WorldWideScience

Sample records for identify damaged genes

  1. Combined Gene Expression and RNAi Screening to Identify Alkylation Damage Survival Pathways from Fly to Human.

    Science.gov (United States)

    Zanotto-Filho, Alfeu; Dashnamoorthy, Ravi; Loranc, Eva; de Souza, Luis H T; Moreira, José C F; Suresh, Uthra; Chen, Yidong; Bishop, Alexander J R

    2016-01-01

    Alkylating agents are a key component of cancer chemotherapy. Several cellular mechanisms are known to be important for its survival, particularly DNA repair and xenobiotic detoxification, yet genomic screens indicate that additional cellular components may be involved. Elucidating these components has value in either identifying key processes that can be modulated to improve chemotherapeutic efficacy or may be altered in some cancers to confer chemoresistance. We therefore set out to reevaluate our prior Drosophila RNAi screening data by comparison to gene expression arrays in order to determine if we could identify any novel processes in alkylation damage survival. We noted a consistent conservation of alkylation survival pathways across platforms and species when the analysis was conducted on a pathway/process level rather than at an individual gene level. Better results were obtained when combining gene lists from two datasets (RNAi screen plus microarray) prior to analysis. In addition to previously identified DNA damage responses (p53 signaling and Nucleotide Excision Repair), DNA-mRNA-protein metabolism (transcription/translation) and proteasome machinery, we also noted a highly conserved cross-species requirement for NRF2, glutathione (GSH)-mediated drug detoxification and Endoplasmic Reticulum stress (ER stress)/Unfolded Protein Responses (UPR) in cells exposed to alkylation. The requirement for GSH, NRF2 and UPR in alkylation survival was validated by metabolomics, protein studies and functional cell assays. From this we conclude that RNAi/gene expression fusion is a valid strategy to rapidly identify key processes that may be extendable to other contexts beyond damage survival.

  2. Combined Gene Expression and RNAi Screening to Identify Alkylation Damage Survival Pathways from Fly to Human.

    Directory of Open Access Journals (Sweden)

    Alfeu Zanotto-Filho

    Full Text Available Alkylating agents are a key component of cancer chemotherapy. Several cellular mechanisms are known to be important for its survival, particularly DNA repair and xenobiotic detoxification, yet genomic screens indicate that additional cellular components may be involved. Elucidating these components has value in either identifying key processes that can be modulated to improve chemotherapeutic efficacy or may be altered in some cancers to confer chemoresistance. We therefore set out to reevaluate our prior Drosophila RNAi screening data by comparison to gene expression arrays in order to determine if we could identify any novel processes in alkylation damage survival. We noted a consistent conservation of alkylation survival pathways across platforms and species when the analysis was conducted on a pathway/process level rather than at an individual gene level. Better results were obtained when combining gene lists from two datasets (RNAi screen plus microarray prior to analysis. In addition to previously identified DNA damage responses (p53 signaling and Nucleotide Excision Repair, DNA-mRNA-protein metabolism (transcription/translation and proteasome machinery, we also noted a highly conserved cross-species requirement for NRF2, glutathione (GSH-mediated drug detoxification and Endoplasmic Reticulum stress (ER stress/Unfolded Protein Responses (UPR in cells exposed to alkylation. The requirement for GSH, NRF2 and UPR in alkylation survival was validated by metabolomics, protein studies and functional cell assays. From this we conclude that RNAi/gene expression fusion is a valid strategy to rapidly identify key processes that may be extendable to other contexts beyond damage survival.

  3. Gene expression plasticity resulting from parental leaf damage in Mimulus guttatus.

    Science.gov (United States)

    Colicchio, Jack M; Monnahan, Patrick J; Kelly, John K; Hileman, Lena C

    2015-01-01

    Leaf trichome density in Mimulus guttatus can be altered by the parental environment. In this study, we compared global gene expression patterns in progeny of damaged and control plants. Significant differences in gene expression probably explain the observed trichome response, and identify additional responsive pathways. Using whole transcriptome RNA sequencing, we estimated differential gene expression between isogenic seedlings whose parents had, or had not, been subject to leaf damage. We identified over 900 genes that were differentially expressed in response to parental wounding. These genes clustered into groups involved in cell wall and cell membrane development, stress response pathways, and secondary metabolism. Gene expression is modified as a consequence of the parental environment in a targeted way that probably alters multiple developmental pathways, and may increase progeny fitness if they experience environments similar to that of their parents. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  4. Candidate genes for cross-resistance against DNA-damaging drugs

    DEFF Research Database (Denmark)

    Wittig, Rainer; Nessling, Michelle; Will, Rainer D

    2002-01-01

    Drug resistance of tumor cells leads to major drawbacks in the treatment of cancer. To identify candidate genes for drug resistance, we compared the expression patterns of the drug-sensitive human malignant melanoma cell line MeWo and three derived sublines with acquired resistance to the DNA...... as several apoptosis-related genes, in particular STK17A and CRYAB. As MPP1 and CRYAB are also among the 14 genes differentially expressed in all three of the drug-resistant sublines, they represent the strongest candidates for resistance against DNA-damaging drugs....

  5. Extracting gene expression patterns and identifying co-expressed genes from microarray data reveals biologically responsive processes

    Directory of Open Access Journals (Sweden)

    Paules Richard S

    2007-11-01

    Full Text Available Abstract Background A common observation in the analysis of gene expression data is that many genes display similarity in their expression patterns and therefore appear to be co-regulated. However, the variation associated with microarray data and the complexity of the experimental designs make the acquisition of co-expressed genes a challenge. We developed a novel method for Extracting microarray gene expression Patterns and Identifying co-expressed Genes, designated as EPIG. The approach utilizes the underlying structure of gene expression data to extract patterns and identify co-expressed genes that are responsive to experimental conditions. Results Through evaluation of the correlations among profiles, the magnitude of variation in gene expression profiles, and profile signal-to-noise ratio's, EPIG extracts a set of patterns representing co-expressed genes. The method is shown to work well with a simulated data set and microarray data obtained from time-series studies of dauer recovery and L1 starvation in C. elegans and after ultraviolet (UV or ionizing radiation (IR-induced DNA damage in diploid human fibroblasts. With the simulated data set, EPIG extracted the appropriate number of patterns which were more stable and homogeneous than the set of patterns that were determined using the CLICK or CAST clustering algorithms. However, CLICK performed better than EPIG and CAST with respect to the average correlation between clusters/patterns of the simulated data. With real biological data, EPIG extracted more dauer-specific patterns than CLICK. Furthermore, analysis of the IR/UV data revealed 18 unique patterns and 2661 genes out of approximately 17,000 that were identified as significantly expressed and categorized to the patterns by EPIG. The time-dependent patterns displayed similar and dissimilar responses between IR and UV treatments. Gene Ontology analysis applied to each pattern-related subset of co-expressed genes revealed underlying

  6. Gene interactions in the DNA damage-response pathway identified by genome-wide RNA-interference analysis of synthetic lethality

    NARCIS (Netherlands)

    van Haaften, Gijs; Vastenhouw, Nadine L; Nollen, Ellen A A; Plasterk, Ronald H A; Tijsterman, Marcel

    2004-01-01

    Here, we describe a systematic search for synthetic gene interactions in a multicellular organism, the nematode Caenorhabditis elegans. We established a high-throughput method to determine synthetic gene interactions by genome-wide RNA interference and identified genes that are required to protect

  7. Robust modal curvature features for identifying multiple damage in beams

    Science.gov (United States)

    Ostachowicz, Wiesław; Xu, Wei; Bai, Runbo; Radzieński, Maciej; Cao, Maosen

    2014-03-01

    Curvature mode shape is an effective feature for damage detection in beams. However, it is susceptible to measurement noise, easily impairing its advantage of sensitivity to damage. To deal with this deficiency, this study formulates an improved curvature mode shape for multiple damage detection in beams based on integrating a wavelet transform (WT) and a Teager energy operator (TEO). The improved curvature mode shape, termed the WT - TEO curvature mode shape, has inherent capabilities of immunity to noise and sensitivity to damage. The proposed method is experimentally validated by identifying multiple cracks in cantilever steel beams with the mode shapes acquired using a scanning laser vibrometer. The results demonstrate that the improved curvature mode shape can identify multiple damage accurately and reliably, and it is fairly robust to measurement noise.

  8. Identifying structural damage with ground penetrating radar

    CSIR Research Space (South Africa)

    Van Schoor, Abraham M

    2008-07-01

    Full Text Available Ground penetrating radar (GPR) and electrical resistance tomography (ERT) surveys were conducted in an urban environment in an attempt to identify the cause of severe structural damage to a historically significant residential property...

  9. Application of biclustering of gene expression data and gene set enrichment analysis methods to identify potentially disease causing nanomaterials

    Directory of Open Access Journals (Sweden)

    Andrew Williams

    2015-12-01

    Full Text Available Background: The presence of diverse types of nanomaterials (NMs in commerce is growing at an exponential pace. As a result, human exposure to these materials in the environment is inevitable, necessitating the need for rapid and reliable toxicity testing methods to accurately assess the potential hazards associated with NMs. In this study, we applied biclustering and gene set enrichment analysis methods to derive essential features of altered lung transcriptome following exposure to NMs that are associated with lung-specific diseases. Several datasets from public microarray repositories describing pulmonary diseases in mouse models following exposure to a variety of substances were examined and functionally related biclusters of genes showing similar expression profiles were identified. The identified biclusters were then used to conduct a gene set enrichment analysis on pulmonary gene expression profiles derived from mice exposed to nano-titanium dioxide (nano-TiO2, carbon black (CB or carbon nanotubes (CNTs to determine the disease significance of these data-driven gene sets.Results: Biclusters representing inflammation (chemokine activity, DNA binding, cell cycle, apoptosis, reactive oxygen species (ROS and fibrosis processes were identified. All of the NM studies were significant with respect to the bicluster related to chemokine activity (DAVID; FDR p-value = 0.032. The bicluster related to pulmonary fibrosis was enriched in studies where toxicity induced by CNT and CB studies was investigated, suggesting the potential for these materials to induce lung fibrosis. The pro-fibrogenic potential of CNTs is well established. Although CB has not been shown to induce fibrosis, it induces stronger inflammatory, oxidative stress and DNA damage responses than nano-TiO2 particles.Conclusion: The results of the analysis correctly identified all NMs to be inflammogenic and only CB and CNTs as potentially fibrogenic. In addition to identifying several

  10. Two novel antimicrobial defensins from rice identified by gene coexpression network analyses.

    Science.gov (United States)

    Tantong, Supaluk; Pringsulaka, Onanong; Weerawanich, Kamonwan; Meeprasert, Arthitaya; Rungrotmongkol, Thanyada; Sarnthima, Rakrudee; Roytrakul, Sittiruk; Sirikantaramas, Supaart

    2016-10-01

    Defensins form an antimicrobial peptides (AMP) family, and have been widely studied in various plants because of their considerable inhibitory functions. However, their roles in rice (Oryza sativa L.) have not been characterized, even though rice is one of the most important staple crops that is susceptible to damaging infections. Additionally, a previous study identified 598 rice genes encoding cysteine-rich peptides, suggesting there are several uncharacterized AMPs in rice. We performed in silico gene expression and coexpression network analyses of all genes encoding defensin and defensin-like peptides, and determined that OsDEF7 and OsDEF8 are coexpressed with pathogen-responsive genes. Recombinant OsDEF7 and OsDEF8 could form homodimers. They inhibited the growth of the bacteria Xanthomonas oryzae pv. oryzae, X. oryzae pv. oryzicola, and Erwinia carotovora subsp. atroseptica with minimum inhibitory concentration (MIC) ranging from 0.6 to 63μg/mL. However, these OsDEFs are weakly active against the phytopathogenic fungi Helminthosporium oryzae and Fusarium oxysporum f.sp. cubense. This study describes a useful method for identifying potential plant AMPs with biological activities. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Quantitative analysis of gene-specific DNA damage in human spermatozoa

    International Nuclear Information System (INIS)

    Sawyer, Dennis E.; Mercer, Belinda G.; Wiklendt, Agnieszka M.; Aitken, R. John

    2003-01-01

    Recent studies have suggested that human spermatozoa are highly susceptible to DNA damage induced by oxidative stress. However, a detailed analysis of the precise nature of this damage and the extent to which it affects the mitochondrial and nuclear genomes has not been reported. To induce DNA damage, human spermatozoa were treated in vitro with hydrogen peroxide (H 2 O 2 ; 0-5 mM) or iron (as Fe(II)SO 4 , 0-500 μM). Quantitative PCR (QPCR) was used to measure DNA damage in individual nuclear genes (hprt, β-pol and β-globin) and mitochondrial DNA. Single strand breaks were also assessed by alkaline gel electrophoresis. H 2 O 2 was found to be genotoxic toward spermatozoa at concentrations as high as 1.25 mM, but DNA damage was not detected in these cells with lower concentrations of H 2 O 2 . The mitochondrial genome of human spermatozoa was significantly (P 2 O 2 -induced DNA damage than the nuclear genome. However, both nDNA and mtDNA in human spermatozoa were significantly (P<0.001) more resistant to damage than DNA from a variety of cell lines of germ cell and myoblastoid origin. Interestingly, significant DNA damage was also not detected in human spermatozoa treated with iron. These studies report, for the first time, quantitative measurements of DNA damage in specific genes of male germ cells, and challenge the commonly held belief that human spermatozoa are particularly vulnerable to DNA damage

  12. NIH Researchers Identify OCD Risk Gene

    Science.gov (United States)

    ... News From NIH NIH Researchers Identify OCD Risk Gene Past Issues / Summer 2006 Table of Contents For ... and Alcoholism (NIAAA) have identified a previously unknown gene variant that doubles an individual's risk for obsessive- ...

  13. DNA-damaging agents stimulate gene expression at specific loci in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Kenyon, C.J.; Walker, G.C.

    1988-05-01

    Operon fusions in Escherichia coli were obtained that showed increased beta-galactosidase expression in response to treatment with the DNA-damaging agent mitomycin C. These fusions were generated by using the Mud(ApR, lac) vector to insert the lactose structural genes randomly into the bacterial chromosome. Induction of beta-galactosidase in these strains, which carried fusions of lac to these din (damage-inducible) loci, was (i) triggered by UV light as well as by mitomycin C and (ii) abolished by either a recA- or a lexA- mutation. Similar characteristics of induction were observed when the lactose genes were fused to a prophage lambda promoter by using Mud(ApR, lac). These results indicate that E. coli contains a set of genes that, like prophage lambda genes, are expressed in response to DNA-damaging agents and regulated by the recA and lexA gene products. These din genes map at five bacterial loci. One din::Mud(ApR, lac) insertion results in a UV-sensitive phenotype and may be within the uvrA transcriptional unit.

  14. A targeted sequencing panel identifies rare damaging variants in multiple genes in the cranial neural tube defect, anencephaly.

    Science.gov (United States)

    Ishida, M; Cullup, T; Boustred, C; James, C; Docker, J; English, C; Lench, N; Copp, A J; Moore, G E; Greene, N D E; Stanier, P

    2018-04-01

    Neural tube defects (NTDs) affecting the brain (anencephaly) are lethal before or at birth, whereas lower spinal defects (spina bifida) may lead to lifelong neurological handicap. Collectively, NTDs rank among the most common birth defects worldwide. This study focuses on anencephaly, which despite having a similar frequency to spina bifida and being the most common type of NTD observed in mouse models, has had more limited inclusion in genetic studies. A genetic influence is strongly implicated in determining risk of NTDs and a molecular diagnosis is of fundamental importance to families both in terms of understanding the origin of the condition and for managing future pregnancies. Here we used a custom panel of 191 NTD candidate genes to screen 90 patients with cranial NTDs (n = 85 anencephaly and n = 5 craniorachischisis) with a targeted exome sequencing platform. After filtering and comparing to our in-house control exome database (N = 509), we identified 397 rare variants (minor allele frequency, MAF < 1%), 21 of which were previously unreported and predicted damaging. This included 1 frameshift (PDGFRA), 2 stop-gained (MAT1A; NOS2) and 18 missense variations. Together with evidence for oligogenic inheritance, this study provides new information on the possible genetic causation of anencephaly. © 2017 The Authors. Clinical Genetics published by John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Exome sequencing in 53 sporadic cases of schizophrenia identifies 18 putative candidate genes.

    Directory of Open Access Journals (Sweden)

    Michel Guipponi

    Full Text Available Schizophrenia (SCZ is a severe, debilitating mental illness which has a significant genetic component. The identification of genetic factors related to SCZ has been challenging and these factors remain largely unknown. To evaluate the contribution of de novo variants (DNVs to SCZ, we sequenced the exomes of 53 individuals with sporadic SCZ and of their non-affected parents. We identified 49 DNVs, 18 of which were predicted to alter gene function, including 13 damaging missense mutations, 2 conserved splice site mutations, 2 nonsense mutations, and 1 frameshift deletion. The average number of exonic DNV per proband was 0.88, which corresponds to an exonic point mutation rate of 1.7×10(-8 per nucleotide per generation. The non-synonymous-to-synonymous mutation ratio of 2.06 did not differ from neutral expectations. Overall, this study provides a list of 18 putative candidate genes for sporadic SCZ, and when combined with the results of similar reports, identifies a second proband carrying a non-synonymous DNV in the RGS12 gene.

  16. Gene-based Association Approach Identify Genes Across Stress Traits in Fruit Flies

    DEFF Research Database (Denmark)

    Rohde, Palle Duun; Edwards, Stefan McKinnon; Sarup, Pernille Merete

    Identification of genes explaining variation in quantitative traits or genetic risk factors of human diseases requires both good phenotypic- and genotypic data, but also efficient statistical methods. Genome-wide association studies may reveal association between phenotypic variation and variation...... approach grouping variants accordingly to gene position, thus lowering the number of statistical tests performed and increasing the probability of identifying genes with small to moderate effects. Using this approach we identify numerous genes associated with different types of stresses in Drosophila...... melanogaster, but also identify common genes that affects the stress traits....

  17. Metabolite Damage and Metabolite Damage Control in Plants

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Andrew D. [Horticultural Sciences Department and; Henry, Christopher S. [Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois 60439, email:; Computation Institute, University of Chicago, Chicago, Illinois 60637; Fiehn, Oliver [Genome Center, University of California, Davis, California 95616, email:; de Crécy-Lagard, Valérie [Microbiology and Cell Science Department, University of Florida, Gainesville, Florida 32611, email: ,

    2016-04-29

    It is increasingly clear that (a) many metabolites undergo spontaneous or enzyme-catalyzed side reactions in vivo, (b) the damaged metabolites formed by these reactions can be harmful, and (c) organisms have biochemical systems that limit the buildup of damaged metabolites. These damage-control systems either return a damaged molecule to its pristine state (metabolite repair) or convert harmful molecules to harmless ones (damage preemption). Because all organisms share a core set of metabolites that suffer the same chemical and enzymatic damage reactions, certain damage-control systems are widely conserved across the kingdoms of life. Relatively few damage reactions and damage-control systems are well known. Uncovering new damage reactions and identifying the corresponding damaged metabolites, damage-control genes, and enzymes demands a coordinated mix of chemistry, metabolomics, cheminformatics, biochemistry, and comparative genomics. This review illustrates the above points using examples from plants, which are at least as prone to metabolite damage as other organisms.

  18. Expression profiling identifies genes involved in emphysema severity

    Directory of Open Access Journals (Sweden)

    Bowman Rayleen V

    2009-09-01

    Full Text Available Abstract Chronic obstructive pulmonary disease (COPD is a major public health problem. The aim of this study was to identify genes involved in emphysema severity in COPD patients. Gene expression profiling was performed on total RNA extracted from non-tumor lung tissue from 30 smokers with emphysema. Class comparison analysis based on gas transfer measurement was performed to identify differentially expressed genes. Genes were then selected for technical validation by quantitative reverse transcriptase-PCR (qRT-PCR if also represented on microarray platforms used in previously published emphysema studies. Genes technically validated advanced to tests of biological replication by qRT-PCR using an independent test set of 62 lung samples. Class comparison identified 98 differentially expressed genes (p p Gene expression profiling of lung from emphysema patients identified seven candidate genes associated with emphysema severity including COL6A3, SERPINF1, ZNHIT6, NEDD4, CDKN2A, NRN1 and GSTM3.

  19. A small interfering RNA screen of genes involved in DNA repair identifies tumor-specific radiosensitization by POLQ knockdown

    DEFF Research Database (Denmark)

    Higgins, Geoff S; Prevo, Remko; Lee, Yin-Fai

    2010-01-01

    The effectiveness of radiotherapy treatment could be significantly improved if tumor cells could be rendered more sensitive to ionizing radiation (IR) without altering the sensitivity of normal tissues. However, many of the key therapeutically exploitable mechanisms that determine intrinsic tumor...... radiosensitivity are largely unknown. We have conducted a small interfering RNA (siRNA) screen of 200 genes involved in DNA damage repair aimed at identifying genes whose knockdown increased tumor radiosensitivity. Parallel siRNA screens were conducted in irradiated and unirradiated tumor cells (SQ20B......) and irradiated normal tissue cells (MRC5). Using gammaH2AX foci at 24 hours after IR, we identified several genes, such as BRCA2, Lig IV, and XRCC5, whose knockdown is known to cause increased cell radiosensitivity, thereby validating the primary screening end point. In addition, we identified POLQ (DNA...

  20. Identifying Cancer Driver Genes Using Replication-Incompetent Retroviral Vectors

    Directory of Open Access Journals (Sweden)

    Victor M. Bii

    2016-10-01

    Full Text Available Identifying novel genes that drive tumor metastasis and drug resistance has significant potential to improve patient outcomes. High-throughput sequencing approaches have identified cancer genes, but distinguishing driver genes from passengers remains challenging. Insertional mutagenesis screens using replication-incompetent retroviral vectors have emerged as a powerful tool to identify cancer genes. Unlike replicating retroviruses and transposons, replication-incompetent retroviral vectors lack additional mutagenesis events that can complicate the identification of driver mutations from passenger mutations. They can also be used for almost any human cancer due to the broad tropism of the vectors. Replication-incompetent retroviral vectors have the ability to dysregulate nearby cancer genes via several mechanisms including enhancer-mediated activation of gene promoters. The integrated provirus acts as a unique molecular tag for nearby candidate driver genes which can be rapidly identified using well established methods that utilize next generation sequencing and bioinformatics programs. Recently, retroviral vector screens have been used to efficiently identify candidate driver genes in prostate, breast, liver and pancreatic cancers. Validated driver genes can be potential therapeutic targets and biomarkers. In this review, we describe the emergence of retroviral insertional mutagenesis screens using replication-incompetent retroviral vectors as a novel tool to identify cancer driver genes in different cancer types.

  1. Identification of candidate new cancer susceptibility genes using yeast genomics

    International Nuclear Information System (INIS)

    Brown, M.; Brown, J.A.; Game, J.C.

    2003-01-01

    A large proportion of cancer susceptibility syndromes are the result of mutations in genes in DNA repair or in cell-cycle checkpoints in response to DNA damage, such as ataxia telangiectasia (AT), Fanconi's anemia (FA), Bloom's syndrome (BS), Nijmegen breakage syndrome (NBS), and xeroderma pigmentosum (XP). Mutations in these genes often cause gross chromosomal instability leading to an increased mutation rate of all genes including those directly responsible for cancer. We have proposed that because the orthologs of these genes in budding yeast, S. cerevisiae, confer protection against killing by DNA damaging agents it should be possible to identify new cancer susceptibility genes by identifying yeast genes whose deletion causes sensitivity to DNA damage. We therefore screened the recently completed collection of individual gene deletion mutants to identify genes that affect sensitivity to DNA-damaging agents. Screening for sensitivity in this obtained up to now with the F98 glioma model othe fact that each deleted gene is replaced by a cassette containing two molecular 'barcodes', or 20-mers, that uniquely identify the strain when DNA from a pool of strains is hybridized to an oligonucleotide array containing the complementary sequences of the barcodes. We performed the screen with UV, IR, H 2 0 2 and other DNA damaging agents. In addition to identifying genes already known to confer resistance to DNA damaging agents we have identified, and individually confirmed, several genes not previously associated with resistance. Several of these are of unknown function. We have also examined the chromosomal stability of selected strains and found that IR sensitive strains often but not always exhibit genomic instability. We are presently constructing a yeast artificial chromosome to globally interrogate all the genes in the deletion pool for their involvement in genomic stability. This work shows that budding yeast is a valuable eukaryotic model organism to identify

  2. Identifying potential maternal genes of Bombyx mori using digital gene expression profiling

    Science.gov (United States)

    Xu, Pingzhen

    2018-01-01

    Maternal genes present in mature oocytes play a crucial role in the early development of silkworm. Although maternal genes have been widely studied in many other species, there has been limited research in Bombyx mori. High-throughput next generation sequencing provides a practical method for gene discovery on a genome-wide level. Herein, a transcriptome study was used to identify maternal-related genes from silkworm eggs. Unfertilized eggs from five different stages of early development were used to detect the changing situation of gene expression. The expressed genes showed different patterns over time. Seventy-six maternal genes were annotated according to homology analysis with Drosophila melanogaster. More than half of the differentially expressed maternal genes fell into four expression patterns, while the expression patterns showed a downward trend over time. The functional annotation of these material genes was mainly related to transcription factor activity, growth factor activity, nucleic acid binding, RNA binding, ATP binding, and ion binding. Additionally, twenty-two gene clusters including maternal genes were identified from 18 scaffolds. Altogether, we plotted a profile for the maternal genes of Bombyx mori using a digital gene expression profiling method. This will provide the basis for maternal-specific signature research and improve the understanding of the early development of silkworm. PMID:29462160

  3. The DNA damage-inducible dinD gene of Escherichia coli is equivalent to orfY upstream of pyrE

    DEFF Research Database (Denmark)

    Lundegaard, Claus; Jensen, Kaj Frank

    1994-01-01

    The DNA damage-inducible gene dinD, originally identified by Kenyon and Walker (C. J. Kenyon and G. C. Walker, Proc. Natl. Acad. Sci. USA 77:2819-2823, 1980) by selection of the dinD::MudI (Ap lac) fusion, is shown here to be equivalent to the open reading frame orfY near pyrE. The evidence...

  4. Non-equilibrium repressor binding kinetics link DNA damage dose to transcriptional timing within the SOS gene network.

    Science.gov (United States)

    Culyba, Matthew J; Kubiak, Jeffrey M; Mo, Charlie Y; Goulian, Mark; Kohli, Rahul M

    2018-06-01

    Biochemical pathways are often genetically encoded as simple transcription regulation networks, where one transcription factor regulates the expression of multiple genes in a pathway. The relative timing of each promoter's activation and shut-off within the network can impact physiology. In the DNA damage repair pathway (known as the SOS response) of Escherichia coli, approximately 40 genes are regulated by the LexA repressor. After a DNA damaging event, LexA degradation triggers SOS gene transcription, which is temporally separated into subsets of 'early', 'middle', and 'late' genes. Although this feature plays an important role in regulating the SOS response, both the range of this separation and its underlying mechanism are not experimentally defined. Here we show that, at low doses of DNA damage, the timing of promoter activities is not separated. Instead, timing differences only emerge at higher levels of DNA damage and increase as a function of DNA damage dose. To understand mechanism, we derived a series of synthetic SOS gene promoters which vary in LexA-operator binding kinetics, but are otherwise identical, and then studied their activity over a large dose-range of DNA damage. In distinction to established models based on rapid equilibrium assumptions, the data best fit a kinetic model of repressor occupancy at promoters, where the drop in cellular LexA levels associated with higher doses of DNA damage leads to non-equilibrium binding kinetics of LexA at operators. Operators with slow LexA binding kinetics achieve their minimal occupancy state at later times than operators with fast binding kinetics, resulting in a time separation of peak promoter activity between genes. These data provide insight into this remarkable feature of the SOS pathway by demonstrating how a single transcription factor can be employed to control the relative timing of each gene's transcription as a function of stimulus dose.

  5. Identifying key genes in rheumatoid arthritis by weighted gene co-expression network analysis.

    Science.gov (United States)

    Ma, Chunhui; Lv, Qi; Teng, Songsong; Yu, Yinxian; Niu, Kerun; Yi, Chengqin

    2017-08-01

    This study aimed to identify rheumatoid arthritis (RA) related genes based on microarray data using the WGCNA (weighted gene co-expression network analysis) method. Two gene expression profile datasets GSE55235 (10 RA samples and 10 healthy controls) and GSE77298 (16 RA samples and seven healthy controls) were downloaded from Gene Expression Omnibus database. Characteristic genes were identified using metaDE package. WGCNA was used to find disease-related networks based on gene expression correlation coefficients, and module significance was defined as the average gene significance of all genes used to assess the correlation between the module and RA status. Genes in the disease-related gene co-expression network were subject to functional annotation and pathway enrichment analysis using Database for Annotation Visualization and Integrated Discovery. Characteristic genes were also mapped to the Connectivity Map to screen small molecules. A total of 599 characteristic genes were identified. For each dataset, characteristic genes in the green, red and turquoise modules were most closely associated with RA, with gene numbers of 54, 43 and 79, respectively. These genes were enriched in totally enriched in 17 Gene Ontology terms, mainly related to immune response (CD97, FYB, CXCL1, IKBKE, CCR1, etc.), inflammatory response (CD97, CXCL1, C3AR1, CCR1, LYZ, etc.) and homeostasis (C3AR1, CCR1, PLN, CCL19, PPT1, etc.). Two small-molecule drugs sanguinarine and papaverine were predicted to have a therapeutic effect against RA. Genes related to immune response, inflammatory response and homeostasis presumably have critical roles in RA pathogenesis. Sanguinarine and papaverine have a potential therapeutic effect against RA. © 2017 Asia Pacific League of Associations for Rheumatology and John Wiley & Sons Australia, Ltd.

  6. Prediction of the damage-associated non-synonymous single nucleotide polymorphisms in the human MC1R gene.

    Science.gov (United States)

    Hepp, Diego; Gonçalves, Gislene Lopes; de Freitas, Thales Renato Ochotorena

    2015-01-01

    The melanocortin 1 receptor (MC1R) is involved in the control of melanogenesis. Polymorphisms in this gene have been associated with variation in skin and hair color and with elevated risk for the development of melanoma. Here we used 11 computational tools based on different approaches to predict the damage-associated non-synonymous single nucleotide polymorphisms (nsSNPs) in the coding region of the human MC1R gene. Among the 92 nsSNPs arranged according to the predictions 62% were classified as damaging in more than five tools. The classification was significantly correlated with the scores of two consensus programs. Alleles associated with the red hair color (RHC) phenotype and with the risk of melanoma were examined. The R variants D84E, R142H, R151C, I155T, R160W and D294H were classified as damaging by the majority of the tools while the r variants V60L, V92M and R163Q have been predicted as neutral in most of the programs The combination of the prediction tools results in 14 nsSNPs indicated as the most damaging mutations in MC1R (L48P, R67W, H70Y, P72L, S83P, R151H, S172I, L206P, T242I, G255R, P256S, C273Y, C289R and R306H); C273Y showed to be highly damaging in SIFT, Polyphen-2, MutPred, PANTHER and PROVEAN scores. The computational analysis proved capable of identifying the potentially damaging nsSNPs in MC1R, which are candidates for further laboratory studies of the functional and pharmacological significance of the alterations in the receptor and the phenotypic outcomes.

  7. Prediction of the damage-associated non-synonymous single nucleotide polymorphisms in the human MC1R gene.

    Directory of Open Access Journals (Sweden)

    Diego Hepp

    Full Text Available The melanocortin 1 receptor (MC1R is involved in the control of melanogenesis. Polymorphisms in this gene have been associated with variation in skin and hair color and with elevated risk for the development of melanoma. Here we used 11 computational tools based on different approaches to predict the damage-associated non-synonymous single nucleotide polymorphisms (nsSNPs in the coding region of the human MC1R gene. Among the 92 nsSNPs arranged according to the predictions 62% were classified as damaging in more than five tools. The classification was significantly correlated with the scores of two consensus programs. Alleles associated with the red hair color (RHC phenotype and with the risk of melanoma were examined. The R variants D84E, R142H, R151C, I155T, R160W and D294H were classified as damaging by the majority of the tools while the r variants V60L, V92M and R163Q have been predicted as neutral in most of the programs The combination of the prediction tools results in 14 nsSNPs indicated as the most damaging mutations in MC1R (L48P, R67W, H70Y, P72L, S83P, R151H, S172I, L206P, T242I, G255R, P256S, C273Y, C289R and R306H; C273Y showed to be highly damaging in SIFT, Polyphen-2, MutPred, PANTHER and PROVEAN scores. The computational analysis proved capable of identifying the potentially damaging nsSNPs in MC1R, which are candidates for further laboratory studies of the functional and pharmacological significance of the alterations in the receptor and the phenotypic outcomes.

  8. Diametrical clustering for identifying anti-correlated gene clusters.

    Science.gov (United States)

    Dhillon, Inderjit S; Marcotte, Edward M; Roshan, Usman

    2003-09-01

    Clustering genes based upon their expression patterns allows us to predict gene function. Most existing clustering algorithms cluster genes together when their expression patterns show high positive correlation. However, it has been observed that genes whose expression patterns are strongly anti-correlated can also be functionally similar. Biologically, this is not unintuitive-genes responding to the same stimuli, regardless of the nature of the response, are more likely to operate in the same pathways. We present a new diametrical clustering algorithm that explicitly identifies anti-correlated clusters of genes. Our algorithm proceeds by iteratively (i). re-partitioning the genes and (ii). computing the dominant singular vector of each gene cluster; each singular vector serving as the prototype of a 'diametric' cluster. We empirically show the effectiveness of the algorithm in identifying diametrical or anti-correlated clusters. Testing the algorithm on yeast cell cycle data, fibroblast gene expression data, and DNA microarray data from yeast mutants reveals that opposed cellular pathways can be discovered with this method. We present systems whose mRNA expression patterns, and likely their functions, oppose the yeast ribosome and proteosome, along with evidence for the inverse transcriptional regulation of a number of cellular systems.

  9. Systems biology approach identifies the kinase Csnk1a1 as a regulator of the DNA damage response in embryonic stem cells.

    Science.gov (United States)

    Carreras Puigvert, Jordi; von Stechow, Louise; Siddappa, Ramakrishnaiah; Pines, Alex; Bahjat, Mahnoush; Haazen, Lizette C J M; Olsen, Jesper V; Vrieling, Harry; Meerman, John H N; Mullenders, Leon H F; van de Water, Bob; Danen, Erik H J

    2013-01-22

    In pluripotent stem cells, DNA damage triggers loss of pluripotency and apoptosis as a safeguard to exclude damaged DNA from the lineage. An intricate DNA damage response (DDR) signaling network ensures that the response is proportional to the severity of the damage. We combined an RNA interference screen targeting all kinases, phosphatases, and transcription factors with global transcriptomics and phosphoproteomics to map the DDR in mouse embryonic stem cells treated with the DNA cross-linker cisplatin. Networks derived from canonical pathways shared in all three data sets were implicated in DNA damage repair, cell cycle and survival, and differentiation. Experimental probing of these networks identified a mode of DNA damage-induced Wnt signaling that limited apoptosis. Silencing or deleting the p53 gene demonstrated that genotoxic stress elicited Wnt signaling in a p53-independent manner. Instead, this response occurred through reduced abundance of Csnk1a1 (CK1α), a kinase that inhibits β-catenin. Together, our findings reveal a balance between p53-mediated elimination of stem cells (through loss of pluripotency and apoptosis) and Wnt signaling that attenuates this response to tune the outcome of the DDR.

  10. Common variants in mismatch repair genes associated with increased risk of sperm DNA damage and male infertility

    Directory of Open Access Journals (Sweden)

    Ji Guixiang

    2012-05-01

    Full Text Available Abstract Background The mismatch repair (MMR pathway plays an important role in the maintenance of the genome integrity, meiotic recombination and gametogenesis. This study investigated whether genetic variations in MMR genes are associated with an increased risk of sperm DNA damage and male infertility. Methods We selected and genotyped 21 tagging single nucleotide polymorphisms (SNPs in five MMR genes (MLH1, MLH3, PMS2, MSH4 and MSH5 using the SNPstream 12-plex platform in a case-control study of 1,292 idiopathic infertility patients and 480 fertile controls in a Chinese population. Sperm DNA damage levels were detected with the Tdt-mediated dUTP nick end labelling (TUNEL assay in 450 cases. Fluorescence resonance energy transfer (FRET and co-immunoprecipitation techniques were employed to determine the effects of functional variants. Results One intronic SNP in MLH1 (rs4647269 and two non-synonymous SNPs in PMS2 (rs1059060, Ser775Asn and MSH5 (rs2075789, Pro29Ser seem to be risk factors for the development of azoospermia or oligozoospermia. Meanwhile, we also identified a possible contribution of PMS2 rs1059060 to the risk of male infertility with normal sperm count. Among patients with normal sperm count, MLH1 rs4647269 and PMS2 rs1059060 were associated with increased sperm DNA damage. Functional analysis revealed that the PMS2 rs1059060 can affect the interactions between MLH1 and PMS2. Conclusions Our results provide evidence supporting the involvement of genetic polymorphisms in MMR genes in the aetiology of male infertility.

  11. ENU Mutagenesis in Mice Identifies Candidate Genes For Hypogonadism

    Science.gov (United States)

    Weiss, Jeffrey; Hurley, Lisa A.; Harris, Rebecca M.; Finlayson, Courtney; Tong, Minghan; Fisher, Lisa A.; Moran, Jennifer L.; Beier, David R.; Mason, Christopher; Jameson, J. Larry

    2012-01-01

    Genome-wide mutagenesis was performed in mice to identify candidate genes for male infertility, for which the predominant causes remain idiopathic. Mice were mutagenized using N-ethyl-N-nitrosourea (ENU), bred, and screened for phenotypes associated with the male urogenital system. Fifteen heritable lines were isolated and chromosomal loci were assigned using low density genome-wide SNP arrays. Ten of the fifteen lines were pursued further using higher resolution SNP analysis to narrow the candidate gene regions. Exon sequencing of candidate genes identified mutations in mice with cystic kidneys (Bicc1), cryptorchidism (Rxfp2), restricted germ cell deficiency (Plk4), and severe germ cell deficiency (Prdm9). In two other lines with severe hypogonadism candidate sequencing failed to identify mutations, suggesting defects in genes with previously undocumented roles in gonadal function. These genomic intervals were sequenced in their entirety and a candidate mutation was identified in SnrpE in one of the two lines. The line harboring the SnrpE variant retains substantial spermatogenesis despite small testis size, an unusual phenotype. In addition to the reproductive defects, heritable phenotypes were observed in mice with ataxia (Myo5a), tremors (Pmp22), growth retardation (unknown gene), and hydrocephalus (unknown gene). These results demonstrate that the ENU screen is an effective tool for identifying potential causes of male infertility. PMID:22258617

  12. Tp53 gene mediates distinct dopaminergic neuronal damage in different dopaminergic neurotoxicant models

    Directory of Open Access Journals (Sweden)

    Tao Lu

    2017-01-01

    Full Text Available Tp53, a stress response gene, is involved in diverse cell death pathways and its activation is implicated in the pathogenesis of Parkinson's disease. However, whether the neuronal Tp53 protein plays a direct role in regulating dopaminergic (DA neuronal cell death or neuronal terminal damage in different neurotoxicant models is unknown. In our recent studies, in contrast to the global inhibition of Tp53 function by pharmacological inhibitors and in traditional Tp53 knock-out mice, we examined the effects of DA-specific Tp53 gene deletion after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and methamphetamine exposure. Our data suggests that the Tp53 gene might be involved in both neuronal apoptosis and neuronal terminal damage caused by different neurotoxicants. Additional results from other studies also suggest that as a master regulator of many pathways that regulate apoptosis and synaptic terminal damage, it is possible that Tp53 may function as a signaling hub to integrate different signaling pathways to mediate distinctive target pathways. Tp53 protein as a signaling hub might be able to evaluate the microenvironment of neurons, assess the forms and severities of injury incurred, and determine whether apoptotic cell death or neuronal terminal degeneration occurs. Identification of the precise mechanisms activated in distinct neuronal damage caused by different forms and severities of injuries might allow for development of specific Tp53 inhibitors or ways to modulate distinct downstream target pathways involved.

  13. Comparative transcript profiling of Candida albicans and Candida dubliniensis identifies SFL2, a C. albicans gene required for virulence in a reconstituted epithelial infection model.

    LENUS (Irish Health Repository)

    Spiering, Martin J

    2010-02-01

    Candida albicans and Candida dubliniensis are closely related species displaying differences in virulence and genome content, therefore providing potential opportunities to identify novel C. albicans virulence genes. C. albicans gene arrays were used for comparative analysis of global gene expression in the two species in reconstituted human oral epithelium (RHE). C. albicans (SC5314) showed upregulation of hypha-specific and virulence genes within 30 min postinoculation, coinciding with rapid induction of filamentation and increased RHE damage. C. dubliniensis (CD36) showed no detectable upregulation of hypha-specific genes, grew as yeast, and caused limited RHE damage. Several genes absent or highly divergent in C. dubliniensis were upregulated in C. albicans. One such gene, SFL2 (orf19.3969), encoding a putative heat shock factor, was deleted in C. albicans. DeltaDeltasfl2 cells failed to filament under a range of hypha-inducing conditions and exhibited greatly reduced RHE damage, reversed by reintroduction of SFL2 into the DeltaDeltasfl2 strain. Moreover, SFL2 overexpression in C. albicans triggered hyphal morphogenesis. Although SFL2 deletion had no apparent effect on host survival in the murine model of systemic infection, DeltaDeltasfl2 strain-infected kidney tissues contained only yeast cells. These results suggest a role for SFL2 in morphogenesis and an indirect role in C. albicans pathogenesis in epithelial tissues.

  14. Gastric Cancer Associated Genes Identified by an Integrative Analysis of Gene Expression Data

    Directory of Open Access Journals (Sweden)

    Bing Jiang

    2017-01-01

    Full Text Available Gastric cancer is one of the most severe complex diseases with high morbidity and mortality in the world. The molecular mechanisms and risk factors for this disease are still not clear since the cancer heterogeneity caused by different genetic and environmental factors. With more and more expression data accumulated nowadays, we can perform integrative analysis for these data to understand the complexity of gastric cancer and to identify consensus players for the heterogeneous cancer. In the present work, we screened the published gene expression data and analyzed them with integrative tool, combined with pathway and gene ontology enrichment investigation. We identified several consensus differentially expressed genes and these genes were further confirmed with literature mining; at last, two genes, that is, immunoglobulin J chain and C-X-C motif chemokine ligand 17, were screened as novel gastric cancer associated genes. Experimental validation is proposed to further confirm this finding.

  15. Evaluation of genome damage and transcription profile of DNA damage/repair response genes in peripheral blood mononuclear cells exposed to low dose radiation

    International Nuclear Information System (INIS)

    Soren, D.C.; Saini, Divyalakshmi; Das, Birajalaxmi

    2016-01-01

    Humans are exposed to various physical and chemical mutagens in their life time. Physical mutagens, like ionizing radiation (IR), may induce adverse effect at high acute dose exposures in human cells. However, there are inconsistent results on the effect of low dose radiation exposure in human cells. There are a variety of DNA damage endpoints to evaluate the effect of low dose radiation in human cells. DNA damage response (DDR) may lead to changes in expression profile of many genes. In the present study, an attempt has been made to evaluate genome damage at low dose IR exposure in human blood lymphocytes. Cytochalasin blocked micronuclei (CBMN) assay has been used to determine the frequency of micronuclei in binucleated cells in PBMCs exposed to IR. Transcription profile of ATM, P53, GADD45A, CDKN1A, TRF1 and TRF2 genes was studied using real time quantitative PCR. Venous blood samples collected from 10 random healthy donors were irradiated with different doses of γ-radiation ( 137 Cs) along with sham irradiated control. Whole blood culture was set up using microculture technique. Blood samples were stimulated with phytohemagglutinin, and CBMN assay was performed. An average of 2,500 binucleated cells was scored for each dose point. For gene expression analysis, total RNA was isolated, cDNA was prepared, and gene expression analysis for ATM, P53, CDKN1A, GADD45A, TRF1 and TRF2 was done using real time PCR. Our results revealed no significant increase in the frequency of MN up to 100 mGy as compared to control. However, no significant alteration in gene expression profile was observed. In conclusion, no significant dose response was observed at the frequency of MN as well as the expression profile of DDR/repair genes, suggesting low dose radiation did not induce significant DNA damage at these acute dose exposures. (author)

  16. DNA damage-responsive Drosophila melanogaster gene is also induced by heat shock

    International Nuclear Information System (INIS)

    Vivino, A.A.; Smith, M.D.; Minton, K.W.

    1986-01-01

    A gene isolated by screening Drosophila melanogaster tissue culture cells for DNA damage regulation was also found to be regulated by heat shock. After UV irradiation or heat shock, induction is at the transcriptional level and results in the accumulation of a 1.0-kilobase polyadenylated transcript. The restriction map of the clone bears no resemblance to the known heat shock genes, which are shown to be uninduced by UV irradiation

  17. Gene expression analysis reveals new possible mechanisms of vancomycin-induced nephrotoxicity and identifies gene markers candidates.

    Science.gov (United States)

    Dieterich, Christine; Puey, Angela; Lin, Sylvia; Lyn, Sylvia; Swezey, Robert; Furimsky, Anna; Fairchild, David; Mirsalis, Jon C; Ng, Hanna H

    2009-01-01

    Vancomycin, one of few effective treatments against methicillin-resistant Staphylococcus aureus, is nephrotoxic. The goals of this study were to (1) gain insights into molecular mechanisms of nephrotoxicity at the genomic level, (2) evaluate gene markers of vancomycin-induced kidney injury, and (3) compare gene expression responses after iv and ip administration. Groups of six female BALB/c mice were treated with seven daily iv or ip doses of vancomycin (50, 200, and 400 mg/kg) or saline, and sacrificed on day 8. Clinical chemistry and histopathology demonstrated kidney injury at 400 mg/kg only. Hierarchical clustering analysis revealed that kidney gene expression profiles of all mice treated at 400 mg/kg clustered with those of mice administered 200 mg/kg iv. Transcriptional profiling might thus be more sensitive than current clinical markers for detecting kidney damage, though the profiles can differ with the route of administration. Analysis of transcripts whose expression was changed by at least twofold compared with vehicle saline after high iv and ip doses of vancomycin suggested the possibility of oxidative stress and mitochondrial damage in vancomycin-induced toxicity. In addition, our data showed changes in expression of several transcripts from the complement and inflammatory pathways. Such expression changes were confirmed by relative real-time reverse transcription-polymerase chain reaction. Finally, our results further substantiate the use of gene markers of kidney toxicity such as KIM-1/Havcr1, as indicators of renal injury.

  18. Analysis of variants in DNA damage signalling genes in bladder cancer

    Directory of Open Access Journals (Sweden)

    Bishop D Timothy

    2008-07-01

    Full Text Available Abstract Background Chemicals from occupational exposure and components of cigarette smoke can cause DNA damage in bladder urothelium. Failure to repair DNA damage by DNA repair proteins may result in mutations leading to genetic instability and the development of bladder cancer. Immunohistochemistry studies have shown DNA damage signal activation in precancerous bladder lesions which is lost on progression, suggesting that the damage signalling mechanism acts as a brake to further tumorigenesis. Single nucleotide polymorphisms (SNPs in DSB signalling genes may alter protein function. We hypothesized that SNPs in DSB signalling genes may modulate predisposition to bladder cancer and influence the effects of environmental exposures. Methods We recruited 771 cases and 800 controls (573 hospital-based and 227 population-based from a previous case-control study and interviewed them regarding their smoking habits and occupational history. DNA was extracted from a peripheral blood sample and genotyping of 24 SNPs in MRE11, NBS1, RAD50, H2AX and ATM was undertaken using an allelic discrimination method (Taqman. Results Smoking and occupational dye exposure were strongly associated with bladder cancer risk. Using logistic regression adjusting for age, sex, smoking and occupational dye exposure, there was a marginal increase in risk of bladder cancer for an MRE11 3'UTR SNP (rs2155209, adjusted odds ratio 1.54 95% CI (1.13–2.08, p = 0.01 for individuals homozygous for the rare allele compared to those carrying the common homozygous or heterozygous genotype. However, in the hospital-based controls, the genotype distribution for this SNP deviated from Hardy-Weinberg equilibrium. None of the other SNPs showed an association with bladder cancer and we did not find any significant interaction between any of these polymorphisms and exposure to smoking or dye exposure. Conclusion Apart from a possible effect for one MRE11 3'UTR SNP, our study does not support

  19. Automatically identifying gene/protein terms in MEDLINE abstracts.

    Science.gov (United States)

    Yu, Hong; Hatzivassiloglou, Vasileios; Rzhetsky, Andrey; Wilbur, W John

    2002-01-01

    Natural language processing (NLP) techniques are used to extract information automatically from computer-readable literature. In biology, the identification of terms corresponding to biological substances (e.g., genes and proteins) is a necessary step that precedes the application of other NLP systems that extract biological information (e.g., protein-protein interactions, gene regulation events, and biochemical pathways). We have developed GPmarkup (for "gene/protein-full name mark up"), a software system that automatically identifies gene/protein terms (i.e., symbols or full names) in MEDLINE abstracts. As a part of marking up process, we also generated automatically a knowledge source of paired gene/protein symbols and full names (e.g., LARD for lymphocyte associated receptor of death) from MEDLINE. We found that many of the pairs in our knowledge source do not appear in the current GenBank database. Therefore our methods may also be used for automatic lexicon generation. GPmarkup has 73% recall and 93% precision in identifying and marking up gene/protein terms in MEDLINE abstracts. A random sample of gene/protein symbols and full names and a sample set of marked up abstracts can be viewed at http://www.cpmc.columbia.edu/homepages/yuh9001/GPmarkup/. Contact. hy52@columbia.edu. Voice: 212-939-7028; fax: 212-666-0140.

  20. Identifying key genes associated with acute myocardial infarction.

    Science.gov (United States)

    Cheng, Ming; An, Shoukuan; Li, Junquan

    2017-10-01

    This study aimed to identify key genes associated with acute myocardial infarction (AMI) by reanalyzing microarray data. Three gene expression profile datasets GSE66360, GSE34198, and GSE48060 were downloaded from GEO database. After data preprocessing, genes without heterogeneity across different platforms were subjected to differential expression analysis between the AMI group and the control group using metaDE package. P FI) network. Then, DEGs in each module were subjected to pathway enrichment analysis using DAVID. MiRNAs and transcription factors predicted to regulate target DEGs were identified. Quantitative real-time polymerase chain reaction (RT-PCR) was applied to verify the expression of genes. A total of 913 upregulated genes and 1060 downregulated genes were identified in the AMI group. A FI network consists of 21 modules and DEGs in 12 modules were significantly enriched in pathways. The transcription factor-miRNA-gene network contains 2 transcription factors FOXO3 and MYBL2, and 2 miRNAs hsa-miR-21-5p and hsa-miR-30c-5p. RT-PCR validations showed that expression levels of FOXO3 and MYBL2 were significantly increased in AMI, and expression levels of hsa-miR-21-5p and hsa-miR-30c-5p were obviously decreased in AMI. A total of 41 DEGs, such as SOCS3, VAPA, and COL5A2, are speculated to have roles in the pathogenesis of AMI; 2 transcription factors FOXO3 and MYBL2, and 2 miRNAs hsa-miR-21-5p and hsa-miR-30c-5p may be involved in the regulation of the expression of these DEGs.

  1. Preferential repair of ionizing radiation-induced damage in the transcribed strand of an active human gene is defective in Cockayne syndrome

    International Nuclear Information System (INIS)

    Leadon, S.A.; Copper, P.K.

    1993-01-01

    Cells from patients with Cockayne syndrome (CS), which are sensitive to killing by UV although overall damage removal appears normal, are specifically defective in repair of UV damage in actively transcribe genes. Because several CS strains display cross-sensitivity to killing by ionizing radiation, the authors examined whether ionizing radiation-induced damage in active genes is preferentially repaired by normal cells and whether the radiosensitivity of CS cells can be explained by a defect in this process. They found that ionizing radiation-induced damage was repaired more rapidly in the transcriptionally active metallothionein IIA (MTIIA) gene than in the inactive MTIIB gene or in the genome overall in normal cells as a result of faster repair on the transcribed strand of MTIIA. Cells of the radiosensitive CS strain CS1AN are completely defective in this strand-selective repair of ionizing radiation-induced damage, although their overall repair rate appears normal. CS3BE cells, which are intermediate in radiosensitivity, do exhibit more rapid repair of the transcribed strand but at a reduced rate compared to normal cells. Xeroderma pigmentosum complementation group A cells, which are hypersensitive to UV light because of a defect in the nucleotide excision repair pathway but do not show increased sensitivity to ionizing radiation, preferentially repair ionizing radiation-induced damage on the transcribed strand of MTIIA. Thus, the ability to rapidly repair ionizing radiation-induced damage in actively transcribing genes correlates with cell survival. The results extend the generality of preferential repair in active genes to include damage other than bulky lesions

  2. Differential expression of the klf6 tumor suppressor gene upon cell damaging treatments in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Gehrau, Ricardo C.; D' Astolfo, Diego S.; Andreoli, Veronica [Centro de Investigaciones en Bioquimica Clinica e Inmunologia (CIBICI-CONICET), Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina); Bocco, Jose L., E-mail: jbocco@fcq.unc.edu.ar [Centro de Investigaciones en Bioquimica Clinica e Inmunologia (CIBICI-CONICET), Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina); Koritschoner, Nicolas P. [Centro de Investigaciones en Bioquimica Clinica e Inmunologia (CIBICI-CONICET), Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2011-02-10

    The mammalian Krueppel-like factor 6 (KLF6) is involved in critical roles such as growth-related signal transduction, cell proliferation and differentiation, development, apoptosis and angiogenesis. Also, KLF6 appears to be an emerging key factor during cancer development and progression. Its expression is thoroughly regulated by several cell-damaging stimuli. DNA damaging agents at lethal concentrations induce a p53-independent down-regulation of the klf6 gene. To investigate the impact of external stimuli on human klf6 gene expression, its mRNA level was analyzed using a cancer cell line profiling array system, consisting in an assortment of immobilized cDNAs from multiple cell lines treated with several cell-damaging agents at growth inhibitory concentrations (IC{sub 50}). Cell-damaging agents affected the klf6 expression in 62% of the cDNA samples, though the expression pattern was not dependent on the cell origin type. Interestingly, significant differences (p < 0.0001) in KLF6 mRNA levels were observed depending on the cellular p53 status upon cell damage. KLF6 expression was significantly increased in 63% of p53-deficient cells (122/195). Conversely, KLF6 mRNA level decreased nearly 4 fold in more than 70% of p53+/+ cells. In addition, klf6 gene promoter activity was down-regulated by DNA damaging agents in cells expressing the functional p53 protein whereas it was moderately increased in the absence of functional p53. Consistent results were obtained for the endogenous KLF6 protein level. Results indicate that human klf6 gene expression is responsive to external cell damage mediated by IC{sub 50} concentrations of physical and chemical stimuli in a p53-dependent manner. Most of these agents are frequently used in cancer therapy. Induction of klf6 expression in the absence of functional p53 directly correlates with cell death triggered by these compounds, whereas it is down-regulated in p53+/+ cells. Hence, klf6 expression level could represent a valuable

  3. Whole thorax irradiation of non-human primates induces persistent nuclear damage and gene expression changes in peripheral blood cells.

    Directory of Open Access Journals (Sweden)

    Shanaz A Ghandhi

    Full Text Available We investigated the cytogenetic and gene expression responses of peripheral blood cells of non-human primates (NHP, Macaca mulatta that were whole-thorax irradiated with a single dose of 10 Gy. In this model, partial irradiation of NHPs in the thoracic region (Whole Thorax Lung Irradiation, WTLI allows the study of late radiation-induced lung injury, while avoiding acute radiation syndromes related to hematopoietic and gastrointestinal injury. A transient drop in circulating lymphocytes and platelets was seen by 9 days, followed by elevations in respiratory rate, circulating neutrophils, lymphocytes, and monocytes at 60-100 days, corresponding to computed tomography (CT and histologic evidence of pneumonitis, and elective euthanasia of four animals. To evaluate long-term DNA damage in NHP peripheral blood lymphocytes after 10 Gy WTLI, we used the cytokinesis-block micronucleus (CBMN assay to measure chromosomal aberrations as post-mitotic micronuclei in blood samples collected up to 8 months after irradiation. Regression analysis showed significant induction of micronuclei in NHP blood cells that persisted with a gradual decline over the 8-month study period, suggesting long-term DNA damage in blood lymphocytes after WTLI. We also report transcriptomic changes in blood up to 30 days after WTLI. We isolated total RNA from peripheral blood at 3 days before and then at 2, 5 and 30 days after irradiation. We identified 1187 transcripts that were significantly changed across the 30-day time course. From changes in gene expression, we identified biological processes related to immune responses, which persisted across the 30-day study. Response to oxygen-containing compounds and bacteria were implicated by gene-expression changes at the earliest day 2 and latest, day 30 time-points. Gene expression changes suggest a persistent altered state of the immune system, specifically response to infection, for at least a month after WTLI.

  4. Whole thorax irradiation of non-human primates induces persistent nuclear damage and gene expression changes in peripheral blood cells.

    Science.gov (United States)

    Ghandhi, Shanaz A; Turner, Helen C; Shuryak, Igor; Dugan, Gregory O; Bourland, J Daniel; Olson, John D; Tooze, Janet A; Morton, Shad R; Batinic-Haberle, Ines; Cline, J Mark; Amundson, Sally A

    2018-01-01

    We investigated the cytogenetic and gene expression responses of peripheral blood cells of non-human primates (NHP, Macaca mulatta) that were whole-thorax irradiated with a single dose of 10 Gy. In this model, partial irradiation of NHPs in the thoracic region (Whole Thorax Lung Irradiation, WTLI) allows the study of late radiation-induced lung injury, while avoiding acute radiation syndromes related to hematopoietic and gastrointestinal injury. A transient drop in circulating lymphocytes and platelets was seen by 9 days, followed by elevations in respiratory rate, circulating neutrophils, lymphocytes, and monocytes at 60-100 days, corresponding to computed tomography (CT) and histologic evidence of pneumonitis, and elective euthanasia of four animals. To evaluate long-term DNA damage in NHP peripheral blood lymphocytes after 10 Gy WTLI, we used the cytokinesis-block micronucleus (CBMN) assay to measure chromosomal aberrations as post-mitotic micronuclei in blood samples collected up to 8 months after irradiation. Regression analysis showed significant induction of micronuclei in NHP blood cells that persisted with a gradual decline over the 8-month study period, suggesting long-term DNA damage in blood lymphocytes after WTLI. We also report transcriptomic changes in blood up to 30 days after WTLI. We isolated total RNA from peripheral blood at 3 days before and then at 2, 5 and 30 days after irradiation. We identified 1187 transcripts that were significantly changed across the 30-day time course. From changes in gene expression, we identified biological processes related to immune responses, which persisted across the 30-day study. Response to oxygen-containing compounds and bacteria were implicated by gene-expression changes at the earliest day 2 and latest, day 30 time-points. Gene expression changes suggest a persistent altered state of the immune system, specifically response to infection, for at least a month after WTLI.

  5. Gene expression analysis identifies global gene dosage sensitivity in cancer

    DEFF Research Database (Denmark)

    Fehrmann, Rudolf S. N.; Karjalainen, Juha M.; Krajewska, Malgorzata

    2015-01-01

    Many cancer-associated somatic copy number alterations (SCNAs) are known. Currently, one of the challenges is to identify the molecular downstream effects of these variants. Although several SCNAs are known to change gene expression levels, it is not clear whether each individual SCNA affects gen...

  6. Epidermal growth factor gene is a newly identified candidate gene for gout

    OpenAIRE

    Lin Han; Chunwei Cao; Zhaotong Jia; Shiguo Liu; Zhen Liu; Ruosai Xin; Can Wang; Xinde Li; Wei Ren; Xuefeng Wang; Changgui Li

    2016-01-01

    Chromosome 4q25 has been identified as a genomic region associated with gout. However, the associations of gout with the genes in this region have not yet been confirmed. Here, we performed two-stage analysis to determine whether variations in candidate genes in the 4q25 region are associated with gout in a male Chinese Han population. We first evaluated 96 tag single nucleotide polymorphisms (SNPs) in eight inflammatory/immune pathway- or glucose/lipid metabolism-related genes in the 4q25 re...

  7. Repair of DNA damage in the human metallothionein gene family

    International Nuclear Information System (INIS)

    Leadon, S.A.; Snowden, M.M.

    1987-01-01

    In order to distinguish enhanced repair of a sequence due to its transcriptional activity from enhanced repair due to chromatin alterations brought about by integration of a sequence into the genome, we have investigated the repair of damage both in endogenous genes and in cell lines that contain an integrated gene with an inducible promoter. The endogenous genes we are studying are the metallothioneins (MTs), a multigene family in man consisting of about 10-12 members. Cultured cells were exposed to 10-J/m 2 uv light and allowed to repair in the presence of bromodeoxyuridine. The DNA was then isolated, digested with Eco RI, and fully hybrid density DNA made by semiconservative synthesis was separated from unreplicated DNA by centrifugation in CsCl density gradients. Unreplicated, parental-density DNA was then reacted with a monoclonal antibody against bromouracil. 1 ref., 1 fig., 1 tab

  8. Inflammation, gene mutation and photoimmunosuppression in response to UVR-induced oxidative damage contributes to photocarcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Halliday, Gary M. [Dermatology Research Laboratories, Division of Medicine, Melanoma and Skin Cancer Research Institute, Royal Prince Alfred Hospital at the University of Sydney, Sydney, NSW (Australia)]. E-mail: garyh@med.usyd.edu.au

    2005-04-01

    Ultraviolet (UV) radiation causes inflammation, gene mutation and immunosuppression in the skin. These biological changes are responsible for photocarcinogenesis. UV radiation in sunlight is divided into two wavebands, UVB and UVA, both of which contribute to these biological changes, and therefore probably to skin cancer in humans and animal models. Oxidative damage caused by UV contributes to inflammation, gene mutation and immunosuppression. This article reviews evidence for the hypothesis that UV oxidative damage to these processes contributes to photocarcinogenesis. UVA makes a larger impact on oxidative stress in the skin than UVB by inducing reactive oxygen and nitrogen species which damage DNA, protein and lipids and which also lead to NAD+ depletion, and therefore energy loss from the cell. Lipid peroxidation induces prostaglandin production that in association with UV-induced nitric oxide production causes inflammation. Inflammation drives benign human solar keratosis (SK) to undergo malignant conversion into squamous cell carcinoma (SCC) probably because the inflammatory cells produce reactive oxygen species, thus increasing oxidative damage to DNA and the immune system. Reactive oxygen or nitrogen appears to cause the increase in mutational burden as SK progress into SCC in humans. UVA is particularly important in causing immunosuppression in both humans and mice, and UV lipid peroxidation induced prostaglandin production and UV activation of nitric oxide synthase is important mediators of this event. Other immunosuppressive events are likely to be initiated by UV oxidative stress. Antioxidants have also been shown to reduce photocarcinogenesis. While most of this evidence comes from studies in mice, there is supporting evidence in humans that UV-induced oxidative damage contributes to inflammation, gene mutation and immunosuppression. Available evidence implicates oxidative damage as an important contributor to sunlight-induced carcinogenesis in humans.

  9. Inflammation, gene mutation and photoimmunosuppression in response to UVR-induced oxidative damage contributes to photocarcinogenesis

    International Nuclear Information System (INIS)

    Halliday, Gary M.

    2005-01-01

    Ultraviolet (UV) radiation causes inflammation, gene mutation and immunosuppression in the skin. These biological changes are responsible for photocarcinogenesis. UV radiation in sunlight is divided into two wavebands, UVB and UVA, both of which contribute to these biological changes, and therefore probably to skin cancer in humans and animal models. Oxidative damage caused by UV contributes to inflammation, gene mutation and immunosuppression. This article reviews evidence for the hypothesis that UV oxidative damage to these processes contributes to photocarcinogenesis. UVA makes a larger impact on oxidative stress in the skin than UVB by inducing reactive oxygen and nitrogen species which damage DNA, protein and lipids and which also lead to NAD+ depletion, and therefore energy loss from the cell. Lipid peroxidation induces prostaglandin production that in association with UV-induced nitric oxide production causes inflammation. Inflammation drives benign human solar keratosis (SK) to undergo malignant conversion into squamous cell carcinoma (SCC) probably because the inflammatory cells produce reactive oxygen species, thus increasing oxidative damage to DNA and the immune system. Reactive oxygen or nitrogen appears to cause the increase in mutational burden as SK progress into SCC in humans. UVA is particularly important in causing immunosuppression in both humans and mice, and UV lipid peroxidation induced prostaglandin production and UV activation of nitric oxide synthase is important mediators of this event. Other immunosuppressive events are likely to be initiated by UV oxidative stress. Antioxidants have also been shown to reduce photocarcinogenesis. While most of this evidence comes from studies in mice, there is supporting evidence in humans that UV-induced oxidative damage contributes to inflammation, gene mutation and immunosuppression. Available evidence implicates oxidative damage as an important contributor to sunlight-induced carcinogenesis in humans

  10. Human DNA repair and recombination genes

    International Nuclear Information System (INIS)

    Thompson, L.H.; Weber, C.A.; Jones, N.J.

    1988-09-01

    Several genes involved in mammalian DNA repair pathways were identified by complementation analysis and chromosomal mapping based on hybrid cells. Eight complementation groups of rodent mutants defective in the repair of uv radiation damage are now identified. At least seven of these genes are probably essential for repair and at least six of them control the incision step. The many genes required for repair of DNA cross-linking damage show overlap with those involved in the repair of uv damage, but some of these genes appear to be unique for cross-link repair. Two genes residing on human chromosome 19 were cloned from genomic transformants using a cosmid vector, and near full-length cDNA clones of each gene were isolated and sequenced. Gene ERCC2 efficiently corrects the defect in CHO UV5, a nucleotide excision repair mutant. Gene XRCC1 normalizes repair of strand breaks and the excessive sister chromatid exchange in CHO mutant EM9. ERCC2 shows a remarkable /approximately/52% overall homology at both the amino acid and nucleotide levels with the yeast RAD3 gene. Evidence based on mutation induction frequencies suggests that ERCC2, like RAD3, might also be an essential gene for viability. 100 refs., 4 tabs

  11. A Small-Molecule Inducible Synthetic Circuit for Control of the SOS Gene Network without DNA Damage.

    Science.gov (United States)

    Kubiak, Jeffrey M; Culyba, Matthew J; Liu, Monica Yun; Mo, Charlie Y; Goulian, Mark; Kohli, Rahul M

    2017-11-17

    The bacterial SOS stress-response pathway is a pro-mutagenic DNA repair system that mediates bacterial survival and adaptation to genotoxic stressors, including antibiotics and UV light. The SOS pathway is composed of a network of genes under the control of the transcriptional repressor, LexA. Activation of the pathway involves linked but distinct events: an initial DNA damage event leads to activation of RecA, which promotes autoproteolysis of LexA, abrogating its repressor function and leading to induction of the SOS gene network. These linked events can each independently contribute to DNA repair and mutagenesis, making it difficult to separate the contributions of the different events to observed phenotypes. We therefore devised a novel synthetic circuit to unlink these events and permit induction of the SOS gene network in the absence of DNA damage or RecA activation via orthogonal cleavage of LexA. Strains engineered with the synthetic SOS circuit demonstrate small-molecule inducible expression of SOS genes as well as the associated resistance to UV light. Exploiting our ability to activate SOS genes independently of upstream events, we further demonstrate that the majority of SOS-mediated mutagenesis on the chromosome does not readily occur with orthogonal pathway induction alone, but instead requires DNA damage. More generally, our approach provides an exemplar for using synthetic circuit design to separate an environmental stressor from its associated stress-response pathway.

  12. A Strategy for Identifying Quantitative Trait Genes Using Gene Expression Analysis and Causal Analysis

    Directory of Open Access Journals (Sweden)

    Akira Ishikawa

    2017-11-01

    Full Text Available Large numbers of quantitative trait loci (QTL affecting complex diseases and other quantitative traits have been reported in humans and model animals. However, the genetic architecture of these traits remains elusive due to the difficulty in identifying causal quantitative trait genes (QTGs for common QTL with relatively small phenotypic effects. A traditional strategy based on techniques such as positional cloning does not always enable identification of a single candidate gene for a QTL of interest because it is difficult to narrow down a target genomic interval of the QTL to a very small interval harboring only one gene. A combination of gene expression analysis and statistical causal analysis can greatly reduce the number of candidate genes. This integrated approach provides causal evidence that one of the candidate genes is a putative QTG for the QTL. Using this approach, I have recently succeeded in identifying a single putative QTG for resistance to obesity in mice. Here, I outline the integration approach and discuss its usefulness using my studies as an example.

  13. A Strategy for Identifying Quantitative Trait Genes Using Gene Expression Analysis and Causal Analysis.

    Science.gov (United States)

    Ishikawa, Akira

    2017-11-27

    Large numbers of quantitative trait loci (QTL) affecting complex diseases and other quantitative traits have been reported in humans and model animals. However, the genetic architecture of these traits remains elusive due to the difficulty in identifying causal quantitative trait genes (QTGs) for common QTL with relatively small phenotypic effects. A traditional strategy based on techniques such as positional cloning does not always enable identification of a single candidate gene for a QTL of interest because it is difficult to narrow down a target genomic interval of the QTL to a very small interval harboring only one gene. A combination of gene expression analysis and statistical causal analysis can greatly reduce the number of candidate genes. This integrated approach provides causal evidence that one of the candidate genes is a putative QTG for the QTL. Using this approach, I have recently succeeded in identifying a single putative QTG for resistance to obesity in mice. Here, I outline the integration approach and discuss its usefulness using my studies as an example.

  14. DRAGO (KIAA0247), a new DNA damage-responsive, p53-inducible gene that cooperates with p53 as oncosuppressor. [Corrected].

    Science.gov (United States)

    Polato, Federica; Rusconi, Paolo; Zangrossi, Stefano; Morelli, Federica; Boeri, Mattia; Musi, Alberto; Marchini, Sergio; Castiglioni, Vittoria; Scanziani, Eugenio; Torri, Valter; Broggini, Massimo

    2014-04-01

    p53 influences genomic stability, apoptosis, autophagy, response to stress, and DNA damage. New p53-target genes could elucidate mechanisms through which p53 controls cell integrity and response to damage. DRAGO (drug-activated gene overexpressed, KIAA0247) was characterized by bioinformatics methods as well as by real-time polymerase chain reaction, chromatin immunoprecipitation and luciferase assays, time-lapse microscopy, and cell viability assays. Transgenic mice (94 p53(-/-) and 107 p53(+/-) mice on a C57BL/6J background) were used to assess DRAGO activity in vivo. Survival analyses were performed using Kaplan-Meier curves and the Mantel-Haenszel test. All statistical tests were two-sided. We identified DRAGO as a new p53-responsive gene induced upon treatment with DNA-damaging agents. DRAGO is highly conserved, and its ectopic overexpression resulted in growth suppression and cell death. DRAGO(-/-) mice are viable without macroscopic alterations. However, in p53(-/-) or p53(+/-) mice, the deletion of both DRAGO alleles statistically significantly accelerated tumor development and shortened lifespan compared with p53(-/-) or p53(+/-) mice bearing wild-type DRAGO alleles (p53(-/-), DRAGO(-/-) mice: hazard ratio [HR] = 3.25, 95% confidence interval [CI] = 1.7 to 6.1, P < .001; p53(+/-), DRAGO(-/-) mice: HR = 2.35, 95% CI = 1.3 to 4.0, P < .001; both groups compared with DRAGO(+/+) counterparts). DRAGO mRNA levels were statistically significantly reduced in advanced-stage, compared with early-stage, ovarian tumors, but no mutations were found in several human tumors. We show that DRAGO expression is regulated both at transcriptional-through p53 (and p73) and methylation-dependent control-and post-transcriptional levels by miRNAs. DRAGO represents a new p53-dependent gene highly regulated in human cells and whose expression cooperates with p53 in tumor suppressor functions.

  15. Yeast DNA-repair gene RAD14 encodes a zinc metalloprotein with affinity for ultraviolet-damaged DNA

    International Nuclear Information System (INIS)

    Guzder, S.N.; Sung, P.; Prakash, S.; Prakash, L.

    1993-01-01

    Xeroderma pigmentosum (XP) patients suffer from a high incidence of skin cancers due to a defect in excision repair of UV light-damaged DNA. Of the seven XP complementation groups, A--G, group A represents a severe and frequent form of the disease. The Saccharomyces cerevisiae RAD14 gene is a homolog of the XP-A correcting (XPAC) gene. Like XP-A cells, rad14-null mutants are defective in the incision step of excision repair of UV-damaged DNA. The authors have purified RAD14 protein to homogeneity from extract of a yeast strain genetically tailored to overexpress RAD14. As determined by atomic emission spectroscopy, RAD14 contains one zinc atom. They also show in vitro that RAD14 binds zinc but does not bind other divalent metal ions. In DNA mobility-shift assays, RAD14 binds specifically to UV-damaged DNA. Removal of cyclobutane pyrimidine dimers from damaged DNA by enzymatic photoreactivation has no effect on binding, strongly suggesting that RAD14 recognizes pyrimidine(6-4)pyrimidone photoproduct sites. These findings indicate that RAD14 functions in damage recognition during excision repair. 37 refs., 4 figs

  16. Inability to identify source of HIV precludes damage award.

    Science.gov (United States)

    1996-08-09

    The Florida Court of Appeals ruled that the spouse of a hemophiliac who contracted HIV from a tainted blood-clotting product cannot recover wrongful death damages because she could not identify a specific manufacturer. [Name removed] [name removed]'s widow sued four manufacturers of clotting concentrate, Armour Pharmaceutical Co., Alpha Therapeutic Corp., Cutter Laboratories, and Baxter Healthcare Corp. The court rejected the applicability of a market-share approach to liability in this case. The Court of Appeals explained that blood-clotting products do not share a uniform composition because the plasma is collected from different sites across the country.

  17. A whole-blood transcriptome meta-analysis identifies gene expression signatures of cigarette smoking

    NARCIS (Netherlands)

    Huan, T. (Tianxiao); R. Joehanes (Roby); C. Schurmann (Claudia); K. Schramm (Katharina); L.C. Pilling (Luke); M.J. Peters (Marjolein); R. Mägi (Reedik); D.L. Demeo (Dawn L.); G.T. O'Connor (George); L. Ferrucci (Luigi); A. Teumer (Alexander); G. Homuth (Georg); R. Biffar (Reiner); U. Völker (Uwe); C. Herder (Christian); M. Waldenberger (Melanie); A. Peters (Annette); S. Zeilinger (Sonja); A. Metspalu (Andres); A. Hofman (Albert); A.G. Uitterlinden (André); D.G. Hernandez (Dena); A. Singleton (Andrew); S. Bandinelli (Stefania); P.J. Munson (Peter); H. Lin (Honghuang); E.J. Benjamin (Emelia); T. Esko (Tõnu); H.J. Grabe (Hans Jörgen); H. Prokisch (Holger); J.B.J. van Meurs (Joyce); D. Melzer (David); D. Levy (Daniel)

    2016-01-01

    textabstractCigarette smoking is a leading modifiable cause of death worldwide. We hypothesized that cigarette smoking induces extensive transcriptomic changes that lead to target-organ damage and smoking-related diseases. We performed a metaanalysis of transcriptome-wide gene expression using whole

  18. Protein functional links in Trypanosoma brucei, identified by gene fusion analysis

    Directory of Open Access Journals (Sweden)

    Trimpalis Philip

    2011-07-01

    Full Text Available Abstract Background Domain or gene fusion analysis is a bioinformatics method for detecting gene fusions in one organism by comparing its genome to that of other organisms. The occurrence of gene fusions suggests that the two original genes that participated in the fusion are functionally linked, i.e. their gene products interact either as part of a multi-subunit protein complex, or in a metabolic pathway. Gene fusion analysis has been used to identify protein functional links in prokaryotes as well as in eukaryotic model organisms, such as yeast and Drosophila. Results In this study we have extended this approach to include a number of recently sequenced protists, four of which are pathogenic, to identify fusion linked proteins in Trypanosoma brucei, the causative agent of African sleeping sickness. We have also examined the evolution of the gene fusion events identified, to determine whether they can be attributed to fusion or fission, by looking at the conservation of the fused genes and of the individual component genes across the major eukaryotic and prokaryotic lineages. We find relatively limited occurrence of gene fusions/fissions within the protist lineages examined. Our results point to two trypanosome-specific gene fissions, which have recently been experimentally confirmed, one fusion involving proteins involved in the same metabolic pathway, as well as two novel putative functional links between fusion-linked protein pairs. Conclusions This is the first study of protein functional links in T. brucei identified by gene fusion analysis. We have used strict thresholds and only discuss results which are highly likely to be genuine and which either have already been or can be experimentally verified. We discuss the possible impact of the identification of these novel putative protein-protein interactions, to the development of new trypanosome therapeutic drugs.

  19. Preconditioning of skeletal muscle against contraction-induced damage: the role of adaptations to oxidants in mice.

    Science.gov (United States)

    McArdle, F; Spiers, S; Aldemir, H; Vasilaki, A; Beaver, A; Iwanejko, L; McArdle, A; Jackson, M J

    2004-11-15

    Adaptations of skeletal muscle following exercise are accompanied by changes in gene expression, which can result in protection against subsequent potentially damaging exercise. One cellular signal activating these adaptations may be an increased production of reactive oxygen and nitrogen species (ROS). The aim of this study was to examine the effect of a short period of non-damaging contractions on the subsequent susceptibility of muscle to contraction-induced damage and to examine the changes in gene expression that occur following the initial contraction protocol. Comparisons with changes in gene expression in cultured myotubes following treatment with a non-damaging concentration of hydrogen peroxide (H(2)O(2)) were used to identify redox-sensitive genes whose expression may be modified by the increased ROS production during contractions. Hindlimb muscles of mice were subjected to a preconditioning, non-damaging isometric contraction protocol in vivo. After 4 or 12 h, extensor digitorum longus (EDL) and soleus muscles were removed and subjected to a (normally) damaging contraction protocol in vitro. Muscles were also analysed for changes in gene expression induced by the preconditioning protocol using cDNA expression techniques. In a parallel study, C(2)C(12) myotubes were treated with a non-damaging concentration (100 microM) of H(2)O(2) and, at 4 and 12 h following treatment, myotubes were treated with a damaging concentration of H(2)O(2) (2 mM). Myotubes were analysed for changes in gene expression at 4 h following treatment with 100 microM H(2)O(2) alone. Data demonstrate that a prior period of non-damaging contractile activity resulted in significant protection of EDL and soleus muscles against a normally damaging contraction protocol 4 h later. This protection was associated with significant changes in gene expression. Prior treatment of myotubes with a non-damaging concentration of H(2)O(2) also resulted in significant protection against a damaging

  20. Cartilage-selective genes identified in genome-scale analysis of non-cartilage and cartilage gene expression

    Directory of Open Access Journals (Sweden)

    Cohn Zachary A

    2007-06-01

    Full Text Available Abstract Background Cartilage plays a fundamental role in the development of the human skeleton. Early in embryogenesis, mesenchymal cells condense and differentiate into chondrocytes to shape the early skeleton. Subsequently, the cartilage anlagen differentiate to form the growth plates, which are responsible for linear bone growth, and the articular chondrocytes, which facilitate joint function. However, despite the multiplicity of roles of cartilage during human fetal life, surprisingly little is known about its transcriptome. To address this, a whole genome microarray expression profile was generated using RNA isolated from 18–22 week human distal femur fetal cartilage and compared with a database of control normal human tissues aggregated at UCLA, termed Celsius. Results 161 cartilage-selective genes were identified, defined as genes significantly expressed in cartilage with low expression and little variation across a panel of 34 non-cartilage tissues. Among these 161 genes were cartilage-specific genes such as cartilage collagen genes and 25 genes which have been associated with skeletal phenotypes in humans and/or mice. Many of the other cartilage-selective genes do not have established roles in cartilage or are novel, unannotated genes. Quantitative RT-PCR confirmed the unique pattern of gene expression observed by microarray analysis. Conclusion Defining the gene expression pattern for cartilage has identified new genes that may contribute to human skeletogenesis as well as provided further candidate genes for skeletal dysplasias. The data suggest that fetal cartilage is a complex and transcriptionally active tissue and demonstrate that the set of genes selectively expressed in the tissue has been greatly underestimated.

  1. Nonlinear features identified by Volterra series for damage detection in a buckled beam

    Directory of Open Access Journals (Sweden)

    Shiki S. B.

    2014-01-01

    Full Text Available The present paper proposes a new index for damage detection based on nonlinear features extracted from prediction errors computed by multiple convolutions using the discrete-time Volterra series. A reference Volterra model is identified with data in the healthy condition and used for monitoring the system operating with linear or nonlinear behavior. When the system has some structural change, possibly associated with damage, the index metrics computed could give an alert to separate the linear and nonlinear contributions, besides provide a diagnostic about the structural state. To show the applicability of the method, an experimental test is performed using nonlinear vibration signals measured in a clamped buckled beam subject to different levels of force applied and with simulated damages through discontinuities inserted in the beam surface.

  2. Mathematical modelling of distribution of genes the damage of which leads to oncologic diseases in human population

    Directory of Open Access Journals (Sweden)

    М. А. Бондаренко

    2016-07-01

    Full Text Available Carcinogenesis is subject of the research. The research aims at creating the mathematical model of carcinogenesis allowing assessing the distribution in human population of the genes which when damaged lead to oncology diseases. The main task is to build a probability mathematical model describing the quasistationary equilibrium of two contrary processes, and namely: 1 the process of reduction in population of the number of the aforesaid genes due to their mutative damage; 2 increase in population of the number of these genes due to the fact that persons with a few genes of the kind in their genotype acquire oncological diseases with higher probability at early stages of their lives and do not manage to reproduce themselves before they die, and so the growth of the total population size is more due to the reproduction of individuals with a high number of the a-genes. Assessment of the distribution of these genes in the population was carried out by determining the probability that a randomly selected individual from the population has one of the possible values (according to the literature, from 0 to 8 of the aforementioned genes.

  3. Lead induces DNA damage and alteration of ALAD and antioxidant genes mRNA expression in construction site workers.

    Science.gov (United States)

    Akram, Zertashia; Riaz, Sadaf; Kayani, Mahmood Akhtar; Jahan, Sarwat; Ahmad, Malik Waqar; Ullah, Muhammad Abaid; Wazir, Hizbullah; Mahjabeen, Ishrat

    2018-01-16

    Oxidative stress and DNA damage are considered as possible mechanisms involved in lead toxicity. To test this hypothesis, DNA damage and expression variations of aminolevulinic acid dehydratase (ALAD), superoxide dismutase 2 (SOD2), and 8-oxoguanine DNA glycosylase 2a (OGG1-2a) genes was studied in a cohort of 100 exposed workers and 100 controls with comet assay and real-time polymerse chain reaction (PCR). Results indicated that increased number of comets was observed in exposed workers versus controls (p gene.

  4. Novel and ultra-rare damaging variants in neuropeptide signaling are associated with disordered eating behaviors.

    Directory of Open Access Journals (Sweden)

    Michael Lutter

    Full Text Available Eating disorders develop through a combination of genetic vulnerability and environmental stress, however the genetic basis of this risk is unknown.To understand the genetic basis of this risk, we performed whole exome sequencing on 93 unrelated individuals with eating disorders (38 restricted-eating and 55 binge-eating to identify novel damaging variants. Candidate genes with an excessive burden of predicted damaging variants were then prioritized based upon an unbiased, data-driven bioinformatic analysis. One top candidate pathway was empirically tested for therapeutic potential in a mouse model of binge-like eating.An excessive burden of novel damaging variants was identified in 186 genes in the restricted-eating group and 245 genes in the binge-eating group. This list is significantly enriched (OR = 4.6, p<0.0001 for genes involved in neuropeptide/neurotrophic pathways implicated in appetite regulation, including neurotensin-, glucagon-like peptide 1- and BDNF-signaling. Administration of the glucagon-like peptide 1 receptor agonist exendin-4 significantly reduced food intake in a mouse model of 'binge-like' eating.These findings implicate ultra-rare and novel damaging variants in neuropeptide/neurotropic factor signaling pathways in the development of eating disorder behaviors and identify glucagon-like peptide 1-receptor agonists as a potential treatment for binge eating.

  5. The phytochemical 3,3'-diindolylmethane decreases expression of AR-controlled DNA damage repair genes through repressive chromatin modifications and is associated with DNA damage in prostate cancer cells.

    Science.gov (United States)

    Palomera-Sanchez, Zoraya; Watson, Gregory W; Wong, Carmen P; Beaver, Laura M; Williams, David E; Dashwood, Roderick H; Ho, Emily

    2017-09-01

    Androgen receptor (AR) is a transcription factor involved in normal prostate physiology and prostate cancer (PCa) development. 3,3'-Diindolylmethane (DIM) is a promising phytochemical agent against PCa that affects AR activity and epigenetic regulators in PCa cells. However, whether DIM suppresses PCa via epigenetic regulation of AR target genes is unknown. We assessed epigenetic regulation of AR target genes in LNCaP PCa cells and showed that DIM treatment led to epigenetic suppression of AR target genes involved in DNA repair (PARP1, MRE11, DNA-PK). Decreased expression of these genes was accompanied by an increase in repressive chromatin marks, loss of AR occupancy and EZH2 recruitment to their regulatory regions. Decreased DNA repair gene expression was associated with an increase in DNA damage (γH2Ax) and up-regulation of genomic repeat elements LINE1 and α-satellite. Our results suggest that DIM suppresses AR-dependent gene transcription through epigenetic modulation, leading to DNA damage and genome instability in PCa cells. Published by Elsevier Inc.

  6. Gene Signature in Sessile Serrated Polyps Identifies Colon Cancer Subtype

    Science.gov (United States)

    Kanth, Priyanka; Bronner, Mary P.; Boucher, Kenneth M.; Burt, Randall W.; Neklason, Deborah W.; Hagedorn, Curt H.; Delker, Don A.

    2016-01-01

    Sessile serrated colon adenoma/polyps (SSA/Ps) are found during routine screening colonoscopy and may account for 20–30% of colon cancers. However, differentiating SSA/Ps from hyperplastic polyps (HP) with little risk of cancer is challenging and complementary molecular markers are needed. Additionally, the molecular mechanisms of colon cancer development from SSA/Ps are poorly understood. RNA sequencing was performed on 21 SSA/Ps, 10 HPs, 10 adenomas, 21 uninvolved colon and 20 control colon specimens. Differential expression and leave-one-out cross validation methods were used to define a unique gene signature of SSA/Ps. Our SSA/P gene signature was evaluated in colon cancer RNA-Seq data from The Cancer Genome Atlas (TCGA) to identify a subtype of colon cancers that may develop from SSA/Ps. A total of 1422 differentially expressed genes were found in SSA/Ps relative to controls. Serrated polyposis syndrome (n=12) and sporadic SSA/Ps (n=9) exhibited almost complete (96%) gene overlap. A 51-gene panel in SSA/P showed similar expression in a subset of TCGA colon cancers with high microsatellite instability (MSI-H). A smaller seven-gene panel showed high sensitivity and specificity in identifying BRAF mutant, CpG island methylator phenotype high (CIMP-H) and MLH1 silenced colon cancers. We describe a unique gene signature in SSA/Ps that identifies a subset of colon cancers likely to develop through the serrated pathway. These gene panels may be utilized for improved differentiation of SSA/Ps from HPs and provide insights into novel molecular pathways altered in colon cancer arising from the serrated pathway. PMID:27026680

  7. Genome-wide association study to identify candidate loci and genes for Mn toxicity tolerance in rice.

    Directory of Open Access Journals (Sweden)

    Asis Shrestha

    Full Text Available Manganese (Mn is an essential micro-nutrient for plants, but flooded rice fields can accumulate high levels of Mn2+ leading to Mn toxicity. Here, we present a genome-wide association study (GWAS to identify candidate loci conferring Mn toxicity tolerance in rice (Oryza sativa L.. A diversity panel of 288 genotypes was grown in hydroponic solutions in a greenhouse under optimal and toxic Mn concentrations. We applied a Mn toxicity treatment (5 ppm Mn2+, 3 weeks at twelve days after transplanting. Mn toxicity caused moderate damage in rice in terms of biomass loss and symptom formation despite extremely high shoot Mn concentrations ranging from 2.4 to 17.4 mg g-1. The tropical japonica subpopulation was more sensitive to Mn toxicity than other subpopulations. Leaf damage symptoms were significantly correlated with Mn uptake into shoots. Association mapping was conducted for seven traits using 416741 single nucleotide polymorphism (SNP markers using a mixed linear model, and detected six significant associations for the traits shoot manganese concentration and relative shoot length. Candidate regions contained genes coding for a heavy metal transporter, peroxidase precursor and Mn2+ ion binding proteins. The significant marker SNP-2.22465867 caused an amino acid change in a gene (LOC_Os02g37170 with unknown function. This study demonstrated significant natural variation in rice for Mn toxicity tolerance and the possibility of using GWAS to unravel genetic factors responsible for such complex traits.

  8. Rice Transcriptome Analysis to Identify Possible Herbicide Quinclorac Detoxification Genes

    Directory of Open Access Journals (Sweden)

    Wenying eXu

    2015-09-01

    Full Text Available Quinclorac is a highly selective auxin-type herbicide, and is widely used in the effective control of barnyard grass in paddy rice fields, improving the world’s rice yield. The herbicide mode of action of quinclorac has been proposed and hormone interactions affect quinclorac signaling. Because of widespread use, quinclorac may be transported outside rice fields with the drainage waters, leading to soil and water pollution and environmental health problems.In this study, we used 57K Affymetrix rice whole-genome array to identify quinclorac signaling response genes to study the molecular mechanisms of action and detoxification of quinclorac in rice plants. Overall, 637 probe sets were identified with differential expression levels under either 6 or 24 h of quinclorac treatment. Auxin-related genes such as GH3 and OsIAAs responded to quinclorac treatment. Gene Ontology analysis showed that genes of detoxification-related family genes were significantly enriched, including cytochrome P450, GST, UGT, and ABC and drug transporter genes. Moreover, real-time RT-PCR analysis showed that top candidate P450 families such as CYP81, CYP709C and CYP72A genes were universally induced by different herbicides. Some Arabidopsis genes for the same P450 family were up-regulated under quinclorac treatment.We conduct rice whole-genome GeneChip analysis and the first global identification of quinclorac response genes. This work may provide potential markers for detoxification of quinclorac and biomonitors of environmental chemical pollution.

  9. Protective effects of the exopolysaccharide Lasiodiplodan against DNA damage and inflammation induced by doxorubicin in rats: Cytogenetic and gene expression assays

    International Nuclear Information System (INIS)

    Mello, M.B.; Machado, C.S.; Ribeiro, D.L.; Aissa, A.F.; Burim, R.V.; Alves da Cunha, M.A.; Barcelos, G.R.M.

    2017-01-01

    The lasiodiplodan (LS) is a β-(1 → 6)-D-glucan produced by the fungus Lasiodiplodia theobromae and some of the biological activities of LS were reported as hypoglycemic, anticoagulant, anti-proliferative and anticancer action; however, its effects on DNA instability and modulation of gene expression are still unclear. Aims of study were investigate the genotoxic effects of lasiodiplodan, and its protective activity against DNA damage induced by doxorubicin (DXR) and its impact on the expression of genes associated with DNA damage and inflammatory response pathways. Therefore, Wistar rats were treated (15 days) orally with LS (5.0; 10 and 20 mg/kg bw) alone and in combination with DXR (15 mg/kg bw; administrated intraperitoneally on 14th day) as well as their respective controls: distilled water and DXR. Monitoring of DNA damage was assessed by comet and micronucleus (MN) assays and gene expression was evaluated by PCR-Arrays. Treatments with LS alone did not induce disturbances on DNA; when LS was given in combination with DXR, comet and MN formations were reduced to those found in the respective controls. Moreover, LS was able to reduce the disturbances on gene expressions induced by DXR treatment, since the animals that receive LS associated with DXR showed no alteration in the expression of genes related to DNA damage response. Also, DXR induced several up- and down-regulation of several genes associated to inflammatory process, while the animals that received LS + DXR had their gene expression patterns similar to those found in the control group. In conclusion, our results showed that LS did not induce disturbances on DNA stability and significantly reduce the DNA damage and inflammation caused by DXR exposure. In addition, we give further information concerning the molecular mechanisms associated to LS protective effects which seems to be a promising nutraceutical with chemopreventive potential.

  10. Rare mutations and potentially damaging missense variants in genes encoding fibrillar collagens and proteins involved in their production are candidates for risk for preterm premature rupture of membranes.

    Science.gov (United States)

    Modi, Bhavi P; Teves, Maria E; Pearson, Laurel N; Parikh, Hardik I; Chaemsaithong, Piya; Sheth, Nihar U; York, Timothy P; Romero, Roberto; Strauss, Jerome F

    2017-01-01

    Preterm premature rupture of membranes (PPROM) is the leading identifiable cause of preterm birth with ~ 40% of preterm births being associated with PPROM and occurs in 1% - 2% of all pregnancies. We hypothesized that multiple rare variants in fetal genes involved in extracellular matrix synthesis would associate with PPROM, based on the assumption that impaired elaboration of matrix proteins would reduce fetal membrane tensile strength, predisposing to unscheduled rupture. We performed whole exome sequencing (WES) on neonatal DNA derived from pregnancies complicated by PPROM (49 cases) and healthy term deliveries (20 controls) to identify candidate mutations/variants. Genotyping for selected variants from the WES study was carried out on an additional 188 PPROM cases and 175 controls. All mothers were self-reported African Americans, and a panel of ancestry informative markers was used to control for genetic ancestry in all genetic association tests. In support of the primary hypothesis, a statistically significant genetic burden (all samples combined, SKAT-O p-value = 0.0225) of damaging/potentially damaging rare variants was identified in the genes of interest-fibrillar collagen genes, which contribute to fetal membrane strength and integrity. These findings suggest that the fetal contribution to PPROM is polygenic, and driven by an increased burden of rare variants that may also contribute to the disparities in rates of preterm birth among African Americans.

  11. Frequency of polymorphism -262 c/t in catalase gene and oxidative damage in Slovak children with bronchial asthma.

    Science.gov (United States)

    Babusikova, Eva; Jesenak, Milos; Evinova, Andrea; Banovcin, Peter; Dobrota, Dusan

    2013-12-01

    Bronchial asthma is a complex disease in which genetic factors, environmental factors and oxidative damage are responsible for the initiation and modulation of disease progression. If antioxidant mechanisms fail, reactive oxygen species damage the biomolecules followed by progression of the disease. Catalase is one of the most important endogenous enzymatic antioxidants. In the present study, we examined the hypothesis that increased oxidative damage and polymorphism in the CAT gene (-262 promoter region, C/T) are associated with childhood bronchial asthma. Genotyping of the polymorphisms in the CAT gene in healthy (249) and asthmatic children (248) was performed using polymerase chain reaction-restriction fragment length polymorphism. Markers of oxidative damage: content of sulfhydryl groups and thiobarbituric acid-reactive substances were determined by spectrophotometry in children. The TT genotype of catalase was more frequent among the asthmatic patients (22.6%) than in healthy children (4.8%) (odds ratio=5.63; 95% confidence interval=2.93-10.81, P<.001). The amount of sulfhydryl groups decreased significantly and conversely, the content of thiobarbituric acid-reactive substances increased significantly in bronchial asthma and in catalase TT genotype compared to other catalase genotypes of this gene. These results suggest that catalase polymorphism might participate in development of bronchial asthma and in enhanced oxidative damage in asthmatic children. Genetic variation of enzymatic antioxidants may modulate disease risk. Copyright © 2013 SEPAR. Published by Elsevier Espana. All rights reserved.

  12. The Integrative Method Based on the Module-Network for Identifying Driver Genes in Cancer Subtypes

    Directory of Open Access Journals (Sweden)

    Xinguo Lu

    2018-01-01

    Full Text Available With advances in next-generation sequencing(NGS technologies, a large number of multiple types of high-throughput genomics data are available. A great challenge in exploring cancer progression is to identify the driver genes from the variant genes by analyzing and integrating multi-types genomics data. Breast cancer is known as a heterogeneous disease. The identification of subtype-specific driver genes is critical to guide the diagnosis, assessment of prognosis and treatment of breast cancer. We developed an integrated frame based on gene expression profiles and copy number variation (CNV data to identify breast cancer subtype-specific driver genes. In this frame, we employed statistical machine-learning method to select gene subsets and utilized an module-network analysis method to identify potential candidate driver genes. The final subtype-specific driver genes were acquired by paired-wise comparison in subtypes. To validate specificity of the driver genes, the gene expression data of these genes were applied to classify the patient samples with 10-fold cross validation and the enrichment analysis were also conducted on the identified driver genes. The experimental results show that the proposed integrative method can identify the potential driver genes and the classifier with these genes acquired better performance than with genes identified by other methods.

  13. Gene expression patterns combined with network analysis identify hub genes associated with bladder cancer.

    Science.gov (United States)

    Bi, Dongbin; Ning, Hao; Liu, Shuai; Que, Xinxiang; Ding, Kejia

    2015-06-01

    To explore molecular mechanisms of bladder cancer (BC), network strategy was used to find biomarkers for early detection and diagnosis. The differentially expressed genes (DEGs) between bladder carcinoma patients and normal subjects were screened using empirical Bayes method of the linear models for microarray data package. Co-expression networks were constructed by differentially co-expressed genes and links. Regulatory impact factors (RIF) metric was used to identify critical transcription factors (TFs). The protein-protein interaction (PPI) networks were constructed by the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and clusters were obtained through molecular complex detection (MCODE) algorithm. Centralities analyses for complex networks were performed based on degree, stress and betweenness. Enrichment analyses were performed based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Co-expression networks and TFs (based on expression data of global DEGs and DEGs in different stages and grades) were identified. Hub genes of complex networks, such as UBE2C, ACTA2, FABP4, CKS2, FN1 and TOP2A, were also obtained according to analysis of degree. In gene enrichment analyses of global DEGs, cell adhesion, proteinaceous extracellular matrix and extracellular matrix structural constituent were top three GO terms. ECM-receptor interaction, focal adhesion, and cell cycle were significant pathways. Our results provide some potential underlying biomarkers of BC. However, further validation is required and deep studies are needed to elucidate the pathogenesis of BC. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. A search engine to identify pathway genes from expression data on multiple organisms

    Directory of Open Access Journals (Sweden)

    Zambon Alexander C

    2007-05-01

    Full Text Available Abstract Background The completion of several genome projects showed that most genes have not yet been characterized, especially in multicellular organisms. Although most genes have unknown functions, a large collection of data is available describing their transcriptional activities under many different experimental conditions. In many cases, the coregulatation of a set of genes across a set of conditions can be used to infer roles for genes of unknown function. Results We developed a search engine, the Multiple-Species Gene Recommender (MSGR, which scans gene expression datasets from multiple organisms to identify genes that participate in a genetic pathway. The MSGR takes a query consisting of a list of genes that function together in a genetic pathway from one of six organisms: Homo sapiens, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces cerevisiae, Arabidopsis thaliana, and Helicobacter pylori. Using a probabilistic method to merge searches, the MSGR identifies genes that are significantly coregulated with the query genes in one or more of those organisms. The MSGR achieves its highest accuracy for many human pathways when searches are combined across species. We describe specific examples in which new genes were identified to be involved in a neuromuscular signaling pathway and a cell-adhesion pathway. Conclusion The search engine can scan large collections of gene expression data for new genes that are significantly coregulated with a pathway of interest. By integrating searches across organisms, the MSGR can identify pathway members whose coregulation is either ancient or newly evolved.

  15. Transcriptional Upregulation of DNA Damage Response Genes in Bank Voles (Myodes glareolus Inhabiting the Chernobyl Exclusion Zone

    Directory of Open Access Journals (Sweden)

    Toni Jernfors

    2018-01-01

    Full Text Available Exposure to ionizing radiation (IR from radionuclides released into the environment can damage DNA. An expected response to exposure to environmental radionuclides, therefore, is initiation of DNA damage response (DDR pathways. Increased DNA damage is a characteristic of many organisms exposed to radionuclides but expression of DDR genes of wildlife inhabiting an area contaminated by radionuclides is poorly understood. We quantified expression of five central DDR genes Atm, Mre11, p53, Brca1, and p21 in the livers of the bank vole Myodes glareolus that inhabited areas within the Chernobyl Exclusion Zone (CEZ that differed in levels of ambient radioactivity, and also from control areas outside the CEZ (i.e., sites with no detectable environmental radionuclides in Ukraine. Expression of these DDR genes did not significantly differ between male and female bank voles, nor among sites within the CEZ. We found a near two-fold upregulation in the DDR initiators Mre11 and Atm in animals collected from the CEZ compared with samples from control sites. As Atm is an important regulator of oxidative stress, our data suggest that antioxidant activity may be a key component of the defense against exposure to environmental radioactivity.

  16. Gene expression profile identifies potential biomarkers for human intervertebral disc degeneration.

    Science.gov (United States)

    Guo, Wei; Zhang, Bin; Li, Yan; Duan, Hui-Quan; Sun, Chao; Xu, Yun-Qiang; Feng, Shi-Qing

    2017-12-01

    The present study aimed to reveal the potential genes associated with the pathogenesis of intervertebral disc degeneration (IDD) by analyzing microarray data using bioinformatics. Gene expression profiles of two regions of the intervertebral disc were compared between patients with IDD and controls. GSE70362 containing two groups of gene expression profiles, 16 nucleus pulposus (NP) samples from patients with IDD and 8 from controls, and 16 annulus fibrosus (AF) samples from patients with IDD and 8 from controls, was downloaded from the Gene Expression Omnibus database. A total of 93 and 114 differentially expressed genes (DEGs) were identified in NP and AF samples, respectively, using a limma software package for the R programming environment. Gene Ontology (GO) function enrichment analysis was performed to identify the associated biological functions of DEGs in IDD, which indicated that the DEGs may be involved in various processes, including cell adhesion, biological adhesion and extracellular matrix organization. Pathway enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) demonstrated that the identified DEGs were potentially involved in focal adhesion and the p53 signaling pathway. Further analysis revealed that there were 35 common DEGs observed between the two regions (NP and AF), which may be further regulated by 6 clusters of microRNAs (miRNAs) retrieved with WebGestalt. The genes in the DEG‑miRNA regulatory network were annotated using GO function and KEGG pathway enrichment analysis, among which extracellular matrix organization was the most significant disrupted biological process and focal adhesion was the most significant dysregulated pathway. In addition, the result of protein‑protein interaction network modules demonstrated the involvement of inflammatory cytokine interferon signaling in IDD. These findings may not only advance the understanding of the pathogenesis of IDD, but also identify novel potential

  17. Link-based quantitative methods to identify differentially coexpressed genes and gene Pairs

    Directory of Open Access Journals (Sweden)

    Ye Zhi-Qiang

    2011-08-01

    Full Text Available Abstract Background Differential coexpression analysis (DCEA is increasingly used for investigating the global transcriptional mechanisms underlying phenotypic changes. Current DCEA methods mostly adopt a gene connectivity-based strategy to estimate differential coexpression, which is characterized by comparing the numbers of gene neighbors in different coexpression networks. Although it simplifies the calculation, this strategy mixes up the identities of different coexpression neighbors of a gene, and fails to differentiate significant differential coexpression changes from those trivial ones. Especially, the correlation-reversal is easily missed although it probably indicates remarkable biological significance. Results We developed two link-based quantitative methods, DCp and DCe, to identify differentially coexpressed genes and gene pairs (links. Bearing the uniqueness of exploiting the quantitative coexpression change of each gene pair in the coexpression networks, both methods proved to be superior to currently popular methods in simulation studies. Re-mining of a publicly available type 2 diabetes (T2D expression dataset from the perspective of differential coexpression analysis led to additional discoveries than those from differential expression analysis. Conclusions This work pointed out the critical weakness of current popular DCEA methods, and proposed two link-based DCEA algorithms that will make contribution to the development of DCEA and help extend it to a broader spectrum.

  18. 'Cancer genes and their expression; blueprint to future improvements in radiation protection?'

    International Nuclear Information System (INIS)

    Paterson, M.C.

    1996-01-01

    The field of molecular oncology is reviewed, with some reference to the effects of ionizing radiation. There are three classes of cancer genes: oncogenes, tumor suppressor genes, and modulator genes. Proto-oncogenes control the synthesis of proteins which regulate cell division; these proto-oncogenes, of which about 100 have been identified, become oncogenes when damaged. Oncogenes are dominant. Only about a dozen tumor-suppressor genes have been identified; they are recessive. One example of a tumor suppressor gene is that producing p53 protein, which shuts down DNA replication temporarily to allow time for enzymatic repair of damage resulting from radiation or other damaging agents. Modulator genes are a heterogeneous class, including those genes that facilitate the destruction of pre-malignant cells by immune surveillance. Modulator genes also include those responsible for DNA repair. The study of DNA repair and its defects has made recent strides, and 12 participating enzymes have now been identified. It may soon be possible to monitor low-level radiation effects in individuals at the molecular level. Perhaps individuals will be monitored for their 'carcinogen exposure response' index, giving them the opportunity to adjust their lifestyles and occupations accordingly. 20 refs

  19. The Toll-like receptor gene family is integrated into human DNA damage and p53 networks.

    Directory of Open Access Journals (Sweden)

    Daniel Menendez

    2011-03-01

    Full Text Available In recent years the functions that the p53 tumor suppressor plays in human biology have been greatly extended beyond "guardian of the genome." Our studies of promoter response element sequences targeted by the p53 master regulatory transcription factor suggest a general role for this DNA damage and stress-responsive regulator in the control of human Toll-like receptor (TLR gene expression. The TLR gene family mediates innate immunity to a wide variety of pathogenic threats through recognition of conserved pathogen-associated molecular motifs. Using primary human immune cells, we have examined expression of the entire TLR gene family following exposure to anti-cancer agents that induce the p53 network. Expression of all TLR genes, TLR1 to TLR10, in blood lymphocytes and alveolar macrophages from healthy volunteers can be induced by DNA metabolic stressors. However, there is considerable inter-individual variability. Most of the TLR genes respond to p53 via canonical as well as noncanonical promoter binding sites. Importantly, the integration of the TLR gene family into the p53 network is unique to primates, a recurrent theme raised for other gene families in our previous studies. Furthermore, a polymorphism in a TLR8 response element provides the first human example of a p53 target sequence specifically responsible for endogenous gene induction. These findings-demonstrating that the human innate immune system, including downstream induction of cytokines, can be modulated by DNA metabolic stress-have many implications for health and disease, as well as for understanding the evolution of damage and p53 responsive networks.

  20. ICan: an integrated co-alteration network to identify ovarian cancer-related genes.

    Science.gov (United States)

    Zhou, Yuanshuai; Liu, Yongjing; Li, Kening; Zhang, Rui; Qiu, Fujun; Zhao, Ning; Xu, Yan

    2015-01-01

    Over the last decade, an increasing number of integrative studies on cancer-related genes have been published. Integrative analyses aim to overcome the limitation of a single data type, and provide a more complete view of carcinogenesis. The vast majority of these studies used sample-matched data of gene expression and copy number to investigate the impact of copy number alteration on gene expression, and to predict and prioritize candidate oncogenes and tumor suppressor genes. However, correlations between genes were neglected in these studies. Our work aimed to evaluate the co-alteration of copy number, methylation and expression, allowing us to identify cancer-related genes and essential functional modules in cancer. We built the Integrated Co-alteration network (ICan) based on multi-omics data, and analyzed the network to uncover cancer-related genes. After comparison with random networks, we identified 155 ovarian cancer-related genes, including well-known (TP53, BRCA1, RB1 and PTEN) and also novel cancer-related genes, such as PDPN and EphA2. We compared the results with a conventional method: CNAmet, and obtained a significantly better area under the curve value (ICan: 0.8179, CNAmet: 0.5183). In this paper, we describe a framework to find cancer-related genes based on an Integrated Co-alteration network. Our results proved that ICan could precisely identify candidate cancer genes and provide increased mechanistic understanding of carcinogenesis. This work suggested a new research direction for biological network analyses involving multi-omics data.

  1. A graph-search framework for associating gene identifiers with documents

    Directory of Open Access Journals (Sweden)

    Cohen William W

    2006-10-01

    Full Text Available Abstract Background One step in the model organism database curation process is to find, for each article, the identifier of every gene discussed in the article. We consider a relaxation of this problem suitable for semi-automated systems, in which each article is associated with a ranked list of possible gene identifiers, and experimentally compare methods for solving this geneId ranking problem. In addition to baseline approaches based on combining named entity recognition (NER systems with a "soft dictionary" of gene synonyms, we evaluate a graph-based method which combines the outputs of multiple NER systems, as well as other sources of information, and a learning method for reranking the output of the graph-based method. Results We show that named entity recognition (NER systems with similar F-measure performance can have significantly different performance when used with a soft dictionary for geneId-ranking. The graph-based approach can outperform any of its component NER systems, even without learning, and learning can further improve the performance of the graph-based ranking approach. Conclusion The utility of a named entity recognition (NER system for geneId-finding may not be accurately predicted by its entity-level F1 performance, the most common performance measure. GeneId-ranking systems are best implemented by combining several NER systems. With appropriate combination methods, usefully accurate geneId-ranking systems can be constructed based on easily-available resources, without resorting to problem-specific, engineered components.

  2. Identifying essential genes in bacterial metabolic networks with machine learning methods

    Science.gov (United States)

    2010-01-01

    Background Identifying essential genes in bacteria supports to identify potential drug targets and an understanding of minimal requirements for a synthetic cell. However, experimentally assaying the essentiality of their coding genes is resource intensive and not feasible for all bacterial organisms, in particular if they are infective. Results We developed a machine learning technique to identify essential genes using the experimental data of genome-wide knock-out screens from one bacterial organism to infer essential genes of another related bacterial organism. We used a broad variety of topological features, sequence characteristics and co-expression properties potentially associated with essentiality, such as flux deviations, centrality, codon frequencies of the sequences, co-regulation and phyletic retention. An organism-wise cross-validation on bacterial species yielded reliable results with good accuracies (area under the receiver-operator-curve of 75% - 81%). Finally, it was applied to drug target predictions for Salmonella typhimurium. We compared our predictions to the viability of experimental knock-outs of S. typhimurium and identified 35 enzymes, which are highly relevant to be considered as potential drug targets. Specifically, we detected promising drug targets in the non-mevalonate pathway. Conclusions Using elaborated features characterizing network topology, sequence information and microarray data enables to predict essential genes from a bacterial reference organism to a related query organism without any knowledge about the essentiality of genes of the query organism. In general, such a method is beneficial for inferring drug targets when experimental data about genome-wide knockout screens is not available for the investigated organism. PMID:20438628

  3. Gene polymorphisms and increased DNA damage in morbidly obese women.

    Science.gov (United States)

    Luperini, B C O; Almeida, D C; Porto, M P; Marcondes, J P C; Prado, R P; Rasera, I; Oliveira, M R M; Salvadori, D M F

    2015-06-01

    Obesity is characterized by increased adipose tissue mass resulting from a chronic imbalance between energy intake and expenditure. Furthermore, there is a clearly defined relationship among fat mass expansion, chronic low-grade systemic inflammation and reactive oxygen species (ROS) generation; leading to ROS-related pathological events. In the past years, genome-wide association studies have generated convincing evidence associating genetic variation at multiple regions of the genome with traits that reflect obesity. Therefore, the present study aimed to evaluate the relationships among the gene polymorphisms ghrelin (GHRL-rs26802), ghrelin receptor (GHSR-rs572169), leptin (LEP-rs7799039), leptin receptor (LEPR-rs1137101) and fat mass and obesity-associated (FTO-rs9939609) and obesity. The relationships among these gene variants and the amount of DNA damage were also investigated. Three hundred Caucasian morbidly obese and 300 eutrophic (controls) women were recruited. In summary, the results demonstrated that the frequencies of the GHRL, GHSR, LEP and LEPR polymorphisms were not different between Brazilian white morbidly obese and eutrophic women. Exceptions were the AA-FTO genotype and allele A, which were significantly more frequent in obese women than in the controls (0.23% vs. 0.10%; 0.46 vs. 0.36, respectively), and the TT-FTO genotype and the T allele, which were less frequent in morbidly obese women (p<0.01). Furthermore, significant differences in the amount of genetic lesions associated with FTO variants were observed only in obese women. In conclusion, this study demonstrated that the analyzed SNPs were not closely associated with morbid obesity, suggesting they are not the major contributors to obesity. Therefore, our data indicated that these gene variants are not good biomarkers for predicting risk susceptibility for obesity, whereas ROS generated by the inflammatory status might be one of the causes of DNA damage in obese women, favoring

  4. Vitamin D3 deficiency increases DNA damage and modify the expression of genes associated with hypertension in normotensive and hypertensive rats

    Directory of Open Access Journals (Sweden)

    Carla Silva Machado

    2015-05-01

    Full Text Available Vitamin D3 is a lipophilic micronutrient obtained from the diet (salmon, sardines, mackerel and cod liver oil or by the conversion of 7-dehydrocholesterol on skin after exposure to UVB radiation. This vitamin participates in several cellular processes, contributes to the maintenance of calcium concentrations, acts on phosphorus absorption, and is also related to the development and progression of chronic diseases. In hypertension, it is known that vitamin D3 act on renin-angiotensin-aldosterone system, regulates the gene expression and can induce or attenuate oxidative DNA damage. Vitamin D3 deficiency is present in 30-50% of human population (Pilz et al., 2009, and has been associated with increase of chromosomal instability and DNA damage (Nair-Shalliker; Armstrong; Fenech, 2012. Since experimental and clinical studies have suggested a relationship between vitamin D3 and blood pressure, the aim of this study was to evaluate whether vitamin D3 deficiency or supplementation lead to an increase or decrease in DNA damage, regulates the expression of genes associated with hypertension and changes the systolic blood pressure. Spontaneously hypertensive rats (SHR, used as a model of human essential hypertension, and their normotensive controls (Wistar Kyoto – WKY were fed a control diet (vitamin D3 at 1.000 UI/kg, a deficient diet (vitamin D3 at 0 UI/kg or a supplemented diet (vitamin D3 at 10.000 UI/kg for 12 weeks. DNA damage was assessed by comet assay in cardiac muscle tissue and blood tissue, following the methodology proposed by Singh et al. (1988 and Tice et al. (2000; gene expression of 84 genes was assessed by RT2ProfilerTM PCR Array in cardiac muscle tissue; and systolic blood pressure was measured weekly by a noninvasive method using tail plethysmography. In SHR and WKY rats, vitamin D3 deficiency increased DNA damage in the blood tissue and did not change the DNA damage in cardiac muscle tissue; vitamin D3 supplementation maintained the

  5. Cloning and characterisation of the sagA gene of Aspergillus nidulans: a gene which affects sensitivity to DNA-damaging agents.

    Science.gov (United States)

    Jones, G W; Hooley, P; Farrington, S M; Shawcross, S G; Iwanejko, L A; Strike, P

    1999-03-01

    Mutations within the sagA gene of Aspergillus nidulans cause sensitisation to DNA-damaging chemicals but have no effect upon spontaneous or damage-induced mutation frequency. The sagA gene was cloned on a 19-kb cosmid-derived fragment by functional complementation of a sagA1 sagC3 double mutant; subsequently, a fragment of the gene was also isolated on a 3.9-kb genomic subclone. Initial sequencing of a small section of the 19-kb fragment allowed the design of primers that were subsequently used in RTPCR experiments to show that this DNA is transcribed. A 277-bp fragment derived from the transcribed region was used to screen an A. nidulans cDNA library, resulting in the isolation of a 1.4-kb partial cDNA clone which had sequence overlap with the genomic sagA fragment. This partial cDNA was incomplete but appeared to contain the whole coding region of sagA. The sagA1 mutant was shown to possess two mutations; a G-T transversion and a+ 1 frameshift due to insertion of a T. causing disruption to the C-terminal region of the SagA protein. Translation of the sagA cDNA predicts a protein of 378 amino acids, which has homology to the Saccharomyces cerevisiae End3 protein and also to certain mammalian proteins capable of causing cell transformation.

  6. Gene-Based Genome-Wide Association Analysis in European and Asian Populations Identified Novel Genes for Rheumatoid Arthritis.

    Directory of Open Access Journals (Sweden)

    Hong Zhu

    Full Text Available Rheumatoid arthritis (RA is a complex autoimmune disease. Using a gene-based association research strategy, the present study aims to detect unknown susceptibility to RA and to address the ethnic differences in genetic susceptibility to RA between European and Asian populations.Gene-based association analyses were performed with KGG 2.5 by using publicly available large RA datasets (14,361 RA cases and 43,923 controls of European subjects, 4,873 RA cases and 17,642 controls of Asian Subjects. For the newly identified RA-associated genes, gene set enrichment analyses and protein-protein interactions analyses were carried out with DAVID and STRING version 10.0, respectively. Differential expression verification was conducted using 4 GEO datasets. The expression levels of three selected 'highly verified' genes were measured by ELISA among our in-house RA cases and controls.A total of 221 RA-associated genes were newly identified by gene-based association study, including 71'overlapped', 76 'European-specific' and 74 'Asian-specific' genes. Among them, 105 genes had significant differential expressions between RA patients and health controls at least in one dataset, especially for 20 genes including 11 'overlapped' (ABCF1, FLOT1, HLA-F, IER3, TUBB, ZKSCAN4, BTN3A3, HSP90AB1, CUTA, BRD2, HLA-DMA, 5 'European-specific' (PHTF1, RPS18, BAK1, TNFRSF14, SUOX and 4 'Asian-specific' (RNASET2, HFE, BTN2A2, MAPK13 genes whose differential expressions were significant at least in three datasets. The protein expressions of two selected genes FLOT1 (P value = 1.70E-02 and HLA-DMA (P value = 4.70E-02 in plasma were significantly different in our in-house samples.Our study identified 221 novel RA-associated genes and especially highlighted the importance of 20 candidate genes on RA. The results addressed ethnic genetic background differences for RA susceptibility between European and Asian populations and detected a long list of overlapped or ethnic specific RA

  7. Identifying Candidate Reprogramming Genes in Mouse Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Gao, Fang; Li, Jingyu; Zhang, Heng; Yang, Xu; An, Tiezhu

    2017-08-01

    Factor-based induced reprogramming approaches have tremendous potential for human regenerative medicine, but the efficiencies of these approaches are still low. In this study, we analyzed the global transcriptional profiles of mouse induced pluripotent stem cells (miPSCs) and mouse embryonic stem cells (mESCs) from seven different labs and present here the first successful clustering according to cell type, not by lab of origin. We identified 2131 different expression genes (DEs) as candidate pluripotency-associated genes by comparing mESCs/miPSCs with somatic cells and 720 DEs between miPSCs and mESCs. Interestingly, there was a significant overlap between the two DE sets. Therefore, we defined the overlap DEs as "consensus DEs" including 313 miPSC-specific genes expressed at a higher level in miPSCs versus mESCs and 184 mESC-specific genes in total and reasoned that these may contribute to the differences in pluripotency between mESCs and miPSCs. A classification of "consensus DEs" according to their different expression levels between somatic cells and mESCs/miPSCs shows that 86% of the miPSC-specific genes are more highly expressed in somatic cells, while 73% of mESC-specific genes are highly expressed in mESCs/miPSCs, indicating that the miPSCs have not efficiently silenced the expression pattern of the somatic cells from which they are derived and failed to completely induce the genes with high expression levels in mESCs. We further revealed a strong correlation between oocyte-enriched factors and insufficiently induced mESC-specific genes and identified 11 hub genes via network analysis. In light of these findings, we postulated that these key hub genes might not only drive somatic cell nuclear transfer (SCNT) reprogramming but also augment the efficiency and quality of miPSC reprogramming.

  8. Exome sequencing identifies three novel candidate genes implicated in intellectual disability.

    Directory of Open Access Journals (Sweden)

    Zehra Agha

    Full Text Available Intellectual disability (ID is a major health problem mostly with an unknown etiology. Recently exome sequencing of individuals with ID identified novel genes implicated in the disease. Therefore the purpose of the present study was to identify the genetic cause of ID in one syndromic and two non-syndromic Pakistani families. Whole exome of three ID probands was sequenced. Missense variations in two plausible novel genes implicated in autosomal recessive ID were identified: lysine (K-specific methyltransferase 2B (KMT2B, zinc finger protein 589 (ZNF589, as well as hedgehog acyltransferase (HHAT with a de novo mutation with autosomal dominant mode of inheritance. The KMT2B recessive variant is the first report of recessive Kleefstra syndrome-like phenotype. Identification of plausible causative mutations for two recessive and a dominant type of ID, in genes not previously implicated in disease, underscores the large genetic heterogeneity of ID. These results also support the viewpoint that large number of ID genes converge on limited number of common networks i.e. ZNF589 belongs to KRAB-domain zinc-finger proteins previously implicated in ID, HHAT is predicted to affect sonic hedgehog, which is involved in several disorders with ID, KMT2B associated with syndromic ID fits the epigenetic module underlying the Kleefstra syndromic spectrum. The association of these novel genes in three different Pakistani ID families highlights the importance of screening these genes in more families with similar phenotypes from different populations to confirm the involvement of these genes in pathogenesis of ID.

  9. Integration of multiple networks and pathways identifies cancer driver genes in pan-cancer analysis.

    Science.gov (United States)

    Cava, Claudia; Bertoli, Gloria; Colaprico, Antonio; Olsen, Catharina; Bontempi, Gianluca; Castiglioni, Isabella

    2018-01-06

    Modern high-throughput genomic technologies represent a comprehensive hallmark of molecular changes in pan-cancer studies. Although different cancer gene signatures have been revealed, the mechanism of tumourigenesis has yet to be completely understood. Pathways and networks are important tools to explain the role of genes in functional genomic studies. However, few methods consider the functional non-equal roles of genes in pathways and the complex gene-gene interactions in a network. We present a novel method in pan-cancer analysis that identifies de-regulated genes with a functional role by integrating pathway and network data. A pan-cancer analysis of 7158 tumour/normal samples from 16 cancer types identified 895 genes with a central role in pathways and de-regulated in cancer. Comparing our approach with 15 current tools that identify cancer driver genes, we found that 35.6% of the 895 genes identified by our method have been found as cancer driver genes with at least 2/15 tools. Finally, we applied a machine learning algorithm on 16 independent GEO cancer datasets to validate the diagnostic role of cancer driver genes for each cancer. We obtained a list of the top-ten cancer driver genes for each cancer considered in this study. Our analysis 1) confirmed that there are several known cancer driver genes in common among different types of cancer, 2) highlighted that cancer driver genes are able to regulate crucial pathways.

  10. Gonadotropin-releasing hormone regulates expression of the DNA damage repair gene, Fanconi anemia A, in pituitary gonadotroph cells.

    Science.gov (United States)

    Larder, Rachel; Chang, Lynda; Clinton, Michael; Brown, Pamela

    2004-09-01

    Gonadal function is critically dependant on regulated secretion of the gonadotropin hormones from anterior pituitary gonadotroph cells. Gonadotropin biosynthesis and release is triggered by the binding of hypothalamic GnRH to GnRH receptor expressed on the gonadotroph cell surface. The repertoire of regulatory molecules involved in this process are still being defined. We used the mouse L beta T2 gonadotroph cell line, which expresses both gonadotropin hormones, as a model to investigate GnRH regulation of gene expression and differential display reverse transcription-polymerase chain reaction (RT-PCR) to identify and isolate hormonally induced changes. This approach identified Fanconi anemia a (Fanca), a gene implicated in DNA damage repair, as a differentially expressed transcript. Mutations in Fanca account for the majority of cases of Fanconi anemia (FA), a recessively inherited disease identified by congenital defects, bone marrow failure, infertility, and cancer susceptibility. We confirmed expression and hormonal regulation of Fanca mRNA by quantitative RT-PCR, which showed that GnRH induced a rapid, transient increase in Fanca mRNA. Fanca protein was also acutely upregulated after GnRH treatment of L beta T2 cells. In addition, Fanca gene expression was confined to mature pituitary gonadotrophs and adult mouse pituitary and was not expressed in the immature alpha T3-1 gonadotroph cell line. Thus, this study extends the expression profile of Fanca into a highly specialized endocrine cell and demonstrates hormonal regulation of expression of the Fanca locus. We suggest that this regulatory mechanism may have a crucial role in the GnRH-response mechanism of mature gonadotrophs and perhaps the etiology of FA.

  11. Genetic polymorphisms in homologous recombination repair genes in healthy Slovenian population and their influence on DNA damage

    International Nuclear Information System (INIS)

    Goricar, Katja; Erculj, Nina; Zadel, Maja; Dolzan, Vita

    2012-01-01

    Homologous recombination (HR) repair is an important mechanism involved in repairing double-strand breaks in DNA and for maintaining genomic stability. Polymorphisms in genes coding for enzymes involved in this pathway may influence the capacity for DNA repair. The aim of this study was to select tag single nucleotide polymorphisms (SNPs) in specific genes involved in HR repair, to determine their allele frequencies in a healthy Slovenian population and their influence on DNA damage detected with comet assay. In total 373 individuals were genotyped for nine tag SNPs in three genes: XRCC3 722C>T, XRCC3 -316A>G, RAD51 -98G>C, RAD51 -61G>T, RAD51 1522T>G, NBS1 553G>C, NBS1 1197A>G, NBS1 37117C>T and NBS1 3474A>C using competitive allele-specific amplification (KASPar assay). Comet assay was performed in a subgroup of 26 individuals to determine the influence of selected SNPs on DNA damage. We observed that age significantly affected genotype frequencies distribution of XRCC3 -316A>G (P = 0.039) in healthy male blood donors. XRCC3 722C>T (P = 0.005), RAD51 -61G>T (P = 0.023) and NBS1 553G>C (P = 0.008) had a statistically significant influence on DNA damage. XRCC3 722C>T, RAD51 -61G>T and NBS1 553G>C polymorphisms significantly affect the repair of damaged DNA and may be of clinical importance as they are common in Slovenian population

  12. Identifying and Analyzing Novel Epilepsy-Related Genes Using Random Walk with Restart Algorithm

    Directory of Open Access Journals (Sweden)

    Wei Guo

    2017-01-01

    Full Text Available As a pathological condition, epilepsy is caused by abnormal neuronal discharge in brain which will temporarily disrupt the cerebral functions. Epilepsy is a chronic disease which occurs in all ages and would seriously affect patients’ personal lives. Thus, it is highly required to develop effective medicines or instruments to treat the disease. Identifying epilepsy-related genes is essential in order to understand and treat the disease because the corresponding proteins encoded by the epilepsy-related genes are candidates of the potential drug targets. In this study, a pioneering computational workflow was proposed to predict novel epilepsy-related genes using the random walk with restart (RWR algorithm. As reported in the literature RWR algorithm often produces a number of false positive genes, and in this study a permutation test and functional association tests were implemented to filter the genes identified by RWR algorithm, which greatly reduce the number of suspected genes and result in only thirty-three novel epilepsy genes. Finally, these novel genes were analyzed based upon some recently published literatures. Our findings implicate that all novel genes were closely related to epilepsy. It is believed that the proposed workflow can also be applied to identify genes related to other diseases and deepen our understanding of the mechanisms of these diseases.

  13. A 6-gene signature identifies four molecular subgroups of neuroblastoma

    Science.gov (United States)

    2011-01-01

    Background There are currently three postulated genomic subtypes of the childhood tumour neuroblastoma (NB); Type 1, Type 2A, and Type 2B. The most aggressive forms of NB are characterized by amplification of the oncogene MYCN (MNA) and low expression of the favourable marker NTRK1. Recently, mutations or high expression of the familial predisposition gene Anaplastic Lymphoma Kinase (ALK) was associated to unfavourable biology of sporadic NB. Also, various other genes have been linked to NB pathogenesis. Results The present study explores subgroup discrimination by gene expression profiling using three published microarray studies on NB (47 samples). Four distinct clusters were identified by Principal Components Analysis (PCA) in two separate data sets, which could be verified by an unsupervised hierarchical clustering in a third independent data set (101 NB samples) using a set of 74 discriminative genes. The expression signature of six NB-associated genes ALK, BIRC5, CCND1, MYCN, NTRK1, and PHOX2B, significantly discriminated the four clusters (p INSS stage 4 and/or dead of disease, p < 0.05, Fisher's exact test). Conclusions Based on expression profiling we have identified four molecular subgroups of neuroblastoma, which can be distinguished by a 6-gene signature. The fourth subgroup has not been described elsewhere, and efforts are currently made to further investigate this group's specific characteristics. PMID:21492432

  14. [Key effect genes responding to nerve injury identified by gene ontology and computer pattern recognition].

    Science.gov (United States)

    Pan, Qian; Peng, Jin; Zhou, Xue; Yang, Hao; Zhang, Wei

    2012-07-01

    In order to screen out important genes from large gene data of gene microarray after nerve injury, we combine gene ontology (GO) method and computer pattern recognition technology to find key genes responding to nerve injury, and then verify one of these screened-out genes. Data mining and gene ontology analysis of gene chip data GSE26350 was carried out through MATLAB software. Cd44 was selected from screened-out key gene molecular spectrum by comparing genes' different GO terms and positions on score map of principal component. Function interferences were employed to influence the normal binding of Cd44 and one of its ligands, chondroitin sulfate C (CSC), to observe neurite extension. Gene ontology analysis showed that the first genes on score map (marked by red *) mainly distributed in molecular transducer activity, receptor activity, protein binding et al molecular function GO terms. Cd44 is one of six effector protein genes, and attracted us with its function diversity. After adding different reagents into the medium to interfere the normal binding of CSC and Cd44, varying-degree remissions of CSC's inhibition on neurite extension were observed. CSC can inhibit neurite extension through binding Cd44 on the neuron membrane. This verifies that important genes in given physiological processes can be identified by gene ontology analysis of gene chip data.

  15. A damage-responsive DNA binding protein regulates transcription of the yeast DNA repair gene PHR1

    International Nuclear Information System (INIS)

    Sebastian, J.; Sancar, G.B.

    1991-01-01

    The PHR1 gene of Saccharomyces cerevisiae encodes the DNA repair enzyme photolyase. Transcription of PHR1 increases in response to treatment of cells with 254-nm radiation and chemical agents that damage DNA. The authors here the identification of a damage-responsive DNA binding protein, termed photolyase regulatory protein (PRP), and its cognate binding site, termed the PHR1 transcription after DNA damage. PRP activity, monitored by electrophoretic-mobility-shift assay, was detected in cells during normal growth but disappeared within 30 min after irradiation. Copper-phenanthroline footprinting of PRP-DNA complexes revealed that PRP protects a 39-base-pair region of PHR1 5' flanking sequence beginning 40 base pairs upstream from the coding sequence. Thus these observations establish that PRP is a damage-responsive repressor of PHR1 transcription

  16. Sleeping Beauty transposon mutagenesis identifies genes that cooperate with mutant Smad4 in gastric cancer development.

    Science.gov (United States)

    Takeda, Haruna; Rust, Alistair G; Ward, Jerrold M; Yew, Christopher Chin Kuan; Jenkins, Nancy A; Copeland, Neal G

    2016-04-05

    Mutations in SMAD4 predispose to the development of gastrointestinal cancer, which is the third leading cause of cancer-related deaths. To identify genes driving gastric cancer (GC) development, we performed a Sleeping Beauty (SB) transposon mutagenesis screen in the stomach of Smad4(+/-) mutant mice. This screen identified 59 candidate GC trunk drivers and a much larger number of candidate GC progression genes. Strikingly, 22 SB-identified trunk drivers are known or candidate cancer genes, whereas four SB-identified trunk drivers, including PTEN, SMAD4, RNF43, and NF1, are known human GC trunk drivers. Similar to human GC, pathway analyses identified WNT, TGF-β, and PI3K-PTEN signaling, ubiquitin-mediated proteolysis, adherens junctions, and RNA degradation in addition to genes involved in chromatin modification and organization as highly deregulated pathways in GC. Comparative oncogenomic filtering of the complete list of SB-identified genes showed that they are highly enriched for genes mutated in human GC and identified many candidate human GC genes. Finally, by comparing our complete list of SB-identified genes against the list of mutated genes identified in five large-scale human GC sequencing studies, we identified LDL receptor-related protein 1B (LRP1B) as a previously unidentified human candidate GC tumor suppressor gene. In LRP1B, 129 mutations were found in 462 human GC samples sequenced, and LRP1B is one of the top 10 most deleted genes identified in a panel of 3,312 human cancers. SB mutagenesis has, thus, helped to catalog the cooperative molecular mechanisms driving SMAD4-induced GC growth and discover genes with potential clinical importance in human GC.

  17. Novel Myopia Genes and Pathways Identified From Syndromic Forms of Myopia

    Science.gov (United States)

    Loughman, James; Wildsoet, Christine F.; Williams, Cathy; Guggenheim, Jeremy A.

    2018-01-01

    Purpose To test the hypothesis that genes known to cause clinical syndromes featuring myopia also harbor polymorphisms contributing to nonsyndromic refractive errors. Methods Clinical phenotypes and syndromes that have refractive errors as a recognized feature were identified using the Online Mendelian Inheritance in Man (OMIM) database. One hundred fifty-four unique causative genes were identified, of which 119 were specifically linked with myopia and 114 represented syndromic myopia (i.e., myopia and at least one other clinical feature). Myopia was the only refractive error listed for 98 genes and hyperopia and the only refractive error noted for 28 genes, with the remaining 28 genes linked to phenotypes with multiple forms of refractive error. Pathway analysis was carried out to find biological processes overrepresented within these sets of genes. Genetic variants located within 50 kb of the 119 myopia-related genes were evaluated for involvement in refractive error by analysis of summary statistics from genome-wide association studies (GWAS) conducted by the CREAM Consortium and 23andMe, using both single-marker and gene-based tests. Results Pathway analysis identified several biological processes already implicated in refractive error development through prior GWAS analyses and animal studies, including extracellular matrix remodeling, focal adhesion, and axon guidance, supporting the research hypothesis. Novel pathways also implicated in myopia development included mannosylation, glycosylation, lens development, gliogenesis, and Schwann cell differentiation. Hyperopia was found to be linked to a different pattern of biological processes, mostly related to organogenesis. Comparison with GWAS findings further confirmed that syndromic myopia genes were enriched for genetic variants that influence refractive errors in the general population. Gene-based analyses implicated 21 novel candidate myopia genes (ADAMTS18, ADAMTS2, ADAMTSL4, AGK, ALDH18A1, ASXL1, COL4A1

  18. Differential expression of the klf6 tumor suppressor gene upon cell damaging treatments in cancer cells

    International Nuclear Information System (INIS)

    Gehrau, Ricardo C.; D'Astolfo, Diego S.; Andreoli, Veronica; Bocco, Jose L.; Koritschoner, Nicolas P.

    2011-01-01

    The mammalian Krueppel-like factor 6 (KLF6) is involved in critical roles such as growth-related signal transduction, cell proliferation and differentiation, development, apoptosis and angiogenesis. Also, KLF6 appears to be an emerging key factor during cancer development and progression. Its expression is thoroughly regulated by several cell-damaging stimuli. DNA damaging agents at lethal concentrations induce a p53-independent down-regulation of the klf6 gene. To investigate the impact of external stimuli on human klf6 gene expression, its mRNA level was analyzed using a cancer cell line profiling array system, consisting in an assortment of immobilized cDNAs from multiple cell lines treated with several cell-damaging agents at growth inhibitory concentrations (IC 50 ). Cell-damaging agents affected the klf6 expression in 62% of the cDNA samples, though the expression pattern was not dependent on the cell origin type. Interestingly, significant differences (p 50 concentrations of physical and chemical stimuli in a p53-dependent manner. Most of these agents are frequently used in cancer therapy. Induction of klf6 expression in the absence of functional p53 directly correlates with cell death triggered by these compounds, whereas it is down-regulated in p53+/+ cells. Hence, klf6 expression level could represent a valuable marker for the efficiency of cell death upon cancer treatment.

  19. AKT phosphorylates H3-threonine 45 to facilitate termination of gene transcription in response to DNA damage

    OpenAIRE

    Lee, Jong-Hyuk; Kang, Byung-Hee; Jang, Hyonchol; Kim, Tae Wan; Choi, Jinmi; Kwak, Sojung; Han, Jungwon; Cho, Eun-Jung; Youn, Hong-Duk

    2015-01-01

    Post-translational modifications of core histones affect various cellular processes, primarily through transcription. However, their relationship with the termination of transcription has remained largely unknown. In this study, we show that DNA damage-activated AKT phosphorylates threonine 45 of core histone H3 (H3-T45). By genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) analysis, H3-T45 phosphorylation was distributed throughout DNA damage-responsive gene loci, particularly ...

  20. Whole-Genome Sequencing of Sordaria macrospora Mutants Identifies Developmental Genes.

    Science.gov (United States)

    Nowrousian, Minou; Teichert, Ines; Masloff, Sandra; Kück, Ulrich

    2012-02-01

    The study of mutants to elucidate gene functions has a long and successful history; however, to discover causative mutations in mutants that were generated by random mutagenesis often takes years of laboratory work and requires previously generated genetic and/or physical markers, or resources like DNA libraries for complementation. Here, we present an alternative method to identify defective genes in developmental mutants of the filamentous fungus Sordaria macrospora through Illumina/Solexa whole-genome sequencing. We sequenced pooled DNA from progeny of crosses of three mutants and the wild type and were able to pinpoint the causative mutations in the mutant strains through bioinformatics analysis. One mutant is a spore color mutant, and the mutated gene encodes a melanin biosynthesis enzyme. The causative mutation is a G to A change in the first base of an intron, leading to a splice defect. The second mutant carries an allelic mutation in the pro41 gene encoding a protein essential for sexual development. In the mutant, we detected a complex pattern of deletion/rearrangements at the pro41 locus. In the third mutant, a point mutation in the stop codon of a transcription factor-encoding gene leads to the production of immature fruiting bodies. For all mutants, transformation with a wild type-copy of the affected gene restored the wild-type phenotype. Our data demonstrate that whole-genome sequencing of mutant strains is a rapid method to identify developmental genes in an organism that can be genetically crossed and where a reference genome sequence is available, even without prior mapping information.

  1. A general method for identifying major hybrid male sterility genes in Drosophila.

    Science.gov (United States)

    Zeng, L W; Singh, R S

    1995-10-01

    The genes responsible for hybrid male sterility in species crosses are usually identified by introgressing chromosome segments, monitored by visible markers, between closely related species by continuous backcrosses. This commonly used method, however, suffers from two problems. First, it relies on the availability of markers to monitor the introgressed regions and so the portion of the genome examined is limited to the marked regions. Secondly, the introgressed regions are usually large and it is impossible to tell if the effects of the introgressed regions are the result of single (or few) major genes or many minor genes (polygenes). Here we introduce a simple and general method for identifying putative major hybrid male sterility genes which is free of these problems. In this method, the actual hybrid male sterility genes (rather than markers), or tightly linked gene complexes with large effects, are selectively introgressed from one species into the background of another species by repeated backcrosses. This is performed by selectively backcrossing heterozygous (for hybrid male sterility gene or genes) females producing fertile and sterile sons in roughly equal proportions to males of either parental species. As no marker gene is required for this procedure, this method can be used with any species pairs that produce unisexual sterility. With the application of this method, a small X chromosome region of Drosophila mauritiana which produces complete hybrid male sterility (aspermic testes) in the background of D. simulans was identified. Recombination analysis reveals that this region contains a second major hybrid male sterility gene linked to the forked locus located at either 62.7 +/- 0.66 map units or at the centromere region of the X chromosome of D. mauritiana.

  2. Epidermal growth factor gene is a newly identified candidate gene for gout.

    Science.gov (United States)

    Han, Lin; Cao, Chunwei; Jia, Zhaotong; Liu, Shiguo; Liu, Zhen; Xin, Ruosai; Wang, Can; Li, Xinde; Ren, Wei; Wang, Xuefeng; Li, Changgui

    2016-08-10

    Chromosome 4q25 has been identified as a genomic region associated with gout. However, the associations of gout with the genes in this region have not yet been confirmed. Here, we performed two-stage analysis to determine whether variations in candidate genes in the 4q25 region are associated with gout in a male Chinese Han population. We first evaluated 96 tag single nucleotide polymorphisms (SNPs) in eight inflammatory/immune pathway- or glucose/lipid metabolism-related genes in the 4q25 region in 480 male gout patients and 480 controls. The SNP rs12504538, located in the elongation of very-long-chain-fatty-acid-like family member 6 gene (Elovl6), was found to be associated with gout susceptibility (Padjusted = 0.00595). In the second stage of analysis, we performed fine mapping analysis of 93 tag SNPs in Elovl6 and in the epidermal growth factor gene (EGF) and its flanking regions in 1017 male patients gout and 1897 healthy male controls. We observed a significant association between the T allele of EGF rs2298999 and gout (odds ratio = 0.77, 95% confidence interval = 0.67-0.88, Padjusted = 6.42 × 10(-3)). These results provide the first evidence for an association between the EGF rs2298999 C/T polymorphism and gout. Our findings should be validated in additional populations.

  3. Clustering approaches to identifying gene expression patterns from DNA microarray data.

    Science.gov (United States)

    Do, Jin Hwan; Choi, Dong-Kug

    2008-04-30

    The analysis of microarray data is essential for large amounts of gene expression data. In this review we focus on clustering techniques. The biological rationale for this approach is the fact that many co-expressed genes are co-regulated, and identifying co-expressed genes could aid in functional annotation of novel genes, de novo identification of transcription factor binding sites and elucidation of complex biological pathways. Co-expressed genes are usually identified in microarray experiments by clustering techniques. There are many such methods, and the results obtained even for the same datasets may vary considerably depending on the algorithms and metrics for dissimilarity measures used, as well as on user-selectable parameters such as desired number of clusters and initial values. Therefore, biologists who want to interpret microarray data should be aware of the weakness and strengths of the clustering methods used. In this review, we survey the basic principles of clustering of DNA microarray data from crisp clustering algorithms such as hierarchical clustering, K-means and self-organizing maps, to complex clustering algorithms like fuzzy clustering.

  4. Genes Important for Schizosaccharomyces pombe Meiosis Identified Through a Functional Genomics Screen

    Science.gov (United States)

    Blyth, Julie; Makrantoni, Vasso; Barton, Rachael E.; Spanos, Christos; Rappsilber, Juri; Marston, Adele L.

    2018-01-01

    Meiosis is a specialized cell division that generates gametes, such as eggs and sperm. Errors in meiosis result in miscarriages and are the leading cause of birth defects; however, the molecular origins of these defects remain unknown. Studies in model organisms are beginning to identify the genes and pathways important for meiosis, but the parts list is still poorly defined. Here we present a comprehensive catalog of genes important for meiosis in the fission yeast, Schizosaccharomyces pombe. Our genome-wide functional screen surveyed all nonessential genes for roles in chromosome segregation and spore formation. Novel genes important at distinct stages of the meiotic chromosome segregation and differentiation program were identified. Preliminary characterization implicated three of these genes in centrosome/spindle pole body, centromere, and cohesion function. Our findings represent a near-complete parts list of genes important for meiosis in fission yeast, providing a valuable resource to advance our molecular understanding of meiosis. PMID:29259000

  5. Gene dosage, expression, and ontology analysis identifies driver genes in the carcinogenesis and chemoradioresistance of cervical cancer.

    Directory of Open Access Journals (Sweden)

    Malin Lando

    2009-11-01

    Full Text Available Integrative analysis of gene dosage, expression, and ontology (GO data was performed to discover driver genes in the carcinogenesis and chemoradioresistance of cervical cancers. Gene dosage and expression profiles of 102 locally advanced cervical cancers were generated by microarray techniques. Fifty-two of these patients were also analyzed with the Illumina expression method to confirm the gene expression results. An independent cohort of 41 patients was used for validation of gene expressions associated with clinical outcome. Statistical analysis identified 29 recurrent gains and losses and 3 losses (on 3p, 13q, 21q associated with poor outcome after chemoradiotherapy. The intratumor heterogeneity, assessed from the gene dosage profiles, was low for these alterations, showing that they had emerged prior to many other alterations and probably were early events in carcinogenesis. Integration of the alterations with gene expression and GO data identified genes that were regulated by the alterations and revealed five biological processes that were significantly overrepresented among the affected genes: apoptosis, metabolism, macromolecule localization, translation, and transcription. Four genes on 3p (RYBP, GBE1 and 13q (FAM48A, MED4 correlated with outcome at both the gene dosage and expression level and were satisfactorily validated in the independent cohort. These integrated analyses yielded 57 candidate drivers of 24 genetic events, including novel loci responsible for chemoradioresistance. Further mapping of the connections among genetic events, drivers, and biological processes suggested that each individual event stimulates specific processes in carcinogenesis through the coordinated control of multiple genes. The present results may provide novel therapeutic opportunities of both early and advanced stage cervical cancers.

  6. GESearch: An Interactive GUI Tool for Identifying Gene Expression Signature

    Directory of Open Access Journals (Sweden)

    Ning Ye

    2015-01-01

    Full Text Available The huge amount of gene expression data generated by microarray and next-generation sequencing technologies present challenges to exploit their biological meanings. When searching for the coexpression genes, the data mining process is largely affected by selection of algorithms. Thus, it is highly desirable to provide multiple options of algorithms in the user-friendly analytical toolkit to explore the gene expression signatures. For this purpose, we developed GESearch, an interactive graphical user interface (GUI toolkit, which is written in MATLAB and supports a variety of gene expression data files. This analytical toolkit provides four models, including the mean, the regression, the delegate, and the ensemble models, to identify the coexpression genes, and enables the users to filter data and to select gene expression patterns by browsing the display window or by importing knowledge-based genes. Subsequently, the utility of this analytical toolkit is demonstrated by analyzing two sets of real-life microarray datasets from cell-cycle experiments. Overall, we have developed an interactive GUI toolkit that allows for choosing multiple algorithms for analyzing the gene expression signatures.

  7. Cytogenetic responses to ionizing radiation exposure of human fibroblasts with knocked-down expressions of various DNA damage signaling genes

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry; Wu, Honglu

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have demonstrated that genes with up-regulated expression induced by IR may play important roles in DNA damage sensing, cell cycle checkpoint and chromosomal repair, the relationship between the regulation of gene expression by IR and its impact on cytogenetic responses to ionizing radiation has not been systematically studied. Here, the expression of 25 genes selected based on their transcriptional changes in response to IR or from their known DNA repair roles were individually knocked down by siRNA transfection in human fibroblast cells. Chromosome aberrations (CA) and micronuclei (MN) formation were measured as the cytogenetic endpoints. Our results showed that the yields of MN and/or CA formation were significantly increased by suppressed expression of some of the selected genes in DSB and other DNA repair pathways. Knocked-down expression of other genes showed significant impact on cell cycle progression, possibly because of severe impairment of DNA damage repair. Of these 11 genes that affected the cytogenetic response, 9 were up-regulated in the cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulating the biological consequences after IR. Failure to express these IR-responsive genes, such as by gene mutation, could seriously change the outcome of the post IR scenario and lead to carcinogenesis.

  8. Distribution patterns of postmortem damage in human mitochondrial DNA

    DEFF Research Database (Denmark)

    Gilbert, M Thomas P; Willerslev, Eske; Hansen, Anders J

    2002-01-01

    1 (HVR1) and cytochrome oxidase subunit III genes. A comparison of damaged sites within and between the regions reveals that damage hotspots exist and that, in the HVR1, these correlate with sites known to have high in vivo mutation rates. Conversely, HVR1 subregions with known structural function......, such as MT5, have lower in vivo mutation rates and lower postmortem-damage rates. The postmortem data also identify a possible functional subregion of the HVR1, termed "low-diversity 1," through the lack of sequence damage. The amount of postmortem damage observed in mitochondrial coding regions...... was significantly lower than in the HVR1, and, although hotspots were noted, these did not correlate with codon position. Finally, a simple method for the identification of incorrect archaeological haplogroup designations is introduced, on the basis of the observed spectrum of postmortem damage....

  9. Gonadotropin-Releasing Hormone Regulates Expression of the DNA Damage Repair Gene, Fanconi anemia A, in Pituitary Gonadotroph Cells1

    Science.gov (United States)

    Larder, Rachel; Chang, Lynda; Clinton, Michael; Brown, Pamela

    2007-01-01

    Gonadal function is critically dependant on regulated secretion of the gonadotropin hormones from anterior pituitary gonadotroph cells. Gonadotropin biosynthesis and release is triggered by the binding of hypothalamic GnRH to GnRH receptor expressed on the gonadotroph cell surface. The repertoire of regulatory molecules involved in this process are still being defined. We used the mouse LβT2 gonadotroph cell line, which expresses both gonadotropin hormones, as a model to investigate GnRH regulation of gene expression and differential display reverse transcription-polymerase chain reaction (RT-PCR) to identify and isolate hormonally induced changes. This approach identified Fanconi anemia a (Fanca), a gene implicated in DNA damage repair, as a differentially expressed transcript. Mutations in Fanca account for the majority of cases of Fanconi anemia (FA), a recessively inherited disease identified by congenital defects, bone marrow failure, infertility, and cancer susceptibility. We confirmed expression and hormonal regulation of Fanca mRNA by quantitative RT-PCR, which showed that GnRH induced a rapid, transient increase in Fanca mRNA. Fanca protein was also acutely upregulated after GnRH treatment of LβT2 cells. In addition, Fanca gene expression was confined to mature pituitary gonadotrophs and adult mouse pituitary and was not expressed in the immature αT3-1 gonadotroph cell line. Thus, this study extends the expression profile of Fanca into a highly specialized endocrine cell and demonstrates hormonal regulation of expression of the Fanca locus. We suggest that this regulatory mechanism may have a crucial role in the GnRH-response mechanism of mature gonadotrophs and perhaps the etiology of FA. PMID:15128600

  10. Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas

    Directory of Open Access Journals (Sweden)

    Theo A. Knijnenburg

    2018-04-01

    Full Text Available Summary: DNA damage repair (DDR pathways modulate cancer risk, progression, and therapeutic response. We systematically analyzed somatic alterations to provide a comprehensive view of DDR deficiency across 33 cancer types. Mutations with accompanying loss of heterozygosity were observed in over 1/3 of DDR genes, including TP53 and BRCA1/2. Other prevalent alterations included epigenetic silencing of the direct repair genes EXO5, MGMT, and ALKBH3 in ∼20% of samples. Homologous recombination deficiency (HRD was present at varying frequency in many cancer types, most notably ovarian cancer. However, in contrast to ovarian cancer, HRD was associated with worse outcomes in several other cancers. Protein structure-based analyses allowed us to predict functional consequences of rare, recurrent DDR mutations. A new machine-learning-based classifier developed from gene expression data allowed us to identify alterations that phenocopy deleterious TP53 mutations. These frequent DDR gene alterations in many human cancers have functional consequences that may determine cancer progression and guide therapy. : Knijnenburg et al. present The Cancer Genome Atlas (TCGA Pan-Cancer analysis of DNA damage repair (DDR deficiency in cancer. They use integrative genomic and molecular analyses to identify frequent DDR alterations across 33 cancer types, correlate gene- and pathway-level alterations with genome-wide measures of genome instability and impaired function, and demonstrate the prognostic utility of DDR deficiency scores. Keywords: The Cancer Genome Atlas PanCanAtlas project, DNA damage repair, somatic mutations, somatic copy-number alterations, epigenetic silencing, DNA damage footprints, mutational signatures, integrative statistical analysis, protein structure analysis

  11. Epidermal growth factor gene is a newly identified candidate gene for gout

    Science.gov (United States)

    Han, Lin; Cao, Chunwei; Jia, Zhaotong; Liu, Shiguo; Liu, Zhen; Xin, Ruosai; Wang, Can; Li, Xinde; Ren, Wei; Wang, Xuefeng; Li, Changgui

    2016-01-01

    Chromosome 4q25 has been identified as a genomic region associated with gout. However, the associations of gout with the genes in this region have not yet been confirmed. Here, we performed two-stage analysis to determine whether variations in candidate genes in the 4q25 region are associated with gout in a male Chinese Han population. We first evaluated 96 tag single nucleotide polymorphisms (SNPs) in eight inflammatory/immune pathway- or glucose/lipid metabolism-related genes in the 4q25 region in 480 male gout patients and 480 controls. The SNP rs12504538, located in the elongation of very-long-chain-fatty-acid-like family member 6 gene (Elovl6), was found to be associated with gout susceptibility (Padjusted = 0.00595). In the second stage of analysis, we performed fine mapping analysis of 93 tag SNPs in Elovl6 and in the epidermal growth factor gene (EGF) and its flanking regions in 1017 male patients gout and 1897 healthy male controls. We observed a significant association between the T allele of EGF rs2298999 and gout (odds ratio = 0.77, 95% confidence interval = 0.67–0.88, Padjusted = 6.42 × 10−3). These results provide the first evidence for an association between the EGF rs2298999 C/T polymorphism and gout. Our findings should be validated in additional populations. PMID:27506295

  12. Identifying the genes of unconventional high temperature superconductors.

    Science.gov (United States)

    Hu, Jiangping

    We elucidate a recently emergent framework in unifying the two families of high temperature (high [Formula: see text]) superconductors, cuprates and iron-based superconductors. The unification suggests that the latter is simply the counterpart of the former to realize robust extended s-wave pairing symmetries in a square lattice. The unification identifies that the key ingredients (gene) of high [Formula: see text] superconductors is a quasi two dimensional electronic environment in which the d -orbitals of cations that participate in strong in-plane couplings to the p -orbitals of anions are isolated near Fermi energy. With this gene, the superexchange magnetic interactions mediated by anions could maximize their contributions to superconductivity. Creating the gene requires special arrangements between local electronic structures and crystal lattice structures. The speciality explains why high [Formula: see text] superconductors are so rare. An explicit prediction is made to realize high [Formula: see text] superconductivity in Co/Ni-based materials with a quasi two dimensional hexagonal lattice structure formed by trigonal bipyramidal complexes.

  13. A 6-gene signature identifies four molecular subgroups of neuroblastoma

    Directory of Open Access Journals (Sweden)

    Kogner Per

    2011-04-01

    Full Text Available Abstract Background There are currently three postulated genomic subtypes of the childhood tumour neuroblastoma (NB; Type 1, Type 2A, and Type 2B. The most aggressive forms of NB are characterized by amplification of the oncogene MYCN (MNA and low expression of the favourable marker NTRK1. Recently, mutations or high expression of the familial predisposition gene Anaplastic Lymphoma Kinase (ALK was associated to unfavourable biology of sporadic NB. Also, various other genes have been linked to NB pathogenesis. Results The present study explores subgroup discrimination by gene expression profiling using three published microarray studies on NB (47 samples. Four distinct clusters were identified by Principal Components Analysis (PCA in two separate data sets, which could be verified by an unsupervised hierarchical clustering in a third independent data set (101 NB samples using a set of 74 discriminative genes. The expression signature of six NB-associated genes ALK, BIRC5, CCND1, MYCN, NTRK1, and PHOX2B, significantly discriminated the four clusters (p ALK, BIRC5, and PHOX2B, and was significantly associated with higher tumour stage, poor outcome and poor survival compared to the Type 1-corresponding favourable group (INSS stage 4 and/or dead of disease, p Conclusions Based on expression profiling we have identified four molecular subgroups of neuroblastoma, which can be distinguished by a 6-gene signature. The fourth subgroup has not been described elsewhere, and efforts are currently made to further investigate this group's specific characteristics.

  14. Genes and gene expression: Localization, damage and control: A multilevel and inter-disciplinary study

    Energy Technology Data Exchange (ETDEWEB)

    Ts' o, P.O.P.

    1990-09-01

    The main objectives of this Program Project is to develop strategy and technology for the study of gene structure, organization and function in a multi-disciplinary, highly coordinated manner. In Project I, Molecular Cytology, the establishment of all instrumentation for the computerized microscopic imaging system (CMIS) has been completed with the software in place, including measurement of the third dimension (along the Z-axis). The technique is now at hand to measure single copy DNA in the nucleus, single copy mRNA in the cell, and finally, we are in the process of developing mathematical approaches for the analysis of the relative spatial 3-D relationship among the chromosomes and the individual genes in the interphasal nucleus. Also, we have a sensitive and reliable method for measuring single-stranded DNA breaks which will be useful for the determination of damage to DNA caused by ionizing radiation. In Project II, the mapping of restriction fragments by 2-D enzymatic and electrophoretic analysis has been perfected for application. In Project III, a major finding is that the binding constant and effectiveness of antisense oligonucleotide analogues, Matagen, can be significantly improved by substituting 2{prime}-O-methylribos methylphosphonate backbones for the current 2{prime}-deoxyribomethylphosphonate backbones. 15 refs., 10 figs., 2 tabs.

  15. Identifying human disease genes through cross-species gene mapping of evolutionary conserved processes.

    Directory of Open Access Journals (Sweden)

    Martin Poot

    2011-05-01

    Full Text Available Understanding complex networks that modulate development in humans is hampered by genetic and phenotypic heterogeneity within and between populations. Here we present a method that exploits natural variation in highly diverse mouse genetic reference panels in which genetic and environmental factors can be tightly controlled. The aim of our study is to test a cross-species genetic mapping strategy, which compares data of gene mapping in human patients with functional data obtained by QTL mapping in recombinant inbred mouse strains in order to prioritize human disease candidate genes.We exploit evolutionary conservation of developmental phenotypes to discover gene variants that influence brain development in humans. We studied corpus callosum volume in a recombinant inbred mouse panel (C57BL/6J×DBA/2J, BXD strains using high-field strength MRI technology. We aligned mouse mapping results for this neuro-anatomical phenotype with genetic data from patients with abnormal corpus callosum (ACC development.From the 61 syndromes which involve an ACC, 51 human candidate genes have been identified. Through interval mapping, we identified a single significant QTL on mouse chromosome 7 for corpus callosum volume with a QTL peak located between 25.5 and 26.7 Mb. Comparing the genes in this mouse QTL region with those associated with human syndromes (involving ACC and those covered by copy number variations (CNV yielded a single overlap, namely HNRPU in humans and Hnrpul1 in mice. Further analysis of corpus callosum volume in BXD strains revealed that the corpus callosum was significantly larger in BXD mice with a B genotype at the Hnrpul1 locus than in BXD mice with a D genotype at Hnrpul1 (F = 22.48, p<9.87*10(-5.This approach that exploits highly diverse mouse strains provides an efficient and effective translational bridge to study the etiology of human developmental disorders, such as autism and schizophrenia.

  16. Integrative Analysis of Hippocampus Gene Expression Profiles Identifies Network Alterations in Aging and Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Vinay Lanke

    2018-05-01

    Full Text Available Alzheimer’s disease (AD is a neurodegenerative disorder contributing to rapid decline in cognitive function and ultimately dementia. Most cases of AD occur in elderly and later years. There is a growing need for understanding the relationship between aging and AD to identify shared and unique hallmarks associated with the disease in a region and cell-type specific manner. Although genomic studies on AD have been performed extensively, the molecular mechanism of disease progression is still not clear. The major objective of our study is to obtain a higher-order network-level understanding of aging and AD, and their relationship using the hippocampal gene expression profiles of young (20–50 years, aging (70–99 years, and AD (70–99 years. The hippocampus is vulnerable to damage at early stages of AD and altered neurogenesis in the hippocampus is linked to the onset of AD. We combined the weighted gene co-expression network and weighted protein–protein interaction network-level approaches to study the transition from young to aging to AD. The network analysis revealed the organization of co-expression network into functional modules that are cell-type specific in aging and AD. We found that modules associated with astrocytes, endothelial cells and microglial cells are upregulated and significantly correlate with both aging and AD. The modules associated with neurons, mitochondria and endoplasmic reticulum are downregulated and significantly correlate with AD than aging. The oligodendrocytes module does not show significant correlation with neither aging nor disease. Further, we identified aging- and AD-specific interactions/subnetworks by integrating the gene expression with a human protein–protein interaction network. We found dysregulation of genes encoding protein kinases (FYN, SYK, SRC, PKC, MAPK1, ephrin receptors and transcription factors (FOS, STAT3, CEBPB, MYC, NFKβ, and EGR1 in AD. Further, we found genes that encode proteins

  17. Hotspots of missense mutation identify novel neurodevelopmental disorder genes and functional domains

    Science.gov (United States)

    Geisheker, Madeleine R.; Heymann, Gabriel; Wang, Tianyun; Coe, Bradley P.; Turner, Tychele N.; Stessman, Holly A.F.; Hoekzema, Kendra; Kvarnung, Malin; Shaw, Marie; Friend, Kathryn; Liebelt, Jan; Barnett, Christopher; Thompson, Elizabeth M.; Haan, Eric; Guo, Hui; Anderlid, Britt-Marie; Nordgren, Ann; Lindstrand, Anna; Vandeweyer, Geert; Alberti, Antonino; Avola, Emanuela; Vinci, Mirella; Giusto, Stefania; Pramparo, Tiziano; Pierce, Karen; Nalabolu, Srinivasa; Michaelson, Jacob J.; Sedlacek, Zdenek; Santen, Gijs W.E.; Peeters, Hilde; Hakonarson, Hakon; Courchesne, Eric; Romano, Corrado; Kooy, R. Frank; Bernier, Raphael A.; Nordenskjöld, Magnus; Gecz, Jozef; Xia, Kun; Zweifel, Larry S.; Eichler, Evan E.

    2017-01-01

    Although de novo missense mutations have been predicted to account for more cases of autism than gene-truncating mutations, most research has focused on the latter. We identified the properties of de novo missense mutations in patients with neurodevelopmental disorders (NDDs) and highlight 35 genes with excess missense mutations. Additionally, 40 amino acid sites were recurrently mutated in 36 genes, and targeted sequencing of 20 sites in 17,689 NDD patients identified 21 new patients with identical missense mutations. One recurrent site (p.Ala636Thr) occurs in a glutamate receptor subunit, GRIA1. This same amino acid substitution in the homologous but distinct mouse glutamate receptor subunit Grid2 is associated with Lurcher ataxia. Phenotypic follow-up in five individuals with GRIA1 mutations shows evidence of specific learning disabilities and autism. Overall, we find significant clustering of de novo mutations in 200 genes, highlighting specific functional domains and synaptic candidate genes important in NDD pathology. PMID:28628100

  18. Identifying the rooted species tree from the distribution of unrooted gene trees under the coalescent.

    Science.gov (United States)

    Allman, Elizabeth S; Degnan, James H; Rhodes, John A

    2011-06-01

    Gene trees are evolutionary trees representing the ancestry of genes sampled from multiple populations. Species trees represent populations of individuals-each with many genes-splitting into new populations or species. The coalescent process, which models ancestry of gene copies within populations, is often used to model the probability distribution of gene trees given a fixed species tree. This multispecies coalescent model provides a framework for phylogeneticists to infer species trees from gene trees using maximum likelihood or Bayesian approaches. Because the coalescent models a branching process over time, all trees are typically assumed to be rooted in this setting. Often, however, gene trees inferred by traditional phylogenetic methods are unrooted. We investigate probabilities of unrooted gene trees under the multispecies coalescent model. We show that when there are four species with one gene sampled per species, the distribution of unrooted gene tree topologies identifies the unrooted species tree topology and some, but not all, information in the species tree edges (branch lengths). The location of the root on the species tree is not identifiable in this situation. However, for 5 or more species with one gene sampled per species, we show that the distribution of unrooted gene tree topologies identifies the rooted species tree topology and all its internal branch lengths. The length of any pendant branch leading to a leaf of the species tree is also identifiable for any species from which more than one gene is sampled.

  19. Genome-wide methylation analysis identifies genes silenced in non-seminoma cell lines.

    Science.gov (United States)

    Noor, Dzul Azri Mohamed; Jeyapalan, Jennie N; Alhazmi, Safiah; Carr, Matthew; Squibb, Benjamin; Wallace, Claire; Tan, Christopher; Cusack, Martin; Hughes, Jaime; Reader, Tom; Shipley, Janet; Sheer, Denise; Scotting, Paul J

    2016-01-01

    Silencing of genes by DNA methylation is a common phenomenon in many types of cancer. However, the genome-wide effect of DNA methylation on gene expression has been analysed in relatively few cancers. Germ cell tumours (GCTs) are a complex group of malignancies. They are unique in developing from a pluripotent progenitor cell. Previous analyses have suggested that non-seminomas exhibit much higher levels of DNA methylation than seminomas. The genomic targets that are methylated, the extent to which this results in gene silencing and the identity of the silenced genes most likely to play a role in the tumours' biology have not yet been established. In this study, genome-wide methylation and expression analysis of GCT cell lines was combined with gene expression data from primary tumours to address this question. Genome methylation was analysed using the Illumina infinium HumanMethylome450 bead chip system and gene expression was analysed using Affymetrix GeneChip Human Genome U133 Plus 2.0 arrays. Regulation by methylation was confirmed by demethylation using 5-aza-2-deoxycytidine and reverse transcription-quantitative PCR. Large differences in the level of methylation of the CpG islands of individual genes between tumour cell lines correlated well with differential gene expression. Treatment of non-seminoma cells with 5-aza-2-deoxycytidine verified that methylation of all genes tested played a role in their silencing in yolk sac tumour cells and many of these genes were also differentially expressed in primary tumours. Genes silenced by methylation in the various GCT cell lines were identified. Several pluripotency-associated genes were identified as a major functional group of silenced genes.

  20. Gene transfection mediated by polyethyleneimine-polyethylene glycol nanocarrier prevents cisplatin-induced spiral ganglion cell damage

    Directory of Open Access Journals (Sweden)

    Guan-gui Chen

    2015-01-01

    Full Text Available Polyethyleneimine-polyethylene glycol (PEI-PEG, a novel nanocarrier, has been used for transfection and gene therapy in a variety of cells. In our previous study, we successfully carried out PEI-PEG-mediated gene transfer in spiral ganglion cells. It remains unclear whether PEI-PEG could be used for gene therapy with X-linked inhibitor of apoptosis protein (XIAP in the inner ear. In the present study, we performed PEI-PEG-mediated XIAP gene transfection in the cochlea of Sprague-Dawley rats, via scala tympani fenestration, before daily cisplatin injections. Auditory brainstem reflex tests demonstrated the protective effects of XIAP gene therapy on auditory function. Immunohistochemical staining revealed XIAP protein expression in the cytoplasm of cells in the spiral ganglion, the organ of Corti and the stria vascularis. Reverse transcription-PCR detected high levels of XIAP mRNA expression in the cochlea. The present findings suggest that PEI-PEG nanocarrier-mediated XIAP gene transfection results in XIAP expression in the cochlea, prevents damage to cochlear spiral ganglion cells, and protects hearing.

  1. AKT phosphorylates H3-threonine 45 to facilitate termination of gene transcription in response to DNA damage.

    Science.gov (United States)

    Lee, Jong-Hyuk; Kang, Byung-Hee; Jang, Hyonchol; Kim, Tae Wan; Choi, Jinmi; Kwak, Sojung; Han, Jungwon; Cho, Eun-Jung; Youn, Hong-Duk

    2015-05-19

    Post-translational modifications of core histones affect various cellular processes, primarily through transcription. However, their relationship with the termination of transcription has remained largely unknown. In this study, we show that DNA damage-activated AKT phosphorylates threonine 45 of core histone H3 (H3-T45). By genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) analysis, H3-T45 phosphorylation was distributed throughout DNA damage-responsive gene loci, particularly immediately after the transcription termination site. H3-T45 phosphorylation pattern showed close-resemblance to that of RNA polymerase II C-terminal domain (CTD) serine 2 phosphorylation, which establishes the transcription termination signal. AKT1 was more effective than AKT2 in phosphorylating H3-T45. Blocking H3-T45 phosphorylation by inhibiting AKT or through amino acid substitution limited RNA decay downstream of mRNA cleavage sites and decreased RNA polymerase II release from chromatin. Our findings suggest that AKT-mediated phosphorylation of H3-T45 regulates the processing of the 3' end of DNA damage-activated genes to facilitate transcriptional termination. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Sparse canonical correlation analysis for identifying, connecting and completing gene-expression networks

    NARCIS (Netherlands)

    Waaijenborg, S.; Zwinderman, A.H.

    2009-01-01

    ABSTRACT: BACKGROUND: We generalized penalized canonical correlation analysis for analyzing microarray gene-expression measurements for checking completeness of known metabolic pathways and identifying candidate genes for incorporation in the pathway. We used Wold's method for calculation of the

  3. Identifying genes that mediate anthracyline toxicity in immune cells

    Directory of Open Access Journals (Sweden)

    Amber eFrick

    2015-04-01

    Full Text Available The role of the immune system in response to chemotherapeutic agents remains elusive. The interpatient variability observed in immune and chemotherapeutic cytotoxic responses is likely, at least in part, due to complex genetic differences. Through the use of a panel of genetically diverse mouse inbred strains, we developed a drug screening platform aimed at identifying genes underlying these chemotherapeutic cytotoxic effects on immune cells. Using genome-wide association studies (GWAS, we identified four genome-wide significant quantitative trait loci (QTL that contributed to the sensitivity of doxorubicin and idarubicin in immune cells. Of particular interest, a locus on chromosome 16 was significantly associated with cell viability following idarubicin administration (p = 5.01x10-8. Within this QTL lies App, which encodes amyloid beta precursor protein. Comparison of dose-response curves verified that T-cells in App knockout mice were more sensitive to idarubicin than those of C57BL/6J control mice (p < 0.05.In conclusion, the cellular screening approach coupled with GWAS led to the identification and subsequent validation of a gene involved in T-cell viability after idarubicin treatment. Previous studies have suggested a role for App in in vitro and in vivo cytotoxicity to anticancer agents; the overexpression of App enhances resistance, while the knockdown of this gene is deleterious to cell viability. Thus, further investigations should include performing mechanistic studies, validating additional genes from the GWAS, including Ppfia1 and Ppfibp1, and ultimately translating the findings to in vivo and human studies.

  4. Integrating genome-wide association study and expression quantitative trait loci data identifies multiple genes and gene set associated with neuroticism.

    Science.gov (United States)

    Fan, Qianrui; Wang, Wenyu; Hao, Jingcan; He, Awen; Wen, Yan; Guo, Xiong; Wu, Cuiyan; Ning, Yujie; Wang, Xi; Wang, Sen; Zhang, Feng

    2017-08-01

    Neuroticism is a fundamental personality trait with significant genetic determinant. To identify novel susceptibility genes for neuroticism, we conducted an integrative analysis of genomic and transcriptomic data of genome wide association study (GWAS) and expression quantitative trait locus (eQTL) study. GWAS summary data was driven from published studies of neuroticism, totally involving 170,906 subjects. eQTL dataset containing 927,753 eQTLs were obtained from an eQTL meta-analysis of 5311 samples. Integrative analysis of GWAS and eQTL data was conducted by summary data-based Mendelian randomization (SMR) analysis software. To identify neuroticism associated gene sets, the SMR analysis results were further subjected to gene set enrichment analysis (GSEA). The gene set annotation dataset (containing 13,311 annotated gene sets) of GSEA Molecular Signatures Database was used. SMR single gene analysis identified 6 significant genes for neuroticism, including MSRA (p value=2.27×10 -10 ), MGC57346 (p value=6.92×10 -7 ), BLK (p value=1.01×10 -6 ), XKR6 (p value=1.11×10 -6 ), C17ORF69 (p value=1.12×10 -6 ) and KIAA1267 (p value=4.00×10 -6 ). Gene set enrichment analysis observed significant association for Chr8p23 gene set (false discovery rate=0.033). Our results provide novel clues for the genetic mechanism studies of neuroticism. Copyright © 2017. Published by Elsevier Inc.

  5. A cross-study gene set enrichment analysis identifies critical pathways in endometriosis

    Directory of Open Access Journals (Sweden)

    Bai Chunyan

    2009-09-01

    Full Text Available Abstract Background Endometriosis is an enigmatic disease. Gene expression profiling of endometriosis has been used in several studies, but few studies went further to classify subtypes of endometriosis based on expression patterns and to identify possible pathways involved in endometriosis. Some of the observed pathways are more inconsistent between the studies, and these candidate pathways presumably only represent a fraction of the pathways involved in endometriosis. Methods We applied a standardised microarray preprocessing and gene set enrichment analysis to six independent studies, and demonstrated increased concordance between these gene datasets. Results We find 16 up-regulated and 19 down-regulated pathways common in ovarian endometriosis data sets, 22 up-regulated and one down-regulated pathway common in peritoneal endometriosis data sets. Among them, 12 up-regulated and 1 down-regulated were found consistent between ovarian and peritoneal endometriosis. The main canonical pathways identified are related to immunological and inflammatory disease. Early secretory phase has the most over-represented pathways in the three uterine cycle phases. There are no overlapping significant pathways between the dataset from human endometrial endothelial cells and the datasets from ovarian endometriosis which used whole tissues. Conclusion The study of complex diseases through pathway analysis is able to highlight genes weakly connected to the phenotype which may be difficult to detect by using classical univariate statistics. By standardised microarray preprocessing and GSEA, we have increased the concordance in identifying many biological mechanisms involved in endometriosis. The identified gene pathways will shed light on the understanding of endometriosis and promote the development of novel therapies.

  6. A Multiomics Approach to Identify Genes Associated with Childhood Asthma Risk and Morbidity.

    Science.gov (United States)

    Forno, Erick; Wang, Ting; Yan, Qi; Brehm, John; Acosta-Perez, Edna; Colon-Semidey, Angel; Alvarez, Maria; Boutaoui, Nadia; Cloutier, Michelle M; Alcorn, John F; Canino, Glorisa; Chen, Wei; Celedón, Juan C

    2017-10-01

    Childhood asthma is a complex disease. In this study, we aim to identify genes associated with childhood asthma through a multiomics "vertical" approach that integrates multiple analytical steps using linear and logistic regression models. In a case-control study of childhood asthma in Puerto Ricans (n = 1,127), we used adjusted linear or logistic regression models to evaluate associations between several analytical steps of omics data, including genome-wide (GW) genotype data, GW methylation, GW expression profiling, cytokine levels, asthma-intermediate phenotypes, and asthma status. At each point, only the top genes/single-nucleotide polymorphisms/probes/cytokines were carried forward for subsequent analysis. In step 1, asthma modified the gene expression-protein level association for 1,645 genes; pathway analysis showed an enrichment of these genes in the cytokine signaling system (n = 269 genes). In steps 2-3, expression levels of 40 genes were associated with intermediate phenotypes (asthma onset age, forced expiratory volume in 1 second, exacerbations, eosinophil counts, and skin test reactivity); of those, methylation of seven genes was also associated with asthma. Of these seven candidate genes, IL5RA was also significant in analytical steps 4-8. We then measured plasma IL-5 receptor α levels, which were associated with asthma age of onset and moderate-severe exacerbations. In addition, in silico database analysis showed that several of our identified IL5RA single-nucleotide polymorphisms are associated with transcription factors related to asthma and atopy. This approach integrates several analytical steps and is able to identify biologically relevant asthma-related genes, such as IL5RA. It differs from other methods that rely on complex statistical models with various assumptions.

  7. Prevalence of Germline Mutations in Genes Engaged in DNA Damage Repair by Homologous Recombination in Patients with Triple-Negative and Hereditary Non-Triple-Negative Breast Cancers.

    Directory of Open Access Journals (Sweden)

    Pawel Domagala

    Full Text Available This study sought to assess the prevalence of common germline mutations in several genes engaged in the repair of DNA double-strand break by homologous recombination in patients with triple-negative breast cancers and hereditary non-triple-negative breast cancers. Tumors deficient in this type of DNA damage repair are known to be especially sensitive to DNA cross-linking agents (e.g., platinum drugs and to poly(ADP-ribose polymerase (PARP inhibitors.Genetic testing was performed for 36 common germline mutations in genes engaged in the repair of DNA by homologous recombination, i.e., BRCA1, BRCA2, CHEK2, NBN, ATM, PALB2, BARD1, and RAD51D, in 202 consecutive patients with triple-negative breast cancers and hereditary non-triple-negative breast cancers.Thirty five (22.2% of 158 patients in the triple-negative group carried mutations in genes involved in DNA repair by homologous recombination, while 10 (22.7% of the 44 patients in the hereditary non-triple-negative group carried such mutations. Mutations in BRCA1 were most frequent in patients with triple-negative breast cancer (18.4%, and mutations in CHEK2 were most frequent in patients with hereditary non-triple-negative breast cancers (15.9%. In addition, in the triple-negative group, mutations in CHEK2, NBN, and ATM (3.8% combined were found, while mutations in BRCA1, NBN, and PALB2 (6.8% combined were identified in the hereditary non-triple-negative group.Identifying mutations in genes engaged in DNA damage repair by homologous recombination other than BRCA1/2 can substantially increase the proportion of patients with triple-negative breast cancer and hereditary non-triple-negative breast cancer who may be eligible for therapy using PARP inhibitors and platinum drugs.

  8. MethylMix 2.0: an R package for identifying DNA methylation genes.

    Science.gov (United States)

    Cedoz, Pierre-Louis; Prunello, Marcos; Brennan, Kevin; Gevaert, Olivier

    2018-04-14

    DNA methylation is an important mechanism regulating gene transcription, and its role in carcinogenesis has been extensively studied. Hyper and hypomethylation of genes is a major mechanism of gene expression deregulation in a wide range of diseases. At the same time, high-throughput DNA methylation assays have been developed generating vast amounts of genome wide DNA methylation measurements. We developed MethylMix, an algorithm implemented in R to identify disease specific hyper and hypomethylated genes. Here we present a new version of MethylMix that automates the construction of DNA-methylation and gene expression datasets from The Cancer Genome Atlas (TCGA). More precisely, MethylMix 2.0 incorporates two major updates: the automated downloading of DNA methylation and gene expression datasets from TCGA and the automated preprocessing of such datasets: value imputation, batch correction and CpG sites clustering within each gene. The resulting datasets can subsequently be analyzed with MethylMix to identify transcriptionally predictive methylation states. We show that the Differential Methylation Values created by MethylMix can be used for cancer subtyping. olivier.gevaert@stanford.edu. https://bioconductor.org/packages/release/bioc/manuals/MethylMix/man/MethylMix.pdf. MethylMix 2.0 was implemented as an R package and is available in bioconductor.

  9. A large-scale RNA interference screen identifies genes that regulate autophagy at different stages.

    Science.gov (United States)

    Guo, Sujuan; Pridham, Kevin J; Virbasius, Ching-Man; He, Bin; Zhang, Liqing; Varmark, Hanne; Green, Michael R; Sheng, Zhi

    2018-02-12

    Dysregulated autophagy is central to the pathogenesis and therapeutic development of cancer. However, how autophagy is regulated in cancer is not well understood and genes that modulate cancer autophagy are not fully defined. To gain more insights into autophagy regulation in cancer, we performed a large-scale RNA interference screen in K562 human chronic myeloid leukemia cells using monodansylcadaverine staining, an autophagy-detecting approach equivalent to immunoblotting of the autophagy marker LC3B or fluorescence microscopy of GFP-LC3B. By coupling monodansylcadaverine staining with fluorescence-activated cell sorting, we successfully isolated autophagic K562 cells where we identified 336 short hairpin RNAs. After candidate validation using Cyto-ID fluorescence spectrophotometry, LC3B immunoblotting, and quantitative RT-PCR, 82 genes were identified as autophagy-regulating genes. 20 genes have been reported previously and the remaining 62 candidates are novel autophagy mediators. Bioinformatic analyses revealed that most candidate genes were involved in molecular pathways regulating autophagy, rather than directly participating in the autophagy process. Further autophagy flux assays revealed that 57 autophagy-regulating genes suppressed autophagy initiation, whereas 21 candidates promoted autophagy maturation. Our RNA interference screen identifies identified genes that regulate autophagy at different stages, which helps decode autophagy regulation in cancer and offers novel avenues to develop autophagy-related therapies for cancer.

  10. Overexpression screens identify conserved dosage chromosome instability genes in yeast and human cancer

    Science.gov (United States)

    Duffy, Supipi; Fam, Hok Khim; Wang, Yi Kan; Styles, Erin B.; Kim, Jung-Hyun; Ang, J. Sidney; Singh, Tejomayee; Larionov, Vladimir; Shah, Sohrab P.; Andrews, Brenda; Boerkoel, Cornelius F.; Hieter, Philip

    2016-01-01

    Somatic copy number amplification and gene overexpression are common features of many cancers. To determine the role of gene overexpression on chromosome instability (CIN), we performed genome-wide screens in the budding yeast for yeast genes that cause CIN when overexpressed, a phenotype we refer to as dosage CIN (dCIN), and identified 245 dCIN genes. This catalog of genes reveals human orthologs known to be recurrently overexpressed and/or amplified in tumors. We show that two genes, TDP1, a tyrosyl-DNA-phosphdiesterase, and TAF12, an RNA polymerase II TATA-box binding factor, cause CIN when overexpressed in human cells. Rhabdomyosarcoma lines with elevated human Tdp1 levels also exhibit CIN that can be partially rescued by siRNA-mediated knockdown of TDP1. Overexpression of dCIN genes represents a genetic vulnerability that could be leveraged for selective killing of cancer cells through targeting of an unlinked synthetic dosage lethal (SDL) partner. Using SDL screens in yeast, we identified a set of genes that when deleted specifically kill cells with high levels of Tdp1. One gene was the histone deacetylase RPD3, for which there are known inhibitors. Both HT1080 cells overexpressing hTDP1 and rhabdomyosarcoma cells with elevated levels of hTdp1 were more sensitive to histone deacetylase inhibitors valproic acid (VPA) and trichostatin A (TSA), recapitulating the SDL interaction in human cells and suggesting VPA and TSA as potential therapeutic agents for tumors with elevated levels of hTdp1. The catalog of dCIN genes presented here provides a candidate list to identify genes that cause CIN when overexpressed in cancer, which can then be leveraged through SDL to selectively target tumors. PMID:27551064

  11. Integrating mean and variance heterogeneities to identify differentially expressed genes.

    Science.gov (United States)

    Ouyang, Weiwei; An, Qiang; Zhao, Jinying; Qin, Huaizhen

    2016-12-06

    In functional genomics studies, tests on mean heterogeneity have been widely employed to identify differentially expressed genes with distinct mean expression levels under different experimental conditions. Variance heterogeneity (aka, the difference between condition-specific variances) of gene expression levels is simply neglected or calibrated for as an impediment. The mean heterogeneity in the expression level of a gene reflects one aspect of its distribution alteration; and variance heterogeneity induced by condition change may reflect another aspect. Change in condition may alter both mean and some higher-order characteristics of the distributions of expression levels of susceptible genes. In this report, we put forth a conception of mean-variance differentially expressed (MVDE) genes, whose expression means and variances are sensitive to the change in experimental condition. We mathematically proved the null independence of existent mean heterogeneity tests and variance heterogeneity tests. Based on the independence, we proposed an integrative mean-variance test (IMVT) to combine gene-wise mean heterogeneity and variance heterogeneity induced by condition change. The IMVT outperformed its competitors under comprehensive simulations of normality and Laplace settings. For moderate samples, the IMVT well controlled type I error rates, and so did existent mean heterogeneity test (i.e., the Welch t test (WT), the moderated Welch t test (MWT)) and the procedure of separate tests on mean and variance heterogeneities (SMVT), but the likelihood ratio test (LRT) severely inflated type I error rates. In presence of variance heterogeneity, the IMVT appeared noticeably more powerful than all the valid mean heterogeneity tests. Application to the gene profiles of peripheral circulating B raised solid evidence of informative variance heterogeneity. After adjusting for background data structure, the IMVT replicated previous discoveries and identified novel experiment

  12. Identifying genes and gene networks involved in chromium metabolism and detoxification in Crambe abyssinica

    International Nuclear Information System (INIS)

    Zulfiqar, Asma; Paulose, Bibin; Chhikara, Sudesh; Dhankher, Om Parkash

    2011-01-01

    Chromium pollution is a serious environmental problem with few cost-effective remediation strategies available. Crambe abyssinica (a member of Brassicaseae), a non-food, fast growing high biomass crop, is an ideal candidate for phytoremediation of heavy metals contaminated soils. The present study used a PCR-Select Suppression Subtraction Hybridization approach in C. abyssinica to isolate differentially expressed genes in response to Cr exposure. A total of 72 differentially expressed subtracted cDNAs were sequenced and found to represent 43 genes. The subtracted cDNAs suggest that Cr stress significantly affects pathways related to stress/defense, ion transporters, sulfur assimilation, cell signaling, protein degradation, photosynthesis and cell metabolism. The regulation of these genes in response to Cr exposure was further confirmed by semi-quantitative RT-PCR. Characterization of these differentially expressed genes may enable the engineering of non-food, high-biomass plants, including C. abyssinica, for phytoremediation of Cr-contaminated soils and sediments. - Highlights: → Molecular mechanism of Cr uptake and detoxification in plants is not well known. → We identified differentially regulated genes upon Cr exposure in Crambe abyssinica. → 72 Cr-induced subtracted cDNAs were sequenced and found to represent 43 genes. → Pathways linked to stress, ion transport, and sulfur assimilation were affected. → This is the first Cr transcriptome study in a crop with phytoremediation potential. - This study describes the identification and isolation of differentially expressed genes involved in chromium metabolism and detoxification in a non-food industrial oil crop Crambe abyssinica.

  13. Identifying genes and gene networks involved in chromium metabolism and detoxification in Crambe abyssinica

    Energy Technology Data Exchange (ETDEWEB)

    Zulfiqar, Asma, E-mail: asmazulfiqar08@yahoo.com [Department of Plant, Soil, and Insect Sciences, 270 Stockbridge Road, University of Massachusetts Amherst, MA 01003 (United States); Paulose, Bibin, E-mail: bpaulose@psis.umass.edu [Department of Plant, Soil, and Insect Sciences, 270 Stockbridge Road, University of Massachusetts Amherst, MA 01003 (United States); Chhikara, Sudesh, E-mail: sudesh@psis.umass.edu [Department of Plant, Soil, and Insect Sciences, 270 Stockbridge Road, University of Massachusetts Amherst, MA 01003 (United States); Dhankher, Om Parkash, E-mail: parkash@psis.umass.edu [Department of Plant, Soil, and Insect Sciences, 270 Stockbridge Road, University of Massachusetts Amherst, MA 01003 (United States)

    2011-10-15

    Chromium pollution is a serious environmental problem with few cost-effective remediation strategies available. Crambe abyssinica (a member of Brassicaseae), a non-food, fast growing high biomass crop, is an ideal candidate for phytoremediation of heavy metals contaminated soils. The present study used a PCR-Select Suppression Subtraction Hybridization approach in C. abyssinica to isolate differentially expressed genes in response to Cr exposure. A total of 72 differentially expressed subtracted cDNAs were sequenced and found to represent 43 genes. The subtracted cDNAs suggest that Cr stress significantly affects pathways related to stress/defense, ion transporters, sulfur assimilation, cell signaling, protein degradation, photosynthesis and cell metabolism. The regulation of these genes in response to Cr exposure was further confirmed by semi-quantitative RT-PCR. Characterization of these differentially expressed genes may enable the engineering of non-food, high-biomass plants, including C. abyssinica, for phytoremediation of Cr-contaminated soils and sediments. - Highlights: > Molecular mechanism of Cr uptake and detoxification in plants is not well known. > We identified differentially regulated genes upon Cr exposure in Crambe abyssinica. > 72 Cr-induced subtracted cDNAs were sequenced and found to represent 43 genes. > Pathways linked to stress, ion transport, and sulfur assimilation were affected. > This is the first Cr transcriptome study in a crop with phytoremediation potential. - This study describes the identification and isolation of differentially expressed genes involved in chromium metabolism and detoxification in a non-food industrial oil crop Crambe abyssinica.

  14. Senataxin plays an essential role with DNA damage response proteins in meiotic recombination and gene silencing.

    Directory of Open Access Journals (Sweden)

    Olivier J Becherel

    2013-04-01

    Full Text Available Senataxin, mutated in the human genetic disorder ataxia with oculomotor apraxia type 2 (AOA2, plays an important role in maintaining genome integrity by coordination of transcription, DNA replication, and the DNA damage response. We demonstrate that senataxin is essential for spermatogenesis and that it functions at two stages in meiosis during crossing-over in homologous recombination and in meiotic sex chromosome inactivation (MSCI. Disruption of the Setx gene caused persistence of DNA double-strand breaks, a defect in disassembly of Rad51 filaments, accumulation of DNA:RNA hybrids (R-loops, and ultimately a failure of crossing-over. Senataxin localised to the XY body in a Brca1-dependent manner, and in its absence there was incomplete localisation of DNA damage response proteins to the XY chromosomes and ATR was retained on the axial elements of these chromosomes, failing to diffuse out into chromatin. Furthermore persistence of RNA polymerase II activity, altered ubH2A distribution, and abnormal XY-linked gene expression in Setx⁻/⁻ revealed an essential role for senataxin in MSCI. These data support key roles for senataxin in coordinating meiotic crossing-over with transcription and in gene silencing to protect the integrity of the genome.

  15. Systems Genetics Analysis to Identify the Genetic Modulation of a Glaucoma-Associated Gene.

    Science.gov (United States)

    Chintalapudi, Sumana R; Jablonski, Monica M

    2017-01-01

    Loss of retinal ganglion cells (RGCs) is one of the hallmarks of retinal neurodegenerative diseases, glaucoma being one of the most common. Recently, γ-synuclein (SNCG) was shown to be highly expressed in the somas and axons of RGCs. In various mouse models of glaucoma, downregulation of Sncg gene expression correlates with RGC loss. To investigate the regulation of Sncg in RGCs, we used a systems genetics approach to identify a gene that modulates the expression of Sncg, followed by confirmatory studies in both healthy and diseased retinas. We found that chromosome 1 harbors an eQTL that modulates the expression of Sncg in the mouse retina and identified Pfdn2 as the candidate upstream modulator of Sncg expression. Downregulation of Pfdn2 in enriched RGCs causes a concomitant reduction in Sncg. In this chapter, we describe our strategy and methods for identifying and confirming a genetic modulation of a glaucoma-associated gene. A similar method can be applied to other genes expressed in other tissues.

  16. A stochastic model for identifying differential gene pair co-expression patterns in prostate cancer progression

    Directory of Open Access Journals (Sweden)

    Mao Yu

    2009-07-01

    Full Text Available Abstract Background The identification of gene differential co-expression patterns between cancer stages is a newly developing method to reveal the underlying molecular mechanisms of carcinogenesis. Most researches of this subject lack an algorithm useful for performing a statistical significance assessment involving cancer progression. Lacking this specific algorithm is apparently absent in identifying precise gene pairs correlating to cancer progression. Results In this investigation we studied gene pair co-expression change by using a stochastic process model for approximating the underlying dynamic procedure of the co-expression change during cancer progression. Also, we presented a novel analytical method named 'Stochastic process model for Identifying differentially co-expressed Gene pair' (SIG method. This method has been applied to two well known prostate cancer data sets: hormone sensitive versus hormone resistant, and healthy versus cancerous. From these data sets, 428,582 gene pairs and 303,992 gene pairs were identified respectively. Afterwards, we used two different current statistical methods to the same data sets, which were developed to identify gene pair differential co-expression and did not consider cancer progression in algorithm. We then compared these results from three different perspectives: progression analysis, gene pair identification effectiveness analysis, and pathway enrichment analysis. Statistical methods were used to quantify the quality and performance of these different perspectives. They included: Re-identification Scale (RS and Progression Score (PS in progression analysis, True Positive Rate (TPR in gene pair analysis, and Pathway Enrichment Score (PES in pathway analysis. Our results show small values of RS and large values of PS, TPR, and PES; thus, suggesting that gene pairs identified by the SIG method are highly correlated with cancer progression, and highly enriched in disease-specific pathways. From

  17. Regulation of DNA Damage Response by Estrogen Receptor β-Mediated Inhibition of Breast Cancer Associated Gene 2

    Directory of Open Access Journals (Sweden)

    Yuan-Hao Lee

    2015-04-01

    Full Text Available Accumulating evidence suggests that ubiquitin E3 ligases are involved in cancer development as their mutations correlate with genomic instability and genetic susceptibility to cancer. Despite significant findings of cancer-driving mutations in the BRCA1 gene, estrogen receptor (ER-positive breast cancers progress upon treatment with DNA damaging-cytotoxic therapies. In order to understand the underlying mechanism by which ER-positive breast cancer cells develop resistance to DNA damaging agents, we employed an estrogen receptor agonist, Erb-041, to increase the activity of ERβ and negatively regulate the expression and function of the estrogen receptor α (ERα in MCF-7 breast cancer cells. Upon Erb-041-mediated ERα down-regulation, the transcription of an ERα downstream effector, BCA2 (Breast Cancer Associated gene 2, correspondingly decreased. The ubiquitination of chromatin-bound BCA2 was induced by ultraviolet C (UVC irradiation but suppressed by Erb-041 pretreatment, resulting in a blunted DNA damage response. Upon BCA2 silencing, DNA double-stranded breaks increased with Rad51 up-regulation and ataxia telangiectasia mutated (ATM activation. Mechanistically, UV-induced BCA2 ubiquitination and chromatin binding were found to promote DNA damage response and repair via the interaction of BCA2 with ATM, γH2AX and Rad51. Taken together, this study suggests that Erb-041 potentiates BCA2 dissociation from chromatin and co-localization with Rad51, resulting in inhibition of homologous recombination repair.

  18. Next-generation sequencing to identify candidate genes and develop diagnostic markers for a novel Phytophthora resistance gene, RpsHC18, in soybean.

    Science.gov (United States)

    Zhong, Chao; Sun, Suli; Li, Yinping; Duan, Canxing; Zhu, Zhendong

    2018-03-01

    A novel Phytophthora sojae resistance gene RpsHC18 was identified and finely mapped on soybean chromosome 3. Two NBS-LRR candidate genes were identified and two diagnostic markers of RpsHC18 were developed. Phytophthora root rot caused by Phytophthora sojae is a destructive disease of soybean. The most effective disease-control strategy is to deploy resistant cultivars carrying Phytophthora-resistant Rps genes. The soybean cultivar Huachun 18 has a broad and distinct resistance spectrum to 12 P. sojae isolates. Quantitative trait loci sequencing (QTL-seq), based on the whole-genome resequencing (WGRS) of two extreme resistant and susceptible phenotype bulks from an F 2:3 population, was performed, and one 767-kb genomic region with ΔSNP-index ≥ 0.9 on chromosome 3 was identified as the RpsHC18 candidate region in Huachun 18. The candidate region was reduced to a 146-kb region by fine mapping. Nonsynonymous SNP and haplotype analyses were carried out in the 146-kb region among ten soybean genotypes using WGRS. Four specific nonsynonymous SNPs were identified in two nucleotide-binding sites-leucine-rich repeat (NBS-LRR) genes, RpsHC18-NBL1 and RpsHC18-NBL2, which were considered to be the candidate genes. Finally, one specific SNP marker in each candidate gene was successfully developed using a tetra-primer ARMS-PCR assay, and the two markers were verified to be specific for RpsHC18 and to effectively distinguish other known Rps genes. In this study, we applied an integrated genomic-based strategy combining WGRS with traditional genetic mapping to identify RpsHC18 candidate genes and develop diagnostic markers. These results suggest that next-generation sequencing is a precise, rapid and cost-effective way to identify candidate genes and develop diagnostic markers, and it can accelerate Rps gene cloning and marker-assisted selection for breeding of P. sojae-resistant soybean cultivars.

  19. A 6-gene signature identifies four molecular subgroups of neuroblastoma

    LENUS (Irish Health Repository)

    Abel, Frida

    2011-04-14

    Abstract Background There are currently three postulated genomic subtypes of the childhood tumour neuroblastoma (NB); Type 1, Type 2A, and Type 2B. The most aggressive forms of NB are characterized by amplification of the oncogene MYCN (MNA) and low expression of the favourable marker NTRK1. Recently, mutations or high expression of the familial predisposition gene Anaplastic Lymphoma Kinase (ALK) was associated to unfavourable biology of sporadic NB. Also, various other genes have been linked to NB pathogenesis. Results The present study explores subgroup discrimination by gene expression profiling using three published microarray studies on NB (47 samples). Four distinct clusters were identified by Principal Components Analysis (PCA) in two separate data sets, which could be verified by an unsupervised hierarchical clustering in a third independent data set (101 NB samples) using a set of 74 discriminative genes. The expression signature of six NB-associated genes ALK, BIRC5, CCND1, MYCN, NTRK1, and PHOX2B, significantly discriminated the four clusters (p < 0.05, one-way ANOVA test). PCA clusters p1, p2, and p3 were found to correspond well to the postulated subtypes 1, 2A, and 2B, respectively. Remarkably, a fourth novel cluster was detected in all three independent data sets. This cluster comprised mainly 11q-deleted MNA-negative tumours with low expression of ALK, BIRC5, and PHOX2B, and was significantly associated with higher tumour stage, poor outcome and poor survival compared to the Type 1-corresponding favourable group (INSS stage 4 and\\/or dead of disease, p < 0.05, Fisher\\'s exact test). Conclusions Based on expression profiling we have identified four molecular subgroups of neuroblastoma, which can be distinguished by a 6-gene signature. The fourth subgroup has not been described elsewhere, and efforts are currently made to further investigate this group\\'s specific characteristics.

  20. DNA-Damage Response RNA-Binding Proteins (DDRBPs): Perspectives from a New Class of Proteins and Their RNA Targets.

    Science.gov (United States)

    Dutertre, Martin; Vagner, Stéphan

    2017-10-27

    Upon DNA damage, cells trigger an early DNA-damage response (DDR) involving DNA repair and cell cycle checkpoints, and late responses involving gene expression regulation that determine cell fate. Screens for genes involved in the DDR have found many RNA-binding proteins (RBPs), while screens for novel RBPs have identified DDR proteins. An increasing number of RBPs are involved in early and/or late DDR. We propose to call this new class of actors of the DDR, which contain an RNA-binding activity, DNA-damage response RNA-binding proteins (DDRBPs). We then discuss how DDRBPs contribute not only to gene expression regulation in the late DDR but also to early DDR signaling, DNA repair, and chromatin modifications at DNA-damage sites through interactions with both long and short noncoding RNAs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Gene expression meta-analysis identifies metastatic pathways and transcription factors in breast cancer

    International Nuclear Information System (INIS)

    Thomassen, Mads; Tan, Qihua; Kruse, Torben A

    2008-01-01

    Metastasis is believed to progress in several steps including different pathways but the determination and understanding of these mechanisms is still fragmentary. Microarray analysis of gene expression patterns in breast tumors has been used to predict outcome in recent studies. Besides classification of outcome, these global expression patterns may reflect biological mechanisms involved in metastasis of breast cancer. Our purpose has been to investigate pathways and transcription factors involved in metastasis by use of gene expression data sets. We have analyzed 8 publicly available gene expression data sets. A global approach, 'gene set enrichment analysis' as well as an approach focusing on a subset of significantly differently regulated genes, GenMAPP, has been applied to rank pathway gene sets according to differential regulation in metastasizing tumors compared to non-metastasizing tumors. Meta-analysis has been used to determine overrepresentation of pathways and transcription factors targets, concordant deregulated in metastasizing breast tumors, in several data sets. The major findings are up-regulation of cell cycle pathways and a metabolic shift towards glucose metabolism reflected in several pathways in metastasizing tumors. Growth factor pathways seem to play dual roles; EGF and PDGF pathways are decreased, while VEGF and sex-hormone pathways are increased in tumors that metastasize. Furthermore, migration, proteasome, immune system, angiogenesis, DNA repair and several signal transduction pathways are associated to metastasis. Finally several transcription factors e.g. E2F, NFY, and YY1 are identified as being involved in metastasis. By pathway meta-analysis many biological mechanisms beyond major characteristics such as proliferation are identified. Transcription factor analysis identifies a number of key factors that support central pathways. Several previously proposed treatment targets are identified and several new pathways that may

  2. Exome sequencing of a large family identifies potential candidate genes contributing risk to bipolar disorder.

    Science.gov (United States)

    Zhang, Tianxiao; Hou, Liping; Chen, David T; McMahon, Francis J; Wang, Jen-Chyong; Rice, John P

    2018-03-01

    Bipolar disorder is a mental illness with lifetime prevalence of about 1%. Previous genetic studies have identified multiple chromosomal linkage regions and candidate genes that might be associated with bipolar disorder. The present study aimed to identify potential susceptibility variants for bipolar disorder using 6 related case samples from a four-generation family. A combination of exome sequencing and linkage analysis was performed to identify potential susceptibility variants for bipolar disorder. Our study identified a list of five potential candidate genes for bipolar disorder. Among these five genes, GRID1(Glutamate Receptor Delta-1 Subunit), which was previously reported to be associated with several psychiatric disorders and brain related traits, is particularly interesting. Variants with functional significance in this gene were identified from two cousins in our bipolar disorder pedigree. Our findings suggest a potential role for these genes and the related rare variants in the onset and development of bipolar disorder in this one family. Additional research is needed to replicate these findings and evaluate their patho-biological significance. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Systems approach identifies an organic nitrogen-responsive gene network that is regulated by the master clock control gene CCA1.

    Science.gov (United States)

    Gutiérrez, Rodrigo A; Stokes, Trevor L; Thum, Karen; Xu, Xiaodong; Obertello, Mariana; Katari, Manpreet S; Tanurdzic, Milos; Dean, Alexis; Nero, Damion C; McClung, C Robertson; Coruzzi, Gloria M

    2008-03-25

    Understanding how nutrients affect gene expression will help us to understand the mechanisms controlling plant growth and development as a function of nutrient availability. Nitrate has been shown to serve as a signal for the control of gene expression in Arabidopsis. There is also evidence, on a gene-by-gene basis, that downstream products of nitrogen (N) assimilation such as glutamate (Glu) or glutamine (Gln) might serve as signals of organic N status that in turn regulate gene expression. To identify genome-wide responses to such organic N signals, Arabidopsis seedlings were transiently treated with ammonium nitrate in the presence or absence of MSX, an inhibitor of glutamine synthetase, resulting in a block of Glu/Gln synthesis. Genes that responded to organic N were identified as those whose response to ammonium nitrate treatment was blocked in the presence of MSX. We showed that some genes previously identified to be regulated by nitrate are under the control of an organic N-metabolite. Using an integrated network model of molecular interactions, we uncovered a subnetwork regulated by organic N that included CCA1 and target genes involved in N-assimilation. We validated some of the predicted interactions and showed that regulation of the master clock control gene CCA1 by Glu or a Glu-derived metabolite in turn regulates the expression of key N-assimilatory genes. Phase response curve analysis shows that distinct N-metabolites can advance or delay the CCA1 phase. Regulation of CCA1 by organic N signals may represent a novel input mechanism for N-nutrients to affect plant circadian clock function.

  4. Responses of genes involved in cell cycle control to diverse DNA damaging chemicals in human lung adenocarcinoma A549 cells

    Directory of Open Access Journals (Sweden)

    Gooderham Nigel J

    2005-08-01

    Full Text Available Abstract Background Many anticancer agents and carcinogens are DNA damaging chemicals and exposure to such chemicals results in the deregulation of cell cycle progression. The molecular mechanisms of DNA damage-induced cell cycle alteration are not well understood. We have studied the effects of etoposide (an anticancer agent, cryptolepine (CLP, a cytotoxic alkaloid, benzo [a]pyrene (BaP, a carcinogenic polycyclic aromatic hydrocarbon and 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP, a cooked-meat derived carcinogen on the expression of cell cycle regulatory genes to understand the molecular mechanisms of the cell cycle disturbance. Results A549 cells were treated with DMSO or chemicals for up to 72 h and periodically sampled for cell cycle analysis, mRNA and protein expression. DMSO treated cells showed a dominant G1 peak in cell cycle at all times examined. Etoposide and CLP both induced G2/M phase arrest yet the former altered the expression of genes functioning at multiple phases, whilst the latter was more effective in inhibiting the expression of genes in G2-M transition. Both etoposide and CLP induced an accumulation of p53 protein and upregulation of p53 transcriptional target genes. Neither BaP nor PhIP had substantial phase-specific cell cycle effect, however, they induced distinctive changes in gene expression. BaP upregulated the expression of CYP1B1 at 6–24 h and downregulated many cell cycle regulatory genes at 48–72 h. By contrast, PhIP increased the expression of many cell cycle regulatory genes. Changes in the expression of key mRNAs were confirmed at protein level. Conclusion Our experiments show that DNA damaging agents with different mechanisms of action induced distinctive changes in the expression pattern of a panel of cell cycle regulatory genes. We suggest that examining the genomic response to chemical exposure provides an exceptional opportunity to understand the molecular mechanism involved in cellular

  5. A cross-species genetic analysis identifies candidate genes for mouse anxiety and human bipolar disorder

    Directory of Open Access Journals (Sweden)

    David G Ashbrook

    2015-07-01

    Full Text Available Bipolar disorder (BD is a significant neuropsychiatric disorder with a lifetime prevalence of ~1%. To identify genetic variants underlying BD genome-wide association studies (GWAS have been carried out. While many variants of small effect associated with BD have been identified few have yet been confirmed, partly because of the low power of GWAS due to multiple comparisons being made. Complementary mapping studies using murine models have identified genetic variants for behavioral traits linked to BD, often with high power, but these identified regions often contain too many genes for clear identification of candidate genes. In the current study we have aligned human BD GWAS results and mouse linkage studies to help define and evaluate candidate genes linked to BD, seeking to use the power of the mouse mapping with the precision of GWAS. We use quantitative trait mapping for open field test and elevated zero maze data in the largest mammalian model system, the BXD recombinant inbred mouse population, to identify genomic regions associated with these BD-like phenotypes. We then investigate these regions in whole genome data from the Psychiatric Genomics Consortium’s bipolar disorder GWAS to identify candidate genes associated with BD. Finally we establish the biological relevance and pathways of these genes in a comprehensive systems genetics analysis.We identify four genes associated with both mouse anxiety and human BD. While TNR is a novel candidate for BD, we can confirm previously suggested associations with CMYA5, MCTP1 and RXRG. A cross-species, systems genetics analysis shows that MCTP1, RXRG and TNR coexpress with genes linked to psychiatric disorders and identify the striatum as a potential site of action. CMYA5, MCTP1, RXRG and TNR are associated with mouse anxiety and human BD. We hypothesize that MCTP1, RXRG and TNR influence intercellular signaling in the striatum.

  6. A systems genetics approach identifies genes and pathways for type 2 diabetes in human islets

    DEFF Research Database (Denmark)

    Taneera, Jalal; Lang, Stefan; Sharma, Amitabh

    2012-01-01

    Close to 50 genetic loci have been associated with type 2 diabetes (T2D), but they explain only 15% of the heritability. In an attempt to identify additional T2D genes, we analyzed global gene expression in human islets from 63 donors. Using 48 genes located near T2D risk variants, we identified ...

  7. Weighted gene co-expression network analysis of expression data of monozygotic twins identifies specific modules and hub genes related to BMI.

    Science.gov (United States)

    Wang, Weijing; Jiang, Wenjie; Hou, Lin; Duan, Haiping; Wu, Yili; Xu, Chunsheng; Tan, Qihua; Li, Shuxia; Zhang, Dongfeng

    2017-11-13

    The therapeutic management of obesity is challenging, hence further elucidating the underlying mechanisms of obesity development and identifying new diagnostic biomarkers and therapeutic targets are urgent and necessary. Here, we performed differential gene expression analysis and weighted gene co-expression network analysis (WGCNA) to identify significant genes and specific modules related to BMI based on gene expression profile data of 7 discordant monozygotic twins. In the differential gene expression analysis, it appeared that 32 differentially expressed genes (DEGs) were with a trend of up-regulation in twins with higher BMI when compared to their siblings. Categories of positive regulation of nitric-oxide synthase biosynthetic process, positive regulation of NF-kappa B import into nucleus, and peroxidase activity were significantly enriched within GO database and NF-kappa B signaling pathway within KEGG database. DEGs of NAMPT, TLR9, PTGS2, HBD, and PCSK1N might be associated with obesity. In the WGCNA, among the total 20 distinct co-expression modules identified, coral1 module (68 genes) had the strongest positive correlation with BMI (r = 0.56, P = 0.04) and disease status (r = 0.56, P = 0.04). Categories of positive regulation of phospholipase activity, high-density lipoprotein particle clearance, chylomicron remnant clearance, reverse cholesterol transport, intermediate-density lipoprotein particle, chylomicron, low-density lipoprotein particle, very-low-density lipoprotein particle, voltage-gated potassium channel complex, cholesterol transporter activity, and neuropeptide hormone activity were significantly enriched within GO database for this module. And alcoholism and cell adhesion molecules pathways were significantly enriched within KEGG database. Several hub genes, such as GAL, ASB9, NPPB, TBX2, IL17C, APOE, ABCG4, and APOC2 were also identified. The module eigengene of saddlebrown module (212 genes) was also significantly

  8. Evolutionary Inference across Eukaryotes Identifies Specific Pressures Favoring Mitochondrial Gene Retention.

    Science.gov (United States)

    Johnston, Iain G; Williams, Ben P

    2016-02-24

    Since their endosymbiotic origin, mitochondria have lost most of their genes. Although many selective mechanisms underlying the evolution of mitochondrial genomes have been proposed, a data-driven exploration of these hypotheses is lacking, and a quantitatively supported consensus remains absent. We developed HyperTraPS, a methodology coupling stochastic modeling with Bayesian inference, to identify the ordering of evolutionary events and suggest their causes. Using 2015 complete mitochondrial genomes, we inferred evolutionary trajectories of mtDNA gene loss across the eukaryotic tree of life. We find that proteins comprising the structural cores of the electron transport chain are preferentially encoded within mitochondrial genomes across eukaryotes. A combination of high GC content and high protein hydrophobicity is required to explain patterns of mtDNA gene retention; a model that accounts for these selective pressures can also predict the success of artificial gene transfer experiments in vivo. This work provides a general method for data-driven inference of the ordering of evolutionary and progressive events, here identifying the distinct features shaping mitochondrial genomes of present-day species. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. 'Omics' approaches in tomato aimed at identifying candidate genes ...

    African Journals Online (AJOL)

    adriana

    2013-12-04

    Dec 4, 2013 ... approaches could be combined in order to identify candidate genes for the genetic control of ascorbic ..... applied to other traits under the complex control of many ... Engineering increased vitamin C levels in ... Chem. Biol. 13:532–538. Giovannucci E, Rimm EB, Liu Y, Stampfer MJ, Willett WC (2002). A.

  10. Coalitional game theory as a promising approach to identify candidate autism genes.

    Science.gov (United States)

    Gupta, Anika; Sun, Min Woo; Paskov, Kelley Marie; Stockham, Nate Tyler; Jung, Jae-Yoon; Wall, Dennis Paul

    2018-01-01

    Despite mounting evidence for the strong role of genetics in the phenotypic manifestation of Autism Spectrum Disorder (ASD), the specific genes responsible for the variable forms of ASD remain undefined. ASD may be best explained by a combinatorial genetic model with varying epistatic interactions across many small effect mutations. Coalitional or cooperative game theory is a technique that studies the combined effects of groups of players, known as coalitions, seeking to identify players who tend to improve the performance--the relationship to a specific disease phenotype--of any coalition they join. This method has been previously shown to boost biologically informative signal in gene expression data but to-date has not been applied to the search for cooperative mutations among putative ASD genes. We describe our approach to highlight genes relevant to ASD using coalitional game theory on alteration data of 1,965 fully sequenced genomes from 756 multiplex families. Alterations were encoded into binary matrices for ASD (case) and unaffected (control) samples, indicating likely gene-disrupting, inherited mutations in altered genes. To determine individual gene contributions given an ASD phenotype, a "player" metric, referred to as the Shapley value, was calculated for each gene in the case and control cohorts. Sixty seven genes were found to have significantly elevated player scores and likely represent significant contributors to the genetic coordination underlying ASD. Using network and cross-study analysis, we found that these genes are involved in biological pathways known to be affected in the autism cases and that a subset directly interact with several genes known to have strong associations to autism. These findings suggest that coalitional game theory can be applied to large-scale genomic data to identify hidden yet influential players in complex polygenic disorders such as autism.

  11. Genome-Wide Requirements for Resistance to Functionally Distinct DNA-Damaging Agents.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available The mechanistic and therapeutic differences in the cellular response to DNA-damaging compounds are not completely understood, despite intense study. To expand our knowledge of DNA damage, we assayed the effects of 12 closely related DNA-damaging agents on the complete pool of ~4,700 barcoded homozygous deletion strains of Saccharomyces cerevisiae. In our protocol, deletion strains are pooled together and grown competitively in the presence of compound. Relative strain sensitivity is determined by hybridization of PCR-amplified barcodes to an oligonucleotide array carrying the barcode complements. These screens identified genes in well-characterized DNA-damage-response pathways as well as genes whose role in the DNA-damage response had not been previously established. High-throughput individual growth analysis was used to independently confirm microarray results. Each compound produced a unique genome-wide profile. Analysis of these data allowed us to determine the relative importance of DNA-repair modules for resistance to each of the 12 profiled compounds. Clustering the data for 12 distinct compounds uncovered both known and novel functional interactions that comprise the DNA-damage response and allowed us to define the genetic determinants required for repair of interstrand cross-links. Further genetic analysis allowed determination of epistasis for one of these functional groups.

  12. Transcriptional Profiling of Whole Blood Identifies a Unique 5-Gene Signature for Myelofibrosis and Imminent Myelofibrosis Transformation

    DEFF Research Database (Denmark)

    Hasselbalch, Hans Carl; Skov, Vibe; Stauffer Larsen, Thomas

    2014-01-01

    Identifying a distinct gene signature for myelofibrosis may yield novel information of the genes, which are responsible for progression of essential thrombocythemia and polycythemia vera towards myelofibrosis. We aimed at identifying a simple gene signature - composed of a few genes - which were...

  13. The FUN of identifying gene function in bacterial pathogens; insights from Salmonella functional genomics.

    Science.gov (United States)

    Hammarlöf, Disa L; Canals, Rocío; Hinton, Jay C D

    2013-10-01

    The availability of thousands of genome sequences of bacterial pathogens poses a particular challenge because each genome contains hundreds of genes of unknown function (FUN). How can we easily discover which FUN genes encode important virulence factors? One solution is to combine two different functional genomic approaches. First, transcriptomics identifies bacterial FUN genes that show differential expression during the process of mammalian infection. Second, global mutagenesis identifies individual FUN genes that the pathogen requires to cause disease. The intersection of these datasets can reveal a small set of candidate genes most likely to encode novel virulence attributes. We demonstrate this approach with the Salmonella infection model, and propose that a similar strategy could be used for other bacterial pathogens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Gene expression signature analysis identifies vorinostat as a candidate therapy for gastric cancer.

    Directory of Open Access Journals (Sweden)

    Sofie Claerhout

    Full Text Available Gastric cancer continues to be one of the deadliest cancers in the world and therefore identification of new drugs targeting this type of cancer is thus of significant importance. The purpose of this study was to identify and validate a therapeutic agent which might improve the outcomes for gastric cancer patients in the future.Using microarray technology, we generated a gene expression profile of human gastric cancer-specific genes from human gastric cancer tissue samples. We used this profile in the Broad Institute's Connectivity Map analysis to identify candidate therapeutic compounds for gastric cancer. We found the histone deacetylase inhibitor vorinostat as the lead compound and thus a potential therapeutic drug for gastric cancer. Vorinostat induced both apoptosis and autophagy in gastric cancer cell lines. Pharmacological and genetic inhibition of autophagy however, increased the therapeutic efficacy of vorinostat, indicating that a combination of vorinostat with autophagy inhibitors may therapeutically be more beneficial. Moreover, gene expression analysis of gastric cancer identified a collection of genes (ITGB5, TYMS, MYB, APOC1, CBX5, PLA2G2A, and KIF20A whose expression was elevated in gastric tumor tissue and downregulated more than 2-fold by vorinostat treatment in gastric cancer cell lines. In contrast, SCGB2A1, TCN1, CFD, APLP1, and NQO1 manifested a reversed pattern.We showed that analysis of gene expression signature may represent an emerging approach to discover therapeutic agents for gastric cancer, such as vorinostat. The observation of altered gene expression after vorinostat treatment may provide the clue to identify the molecular mechanism of vorinostat and those patients likely to benefit from vorinostat treatment.

  15. Cellular responses of Saccharomyces cerevisiae to DNA damage

    International Nuclear Information System (INIS)

    Ciesla, Z.; Sledziewska-Gojska, E.; Nowicka, A.; Mieczkowski, P.; Fikus, M.U.; Koprowski, P.

    1998-01-01

    Full text. Several experimental strategies have been used to study responses of S. cerevisiae cells to DNA damage. One approach was based on the isolation of novel genes, the expression of which is induced by lesions in DNA. One of these genes, DIN7, was cloned and partially characterized previously. The product of DIN7 belongs to a large family of proteins involved in DNA repair and mutagenesis. This family includes Rad2, Rad27 and ExoI proteins of S. cerevisiae and their respective human homologues, all of which are endowed with DNA nuclease activity. To study cellular function of Din7 we constructed the pPK3 plasmid carrying DIN7 fused to the GAL1 promoter. Effects of DIN7 overproduction on the phenotypes of wild-type cells and of rad27 and exoI mutants were examined. Overproduction of Din7 does not seem to affect the proficiency of wild-type S. cerevisiae cells in recombination and mutagenesis. Also, overexpression of DIN7 does not suppress the deficiency of the EXOI gene product, the closest homologue of Din7, both in recombination and in controlling the fidelity of DNA replication. Unexpectedly, we found that elevated levels of Din7 result in a very high frequency of mitochondrial rho - mutants. A high frequency of production of rho - mutants wa s also observed in strains defective in the functioning of the Dun1 protein kinase involved in signal transmission in cells exposed to DNA damaging agents. Interestingly, deficiency of Dun1 results also in a significant derepression of the DIN7 gene. Experiments are under way to distinguish whether a high cellular level of Din7 specifically decreases stability of mitochondrial DNA or affects stability of chromosomal DNA as well. Analysis of previously constructed S. cerevisiae strains carrying random geno mic fusions with reporter lacZ gene, allowed us to identify the reading frame YBR173c, on chromosome II as a novel damage inducible gene - DIN8. We have shown that DIN8-lacZ fusion is induced in yeast cells treated

  16. Identifying novel genes and biological processes relevant to the development of cancer therapy-induced mucositis: An informative gene network analysis.

    Directory of Open Access Journals (Sweden)

    Cielito C Reyes-Gibby

    Full Text Available Mucositis is a complex, dose-limiting toxicity of chemotherapy or radiotherapy that leads to painful mouth ulcers, difficulty eating or swallowing, gastrointestinal distress, and reduced quality of life for patients with cancer. Mucositis is most common for those undergoing high-dose chemotherapy and hematopoietic stem cell transplantation and for those being treated for malignancies of the head and neck. Treatment and management of mucositis remain challenging. It is expected that multiple genes are involved in the formation, severity, and persistence of mucositis. We used Ingenuity Pathway Analysis (IPA, a novel network-based approach that integrates complex intracellular and intercellular interactions involved in diseases, to systematically explore the molecular complexity of mucositis. As a first step, we searched the literature to identify genes that harbor or are close to the genetic variants significantly associated with mucositis. Our literature review identified 27 candidate genes, of which ERCC1, XRCC1, and MTHFR were the most frequently studied for mucositis. On the basis of this 27-gene list, we used IPA to generate gene networks for mucositis. The most biologically significant novel molecules identified through IPA analyses included TP53, CTNNB1, MYC, RB1, P38 MAPK, and EP300. Additionally, uracil degradation II (reductive and thymine degradation pathways (p = 1.06-08 were most significant. Finally, utilizing 66 SNPs within the 8 most connected IPA-derived candidate molecules, we conducted a genetic association study for oral mucositis in the head and neck cancer patients who were treated using chemotherapy and/or radiation therapy (186 head and neck cancer patients with oral mucositis vs. 699 head and neck cancer patients without oral mucositis. The top ranked gene identified through this association analysis was RB1 (rs2227311, p-value = 0.034, odds ratio = 0.67. In conclusion, gene network analysis identified novel molecules and

  17. Identifying novel genes and biological processes relevant to the development of cancer therapy-induced mucositis: An informative gene network analysis.

    Science.gov (United States)

    Reyes-Gibby, Cielito C; Melkonian, Stephanie C; Wang, Jian; Yu, Robert K; Shelburne, Samuel A; Lu, Charles; Gunn, Gary Brandon; Chambers, Mark S; Hanna, Ehab Y; Yeung, Sai-Ching J; Shete, Sanjay

    2017-01-01

    Mucositis is a complex, dose-limiting toxicity of chemotherapy or radiotherapy that leads to painful mouth ulcers, difficulty eating or swallowing, gastrointestinal distress, and reduced quality of life for patients with cancer. Mucositis is most common for those undergoing high-dose chemotherapy and hematopoietic stem cell transplantation and for those being treated for malignancies of the head and neck. Treatment and management of mucositis remain challenging. It is expected that multiple genes are involved in the formation, severity, and persistence of mucositis. We used Ingenuity Pathway Analysis (IPA), a novel network-based approach that integrates complex intracellular and intercellular interactions involved in diseases, to systematically explore the molecular complexity of mucositis. As a first step, we searched the literature to identify genes that harbor or are close to the genetic variants significantly associated with mucositis. Our literature review identified 27 candidate genes, of which ERCC1, XRCC1, and MTHFR were the most frequently studied for mucositis. On the basis of this 27-gene list, we used IPA to generate gene networks for mucositis. The most biologically significant novel molecules identified through IPA analyses included TP53, CTNNB1, MYC, RB1, P38 MAPK, and EP300. Additionally, uracil degradation II (reductive) and thymine degradation pathways (p = 1.06-08) were most significant. Finally, utilizing 66 SNPs within the 8 most connected IPA-derived candidate molecules, we conducted a genetic association study for oral mucositis in the head and neck cancer patients who were treated using chemotherapy and/or radiation therapy (186 head and neck cancer patients with oral mucositis vs. 699 head and neck cancer patients without oral mucositis). The top ranked gene identified through this association analysis was RB1 (rs2227311, p-value = 0.034, odds ratio = 0.67). In conclusion, gene network analysis identified novel molecules and biological

  18. Using reporter gene assays to identify cis regulatory differences between humans and chimpanzees.

    Science.gov (United States)

    Chabot, Adrien; Shrit, Ralla A; Blekhman, Ran; Gilad, Yoav

    2007-08-01

    Most phenotypic differences between human and chimpanzee are likely to result from differences in gene regulation, rather than changes to protein-coding regions. To date, however, only a handful of human-chimpanzee nucleotide differences leading to changes in gene regulation have been identified. To hone in on differences in regulatory elements between human and chimpanzee, we focused on 10 genes that were previously found to be differentially expressed between the two species. We then designed reporter gene assays for the putative human and chimpanzee promoters of the 10 genes. Of seven promoters that we found to be active in human liver cell lines, human and chimpanzee promoters had significantly different activity in four cases, three of which recapitulated the gene expression difference seen in the microarray experiment. For these three genes, we were therefore able to demonstrate that a change in cis influences expression differences between humans and chimpanzees. Moreover, using site-directed mutagenesis on one construct, the promoter for the DDA3 gene, we were able to identify three nucleotides that together lead to a cis regulatory difference between the species. High-throughput application of this approach can provide a map of regulatory element differences between humans and our close evolutionary relatives.

  19. Genome-wide association study identifies candidate genes for starch content regulation in maize kernels

    Directory of Open Access Journals (Sweden)

    Na Liu

    2016-07-01

    Full Text Available Kernel starch content is an important trait in maize (Zea mays L. as it accounts for 65% to 75% of the dry kernel weight and positively correlates with seed yield. A number of starch synthesis-related genes have been identified in maize in recent years. However, many loci underlying variation in starch content among maize inbred lines still remain to be identified. The current study is a genome-wide association study that used a set of 263 maize inbred lines. In this panel, the average kernel starch content was 66.99%, ranging from 60.60% to 71.58% over the three study years. These inbred lines were genotyped with the SNP50 BeadChip maize array, which is comprised of 56,110 evenly spaced, random SNPs. Population structure was controlled by a mixed linear model (MLM as implemented in the software package TASSEL. After the statistical analyses, four SNPs were identified as significantly associated with starch content (P ≤ 0.0001, among which one each are located on chromosomes 1 and 5 and two are on chromosome 2. Furthermore, 77 candidate genes associated with starch synthesis were found within the 100-kb intervals containing these four QTLs, and four highly associated genes were within 20-kb intervals of the associated SNPs. Among the four genes, Glucose-1-phosphate adenylyltransferase (APS1; Gene ID GRMZM2G163437 is known as an important regulator of kernel starch content. The identified SNPs, QTLs, and candidate genes may not only be readily used for germplasm improvement by marker-assisted selection in breeding, but can also elucidate the genetic basis of starch content. Further studies on these identified candidate genes may help determine the molecular mechanisms regulating kernel starch content in maize and other important cereal crops.

  20. Differential effects of silver nanoparticles on DNA damage and DNA repair gene expression in Ogg1-deficient and wild type mice.

    Science.gov (United States)

    Nallanthighal, Sameera; Chan, Cadia; Murray, Thomas M; Mosier, Aaron P; Cady, Nathaniel C; Reliene, Ramune

    2017-10-01

    Due to extensive use in consumer goods, it is important to understand the genotoxicity of silver nanoparticles (AgNPs) and identify susceptible populations. 8-Oxoguanine DNA glycosylase 1 (OGG1) excises 8-oxo-7,8-dihydro-2-deoxyguanine (8-oxoG), a pro-mutagenic lesion induced by oxidative stress. To understand whether defects in OGG1 is a possible genetic factor increasing an individual's susceptibly to AgNPs, we determined DNA damage, genome rearrangements, and expression of DNA repair genes in Ogg1-deficient and wild type mice exposed orally to 4 mg/kg of citrate-coated AgNPs over a period of 7 d. DNA damage was examined at 3 and 7 d of exposure and 7 and 14 d post-exposure. AgNPs induced 8-oxoG, double strand breaks (DSBs), chromosomal damage, and DNA deletions in both genotypes. However, 8-oxoG was induced earlier in Ogg1-deficient mice and 8-oxoG levels were higher after 7-d treatment and persisted longer after exposure termination. AgNPs downregulated DNA glycosylases Ogg1, Neil1, and Neil2 in wild type mice, but upregulated Myh, Neil1, and Neil2 glycosylases in Ogg1-deficient mice. Neil1 and Neil2 can repair 8-oxoG. Thus, AgNP-mediated downregulation of DNA glycosylases in wild type mice may contribute to genotoxicity, while upregulation thereof in Ogg1-deficient mice could serve as an adaptive response to AgNP-induced DNA damage. However, our data show that Ogg1 is indispensable for the efficient repair of AgNP-induced damage. In summary, citrate-coated AgNPs are genotoxic in both genotypes and Ogg1 deficiency exacerbates the effect. These data suggest that humans with genetic polymorphisms and mutations in OGG1 may have increased susceptibility to AgNP-mediated DNA damage.

  1. CAsubtype: An R Package to Identify Gene Sets Predictive of Cancer Subtypes and Clinical Outcomes.

    Science.gov (United States)

    Kong, Hualei; Tong, Pan; Zhao, Xiaodong; Sun, Jielin; Li, Hua

    2018-03-01

    In the past decade, molecular classification of cancer has gained high popularity owing to its high predictive power on clinical outcomes as compared with traditional methods commonly used in clinical practice. In particular, using gene expression profiles, recent studies have successfully identified a number of gene sets for the delineation of cancer subtypes that are associated with distinct prognosis. However, identification of such gene sets remains a laborious task due to the lack of tools with flexibility, integration and ease of use. To reduce the burden, we have developed an R package, CAsubtype, to efficiently identify gene sets predictive of cancer subtypes and clinical outcomes. By integrating more than 13,000 annotated gene sets, CAsubtype provides a comprehensive repertoire of candidates for new cancer subtype identification. For easy data access, CAsubtype further includes the gene expression and clinical data of more than 2000 cancer patients from TCGA. CAsubtype first employs principal component analysis to identify gene sets (from user-provided or package-integrated ones) with robust principal components representing significantly large variation between cancer samples. Based on these principal components, CAsubtype visualizes the sample distribution in low-dimensional space for better understanding of the distinction between samples and classifies samples into subgroups with prevalent clustering algorithms. Finally, CAsubtype performs survival analysis to compare the clinical outcomes between the identified subgroups, assessing their clinical value as potentially novel cancer subtypes. In conclusion, CAsubtype is a flexible and well-integrated tool in the R environment to identify gene sets for cancer subtype identification and clinical outcome prediction. Its simple R commands and comprehensive data sets enable efficient examination of the clinical value of any given gene set, thus facilitating hypothesis generating and testing in biological and

  2. GTI: a novel algorithm for identifying outlier gene expression profiles from integrated microarray datasets.

    Directory of Open Access Journals (Sweden)

    John Patrick Mpindi

    Full Text Available BACKGROUND: Meta-analysis of gene expression microarray datasets presents significant challenges for statistical analysis. We developed and validated a new bioinformatic method for the identification of genes upregulated in subsets of samples of a given tumour type ('outlier genes', a hallmark of potential oncogenes. METHODOLOGY: A new statistical method (the gene tissue index, GTI was developed by modifying and adapting algorithms originally developed for statistical problems in economics. We compared the potential of the GTI to detect outlier genes in meta-datasets with four previously defined statistical methods, COPA, the OS statistic, the t-test and ORT, using simulated data. We demonstrated that the GTI performed equally well to existing methods in a single study simulation. Next, we evaluated the performance of the GTI in the analysis of combined Affymetrix gene expression data from several published studies covering 392 normal samples of tissue from the central nervous system, 74 astrocytomas, and 353 glioblastomas. According to the results, the GTI was better able than most of the previous methods to identify known oncogenic outlier genes. In addition, the GTI identified 29 novel outlier genes in glioblastomas, including TYMS and CDKN2A. The over-expression of these genes was validated in vivo by immunohistochemical staining data from clinical glioblastoma samples. Immunohistochemical data were available for 65% (19 of 29 of these genes, and 17 of these 19 genes (90% showed a typical outlier staining pattern. Furthermore, raltitrexed, a specific inhibitor of TYMS used in the therapy of tumour types other than glioblastoma, also effectively blocked cell proliferation in glioblastoma cell lines, thus highlighting this outlier gene candidate as a potential therapeutic target. CONCLUSIONS/SIGNIFICANCE: Taken together, these results support the GTI as a novel approach to identify potential oncogene outliers and drug targets. The algorithm is

  3. Influence of the xonA gene of Escherichia coli in response to radiation

    International Nuclear Information System (INIS)

    Ponce M, J.; Serment G, J.; Brena V, M.

    2003-01-01

    The Escherichia coli bacteria has a repair and tolerance system known as SOS that works when there is damage in the DNA. However it is necessary that this damage modifies before the system is activated. For this it has intended to the enzymes that degrade DNA like responsible for generating this modifications. It has already been identified to the product of the gene recJ and according to the results that here are presented that of the gene xonA has similar activity. When both genes fail, not alone the activity SOS is inhibited but rather the mortality increases, for ionizing radiation. The above mentioned reinforces the importance of these genes in the recovery to the damage caused to the genome. (Author)

  4. Cross-species global and subset gene expression profiling identifies genes involved in prostate cancer response to selenium

    Directory of Open Access Journals (Sweden)

    Dhir Rajiv

    2004-08-01

    Full Text Available Abstract Background Gene expression technologies have the ability to generate vast amounts of data, yet there often resides only limited resources for subsequent validation studies. This necessitates the ability to perform sorting and prioritization of the output data. Previously described methodologies have used functional pathways or transcriptional regulatory grouping to sort genes for further study. In this paper we demonstrate a comparative genomics based method to leverage data from animal models to prioritize genes for validation. This approach allows one to develop a disease-based focus for the prioritization of gene data, a process that is essential for systems that lack significant functional pathway data yet have defined animal models. This method is made possible through the use of highly controlled spotted cDNA slide production and the use of comparative bioinformatics databases without the use of cross-species slide hybridizations. Results Using gene expression profiling we have demonstrated a similar whole transcriptome gene expression patterns in prostate cancer cells from human and rat prostate cancer cell lines both at baseline expression levels and after treatment with physiologic concentrations of the proposed chemopreventive agent Selenium. Using both the human PC3 and rat PAII prostate cancer cell lines have gone on to identify a subset of one hundred and fifty-four genes that demonstrate a similar level of differential expression to Selenium treatment in both species. Further analysis and data mining for two genes, the Insulin like Growth Factor Binding protein 3, and Retinoic X Receptor alpha, demonstrates an association with prostate cancer, functional pathway links, and protein-protein interactions that make these genes prime candidates for explaining the mechanism of Selenium's chemopreventive effect in prostate cancer. These genes are subsequently validated by western blots showing Selenium based induction and using

  5. Post-head-emergence frost in wheat and barley: defining the problem, assessing the damage, and identifying resistance.

    Science.gov (United States)

    Frederiks, T M; Christopher, J T; Sutherland, M W; Borrell, A K

    2015-06-01

    Radiant frost is a significant production constraint to wheat (Triticum aestivum) and barley (Hordeum vulgare), particularly in regions where spring-habit cereals are grown through winter, maturing in spring. However, damage to winter-habit cereals in reproductive stages is also reported. Crops are particularly susceptible to frost once awns or spikes emerge from the protection of the flag leaf sheath. Post-head-emergence frost (PHEF) is a problem distinct from other cold-mediated production constraints. To date, useful increased PHEF resistance in cereals has not been identified. Given the renewed interest in reproductive frost damage in cereals, it is timely to review the problem. Here we update the extent and impacts of PHEF and document current management options to combat this challenge. We clarify terminology useful for discussing PHEF in relation to chilling and other freezing stresses. We discuss problems characterizing radiant frost, the environmental conditions leading to PHEF damage, and the effects of frost at different growth stages. PHEF resistant cultivars would be highly desirable, to both reduce the incidence of direct frost damage and to allow the timing of crop maturity to be managed to maximize yield potential. A framework of potential adaptation mechanisms is outlined. Clarification of these critical issues will sharpen research focus, improving opportunities to identify genetic sources for improved PHEF resistance. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. A large-scale RNA interference screen identifies genes that regulate autophagy at different stages

    DEFF Research Database (Denmark)

    Guo, Sujuan; Pridham, Kevin J; Virbasius, Ching-Man

    2018-01-01

    Dysregulated autophagy is central to the pathogenesis and therapeutic development of cancer. However, how autophagy is regulated in cancer is not well understood and genes that modulate cancer autophagy are not fully defined. To gain more insights into autophagy regulation in cancer, we performed...... with fluorescence-activated cell sorting, we successfully isolated autophagic K562 cells where we identified 336 short hairpin RNAs. After candidate validation using Cyto-ID fluorescence spectrophotometry, LC3B immunoblotting, and quantitative RT-PCR, 82 genes were identified as autophagy-regulating genes. 20 genes...... have been reported previously and the remaining 62 candidates are novel autophagy mediators. Bioinformatic analyses revealed that most candidate genes were involved in molecular pathways regulating autophagy, rather than directly participating in the autophagy process. Further autophagy flux assays...

  7. Gene and protein expression of epidermal growth factor measured on the kidney 24 hours after irradiation correlates to late radiation damage

    International Nuclear Information System (INIS)

    Otsuka, Makoto; Hatakenaka, Masamitsu

    2001-01-01

    This study was designed to evaluate the proliferative response of epidermal growth factor (EGF) gene expression as an early indicator of late renal radiation damage. EGF gene expression was measured in the irradiated left kidney of C3H/HeSlc mice using RT-PCR 24 hours after radiation doses of 9, 12, or 15 Gy. In a second experiment, the same radiation doses were administered to the right kidney plus the lower half of the left kidney. The partly irradiated left kidneys were harvested and EGF gene expression was measured. The irradiated whole right kidneys were subjected to immunohistochemical staining for EGF protein. In a third experiment, 12 Gy was administered to the right kidney plus the lower half of the left kidney. The mice underwent left nephrectomy 24 hours after radiation, and the EGF gene expression in the kidney was correlated with the blood urea nitrogen (BUN) level representing late renal functional damage. EGF expression increased in 1 of 10 control mice and in 9 of 10 mice that received 15 Gy. The extent of increase of EGF was dependent on radiation dose. In mice having an increased BUN level after irradiation, 7 of 10 had EGF positive irradiated kidneys. All six mice whose BUN levels were unchanged had EGF-negative irradiated kidneys. EGF protein staining was observed in tubule cells only, not in glomerular cells. The amount of EGF protein staining correlated with radiation dose to some extent. EGF gene expression seems to be a very early indicator of late radiation damage to the kidney. (author)

  8. X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes.

    Science.gov (United States)

    Hu, H; Haas, S A; Chelly, J; Van Esch, H; Raynaud, M; de Brouwer, A P M; Weinert, S; Froyen, G; Frints, S G M; Laumonnier, F; Zemojtel, T; Love, M I; Richard, H; Emde, A-K; Bienek, M; Jensen, C; Hambrock, M; Fischer, U; Langnick, C; Feldkamp, M; Wissink-Lindhout, W; Lebrun, N; Castelnau, L; Rucci, J; Montjean, R; Dorseuil, O; Billuart, P; Stuhlmann, T; Shaw, M; Corbett, M A; Gardner, A; Willis-Owen, S; Tan, C; Friend, K L; Belet, S; van Roozendaal, K E P; Jimenez-Pocquet, M; Moizard, M-P; Ronce, N; Sun, R; O'Keeffe, S; Chenna, R; van Bömmel, A; Göke, J; Hackett, A; Field, M; Christie, L; Boyle, J; Haan, E; Nelson, J; Turner, G; Baynam, G; Gillessen-Kaesbach, G; Müller, U; Steinberger, D; Budny, B; Badura-Stronka, M; Latos-Bieleńska, A; Ousager, L B; Wieacker, P; Rodríguez Criado, G; Bondeson, M-L; Annerén, G; Dufke, A; Cohen, M; Van Maldergem, L; Vincent-Delorme, C; Echenne, B; Simon-Bouy, B; Kleefstra, T; Willemsen, M; Fryns, J-P; Devriendt, K; Ullmann, R; Vingron, M; Wrogemann, K; Wienker, T F; Tzschach, A; van Bokhoven, H; Gecz, J; Jentsch, T J; Chen, W; Ropers, H-H; Kalscheuer, V M

    2016-01-01

    X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes or loci are yet to be identified. Here, we have investigated 405 unresolved families with XLID. We employed massively parallel sequencing of all X-chromosome exons in the index males. The majority of these males were previously tested negative for copy number variations and for mutations in a subset of known XLID genes by Sanger sequencing. In total, 745 X-chromosomal genes were screened. After stringent filtering, a total of 1297 non-recurrent exonic variants remained for prioritization. Co-segregation analysis of potential clinically relevant changes revealed that 80 families (20%) carried pathogenic variants in established XLID genes. In 19 families, we detected likely causative protein truncating and missense variants in 7 novel and validated XLID genes (CLCN4, CNKSR2, FRMPD4, KLHL15, LAS1L, RLIM and USP27X) and potentially deleterious variants in 2 novel candidate XLID genes (CDK16 and TAF1). We show that the CLCN4 and CNKSR2 variants impair protein functions as indicated by electrophysiological studies and altered differentiation of cultured primary neurons from Clcn4(-/-) mice or after mRNA knock-down. The newly identified and candidate XLID proteins belong to pathways and networks with established roles in cognitive function and intellectual disability in particular. We suggest that systematic sequencing of all X-chromosomal genes in a cohort of patients with genetic evidence for X-chromosome locus involvement may resolve up to 58% of Fragile X-negative cases.

  9. Gene Expression Signature Analysis Identifies Vorinostat as a Candidate Therapy for Gastric Cancer

    Science.gov (United States)

    Choi, Woonyoung; Park, Yun-Yong; Kim, KyoungHyun; Kim, Sang-Bae; Lee, Ju-Seog; Mills, Gordon B.; Cho, Jae Yong

    2011-01-01

    Background Gastric cancer continues to be one of the deadliest cancers in the world and therefore identification of new drugs targeting this type of cancer is thus of significant importance. The purpose of this study was to identify and validate a therapeutic agent which might improve the outcomes for gastric cancer patients in the future. Methodology/Principal Findings Using microarray technology, we generated a gene expression profile of human gastric cancer–specific genes from human gastric cancer tissue samples. We used this profile in the Broad Institute's Connectivity Map analysis to identify candidate therapeutic compounds for gastric cancer. We found the histone deacetylase inhibitor vorinostat as the lead compound and thus a potential therapeutic drug for gastric cancer. Vorinostat induced both apoptosis and autophagy in gastric cancer cell lines. Pharmacological and genetic inhibition of autophagy however, increased the therapeutic efficacy of vorinostat, indicating that a combination of vorinostat with autophagy inhibitors may therapeutically be more beneficial. Moreover, gene expression analysis of gastric cancer identified a collection of genes (ITGB5, TYMS, MYB, APOC1, CBX5, PLA2G2A, and KIF20A) whose expression was elevated in gastric tumor tissue and downregulated more than 2-fold by vorinostat treatment in gastric cancer cell lines. In contrast, SCGB2A1, TCN1, CFD, APLP1, and NQO1 manifested a reversed pattern. Conclusions/Significance We showed that analysis of gene expression signature may represent an emerging approach to discover therapeutic agents for gastric cancer, such as vorinostat. The observation of altered gene expression after vorinostat treatment may provide the clue to identify the molecular mechanism of vorinostat and those patients likely to benefit from vorinostat treatment. PMID:21931799

  10. X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes

    OpenAIRE

    Hu, H.; Haas, S.A.; Chelly, J.; Van Esch, H.; Raynaud, M.; de Brouwer, A.P.M.; Weinert, S.; Froyen, G.; Frints, S.G.M.; Laumonnier, F.; Zemojtel, T.; Love, M.I.; Richard, H.; Emde, A.K.; Bienek, M.

    2016-01-01

    X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes or loci are yet to be identified. Here, we have investigated 405 unresolved families with XLID. We employed massively parallel sequencing of all X-chromosome exons in the index males. The majority of ...

  11. Identifying candidate driver genes by integrative ovarian cancer genomics data

    Science.gov (United States)

    Lu, Xinguo; Lu, Jibo

    2017-08-01

    Integrative analysis of molecular mechanics underlying cancer can distinguish interactions that cannot be revealed based on one kind of data for the appropriate diagnosis and treatment of cancer patients. Tumor samples exhibit heterogeneity in omics data, such as somatic mutations, Copy Number Variations CNVs), gene expression profiles and so on. In this paper we combined gene co-expression modules and mutation modulators separately in tumor patients to obtain the candidate driver genes for resistant and sensitive tumor from the heterogeneous data. The final list of modulators identified are well known in biological processes associated with ovarian cancer, such as CCL17, CACTIN, CCL16, CCL22, APOB, KDF1, CCL11, HNF1B, LRG1, MED1 and so on, which can help to facilitate the discovery of biomarkers, molecular diagnostics, and drug discovery.

  12. Resistance gene candidates identified by PCR with degenerate oligonucleotide primers map to clusters of resistance genes in lettuce.

    Science.gov (United States)

    Shen, K A; Meyers, B C; Islam-Faridi, M N; Chin, D B; Stelly, D M; Michelmore, R W

    1998-08-01

    The recent cloning of genes for resistance against diverse pathogens from a variety of plants has revealed that many share conserved sequence motifs. This provides the possibility of isolating numerous additional resistance genes by polymerase chain reaction (PCR) with degenerate oligonucleotide primers. We amplified resistance gene candidates (RGCs) from lettuce with multiple combinations of primers with low degeneracy designed from motifs in the nucleotide binding sites (NBSs) of RPS2 of Arabidopsis thaliana and N of tobacco. Genomic DNA, cDNA, and bacterial artificial chromosome (BAC) clones were successfully used as templates. Four families of sequences were identified that had the same similarity to each other as to resistance genes from other species. The relationship of the amplified products to resistance genes was evaluated by several sequence and genetic criteria. The amplified products contained open reading frames with additional sequences characteristic of NBSs. Hybridization of RGCs to genomic DNA and to BAC clones revealed large numbers of related sequences. Genetic analysis demonstrated the existence of clustered multigene families for each of the four RGC sequences. This parallels classical genetic data on clustering of disease resistance genes. Two of the four families mapped to known clusters of resistance genes; these two families were therefore studied in greater detail. Additional evidence that these RGCs could be resistance genes was gained by the identification of leucine-rich repeat (LRR) regions in sequences adjoining the NBS similar to those in RPM1 and RPS2 of A. thaliana. Fluorescent in situ hybridization confirmed the clustered genomic distribution of these sequences. The use of PCR with degenerate oligonucleotide primers is therefore an efficient method to identify numerous RGCs in plants.

  13. Gene-environment interaction involving recently identified colorectal cancer susceptibility loci

    Science.gov (United States)

    Kantor, Elizabeth D.; Hutter, Carolyn M.; Minnier, Jessica; Berndt, Sonja I.; Brenner, Hermann; Caan, Bette J.; Campbell, Peter T.; Carlson, Christopher S.; Casey, Graham; Chan, Andrew T.; Chang-Claude, Jenny; Chanock, Stephen J.; Cotterchio, Michelle; Du, Mengmeng; Duggan, David; Fuchs, Charles S.; Giovannucci, Edward L.; Gong, Jian; Harrison, Tabitha A.; Hayes, Richard B.; Henderson, Brian E.; Hoffmeister, Michael; Hopper, John L.; Jenkins, Mark A.; Jiao, Shuo; Kolonel, Laurence N.; Le Marchand, Loic; Lemire, Mathieu; Ma, Jing; Newcomb, Polly A.; Ochs-Balcom, Heather M.; Pflugeisen, Bethann M.; Potter, John D.; Rudolph, Anja; Schoen, Robert E.; Seminara, Daniela; Slattery, Martha L.; Stelling, Deanna L.; Thomas, Fridtjof; Thornquist, Mark; Ulrich, Cornelia M.; Warnick, Greg S.; Zanke, Brent W.; Peters, Ulrike; Hsu, Li; White, Emily

    2014-01-01

    BACKGROUND Genome-wide association studies have identified several single nucleotide polymorphisms (SNPs) that are associated with risk of colorectal cancer (CRC). Prior research has evaluated the presence of gene-environment interaction involving the first 10 identified susceptibility loci, but little work has been conducted on interaction involving SNPs at recently identified susceptibility loci, including: rs10911251, rs6691170, rs6687758, rs11903757, rs10936599, rs647161, rs1321311, rs719725, rs1665650, rs3824999, rs7136702, rs11169552, rs59336, rs3217810, rs4925386, and rs2423279. METHODS Data on 9160 cases and 9280 controls from the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO) and Colon Cancer Family Registry (CCFR) were used to evaluate the presence of interaction involving the above-listed SNPs and sex, body mass index (BMI), alcohol consumption, smoking, aspirin use, post-menopausal hormone (PMH) use, as well as intake of dietary calcium, dietary fiber, dietary folate, red meat, processed meat, fruit, and vegetables. Interaction was evaluated using a fixed-effects meta-analysis of an efficient Empirical Bayes estimator, and permutation was used to account for multiple comparisons. RESULTS None of the permutation-adjusted p-values reached statistical significance. CONCLUSIONS The associations between recently identified genetic susceptibility loci and CRC are not strongly modified by sex, BMI, alcohol, smoking, aspirin, PMH use, and various dietary factors. IMPACT Results suggest no evidence of strong gene-environment interactions involving the recently identified 16 susceptibility loci for CRC taken one at a time. PMID:24994789

  14. LGscore: A method to identify disease-related genes using biological literature and Google data.

    Science.gov (United States)

    Kim, Jeongwoo; Kim, Hyunjin; Yoon, Youngmi; Park, Sanghyun

    2015-04-01

    Since the genome project in 1990s, a number of studies associated with genes have been conducted and researchers have confirmed that genes are involved in disease. For this reason, the identification of the relationships between diseases and genes is important in biology. We propose a method called LGscore, which identifies disease-related genes using Google data and literature data. To implement this method, first, we construct a disease-related gene network using text-mining results. We then extract gene-gene interactions based on co-occurrences in abstract data obtained from PubMed, and calculate the weights of edges in the gene network by means of Z-scoring. The weights contain two values: the frequency and the Google search results. The frequency value is extracted from literature data, and the Google search result is obtained using Google. We assign a score to each gene through a network analysis. We assume that genes with a large number of links and numerous Google search results and frequency values are more likely to be involved in disease. For validation, we investigated the top 20 inferred genes for five different diseases using answer sets. The answer sets comprised six databases that contain information on disease-gene relationships. We identified a significant number of disease-related genes as well as candidate genes for Alzheimer's disease, diabetes, colon cancer, lung cancer, and prostate cancer. Our method was up to 40% more accurate than existing methods. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Induction of innate immune gene expression following methyl methanesulfonate-induced DNA damage in sea urchins

    OpenAIRE

    Reinardy, H. C.; Chapman, J.; Bodnar, A. G.

    2016-01-01

    Sea urchins are noted for the absence of neoplastic disease and represent a novel model to investigate cellular and systemic cancer protection mechanisms. Following intracoelomic injection of the DNA alkylating agent methyl methanesulfonate, DNA damage was detected in sea urchin cells and tissues (coelomocytes, muscle, oesophagus, ampullae and gonad) by the alkaline unwinding, fast micromethod. Gene expression analyses of the coelomocytes indicated upregulation of innate immune markers, inclu...

  16. Specific transcripts are elevated in Saccharomyces cerevisiae in response to DNA damage

    International Nuclear Information System (INIS)

    McClanahan, T.; McEntee, K.

    1984-01-01

    Differential hybridization has been used to identify genes in Saccharomyces cerevisiae displaying increased transcript levels after treatment of cells with UV irradiation or with the mutagen/carcinogen 4-nitroquinoline-1-oxide (NQO). The authors describe the isolation and characterization of four DNA damage responsive genes obtained from screening ca. 9000 yeast genomic clones. Two of these clones, lambda 78A and pBR178C, contain repetitive elements in the yeast genome as shown by Southern hybridization analysis. Although the genomic hybridization pattern is distinct for each of these two clones, both of these sequences hybridize to large polyadenylated transcripts ca. 5 kilobases in length. Two other DNA damage responsive sequences, pBRA2 and pBR3016B, are single-copy genes and hybridize to 0.5- and 3.2-kilobase transcripts, respectively. Kinetic analysis of the 0.5-kilobase transcript homologous to pBRA2 indicates that the level of this RNA increases more than 15-fold within 20 min after exposure to 4-nitroquinoline-1-oxide. Moreover, the level of this transcript is significantly elevated in cells containing the rad52-1 mutation which are deficient in DNA strand break repair and gene conversion. These results provide some of the first evidence that DNA damage stimulates transcription of specific genes in eucaryotic cells

  17. Tumor Suppressor Genes within Common Fragile Sites Are Active Players in the DNA Damage Response.

    Directory of Open Access Journals (Sweden)

    Idit Hazan

    2016-12-01

    Full Text Available The role of common fragile sites (CFSs in cancer remains controversial. Two main views dominate the discussion: one suggests that CFS loci are hotspots of genomic instability leading to inactivation of genes encoded within them, while the other view proposes that CFSs are functional units and that loss of the encoded genes confers selective pressure, leading to cancer development. The latter view is supported by emerging evidence showing that expression of a given CFS is associated with genome integrity and that inactivation of CFS-resident tumor suppressor genes leads to dysregulation of the DNA damage response (DDR and increased genomic instability. These two viewpoints of CFS function are not mutually exclusive but rather coexist; when breaks at CFSs are not repaired accurately, this can lead to deletions by which cells acquire growth advantage because of loss of tumor suppressor activities. Here, we review recent advances linking some CFS gene products with the DDR, genomic instability, and carcinogenesis and discuss how their inactivation might represent a selective advantage for cancer cells.

  18. Transcriptional profiling of whole blood identifies a unique 5-gene signature for myelofibrosis and imminent myelofibrosis transformation.

    Directory of Open Access Journals (Sweden)

    Hans Carl Hasselbalch

    Full Text Available Identifying a distinct gene signature for myelofibrosis may yield novel information of the genes, which are responsible for progression of essential thrombocythemia and polycythemia vera towards myelofibrosis. We aimed at identifying a simple gene signature - composed of a few genes - which were selectively and highly deregulated in myelofibrosis patients. Gene expression microarray studies have been performed on whole blood from 69 patients with myeloproliferative neoplasms. Amongst the top-20 of the most upregulated genes in PMF compared to controls, we identified 5 genes (DEFA4, ELA2, OLFM4, CTSG, and AZU1, which were highly significantly deregulated in PMF only. None of these genes were significantly regulated in ET and PV patients. However, hierarchical cluster analysis showed that these genes were also highly expressed in a subset of patients with ET (n = 1 and PV (n = 4 transforming towards myelofibrosis and/or being featured by an aggressive phenotype. We have identified a simple 5-gene signature, which is uniquely and highly significantly deregulated in patients in transitional stages of ET and PV towards myelofibrosis and in patients with PMF only. Some of these genes are considered to be responsible for the derangement of bone marrow stroma in myelofibrosis. Accordingly, this gene-signature may reflect key processes in the pathogenesis and pathophysiology of myelofibrosis development.

  19. New Mutation Identified in the SRY Gene High Mobility Group (HMG

    Directory of Open Access Journals (Sweden)

    Feride İffet Şahin

    2013-06-01

    Full Text Available Mutations in the SRY gene prevent the differentiation of the fetal gonads to testes and cause developing female phenotype, and as a result sex reversal and pure gonadal dysgenesis (Swyer syndrome can be developed. Different types of mutations identified in the SRY gene are responsible for 15% of the gonadal dysgenesis. In this study, we report a new mutation (R132P in the High Mobility Group (HMG region of SRY gene was detected in a patient with primary amenorrhea who has 46,XY karyotype. This mutation leads to replacement of the polar and basic arginine with a nonpolar hydrophobic proline residue at aminoacid 132 in the nuclear localization signal region of the protein. With this case report we want to emphasize the genetic approach to the patients with gonadal dysgenesis. If Y chromosome is detected during cytogenetic analysis, revealing the presence of the SRY gene and identification of mutations in this gene by sequencing analysis is become important in.

  20. Selection on plant male function genes identifies candidates for reproductive isolation of yellow monkeyflowers.

    Directory of Open Access Journals (Sweden)

    Jan E Aagaard

    Full Text Available Understanding the genetic basis of reproductive isolation promises insight into speciation and the origins of biological diversity. While progress has been made in identifying genes underlying barriers to reproduction that function after fertilization (post-zygotic isolation, we know much less about earlier acting pre-zygotic barriers. Of particular interest are barriers involved in mating and fertilization that can evolve extremely rapidly under sexual selection, suggesting they may play a prominent role in the initial stages of reproductive isolation. A significant challenge to the field of speciation genetics is developing new approaches for identification of candidate genes underlying these barriers, particularly among non-traditional model systems. We employ powerful proteomic and genomic strategies to study the genetic basis of conspecific pollen precedence, an important component of pre-zygotic reproductive isolation among yellow monkeyflowers (Mimulus spp. resulting from male pollen competition. We use isotopic labeling in combination with shotgun proteomics to identify more than 2,000 male function (pollen tube proteins within maternal reproductive structures (styles of M. guttatus flowers where pollen competition occurs. We then sequence array-captured pollen tube exomes from a large outcrossing population of M. guttatus, and identify those genes with evidence of selective sweeps or balancing selection consistent with their role in pollen competition. We also test for evidence of positive selection on these genes more broadly across yellow monkeyflowers, because a signal of adaptive divergence is a common feature of genes causing reproductive isolation. Together the molecular evolution studies identify 159 pollen tube proteins that are candidate genes for conspecific pollen precedence. Our work demonstrates how powerful proteomic and genomic tools can be readily adapted to non-traditional model systems, allowing for genome-wide screens

  1. Consistent Differential Expression Pattern (CDEP) on microarray to identify genes related to metastatic behavior.

    Science.gov (United States)

    Tsoi, Lam C; Qin, Tingting; Slate, Elizabeth H; Zheng, W Jim

    2011-11-11

    To utilize the large volume of gene expression information generated from different microarray experiments, several meta-analysis techniques have been developed. Despite these efforts, there remain significant challenges to effectively increasing the statistical power and decreasing the Type I error rate while pooling the heterogeneous datasets from public resources. The objective of this study is to develop a novel meta-analysis approach, Consistent Differential Expression Pattern (CDEP), to identify genes with common differential expression patterns across different datasets. We combined False Discovery Rate (FDR) estimation and the non-parametric RankProd approach to estimate the Type I error rate in each microarray dataset of the meta-analysis. These Type I error rates from all datasets were then used to identify genes with common differential expression patterns. Our simulation study showed that CDEP achieved higher statistical power and maintained low Type I error rate when compared with two recently proposed meta-analysis approaches. We applied CDEP to analyze microarray data from different laboratories that compared transcription profiles between metastatic and primary cancer of different types. Many genes identified as differentially expressed consistently across different cancer types are in pathways related to metastatic behavior, such as ECM-receptor interaction, focal adhesion, and blood vessel development. We also identified novel genes such as AMIGO2, Gem, and CXCL11 that have not been shown to associate with, but may play roles in, metastasis. CDEP is a flexible approach that borrows information from each dataset in a meta-analysis in order to identify genes being differentially expressed consistently. We have shown that CDEP can gain higher statistical power than other existing approaches under a variety of settings considered in the simulation study, suggesting its robustness and insensitivity to data variation commonly associated with microarray

  2. Comparative transcriptional profiling of the axolotl limb identifies a tripartite regeneration-specific gene program.

    Directory of Open Access Journals (Sweden)

    Dunja Knapp

    Full Text Available Understanding how the limb blastema is established after the initial wound healing response is an important aspect of regeneration research. Here we performed parallel expression profile time courses of healing lateral wounds versus amputated limbs in axolotl. This comparison between wound healing and regeneration allowed us to identify amputation-specific genes. By clustering the expression profiles of these samples, we could detect three distinguishable phases of gene expression - early wound healing followed by a transition-phase leading to establishment of the limb development program, which correspond to the three phases of limb regeneration that had been defined by morphological criteria. By focusing on the transition-phase, we identified 93 strictly amputation-associated genes many of which are implicated in oxidative-stress response, chromatin modification, epithelial development or limb development. We further classified the genes based on whether they were or were not significantly expressed in the developing limb bud. The specific localization of 53 selected candidates within the blastema was investigated by in situ hybridization. In summary, we identified a set of genes that are expressed specifically during regeneration and are therefore, likely candidates for the regulation of blastema formation.

  3. Preferential Allele Expression Analysis Identifies Shared Germline and Somatic Driver Genes in Advanced Ovarian Cancer

    Science.gov (United States)

    Halabi, Najeeb M.; Martinez, Alejandra; Al-Farsi, Halema; Mery, Eliane; Puydenus, Laurence; Pujol, Pascal; Khalak, Hanif G.; McLurcan, Cameron; Ferron, Gwenael; Querleu, Denis; Al-Azwani, Iman; Al-Dous, Eman; Mohamoud, Yasmin A.; Malek, Joel A.; Rafii, Arash

    2016-01-01

    Identifying genes where a variant allele is preferentially expressed in tumors could lead to a better understanding of cancer biology and optimization of targeted therapy. However, tumor sample heterogeneity complicates standard approaches for detecting preferential allele expression. We therefore developed a novel approach combining genome and transcriptome sequencing data from the same sample that corrects for sample heterogeneity and identifies significant preferentially expressed alleles. We applied this analysis to epithelial ovarian cancer samples consisting of matched primary ovary and peritoneum and lymph node metastasis. We find that preferentially expressed variant alleles include germline and somatic variants, are shared at a relatively high frequency between patients, and are in gene networks known to be involved in cancer processes. Analysis at a patient level identifies patient-specific preferentially expressed alleles in genes that are targets for known drugs. Analysis at a site level identifies patterns of site specific preferential allele expression with similar pathways being impacted in the primary and metastasis sites. We conclude that genes with preferentially expressed variant alleles can act as cancer drivers and that targeting those genes could lead to new therapeutic strategies. PMID:26735499

  4. Bacteriophage T4 gene 32 participates in excision repair as well as recombinational repair of UV damages

    International Nuclear Information System (INIS)

    Mosig, G.

    1985-01-01

    Gene 32 of phage T4 has been shown previously to be involved in recombinational repair of UV damages but, based on a mutant study, was thought not to be required for excision repair. However, a comparison of UV-inactivation curves of several gene 32 mutants grown under conditions permissive for progeny production in wild-type or polA- hosts demonstrates that gene 32 participates in both kinds of repair. Different gene 32 mutations differentially inactivate these repair functions. Under conditions permissive for DNA replication and progeny production, all gene 32 mutants investigated here are partially defective in recombinational repair, whereas only two of them, P7 and P401, are also defective in excision repair. P401 is the only mutant whose final slope of the inactivation curve is significantly steeper than that of wild-type T4. These results are discussed in terms of interactions of gp32, a single-stranded DNA-binding protein, with DNA and with other proteins

  5. DNA Damage, Mutagenesis and Cancer

    Directory of Open Access Journals (Sweden)

    Ashis K. Basu

    2018-03-01

    Full Text Available A large number of chemicals and several physical agents, such as UV light and γ-radiation, have been associated with the etiology of human cancer. Generation of DNA damage (also known as DNA adducts or lesions induced by these agents is an important first step in the process of carcinogenesis. Evolutionary processes gave rise to DNA repair tools that are efficient in repairing damaged DNA; yet replication of damaged DNA may take place prior to repair, particularly when they are induced at a high frequency. Damaged DNA replication may lead to gene mutations, which in turn may give rise to altered proteins. Mutations in an oncogene, a tumor-suppressor gene, or a gene that controls the cell cycle can generate a clonal cell population with a distinct advantage in proliferation. Many such events, broadly divided into the stages of initiation, promotion, and progression, which may occur over a long period of time and transpire in the context of chronic exposure to carcinogens, can lead to the induction of human cancer. This is exemplified in the long-term use of tobacco being responsible for an increased risk of lung cancer. This mini-review attempts to summarize this wide area that centers on DNA damage as it relates to the development of human cancer.

  6. Amygdala-enriched genes identified by microarray technology are restricted to specific amygdaloid subnuclei

    OpenAIRE

    Zirlinger, M.; Kreiman, Gabriel; Anderson, D. J.

    2001-01-01

    Microarray technology represents a potentially powerful method for identifying cell type- and regionally restricted genes expressed in the brain. Here we have combined a microarray analysis of differential gene expression among five selected brain regions, including the amygdala, cerebellum, hippocampus, olfactory bulb, and periaqueductal gray, with in situ hybridization. On average, 0.3% of the 34,000 genes interrogated were highly enriched in each of the five regions...

  7. X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes

    NARCIS (Netherlands)

    Hu, H; Haas, S.A.; Chelly, J.; Esch, H. Van; Raynaud, M.; Brouwer, A.P. de; Weinert, S.; Froyen, G.; Frints, S.G.; Laumonnier, F.; Zemojtel, T.; Love, M.I.; Richard, H.; Emde, A.K.; Bienek, M.; Jensen, C.; Hambrock, M.; Fischer, U.; Langnick, C.; Feldkamp, M.; Wissink-Lindhout, W.; Lebrun, N.; Castelnau, L.; Rucci, J.; Montjean, R.; Dorseuil, O.; Billuart, P.; Stuhlmann, T.; Shaw, M.; Corbett, M.A.; Gardner, A.; Willis-Owen, S.; Tan, C.; Friend, K.L.; Belet, S.; Roozendaal, K.E. van; Jimenez-Pocquet, M.; Moizard, M.P.; Ronce, N.; Sun, R.; O'Keeffe, S.; Chenna, R.; Bommel, A. van; Goke, J.; Hackett, A.; Field, M.; Christie, L.; Boyle, J.; Haan, E.; Nelson, J.; Turner, G.; Baynam, G.; Gillessen-Kaesbach, G.; Muller, U.; Steinberger, D.; Budny, B.; Badura-Stronka, M.; Latos-Bielenska, A.; Ousager, L.B.; Wieacker, P.; Rodriguez Criado, G.; Bondeson, M.L.; Anneren, G.; Dufke, A.; Cohen, M.; Maldergem, L. Van; Vincent-Delorme, C.; Echenne, B.; Simon-Bouy, B.; Kleefstra, T.; Willemsen, M.H.; Fryns, J.P.; Devriendt, K.; Ullmann, R.; Vingron, M.; Wrogemann, K.; Wienker, T.F.; Tzschach, A.; Bokhoven, H. van; Gecz, J.; Jentsch, T.J.; Chen, W.; Ropers, H.H.; Kalscheuer, V.M.

    2016-01-01

    X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes or

  8. X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes

    DEFF Research Database (Denmark)

    Hu, H; Haas, S A; Chelly, J

    2016-01-01

    X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes...

  9. Endothelial nitric oxide synthase gene polymorphisms and cardiovascular damage in hypertensive subjects: an Italian case-control study

    Directory of Open Access Journals (Sweden)

    Pizzo Federica

    2008-05-01

    Full Text Available Abstract Background Nitric oxide (NO synthesized by endothelial nitric oxide synthase (eNOS plays an important role in regulation of endothelial function and in the control of blood pressure. However, the results from some studies on the association between three clinically relevant eNOS gene polymorphisms (G894T, T786C and intron 4b/a and essential hypertension are unclear. We designed a case-control study to evaluate the influence of eNOS polymorphisms on target organ damage in 127 hypertensives and 67 normotensives. Clinical evaluation, biochemical parameters, Urinary Albumin Excretion (UAE and echocardiogram were performed to characterize target organ damage. eNOS polymorphism were recognized by PCR method. Results The distribution of eNOS genotypes was similar in hypertensives and normotensives but 4aa was present in the 2.5% of hypertensives and completely absent in normotensives. Subjects with 4bb, G894T, and T786C genotypes showed an increased prevalence of target organ damage. Moreover prevalence of G894T and introne 4 variants was significantly higher in hypertensives than in normotensives both with cardiovascular damage. Logistic regression analysis didn't show any association between eNOS polymorphisms, Body Mass Index (BMI, hypertension, gender and cardiovascular damage. Only the age (OR 1.11; IC 95% 1.06–1.18 was predictive of cardiovascular damage in our population. Conclusion Our results seem to indicate a lack of association with eNOS variants and cardiovascular damage onset.

  10. Correlation of the UV-induced mutational spectra and the DNA damage distribution of the human HPRT gene: Automating the analysis

    International Nuclear Information System (INIS)

    Kotturi, G.; Erfle, H.; Koop, B.F.; Boer, J.G. de; Glickman, B.W.

    1994-01-01

    Automated DNA sequencers can be readily adapted for various types of sequence-based nucleic acid analysis: more recently it was determined the distribution of UV photoproducts in the E. coli laci gene using techniques developed for automated fluorescence-based analysis. We have been working to improve the automated approach of damage distribution. Our current method is more rigorous. We have new software that integrates the area under the individual peaks, rather than measuring the height of the curve. In addition, we now employ an internal standard. The analysis can also be partially automated. Detection limits for both major types of UV-photoproducts (cyclobutane dimers and pyrimidine (6-4) pyrimidone photoproducts) are reported. The UV-induced damage distribution in the hprt gene is compared to the mutational spectra in human and rodents cells

  11. Exome Sequencing and Linkage Analysis Identified Novel Candidate Genes in Recessive Intellectual Disability Associated with Ataxia.

    Science.gov (United States)

    Jazayeri, Roshanak; Hu, Hao; Fattahi, Zohreh; Musante, Luciana; Abedini, Seyedeh Sedigheh; Hosseini, Masoumeh; Wienker, Thomas F; Ropers, Hans Hilger; Najmabadi, Hossein; Kahrizi, Kimia

    2015-10-01

    Intellectual disability (ID) is a neuro-developmental disorder which causes considerable socio-economic problems. Some ID individuals are also affected by ataxia, and the condition includes different mutations affecting several genes. We used whole exome sequencing (WES) in combination with homozygosity mapping (HM) to identify the genetic defects in five consanguineous families among our cohort study, with two affected children with ID and ataxia as major clinical symptoms. We identified three novel candidate genes, RIPPLY1, MRPL10, SNX14, and a new mutation in known gene SURF1. All are autosomal genes, except RIPPLY1, which is located on the X chromosome. Two are housekeeping genes, implicated in transcription and translation regulation and intracellular trafficking, and two encode mitochondrial proteins. The pathogenesis of these variants was evaluated by mutation classification, bioinformatic methods, review of medical and biological relevance, co-segregation studies in the particular family, and a normal population study. Linkage analysis and exome sequencing of a small number of affected family members is a powerful new technique which can be used to decrease the number of candidate genes in heterogenic disorders such as ID, and may even identify the responsible gene(s).

  12. High-Throughput Screening to Identify Regulators of Meiosis-Specific Gene Expression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kassir, Yona

    2017-01-01

    Meiosis and gamete formation are processes that are essential for sexual reproduction in all eukaryotic organisms. Multiple intracellular and extracellular signals feed into pathways that converge on transcription factors that induce the expression of meiosis-specific genes. Once triggered the meiosis-specific gene expression program proceeds in a cascade that drives progress through the events of meiosis and gamete formation. Meiosis-specific gene expression is tightly controlled by a balance of positive and negative regulatory factors that respond to a plethora of signaling pathways. The budding yeast Saccharomyces cerevisiae has proven to be an outstanding model for the dissection of gametogenesis owing to the sophisticated genetic manipulations that can be performed with the cells. It is possible to use a variety selection and screening methods to identify genes and their functions. High-throughput screening technology has been developed to allow an array of all viable yeast gene deletion mutants to be screened for phenotypes and for regulators of gene expression. This chapter describes a protocol that has been used to screen a library of homozygous diploid yeast deletion strains to identify regulators of the meiosis-specific IME1 gene.

  13. Gene polymorphisms against DNA damage induced by hydrogen peroxide in leukocytes of healthy humans through comet assay: a quasi-experimental study

    Directory of Open Access Journals (Sweden)

    Klautau-Guimarães Maria N

    2010-05-01

    Full Text Available Abstract Background Normal cellular metabolism is well established as the source of endogenous reactive oxygen species which account for the background levels of oxidative DNA damage detected in normal tissue. Hydrogen peroxide imposes an oxidative stress condition on cells that can result in DNA damage, leading to mutagenesis and cell death. Several potentially significant genetic variants related to oxidative stress have already been identified, and angiotensin I-converting enzyme (ACE inhibitors have been reported as possible antioxidant agents that can reduce vascular oxidative stress in cardiovascular events. Methods We investigate the influences of haptoglobin, manganese superoxide dismutase (MnSOD Val9Ala, catalase (CAT -21A/T, glutathione peroxidase 1 (GPx-1 Pro198Leu, ACE (I/D and gluthatione S-transferases GSTM1 and GSTT1 gene polymorphisms against DNA damage and oxidative stress. These were induced by exposing leukocytes from peripheral blood of healthy humans (N = 135 to hydrogen peroxide (H2O2, and the effects were tested by comet assay. Blood samples were submitted to genotyping and comet assay (before and after treatment with H2O2 at 250 μM and 1 mM. Results After treatment with H2O2 at 250 μM, the GPx-1 polymorphism significantly influenced results of comet assay and a possible association of the Pro/Leu genotype with higher DNA damage was found. The highest or lowest DNA damage also depended on interaction between GPX-1/ACE and Hp/GSTM1T1 polymorphisms when hydrogen peroxide treatment increased oxidative stress. Conclusions The GPx-1 polymorphism and the interactions between GPX-1/ACE and Hp/GSTM1T1 can be determining factors for DNA oxidation provoked by hydrogen peroxide, and thus for higher susceptibility to or protection against oxidative stress suffered by healthy individuals.

  14. Transcriptomic Analysis Using Olive Varieties and Breeding Progenies Identifies Candidate Genes Involved in Plant Architecture.

    Science.gov (United States)

    González-Plaza, Juan J; Ortiz-Martín, Inmaculada; Muñoz-Mérida, Antonio; García-López, Carmen; Sánchez-Sevilla, José F; Luque, Francisco; Trelles, Oswaldo; Bejarano, Eduardo R; De La Rosa, Raúl; Valpuesta, Victoriano; Beuzón, Carmen R

    2016-01-01

    Plant architecture is a critical trait in fruit crops that can significantly influence yield, pruning, planting density and harvesting. Little is known about how plant architecture is genetically determined in olive, were most of the existing varieties are traditional with an architecture poorly suited for modern growing and harvesting systems. In the present study, we have carried out microarray analysis of meristematic tissue to compare expression profiles of olive varieties displaying differences in architecture, as well as seedlings from their cross pooled on the basis of their sharing architecture-related phenotypes. The microarray used, previously developed by our group has already been applied to identify candidates genes involved in regulating juvenile to adult transition in the shoot apex of seedlings. Varieties with distinct architecture phenotypes and individuals from segregating progenies displaying opposite architecture features were used to link phenotype to expression. Here, we identify 2252 differentially expressed genes (DEGs) associated to differences in plant architecture. Microarray results were validated by quantitative RT-PCR carried out on genes with functional annotation likely related to plant architecture. Twelve of these genes were further analyzed in individual seedlings of the corresponding pool. We also examined Arabidopsis mutants in putative orthologs of these targeted candidate genes, finding altered architecture for most of them. This supports a functional conservation between species and potential biological relevance of the candidate genes identified. This study is the first to identify genes associated to plant architecture in olive, and the results obtained could be of great help in future programs aimed at selecting phenotypes adapted to modern cultivation practices in this species.

  15. Homocysteine and the C677T Gene Polymorphism of Its Key Metabolic Enzyme MTHFR Are Risk Factors of Early Renal Damage in Hypertension in a Chinese Han Population.

    Science.gov (United States)

    Yun, Lin; Xu, Rui; Li, Guohua; Yao, Yucai; Li, Jiamin; Cong, Dehong; Xu, Xingshun; Zhang, Lihua

    2015-12-01

    The combined hyperhomocysteinemia condition is a feature of the Chinese hypertensive population. This study used the case-control method to investigate the association between plasma homocysteine and the C677T gene polymorphism of its key metabolic enzyme, 5, 10-methylenetetrahydrofolate reductase (MTHFR), and early renal damage in a hypertensive Chinese Han population.A total of 379 adult essential hypertensive patients were selected as the study subjects. The personal information, clinical indicators, and the C677T gene polymorphism of MTHFR were texted. This study used the urine microalbumin/urine creatinine ratio (UACR) as a grouping basis: the hypertension without renal damage group (NRD group) and the hypertension combined with early renal damage group (ERD group).Early renal damage in the Chinese hypertensive population was associated with body weight, systolic pressure, diastolic pressure, urea nitrogen, serum creatinine, cystatin C, uric acid, aldosterone, and glomerular filtration rate. The homocysteine level and the UACR in the TT genotype group were higher than those in the CC genotype group. The binary logistic regression analysis results showed that after sex and age were adjusted, the MTHFR C677T gene polymorphism was correlated with early renal damage in hypertension in both the recessive model and in the additive model.Plasma homocysteine and the C677T gene polymorphism of its key metabolic enzyme MTHFR might be independent risk factors of early renal damage in the hypertensive Chinese Han population.

  16. Next-generation sequencing identifies transportin 3 as the causative gene for LGMD1F.

    Directory of Open Access Journals (Sweden)

    Annalaura Torella

    Full Text Available Limb-girdle muscular dystrophies (LGMD are genetically and clinically heterogeneous conditions. We investigated a large family with autosomal dominant transmission pattern, previously classified as LGMD1F and mapped to chromosome 7q32. Affected members are characterized by muscle weakness affecting earlier the pelvic girdle and the ileopsoas muscles. We sequenced the whole exome of four family members and identified a shared heterozygous frame-shift variant in the Transportin 3 (TNPO3 gene, encoding a member of the importin-β super-family. The TNPO3 gene is mapped within the LGMD1F critical interval and its 923-amino acid human gene product is also expressed in skeletal muscle. In addition, we identified an isolated case of LGMD with a new missense mutation in the same gene. We localized the mutant TNPO3 around the nucleus, but not inside. The involvement of gene related to the nuclear transport suggests a novel disease mechanism leading to muscular dystrophy.

  17. Identifying noncoding risk variants using disease-relevant gene regulatory networks.

    Science.gov (United States)

    Gao, Long; Uzun, Yasin; Gao, Peng; He, Bing; Ma, Xiaoke; Wang, Jiahui; Han, Shizhong; Tan, Kai

    2018-02-16

    Identifying noncoding risk variants remains a challenging task. Because noncoding variants exert their effects in the context of a gene regulatory network (GRN), we hypothesize that explicit use of disease-relevant GRNs can significantly improve the inference accuracy of noncoding risk variants. We describe Annotation of Regulatory Variants using Integrated Networks (ARVIN), a general computational framework for predicting causal noncoding variants. It employs a set of novel regulatory network-based features, combined with sequence-based features to infer noncoding risk variants. Using known causal variants in gene promoters and enhancers in a number of diseases, we show ARVIN outperforms state-of-the-art methods that use sequence-based features alone. Additional experimental validation using reporter assay further demonstrates the accuracy of ARVIN. Application of ARVIN to seven autoimmune diseases provides a holistic view of the gene subnetwork perturbed by the combinatorial action of the entire set of risk noncoding mutations.

  18. A method to identify differential expression profiles of time-course gene data with Fourier transformation.

    Science.gov (United States)

    Kim, Jaehee; Ogden, Robert Todd; Kim, Haseong

    2013-10-18

    Time course gene expression experiments are an increasingly popular method for exploring biological processes. Temporal gene expression profiles provide an important characterization of gene function, as biological systems are both developmental and dynamic. With such data it is possible to study gene expression changes over time and thereby to detect differential genes. Much of the early work on analyzing time series expression data relied on methods developed originally for static data and thus there is a need for improved methodology. Since time series expression is a temporal process, its unique features such as autocorrelation between successive points should be incorporated into the analysis. This work aims to identify genes that show different gene expression profiles across time. We propose a statistical procedure to discover gene groups with similar profiles using a nonparametric representation that accounts for the autocorrelation in the data. In particular, we first represent each profile in terms of a Fourier basis, and then we screen out genes that are not differentially expressed based on the Fourier coefficients. Finally, we cluster the remaining gene profiles using a model-based approach in the Fourier domain. We evaluate the screening results in terms of sensitivity, specificity, FDR and FNR, compare with the Gaussian process regression screening in a simulation study and illustrate the results by application to yeast cell-cycle microarray expression data with alpha-factor synchronization.The key elements of the proposed methodology: (i) representation of gene profiles in the Fourier domain; (ii) automatic screening of genes based on the Fourier coefficients and taking into account autocorrelation in the data, while controlling the false discovery rate (FDR); (iii) model-based clustering of the remaining gene profiles. Using this method, we identified a set of cell-cycle-regulated time-course yeast genes. The proposed method is general and can be

  19. Gene-set analysis based on the pharmacological profiles of drugs to identify repurposing opportunities in schizophrenia.

    Science.gov (United States)

    de Jong, Simone; Vidler, Lewis R; Mokrab, Younes; Collier, David A; Breen, Gerome

    2016-08-01

    Genome-wide association studies (GWAS) have identified thousands of novel genetic associations for complex genetic disorders, leading to the identification of potential pharmacological targets for novel drug development. In schizophrenia, 108 conservatively defined loci that meet genome-wide significance have been identified and hundreds of additional sub-threshold associations harbour information on the genetic aetiology of the disorder. In the present study, we used gene-set analysis based on the known binding targets of chemical compounds to identify the 'drug pathways' most strongly associated with schizophrenia-associated genes, with the aim of identifying potential drug repositioning opportunities and clues for novel treatment paradigms, especially in multi-target drug development. We compiled 9389 gene sets (2496 with unique gene content) and interrogated gene-based p-values from the PGC2-SCZ analysis. Although no single drug exceeded experiment wide significance (corrected pneratinib. This is a proof of principle analysis showing the potential utility of GWAS data of schizophrenia for the direct identification of candidate drugs and molecules that show polypharmacy. © The Author(s) 2016.

  20. Identifying Genes Controlling Ferulate Cross-Linking Formation in Grass Cell Walls

    Energy Technology Data Exchange (ETDEWEB)

    de O. Buanafina, Marcia Maria [Pennsylvania State Univ., University Park, PA (United States)

    2013-10-16

    This proposal focuses on cell wall feruloylation and our long term goal is to identify and isolate novel genes controlling feruloylation and to characterize the phenotype of mutants in this pathway, with a spotlight on cell wall properties.

  1. A Generally Applicable Translational Strategy Identifies S100A4 as a Candidate Gene in Allergy

    DEFF Research Database (Denmark)

    Bruhn, Sören; Fang, Yu; Barrenäs, Fredrik

    2014-01-01

    The identification of diagnostic markers and therapeutic candidate genes in common diseases is complicated by the involvement of thousands of genes. We hypothesized that genes co-regulated with a key gene in allergy, IL13, would form a module that could help to identify candidate genes. We identi...

  2. Utility and Limitations of Using Gene Expression Data to Identify Functional Associations.

    Directory of Open Access Journals (Sweden)

    Sahra Uygun

    2016-12-01

    Full Text Available Gene co-expression has been widely used to hypothesize gene function through guilt-by association. However, it is not clear to what degree co-expression is informative, whether it can be applied to genes involved in different biological processes, and how the type of dataset impacts inferences about gene functions. Here our goal is to assess the utility and limitations of using co-expression as a criterion to recover functional associations between genes. By determining the percentage of gene pairs in a metabolic pathway with significant expression correlation, we found that many genes in the same pathway do not have similar transcript profiles and the choice of dataset, annotation quality, gene function, expression similarity measure, and clustering approach significantly impacts the ability to recover functional associations between genes using Arabidopsis thaliana as an example. Some datasets are more informative in capturing coordinated expression profiles and larger data sets are not always better. In addition, to recover the maximum number of known pathways and identify candidate genes with similar functions, it is important to explore rather exhaustively multiple dataset combinations, similarity measures, clustering algorithms and parameters. Finally, we validated the biological relevance of co-expression cluster memberships with an independent phenomics dataset and found that genes that consistently cluster with leucine degradation genes tend to have similar leucine levels in mutants. This study provides a framework for obtaining gene functional associations by maximizing the information that can be obtained from gene expression datasets.

  3. Indoor microbiota in severely moisture damaged homes and the impact of interventions.

    Science.gov (United States)

    Jayaprakash, Balamuralikrishna; Adams, Rachel I; Kirjavainen, Pirkka; Karvonen, Anne; Vepsäläinen, Asko; Valkonen, Maria; Järvi, Kati; Sulyok, Michael; Pekkanen, Juha; Hyvärinen, Anne; Täubel, Martin

    2017-10-13

    The limited understanding of microbial characteristics in moisture-damaged buildings impedes efforts to clarify which adverse health effects in the occupants are associated with the damage and to develop effective building intervention strategies. The objectives of this current study were (i) to characterize fungal and bacterial microbiota in house dust of severely moisture-damaged residences, (ii) to identify microbial taxa associated with moisture damage renovations, and (iii) to test whether the associations between the identified taxa and moisture damage are replicable in another cohort of homes. We applied bacterial 16S rRNA gene and fungal ITS amplicon sequencing complemented with quantitative PCR and chemical-analytical approaches to samples of house dust, and also performed traditional cultivation of bacteria and fungi from building material samples. Active microbial growth on building materials had significant though small influence on the house dust bacterial and fungal communities. Moisture damage interventions-including actual renovation of damaged homes and cases where families moved to another home-had only a subtle effect on bacterial community structure, seen as shifts in abundance weighted bacterial profiles after intervention. While bacterial and fungal species richness were reduced in homes that were renovated, they were not reduced for families that moved houses. Using different discriminant analysis tools, we were able identify taxa that were significantly reduced in relative abundance during renovation of moisture damage. For bacteria, the majority of candidates belonged to different families within the Actinomycetales order. Results for fungi were overall less consistent. A replication study in approximately 400 homes highlighted some of the identified taxa, confirming associations with observations of moisture damage and mold. The present study is one of the first studies to analyze changes in microbiota due to moisture damage interventions

  4. Gene Network for Identifying the Entropy Changes of Different Modules in Pediatric Sepsis

    Directory of Open Access Journals (Sweden)

    Jing Yang

    2016-12-01

    Full Text Available Background/Aims: Pediatric sepsis is a disease that threatens life of children. The incidence of pediatric sepsis is higher in developing countries due to various reasons, such as insufficient immunization and nutrition, water and air pollution, etc. Exploring the potential genes via different methods is of significance for the prevention and treatment of pediatric sepsis. This study aimed to identify potential genes associated with pediatric sepsis utilizing analysis of gene network and entropy. Methods: The mRNA expression in the blood samples collected from 20 septic children and 30 healthy controls was quantified by using Affymetrix HG-U133A microarray. Two condition-specific protein-protein interaction networks (PINs, one for the healthy control and the other one for the children with sepsis, were deduced by combining the fundamental human PINs with gene expression profiles in the two phenotypes. Subsequently, distinct modules from the two conditional networks were extracted by adopting a maximal clique-merging approach. Delta entropy (ΔS was calculated between sepsis and control modules. Results: Then, key genes displaying changes in gene composition were identified by matching the control and sepsis modules. Two objective modules were obtained, in which ribosomal protein RPL4 and RPL9 as well as TOP2A were probably considered as the key genes differentiating sepsis from healthy controls. Conclusion: According to previous reports and this work, TOP2A is the potential gene therapy target for pediatric sepsis. The relationship between pediatric sepsis and RPL4 and RPL9 needs further investigation.

  5. Multiple and variable NHEJ-like genes are involved in resistance to DNA damage in Streptomyces ambofaciens

    Directory of Open Access Journals (Sweden)

    Grégory Hoff

    2016-11-01

    Full Text Available Non homologous end-joining (NHEJ is a double strand break (DSB repair pathway which does not require any homologous template and can ligate two DNA ends together. The basic bacterial NHEJ machinery involves two partners: the Ku protein, a DNA end binding protein for DSB recognition and the multifunctional LigD protein composed a ligase, a nuclease and a polymerase domain, for end processing and ligation of the broken ends. In silico analyses performed in the 38 sequenced genomes of Streptomyces species revealed the existence of a large panel of NHEJ-like genes. Indeed, ku genes or ligD domain homologues are scattered throughout the genome in multiple copies and can be distinguished in two categories: the core NHEJ gene set constituted of conserved loci and the variable NHEJ gene set constituted of NHEJ-like genes present in only a part of the species. In Streptomyces ambofaciens ATCC 23877, not only the deletion of core genes but also that of variable genes led to an increased sensitivity to DNA damage induced by electron beam irradiation. Multiple mutants of ku, ligase or polymerase encoding genes showed an aggravated phenotype compared to single mutants. Biochemical assays revealed the ability of Ku-like proteins to protect and to stimulate ligation of DNA ends. RT-qPCR and GFP fusion experiments suggested that ku-like genes show a growth phase dependent expression profile consistent with their involvement in DNA repair during spores formation and/or germination.

  6. DNA damage and defence gene expression after oxidative stress induced by x-rays and diesel exhaust particles

    Energy Technology Data Exchange (ETDEWEB)

    Risom, Lotte

    2004-07-01

    Particulate air pollution is one the most important environmental health factors for people living in cities. Especially the exhaust particles from traffic are possible causes for cancer and cardiopulmonary diseases. The aim of this thesis was to characterize the health effects of diesel exhaust particles (DEP) by inducing oxidative stress and analyse the underlying mechanisms. Methods for determining oxidative stress, DNA damage, and gene expression were validated and calibrated in lung tissue by studying the dose response relations after ionizing radiation. The study showed the feasibility of partial-body x-ray irradiation as an in vivo model for induction and repair of oxidative DNA damage, of DNA repair enzymes expression, and antioxidant defense genes. A 'nose-only' mouse model for inhalation of ultra-fine particles showed that particles induce oxidative DNA damage in lung tissue and in bronchoalveolar lavage cells. The exposure increased the expression of HO-1 mRNA and oxoguanine DNA glycosylase OGG1 mRNA. The levels of 8-oxodG and OGG1 mRNA were mirror images. Colon and liver were analysed after administration of DEP in the diet with or without increasing doses of sucrose. This study indicated that DEP induces DNA adducts and oxidative stress through formation of DNA strand breaks, DNA repair enzyme expression, apoptosis, and protein oxidisation in colon and liver at relatively low exposure doses. The thesis is based on four published journal articles. (ln)

  7. DNA damage and defence gene expression after oxidative stress induced by x-rays and diesel exhaust particles

    International Nuclear Information System (INIS)

    Risom, Lotte

    2004-01-01

    Particulate air pollution is one the most important environmental health factors for people living in cities. Especially the exhaust particles from traffic are possible causes for cancer and cardiopulmonary diseases. The aim of this thesis was to characterize the health effects of diesel exhaust particles (DEP) by inducing oxidative stress and analyse the underlying mechanisms. Methods for determining oxidative stress, DNA damage, and gene expression were validated and calibrated in lung tissue by studying the dose response relations after ionizing radiation. The study showed the feasibility of partial-body x-ray irradiation as an in vivo model for induction and repair of oxidative DNA damage, of DNA repair enzymes expression, and antioxidant defense genes. A 'nose-only' mouse model for inhalation of ultra-fine particles showed that particles induce oxidative DNA damage in lung tissue and in bronchoalveolar lavage cells. The exposure increased the expression of HO-1 mRNA and oxoguanine DNA glycosylase OGG1 mRNA. The levels of 8-oxodG and OGG1 mRNA were mirror images. Colon and liver were analysed after administration of DEP in the diet with or without increasing doses of sucrose. This study indicated that DEP induces DNA adducts and oxidative stress through formation of DNA strand breaks, DNA repair enzyme expression, apoptosis, and protein oxidisation in colon and liver at relatively low exposure doses. The thesis is based on four published journal articles. (ln)

  8. Gene expression meta-analysis identifies chromosomal regions involved in ovarian cancer survival

    DEFF Research Database (Denmark)

    Thomassen, Mads; Jochumsen, Kirsten M; Mogensen, Ole

    2009-01-01

    the relation of gene expression and chromosomal position to identify chromosomal regions of importance for early recurrence of ovarian cancer. By use of *Gene Set Enrichment Analysis*, we have ranked chromosomal regions according to their association to survival. Over-representation analysis including 1...... using death (P = 0.015) and recurrence (P = 0.002) as outcome. The combined mutation score is strongly associated to upregulation of several growth factor pathways....

  9. Applications of Earth Remote Sensing for Identifying Tornado and Severe Weather Damage

    Science.gov (United States)

    Schultz, Lori; Molthan, Andrew; Burks, Jason E.; Bell, Jordan; McGrath, Kevin; Cole, Tony

    2016-01-01

    NASA SPoRT (Short-term Prediction Research and Transition Center) provided MODIS (Moderate Resolution Imaging Spectrometer) and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) imagery to WFOs (Weather Forecast Offices) in Alabama to support April 27th, 2011 damage assessments across the state. SPoRT was awarded a NASA Applied Science: Disasters Feasibility award to investigate the applicability of including remote sensing imagery and derived products into the NOAA/NWS (National Oceanic and Atmospheric Administration/National Weather System) Damage Assessment Toolkit (DAT). Proposal team was awarded the 3-year proposal to implement a web mapping service and associate data feeds from the USGS (U.S. Geological Survey) to provide satellite imagery and derived products directly to the NWS thru the DAT. In the United States, NOAA/NWS is charged with performing damage assessments when storm or tornado damage is suspected after a severe weather event. This has led to the development of the Damage Assessment Toolkit (DAT), an application for smartphones, tablets and web browsers that allows for the collection, geo-location, and aggregation of various damage indicators collected during storm surveys.

  10. Systematic enrichment analysis of gene expression profiling studies identifies consensus pathways implicated in colorectal cancer development

    Directory of Open Access Journals (Sweden)

    Jesús Lascorz

    2011-01-01

    Full Text Available Background: A large number of gene expression profiling (GEP studies on colorectal carcinogenesis have been performed but no reliable gene signature has been identified so far due to the lack of reproducibility in the reported genes. There is growing evidence that functionally related genes, rather than individual genes, contribute to the etiology of complex traits. We used, as a novel approach, pathway enrichment tools to define functionally related genes that are consistently up- or down-regulated in colorectal carcinogenesis. Materials and Methods: We started the analysis with 242 unique annotated genes that had been reported by any of three recent meta-analyses covering GEP studies on genes differentially expressed in carcinoma vs normal mucosa. Most of these genes (218, 91.9% had been reported in at least three GEP studies. These 242 genes were submitted to bioinformatic analysis using a total of nine tools to detect enrichment of Gene Ontology (GO categories or Kyoto Encyclopedia of Genes and Genomes (KEGG pathways. As a final consistency criterion the pathway categories had to be enriched by several tools to be taken into consideration. Results: Our pathway-based enrichment analysis identified the categories of ribosomal protein constituents, extracellular matrix receptor interaction, carbonic anhydrase isozymes, and a general category related to inflammation and cellular response as significantly and consistently overrepresented entities. Conclusions: We triaged the genes covered by the published GEP literature on colorectal carcinogenesis and subjected them to multiple enrichment tools in order to identify the consistently enriched gene categories. These turned out to have known functional relationships to cancer development and thus deserve further investigation.

  11. Identifying time-delayed gene regulatory networks via an evolvable hierarchical recurrent neural network.

    Science.gov (United States)

    Kordmahalleh, Mina Moradi; Sefidmazgi, Mohammad Gorji; Harrison, Scott H; Homaifar, Abdollah

    2017-01-01

    The modeling of genetic interactions within a cell is crucial for a basic understanding of physiology and for applied areas such as drug design. Interactions in gene regulatory networks (GRNs) include effects of transcription factors, repressors, small metabolites, and microRNA species. In addition, the effects of regulatory interactions are not always simultaneous, but can occur after a finite time delay, or as a combined outcome of simultaneous and time delayed interactions. Powerful biotechnologies have been rapidly and successfully measuring levels of genetic expression to illuminate different states of biological systems. This has led to an ensuing challenge to improve the identification of specific regulatory mechanisms through regulatory network reconstructions. Solutions to this challenge will ultimately help to spur forward efforts based on the usage of regulatory network reconstructions in systems biology applications. We have developed a hierarchical recurrent neural network (HRNN) that identifies time-delayed gene interactions using time-course data. A customized genetic algorithm (GA) was used to optimize hierarchical connectivity of regulatory genes and a target gene. The proposed design provides a non-fully connected network with the flexibility of using recurrent connections inside the network. These features and the non-linearity of the HRNN facilitate the process of identifying temporal patterns of a GRN. Our HRNN method was implemented with the Python language. It was first evaluated on simulated data representing linear and nonlinear time-delayed gene-gene interaction models across a range of network sizes and variances of noise. We then further demonstrated the capability of our method in reconstructing GRNs of the Saccharomyces cerevisiae synthetic network for in vivo benchmarking of reverse-engineering and modeling approaches (IRMA). We compared the performance of our method to TD-ARACNE, HCC-CLINDE, TSNI and ebdbNet across different network

  12. Candidate Essential Genes in Burkholderia cenocepacia J2315 Identified by Genome-Wide TraDIS

    KAUST Repository

    Wong, Yee-Chin

    2016-08-22

    Burkholderia cenocepacia infection often leads to fatal cepacia syndrome in cystic fibrosis patients. However, antibiotic therapy rarely results in complete eradication of the pathogen due to its intrinsic resistance to many clinically available antibiotics. Recent attention has turned to the identification of essential genes as the proteins encoded by these genes may serve as potential targets for development of novel antimicrobials. In this study, we utilized TraDIS (Transposon Directed Insertion-site Sequencing) as a genome-wide screening tool to facilitate the identification of B. cenocepacia genes essential for its growth and viability. A transposon mutant pool consisting of approximately 500,000 mutants was successfully constructed, with more than 400,000 unique transposon insertion sites identified by computational analysis of TraDIS datasets. The saturated library allowed for the identification of 383 genes that were predicted to be essential in B. cenocepacia. We extended the application of TraDIS to identify conditionally essential genes required for in vitro growth and revealed an additional repertoire of 439 genes to be crucial for B. cenocepacia growth under nutrient-depleted conditions. The library of B. cenocepacia mutants can subsequently be subjected to various biologically related conditions to facilitate the discovery of genes involved in niche adaptation as well as pathogenicity and virulence.

  13. Candidate Essential Genes in Burkholderia cenocepacia J2315 Identified by Genome-Wide TraDIS

    KAUST Repository

    Wong, Yee-Chin; Abd El Ghany, Moataz; Naeem, Raeece; Lee, Kok-Wei; Tan, Yung-Chie; Pain, Arnab; Nathan, Sheila

    2016-01-01

    Burkholderia cenocepacia infection often leads to fatal cepacia syndrome in cystic fibrosis patients. However, antibiotic therapy rarely results in complete eradication of the pathogen due to its intrinsic resistance to many clinically available antibiotics. Recent attention has turned to the identification of essential genes as the proteins encoded by these genes may serve as potential targets for development of novel antimicrobials. In this study, we utilized TraDIS (Transposon Directed Insertion-site Sequencing) as a genome-wide screening tool to facilitate the identification of B. cenocepacia genes essential for its growth and viability. A transposon mutant pool consisting of approximately 500,000 mutants was successfully constructed, with more than 400,000 unique transposon insertion sites identified by computational analysis of TraDIS datasets. The saturated library allowed for the identification of 383 genes that were predicted to be essential in B. cenocepacia. We extended the application of TraDIS to identify conditionally essential genes required for in vitro growth and revealed an additional repertoire of 439 genes to be crucial for B. cenocepacia growth under nutrient-depleted conditions. The library of B. cenocepacia mutants can subsequently be subjected to various biologically related conditions to facilitate the discovery of genes involved in niche adaptation as well as pathogenicity and virulence.

  14. Candidate essential genes in Burkholderia cenocepacia J2315 identified by genome-wide TraDIS

    Directory of Open Access Journals (Sweden)

    Yee-Chin Wong

    2016-08-01

    Full Text Available Burkholderia cenocepacia infection often leads to fatal cepacia syndrome in cystic fibrosis patients. However, antibiotic therapy rarely results in complete eradication of the pathogen due to its intrinsic resistance to many clinically available antibiotics. Recent attention has turned to the identification of essential genes as the proteins encoded by these genes may serve as potential targets for development of novel antimicrobials. In this study, we utilized TraDIS (Transposon Directed Insertion-site Sequencing as a genome-wide screening tool to facilitate the identification of B. cenocepacia genes essential for its growth and viability. A transposon mutant pool consisting of approximately 500,000 mutants was successfully constructed, with more than 400,000 unique transposon insertion sites identified by computational analysis of TraDIS datasets. The saturated library allowed for the identification of 383 genes that were predicted to be essential in B. cenocepacia. We extended the application of TraDIS to identify conditionally essential genes required for in vitro growth and revealed an additional repertoire of 439 genes to be crucial for B. cenocepacia growth under nutrient-depleted conditions. The library of B. cenocepacia mutants can subsequently be subjected to various biologically related conditions to facilitate the discovery of genes involved in niche adaptation as well as pathogenicity and virulence.

  15. Transcriptomic variation among six Arabidopsis thaliana accessions identified several novel genes controlling aluminium tolerance.

    Science.gov (United States)

    Kusunoki, Kazutaka; Nakano, Yuki; Tanaka, Keisuke; Sakata, Yoichi; Koyama, Hiroyuki; Kobayashi, Yuriko

    2017-02-01

    Differences in the expression levels of aluminium (Al) tolerance genes are a known determinant of Al tolerance among plant varieties. We combined transcriptomic analysis of six Arabidopsis thaliana accessions with contrasting Al tolerance and a reverse genetic approach to identify Al-tolerance genes responsible for differences in Al tolerance between accession groups. Gene expression variation increased in the signal transduction process under Al stress and in growth-related processes in the absence of stress. Co-expression analysis and promoter single nucleotide polymorphism searching suggested that both trans-acting polymorphisms of Al signal transduction pathway and cis-acting polymorphisms in the promoter sequences caused the variations in gene expression associated with Al tolerance. Compared with the wild type, Al sensitivity increased in T-DNA knockout (KO) lines for five genes, including TARGET OF AVRB OPERATION1 (TAO1) and an unannotated gene (At5g22530). These were identified from 53 Al-inducible genes showing significantly higher expression in tolerant accessions than in sensitive accessions. These results indicate that the difference in transcriptional signalling is partly associated with the natural variation in Al tolerance in Arabidopsis. Our study also demonstrates the feasibility of comparative transcriptome analysis by using natural genetic variation for the identification of genes responsible for Al stress tolerance. © 2016 John Wiley & Sons Ltd.

  16. The SFP1 gene product of Saccharomyces cerevisiae regulates G2/M transitions during the mitotic cell cycle and DNA-damage response

    International Nuclear Information System (INIS)

    Xu, Z.; Norris, D.

    1998-01-01

    In eukaryotic cells, checkpoint pathways arrest cell-cycle progression if a particular event has failed to complete appropriately or if an important intracellular structure is defective or damaged. Saccharomyces cerevisiae strains that lack the SFP1 gene fail to arrest at the G2 DNA-damage checkpoint in response to genomic injury, but maintain their ability to arrest at the replication and spindle-assembly checkpoints. sfp1D mutants are characterized by a premature entrance into mitosis during a normal (undamaged) cell cycle, while strains that overexpress Sfp1p exhibit delays in G2. Sfp1p therefore acts as a repressor of the G2/M transition, both in the normal cell cycle and in the G2 checkpoint pathway. Sfp1 is a nuclear protein with two Cys2His2 zinc-finger domains commonly found in transcription factors. We propose that Sfp1p regulates the expression of gene products involved in the G2/M transition during the mitotic cell cycle and the DNA-damage response. In support of this model, overexpression of Sfp1p induces the expression of the PDS1 gene, which is known to encode a protein that regulates the G2 checkpoint. (author)

  17. Genome-Wide Temporal Expression Profiling in Caenorhabditis elegans Identifies a Core Gene Set Related to Long-Term Memory.

    Science.gov (United States)

    Freytag, Virginie; Probst, Sabine; Hadziselimovic, Nils; Boglari, Csaba; Hauser, Yannick; Peter, Fabian; Gabor Fenyves, Bank; Milnik, Annette; Demougin, Philippe; Vukojevic, Vanja; de Quervain, Dominique J-F; Papassotiropoulos, Andreas; Stetak, Attila

    2017-07-12

    The identification of genes related to encoding, storage, and retrieval of memories is a major interest in neuroscience. In the current study, we analyzed the temporal gene expression changes in a neuronal mRNA pool during an olfactory long-term associative memory (LTAM) in Caenorhabditis elegans hermaphrodites. Here, we identified a core set of 712 (538 upregulated and 174 downregulated) genes that follows three distinct temporal peaks demonstrating multiple gene regulation waves in LTAM. Compared with the previously published positive LTAM gene set (Lakhina et al., 2015), 50% of the identified upregulated genes here overlap with the previous dataset, possibly representing stimulus-independent memory-related genes. On the other hand, the remaining genes were not previously identified in positive associative memory and may specifically regulate aversive LTAM. Our results suggest a multistep gene activation process during the formation and retrieval of long-term memory and define general memory-implicated genes as well as conditioning-type-dependent gene sets. SIGNIFICANCE STATEMENT The identification of genes regulating different steps of memory is of major interest in neuroscience. Identification of common memory genes across different learning paradigms and the temporal activation of the genes are poorly studied. Here, we investigated the temporal aspects of Caenorhabditis elegans gene expression changes using aversive olfactory associative long-term memory (LTAM) and identified three major gene activation waves. Like in previous studies, aversive LTAM is also CREB dependent, and CREB activity is necessary immediately after training. Finally, we define a list of memory paradigm-independent core gene sets as well as conditioning-dependent genes. Copyright © 2017 the authors 0270-6474/17/376661-12$15.00/0.

  18. Robust Nonnegative Matrix Factorization via Joint Graph Laplacian and Discriminative Information for Identifying Differentially Expressed Genes

    Directory of Open Access Journals (Sweden)

    Ling-Yun Dai

    2017-01-01

    Full Text Available Differential expression plays an important role in cancer diagnosis and classification. In recent years, many methods have been used to identify differentially expressed genes. However, the recognition rate and reliability of gene selection still need to be improved. In this paper, a novel constrained method named robust nonnegative matrix factorization via joint graph Laplacian and discriminative information (GLD-RNMF is proposed for identifying differentially expressed genes, in which manifold learning and the discriminative label information are incorporated into the traditional nonnegative matrix factorization model to train the objective matrix. Specifically, L2,1-norm minimization is enforced on both the error function and the regularization term which is robust to outliers and noise in gene data. Furthermore, the multiplicative update rules and the details of convergence proof are shown for the new model. The experimental results on two publicly available cancer datasets demonstrate that GLD-RNMF is an effective method for identifying differentially expressed genes.

  19. Integration of molecular biology tools for identifying promoters and genes abundantly expressed in flowers of Oncidium Gower Ramsey

    Directory of Open Access Journals (Sweden)

    Tung Shu-Yun

    2011-04-01

    Full Text Available Abstract Background Orchids comprise one of the largest families of flowering plants and generate commercially important flowers. However, model plants, such as Arabidopsis thaliana do not contain all plant genes, and agronomic and horticulturally important genera and species must be individually studied. Results Several molecular biology tools were used to isolate flower-specific gene promoters from Oncidium 'Gower Ramsey' (Onc. GR. A cDNA library of reproductive tissues was used to construct a microarray in order to compare gene expression in flowers and leaves. Five genes were highly expressed in flower tissues, and the subcellular locations of the corresponding proteins were identified using lip transient transformation with fluorescent protein-fusion constructs. BAC clones of the 5 genes, together with 7 previously published flower- and reproductive growth-specific genes in Onc. GR, were identified for cloning of their promoter regions. Interestingly, 3 of the 5 novel flower-abundant genes were putative trypsin inhibitor (TI genes (OnTI1, OnTI2 and OnTI3, which were tandemly duplicated in the same BAC clone. Their promoters were identified using transient GUS reporter gene transformation and stable A. thaliana transformation analyses. Conclusions By combining cDNA microarray, BAC library, and bombardment assay techniques, we successfully identified flower-directed orchid genes and promoters.

  20. Candidate gene linkage approach to identify DNA variants that predispose to preterm birth

    DEFF Research Database (Denmark)

    Bream, Elise N A; Leppellere, Cara R; Cooper, Margaret E

    2013-01-01

    Background:The aim of this study was to identify genetic variants contributing to preterm birth (PTB) using a linkage candidate gene approach.Methods:We studied 99 single-nucleotide polymorphisms (SNPs) for 33 genes in 257 families with PTBs segregating. Nonparametric and parametric analyses were...... through the infant and/or the mother in the etiology of PTB....

  1. Transcriptome analysis of recurrently deregulated genes across multiple cancers identifies new pan-cancer biomarkers

    DEFF Research Database (Denmark)

    Kaczkowski, Bogumil; Tanaka, Yuji; Kawaji, Hideya

    2016-01-01

    Genes that are commonly deregulated in cancer are clinically attractive as candidate pan-diagnostic markers and therapeutic targets. To globally identify such targets, we compared Cap Analysis of Gene Expression (CAGE) profiles from 225 different cancer cell lines and 339 corresponding primary cell...

  2. Identifying Stable Reference Genes for qRT-PCR Normalisation in Gene Expression Studies of Narrow-Leafed Lupin (Lupinus angustifolius L..

    Directory of Open Access Journals (Sweden)

    Candy M Taylor

    Full Text Available Quantitative Reverse Transcription PCR (qRT-PCR is currently one of the most popular, high-throughput and sensitive technologies available for quantifying gene expression. Its accurate application depends heavily upon normalisation of gene-of-interest data with reference genes that are uniformly expressed under experimental conditions. The aim of this study was to provide the first validation of reference genes for Lupinus angustifolius (narrow-leafed lupin, a significant grain legume crop using a selection of seven genes previously trialed as reference genes for the model legume, Medicago truncatula. In a preliminary evaluation, the seven candidate reference genes were assessed on the basis of primer specificity for their respective targeted region, PCR amplification efficiency, and ability to discriminate between cDNA and gDNA. Following this assessment, expression of the three most promising candidates [Ubiquitin C (UBC, Helicase (HEL, and Polypyrimidine tract-binding protein (PTB] was evaluated using the NormFinder and RefFinder statistical algorithms in two narrow-leafed lupin lines, both with and without vernalisation treatment, and across seven organ types (cotyledons, stem, leaves, shoot apical meristem, flowers, pods and roots encompassing three developmental stages. UBC was consistently identified as the most stable candidate and has sufficiently uniform expression that it may be used as a sole reference gene under the experimental conditions tested here. However, as organ type and developmental stage were associated with greater variability in relative expression, it is recommended using UBC and HEL as a pair to achieve optimal normalisation. These results highlight the importance of rigorously assessing candidate reference genes for each species across a diverse range of organs and developmental stages. With emerging technologies, such as RNAseq, and the completion of valuable transcriptome data sets, it is possible that other

  3. Molecular cloning and characterization of an Erwinia carotovora subsp. carotovora pectin lyase gene that responds to DNA-damaging agents.

    OpenAIRE

    McEvoy, J L; Murata, H; Chatterjee, A K

    1990-01-01

    recA-mediated production of pectin lyase (PNL) and the bacteriocin carotovoricin occurs in Erwinia carotovora subsp. carotovora 71 when this organism is subjected to agents that damage or inhibit the synthesis of DNA. The structural gene pnlA was isolated from a strain 71 cosmid gene library following mobilization of the cosmids into a moderate PNL producer, strain 193. The cosmid complemented pnl::Tn5 but not ctv::Tn5 mutations. A constitutive level of PNL activity was detected in RecA+ and ...

  4. Gene Network Construction from Microarray Data Identifies a Key Network Module and Several Candidate Hub Genes in Age-Associated Spatial Learning Impairment.

    Science.gov (United States)

    Uddin, Raihan; Singh, Shiva M

    2017-01-01

    As humans age many suffer from a decrease in normal brain functions including spatial learning impairments. This study aimed to better understand the molecular mechanisms in age-associated spatial learning impairment (ASLI). We used a mathematical modeling approach implemented in Weighted Gene Co-expression Network Analysis (WGCNA) to create and compare gene network models of young (learning unimpaired) and aged (predominantly learning impaired) brains from a set of exploratory datasets in rats in the context of ASLI. The major goal was to overcome some of the limitations previously observed in the traditional meta- and pathway analysis using these data, and identify novel ASLI related genes and their networks based on co-expression relationship of genes. This analysis identified a set of network modules in the young, each of which is highly enriched with genes functioning in broad but distinct GO functional categories or biological pathways. Interestingly, the analysis pointed to a single module that was highly enriched with genes functioning in "learning and memory" related functions and pathways. Subsequent differential network analysis of this "learning and memory" module in the aged (predominantly learning impaired) rats compared to the young learning unimpaired rats allowed us to identify a set of novel ASLI candidate hub genes. Some of these genes show significant repeatability in networks generated from independent young and aged validation datasets. These hub genes are highly co-expressed with other genes in the network, which not only show differential expression but also differential co-expression and differential connectivity across age and learning impairment. The known function of these hub genes indicate that they play key roles in critical pathways, including kinase and phosphatase signaling, in functions related to various ion channels, and in maintaining neuronal integrity relating to synaptic plasticity and memory formation. Taken together, they

  5. Use of an activated beta-catenin to identify Wnt pathway target genes in caenorhabditis elegans, including a subset of collagen genes expressed in late larval development.

    Science.gov (United States)

    Jackson, Belinda M; Abete-Luzi, Patricia; Krause, Michael W; Eisenmann, David M

    2014-04-16

    The Wnt signaling pathway plays a fundamental role during metazoan development, where it regulates diverse processes, including cell fate specification, cell migration, and stem cell renewal. Activation of the beta-catenin-dependent/canonical Wnt pathway up-regulates expression of Wnt target genes to mediate a cellular response. In the nematode Caenorhabditis elegans, a canonical Wnt signaling pathway regulates several processes during larval development; however, few target genes of this pathway have been identified. To address this deficit, we used a novel approach of conditionally activated Wnt signaling during a defined stage of larval life by overexpressing an activated beta-catenin protein, then used microarray analysis to identify genes showing altered expression compared with control animals. We identified 166 differentially expressed genes, of which 104 were up-regulated. A subset of the up-regulated genes was shown to have altered expression in mutants with decreased or increased Wnt signaling; we consider these genes to be bona fide C. elegans Wnt pathway targets. Among these was a group of six genes, including the cuticular collagen genes, bli-1 col-38, col-49, and col-71. These genes show a peak of expression in the mid L4 stage during normal development, suggesting a role in adult cuticle formation. Consistent with this finding, reduction of function for several of the genes causes phenotypes suggestive of defects in cuticle function or integrity. Therefore, this work has identified a large number of putative Wnt pathway target genes during larval life, including a small subset of Wnt-regulated collagen genes that may function in synthesis of the adult cuticle.

  6. Genetic doping and health damages.

    Science.gov (United States)

    Fallahi, Aa; Ravasi, Aa; Farhud, Dd

    2011-01-01

    Use of genetic doping or gene transfer technology will be the newest and the lethal method of doping in future and have some unpleasant consequences for sports, athletes, and outcomes of competitions. The World Anti-Doping Agency (WADA) defines genetic doping as "the non-therapeutic use of genes, genetic elements, and/or cells that have the capacity to enhance athletic performance ". The purpose of this review is to consider genetic doping, health damages and risks of new genes if delivered in athletes. This review, which is carried out by reviewing relevant publications, is primarily based on the journals available in GOOGLE, ELSEVIER, PUBMED in fields of genetic technology, and health using a combination of keywords (e.g., genetic doping, genes, exercise, performance, athletes) until July 2010. There are several genes related to sport performance and if they are used, they will have health risks and sever damages such as cancer, autoimmunization, and heart attack.

  7. Previously unidentified changes in renal cell carcinoma gene expression identified by parametric analysis of microarray data

    International Nuclear Information System (INIS)

    Lenburg, Marc E; Liou, Louis S; Gerry, Norman P; Frampton, Garrett M; Cohen, Herbert T; Christman, Michael F

    2003-01-01

    Renal cell carcinoma is a common malignancy that often presents as a metastatic-disease for which there are no effective treatments. To gain insights into the mechanism of renal cell carcinogenesis, a number of genome-wide expression profiling studies have been performed. Surprisingly, there is very poor agreement among these studies as to which genes are differentially regulated. To better understand this lack of agreement we profiled renal cell tumor gene expression using genome-wide microarrays (45,000 probe sets) and compare our analysis to previous microarray studies. We hybridized total RNA isolated from renal cell tumors and adjacent normal tissue to Affymetrix U133A and U133B arrays. We removed samples with technical defects and removed probesets that failed to exhibit sequence-specific hybridization in any of the samples. We detected differential gene expression in the resulting dataset with parametric methods and identified keywords that are overrepresented in the differentially expressed genes with the Fisher-exact test. We identify 1,234 genes that are more than three-fold changed in renal tumors by t-test, 800 of which have not been previously reported to be altered in renal cell tumors. Of the only 37 genes that have been identified as being differentially expressed in three or more of five previous microarray studies of renal tumor gene expression, our analysis finds 33 of these genes (89%). A key to the sensitivity and power of our analysis is filtering out defective samples and genes that are not reliably detected. The widespread use of sample-wise voting schemes for detecting differential expression that do not control for false positives likely account for the poor overlap among previous studies. Among the many genes we identified using parametric methods that were not previously reported as being differentially expressed in renal cell tumors are several oncogenes and tumor suppressor genes that likely play important roles in renal cell

  8. Fanconi anemia: a disorder defective in the DNA damage response.

    Science.gov (United States)

    Kitao, Hiroyuki; Takata, Minoru

    2011-04-01

    Fanconi anemia (FA) is a cancer predisposition disorder characterized by progressive bone marrow failure, congenital developmental defects, chromosomal abnormalities, and cellular hypersensitivity to DNA interstrand crosslink (ICL) agents. So far mutations in 14 FANC genes were identified in FA or FA-like patients. These gene products constitute a common ubiquitin-phosphorylation network called the "FA pathway" and cooperate with other proteins involved in DNA repair and cell cycle control to repair ICL lesions and to maintain genome stability. In this review, we summarize recent exciting discoveries that have expanded our view of the molecular mechanisms operating in DNA repair and DNA damage signaling.

  9. Gene co-expression analysis identifies gene clusters associated with isotropic and polarized growth in Aspergillus fumigatus conidia.

    Science.gov (United States)

    Baltussen, Tim J H; Coolen, Jordy P M; Zoll, Jan; Verweij, Paul E; Melchers, Willem J G

    2018-04-26

    Aspergillus fumigatus is a saprophytic fungus that extensively produces conidia. These microscopic asexually reproductive structures are small enough to reach the lungs. Germination of conidia followed by hyphal growth inside human lungs is a key step in the establishment of infection in immunocompromised patients. RNA-Seq was used to analyze the transcriptome of dormant and germinating A. fumigatus conidia. Construction of a gene co-expression network revealed four gene clusters (modules) correlated with a growth phase (dormant, isotropic growth, polarized growth). Transcripts levels of genes encoding for secondary metabolites were high in dormant conidia. During isotropic growth, transcript levels of genes involved in cell wall modifications increased. Two modules encoding for growth and cell cycle/DNA processing were associated with polarized growth. In addition, the co-expression network was used to identify highly connected intermodular hub genes. These genes may have a pivotal role in the respective module and could therefore be compelling therapeutic targets. Generally, cell wall remodeling is an important process during isotropic and polarized growth, characterized by an increase of transcripts coding for hyphal growth and cell cycle/DNA processing when polarized growth is initiated. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Use of tiling array data and RNA secondary structure predictions to identify noncoding RNA genes

    DEFF Research Database (Denmark)

    Weile, Christian; Gardner, Paul P; Hedegaard, Mads M

    2007-01-01

    neuroblastoma cell line SK-N-AS. Using this strategy, we identify thousands of human candidate RNA genes. To further verify the expression of these genes, we focused on candidate genes that had a stable hairpin structures or a high level of covariance. Using northern blotting, we verify the expression of 2 out...

  11. Sequence-Based Introgression Mapping Identifies Candidate White Mold Tolerance Genes in Common Bean

    Directory of Open Access Journals (Sweden)

    Sujan Mamidi

    2016-07-01

    Full Text Available White mold, caused by the necrotrophic fungus (Lib. de Bary, is a major disease of common bean ( L.. WM7.1 and WM8.3 are two quantitative trait loci (QTL with major effects on tolerance to the pathogen. Advanced backcross populations segregating individually for either of the two QTL, and a recombinant inbred (RI population segregating for both QTL were used to fine map and confirm the genetic location of the QTL. The QTL intervals were physically mapped using the reference common bean genome sequence, and the physical intervals for each QTL were further confirmed by sequence-based introgression mapping. Using whole-genome sequence data from susceptible and tolerant DNA pools, introgressed regions were identified as those with significantly higher numbers of single-nucleotide polymorphisms (SNPs relative to the whole genome. By combining the QTL and SNP data, WM7.1 was located to a 660-kb region that contained 41 gene models on the proximal end of chromosome Pv07, while the WM8.3 introgression was narrowed to a 1.36-Mb region containing 70 gene models. The most polymorphic candidate gene in the WM7.1 region encodes a BEACH-domain protein associated with apoptosis. Within the WM8.3 interval, a receptor-like protein with the potential to recognize pathogen effectors was the most polymorphic gene. The use of gene and sequence-based mapping identified two candidate genes whose putative functions are consistent with the current model of pathogenicity.

  12. Integration of TP53, DREAM, MMB-FOXM1 and RB-E2F target gene analyses identifies cell cycle gene regulatory networks.

    Science.gov (United States)

    Fischer, Martin; Grossmann, Patrick; Padi, Megha; DeCaprio, James A

    2016-07-27

    Cell cycle (CC) and TP53 regulatory networks are frequently deregulated in cancer. While numerous genome-wide studies of TP53 and CC-regulated genes have been performed, significant variation between studies has made it difficult to assess regulation of any given gene of interest. To overcome the limitation of individual studies, we developed a meta-analysis approach to identify high confidence target genes that reflect their frequency of identification in independent datasets. Gene regulatory networks were generated by comparing differential expression of TP53 and CC-regulated genes with chromatin immunoprecipitation studies for TP53, RB1, E2F, DREAM, B-MYB, FOXM1 and MuvB. RNA-seq data from p21-null cells revealed that gene downregulation by TP53 generally requires p21 (CDKN1A). Genes downregulated by TP53 were also identified as CC genes bound by the DREAM complex. The transcription factors RB, E2F1 and E2F7 bind to a subset of DREAM target genes that function in G1/S of the CC while B-MYB, FOXM1 and MuvB control G2/M gene expression. Our approach yields high confidence ranked target gene maps for TP53, DREAM, MMB-FOXM1 and RB-E2F and enables prediction and distinction of CC regulation. A web-based atlas at www.targetgenereg.org enables assessing the regulation of any human gene of interest. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Microarray analysis identified Puccinia striiformis f. sp. tritici genes involved in infection and sporulation.

    Science.gov (United States)

    Puccinia striiformis f. sp. tritici (Pst) causes stripe rust, one of the most important diseases of wheat worldwide. To identify Pst genes involved in infection and sporulation, a custom oligonucleotide Genechip was made using sequences of 442 genes selected from Pst cDNA libraries. Microarray analy...

  14. Digital gene expression profiling of flax (Linum usitatissimum L.) stem peel identifies genes enriched in fiber-bearing phloem tissue.

    Science.gov (United States)

    Guo, Yuan; Qiu, Caisheng; Long, Songhua; Chen, Ping; Hao, Dongmei; Preisner, Marta; Wang, Hui; Wang, Yufu

    2017-08-30

    To better understand the molecular mechanisms and gene expression characteristics associated with development of bast fiber cell within flax stem phloem, the gene expression profiling of flax stem peels and leaves were screened, using Illumina's Digital Gene Expression (DGE) analysis. Four DGE libraries (2 for stem peel and 2 for leaf), ranging from 6.7 to 9.2 million clean reads were obtained, which produced 7.0 million and 6.8 million mapped reads for flax stem peel and leave, respectively. By differential gene expression analysis, a total of 975 genes, of which 708 (73%) genes have protein-coding annotation, were identified as phloem enriched genes putatively involved in the processes of polysaccharide and cell wall metabolism. Differential expression genes (DEGs) was validated using quantitative RT-PCR, the expression pattern of all nine genes determined by qRT-PCR fitted in well with that obtained by sequencing analysis. Cluster and Gene Ontology (GO) analysis revealed that a large number of genes related to metabolic process, catalytic activity and binding category were expressed predominantly in the stem peels. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the phloem enriched genes suggested approximately 111 biological pathways. The large number of genes and pathways produced from DGE sequencing will expand our understanding of the complex molecular and cellular events in flax bast fiber development and provide a foundation for future studies on fiber development in other bast fiber crops. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Integrating Diverse Types of Genomic Data to Identify Genes that Underlie Adverse Pregnancy Phenotypes.

    Directory of Open Access Journals (Sweden)

    Jibril Hirbo

    Full Text Available Progress in understanding complex genetic diseases has been bolstered by synthetic approaches that overlay diverse data types and analyses to identify functionally important genes. Pre-term birth (PTB, a major complication of pregnancy, is a leading cause of infant mortality worldwide. A major obstacle in addressing PTB is that the mechanisms controlling parturition and birth timing remain poorly understood. Integrative approaches that overlay datasets derived from comparative genomics with function-derived ones have potential to advance our understanding of the genetics of birth timing, and thus provide insights into the genes that may contribute to PTB. We intersected data from fast evolving coding and non-coding gene regions in the human and primate lineage with data from genes expressed in the placenta, from genes that show enriched expression only in the placenta, as well as from genes that are differentially expressed in four distinct PTB clinical subtypes. A large fraction of genes that are expressed in placenta, and differentially expressed in PTB clinical subtypes (23-34% are fast evolving, and are associated with functions that include adhesion neurodevelopmental and immune processes. Functional categories of genes that express fast evolution in coding regions differ from those linked to fast evolution in non-coding regions. Finally, there is a surprising lack of overlap between fast evolving genes that are differentially expressed in four PTB clinical subtypes. Integrative approaches, especially those that incorporate evolutionary perspectives, can be successful in identifying potential genetic contributions to complex genetic diseases, such as PTB.

  16. Comparative Transcriptomics to Identify Novel Genes and Pathways in Dinoflagellates

    Science.gov (United States)

    Ryan, D.

    2016-02-01

    The unarmored dinoflagellate Karenia brevis is among the most prominent harmful, bloom-forming phytoplankton species in the Gulf of Mexico. During blooms, the polyketides PbTx-1 and PbTx-2 (brevetoxins) are produced by K. brevis. Brevetoxins negatively impact human health and the Gulf shellfish harvest. However, the genes underlying brevetoxin synthesis are currently unknown. Because the K. brevis genome is extremely large ( 1 × 1011 base pairs long), and with a high proportion of repetitive, non-coding DNA, it has not been sequenced. In fact, large, repetitive genomes are common among the dinoflagellate group. High-throughput RNA sequencing technology enabled us to assemble Karenia transcriptomes de novo and investigate potential genes in the brevetoxin pathway through comparative transcriptomics. The brevetoxin profile varies among K. brevis clonal cultures. For example, well-documented Wilson-CCFWC268 typically produces 8-10 pg PbTx per cell, whereas SP1 produces differences in gene expression. Of the 85,000 transcripts in the K. brevis transcriptome, 4,600 transcripts, including novel unannotated orthologs and putative polyketide synthases (PKSs), were only expressed by brevetoxin-producing K. brevis and K. papilionacea, not K. mikimotoi. Examination of gene expression between the typical- and low-toxin Wilson clones identified about 3,500 genes with significantly different expression levels, including 2 putative PKSs. One of the 2 PKSs was only found in the brevetoxin-producing Karenia species. These transcriptomes could not have been characterized without high-throughput RNA sequencing.

  17. Transcriptome sequencing in pediatric acute lymphoblastic leukemia identifies fusion genes associated with distinct DNA methylation profiles

    Directory of Open Access Journals (Sweden)

    Yanara Marincevic-Zuniga

    2017-08-01

    Full Text Available Abstract Background Structural chromosomal rearrangements that lead to expressed fusion genes are a hallmark of acute lymphoblastic leukemia (ALL. In this study, we performed transcriptome sequencing of 134 primary ALL patient samples to comprehensively detect fusion transcripts. Methods We combined fusion gene detection with genome-wide DNA methylation analysis, gene expression profiling, and targeted sequencing to determine molecular signatures of emerging ALL subtypes. Results We identified 64 unique fusion events distributed among 80 individual patients, of which over 50% have not previously been reported in ALL. Although the majority of the fusion genes were found only in a single patient, we identified several recurrent fusion gene families defined by promiscuous fusion gene partners, such as ETV6, RUNX1, PAX5, and ZNF384, or recurrent fusion genes, such as DUX4-IGH. Our data show that patients harboring these fusion genes displayed characteristic genome-wide DNA methylation and gene expression signatures in addition to distinct patterns in single nucleotide variants and recurrent copy number alterations. Conclusion Our study delineates the fusion gene landscape in pediatric ALL, including both known and novel fusion genes, and highlights fusion gene families with shared molecular etiologies, which may provide additional information for prognosis and therapeutic options in the future.

  18. Common mutations identified in the MLH1 gene in familial Lynch syndrome

    Directory of Open Access Journals (Sweden)

    Jisha Elias

    2017-12-01

    In this study we identified three families with Lynch syndrome from a rural cancer center in western India (KCHRC, Goraj, Gujarat, where 70-75 CRC patients are seen annually. DNA isolated from the blood of consented family members of all three families (8-10 members/family was subjected to NGS sequencing methods on an Illumina HiSeq 4000 platform. We identified unique mutations in the MLH1 gene in all three HNPCC family members. Two of the three unrelated families shared a common mutation (154delA and 156delA. Total 8 members of a family were identified as carriers for 156delA mutation of which 5 members were unaffected while 3 were affected (age of onset: 1 member <30yrs & 2 were>40yr. The family with 154delA mutation showed 2 affected members (>40yr carrying the mutations.LYS618DEL mutation found in 8 members of the third family showed that both affected and unaffected carried the mutation. Thus the common mutations identified in the MLH1 gene in two unrelated families had a high risk for lynch syndrome especially above the age of 40.

  19. Integrated microarray and ChIP analysis identifies multiple Foxa2 dependent target genes in the notochord.

    Science.gov (United States)

    Tamplin, Owen J; Cox, Brian J; Rossant, Janet

    2011-12-15

    The node and notochord are key tissues required for patterning of the vertebrate body plan. Understanding the gene regulatory network that drives their formation and function is therefore important. Foxa2 is a key transcription factor at the top of this genetic hierarchy and finding its targets will help us to better understand node and notochord development. We performed an extensive microarray-based gene expression screen using sorted embryonic notochord cells to identify early notochord-enriched genes. We validated their specificity to the node and notochord by whole mount in situ hybridization. This provides the largest available resource of notochord-expressed genes, and therefore candidate Foxa2 target genes in the notochord. Using existing Foxa2 ChIP-seq data from adult liver, we were able to identify a set of genes expressed in the notochord that had associated regions of Foxa2-bound chromatin. Given that Foxa2 is a pioneer transcription factor, we reasoned that these sites might represent notochord-specific enhancers. Candidate Foxa2-bound regions were tested for notochord specific enhancer function in a zebrafish reporter assay and 7 novel notochord enhancers were identified. Importantly, sequence conservation or predictive models could not have readily identified these regions. Mutation of putative Foxa2 binding elements in two of these novel enhancers abrogated reporter expression and confirmed their Foxa2 dependence. The combination of highly specific gene expression profiling and genome-wide ChIP analysis is a powerful means of understanding developmental pathways, even for small cell populations such as the notochord. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Systems Biology-Based Investigation of Cellular Antiviral Drug Targets Identified by Gene-Trap Insertional Mutagenesis.

    Directory of Open Access Journals (Sweden)

    Feixiong Cheng

    2016-09-01

    Full Text Available Viruses require host cellular factors for successful replication. A comprehensive systems-level investigation of the virus-host interactome is critical for understanding the roles of host factors with the end goal of discovering new druggable antiviral targets. Gene-trap insertional mutagenesis is a high-throughput forward genetics approach to randomly disrupt (trap host genes and discover host genes that are essential for viral replication, but not for host cell survival. In this study, we used libraries of randomly mutagenized cells to discover cellular genes that are essential for the replication of 10 distinct cytotoxic mammalian viruses, 1 gram-negative bacterium, and 5 toxins. We herein reported 712 candidate cellular genes, characterizing distinct topological network and evolutionary signatures, and occupying central hubs in the human interactome. Cell cycle phase-specific network analysis showed that host cell cycle programs played critical roles during viral replication (e.g. MYC and TAF4 regulating G0/1 phase. Moreover, the viral perturbation of host cellular networks reflected disease etiology in that host genes (e.g. CTCF, RHOA, and CDKN1B identified were frequently essential and significantly associated with Mendelian and orphan diseases, or somatic mutations in cancer. Computational drug repositioning framework via incorporating drug-gene signatures from the Connectivity Map into the virus-host interactome identified 110 putative druggable antiviral targets and prioritized several existing drugs (e.g. ajmaline that may be potential for antiviral indication (e.g. anti-Ebola. In summary, this work provides a powerful methodology with a tight integration of gene-trap insertional mutagenesis testing and systems biology to identify new antiviral targets and drugs for the development of broadly acting and targeted clinical antiviral therapeutics.

  1. Newly identified CHO ERCC3/XPB mutations and phenotype characterization

    Science.gov (United States)

    Rybanská, Ivana; Gurský, Ján; Fašková, Miriam; Salazar, Edmund P.; Kimlíčková-Polakovičová, Erika; Kleibl, Karol; Thompson, Larry H.; Piršel, Miroslav

    2010-01-01

    Nucleotide excision repair (NER) is a complex multistage process involving many interacting gene products to repair a wide range of DNA lesions. Genetic defects in NER cause human hereditary diseases including xeroderma pigmentosum (XP), Cockayne syndrome (CS), trichothiodystrophy and a combined XP/CS overlapping symptom. One key gene product associated with all these disorders is the excision repair cross-complementing 3/xeroderma pigmentosum B (ERCC3/XPB) DNA helicase, a subunit of the transcription factor IIH complex. ERCC3 is involved in initiation of basal transcription and global genome repair as well as in transcription-coupled repair (TCR). The hamster ERCC3 gene shows high degree of homology with the human ERCC3/XPB gene. We identified new mutations in the Chinese hamster ovary cell ERCC3 gene and characterized the role of hamster ERCC3 protein in DNA repair of ultraviolet (UV)-induced and oxidative DNA damage. All but one newly described mutations are located in the protein C-terminal region around the last intron–exon boundary. Due to protein truncations or frameshifts, they lack amino acid Ser751, phosphorylation of which prevents the 5′ incision of the UV-induced lesion during NER. Thus, despite the various locations of the mutations, their phenotypes are similar. All ercc3 mutants are extremely sensitive to UV-C light and lack recovery of RNA synthesis (RRS), confirming a defect in TCR of UV-induced damage. Their limited global genome NER capacity averages ∼8%. We detected modest sensitivity of ercc3 mutants to the photosensitizer Ro19-8022, which primarily introduces 8-oxoguanine lesions into DNA. Ro19-8022-induced damage interfered with RRS, and some of the ercc3 mutants had delayed kinetics. All ercc3 mutants showed efficient base excision repair (BER). Thus, the positions of the mutations have no effect on the sensitivity to, and repair of, Ro19-8022-induced DNA damage, suggesting that the ERCC3 protein is not involved in BER. PMID:19942596

  2. Polymorphisms in metabolism and repair genes affects DNA damage caused by open-cast coal mining exposure.

    Science.gov (United States)

    Espitia-Pérez, Lyda; Sosa, Milton Quintana; Salcedo-Arteaga, Shirley; León-Mejía, Grethel; Hoyos-Giraldo, Luz Stella; Brango, Hugo; Kvitko, Katia; da Silva, Juliana; Henriques, João A P

    2016-09-15

    Increasing evidence suggest that occupational exposure to open-cast coal mining residues like dust particles, heavy metals and Polycyclic Aromatic Hydrocarbons (PAHs) may cause a wide range of DNA damage and genomic instability that could be associated to initial steps in cancer development and other work-related diseases. The aim of our study was to evaluate if key polymorphisms in metabolism genes CYP1A1Msp1, GSTM1Null, GSTT1Null and DNA repair genes XRCC1Arg194Trp and hOGG1Ser326Cys could modify individual susceptibility to adverse coal exposure effects, considering the DNA damage (Comet assay) and micronucleus formation in lymphocytes (CBMN) and buccal mucosa cells (BMNCyt) as endpoints for genotoxicity. The study population is comprised of 200 healthy male subjects, 100 open-cast coal-mining workers from "El Cerrejón" (world's largest open-cast coal mine located in Guajira - Colombia) and 100 non-exposed referents from general population. The data revealed a significant increase of CBMN frequency in peripheral lymphocytes of occupationally exposed workers carrying the wild-type variant of GSTT1 (+) gene. Exposed subjects carrying GSTT1null polymorphism showed a lower micronucleus frequency compared with their positive counterparts (FR: 0.83; P=0.04), while BMNCyt, frequency and Comet assay parameters in lymphocytes: Damage Index (DI) and percentage of DNA in the tail (Tail % DNA) were significantly higher in exposed workers with the GSTM1Null polymorphism. Other exfoliated buccal mucosa abnormalities related to cell death (Karyorrhexis and Karyolysis) were increased in GSTT/M1Null carriers. Nuclear buds were significantly higher in workers carrying the CYP1A1Msp1 (m1/m2, m2/m2) allele. Moreover, BMNCyt frequency and Comet assay parameters were significantly lower in exposed carriers of XRCC1Arg194Trp (Arg/Trp, Trp/Trp) and hOGG1Ser326Cys (Ser/Cys, Cys/Cys), thereby providing new data to the increasing evidence about the protective role of these polymorphisms

  3. An Integrative Analysis to Identify Driver Genes in Esophageal Squamous Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    Genta Sawada

    Full Text Available Few driver genes have been well established in esophageal squamous cell carcinoma (ESCC. Identification of the genomic aberrations that contribute to changes in gene expression profiles can be used to predict driver genes.We searched for driver genes in ESCC by integrative analysis of gene expression microarray profiles and copy number data. To narrow down candidate genes, we performed survival analysis on expression data and tested the genetic vulnerability of each genes using public RNAi screening data. We confirmed the results by performing RNAi experiments and evaluating the clinical relevance of candidate genes in an independent ESCC cohort.We found 10 significantly recurrent copy number alterations accompanying gene expression changes, including loci 11q13.2, 7p11.2, 3q26.33, and 17q12, which harbored CCND1, EGFR, SOX2, and ERBB2, respectively. Analysis of survival data and RNAi screening data suggested that GRB7, located on 17q12, was a driver gene in ESCC. In ESCC cell lines harboring 17q12 amplification, knockdown of GRB7 reduced the proliferation, migration, and invasion capacities of cells. Moreover, siRNA targeting GRB7 had a synergistic inhibitory effect when combined with trastuzumab, an anti-ERBB2 antibody. Survival analysis of the independent cohort also showed that high GRB7 expression was associated with poor prognosis in ESCC.Our integrative analysis provided important insights into ESCC pathogenesis. We identified GRB7 as a novel ESCC driver gene and potential new therapeutic target.

  4. Gene Ontology and KEGG Enrichment Analyses of Genes Related to Age-Related Macular Degeneration

    Directory of Open Access Journals (Sweden)

    Jian Zhang

    2014-01-01

    Full Text Available Identifying disease genes is one of the most important topics in biomedicine and may facilitate studies on the mechanisms underlying disease. Age-related macular degeneration (AMD is a serious eye disease; it typically affects older adults and results in a loss of vision due to retina damage. In this study, we attempt to develop an effective method for distinguishing AMD-related genes. Gene ontology and KEGG enrichment analyses of known AMD-related genes were performed, and a classification system was established. In detail, each gene was encoded into a vector by extracting enrichment scores of the gene set, including it and its direct neighbors in STRING, and gene ontology terms or KEGG pathways. Then certain feature-selection methods, including minimum redundancy maximum relevance and incremental feature selection, were adopted to extract key features for the classification system. As a result, 720 GO terms and 11 KEGG pathways were deemed the most important factors for predicting AMD-related genes.

  5. Rapid and preferential activation of the c-jun gene during the mammalian UV response

    International Nuclear Information System (INIS)

    Devary, Y.; Gottlieb, R.A.; Lau, L.F.; Karin, M.

    1991-01-01

    Exposure of mammalian cells to DNA-damaging agents leads to activation of a genetic response known as the UV response. Because several previously identified UV-inducible genes contain AP-1 binding sites within their promoters, we investigated the induction of AP-1 activity by DNA-damaging agents. We found that expression of both c-jun and c-fos, which encode proteins that participate in formation of the AP-1 complex, is rapidly induced by two different DNA-damaging agents: UV and H2O2. Interestingly, the c-jun gene is far more responsive to UV than any other immediate-early gene that was examined, including c-fos. Other jun and fos genes were only marginally affected by UV or H2O2. Furthermore, UV is a much more efficient inducer of c-jun than phorbol esters, the standard inducers of c-jun expression. This preferential response of the c-jun gene is mediated by its 5' control region and requires the TPA response element, suggesting that this element also serves as an early target for the signal transduction pathway elicited by DNA damage. Both UV and H2O2 lead to a long-lasting increase in AP-1 binding activity, suggesting that AP-1 may mediate the induction of other damage-inducible genes such as human collagenase

  6. Identifying novel fruit-related genes in Arabidopsis thaliana based on the random walk with restart algorithm.

    Science.gov (United States)

    Zhang, Yunhua; Dai, Li; Liu, Ying; Zhang, YuHang; Wang, ShaoPeng

    2017-01-01

    Fruit is essential for plant reproduction and is responsible for protection and dispersal of seeds. The development and maturation of fruit is tightly regulated by numerous genetic factors that respond to environmental and internal stimulation. In this study, we attempted to identify novel fruit-related genes in a model organism, Arabidopsis thaliana, using a computational method. Based on validated fruit-related genes, the random walk with restart (RWR) algorithm was applied on a protein-protein interaction (PPI) network using these genes as seeds. The identified genes with high probabilities were filtered by the permutation test and linkage tests. In the permutation test, the genes that were selected due to the structure of the PPI network were discarded. In the linkage tests, the importance of each candidate gene was measured from two aspects: (1) its functional associations with validated genes and (2) its similarity with validated genes on gene ontology (GO) terms and KEGG pathways. Finally, 255 inferred genes were obtained, subsequent extensive analysis of important genes revealed that they mainly contribute to ubiquitination (UBQ9, UBQ8, UBQ11, UBQ10), serine hydroxymethyl transfer (SHM7, SHM5, SHM6) or glycol-metabolism (HXKL2_ARATH, CSY5, GAPCP1), suggesting essential roles during the development and maturation of fruit in Arabidopsis thaliana.

  7. A stratified transcriptomics analysis of polygenic fat and lean mouse adipose tissues identifies novel candidate obesity genes.

    Directory of Open Access Journals (Sweden)

    Nicholas M Morton

    Full Text Available Obesity and metabolic syndrome results from a complex interaction between genetic and environmental factors. In addition to brain-regulated processes, recent genome wide association studies have indicated that genes highly expressed in adipose tissue affect the distribution and function of fat and thus contribute to obesity. Using a stratified transcriptome gene enrichment approach we attempted to identify adipose tissue-specific obesity genes in the unique polygenic Fat (F mouse strain generated by selective breeding over 60 generations for divergent adiposity from a comparator Lean (L strain.To enrich for adipose tissue obesity genes a 'snap-shot' pooled-sample transcriptome comparison of key fat depots and non adipose tissues (muscle, liver, kidney was performed. Known obesity quantitative trait loci (QTL information for the model allowed us to further filter genes for increased likelihood of being causal or secondary for obesity. This successfully identified several genes previously linked to obesity (C1qr1, and Np3r as positional QTL candidate genes elevated specifically in F line adipose tissue. A number of novel obesity candidate genes were also identified (Thbs1, Ppp1r3d, Tmepai, Trp53inp2, Ttc7b, Tuba1a, Fgf13, Fmr that have inferred roles in fat cell function. Quantitative microarray analysis was then applied to the most phenotypically divergent adipose depot after exaggerating F and L strain differences with chronic high fat feeding which revealed a distinct gene expression profile of line, fat depot and diet-responsive inflammatory, angiogenic and metabolic pathways. Selected candidate genes Npr3 and Thbs1, as well as Gys2, a non-QTL gene that otherwise passed our enrichment criteria were characterised, revealing novel functional effects consistent with a contribution to obesity.A focussed candidate gene enrichment strategy in the unique F and L model has identified novel adipose tissue-enriched genes contributing to obesity.

  8. Cross-study analysis of gene expression data for intermediate neuroblastoma identifies two biological subtypes

    International Nuclear Information System (INIS)

    Warnat, Patrick; Oberthuer, André; Fischer, Matthias; Westermann, Frank; Eils, Roland; Brors, Benedikt

    2007-01-01

    Neuroblastoma patients show heterogeneous clinical courses ranging from life-threatening progression to spontaneous regression. Recently, gene expression profiles of neuroblastoma tumours were associated with clinically different phenotypes. However, such data is still rare for important patient subgroups, such as patients with MYCN non-amplified advanced stage disease. Prediction of the individual course of disease and optimal therapy selection in this cohort is challenging. Additional research effort is needed to describe the patterns of gene expression in this cohort and to identify reliable prognostic markers for this subset of patients. We combined gene expression data from two studies in a meta-analysis in order to investigate differences in gene expression of advanced stage (3 or 4) tumours without MYCN amplification that show contrasting outcomes (alive or dead) at five years after initial diagnosis. In addition, a predictive model for outcome was generated. Gene expression profiles from 66 patients were included from two studies using different microarray platforms. In the combined data set, 72 genes were identified as differentially expressed by meta-analysis at a false discovery rate (FDR) of 8.33%. Meta-analysis detected 34 differentially expressed genes that were not found as significant in either single study. Outcome prediction based on data of both studies resulted in a predictive accuracy of 77%. Moreover, the genes that were differentially expressed in subgroups of advanced stage patients without MYCN amplification accurately separated MYCN amplified tumours from low stage tumours without MYCN amplification. Our findings support the hypothesis that neuroblastoma consists of two biologically distinct subgroups that differ by characteristic gene expression patterns, which are associated with divergent clinical outcome

  9. Identifying Novel Candidate Genes Related to Apoptosis from a Protein-Protein Interaction Network

    Directory of Open Access Journals (Sweden)

    Baoman Wang

    2015-01-01

    Full Text Available Apoptosis is the process of programmed cell death (PCD that occurs in multicellular organisms. This process of normal cell death is required to maintain the balance of homeostasis. In addition, some diseases, such as obesity, cancer, and neurodegenerative diseases, can be cured through apoptosis, which produces few side effects. An effective comprehension of the mechanisms underlying apoptosis will be helpful to prevent and treat some diseases. The identification of genes related to apoptosis is essential to uncover its underlying mechanisms. In this study, a computational method was proposed to identify novel candidate genes related to apoptosis. First, protein-protein interaction information was used to construct a weighted graph. Second, a shortest path algorithm was applied to the graph to search for new candidate genes. Finally, the obtained genes were filtered by a permutation test. As a result, 26 genes were obtained, and we discuss their likelihood of being novel apoptosis-related genes by collecting evidence from published literature.

  10. The Intertwined Roles of DNA Damage and Transcription

    OpenAIRE

    Di Palo, Giacomo

    2016-01-01

    DNA damage and transcription are two interconnected events. Transcription can induce damage and scheduled DNA damage can be required for transcription. Here, we analyzed genome-wide distribution of 8oxodG-marked oxidative DNA damage obtained by OxiDIP-Seq, and we found a correlation with transcription of protein coding genes.

  11. Onconase responsive genes in human mesothelioma cells: implications for an RNA damaging therapeutic agent

    International Nuclear Information System (INIS)

    Altomare, Deborah A; Rybak, Susanna M; Pei, Jianming; Maizel, Jacob V; Cheung, Mitchell; Testa, Joseph R; Shogen, Kuslima

    2010-01-01

    Onconase represents a new class of RNA-damaging drugs. Mechanistically, Onconase is thought to internalize, where it degrades intracellular RNAs such as tRNA and double-stranded RNA, and thereby suppresses protein synthesis. However, there may be additional or alternative mechanism(s) of action. In this study, microarray analysis was used to compare gene expression profiles in untreated human malignant mesothelioma (MM) cell lines and cells exposed to 5 μg/ml Onconase for 24 h. A total of 155 genes were found to be regulated by Onconase that were common to both epithelial and biphasic MM cell lines. Some of these genes are known to significantly affect apoptosis (IL-24, TNFAIP3), transcription (ATF3, DDIT3, MAFF, HDAC9, SNAPC1) or inflammation and the immune response (IL-6, COX-2). RT-PCR analysis of selected up- or down-regulated genes treated with varying doses and times of Onconase generally confirmed the expression array findings in four MM cell lines. Onconase treatment consistently resulted in up-regulation of IL-24, previously shown to have tumor suppressive activity, as well as ATF3 and IL-6. Induction of ATF3 and the pro-apoptotic factor IL-24 by Onconase was highest in the two most responsive MM cell lines, as defined by DNA fragmentation analysis. In addition to apoptosis, gene ontology analysis indicated that pathways impacted by Onconase include MAPK signaling, cytokine-cytokine-receptor interactions, and Jak-STAT signaling. These results provide a broad picture of gene activity after treatment with a drug that targets small non-coding RNAs and contribute to our overall understanding of MM cell response to Onconase as a therapeutic strategy. The findings provide insights regarding mechanisms that may contribute to the efficacy of this novel drug in clinical trials of MM patients who have failed first line chemotherapy or radiation treatment

  12. Expression and functional assessment of candidate type 2 diabetes susceptibility genes identify four new genes contributing to human insulin secretion

    Directory of Open Access Journals (Sweden)

    Fatou K. Ndiaye

    2017-06-01

    Full Text Available Objectives: Genome-wide association studies (GWAS have identified >100 loci independently contributing to type 2 diabetes (T2D risk. However, translational implications for precision medicine and for the development of novel treatments have been disappointing, due to poor knowledge of how these loci impact T2D pathophysiology. Here, we aimed to measure the expression of genes located nearby T2D associated signals and to assess their effect on insulin secretion from pancreatic beta cells. Methods: The expression of 104 candidate T2D susceptibility genes was measured in a human multi-tissue panel, through PCR-free expression assay. The effects of the knockdown of beta-cell enriched genes were next investigated on insulin secretion from the human EndoC-βH1 beta-cell line. Finally, we performed RNA-sequencing (RNA-seq so as to assess the pathways affected by the knockdown of the new genes impacting insulin secretion from EndoC-βH1, and we analyzed the expression of the new genes in mouse models with altered pancreatic beta-cell function. Results: We found that the candidate T2D susceptibility genes' expression is significantly enriched in pancreatic beta cells obtained by laser capture microdissection or sorted by flow cytometry and in EndoC-βH1 cells, but not in insulin sensitive tissues. Furthermore, the knockdown of seven T2D-susceptibility genes (CDKN2A, GCK, HNF4A, KCNK16, SLC30A8, TBC1D4, and TCF19 with already known expression and/or function in beta cells changed insulin secretion, supporting our functional approach. We showed first evidence for a role in insulin secretion of four candidate T2D-susceptibility genes (PRC1, SRR, ZFAND3, and ZFAND6 with no previous knowledge of presence and function in beta cells. RNA-seq in EndoC-βH1 cells with decreased expression of PRC1, SRR, ZFAND6, or ZFAND3 identified specific gene networks related to T2D pathophysiology. Finally, a positive correlation between the expression of Ins2 and the

  13. A genome scale RNAi screen identifies GLI1 as a novel gene regulating vorinostat sensitivity.

    Science.gov (United States)

    Falkenberg, K J; Newbold, A; Gould, C M; Luu, J; Trapani, J A; Matthews, G M; Simpson, K J; Johnstone, R W

    2016-07-01

    Vorinostat is an FDA-approved histone deacetylase inhibitor (HDACi) that has proven clinical success in some patients; however, it remains unclear why certain patients remain unresponsive to this agent and other HDACis. Constitutive STAT (signal transducer and activator of transcription) activation, overexpression of prosurvival Bcl-2 proteins and loss of HR23B have been identified as potential biomarkers of HDACi resistance; however, none have yet been used to aid the clinical utility of HDACi. Herein, we aimed to further elucidate vorinostat-resistance mechanisms through a functional genomics screen to identify novel genes that when knocked down by RNA interference (RNAi) sensitized cells to vorinostat-induced apoptosis. A synthetic lethal functional screen using a whole-genome protein-coding RNAi library was used to identify genes that when knocked down cooperated with vorinostat to induce tumor cell apoptosis in otherwise resistant cells. Through iterative screening, we identified 10 vorinostat-resistance candidate genes that sensitized specifically to vorinostat. One of these vorinostat-resistance genes was GLI1, an oncogene not previously known to regulate the activity of HDACi. Treatment of vorinostat-resistant cells with the GLI1 small-molecule inhibitor, GANT61, phenocopied the effect of GLI1 knockdown. The mechanism by which GLI1 loss of function sensitized tumor cells to vorinostat-induced apoptosis is at least in part through interactions with vorinostat to alter gene expression in a manner that favored apoptosis. Upon GLI1 knockdown and vorinostat treatment, BCL2L1 expression was repressed and overexpression of BCL2L1 inhibited GLI1-knockdown-mediated vorinostat sensitization. Taken together, we present the identification and characterization of GLI1 as a new HDACi resistance gene, providing a strong rationale for development of GLI1 inhibitors for clinical use in combination with HDACi therapy.

  14. Tensor decomposition-based unsupervised feature extraction identifies candidate genes that induce post-traumatic stress disorder-mediated heart diseases.

    Science.gov (United States)

    Taguchi, Y-H

    2017-12-21

    Although post-traumatic stress disorder (PTSD) is primarily a mental disorder, it can cause additional symptoms that do not seem to be directly related to the central nervous system, which PTSD is assumed to directly affect. PTSD-mediated heart diseases are some of such secondary disorders. In spite of the significant correlations between PTSD and heart diseases, spatial separation between the heart and brain (where PTSD is primarily active) prevents researchers from elucidating the mechanisms that bridge the two disorders. Our purpose was to identify genes linking PTSD and heart diseases. In this study, gene expression profiles of various murine tissues observed under various types of stress or without stress were analyzed in an integrated manner using tensor decomposition (TD). Based upon the obtained features, ∼ 400 genes were identified as candidate genes that may mediate heart diseases associated with PTSD. Various gene enrichment analyses supported biological reliability of the identified genes. Ten genes encoding protein-, DNA-, or mRNA-interacting proteins-ILF2, ILF3, ESR1, ESR2, RAD21, HTT, ATF2, NR3C1, TP53, and TP63-were found to be likely to regulate expression of most of these ∼ 400 genes and therefore are candidate primary genes that cause PTSD-mediated heart diseases. Approximately 400 genes in the heart were also found to be strongly affected by various drugs whose known adverse effects are related to heart diseases and/or fear memory conditioning; these data support the reliability of our findings. TD-based unsupervised feature extraction turned out to be a useful method for gene selection and successfully identified possible genes causing PTSD-mediated heart diseases.

  15. Identification of key pathways and genes influencing prognosis in bladder urothelial carcinoma

    Directory of Open Access Journals (Sweden)

    Ning X

    2017-03-01

    Full Text Available Xin Ning, Yaoliang Deng Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, People’s Republic of China Background: Genomic profiling can be used to identify the predictive effect of genomic subsets for determining prognosis in bladder urothelial carcinoma (BUC after radical cystectomy. This study aimed to investigate potential gene and pathway markers associated with prognosis in BUC.Methods: A microarray dataset of BUC was obtained from The Cancer Genome Atlas database. Differentially expressed genes (DEGs were identified by DESeq of the R platform. Kaplan–Meier analysis was applied for prognostic markers. Key pathways and genes were identified using bioinformatics tools, such as gene set enrichment analysis, gene ontology, the Kyoto Encyclopedia of Genes and Genomes, gene multiple association network integration algorithm (GeneMANIA, Search Tool for the Retrieval of Interacting Genes/Proteins, and Molecular Complex Detection.Results: A comparative gene set enrichment analysis of tumor and adjacent normal tissues suggested BUC tumorigenesis resulted mainly from enrichment of cell cycle and DNA damage and repair-related biological processes and pathways, including TP53 and mitotic recombination. Two hundred and fifty-six genes were identified as potential prognosis-related DEGs. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses showed that the potential prognosis-related DEGs were enriched in angiogenesis, including the cyclic adenosine monophosphate biosynthetic process, cyclic guanosine monophosphate-protein kinase G, mitogen-activated protein kinase, Rap1, and phosphoinositide-3-kinase-AKT signaling pathway. Nine hub genes, TAGLN, ACTA2, MYH11, CALD1, MYLK, GEM, PRELP, TPM2, and OGN, were identified from the intersection of protein–protein interaction and GeneMANIA networks. Module analysis of protein–protein interaction and GeneMANIA networks mainly showed

  16. P53 Gene Mutation as Biomarker of Radiation Induced Cell Injury and Genomic Instability

    International Nuclear Information System (INIS)

    Mukh-Syaifudin

    2006-01-01

    Gene expression profiling and its mutation has become one of the most widely used approaches to identify genes and their functions in the context of identify and categorize genes to be used as radiation effect markers including cell and tissue sensitivities. Ionizing radiation produces genetic damage and changes in gene expression that may lead to cancer due to specific protein that controlling cell proliferation altered the function, its expression or both. P53 protein encoded by p53 gene plays an important role in protecting cell by inducing growth arrest and or cell suicide (apoptosis) after deoxyribonucleic acid (DNA) damage induced by mutagen such as ionizing radiation. The mutant and thereby dysfunctional of this gene was found in more than 50% of various human cancers, but it is as yet unclear how p53 mutations lead to neoplastic development. Wild-type p53 has been postulated to play a role in DNA repair, suggesting that expression of mutant forms of p53 might alter cellular resistance to the DNA damage caused by radiation. Moreover, p53 is thought to function as a cell cycle checkpoint after irradiation, also suggesting that mutant p53 might change the cellular proliferative response to radiation. P53 mutations affect the cellular response to DNA damage, either by increasing DNA repair processes or, possibly, by increasing cellular tolerance to DNA damage. The association of p53 mutations with increased radioresistance suggests that alterations in the p53 gene might lead to oncogenic transformation. Current attractive model of carcinogenesis also showed that p53 gene is the major target of radiation. The majority of p53 mutations found so far is single base pair changes ( point mutations), which result in amino acid substitutions or truncated forms of the p53 protein, and are widely distributed throughout the evolutionary conserved regions of the gene. Examination of p53 mutations in human cancer also shows an association between particular carcinogens and

  17. Analysis of Pigeon (Columba) Ovary Transcriptomes to Identify Genes Involved in Blue Light Regulation

    Science.gov (United States)

    Wang, Ying; Ding, Jia-tong; Yang, Hai-ming; Yan, Zheng-jie; Cao, Wei; Li, Yang-bai

    2015-01-01

    Monochromatic light is widely applied to promote poultry reproductive performance, yet little is currently known regarding the mechanism by which light wavelengths affect pigeon reproduction. Recently, high-throughput sequencing technologies have been used to provide genomic information for solving this problem. In this study, we employed Illumina Hiseq 2000 to identify differentially expressed genes in ovary tissue from pigeons under blue and white light conditions and de novo transcriptome assembly to construct a comprehensive sequence database containing information on the mechanisms of follicle development. A total of 157,774 unigenes (mean length: 790 bp) were obtained by the Trinity program, and 35.83% of these unigenes were matched to genes in a non-redundant protein database. Gene description, gene ontology, and the clustering of orthologous group terms were performed to annotate the transcriptome assembly. Differentially expressed genes between blue and white light conditions included those related to oocyte maturation, hormone biosynthesis, and circadian rhythm. Furthermore, 17,574 SSRs and 533,887 potential SNPs were identified in this transcriptome assembly. This work is the first transcriptome analysis of the Columba ovary using Illumina technology, and the resulting transcriptome and differentially expressed gene data can facilitate further investigations into the molecular mechanism of the effect of blue light on follicle development and reproduction in pigeons and other bird species. PMID:26599806

  18. Analysis of Pigeon (Columba Ovary Transcriptomes to Identify Genes Involved in Blue Light Regulation.

    Directory of Open Access Journals (Sweden)

    Ying Wang

    Full Text Available Monochromatic light is widely applied to promote poultry reproductive performance, yet little is currently known regarding the mechanism by which light wavelengths affect pigeon reproduction. Recently, high-throughput sequencing technologies have been used to provide genomic information for solving this problem. In this study, we employed Illumina Hiseq 2000 to identify differentially expressed genes in ovary tissue from pigeons under blue and white light conditions and de novo transcriptome assembly to construct a comprehensive sequence database containing information on the mechanisms of follicle development. A total of 157,774 unigenes (mean length: 790 bp were obtained by the Trinity program, and 35.83% of these unigenes were matched to genes in a non-redundant protein database. Gene description, gene ontology, and the clustering of orthologous group terms were performed to annotate the transcriptome assembly. Differentially expressed genes between blue and white light conditions included those related to oocyte maturation, hormone biosynthesis, and circadian rhythm. Furthermore, 17,574 SSRs and 533,887 potential SNPs were identified in this transcriptome assembly. This work is the first transcriptome analysis of the Columba ovary using Illumina technology, and the resulting transcriptome and differentially expressed gene data can facilitate further investigations into the molecular mechanism of the effect of blue light on follicle development and reproduction in pigeons and other bird species.

  19. Prophage induction and differential RecA and UmuDAb transcriptome regulation in the DNA damage responses of Acinetobacter baumannii and Acinetobacter baylyi.

    Directory of Open Access Journals (Sweden)

    Janelle M Hare

    Full Text Available The SOS response to DNA damage that induces up to 10% of the prokaryotic genome requires RecA action to relieve LexA transcriptional repression. In Acinetobacter species, which lack LexA, the error-prone polymerase accessory UmuDAb is instead required for ddrR induction after DNA damage, suggesting it might be a LexA analog. RNA-Seq experiments defined the DNA damage transcriptome (mitomycin C-induced of wild type, recA and umuDAb mutant strains of both A. baylyi ADP1 and A. baumannii ATCC 17978. Of the typical SOS response genes, few were differentially regulated in these species; many were repressed or absent. A striking 38.4% of all ADP1 genes, and 11.4% of all 17978 genes, were repressed under these conditions. In A. baylyi ADP1, 66 genes (2.0% of the genome, including a CRISPR/Cas system, were DNA damage-induced, and belonged to four regulons defined by differential use of recA and umuDAb. In A. baumannii ATCC 17978, however, induction of 99% of the 152 mitomycin C-induced genes depended on recA, and only 28 of these genes required umuDAb for their induction. 90% of the induced A. baumannii genes were clustered in three prophage regions, and bacteriophage particles were observed after mitomycin C treatment. These prophages encoded esvI, esvK1, and esvK2, ethanol-stimulated virulence genes previously identified in a Caenorhabditis elegans model, as well as error-prone polymerase alleles. The induction of all 17978 error-prone polymerase alleles, whether prophage-encoded or not, was recA dependent, but only these DNA polymerase V-related genes were de-repressed in the umuDAb mutant in the absence of DNA damage. These results suggest that both species possess a robust and complex DNA damage response involving both recA-dependent and recA-independent regulons, and further demonstrates that although umuDAb has a specialized role in repressing error-prone polymerases, additional regulators likely participate in these species' transcriptional

  20. Regulatory elements of the floral homeotic gene AGAMOUS identified by phylogenetic footprinting and shadowing.

    Energy Technology Data Exchange (ETDEWEB)

    Hong, R. L., Hamaguchi, L., Busch, M. A., and Weigel, D.

    2003-06-01

    OAK-B135 In Arabidopsis thaliana, cis-regulatory sequences of the floral homeotic gene AGAMOUS (AG) are located in the second intron. This 3 kb intron contains binding sites for two direct activators of AG, LEAFY (LFY) and WUSCHEL (WUS), along with other putative regulatory elements. We have used phylogenetic footprinting and the related technique of phylogenetic shadowing to identify putative cis-regulatory elements in this intron. Among 29 Brassicaceae, several other motifs, but not the LFY and WUS binding sites previously identified, are largely invariant. Using reporter gene analyses, we tested six of these motifs and found that they are all functionally important for activity of AG regulatory sequences in A. thaliana. Although there is little obvious sequence similarity outside the Brassicaceae, the intron from cucumber AG has at least partial activity in A. thaliana. Our studies underscore the value of the comparative approach as a tool that complements gene-by-gene promoter dissection, but also highlight that sequence-based studies alone are insufficient for a complete identification of cis-regulatory sites.

  1. Genetic interactions of MAF1 identify a role for Med20 in transcriptional repression of ribosomal protein genes.

    Directory of Open Access Journals (Sweden)

    Ian M Willis

    2008-07-01

    Full Text Available Transcriptional repression of ribosomal components and tRNAs is coordinately regulated in response to a wide variety of environmental stresses. Part of this response involves the convergence of different nutritional and stress signaling pathways on Maf1, a protein that is essential for repressing transcription by RNA polymerase (pol III in Saccharomyces cerevisiae. Here we identify the functions buffering yeast cells that are unable to down-regulate transcription by RNA pol III. MAF1 genetic interactions identified in screens of non-essential gene-deletions and conditionally expressed essential genes reveal a highly interconnected network of 64 genes involved in ribosome biogenesis, RNA pol II transcription, tRNA modification, ubiquitin-dependent proteolysis and other processes. A survey of non-essential MAF1 synthetic sick/lethal (SSL genes identified six gene-deletions that are defective in transcriptional repression of ribosomal protein (RP genes following rapamycin treatment. This subset of MAF1 SSL genes included MED20 which encodes a head module subunit of the RNA pol II Mediator complex. Genetic interactions between MAF1 and subunits in each structural module of Mediator were investigated to examine the functional relationship between these transcriptional regulators. Gene expression profiling identified a prominent and highly selective role for Med20 in the repression of RP gene transcription under multiple conditions. In addition, attenuated repression of RP genes by rapamycin was observed in a strain deleted for the Mediator tail module subunit Med16. The data suggest that Mediator and Maf1 function in parallel pathways to negatively regulate RP mRNA and tRNA synthesis.

  2. Genetic Susceptibility to Vitiligo: GWAS Approaches for Identifying Vitiligo Susceptibility Genes and Loci

    Science.gov (United States)

    Shen, Changbing; Gao, Jing; Sheng, Yujun; Dou, Jinfa; Zhou, Fusheng; Zheng, Xiaodong; Ko, Randy; Tang, Xianfa; Zhu, Caihong; Yin, Xianyong; Sun, Liangdan; Cui, Yong; Zhang, Xuejun

    2016-01-01

    Vitiligo is an autoimmune disease with a strong genetic component, characterized by areas of depigmented skin resulting from loss of epidermal melanocytes. Genetic factors are known to play key roles in vitiligo through discoveries in association studies and family studies. Previously, vitiligo susceptibility genes were mainly revealed through linkage analysis and candidate gene studies. Recently, our understanding of the genetic basis of vitiligo has been rapidly advancing through genome-wide association study (GWAS). More than 40 robust susceptible loci have been identified and confirmed to be associated with vitiligo by using GWAS. Most of these associated genes participate in important pathways involved in the pathogenesis of vitiligo. Many susceptible loci with unknown functions in the pathogenesis of vitiligo have also been identified, indicating that additional molecular mechanisms may contribute to the risk of developing vitiligo. In this review, we summarize the key loci that are of genome-wide significance, which have been shown to influence vitiligo risk. These genetic loci may help build the foundation for genetic diagnosis and personalize treatment for patients with vitiligo in the future. However, substantial additional studies, including gene-targeted and functional studies, are required to confirm the causality of the genetic variants and their biological relevance in the development of vitiligo. PMID:26870082

  3. A framework to identify gene expression profiles in a model of inflammation induced by lipopolysaccharide after treatment with thalidomide

    Directory of Open Access Journals (Sweden)

    Paiva Renata T

    2012-06-01

    Full Text Available Abstract Background Thalidomide is an anti-inflammatory and anti-angiogenic drug currently used for the treatment of several diseases, including erythema nodosum leprosum, which occurs in patients with lepromatous leprosy. In this research, we use DNA microarray analysis to identify the impact of thalidomide on gene expression responses in human cells after lipopolysaccharide (LPS stimulation. We employed a two-stage framework. Initially, we identified 1584 altered genes in response to LPS. Modulation of this set of genes was then analyzed in the LPS stimulated cells treated with thalidomide. Results We identified 64 genes with altered expression induced by thalidomide using the rank product method. In addition, the lists of up-regulated and down-regulated genes were investigated by means of bioinformatics functional analysis, which allowed for the identification of biological processes affected by thalidomide. Confirmatory analysis was done in five of the identified genes using real time PCR. Conclusions The results showed some genes that can further our understanding of the biological mechanisms in the action of thalidomide. Of the five genes evaluated with real time PCR, three were down regulated and two were up regulated confirming the initial results of the microarray analysis.

  4. A fast, simple method for screening radiation susceptibility genes by RNA interference

    International Nuclear Information System (INIS)

    Tsuji, Atsushi B.; Sudo, Hitomi; Sugyo, Aya; Otsuki, Marika; Miyagishi, Makoto; Taira, Kazunari; Imai, Takashi; Harada, Yoshi-nobu

    2005-01-01

    Radiotherapy can cause unacceptable levels of damage to normal tissues in some cancer patients. To understand the molecular mechanisms underlying radiation-induced physiological responses, and to be able to predict the radiation susceptibility of normal tissues in individual patients, it is important to identify a comprehensive set of genes responsible for radiation susceptibility. We have developed a simple and rapid 96-well screening protocol using cell proliferation assays and RNA interference to identify genes associated with radiation susceptibility. We evaluated the performance of alamarBlue-, BrdU-, and sulforhodamine B-based cell proliferation assays using the 96-well format. Each proliferation assay detected the known radiation susceptibility gene, PRKDC. In a trial screen using 28 shRNA vectors, another known gene, CDKN1A, and one new radiation susceptibility gene, ATP5G3, were identified. Our results indicate that this method may be useful for large-scale screens designed to identify novel radiation susceptibility genes

  5. Identification of protein-damaging mutations in 10 swine taste receptors and 191 appetite-reward genes

    DEFF Research Database (Denmark)

    Clop, Alex; Sharaf, Abdoallah; Castelló, Anna

    2016-01-01

    . In the intestine, they regulate nutrient absorption and gut motility. Upon ligand binding, TASRs activate the appetite-reward circuitry to signal the nervous system and keep body homeostasis. With the aim to identify genetic variation in the swine TASRs and in the genes from the appetite and the reward pathways......, we have sequenced the exons of 201 TASRs and appetite-reward genes from 304 pigs belonging to ten breeds, wild boars and to two phenotypically extreme groups from a F2 resource with data on growth and fat deposition. RESULTS: We identified 2,766 coding variants 395 of which were predicted to have...... in the appetite and the reward mechanisms. Some of these genes have been already associated to taste preferences, appetite or behaviour in humans and mouse. We have also detected indications of a potential relationship of some of these genes with growth and fat deposition, which could have been caused by changes...

  6. A comparative gene analysis with rice identified orthologous group II HKT genes and their association with Na(+) concentration in bread wheat.

    Science.gov (United States)

    Ariyarathna, H A Chandima K; Oldach, Klaus H; Francki, Michael G

    2016-01-19

    Although the HKT transporter genes ascertain some of the key determinants of crop salt tolerance mechanisms, the diversity and functional role of group II HKT genes are not clearly understood in bread wheat. The advanced knowledge on rice HKT and whole genome sequence was, therefore, used in comparative gene analysis to identify orthologous wheat group II HKT genes and their role in trait variation under different saline environments. The four group II HKTs in rice identified two orthologous gene families from bread wheat, including the known TaHKT2;1 gene family and a new distinctly different gene family designated as TaHKT2;2. A single copy of TaHKT2;2 was found on each homeologous chromosome arm 7AL, 7BL and 7DL and each gene was expressed in leaf blade, sheath and root tissues under non-stressed and at 200 mM salt stressed conditions. The proteins encoded by genes of the TaHKT2;2 family revealed more than 93% amino acid sequence identity but ≤52% amino acid identity compared to the proteins encoded by TaHKT2;1 family. Specifically, variations in known critical domains predicted functional differences between the two protein families. Similar to orthologous rice genes on chromosome 6L, TaHKT2;1 and TaHKT2;2 genes were located approximately 3 kb apart on wheat chromosomes 7AL, 7BL and 7DL, forming a static syntenic block in the two species. The chromosomal region on 7AL containing TaHKT2;1 7AL-1 co-located with QTL for shoot Na(+) concentration and yield in some saline environments. The differences in copy number, genes sequences and encoded proteins between TaHKT2;2 homeologous genes and other group II HKT gene families within and across species likely reflect functional diversity for ion selectivity and transport in plants. Evidence indicated that neither TaHKT2;2 nor TaHKT2;1 were associated with primary root Na(+) uptake but TaHKT2;1 may be associated with trait variation for Na(+) exclusion and yield in some but not all saline environments.

  7. Influence of SNP Polymorphisms in DNA Repair Genes on the Level of Persistent Damage in Human Lymphocytes After Exposure to 2 Gy of Ionising Radiation

    International Nuclear Information System (INIS)

    Milic, M.; Rozgaj, R.; Kasuba, V.; Kubelka, D.; Angelini, S.; Hrelia, P.

    2011-01-01

    Variation in cell response to ionising radiation could be result of changes in gene expression and/or polymorphisms of DNA repair genes. The aim of the study was to estimate the DNA damage level in human lymphocytes after exposure to 2 Gy of ionising radiation. Medical workers occupationally exposed to low doses of ionising radiation (N = 20) and matched controls (N 20) were genotyped for polymorphic hOGG1, XRCC1, APE1, XPD10, XPD23, XRCC3, PARP1 and MGMT genes. Micronucleus (MN) test was used for the estimation of DNA damage before and after radiation. Incidence of MN in irradiated samples positively correlated with age and negatively with polymorphic variants of XPD23. Significant difference was observed between irradiated homozygotes (HO) and heterozygotes (HE). HO and HE APE1 differed in MN before exposure. HO and polymorphic variants of XPD10 differed in MN after exposure. Gender showed different MN in the exposed group after exposure. Age correlated positively with MN after exposure, working probation and received dose. Multiple regression analysis revealed connection between polymorphic variants of APE1 and XRCC3 with MN before exposure. These results confirm the value of micronucleus assay in DNA damage estimation and suggest possible use of polymorphic genes in monitoring of individuals professionaly exposed to ionising radiation. (author)

  8. A Morpholino-based screen to identify novel genes involved in craniofacial morphogenesis

    Science.gov (United States)

    Melvin, Vida Senkus; Feng, Weiguo; Hernandez-Lagunas, Laura; Artinger, Kristin Bruk; Williams, Trevor

    2014-01-01

    BACKGROUND The regulatory mechanisms underpinning facial development are conserved between diverse species. Therefore, results from model systems provide insight into the genetic causes of human craniofacial defects. Previously, we generated a comprehensive dataset examining gene expression during development and fusion of the mouse facial prominences. Here, we used this resource to identify genes that have dynamic expression patterns in the facial prominences, but for which only limited information exists concerning developmental function. RESULTS This set of ~80 genes was used for a high throughput functional analysis in the zebrafish system using Morpholino gene knockdown technology. This screen revealed three classes of cranial cartilage phenotypes depending upon whether knockdown of the gene affected the neurocranium, viscerocranium, or both. The targeted genes that produced consistent phenotypes encoded proteins linked to transcription (meis1, meis2a, tshz2, vgll4l), signaling (pkdcc, vlk, macc1, wu:fb16h09), and extracellular matrix function (smoc2). The majority of these phenotypes were not altered by reduction of p53 levels, demonstrating that both p53 dependent and independent mechanisms were involved in the craniofacial abnormalities. CONCLUSIONS This Morpholino-based screen highlights new genes involved in development of the zebrafish craniofacial skeleton with wider relevance to formation of the face in other species, particularly mouse and human. PMID:23559552

  9. Using Satellite Imagery to Identify Tornado Damage Tracks and Recovery from the April 27, 2011 Severe Weather Outbreak

    Science.gov (United States)

    Cole, Tony A.; Molthan, Andrew L.; Bell, Jordan R.

    2014-01-01

    Emergency response to natural disasters requires coordination between multiple local, state, and federal agencies. Single, relatively weak tornado events may require comparatively simple response efforts; but larger "outbreak" events with multiple strong, long-track tornadoes can benefit from additional tools to help expedite these efforts. Meteorologists from NOAA's National Weather Service conduct field surveys to map tornado tracks, assess damage, and determine the tornado intensity following each event. Moderate and high resolution satellite imagery can support these surveys by providing a high-level view of the affected areas. Satellite imagery could then be used to target areas for immediate survey or to corroborate the results of the survey after it is completed. In this study, the feasibility of using satellite imagery to identify tornado damage tracks was determined by comparing the characteristics of tracks observed from low-earth orbit to tracks assessed during the official NWS storm survey process. Of the 68 NWS confirmed centerlines, 24 tracks (35.3%) could be distinguished from other surface features using satellite imagery. Within each EF category, 0% of EF-0, 3% of EF-1, 50% of EF-2, 77.7% of EF-3, 87.5% of EF-4 and 100% of EF-5 tornadoes were detected. It was shown that satellite data can be used to identify tornado damage tracks in MODIS and ASTER NDVI imagery, where damage to vegetation creates a sharp drop in values though the minimum EF-category which can be detected is dependent upon the type of sensor used and underlying vegetation. Near-real time data from moderate resolution sensors compare favorably to field surveys after the event and suggest that the data can provide some value in the assessment process.

  10. Use of deep whole-genome sequencing data to identify structure risk variants in breast cancer susceptibility genes.

    Science.gov (United States)

    Guo, Xingyi; Shi, Jiajun; Cai, Qiuyin; Shu, Xiao-Ou; He, Jing; Wen, Wanqing; Allen, Jamie; Pharoah, Paul; Dunning, Alison; Hunter, David J; Kraft, Peter; Easton, Douglas F; Zheng, Wei; Long, Jirong

    2018-03-01

    Functional disruptions of susceptibility genes by large genomic structure variant (SV) deletions in germlines are known to be associated with cancer risk. However, few studies have been conducted to systematically search for SV deletions in breast cancer susceptibility genes. We analysed deep (> 30x) whole-genome sequencing (WGS) data generated in blood samples from 128 breast cancer patients of Asian and European descent with either a strong family history of breast cancer or early cancer onset disease. To identify SV deletions in known or suspected breast cancer susceptibility genes, we used multiple SV calling tools including Genome STRiP, Delly, Manta, BreakDancer and Pindel. SV deletions were detected by at least three of these bioinformatics tools in five genes. Specifically, we identified heterozygous deletions covering a fraction of the coding regions of BRCA1 (with approximately 80kb in two patients), and TP53 genes (with ∼1.6 kb in two patients), and of intronic regions (∼1 kb) of the PALB2 (one patient), PTEN (three patients) and RAD51C genes (one patient). We confirmed the presence of these deletions using real-time quantitative PCR (qPCR). Our study identified novel SV deletions in breast cancer susceptibility genes and the identification of such SV deletions may improve clinical testing.

  11. Novel mutations in the homogentisate 1,2 dioxygenase gene identified in Jordanian patients with alkaptonuria.

    Science.gov (United States)

    Al-sbou, Mohammed

    2012-06-01

    This study was conducted to identify mutations in the homogentisate 1,2 dioxygenase gene (HGD) in alkaptonuria patients among Jordanian population. Blood samples were collected from four alkaptonuria patients, four carriers, and two healthy volunteers. DNA was isolated from peripheral blood. All 14 exons of the HGD gene were amplified using the polymerase chain reaction (PCR) technique. The PCR products were then purified and analyzed by sequencing. Five mutations were identified in our samples. Four of them were novel C1273A, T1046G, 551-552insG, T533G and had not been previously reported, and one mutation T847C has been described before. The types of mutations identified were two missense mutations, one splice site mutation, one frameshift mutation, and one polymorphism. We present the first molecular study of the HGD gene in Jordanian alkaptonuria patients. This study provides valuable information about the molecular basis of alkaptonuria in Jordanian population.

  12. Repair of DNA damage in Deinococcus radiodurans

    International Nuclear Information System (INIS)

    Evans, D.M.

    1984-01-01

    The repair of DNA lesions in Deinococcus radiodurans was examined with particular reference to DNA excision repair of ultraviolet light (UV) induced pyrimidine dimers. The characteristics of excision repair via UV endonucleases α and β in vivo varied with respect to (a) the substrate range of the enzymes, (b) the rate of repair of DNA damage (c) the requirement for a protein synthesised in response to DNA damage to attenuate exonuclease action at repairing regions. UV endonuclease α is postulated to incise DNA in a different manner from UV endonuclease β thus defining the method of subsequent repair. Several DNA damage specific endonuclease activities independent of α and β are described. Mutations of the uvsA, uvsF and uvsG genes resulted in an increase in single-strand breaks in response to DNA damage producing uncontrolled DNA degradation. Evidence is presented that these genes have a role in limiting the access of UV endonuclease β to DNA lesions. uvsF and uvsG are also shown to be linked to the mtoA gene. Mutation of uvsH and reo-1 produces further distinct phenotypes which are discussed. An overall model of excision repair of DNA damage in Deinococcus radiodurans is presented. (author)

  13. Gene Expression Profiling Identifies Important Genes Affected by R2 Compound Disrupting FAK and P53 Complex

    International Nuclear Information System (INIS)

    Golubovskaya, Vita M.; Ho, Baotran; Conroy, Jeffrey; Liu, Song; Wang, Dan; Cance, William G.

    2014-01-01

    Focal Adhesion Kinase (FAK) is a non-receptor kinase that plays an important role in many cellular processes: adhesion, proliferation, invasion, angiogenesis, metastasis and survival. Recently, we have shown that Roslin 2 or R2 (1-benzyl-15,3,5,7-tetraazatricyclo[3.3.1.1~3,7~]decane) compound disrupts FAK and p53 proteins, activates p53 transcriptional activity, and blocks tumor growth. In this report we performed a microarray gene expression analysis of R2-treated HCT116 p53 +/+ and p53 −/− cells and detected 1484 genes that were significantly up- or down-regulated (p < 0.05) in HCT116 p53 +/+ cells but not in p53 −/− cells. Among up-regulated genes in HCT p53 +/+ cells we detected critical p53 targets: Mdm-2, Noxa-1, and RIP1. Among down-regulated genes, Met, PLK2, KIF14, BIRC2 and other genes were identified. In addition, a combination of R2 compound with M13 compound that disrupts FAK and Mmd-2 complex or R2 and Nutlin-1 that disrupts Mdm-2 and p53 decreased clonogenicity of HCT116 p53 +/+ colon cancer cells more significantly than each agent alone in a p53-dependent manner. Thus, the report detects gene expression profile in response to R2 treatment and demonstrates that the combination of drugs targeting FAK, Mdm-2, and p53 can be a novel therapy approach

  14. Integrated database for identifying candidate genes for Aspergillus flavus resistance in maize.

    Science.gov (United States)

    Kelley, Rowena Y; Gresham, Cathy; Harper, Jonathan; Bridges, Susan M; Warburton, Marilyn L; Hawkins, Leigh K; Pechanova, Olga; Peethambaran, Bela; Pechan, Tibor; Luthe, Dawn S; Mylroie, J E; Ankala, Arunkanth; Ozkan, Seval; Henry, W B; Williams, W P

    2010-10-07

    Aspergillus flavus Link:Fr, an opportunistic fungus that produces aflatoxin, is pathogenic to maize and other oilseed crops. Aflatoxin is a potent carcinogen, and its presence markedly reduces the value of grain. Understanding and enhancing host resistance to A. flavus infection and/or subsequent aflatoxin accumulation is generally considered an efficient means of reducing grain losses to aflatoxin. Different proteomic, genomic and genetic studies of maize (Zea mays L.) have generated large data sets with the goal of identifying genes responsible for conferring resistance to A. flavus, or aflatoxin. In order to maximize the usage of different data sets in new studies, including association mapping, we have constructed a relational database with web interface integrating the results of gene expression, proteomic (both gel-based and shotgun), Quantitative Trait Loci (QTL) genetic mapping studies, and sequence data from the literature to facilitate selection of candidate genes for continued investigation. The Corn Fungal Resistance Associated Sequences Database (CFRAS-DB) (http://agbase.msstate.edu/) was created with the main goal of identifying genes important to aflatoxin resistance. CFRAS-DB is implemented using MySQL as the relational database management system running on a Linux server, using an Apache web server, and Perl CGI scripts as the web interface. The database and the associated web-based interface allow researchers to examine many lines of evidence (e.g. microarray, proteomics, QTL studies, SNP data) to assess the potential role of a gene or group of genes in the response of different maize lines to A. flavus infection and subsequent production of aflatoxin by the fungus. CFRAS-DB provides the first opportunity to integrate data pertaining to the problem of A. flavus and aflatoxin resistance in maize in one resource and to support queries across different datasets. The web-based interface gives researchers different query options for mining the database

  15. Dietary Berries and Ellagic Acid Prevent Oxidative DNA Damage and Modulate Expression of DNA Repair Genes

    Directory of Open Access Journals (Sweden)

    Ramesh C. Gupta

    2008-03-01

    Full Text Available DNA damage is a pre-requisite for the initiation of cancer and agents that reduce this damage are useful in cancer prevention. In this study, we evaluated the ability of whole berries and berry phytochemical, ellagic acid to reduce endogenous oxidative DNA damage. Ellagic acid was selected based on > 95% inhibition of 8-oxodeoxyguosine (8-oxodG and other unidentified oxidative DNA adducts induced by 4-hydroxy-17B;-estradiol and CuCl2 in vitro. Inhibition of the latter occurred at lower concentrations (10 u(microM than that for 8-oxodG (100 u(microM. In the in vivo study, female CD-1 mice (n=6 were fed either a control diet or diet supplemented with ellagic acid (400 ppm and dehydrated berries (5% w/w with varying ellagic acid contents -- blueberry (low, strawberry (medium and red raspberry (high, for 3 weeks. Blueberry and strawberry diets showed moderate reductions in endogenous DNA adducts (25%. However, both red raspberry and ellagic acid diets showed a significant reduction of 59% (p < 0.001 and 48% (p < 0.01, respectively. Both diets also resulted in a 3-8 fold over-expression of genes involved in DNA repair such as xeroderma pigmentosum group A complementing protein (XPA, DNA excision repair protein (ERCC5 and DNA ligase III (DNL3. These results suggest that red raspberry and ellagic acid reduce endogenous oxidative DNA damage by mechanisms which may involve increase in DNA repair.

  16. The potential value of the neutral comet assay and the expression of genes associated with DNA damage in assessing the radiosensitivity of tumor cells.

    Science.gov (United States)

    Jayakumar, Sundarraj; Bhilwade, Hari N; Pandey, Badri N; Sandur, Santosh K; Chaubey, Ramesh C

    2012-10-09

    The assessment of tumor radiosensitivity would be particularly useful in optimizing the radiation dose during radiotherapy. Therefore, the degree of correlation between radiation-induced DNA damage, as measured by the alkaline and the neutral comet assays, and the clonogenic survival of different human tumor cells was studied. Further, tumor radiosensitivity was compared with the expression of genes associated with the cellular response to radiation damage. Five different human tumor cell lines were chosen and the radiosensitivity of these cells was established by clonogenic assay. Alkaline and neutral comet assays were performed in γ-irradiated cells (2-8Gy; either acute or fractionated). Quantitative PCR was performed to evaluate the expression of DNA damage response genes in control and irradiated cells. The relative radiosensitivity of the cell lines assessed by the extent of DNA damage (neutral comet assay) immediately after irradiation (4Gy or 6Gy) was in agreement with radiosensitivity pattern obtained by the clonogenic assay. The survival fraction of irradiated cells showed a better correlation with the magnitude of DNA damage measured by the neutral comet assay (r=-0.9; Pcomet assay (r=-0.73; Pcomet assay was better than alkaline comet assay for assessment of radiosensitivities of tumor cells after acute or fractionated doses of irradiation. © 2012 Elsevier B.V. All rights reserved.

  17. Computational modeling identifies key gene regulatory interactions underlying phenobarbital-mediated tumor promotion

    Science.gov (United States)

    Luisier, Raphaëlle; Unterberger, Elif B.; Goodman, Jay I.; Schwarz, Michael; Moggs, Jonathan; Terranova, Rémi; van Nimwegen, Erik

    2014-01-01

    Gene regulatory interactions underlying the early stages of non-genotoxic carcinogenesis are poorly understood. Here, we have identified key candidate regulators of phenobarbital (PB)-mediated mouse liver tumorigenesis, a well-characterized model of non-genotoxic carcinogenesis, by applying a new computational modeling approach to a comprehensive collection of in vivo gene expression studies. We have combined our previously developed motif activity response analysis (MARA), which models gene expression patterns in terms of computationally predicted transcription factor binding sites with singular value decomposition (SVD) of the inferred motif activities, to disentangle the roles that different transcriptional regulators play in specific biological pathways of tumor promotion. Furthermore, transgenic mouse models enabled us to identify which of these regulatory activities was downstream of constitutive androstane receptor and β-catenin signaling, both crucial components of PB-mediated liver tumorigenesis. We propose novel roles for E2F and ZFP161 in PB-mediated hepatocyte proliferation and suggest that PB-mediated suppression of ESR1 activity contributes to the development of a tumor-prone environment. Our study shows that combining MARA with SVD allows for automated identification of independent transcription regulatory programs within a complex in vivo tissue environment and provides novel mechanistic insights into PB-mediated hepatocarcinogenesis. PMID:24464994

  18. Biopsy transcriptome expression profiling to identify kidney transplants at risk of chronic injury: a multicentre, prospective study

    Science.gov (United States)

    O’Connell, Philip J; Zhang, Weijia; Menon, Madhav C; Yi, Zhengzi; Schröppel, Bernd; Gallon, Lorenzo; Luan, Yi; Rosales, Ivy A; Ge, Yongchao; Losic, Bojan; Xi, Caixia; Woytovich, Christopher; Keung, Karen L; Wei, Chengguo; Greene, Ilana; Overbey, Jessica; Bagiella, Emilia; Najafian, Nader; Samaniego, Milagros; Djamali, Arjang; Alexander, Stephen I; Nankivell, Brian J; Chapman, Jeremy R; Smith, Rex Neal; Colvin, Robert; Murphy, Barbara

    2016-01-01

    Summary Background Chronic injury in kidney transplants remains a major cause of allograft loss. The aim of this study was to identify a gene set capable of predicting renal allografts at risk of progressive injury due to fibrosis. Methods This Genomics of Chronic Allograft Rejection (GoCAR) study is a prospective, multicentre study. We prospectively collected biopsies from renal allograft recipients (n=204) with stable renal function 3 months after transplantation. We used microarray analysis to investigate gene expression in 159 of these tissue samples. We aimed to identify genes that correlated with the Chronic Allograft Damage Index (CADI) score at 12 months, but not fibrosis at the time of the biopsy. We applied a penalised regression model in combination with permutation-based approach to derive an optimal gene set to predict allograft fibrosis. The GoCAR study is registered with ClinicalTrials.gov, number NCT00611702. Findings We identified a set of 13 genes that was independently predictive for the development of fibrosis at 1 year (ie, CADI-12 ≥2). The gene set had high predictive capacity (area under the curve [AUC] 0·967), which was superior to that of baseline clinical variables (AUC 0·706) and clinical and pathological variables (AUC 0·806). Furthermore routine pathological variables were unable to identify which histologically normal allografts would progress to fibrosis (AUC 0·754), whereas the predictive gene set accurately discriminated between transplants at high and low risk of progression (AUC 0·916). The 13 genes also accurately predicted early allograft loss (AUC 0·842 at 2 years and 0·844 at 3 years). We validated the predictive value of this gene set in an independent cohort from the GoCAR study (n=45, AUC 0·866) and two independent, publically available expression datasets (n=282, AUC 0·831 and n=24, AUC 0·972). Interpretation Our results suggest that this set of 13 genes could be used to identify kidney transplant recipients at

  19. A genetic screen identifies interferon-α effector genes required to suppress hepatitis C virus replication.

    Science.gov (United States)

    Fusco, Dahlene N; Brisac, Cynthia; John, Sinu P; Huang, Yi-Wen; Chin, Christopher R; Xie, Tiao; Zhao, Hong; Jilg, Nikolaus; Zhang, Leiliang; Chevaliez, Stephane; Wambua, Daniel; Lin, Wenyu; Peng, Lee; Chung, Raymond T; Brass, Abraham L

    2013-06-01

    Hepatitis C virus (HCV) infection is a leading cause of end-stage liver disease. Interferon-α (IFNα) is an important component of anti-HCV therapy; it up-regulates transcription of IFN-stimulated genes, many of which have been investigated for their antiviral effects. However, all of the genes required for the antiviral function of IFNα (IFN effector genes [IEGs]) are not known. IEGs include not only IFN-stimulated genes, but other nontranscriptionally induced genes that are required for the antiviral effect of IFNα. In contrast to candidate approaches based on analyses of messenger RNA (mRNA) expression, identification of IEGs requires a broad functional approach. We performed an unbiased genome-wide small interfering RNA screen to identify IEGs that inhibit HCV. Huh7.5.1 hepatoma cells were transfected with small interfering RNAs incubated with IFNα and then infected with JFH1 HCV. Cells were stained using HCV core antibody, imaged, and analyzed to determine the percent infection. Candidate IEGs detected in the screen were validated and analyzed further. The screen identified 120 previously unreported IEGs. From these, we more fully evaluated the following: asparagine-linked glycosylation 10 homolog (yeast, α-1,2-glucosyltransferase); butyrylcholinesterase; dipeptidyl-peptidase 4 (CD26, adenosine deaminase complexing protein 2); glucokinase (hexokinase 4) regulator; guanylate cyclase 1, soluble, β 3; MYST histone acetyltransferase 1; protein phosphatase 3 (formerly 2B), catalytic subunit, β isoform; peroxisomal proliferator-activated receptor-γ-DBD-interacting protein 1; and solute carrier family 27 (fatty acid transporter), member 2; and demonstrated that they enabled IFNα-mediated suppression of HCV at multiple steps of its life cycle. Expression of these genes had more potent effects against flaviviridae because a subset was required for IFNα to suppress dengue virus but not influenza A virus. In addition, many of the host genes detected in this

  20. Transcriptome Profiling to Identify Genes Involved in Mesosulfuron-Methyl Resistance in Alopecurus aequalis

    Directory of Open Access Journals (Sweden)

    Ning Zhao

    2017-08-01

    Full Text Available Non-target-site resistance (NTSR to herbicides is a worldwide concern for weed control. However, as the dominant NTSR mechanism in weeds, metabolic resistance is not yet well-characterized at the genetic level. For this study, we have identified a shortawn foxtail (Alopecurus aequalis Sobol. population displaying both TSR and NTSR to mesosulfuron-methyl and fenoxaprop-P-ethyl, yet the molecular basis for this NTSR remains unclear. To investigate the mechanisms of metabolic resistance, an RNA-Seq transcriptome analysis was used to find candidate genes that may confer metabolic resistance to the herbicide mesosulfuron-methyl in this plant population. The RNA-Seq libraries generated 831,846,736 clean reads. The de novo transcriptome assembly yielded 95,479 unigenes (averaging 944 bp in length that were assigned putative annotations. Among these, a total of 29,889 unigenes were assigned to 67 GO terms that contained three main categories, and 14,246 unigenes assigned to 32 predicted KEGG metabolic pathways. Global gene expression was measured using the reads generated from the untreated control (CK, water-only control (WCK, and mesosulfuron-methyl treatment (T of R and susceptible (S. Contigs that showed expression differences between mesosulfuron-methyl-treated R and S biotypes, and between mesosulfuron-methyl-treated, water-treated and untreated R plants were selected for further quantitative real-time PCR (qRT-PCR validation analyses. Seventeen contigs were consistently highly expressed in the resistant A. aequalis plants, including four cytochrome P450 monooxygenase (CytP450 genes, two glutathione S-transferase (GST genes, two glucosyltransferase (GT genes, two ATP-binding cassette (ABC transporter genes, and seven additional contigs with functional annotations related to oxidation, hydrolysis, and plant stress physiology. These 17 contigs could serve as major candidate genes for contributing to metabolic mesosulfuron-methyl resistance; hence

  1. In-Silico Integration Approach to Identify a Key miRNA Regulating a Gene Network in Aggressive Prostate Cancer

    Science.gov (United States)

    Colaprico, Antonio; Bontempi, Gianluca; Castiglioni, Isabella

    2018-01-01

    Like other cancer diseases, prostate cancer (PC) is caused by the accumulation of genetic alterations in the cells that drives malignant growth. These alterations are revealed by gene profiling and copy number alteration (CNA) analysis. Moreover, recent evidence suggests that also microRNAs have an important role in PC development. Despite efforts to profile PC, the alterations (gene, CNA, and miRNA) and biological processes that correlate with disease development and progression remain partially elusive. Many gene signatures proposed as diagnostic or prognostic tools in cancer poorly overlap. The identification of co-expressed genes, that are functionally related, can identify a core network of genes associated with PC with a better reproducibility. By combining different approaches, including the integration of mRNA expression profiles, CNAs, and miRNA expression levels, we identified a gene signature of four genes overlapping with other published gene signatures and able to distinguish, in silico, high Gleason-scored PC from normal human tissue, which was further enriched to 19 genes by gene co-expression analysis. From the analysis of miRNAs possibly regulating this network, we found that hsa-miR-153 was highly connected to the genes in the network. Our results identify a four-gene signature with diagnostic and prognostic value in PC and suggest an interesting gene network that could play a key regulatory role in PC development and progression. Furthermore, hsa-miR-153, controlling this network, could be a potential biomarker for theranostics in high Gleason-scored PC. PMID:29562723

  2. Genome-wide significant localization for working and spatial memory: Identifying genes for psychosis using models of cognition.

    Science.gov (United States)

    Knowles, Emma E M; Carless, Melanie A; de Almeida, Marcio A A; Curran, Joanne E; McKay, D Reese; Sprooten, Emma; Dyer, Thomas D; Göring, Harald H; Olvera, Rene; Fox, Peter; Almasy, Laura; Duggirala, Ravi; Kent, Jack W; Blangero, John; Glahn, David C

    2014-01-01

    It is well established that risk for developing psychosis is largely mediated by the influence of genes, but identifying precisely which genes underlie that risk has been problematic. Focusing on endophenotypes, rather than illness risk, is one solution to this problem. Impaired cognition is a well-established endophenotype of psychosis. Here we aimed to characterize the genetic architecture of cognition using phenotypically detailed models as opposed to relying on general IQ or individual neuropsychological measures. In so doing we hoped to identify genes that mediate cognitive ability, which might also contribute to psychosis risk. Hierarchical factor models of genetically clustered cognitive traits were subjected to linkage analysis followed by QTL region-specific association analyses in a sample of 1,269 Mexican American individuals from extended pedigrees. We identified four genome wide significant QTLs, two for working and two for spatial memory, and a number of plausible and interesting candidate genes. The creation of detailed models of cognition seemingly enhanced the power to detect genetic effects on cognition and provided a number of possible candidate genes for psychosis. © 2013 Wiley Periodicals, Inc.

  3. Microarray analysis and scale-free gene networks identify candidate regulators in drought-stressed roots of loblolly pine (P. taeda L.

    Directory of Open Access Journals (Sweden)

    Bordeaux John M

    2011-05-01

    Full Text Available Abstract Background Global transcriptional analysis of loblolly pine (Pinus taeda L. is challenging due to limited molecular tools. PtGen2, a 26,496 feature cDNA microarray, was fabricated and used to assess drought-induced gene expression in loblolly pine propagule roots. Statistical analysis of differential expression and weighted gene correlation network analysis were used to identify drought-responsive genes and further characterize the molecular basis of drought tolerance in loblolly pine. Results Microarrays were used to interrogate root cDNA populations obtained from 12 genotype × treatment combinations (four genotypes, three watering regimes. Comparison of drought-stressed roots with roots from the control treatment identified 2445 genes displaying at least a 1.5-fold expression difference (false discovery rate = 0.01. Genes commonly associated with drought response in pine and other plant species, as well as a number of abiotic and biotic stress-related genes, were up-regulated in drought-stressed roots. Only 76 genes were identified as differentially expressed in drought-recovered roots, indicating that the transcript population can return to the pre-drought state within 48 hours. Gene correlation analysis predicts a scale-free network topology and identifies eleven co-expression modules that ranged in size from 34 to 938 members. Network topological parameters identified a number of central nodes (hubs including those with significant homology (E-values ≤ 2 × 10-30 to 9-cis-epoxycarotenoid dioxygenase, zeatin O-glucosyltransferase, and ABA-responsive protein. Identified hubs also include genes that have been associated previously with osmotic stress, phytohormones, enzymes that detoxify reactive oxygen species, and several genes of unknown function. Conclusion PtGen2 was used to evaluate transcriptome responses in loblolly pine and was leveraged to identify 2445 differentially expressed genes responding to severe drought stress in

  4. Microarray analysis and scale-free gene networks identify candidate regulators in drought-stressed roots of loblolly pine (P. taeda L.)

    Science.gov (United States)

    2011-01-01

    Background Global transcriptional analysis of loblolly pine (Pinus taeda L.) is challenging due to limited molecular tools. PtGen2, a 26,496 feature cDNA microarray, was fabricated and used to assess drought-induced gene expression in loblolly pine propagule roots. Statistical analysis of differential expression and weighted gene correlation network analysis were used to identify drought-responsive genes and further characterize the molecular basis of drought tolerance in loblolly pine. Results Microarrays were used to interrogate root cDNA populations obtained from 12 genotype × treatment combinations (four genotypes, three watering regimes). Comparison of drought-stressed roots with roots from the control treatment identified 2445 genes displaying at least a 1.5-fold expression difference (false discovery rate = 0.01). Genes commonly associated with drought response in pine and other plant species, as well as a number of abiotic and biotic stress-related genes, were up-regulated in drought-stressed roots. Only 76 genes were identified as differentially expressed in drought-recovered roots, indicating that the transcript population can return to the pre-drought state within 48 hours. Gene correlation analysis predicts a scale-free network topology and identifies eleven co-expression modules that ranged in size from 34 to 938 members. Network topological parameters identified a number of central nodes (hubs) including those with significant homology (E-values ≤ 2 × 10-30) to 9-cis-epoxycarotenoid dioxygenase, zeatin O-glucosyltransferase, and ABA-responsive protein. Identified hubs also include genes that have been associated previously with osmotic stress, phytohormones, enzymes that detoxify reactive oxygen species, and several genes of unknown function. Conclusion PtGen2 was used to evaluate transcriptome responses in loblolly pine and was leveraged to identify 2445 differentially expressed genes responding to severe drought stress in roots. Many of the

  5. Transcriptome analysis identifies genes involved in ethanol response of Saccharomyces cerevisiae in Agave tequilana juice.

    Science.gov (United States)

    Ramirez-Córdova, Jesús; Drnevich, Jenny; Madrigal-Pulido, Jaime Alberto; Arrizon, Javier; Allen, Kirk; Martínez-Velázquez, Moisés; Alvarez-Maya, Ikuri

    2012-08-01

    During ethanol fermentation, yeast cells are exposed to stress due to the accumulation of ethanol, cell growth is altered and the output of the target product is reduced. For Agave beverages, like tequila, no reports have been published on the global gene expression under ethanol stress. In this work, we used microarray analysis to identify Saccharomyces cerevisiae genes involved in the ethanol response. Gene expression of a tequila yeast strain of S. cerevisiae (AR5) was explored by comparing global gene expression with that of laboratory strain S288C, both after ethanol exposure. Additionally, we used two different culture conditions, cells grown in Agave tequilana juice as a natural fermentation media or grown in yeast-extract peptone dextrose as artificial media. Of the 6368 S. cerevisiae genes in the microarray, 657 genes were identified that had different expression responses to ethanol stress due to strain and/or media. A cluster of 28 genes was found over-expressed specifically in the AR5 tequila strain that could be involved in the adaptation to tequila yeast fermentation, 14 of which are unknown such as yor343c, ylr162w, ygr182c, ymr265c, yer053c-a or ydr415c. These could be the most suitable genes for transforming tequila yeast to increase ethanol tolerance in the tequila fermentation process. Other genes involved in response to stress (RFC4, TSA1, MLH1, PAU3, RAD53) or transport (CYB2, TIP20, QCR9) were expressed in the same cluster. Unknown genes could be good candidates for the development of recombinant yeasts with ethanol tolerance for use in industrial tequila fermentation.

  6. Parallel analysis of tagged deletion mutants efficiently identifies genes involved in endoplasmic reticulum biogenesis.

    Science.gov (United States)

    Wright, Robin; Parrish, Mark L; Cadera, Emily; Larson, Lynnelle; Matson, Clinton K; Garrett-Engele, Philip; Armour, Chris; Lum, Pek Yee; Shoemaker, Daniel D

    2003-07-30

    Increased levels of HMG-CoA reductase induce cell type- and isozyme-specific proliferation of the endoplasmic reticulum. In yeast, the ER proliferations induced by Hmg1p consist of nuclear-associated stacks of smooth ER membranes known as karmellae. To identify genes required for karmellae assembly, we compared the composition of populations of homozygous diploid S. cerevisiae deletion mutants following 20 generations of growth with and without karmellae. Using an initial population of 1,557 deletion mutants, 120 potential mutants were identified as a result of three independent experiments. Each experiment produced a largely non-overlapping set of potential mutants, suggesting that differences in specific growth conditions could be used to maximize the comprehensiveness of similar parallel analysis screens. Only two genes, UBC7 and YAL011W, were identified in all three experiments. Subsequent analysis of individual mutant strains confirmed that each experiment was identifying valid mutations, based on the mutant's sensitivity to elevated HMG-CoA reductase and inability to assemble normal karmellae. The largest class of HMG-CoA reductase-sensitive mutations was a subset of genes that are involved in chromatin structure and transcriptional regulation, suggesting that karmellae assembly requires changes in transcription or that the presence of karmellae may interfere with normal transcriptional regulation. Copyright 2003 John Wiley & Sons, Ltd.

  7. Genome-wide association study identifies the SERPINB gene cluster as a susceptibility locus for food allergy.

    Science.gov (United States)

    Marenholz, Ingo; Grosche, Sarah; Kalb, Birgit; Rüschendorf, Franz; Blümchen, Katharina; Schlags, Rupert; Harandi, Neda; Price, Mareike; Hansen, Gesine; Seidenberg, Jürgen; Röblitz, Holger; Yürek, Songül; Tschirner, Sebastian; Hong, Xiumei; Wang, Xiaobin; Homuth, Georg; Schmidt, Carsten O; Nöthen, Markus M; Hübner, Norbert; Niggemann, Bodo; Beyer, Kirsten; Lee, Young-Ae

    2017-10-20

    Genetic factors and mechanisms underlying food allergy are largely unknown. Due to heterogeneity of symptoms a reliable diagnosis is often difficult to make. Here, we report a genome-wide association study on food allergy diagnosed by oral food challenge in 497 cases and 2387 controls. We identify five loci at genome-wide significance, the clade B serpin (SERPINB) gene cluster at 18q21.3, the cytokine gene cluster at 5q31.1, the filaggrin gene, the C11orf30/LRRC32 locus, and the human leukocyte antigen (HLA) region. Stratifying the results for the causative food demonstrates that association of the HLA locus is peanut allergy-specific whereas the other four loci increase the risk for any food allergy. Variants in the SERPINB gene cluster are associated with SERPINB10 expression in leukocytes. Moreover, SERPINB genes are highly expressed in the esophagus. All identified loci are involved in immunological regulation or epithelial barrier function, emphasizing the role of both mechanisms in food allergy.

  8. SigG Does Not Control Gene Expression in Response to DNA Damage in Mycobacterium tuberculosis H37Rv ▿ §

    OpenAIRE

    Smollett, Katherine L.; Dawson, Lisa F.; Davis, Elaine O.

    2010-01-01

    Expression of the Mycobacterium tuberculosis sigG sigma factor was induced by a variety of DNA-damaging agents, but inactivation of sigG did not affect induction of gene expression or bacterial survival under these conditions. Therefore, SigG does not control the DNA repair response of M. tuberculosis H37Rv.

  9. Structural equation modeling identifies markers of damage and function in the aging male Fischer 344 rat.

    Science.gov (United States)

    Grunz-Borgmann, Elizabeth A; Nichols, LaNita A; Wiedmeyer, Charles E; Spagnoli, Sean; Trzeciakowski, Jerome P; Parrish, Alan R

    2016-06-01

    The male Fischer 344 rat is an established model to study progressive renal dysfunction that is similar, but not identical, to chronic kidney disease (CKD) in humans. These studies were designed to assess age-dependent alterations in renal structure and function at late-life timepoints, 16-24 months. Elevations in BUN and plasma creatinine were not significant until 24 months, however, elevations in the more sensitive markers of function, plasma cystatin C and proteinuria, were detectable at 16 and 18 months, respectively. Interestingly, cystatin C levels were not corrected by caloric restriction. Urinary Kim-1, a marker of CKD, was elevated as early as 16 months. Klotho gene expression was significantly decreased at 24 months, but not at earlier timepoints. Alterations in renal structure, glomerulosclerosis and tubulointerstitial fibrosis, were noted at 16 months, with little change from 18 to 24 months. Tubulointerstitial inflammation was increased at 16 months, and remained similar from 18 to 24 months. A SEM (structural equation modeling) model of age-related renal dysfunction suggests that proteinuria is a marker of renal damage, while urinary Kim-1 is a marker of both damage and function. Taken together, these results demonstrate that age-dependent nephropathy begins as early as 16 months and progresses rapidly over the next 8 months. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Effectively identifying regulatory hotspots while capturing expression heterogeneity in gene expression studies

    Science.gov (United States)

    2014-01-01

    Expression quantitative trait loci (eQTL) mapping is a tool that can systematically identify genetic variation affecting gene expression. eQTL mapping studies have shown that certain genomic locations, referred to as regulatory hotspots, may affect the expression levels of many genes. Recently, studies have shown that various confounding factors may induce spurious regulatory hotspots. Here, we introduce a novel statistical method that effectively eliminates spurious hotspots while retaining genuine hotspots. Applied to simulated and real datasets, we validate that our method achieves greater sensitivity while retaining low false discovery rates compared to previous methods. PMID:24708878

  11. Molecular mechanisms of phoxim-induced silk gland damage and TiO2 nanoparticle-attenuated damage in Bombyx mori.

    Science.gov (United States)

    Li, Bing; Yu, Xiaohong; Gui, Suxin; Xie, Yi; Zhao, Xiaoyang; Hong, Jie; Sun, Qingqing; Sang, Xuezi; Sheng, Lei; Cheng, Zhe; Cheng, Jie; Hu, Rengping; Wang, Ling; Shen, Weide; Hong, Fashui

    2014-06-01

    Phoxim is a useful organophosphate (OP) pesticide used in agriculture in China, however, exposure to this pesticide can result in a significant reduction in cocooning in Bombyx mori (B. mori). Titanium dioxide nanoparticles (TiO2 NPs) have been shown to decrease phoxim-induced toxicity in B. mori; however, very little is known about the molecular mechanisms of silk gland damage due to OP exposure and repair of gland damage by TiO2 NP pretreatment. In the present study, exposure to phoxim resulted in a significant reduction in cocooning rate in addition to silk gland damage, whereas TiO2 NP attenuated phoxim-induced gland damage, increased the antioxidant capacity of the gland, and increased cocooning rate in B. mori. Furthermore, digital gene expression data suggested that phoxim exposure led to significant alterations in the expression of 833 genes. In particular, phoxim exposure caused significant down-regulation of Fib-L, Ser2, Ser3, and P25 genes involved in silk protein synthesis, and up-regulation of SFGH, UCH3, and Salhh genes involved in silk protein hydrolysis. A combination of both phoxim and TiO2 NP treatment resulted in marked changes in the expression of 754 genes, while treatment with TiO2 NPs led to significant alterations in the expression of 308 genes. Importantly, pretreatment with TiO2 NPs increased Fib-L, Ser2, Ser3, and P25 expression, and decreased SFGH, UCH3, and Salhh expression in silk protein in the silk gland under phoxim stress. Therefore, Fib-L, Ser2, Ser3, P25, SFGH, UCH3, and Salhh may be potential biomarkers of silk gland toxicity in B. mori caused by phoxim exposure. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Transcriptional profiling identifies differentially expressed genes in developing turkey skeletal muscle

    Directory of Open Access Journals (Sweden)

    Velleman Sandra G

    2011-03-01

    Full Text Available Abstract Background Skeletal muscle growth and development from embryo to adult consists of a series of carefully regulated changes in gene expression. Understanding these developmental changes in agriculturally important species is essential to the production of high quality meat products. For example, consumer demand for lean, inexpensive meat products has driven the turkey industry to unprecedented production through intensive genetic selection. However, achievements of increased body weight and muscle mass have been countered by an increased incidence of myopathies and meat quality defects. In a previous study, we developed and validated a turkey skeletal muscle-specific microarray as a tool for functional genomics studies. The goals of the current study were to utilize this microarray to elucidate functional pathways of genes responsible for key events in turkey skeletal muscle development and to compare differences in gene expression between two genetic lines of turkeys. To achieve these goals, skeletal muscle samples were collected at three critical stages in muscle development: 18d embryo (hyperplasia, 1d post-hatch (shift from myoblast-mediated growth to satellite cell-modulated growth by hypertrophy, and 16wk (market age from two genetic lines: a randombred control line (RBC2 maintained without selection pressure, and a line (F selected from the RBC2 line for increased 16wk body weight. Array hybridizations were performed in two experiments: Experiment 1 directly compared the developmental stages within genetic line, while Experiment 2 directly compared the two lines within each developmental stage. Results A total of 3474 genes were differentially expressed (false discovery rate; FDR Conclusions The current study identified gene pathways and uncovered novel genes important in turkey muscle growth and development. Future experiments will focus further on several of these candidate genes and the expression and mechanism of action of

  13. MicroRNAs, the DNA damage response and cancer

    International Nuclear Information System (INIS)

    Wouters, Maikel D.; Gent, Dik C. van; Hoeijmakers, Jan H.J.; Pothof, Joris

    2011-01-01

    Many carcinogenic agents such as ultra-violet light from the sun and various natural and man-made chemicals act by damaging the DNA. To deal with these potentially detrimental effects of DNA damage, cells induce a complex DNA damage response (DDR) that includes DNA repair, cell cycle checkpoints, damage tolerance systems and apoptosis. This DDR is a potent barrier against carcinogenesis and defects within this response are observed in many, if not all, human tumors. DDR defects fuel the evolution of precancerous cells to malignant tumors, but can also induce sensitivity to DNA damaging agents in cancer cells, which can be therapeutically exploited by the use of DNA damaging treatment modalities. Regulation of and coordination between sub-pathways within the DDR is important for maintaining genome stability. Although regulation of the DDR has been extensively studied at the transcriptional and post-translational level, less is known about post-transcriptional gene regulation by microRNAs, the topic of this review. More specifically, we highlight current knowledge about DNA damage responsive microRNAs and microRNAs that regulate DNA damage response genes. We end by discussing the role of DNA damage response microRNAs in cancer etiology and sensitivity to ionizing radiation and other DNA damaging therapeutic agents.

  14. Genome-wide Analyses Identify KIF5A as a Novel ALS Gene

    NARCIS (Netherlands)

    Nicolas, Aude; Kenna, Kevin P.; Renton, Alan E.; Ticozzi, Nicola; Faghri, Faraz; Chia, Ruth; Dominov, Janice A.; Kenna, Brendan J.; Nalls, Mike A.; Keagle, Pamela; Rivera, Alberto M.; van Rheenen, Wouter; Murphy, Natalie A.; van Vugt, Joke J.F.A.; Geiger, Joshua T.; van der Spek, Rick; Pliner, Hannah A.; Smith, Bradley N.; Marangi, Giuseppe; Topp, Simon D.; Abramzon, Yevgeniya; Gkazi, Athina Soragia; Eicher, John D.; Kenna, Aoife; Logullo, Francesco O.; Simone, Isabella L.; Logroscino, Giancarlo; Salvi, Fabrizio; Bartolomei, Ilaria; Borghero, Giuseppe; Murru, Maria Rita; Costantino, Emanuela; Pani, Carla; Puddu, Roberta; Caredda, Carla; Piras, Valeria; Tranquilli, Stefania; Cuccu, Stefania; Corongiu, Daniela; Melis, Maurizio; Milia, Antonio; Marrosu, Francesco; Marrosu, Maria Giovanna; Floris, Gianluca; Cannas, Antonino; Capasso, Margherita; Caponnetto, Claudia; Mancardi, Gianluigi; Origone, Paola; Mandich, Paola; Conforti, Francesca L.; Cavallaro, Sebastiano; Mora, Gabriele; Marinou, Kalliopi; Sideri, Riccardo; Penco, Silvana; Mosca, Lorena; Lunetta, Christian; Pinter, Giuseppe Lauria; Corbo, Massimo; Riva, Nilo; Carrera, Paola; Volanti, Paolo; Mandrioli, Jessica; Fini, Nicola; Fasano, Antonio; Tremolizzo, Lucio; Arosio, Alessandro; Ferrarese, Carlo; Trojsi, Francesca; Tedeschi, Gioacchino; Monsurrò, Maria Rosaria; Piccirillo, Giovanni; Femiano, Cinzia; Ticca, Anna; Ortu, Enzo; La Bella, Vincenzo; Spataro, Rossella; Colletti, Tiziana; Sabatelli, Mario; Zollino, Marcella; Conte, Amelia; Luigetti, Marco; Lattante, Serena; Marangi, Giuseppe; Santarelli, Marialuisa; Petrucci, Antonio; Pugliatti, Maura; Pirisi, Angelo; Parish, Leslie D.; Occhineri, Patrizia; Giannini, Fabio; Battistini, Stefania; Ricci, Claudia; Benigni, Michele; Cau, Tea B.; Loi, Daniela; Calvo, Andrea; Moglia, Cristina; Brunetti, Maura; Barberis, Marco; Restagno, Gabriella; Casale, Federico; Marrali, Giuseppe; Fuda, Giuseppe; Ossola, Irene; Cammarosano, Stefania; Canosa, Antonio; Ilardi, Antonio; Manera, Umberto; Grassano, Maurizio; Tanel, Raffaella; Pisano, Fabrizio; Mora, Gabriele; Calvo, Andrea; Mazzini, Letizia; Riva, Nilo; Mandrioli, Jessica; Caponnetto, Claudia; Battistini, Stefania; Volanti, Paolo; La Bella, Vincenzo; Conforti, Francesca L.; Borghero, Giuseppe; Messina, Sonia; Simone, Isabella L.; Trojsi, Francesca; Salvi, Fabrizio; Logullo, Francesco O.; D'Alfonso, Sandra; Corrado, Lucia; Capasso, Margherita; Ferrucci, Luigi; Harms, Matthew B.; Goldstein, David B.; Shneider, Neil A.; Goutman, Stephen A.; Simmons, Zachary; Miller, Timothy M.; Chandran, Siddharthan; Pal, Suvankar; Manousakis, George; Appel, Stanley H.; Simpson, Ericka; Wang, Leo; Baloh, Robert H.; Gibson, Summer B.; Bedlack, Richard; Lacomis, David; Sareen, Dhruv; Sherman, Alexander; Bruijn, Lucie; Penny, Michelle; Moreno, Cristiane de Araujo Martins; Kamalakaran, Sitharthan; Goldstein, David B.; Allen, Andrew S.; Appel, Stanley; Baloh, Robert H.; Bedlack, Richard S.; Boone, Braden E.; Brown, Robert; Carulli, John P.; Chesi, Alessandra; Chung, Wendy K.; Cirulli, Elizabeth T.; Cooper, Gregory M.; Couthouis, Julien; Day-Williams, Aaron G.; Dion, Patrick A.; Gibson, Summer B.; Gitler, Aaron D.; Glass, Jonathan D.; Goldstein, David B.; Han, Yujun; Harms, Matthew B.; Harris, Tim; Hayes, Sebastian D.; Jones, Angela L.; Keebler, Jonathan; Krueger, Brian J.; Lasseigne, Brittany N.; Levy, Shawn E.; Lu, Yi Fan; Maniatis, Tom; McKenna-Yasek, Diane; Miller, Timothy M.; Myers, Richard M.; Petrovski, Slavé; Pulst, Stefan M.; Raphael, Alya R.; Ravits, John M.; Ren, Zhong; Rouleau, Guy A.; Sapp, Peter C.; Shneider, Neil A.; Simpson, Ericka; Sims, Katherine B.; Staropoli, John F.; Waite, Lindsay L.; Wang, Quanli; Wimbish, Jack R.; Xin, Winnie W.; Gitler, Aaron D.; Harris, Tim; Myers, Richard M.; Phatnani, Hemali; Kwan, Justin; Sareen, Dhruv; Broach, James R.; Simmons, Zachary; Arcila-Londono, Ximena; Lee, Edward B.; Van Deerlin, Vivianna M.; Shneider, Neil A.; Fraenkel, Ernest; Ostrow, Lyle W.; Baas, Frank; Zaitlen, Noah; Berry, James D.; Malaspina, Andrea; Fratta, Pietro; Cox, Gregory A.; Thompson, Leslie M.; Finkbeiner, Steve; Dardiotis, Efthimios; Miller, Timothy M.; Chandran, Siddharthan; Pal, Suvankar; Hornstein, Eran; MacGowan, Daniel J.L.; Heiman-Patterson, Terry D.; Hammell, Molly G.; Patsopoulos, Nikolaos A.; Dubnau, Joshua; Nath, Avindra; Phatnani, Hemali; Musunuri, Rajeeva Lochan; Evani, Uday Shankar; Abhyankar, Avinash; Zody, Michael C.; Kaye, Julia; Finkbeiner, Steven; Wyman, Stacia K.; LeNail, Alexander; Lima, Leandro; Fraenkel, Ernest; Rothstein, Jeffrey D.; Svendsen, Clive N.; Thompson, Leslie M.; Van Eyk, Jenny; Maragakis, Nicholas J.; Berry, James D.; Glass, Jonathan D.; Miller, Timothy M.; Kolb, Stephen J.; Baloh, Robert H.; Cudkowicz, Merit; Baxi, Emily; Kaye, Julia; Finkbeiner, Steven; Wyman, Stacia K.; Finkbeiner, Steven; LeNail, Alex; Lima, Leandro; Fraenkel, Ernest; Fraenkel, Ernest; Svendsen, Clive N.; Svendsen, Clive N.; Thompson, Leslie M.; Thompson, Leslie M.; Van Eyk, Jennifer E.; Berry, James D.; Berry, James D.; Miller, Timothy M.; Kolb, Stephen J.; Cudkowicz, Merit; Cudkowicz, Merit; Baxi, Emily; Benatar, Michael; Taylor, J. Paul; Wu, Gang; Rampersaud, Evadnie; Wuu, Joanne; Rademakers, Rosa; Züchner, Stephan; Schule, Rebecca; McCauley, Jacob; Hussain, Sumaira; Cooley, Anne; Wallace, Marielle; Clayman, Christine; Barohn, Richard; Statland, Jeffrey; Ravits, John M.; Swenson, Andrea; Jackson, Carlayne; Trivedi, Jaya; Khan, Shaida; Katz, Jonathan; Jenkins, Liberty; Burns, Ted; Gwathmey, Kelly; Caress, James; McMillan, Corey; Elman, Lauren; Pioro, Erik P.; Heckmann, Jeannine; So, Yuen; Walk, David; Maiser, Samuel; Zhang, Jinghui; Benatar, Michael; Taylor, J. Paul; Taylor, J. Paul; Rampersaud, Evadnie; Wu, Gang; Wuu, Joanne; Silani, Vincenzo; Ticozzi, Nicola; Gellera, Cinzia; Ratti, Antonia; Taroni, Franco; Lauria, Giuseppe; Verde, Federico; Fogh, Isabella; Tiloca, Cinzia; Comi, Giacomo P.; Sorarù, Gianni; Cereda, Cristina; D'Alfonso, Sandra; Corrado, Lucia; De Marchi, Fabiola; Corti, Stefania; Ceroni, Mauro; Mazzini, Letizia; Siciliano, Gabriele; Filosto, Massimiliano; Inghilleri, Maurizio; Peverelli, Silvia; Colombrita, Claudia; Poletti, Barbara; Maderna, Luca; Del Bo, Roberto; Gagliardi, Stella; Querin, Giorgia; Bertolin, Cinzia; Pensato, Viviana; Castellotti, Barbara; Lauria, Giuseppe; Verde, Federico; Fogh, Isabella; Tiloca, Cinzia; Fogh, Isabella; Comi, Giacomo P.; Sorarù, Gianni; Cereda, Cristina; Camu, William; Mouzat, Kevin; Lumbroso, Serge; Corcia, Philippe; Meininger, Vincent; Besson, Gérard; Lagrange, Emmeline; Clavelou, Pierre; Guy, Nathalie; Couratier, Philippe; Vourch, Patrick; Danel, Véronique; Bernard, Emilien; Lemasson, Gwendal; Corcia, Philippe; Laaksovirta, Hannu; Myllykangas, Liisa; Jansson, Lilja; Valori, Miko; Ealing, John; Hamdalla, Hisham; Rollinson, Sara; Pickering-Brown, Stuart; Orrell, Richard W.; Sidle, Katie C.; Malaspina, Andrea; Hardy, John; Singleton, Andrew B.; Johnson, Janel O.; Arepalli, Sampath; Sapp, Peter C.; McKenna-Yasek, Diane; Polak, Meraida; Asress, Seneshaw; Al-Sarraj, Safa; King, Andrew; Troakes, Claire; Vance, Caroline; de Belleroche, Jacqueline; Baas, Frank; ten Asbroek, Anneloor L.M.A.; Muñoz-Blanco, José Luis; Hernandez, Dena G.; Ding, Jinhui; Gibbs, J. Raphael; Scholz, Sonja W.; Scholz, Sonja W.; Floeter, Mary Kay; Campbell, Roy H.; Landi, Francesco; Bowser, Robert; Pulst, Stefan M.; Ravits, John M.; MacGowan, Daniel J.L.; Kirby, Janine; Pioro, Erik P.; Pamphlett, Roger; Broach, James; Gerhard, Glenn; Dunckley, Travis L.; Brady, Christopher B.; Brady, Christopher B.; Kowall, Neil W.; Troncoso, Juan C.; Le Ber, Isabelle; Mouzat, Kevin; Lumbroso, Serge; Mouzat, Kevin; Lumbroso, Serge; Heiman-Patterson, Terry D.; Heiman-Patterson, Terry D.; Kamel, Freya; Van Den Bosch, Ludo; Van Den Bosch, Ludo; Baloh, Robert H.; Strom, Tim M.; Meitinger, Thomas; Strom, Tim M.; Shatunov, Aleksey; Van Eijk, Kristel R.; de Carvalho, Mamede; de Carvalho, Mamede; Kooyman, Maarten; Middelkoop, Bas; Moisse, Matthieu; McLaughlin, Russell; Van Es, Michael A.; Weber, Markus; Boylan, Kevin B.; Van Blitterswijk, Marka; Rademakers, Rosa; Morrison, Karen; Basak, A. Nazli; Mora, Jesús S.; Drory, Vivian; Shaw, Pamela; Turner, Martin R.; Talbot, Kevin; Hardiman, Orla; Williams, Kelly L.; Fifita, Jennifer A.; Nicholson, Garth A.; Blair, Ian P.; Nicholson, Garth A.; Rouleau, Guy A.; Esteban-Pérez, Jesús; García-Redondo, Alberto; Al-Chalabi, Ammar; Al Kheifat, Ahmad; Al-Chalabi, Ammar; Andersen, Peter M.; Basak, A. Nazli; Blair, Ian P.; Chio, Adriano; Cooper-Knock, Jonathan; Corcia, Philippe; Couratier, Philippe; de Carvalho, Mamede; Dekker, Annelot; Drory, Vivian; Redondo, Alberto Garcia; Gotkine, Marc; Hardiman, Orla; Hide, Winston; Iacoangeli, Alfredo; Glass, Jonathan D.; Kenna, Kevin P.; Kiernan, Matthew; Kooyman, Maarten; Landers, John E.; McLaughlin, Russell; Middelkoop, Bas; Mill, Jonathan; Neto, Miguel Mitne; Moisse, Matthieu; Pardina, Jesus Mora; Morrison, Karen; Newhouse, Stephen; Pinto, Susana; Pulit, Sara; Robberecht, Wim; Shatunov, Aleksey; Shaw, Pamela; Shaw, Chris; Silani, Vincenzo; Sproviero, William; Tazelaar, Gijs; Ticozzi, Nicola; Van Damme, Philip; van den Berg, Leonard; van der Spek, Rick; Van Eijk, Kristel R.; Van Es, Michael A.; van Rheenen, Wouter; van Vugt, Joke J.F.A.; Veldink, Jan H.; Weber, Markus; Williams, Kelly L.; Van Damme, Philip; Robberecht, Wim; Zatz, Mayana; Robberecht, Wim; Bauer, Denis C.; Twine, Natalie A.; Rogaeva, Ekaterina; Zinman, Lorne; Ostrow, Lyle W.; Maragakis, Nicholas J.; Rothstein, Jeffrey D.; Simmons, Zachary; Cooper-Knock, Johnathan; Brice, Alexis; Goutman, Stephen A.; Feldman, Eva L.; Gibson, Summer B.; Taroni, Franco; Ratti, Antonia; Ratti, Antonia; Gellera, Cinzia; Van Damme, Philip; Robberecht, Wim; Fratta, Pietro; Sabatelli, Mario; Lunetta, Christian; Ludolph, Albert C.; Andersen, Peter M.; Weishaupt, Jochen H.; Camu, William; Trojanowski, John Q.; Van Deerlin, Vivianna M.; Brown, Robert H.; van den Berg, Leonard; Veldink, Jan H.; Harms, Matthew B.; Glass, Jonathan D.; Stone, David J.; Tienari, Pentti; Silani, Vincenzo; Silani, Vincenzo; Chiò, Adriano; Shaw, Christopher E.; Chiò, Adriano; Traynor, Bryan J.; Landers, John E.; Traynor, Bryan J.

    2018-01-01

    To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494

  15. Genome-wide gene expression array identifies novel genes related to disease severity and excessive daytime sleepiness in patients with obstructive sleep apnea.

    Directory of Open Access Journals (Sweden)

    Yung-Che Chen

    Full Text Available We aimed to identify novel molecular associations between chronic intermittent hypoxia with re-oxygenation and adverse consequences in obstructive sleep apnea (OSA. We analyzed gene expression profiles of peripheral blood mononuclear cells from 48 patients with sleep-disordered breathing stratified into four groups: primary snoring (PS, moderate to severe OSA (MSO, very severe OSA (VSO, and very severe OSA patients on long-term continuous positive airway pressure treatment (VSOC. Comparisons of the microarray gene expression data identified eight genes up-regulated with OSA and down-regulated with CPAP treatment, and five genes down-regulated with OSA and up-regulated with CPAP treatment. Protein expression levels of two genes related to endothelial tight junction (AMOT P130, and PLEKHH3, and three genes related to anti-or pro-apoptosis (BIRC3, ADAR1 P150, and LGALS3 were all increased in the VSO group, while AMOT P130 was further increased, and PLEKHH3, BIRC3, and ADAR1 P150 were all decreased in the VSOC group. Subgroup analyses revealed that AMOT P130 protein expression was increased in OSA patients with excessive daytime sleepiness, BIRC3 protein expression was decreased in OSA patients with hypertension, and LGALS3 protein expression was increased in OSA patients with chronic kidney disease. In vitro short-term intermittent hypoxia with re-oxygenation experiment showed immediate over-expression of ADAR1 P150. In conclusion, we identified a novel association between AMOT/PLEKHH3/BIRC3/ADAR1/LGALS3 over-expressions and high severity index in OSA patients. AMOT and GALIG may constitute an important determinant for the development of hypersomnia and kidney injury, respectively, while BIRC3 may play a protective role in the development of hypertension.

  16. ROS-activated ATM-dependent phosphorylation of cytoplasmic substrates identified by large scale phosphoproteomics screen

    DEFF Research Database (Denmark)

    Kozlov, Sergei V; Waardenberg, Ashley J; Engholm-Keller, Kasper

    2016-01-01

    ATM (ataxia-telangiectasia, mutated) protein plays a central role in phosphorylating a network of proteins in response to DNA damage. These proteins function in signalling pathways designed to maintain the stability of the genome and minimize the risk of disease by controlling cell cycle checkpoi......ATM (ataxia-telangiectasia, mutated) protein plays a central role in phosphorylating a network of proteins in response to DNA damage. These proteins function in signalling pathways designed to maintain the stability of the genome and minimize the risk of disease by controlling cell cycle...... checkpoints, initiating DNA repair and regulating gene expression. ATM kinase can be activated by a variety of stimuli, including oxidative stress. Here we confirmed activation of cytoplasmic ATM by autophosphorylation at multiple sites. Then we employed a global quantitative phosphoproteomics approach...... to identify cytoplasmic proteins altered in their phosphorylation state in control and A-T (ataxia-telangiectasia) cells in response to oxidative damage. We demonstrated that ATM was activated by oxidative damage in the cytoplasm as well as in the nucleus and identified a total of 9,833 phosphorylation sites...

  17. Genome-wide RNAi screening identifies genes inhibiting the migration of glioblastoma cells.

    Directory of Open Access Journals (Sweden)

    Jian Yang

    Full Text Available Glioblastoma Multiforme (GBM cells are highly invasive, infiltrating into the surrounding normal brain tissue, making it impossible to completely eradicate GBM tumors by surgery or radiation. Increasing evidence also shows that these migratory cells are highly resistant to cytotoxic reagents, but decreasing their migratory capability can re-sensitize them to chemotherapy. These evidences suggest that the migratory cell population may serve as a better therapeutic target for more effective treatment of GBM. In order to understand the regulatory mechanism underlying the motile phenotype, we carried out a genome-wide RNAi screen for genes inhibiting the migration of GBM cells. The screening identified a total of twenty-five primary hits; seven of them were confirmed by secondary screening. Further study showed that three of the genes, FLNA, KHSRP and HCFC1, also functioned in vivo, and knocking them down caused multifocal tumor in a mouse model. Interestingly, two genes, KHSRP and HCFC1, were also found to be correlated with the clinical outcome of GBM patients. These two genes have not been previously associated with cell migration.

  18. Renal-Retinal Ciliopathy Gene Sdccag8 Regulates DNA Damage Response Signaling

    DEFF Research Database (Denmark)

    Airik, Rannar; Slaats, Gisela G; Guo, Zhi

    2014-01-01

    Nephronophthisis-related ciliopathies (NPHP-RCs) are developmental and degenerative kidney diseases that are frequently associated with extrarenal pathologies such as retinal degeneration, obesity, and intellectual disability. We recently identified mutations in a gene encoding the centrosomal...... protein SDCCAG8 as causing NPHP type 10 in humans. To study the role of Sdccag8 in disease pathogenesis, we generated a Sdccag8 gene-trap mouse line. Homozygous Sdccag8(gt/gt) mice lacked the wild-type Sdccag8 transcript and protein, and recapitulated the human phenotypes of NPHP and retinal degeneration....... These mice exhibited early onset retinal degeneration that was associated with rhodopsin mislocalization in the photoreceptors and reduced cone cell numbers, and led to progressive loss of vision. By contrast, renal histologic changes occurred later, and no global ciliary defects were observed in the kidneys...

  19. Gene expression analysis identifies new candidate genes associated with the development of black skin spots in Corriedale sheep.

    Science.gov (United States)

    Peñagaricano, Francisco; Zorrilla, Pilar; Naya, Hugo; Robello, Carlos; Urioste, Jorge I

    2012-02-01

    The white coat colour of sheep is an important economic trait. For unknown reasons, some animals are born with, and others develop with time, black skin spots that can also produce pigmented fibres. The presence of pigmented fibres in the white wool significantly decreases the fibre quality. The aim of this work was to study gene expression in black spots (with and without pigmented fibres) and white skin by microarray techniques, in order to identify the possible genes involved in the development of this trait. Five unrelated Corriedale sheep were used and, for each animal, the three possible comparisons (three different hybridisations) between the three samples of interest were performed. Differential gene expression patterns were analysed using different t-test approaches. Most of the major genes with well-known roles in skin pigmentation, e.g. ASIP, MC1R and C-KIT, showed no significant difference in the gene expression between white skin and black spots. On the other hand, many of the differentially expressed genes (raw P-value spots. The gene expression of C-FOS and KLF4, transcription factors involved in the cellular response to external factors such as ultraviolet light, was validated by quantitative polymerase chain reaction (PCR). This exploratory study provides a list of candidate genes that could be associated with the development of black skin spots that should be studied in more detail. Characterisation of these genes will enable us to discern the molecular mechanisms involved in the development of this feature and, hence, increase our understanding of melanocyte biology and skin pigmentation. In sheep, understanding this phenomenon is a first step towards developing molecular tools to assist in the selection against the presence of pigmented fibres in white wool.

  20. Identifying pathogenicity genes in the rubber tree anthracnose fungus Colletotrichum gloeosporioides through random insertional mutagenesis.

    Science.gov (United States)

    Cai, Zhiying; Li, Guohua; Lin, Chunhua; Shi, Tao; Zhai, Ligang; Chen, Yipeng; Huang, Guixiu

    2013-07-19

    To gain more insight into the molecular mechanisms of Colletotrichum gloeosporioides pathogenesis, Agrobacterium tumefaciens-mediated transformation (ATMT) was used to identify mutants of C. gloeosporioides impaired in pathogenicity. An ATMT library of 4128 C. gloeosporioides transformants was generated. Transformants were screened for defects in pathogenicity with a detached copper brown leaf assay. 32 mutants showing reproducible pathogenicity defects were obtained. Southern blot analysis showed 60.4% of the transformants had single-site T-DNA integrations. 16 Genomic sequences flanking T-DNA were recovered from mutants by thermal asymmetric interlaced PCR, and were used to isolate the tagged genes from the genome sequence of wild-type C. gloeosporioides by Basic Local Alignment Search Tool searches against the local genome database of the wild-type C. gloeosporioides. One potential pathogenicity genes encoded calcium-translocating P-type ATPase. Six potential pathogenicity genes had no known homologs in filamentous fungi and were likely to be novel fungal virulence factors. Two putative genes encoded Glycosyltransferase family 28 domain-containing protein and Mov34/MPN/PAD-1 family protein, respectively. Five potential pathogenicity genes had putative function matched with putative protein of other Colletotrichum species. Two known C. gloeosporioides pathogenicity genes were also identified, the encoding Glomerella cingulata hard-surface induced protein and C. gloeosporioides regulatory subunit of protein kinase A gene involved in cAMP-dependent PKA signal transduction pathway. Copyright © 2013 Elsevier GmbH. All rights reserved.

  1. MVisAGe Identifies Concordant and Discordant Genomic Alterations of Driver Genes in Squamous Tumors.

    Science.gov (United States)

    Walter, Vonn; Du, Ying; Danilova, Ludmila; Hayward, Michele C; Hayes, D Neil

    2018-06-15

    Integrated analyses of multiple genomic datatypes are now common in cancer profiling studies. Such data present opportunities for numerous computational experiments, yet analytic pipelines are limited. Tools such as the cBioPortal and Regulome Explorer, although useful, are not easy to access programmatically or to implement locally. Here, we introduce the MVisAGe R package, which allows users to quantify gene-level associations between two genomic datatypes to investigate the effect of genomic alterations (e.g., DNA copy number changes on gene expression). Visualizing Pearson/Spearman correlation coefficients according to the genomic positions of the underlying genes provides a powerful yet novel tool for conducting exploratory analyses. We demonstrate its utility by analyzing three publicly available cancer datasets. Our approach highlights canonical oncogenes in chr11q13 that displayed the strongest associations between expression and copy number, including CCND1 and CTTN , genes not identified by copy number analysis in the primary reports. We demonstrate highly concordant usage of shared oncogenes on chr3q, yet strikingly diverse oncogene usage on chr11q as a function of HPV infection status. Regions of chr19 that display remarkable associations between methylation and gene expression were identified, as were previously unreported miRNA-gene expression associations that may contribute to the epithelial-to-mesenchymal transition. Significance: This study presents an important bioinformatics tool that will enable integrated analyses of multiple genomic datatypes. Cancer Res; 78(12); 3375-85. ©2018 AACR . ©2018 American Association for Cancer Research.

  2. Evaluation of potential regulatory elements identified as DNase I hypersensitive sites in the CFTR gene

    DEFF Research Database (Denmark)

    Phylactides, M.; Rowntree, R.; Nuthall, H.

    2002-01-01

    hypersensitive sites (DHS) within the locus. We previously identified at least 12 clusters of DHS across the CFTR gene and here further evaluate DHS in introns 2,3,10,16,17a, 18, 20 and 21 to assess their functional importance in regulation of CFTR gene expression. Transient transfections of enhancer/reporter...

  3. APRIL is a novel clinical chemo-resistance biomarker in colorectal adenocarcinoma identified by gene expression profiling

    International Nuclear Information System (INIS)

    Petty, Russell D; Wang, Weiguang; Gilbert, Fiona; Semple, Scot; Collie-Duguid, Elaina SR; Samuel, Leslie M; Murray, Graeme I; MacDonald, Graham; O'Kelly, Terrence; Loudon, Malcolm; Binnie, Norman; Aly, Emad; McKinlay, Aileen

    2009-01-01

    5-Fluorouracil(5FU) and oral analogues, such as capecitabine, remain one of the most useful agents for the treatment of colorectal adenocarcinoma. Low toxicity and convenience of administration facilitate use, however clinical resistance is a major limitation. Investigation has failed to fully explain the molecular mechanisms of resistance and no clinically useful predictive biomarkers for 5FU resistance have been identified. We investigated the molecular mechanisms of clinical 5FU resistance in colorectal adenocarcinoma patients in a prospective biomarker discovery project utilising gene expression profiling. The aim was to identify novel 5FU resistance mechanisms and qualify these as candidate biomarkers and therapeutic targets. Putative treatment specific gene expression changes were identified in a transcriptomics study of rectal adenocarcinomas, biopsied and profiled before and after pre-operative short-course radiotherapy or 5FU based chemo-radiotherapy, using microarrays. Tumour from untreated controls at diagnosis and resection identified treatment-independent gene expression changes. Candidate 5FU chemo-resistant genes were identified by comparison of gene expression data sets from these clinical specimens with gene expression signatures from our previous studies of colorectal cancer cell lines, where parental and daughter lines resistant to 5FU were compared. A colorectal adenocarcinoma tissue microarray (n = 234, resected tumours) was used as an independent set to qualify candidates thus identified. APRIL/TNFSF13 mRNA was significantly upregulated following 5FU based concurrent chemo-radiotherapy and in 5FU resistant colorectal adenocarcinoma cell lines but not in radiotherapy alone treated colorectal adenocarcinomas. Consistent withAPRIL's known function as an autocrine or paracrine secreted molecule, stromal but not tumour cell protein expression by immunohistochemistry was correlated with poor prognosis (p = 0.019) in the independent set

  4. Exome sequencing identifies rare deleterious mutations in DNA repair genes FANCC and BLM as potential breast cancer susceptibility alleles.

    Directory of Open Access Journals (Sweden)

    Ella R Thompson

    2012-09-01

    Full Text Available Despite intensive efforts using linkage and candidate gene approaches, the genetic etiology for the majority of families with a multi-generational breast cancer predisposition is unknown. In this study, we used whole-exome sequencing of thirty-three individuals from 15 breast cancer families to identify potential predisposing genes. Our analysis identified families with heterozygous, deleterious mutations in the DNA repair genes FANCC and BLM, which are responsible for the autosomal recessive disorders Fanconi Anemia and Bloom syndrome. In total, screening of all exons in these genes in 438 breast cancer families identified three with truncating mutations in FANCC and two with truncating mutations in BLM. Additional screening of FANCC mutation hotspot exons identified one pathogenic mutation among an additional 957 breast cancer families. Importantly, none of the deleterious mutations were identified among 464 healthy controls and are not reported in the 1,000 Genomes data. Given the rarity of Fanconi Anemia and Bloom syndrome disorders among Caucasian populations, the finding of multiple deleterious mutations in these critical DNA repair genes among high-risk breast cancer families is intriguing and suggestive of a predisposing role. Our data demonstrate the utility of intra-family exome-sequencing approaches to uncover cancer predisposition genes, but highlight the major challenge of definitively validating candidates where the incidence of sporadic disease is high, germline mutations are not fully penetrant, and individual predisposition genes may only account for a tiny proportion of breast cancer families.

  5. Gene Unprediction with Spurio: A tool to identify spurious protein sequences.

    Science.gov (United States)

    Höps, Wolfram; Jeffryes, Matt; Bateman, Alex

    2018-01-01

    We now have access to the sequences of tens of millions of proteins. These protein sequences are essential for modern molecular biology and computational biology. The vast majority of protein sequences are derived from gene prediction tools and have no experimental supporting evidence for their translation.  Despite the increasing accuracy of gene prediction tools there likely exists a large number of spurious protein predictions in the sequence databases.  We have developed the Spurio tool to help identify spurious protein predictions in prokaryotes.  Spurio searches the query protein sequence against a prokaryotic nucleotide database using tblastn and identifies homologous sequences. The tblastn matches are used to score the query sequence's likelihood of being a spurious protein prediction using a Gaussian process model. The most informative feature is the appearance of stop codons within the presumed translation of homologous DNA sequences. Benchmarking shows that the Spurio tool is able to distinguish spurious from true proteins. However, transposon proteins are prone to be predicted as spurious because of the frequency of degraded homologs found in the DNA sequence databases. Our initial experiments suggest that less than 1% of the proteins in the UniProtKB sequence database are likely to be spurious and that Spurio is able to identify over 60 times more spurious proteins than the AntiFam resource. The Spurio software and source code is available under an MIT license at the following URL: https://bitbucket.org/bateman-group/spurio.

  6. Exome analysis of a family with Wolff-Parkinson-White syndrome identifies a novel disease locus.

    Science.gov (United States)

    Bowles, Neil E; Jou, Chuanchau J; Arrington, Cammon B; Kennedy, Brett J; Earl, Aubree; Matsunami, Norisada; Meyers, Lindsay L; Etheridge, Susan P; Saarel, Elizabeth V; Bleyl, Steven B; Yost, H Joseph; Yandell, Mark; Leppert, Mark F; Tristani-Firouzi, Martin; Gruber, Peter J

    2015-12-01

    Wolff-Parkinson-White (WPW) syndrome is a common cause of supraventricular tachycardia that carries a risk of sudden cardiac death. To date, mutations in only one gene, PRKAG2, which encodes the 5'-AMP-activated protein kinase subunit γ-2, have been identified as causative for WPW. DNA samples from five members of a family with WPW were analyzed by exome sequencing. We applied recently designed prioritization strategies (VAAST/pedigree VAAST) coupled with an ontology-based algorithm (Phevor) that reduced the number of potentially damaging variants to 10: a variant in KCNE2 previously associated with Long QT syndrome was also identified. Of these 11 variants, only MYH6 p.E1885K segregated with the WPW phenotype in all affected individuals and was absent in 10 unaffected family members. This variant was predicted to be damaging by in silico methods and is not present in the 1,000 genome and NHLBI exome sequencing project databases. Screening of a replication cohort of 47 unrelated WPW patients did not identify other likely causative variants in PRKAG2 or MYH6. MYH6 variants have been identified in patients with atrial septal defects, cardiomyopathies, and sick sinus syndrome. Our data highlight the pleiotropic nature of phenotypes associated with defects in this gene. © 2015 Wiley Periodicals, Inc.

  7. Exome Analysis of a Family with Wolff–Parkinson–White Syndrome Identifies a Novel Disease Locus

    Science.gov (United States)

    Bowles, Neil E.; Jou, Chuanchau J.; Arrington, Cammon B.; Kennedy, Brett J.; Earl, Aubree; Matsunami, Norisada; Meyers, Lindsay L.; Etheridge, Susan P.; Saarel, Elizabeth V.; Bleyl, Steven B.; Yost, H. Joseph; Yandell, Mark; Leppert, Mark F.; Tristani-Firouzi, Martin; Gruber, Peter J.

    2016-01-01

    Wolff–Parkinson–White (WPW) syndrome is a common cause of supraventricular tachycardia that carries a risk of sudden cardiac death. To date, mutations in only one gene, PRKAG2, which encodes the 5’ -AMP-activated protein kinase subunit γ-2, have been identified as causative for WPW. DNA samples from five members of a family with WPW were analyzed by exome sequencing. We applied recently designed prioritization strategies (VAAST/pedigree VAAST) coupled with an ontology-based algorithm (Phevor) that reduced the number of potentially damaging variants to 10: a variant in KCNE2 previously associated with Long QT syndrome was also identified. Of these 11 variants, only MYH6 p.E1885K segregated with the WPW phenotype in all affected individuals and was absent in 10 unaffected family members. This variant was predicted to be damaging by in silico methods and is not present in the 1,000 genome and NHLBI exome sequencing project databases. Screening of a replication cohort of 47 unrelated WPW patients did not identify other likely causative variants in PRKAG2 or MYH6. MYH6 variants have been identified in patients with atrial septal defects, cardiomyopathies, and sick sinus syndrome. Our data highlight the pleiotropic nature of phenotypes associated with defects in this gene. PMID:26284702

  8. Mutation of the planar cell polarity gene VANGL1 in adolescent idiopathic scoliosis

    DEFF Research Database (Denmark)

    Andersen, Malene Rask; Farooq, Muhammad; Koefoed, Karen

    2017-01-01

    STUDY DESIGN: Mutation analysis of a candidate disease gene in a cohort of patients with moderate to severe Adolescent idiopathic scoliosis (AIS). OBJECTIVE: To investigate if damaging mutations in the planar cell polarity gene VANGL1 could be identified in AIS patients. SUMMARY OF BACKGROUND DATA......: AIS is a spinal deformity which occurs in 1-3% of the population. The cause of AIS is often unknown, but genetic factors are important in the etiology. Rare variants in genes encoding regulators of WNT/planar cell polarity (PCP) signaling were recently identified in AIS patients. METHODS: We analyzed...

  9. The co-repressor SMRT delays DNA damage-induced caspase activation by repressing pro-apoptotic genes and modulating the dynamics of checkpoint kinase 2 activation.

    Directory of Open Access Journals (Sweden)

    Claudio Scafoglio

    Full Text Available Checkpoint kinase 2 (Chk2 is a major regulator of DNA damage response and can induce alternative cellular responses: cell cycle arrest and DNA repair or programmed cell death. Here, we report the identification of a new role of Chk2 in transcriptional regulation that also contributes to modulating the balance between survival and apoptosis following DNA damage. We found that Chk2 interacts with members of the NCoR/SMRT transcriptional co-regulator complexes and serves as a functional component of the repressor complex, being required for recruitment of SMRT on the promoter of pro-apoptotic genes upon DNA damage. Thus, the co-repressor SMRT exerts a critical protective action against genotoxic stress-induced caspase activation, repressing a functionally important cohort of pro-apoptotic genes. Amongst them, SMRT is responsible for basal repression of Wip1, a phosphatase that de-phosphorylates and inactivates Chk2, thus affecting a feedback loop responsible for licensing the correct timing of Chk2 activation and the proper execution of the DNA repair process.

  10. An elm EST database for identifying leaf beetle egg-induced defense genes

    Directory of Open Access Journals (Sweden)

    Büchel Kerstin

    2012-06-01

    Full Text Available Abstract Background Plants can defend themselves against herbivorous insects prior to the onset of larval feeding by responding to the eggs laid on their leaves. In the European field elm (Ulmus minor, egg laying by the elm leaf beetle ( Xanthogaleruca luteola activates the emission of volatiles that attract specialised egg parasitoids, which in turn kill the eggs. Little is known about the transcriptional changes that insect eggs trigger in plants and how such indirect defense mechanisms are orchestrated in the context of other biological processes. Results Here we present the first large scale study of egg-induced changes in the transcriptional profile of a tree. Five cDNA libraries were generated from leaves of (i untreated control elms, and elms treated with (ii egg laying and feeding by elm leaf beetles, (iii feeding, (iv artificial transfer of egg clutches, and (v methyl jasmonate. A total of 361,196 ESTs expressed sequence tags (ESTs were identified which clustered into 52,823 unique transcripts (Unitrans and were stored in a database with a public web interface. Among the analyzed Unitrans, 73% could be annotated by homology to known genes in the UniProt (Plant database, particularly to those from Vitis, Ricinus, Populus and Arabidopsis. Comparative in silico analysis among the different treatments revealed differences in Gene Ontology term abundances. Defense- and stress-related gene transcripts were present in high abundance in leaves after herbivore egg laying, but transcripts involved in photosynthesis showed decreased abundance. Many pathogen-related genes and genes involved in phytohormone signaling were expressed, indicative of jasmonic acid biosynthesis and activation of jasmonic acid responsive genes. Cross-comparisons between different libraries based on expression profiles allowed the identification of genes with a potential relevance in egg-induced defenses, as well as other biological processes, including signal transduction

  11. An elm EST database for identifying leaf beetle egg-induced defense genes.

    Science.gov (United States)

    Büchel, Kerstin; McDowell, Eric; Nelson, Will; Descour, Anne; Gershenzon, Jonathan; Hilker, Monika; Soderlund, Carol; Gang, David R; Fenning, Trevor; Meiners, Torsten

    2012-06-15

    Plants can defend themselves against herbivorous insects prior to the onset of larval feeding by responding to the eggs laid on their leaves. In the European field elm (Ulmus minor), egg laying by the elm leaf beetle ( Xanthogaleruca luteola) activates the emission of volatiles that attract specialised egg parasitoids, which in turn kill the eggs. Little is known about the transcriptional changes that insect eggs trigger in plants and how such indirect defense mechanisms are orchestrated in the context of other biological processes. Here we present the first large scale study of egg-induced changes in the transcriptional profile of a tree. Five cDNA libraries were generated from leaves of (i) untreated control elms, and elms treated with (ii) egg laying and feeding by elm leaf beetles, (iii) feeding, (iv) artificial transfer of egg clutches, and (v) methyl jasmonate. A total of 361,196 ESTs expressed sequence tags (ESTs) were identified which clustered into 52,823 unique transcripts (Unitrans) and were stored in a database with a public web interface. Among the analyzed Unitrans, 73% could be annotated by homology to known genes in the UniProt (Plant) database, particularly to those from Vitis, Ricinus, Populus and Arabidopsis. Comparative in silico analysis among the different treatments revealed differences in Gene Ontology term abundances. Defense- and stress-related gene transcripts were present in high abundance in leaves after herbivore egg laying, but transcripts involved in photosynthesis showed decreased abundance. Many pathogen-related genes and genes involved in phytohormone signaling were expressed, indicative of jasmonic acid biosynthesis and activation of jasmonic acid responsive genes. Cross-comparisons between different libraries based on expression profiles allowed the identification of genes with a potential relevance in egg-induced defenses, as well as other biological processes, including signal transduction, transport and primary metabolism

  12. Suppression subtractive hybridization identified differentially expressed genes in lung adenocarcinoma: ERGIC3 as a novel lung cancer-related gene

    International Nuclear Information System (INIS)

    Wu, Mingsong; Tu, Tao; Huang, Yunchao; Cao, Yi

    2013-01-01

    To understand the carcinogenesis caused by accumulated genetic and epigenetic alterations and seek novel biomarkers for various cancers, studying differentially expressed genes between cancerous and normal tissues is crucial. In the study, two cDNA libraries of lung cancer were constructed and screened for identification of differentially expressed genes. Two cDNA libraries of differentially expressed genes were constructed using lung adenocarcinoma tissue and adjacent nonmalignant lung tissue by suppression subtractive hybridization. The data of the cDNA libraries were then analyzed and compared using bioinformatics analysis. Levels of mRNA and protein were measured by quantitative real-time polymerase chain reaction (q-RT-PCR) and western blot respectively, as well as expression and localization of proteins were determined by immunostaining. Gene functions were investigated using proliferation and migration assays after gene silencing and gene over-expression. Two libraries of differentially expressed genes were obtained. The forward-subtracted library (FSL) and the reverse-subtracted library (RSL) contained 177 and 59 genes, respectively. Bioinformatic analysis demonstrated that these genes were involved in a wide range of cellular functions. The vast majority of these genes were newly identified to be abnormally expressed in lung cancer. In the first stage of the screening for 16 genes, we compared lung cancer tissues with their adjacent non-malignant tissues at the mRNA level, and found six genes (ERGIC3, DDR1, HSP90B1, SDC1, RPSA, and LPCAT1) from the FSL were significantly up-regulated while two genes (GPX3 and TIMP3) from the RSL were significantly down-regulated (P < 0.05). The ERGIC3 protein was also over-expressed in lung cancer tissues and cultured cells, and expression of ERGIC3 was correlated with the differentiated degree and histological type of lung cancer. The up-regulation of ERGIC3 could promote cellular migration and proliferation in vitro. The

  13. Association Analysis Suggests SOD2 as a Newly Identified Candidate Gene Associated With Leprosy Susceptibility.

    Science.gov (United States)

    Ramos, Geovana Brotto; Salomão, Heloisa; Francio, Angela Schneider; Fava, Vinícius Medeiros; Werneck, Renata Iani; Mira, Marcelo Távora

    2016-08-01

    Genetic studies have identified several genes and genomic regions contributing to the control of host susceptibility to leprosy. Here, we test variants of the positional and functional candidate gene SOD2 for association with leprosy in 2 independent population samples. Family-based analysis revealed an association between leprosy and allele G of marker rs295340 (P = .042) and borderline evidence of an association between leprosy and alleles C and A of markers rs4880 (P = .077) and rs5746136 (P = .071), respectively. Findings were validated in an independent case-control sample for markers rs295340 (P = .049) and rs4880 (P = .038). These results suggest SOD2 as a newly identified gene conferring susceptibility to leprosy. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  14. Transcriptomic meta-analysis identifies gene expression characteristics in various samples of HIV-infected patients with nonprogressive disease.

    Science.gov (United States)

    Zhang, Le-Le; Zhang, Zi-Ning; Wu, Xian; Jiang, Yong-Jun; Fu, Ya-Jing; Shang, Hong

    2017-09-12

    A small proportion of HIV-infected patients remain clinically and/or immunologically stable for years, including elite controllers (ECs) who have undetectable viremia (10 years). However, the mechanism of nonprogression needs to be further resolved. In this study, a transcriptome meta-analysis was performed on nonprogressor and progressor microarray data to identify differential transcriptome pathways and potential biomarkers. Using the INMEX (integrative meta-analysis of expression data) program, we performed the meta-analysis to identify consistently differentially expressed genes (DEGs) in nonprogressors and further performed functional interpretation (gene ontology analysis and pathway analysis) of the DEGs identified in the meta-analysis. Five microarray datasets (81 cases and 98 controls in total), including whole blood, CD4 + and CD8 + T cells, were collected for meta-analysis. We determined that nonprogressors have reduced expression of important interferon-stimulated genes (ISGs), CD38, lymphocyte activation gene 3 (LAG-3) in whole blood, CD4 + and CD8 + T cells. Gene ontology (GO) analysis showed a significant enrichment in DEGs that function in the type I interferon signaling pathway. Upregulated pathways, including the PI3K-Akt signaling pathway in whole blood, cytokine-cytokine receptor interaction in CD4 + T cells and the MAPK signaling pathway in CD8 + T cells, were identified in nonprogressors compared with progressors. In each metabolic functional category, the number of downregulated DEGs was more than the upregulated DEGs, and almost all genes were downregulated DEGs in the oxidative phosphorylation (OXPHOS) and tricarboxylic acid (TCA) cycle in the three types of samples. Our transcriptomic meta-analysis provides a comprehensive evaluation of the gene expression profiles in major blood types of nonprogressors, providing new insights in the understanding of HIV pathogenesis and developing strategies to delay HIV disease progression.

  15. Global Gene-Expression Analysis to Identify Differentially Expressed Genes Critical for the Heat Stress Response in Brassica rapa.

    Directory of Open Access Journals (Sweden)

    Xiangshu Dong

    Full Text Available Genome-wide dissection of the heat stress response (HSR is necessary to overcome problems in crop production caused by global warming. To identify HSR genes, we profiled gene expression in two Chinese cabbage inbred lines with different thermotolerances, Chiifu and Kenshin. Many genes exhibited >2-fold changes in expression upon exposure to 0.5- 4 h at 45°C (high temperature, HT: 5.2% (2,142 genes in Chiifu and 3.7% (1,535 genes in Kenshin. The most enriched GO (Gene Ontology items included 'response to heat', 'response to reactive oxygen species (ROS', 'response to temperature stimulus', 'response to abiotic stimulus', and 'MAPKKK cascade'. In both lines, the genes most highly induced by HT encoded small heat shock proteins (Hsps and heat shock factor (Hsf-like proteins such as HsfB2A (Bra029292, whereas high-molecular weight Hsps were constitutively expressed. Other upstream HSR components were also up-regulated: ROS-scavenging genes like glutathione peroxidase 2 (BrGPX2, Bra022853, protein kinases, and phosphatases. Among heat stress (HS marker genes in Arabidopsis, only exportin 1A (XPO1A (Bra008580, Bra006382 can be applied to B. rapa for basal thermotolerance (BT and short-term acquired thermotolerance (SAT gene. CYP707A3 (Bra025083, Bra021965, which is involved in the dehydration response in Arabidopsis, was associated with membrane leakage in both lines following HS. Although many transcription factors (TF genes, including DREB2A (Bra005852, were involved in HS tolerance in both lines, Bra024224 (MYB41 and Bra021735 (a bZIP/AIR1 [Anthocyanin-Impaired-Response-1] were specific to Kenshin. Several candidate TFs involved in thermotolerance were confirmed as HSR genes by real-time PCR, and these assignments were further supported by promoter analysis. Although some of our findings are similar to those obtained using other plant species, clear differences in Brassica rapa reveal a distinct HSR in this species. Our data could also provide a

  16. A Genome-Wide Screen for Dendritically Localized RNAs Identifies Genes Required for Dendrite Morphogenesis

    Directory of Open Access Journals (Sweden)

    Mala Misra

    2016-08-01

    Full Text Available Localizing messenger RNAs at specific subcellular sites is a conserved mechanism for targeting the synthesis of cytoplasmic proteins to distinct subcellular domains, thereby generating the asymmetric protein distributions necessary for cellular and developmental polarity. However, the full range of transcripts that are asymmetrically distributed in specialized cell types, and the significance of their localization, especially in the nervous system, are not known. We used the EP-MS2 method, which combines EP transposon insertion with the MS2/MCP in vivo fluorescent labeling system, to screen for novel localized transcripts in polarized cells, focusing on the highly branched Drosophila class IV dendritic arborization neurons. Of a total of 541 lines screened, we identified 55 EP-MS2 insertions producing transcripts that were enriched in neuronal processes, particularly in dendrites. The 47 genes identified by these insertions encode molecularly diverse proteins, and are enriched for genes that function in neuronal development and physiology. RNAi-mediated knockdown confirmed roles for many of the candidate genes in dendrite morphogenesis. We propose that the transport of mRNAs encoded by these genes into the dendrites allows their expression to be regulated on a local scale during the dynamic developmental processes of dendrite outgrowth, branching, and/or remodeling.

  17. Personal exposure to PM2.5, genetic variants and DNA damage: a multi-center population-based study in Chinese.

    Science.gov (United States)

    Chu, Minjie; Sun, Chongqi; Chen, Weihong; Jin, Guangfu; Gong, Jianhang; Zhu, Meng; Yuan, Jing; Dai, Juncheng; Wang, Meilin; Pan, Yun; Song, Yuanchao; Ding, Xiaojie; Guo, Xuejiang; Du, Mulong; Xia, Yankai; Kan, Haidong; Zhang, Zhengdong; Hu, Zhibin; Wu, Tangchun; Shen, Hongbing

    2015-06-15

    Exposure to particulate matter (e.g., PM2.5) may result in DNA damage, a major culprit in mutagenesis and environmental toxicity. DNA damage levels may vary among individuals simultaneously exposed to PM2.5, however, the genetic determinants are still unclear. To explore whether PM2.5 exposure and genetic variants contribute to the alteration in DNA damage, we recruited 328 subjects from three independent cohorts (119 from Zhuhai, 123 from Wuhan and 86 from Tianjin) in southern, central and northern China with different PM2.5 exposure levels. Personal 24-h PM2.5 exposure levels and DNA damage levels of peripheral blood lymphocytes were evaluated. Genotyping were performed using Illumina Human Exome BeadChip with 241,305 single nucleotide variants (SNVs). The DNA damage levels are consistent with the PM2.5 exposure levels of each cohort. A total of 35 SNVs were consistently associated with DNA damage levels among the three cohorts with pooled P values less than 1.00×10(-3) after adjustment for age, gender, smoking status and PM2.5 exposure levels, of which, 18 SNVs together with gender and PM2.5 exposure levels were independent factors contributing to DNA damage. Gene-based test revealed 3 genes significantly associated with DNA damage levels (P=5.11×10(-3) for POLH, P=2.88×10(-3) for RIT2 and P=2.29×10(-2) for CNTN4). Gene ontology (GO) analyses indicated that the identified variants were significantly enriched in DNA damage response pathway. Our findings highlight the importance of genetic variation as well as personal PM2.5 exposure in modulating individual DNA damage levels. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. MicroRNA expression profiling to identify and validate reference genes for relative quantification in colorectal cancer.

    LENUS (Irish Health Repository)

    Chang, Kah Hoong

    2010-01-01

    BACKGROUND: Advances in high-throughput technologies and bioinformatics have transformed gene expression profiling methodologies. The results of microarray experiments are often validated using reverse transcription quantitative PCR (RT-qPCR), which is the most sensitive and reproducible method to quantify gene expression. Appropriate normalisation of RT-qPCR data using stably expressed reference genes is critical to ensure accurate and reliable results. Mi(cro)RNA expression profiles have been shown to be more accurate in disease classification than mRNA expression profiles. However, few reports detailed a robust identification and validation strategy for suitable reference genes for normalisation in miRNA RT-qPCR studies. METHODS: We adopt and report a systematic approach to identify the most stable reference genes for miRNA expression studies by RT-qPCR in colorectal cancer (CRC). High-throughput miRNA profiling was performed on ten pairs of CRC and normal tissues. By using the mean expression value of all expressed miRNAs, we identified the most stable candidate reference genes for subsequent validation. As such the stability of a panel of miRNAs was examined on 35 tumour and 39 normal tissues. The effects of normalisers on the relative quantity of established oncogenic (miR-21 and miR-31) and tumour suppressor (miR-143 and miR-145) target miRNAs were assessed. RESULTS: In the array experiment, miR-26a, miR-345, miR-425 and miR-454 were identified as having expression profiles closest to the global mean. From a panel of six miRNAs (let-7a, miR-16, miR-26a, miR-345, miR-425 and miR-454) and two small nucleolar RNA genes (RNU48 and Z30), miR-16 and miR-345 were identified as the most stably expressed reference genes. The combined use of miR-16 and miR-345 to normalise expression data enabled detection of a significant dysregulation of all four target miRNAs between tumour and normal colorectal tissue. CONCLUSIONS: Our study demonstrates that the top six most

  19. MicroRNA expression profiling to identify and validate reference genes for relative quantification in colorectal cancer

    LENUS (Irish Health Repository)

    Chang, Kah Hoong

    2010-04-29

    Abstract Background Advances in high-throughput technologies and bioinformatics have transformed gene expression profiling methodologies. The results of microarray experiments are often validated using reverse transcription quantitative PCR (RT-qPCR), which is the most sensitive and reproducible method to quantify gene expression. Appropriate normalisation of RT-qPCR data using stably expressed reference genes is critical to ensure accurate and reliable results. Mi(cro)RNA expression profiles have been shown to be more accurate in disease classification than mRNA expression profiles. However, few reports detailed a robust identification and validation strategy for suitable reference genes for normalisation in miRNA RT-qPCR studies. Methods We adopt and report a systematic approach to identify the most stable reference genes for miRNA expression studies by RT-qPCR in colorectal cancer (CRC). High-throughput miRNA profiling was performed on ten pairs of CRC and normal tissues. By using the mean expression value of all expressed miRNAs, we identified the most stable candidate reference genes for subsequent validation. As such the stability of a panel of miRNAs was examined on 35 tumour and 39 normal tissues. The effects of normalisers on the relative quantity of established oncogenic (miR-21 and miR-31) and tumour suppressor (miR-143 and miR-145) target miRNAs were assessed. Results In the array experiment, miR-26a, miR-345, miR-425 and miR-454 were identified as having expression profiles closest to the global mean. From a panel of six miRNAs (let-7a, miR-16, miR-26a, miR-345, miR-425 and miR-454) and two small nucleolar RNA genes (RNU48 and Z30), miR-16 and miR-345 were identified as the most stably expressed reference genes. The combined use of miR-16 and miR-345 to normalise expression data enabled detection of a significant dysregulation of all four target miRNAs between tumour and normal colorectal tissue. Conclusions Our study demonstrates that the top six most

  20. Expressed sequences tags of the anther smut fungus, Microbotryum violaceum, identify mating and pathogenicity genes

    Directory of Open Access Journals (Sweden)

    Devier Benjamin

    2007-08-01

    Full Text Available Abstract Background The basidiomycete fungus Microbotryum violaceum is responsible for the anther-smut disease in many plants of the Caryophyllaceae family and is a model in genetics and evolutionary biology. Infection is initiated by dikaryotic hyphae produced after the conjugation of two haploid sporidia of opposite mating type. This study describes M. violaceum ESTs corresponding to nuclear genes expressed during conjugation and early hyphal production. Results A normalized cDNA library generated 24,128 sequences, which were assembled into 7,765 unique genes; 25.2% of them displayed significant similarity to annotated proteins from other organisms, 74.3% a weak similarity to the same set of known proteins, and 0.5% were orphans. We identified putative pheromone receptors and genes that in other fungi are involved in the mating process. We also identified many sequences similar to genes known to be involved in pathogenicity in other fungi. The M. violaceum EST database, MICROBASE, is available on the Web and provides access to the sequences, assembled contigs, annotations and programs to compare similarities against MICROBASE. Conclusion This study provides a basis for cloning the mating type locus, for further investigation of pathogenicity genes in the anther smut fungi, and for comparative genomics.

  1. Evolutionary inference across eukaryotes identifies specific pressures favoring mitochondrial gene retention

    OpenAIRE

    Williams, Ben; Johnston, Iain

    2016-01-01

    Since their endosymbiotic origin, mitochondria have lost most of their genes. Although many selective mechanisms underlying the evolution of mitochondrial genomes have been proposed, a data-driven exploration of these hypotheses is lacking, and a quantitatively supported consensus remains absent. We developed HyperTraPS, a methodology coupling stochastic modelling with Bayesian inference, to identify the ordering of evolutionary events and suggest their causes. Using 2015 complete mitochondri...

  2. Novel statistical framework to identify differentially expressed genes allowing transcriptomic background differences.

    Science.gov (United States)

    Ling, Zhi-Qiang; Wang, Yi; Mukaisho, Kenichi; Hattori, Takanori; Tatsuta, Takeshi; Ge, Ming-Hua; Jin, Li; Mao, Wei-Min; Sugihara, Hiroyuki

    2010-06-01

    Tests of differentially expressed genes (DEGs) from microarray experiments are based on the null hypothesis that genes that are irrelevant to the phenotype/stimulus are expressed equally in the target and control samples. However, this strict hypothesis is not always true, as there can be several transcriptomic background differences between target and control samples, including different cell/tissue types, different cell cycle stages and different biological donors. These differences lead to increased false positives, which have little biological/medical significance. In this article, we propose a statistical framework to identify DEGs between target and control samples from expression microarray data allowing transcriptomic background differences between these samples by introducing a modified null hypothesis that the gene expression background difference is normally distributed. We use an iterative procedure to perform robust estimation of the null hypothesis and identify DEGs as outliers. We evaluated our method using our own triplicate microarray experiment, followed by validations with reverse transcription-polymerase chain reaction (RT-PCR) and on the MicroArray Quality Control dataset. The evaluations suggest that our technique (i) results in less false positive and false negative results, as measured by the degree of agreement with RT-PCR of the same samples, (ii) can be applied to different microarray platforms and results in better reproducibility as measured by the degree of DEG identification concordance both intra- and inter-platforms and (iii) can be applied efficiently with only a few microarray replicates. Based on these evaluations, we propose that this method not only identifies more reliable and biologically/medically significant DEG, but also reduces the power-cost tradeoff problem in the microarray field. Source code and binaries freely available for download at http://comonca.org.cn/fdca/resources/softwares/deg.zip.

  3. Genome-wide Analyses Identify KIF5A as a Novel ALS Gene.

    Science.gov (United States)

    Nicolas, Aude; Kenna, Kevin P; Renton, Alan E; Ticozzi, Nicola; Faghri, Faraz; Chia, Ruth; Dominov, Janice A; Kenna, Brendan J; Nalls, Mike A; Keagle, Pamela; Rivera, Alberto M; van Rheenen, Wouter; Murphy, Natalie A; van Vugt, Joke J F A; Geiger, Joshua T; Van der Spek, Rick A; Pliner, Hannah A; Shankaracharya; Smith, Bradley N; Marangi, Giuseppe; Topp, Simon D; Abramzon, Yevgeniya; Gkazi, Athina Soragia; Eicher, John D; Kenna, Aoife; Mora, Gabriele; Calvo, Andrea; Mazzini, Letizia; Riva, Nilo; Mandrioli, Jessica; Caponnetto, Claudia; Battistini, Stefania; Volanti, Paolo; La Bella, Vincenzo; Conforti, Francesca L; Borghero, Giuseppe; Messina, Sonia; Simone, Isabella L; Trojsi, Francesca; Salvi, Fabrizio; Logullo, Francesco O; D'Alfonso, Sandra; Corrado, Lucia; Capasso, Margherita; Ferrucci, Luigi; Moreno, Cristiane de Araujo Martins; Kamalakaran, Sitharthan; Goldstein, David B; Gitler, Aaron D; Harris, Tim; Myers, Richard M; Phatnani, Hemali; Musunuri, Rajeeva Lochan; Evani, Uday Shankar; Abhyankar, Avinash; Zody, Michael C; Kaye, Julia; Finkbeiner, Steven; Wyman, Stacia K; LeNail, Alex; Lima, Leandro; Fraenkel, Ernest; Svendsen, Clive N; Thompson, Leslie M; Van Eyk, Jennifer E; Berry, James D; Miller, Timothy M; Kolb, Stephen J; Cudkowicz, Merit; Baxi, Emily; Benatar, Michael; Taylor, J Paul; Rampersaud, Evadnie; Wu, Gang; Wuu, Joanne; Lauria, Giuseppe; Verde, Federico; Fogh, Isabella; Tiloca, Cinzia; Comi, Giacomo P; Sorarù, Gianni; Cereda, Cristina; Corcia, Philippe; Laaksovirta, Hannu; Myllykangas, Liisa; Jansson, Lilja; Valori, Miko; Ealing, John; Hamdalla, Hisham; Rollinson, Sara; Pickering-Brown, Stuart; Orrell, Richard W; Sidle, Katie C; Malaspina, Andrea; Hardy, John; Singleton, Andrew B; Johnson, Janel O; Arepalli, Sampath; Sapp, Peter C; McKenna-Yasek, Diane; Polak, Meraida; Asress, Seneshaw; Al-Sarraj, Safa; King, Andrew; Troakes, Claire; Vance, Caroline; de Belleroche, Jacqueline; Baas, Frank; Ten Asbroek, Anneloor L M A; Muñoz-Blanco, José Luis; Hernandez, Dena G; Ding, Jinhui; Gibbs, J Raphael; Scholz, Sonja W; Floeter, Mary Kay; Campbell, Roy H; Landi, Francesco; Bowser, Robert; Pulst, Stefan M; Ravits, John M; MacGowan, Daniel J L; Kirby, Janine; Pioro, Erik P; Pamphlett, Roger; Broach, James; Gerhard, Glenn; Dunckley, Travis L; Brady, Christopher B; Kowall, Neil W; Troncoso, Juan C; Le Ber, Isabelle; Mouzat, Kevin; Lumbroso, Serge; Heiman-Patterson, Terry D; Kamel, Freya; Van Den Bosch, Ludo; Baloh, Robert H; Strom, Tim M; Meitinger, Thomas; Shatunov, Aleksey; Van Eijk, Kristel R; de Carvalho, Mamede; Kooyman, Maarten; Middelkoop, Bas; Moisse, Matthieu; McLaughlin, Russell L; Van Es, Michael A; Weber, Markus; Boylan, Kevin B; Van Blitterswijk, Marka; Rademakers, Rosa; Morrison, Karen E; Basak, A Nazli; Mora, Jesús S; Drory, Vivian E; Shaw, Pamela J; Turner, Martin R; Talbot, Kevin; Hardiman, Orla; Williams, Kelly L; Fifita, Jennifer A; Nicholson, Garth A; Blair, Ian P; Rouleau, Guy A; Esteban-Pérez, Jesús; García-Redondo, Alberto; Al-Chalabi, Ammar; Rogaeva, Ekaterina; Zinman, Lorne; Ostrow, Lyle W; Maragakis, Nicholas J; Rothstein, Jeffrey D; Simmons, Zachary; Cooper-Knock, Johnathan; Brice, Alexis; Goutman, Stephen A; Feldman, Eva L; Gibson, Summer B; Taroni, Franco; Ratti, Antonia; Gellera, Cinzia; Van Damme, Philip; Robberecht, Wim; Fratta, Pietro; Sabatelli, Mario; Lunetta, Christian; Ludolph, Albert C; Andersen, Peter M; Weishaupt, Jochen H; Camu, William; Trojanowski, John Q; Van Deerlin, Vivianna M; Brown, Robert H; van den Berg, Leonard H; Veldink, Jan H; Harms, Matthew B; Glass, Jonathan D; Stone, David J; Tienari, Pentti; Silani, Vincenzo; Chiò, Adriano; Shaw, Christopher E; Traynor, Bryan J; Landers, John E

    2018-03-21

    To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494 controls. Through both approaches, we identified kinesin family member 5A (KIF5A) as a novel gene associated with ALS. Interestingly, mutations predominantly in the N-terminal motor domain of KIF5A are causative for two neurodegenerative diseases: hereditary spastic paraplegia (SPG10) and Charcot-Marie-Tooth type 2 (CMT2). In contrast, ALS-associated mutations are primarily located at the C-terminal cargo-binding tail domain and patients harboring loss-of-function mutations displayed an extended survival relative to typical ALS cases. Taken together, these results broaden the phenotype spectrum resulting from mutations in KIF5A and strengthen the role of cytoskeletal defects in the pathogenesis of ALS. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Yeast functional screen to identify genes conferring salt stress tolerance in Salicornia europaea.

    Science.gov (United States)

    Nakahara, Yoshiki; Sawabe, Shogo; Kainuma, Kenta; Katsuhara, Maki; Shibasaka, Mineo; Suzuki, Masanori; Yamamoto, Kosuke; Oguri, Suguru; Sakamoto, Hikaru

    2015-01-01

    Salinity is a critical environmental factor that adversely affects crop productivity. Halophytes have evolved various mechanisms to adapt to saline environments. Salicornia europaea L. is one of the most salt-tolerant plant species. It does not have special salt-secreting structures like a salt gland or salt bladder, and is therefore a good model for studying the common mechanisms underlying plant salt tolerance. To identify candidate genes encoding key proteins in the mediation of salt tolerance in S. europaea, we performed a functional screen of a cDNA library in yeast. The library was screened for genes that allowed the yeast to grow in the presence of 1.3 M NaCl. We obtained three full-length S. europaea genes that confer salt tolerance. The genes are predicted to encode (1) a novel protein highly homologous to thaumatin-like proteins, (2) a novel coiled-coil protein of unknown function, and (3) a novel short peptide of 32 residues. Exogenous application of a synthetic peptide corresponding to the 32 residues improved salt tolerance of Arabidopsis. The approach described in this report provides a rapid assay system for large-scale screening of S. europaea genes involved in salt stress tolerance and supports the identification of genes responsible for such mechanisms. These genes may be useful candidates for improving crop salt tolerance by genetic transformation.

  5. Yeast functional screen to identify genes conferring salt stress tolerance in Salicornia europaea

    Directory of Open Access Journals (Sweden)

    Yoshiki eNakahara

    2015-10-01

    Full Text Available Salinity is a critical environmental factor that adversely affects crop productivity. Halophytes have evolved various mechanisms to adapt to saline environments. Salicornia europaea L. is one of the most salt-tolerant plant species. It does not have special salt-secreting structures like a salt gland or salt bladder, and is therefore a good model for studying the common mechanisms underlying plant salt tolerance. To identify candidate genes encoding key proteins in the mediation of salt tolerance in S. europaea, we performed a functional screen of a cDNA library in yeast. The library was screened for genes that allowed the yeast to grow in the presence of 1.3 M NaCl. We obtained three full-length S. europaea genes that confer salt tolerance. The genes are predicted to encode (1 a novel protein highly homologous to thaumatin-like proteins, (2 a novel coiled-coil protein of unknown function, and (3 a novel short peptide of 32 residues. Exogenous application of a synthetic peptide corresponding to the 32 residues improved salt tolerance of Arabidopsis. The approach described in this report provides a rapid assay system for large-scale screening of S. europaea genes involved in salt stress tolerance and supports the identification of genes responsible for such mechanisms. These genes may be useful candidates for improving crop salt tolerance by genetic transformation.

  6. Identifying knowledge gaps for gene drive research to control invasive animal species: The next CRISPR step

    Directory of Open Access Journals (Sweden)

    Dorian Moro

    2018-01-01

    Full Text Available Invasive animals have been linked to the extinctions of native wildlife, and to significant agricultural financial losses or impacts. Current approaches to control invasive species require ongoing resources and management over large geographic scales, and often result in the short-term suppression of populations. New and innovative approaches are warranted. Recently, the RNA guided gene drive system based on CRISPR/Cas9 is being proposed as a potential gene editing tool that could be used by wildlife managers as a non-lethal addition or alternative to help reduce pest animal populations. While regulatory control and social acceptance are crucial issues that must be addressed, there is an opportunity now to identify the knowledge and research gaps that exist for some important invasive species. Here we systematically determine the knowledge gaps for pest species for which gene drives could potentially be applied. We apply a conceptual ecological risk framework within the gene drive context within an Australian environment to identify key requirements for undertaking work on seven exemplar invasive species in Australia. This framework allows an evaluation of the potential research on an invasive species of interest and within a gene drive and risk context. We consider the currently available biological, genetic and ecological information for the house mouse, European red fox, feral cat, European rabbit, cane toad, black rat and European starling to evaluate knowledge gaps and identify candidate species for future research. We discuss these findings in the context of future thematic areas of research worth pursuing in preparation for a more formal assessment of the use of gene drives as a novel strategy for the control of these and other invasive species. Keywords: Invasive species, Gene drive, CRISPR, Pest management, Islands

  7. HFE gene mutation and oxidative damage biomarkers in patients with myelodysplastic syndromes and its relation to transfusional iron overload: an observational cross-sectional study.

    Science.gov (United States)

    De Souza, Geane Felix; Ribeiro, Howard Lopes; De Sousa, Juliana Cordeiro; Heredia, Fabíola Fernandes; De Freitas, Rivelilson Mendes; Martins, Manoel Ricardo Alves; Gonçalves, Romélia Pinheiro; Pinheiro, Ronald Feitosa; Magalhães, Silvia Maria Meira

    2015-04-03

    A relation between transfusional IOL (iron overload), HFE status and oxidative damage was evaluated. An observational cross-sectional study involving 87 healthy individuals and 78 patients with myelodysplastic syndromes (MDS) with and without IOL, seen at University Hospital of the Federal University of Ceará, Brazil, between May 2010 and September 2011. IOL was defined using repeated measures of serum ferritin ≥1000 ng/mL. Variations in the HFE gene were investigated using PCR/restriction fragment length polymorphism (RFLP). The biomarkers of oxidative stress (plasmatic malonaldehyde (MDA), glutathione peroxidase (GPx) and superoxide dismutase (SOD)) were determined by spectrophotometry. The HFE gene variations were identified in 24 patients (30.77%) and 5 volunteers (5.74%). The H63D variant was observed in 35% and the C282Y variant as heterozygous in 5% of patients with MDS with IOL. One patient showed double heterozygous variant (C282Y/H63D) and serum ferritin of 11,649 ng/mL. In patients without IOL, the H63D variant was detected in 29.34%. Serum MDA levels were highest in patients with MDS with IOL, with a significant difference when compared with patients without IOL and healthy volunteers, pointing to the relationship between IOL and oxidative stress. The GPx and SOD were also significantly higher in these patients, indicating that lipid peroxidation increase was followed by an increase in antioxidant capacity. Higher ferritin levels were observed in patients with HFE gene variation. 95.7% of patients with MDS with the presence of HFE gene variations had received more of 20 transfusions. We observed a significant increase in MDA levels in patients with MDS and IOL, suggesting an increased lipid peroxidation in these patients. The accumulation of MDA alters the organisation of membrane phospholipids, contributing to the process of cellular degeneration. Results show that excess iron intensifies the process of cell damage through oxidative stress

  8. ZCURVE 3.0: identify prokaryotic genes with higher accuracy as well as automatically and accurately select essential genes

    Science.gov (United States)

    Hua, Zhi-Gang; Lin, Yan; Yuan, Ya-Zhou; Yang, De-Chang; Wei, Wen; Guo, Feng-Biao

    2015-01-01

    In 2003, we developed an ab initio program, ZCURVE 1.0, to find genes in bacterial and archaeal genomes. In this work, we present the updated version (i.e. ZCURVE 3.0). Using 422 prokaryotic genomes, the average accuracy was 93.7% with the updated version, compared with 88.7% with the original version. Such results also demonstrate that ZCURVE 3.0 is comparable with Glimmer 3.02 and may provide complementary predictions to it. In fact, the joint application of the two programs generated better results by correctly finding more annotated genes while also containing fewer false-positive predictions. As the exclusive function, ZCURVE 3.0 contains one post-processing program that can identify essential genes with high accuracy (generally >90%). We hope ZCURVE 3.0 will receive wide use with the web-based running mode. The updated ZCURVE can be freely accessed from http://cefg.uestc.edu.cn/zcurve/ or http://tubic.tju.edu.cn/zcurveb/ without any restrictions. PMID:25977299

  9. Identifying Tmem59 related gene regulatory network of mouse neural stem cell from a compendium of expression profiles

    Directory of Open Access Journals (Sweden)

    Guo Xiuyun

    2011-09-01

    Full Text Available Abstract Background Neural stem cells offer potential treatment for neurodegenerative disorders, such like Alzheimer's disease (AD. While much progress has been made in understanding neural stem cell function, a precise description of the molecular mechanisms regulating neural stem cells is not yet established. This lack of knowledge is a major barrier holding back the discovery of therapeutic uses of neural stem cells. In this paper, the regulatory mechanism of mouse neural stem cell (NSC differentiation by tmem59 is explored on the genome-level. Results We identified regulators of tmem59 during the differentiation of mouse NSCs from a compendium of expression profiles. Based on the microarray experiment, we developed the parallelized SWNI algorithm to reconstruct gene regulatory networks of mouse neural stem cells. From the inferred tmem59 related gene network including 36 genes, pou6f1 was identified to regulate tmem59 significantly and might play an important role in the differentiation of NSCs in mouse brain. There are four pathways shown in the gene network, indicating that tmem59 locates in the downstream of the signalling pathway. The real-time RT-PCR results shown that the over-expression of pou6f1 could significantly up-regulate tmem59 expression in C17.2 NSC line. 16 out of 36 predicted genes in our constructed network have been reported to be AD-related, including Ace, aqp1, arrdc3, cd14, cd59a, cds1, cldn1, cox8b, defb11, folr1, gdi2, mmp3, mgp, myrip, Ripk4, rnd3, and sncg. The localization of tmem59 related genes and functional-related gene groups based on the Gene Ontology (GO annotation was also identified. Conclusions Our findings suggest that the expression of tmem59 is an important factor contributing to AD. The parallelized SWNI algorithm increased the efficiency of network reconstruction significantly. This study enables us to highlight novel genes that may be involved in NSC differentiation and provides a shortcut to

  10. Methods for simultaneously identifying coherent local clusters with smooth global patterns in gene expression profiles

    Directory of Open Access Journals (Sweden)

    Lee Yun-Shien

    2008-03-01

    Full Text Available Abstract Background The hierarchical clustering tree (HCT with a dendrogram 1 and the singular value decomposition (SVD with a dimension-reduced representative map 2 are popular methods for two-way sorting the gene-by-array matrix map employed in gene expression profiling. While HCT dendrograms tend to optimize local coherent clustering patterns, SVD leading eigenvectors usually identify better global grouping and transitional structures. Results This study proposes a flipping mechanism for a conventional agglomerative HCT using a rank-two ellipse (R2E, an improved SVD algorithm for sorting purpose seriation by Chen 3 as an external reference. While HCTs always produce permutations with good local behaviour, the rank-two ellipse seriation gives the best global grouping patterns and smooth transitional trends. The resulting algorithm automatically integrates the desirable properties of each method so that users have access to a clustering and visualization environment for gene expression profiles that preserves coherent local clusters and identifies global grouping trends. Conclusion We demonstrate, through four examples, that the proposed method not only possesses better numerical and statistical properties, it also provides more meaningful biomedical insights than other sorting algorithms. We suggest that sorted proximity matrices for genes and arrays, in addition to the gene-by-array expression matrix, can greatly aid in the search for comprehensive understanding of gene expression structures. Software for the proposed methods can be obtained at http://gap.stat.sinica.edu.tw/Software/GAP.

  11. Phylogenomic analysis of UDP glycosyltransferase 1 multigene family in Linum usitatissimum identified genes with varied expression patterns

    Science.gov (United States)

    2012-01-01

    Background The glycosylation process, catalyzed by ubiquitous glycosyltransferase (GT) family enzymes, is a prevalent modification of plant secondary metabolites that regulates various functions such as hormone homeostasis, detoxification of xenobiotics and biosynthesis and storage of secondary metabolites. Flax (Linum usitatissimum L.) is a commercially grown oilseed crop, important because of its essential fatty acids and health promoting lignans. Identification and characterization of UDP glycosyltransferase (UGT) genes from flax could provide valuable basic information about this important gene family and help to explain the seed specific glycosylated metabolite accumulation and other processes in plants. Plant genome sequencing projects are useful to discover complexity within this gene family and also pave way for the development of functional genomics approaches. Results Taking advantage of the newly assembled draft genome sequence of flax, we identified 137 UDP glycosyltransferase (UGT) genes from flax using a conserved signature motif. Phylogenetic analysis of these protein sequences clustered them into 14 major groups (A-N). Expression patterns of these genes were investigated using publicly available expressed sequence tag (EST), microarray data and reverse transcription quantitative real time PCR (RT-qPCR). Seventy-three per cent of these genes (100 out of 137) showed expression evidence in 15 tissues examined and indicated varied expression profiles. The RT-qPCR results of 10 selected genes were also coherent with the digital expression analysis. Interestingly, five duplicated UGT genes were identified, which showed differential expression in various tissues. Of the seven intron loss/gain positions detected, two intron positions were conserved among most of the UGTs, although a clear relationship about the evolution of these genes could not be established. Comparison of the flax UGTs with orthologs from four other sequenced dicot genomes indicated that

  12. Phylogenomic analysis of UDP glycosyltransferase 1 multigene family in Linum usitatissimum identified genes with varied expression patterns

    Directory of Open Access Journals (Sweden)

    Barvkar Vitthal T

    2012-05-01

    Full Text Available Abstract Background The glycosylation process, catalyzed by ubiquitous glycosyltransferase (GT family enzymes, is a prevalent modification of plant secondary metabolites that regulates various functions such as hormone homeostasis, detoxification of xenobiotics and biosynthesis and storage of secondary metabolites. Flax (Linum usitatissimum L. is a commercially grown oilseed crop, important because of its essential fatty acids and health promoting lignans. Identification and characterization of UDP glycosyltransferase (UGT genes from flax could provide valuable basic information about this important gene family and help to explain the seed specific glycosylated metabolite accumulation and other processes in plants. Plant genome sequencing projects are useful to discover complexity within this gene family and also pave way for the development of functional genomics approaches. Results Taking advantage of the newly assembled draft genome sequence of flax, we identified 137 UDP glycosyltransferase (UGT genes from flax using a conserved signature motif. Phylogenetic analysis of these protein sequences clustered them into 14 major groups (A-N. Expression patterns of these genes were investigated using publicly available expressed sequence tag (EST, microarray data and reverse transcription quantitative real time PCR (RT-qPCR. Seventy-three per cent of these genes (100 out of 137 showed expression evidence in 15 tissues examined and indicated varied expression profiles. The RT-qPCR results of 10 selected genes were also coherent with the digital expression analysis. Interestingly, five duplicated UGT genes were identified, which showed differential expression in various tissues. Of the seven intron loss/gain positions detected, two intron positions were conserved among most of the UGTs, although a clear relationship about the evolution of these genes could not be established. Comparison of the flax UGTs with orthologs from four other sequenced dicot

  13. An Evolutionary Genomic Approach to Identify Genes Involved in Human Birth Timing

    Science.gov (United States)

    Orabona, Guilherme; Morgan, Thomas; Haataja, Ritva; Hallman, Mikko; Puttonen, Hilkka; Menon, Ramkumar; Kuczynski, Edward; Norwitz, Errol; Snegovskikh, Victoria; Palotie, Aarno; Fellman, Vineta; DeFranco, Emily A.; Chaudhari, Bimal P.; McGregor, Tracy L.; McElroy, Jude J.; Oetjens, Matthew T.; Teramo, Kari; Borecki, Ingrid; Fay, Justin; Muglia, Louis

    2011-01-01

    Coordination of fetal maturation with birth timing is essential for mammalian reproduction. In humans, preterm birth is a disorder of profound global health significance. The signals initiating parturition in humans have remained elusive, due to divergence in physiological mechanisms between humans and model organisms typically studied. Because of relatively large human head size and narrow birth canal cross-sectional area compared to other primates, we hypothesized that genes involved in parturition would display accelerated evolution along the human and/or higher primate phylogenetic lineages to decrease the length of gestation and promote delivery of a smaller fetus that transits the birth canal more readily. Further, we tested whether current variation in such accelerated genes contributes to preterm birth risk. Evidence from allometric scaling of gestational age suggests human gestation has been shortened relative to other primates. Consistent with our hypothesis, many genes involved in reproduction show human acceleration in their coding or adjacent noncoding regions. We screened >8,400 SNPs in 150 human accelerated genes in 165 Finnish preterm and 163 control mothers for association with preterm birth. In this cohort, the most significant association was in FSHR, and 8 of the 10 most significant SNPs were in this gene. Further evidence for association of a linkage disequilibrium block of SNPs in FSHR, rs11686474, rs11680730, rs12473870, and rs1247381 was found in African Americans. By considering human acceleration, we identified a novel gene that may be associated with preterm birth, FSHR. We anticipate other human accelerated genes will similarly be associated with preterm birth risk and elucidate essential pathways for human parturition. PMID:21533219

  14. A CRISPR-Based Screen Identifies Genes Essential for West-Nile-Virus-Induced Cell Death.

    Science.gov (United States)

    Ma, Hongming; Dang, Ying; Wu, Yonggan; Jia, Gengxiang; Anaya, Edgar; Zhang, Junli; Abraham, Sojan; Choi, Jang-Gi; Shi, Guojun; Qi, Ling; Manjunath, N; Wu, Haoquan

    2015-07-28

    West Nile virus (WNV) causes an acute neurological infection attended by massive neuronal cell death. However, the mechanism(s) behind the virus-induced cell death is poorly understood. Using a library containing 77,406 sgRNAs targeting 20,121 genes, we performed a genome-wide screen followed by a second screen with a sub-library. Among the genes identified, seven genes, EMC2, EMC3, SEL1L, DERL2, UBE2G2, UBE2J1, and HRD1, stood out as having the strongest phenotype, whose knockout conferred strong protection against WNV-induced cell death with two different WNV strains and in three cell lines. Interestingly, knockout of these genes did not block WNV replication. Thus, these appear to be essential genes that link WNV replication to downstream cell death pathway(s). In addition, the fact that all of these genes belong to the ER-associated protein degradation (ERAD) pathway suggests that this might be the primary driver of WNV-induced cell death. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. A novel APOC2 gene mutation identified in a Chinese patient with severe hypertriglyceridemia and recurrent pancreatitis.

    Science.gov (United States)

    Jiang, Jingjing; Wang, Yuhui; Ling, Yan; Kayoumu, Abudurexiti; Liu, George; Gao, Xin

    2016-01-16

    The severe forms of hypertriglyceridemia are usually caused by genetic defects. In this study, we described a Chinese female with severe hypertriglyceridemia caused by a novel homozygous mutation in the APOC2 gene. Lipid profiles of the pedigree were studied in detail. LPL and HL activity were also measured. The coding regions of 5 candidate genes (namely LPL, APOC2, APOA5, LMF1, and GPIHBP1) were sequenced using genomic DNA from peripheral leucocytes. The ApoE gene was also genotyped. Serum triglyceride level was extremely high in the proband, compared with other family members. Plasma LPL activity was also significantly reduced in the proband. Serum ApoCII was very low in the proband as well as in the heterozygous mutation carriers. A novel mutation (c.86A > CC) was identified on exon 3 [corrected] of the APOC2 gene, which converted the Asp [corrected] codon at position 29 into Ala, followed by a termination codon (TGA). This study presented the first case of ApoCII deficiency in the Chinese population, with a novel mutation c.86A > CC in the APOC2 gene identified. Serum ApoCII protein might be a useful screening test for identifying mutation carriers.

  16. Genome-Wide Association Study Identifying Candidate Genes Influencing Important Agronomic Traits of Flax (Linum usitatissimum L.) Using SLAF-seq.

    Science.gov (United States)

    Xie, Dongwei; Dai, Zhigang; Yang, Zemao; Sun, Jian; Zhao, Debao; Yang, Xue; Zhang, Liguo; Tang, Qing; Su, Jianguang

    2017-01-01

    Flax ( Linum usitatissimum L.) is an important cash crop, and its agronomic traits directly affect yield and quality. Molecular studies on flax remain inadequate because relatively few flax genes have been associated with agronomic traits or have been identified as having potential applications. To identify markers and candidate genes that can potentially be used for genetic improvement of crucial agronomic traits, we examined 224 specimens of core flax germplasm; specifically, phenotypic data for key traits, including plant height, technical length, number of branches, number of fruits, and 1000-grain weight were investigated under three environmental conditions before specific-locus amplified fragment sequencing (SLAF-seq) was employed to perform a genome-wide association study (GWAS) for these five agronomic traits. Subsequently, the results were used to screen single nucleotide polymorphism (SNP) loci and candidate genes that exhibited a significant correlation with the important agronomic traits. Our analyses identified a total of 42 SNP loci that showed significant correlations with the five important agronomic flax traits. Next, candidate genes were screened in the 10 kb zone of each of the 42 SNP loci. These SNP loci were then analyzed by a more stringent screening via co-identification using both a general linear model (GLM) and a mixed linear model (MLM) as well as co-occurrences in at least two of the three environments, whereby 15 final candidate genes were obtained. Based on these results, we determined that UGT and PL are candidate genes for plant height, GRAS and XTH are candidate genes for the number of branches, Contig1437 and LU0019C12 are candidate genes for the number of fruits, and PHO1 is a candidate gene for the 1000-seed weight. We propose that the identified SNP loci and corresponding candidate genes might serve as a biological basis for improving crucial agronomic flax traits.

  17. Genome-Wide Association Study Identifying Candidate Genes Influencing Important Agronomic Traits of Flax (Linum usitatissimum L. Using SLAF-seq

    Directory of Open Access Journals (Sweden)

    Dongwei Xie

    2018-01-01

    Full Text Available Flax (Linum usitatissimum L. is an important cash crop, and its agronomic traits directly affect yield and quality. Molecular studies on flax remain inadequate because relatively few flax genes have been associated with agronomic traits or have been identified as having potential applications. To identify markers and candidate genes that can potentially be used for genetic improvement of crucial agronomic traits, we examined 224 specimens of core flax germplasm; specifically, phenotypic data for key traits, including plant height, technical length, number of branches, number of fruits, and 1000-grain weight were investigated under three environmental conditions before specific-locus amplified fragment sequencing (SLAF-seq was employed to perform a genome-wide association study (GWAS for these five agronomic traits. Subsequently, the results were used to screen single nucleotide polymorphism (SNP loci and candidate genes that exhibited a significant correlation with the important agronomic traits. Our analyses identified a total of 42 SNP loci that showed significant correlations with the five important agronomic flax traits. Next, candidate genes were screened in the 10 kb zone of each of the 42 SNP loci. These SNP loci were then analyzed by a more stringent screening via co-identification using both a general linear model (GLM and a mixed linear model (MLM as well as co-occurrences in at least two of the three environments, whereby 15 final candidate genes were obtained. Based on these results, we determined that UGT and PL are candidate genes for plant height, GRAS and XTH are candidate genes for the number of branches, Contig1437 and LU0019C12 are candidate genes for the number of fruits, and PHO1 is a candidate gene for the 1000-seed weight. We propose that the identified SNP loci and corresponding candidate genes might serve as a biological basis for improving crucial agronomic flax traits.

  18. G-NEST: a gene neighborhood scoring tool to identify co-conserved, co-expressed genes

    Directory of Open Access Journals (Sweden)

    Lemay Danielle G

    2012-09-01

    Full Text Available Abstract Background In previous studies, gene neighborhoods—spatial clusters of co-expressed genes in the genome—have been defined using arbitrary rules such as requiring adjacency, a minimum number of genes, a fixed window size, or a minimum expression level. In the current study, we developed a Gene Neighborhood Scoring Tool (G-NEST which combines genomic location, gene expression, and evolutionary sequence conservation data to score putative gene neighborhoods across all possible window sizes simultaneously. Results Using G-NEST on atlases of mouse and human tissue expression data, we found that large neighborhoods of ten or more genes are extremely rare in mammalian genomes. When they do occur, neighborhoods are typically composed of families of related genes. Both the highest scoring and the largest neighborhoods in mammalian genomes are formed by tandem gene duplication. Mammalian gene neighborhoods contain highly and variably expressed genes. Co-localized noisy gene pairs exhibit lower evolutionary conservation of their adjacent genome locations, suggesting that their shared transcriptional background may be disadvantageous. Genes that are essential to mammalian survival and reproduction are less likely to occur in neighborhoods, although neighborhoods are enriched with genes that function in mitosis. We also found that gene orientation and protein-protein interactions are partially responsible for maintenance of gene neighborhoods. Conclusions Our experiments using G-NEST confirm that tandem gene duplication is the primary driver of non-random gene order in mammalian genomes. Non-essentiality, co-functionality, gene orientation, and protein-protein interactions are additional forces that maintain gene neighborhoods, especially those formed by tandem duplicates. We expect G-NEST to be useful for other applications such as the identification of core regulatory modules, common transcriptional backgrounds, and chromatin domains. The

  19. Comparative Transcriptome Analysis Identifies Putative Genes Involved in Steroid Biosynthesis in Euphorbia tirucalli

    Directory of Open Access Journals (Sweden)

    Weibo Qiao

    2018-01-01

    Full Text Available Phytochemical analysis of different Euphorbia tirucalli tissues revealed a contrasting tissue-specificity for the biosynthesis of euphol and β-sitosterol, which represent the two pharmaceutically active steroids in E. tirucalli. To uncover the molecular mechanism underlying this tissue-specificity for phytochemicals, a comprehensive E. tirucalli transcriptome derived from its root, stem, leaf and latex was constructed, and a total of 91,619 unigenes were generated with 51.08% being successfully annotated against the non-redundant (Nr protein database. A comparison of the transcriptome from different tissues discovered members of unigenes in the upstream steps of sterol backbone biosynthesis leading to this tissue-specific sterol biosynthesis. Among them, the putative oxidosqualene cyclase (OSC encoding genes involved in euphol synthesis were notably identified, and their expressions were significantly up-regulated in the latex. In addition, genome-wide differentially expressed genes (DEGs in the different E. tirucalli tissues were identified. The cluster analysis of those DEGs showed a unique expression pattern in the latex compared with other tissues. The DEGs identified in this study would enrich the insights of sterol biosynthesis and the regulation mechanism of this latex-specificity.

  20. Functional link between DNA damage responses and transcriptional regulation by ATM in response to a histone deacetylase inhibitor TSA.

    Science.gov (United States)

    Lee, Jong-Soo

    2007-09-01

    Mutations in the ATM (ataxia-telangiectasia mutated) gene, which encodes a 370 kd protein with a kinase catalytic domain, predisposes people to cancers, and these mutations are also linked to ataxia-telangiectasia (A-T). The histone acetylaion/deacetylation- dependent chromatin remodeling can activate the ATM kinase-mediated DNA damage signal pathway (in an accompanying work, Lee, 2007). This has led us to study whether this modification can impinge on the ATM-mediated DNA damage response via transcriptional modulation in order to understand the function of ATM in the regulation of gene transcription. To identify the genes whose expression is regulated by ATM in response to histone deaceylase (HDAC) inhibition, we performed an analysis of oligonucleotide microarrays with using the appropriate cell lines, isogenic A-T (ATM(-)) and control (ATM(+)) cells, following treatment with a HDAC inhibitor TSA. Treatment with TSA reprograms the differential gene expression profile in response to HDAC inhibition in ATM(-) cells and ATM(+) cells. We analyzed the genes that are regulated by TSA in the ATM-dependent manner, and we classified these genes into different functional categories, including those involved in cell cycle/DNA replication, DNA repair, apoptosis, growth/differentiation, cell- cell adhesion, signal transduction, metabolism and transcription. We found that while some genes are regulated by TSA without regard to ATM, the patterns of gene regulation are differentially regulated in an ATM-dependent manner. Taken together, these finding indicate that ATM can regulate the transcription of genes that play critical roles in the molecular response to DNA damage, and this response is modulated through an altered HDAC inhibition-mediated gene expression.

  1. Genome-wide methylation analysis identifies a core set of hypermethylated genes in CIMP-H colorectal cancer.

    Science.gov (United States)

    McInnes, Tyler; Zou, Donghui; Rao, Dasari S; Munro, Francesca M; Phillips, Vicky L; McCall, John L; Black, Michael A; Reeve, Anthony E; Guilford, Parry J

    2017-03-28

    Aberrant DNA methylation profiles are a characteristic of all known cancer types, epitomized by the CpG island methylator phenotype (CIMP) in colorectal cancer (CRC). Hypermethylation has been observed at CpG islands throughout the genome, but it is unclear which factors determine whether an individual island becomes methylated in cancer. DNA methylation in CRC was analysed using the Illumina HumanMethylation450K array. Differentially methylated loci were identified using Significance Analysis of Microarrays (SAM) and the Wilcoxon Signed Rank (WSR) test. Unsupervised hierarchical clustering was used to identify methylation subtypes in CRC. In this study we characterized the DNA methylation profiles of 94 CRC tissues and their matched normal counterparts. Consistent with previous studies, unsupervized hierarchical clustering of genome-wide methylation data identified three subtypes within the tumour samples, designated CIMP-H, CIMP-L and CIMP-N, that showed high, low and very low methylation levels, respectively. Differential methylation between normal and tumour samples was analysed at the individual CpG level, and at the gene level. The distribution of hypermethylation in CIMP-N tumours showed high inter-tumour variability and appeared to be highly stochastic in nature, whereas CIMP-H tumours exhibited consistent hypermethylation at a subset of genes, in addition to a highly variable background of hypermethylated genes. EYA4, TFPI2 and TLX1 were hypermethylated in more than 90% of all tumours examined. One-hundred thirty-two genes were hypermethylated in 100% of CIMP-H tumours studied and these were highly enriched for functions relating to skeletal system development (Bonferroni adjusted p value =2.88E-15), segment specification (adjusted p value =9.62E-11), embryonic development (adjusted p value =1.52E-04), mesoderm development (adjusted p value =1.14E-20), and ectoderm development (adjusted p value =7.94E-16). Our genome-wide characterization of DNA

  2. Analysis of SOX10 mutations identified in Waardenburg-Hirschsprung patients: Differential effects on target gene regulation.

    Science.gov (United States)

    Chan, Kwok Keung; Wong, Corinne Kung Yen; Lui, Vincent Chi Hang; Tam, Paul Kwong Hang; Sham, Mai Har

    2003-10-15

    SOX10 is a member of the SOX gene family related by homology to the high-mobility group (HMG) box region of the testis-determining gene SRY. Mutations of the transcription factor gene SOX10 lead to Waardenburg-Hirschsprung syndrome (Waardenburg-Shah syndrome, WS4) in humans. A number of SOX10 mutations have been identified in WS4 patients who suffer from different extents of intestinal aganglionosis, pigmentation, and hearing abnormalities. Some patients also exhibit signs of myelination deficiency in the central and peripheral nervous systems. Although the molecular bases for the wide range of symptoms displayed by the patients are still not clearly understood, a few target genes for SOX10 have been identified. We have analyzed the impact of six different SOX10 mutations on the activation of SOX10 target genes by yeast one-hybrid and mammalian cell transfection assays. To investigate the transactivation activities of the mutant proteins, three different SOX target binding sites were introduced into luciferase reporter gene constructs and examined in our series of transfection assays: consensus HMG domain protein binding sites; SOX10 binding sites identified in the RET promoter; and Sox10 binding sites identified in the P0 promoter. We found that the same mutation could have different transactivation activities when tested with different target binding sites and in different cell lines. The differential transactivation activities of the SOX10 mutants appeared to correlate with the intestinal and/or neurological symptoms presented in the patients. Among the six mutant SOX10 proteins tested, much reduced transactivation activities were observed when tested on the SOX10 binding sites from the RET promoter. Of the two similar mutations X467K and 1400del12, only the 1400del12 mutant protein exhibited an increase of transactivation through the P0 promoter. While the lack of normal SOX10 mediated activation of RET transcription may lead to intestinal aganglionosis

  3. Network-Based Integration of GWAS and Gene Expression Identifies a HOX-Centric Network Associated with Serous Ovarian Cancer Risk.

    Science.gov (United States)

    Kar, Siddhartha P; Tyrer, Jonathan P; Li, Qiyuan; Lawrenson, Kate; Aben, Katja K H; Anton-Culver, Hoda; Antonenkova, Natalia; Chenevix-Trench, Georgia; Baker, Helen; Bandera, Elisa V; Bean, Yukie T; Beckmann, Matthias W; Berchuck, Andrew; Bisogna, Maria; Bjørge, Line; Bogdanova, Natalia; Brinton, Louise; Brooks-Wilson, Angela; Butzow, Ralf; Campbell, Ian; Carty, Karen; Chang-Claude, Jenny; Chen, Yian Ann; Chen, Zhihua; Cook, Linda S; Cramer, Daniel; Cunningham, Julie M; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; Dennis, Joe; Dicks, Ed; Doherty, Jennifer A; Dörk, Thilo; du Bois, Andreas; Dürst, Matthias; Eccles, Diana; Easton, Douglas F; Edwards, Robert P; Ekici, Arif B; Fasching, Peter A; Fridley, Brooke L; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G; Glasspool, Rosalind; Goode, Ellen L; Goodman, Marc T; Grownwald, Jacek; Harrington, Patricia; Harter, Philipp; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A T; Hillemanns, Peter; Hogdall, Estrid; Hogdall, Claus K; Hosono, Satoyo; Iversen, Edwin S; Jakubowska, Anna; Paul, James; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y; Kjaer, Susanne K; Kelemen, Linda E; Kellar, Melissa; Kelley, Joseph; Kiemeney, Lambertus A; Krakstad, Camilla; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D; Lee, Alice W; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A; Liang, Dong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R; McNeish, Iain A; Menon, Usha; Modugno, Francesmary; Moysich, Kirsten B; Narod, Steven A; Nedergaard, Lotte; Ness, Roberta B; Nevanlinna, Heli; Odunsi, Kunle; Olson, Sara H; Orlow, Irene; Orsulic, Sandra; Weber, Rachel Palmieri; Pearce, Celeste Leigh; Pejovic, Tanja; Pelttari, Liisa M; Permuth-Wey, Jennifer; Phelan, Catherine M; Pike, Malcolm C; Poole, Elizabeth M; Ramus, Susan J; Risch, Harvey A; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H; Rudolph, Anja; Runnebaum, Ingo B; Rzepecka, Iwona K; Salvesen, Helga B; Schildkraut, Joellen M; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C; Sucheston-Campbell, Lara E; Tangen, Ingvild L; Teo, Soo-Hwang; Terry, Kathryn L; Thompson, Pamela J; Timorek, Agnieszka; Tsai, Ya-Yu; Tworoger, Shelley S; van Altena, Anne M; Van Nieuwenhuysen, Els; Vergote, Ignace; Vierkant, Robert A; Wang-Gohrke, Shan; Walsh, Christine; Wentzensen, Nicolas; Whittemore, Alice S; Wicklund, Kristine G; Wilkens, Lynne R; Woo, Yin-Ling; Wu, Xifeng; Wu, Anna; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Sellers, Thomas A; Monteiro, Alvaro N A; Freedman, Matthew L; Gayther, Simon A; Pharoah, Paul D P

    2015-10-01

    Genome-wide association studies (GWAS) have so far reported 12 loci associated with serous epithelial ovarian cancer (EOC) risk. We hypothesized that some of these loci function through nearby transcription factor (TF) genes and that putative target genes of these TFs as identified by coexpression may also be enriched for additional EOC risk associations. We selected TF genes within 1 Mb of the top signal at the 12 genome-wide significant risk loci. Mutual information, a form of correlation, was used to build networks of genes strongly coexpressed with each selected TF gene in the unified microarray dataset of 489 serous EOC tumors from The Cancer Genome Atlas. Genes represented in this dataset were subsequently ranked using a gene-level test based on results for germline SNPs from a serous EOC GWAS meta-analysis (2,196 cases/4,396 controls). Gene set enrichment analysis identified six networks centered on TF genes (HOXB2, HOXB5, HOXB6, HOXB7 at 17q21.32 and HOXD1, HOXD3 at 2q31) that were significantly enriched for genes from the risk-associated end of the ranked list (P < 0.05 and FDR < 0.05). These results were replicated (P < 0.05) using an independent association study (7,035 cases/21,693 controls). Genes underlying enrichment in the six networks were pooled into a combined network. We identified a HOX-centric network associated with serous EOC risk containing several genes with known or emerging roles in serous EOC development. Network analysis integrating large, context-specific datasets has the potential to offer mechanistic insights into cancer susceptibility and prioritize genes for experimental characterization. ©2015 American Association for Cancer Research.

  4. Candidate gene resequencing to identify rare, pedigree-specific variants influencing healthy aging phenotypes in the long life family study

    DEFF Research Database (Denmark)

    Druley, Todd E; Wang, Lihua; Lin, Shiow J

    2016-01-01

    from six pedigrees. OBFC1 (chromosome 10) is involved in telomere maintenance, and falls within a linkage peak recently reported from an analysis of telomere length in LLFS families. Two different algorithms for single gene associations identified three genes with an enrichment of variation......BACKGROUND: The Long Life Family Study (LLFS) is an international study to identify the genetic components of various healthy aging phenotypes. We hypothesized that pedigree-specific rare variants at longevity-associated genes could have a similar functional impact on healthy phenotypes. METHODS......: We performed custom hybridization capture sequencing to identify the functional variants in 464 candidate genes for longevity or the major diseases of aging in 615 pedigrees (4,953 individuals) from the LLFS, using a multiplexed, custom hybridization capture. Variants were analyzed individually...

  5. In silico characterization of a novel pathogenic deletion mutation identified in XPA gene in a Pakistani family with severe xeroderma pigmentosum.

    Science.gov (United States)

    Nasir, Muhammad; Ahmad, Nafees; Sieber, Christian M K; Latif, Amir; Malik, Salman Akbar; Hameed, Abdul

    2013-09-24

    Xeroderma Pigmentosum (XP) is a rare skin disorder characterized by skin hypersensitivity to sunlight and abnormal pigmentation. The aim of this study was to investigate the genetic cause of a severe XP phenotype in a consanguineous Pakistani family and in silico characterization of any identified disease-associated mutation. The XP complementation group was assigned by genotyping of family for known XP loci. Genotyping data mapped the family to complementation group A locus, involving XPA gene. Mutation analysis of the candidate XP gene by DNA sequencing revealed a novel deletion mutation (c.654del A) in exon 5 of XPA gene. The c.654del A, causes frameshift, which pre-maturely terminates protein and result into a truncated product of 222 amino acid (aa) residues instead of 273 (p.Lys218AsnfsX5). In silico tools were applied to study the likelihood of changes in structural motifs and thus interaction of mutated protein with binding partners. In silico analysis of mutant protein sequence, predicted to affect the aa residue which attains coiled coil structure. The coiled coil structure has an important role in key cellular interactions, especially with DNA damage-binding protein 2 (DDB2), which has important role in DDB-mediated nucleotide excision repair (NER) system. Our findings support the fact of genetic and clinical heterogeneity in XP. The study also predicts the critical role of DDB2 binding region of XPA protein in NER pathway and opens an avenue for further research to study the functional role of the mutated protein domain.

  6. Inhibition of potential lethal damage repair and related gene expression after carbon-ion beam irradiation to human lung cancer grown in nude mice

    International Nuclear Information System (INIS)

    Yashiro, Tomoyasu; Fujisawa, Takehiko; Koyama-Saegusa, Kumiko; Imai, Takashi; Miyamoto, Tadaaki

    2007-01-01

    Using cultured and nude mouse tumor cells (IA) derived from a human lung cancer, we previously demonstrated their radiosensitivity by focusing attention on the dynamics of tumor clonogens and the early and rapid survival recovery (potential lethal damage repair: PLD repair) occurring after X-ray irradiation. To the authors' knowledge, this is the first study demonstrating gene expression in association with PLD repair after carbon-ion beam or X-ray irradiation to cancer cells. In this study we tried to detect the mechanism of DNA damage and repair of the clonogens after X-ray or carbon-ion beam irradiation. At first, colony assay method was performed after irradiation of 12 Gy of X-ray or 5 Gy of carbon-ion beam to compare the time dependent cell survival of the IA cells after each irradiation pass. Second, to search the genes causing PLD repair after irradiation of X-ray or carbon-ion beam, we evaluated gene expressions by using semi-quantitative RT-PCR with the selected 34 genes reportedly related to DNA repair. The intervals from the irradiation were 0, 6, 12 and 24 hr for colony assay method, and 0, 3, 18 hr for RT-PCR method. From the result of survival assays, significant PLD repair was not observed in carbon-ion beam as compared to X-ray irradiation. The results of RT-PCR were as follows. The gene showing significantly higher expressions after X-ray irradiation than after carbon-ion beam irradiation was PCNA. The genes showing significantly lower expressions after X-ray irradiation rather than after carbon-ion beam irradiation were RAD50, BRCA1, MRE11A, XRCC3, CHEK1, MLH1, CCNB1, CCNB2 and LIG4. We conclude that PCNA could be a likely candidate gene for PLD repair. (author)

  7. Gene trapping identifies a putative tumor suppressor and a new inducer of cell migration

    International Nuclear Information System (INIS)

    Guardiola-Serrano, Francisca; Haendeler, Judith; Lukosz, Margarete; Sturm, Karsten; Melchner, Harald von; Altschmied, Joachim

    2008-01-01

    Tumor necrosis factor alpha (TNFα) is a pleiotropic cytokine involved in apoptotic cell death, cellular proliferation, differentiation, inflammation, and tumorigenesis. In tumors it is secreted by tumor associated macrophages and can have both pro- and anti-tumorigenic effects. To identify genes regulated by TNFα, we performed a gene trap screen in the mammary carcinoma cell line MCF-7 and recovered 64 unique, TNFα-induced gene trap integration sites. Among these were the genes coding for the zinc finger protein ZC3H10 and for the transcription factor grainyhead-like 3 (GRHL3). In line with the dual effects of TNFα on tumorigenesis, we found that ZC3H10 inhibits anchorage independent growth in soft agar suggesting a tumor suppressor function, whereas GRHL3 strongly stimulated the migration of endothelial cells which is consistent with an angiogenic, pro-tumorigenic function

  8. Exploration for novel genes and pathways involved in repair of x-ray damage by functional analyses of C. elegans genome

    International Nuclear Information System (INIS)

    Eki, T.

    2004-01-01

    Gene function suppression nematodes were produced by systematic RNA interference process (RNAi) of genes which included helicase gene group. Some of high sensitivity genes were identified by the result of function screening for X-ray sensitivity of the function suppression nematode. A complete length of cDNA was separated from the two novel genes, and all the base sequences were determined. It was cleared that one of the novel genes encodes RNA helicases protein which consists of 1,119 amino acids, and the other one encodes chromatin modeling ATPase protein which consists of 3,035 and 3,201 amino acids. Candidacy genes of about 14 pieces for the RNA helicase protein were identified by yeast two-hybrid process as the results of research for nematode protein which showed protein interaction. (M. Suetake)

  9. Enterococcus faecalis infection causes inflammation, intracellular oxphos-independent ROS production, and DNA damage in human gastric cancer cells.

    Directory of Open Access Journals (Sweden)

    Jesper A B Strickertsson

    Full Text Available BACKGROUND: Achlorhydria caused by e.g. atrophic gastritis allows for bacterial overgrowth, which induces chronic inflammation and damage to the mucosal cells of infected individuals driving gastric malignancies and cancer. Enterococcus faecalis (E. faecalis can colonize achlohydric stomachs and we therefore wanted to study the impact of E. faecalis infection on inflammatory response, reactive oxygen species (ROS formation, mitochondrial respiration, and mitochondrial genetic stability in gastric mucosal cells. METHODS: To separate the changes induced by bacteria from those of the inflammatory cells we established an in vitro E. faecalis infection model system using the gastric carcinoma cell line MKN74. Total ROS and superoxide was measured by fluorescence microscopy. Cellular oxygen consumption was characterized non-invasively using XF24 microplate based respirometry. Gene expression was examined by microarray, and response pathways were identified by Gene Set Analysis (GSA. Selected gene transcripts were verified by quantitative real-time polymerase chain reaction (qRT-PCR. Mitochondrial mutations were determined by sequencing. RESULTS: Infection of MKN74 cells with E. faecalis induced intracellular ROS production through a pathway independent of oxidative phosphorylation (oxphos. Furthermore, E. faecalis infection induced mitochondrial DNA instability. Following infection, genes coding for inflammatory response proteins were transcriptionally up-regulated while DNA damage repair and cell cycle control genes were down-regulated. Cell growth slowed down when infected with viable E. faecalis and responded in a dose dependent manner to E. faecalis lysate. CONCLUSIONS: Infection by E. faecalis induced an oxphos-independent intracellular ROS response and damaged the mitochondrial genome in gastric cell culture. Finally the bacteria induced an NF-κB inflammatory response as well as impaired DNA damage response and cell cycle control gene

  10. Network Diffusion-Based Prioritization of Autism Risk Genes Identifies Significantly Connected Gene Modules

    Directory of Open Access Journals (Sweden)

    Ettore Mosca

    2017-09-01

    Full Text Available Autism spectrum disorder (ASD is marked by a strong genetic heterogeneity, which is underlined by the low overlap between ASD risk gene lists proposed in different studies. In this context, molecular networks can be used to analyze the results of several genome-wide studies in order to underline those network regions harboring genetic variations associated with ASD, the so-called “disease modules.” In this work, we used a recent network diffusion-based approach to jointly analyze multiple ASD risk gene lists. We defined genome-scale prioritizations of human genes in relation to ASD genes from multiple studies, found significantly connected gene modules associated with ASD and predicted genes functionally related to ASD risk genes. Most of them play a role in synapsis and neuronal development and function; many are related to syndromes that can be in comorbidity with ASD and the remaining are involved in epigenetics, cell cycle, cell adhesion and cancer.

  11. A ChIP-chip approach reveals a novel role for transcription factor IRF1 in the DNA damage response.

    Science.gov (United States)

    Frontini, Mattia; Vijayakumar, Meeraa; Garvin, Alexander; Clarke, Nicole

    2009-03-01

    IRF1 is a transcription factor that regulates key processes in the immune system and in tumour suppression. To gain further insight into IRF1's role in these processes, we searched for new target genes by performing chromatin immunoprecipitation coupled to a CpG island microarray (ChIP-chip). Using this approach we identified 202 new IRF1-binding sites with high confidence. Functional categorization of the target genes revealed a surprising cadre of new roles that can be linked to IRF1. One of the major functional categories was the DNA damage response pathway. In order to further validate our findings, we show that IRF1 can regulate the mRNA expression of a number of the DNA damage response genes in our list. In particular, we demonstrate that the mRNA and protein levels of the DNA repair protein BRIP1 [Fanconi anemia gene J (FANC J)] are upregulated after IRF1 over-expression. We also demonstrate that knockdown of IRF1 by siRNA results in loss of BRIP1 expression, abrogation of BRIP1 foci after DNA interstrand crosslink (ICL) damage and hypersensitivity to the DNA crosslinking agent, melphalan; a characteristic phenotype of FANC J cells. Taken together, our data provides a more complete understanding of the regulatory networks controlled by IRF1 and reveals a novel role for IRF1 in regulating the ICL DNA damage response.

  12. A ChIP–chip approach reveals a novel role for transcription factor IRF1 in the DNA damage response

    Science.gov (United States)

    Frontini, Mattia; Vijayakumar, Meeraa; Garvin, Alexander; Clarke, Nicole

    2009-01-01

    IRF1 is a transcription factor that regulates key processes in the immune system and in tumour suppression. To gain further insight into IRF1's role in these processes, we searched for new target genes by performing chromatin immunoprecipitation coupled to a CpG island microarray (ChIP–chip). Using this approach we identified 202 new IRF1-binding sites with high confidence. Functional categorization of the target genes revealed a surprising cadre of new roles that can be linked to IRF1. One of the major functional categories was the DNA damage response pathway. In order to further validate our findings, we show that IRF1 can regulate the mRNA expression of a number of the DNA damage response genes in our list. In particular, we demonstrate that the mRNA and protein levels of the DNA repair protein BRIP1 [Fanconi anemia gene J (FANC J)] are upregulated after IRF1 over-expression. We also demonstrate that knockdown of IRF1 by siRNA results in loss of BRIP1 expression, abrogation of BRIP1 foci after DNA interstrand crosslink (ICL) damage and hypersensitivity to the DNA crosslinking agent, melphalan; a characteristic phenotype of FANC J cells. Taken together, our data provides a more complete understanding of the regulatory networks controlled by IRF1 and reveals a novel role for IRF1 in regulating the ICL DNA damage response. PMID:19129219

  13. A gene-trap strategy identifies quiescence-induced genes in ...

    Indian Academy of Sciences (India)

    PRAKASH KUMAR G

    and Walsh 1996). The balance between proliferation and ... In three lines, insertion occurred in genes previously implicated in the control of quiescence, i.e. ...... arrest-specific traps fall into different functional classes, such as cytoskeletal ...

  14. Pathways-driven sparse regression identifies pathways and genes associated with high-density lipoprotein cholesterol in two Asian cohorts.

    Directory of Open Access Journals (Sweden)

    Matt Silver

    2013-11-01

    Full Text Available Standard approaches to data analysis in genome-wide association studies (GWAS ignore any potential functional relationships between gene variants. In contrast gene pathways analysis uses prior information on functional structure within the genome to identify pathways associated with a trait of interest. In a second step, important single nucleotide polymorphisms (SNPs or genes may be identified within associated pathways. The pathways approach is motivated by the fact that genes do not act alone, but instead have effects that are likely to be mediated through their interaction in gene pathways. Where this is the case, pathways approaches may reveal aspects of a trait's genetic architecture that would otherwise be missed when considering SNPs in isolation. Most pathways methods begin by testing SNPs one at a time, and so fail to capitalise on the potential advantages inherent in a multi-SNP, joint modelling approach. Here, we describe a dual-level, sparse regression model for the simultaneous identification of pathways and genes associated with a quantitative trait. Our method takes account of various factors specific to the joint modelling of pathways with genome-wide data, including widespread correlation between genetic predictors, and the fact that variants may overlap multiple pathways. We use a resampling strategy that exploits finite sample variability to provide robust rankings for pathways and genes. We test our method through simulation, and use it to perform pathways-driven gene selection in a search for pathways and genes associated with variation in serum high-density lipoprotein cholesterol levels in two separate GWAS cohorts of Asian adults. By comparing results from both cohorts we identify a number of candidate pathways including those associated with cardiomyopathy, and T cell receptor and PPAR signalling. Highlighted genes include those associated with the L-type calcium channel, adenylate cyclase, integrin, laminin, MAPK

  15. Pathways-Driven Sparse Regression Identifies Pathways and Genes Associated with High-Density Lipoprotein Cholesterol in Two Asian Cohorts

    Science.gov (United States)

    Silver, Matt; Chen, Peng; Li, Ruoying; Cheng, Ching-Yu; Wong, Tien-Yin; Tai, E-Shyong; Teo, Yik-Ying; Montana, Giovanni

    2013-01-01

    Standard approaches to data analysis in genome-wide association studies (GWAS) ignore any potential functional relationships between gene variants. In contrast gene pathways analysis uses prior information on functional structure within the genome to identify pathways associated with a trait of interest. In a second step, important single nucleotide polymorphisms (SNPs) or genes may be identified within associated pathways. The pathways approach is motivated by the fact that genes do not act alone, but instead have effects that are likely to be mediated through their interaction in gene pathways. Where this is the case, pathways approaches may reveal aspects of a trait's genetic architecture that would otherwise be missed when considering SNPs in isolation. Most pathways methods begin by testing SNPs one at a time, and so fail to capitalise on the potential advantages inherent in a multi-SNP, joint modelling approach. Here, we describe a dual-level, sparse regression model for the simultaneous identification of pathways and genes associated with a quantitative trait. Our method takes account of various factors specific to the joint modelling of pathways with genome-wide data, including widespread correlation between genetic predictors, and the fact that variants may overlap multiple pathways. We use a resampling strategy that exploits finite sample variability to provide robust rankings for pathways and genes. We test our method through simulation, and use it to perform pathways-driven gene selection in a search for pathways and genes associated with variation in serum high-density lipoprotein cholesterol levels in two separate GWAS cohorts of Asian adults. By comparing results from both cohorts we identify a number of candidate pathways including those associated with cardiomyopathy, and T cell receptor and PPAR signalling. Highlighted genes include those associated with the L-type calcium channel, adenylate cyclase, integrin, laminin, MAPK signalling and immune

  16. Helicobacter pylori Infection Causes Characteristic DNA Damage Patterns in Human Cells

    Directory of Open Access Journals (Sweden)

    Max Koeppel

    2015-06-01

    Full Text Available Infection with the human pathogen Helicobacter pylori (H. pylori is a major risk factor for gastric cancer. Since the bacterium exerts multiple genotoxic effects, we examined the circumstances of DNA damage accumulation and identified regions within the host genome with high susceptibility to H. pylori-induced damage. Infection impaired several DNA repair factors, the extent of which depends on a functional cagPAI. This leads to accumulation of a unique DNA damage pattern, preferentially in transcribed regions and proximal to telomeres, in both gastric cell lines and primary gastric epithelial cells. The observed pattern correlates with focal amplifications in adenocarcinomas of the stomach and partly overlaps with known cancer genes. We thus demonstrate an impact of a bacterial infection directed toward specific host genomic regions and describe underlying characteristics that make such regions more likely to acquire heritable changes during infection, which could contribute to cellular transformation.

  17. Genes2WordCloud: a quick way to identify biological themes from gene lists and free text.

    Science.gov (United States)

    Baroukh, Caroline; Jenkins, Sherry L; Dannenfelser, Ruth; Ma'ayan, Avi

    2011-10-13

    Word-clouds recently emerged on the web as a solution for quickly summarizing text by maximizing the display of most relevant terms about a specific topic in the minimum amount of space. As biologists are faced with the daunting amount of new research data commonly presented in textual formats, word-clouds can be used to summarize and represent biological and/or biomedical content for various applications. Genes2WordCloud is a web application that enables users to quickly identify biological themes from gene lists and research relevant text by constructing and displaying word-clouds. It provides users with several different options and ideas for the sources that can be used to generate a word-cloud. Different options for rendering and coloring the word-clouds give users the flexibility to quickly generate customized word-clouds of their choice. Genes2WordCloud is a word-cloud generator and a word-cloud viewer that is based on WordCram implemented using Java, Processing, AJAX, mySQL, and PHP. Text is fetched from several sources and then processed to extract the most relevant terms with their computed weights based on word frequencies. Genes2WordCloud is freely available for use online; it is open source software and is available for installation on any web-site along with supporting documentation at http://www.maayanlab.net/G2W. Genes2WordCloud provides a useful way to summarize and visualize large amounts of textual biological data or to find biological themes from several different sources. The open source availability of the software enables users to implement customized word-clouds on their own web-sites and desktop applications.

  18. Suppression subtractive hybridization and comparative expression analysis to identify developmentally regulated genes in filamentous fungi.

    Science.gov (United States)

    Gesing, Stefan; Schindler, Daniel; Nowrousian, Minou

    2013-09-01

    Ascomycetes differentiate four major morphological types of fruiting bodies (apothecia, perithecia, pseudothecia and cleistothecia) that are derived from an ancestral fruiting body. Thus, fruiting body differentiation is most likely controlled by a set of common core genes. One way to identify such genes is to search for genes with evolutionary conserved expression patterns. Using suppression subtractive hybridization (SSH), we selected differentially expressed transcripts in Pyronema confluens (Pezizales) by comparing two cDNA libraries specific for sexual and for vegetative development, respectively. The expression patterns of selected genes from both libraries were verified by quantitative real time PCR. Expression of several corresponding homologous genes was found to be conserved in two members of the Sordariales (Sordaria macrospora and Neurospora crassa), a derived group of ascomycetes that is only distantly related to the Pezizales. Knockout studies with N. crassa orthologues of differentially regulated genes revealed a functional role during fruiting body development for the gene NCU05079, encoding a putative MFS peptide transporter. These data indicate conserved gene expression patterns and a functional role of the corresponding genes during fruiting body development; such genes are candidates of choice for further functional analysis. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Positive feedback regulation of a Lycium chinense-derived VDE gene by drought-induced endogenous ABA, and over-expression of this VDE gene improve drought-induced photo-damage in Arabidopsis.

    Science.gov (United States)

    Guan, Chunfeng; Ji, Jing; Zhang, Xuqiang; Li, Xiaozhou; Jin, Chao; Guan, Wenzhu; Wang, Gang

    2015-03-01

    Violaxanthin de-epoxidase (VDE) plays an important role in protecting the photosynthetic apparatus from photo-damage by dissipating excessively absorbed light energy as heat, via the conversion of violaxanthin (V) to intermediate product antheraxanthin (A) and final product zeaxanthin (Z) under light stress. We have cloned a VDE gene (LcVDE) from Lycium chinense, a deciduous woody perennial halophyte, which can grow in a large variety of soil types. The amino acid sequence of LcVDE has high homology with VDEs in other plants. Under drought stress, relative expression of LcVDE and the de-epoxidation ratio (Z+0.5A)/(V+A+Z) increased rapidly, and non-photochemical quenching (NPQ) also rose. Interestingly, these elevations induced by drought stress were reduced by the topical administration of abamine SG, a potent ABA inhibitor via inhibition of NCED in the ABA synthesis pathway. Until now, little has been done to explore the relationship between endogenous ABA and the expression of VDE genes. Since V serves as a common precursor for ABA, these data support the possible involvement of endogenous ABA in the positive feedback regulation of LcVDE gene expression in L. chinense under drought stress. Moreover, the LcVDE may be involved in modulating the level of photosynthesis damage caused by drought stress. Furthermore, the ratio of (Z+0.5A)/(V+A+Z) and NPQ increased more in transgenic Arabidopsis over-expressing LcVDE gene than the wild types under drought stress. The maximum quantum yield of primary photochemistry of PSII (Fv/Fm) in transgenic Arabidopsis decreased more slowly during the stressed period than that in wild types under the same conditions. Furthermore, transgenic Arabidopsis over-expressing LcVDE showed increased tolerance to drought stress. Copyright © 2014 Elsevier GmbH. All rights reserved.

  20. Genome-wide local ancestry approach identifies genes and variants associated with chemotherapeutic susceptibility in African Americans.

    Directory of Open Access Journals (Sweden)

    Heather E Wheeler

    Full Text Available Chemotherapeutic agents are used in the treatment of many cancers, yet variable resistance and toxicities among individuals limit successful outcomes. Several studies have indicated outcome differences associated with ancestry among patients with various cancer types. Using both traditional SNP-based and newly developed gene-based genome-wide approaches, we investigated the genetics of chemotherapeutic susceptibility in lymphoblastoid cell lines derived from 83 African Americans, a population for which there is a disparity in the number of genome-wide studies performed. To account for population structure in this admixed population, we incorporated local ancestry information into our association model. We tested over 2 million SNPs and identified 325, 176, 240, and 190 SNPs that were suggestively associated with cytarabine-, 5'-deoxyfluorouridine (5'-DFUR-, carboplatin-, and cisplatin-induced cytotoxicity, respectively (p≤10(-4. Importantly, some of these variants are found only in populations of African descent. We also show that cisplatin-susceptibility SNPs are enriched for carboplatin-susceptibility SNPs. Using a gene-based genome-wide association approach, we identified 26, 11, 20, and 41 suggestive candidate genes for association with cytarabine-, 5'-DFUR-, carboplatin-, and cisplatin-induced cytotoxicity, respectively (p≤10(-3. Fourteen of these genes showed evidence of association with their respective chemotherapeutic phenotypes in the Yoruba from Ibadan, Nigeria (p<0.05, including TP53I11, COPS5 and GAS8, which are known to be involved in tumorigenesis. Although our results require further study, we have identified variants and genes associated with chemotherapeutic susceptibility in African Americans by using an approach that incorporates local ancestry information.

  1. A genome-wide shRNA screen identifies GAS1 as a novel melanoma metastasis suppressor gene.

    Science.gov (United States)

    Gobeil, Stephane; Zhu, Xiaochun; Doillon, Charles J; Green, Michael R

    2008-11-01

    Metastasis suppressor genes inhibit one or more steps required for metastasis without affecting primary tumor formation. Due to the complexity of the metastatic process, the development of experimental approaches for identifying genes involved in metastasis prevention has been challenging. Here we describe a genome-wide RNAi screening strategy to identify candidate metastasis suppressor genes. Following expression in weakly metastatic B16-F0 mouse melanoma cells, shRNAs were selected based upon enhanced satellite colony formation in a three-dimensional cell culture system and confirmed in a mouse experimental metastasis assay. Using this approach we discovered 22 genes whose knockdown increased metastasis without affecting primary tumor growth. We focused on one of these genes, Gas1 (Growth arrest-specific 1), because we found that it was substantially down-regulated in highly metastatic B16-F10 melanoma cells, which contributed to the high metastatic potential of this mouse cell line. We further demonstrated that Gas1 has all the expected properties of a melanoma tumor suppressor including: suppression of metastasis in a spontaneous metastasis assay, promotion of apoptosis following dissemination of cells to secondary sites, and frequent down-regulation in human melanoma metastasis-derived cell lines and metastatic tumor samples. Thus, we developed a genome-wide shRNA screening strategy that enables the discovery of new metastasis suppressor genes.

  2. Expression profiling identifies genes involved in neoplastic transformation of serous ovarian cancer

    International Nuclear Information System (INIS)

    Merritt, Melissa A; Parsons, Peter G; Newton, Tanya R; Martyn, Adam C; Webb, Penelope M; Green, Adèle C; Papadimos, David J; Boyle, Glen M

    2009-01-01

    The malignant potential of serous ovarian tumors, the most common ovarian tumor subtype, varies from benign to low malignant potential (LMP) tumors to frankly invasive cancers. Given the uncertainty about the relationship between these different forms, we compared their patterns of gene expression. Expression profiling was carried out on samples of 7 benign, 7 LMP and 28 invasive (moderate and poorly differentiated) serous tumors and four whole normal ovaries using oligonucleotide microarrays representing over 21,000 genes. We identified 311 transcripts that distinguished invasive from benign tumors, and 20 transcripts that were significantly differentially expressed between invasive and LMP tumors at p < 0.01 (with multiple testing correction). Five genes that were differentially expressed between invasive and either benign or normal tissues were validated by real time PCR in an independent panel of 46 serous tumors (4 benign, 7 LMP, 35 invasive). Overexpression of SLPI and WNT7A and down-regulation of C6orf31, PDGFRA and GLTSCR2 were measured in invasive and LMP compared with benign and normal tissues. Over-expression of WNT7A in an ovarian cancer cell line led to increased migration and invasive capacity. These results highlight several genes that may play an important role across the spectrum of serous ovarian tumorigenesis

  3. Engineering and Functional Characterization of Fusion Genes Identifies Novel Oncogenic Drivers of Cancer. | Office of Cancer Genomics

    Science.gov (United States)

    Oncogenic gene fusions drive many human cancers, but tools to more quickly unravel their functional contributions are needed. Here we describe methodology permitting fusion gene construction for functional evaluation. Using this strategy, we engineered the known fusion oncogenes, BCR-ABL1, EML4-ALK, and ETV6-NTRK3, as well as 20 previously uncharacterized fusion genes identified in TCGA datasets.

  4. Damage Models for Soft Tissues: A Survey.

    Science.gov (United States)

    Li, Wenguang

    Damage to soft tissues in the human body has been investigated for applications in healthcare, sports, and biomedical engineering. This paper reviews and classifies damage models for soft tissues to summarize achievements, identify new directions, and facilitate finite element analysis. The main ideas of damage modeling methods are illustrated and interpreted. A few key issues related to damage models, such as experimental data curve-fitting, computational effort, connection between damage and fractures/cracks, damage model applications, and fracture/crack extension simulation, are discussed. Several new challenges in the field are identified and outlined. This review can be useful for developing more advanced damage models and extending damage modeling methods to a variety of soft tissues.

  5. ZCURVE 3.0: identify prokaryotic genes with higher accuracy as well as automatically and accurately select essential genes.

    Science.gov (United States)

    Hua, Zhi-Gang; Lin, Yan; Yuan, Ya-Zhou; Yang, De-Chang; Wei, Wen; Guo, Feng-Biao

    2015-07-01

    In 2003, we developed an ab initio program, ZCURVE 1.0, to find genes in bacterial and archaeal genomes. In this work, we present the updated version (i.e. ZCURVE 3.0). Using 422 prokaryotic genomes, the average accuracy was 93.7% with the updated version, compared with 88.7% with the original version. Such results also demonstrate that ZCURVE 3.0 is comparable with Glimmer 3.02 and may provide complementary predictions to it. In fact, the joint application of the two programs generated better results by correctly finding more annotated genes while also containing fewer false-positive predictions. As the exclusive function, ZCURVE 3.0 contains one post-processing program that can identify essential genes with high accuracy (generally >90%). We hope ZCURVE 3.0 will receive wide use with the web-based running mode. The updated ZCURVE can be freely accessed from http://cefg.uestc.edu.cn/zcurve/ or http://tubic.tju.edu.cn/zcurveb/ without any restrictions. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Identification of Plagl1/Zac1 binding sites and target genes establishes its role in the regulation of extracellular matrix genes and the imprinted gene network.

    Science.gov (United States)

    Varrault, Annie; Dantec, Christelle; Le Digarcher, Anne; Chotard, Laëtitia; Bilanges, Benoit; Parrinello, Hugues; Dubois, Emeric; Rialle, Stéphanie; Severac, Dany; Bouschet, Tristan; Journot, Laurent

    2017-10-13

    PLAGL1/ZAC1 undergoes parental genomic imprinting, is paternally expressed, and is a member of the imprinted gene network (IGN). It encodes a zinc finger transcription factor with anti-proliferative activity and is a candidate tumor suppressor gene on 6q24 whose expression is frequently lost in various neoplasms. Conversely, gain of PLAGL1 function is responsible for transient neonatal diabetes mellitus, a rare genetic disease that results from defective pancreas development. In the present work, we showed that Plagl1 up-regulation was not associated with DNA damage-induced cell cycle arrest. It was rather associated with physiological cell cycle exit that occurred with contact inhibition, growth factor withdrawal, or cell differentiation. To gain insights into Plagl1 mechanism of action, we identified Plagl1 target genes by combining chromatin immunoprecipitation and genome-wide transcriptomics in transfected cell lines. Plagl1-elicited gene regulation correlated with multiple binding to the proximal promoter region through a GC-rich motif. Plagl1 target genes included numerous genes involved in signaling, cell adhesion, and extracellular matrix composition, including collagens. Plagl1 targets also included 22% of the 409 genes that make up the IGN. Altogether, this work identified Plagl1 as a transcription factor that coordinated the regulation of a subset of IGN genes and controlled extracellular matrix composition. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Contig Maps and Genomic Sequencing Identify Candidate Genes in the Usher 1C Locus

    Science.gov (United States)

    Higgins, Michael J.; Day, Colleen D.; Smilinich, Nancy J.; Ni, L.; Cooper, Paul R.; Nowak, Norma J.; Davies, Chris; de Jong, Pieter J.; Hejtmancik, Fielding; Evans, Glen A.; Smith, Richard J.H.; Shows, Thomas B.

    1998-01-01

    Usher syndrome 1C (USH1C) is a congenital condition manifesting profound hearing loss, the absence of vestibular function, and eventual retinal degeneration. The USH1C locus has been mapped genetically to a 2- to 3-cM interval in 11p14–15.1 between D11S899 and D11S861. In an effort to identify the USH1C disease gene we have isolated the region between these markers in yeast artificial chromosomes (YACs) using a combination of STS content mapping and Alu–PCR hybridization. The YAC contig is ∼3.5 Mb and has located several other loci within this interval, resulting in the order CEN-LDHA-SAA1-TPH-D11S1310-(D11S1888/KCNC1)-MYOD1-D11S902D11S921-D11S1890-TEL. Subsequent haplotyping and homozygosity analysis refined the location of the disease gene to a 400-kb interval between D11S902 and D11S1890 with all affected individuals being homozygous for the internal marker D11S921. To facilitate gene identification, the critical region has been converted into P1 artificial chromosome (PAC) clones using sequence-tagged sites (STSs) mapped to the YAC contig, Alu–PCR products generated from the YACs, and PAC end probes. A contig of >50 PAC clones has been assembled between D11S1310 and D11S1890, confirming the order of markers used in haplotyping. Three PAC clones representing nearly two-thirds of the USH1C critical region have been sequenced. PowerBLAST analysis identified six clusters of expressed sequence tags (ESTs), two known genes (BIR,SUR1) mapped previously to this region, and a previously characterized but unmapped gene NEFA (DNA binding/EF hand/acidic amino-acid-rich). GRAIL analysis identified 11 CpG islands and 73 exons of excellent quality. These data allowed the construction of a transcription map for the USH1C critical region, consisting of three known genes and six or more novel transcripts. Based on their map location, these loci represent candidate disease loci for USH1C. The NEFA gene was assessed as the USH1C locus by the sequencing of an amplified NEFA

  8. Integrated genomic and gene expression profiling identifies two major genomic circuits in urothelial carcinoma.

    Directory of Open Access Journals (Sweden)

    David Lindgren

    Full Text Available Similar to other malignancies, urothelial carcinoma (UC is characterized by specific recurrent chromosomal aberrations and gene mutations. However, the interconnection between specific genomic alterations, and how patterns of chromosomal alterations adhere to different molecular subgroups of UC, is less clear. We applied tiling resolution array CGH to 146 cases of UC and identified a number of regions harboring recurrent focal genomic amplifications and deletions. Several potential oncogenes were included in the amplified regions, including known oncogenes like E2F3, CCND1, and CCNE1, as well as new candidate genes, such as SETDB1 (1q21, and BCL2L1 (20q11. We next combined genome profiling with global gene expression, gene mutation, and protein expression data and identified two major genomic circuits operating in urothelial carcinoma. The first circuit was characterized by FGFR3 alterations, overexpression of CCND1, and 9q and CDKN2A deletions. The second circuit was defined by E3F3 amplifications and RB1 deletions, as well as gains of 5p, deletions at PTEN and 2q36, 16q, 20q, and elevated CDKN2A levels. TP53/MDM2 alterations were common for advanced tumors within the two circuits. Our data also suggest a possible RAS/RAF circuit. The tumors with worst prognosis showed a gene expression profile that indicated a keratinized phenotype. Taken together, our integrative approach revealed at least two separate networks of genomic alterations linked to the molecular diversity seen in UC, and that these circuits may reflect distinct pathways of tumor development.

  9. Genome Wide Association Study of SNP-, Gene-, and Pathway-based Approaches to Identify Genes Influencing Susceptibility to Staphylococcus aureus Infections

    Directory of Open Access Journals (Sweden)

    Zhan eYe

    2014-05-01

    Full Text Available Background: We conducted a genome-wide association study (GWAS to identify specific genetic variants that underlie susceptibility to disease caused by Staphylococcus aureus in humans. Methods: Cases (n=309 and controls (n=2,925 were genotyped at 508,921 single nucleotide polymorphisms (SNPs. Cases had at least one laboratory and clinician confirmed disease caused by S. aureus whereas controls did not. R-package (for SNP association, EIGENSOFT (to estimate and adjust for population stratification and gene- (VEGAS and pathway-based (DAVID, PANTHER, and Ingenuity Pathway Analysis analyses were performed.Results: No SNP reached genome-wide significance. Four SNPs exceeded the pConclusion: We identified potential susceptibility genes for S. aureus diseases in this preliminary study but confirmation by other studies is needed. The observed associations could be relevant given the complexity of S. aureus as a pathogen and its ability to exploit multiple biological pathways to cause infections in humans.

  10. Disruption of the ECM33 Gene in Candida albicans Prevents Biofilm Formation, Engineered Human Oral Mucosa Tissue Damage and Gingival Cell Necrosis/Apoptosis

    Directory of Open Access Journals (Sweden)

    Mahmoud Rouabhia

    2012-01-01

    Full Text Available In this study we demonstrated that ΔCaecm33 double mutant showed reduced biofilm formation and causes less damage to gingival mucosa tissues. This was confirmed by the reduced level of necrotic cells and Bax/Bcl2 gene expression as apoptotic markers. In contrast, parental and Caecm33 mutant strains decreased basement membrane protein production (laminin 5 and type IV collagen. We thus propose that ECM33 gene/protein represents a novel target for the prevention and treatment of infections caused by Candida.

  11. Overexpression of GmHsp90s, a heat shock protein 90 (Hsp90 gene family cloning from soybean, decrease damage of abiotic stresses in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Jinyan Xu

    Full Text Available Hsp90 is one of the most conserved and abundant molecular chaperones and is an essential component of the protective stress response; however, its roles in abiotic stress responses in soybean (Glycine max remain obscure. Here, 12 GmHsp90 genes from soybean were identified and found to be expressed and to function differentially under abiotic stresses. The 12 GmHsp90 genes were isolated and named GmHsp90A1-GmHsp90A6, GmHsp90B1, GmHsp90B2, GmHsp90C1.1, GmHsp90C1.2, GmHsp90C2.1 and GmHsp90C2.2 based on their characteristics and high homology to other Hsp90s according to a new nomenclature system. Quantitative real-time PCR expression data revealed that all the genes exhibited higher transcript levels in leaves and could be strongly induced under heat, osmotic and salt stress but not cold stress. Overexpression of five typical genes (GmHsp90A2, GmHsp90A4, GmHsp90B1, GmHsp90C1.1 and GmHsp90C2.1 in Arabidopsis thaliana provided useful evidences that GmHsp90 genes can decrease damage of abiotic stresses. In addition, an abnormal accumulation of proline was detected in some transgenic Arabidopsis plants suggested overexpressing GmHsp90s may affect the synthesis and response system of proline. Our work represents a systematic determination of soybean genes encoding Hsp90s, and provides useful evidence that GmHsp90 genes function differently in response to abiotic stresses and may affect the synthesis and response system of proline.

  12. Machine Learning Leveraging Genomes from Metagenomes Identifies Influential Antibiotic Resistance Genes in the Infant Gut Microbiome

    Science.gov (United States)

    Olm, Matthew R.; Morowitz, Michael J.

    2018-01-01

    ABSTRACT Antibiotic resistance in pathogens is extensively studied, and yet little is known about how antibiotic resistance genes of typical gut bacteria influence microbiome dynamics. Here, we leveraged genomes from metagenomes to investigate how genes of the premature infant gut resistome correspond to the ability of bacteria to survive under certain environmental and clinical conditions. We found that formula feeding impacts the resistome. Random forest models corroborated by statistical tests revealed that the gut resistome of formula-fed infants is enriched in class D beta-lactamase genes. Interestingly, Clostridium difficile strains harboring this gene are at higher abundance in formula-fed infants than C. difficile strains lacking this gene. Organisms with genes for major facilitator superfamily drug efflux pumps have higher replication rates under all conditions, even in the absence of antibiotic therapy. Using a machine learning approach, we identified genes that are predictive of an organism’s direction of change in relative abundance after administration of vancomycin and cephalosporin antibiotics. The most accurate results were obtained by reducing annotated genomic data to five principal components classified by boosted decision trees. Among the genes involved in predicting whether an organism increased in relative abundance after treatment are those that encode subclass B2 beta-lactamases and transcriptional regulators of vancomycin resistance. This demonstrates that machine learning applied to genome-resolved metagenomics data can identify key genes for survival after antibiotics treatment and predict how organisms in the gut microbiome will respond to antibiotic administration. IMPORTANCE The process of reconstructing genomes from environmental sequence data (genome-resolved metagenomics) allows unique insight into microbial systems. We apply this technique to investigate how the antibiotic resistance genes of bacteria affect their ability to

  13. Influence of the xonA gene of Escherichia coli in response to radiation; Influencia del gen xonA de Escherichia coli en la respuesta a radiacion

    Energy Technology Data Exchange (ETDEWEB)

    Ponce M, J.; Serment G, J.; Brena V, M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    The Escherichia coli bacteria has a repair and tolerance system known as SOS that works when there is damage in the DNA. However it is necessary that this damage modifies before the system is activated. For this it has intended to the enzymes that degrade DNA like responsible for generating this modifications. It has already been identified to the product of the gene recJ and according to the results that here are presented that of the gene xonA has similar activity. When both genes fail, not alone the activity SOS is inhibited but rather the mortality increases, for ionizing radiation. The above mentioned reinforces the importance of these genes in the recovery to the damage caused to the genome. (Author)

  14. CGMIM: Automated text-mining of Online Mendelian Inheritance in Man (OMIM to identify genetically-associated cancers and candidate genes

    Directory of Open Access Journals (Sweden)

    Jones Steven

    2005-03-01

    Full Text Available Abstract Background Online Mendelian Inheritance in Man (OMIM is a computerized database of information about genes and heritable traits in human populations, based on information reported in the scientific literature. Our objective was to establish an automated text-mining system for OMIM that will identify genetically-related cancers and cancer-related genes. We developed the computer program CGMIM to search for entries in OMIM that are related to one or more cancer types. We performed manual searches of OMIM to verify the program results. Results In the OMIM database on September 30, 2004, CGMIM identified 1943 genes related to cancer. BRCA2 (OMIM *164757, BRAF (OMIM *164757 and CDKN2A (OMIM *600160 were each related to 14 types of cancer. There were 45 genes related to cancer of the esophagus, 121 genes related to cancer of the stomach, and 21 genes related to both. Analysis of CGMIM results indicate that fewer than three gene entries in OMIM should mention both, and the more than seven-fold discrepancy suggests cancers of the esophagus and stomach are more genetically related than current literature suggests. Conclusion CGMIM identifies genetically-related cancers and cancer-related genes. In several ways, cancers with shared genetic etiology are anticipated to lead to further etiologic hypotheses and advances regarding environmental agents. CGMIM results are posted monthly and the source code can be obtained free of charge from the BC Cancer Research Centre website http://www.bccrc.ca/ccr/CGMIM.

  15. Exome Sequencing Fails to Identify the Genetic Cause of Aicardi Syndrome.

    Science.gov (United States)

    Lund, Caroline; Striano, Pasquale; Sorte, Hanne Sørmo; Parisi, Pasquale; Iacomino, Michele; Sheng, Ying; Vigeland, Magnus D; Øye, Anne-Marte; Møller, Rikke Steensbjerre; Selmer, Kaja K; Zara, Federico

    2016-09-01

    Aicardi syndrome (AS) is a well-characterized neurodevelopmental disorder with an unknown etiology. In this study, we performed whole-exome sequencing in 11 female patients with the diagnosis of AS, in order to identify the disease-causing gene. In particular, we focused on detecting variants in the X chromosome, including the analysis of variants with a low number of sequencing reads, in case of somatic mosaicism. For 2 of the patients, we also sequenced the exome of the parents to search for de novo mutations. We did not identify any genetic variants likely to be damaging. Only one single missense variant was identified by the de novo analyses of the 2 trios, and this was considered benign. The failure to identify a disease gene in this study may be due to technical limitations of our study design, including the possibility that the genetic aberration leading to AS is situated in a non-exonic region or that the mutation is somatic and not detectable by our approach. Alternatively, it is possible that AS is genetically heterogeneous and that 11 patients are not sufficient to reveal the causative genes. Future studies of AS should consider designs where also non-exonic regions are explored and apply a sequencing depth so that also low-grade somatic mosaicism can be detected.

  16. Cloning human DNA repair genes

    International Nuclear Information System (INIS)

    Jeggo, P.A.; Carr, A.M.; Lehmann, A.R.

    1994-01-01

    Many human genes involved in the repair of UV damage have been cloned using different procedures and they have been of great value in assisting the understanding of the mechanism of nucleotide excision-repair. Genes involved in repair of ionizing radiation damage have proved more difficult to isolate. Positional cloning has localized the XRCC5 gene to a small region of chromosome 2q33-35, and a series of yeast artificial chromosomes covering this region have been isolated. Very recent work has shown that the XRCC5 gene encodes the 80 kDa subunit of the Ku DNA-binding protein. The Ku80 gene also maps to this region. Studies with fission yeast have shown that radiation sensitivity can result not only from defective DNA repair but also from abnormal cell cycle control following DNA damage. Several genes involved in this 'check-point' control in fission yeast have been isolated and characterized in detail. It is likely that a similar checkpoint control mechanism exists in human cells. (author)

  17. Genes2WordCloud: a quick way to identify biological themes from gene lists and free text

    Directory of Open Access Journals (Sweden)

    Ma'ayan Avi

    2011-10-01

    Full Text Available Abstract Background Word-clouds recently emerged on the web as a solution for quickly summarizing text by maximizing the display of most relevant terms about a specific topic in the minimum amount of space. As biologists are faced with the daunting amount of new research data commonly presented in textual formats, word-clouds can be used to summarize and represent biological and/or biomedical content for various applications. Results Genes2WordCloud is a web application that enables users to quickly identify biological themes from gene lists and research relevant text by constructing and displaying word-clouds. It provides users with several different options and ideas for the sources that can be used to generate a word-cloud. Different options for rendering and coloring the word-clouds give users the flexibility to quickly generate customized word-clouds of their choice. Methods Genes2WordCloud is a word-cloud generator and a word-cloud viewer that is based on WordCram implemented using Java, Processing, AJAX, mySQL, and PHP. Text is fetched from several sources and then processed to extract the most relevant terms with their computed weights based on word frequencies. Genes2WordCloud is freely available for use online; it is open source software and is available for installation on any web-site along with supporting documentation at http://www.maayanlab.net/G2W. Conclusions Genes2WordCloud provides a useful way to summarize and visualize large amounts of textual biological data or to find biological themes from several different sources. The open source availability of the software enables users to implement customized word-clouds on their own web-sites and desktop applications.

  18. Candidate chemosensory genes identified in the endoparasitoid Meteorus pulchricornis (Hymenoptera: Braconidae) by antennal transcriptome analysis.

    Science.gov (United States)

    Sheng, Sheng; Liao, Cheng-Wu; Zheng, Yu; Zhou, Yu; Xu, Yan; Song, Wen-Miao; He, Peng; Zhang, Jian; Wu, Fu-An

    2017-06-01

    Meteorus pulchricornis is an endoparasitoid wasp which attacks the larvae of various lepidopteran pests. We present the first antennal transcriptome dataset for M. pulchricornis. A total of 48,845,072 clean reads were obtained and 34,967 unigenes were assembled. Of these, 15,458 unigenes showed a significant similarity (E-value <10 -5 ) to known proteins in the NCBI non-redundant protein database. Gene ontology (GO) and cluster of orthologous groups (COG) analyses were used to classify the functions of M. pulchricornis antennae genes. We identified 16 putative odorant-binding protein (OBP) genes, eight chemosensory protein (CSP) genes, 99 olfactory receptor (OR) genes, 19 ionotropic receptor (IR) genes and one sensory neuron membrane protein (SNMP) gene. BLASTx best hit results and phylogenetic analysis both indicated that these chemosensory genes were most closely related to those found in other hymenopteran species. Real-time quantitative PCR assays showed that 14 MpulOBP genes were antennae-specific. Of these, MpulOBP6, MpulOBP9, MpulOBP10, MpulOBP12, MpulOBP15 and MpulOBP16 were found to have greater expression in the antennae than in other body parts, while MpulOBP2 and MpulOBP3 were expressed predominately in the legs and abdomens, respectively. These results might provide a foundation for future studies of olfactory genes and chemoreception in M. pulchricornis. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Comparing cancer vs normal gene expression profiles identifies new disease entities and common transcriptional programs in AML patients

    DEFF Research Database (Denmark)

    Rapin, Nicolas; Bagger, Frederik Otzen; Jendholm, Johan

    2014-01-01

    Gene expression profiling has been used extensively to characterize cancer, identify novel subtypes, and improve patient stratification. However, it has largely failed to identify transcriptional programs that differ between cancer and corresponding normal cells and has not been efficient in iden......-karyotype AML, which allowed for the generation of a highly prognostic survival signature. Collectively, our CvN method holds great potential as a tool for the analysis of gene expression profiles of cancer patients....

  20. Guided genetic screen to identify genes essential in the regeneration of hair cells and other tissues.

    Science.gov (United States)

    Pei, Wuhong; Xu, Lisha; Huang, Sunny C; Pettie, Kade; Idol, Jennifer; Rissone, Alberto; Jimenez, Erin; Sinclair, Jason W; Slevin, Claire; Varshney, Gaurav K; Jones, MaryPat; Carrington, Blake; Bishop, Kevin; Huang, Haigen; Sood, Raman; Lin, Shuo; Burgess, Shawn M

    2018-01-01

    Regenerative medicine holds great promise for both degenerative diseases and traumatic tissue injury which represent significant challenges to the health care system. Hearing loss, which affects hundreds of millions of people worldwide, is caused primarily by a permanent loss of the mechanosensory receptors of the inner ear known as hair cells. This failure to regenerate hair cells after loss is limited to mammals, while all other non-mammalian vertebrates tested were able to completely regenerate these mechanosensory receptors after injury. To understand the mechanism of hair cell regeneration and its association with regeneration of other tissues, we performed a guided mutagenesis screen using zebrafish lateral line hair cells as a screening platform to identify genes that are essential for hair cell regeneration, and further investigated how genes essential for hair cell regeneration were involved in the regeneration of other tissues. We created genetic mutations either by retroviral insertion or CRISPR/Cas9 approaches, and developed a high-throughput screening pipeline for analyzing hair cell development and regeneration. We screened 254 gene mutations and identified 7 genes specifically affecting hair cell regeneration. These hair cell regeneration genes fell into distinct and somewhat surprising functional categories. By examining the regeneration of caudal fin and liver, we found these hair cell regeneration genes often also affected other types of tissue regeneration. Therefore, our results demonstrate guided screening is an effective approach to discover regeneration candidates, and hair cell regeneration is associated with other tissue regeneration.

  1. Phorate-induced oxidative stress, DNA damage and transcriptional activation of p53 and caspase genes in male Wistar rats

    Energy Technology Data Exchange (ETDEWEB)

    Saquib, Quaiser [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Attia, Sabry M. [Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh (Saudi Arabia); Siddiqui, Maqsood A. [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Aboul-Soud, Mourad A.M. [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Biochemistry Department, Faculty of Agriculture, Cairo University, 12613 Giza (Egypt); Al-Khedhairy, Abdulaziz A. [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Giesy, John P. [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Department of Biomedical and Veterinary Biosciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Canada S7N 5B3 (Canada); Zoology Department and Center for Integrative Toxicology, Michigan State University, East Lansing 48824 (United States); Musarrat, Javed, E-mail: musarratj1@yahoo.com [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Department of Microbiology, Faculty of Agricultural Sciences, AMU, Aligarh (India)

    2012-02-15

    Male Wistar rats exposed to a systemic organophosphorus insecticide, phorate [O,O-diethyl S-[(ethylthio) methyl] phosphorothioate] at varying oral doses of 0.046, 0.092 or 0.184 mg phorate/kg bw for 14 days, exhibited substantial oxidative stress, cellular DNA damage and activation of apoptosis-related p53, caspase 3 and 9 genes. The histopathological changes including the pyknotic nuclei, inflammatory leukocyte infiltrations, renal necrosis, and cardiac myofiber degeneration were observed in the liver, kidney and heart tissues. Biochemical analysis of catalase and glutathione revealed significantly lesser activities of antioxidative enzymes and lipid peroxidation in tissues of phorate exposed rats. Furthermore, generation of intracellular reactive oxygen species and reduced mitochondrial membrane potential in bone marrow cells confirmed phorate-induced oxidative stress. Significant DNA damage was measured through comet assay in terms of the Olive tail moment in bone marrow cells of treated animals as compared to control. Cell cycle analysis also demonstrated the G{sub 2}/M arrest and appearance of a distinctive SubG{sub 1} peak, which signified induction of apoptosis. Up-regulation of tumor suppressor p53 and caspase 3 and 9 genes, determined by quantitative real-time PCR and enzyme-linked immunosorbent assay, elucidated the activation of intrinsic apoptotic pathways in response to cellular stress. Overall, the results suggest that phorate induces genetic alterations and cellular toxicity, which can adversely affect the normal cellular functioning in rats. -- Highlights: ► This is the first report on molecular toxicity of phorate in an in vivo test system. ► Phorate induces biochemical and histological changes in liver, kidney and heart. ► Rats treated with phorate exhibited DNA damage in bone marrow cells. ► Phorate induces apoptosis, oxidative stress and alters mitochondrial fluorescence. ► Phorate induces transcriptional changes and enhanced

  2. Phorate-induced oxidative stress, DNA damage and transcriptional activation of p53 and caspase genes in male Wistar rats

    International Nuclear Information System (INIS)

    Saquib, Quaiser; Attia, Sabry M.; Siddiqui, Maqsood A.; Aboul-Soud, Mourad A.M.; Al-Khedhairy, Abdulaziz A.; Giesy, John P.; Musarrat, Javed

    2012-01-01

    Male Wistar rats exposed to a systemic organophosphorus insecticide, phorate [O,O-diethyl S-[(ethylthio) methyl] phosphorothioate] at varying oral doses of 0.046, 0.092 or 0.184 mg phorate/kg bw for 14 days, exhibited substantial oxidative stress, cellular DNA damage and activation of apoptosis-related p53, caspase 3 and 9 genes. The histopathological changes including the pyknotic nuclei, inflammatory leukocyte infiltrations, renal necrosis, and cardiac myofiber degeneration were observed in the liver, kidney and heart tissues. Biochemical analysis of catalase and glutathione revealed significantly lesser activities of antioxidative enzymes and lipid peroxidation in tissues of phorate exposed rats. Furthermore, generation of intracellular reactive oxygen species and reduced mitochondrial membrane potential in bone marrow cells confirmed phorate-induced oxidative stress. Significant DNA damage was measured through comet assay in terms of the Olive tail moment in bone marrow cells of treated animals as compared to control. Cell cycle analysis also demonstrated the G 2 /M arrest and appearance of a distinctive SubG 1 peak, which signified induction of apoptosis. Up-regulation of tumor suppressor p53 and caspase 3 and 9 genes, determined by quantitative real-time PCR and enzyme-linked immunosorbent assay, elucidated the activation of intrinsic apoptotic pathways in response to cellular stress. Overall, the results suggest that phorate induces genetic alterations and cellular toxicity, which can adversely affect the normal cellular functioning in rats. -- Highlights: ► This is the first report on molecular toxicity of phorate in an in vivo test system. ► Phorate induces biochemical and histological changes in liver, kidney and heart. ► Rats treated with phorate exhibited DNA damage in bone marrow cells. ► Phorate induces apoptosis, oxidative stress and alters mitochondrial fluorescence. ► Phorate induces transcriptional changes and enhanced activities of

  3. Integrative multi-platform meta-analysis of gene expression profiles in pancreatic ductal adenocarcinoma patients for identifying novel diagnostic biomarkers.

    Science.gov (United States)

    Irigoyen, Antonio; Jimenez-Luna, Cristina; Benavides, Manuel; Caba, Octavio; Gallego, Javier; Ortuño, Francisco Manuel; Guillen-Ponce, Carmen; Rojas, Ignacio; Aranda, Enrique; Torres, Carolina; Prados, Jose

    2018-01-01

    Applying differentially expressed genes (DEGs) to identify feasible biomarkers in diseases can be a hard task when working with heterogeneous datasets. Expression data are strongly influenced by technology, sample preparation processes, and/or labeling methods. The proliferation of different microarray platforms for measuring gene expression increases the need to develop models able to compare their results, especially when different technologies can lead to signal values that vary greatly. Integrative meta-analysis can significantly improve the reliability and robustness of DEG detection. The objective of this work was to develop an integrative approach for identifying potential cancer biomarkers by integrating gene expression data from two different platforms. Pancreatic ductal adenocarcinoma (PDAC), where there is an urgent need to find new biomarkers due its late diagnosis, is an ideal candidate for testing this technology. Expression data from two different datasets, namely Affymetrix and Illumina (18 and 36 PDAC patients, respectively), as well as from 18 healthy controls, was used for this study. A meta-analysis based on an empirical Bayesian methodology (ComBat) was then proposed to integrate these datasets. DEGs were finally identified from the integrated data by using the statistical programming language R. After our integrative meta-analysis, 5 genes were commonly identified within the individual analyses of the independent datasets. Also, 28 novel genes that were not reported by the individual analyses ('gained' genes) were also discovered. Several of these gained genes have been already related to other gastroenterological tumors. The proposed integrative meta-analysis has revealed novel DEGs that may play an important role in PDAC and could be potential biomarkers for diagnosing the disease.

  4. Identifying novel genes in C. elegans using SAGE tags

    Directory of Open Access Journals (Sweden)

    Chen Nansheng

    2010-12-01

    Full Text Available Abstract Background Despite extensive efforts devoted to predicting protein-coding genes in genome sequences, many bona fide genes have not been found and many existing gene models are not accurate in all sequenced eukaryote genomes. This situation is partly explained by the fact that gene prediction programs have been developed based on our incomplete understanding of gene feature information such as splicing and promoter characteristics. Additionally, full-length cDNAs of many genes and their isoforms are hard to obtain due to their low level or rare expression. In order to obtain full-length sequences of all protein-coding genes, alternative approaches are required. Results In this project, we have developed a method of reconstructing full-length cDNA sequences based on short expressed sequence tags which is called sequence tag-based amplification of cDNA ends (STACE. Expressed tags are used as anchors for retrieving full-length transcripts in two rounds of PCR amplification. We have demonstrated the application of STACE in reconstructing full-length cDNA sequences using expressed tags mined in an array of serial analysis of gene expression (SAGE of C. elegans cDNA libraries. We have successfully applied STACE to recover sequence information for 12 genes, for two of which we found isoforms. STACE was used to successfully recover full-length cDNA sequences for seven of these genes. Conclusions The STACE method can be used to effectively reconstruct full-length cDNA sequences of genes that are under-represented in cDNA sequencing projects and have been missed by existing gene prediction methods, but their existence has been suggested by short sequence tags such as SAGE tags.

  5. Cross-species microarray hybridization to identify developmentally regulated genes in the filamentous fungus Sordaria macrospora.

    Science.gov (United States)

    Nowrousian, Minou; Ringelberg, Carol; Dunlap, Jay C; Loros, Jennifer J; Kück, Ulrich

    2005-04-01

    The filamentous fungus Sordaria macrospora forms complex three-dimensional fruiting bodies that protect the developing ascospores and ensure their proper discharge. Several regulatory genes essential for fruiting body development were previously isolated by complementation of the sterile mutants pro1, pro11 and pro22. To establish the genetic relationships between these genes and to identify downstream targets, we have conducted cross-species microarray hybridizations using cDNA arrays derived from the closely related fungus Neurospora crassa and RNA probes prepared from wild-type S. macrospora and the three developmental mutants. Of the 1,420 genes which gave a signal with the probes from all the strains used, 172 (12%) were regulated differently in at least one of the three mutants compared to the wild type, and 17 (1.2%) were regulated differently in all three mutant strains. Microarray data were verified by Northern analysis or quantitative real time PCR. Among the genes that are up- or down-regulated in the mutant strains are genes encoding the pheromone precursors, enzymes involved in melanin biosynthesis and a lectin-like protein. Analysis of gene expression in double mutants revealed a complex network of interaction between the pro gene products.

  6. Comparison of Expression Profiles in Ovarian Epithelium In Vivo and Ovarian Cancer Identifies Novel Candidate Genes Involved in Disease Pathogenesis

    Science.gov (United States)

    Emmanuel, Catherine; Gava, Natalie; Kennedy, Catherine; Balleine, Rosemary L.; Sharma, Raghwa; Wain, Gerard; Brand, Alison; Hogg, Russell; Etemadmoghadam, Dariush; George, Joshy; Birrer, Michael J.; Clarke, Christine L.; Chenevix-Trench, Georgia; Bowtell, David D. L.; Harnett, Paul R.; deFazio, Anna

    2011-01-01

    Molecular events leading to epithelial ovarian cancer are poorly understood but ovulatory hormones and a high number of life-time ovulations with concomitant proliferation, apoptosis, and inflammation, increases risk. We identified genes that are regulated during the estrous cycle in murine ovarian surface epithelium and analysed these profiles to identify genes dysregulated in human ovarian cancer, using publically available datasets. We identified 338 genes that are regulated in murine ovarian surface epithelium during the estrous cycle and dysregulated in ovarian cancer. Six of seven candidates selected for immunohistochemical validation were expressed in serous ovarian cancer, inclusion cysts, ovarian surface epithelium and in fallopian tube epithelium. Most were overexpressed in ovarian cancer compared with ovarian surface epithelium and/or inclusion cysts (EpCAM, EZH2, BIRC5) although BIRC5 and EZH2 were expressed as highly in fallopian tube epithelium as in ovarian cancer. We prioritised the 338 genes for those likely to be important for ovarian cancer development by in silico analyses of copy number aberration and mutation using publically available datasets and identified genes with established roles in ovarian cancer as well as novel genes for which we have evidence for involvement in ovarian cancer. Chromosome segregation emerged as an important process in which genes from our list of 338 were over-represented including two (BUB1, NCAPD2) for which there is evidence of amplification and mutation. NUAK2, upregulated in ovarian surface epithelium in proestrus and predicted to have a driver mutation in ovarian cancer, was examined in a larger cohort of serous ovarian cancer where patients with lower NUAK2 expression had shorter overall survival. In conclusion, defining genes that are activated in normal epithelium in the course of ovulation that are also dysregulated in cancer has identified a number of pathways and novel candidate genes that may contribute

  7. Isolating human DNA repair genes using rodent-cell mutants

    International Nuclear Information System (INIS)

    Thompson, L.H.; Weber, C.A.; Brookman, K.W.; Salazar, E.P.; Stewart, S.A.; Mitchell, D.L.

    1987-01-01

    The DNA repair systems of rodent and human cells appear to be at least as complex genetically as those in lower eukaryotes and bacteria. The use of mutant lines of rodent cells as a means of identifying human repair genes by functional complementation offers a new approach toward studying the role of repair in mutagenesis and carcinogenesis. In each of six cases examined using hybrid cells, specific human chromosomes have been identified that correct CHO cell mutations affecting repair of damage from uv or ionizing radiations. This finding suggests that both the repair genes and proteins may be virtually interchangeable between rodent and human cells. Using cosmid vectors, human repair genes that map to chromosome 19 have cloned as functional sequences: ERCC2 and XRCC1. ERCC1 was found to have homology with the yeast excision repair gene RAD10. Transformants of repair-deficient cell lines carrying the corresponding human gene show efficient correction of repair capacity by all criteria examined. 39 refs., 1 fig., 1 tab

  8. Comparative Transcriptome Analysis Identifies Putative Genes Involved in the Biosynthesis of Xanthanolides in Xanthium strumarium L.

    Science.gov (United States)

    Li, Yuanjun; Gou, Junbo; Chen, Fangfang; Li, Changfu; Zhang, Yansheng

    2016-01-01

    Xanthium strumarium L. is a traditional Chinese herb belonging to the Asteraceae family. The major bioactive components of this plant are sesquiterpene lactones (STLs), which include the xanthanolides. To date, the biogenesis of xanthanolides, especially their downstream pathway, remains largely unknown. In X. strumarium, xanthanolides primarily accumulate in its glandular trichomes. To identify putative gene candidates involved in the biosynthesis of xanthanolides, three X. strumarium transcriptomes, which were derived from the young leaves of two different cultivars and the purified glandular trichomes from one of the cultivars, were constructed in this study. In total, 157 million clean reads were generated and assembled into 91,861 unigenes, of which 59,858 unigenes were successfully annotated. All the genes coding for known enzymes in the upstream pathway to the biosynthesis of xanthanolides were present in the X. strumarium transcriptomes. From a comparative analysis of the X. strumarium transcriptomes, this study identified a number of gene candidates that are putatively involved in the downstream pathway to the synthesis of xanthanolides, such as four unigenes encoding CYP71 P450s, 50 unigenes for dehydrogenases, and 27 genes for acetyltransferases. The possible functions of these four CYP71 candidates are extensively discussed. In addition, 116 transcription factors that are highly expressed in X. strumarium glandular trichomes were also identified. Their possible regulatory roles in the biosynthesis of STLs are discussed. The global transcriptomic data for X. strumarium should provide a valuable resource for further research into the biosynthesis of xanthanolides.

  9. Identifying molecular subtypes in human colon cancer using gene expression and DNA methylation microarray data.

    Science.gov (United States)

    Ren, Zhonglu; Wang, Wenhui; Li, Jinming

    2016-02-01

    Identifying colon cancer subtypes based on molecular signatures may allow for a more rational, patient-specific approach to therapy in the future. Classifications using gene expression data have been attempted before with little concordance between the different studies carried out. In this study we aimed to uncover subtypes of colon cancer that have distinct biological characteristics and identify a set of novel biomarkers which could best reflect the clinical and/or biological characteristics of each subtype. Clustering analysis and discriminant analysis were utilized to discover the subtypes in two different molecular levels on 153 colon cancer samples from The Cancer Genome Atlas (TCGA) Data Portal. At gene expression level, we identified two major subtypes, ECL1 (expression cluster 1) and ECL2 (expression cluster 2) and a list of signature genes. Due to the heterogeneity of colon cancer, the subtype ECL1 can be further subdivided into three nested subclasses, and HOTAIR were found upregulated in subclass 2. At DNA methylation level, we uncovered three major subtypes, MCL1 (methylation cluster 1), MCL2 (methylation cluster 2) and MCL3 (methylation cluster 3). We found only three subtypes of CpG island methylator phenotype (CIMP) in colon cancer instead of the four subtypes in the previous reports, and we found no sufficient evidence to subdivide MCL3 into two distinct subgroups.

  10. Damage scenarios and an onboard support system for damaged ships

    Directory of Open Access Journals (Sweden)

    Choi Jin

    2014-06-01

    Full Text Available Although a safety assessment of damaged ships, which considers environmental conditions such as waves and wind, is important in both the design and operation phases of ships, in Korea, rules or guidelines to conduct such assessments are not yet developed. However, NATO and European maritime societies have developed guidelines for a safety assessment. Therefore, it is required to develop rules or guidelines for safety assessments such as the Naval Ship Code (NSC of NATO. Before the safety assessment of a damaged ship can be performed, the available damage scenarios must be developed and the safety assessment criteria must be established. In this paper, the parameters related to damage by accidents are identified and categorized when developing damage scenarios. The need for damage safety assessment criteria is discussed, and an example is presented. In addition, a concept and specifications for the DB-based supporting system, which is used in the operation phases, are proposed.

  11. G-NEST: A gene neighborhood scoring tool to identify co-conserved, co-expressed genes

    Science.gov (United States)

    In previous studies, gene neighborhoods--spatial clusters of co-expressed genes in the genome--have been defined using arbitrary rules such as requiring adjacency, a minimum number of genes, a fixed window size, or a minimum expression level. In the current study, we developed a Gene Neighborhood Sc...

  12. Gene fusions with lacZ by duplication insertion in the radioresistant bacterium Deinococcus radiodurans

    International Nuclear Information System (INIS)

    Lennon, E.; Minton, K.W.

    1990-01-01

    Deinococcus radiodurans is the most-studied species of a eubacterial family characterized by extreme resistance to DNA damage. We have focused on developing molecular biological techniques to investigate the genetics of this organism. We report construction of lacZ gene fusions by a method involving both in vitro splicing and the natural transformation of D. radiodurans. Numerous fusion strains were identified by expression of beta-galactosidase. Among these fusion strains, several were inducible by exposure to the DNA-damaging agent mitomycin C, and four of the inducible fusion constructs were cloned in Escherichia coli. Hybridization studies indicate that one of the damage-inducible genes contains a sequence reiterated throughout the D. radiodurans chromosome. Survival measurements show that two of the fusion strains have increased sensitivity to mitomycin C, suggesting that the fusions within these strains inactivate repair functions

  13. DNA Mismatch Repair and Oxidative DNA Damage: Implications for Cancer Biology and Treatment

    International Nuclear Information System (INIS)

    Bridge, Gemma; Rashid, Sukaina; Martin, Sarah A.

    2014-01-01

    Many components of the cell, including lipids, proteins and both nuclear and mitochondrial DNA, are vulnerable to deleterious modifications caused by reactive oxygen species. If not repaired, oxidative DNA damage can lead to disease-causing mutations, such as in cancer. Base excision repair and nucleotide excision repair are the two DNA repair pathways believed to orchestrate the removal of oxidative lesions. However, recent findings suggest that the mismatch repair pathway may also be important for the response to oxidative DNA damage. This is particularly relevant in cancer where mismatch repair genes are frequently mutated or epigenetically silenced. In this review we explore how the regulation of oxidative DNA damage by mismatch repair proteins may impact on carcinogenesis. We discuss recent studies that identify potential new treatments for mismatch repair deficient tumours, which exploit this non-canonical role of mismatch repair using synthetic lethal targeting

  14. DNA Mismatch Repair and Oxidative DNA Damage: Implications for Cancer Biology and Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Bridge, Gemma; Rashid, Sukaina; Martin, Sarah A., E-mail: sarah.martin@qmul.ac.uk [Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ (United Kingdom)

    2014-08-05

    Many components of the cell, including lipids, proteins and both nuclear and mitochondrial DNA, are vulnerable to deleterious modifications caused by reactive oxygen species. If not repaired, oxidative DNA damage can lead to disease-causing mutations, such as in cancer. Base excision repair and nucleotide excision repair are the two DNA repair pathways believed to orchestrate the removal of oxidative lesions. However, recent findings suggest that the mismatch repair pathway may also be important for the response to oxidative DNA damage. This is particularly relevant in cancer where mismatch repair genes are frequently mutated or epigenetically silenced. In this review we explore how the regulation of oxidative DNA damage by mismatch repair proteins may impact on carcinogenesis. We discuss recent studies that identify potential new treatments for mismatch repair deficient tumours, which exploit this non-canonical role of mismatch repair using synthetic lethal targeting.

  15. Cry-Bt identifier: a biological database for PCR detection of Cry genes present in transgenic plants.

    Science.gov (United States)

    Singh, Vinay Kumar; Ambwani, Sonu; Marla, Soma; Kumar, Anil

    2009-10-23

    We describe the development of a user friendly tool that would assist in the retrieval of information relating to Cry genes in transgenic crops. The tool also helps in detection of transformed Cry genes from Bacillus thuringiensis present in transgenic plants by providing suitable designed primers for PCR identification of these genes. The tool designed based on relational database model enables easy retrieval of information from the database with simple user queries. The tool also enables users to access related information about Cry genes present in various databases by interacting with different sources (nucleotide sequences, protein sequence, sequence comparison tools, published literature, conserved domains, evolutionary and structural data). http://insilicogenomics.in/Cry-btIdentifier/welcome.html.

  16. Gene Expression and the Diversity of Identified Neurons

    OpenAIRE

    Buck, L.; Stein, R.; Palazzolo, M.; Anderson, D. J.; Axel, R.

    1983-01-01

    Nervous systems consist of diverse populations of neurons that are anatomically and functionally distinct. The diversity of neurons and the precision with which they are interconnected suggest that specific genes or sets of genes are activated in some neurons but not expressed in others. Experimentally, this problem may be considered at two levels. First, what is the total number of genes expressed in the brain, and how are they distributed among the different populations of neurons? Second, ...

  17. Genome-wide gene-environment study identifies glutamate receptor gene GRIN2A as a Parkinson's disease modifier gene via interaction with coffee.

    OpenAIRE

    Taye H Hamza; Honglei Chen; Erin M Hill-Burns; Shannon L Rhodes; Jennifer Montimurro; Denise M Kay; Albert Tenesa; Victoria I Kusel; Patricia Sheehan; Muthukrishnan Eaaswarkhanth; Dora Yearout; Ali Samii; John W Roberts; Pinky Agarwal; Yvette Bordelon

    2011-01-01

    Our aim was to identify genes that influence the inverse association of coffee with the risk of developing Parkinson's disease (PD). We used genome-wide genotype data and lifetime caffeinated-coffee-consumption data on 1,458 persons with PD and 931 without PD from the NeuroGenetics Research Consortium (NGRC), and we performed a genome-wide association and interaction study (GWAIS), testing each SNP's main-effect plus its interaction with coffee, adjusting for sex, age, and two principal compo...

  18. Network-Based Method for Identifying Co- Regeneration Genes in Bone, Dentin, Nerve and Vessel Tissues.

    Science.gov (United States)

    Chen, Lei; Pan, Hongying; Zhang, Yu-Hang; Feng, Kaiyan; Kong, XiangYin; Huang, Tao; Cai, Yu-Dong

    2017-10-02

    Bone and dental diseases are serious public health problems. Most current clinical treatments for these diseases can produce side effects. Regeneration is a promising therapy for bone and dental diseases, yielding natural tissue recovery with few side effects. Because soft tissues inside the bone and dentin are densely populated with nerves and vessels, the study of bone and dentin regeneration should also consider the co-regeneration of nerves and vessels. In this study, a network-based method to identify co-regeneration genes for bone, dentin, nerve and vessel was constructed based on an extensive network of protein-protein interactions. Three procedures were applied in the network-based method. The first procedure, searching, sought the shortest paths connecting regeneration genes of one tissue type with regeneration genes of other tissues, thereby extracting possible co-regeneration genes. The second procedure, testing, employed a permutation test to evaluate whether possible genes were false discoveries; these genes were excluded by the testing procedure. The last procedure, screening, employed two rules, the betweenness ratio rule and interaction score rule, to select the most essential genes. A total of seventeen genes were inferred by the method, which were deemed to contribute to co-regeneration of at least two tissues. All these seventeen genes were extensively discussed to validate the utility of the method.

  19. A comparative genomics screen identifies a Sinorhizobium meliloti 1021 sodM-like gene strongly expressed within host plant nodules

    Directory of Open Access Journals (Sweden)

    Queiroux Clothilde

    2012-05-01

    Full Text Available Abstract Background We have used the genomic data in the Integrated Microbial Genomes system of the Department of Energy’s Joint Genome Institute to make predictions about rhizobial open reading frames that play a role in nodulation of host plants. The genomic data was screened by searching for ORFs conserved in α-proteobacterial rhizobia, but not conserved in closely-related non-nitrogen-fixing α-proteobacteria. Results Using this approach, we identified many genes known to be involved in nodulation or nitrogen fixation, as well as several new candidate genes. We knocked out selected new genes and assayed for the presence of nodulation phenotypes and/or nodule-specific expression. One of these genes, SMc00911, is strongly expressed by bacterial cells within host plant nodules, but is expressed minimally by free-living bacterial cells. A strain carrying an insertion mutation in SMc00911 is not defective in the symbiosis with host plants, but in contrast to expectations, this mutant strain is able to out-compete the S. meliloti 1021 wild type strain for nodule occupancy in co-inoculation experiments. The SMc00911 ORF is predicted to encode a “SodM-like” (superoxide dismutase-like protein containing a rhodanese sulfurtransferase domain at the N-terminus and a chromate-resistance superfamily domain at the C-terminus. Several other ORFs (SMb20360, SMc01562, SMc01266, SMc03964, and the SMc01424-22 operon identified in the screen are expressed at a moderate level by bacteria within nodules, but not by free-living bacteria. Conclusions Based on the analysis of ORFs identified in this study, we conclude that this comparative genomics approach can identify rhizobial genes involved in the nitrogen-fixing symbiosis with host plants, although none of the newly identified genes were found to be essential for this process.

  20. De Novo assembly of the Japanese flounder (Paralichthys olivaceus spleen transcriptome to identify putative genes involved in immunity.

    Directory of Open Access Journals (Sweden)

    Lin Huang

    Full Text Available Japanese flounder (Paralichthys olivaceus is an economically important marine fish in Asia and has suffered from disease outbreaks caused by various pathogens, which requires more information for immune relevant genes on genome background. However, genomic and transcriptomic data for Japanese flounder remain scarce, which limits studies on the immune system of this species. In this study, we characterized the Japanese flounder spleen transcriptome using an Illumina paired-end sequencing platform to identify putative genes involved in immunity.A cDNA library from the spleen of P. olivaceus was constructed and randomly sequenced using an Illumina technique. The removal of low quality reads generated 12,196,968 trimmed reads, which assembled into 96,627 unigenes. A total of 21,391 unigenes (22.14% were annotated in the NCBI Nr database, and only 1.1% of the BLASTx top-hits matched P. olivaceus protein sequences. Approximately 12,503 (58.45% unigenes were categorized into three Gene Ontology groups, 19,547 (91.38% were classified into 26 Cluster of Orthologous Groups, and 10,649 (49.78% were assigned to six Kyoto Encyclopedia of Genes and Genomes pathways. Furthermore, 40,928 putative simple sequence repeats and 47, 362 putative single nucleotide polymorphisms were identified. Importantly, we identified 1,563 putative immune-associated unigenes that mapped to 15 immune signaling pathways.The P. olivaceus transciptome data provides a rich source to discover and identify new genes, and the immune-relevant sequences identified here will facilitate our understanding of the mechanisms involved in the immune response. Furthermore, the plentiful potential SSRs and SNPs found in this study are important resources with respect to future development of a linkage map or marker assisted breeding programs for the flounder.

  1. A recessive contiguous gene deletion causing infantile hyperinsulinism, enteropathy and deafness identifies the Usher type 1C gene.

    Science.gov (United States)

    Bitner-Glindzicz, M; Lindley, K J; Rutland, P; Blaydon, D; Smith, V V; Milla, P J; Hussain, K; Furth-Lavi, J; Cosgrove, K E; Shepherd, R M; Barnes, P D; O'Brien, R E; Farndon, P A; Sowden, J; Liu, X Z; Scanlan, M J; Malcolm, S; Dunne, M J; Aynsley-Green, A; Glaser, B

    2000-09-01

    Usher syndrome type 1 describes the association of profound, congenital sensorineural deafness, vestibular hypofunction and childhood onset retinitis pigmentosa. It is an autosomal recessive condition and is subdivided on the basis of linkage analysis into types 1A through 1E. Usher type 1C maps to the region containing the genes ABCC8 and KCNJ11 (encoding components of ATP-sensitive K + (KATP) channels), which may be mutated in patients with hyperinsulinism. We identified three individuals from two consanguineous families with severe hyperinsulinism, profound congenital sensorineural deafness, enteropathy and renal tubular dysfunction. The molecular basis of the disorder is a homozygous 122-kb deletion of 11p14-15, which includes part of ABCC8 and overlaps with the locus for Usher syndrome type 1C and DFNB18. The centromeric boundary of this deletion includes part of a gene shown to be mutated in families with type 1C Usher syndrome, and is hence assigned the name USH1C. The pattern of expression of the USH1C protein is consistent with the clinical features exhibited by individuals with the contiguous gene deletion and with isolated Usher type 1C.

  2. Non-essential MCM-related proteins mediate a response to DNA damage in the archaeon Methanococcus maripaludis.

    Science.gov (United States)

    Walters, Alison D; Chong, James P J

    2017-05-01

    The single minichromosome maintenance (MCM) protein found in most archaea has been widely studied as a simplified model for the MCM complex that forms the catalytic core of the eukaryotic replicative helicase. Organisms of the order Methanococcales are unusual in possessing multiple MCM homologues. The Methanococcus maripaludis S2 genome encodes four MCM homologues, McmA-McmD. DNA helicase assays reveal that the unwinding activity of the three MCM-like proteins is highly variable despite sequence similarities and suggests additional motifs that influence MCM function are yet to be identified. While the gene encoding McmA could not be deleted, strains harbouring individual deletions of genes encoding each of the other MCMs display phenotypes consistent with these proteins modulating DNA damage responses. M. maripaludis S2 is the first archaeon in which MCM proteins have been shown to influence the DNA damage response.

  3. Regulatory network analysis of Epstein-Barr virus identifies functional modules and hub genes involved in infectious mononucleosis.

    Science.gov (United States)

    Poorebrahim, Mansour; Salarian, Ali; Najafi, Saeideh; Abazari, Mohammad Foad; Aleagha, Maryam Nouri; Dadras, Mohammad Nasr; Jazayeri, Seyed Mohammad; Ataei, Atousa; Poortahmasebi, Vahdat

    2017-05-01

    Epstein-Barr virus (EBV) is the most common cause of infectious mononucleosis (IM) and establishes lifetime infection associated with a variety of cancers and autoimmune diseases. The aim of this study was to develop an integrative gene regulatory network (GRN) approach and overlying gene expression data to identify the representative subnetworks for IM and EBV latent infection (LI). After identifying differentially expressed genes (DEGs) in both IM and LI gene expression profiles, functional annotations were applied using gene ontology (GO) and BiNGO tools, and construction of GRNs, topological analysis and identification of modules were carried out using several plugins of Cytoscape. In parallel, a human-EBV GRN was generated using the Hu-Vir database for further analyses. Our analysis revealed that the majority of DEGs in both IM and LI were involved in cell-cycle and DNA repair processes. However, these genes showed a significant negative correlation in the IM and LI states. Furthermore, cyclin-dependent kinase 2 (CDK2) - a hub gene with the highest centrality score - appeared to be the key player in cell cycle regulation in IM disease. The most significant functional modules in the IM and LI states were involved in the regulation of the cell cycle and apoptosis, respectively. Human-EBV network analysis revealed several direct targets of EBV proteins during IM disease. Our study provides an important first report on the response to IM/LI EBV infection in humans. An important aspect of our data was the upregulation of genes associated with cell cycle progression and proliferation.

  4. Relating genes to function: identifying enriched transcription factors using the ENCODE ChIP-Seq significance tool.

    Science.gov (United States)

    Auerbach, Raymond K; Chen, Bin; Butte, Atul J

    2013-08-01

    Biological analysis has shifted from identifying genes and transcripts to mapping these genes and transcripts to biological functions. The ENCODE Project has generated hundreds of ChIP-Seq experiments spanning multiple transcription factors and cell lines for public use, but tools for a biomedical scientist to analyze these data are either non-existent or tailored to narrow biological questions. We present the ENCODE ChIP-Seq Significance Tool, a flexible web application leveraging public ENCODE data to identify enriched transcription factors in a gene or transcript list for comparative analyses. The ENCODE ChIP-Seq Significance Tool is written in JavaScript on the client side and has been tested on Google Chrome, Apple Safari and Mozilla Firefox browsers. Server-side scripts are written in PHP and leverage R and a MySQL database. The tool is available at http://encodeqt.stanford.edu. abutte@stanford.edu Supplementary material is available at Bioinformatics online.

  5. MicroRNAs Clustered within the 14q32 Locus Are Associated with Endothelial Damage and Microparticle Secretion in Bicuspid Aortic Valve Disease

    Directory of Open Access Journals (Sweden)

    Neus Martínez-Micaelo

    2017-09-01

    Full Text Available Background: We previously described that PECAM+ circulating endothelial microparticles (EMPs are elevated in bicuspid aortic valve (BAV disease as a manifestation of endothelial damage. In this study, we hypothesized that this endothelial damage, is functionally related to the secretion of a specific pattern of EMP-associated miRNAs.Methods: We used a bioinformatics approach to correlate the PECAM+ EMP levels with the miRNA expression profile in plasma in healthy individuals and BAV patients (n = 36. In addition, using the miRNAs that were significantly associated with PECAM+ EMP levels, we inferred a miRNA co-expression network using a Gaussian graphical modeling approach to identify highly co-expressed miRNAs or miRNA clusters whose expression could functionally regulate endothelial damage.Results: We identified a co-expression network composed of 131 miRNAs whose circulating expression was significantly associated with PECAM+ EMP levels. Using a topological analysis, we found that miR-494 was the most important hub within the co-expression network. Furthermore, through positional gene enrichment analysis, we identified a cluster of 19 highly co-expressed miRNAs, including miR-494, that was located in the 14q32 locus on chromosome 14 (p = 1.9 × 10−7. We evaluated the putative biological role of this miRNA cluster by determining the biological significance of the genes targeted by the cluster using functional enrichment analysis. We found that this cluster was involved in the regulation of genes with various functions, specifically the “cellular nitrogen compound metabolic process” (p = 2.34 × 10−145, “immune system process” (p = 2.57 × 10−6, and “extracellular matrix organization” (p = 8.14 × 10−5 gene ontology terms and the “TGF-β signaling pathway” KEGG term (p = 2.59 × 10−8.Conclusions: Using an integrative bioinformatics approach, we identified the circulating miRNA expression profile associated with

  6. MicroRNAs Clustered within the 14q32 Locus Are Associated with Endothelial Damage and Microparticle Secretion in Bicuspid Aortic Valve Disease

    Science.gov (United States)

    Martínez-Micaelo, Neus; Beltrán-Debón, Raúl; Aragonés, Gerard; Faiges, Marta; Alegret, Josep M.

    2017-01-01

    Background: We previously described that PECAM+ circulating endothelial microparticles (EMPs) are elevated in bicuspid aortic valve (BAV) disease as a manifestation of endothelial damage. In this study, we hypothesized that this endothelial damage, is functionally related to the secretion of a specific pattern of EMP-associated miRNAs. Methods: We used a bioinformatics approach to correlate the PECAM+ EMP levels with the miRNA expression profile in plasma in healthy individuals and BAV patients (n = 36). In addition, using the miRNAs that were significantly associated with PECAM+ EMP levels, we inferred a miRNA co-expression network using a Gaussian graphical modeling approach to identify highly co-expressed miRNAs or miRNA clusters whose expression could functionally regulate endothelial damage. Results: We identified a co-expression network composed of 131 miRNAs whose circulating expression was significantly associated with PECAM+ EMP levels. Using a topological analysis, we found that miR-494 was the most important hub within the co-expression network. Furthermore, through positional gene enrichment analysis, we identified a cluster of 19 highly co-expressed miRNAs, including miR-494, that was located in the 14q32 locus on chromosome 14 (p = 1.9 × 10−7). We evaluated the putative biological role of this miRNA cluster by determining the biological significance of the genes targeted by the cluster using functional enrichment analysis. We found that this cluster was involved in the regulation of genes with various functions, specifically the “cellular nitrogen compound metabolic process” (p = 2.34 × 10−145), “immune system process” (p = 2.57 × 10−6), and “extracellular matrix organization” (p = 8.14 × 10−5) gene ontology terms and the “TGF-β signaling pathway” KEGG term (p = 2.59 × 10−8). Conclusions: Using an integrative bioinformatics approach, we identified the circulating miRNA expression profile associated with secreted PECAM

  7. Integration of mouse and human genome-wide association data identifies KCNIP4 as an asthma gene.

    Directory of Open Access Journals (Sweden)

    Blanca E Himes

    Full Text Available Asthma is a common chronic respiratory disease characterized by airway hyperresponsiveness (AHR. The genetics of asthma have been widely studied in mouse and human, and homologous genomic regions have been associated with mouse AHR and human asthma-related phenotypes. Our goal was to identify asthma-related genes by integrating AHR associations in mouse with human genome-wide association study (GWAS data. We used Efficient Mixed Model Association (EMMA analysis to conduct a GWAS of baseline AHR measures from males and females of 31 mouse strains. Genes near or containing SNPs with EMMA p-values <0.001 were selected for further study in human GWAS. The results of the previously reported EVE consortium asthma GWAS meta-analysis consisting of 12,958 diverse North American subjects from 9 study centers were used to select a subset of homologous genes with evidence of association with asthma in humans. Following validation attempts in three human asthma GWAS (i.e., Sepracor/LOCCS/LODO/Illumina, GABRIEL, DAG and two human AHR GWAS (i.e., SHARP, DAG, the Kv channel interacting protein 4 (KCNIP4 gene was identified as nominally associated with both asthma and AHR at a gene- and SNP-level. In EVE, the smallest KCNIP4 association was at rs6833065 (P-value 2.9e-04, while the strongest associations for Sepracor/LOCCS/LODO/Illumina, GABRIEL, DAG were 1.5e-03, 1.0e-03, 3.1e-03 at rs7664617, rs4697177, rs4696975, respectively. At a SNP level, the strongest association across all asthma GWAS was at rs4697177 (P-value 1.1e-04. The smallest P-values for association with AHR were 2.3e-03 at rs11947661 in SHARP and 2.1e-03 at rs402802 in DAG. Functional studies are required to validate the potential involvement of KCNIP4 in modulating asthma susceptibility and/or AHR. Our results suggest that a useful approach to identify genes associated with human asthma is to leverage mouse AHR association data.

  8. Transposon mutagenesis identifies novel genes associated with Staphylococcus aureus persister formation

    Directory of Open Access Journals (Sweden)

    Wang ewenjie

    2015-12-01

    Full Text Available Pathogenic bacterial persisters are responsible for the recalcitrance of chronic and persistent infections to antimicrobial therapy. Although the mechanisms of persister formation and survival have been widely studied in Escherichia coli, persistence mechanisms in S. aureus remain largely unknown. Here, we screened a transposon mutant library of a clinical methicillin-resistant Staphylococcus aureus(MRSA)strain, USA500 (ST8, under antibiotic pressure and identified 13 genes whose insertion mutations resulted in a defect in persistence. These candidate genes were further confirmed by evaluating the survival of the mutants upon exposure to levofloxacin and several other stress conditions. We found 13 insertion mutants with significantly lower persister numbers under several stress conditions, including sdhA, sdhB, ureG, mnhG1, fbaA, ctaB, clpX, parE, HOU_0223, HOU_0587, HOU_2091, HOU_2315 and HOU_2346, which mapped into pathways of oxidative phosphorylation, TCA cycle, glycolysis, cell cycle and ABC transporters, suggesting that these genes and pathways may play an important role in persister formation and survival. The newly constructed knockout strains of ureG, sdhA and sdhB and their complemented strains were also tested for defect in persisters following exposure to levofloxacin and several other stress conditions. The results from these experiments were consistent with the screening results, which indicated that deletion of these genes in MRSA USA500 leads to persister defect. These findings provide novel insights into the mechanisms of persister formation and survival in S. aureus and offer new targets for the development of persister-directed antibiotics for the improved treatment of chronic and persistent infections.

  9. [Mechanisms of electromagnetic radiation damaging male reproduction].

    Science.gov (United States)

    Xue, Lei; Chen, Hao-Yu; Wang, Shui-Ming

    2012-08-01

    More and more evidence from over 50 years of researches on the effects of electromagnetic radiation on male reproduction show that a certain dose of electromagnetic radiation obviously damages male reproduction, particularly the structure and function of spermatogenic cells. The mechanisms of the injury may be associated with energy dysmetabolism, lipid peroxidation, abnormal expressions of apoptosis-related genes and proteins, and DNA damage.

  10. Characterization of chemically induced liver injuries using gene co-expression modules.

    Directory of Open Access Journals (Sweden)

    Gregory J Tawa

    Full Text Available Liver injuries due to ingestion or exposure to chemicals and industrial toxicants pose a serious health risk that may be hard to assess due to a lack of non-invasive diagnostic tests. Mapping chemical injuries to organ-specific damage and clinical outcomes via biomarkers or biomarker panels will provide the foundation for highly specific and robust diagnostic tests. Here, we have used DrugMatrix, a toxicogenomics database containing organ-specific gene expression data matched to dose-dependent chemical exposures and adverse clinical pathology assessments in Sprague Dawley rats, to identify groups of co-expressed genes (modules specific to injury endpoints in the liver. We identified 78 such gene co-expression modules associated with 25 diverse injury endpoints categorized from clinical pathology, organ weight changes, and histopathology. Using gene expression data associated with an injury condition, we showed that these modules exhibited different patterns of activation characteristic of each injury. We further showed that specific module genes mapped to 1 known biochemical pathways associated with liver injuries and 2 clinically used diagnostic tests for liver fibrosis. As such, the gene modules have characteristics of both generalized and specific toxic response pathways. Using these results, we proposed three gene signature sets characteristic of liver fibrosis, steatosis, and general liver injury based on genes from the co-expression modules. Out of all 92 identified genes, 18 (20% genes have well-documented relationships with liver disease, whereas the rest are novel and have not previously been associated with liver disease. In conclusion, identifying gene co-expression modules associated with chemically induced liver injuries aids in generating testable hypotheses and has the potential to identify putative biomarkers of adverse health effects.

  11. Unique Trichomonas vaginalis gene sequences identified in multinational regions of Northwest China.

    Science.gov (United States)

    Liu, Jun; Feng, Meng; Wang, Xiaolan; Fu, Yongfeng; Ma, Cailing; Cheng, Xunjia

    2017-07-24

    Trichomonas vaginalis (T. vaginalis) is a flagellated protozoan parasite that infects humans worldwide. This study determined the sequence of the 18S ribosomal RNA gene of T. vaginalis infecting both females and males in Xinjiang, China. Samples from 73 females and 28 males were collected and confirmed for infection with T. vaginalis, a total of 110 sequences were identified when the T. vaginalis 18S ribosomal RNA gene was sequenced. These sequences were used to prepare a phylogenetic network. The rooted network comprised three large clades and several independent branches. Most of the Xinjiang sequences were in one group. Preliminary results suggest that Xinjiang T. vaginalis isolates might be genetically unique, as indicated by the sequence of their 18S ribosomal RNA gene. Low migration rate of local people in this province may contribute to a genetic conservativeness of T. vaginalis. The unique genetic feature of our isolates may suggest a different clinical presentation of trichomoniasis, including metronidazole susceptibility, T. vaginalis virus or Mycoplasma co-infection characteristics. The transmission and evolution of Xinjiang T. vaginalis is of interest and should be studied further. More attention should be given to T. vaginalis infection in both females and males in Xinjiang.

  12. Signature pathways identified from gene expression profiles in the human uterine cervix before and after spontaneous term parturition

    Science.gov (United States)

    HASSAN, Sonia S.; ROMERO, Roberto; TARCA, Adi L.; DRAGHICI, Sorin; PINELES, Beth; BUGRIM, Andrej; KHALEK, Nahla; CAMACHO, Natalia; MITTAL, Pooja; YOON, Bo Hyun; ESPINOZA, Jimmy; KIM, Chong Jai; SOROKIN, Yoram; MALONE, John

    2008-01-01

    Objective This study aimed to discover ‘signature pathways’ characterizing biological processes based on genes differentially expressed in the uterine cervix before and after spontaneous labor. Study Design The cervical transcriptome was previously characterized from biopsies taken before and after term labor. Pathway analysis was used to study the differentially expressed genes based on two gene-to-pathway annotation databases (KEGG and Metacore™). Over-represented and highly impacted pathways and connectivity nodes were identified. Results Fifty-two pathways in the Metacore™ database were significantly enriched in differentially expressed genes. Three of the top 5 pathways were known to be involved in cervical remodeling.Two novel pathways were: plasmin signaling and plasminogen activator urokinase (PLAU) signaling. The same analysis in the KEGG database identified 4 significant pathways, of which impact analysis confirmed. Multiple nodes providing connectivity within the plasmin and PLAU signaling pathways were identified.. Conclusions Three strategies for pathway analysis were consistent in their identification of novel, unexpected as well as expected networks, suggesting that this approach is both valid and effective for the elucidation of biological mechanisms involved in cervical dilation and remodeling. PMID:17826407

  13. Prediction potential of candidate biomarker sets identified and validated on gene expression data from multiple datasets

    Directory of Open Access Journals (Sweden)

    Karacali Bilge

    2007-10-01

    Full Text Available Abstract Background Independently derived expression profiles of the same biological condition often have few genes in common. In this study, we created populations of expression profiles from publicly available microarray datasets of cancer (breast, lymphoma and renal samples linked to clinical information with an iterative machine learning algorithm. ROC curves were used to assess the prediction error of each profile for classification. We compared the prediction error of profiles correlated with molecular phenotype against profiles correlated with relapse-free status. Prediction error of profiles identified with supervised univariate feature selection algorithms were compared to profiles selected randomly from a all genes on the microarray platform and b a list of known disease-related genes (a priori selection. We also determined the relevance of expression profiles on test arrays from independent datasets, measured on either the same or different microarray platforms. Results Highly discriminative expression profiles were produced on both simulated gene expression data and expression data from breast cancer and lymphoma datasets on the basis of ER and BCL-6 expression, respectively. Use of relapse-free status to identify profiles for prognosis prediction resulted in poorly discriminative decision rules. Supervised feature selection resulted in more accurate classifications than random or a priori selection, however, the difference in prediction error decreased as the number of features increased. These results held when decision rules were applied across-datasets to samples profiled on the same microarray platform. Conclusion Our results show that many gene sets predict molecular phenotypes accurately. Given this, expression profiles identified using different training datasets should be expected to show little agreement. In addition, we demonstrate the difficulty in predicting relapse directly from microarray data using supervised machine

  14. Transcriptional profiling of human liver identifies sex-biased genes associated with polygenic dyslipidemia and coronary artery disease.

    Directory of Open Access Journals (Sweden)

    Yijing Zhang

    Full Text Available Sex-differences in human liver gene expression were characterized on a genome-wide scale using a large liver sample collection, allowing for detection of small expression differences with high statistical power. 1,249 sex-biased genes were identified, 70% showing higher expression in females. Chromosomal bias was apparent, with female-biased genes enriched on chrX and male-biased genes enriched on chrY and chr19, where 11 male-biased zinc-finger KRAB-repressor domain genes are distributed in six clusters. Top biological functions and diseases significantly enriched in sex-biased genes include transcription, chromatin organization and modification, sexual reproduction, lipid metabolism and cardiovascular disease. Notably, sex-biased genes are enriched at loci associated with polygenic dyslipidemia and coronary artery disease in genome-wide association studies. Moreover, of the 8 sex-biased genes at these loci, 4 have been directly linked to monogenic disorders of lipid metabolism and show an expression profile in females (elevated expression of ABCA1, APOA5 and LDLR; reduced expression of LIPC that is consistent with the lower female risk of coronary artery disease. Female-biased expression was also observed for CYP7A1, which is activated by drugs used to treat hypercholesterolemia. Several sex-biased drug-metabolizing enzyme genes were identified, including members of the CYP, UGT, GPX and ALDH families. Half of 879 mouse orthologs, including many genes of lipid metabolism and homeostasis, show growth hormone-regulated sex-biased expression in mouse liver, suggesting growth hormone might play a similar regulatory role in human liver. Finally, the evolutionary rate of protein coding regions for human-mouse orthologs, revealed by dN/dS ratio, is significantly higher for genes showing the same sex-bias in both species than for non-sex-biased genes. These findings establish that human hepatic sex differences are widespread and affect diverse cell

  15. Frameshift mutational target gene analysis identifies similarities and differences in constitutional mismatch repair-deficiency and Lynch syndrome.

    Science.gov (United States)

    Maletzki, Claudia; Huehns, Maja; Bauer, Ingrid; Ripperger, Tim; Mork, Maureen M; Vilar, Eduardo; Klöcking, Sabine; Zettl, Heike; Prall, Friedrich; Linnebacher, Michael

    2017-07-01

    Mismatch-repair deficient (MMR-D) malignancies include Lynch Syndrome (LS), which is secondary to germline mutations in one of the MMR genes, and the rare childhood-form of constitutional mismatch repair-deficiency (CMMR-D); caused by bi-allelic MMR gene mutations. A hallmark of LS-associated cancers is microsatellite instability (MSI), characterized by coding frameshift mutations (cFSM) in target genes. By contrast, tumors arising in CMMR-D patients are thought to display a somatic mutation pattern differing from LS. This study has the main goal to identify cFSM in MSI target genes relevant in CMMR-D and to compare the spectrum of common somatic mutations, including alterations in DNA polymerases POLE and D1 between LS and CMMR-D. CMMR-D-associated tumors harbored more somatic mutations compared to LS cases, especially in the TP53 gene and in POLE and POLD1, where novel mutations were additionally identified. Strikingly, MSI in classical mononucleotide markers BAT40 and CAT25 was frequent in CMMR-D cases. MSI-target gene analysis revealed mutations in CMMR-D-associated tumors, some of them known to be frequently hit in LS, such as RNaseT2, HT001, and TGFβR2. Our results imply a general role for these cFSM as potential new drivers of MMR-D tumorigenesis. © 2017 Wiley Periodicals, Inc.

  16. High-Throughput Genetic Screens Identify a Large and Diverse Collection of New Sporulation Genes in Bacillus subtilis.

    Science.gov (United States)

    Meeske, Alexander J; Rodrigues, Christopher D A; Brady, Jacqueline; Lim, Hoong Chuin; Bernhardt, Thomas G; Rudner, David Z

    2016-01-01

    The differentiation of the bacterium Bacillus subtilis into a dormant spore is among the most well-characterized developmental pathways in biology. Classical genetic screens performed over the past half century identified scores of factors involved in every step of this morphological process. More recently, transcriptional profiling uncovered additional sporulation-induced genes required for successful spore development. Here, we used transposon-sequencing (Tn-seq) to assess whether there were any sporulation genes left to be discovered. Our screen identified 133 out of the 148 genes with known sporulation defects. Surprisingly, we discovered 24 additional genes that had not been previously implicated in spore formation. To investigate their functions, we used fluorescence microscopy to survey early, middle, and late stages of differentiation of null mutants from the B. subtilis ordered knockout collection. This analysis identified mutants that are delayed in the initiation of sporulation, defective in membrane remodeling, and impaired in spore maturation. Several mutants had novel sporulation phenotypes. We performed in-depth characterization of two new factors that participate in cell-cell signaling pathways during sporulation. One (SpoIIT) functions in the activation of σE in the mother cell; the other (SpoIIIL) is required for σG activity in the forespore. Our analysis also revealed that as many as 36 sporulation-induced genes with no previously reported mutant phenotypes are required for timely spore maturation. Finally, we discovered a large set of transposon insertions that trigger premature initiation of sporulation. Our results highlight the power of Tn-seq for the discovery of new genes and novel pathways in sporulation and, combined with the recently completed null mutant collection, open the door for similar screens in other, less well-characterized processes.

  17. High-Throughput Genetic Screens Identify a Large and Diverse Collection of New Sporulation Genes in Bacillus subtilis

    Science.gov (United States)

    Brady, Jacqueline; Lim, Hoong Chuin; Bernhardt, Thomas G.; Rudner, David Z.

    2016-01-01

    The differentiation of the bacterium Bacillus subtilis into a dormant spore is among the most well-characterized developmental pathways in biology. Classical genetic screens performed over the past half century identified scores of factors involved in every step of this morphological process. More recently, transcriptional profiling uncovered additional sporulation-induced genes required for successful spore development. Here, we used transposon-sequencing (Tn-seq) to assess whether there were any sporulation genes left to be discovered. Our screen identified 133 out of the 148 genes with known sporulation defects. Surprisingly, we discovered 24 additional genes that had not been previously implicated in spore formation. To investigate their functions, we used fluorescence microscopy to survey early, middle, and late stages of differentiation of null mutants from the B. subtilis ordered knockout collection. This analysis identified mutants that are delayed in the initiation of sporulation, defective in membrane remodeling, and impaired in spore maturation. Several mutants had novel sporulation phenotypes. We performed in-depth characterization of two new factors that participate in cell–cell signaling pathways during sporulation. One (SpoIIT) functions in the activation of σE in the mother cell; the other (SpoIIIL) is required for σG activity in the forespore. Our analysis also revealed that as many as 36 sporulation-induced genes with no previously reported mutant phenotypes are required for timely spore maturation. Finally, we discovered a large set of transposon insertions that trigger premature initiation of sporulation. Our results highlight the power of Tn-seq for the discovery of new genes and novel pathways in sporulation and, combined with the recently completed null mutant collection, open the door for similar screens in other, less well-characterized processes. PMID:26735940

  18. Identifying differential miR and gene consensus patterns in peripheral blood of patients with cardiovascular diseases from literature data.

    Science.gov (United States)

    Šatrauskienė, Agnė; Navickas, Rokas; Laucevičius, Aleksandras; Huber, Heinrich J

    2017-06-30

    Numerous recent studies suggest the potential of circulating MicroRNAs (miRs) in peripheral blood samples as diagnostic or prognostic markers for coronary artery disease (CAD), acute coronary syndrome (ACS) and heart failure (HF). However, literature often remains inconclusive regarding as to which markers are most indicative for which of the above diseases. This shortcoming is mainly due to the lack of a systematic analyses and absence of information on the functional pathophysiological role of these miRs and their target genes. We here provide an-easy-to-use scoring approach to investigate the likelihood of regulation of several miRs and their target genes from literature by identifying consensus patterns of regulation. We therefore have screened over 1000 articles that study mRNA markers in cardiovascular and metabolic diseases, and devised a scoring algorithm to identify consensus means for miRs and genes regulation across several studies. We then aimed to identify differential markers between CAD, ACS and HF. We first identified miRs (miR-122, -126, -223, -138 and -370) as commonly regulated within a group of metabolic disease, while investigating cardiac-related pathologies (CAD, ACS, HF) revealed a decisive role of miR-1, -499, -208b, and -133a. Looking at differential markers between cardiovascular disease revealed miR-1, miR-208a and miR-133a to distinguish ACS and CAD to HF. Relating differentially expressed miRs to their putative gene targets using MirTarBase, we further identified HCN2/4 and LASP1 as potential markers of CAD and ACS, but not in HF. Likewise, BLC-2 was found oppositely regulated between CAD and HF. Interestingly, while studying overlap in target genes between CAD, ACS and HF only revealed little similarities, mapping these genes to gene ontology terms revealed a surprising similarity between CAD and ACS compared to HF. We conclude that our analysis using gene and miR scores allows the extraction of meaningful markers and the elucidation

  19. Integration of ATAC-seq and RNA-seq identifies human alpha cell and beta cell signature genes.

    Science.gov (United States)

    Ackermann, Amanda M; Wang, Zhiping; Schug, Jonathan; Naji, Ali; Kaestner, Klaus H

    2016-03-01

    Although glucagon-secreting α-cells and insulin-secreting β-cells have opposing functions in regulating plasma glucose levels, the two cell types share a common developmental origin and exhibit overlapping transcriptomes and epigenomes. Notably, destruction of β-cells can stimulate repopulation via transdifferentiation of α-cells, at least in mice, suggesting plasticity between these cell fates. Furthermore, dysfunction of both α- and β-cells contributes to the pathophysiology of type 1 and type 2 diabetes, and β-cell de-differentiation has been proposed to contribute to type 2 diabetes. Our objective was to delineate the molecular properties that maintain islet cell type specification yet allow for cellular plasticity. We hypothesized that correlating cell type-specific transcriptomes with an atlas of open chromatin will identify novel genes and transcriptional regulatory elements such as enhancers involved in α- and β-cell specification and plasticity. We sorted human α- and β-cells and performed the "Assay for Transposase-Accessible Chromatin with high throughput sequencing" (ATAC-seq) and mRNA-seq, followed by integrative analysis to identify cell type-selective gene regulatory regions. We identified numerous transcripts with either α-cell- or β-cell-selective expression and discovered the cell type-selective open chromatin regions that correlate with these gene activation patterns. We confirmed cell type-selective expression on the protein level for two of the top hits from our screen. The "group specific protein" (GC; or vitamin D binding protein) was restricted to α-cells, while CHODL (chondrolectin) immunoreactivity was only present in β-cells. Furthermore, α-cell- and β-cell-selective ATAC-seq peaks were identified to overlap with known binding sites for islet transcription factors, as well as with single nucleotide polymorphisms (SNPs) previously identified as risk loci for type 2 diabetes. We have determined the genetic landscape of

  20. Identifying the Viral Genes Encoding Envelope Glycoproteins for Differentiation of Cyprinid herpesvirus 3 Isolates

    Directory of Open Access Journals (Sweden)

    Se Chang Park

    2013-01-01

    Full Text Available Cyprinid herpes virus 3 (CyHV-3 diseases have been reported around the world and are associated with high mortalities of koi (Cyprinus carpio. Although little work has been conducted on the molecular analysis of this virus, glycoprotein genes identified in the present study seem to be valuable targets for genetic comparison of this virus. Three envelope glycoprotein genes (ORF25, 65 and 116 of the CyHV-3 isolates from the USA, Israel, Japan and Korea were compared, and interestingly, sequence insertions or deletions were observed in these target regions. In addition, polymorphisms were presented in microsatellite zones from two glycoprotein genes (ORF65 and 116. In phylogenetic tree analysis, the Korean isolate was remarkably distinguished from USA, Israel, Japan isolates. These findings may be suitable for many applications including isolates differentiation and phylogeny studies.

  1. Identifying the Viral Genes Encoding Envelope Glycoproteins for Differentiation of Cyprinid herpesvirus 3 Isolates

    Science.gov (United States)

    Han, Jee Eun; Kim, Ji Hyung; Renault, Tristan; Choresca, Casiano; Shin, Sang Phil; Jun, Jin Woo; Park, Se Chang

    2013-01-01

    Cyprinid herpes virus 3 (CyHV-3) diseases have been reported around the world and are associated with high mortalities of koi (Cyprinus carpio). Although little work has been conducted on the molecular analysis of this virus, glycoprotein genes identified in the present study seem to be valuable targets for genetic comparison of this virus. Three envelope glycoprotein genes (ORF25, 65 and 116) of the CyHV-3 isolates from the USA, Israel, Japan and Korea were compared, and interestingly, sequence insertions or deletions were observed in these target regions. In addition, polymorphisms were presented in microsatellite zones from two glycoprotein genes (ORF65 and 116). In phylogenetic tree analysis, the Korean isolate was remarkably distinguished from USA, Israel, Japan isolates. These findings may be suitable for many applications including isolates differentiation and phylogeny studies. PMID:23435236

  2. An Efficient Method for Identifying Gene Fusions by Targeted RNA Sequencing from Fresh Frozen and FFPE Samples.

    Directory of Open Access Journals (Sweden)

    Jonathan A Scolnick

    Full Text Available Fusion genes are known to be key drivers of tumor growth in several types of cancer. Traditionally, detecting fusion genes has been a difficult task based on fluorescent in situ hybridization to detect chromosomal abnormalities. More recently, RNA sequencing has enabled an increased pace of fusion gene identification. However, RNA-Seq is inefficient for the identification of fusion genes due to the high number of sequencing reads needed to detect the small number of fusion transcripts present in cells of interest. Here we describe a method, Single Primer Enrichment Technology (SPET, for targeted RNA sequencing that is customizable to any target genes, is simple to use, and efficiently detects gene fusions. Using SPET to target 5701 exons of 401 known cancer fusion genes for sequencing, we were able to identify known and previously unreported gene fusions from both fresh-frozen and formalin-fixed paraffin-embedded (FFPE tissue RNA in both normal tissue and cancer cells.

  3. Comparative Transcriptome Analysis Identifies Putative Genes Involved in the Biosynthesis of Xanthanolides in Xanthium strumarium L.

    Directory of Open Access Journals (Sweden)

    Yuanjun Li

    2016-08-01

    Full Text Available Xanthium strumarium L. is a traditional Chinese herb belonging to the Asteraceae family. The major bioactive components of this plant are sesquiterpene lactones, which include the xanthanolides. To date, the biogenesis of xanthanolides, especiallytheir downstream pathway, remains largely unknown. In X. strumarium, xanthanolides primarily accumulate in its glandular trichomes. To identify putative gene candidates involved in the biosynthesis of xanthanolides, three X. strumarium transcriptomes, which were derived from the young leaves of two different cultivars and the purified glandular trichomes from one of the cultivars, were constructed in this study. In total, 157 million clean reads were generated and assembled into 91,861 unigenes, of which 59,858 unigenes were successfully annotated. All the genes coding for known enzymes in the upstream pathway to the biosynthesis of xanthanolides were present in the X. strumarium transcriptomes. From a comparative analysis of the X. strumarium transcriptomes, this study identified a number of gene candidates that are putatively involved in the downstream pathway to the synthesis of xanthanolides, such as four unigenes encoding CYP71 P450s, 50 unigenes for dehydrogenases, and 27 genes for acetyltransferases. The possible functions of these four CYP71 candidates are extensively discussed. In addition, 116 transcription factors that were highly expressed in X. strumarium glandular trichomes were also identified. Their possible regulatory roles in the biosynthesis of sesquiterpene lactones are discussed. The global transcriptomic data for X. strumarium should provide a valuable resource for further research into the biosynthesis of xanthanolides.

  4. Genome-wide siRNA-based functional genomics of pigmentation identifies novel genes and pathways that impact melanogenesis in human cells.

    Directory of Open Access Journals (Sweden)

    Anand K Ganesan

    2008-12-01

    Full Text Available Melanin protects the skin and eyes from the harmful effects of UV irradiation, protects neural cells from toxic insults, and is required for sound conduction in the inner ear. Aberrant regulation of melanogenesis underlies skin disorders (melasma and vitiligo, neurologic disorders (Parkinson's disease, auditory disorders (Waardenburg's syndrome, and opthalmologic disorders (age related macular degeneration. Much of the core synthetic machinery driving melanin production has been identified; however, the spectrum of gene products participating in melanogenesis in different physiological niches is poorly understood. Functional genomics based on RNA-mediated interference (RNAi provides the opportunity to derive unbiased comprehensive collections of pharmaceutically tractable single gene targets supporting melanin production. In this study, we have combined a high-throughput, cell-based, one-well/one-gene screening platform with a genome-wide arrayed synthetic library of chemically synthesized, small interfering RNAs to identify novel biological pathways that govern melanin biogenesis in human melanocytes. Ninety-two novel genes that support pigment production were identified with a low false discovery rate. Secondary validation and preliminary mechanistic studies identified a large panel of targets that converge on tyrosinase expression and stability. Small molecule inhibition of a family of gene products in this class was sufficient to impair chronic tyrosinase expression in pigmented melanoma cells and UV-induced tyrosinase expression in primary melanocytes. Isolation of molecular machinery known to support autophagosome biosynthesis from this screen, together with in vitro and in vivo validation, exposed a close functional relationship between melanogenesis and autophagy. In summary, these studies illustrate the power of RNAi-based functional genomics to identify novel genes, pathways, and pharmacologic agents that impact a biological phenotype

  5. Mechanisms of Retinal Damage after Ocular Alkali Burns.

    Science.gov (United States)

    Paschalis, Eleftherios I; Zhou, Chengxin; Lei, Fengyang; Scott, Nathan; Kapoulea, Vassiliki; Robert, Marie-Claude; Vavvas, Demetrios; Dana, Reza; Chodosh, James; Dohlman, Claes H

    2017-06-01

    Alkali burns to the eye constitute a leading cause of worldwide blindness. In recent case series, corneal transplantation revealed unexpected damage to the retina and optic nerve in chemically burned eyes. We investigated the physical, biochemical, and immunological components of retinal injury after alkali burn and explored a novel neuroprotective regimen suitable for prompt administration in emergency departments. Thus, in vivo pH, oxygen, and oxidation reduction measurements were performed in the anterior and posterior segment of mouse and rabbit eyes using implantable microsensors. Tissue inflammation was assessed by immunohistochemistry and flow cytometry. The experiments confirmed that the retinal damage is not mediated by direct effect of the alkali, which is effectively buffered by the anterior segment. Rather, pH, oxygen, and oxidation reduction changes were restricted to the cornea and the anterior chamber, where they caused profound uveal inflammation and release of proinflammatory cytokines. The latter rapidly diffuse to the posterior segment, triggering retinal damage. Tumor necrosis factor-α was identified as a key proinflammatory mediator of retinal ganglion cell death. Blockade, by either monoclonal antibody or tumor necrosis factor receptor gene knockout, reduced inflammation and retinal ganglion cell loss. Intraocular pressure elevation was not observed in experimental alkali burns. These findings illuminate the mechanism by which alkali burns cause retinal damage and may have importance in designing therapies for retinal protection. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  6. A systems approach identifies networks and genes linking sleep and stress: implications for neuropsychiatric disorders.

    Science.gov (United States)

    Jiang, Peng; Scarpa, Joseph R; Fitzpatrick, Karrie; Losic, Bojan; Gao, Vance D; Hao, Ke; Summa, Keith C; Yang, He S; Zhang, Bin; Allada, Ravi; Vitaterna, Martha H; Turek, Fred W; Kasarskis, Andrew

    2015-05-05

    Sleep dysfunction and stress susceptibility are comorbid complex traits that often precede and predispose patients to a variety of neuropsychiatric diseases. Here, we demonstrate multilevel organizations of genetic landscape, candidate genes, and molecular networks associated with 328 stress and sleep traits in a chronically stressed population of 338 (C57BL/6J × A/J) F2 mice. We constructed striatal gene co-expression networks, revealing functionally and cell-type-specific gene co-regulations important for stress and sleep. Using a composite ranking system, we identified network modules most relevant for 15 independent phenotypic categories, highlighting a mitochondria/synaptic module that links sleep and stress. The key network regulators of this module are overrepresented with genes implicated in neuropsychiatric diseases. Our work suggests that the interplay among sleep, stress, and neuropathology emerges from genetic influences on gene expression and their collective organization through complex molecular networks, providing a framework for interrogating the mechanisms underlying sleep, stress susceptibility, and related neuropsychiatric disorders. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Gene expression profiling and candidate gene resequencing identifies pathways and mutations important for malignant transformation caused by leukemogenic fusion genes.

    Science.gov (United States)

    Novak, Rachel L; Harper, David P; Caudell, David; Slape, Christopher; Beachy, Sarah H; Aplan, Peter D

    2012-12-01

    NUP98-HOXD13 (NHD13) and CALM-AF10 (CA10) are oncogenic fusion proteins produced by recurrent chromosomal translocations in patients with acute myeloid leukemia (AML). Transgenic mice that express these fusions develop AML with a long latency and incomplete penetrance, suggesting that collaborating genetic events are required for leukemic transformation. We employed genetic techniques to identify both preleukemic abnormalities in healthy transgenic mice as well as collaborating events leading to leukemic transformation. Candidate gene resequencing revealed that 6 of 27 (22%) CA10 AMLs spontaneously acquired a Ras pathway mutation and 8 of 27 (30%) acquired an Flt3 mutation. Two CA10 AMLs acquired an Flt3 internal-tandem duplication, demonstrating that these mutations can be acquired in murine as well as human AML. Gene expression profiles revealed a marked upregulation of Hox genes, particularly Hoxa5, Hoxa9, and Hoxa10 in both NHD13 and CA10 mice. Furthermore, mir196b, which is embedded within the Hoxa locus, was overexpressed in both CA10 and NHD13 samples. In contrast, the Hox cofactors Meis1 and Pbx3 were differentially expressed; Meis1 was increased in CA10 AMLs but not NHD13 AMLs, whereas Pbx3 was consistently increased in NHD13 but not CA10 AMLs. Silencing of Pbx3 in NHD13 cells led to decreased proliferation, increased apoptosis, and decreased colony formation in vitro, suggesting a previously unexpected role for Pbx3 in leukemic transformation. Published by Elsevier Inc.

  8. Rapid-throughput skeletal phenotyping of 100 knockout mice identifies 9 new genes that determine bone strength.

    Directory of Open Access Journals (Sweden)

    J H Duncan Bassett

    Full Text Available Osteoporosis is a common polygenic disease and global healthcare priority but its genetic basis remains largely unknown. We report a high-throughput multi-parameter phenotype screen to identify functionally significant skeletal phenotypes in mice generated by the Wellcome Trust Sanger Institute Mouse Genetics Project and discover novel genes that may be involved in the pathogenesis of osteoporosis. The integrated use of primary phenotype data with quantitative x-ray microradiography, micro-computed tomography, statistical approaches and biomechanical testing in 100 unselected knockout mouse strains identified nine new genetic determinants of bone mass and strength. These nine new genes include five whose deletion results in low bone mass and four whose deletion results in high bone mass. None of the nine genes have been implicated previously in skeletal disorders and detailed analysis of the biomechanical consequences of their deletion revealed a novel functional classification of bone structure and strength. The organ-specific and disease-focused strategy described in this study can be applied to any biological system or tractable polygenic disease, thus providing a general basis to define gene function in a system-specific manner. Application of the approach to diseases affecting other physiological systems will help to realize the full potential of the International Mouse Phenotyping Consortium.

  9. High-resolution linkage analyses to identify genes that influence Varroa sensitive hygiene behavior in honey bees.

    Science.gov (United States)

    Tsuruda, Jennifer M; Harris, Jeffrey W; Bourgeois, Lanie; Danka, Robert G; Hunt, Greg J

    2012-01-01

    Varroa mites (V. destructor) are a major threat to honey bees (Apis melilfera) and beekeeping worldwide and likely lead to colony decline if colonies are not treated. Most treatments involve chemical control of the mites; however, Varroa has evolved resistance to many of these miticides, leaving beekeepers with a limited number of alternatives. A non-chemical control method is highly desirable for numerous reasons including lack of chemical residues and decreased likelihood of resistance. Varroa sensitive hygiene behavior is one of two behaviors identified that are most important for controlling the growth of Varroa populations in bee hives. To identify genes influencing this trait, a study was conducted to map quantitative trait loci (QTL). Individual workers of a backcross family were observed and evaluated for their VSH behavior in a mite-infested observation hive. Bees that uncapped or removed pupae were identified. The genotypes for 1,340 informative single nucleotide polymorphisms were used to construct a high-resolution genetic map and interval mapping was used to analyze the association of the genotypes with the performance of Varroa sensitive hygiene. We identified one major QTL on chromosome 9 (LOD score = 3.21) and a suggestive QTL on chromosome 1 (LOD = 1.95). The QTL confidence interval on chromosome 9 contains the gene 'no receptor potential A' and a dopamine receptor. 'No receptor potential A' is involved in vision and olfaction in Drosophila, and dopamine signaling has been previously shown to be required for aversive olfactory learning in honey bees, which is probably necessary for identifying mites within brood cells. Further studies on these candidate genes may allow for breeding bees with this trait using marker-assisted selection.

  10. Large-Scale Gene-Centric Meta-Analysis across 39 Studies Identifies Type 2 Diabetes Loci

    NARCIS (Netherlands)

    Saxena, Richa; Elbers, Clara C.; Guo, Yiran; Peter, Inga; Gaunt, Tom R.; Mega, Jessica L.; Lanktree, Matthew B.; Tare, Archana; Almoguera Castillo, Berta; Li, Yun R.; Johnson, Toby; Bruinenberg, Marcel; Gilbert-Diamond, Diane; Rajagopalan, Ramakrishnan; Voight, Benjamin F.; Balasubramanyam, Ashok; Barnard, John; Bauer, Florianne; Baumert, Jens; Bhangale, Tushar; Boehm, Bernhard O.; Braund, Peter S.; Burton, Paul R.; Chandrupatla, Hareesh R.; Clarke, Robert; Cooper-DeHoff, Rhonda M.; Crook, Errol D.; Davey-Smith, George; Day, Ian N.; de Boer, Anthonius; de Groot, Mark C. H.; Drenos, Fotios; Ferguson, Jane; Fox, Caroline S.; Furlong, Clement E.; Gibson, Quince; Gieger, Christian; Gilhuijs-Pederson, Lisa A.; Glessner, Joseph T.; Goel, Anuj; Gong, Yan; Grant, Struan F. A.; Kumari, Meena; van der Harst, Pim; van Vliet-Ostaptchouk, Jana V.; Verweij, Niek; Wolffenbuttel, Bruce H. R.; Hofker, Marten H.; Asselbergs, Folkert W.; Wijmenga, Cisca

    2012-01-01

    To identify genetic factors contributing to type 2 diabetes (T2D), we performed large-scale meta-analyses by using a custom similar to 50,000 SNP genotyping array (the ITMAT-Broad-CARe array) with similar to 2000 candidate genes in 39 multiethnic population-based studies, case-control studies, and

  11. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes.

    Science.gov (United States)

    Biankin, Andrew V; Waddell, Nicola; Kassahn, Karin S; Gingras, Marie-Claude; Muthuswamy, Lakshmi B; Johns, Amber L; Miller, David K; Wilson, Peter J; Patch, Ann-Marie; Wu, Jianmin; Chang, David K; Cowley, Mark J; Gardiner, Brooke B; Song, Sarah; Harliwong, Ivon; Idrisoglu, Senel; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Wani, Shivangi; Gongora, Milena; Pajic, Marina; Scarlett, Christopher J; Gill, Anthony J; Pinho, Andreia V; Rooman, Ilse; Anderson, Matthew; Holmes, Oliver; Leonard, Conrad; Taylor, Darrin; Wood, Scott; Xu, Qinying; Nones, Katia; Fink, J Lynn; Christ, Angelika; Bruxner, Tim; Cloonan, Nicole; Kolle, Gabriel; Newell, Felicity; Pinese, Mark; Mead, R Scott; Humphris, Jeremy L; Kaplan, Warren; Jones, Marc D; Colvin, Emily K; Nagrial, Adnan M; Humphrey, Emily S; Chou, Angela; Chin, Venessa T; Chantrill, Lorraine A; Mawson, Amanda; Samra, Jaswinder S; Kench, James G; Lovell, Jessica A; Daly, Roger J; Merrett, Neil D; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Kakkar, Nipun; Zhao, Fengmei; Wu, Yuan Qing; Wang, Min; Muzny, Donna M; Fisher, William E; Brunicardi, F Charles; Hodges, Sally E; Reid, Jeffrey G; Drummond, Jennifer; Chang, Kyle; Han, Yi; Lewis, Lora R; Dinh, Huyen; Buhay, Christian J; Beck, Timothy; Timms, Lee; Sam, Michelle; Begley, Kimberly; Brown, Andrew; Pai, Deepa; Panchal, Ami; Buchner, Nicholas; De Borja, Richard; Denroche, Robert E; Yung, Christina K; Serra, Stefano; Onetto, Nicole; Mukhopadhyay, Debabrata; Tsao, Ming-Sound; Shaw, Patricia A; Petersen, Gloria M; Gallinger, Steven; Hruban, Ralph H; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Schulick, Richard D; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Capelli, Paola; Corbo, Vincenzo; Scardoni, Maria; Tortora, Giampaolo; Tempero, Margaret A; Mann, Karen M; Jenkins, Nancy A; Perez-Mancera, Pedro A; Adams, David J; Largaespada, David A; Wessels, Lodewyk F A; Rust, Alistair G; Stein, Lincoln D; Tuveson, David A; Copeland, Neal G; Musgrove, Elizabeth A; Scarpa, Aldo; Eshleman, James R; Hudson, Thomas J; Sutherland, Robert L; Wheeler, David A; Pearson, John V; McPherson, John D; Gibbs, Richard A; Grimmond, Sean M

    2012-11-15

    Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis.

  12. ANTIMUTAGENICITY OF CINNAMALDEHYDE AND VANILLIN IN HUMAN CELLS: GLOBAL GENE EXPRESSION AND POSSIBLE ROLE OF DNA DAMAGE AND REPAIR

    Science.gov (United States)

    This study investigated the possibility that chemicals identified as antimutagens may, in fact, operate through a mechanism involving DNA damage. We addressed this question by using two chemicals to which a large proportion of the population are exposed: vanillin and cinnemaldehy...

  13. Genes and gene expression: Localization, damage and control -- A multilevel and inter-disciplinary study

    International Nuclear Information System (INIS)

    Ts'o, P.O.P.

    1990-09-01

    All projects are working toward a goal for describing the three dimensional nuclear topography in terms of relative spatial relationships among genes (specific DNA sequence). Methods are now being perfected to detect these genes, quantitatively and spatially, to perturb these genes specifically, and to measure the perturbation in order to assure specificity. We are developing methods to assay, after perturbation of the target DNA within living cells, whether or not only the target sequence are attacked while other sequences remain unharmed. We are now at the stage to do chemical gene modification or masking within living cells in a strictly sequence-specific manner. Soon, we will be able to study the function and the physical location of each gene in living cells with exquisite specificity. 25 refs., 15 figs

  14. Using the Developmental Gene Bicoid to Identify Species of Forensically Important Blowflies (Diptera: Calliphoridae

    Directory of Open Access Journals (Sweden)

    Seong Hwan Park

    2013-01-01

    Full Text Available Identifying species of insects used to estimate postmortem interval (PMI is a major subject in forensic entomology. Because forensic insect specimens are morphologically uniform and are obtained at various developmental stages, DNA markers are greatly needed. To develop new autosomal DNA markers to identify species, partial genomic sequences of the bicoid (bcd genes, containing the homeobox and its flanking sequences, from 12 blowfly species (Aldrichina grahami, Calliphora vicina, Calliphora lata, Triceratopyga calliphoroides, Chrysomya megacephala, Chrysomya pinguis, Phormia regina, Lucilia ampullacea, Lucilia caesar, Lucilia illustris, Hemipyrellia ligurriens and Lucilia sericata; Calliphoridae: Diptera were determined and analyzed. This study first sequenced the ten blowfly species other than C. vicina and L. sericata. Based on the bcd sequences of these 12 blowfly species, a phylogenetic tree was constructed that discriminates the subfamilies of Calliphoridae (Luciliinae, Chrysomyinae, and Calliphorinae and most blowfly species. Even partial genomic sequences of about 500 bp can distinguish most blowfly species. The short intron 2 and coding sequences downstream of the bcd homeobox in exon 3 could be utilized to develop DNA markers for forensic applications. These gene sequences are important in the evolution of insect developmental biology and are potentially useful for identifying insect species in forensic science.

  15. Using the Developmental Gene Bicoid to Identify Species of Forensically Important Blowflies (Diptera: Calliphoridae)

    Science.gov (United States)

    Park, Seong Hwan; Park, Chung Hyun; Zhang, Yong; Piao, Huguo; Chung, Ukhee; Kim, Seong Yoon; Ko, Kwang Soo; Yi, Cheong-Ho; Jo, Tae-Ho; Hwang, Juck-Joon

    2013-01-01

    Identifying species of insects used to estimate postmortem interval (PMI) is a major subject in forensic entomology. Because forensic insect specimens are morphologically uniform and are obtained at various developmental stages, DNA markers are greatly needed. To develop new autosomal DNA markers to identify species, partial genomic sequences of the bicoid (bcd) genes, containing the homeobox and its flanking sequences, from 12 blowfly species (Aldrichina grahami, Calliphora vicina, Calliphora lata, Triceratopyga calliphoroides, Chrysomya megacephala, Chrysomya pinguis, Phormia regina, Lucilia ampullacea, Lucilia caesar, Lucilia illustris, Hemipyrellia ligurriens and Lucilia sericata; Calliphoridae: Diptera) were determined and analyzed. This study first sequenced the ten blowfly species other than C. vicina and L. sericata. Based on the bcd sequences of these 12 blowfly species, a phylogenetic tree was constructed that discriminates the subfamilies of Calliphoridae (Luciliinae, Chrysomyinae, and Calliphorinae) and most blowfly species. Even partial genomic sequences of about 500 bp can distinguish most blowfly species. The short intron 2 and coding sequences downstream of the bcd homeobox in exon 3 could be utilized to develop DNA markers for forensic applications. These gene sequences are important in the evolution of insect developmental biology and are potentially useful for identifying insect species in forensic science. PMID:23586044

  16. Two novel mutations in the homogentisate-1,2-dioxygenase gene identified in Chinese Han Child with Alkaptonuria.

    Science.gov (United States)

    Li, Hongying; Zhang, Kaihui; Xu, Qun; Ma, Lixia; Lv, Xin; Sun, Ruopeng

    2015-03-01

    Alkaptonuria (AKU) is an autosomal recessive disorder of tyrosine metabolism, which is caused by a defect in the enzyme homogentisate 1,2-dioxygenase (HGD) with subsequent accumulation of homogentisic acid. Presently, more than 100 HGD mutations have been identified as the cause of the inborn error of metabolism across different populations worldwide. However, the HGD mutation is very rarely reported in Asia, especially China. In this study, we present mutational analyses of HGD gene in one Chinese Han child with AKU, which had been identified by gas chromatography-mass spectrometry detection of organic acids in urine samples. PCR and DNA sequencing of the entire coding region as well as exon-intron boundaries of HGD have been performed. Two novel mutations were identified in the HGD gene in this AKU case, a frameshift mutation of c.115delG in exon 3 and the splicing mutation of IVS5+3 A>C, a donor splice site of the exon 5 and exon-intron junction. The identification of these mutations in this study further expands the spectrum of known HGD gene mutations and contributes to prenatal molecular diagnosis of AKU.

  17. Segmental duplications and evolutionary acquisition of UV damage response in the SPATA31 gene family of primates and humans.

    Science.gov (United States)

    Bekpen, Cemalettin; Künzel, Sven; Xie, Chen; Eaaswarkhanth, Muthukrishnan; Lin, Yen-Lung; Gokcumen, Omer; Akdis, Cezmi A; Tautz, Diethard

    2017-03-06

    Segmental duplications are an abundant source for novel gene functions and evolutionary adaptations. This mechanism of generating novelty was very active during the evolution of primates particularly in the human lineage. Here, we characterize the evolution and function of the SPATA31 gene family (former designation FAM75A), which was previously shown to be among the gene families with the strongest signal of positive selection in hominoids. The mouse homologue for this gene family is a single copy gene expressed during spermatogenesis. We show that in primates, the SPATA31 gene duplicated into SPATA31A and SPATA31C types and broadened the expression into many tissues. Each type became further segmentally duplicated in the line towards humans with the largest number of full-length copies found for SPATA31A in humans. Copy number estimates of SPATA31A based on digital PCR show an average of 7.5 with a range of 5-11 copies per diploid genome among human individuals. The primate SPATA31 genes also acquired new protein domains that suggest an involvement in UV response and DNA repair. We generated antibodies and show that the protein is re-localized from the nucleolus to the whole nucleus upon UV-irradiation suggesting a UV damage response. We used CRISPR/Cas mediated mutagenesis to knockout copies of the gene in human primary fibroblast cells. We find that cell lines with reduced functional copies as well as naturally occurring low copy number HFF cells show enhanced sensitivity towards UV-irradiation. The acquisition of new SPATA31 protein functions and its broadening of expression may be related to the evolution of the diurnal life style in primates that required a higher UV tolerance. The increased segmental duplications in hominoids as well as its fast evolution suggest the acquisition of further specific functions particularly in humans.

  18. Molecular mechanisms in radiation damage to DNA

    International Nuclear Information System (INIS)

    Osman, R.

    1991-01-01

    The objectives of this work are to elucidate the molecular mechanisms that are responsible for radiation-induced DNA damage. The overall goal is to understand the relationship between the chemical and structural changes produced by ionizing radiation in DNA and the resulting impairment of biological function expressed as carcinogenesis or cell death. The studies are based on theoretical explorations of possible mechanisms that link initial radiation damage in the form of base and sugar damage to conformational changes in DNA. These mechanistic explorations should lead to the formulation of testable hypothesis regarding the processes of impairment of regulation of gene expression, alternation in DNA repair, and damage to DNA structure involved in cell death or cancer

  19. Identifying molecular subtypes in human colon cancer using gene expression and DNA methylation microarray data

    OpenAIRE

    REN, ZHONGLU; WANG, WENHUI; LI, JINMING

    2015-01-01

    Identifying colon cancer subtypes based on molecular signatures may allow for a more rational, patient-specific approach to therapy in the future. Classifications using gene expression data have been attempted before with little concordance between the different studies carried out. In this study we aimed to uncover subtypes of colon cancer that have distinct biological characteristics and identify a set of novel biomarkers which could best reflect the clinical and/or biological characteristi...

  20. Transcriptional Profiling Identifies Location-Specific and Breed-Specific Differentially Expressed Genes in Embryonic Myogenesis in Anas Platyrhynchos.

    Directory of Open Access Journals (Sweden)

    Rong-Ping Zhang

    Full Text Available Skeletal muscle growth and development are highly orchestrated processes involving significant changes in gene expressions. Differences in the location-specific and breed-specific genes and pathways involved have important implications for meat productions and meat quality. Here, RNA-Seq was performed to identify differences in the muscle deposition between two muscle locations and two duck breeds for functional genomics studies. To achieve those goals, skeletal muscle samples were collected from the leg muscle (LM and the pectoral muscle (PM of two genetically different duck breeds, Heiwu duck (H and Peking duck (P, at embryonic 15 days. Functional genomics studies were performed in two experiments: Experiment 1 directly compared the location-specific genes between PM and LM, and Experiment 2 compared the two breeds (H and P at the same developmental stage (embryonic 15 days. Almost 13 million clean reads were generated using Illumina technology (Novogene, Beijing, China on each library, and more than 70% of the reads mapped to the Peking duck (Anas platyrhynchos genome. A total of 168 genes were differentially expressed between the two locations analyzed in Experiment 1, whereas only 8 genes were differentially expressed when comparing the same location between two breeds in Experiment 2. Gene Ontology (GO and the Kyoto Encyclopedia of Genes and Genomes pathways (KEGG were used to functionally annotate DEGs (differentially expression genes. The DEGs identified in Experiment 1 were mainly involved in focal adhesion, the PI3K-Akt signaling pathway and ECM-receptor interaction pathways (corrected P-value<0.05. In Experiment 2, the DEGs were associated with only the ribosome signaling pathway (corrected P-value<0.05. In addition, quantitative real-time PCR was used to confirm 15 of the differentially expressed genes originally detected by RNA-Seq. A comparative transcript analysis of the leg and pectoral muscles of two duck breeds not only

  1. Transcriptome analysis of the Cryptocaryon irritans tomont stage identifies potential genes for the detection and control of cryptocaryonosis

    Directory of Open Access Journals (Sweden)

    Wan Kiew-Lian

    2010-01-01

    Full Text Available Abstract Background Cryptocaryon irritans is a parasitic ciliate that causes cryptocaryonosis (white spot disease in marine fish. Diagnosis of cryptocaryonosis often depends on the appearance of white spots on the surface of the fish, which are usually visible only during later stages of the disease. Identifying suitable biomarkers of this parasite would aid the development of diagnostic tools and control strategies for C. irritans. The C. irritans genome is virtually unexplored; therefore, we generated and analyzed expressed sequence tags (ESTs of the parasite to identify genes that encode for surface proteins, excretory/secretory proteins and repeat-containing proteins. Results ESTs were generated from a cDNA library of C. irritans tomonts isolated from infected Asian sea bass, Lates calcarifer. Clustering of the 5356 ESTs produced 2659 unique transcripts (UTs containing 1989 singletons and 670 consensi. BLAST analysis showed that 74% of the UTs had significant similarity (E-value -5 to sequences that are currently available in the GenBank database, with more than 15% of the significant hits showing unknown function. Forty percent of the UTs had significant similarity to ciliates from the genera Tetrahymena and Paramecium. Comparative gene family analysis with related taxa showed that many protein families are conserved among the protozoans. Based on gene ontology annotation, functional groups were successfully assigned to 790 UTs. Genes encoding excretory/secretory proteins and membrane and membrane-associated proteins were identified because these proteins often function as antigens and are good antibody targets. A total of 481 UTs were classified as encoding membrane proteins, 54 were classified as encoding for membrane-bound proteins, and 155 were found to contain excretory/secretory protein-coding sequences. Amino acid repeat-containing proteins and GPI-anchored proteins were also identified as potential candidates for the development of

  2. RNA interference screen to identify pathways that enhance or reduce nonviral gene transfer during lipofection.

    Science.gov (United States)

    Barker, Gregory A; Diamond, Scott L

    2008-09-01

    Some barriers to DNA lipofection are well characterized; however, there is as yet no method of finding unknown pathways that impact the process. A druggable genome small-interfering RNA (siRNA) screen against 5,520 genes was tested for its effect on lipofection of human aortic endothelial cells (HAECs). We found 130 gene targets which, when silenced by pooled siRNAs (three siRNAs per gene), resulted in enhanced luminescence after lipofection (86 gene targets showed reduced expression). In confirmation tests with single siRNAs, 18 of the 130 hits showed enhanced lipofection with two or more individual siRNAs in the absence of cytotoxicity. Of these confirmed gene targets, we identified five leading candidates, two of which are isoforms of the regulatory subunit of protein phosphatase 2A (PP2A). The best candidate siRNA targeted the PPP2R2C gene and produced a 65% increase in luminescence from lipofection, with a quantitative PCR-validated knockdown of approximately 76%. Flow cytometric analysis confirmed that the silencing of the PPP2R2C gene resulted in an improvement of 10% in transfection efficiency, thereby demonstrating an increase in the number of transfected cells. These results show that an RNA interference (RNAi) high-throughput screen (HTS) can be applied to nonviral gene transfer. We have also demonstrated that siRNAs can be co-delivered with lipofected DNA to increase the transfection efficiency in vitro.

  3. Targeted next generation sequencing identifies functionally deleterious germline mutations in novel genes in early-onset/familial prostate cancer.

    Directory of Open Access Journals (Sweden)

    Paula Paulo

    2018-04-01

    Full Text Available Considering that mutations in known prostate cancer (PrCa predisposition genes, including those responsible for hereditary breast/ovarian cancer and Lynch syndromes, explain less than 5% of early-onset/familial PrCa, we have sequenced 94 genes associated with cancer predisposition using next generation sequencing (NGS in a series of 121 PrCa patients. We found monoallelic truncating/functionally deleterious mutations in seven genes, including ATM and CHEK2, which have previously been associated with PrCa predisposition, and five new candidate PrCa associated genes involved in cancer predisposing recessive disorders, namely RAD51C, FANCD2, FANCI, CEP57 and RECQL4. Furthermore, using in silico pathogenicity prediction of missense variants among 18 genes associated with breast/ovarian cancer and/or Lynch syndrome, followed by KASP genotyping in 710 healthy controls, we identified "likely pathogenic" missense variants in ATM, BRIP1, CHEK2 and TP53. In conclusion, this study has identified putative PrCa predisposing germline mutations in 14.9% of early-onset/familial PrCa patients. Further data will be necessary to confirm the genetic heterogeneity of inherited PrCa predisposition hinted in this study.

  4. Feature genes in metastatic breast cancer identified by MetaDE and SVM classifier methods.

    Science.gov (United States)

    Tuo, Youlin; An, Ning; Zhang, Ming

    2018-03-01

    The aim of the present study was to investigate the feature genes in metastatic breast cancer samples. A total of 5 expression profiles of metastatic breast cancer samples were downloaded from the Gene Expression Omnibus database, which were then analyzed using the MetaQC and MetaDE packages in R language. The feature genes between metastasis and non‑metastasis samples were screened under the threshold of PSVM) classifier training and verification. The accuracy of the SVM classifier was then evaluated using another independent dataset from The Cancer Genome Atlas database. Finally, function and pathway enrichment analyses for genes in the SVM classifier were performed. A total of 541 feature genes were identified between metastatic and non‑metastatic samples. The top 10 genes with the highest betweenness centrality values in the PPI network of feature genes were Nuclear RNA Export Factor 1, cyclin‑dependent kinase 2 (CDK2), myelocytomatosis proto‑oncogene protein (MYC), Cullin 5, SHC Adaptor Protein 1, Clathrin heavy chain, Nucleolin, WD repeat domain 1, proteasome 26S subunit non‑ATPase 2 and telomeric repeat binding factor 2. The cyclin‑dependent kinase inhibitor 1A (CDKN1A), E2F transcription factor 1 (E2F1), and MYC interacted with CDK2. The SVM classifier constructed by the top 30 feature genes was able to distinguish metastatic samples from non‑metastatic samples [correct rate, specificity, positive predictive value and negative predictive value >0.89; sensitivity >0.84; area under the receiver operating characteristic curve (AUROC) >0.96]. The verification of the SVM classifier in an independent dataset (35 metastatic samples and 143 non‑metastatic samples) revealed an accuracy of 94.38% and AUROC of 0.958. Cell cycle associated functions and pathways were the most significant terms of the 30 feature genes. A SVM classifier was constructed to assess the possibility of breast cancer metastasis, which presented high accuracy in several

  5. Kinase Gene Expression Profiling of Metastatic Clear Cell Renal Cell Carcinoma Tissue Identifies Potential New Therapeutic Targets.

    Directory of Open Access Journals (Sweden)

    Pooja Ghatalia

    Full Text Available Kinases are therapeutically actionable targets. Kinase inhibitors targeting vascular endothelial growth factor receptors (VEGFR and mammalian target of rapamycin (mTOR improve outcomes in metastatic clear cell renal cell carcinoma (ccRCC, but are not curative. Metastatic tumor tissue has not been comprehensively studied for kinase gene expression. Paired intra-patient kinase gene expression analysis in primary tumor (T, matched normal kidney (N and metastatic tumor tissue (M may assist in identifying drivers of metastasis and prioritizing therapeutic targets. We compared the expression of 519 kinase genes using NanoString in T, N and M in 35 patients to discover genes over-expressed in M compared to T and N tissue. RNA-seq data derived from ccRCC tumors in The Cancer Genome Atlas (TCGA were used to demonstrate differential expression of genes in primary tumor tissue from patients that had metastasis at baseline (n = 79 compared to those that did not develop metastasis for at least 2 years (n = 187. Functional analysis was conducted to identify key signaling pathways by using Ingenuity Pathway Analysis. Of 10 kinase genes overexpressed in metastases compared to primary tumor in the discovery cohort, 9 genes were also differentially expressed in TCGA primary tumors with metastasis at baseline compared to primary tumors without metastasis for at least 2 years: EPHB2, AURKA, GSG2, IKBKE, MELK, CSK, CHEK2, CDC7 and MAP3K8; p<0.001. The top pathways overexpressed in M tissue were pyridoxal 5'-phosphate salvage, salvage pathways of pyrimidine ribonucleotides, NF-kB signaling, NGF signaling and cell cycle control of chromosomal replication. The 9 kinase genes validated to be over-expressed in metastatic ccRCC may represent currently unrecognized but potentially actionable therapeutic targets that warrant functional validation.

  6. Analysis of genomic aberrations and gene expression profiling identifies novel lesions and pathways in myeloproliferative neoplasms

    International Nuclear Information System (INIS)

    Rice, K L; Lin, X; Wolniak, K; Ebert, B L; Berkofsky-Fessler, W; Buzzai, M; Sun, Y; Xi, C; Elkin, P; Levine, R; Golub, T; Gilliland, D G; Crispino, J D; Licht, J D; Zhang, W

    2011-01-01

    Polycythemia vera (PV), essential thrombocythemia and primary myelofibrosis, are myeloproliferative neoplasms (MPNs) with distinct clinical features and are associated with the JAK2V617F mutation. To identify genomic anomalies involved in the pathogenesis of these disorders, we profiled 87 MPN patients using Affymetrix 250K single-nucleotide polymorphism (SNP) arrays. Aberrations affecting chr9 were the most frequently observed and included 9pLOH (n=16), trisomy 9 (n=6) and amplifications of 9p13.3–23.3 (n=1), 9q33.1–34.13 (n=1) and 9q34.13 (n=6). Patients with trisomy 9 were associated with elevated JAK2V617F mutant allele burden, suggesting that gain of chr9 represents an alternative mechanism for increasing JAK2V617F dosage. Gene expression profiling of patients with and without chr9 abnormalities (+9, 9pLOH), identified genes potentially involved in disease pathogenesis including JAK2, STAT5B and MAPK14. We also observed recurrent gains of 1p36.31–36.33 (n=6), 17q21.2–q21.31 (n=5) and 17q25.1–25.3 (n=5) and deletions affecting 18p11.31–11.32 (n=8). Combined SNP and gene expression analysis identified aberrations affecting components of a non-canonical PRC2 complex (EZH1, SUZ12 and JARID2) and genes comprising a ‘HSC signature' (MLLT3, SMARCA2 and PBX1). We show that NFIB, which is amplified in 7/87 MPN patients and upregulated in PV CD34+ cells, protects cells from apoptosis induced by cytokine withdrawal

  7. Current Status and Challenges in Identifying Disease Resistance Genes in Brassica napus

    Directory of Open Access Journals (Sweden)

    Ting Xiang Neik

    2017-11-01

    Full Text Available Brassica napus is an economically important crop across different continents including temperate and subtropical regions in Europe, Canada, South Asia, China and Australia. Its widespread cultivation also brings setbacks as it plays host to fungal, oomycete and chytrid pathogens that can lead to serious yield loss. For sustainable crop production, identification of resistance (R genes in B. napus has become of critical importance. In this review, we discuss four key pathogens affecting Brassica crops: Clubroot (Plasmodiophora brassicae, Blackleg (Leptosphaeria maculans and L. biglobosa, Sclerotinia Stem Rot (Sclerotinia sclerotiorum, and Downy Mildew (Hyaloperonospora parasitica. We first review current studies covering prevalence of these pathogens on Brassica crops and highlight the R genes and QTL that have been identified from Brassica species against these pathogens. Insights into the relationships between the pathogen and its Brassica host, the unique host resistance mechanisms and how these affect resistance outcomes is also presented. We discuss challenges in identification and deployment of R genes in B. napus in relation to highly specific genetic interactions between host subpopulations and pathogen pathotypes and emphasize the need for common or shared techniques and research materials or tighter collaboration between researchers to reconcile the inconsistencies in the research outcomes. Using current genomics tools, we provide examples of how characterization and cloning of R genes in B. napus can be carried out more effectively. Lastly, we put forward strategies to breed resistant cultivars through introgressions supported by genomic approaches and suggest prospects that can be implemented in the future for a better, pathogen-resistant B. napus.

  8. Current Status and Challenges in Identifying Disease Resistance Genes in Brassica napus

    Science.gov (United States)

    Neik, Ting Xiang; Barbetti, Martin J.; Batley, Jacqueline

    2017-01-01

    Brassica napus is an economically important crop across different continents including temperate and subtropical regions in Europe, Canada, South Asia, China and Australia. Its widespread cultivation also brings setbacks as it plays host to fungal, oomycete and chytrid pathogens that can lead to serious yield loss. For sustainable crop production, identification of resistance (R) genes in B. napus has become of critical importance. In this review, we discuss four key pathogens affecting Brassica crops: Clubroot (Plasmodiophora brassicae), Blackleg (Leptosphaeria maculans and L. biglobosa), Sclerotinia Stem Rot (Sclerotinia sclerotiorum), and Downy Mildew (Hyaloperonospora parasitica). We first review current studies covering prevalence of these pathogens on Brassica crops and highlight the R genes and QTL that have been identified from Brassica species against these pathogens. Insights into the relationships between the pathogen and its Brassica host, the unique host resistance mechanisms and how these affect resistance outcomes is also presented. We discuss challenges in identification and deployment of R genes in B. napus in relation to highly specific genetic interactions between host subpopulations and pathogen pathotypes and emphasize the need for common or shared techniques and research materials or tighter collaboration between researchers to reconcile the inconsistencies in the research outcomes. Using current genomics tools, we provide examples of how characterization and cloning of R genes in B. napus can be carried out more effectively. Lastly, we put forward strategies to breed resistant cultivars through introgressions supported by genomic approaches and suggest prospects that can be implemented in the future for a better, pathogen-resistant B. napus. PMID:29163558

  9. Identifying new susceptibility genes on dopaminergic and serotonergic pathways for the framing effect in decision-making.

    Science.gov (United States)

    Gao, Xiaoxue; Liu, Jinting; Gong, Pingyuan; Wang, Junhui; Fang, Wan; Yan, Hongming; Zhu, Lusha; Zhou, Xiaolin

    2017-09-01

    The framing effect refers the tendency to be risk-averse when options are presented positively but be risk-seeking when the same options are presented negatively during decision-making. This effect has been found to be modulated by the serotonin transporter gene (SLC6A4) and the catechol-o-methyltransferase gene (COMT) polymorphisms, which are on the dopaminergic and serotonergic pathways and which are associated with affective processing. The current study aimed to identify new genetic variations of genes on dopaminergic and serotonergic pathways that may contribute to individual differences in the susceptibility to framing. Using genome-wide association data and the gene-based principal components regression method, we examined genetic variations of 26 genes on the pathways in 1317 Chinese Han participants. Consistent with previous studies, we found that the genetic variations of the SLC6A4 gene and the COMT gene were associated with the framing effect. More importantly, we demonstrated that the genetic variations of the aromatic-L-amino-acid decarboxylase (DDC) gene, which is involved in the synthesis of both dopamine and serotonin, contributed to individual differences in the susceptibility to framing. Our findings shed light on the understanding of the genetic basis of affective decision-making. © The Author (2017). Published by Oxford University Press.

  10. Identifying new susceptibility genes on dopaminergic and serotonergic pathways for the framing effect in decision-making

    Science.gov (United States)

    Gao, Xiaoxue; Liu, Jinting; Gong, Pingyuan; Wang, Junhui; Fang, Wan; Yan, Hongming; Zhu, Lusha

    2017-01-01

    Abstract The framing effect refers the tendency to be risk-averse when options are presented positively but be risk-seeking when the same options are presented negatively during decision-making. This effect has been found to be modulated by the serotonin transporter gene (SLC6A4) and the catechol-o-methyltransferase gene (COMT) polymorphisms, which are on the dopaminergic and serotonergic pathways and which are associated with affective processing. The current study aimed to identify new genetic variations of genes on dopaminergic and serotonergic pathways that may contribute to individual differences in the susceptibility to framing. Using genome-wide association data and the gene-based principal components regression method, we examined genetic variations of 26 genes on the pathways in 1317 Chinese Han participants. Consistent with previous studies, we found that the genetic variations of the SLC6A4 gene and the COMT gene were associated with the framing effect. More importantly, we demonstrated that the genetic variations of the aromatic-L-amino-acid decarboxylase (DDC) gene, which is involved in the synthesis of both dopamine and serotonin, contributed to individual differences in the susceptibility to framing. Our findings shed light on the understanding of the genetic basis of affective decision-making. PMID:28431168

  11. Comparative analysis of the full genome of Helicobacter pylori isolate Sahul64 identifies genes of high divergence.

    Science.gov (United States)

    Lu, Wei; Wise, Michael J; Tay, Chin Yen; Windsor, Helen M; Marshall, Barry J; Peacock, Christopher; Perkins, Tim

    2014-03-01

    Isolates of Helicobacter pylori can be classified phylogeographically. High genetic diversity and rapid microevolution are a hallmark of H. pylori genomes, a phenomenon that is proposed to play a functional role in persistence and colonization of diverse human populations. To provide further genomic evidence in the lineage of H. pylori and to further characterize diverse strains of this pathogen in different human populations, we report the finished genome sequence of Sahul64, an H. pylori strain isolated from an indigenous Australian. Our analysis identified genes that were highly divergent compared to the 38 publically available genomes, which include genes involved in the biosynthesis and modification of lipopolysaccharide, putative prophage genes, restriction modification components, and hypothetical genes. Furthermore, the virulence-associated vacA locus is a pseudogene and the cag pathogenicity island (cagPAI) is not present. However, the genome does contain a gene cluster associated with pathogenicity, including dupA. Our analysis found that with the addition of Sahul64 to the 38 genomes, the core genome content of H. pylori is reduced by approximately 14% (∼170 genes) and the pan-genome has expanded from 2,070 to 2,238 genes. We have identified three putative horizontally acquired regions, including one that is likely to have been acquired from the closely related Helicobacter cetorum prior to speciation. Our results suggest that Sahul64, with the absence of cagPAI, highly divergent cell envelope proteins, and a predicted nontransportable VacA protein, could be more highly adapted to ancient indigenous Australian people but with lower virulence potential compared to other sequenced and cagPAI-positive H. pylori strains.

  12. High-resolution linkage analyses to identify genes that influence Varroa sensitive hygiene behavior in honey bees.

    Directory of Open Access Journals (Sweden)

    Jennifer M Tsuruda

    Full Text Available Varroa mites (V. destructor are a major threat to honey bees (Apis melilfera and beekeeping worldwide and likely lead to colony decline if colonies are not treated. Most treatments involve chemical control of the mites; however, Varroa has evolved resistance to many of these miticides, leaving beekeepers with a limited number of alternatives. A non-chemical control method is highly desirable for numerous reasons including lack of chemical residues and decreased likelihood of resistance. Varroa sensitive hygiene behavior is one of two behaviors identified that are most important for controlling the growth of Varroa populations in bee hives. To identify genes influencing this trait, a study was conducted to map quantitative trait loci (QTL. Individual workers of a backcross family were observed and evaluated for their VSH behavior in a mite-infested observation hive. Bees that uncapped or removed pupae were identified. The genotypes for 1,340 informative single nucleotide polymorphisms were used to construct a high-resolution genetic map and interval mapping was used to analyze the association of the genotypes with the performance of Varroa sensitive hygiene. We identified one major QTL on chromosome 9 (LOD score = 3.21 and a suggestive QTL on chromosome 1 (LOD = 1.95. The QTL confidence interval on chromosome 9 contains the gene 'no receptor potential A' and a dopamine receptor. 'No receptor potential A' is involved in vision and olfaction in Drosophila, and dopamine signaling has been previously shown to be required for aversive olfactory learning in honey bees, which is probably necessary for identifying mites within brood cells. Further studies on these candidate genes may allow for breeding bees with this trait using marker-assisted selection.

  13. Identifying overrepresented concepts in gene lists from literature: a statistical approach based on Poisson mixture model

    Directory of Open Access Journals (Sweden)

    Zhai Chengxiang

    2010-05-01

    Full Text Available Abstract Background Large-scale genomic studies often identify large gene lists, for example, the genes sharing the same expression patterns. The interpretation of these gene lists is generally achieved by extracting concepts overrepresented in the gene lists. This analysis often depends on manual annotation of genes based on controlled vocabularies, in particular, Gene Ontology (GO. However, the annotation of genes is a labor-intensive process; and the vocabularies are generally incomplete, leaving some important biological domains inadequately covered. Results We propose a statistical method that uses the primary literature, i.e. free-text, as the source to perform overrepresentation analysis. The method is based on a statistical framework of mixture model and addresses the methodological flaws in several existing programs. We implemented this method within a literature mining system, BeeSpace, taking advantage of its analysis environment and added features that facilitate the interactive analysis of gene sets. Through experimentation with several datasets, we showed that our program can effectively summarize the important conceptual themes of large gene sets, even when traditional GO-based analysis does not yield informative results. Conclusions We conclude that the current work will provide biologists with a tool that effectively complements the existing ones for overrepresentation analysis from genomic experiments. Our program, Genelist Analyzer, is freely available at: http://workerbee.igb.uiuc.edu:8080/BeeSpace/Search.jsp

  14. Comparison of genome-wide selection strategies to identify furfural tolerance genes in Escherichia coli.

    Science.gov (United States)

    Glebes, Tirzah Y; Sandoval, Nicholas R; Gillis, Jacob H; Gill, Ryan T

    2015-01-01

    Engineering both feedstock and product tolerance is important for transitioning towards next-generation biofuels derived from renewable sources. Tolerance to chemical inhibitors typically results in complex phenotypes, for which multiple genetic changes must often be made to confer tolerance. Here, we performed a genome-wide search for furfural-tolerant alleles using the TRackable Multiplex Recombineering (TRMR) method (Warner et al. (2010), Nature Biotechnology), which uses chromosomally integrated mutations directed towards increased or decreased expression of virtually every gene in Escherichia coli. We employed various growth selection strategies to assess the role of selection design towards growth enrichments. We also compared genes with increased fitness from our TRMR selection to those from a previously reported genome-wide identification study of furfural tolerance genes using a plasmid-based genomic library approach (Glebes et al. (2014) PLOS ONE). In several cases, growth improvements were observed for the chromosomally integrated promoter/RBS mutations but not for the plasmid-based overexpression constructs. Through this assessment, four novel tolerance genes, ahpC, yhjH, rna, and dicA, were identified and confirmed for their effect on improving growth in the presence of furfural. © 2014 Wiley Periodicals, Inc.

  15. Alteration of gene expression profile in Niemann-Pick type C mice correlates with tissue damage and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Mary C Vázquez

    Full Text Available BACKGROUND: Niemann-Pick type C disease (NPC is a neurovisceral lipid storage disorder mainly characterized by unesterified cholesterol accumulation in lysosomal/late endosomal compartments, although there is also an important storage for several other kind of lipids. The main tissues affected by the disease are the liver and the cerebellum. Oxidative stress has been described in various NPC cells and tissues, such as liver and cerebellum. Although considerable alterations occur in the liver, the pathological mechanisms involved in hepatocyte damage and death have not been clearly defined. Here, we assessed hepatic tissue integrity, biochemical and oxidative stress parameters of wild-type control (Npc1(+/+; WT and homozygous-mutant (Npc1(-/-; NPC mice. In addition, the mRNA abundance of genes encoding proteins associated with oxidative stress, copper metabolism, fibrosis, inflammation and cholesterol metabolism were analyzed in livers and cerebella of WT and NPC mice. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed various oxidative stress parameters in the liver and hepatic and cerebellum gene expression in 7-week-old NPC1-deficient mice compared with control animals. We found signs of inflammation and fibrosis in NPC livers upon histological examination. These signs were correlated with increased levels of carbonylated proteins, diminished total glutathione content and significantly increased total copper levels in liver tissue. Finally, we analyzed liver and cerebellum gene expression patterns by qPCR and microarray assays. We found a correlation between fibrotic tissue and differential expression of hepatic as well as cerebellar genes associated with oxidative stress, fibrosis and inflammation in NPC mice. CONCLUSIONS/SIGNIFICANCE: In NPC mice, liver disease is characterized by an increase in fibrosis and in markers associated with oxidative stress. NPC is also correlated with altered gene expression, mainly of genes involved in oxidative stress

  16. Electron damage and defects in organic crystals

    International Nuclear Information System (INIS)

    Howitt, D.G.

    1976-06-01

    The nature of the defects discernable from and the radiation damage that is induced by high resolution electron microscopy is reported. The structural aspects of the radiation damage process can be correlated to the expected radiochemical decomposition of these materials and these effects identified. The types of local defect formed by radiation damage are often clearly distinguishable, in high resolution images, from those inherent in the microstructure. Techniques used in this type of electron microscopy and the limitations imposed by radiation damage are described as are the relevant radiochemical characteristics of these processes. In copper pthalocyanine, microstructural features distinct from those induced by radiation damage were identified which are consistent with those predicted and described by other workers in similar materials. The high resolution studies indicate that some of the microstructures observed are caused by structural rearrangements that can account, to some extent, for additional crystallographic forms that have been identified in this material and the photochemical behaviour of related structures

  17. The compact Selaginella genome identifies changes in gene content associated with the evolution of vascular plants

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.; Banks, Jo Ann; Nishiyama, Tomoaki; Hasebe, Mitsuyasu; Bowman, John L.; Gribskov, Michael; dePamphilis, Claude; Albert, Victor A.; Aono, Naoki; Aoyama, Tsuyoshi; Ambrose, Barbara A.; Ashton, Neil W.; Axtell, Michael J.; Barker, Elizabeth; Barker, Michael S.; Bennetzen, Jeffrey L.; Bonawitz, Nicholas D.; Chapple, Clint; Cheng, Chaoyang; Correa, Luiz Gustavo Guedes; Dacre, Michael; DeBarry, Jeremy; Dreyer, Ingo; Elias, Marek; Engstrom, Eric M.; Estelle, Mark; Feng, Liang; Finet, Cedric; Floyd, Sandra K.; Frommer, Wolf B.; Fujita, Tomomichi; Gramzow, Lydia; Gutensohn, Michael; Harholt, Jesper; Hattori, Mitsuru; Heyl, Alexander; Hirai, Tadayoshi; Hiwatashi, Yuji; Ishikawa, Masaki; Iwata, Mineko; Karol, Kenneth G.; Koehler, Barbara; Kolukisaoglu, Uener; Kubo, Minoru; Kurata, Tetsuya; Lalonde, Sylvie; Li, Kejie; Li, Ying; Litt, Amy; Lyons, Eric; Manning, Gerard; Maruyama, Takeshi; Michael, Todd P.; Mikami, Koji; Miyazaki, Saori; Morinaga, Shin-ichi; Murata, Takashi; Mueller-Roeber, Bernd; Nelson, David R.; Obara, Mari; Oguri, Yasuko; Olmstead, Richard G.; Onodera, Naoko; Petersen, Bent Larsen; Pils, Birgit; Prigge, Michael; Rensing, Stefan A.; Riano-Pachon, Diego Mauricio; Roberts, Alison W.; Sato, Yoshikatsu; Scheller, Henrik Vibe; Schulz, Burkhard; Schulz, Christian; Shakirov, Eugene V.; Shibagaki, Nakako; Shinohara, Naoki; Shippen, Dorothy E.; Sorensen, Iben; Sotooka, Ryo; Sugimoto, Nagisa; Sugita, Mamoru; Sumikawa, Naomi; Tanurdzic, Milos; Theilsen, Gunter; Ulvskov, Peter; Wakazuki, Sachiko; Weng, Jing-Ke; Willats, William W.G.T.; Wipf, Daniel; Wolf, Paul G.; Yang, Lixing; Zimmer, Andreas D.; Zhu, Qihui; Mitros, Therese; Hellsten, Uffe; Loque, Dominique; Otillar, Robert; Salamov, Asaf; Schmutz, Jeremy; Shapiro, Harris; Lindquist, Erika; Lucas, Susan; Rokhsar, Daniel

    2011-04-28

    We report the genome sequence of the nonseed vascular plant, Selaginella moellendorffii, and by comparative genomics identify genes that likely played important roles in the early evolution of vascular plants and their subsequent evolution

  18. Globicatella sanguinis bacteraemia identified by partial 16S rRNA gene sequencing

    DEFF Research Database (Denmark)

    Abdul-Redha, Rawaa Jalil; Balslew, Ulla; Christensen, Jens Jørgen

    2007-01-01

    Globicatella sanguinis is a gram-positive coccus, resembling non-haemolytic streptococci. The organism has been isolated infrequently from normally sterile sites of humans. Three isolates obtained by blood culture could not be identified by Rapid 32 ID Strep, but partial sequencing of the 16S r......RNA gene revealed the identity of the isolated bacteria, and supplementary biochemical tests confirmed the species identification. The cases histories illustrate the dilemma of finding relevant, newly recognized, opportunistic pathogens and the identification achievement (s) that can be obtained by using...

  19. A systems genetics approach identifies CXCL14, ITGAX, and LPCAT2 as novel aggressive prostate cancer susceptibility genes.

    Directory of Open Access Journals (Sweden)

    Kendra A Williams

    2014-11-01

    Full Text Available Although prostate cancer typically runs an indolent course, a subset of men develop aggressive, fatal forms of this disease. We hypothesize that germline variation modulates susceptibility to aggressive prostate cancer. The goal of this work is to identify susceptibility genes using the C57BL/6-Tg(TRAMP8247Ng/J (TRAMP mouse model of neuroendocrine prostate cancer. Quantitative trait locus (QTL mapping was performed in transgene-positive (TRAMPxNOD/ShiLtJ F2 intercross males (n = 228, which facilitated identification of 11 loci associated with aggressive disease development. Microarray data derived from 126 (TRAMPxNOD/ShiLtJ F2 primary tumors were used to prioritize candidate genes within QTLs, with candidate genes deemed as being high priority when possessing both high levels of expression-trait correlation and a proximal expression QTL. This process enabled the identification of 35 aggressive prostate tumorigenesis candidate genes. The role of these genes in aggressive forms of human prostate cancer was investigated using two concurrent approaches. First, logistic regression analysis in two human prostate gene expression datasets revealed that expression levels of five genes (CXCL14, ITGAX, LPCAT2, RNASEH2A, and ZNF322 were positively correlated with aggressive prostate cancer and two genes (CCL19 and HIST1H1A were protective for aggressive prostate cancer. Higher than average levels of expression of the five genes that were positively correlated with aggressive disease were consistently associated with patient outcome in both human prostate cancer tumor gene expression datasets. Second, three of these five genes (CXCL14, ITGAX, and LPCAT2 harbored polymorphisms associated with aggressive disease development in a human GWAS cohort consisting of 1,172 prostate cancer patients. This study is the first example of using a systems genetics approach to successfully identify novel susceptibility genes for aggressive prostate cancer. Such

  20. Transcriptome profiling identifies genes/pathways associated with experimental resistance to paromomycin in Leishmania donovani

    Directory of Open Access Journals (Sweden)

    Aditya Verma

    2017-12-01

    Full Text Available Widespread resistance towards antimony and reports of relapses following miltefosine treatment has severely affected the management of visceral leishmaniasis (VL in the Indian subcontinent. Paromomycin (PMM, an aminoglycoside antibiotic, has been licensed for VL treatment in India in 2007. Although its use is still restricted in the field, unraveling the molecular mechanism of resistance towards PMM is the key to preserve the drug. In this study, PMM resistant lines were selected up to 100 μM of PMM in three distinct field isolates of Leishmania donovani at promastigote stage. The resistance induced at promastigote level was also evident in amastigotes which showed 6 fold decreases in PMM susceptibility. Comparative transcriptome profiling of PMM resistant (PMM-R and the corresponding PMM sensitive (PMM-S parasites revealed modulated expression of 500 genes (1.5 fold cut off in PMM-R parasites. Selected genes were validated for their modulated expression by quantitative real-time PCR. Functional classification and pathway analysis of modulated genes indicated probable adaptations in drug resistant lines which included a reduced oxidative phosphorylation; b increased glycosomal succinate fermentation and substrate level phosphorylation; c dependency on lipids and amino acids for energy generation; d reduced DNA synthesis and increased DNA damage repair and e decreased protein synthesis and degradation. Interestingly, PMM-R parasites showed a marked increase in PMM susceptibility in presence of verapamil and amlodipine, antagonists of Ca2+ channel that are also modulators of ABC transporters. Moreover, infection of macrophages by PMM-R parasites led to modulated nitric oxide (NO levels while reactive oxygen species (ROS level remained unaltered. The present study highlights the putative mechanisms of PMM resistance in Leishmania. Keywords: Leishmania donovani, Drug resistance, Paromomycin, Transcriptome, ABC transporters, Nitric oxide, Visceral

  1. Network-Based Integration of GWAS and Gene Expression Identifies a HOX-Centric Network Associated with Serous Ovarian Cancer Risk

    DEFF Research Database (Denmark)

    Kar, Siddhartha P; Tyrer, Jonathan P; Li, Qiyuan

    2015-01-01

    BACKGROUND: Genome-wide association studies (GWAS) have so far reported 12 loci associated with serous epithelial ovarian cancer (EOC) risk. We hypothesized that some of these loci function through nearby transcription factor (TF) genes and that putative target genes of these TFs as identified...... in the unified microarray dataset of 489 serous EOC tumors from The Cancer Genome Atlas. Genes represented in this dataset were subsequently ranked using a gene-level test based on results for germline SNPs from a serous EOC GWAS meta-analysis (2,196 cases/4,396 controls). RESULTS: Gene set enrichment analysis...

  2. Integrating Genetic and Gene Co-expression Analysis Identifies Gene Networks Involved in Alcohol and Stress Responses.

    Science.gov (United States)

    Luo, Jie; Xu, Pei; Cao, Peijian; Wan, Hongjian; Lv, Xiaonan; Xu, Shengchun; Wang, Gangjun; Cook, Melloni N; Jones, Byron C; Lu, Lu; Wang, Xusheng

    2018-01-01

    Although the link between stress and alcohol is well recognized, the underlying mechanisms of how they interplay at the molecular level remain unclear. The purpose of this study is to identify molecular networks underlying the effects of alcohol and stress responses, as well as their interaction on anxiety behaviors in the hippocampus of mice using a systems genetics approach. Here, we applied a gene co-expression network approach to transcriptomes of 41 BXD mouse strains under four conditions: stress, alcohol, stress-induced alcohol and control. The co-expression analysis identified 14 modules and characterized four expression patterns across the four conditions. The four expression patterns include up-regulation in no restraint stress and given an ethanol injection (NOE) but restoration in restraint stress followed by an ethanol injection (RSE; pattern 1), down-regulation in NOE but rescue in RSE (pattern 2), up-regulation in both restraint stress followed by a saline injection (RSS) and NOE, and further amplification in RSE (pattern 3), and up-regulation in RSS but reduction in both NOE and RSE (pattern 4). We further identified four functional subnetworks by superimposing protein-protein interactions (PPIs) to the 14 co-expression modules, including γ-aminobutyric acid receptor (GABA) signaling, glutamate signaling, neuropeptide signaling, cAMP-dependent signaling. We further performed module specificity analysis to identify modules that are specific to stress, alcohol, or stress-induced alcohol responses. Finally, we conducted causality analysis to link genetic variation to these identified modules, and anxiety behaviors after stress and alcohol treatments. This study underscores the importance of integrative analysis and offers new insights into the molecular networks underlying stress and alcohol responses.

  3. Integrating Genetic and Gene Co-expression Analysis Identifies Gene Networks Involved in Alcohol and Stress Responses

    Directory of Open Access Journals (Sweden)

    Jie Luo

    2018-04-01

    Full Text Available Although the link between stress and alcohol is well recognized, the underlying mechanisms of how they interplay at the molecular level remain unclear. The purpose of this study is to identify molecular networks underlying the effects of alcohol and stress responses, as well as their interaction on anxiety behaviors in the hippocampus of mice using a systems genetics approach. Here, we applied a gene co-expression network approach to transcriptomes of 41 BXD mouse strains under four conditions: stress, alcohol, stress-induced alcohol and control. The co-expression analysis identified 14 modules and characterized four expression patterns across the four conditions. The four expression patterns include up-regulation in no restraint stress and given an ethanol injection (NOE but restoration in restraint stress followed by an ethanol injection (RSE; pattern 1, down-regulation in NOE but rescue in RSE (pattern 2, up-regulation in both restraint stress followed by a saline injection (RSS and NOE, and further amplification in RSE (pattern 3, and up-regulation in RSS but reduction in both NOE and RSE (pattern 4. We further identified four functional subnetworks by superimposing protein-protein interactions (PPIs to the 14 co-expression modules, including γ-aminobutyric acid receptor (GABA signaling, glutamate signaling, neuropeptide signaling, cAMP-dependent signaling. We further performed module specificity analysis to identify modules that are specific to stress, alcohol, or stress-induced alcohol responses. Finally, we conducted causality analysis to link genetic variation to these identified modules, and anxiety behaviors after stress and alcohol treatments. This study underscores the importance of integrative analysis and offers new insights into the molecular networks underlying stress and alcohol responses.

  4. Large-scale functional RNAi screen in C. elegans identifies genes that regulate the dysfunction of mutant polyglutamine neurons.

    Science.gov (United States)

    Lejeune, François-Xavier; Mesrob, Lilia; Parmentier, Frédéric; Bicep, Cedric; Vazquez-Manrique, Rafael P; Parker, J Alex; Vert, Jean-Philippe; Tourette, Cendrine; Neri, Christian

    2012-03-13

    A central goal in Huntington's disease (HD) research is to identify and prioritize candidate targets for neuroprotective intervention, which requires genome-scale information on the modifiers of early-stage neuron injury in HD. Here, we performed a large-scale RNA interference screen in C. elegans strains that express N-terminal huntingtin (htt) in touch receptor neurons. These neurons control the response to light touch. Their function is strongly impaired by expanded polyglutamines (128Q) as shown by the nearly complete loss of touch response in adult animals, providing an in vivo model in which to manipulate the early phases of expanded-polyQ neurotoxicity. In total, 6034 genes were examined, revealing 662 gene inactivations that either reduce or aggravate defective touch response in 128Q animals. Several genes were previously implicated in HD or neurodegenerative disease, suggesting that this screen has effectively identified candidate targets for HD. Network-based analysis emphasized a subset of high-confidence modifier genes in pathways of interest in HD including metabolic, neurodevelopmental and pro-survival pathways. Finally, 49 modifiers of 128Q-neuron dysfunction that are dysregulated in the striatum of either R/2 or CHL2 HD mice, or both, were identified. Collectively, these results highlight the relevance to HD pathogenesis, providing novel information on the potential therapeutic targets for neuroprotection in HD. © 2012 Lejeune et al; licensee BioMed Central Ltd.

  5. Radiosensitivity and genes

    Energy Technology Data Exchange (ETDEWEB)

    Qiyue, Hu; Mingyue, Lun [Suzhou Medical Coll., JS (China)

    1995-07-01

    Reported effects of some oncogenes, tumour suppressor genes and DNA repair genes on sensitivity of cells to ionizing radiation are reviewed. The role of oncogenes in cellular response to irradiation is discussed, especially the extensively studied oncogenes such as the ras gene family. For tumour suppressor genes, mainly the p53, which is increasingly implicated as a gene affecting radiosensitivity, is reviewed. It is considered that there is a cell cycle checkpoint determinant which is postulated to be able to arrest the irradiated cells in G{sub 1} phase to allow them to repair damage before they undergo DNA synthesis. So far there are six DNA repair genes which have been cloned in mammalian cells, but only one, XRCC1, appears to be involved in repair of human X-ray damage. XRCC1 can correct high sisterchromatid exchange levels when transferred into EM{sub 9} cells, but its expression seems to have no correlation with radiosensitivity of human neck and head tumour cells. Radiosensitivity is an intricate issue which may involve many factors. A scheme of cellular reactions after exposure to irradiation is proposed to indicate a possible sequence of events initiated by ionizing radiation.

  6. Radiosensitivity and genes

    International Nuclear Information System (INIS)

    Hu Qiyue; Lun Mingyue

    1995-07-01

    Reported effects of some oncogenes, tumour suppressor genes and DNA repair genes on sensitivity of cells to ionizing radiation are reviewed. The role of oncogenes in cellular response to irradiation is discussed, especially the extensively studied oncogenes such as the ras gene family. For tumour suppressor genes, mainly the p53, which is increasingly implicated as a gene affecting radiosensitivity, is reviewed. It is considered that there is a cell cycle checkpoint determinant which is postulated to be able to arrest the irradiated cells in G 1 phase to allow them to repair damage before they undergo DNA synthesis. So far there are six DNA repair genes which have been cloned in mammalian cells, but only one, XRCC1, appears to be involved in repair of human X-ray damage. XRCC1 can correct high sisterchromatid exchange levels when transferred into EM 9 cells, but its expression seems to have no correlation with radiosensitivity of human neck and head tumour cells. Radiosensitivity is an intricate issue which may involve many factors. A scheme of cellular reactions after exposure to irradiation is proposed to indicate a possible sequence of events initiated by ionizing radiation

  7. Gene expression analysis to identify molecular correlates of pre- and post-conditioning derived neuroprotection.

    Science.gov (United States)

    Prasad, Shiv S; Russell, Marsha; Nowakowska, Margeryta; Williams, Andrew; Yauk, Carole

    2012-06-01

    Mild ischaemic exposures before or after severe injurious ischaemia that elicit neuroprotective responses are referred to as preconditioning and post-conditioning. The corresponding molecular mechanisms of neuroprotection are not completely understood. Identification of the genes and associated pathways of corresponding neuroprotection would provide insight into neuronal survival, potential therapeutic approaches and assessments of therapies for stroke. The objectives of this study were to use global gene expression approach to infer the molecular mechanisms in pre- and post-conditioning-derived neuroprotection in cortical neurons following oxygen and glucose deprivation (OGD) in vitro and then to apply these findings to predict corresponding functional pathways. To this end, microarray analysis was applied to rat cortical neurons with or without the pre- and post-conditioning treatments at 3-h post-reperfusion, and differentially expressed transcripts were subjected to statistical, hierarchical clustering and pathway analyses. The expression patterns of 3,431 genes altered under all conditions of ischaemia (with and without pre- or post-conditioning). We identified 1,595 genes that were commonly regulated within both the pre- and post-conditioning treatments. Cluster analysis revealed that transcription profiles clustered tightly within controls, non-conditioned OGD and neuroprotected groups. Two clusters defining neuroprotective conditions associated with up- and downregulated genes were evident. The five most upregulated genes within the neuroprotective clusters were Tagln, Nes, Ptrf, Vim and Adamts9, and the five most downregulated genes were Slc7a3, Bex1, Brunol4, Nrxn3 and Cpne4. Pathway analysis revealed that the intracellular and second messenger signalling pathways in addition to cell death were predominantly associated with downregulated pre- and post-conditioning associated genes, suggesting that modulation of cell death and signal transduction pathways

  8. DNA damage induction of ribonucleotide reductase.

    OpenAIRE

    Elledge, S J; Davis, R W

    1989-01-01

    RNR2 encodes the small subunit of ribonucleotide reductase, the enzyme that catalyzes the first step in the pathway for the production of deoxyribonucleotides needed for DNA synthesis. RNR2 is a member of a group of genes whose activities are cell cycle regulated and that are transcriptionally induced in response to the stress of DNA damage. An RNR2-lacZ fusion was used to further characterize the regulation of RNR2 and the pathway responsible for its response to DNA damage. beta-Galactosidas...

  9. Identifying gene coexpression networks underlying the dynamic regulation of wood-forming tissues in Populus under diverse environmental conditions.

    Science.gov (United States)

    Zinkgraf, Matthew; Liu, Lijun; Groover, Andrew; Filkov, Vladimir

    2017-06-01

    Trees modify wood formation through integration of environmental and developmental signals in complex but poorly defined transcriptional networks, allowing trees to produce woody tissues appropriate to diverse environmental conditions. In order to identify relationships among genes expressed during wood formation, we integrated data from new and publically available datasets in Populus. These datasets were generated from woody tissue and include transcriptome profiling, transcription factor binding, DNA accessibility and genome-wide association mapping experiments. Coexpression modules were calculated, each of which contains genes showing similar expression patterns across experimental conditions, genotypes and treatments. Conserved gene coexpression modules (four modules totaling 8398 genes) were identified that were highly preserved across diverse environmental conditions and genetic backgrounds. Functional annotations as well as correlations with specific experimental treatments associated individual conserved modules with distinct biological processes underlying wood formation, such as cell-wall biosynthesis, meristem development and epigenetic pathways. Module genes were also enriched for DNase I hypersensitivity footprints and binding from four transcription factors associated with wood formation. The conserved modules are excellent candidates for modeling core developmental pathways common to wood formation in diverse environments and genotypes, and serve as testbeds for hypothesis generation and testing for future studies. No claim to original US government works. New Phytologist © 2017 New Phytologist Trust.

  10. Leveraging Comparative Genomics to Identify and Functionally Characterize Genes Associated with Sperm Phenotypes in Python bivittatus (Burmese Python

    Directory of Open Access Journals (Sweden)

    Kristopher J. L. Irizarry

    2016-01-01

    Full Text Available Comparative genomics approaches provide a means of leveraging functional genomics information from a highly annotated model organism’s genome (such as the mouse genome in order to make physiological inferences about the role of genes and proteins in a less characterized organism’s genome (such as the Burmese python. We employed a comparative genomics approach to produce the functional annotation of Python bivittatus genes encoding proteins associated with sperm phenotypes. We identify 129 gene-phenotype relationships in the python which are implicated in 10 specific sperm phenotypes. Results obtained through our systematic analysis identified subsets of python genes exhibiting associations with gene ontology annotation terms. Functional annotation data was represented in a semantic scatter plot. Together, these newly annotated Python bivittatus genome resources provide a high resolution framework from which the biology relating to reptile spermatogenesis, fertility, and reproduction can be further investigated. Applications of our research include (1 production of genetic diagnostics for assessing fertility in domestic and wild reptiles; (2 enhanced assisted reproduction technology for endangered and captive reptiles; and (3 novel molecular targets for biotechnology-based approaches aimed at reducing fertility and reproduction of invasive reptiles. Additional enhancements to reptile genomic resources will further enhance their value.

  11. Bioinformatic analysis of patient-derived ASPS gene expressions and ASPL-TFE3 fusion transcript levels identify potential therapeutic targets.

    Directory of Open Access Journals (Sweden)

    David G Covell

    Full Text Available Gene expression data, collected from ASPS tumors of seven different patients and from one immortalized ASPS cell line (ASPS-1, was analyzed jointly with patient ASPL-TFE3 (t(X;17(p11;q25 fusion transcript data to identify disease-specific pathways and their component genes. Data analysis of the pooled patient and ASPS-1 gene expression data, using conventional clustering methods, revealed a relatively small set of pathways and genes characterizing the biology of ASPS. These results could be largely recapitulated using only the gene expression data collected from patient tumor samples. The concordance between expression measures derived from ASPS-1 and both pooled and individual patient tumor data provided a rationale for extending the analysis to include patient ASPL-TFE3 fusion transcript data. A novel linear model was exploited to link gene expressions to fusion transcript data and used to identify a small set of ASPS-specific pathways and their gene expression. Cellular pathways that appear aberrantly regulated in response to the t(X;17(p11;q25 translocation include the cell cycle and cell adhesion. The identification of pathways and gene subsets characteristic of ASPS support current therapeutic strategies that target the FLT1 and MET, while also proposing additional targeting of genes found in pathways involved in the cell cycle (CHK1, cell adhesion (ARHGD1A, cell division (CDC6, control of meiosis (RAD51L3 and mitosis (BIRC5, and chemokine-related protein tyrosine kinase activity (CCL4.

  12. Back to the sea twice: identifying candidate plant genes for molecular evolution to marine life

    Directory of Open Access Journals (Sweden)

    Reusch Thorsten BH

    2011-01-01

    Full Text Available Abstract Background Seagrasses are a polyphyletic group of monocotyledonous angiosperms that have adapted to a completely submerged lifestyle in marine waters. Here, we exploit two collections of expressed sequence tags (ESTs of two wide-spread and ecologically important seagrass species, the Mediterranean seagrass Posidonia oceanica (L. Delile and the eelgrass Zostera marina L., which have independently evolved from aquatic ancestors. This replicated, yet independent evolutionary history facilitates the identification of traits that may have evolved in parallel and are possible instrumental candidates for adaptation to a marine habitat. Results In our study, we provide the first quantitative perspective on molecular adaptations in two seagrass species. By constructing orthologous gene clusters shared between two seagrasses (Z. marina and P. oceanica and eight distantly related terrestrial angiosperm species, 51 genes could be identified with detection of positive selection along the seagrass branches of the phylogenetic tree. Characterization of these positively selected genes using KEGG pathways and the Gene Ontology uncovered that these genes are mostly involved in translation, metabolism, and photosynthesis. Conclusions These results provide first insights into which seagrass genes have diverged from their terrestrial counterparts via an initial aquatic stage characteristic of the order and to the derived fully-marine stage characteristic of seagrasses. We discuss how adaptive changes in these processes may have contributed to the evolution towards an aquatic and marine existence.

  13. Back to the sea twice: identifying candidate plant genes for molecular evolution to marine life.

    Science.gov (United States)

    Wissler, Lothar; Codoñer, Francisco M; Gu, Jenny; Reusch, Thorsten B H; Olsen, Jeanine L; Procaccini, Gabriele; Bornberg-Bauer, Erich

    2011-01-12

    Seagrasses are a polyphyletic group of monocotyledonous angiosperms that have adapted to a completely submerged lifestyle in marine waters. Here, we exploit two collections of expressed sequence tags (ESTs) of two wide-spread and ecologically important seagrass species, the Mediterranean seagrass Posidonia oceanica (L.) Delile and the eelgrass Zostera marina L., which have independently evolved from aquatic ancestors. This replicated, yet independent evolutionary history facilitates the identification of traits that may have evolved in parallel and are possible instrumental candidates for adaptation to a marine habitat. In our study, we provide the first quantitative perspective on molecular adaptations in two seagrass species. By constructing orthologous gene clusters shared between two seagrasses (Z. marina and P. oceanica) and eight distantly related terrestrial angiosperm species, 51 genes could be identified with detection of positive selection along the seagrass branches of the phylogenetic tree. Characterization of these positively selected genes using KEGG pathways and the Gene Ontology uncovered that these genes are mostly involved in translation, metabolism, and photosynthesis. These results provide first insights into which seagrass genes have diverged from their terrestrial counterparts via an initial aquatic stage characteristic of the order and to the derived fully-marine stage characteristic of seagrasses. We discuss how adaptive changes in these processes may have contributed to the evolution towards an aquatic and marine existence.

  14. Attenuated DNA damage repair by trichostatin A through BRCA1 suppression.

    Science.gov (United States)

    Zhang, Yin; Carr, Theresa; Dimtchev, Alexandre; Zaer, Naghmeh; Dritschilo, Anatoly; Jung, Mira

    2007-07-01

    Recent studies have demonstrated that some histone deacetylase (HDAC) inhibitors enhance cellular radiation sensitivity. However, the underlying mechanism for such a radiosensitizing effect remains unexplored. Here we show evidence that treatment with the HDAC inhibitor trichostatin A (TSA) impairs radiation-induced repair of DNA damage. The effect of TSA on the kinetics of DNA damage repair was measured by performing the comet assay and gamma-H2AX focus analysis in radioresistant human squamous carcinoma cells (SQ-20B). TSA exposure increased the amount of radiation-induced DNA damage and slowed the repair kinetics. Gene expression profiling also revealed that a majority of the genes that control cell cycle, DNA replication and damage repair processes were down-regulated after TSA exposure, including BRCA1. The involvement of BRCA1 was further demonstrated by expressing ectopic wild-type BRCA1 in a BRCA1 null cell line (HCC-1937). TSA treatment enhanced radiation sensitivity of HCC-1937/wtBRCA1 clonal cells, which restored cellular radiosensitivity (D(0) = 1.63 Gy), to the control level (D(0) = 1.03 Gy). However, TSA had no effect on the level of radiosensitivity of BRCA1 null cells. Our data demonstrate for the first time that TSA treatment modulates the radiation-induced DNA damage repair process, in part by suppressing BRCA1 gene expression, suggesting that BRCA1 is one of molecular targets of TSA.

  15. Comparative transcriptome analysis of stylar canal cells identifies novel candidate genes implicated in the self-incompatibility response of Citrus clementina

    Directory of Open Access Journals (Sweden)

    Caruso Marco

    2012-02-01

    Full Text Available Abstract Background Reproductive biology in citrus is still poorly understood. Although in recent years several efforts have been made to study pollen-pistil interaction and self-incompatibility, little information is available about the molecular mechanisms regulating these processes. Here we report the identification of candidate genes involved in pollen-pistil interaction and self-incompatibility in clementine (Citrus clementina Hort. ex Tan.. These genes have been identified comparing the transcriptomes of laser-microdissected stylar canal cells (SCC isolated from two genotypes differing for self-incompatibility response ('Comune', a self-incompatible cultivar and 'Monreal', a self- compatible mutation of 'Comune'. Results The transcriptome profiling of SCC indicated that the differential regulation of few specific, mostly uncharacterized transcripts is associated with the breakdown of self-incompatibility in 'Monreal'. Among them, a novel F-box gene showed a drastic up-regulation both in laser microdissected stylar canal cells and in self-pollinated whole styles with stigmas of 'Comune' in concomitance with the arrest of pollen tube growth. Moreover, we identify a non-characterized gene family as closely associated to the self-incompatibility genetic program activated in 'Comune'. Three different aspartic-acid rich (Asp-rich protein genes, located in tandem in the clementine genome, were over-represented in the transcriptome of 'Comune'. These genes are tightly linked to a DELLA gene, previously found to be up-regulated in the self-incompatible genotype during pollen-pistil interaction. Conclusion The highly specific transcriptome survey of the stylar canal cells identified novel genes which have not been previously associated with self-pollen rejection in citrus and in other plant species. Bioinformatic and transcriptional analyses suggested that the mutation leading to self-compatibility in 'Monreal' affected the expression of non

  16. A genetic screen identifies BRCA2 and PALB2 as key regulators of G2 checkpoint maintenance

    DEFF Research Database (Denmark)

    Menzel, Tobias; Nähse-Kumpf, Viola; Kousholt, Arne Nedergaard

    2011-01-01

    To identify key connections between DNA-damage repair and checkpoint pathways, we performed RNA interference screens for regulators of the ionizing radiation-induced G2 checkpoint, and we identified the breast cancer gene BRCA2. The checkpoint was also abrogated following depletion of PALB2......, an interaction partner of BRCA2. BRCA2 and PALB2 depletion led to premature checkpoint abrogation and earlier activation of the AURORA A-PLK1 checkpoint-recovery pathway. These results indicate that the breast cancer tumour suppressors and homologous recombination repair proteins BRCA2 and PALB2 are main...

  17. Gene expression profiling of prostate tissue identifies chromatin regulation as a potential link between obesity and lethal prostate cancer.

    Science.gov (United States)

    Ebot, Ericka M; Gerke, Travis; Labbé, David P; Sinnott, Jennifer A; Zadra, Giorgia; Rider, Jennifer R; Tyekucheva, Svitlana; Wilson, Kathryn M; Kelly, Rachel S; Shui, Irene M; Loda, Massimo; Kantoff, Philip W; Finn, Stephen; Vander Heiden, Matthew G; Brown, Myles; Giovannucci, Edward L; Mucci, Lorelei A

    2017-11-01

    Obese men are at higher risk of advanced prostate cancer and cancer-specific mortality; however, the biology underlying this association remains unclear. This study examined gene expression profiles of prostate tissue to identify biological processes differentially expressed by obesity status and lethal prostate cancer. Gene expression profiling was performed on tumor (n = 402) and adjacent normal (n = 200) prostate tissue from participants in 2 prospective cohorts who had been diagnosed with prostate cancer from 1982 to 2005. Body mass index (BMI) was calculated from the questionnaire immediately preceding cancer diagnosis. Men were followed for metastases or prostate cancer-specific death (lethal disease) through 2011. Gene Ontology biological processes differentially expressed by BMI were identified using gene set enrichment analysis. Pathway scores were computed by averaging the signal intensities of member genes. Odds ratios (ORs) for lethal prostate cancer were estimated with logistic regression. Among 402 men, 48% were healthy weight, 31% were overweight, and 21% were very overweight/obese. Fifteen gene sets were enriched in tumor tissue, but not normal tissue, of very overweight/obese men versus healthy-weight men; 5 of these were related to chromatin modification and remodeling (false-discovery rate 7, 41% vs 17%; P = 2 × 10 -4 ) and an increased risk of lethal disease that was independent of grade and stage (OR, 5.26; 95% confidence interval, 2.37-12.25). This study improves our understanding of the biology of aggressive prostate cancer and identifies a potential mechanistic link between obesity and prostate cancer death that warrants further study. Cancer 2017;123:4130-4138. © 2017 American Cancer Society. © 2017 American Cancer Society.

  18. Blood Gene Expression Predicts Bronchiolitis Obliterans Syndrome

    Directory of Open Access Journals (Sweden)

    Richard Danger

    2018-01-01

    Full Text Available Bronchiolitis obliterans syndrome (BOS, the main manifestation of chronic lung allograft dysfunction, leads to poor long-term survival after lung transplantation. Identifying predictors of BOS is essential to prevent the progression of dysfunction before irreversible damage occurs. By using a large set of 107 samples from lung recipients, we performed microarray gene expression profiling of whole blood to identify early biomarkers of BOS, including samples from 49 patients with stable function for at least 3 years, 32 samples collected at least 6 months before BOS diagnosis (prediction group, and 26 samples at or after BOS diagnosis (diagnosis group. An independent set from 25 lung recipients was used for validation by quantitative PCR (13 stables, 11 in the prediction group, and 8 in the diagnosis group. We identified 50 transcripts differentially expressed between stable and BOS recipients. Three genes, namely POU class 2 associating factor 1 (POU2AF1, T-cell leukemia/lymphoma protein 1A (TCL1A, and B cell lymphocyte kinase, were validated as predictive biomarkers of BOS more than 6 months before diagnosis, with areas under the curve of 0.83, 0.77, and 0.78 respectively. These genes allow stratification based on BOS risk (log-rank test p < 0.01 and are not associated with time posttransplantation. This is the first published large-scale gene expression analysis of blood after lung transplantation. The three-gene blood signature could provide clinicians with new tools to improve follow-up and adapt treatment of patients likely to develop BOS.

  19. Genome-Wide Association Study with Sequence Variants Identifies Candidate Genes for Mastitis Resistance in Dairy Cattle

    DEFF Research Database (Denmark)

    Sahana, Goutam; Guldbrandtsen, Bernt; Bendixen, Christian

    Six genomic regions affecting clinical mastitis were identified through a GWAS study with imputed BovineHD chip genotype data in the Nordic Holstein cattle population. The association analyses were carried out using a SNP-by-SNP analysis by fitting the regression of allele dosage and a polygenic...... Effect Predictor (VEP) vers. 2.6 using ENSEMBL vers. 67 databases. Candidate polymorphisms affecting clinical mastitis were selected based on their association with the traits and functional annotations. A strong positional candidate gene for mastitis resistance on chromosome-6 is the NPFFR2 which...... Factor Receptor Alpha (LIFR) emerged as a strong candidate gene for mastitis resistance. The LIFR gene is involved in acute phase response and is expressed in saliva and mammary gland....

  20. Genome-wide association study identified genetic variations and candidate genes for plant architecture component traits in Chinese upland cotton.

    Science.gov (United States)

    Su, Junji; Li, Libei; Zhang, Chi; Wang, Caixiang; Gu, Lijiao; Wang, Hantao; Wei, Hengling; Liu, Qibao; Huang, Long; Yu, Shuxun

    2018-06-01

    Thirty significant associations between 22 SNPs and five plant architecture component traits in Chinese upland cotton were identified via GWAS. Four peak SNP loci located on chromosome D03 were simultaneously associated with more plant architecture component traits. A candidate gene, Gh_D03G0922, might be responsible for plant height in upland cotton. A compact plant architecture is increasingly required for mechanized harvesting processes in China. Therefore, cotton plant architecture is an important trait, and its components, such as plant height, fruit branch length and fruit branch angle, affect the suitability of a cultivar for mechanized harvesting. To determine the genetic basis of cotton plant architecture, a genome-wide association study (GWAS) was performed using a panel composed of 355 accessions and 93,250 single nucleotide polymorphisms (SNPs) identified using the specific-locus amplified fragment sequencing method. Thirty significant associations between 22 SNPs and five plant architecture component traits were identified via GWAS. Most importantly, four peak SNP loci located on chromosome D03 were simultaneously associated with more plant architecture component traits, and these SNPs were harbored in one linkage disequilibrium block. Furthermore, 21 candidate genes for plant architecture were predicted in a 0.95-Mb region including the four peak SNPs. One of these genes (Gh_D03G0922) was near the significant SNP D03_31584163 (8.40 kb), and its Arabidopsis homologs contain MADS-box domains that might be involved in plant growth and development. qRT-PCR showed that the expression of Gh_D03G0922 was upregulated in the apical buds and young leaves of the short and compact cotton varieties, and virus-induced gene silencing (VIGS) proved that the silenced plants exhibited increased PH. These results indicate that Gh_D03G0922 is likely the candidate gene for PH in cotton. The genetic variations and candidate genes identified in this study lay a foundation

  1. Responses and damages during long-term continuous irradiation in plants

    International Nuclear Information System (INIS)

    Watanabe, Yoshito

    2011-01-01

    Effects of long-term continuous irradiation are relevant to studies in radiation ecotoxicology. To investigate plants biological responses to continuous irradiation, we performed metabolome and transcriptome analysis in a model plant, arabidopsis. Comprehensive analysis of primary metabolites using capillary electrophoresis mass spectrometry revealed extensive metabolic changes at early onset of growth inhibition in plants exposed to gamma rays at the dose rate of 20 Gy/day. The changes included elevated levels of B vitamins and second metabolites, commonly responsive to many abiotic and biotic stresses. Responses at early onset of growth inhibition were also observed in the transcriptome analysis using microarray, which showed up-regulation of 55 genes in plants exposed to gamma rays at 20 Gy/day. Although about a half of the up-regulated genes were also responsive just after acute irradiation, the other half was responsive only during long-term continuous irradiation. Database analyses showed that the specifically up-regulated genes to long-term continuous irradiation included genes relating to general stress responses and protein metabolism. The results of these analyses appear to reflect plants responses to progressive radiation damages, from radiation-specific responses, which repair primary DNA damage, to more general stress responses, which maintain homoeostasis against secondary damages. (author)

  2. Microarray Analysis in a Cell Death Resistant Glioma Cell Line to Identify Signaling Pathways and Novel Genes Controlling Resistance and Malignancy

    Energy Technology Data Exchange (ETDEWEB)

    Seznec, Janina; Naumann, Ulrike, E-mail: ulrike.naumann@uni-tuebingen.de [Laboratory of Molecular Neuro-Oncology, Department of General Neurology, Hertie-Institute for Clinical Brain Research and Center Neurology, University of Tuebingen, Otfried-Mueller-Str. 27, Tuebingen 72076 (Germany)

    2011-06-27

    Glioblastoma multiforme (GBM) is a lethal type of cancer mainly resistant to radio- and chemotherapy. Since the tumor suppressor p53 functions as a transcription factor regulating the expression of genes involved in growth inhibition, DNA repair and apoptosis, we previously assessed whether specific differences in the modulation of gene expression are responsible for the anti-tumor properties of a dominant positive p53, chimeric tumor suppressor (CTS)-1. CTS-1 is based on the sequence of p53 and designed to resist various mechanisms of inactivation which limit the activity of p53. To identify CTS-1-regulated cell death-inducing genes, we generated a CTS-1-resistant glioma cell line (229R). We used Affymetrix whole-genome microarray expression analysis to analyze alterations in gene expression and identified a variety of CTS-1 regulated genes involved in cancer-linked processes. 313 genes were differentially expressed in Adeno-CTS-1 (Ad-CTS-1)-infected and 700 genes in uninfected 229R cells compared to matching parental cells. Ingenuity Pathway Analysis (IPA) determined a variety of differentially expressed genes in Ad-CTS-1-infected cells that were members of the intracellular networks with central tumor-involved players such as nuclear factor kappa B (NF-κB), protein kinase B (PKB/AKT) or transforming growth factor beta (TGF-β). Differentially regulated genes include secreted factors as well as intracellular proteins and transcription factors regulating not only cell death, but also processes such as tumor cell motility and immunity. This work gives an overview of the pathways differentially regulated in the resistant versus parental glioma cells and might be helpful to identify candidate genes which could serve as targets to develop novel glioma specific therapy strategies.

  3. Microarray Analysis in a Cell Death Resistant Glioma Cell Line to Identify Signaling Pathways and Novel Genes Controlling Resistance and Malignancy

    International Nuclear Information System (INIS)

    Seznec, Janina; Naumann, Ulrike

    2011-01-01

    Glioblastoma multiforme (GBM) is a lethal type of cancer mainly resistant to radio- and chemotherapy. Since the tumor suppressor p53 functions as a transcription factor regulating the expression of genes involved in growth inhibition, DNA repair and apoptosis, we previously assessed whether specific differences in the modulation of gene expression are responsible for the anti-tumor properties of a dominant positive p53, chimeric tumor suppressor (CTS)-1. CTS-1 is based on the sequence of p53 and designed to resist various mechanisms of inactivation which limit the activity of p53. To identify CTS-1-regulated cell death-inducing genes, we generated a CTS-1-resistant glioma cell line (229R). We used Affymetrix whole-genome microarray expression analysis to analyze alterations in gene expression and identified a variety of CTS-1 regulated genes involved in cancer-linked processes. 313 genes were differentially expressed in Adeno-CTS-1 (Ad-CTS-1)-infected and 700 genes in uninfected 229R cells compared to matching parental cells. Ingenuity Pathway Analysis (IPA) determined a variety of differentially expressed genes in Ad-CTS-1-infected cells that were members of the intracellular networks with central tumor-involved players such as nuclear factor kappa B (NF-κB), protein kinase B (PKB/AKT) or transforming growth factor beta (TGF-β). Differentially regulated genes include secreted factors as well as intracellular proteins and transcription factors regulating not only cell death, but also processes such as tumor cell motility and immunity. This work gives an overview of the pathways differentially regulated in the resistant versus parental glioma cells and might be helpful to identify candidate genes which could serve as targets to develop novel glioma specific therapy strategies

  4. Microaspiration of esophageal gland cells and cDNA library construction for identifying parasitism genes of plant-parasitic nematodes.

    Science.gov (United States)

    Hussey, Richard S; Huang, Guozhong; Allen, Rex

    2011-01-01

    Identifying parasitism genes encoding proteins secreted from a plant-parasitic nematode's esophageal gland cells and injected through its stylet into plant tissue is the key to understanding the molecular basis of nematode parasitism of plants. Parasitism genes have been cloned by directly microaspirating the cytoplasm from the esophageal gland cells of different parasitic stages of cyst or root-knot nematodes to provide mRNA to create a gland cell-specific cDNA library by long-distance reverse-transcriptase polymerase chain reaction. cDNA clones are sequenced and deduced protein sequences with a signal peptide for secretion are identified for high-throughput in situ hybridization to confirm gland-specific expression.

  5. Combined gene expression analysis of whole-tissue and microdissected pancreatic ductal adenocarcinoma identifies genes specifically overexpressed in tumor epithelia.

    Science.gov (United States)

    Badea, Liviu; Herlea, Vlad; Dima, Simona Olimpia; Dumitrascu, Traian; Popescu, Irinel

    2008-01-01

    The precise details of pancreatic ductal adenocarcinoma (PDAC) pathogenesis are still insufficiently known, requiring the use of high-throughput methods. However, PDAC is especially difficult to study using microarrays due to its strong desmoplastic reaction, which involves a hyperproliferating stroma that effectively "masks" the contribution of the minoritary neoplastic epithelial cells. Thus it is not clear which of the genes that have been found differentially expressed between normal and whole tumor tissues are due to the tumor epithelia and which simply reflect the differences in cellular composition. To address this problem, laser microdissection studies have been performed, but these have to deal with much smaller tissue sample quantities and therefore have significantly higher experimental noise. In this paper we combine our own large sample whole-tissue study with a previously published smaller sample microdissection study by Grützmann et al. to identify the genes that are specifically overexpressed in PDAC tumor epithelia. The overlap of this list of genes with other microarray studies of pancreatic cancer as well as with the published literature is impressive. Moreover, we find a number of genes whose over-expression appears to be inversely correlated with patient survival: keratin 7, laminin gamma 2, stratifin, platelet phosphofructokinase, annexin A2, MAP4K4 and OACT2 (MBOAT2), which are all specifically upregulated in the neoplastic epithelia, rather than the tumor stroma. We improve on other microarray studies of PDAC by putting together the higher statistical power due to a larger number of samples with information about cell-type specific expression and patient survival.

  6. Loci influencing blood pressure identified using a cardiovascular gene-centric array.

    Science.gov (United States)

    Ganesh, Santhi K; Tragante, Vinicius; Guo, Wei; Guo, Yiran; Lanktree, Matthew B; Smith, Erin N; Johnson, Toby; Castillo, Berta Almoguera; Barnard, John; Baumert, Jens; Chang, Yen-Pei Christy; Elbers, Clara C; Farrall, Martin; Fischer, Mary E; Franceschini, Nora; Gaunt, Tom R; Gho, Johannes M I H; Gieger, Christian; Gong, Yan; Isaacs, Aaron; Kleber, Marcus E; Mateo Leach, Irene; McDonough, Caitrin W; Meijs, Matthijs F L; Mellander, Olle; Molony, Cliona M; Nolte, Ilja M; Padmanabhan, Sandosh; Price, Tom S; Rajagopalan, Ramakrishnan; Shaffer, Jonathan; Shah, Sonia; Shen, Haiqing; Soranzo, Nicole; van der Most, Peter J; Van Iperen, Erik P A; Van Setten, Jessica; Van Setten, Jessic A; Vonk, Judith M; Zhang, Li; Beitelshees, Amber L; Berenson, Gerald S; Bhatt, Deepak L; Boer, Jolanda M A; Boerwinkle, Eric; Burkley, Ben; Burt, Amber; Chakravarti, Aravinda; Chen, Wei; Cooper-Dehoff, Rhonda M; Curtis, Sean P; Dreisbach, Albert; Duggan, David; Ehret, Georg B; Fabsitz, Richard R; Fornage, Myriam; Fox, Ervin; Furlong, Clement E; Gansevoort, Ron T; Hofker, Marten H; Hovingh, G Kees; Kirkland, Susan A; Kottke-Marchant, Kandice; Kutlar, Abdullah; Lacroix, Andrea Z; Langaee, Taimour Y; Li, Yun R; Lin, Honghuang; Liu, Kiang; Maiwald, Steffi; Malik, Rainer; Murugesan, Gurunathan; Newton-Cheh, Christopher; O'Connell, Jeffery R; Onland-Moret, N Charlotte; Ouwehand, Willem H; Palmas, Walter; Penninx, Brenda W; Pepine, Carl J; Pettinger, Mary; Polak, Joseph F; Ramachandran, Vasan S; Ranchalis, Jane; Redline, Susan; Ridker, Paul M; Rose, Lynda M; Scharnag, Hubert; Schork, Nicholas J; Shimbo, Daichi; Shuldiner, Alan R; Srinivasan, Sathanur R; Stolk, Ronald P; Taylor, Herman A; Thorand, Barbara; Trip, Mieke D; van Duijn, Cornelia M; Verschuren, W Monique; Wijmenga, Cisca; Winkelmann, Bernhard R; Wyatt, Sharon; Young, J Hunter; Boehm, Bernhard O; Caulfield, Mark J; Chasman, Daniel I; Davidson, Karina W; Doevendans, Pieter A; Fitzgerald, Garret A; Gums, John G; Hakonarson, Hakon; Hillege, Hans L; Illig, Thomas; Jarvik, Gail P; Johnson, Julie A; Kastelein, John J P; Koenig, Wolfgang; März, Winfried; Mitchell, Braxton D; Murray, Sarah S; Oldehinkel, Albertine J; Rader, Daniel J; Reilly, Muredach P; Reiner, Alex P; Schadt, Eric E; Silverstein, Roy L; Snieder, Harold; Stanton, Alice V; Uitterlinden, André G; van der Harst, Pim; van der Schouw, Yvonne T; Samani, Nilesh J; Johnson, Andrew D; Munroe, Patricia B; de Bakker, Paul I W; Zhu, Xiaofeng; Levy, Daniel; Keating, Brendan J; Asselbergs, Folkert W

    2013-04-15

    Blood pressure (BP) is a heritable determinant of risk for cardiovascular disease (CVD). To investigate genetic associations with systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP) and pulse pressure (PP), we genotyped ∼50 000 single-nucleotide polymorphisms (SNPs) that capture variation in ∼2100 candidate genes for cardiovascular phenotypes in 61 619 individuals of European ancestry from cohort studies in the USA and Europe. We identified novel associations between rs347591 and SBP (chromosome 3p25.3, in an intron of HRH1) and between rs2169137 and DBP (chromosome1q32.1 in an intron of MDM4) and between rs2014408 and SBP (chromosome 11p15 in an intron of SOX6), previously reported to be associated with MAP. We also confirmed 10 previously known loci associated with SBP, DBP, MAP or PP (ADRB1, ATP2B1, SH2B3/ATXN2, CSK, CYP17A1, FURIN, HFE, LSP1, MTHFR, SOX6) at array-wide significance (P < 2.4 × 10(-6)). We then replicated these associations in an independent set of 65 886 individuals of European ancestry. The findings from expression QTL (eQTL) analysis showed associations of SNPs in the MDM4 region with MDM4 expression. We did not find any evidence of association of the two novel SNPs in MDM4 and HRH1 with sequelae of high BP including coronary artery disease (CAD), left ventricular hypertrophy (LVH) or stroke. In summary, we identified two novel loci associated with BP and confirmed multiple previously reported associations. Our findings extend our understanding of genes involved in BP regulation, some of which may eventually provide new targets for therapeutic intervention.

  7. Oxidative stress/damage induces multimerization and interaction of Fanconi anemia proteins.

    Science.gov (United States)

    Park, Su-Jung; Ciccone, Samantha L M; Beck, Brian D; Hwang, Byounghoon; Freie, Brian; Clapp, D Wade; Lee, Suk-Hee

    2004-07-16

    Fanconi anemia (FANC) is a heterogeneous genetic disorder characterized by a hypersensitivity to DNA-damaging agents, chromosomal instability, and defective DNA repair. Eight FANC genes have been identified so far, and five of them (FANCA, -C, -E, -F, and -G) assemble in a multinuclear complex and function at least in part in a complex to activate FANCD2 by monoubiquitination. Here we show that FANCA and FANCG are redox-sensitive proteins that are multimerized and/or form a nuclear complex in response to oxidative stress/damage. Both FANCA and FANCG proteins exist as monomers under non-oxidizing conditions, whereas they become multimers following H2O2 treatment. Treatment of cells with oxidizing agent not only triggers the multimeric complex of FANCA and FANCG in vivo but also induces the interaction between FANCA and FANCG. N-Ethylmaleimide treatment abolishes multimerization and interaction of FANCA and FANCG in vitro. Taken together, our results lead us to conclude that FANCA and FANCG uniquely respond to oxidative damage by forming complex(es) via intermolecular disulfide linkage(s), which may be crucial in forming such complexes and in determining their function.

  8. Selective activation of human heat shock gene transcription by nitrosourea antitumor drugs mediated by isocyanate-induced damage and activation of heat shock transcription factor.

    Science.gov (United States)

    Kroes, R A; Abravaya, K; Seidenfeld, J; Morimoto, R I

    1991-01-01

    Treatment of cultured human tumor cells with the chloroethylnitrosourea antitumor drug 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) selectively induces transcription and protein synthesis of a subset of the human heat shock or stress-induced genes (HSP90 and HSP70) with little effect on other stress genes or on expression of the c-fos, c-myc, or beta-actin genes. The active component of BCNU and related compounds appears to be the isocyanate moiety that causes carbamoylation of proteins and nucleic acids. Transcriptional activation of the human HSP70 gene by BCNU is dependent on the heat shock element and correlates with the level of heat shock transcription factor and its binding to the heat shock element in vivo. Unlike activation by heat or heavy metals, BCNU-mediated activation is strongly dependent upon new protein synthesis. This suggests that BCNU-induced, isocyanate-mediated damage to newly synthesized protein(s) may be responsible for activation of the heat shock transcription factor and increased transcription of the HSP90 and HSP70 genes. Images PMID:2052560

  9. RNA-sequence data normalization through in silico prediction of reference genes: the bacterial response to DNA damage as case study.

    Science.gov (United States)

    Berghoff, Bork A; Karlsson, Torgny; Källman, Thomas; Wagner, E Gerhart H; Grabherr, Manfred G

    2017-01-01

    Measuring how gene expression changes in the course of an experiment assesses how an organism responds on a molecular level. Sequencing of RNA molecules, and their subsequent quantification, aims to assess global gene expression changes on the RNA level (transcriptome). While advances in high-throughput RNA-sequencing (RNA-seq) technologies allow for inexpensive data generation, accurate post-processing and normalization across samples is required to eliminate any systematic noise introduced by the biochemical and/or technical processes. Existing methods thus either normalize on selected known reference genes that are invariant in expression across the experiment, assume that the majority of genes are invariant, or that the effects of up- and down-regulated genes cancel each other out during the normalization. Here, we present a novel method, moose 2 , which predicts invariant genes in silico through a dynamic programming (DP) scheme and applies a quadratic normalization based on this subset. The method allows for specifying a set of known or experimentally validated invariant genes, which guides the DP. We experimentally verified the predictions of this method in the bacterium Escherichia coli , and show how moose 2 is able to (i) estimate the expression value distances between RNA-seq samples, (ii) reduce the variation of expression values across all samples, and (iii) to subsequently reveal new functional groups of genes during the late stages of DNA damage. We further applied the method to three eukaryotic data sets, on which its performance compares favourably to other methods. The software is implemented in C++ and is publicly available from http://grabherr.github.io/moose2/. The proposed RNA-seq normalization method, moose 2 , is a valuable alternative to existing methods, with two major advantages: (i) in silico prediction of invariant genes provides a list of potential reference genes for downstream analyses, and (ii) non-linear artefacts in RNA-seq data

  10. Microarray analysis of DNA damage repair gene expression profiles in cervical cancer cells radioresistant to 252Cf neutron and X-rays

    International Nuclear Information System (INIS)

    Qing, Yi; Wang, Ge; Wang, Dong; Yang, Xue-Qin; Zhong, Zhao-Yang; Lei, Xin; Xie, Jia-Yin; Li, Meng-Xia; Xiang, De-Bing; Li, Zeng-Peng; Yang, Zhen-Zhou

    2010-01-01

    The aim of the study was to obtain stable radioresistant sub-lines from the human cervical cancer cell line HeLa by prolonged exposure to 252 Cf neutron and X-rays. Radioresistance mechanisms were investigated in the resulting cells using microarray analysis of DNA damage repair genes. HeLa cells were treated with fractionated 252 Cf neutron and X-rays, with a cumulative dose of 75 Gy each, over 8 months, yielding the sub-lines HeLaNR and HeLaXR. Radioresistant characteristics were detected by clone formation assay, ultrastructural observations, cell doubling time, cell cycle distribution, and apoptosis assay. Gene expression patterns of the radioresistant sub-lines were studied through microarray analysis and verified by Western blotting and real-time PCR. The radioresistant sub-lines HeLaNR and HeLaXR were more radioresisitant to 252 Cf neutron and X-rays than parental HeLa cells by detecting their radioresistant characteristics, respectively. Compared to HeLa cells, the expression of 24 genes was significantly altered by at least 2-fold in HeLaNR cells. Of these, 19 genes were up-regulated and 5 down-regulated. In HeLaXR cells, 41 genes were significantly altered by at least 2-fold; 38 genes were up-regulated and 3 down-regulated. Chronic exposure of cells to ionizing radiation induces adaptive responses that enhance tolerance of ionizing radiation and allow investigations of cellular radioresistance mechanisms. The insights gained into the molecular mechanisms activated by these 'radioresistance' genes will lead to new therapeutic targets for cervical cancer

  11. Exome sequencing of Pakistani consanguineous families identifies 30 novel candidate genes for recessive intellectual disability.

    Science.gov (United States)

    Riazuddin, S; Hussain, M; Razzaq, A; Iqbal, Z; Shahzad, M; Polla, D L; Song, Y; van Beusekom, E; Khan, A A; Tomas-Roca, L; Rashid, M; Zahoor, M Y; Wissink-Lindhout, W M; Basra, M A R; Ansar, M; Agha, Z; van Heeswijk, K; Rasheed, F; Van de Vorst, M; Veltman, J A; Gilissen, C; Akram, J; Kleefstra, T; Assir, M Z; Grozeva, D; Carss, K; Raymond, F L; O'Connor, T D; Riazuddin, S A; Khan, S N; Ahmed, Z M; de Brouwer, A P M; van Bokhoven, H; Riazuddin, S

    2017-11-01

    Intellectual disability (ID) is a clinically and genetically heterogeneous disorder, affecting 1-3% of the general population. Although research into the genetic causes of ID has recently gained momentum, identification of pathogenic mutations that cause autosomal recessive ID (ARID) has lagged behind, predominantly due to non-availability of sizeable families. Here we present the results of exome sequencing in 121 large consanguineous Pakistani ID families. In 60 families, we identified homozygous or compound heterozygous DNA variants in a single gene, 30 affecting reported ID genes and 30 affecting novel candidate ID genes. Potential pathogenicity of these alleles was supported by co-segregation with the phenotype, low frequency in control populations and the application of stringent bioinformatics analyses. In another eight families segregation of multiple pathogenic variants was observed, affecting 19 genes that were either known or are novel candidates for ID. Transcriptome profiles of normal human brain tissues showed that the novel candidate ID genes formed a network significantly enriched for transcriptional co-expression (P<0.0001) in the frontal cortex during fetal development and in the temporal-parietal and sub-cortex during infancy through adulthood. In addition, proteins encoded by 12 novel ID genes directly interact with previously reported ID proteins in six known pathways essential for cognitive function (P<0.0001). These results suggest that disruptions of temporal parietal and sub-cortical neurogenesis during infancy are critical to the pathophysiology of ID. These findings further expand the existing repertoire of genes involved in ARID, and provide new insights into the molecular mechanisms and the transcriptome map of ID.

  12. Large-scale evaluation of candidate genes identifies associations between VEGF polymorphisms and bladder cancer risk.

    Directory of Open Access Journals (Sweden)

    Montserrat García-Closas

    2007-02-01

    Full Text Available Common genetic variation could alter the risk for developing bladder cancer. We conducted a large-scale evaluation of single nucleotide polymorphisms (SNPs in candidate genes for cancer to identify common variants that influence bladder cancer risk. An Illumina GoldenGate assay was used to genotype 1,433 SNPs within or near 386 genes in 1,086 cases and 1,033 controls in Spain. The most significant finding was in the 5' UTR of VEGF (rs25648, p for likelihood ratio test, 2 degrees of freedom = 1 x 10(-5. To further investigate the region, we analyzed 29 additional SNPs in VEGF, selected to saturate the promoter and 5' UTR and to tag common genetic variation in this gene. Three additional SNPs in the promoter region (rs833052, rs1109324, and rs1547651 were associated with increased risk for bladder cancer: odds ratio (95% confidence interval: 2.52 (1.06-5.97, 2.74 (1.26-5.98, and 3.02 (1.36-6.63, respectively; and a polymorphism in intron 2 (rs3024994 was associated with reduced risk: 0.65 (0.46-0.91. Two of the promoter SNPs and the intron 2 SNP showed linkage disequilibrium with rs25648. Haplotype analyses revealed three blocks of linkage disequilibrium with significant associations for two blocks including the promoter and 5' UTR (global p = 0.02 and 0.009, respectively. These findings are biologically plausible since VEGF is critical in angiogenesis, which is important for tumor growth, its elevated expression in bladder tumors correlates with tumor progression, and specific 5' UTR haplotypes have been shown to influence promoter activity. Associations between bladder cancer risk and other genes in this report were not robust based on false discovery rate calculations. In conclusion, this large-scale evaluation of candidate cancer genes has identified common genetic variants in the regulatory regions of VEGF that could be associated with bladder cancer risk.

  13. Third-Generation Sequencing and Analysis of Four Complete Pig Liver Esterase Gene Sequences in Clones Identified by Screening BAC Library.

    Science.gov (United States)

    Zhou, Qiongqiong; Sun, Wenjuan; Liu, Xiyan; Wang, Xiliang; Xiao, Yuncai; Bi, Dingren; Yin, Jingdong; Shi, Deshi

    2016-01-01

    Pig liver carboxylesterase (PLE) gene sequences in GenBank are incomplete, which has led to difficulties in studying the genetic structure and regulation mechanisms of gene expression of PLE family genes. The aim of this study was to obtain and analysis of complete gene sequences of PLE family by screening from a Rongchang pig BAC library and third-generation PacBio gene sequencing. After a number of existing incomplete PLE isoform gene sequences were analysed, primers were designed based on conserved regions in PLE exons, and the whole pig genome used as a template for Polymerase chain reaction (PCR) amplification. Specific primers were then selected based on the PCR amplification results. A three-step PCR screening method was used to identify PLE-positive clones by screening a Rongchang pig BAC library and PacBio third-generation sequencing was performed. BLAST comparisons and other bioinformatics methods were applied for sequence analysis. Five PLE-positive BAC clones, designated BAC-10, BAC-70, BAC-75, BAC-119 and BAC-206, were identified. Sequence analysis yielded the complete sequences of four PLE genes, PLE1, PLE-B9, PLE-C4, and PLE-G2. Complete PLE gene sequences were defined as those containing regulatory sequences, exons, and introns. It was found that, not only did the PLE exon sequences of the four genes show a high degree of homology, but also that the intron sequences were highly similar. Additionally, the regulatory region of the genes contained two 720bps reverse complement sequences that may have an important function in the regulation of PLE gene expression. This is the first report to confirm the complete sequences of four PLE genes. In addition, the study demonstrates that each PLE isoform is encoded by a single gene and that the various genes exhibit a high degree of sequence homology, suggesting that the PLE family evolved from a single ancestral gene. Obtaining the complete sequences of these PLE genes provides the necessary foundation for

  14. Bioinformatics analysis identify novel OB fold protein coding genes in C. elegans.

    Directory of Open Access Journals (Sweden)

    Daryanaz Dargahi

    Full Text Available BACKGROUND: The C. elegans genome has been extensively annotated by the WormBase consortium that uses state of the art bioinformatics pipelines, functional genomics and manual curation approaches. As a result, the identification of novel genes in silico in this model organism is becoming more challenging requiring new approaches. The Oligonucleotide-oligosaccharide binding (OB fold is a highly divergent protein family, in which protein sequences, in spite of having the same fold, share very little sequence identity (5-25%. Therefore, evidence from sequence-based annotation may not be sufficient to identify all the members of this family. In C. elegans, the number of OB-fold proteins reported is remarkably low (n=46 compared to other evolutionary-related eukaryotes, such as yeast S. cerevisiae (n=344 or fruit fly D. melanogaster (n=84. Gene loss during evolution or differences in the level of annotation for this protein family, may explain these discrepancies. METHODOLOGY/PRINCIPAL FINDINGS: This study examines the possibility that novel OB-fold coding genes exist in the worm. We developed a bioinformatics approach that uses the most sensitive sequence-sequence, sequence-profile and profile-profile similarity search methods followed by 3D-structure prediction as a filtering step to eliminate false positive candidate sequences. We have predicted 18 coding genes containing the OB-fold that have remarkably partially been characterized in C. elegans. CONCLUSIONS/SIGNIFICANCE: This study raises the possibility that the annotation of highly divergent protein fold families can be improved in C. elegans. Similar strategies could be implemented for large scale analysis by the WormBase consortium when novel versions of the genome sequence of C. elegans, or other evolutionary related species are being released. This approach is of general interest to the scientific community since it can be used to annotate any genome.

  15. Analysis of pan-genome to identify the core genes and essential genes of Brucella spp.

    Science.gov (United States)

    Yang, Xiaowen; Li, Yajie; Zang, Juan; Li, Yexia; Bie, Pengfei; Lu, Yanli; Wu, Qingmin

    2016-04-01

    Brucella spp. are facultative intracellular pathogens, that cause a contagious zoonotic disease, that can result in such outcomes as abortion or sterility in susceptible animal hosts and grave, debilitating illness in humans. For deciphering the survival mechanism of Brucella spp. in vivo, 42 Brucella complete genomes from NCBI were analyzed for the pan-genome and core genome by identification of their composition and function of Brucella genomes. The results showed that the total 132,143 protein-coding genes in these genomes were divided into 5369 clusters. Among these, 1710 clusters were associated with the core genome, 1182 clusters with strain-specific genes and 2477 clusters with dispensable genomes. COG analysis indicated that 44 % of the core genes were devoted to metabolism, which were mainly responsible for energy production and conversion (COG category C), and amino acid transport and metabolism (COG category E). Meanwhile, approximately 35 % of the core genes were in positive selection. In addition, 1252 potential essential genes were predicted in the core genome by comparison with a prokaryote database of essential genes. The results suggested that the core genes in Brucella genomes are relatively conservation, and the energy and amino acid metabolism play a more important role in the process of growth and reproduction in Brucella spp. This study might help us to better understand the mechanisms of Brucella persistent infection and provide some clues for further exploring the gene modules of the intracellular survival in Brucella spp.

  16. Microarray analysis identifies a common set of cellular genes modulated by different HCV replicon clones

    Directory of Open Access Journals (Sweden)

    Gerosolimo Germano

    2008-06-01

    Full Text Available Abstract Background Hepatitis C virus (HCV RNA synthesis and protein expression affect cell homeostasis by modulation of gene expression. The impact of HCV replication on global cell transcription has not been fully evaluated. Thus, we analysed the expression profiles of different clones of human hepatoma-derived Huh-7 cells carrying a self-replicating HCV RNA which express all viral proteins (HCV replicon system. Results First, we compared the expression profile of HCV replicon clone 21-5 with both the Huh-7 parental cells and the 21-5 cured (21-5c cells. In these latter, the HCV RNA has been eliminated by IFN-α treatment. To confirm data, we also analyzed microarray results from both the 21-5 and two other HCV replicon clones, 22-6 and 21-7, compared to the Huh-7 cells. The study was carried out by using the Applied Biosystems (AB Human Genome Survey Microarray v1.0 which provides 31,700 probes that correspond to 27,868 human genes. Microarray analysis revealed a specific transcriptional program induced by HCV in replicon cells respect to both IFN-α-cured and Huh-7 cells. From the original datasets of differentially expressed genes, we selected by Venn diagrams a final list of 38 genes modulated by HCV in all clones. Most of the 38 genes have never been described before and showed high fold-change associated with significant p-value, strongly supporting data reliability. Classification of the 38 genes by Panther System identified functional categories that were significantly enriched in this gene set, such as histones and ribosomal proteins as well as extracellular matrix and intracellular protein traffic. The dataset also included new genes involved in lipid metabolism, extracellular matrix and cytoskeletal network, which may be critical for HCV replication and pathogenesis. Conclusion Our data provide a comprehensive analysis of alterations in gene expression induced by HCV replication and reveal modulation of new genes potentially useful

  17. Identifying the candidate genes involved in the calyx abscission process of 'Kuerlexiangli' (Pyrus sinkiangensis Yu) by digital transcript abundance measurements.

    Science.gov (United States)

    Qi, Xiaoxiao; Wu, Jun; Wang, Lifen; Li, Leiting; Cao, Yufen; Tian, Luming; Dong, Xingguang; Zhang, Shaoling

    2013-10-23

    'Kuerlexiangli' (Pyrus sinkiangensis Yu), a native pear of Xinjiang, China, is an important agricultural fruit and primary export to the international market. However, fruit with persistent calyxes affect fruit shape and quality. Although several studies have looked into the physiological aspects of the calyx abscission process, the underlying molecular mechanisms remain unknown. In order to better understand the molecular basis of the process of calyx abscission, materials at three critical stages of regulation, with 6000 × Flusilazole plus 300 × PBO treatment (calyx abscising treatment) and 50 mg.L-1GA3 treatment (calyx persisting treatment), were collected and cDNA fragments were sequenced using digital transcript abundance measurements to identify candidate genes. Digital transcript abundance measurements was performed using high-throughput Illumina GAII sequencing on seven samples that were collected at three important stages of the calyx abscission process with chemical agent treatments promoting calyx abscission and persistence. Altogether more than 251,123,845 high quality reads were obtained with approximately 8.0 M raw data for each library. The values of 69.85%-71.90% of clean data in the digital transcript abundance measurements could be mapped to the pear genome database. There were 12,054 differentially expressed genes having Gene Ontology (GO) terms and associating with 251 Kyoto Encyclopedia of Genes and Genomes (KEGG) defined pathways. The differentially expressed genes correlated with calyx abscission were mainly involved in photosynthesis, plant hormone signal transduction, cell wall modification, transcriptional regulation, and carbohydrate metabolism. Furthermore, candidate calyx abscission-specific genes, e.g. Inflorescence deficient in abscission gene, were identified. Quantitative real-time PCR was used to confirm the digital transcript abundance measurements results. We identified candidate genes that showed highly dynamic changes in

  18. Defended to the Nines: 25 Years of Resistance Gene Cloning Identifies Nine Mechanisms for R Protein Function.

    Science.gov (United States)

    Kourelis, Jiorgos; van der Hoorn, Renier A L

    2018-02-01

    Plants have many, highly variable resistance ( R ) gene loci, which provide resistance to a variety of pathogens. The first R gene to be cloned, maize ( Zea mays ) Hm1 , was published over 25 years ago, and since then, many different R genes have been identified and isolated. The encoded proteins have provided clues to the diverse molecular mechanisms underlying immunity. Here, we present a meta-analysis of 314 cloned R genes. The majority of R genes encode cell surface or intracellular receptors, and we distinguish nine molecular mechanisms by which R proteins can elevate or trigger disease resistance: direct (1) or indirect (2) perception of pathogen-derived molecules on the cell surface by receptor-like proteins and receptor-like kinases; direct (3) or indirect (4) intracellular detection of pathogen-derived molecules by nucleotide binding, leucine-rich repeat receptors, or detection through integrated domains (5); perception of transcription activator-like effectors through activation of executor genes (6); and active (7), passive (8), or host reprogramming-mediated (9) loss of susceptibility. Although the molecular mechanisms underlying the functions of R genes are only understood for a small proportion of known R genes, a clearer understanding of mechanisms is emerging and will be crucial for rational engineering and deployment of novel R genes. © 2018 American Society of Plant Biologists. All rights reserved.

  19. Gene methylation profiles of normal mucosa, and benign and malignant colorectal tumors identify early onset markers

    Directory of Open Access Journals (Sweden)

    Vatn Morten

    2008-12-01

    Full Text Available Abstract Background Multiple epigenetic and genetic changes have been reported in colorectal tumors, but few of these have clinical impact. This study aims to pinpoint epigenetic markers that can discriminate between non-malignant and malignant tissue from the large bowel, i.e. markers with diagnostic potential. The methylation status of eleven genes (ADAMTS1, CDKN2A, CRABP1, HOXA9, MAL, MGMT, MLH1, NR3C1, PTEN, RUNX3, and SCGB3A1 was determined in 154 tissue samples including normal mucosa, adenomas, and carcinomas of the colorectum. The gene-specific and widespread methylation status among the carcinomas was related to patient gender and age, and microsatellite instability status. Possible CIMP tumors were identified by comparing the methylation profile with microsatellite instability (MSI, BRAF-, KRAS-, and TP53 mutation status. Results The mean number of methylated genes per sample was 0.4 in normal colon mucosa from tumor-free individuals, 1.2 in mucosa from cancerous bowels, 2.2 in adenomas, and 3.9 in carcinomas. Widespread methylation was found in both adenomas and carcinomas. The promoters of ADAMTS1, MAL, and MGMT were frequently methylated in benign samples as well as in malignant tumors, independent of microsatellite instability. In contrast, normal mucosa samples taken from bowels without tumor were rarely methylated for the same genes. Hypermethylated CRABP1, MLH1, NR3C1, RUNX3, and SCGB3A1 were shown to be identifiers of carcinomas with microsatellite instability. In agreement with the CIMP concept, MSI and mutated BRAF were associated with samples harboring hypermethylation of several target genes. Conclusion Methylated ADAMTS1, MGMT, and MAL are suitable as markers for early tumor detection.

  20. Mycobacterium smegmatis PafBC is involved in regulation of DNA damage response.

    Science.gov (United States)

    Fudrini Olivencia, Begonia; Müller, Andreas U; Roschitzki, Bernd; Burger, Sibylle; Weber-Ban, Eilika; Imkamp, Frank

    2017-10-25

    Two genes, pafB and pafC, are organized in an operon with the Pup-ligase gene pafA, which is part of the Pup-proteasome system (PPS) present in mycobacteria and other actinobacteria. The PPS is crucial for Mycobacterium tuberculosis resistance towards reactive nitrogen intermediates (RNI). However, pafB and pafC apparently play only a minor role in RNI resistance. To characterize their function, we generated a pafBC deletion in Mycobacterium smegmatis (Msm). Proteome analysis of the mutant strain revealed decreased cellular levels of various proteins involved in DNA damage repair, including recombinase A (RecA). In agreement with this finding, Msm ΔpafBC displayed increased sensitivity to DNA damaging agents. In mycobacteria two pathways regulate DNA repair genes: the LexA/RecA-dependent SOS response and a predominant pathway that controls gene expression via a LexA/RecA-independent promoter, termed P1. PafB and PafC feature winged helix-turn-helix DNA binding motifs and we demonstrate that together they form a stable heterodimer in vitro, implying a function as a heterodimeric transcriptional regulator. Indeed, P1-driven transcription of recA was decreased in Msm ΔpafBC under standard conditions and induction of recA expression upon DNA damage was strongly impaired. Taken together, our data indicate an important regulatory function of PafBC in the mycobacterial DNA damage response.