HJV gene, H63D mutation of HFE gene, and I238M mutation of TFR2 gene, but the healthy brother and sister carrying two of these mutations did not had the phenotype of HH. ConclusionHH gene mutations vary significantly across patients of different races, and non-HFE-HH is dominant in the Chinese population. There may be HH genes which are different from known genes, and further investigation is needed.

  12. IRF6 mutation screening in non-syndromic orofacial clefting

    DEFF Research Database (Denmark)

    Leslie, Elizabeth J; Koboldt, Daniel C; Kang, C. J.

    2016-01-01

    -syndromic OFCs. About 70% of causal VWS mutations occur in IRF6, a gene that is also associated with non-syndromic OFCs. Screening for IRF6 mutations in apparently non-syndromic cases has been performed in several modestly sized cohorts with mixed results. In this study, we screened 1521 trios with presumed non......-syndromic OFCs to determine the frequency of causal IRF6 mutations. We identified seven likely causal IRF6 mutations, although a posteriori review identified two misdiagnosed VWS families based on the presence of lip pits. We found no evidence for association between rare IRF6 polymorphisms and non......-syndromic OFCs. We combined our results with other similar studies (totaling 2472 families) and conclude that causal IRF6 mutations are found in 0.24–0.44% of apparently non-syndromic OFC families. We suggest that clinical mutation screening for IRF6 be considered for certain family patterns such as families...

  13. Treatable childhood neuronopathy caused by mutations in riboflavin transporter RFVT2

    Science.gov (United States)

    Foley, A. Reghan; Menezes, Manoj P.; Pandraud, Amelie; Gonzalez, Michael A.; Al-Odaib, Ahmad; Abrams, Alexander J.; Sugano, Kumiko; Yonezawa, Atsushi; Manzur, Adnan Y.; Burns, Joshua; Hughes, Imelda; McCullagh, B. Gary; Jungbluth, Heinz; Lim, Ming J.; Lin, Jean-Pierre; Megarbane, Andre; Urtizberea, J. Andoni; Shah, Ayaz H.; Antony, Jayne; Webster, Richard; Broomfield, Alexander; Ng, Joanne; Mathew, Ann A.; O’Byrne, James J.; Forman, Eva; Scoto, Mariacristina; Prasad, Manish; O’Brien, Katherine; Olpin, Simon; Oppenheim, Marcus; Hargreaves, Iain; Land, John M.; Wang, Min X.; Carpenter, Kevin; Horvath, Rita; Straub, Volker; Lek, Monkol; Gold, Wendy; Farrell, Michael O.; Brandner, Sebastian; Phadke, Rahul; Matsubara, Kazuo; McGarvey, Michael L.; Scherer, Steven S.; Baxter, Peter S.; King, Mary D.; Clayton, Peter; Rahman, Shamima; Reilly, Mary M.; Ouvrier, Robert A.; Christodoulou, John; Züchner, Stephan; Muntoni, Francesco

    2014-01-01

    Childhood onset motor neuron diseases or neuronopathies are a clinically heterogeneous group of disorders. A particularly severe subgroup first described in 1894, and subsequently called Brown-Vialetto-Van Laere syndrome, is characterized by progressive pontobulbar palsy, sensorineural hearing loss and respiratory insufficiency. There has been no treatment for this progressive neurodegenerative disorder, which leads to respiratory failure and usually death during childhood. We recently reported the identification of SLC52A2, encoding riboflavin transporter RFVT2, as a new causative gene for Brown-Vialetto-Van Laere syndrome. We used both exome and Sanger sequencing to identify SLC52A2 mutations in patients presenting with cranial neuropathies and sensorimotor neuropathy with or without respiratory insufficiency. We undertook clinical, neurophysiological and biochemical characterization of patients with mutations in SLC52A2, functionally analysed the most prevalent mutations and initiated a regimen of high-dose oral riboflavin. We identified 18 patients from 13 families with compound heterozygous or homozygous mutations in SLC52A2. Affected individuals share a core phenotype of rapidly progressive axonal sensorimotor neuropathy (manifesting with sensory ataxia, severe weakness of the upper limbs and axial muscles with distinctly preserved strength of the lower limbs), hearing loss, optic atrophy and respiratory insufficiency. We demonstrate that SLC52A2 mutations cause reduced riboflavin uptake and reduced riboflavin transporter protein expression, and we report the response to high-dose oral riboflavin therapy in patients with SLC52A2 mutations, including significant and sustained clinical and biochemical improvements in two patients and preliminary clinical response data in 13 patients with associated biochemical improvements in 10 patients. The clinical and biochemical responses of this SLC52A2-specific cohort suggest that riboflavin supplementation can

  14. Murine muscular dystrophy caused by a mutation in the laminin alpha 2 (Lama2) gene

    DEFF Research Database (Denmark)

    Xu, H; Wu, X R; Wewer, U M

    1994-01-01

    The classic murine muscular dystrophy strain, dy, was first described almost 40 years ago. We have identified the molecular basis of an allele of dy, called dy2J, by detecting a mutation in the laminin alpha 2 chain gene--the first identified mutation in laminin-2. The G to A mutation in a splice...

  15. A Retrospective Study of Clinical and Mutational Findings in 45 Danish Families with Ectodermal Dysplasia

    DEFF Research Database (Denmark)

    Svendsen, Mathias Tiedemann; Henningsen, Emil; Hertz, Jens Michael

    2014-01-01

    covering 17 different diagnoses. Forty-five families were identified of which 26 were sporadic cases with no affected family members. In 27 tested families a disease-causing mutation was identified in 23 families. Eleven mutations were novel mutations. To our knowledge, we present the first large...

  16. Mutation at the Human D1S80 Minisatellite Locus

    Directory of Open Access Journals (Sweden)

    Kuppareddi Balamurugan

    2012-01-01

    Full Text Available Little is known about the general biology of minisatellites. The purpose of this study is to examine repeat mutations from the D1S80 minisatellite locus by sequence analysis to elucidate the mutational process at this locus. This is a highly polymorphic minisatellite locus, located in the subtelomeric region of chromosome 1. We have analyzed 90,000 human germline transmission events and found seven (7 mutations at this locus. The D1S80 alleles of the parentage trio, the child, mother, and the alleged father were sequenced and the origin of the mutation was determined. Using American Association of Blood Banks (AABB guidelines, we found a male mutation rate of 1.04×10-4 and a female mutation rate of 5.18×10-5 with an overall mutation rate of approximately 7.77×10-5. Also, in this study, we found that the identified mutations are in close proximity to the center of the repeat array rather than at the ends of the repeat array. Several studies have examined the mutational mechanisms of the minisatellites according to infinite allele model (IAM and the one-step stepwise mutation model (SMM. In this study, we found that this locus fits into the one-step mutation model (SMM mechanism in six out of seven instances similar to STR loci.

  17. Mutation Breeding for Crop Improvement

    International Nuclear Information System (INIS)

    Rajbir, S. Sangwan

    2017-01-01

    Chromosomes contain genes responsible of different traits of any organism. Induced mutation using chemical mutagens and radiation to modify molecular structure of plants played a major role in the development of high genetic variability and help develop new superior crop varieties. The Mutation Breeding is applicable to all plants and has generated lot of agronomically interesting mutants, both in vegetatively and seed propagated plants. The technique is easy but long and challenging to detect, isolate and characterize the mutant and gene. A specific dose of irradiation has to be used to obtain desired mutants. However, with modern molecular technique, the gene responsible for mutation can be identified. The CRISPR-Cas9 allows the removal of a specific gene which is responsible of unwanted trait and replacing it with a gene which induces a desired trait. There have been more than 2700 officially released mutant varieties from 170 different plant species in more than 60 countries throughout the world and A more participatory approach, involving all stakeholders in plant breeding, is needed to ensure that it is demand/farmers driven.

  18. Mutations that Allow SIR2 Orthologs to Function in a NAD+-Depleted Environment.

    Science.gov (United States)

    Ondracek, Caitlin R; Frappier, Vincent; Ringel, Alison E; Wolberger, Cynthia; Guarente, Leonard

    2017-03-07

    Sirtuin enzymes depend on NAD + to catalyze protein deacetylation. Therefore, the lowering of NAD + during aging leads to decreased sirtuin activity and may speed up aging processes in laboratory animals and humans. In this study, we used a genetic screen to identify two mutations in the catalytic domain of yeast Sir2 that allow the enzyme to function in an NAD + -depleted environment. These mutant enzymes give rise to a significant increase of yeast replicative lifespan and increase deacetylation by the Sir2 ortholog, SIRT1, in mammalian cells. Our data suggest that these mutations increase the stability of the conserved catalytic sirtuin domain, thereby increasing the catalytic efficiency of the mutant enzymes. Our approach to identifying sirtuin mutants that permit function in NAD + -limited environments may inform the design of small molecules that can maintain sirtuin activity in aging organisms. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Mutation profiles of phenylketonuria in Quebec populations: Evidence of stratification and novel mutations

    Energy Technology Data Exchange (ETDEWEB)

    Rozen, R.; Mascisch, A.; Scriver, C.R. (McGill Univ., Montreal (Canada)); Lambert, M. (Hopital Ste-Justine, Montreal (Canada)); Laframboise, R. (Centre Hospitalier Universite Laval, Quebec (Canada))

    1994-08-01

    Independent phenylketonuria (PKU) chromosomes (n=109) representing 80% of a proband cohort in Quebec province carry 18 different identified mutations in 20 different mutation/haplotype combinations. The study reported here, the third in a series on Quebec populations, was done in the Montreal region and predominantly on French Canadians. It has identified three novel mutations (A309D, D338Y, and 1054/1055delG [352fs]) and one unusual mutation/RFLP haplotype combination (E280K on Hp 2). The relative frequencies and distribution of PKU mutations were then compared in three regions and population subsets (eastern Quebec, French Canadian; western Quebec, French Canadian; and Montreal, non-French Canadian). The distributions of the prevalent and rare mutations are nonrandom and provide evidence for genetic stratification. The latter and the presence of eight unusual mutation/haplotype combinations in Quebec families with European ancestries (the aforementioned four and M1V, 165T, S349P, and R408W on Hp 1) corroborate demographic and anthropologic evidence, from elsewhere, for different origins of French Canadians in eastern and western Quebec. 29 refs., 1 fig., 1 tab.

  20. Epidermal growth factor receptor mutation in gastric cancer.

    Science.gov (United States)

    Liu, Zhimin; Liu, Lina; Li, Mei; Wang, Zhaohui; Feng, Lu; Zhang, Qiuping; Cheng, Shihua; Lu, Shen

    2011-04-01

    Epidermal growth factor receptor (EGFR) and Kirsten-RAS (KRAS) mutations have been identified as predictors of response to EGFR tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer. We aimed to screen the mutations of both genes in gastric carcinoma to detect the suitability of EGFR TKIs for patients with gastric carcinoma. We screened EGFR mutation in exons 19-21 and KRAS mutation in exon 2 in 58 gastric adenocarcinomas from China using high resolution melting analysis (HRMA). Positive samples were confirmed by DNA sequencing. Three EGFR missense mutations (5.2%) and 22 single nucleotide polymorphisms (SNP, Q787Q, 37.9%) were identified. To our knowledge, we report for the first time three mutation patterns of EGFR, Y801C, L858R and G863D, in gastric carcinoma. Two samples with EGFR mutation were mucinous adenocarcinoma. These three samples were collected from male patients aged over 75 years old. The frequency of KRAS mutation was 10.3% (6/58). The exclusiveness of EGFR and KRAS mutations was proven for the first time in gastric cancer. Gastric carcinoma of the mucinous adenocarcinoma type collected from older male patients may harbour EGFR mutations. The small subset of gastric adenocarcinoma patients may respond to EGFR TKIs.

  1. Statistical method on nonrandom clustering with application to somatic mutations in cancer

    Directory of Open Access Journals (Sweden)

    Rejto Paul A

    2010-01-01

    Full Text Available Abstract Background Human cancer is caused by the accumulation of tumor-specific mutations in oncogenes and tumor suppressors that confer a selective growth advantage to cells. As a consequence of genomic instability and high levels of proliferation, many passenger mutations that do not contribute to the cancer phenotype arise alongside mutations that drive oncogenesis. While several approaches have been developed to separate driver mutations from passengers, few approaches can specifically identify activating driver mutations in oncogenes, which are more amenable for pharmacological intervention. Results We propose a new statistical method for detecting activating mutations in cancer by identifying nonrandom clusters of amino acid mutations in protein sequences. A probability model is derived using order statistics assuming that the location of amino acid mutations on a protein follows a uniform distribution. Our statistical measure is the differences between pair-wise order statistics, which is equivalent to the size of an amino acid mutation cluster, and the probabilities are derived from exact and approximate distributions of the statistical measure. Using data in the Catalog of Somatic Mutations in Cancer (COSMIC database, we have demonstrated that our method detects well-known clusters of activating mutations in KRAS, BRAF, PI3K, and β-catenin. The method can also identify new cancer targets as well as gain-of-function mutations in tumor suppressors. Conclusions Our proposed method is useful to discover activating driver mutations in cancer by identifying nonrandom clusters of somatic amino acid mutations in protein sequences.

  2. Breast and Ovarian Cancer Risk and Risk Reduction in Jewish BRCA1/2 Mutation Carriers

    Science.gov (United States)

    Finkelman, Brian S.; Rubinstein, Wendy S.; Friedman, Sue; Friebel, Tara M.; Dubitsky, Shera; Schonberger, Niecee Singer; Shoretz, Rochelle; Singer, Christian F.; Blum, Joanne L.; Tung, Nadine; Olopade, Olufunmilayo I.; Weitzel, Jeffrey N.; Lynch, Henry T.; Snyder, Carrie; Garber, Judy E.; Schildkraut, Joellen; Daly, Mary B.; Isaacs, Claudine; Pichert, Gabrielle; Neuhausen, Susan L.; Couch, Fergus J.; van't Veer, Laura; Eeles, Rosalind; Bancroft, Elizabeth; Evans, D. Gareth; Ganz, Patricia A.; Tomlinson, Gail E.; Narod, Steven A.; Matloff, Ellen; Domchek, Susan; Rebbeck, Timothy R.

    2012-01-01

    Purpose Mutations in BRCA1/2 dramatically increase the risk of both breast and ovarian cancers. Three mutations in these genes (185delAG, 5382insC, and 6174delT) occur at high frequency in Ashkenazi Jews. We evaluated how these common Jewish mutations (CJMs) affect cancer risks and risk reduction. Methods Our cohort comprised 4,649 women with disease-associated BRCA1/2 mutations from 22 centers in the Prevention and Observation of Surgical End Points Consortium. Of these women, 969 were self-identified Jewish women. Cox proportional hazards models were used to estimate breast and ovarian cancer risks, as well as risk reduction from risk-reducing salpingo-oophorectomy (RRSO), by CJM and self-identified Jewish status. Results Ninety-one percent of Jewish BRCA1/2-positive women carried a CJM. Jewish women were significantly more likely to undergo RRSO than non-Jewish women (54% v 41%, respectively; odds ratio, 1.87; 95% CI, 1.44 to 2.42). Relative risks of cancer varied by CJM, with the relative risk of breast cancer being significantly lower in 6174delT mutation carriers than in non-CJM BRCA2 carriers (hazard ratio, 0.35; 95% CI, 0.18 to 0.69). No significant difference was seen in cancer risk reduction after RRSO among subgroups. Conclusion Consistent with previous results, risks for breast and ovarian cancer varied by CJM in BRCA1/2 carriers. In particular, 6174delT carriers had a lower risk of breast cancer. This finding requires additional confirmation in larger prospective and population-based cohort studies before being integrated into clinical care. PMID:22430266

  3. Short barb: a feather structure mutation in Japanese quail.

    Science.gov (United States)

    Fulton, J E; Roberts, C W; Nichols, C R; Cheng, K M

    1982-12-01

    A type of feather structure abnormality in Japanese quail resulting in shortened barbs on contour feathers was found to be controlled by a single autosomal recessive gene, sh (short barb). The mutation was first identified in a full-sib family from the University of British Columbia wild type line. Unlike other feather structure mutations in Japanese quail reported previously in literature, the short barb mutation is not associated with poor reproduction.

  4. The mutational spectrum in Treacher Collins syndrome reveals a predominance of mutations that create a premature-termination codon

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, S.J.; Gladwin, A.J.; Dixon, M.J. [Univ. of Manchester (United Kingdom)

    1997-03-01

    Treacher Collins syndrome (TCS) is an autosomal dominant disorder of craniofacial development, the features of which include conductive hearing loss and cleft palate. The TCS locus has been mapped to human chromosome 5q31.3-32 and the mutated gene identified. In the current investigation, 25 previously undescribed mutations, which are spread throughout the gene, are presented. This brings the total reported to date to 35, which represents a detection rate of 60%. Of the mutations that have been reported to date, all but one result in the introduction of a premature-termination codon into the predicted protein, treacle. Moreover, the mutations are largely family specific, although a common 5-bp deletion in exon 24 (seven different families) and a recurrent splicing mutation in intron 3 (two different families) have been identified. This mutational spectrum supports the hypothesis that TCS results from haploin-sufficiency. 49 refs., 4 figs., 3 tabs.

  5. Splice, insertion-deletion and nonsense mutations that perturb the phenylalanine hydroxylase transcript cause phenylketonuria in India.

    Science.gov (United States)

    Bashyam, Murali D; Chaudhary, Ajay K; Kiran, Manjari; Nagarajaram, Hampapathalu A; Devi, Radha Rama; Ranganath, Prajnya; Dalal, Ashwin; Bashyam, Leena; Gupta, Neerja; Kabra, Madhulika; Muranjan, Mamta; Puri, Ratna D; Verma, Ishwar C; Nampoothiri, Sheela; Kadandale, Jayarama S

    2014-03-01

    Phenylketonuria (PKU) is an autosomal recessive metabolic disorder caused by mutational inactivation of the phenylalanine hydroxylase (PAH) gene. Missense mutations are the most common PAH mutation type detected in PKU patients worldwide. We performed PAH mutation analysis in 27 suspected Indian PKU families (including 7 from our previous study) followed by structure and function analysis of specific missense and splice/insertion-deletion/nonsense mutations, respectively. Of the 27 families, disease-causing mutations were detected in 25. A total of 20 different mutations were identified of which 7 "unique" mutations accounted for 13 of 25 mutation positive families. The unique mutations detected exclusively in Indian PKU patients included three recurrent mutations detected in three families each. The 20 mutations included only 5 missense mutations in addition to 5 splice, 4 each nonsense and insertion-deletion mutations, a silent variant in coding region and a 3'UTR mutation. One deletion and two nonsense mutations were characterized to confirm significant reduction in mutant transcript levels possibly through activation of nonsense mediated decay. All missense mutations affected conserved amino acid residues and sequence and structure analysis suggested significant perturbations in the enzyme activity of respective mutant proteins. This is probably the first report of identification of a significantly low proportion of missense PAH mutations from PKU families and together with the presence of a high proportion of splice, insertion-deletion, and nonsense mutations, points to a unique PAH mutation profile in Indian PKU patients. © 2013 Wiley Periodicals, Inc.

  6. Patients with acephalic spermatozoa syndrome linked to SUN5 mutations have a favorable pregnancy outcome from ICSI.

    Science.gov (United States)

    Fang, Jianzheng; Zhang, Jingjing; Zhu, Fuxi; Yang, Xiaoyu; Cui, Yugui; Liu, Jiayin

    2018-01-10

    Are Sad1 and UNC84 domain containing 5 (SUN5) mutations associated with the outcomes of ICSI in patients with acephalic spermatozoa syndrome (ASS)? Despite highly abnormal sperm morphology, ASS patients with SUN5 mutations have a favorable pregnancy outcome following ICSI. ASS is a rare cause of infertility characterized by the production of a majority of headless spermatozoa, along with a small proportion of intact spermatozoa with an abnormal head-tail junction. Previous studies have demonstrated that SUN5 mutations may cause ASS. Several studies showed that ICSI could help patients with ASS father children. This retrospective cohort study included 11 infertile ASS males with SUN5 mutations. Five of them underwent five ICSI cycles. Their ICSI results were compared to men with ASS without SUN5 mutations (n = 3) and to men with multiple morphological abnormalities of the sperm flagella (MMAF) (n = 9). All ICSI treatments were completed between Jan 2011 and May 2017. Sanger DNA sequencing was used to detect mutations in SUN5. Clinical and biological data were collected from patients at the fertility center. Sanger sequencing validated 11 patients with SUN5 mutations. Three novel mutations in SUN5 (c.829C>T [p.Q277*]; c.1067G>A [p.R356H]; c.211+1 insGT [p.S71Cfs11*]) were identified in three patients. The rates of fertilization, good-quality embryos and pregnancy for five patients with SUN5 mutations following ICSI were 81.5%, 81.8% and 100%, respectively. The rates of fertilization and good-quality embryos in patients with MMAF were significantly lower compared with ASS patients (65.6 versus 82.4%, P = 0.039 and 53.6 versus 85.2%, P = 0.031, respectively). There were no differences in ICSI results between ASS patients with and without SUN5 mutations. Only a small number patients with SUN5 mutations was available because of its rare incidence. Patients with ASS can be effectively treated with ICSI. SUN5 mutations may be one of the genetic causes of ASS. This study

  7. Genetic Mutations in Cancer

    Science.gov (United States)

    Many different types of genetic mutations are found in cancer cells. This infographic outlines certain types of alterations that are present in cancer, such as missense, nonsense, frameshift, and chromosome rearrangements.

  8. AIP mutations and gigantism.

    Science.gov (United States)

    Rostomyan, Liliya; Potorac, Iulia; Beckers, Pablo; Daly, Adrian F; Beckers, Albert

    2017-06-01

    AIP mutations are rare in sporadic acromegaly but they are seen at a higher frequency among certain specific populations of pituitary adenoma patients (pituitary gigantism cases, familial isolated pituitary adenoma (FIPA) kindreds, and patients with macroadenomas who are diagnosed ≤30 years). AIP mutations are most prevalent in patients with pituitary gigantism (29% of this group were found to have mutations in AIP gene). These data support targeted genetic screening for AIP mutations/deletions in these groups of pituitary adenoma patients. Earlier diagnosis of AIP-related acromegaly-gigantism cases enables timely clinical evaluation and treatment, thereby improving outcomes in terms of excessive linear growth and acromegaly comorbidities. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Hot spot mutations in Finnish non-small cell lung cancers.

    Science.gov (United States)

    Mäki-Nevala, Satu; Sarhadi, Virinder Kaur; Rönty, Mikko; Kettunen, Eeva; Husgafvel-Pursiainen, Kirsti; Wolff, Henrik; Knuuttila, Aija; Knuutila, Sakari

    2016-09-01

    Non-small cell lung cancer (NSCLC) is a common cancer with a poor prognosis. The aim of this study was to screen Finnish NSCLC tumor samples for common cancer-related mutations by targeted next generation sequencing and to determine their concurrences and associations with clinical features. Sequencing libraries were prepared from DNA isolated from formalin-fixed, paraffin-embedded tumor material of 425 patients using the AmpliSeq Colon and Lung panel covering mutational hot spot regions of 22 cancer genes. Sequencing was performed with the Ion Torrent Personal Genome Machine (PGM). Data analysis of the hot spot mutations revealed mutations in 77% of the patients, with 7% having 3 or more mutations reported in the Catalogue of Somatic Mutations in Cancer (COSMIC) database. Two of the most frequently mutated genes were TP53 (46%) and KRAS (25%). KRAS codon 12 mutations were the most recurrently occurring mutations. EGFR mutations were significantly associated with adenocarcinoma, female gender and never/light-smoking history; CTNNB1 mutations with light ex-smokers, PIK3CA and TP53 mutations with squamous cell carcinoma, and KRAS with adenocarcinoma. TP53 mutations were most prevalent in current smokers and ERBB2, ERBB4, PIK3CA, NRAS, NOTCH1, FBWX7, PTEN and STK11 mutations occurred exclusively in a group of ever-smokers, however the association was not statistically significant. No mutation was found that associated with asbestos exposure. Finnish NSCLC patients have a similar mutation profile as other Western patients, however with a higher frequency of BRAF mutations but a lower frequency of STK11 and ERBB2 mutations. Moreover, TP53 mutations occurred frequently with other gene mutations, most commonly with KRAS, MET, EGFR and PIK3CA mutations. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Mutation spectrum of Chinese patients with Bartter syndrome.

    Science.gov (United States)

    Han, Yue; Lin, Yi; Sun, Qing; Wang, Shujuan; Gao, Yanxia; Shao, Leping

    2017-11-24

    Bartter syndrome (BS) has been rarely reported in Chinese population except for a few case reports. This investigation was aimed to analyze the mutations of the causal genes in sixteen Chinese patients with BS, and review their followup and treatment. Identify mutations by the next generation sequencing and the multiplex ligation-dependent probe amplification (MLPA). Clinical characteristics and biochemical findings at the first presentation as well as follow-up were reviewed. 15 different CLCNKB gene mutations were identified in fourteen patients with BS, including 11 novel ones. A novel missense mutation and a novel small deletion were found from SLC12A1 gene. A novel gross deletion was found in CLCNKA gene. A recurrent missense mutation was identified from BSND gene. We found that the whole gene deletion mutation of CLCNKB gene was the most frequent mutation (32%), and the rate of gross deletion was up to 50 percent in this group of Chinese patients. The present study has found 19 mutations, including 14 novel ones, which would enrich the human gene mutation database (HGMD) and provide valuable references to the genetic counseling and diagnosis of the Chinese population.

  11. Genetic Testing for Oculocutaneous Albinism Type 1 and 2 and Hermansky–Pudlak Syndrome Type 1 and 3 Mutations in Puerto Rico

    Science.gov (United States)

    Santiago Borrero, Pedro J.; Rodríguez-Pérez, Yolanda; Renta, Jessicca Y.; Izquierdo, Natalio J.; del Fierro, Laura; Muñoz, Daniel; Molina, Norma López; Ramírez, Sonia; Pagán-Mercado, Glorivee; Ortíz, Idith; Rivera-Caragol, Enid; Spritz, Richard A.; Cadilla, Carmen L.

    2013-01-01

    Hermansky–Pudlak syndrome (HPS) (MIM #203300) is a heterogeneous group of autosomal recessive disorders characterized by oculocutaneous albinism (OCA), bleeding tendency, and lysosomal dysfunction. HPS is very common in Puerto Rico (PR), particularly in the northwest part of the island, with a frequency of ~1:1,800. Two HPS genes and mutations have been identified in PR, a 16-base pair (bp) duplication in HPS1 and a 3,904-bp deletion in HPS3. In Puerto Ricans with more typical OCA, the most common mutation of the tyrosinase (TYR) (human tyrosinase (OCA1) gene) gene was G47D. We describe screening 229 Puerto Rican OCA patients for these mutations, and for mutations in the OCA2 gene. We found the HPS1 mutation in 42.8% of cases, the HPS3 deletion in 17%, the TYR G47D mutation in 3.0%, and a 2.4-kb deletion of the OCA2 gene in 1.3%. Among Puerto Rican newborns, the frequency of the HPS1 mutation is highest in northwest PR (1:21; 4.8%) and lower in central PR (1:64; 1.6%). The HPS3 gene deletion is most frequent in central PR (1:32; 3.1%). Our findings provide insights into the genetics of albinism and HPS in PR, and provide the basis for genetic screening for these disorders in this minority population. PMID:16417222

  12. JAG1 mutations are found in approximately one third of patients presenting with only one or two clinical features of Alagille syndrome.

    Science.gov (United States)

    Guegan, K; Stals, K; Day, M; Turnpenny, P; Ellard, S

    2012-07-01

    Alagille syndrome is a multisystem disorder characterized by highly variable expressivity, most frequently caused by heterozygous JAG1 gene mutations. Classic diagnostic criteria combine the presence of bile duct paucity on liver biopsy with three of five systems affected; liver, heart, skeleton, eye and dysmorphic facies. The aim of this study was to determine the prevalence and distribution of JAG1 mutations in patients referred for routine clinical diagnostic testing. Clinical data were available for 241 patients from 135 families. The index cases were grouped according to the number of systems affected (heart, liver, skeletal, eye and facies) and the mutation frequency calculated for each group. JAG1 mutations were identified in 59/135 (44%) probands. The highest mutation detection rates were observed in patients with the most frequent presenting features of Alagille syndrome; ranging from 20% (one system) to 86% (five systems). The overall mutation pick-up rate in a clinical diagnostic setting was lower than in previous research studies. Identification of a JAG1 gene mutation is particularly useful for those patients with atypical or mild Alagille syndrome who do not meet classic diagnostic criteria as it provides a definite molecular diagnosis and allows accurate genetic counselling for the family. © 2011 John Wiley & Sons A/S.

  13. Mutation breeding in peas

    Energy Technology Data Exchange (ETDEWEB)

    Jaranowski, J [Institute of Genetics and Plant Breeding, Academy of Agriculture, Poznan (Poland); Micke, A [Joint FAO/IAEA Division of Isotope and Radiation Applications of Atomic Energy for Food and Agricultural Development, International Atomic Energy Agency, Vienna (Austria)

    1985-02-01

    The pea as an ancient crop plant still today has wide uses and is an import source of food protein. It is also an important object for genetic studies and as such has been widely used in mutation induction experiments. However, in comparison with cereals this ancient crop plant (like several other grain legumes) has gained relatively little from advances in breeding. The review focuses on the prospects of genetic improvement of pea by induced mutations, discusses principles and gives methodological information. (author)

  14. Mutation breeding in peas

    International Nuclear Information System (INIS)

    Jaranowski, J.; Micke, A.

    1985-01-01

    The pea as an ancient crop plant still today has wide uses and is an import source of food protein. It is also an important object for genetic studies and as such has been widely used in mutation induction experiments. However, in comparison with cereals this ancient crop plant (like several other grain legumes) has gained relatively little from advances in breeding. The review focuses on the prospects of genetic improvement of pea by induced mutations, discusses principles and gives methodological information. (author)

  15. Clonal composition of human ovarian cancer based on copy number analysis reveals a reciprocal relation with oncogenic mutation status.

    Science.gov (United States)

    Sakai, Kazuko; Ukita, Masayo; Schmidt, Jeanette; Wu, Longyang; De Velasco, Marco A; Roter, Alan; Jevons, Luis; Nishio, Kazuto; Mandai, Masaki

    2017-10-01

    Intratumoral heterogeneity of cancer cells remains largely unexplored. Here we investigated the composition of ovarian cancer and its biological relevance. A whole-genome single nucleotide polymorphism array was applied to detect the clonal composition of 24 formalin-fixed, paraffin-embedded samples of human ovarian cancer. Genome-wide segmentation data consisting of the log2 ratio (log2R) and B allele frequency (BAF) were used to calculate an estimate of the clonal composition number (CC number) for each tumor. Somatic mutation profiles of cancer-related genes were also determined for the same 24 samples by next-generation sequencing. The CC number was estimated successfully for 23 of the 24 cancer samples. The mean ± SD value for the CC number was 1.7 ± 1.1 (range of 0-4). A somatic mutation in at least one gene was identified in 22 of the 24 ovarian cancer samples, with the mutations including those in the oncogenes KRAS (29.2%), PIK3CA (12.5%), BRAF (8.3%), FGFR2 (4.2%), and JAK2 (4.2%) as well as those in the tumor suppressor genes TP53 (54.2%), FBXW7 (8.3%), PTEN (4.2%), and RB1 (4.2%). Tumors with one or more oncogenic mutations had a significantly lower CC number than did those without such a mutation (1.0 ± 0.8 versus 2.3 ± 0.9, P = 0.0027), suggesting that cancers with driver oncogene mutations are less heterogeneous than those with other mutations. Our results thus reveal a reciprocal relation between oncogenic mutation status and clonal composition in ovarian cancer using the established method for the estimation of the CC number. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  16. The Mutations Associated with Dilated Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Ruti Parvari

    2012-01-01

    Full Text Available Cardiomyopathy is an important cause of heart failure and a major indication for heart transplantation in children and adults. This paper describes the state of the genetic knowledge of dilated cardiomyopathy (DCM. The identification of the causing mutation is important since presymptomatic interventions of DCM have proven value in preventing morbidity and mortality. Additionally, as in general in genetic studies, the identification of the mutated genes has a direct clinical impact for the families and population involved. Identifying causative mutations immediately amplifies the possibilities for disease prevention through carrier screening and prenatal testing. This often lifts a burden of social isolation from affected families, since healthy family members can be assured of having healthy children. Identification of the mutated genes holds the potential to lead to the understanding of disease etiology, pathophysiology, and therefore potential therapy. This paper presents the genetic variations, or disease-causing mutations, contributing to the pathogenesis of hereditary DCM, and tries to relate these to the functions of the mutated genes.

  17. Spectrum of rhodopsin mutations in Korean patients with retinitis pigmentosa

    Science.gov (United States)

    Kim, Kwang Joong; Kim, Cinoo; Bok, Jeong; Kim, Kyung-Seon; Lee, Eun-Ju; Park, Sung Pyo; Chung, Hum; Han, Bok-Ghee; Kim, Hyung-Lae; Kimm, Kuchan; Yu, Hyeong Gon

    2011-01-01

    Purpose To determine the spectrum and frequency of rhodopsin gene (RHO) mutations in Korean patients with retinitis pigmentosa (RP) and to characterize genotype–phenotype correlations in patients with mutations. Methods The RHO mutations were screened by direct sequencing, and mutation prevalence was measured in patients and controls. The impact of missense mutations to RP was predicted by segregation analysis, peptide sequence alignment, and in silico analysis. The severity of disease in patients with the missense mutations was compared by visual acuity, electroretinography, optical coherence tomography, and kinetic visual field testing. Results Five heterozygous mutations were identified in six of 302 probands with RP, including a novel mutation (c.893C>A, p.A298D) and four known mutations (c.50C>T, p.T17M; c.533A>G, p.Y178C; c.888G>T, p.K296N; and c.1040C>T, p.P347L). The allele frequency of missense mutations was measured in 114 ethnically matched controls. p.A298D, newly identified in a sporadic patient, had never been found in controls and was predicted to be pathogenic. Among the patients with the missense mutations, we observed the most severe phenotype in patients with p.P347L, less severe phenotypes in patients with p.Y178C or p.A298D, and a relatively moderate phenotype in a patient with p.T17M. Conclusions The results reveal the spectrum of RHO mutations in Korean RP patients and clinical features that vary according to mutations. Our findings will be useful for understanding these genetic spectra and the genotype–phenotype correlations and will therefore help with predicting disease prognosis and facilitating the development of gene therapy. PMID:21677794

  18. PIK3CA mutations frequently coexist with RAS and BRAF mutations in patients with advanced cancers