WorldWideScience

Sample records for identification system method

  1. System Identification Methods for Aircraft Flight Control Development and Validation

    Science.gov (United States)

    1995-10-01

    System-identification methods compose a mathematical model, or series of models, : from measurements of inputs and outputs of dynamic systems. This paper : discusses the use of frequency-domain system-identification methods for the : development and ...

  2. Accurate Lithium-ion battery parameter estimation with continuous-time system identification methods

    International Nuclear Information System (INIS)

    Xia, Bing; Zhao, Xin; Callafon, Raymond de; Garnier, Hugues; Nguyen, Truong; Mi, Chris

    2016-01-01

    Highlights: • Continuous-time system identification is applied in Lithium-ion battery modeling. • Continuous-time and discrete-time identification methods are compared in detail. • The instrumental variable method is employed to further improve the estimation. • Simulations and experiments validate the advantages of continuous-time methods. - Abstract: The modeling of Lithium-ion batteries usually utilizes discrete-time system identification methods to estimate parameters of discrete models. However, in real applications, there is a fundamental limitation of the discrete-time methods in dealing with sensitivity when the system is stiff and the storage resolutions are limited. To overcome this problem, this paper adopts direct continuous-time system identification methods to estimate the parameters of equivalent circuit models for Lithium-ion batteries. Compared with discrete-time system identification methods, the continuous-time system identification methods provide more accurate estimates to both fast and slow dynamics in battery systems and are less sensitive to disturbances. A case of a 2"n"d-order equivalent circuit model is studied which shows that the continuous-time estimates are more robust to high sampling rates, measurement noises and rounding errors. In addition, the estimation by the conventional continuous-time least squares method is further improved in the case of noisy output measurement by introducing the instrumental variable method. Simulation and experiment results validate the analysis and demonstrate the advantages of the continuous-time system identification methods in battery applications.

  3. Comparison of System Identification Methods using Ambient Bridge Test Data

    DEFF Research Database (Denmark)

    Andersen, P.; Brincker, Rune; Peeters, B.

    1999-01-01

    In this paper the performance of four different system identification methods is compared using operational data obtained from an ambient vibration test of the Swiss Z24 highway bridge. The four methods are the frequency domain based peak-picking methods, the polyreference LSCE method, the stocha......In this paper the performance of four different system identification methods is compared using operational data obtained from an ambient vibration test of the Swiss Z24 highway bridge. The four methods are the frequency domain based peak-picking methods, the polyreference LSCE method...

  4. Communications device identification methods, communications methods, wireless communications readers, wireless communications systems, and articles of manufacture

    Science.gov (United States)

    Steele, Kerry D [Kennewick, WA; Anderson, Gordon A [Benton City, WA; Gilbert, Ronald W [Morgan Hill, CA

    2011-02-01

    Communications device identification methods, communications methods, wireless communications readers, wireless communications systems, and articles of manufacture are described. In one aspect, a communications device identification method includes providing identification information regarding a group of wireless identification devices within a wireless communications range of a reader, using the provided identification information, selecting one of a plurality of different search procedures for identifying unidentified ones of the wireless identification devices within the wireless communications range, and identifying at least some of the unidentified ones of the wireless identification devices using the selected one of the search procedures.

  5. Identification of fractional order systems using modulating functions method

    KAUST Repository

    Liu, Dayan

    2013-06-01

    The modulating functions method has been used for the identification of linear and nonlinear systems. In this paper, we generalize this method to the on-line identification of fractional order systems based on the Riemann-Liouville fractional derivatives. First, a new fractional integration by parts formula involving the fractional derivative of a modulating function is given. Then, we apply this formula to a fractional order system, for which the fractional derivatives of the input and the output can be transferred into the ones of the modulating functions. By choosing a set of modulating functions, a linear system of algebraic equations is obtained. Hence, the unknown parameters of a fractional order system can be estimated by solving a linear system. Using this method, we do not need any initial values which are usually unknown and not equal to zero. Also we do not need to estimate the fractional derivatives of noisy output. Moreover, it is shown that the proposed estimators are robust against high frequency sinusoidal noises and the ones due to a class of stochastic processes. Finally, the efficiency and the stability of the proposed method is confirmed by some numerical simulations.

  6. Mathematical correlation of modal-parameter-identification methods via system-realization theory

    Science.gov (United States)

    Juang, Jer-Nan

    1987-01-01

    A unified approach is introduced using system-realization theory to derive and correlate modal-parameter-identification methods for flexible structures. Several different time-domain methods are analyzed and treated. A basic mathematical foundation is presented which provides insight into the field of modal-parameter identification for comparison and evaluation. The relation among various existing methods is established and discussed. This report serves as a starting point to stimulate additional research toward the unification of the many possible approaches for modal-parameter identification.

  7. Mathematical correlation of modal parameter identification methods via system realization theory

    Science.gov (United States)

    Juang, J. N.

    1986-01-01

    A unified approach is introduced using system realization theory to derive and correlate modal parameter identification methods for flexible structures. Several different time-domain and frequency-domain methods are analyzed and treated. A basic mathematical foundation is presented which provides insight into the field of modal parameter identification for comparison and evaluation. The relation among various existing methods is established and discussed. This report serves as a starting point to stimulate additional research towards the unification of the many possible approaches for modal parameter identification.

  8. A system boundary identification method for life cycle assessment

    DEFF Research Database (Denmark)

    Li, Tao; Zhang, Hongchao; Liu, Zhichao

    2014-01-01

    , technical, geographical and temporal dimensions are presented to limit the boundaries of LCA. An algorithm is developed to identify an appropriate boundary by searching the process tree and evaluating the environmental impact contribution of each process while it is added into the studied system...... as processes are added. The two threshold rules and identification methods presented can be used to identify system boundary of LCA. The case study demonstrated that the methodology presented in this paper is an effective tool for the boundary identification....

  9. Image portion identification methods, image parsing methods, image parsing systems, and articles of manufacture

    Science.gov (United States)

    Lassahn, Gordon D.; Lancaster, Gregory D.; Apel, William A.; Thompson, Vicki S.

    2013-01-08

    Image portion identification methods, image parsing methods, image parsing systems, and articles of manufacture are described. According to one embodiment, an image portion identification method includes accessing data regarding an image depicting a plurality of biological substrates corresponding to at least one biological sample and indicating presence of at least one biological indicator within the biological sample and, using processing circuitry, automatically identifying a portion of the image depicting one of the biological substrates but not others of the biological substrates.

  10. Vortex Tube Modeling Using the System Identification Method

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jaeyoung; Jeong, Jiwoong; Yu, Sangseok [Chungnam Nat’l Univ., Daejeon (Korea, Republic of); Im, Seokyeon [Tongmyong Univ., Busan (Korea, Republic of)

    2017-05-15

    In this study, vortex tube system model is developed to predict the temperature of the hot and the cold sides. The vortex tube model is developed based on the system identification method, and the model utilized in this work to design the vortex tube is ARX type (Auto-Regressive with eXtra inputs). The derived polynomial model is validated against experimental data to verify the overall model accuracy. It is also shown that the derived model passes the stability test. It is confirmed that the derived model closely mimics the physical behavior of the vortex tube from both the static and dynamic numerical experiments by changing the angles of the low-temperature side throttle valve, clearly showing temperature separation. These results imply that the system identification based modeling can be a promising approach for the prediction of complex physical systems, including the vortex tube.

  11. System identification by methods from the statistical signal theory, history and state of the art

    International Nuclear Information System (INIS)

    Christensen, Palle; Gundersen, Vidar B.

    1999-01-01

    Condition monitoring is an important area in which the OECD Halden Reactor Project has developed several tools. This paper presents a general overview of methods utilised in diagnosis systems, signal validation systems and process optimisation systems such as EFD, Mocom, Aladdin and PEANO. An overview of lessons learned on diagnosis of technical systems with special reference to system identification is reported. The analysis of input-output behaviour by special, suitable methods may be used as a tool for diagnosis. An overview of methods for empirical modelling and data analysis and their major differences is presented. It is explained how system identification methods and transforms may be used to build models based on observed data from a system. According to the Webster dictionary diagnosis is 'Investigation or analysis of the cause or nature of a condition, situation or a problem.' By examining data collected from a process the aim is to detect abnormal conditions and if possible understand what has been the cause of the observed problem. Section 1 gives a retrospective view at the development in the field of system identification. Section 2 presents a classification of the methods, while section 3 provides some practical advice on how diagnosis can be carried out by means of system identification methods (author) (ml)

  12. Hankel Matrix Correlation Function-Based Subspace Identification Method for UAV Servo System

    Directory of Open Access Journals (Sweden)

    Minghong She

    2018-01-01

    Full Text Available For the identification problem of closed-loop subspace model, we propose a zero space projection method based on the estimation of correlation function to fill the block Hankel matrix of identification model by combining the linear algebra with geometry. By using the same projection of related data in time offset set and LQ decomposition, the multiplication operation of projection is achieved and dynamics estimation of the unknown equipment system model is obtained. Consequently, we have solved the problem of biased estimation caused when the open-loop subspace identification algorithm is applied to the closed-loop identification. A simulation example is given to show the effectiveness of the proposed approach. In final, the practicability of the identification algorithm is verified by hardware test of UAV servo system in real environment.

  13. A Novel Coupled State/Input/Parameter Identification Method for Linear Structural Systems

    Directory of Open Access Journals (Sweden)

    Zhimin Wan

    2018-01-01

    Full Text Available In many engineering applications, unknown states, inputs, and parameters exist in the structures. However, most methods require one or two of these variables to be known in order to identify the other(s. Recently, the authors have proposed a method called EGDF for coupled state/input/parameter identification for nonlinear system in state space. However, the EGDF method based solely on acceleration measurements is found to be unstable, which can cause the drift of the identified inputs and displacements. Although some regularization methods can be adopted for solving the problem, they are not suitable for joint input-state identification in real time. In this paper, a strategy of data fusion of displacement and acceleration measurements is used to avoid the low-frequency drift in the identified inputs and structural displacements for linear structural systems. Two numerical examples about a plane truss and a single-stage isolation system are conducted to verify the effectiveness of the proposed modified EGDF algorithm.

  14. On the orthogonalised reverse path method for nonlinear system identification

    Science.gov (United States)

    Muhamad, P.; Sims, N. D.; Worden, K.

    2012-09-01

    The problem of obtaining the underlying linear dynamic compliance matrix in the presence of nonlinearities in a general multi-degree-of-freedom (MDOF) system can be solved using the conditioned reverse path (CRP) method introduced by Richards and Singh (1998 Journal of Sound and Vibration, 213(4): pp. 673-708). The CRP method also provides a means of identifying the coefficients of any nonlinear terms which can be specified a priori in the candidate equations of motion. Although the CRP has proved extremely useful in the context of nonlinear system identification, it has a number of small issues associated with it. One of these issues is the fact that the nonlinear coefficients are actually returned in the form of spectra which need to be averaged over frequency in order to generate parameter estimates. The parameter spectra are typically polluted by artefacts from the identification of the underlying linear system which manifest themselves at the resonance and anti-resonance frequencies. A further problem is associated with the fact that the parameter estimates are extracted in a recursive fashion which leads to an accumulation of errors. The first minor objective of this paper is to suggest ways to alleviate these problems without major modification to the algorithm. The results are demonstrated on numerically-simulated responses from MDOF systems. In the second part of the paper, a more radical suggestion is made, to replace the conditioned spectral analysis (which is the basis of the CRP method) with an alternative time domain decorrelation method. The suggested approach - the orthogonalised reverse path (ORP) method - is illustrated here using data from simulated single-degree-of-freedom (SDOF) and MDOF systems.

  15. Trends and progress in system identification

    CERN Document Server

    Eykhoff, Pieter

    1981-01-01

    Trends and Progress in System Identification is a three-part book that focuses on model considerations, identification methods, and experimental conditions involved in system identification. Organized into 10 chapters, this book begins with a discussion of model method in system identification, citing four examples differing on the nature of the models involved, the nature of the fields, and their goals. Subsequent chapters describe the most important aspects of model theory; the """"classical"""" methods and time series estimation; application of least squares and related techniques for the e

  16. Feasibility Study on Tension Estimation Technique for Hanger Cables Using the FE Model-Based System Identification Method

    Directory of Open Access Journals (Sweden)

    Kyu-Sik Park

    2015-01-01

    Full Text Available Hanger cables in suspension bridges are partly constrained by horizontal clamps. So, existing tension estimation methods based on a single cable model are prone to higher errors as the cable gets shorter, making it more sensitive to flexural rigidity. Therefore, inverse analysis and system identification methods based on finite element models are suggested recently. In this paper, the applicability of system identification methods is investigated using the hanger cables of Gwang-An bridge. The test results show that the inverse analysis and systemic identification methods based on finite element models are more reliable than the existing string theory and linear regression method for calculating the tension in terms of natural frequency errors. However, the estimation error of tension can be varied according to the accuracy of finite element model in model based methods. In particular, the boundary conditions affect the results more profoundly when the cable gets shorter. Therefore, it is important to identify the boundary conditions through experiment if it is possible. The FE model-based tension estimation method using system identification method can take various boundary conditions into account. Also, since it is not sensitive to the number of natural frequency inputs, the availability of this system is high.

  17. Nonlinear system identification NARMAX methods in the time, frequency, and spatio-temporal domains

    CERN Document Server

    Billings, Stephen A

    2013-01-01

    Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains describes a comprehensive framework for the identification and analysis of nonlinear dynamic systems in the time, frequency, and spatio-temporal domains. This book is written with an emphasis on making the algorithms accessible so that they can be applied and used in practice. Includes coverage of: The NARMAX (nonlinear autoregressive moving average with exogenous inputs) modelThe orthogonal least squares algorithm that allows models to be built term by

  18. Identification methods for structural health monitoring

    CERN Document Server

    Papadimitriou, Costas

    2016-01-01

    The papers in this volume provide an introduction to well known and established system identification methods for structural health monitoring and to more advanced, state-of-the-art tools, able to tackle the challenges associated with actual implementation. Starting with an overview on fundamental methods, introductory concepts are provided on the general framework of time and frequency domain, parametric and non-parametric methods, input-output or output only techniques. Cutting edge tools are introduced including, nonlinear system identification methods; Bayesian tools; and advanced modal identification techniques (such as the Kalman and particle filters, the fast Bayesian FFT method). Advanced computational tools for uncertainty quantification are discussed to provide a link between monitoring and structural integrity assessment. In addition, full scale applications and field deployments that illustrate the workings and effectiveness of the introduced monitoring schemes are demonstrated.

  19. Mastering system identification in 100 exercises

    CERN Document Server

    Schoukens, J; Rolain, Yves

    2012-01-01

    "This book enables readers to understand system identification and linear system modeling through 100 practical exercises without requiring complex theoretical knowledge. The contents encompass state-of-the-art system identification methods, with both time and frequency domain system identification methods covered, including the pros and cons of each. Each chapter features MATLAB exercises, discussions of the exercises, accompanying MATLAB downloads, and larger projects that serve as potential assignments in this learn-by-doing resource"--

  20. Systems identification: a theoretical method applied to tracer kinetics in aquatic microcosms

    International Nuclear Information System (INIS)

    Halfon, E.; Georgia Univ., Athens

    1974-01-01

    A mathematical model of radionuclide kinetics in a laboratory microcosm was built and the transfer parameters estimated by multiple regression and system identification techniques. Insight into the functioning of the system was obtained from analysis of the model. Methods employed have allowed movements of radioisotopes not directly observable in the experimental systems to be distinguished. Results are generalized to whole ecosystems

  1. Direct Linear System Identification Method for Multistory Three-dimensional Building Structure with General Eccentricity

    OpenAIRE

    Shintani, Kenichirou; Yoshitomi, Shinta; Takewaki, Izuru

    2017-01-01

    A method of physical parameter system identification (SI) is proposed here for three-dimensional (3D) building structures with in-plane rigid floors in which the stiffness and damping coefficients of each structural frame in the 3D building structure are identified from the measured floor horizontal accelerations. A batch processing least-squares estimation method for many discrete time domain measured data is proposed for the direct identification of the stiffness and damping coefficients of...

  2. Identification of Hidden Failures in Process Control Systems Based on the HMG Method

    DEFF Research Database (Denmark)

    Jalashgar, Atoosa

    1998-01-01

    cause the systems to become overloaded and even unstable, if they remain hidden. The method uses a particular terminology to contribute to the identification of system properties, including goals, functions, and the capabilities. All identified knowledge about the system is then represented by using...... a tailored combination of two function-oriented methods, Multilevel Flow Modelling (MFM) and Goal Tree-Success Tree (GTST). The features of the method, called Hybrid MFM-GTST, are described and demonstrated by using an example of a process control system. (C) 1998 John Wiley & Sons, Inc....

  3. Systems and methods for remote long standoff biometric identification using microwave cardiac signals

    Science.gov (United States)

    McGrath, William R. (Inventor); Talukder, Ashit (Inventor)

    2012-01-01

    Systems and methods for remote, long standoff biometric identification using microwave cardiac signals are provided. In one embodiment, the invention relates to a method for remote biometric identification using microwave cardiac signals, the method including generating and directing first microwave energy in a direction of a person, receiving microwave energy reflected from the person, the reflected microwave energy indicative of cardiac characteristics of the person, segmenting a signal indicative of the reflected microwave energy into a waveform including a plurality of heart beats, identifying patterns in the microwave heart beats waveform, and identifying the person based on the identified patterns and a stored microwave heart beats waveform.

  4. Methods, Systems and Apparatuses for Radio Frequency Identification

    Science.gov (United States)

    Fink, Patrick W. (Inventor); Chu, Andrew W. (Inventor); Lin, Gregory Y. (Inventor); Kennedy, Timothy F. (Inventor); Ngo, Phong H. (Inventor); Brown, Dewey T. (Inventor); Byerly, Diane (Inventor)

    2017-01-01

    A system for radio frequency identification (RFID) includes an enclosure defining an interior region interior to the enclosure, and a feed for generating an electromagnetic field in the interior region in response to a signal received from an RFID reader via a radio frequency (RF) transmission line and, in response to the electromagnetic field, receiving a signal from an RFID sensor attached to an item in the interior region. The structure of the enclosure may be conductive and may include a metamaterial portion, an electromagnetically absorbing portion, or a wall extending in the interior region. Related apparatuses and methods for performing RFID are provided.

  5. A Maximum Power Transfer Tracking Method for WPT Systems with Coupling Coefficient Identification Considering Two-Value Problem

    Directory of Open Access Journals (Sweden)

    Xin Dai

    2017-10-01

    Full Text Available Maximum power transfer tracking (MPTT is meant to track the maximum power point during the system operation of wireless power transfer (WPT systems. Traditionally, MPTT is achieved by impedance matching at the secondary side when the load resistance is varied. However, due to a loosely coupling characteristic, the variation of coupling coefficient will certainly affect the performance of impedance matching, therefore MPTT will fail accordingly. This paper presents an identification method of coupling coefficient for MPTT in WPT systems. Especially, the two-value issue during the identification is considered. The identification approach is easy to implement because it does not require additional circuit. Furthermore, MPTT is easy to realize because only two easily measured DC parameters are needed. The detailed identification procedure corresponding to the two-value issue and the maximum power transfer tracking process are presented, and both the simulation analysis and experimental results verified the identification method and MPTT.

  6. Power System Oscillation Modes Identifications: Guidelines for Applying TLS-ESPRIT Method

    Science.gov (United States)

    Gajjar, Gopal R.; Soman, Shreevardhan

    2013-05-01

    Fast measurements of power system quantities available through wide-area measurement systems enables direct observations for power system electromechanical oscillations. But the raw observations data need to be processed to obtain the quantitative measures required to make any inference regarding the power system state. A detailed discussion is presented for the theory behind the general problem of oscillatory mode indentification. This paper presents some results on oscillation mode identification applied to a wide-area frequency measurements system. Guidelines for selection of parametes for obtaining most reliable results from the applied method are provided. Finally, some results on real measurements are presented with our inference on them.

  7. Decoupling Identification for Serial Two-Link Two-Inertia System

    Science.gov (United States)

    Oaki, Junji; Adachi, Shuichi

    The purpose of our study is to develop a precise model by applying the technique of system identification for the model-based control of a nonlinear robot arm, under taking joint-elasticity into consideration. We previously proposed a systematic identification method, called “decoupling identification,” for a “SCARA-type” planar two-link robot arm with elastic joints caused by the Harmonic-drive® reduction gears. The proposed method serves as an extension of the conventional rigid-joint-model-based identification. The robot arm is treated as a serial two-link two-inertia system with nonlinearity. The decoupling identification method using link-accelerometer signals enables the serial two-link two-inertia system to be divided into two linear one-link two-inertia systems. The MATLAB®'s commands for state-space model estimation are utilized in the proposed method. Physical parameters such as motor inertias, link inertias, joint-friction coefficients, and joint-spring coefficients are estimated through the identified one-link two-inertia systems using a gray-box approach. This paper describes accuracy evaluations using the two-link arm for the decoupling identification method under introducing closed-loop-controlled elements and varying amplitude-setup of identification-input. Experimental results show that the identification method also works with closed-loop-controlled elements. Therefore, the identification method is applicable to a “PUMA-type” vertical robot arm under gravity.

  8. Cost Optimal System Identification Experiment Design

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning

    A structural system identification experiment design method is formulated in the light of decision theory, structural reliability theory and optimization theory. The experiment design is based on a preposterior analysis, well-known from the classical decision theory. I.e. the decisions concerning...... reflecting the cost of the experiment and the value of obtained additional information. An example concerning design of an experiment for parametric identification of a single degree of freedom structural system shows the applicability of the experiment design method....... the experiment design are not based on obtained experimental data. Instead the decisions are based on the expected experimental data assumed to be obtained from the measurements, estimated based on prior information and engineering judgement. The design method provides a system identification experiment design...

  9. New Waste Beverage Cans Identification Method

    Directory of Open Access Journals (Sweden)

    Firmansyah Burlian

    2016-05-01

    Full Text Available The primary emphasis of this work is on the development of a new waste beverage cans identification method for automated beverage cans sorting systems known as the SVS system. The method described involved window-based subdivision of the image into X-cells, construction of X-candidate template for N-cells, calculation of matching scores of reference templates for the N-cells image, and application of matching score to identify the grade of the object. The SVS system performance for correct beverage cans grade identification is 95.17% with estimated throughput of 21,600 objects per hour with a conveyor belt width of 18˝. The weight of the throughput depends on the size and type of the objects.

  10. A measurement fusion method for nonlinear system identification using a cooperative learning algorithm.

    Science.gov (United States)

    Xia, Youshen; Kamel, Mohamed S

    2007-06-01

    Identification of a general nonlinear noisy system viewed as an estimation of a predictor function is studied in this article. A measurement fusion method for the predictor function estimate is proposed. In the proposed scheme, observed data are first fused by using an optimal fusion technique, and then the optimal fused data are incorporated in a nonlinear function estimator based on a robust least squares support vector machine (LS-SVM). A cooperative learning algorithm is proposed to implement the proposed measurement fusion method. Compared with related identification methods, the proposed method can minimize both the approximation error and the noise error. The performance analysis shows that the proposed optimal measurement fusion function estimate has a smaller mean square error than the LS-SVM function estimate. Moreover, the proposed cooperative learning algorithm can converge globally to the optimal measurement fusion function estimate. Finally, the proposed measurement fusion method is applied to ARMA signal and spatial temporal signal modeling. Experimental results show that the proposed measurement fusion method can provide a more accurate model.

  11. Nonparametric identification of nonlinear dynamic systems using a synchronisation-based method

    Science.gov (United States)

    Kenderi, Gábor; Fidlin, Alexander

    2014-12-01

    The present study proposes an identification method for highly nonlinear mechanical systems that does not require a priori knowledge of the underlying nonlinearities to reconstruct arbitrary restoring force surfaces between degrees of freedom. This approach is based on the master-slave synchronisation between a dynamic model of the system as the slave and the real system as the master using measurements of the latter. As the model synchronises to the measurements, it becomes an observer of the real system. The optimal observer algorithm in a least-squares sense is given by the Kalman filter. Using the well-known state augmentation technique, the Kalman filter can be turned into a dual state and parameter estimator to identify parameters of a priori characterised nonlinearities. The paper proposes an extension of this technique towards nonparametric identification. A general system model is introduced by describing the restoring forces as bilateral spring-dampers with time-variant coefficients, which are estimated as augmented states. The estimation procedure is followed by an a posteriori statistical analysis to reconstruct noise-free restoring force characteristics using the estimated states and their estimated variances. Observability is provided using only one measured mechanical quantity per degree of freedom, which makes this approach less demanding in the number of necessary measurement signals compared with truly nonparametric solutions, which typically require displacement, velocity and acceleration signals. Additionally, due to the statistical rigour of the procedure, it successfully addresses signals corrupted by significant measurement noise. In the present paper, the method is described in detail, which is followed by numerical examples of one degree of freedom (1DoF) and 2DoF mechanical systems with strong nonlinearities of vibro-impact type to demonstrate the effectiveness of the proposed technique.

  12. On System Identification of Wind Turbines

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Perisic, Nevena; Pedersen, B.J.

    Recently several methods have been proposed for the system identification of wind turbines which can be considered as a linear time-varying system due to the operating conditions. For the identification of linear wind turbine models, either black-box or grey-box identification can be used....... The operational model analysis (OMA) methodology can provide accurate estimates of the natural frequencies, damping ratios and mode shapes of the systems as long as the measurements have a low noise to signal ratio. However, in order to take information about the wind turbine into account a grey...

  13. Searching methods for biometric identification systems: Fundamental limits

    NARCIS (Netherlands)

    Willems, F.M.J.

    2009-01-01

    We study two-stage search procedures for biometric identification systems in an information-theoretical setting. Our main conclusion is that clustering based on vector-quantization achieves the optimum trade-off between the number of clusters (cluster rate) and the number of individuals within a

  14. Dynamic Parameter Identification of Hydrodynamic Bearing-Rotor System

    Directory of Open Access Journals (Sweden)

    Zhiqiang Song

    2015-01-01

    Full Text Available A new method called modal parameter genetic time domain identification was employed to study the characteristics of the bearing-rotor system. A multifrequency signal decomposition technology to identify the main components of the measured signal and reject the image mode produced by noise has been used. The first- and second-order natural frequency and damping ratios of the shaft system are identified. Furthermore, because of the deficiency of the traditional least square method, a new genetic identification method to identify the bearing dynamic characteristic parameters has been proposed. The method has been effective albeit with few testing points and operation cases. The derivation of oil-film dynamic coefficients could also provide a basis for shaft system natural vibration characteristic and vibration response analysis. Using the identified dynamic coefficients as the supporting condition, the shaft system modal characteristics were studied. The calculated first- and second-order natural frequencies match quite well those obtained from the modal parameter identification. It was proved that the modal parameter and physical parameter identification methods utilized in this paper are reasonable.

  15. Identification and Damage Detection on Structural Systems

    DEFF Research Database (Denmark)

    Brincker, Rune; Kirkegaard, Poul Henning; Andersen, Palle

    1994-01-01

    A short introduction is given to system identification and damage assessment in civil engineering structures. The most commonly used FFT-based techniques for system identification are mentioned, and the Random decrement technique and parametric methods based on ARMA models are introduced. Speed...

  16. Identification system for chemical warfare agents with PGNAA method

    International Nuclear Information System (INIS)

    Wang Bairong; Yin Guanghua; Yang Zhongpin

    2007-01-01

    The principle and the experimental commanding of Chemical warfare Agents Identification with PGNAA method are discussed in this paper. The choosing of detector, neutron source and the data processing method are detailed. Finally, a set of experimental instruments composed of Cf-232 and BGO detector is developed based on this theory discussed above. (authors)

  17. System identification on two-phase flow stability

    International Nuclear Information System (INIS)

    Wu Shaorong; Zhang Youjie; Wang Dazhong; Bo Jinghai; Wang Fei

    1996-01-01

    The theoretical principle, experimental method and results of interrelation analysis identification for the instability of two-phase flow are described. A completely new concept of test technology and method on two-phase flow stability was developed by using he theory of information science on system stability and system identification for two-phase flow stability in thermo-physics field. Application of this method would make it possible to identify instability boundary of two-phase flow under stable operation conditions of two-phase flow system. The experiment was carried out on the thermohydraulic test system HRTL-5. Using reverse repeated pseudo-random sequences of heating power as input signal sources and flow rate as response function in the test, the two-phase flow stability and stability margin of the natural circulation system are investigated. The effectiveness and feasibility of identifying two-phase flow stability by using this system identification method were experimentally demonstrated. Basic data required for mathematics modeling of two-phase flow and analysis of two-phase flow stability were obtained, which are useful for analyzing, monitoring of the system operation condition, and forecasting of two-phase flow stability in engineering system

  18. Fuel number identification method and device

    International Nuclear Information System (INIS)

    Doi, Takami; Seno, Makoto; Kikuchi, Takashi; Sakamoto, Hiromi; Takahashi, Masaki; Tanaka, Keiji.

    1997-01-01

    The present invention provides a method of and a device for automatically identifying fuel numbers impressed on fuel assemblies disposed in a fuel reprocessing facility, power plant and a reactor core at a high speed and at a high identification rate. Namely, three or more character images are photographed for one fuel assembly as an object of the identification under different illumination conditions. As a result, different character images by the number of the illumination directions can be obtained for identical impressed characters. Learning on a neural network system is applied to the images of all of the characters impressed on the fuel assembly obtained under illumination of predetermined directions. Then, result of the identification by the number of the illumination directions can be obtained for each of the characters as an object of the identification. As a result, since the result of the identification is determined based on a theory of decision of majority, highly automatic identification can be realized. (I.S.)

  19. Evaluation of the utility of a glycemic pattern identification system.

    Science.gov (United States)

    Otto, Erik A; Tannan, Vinay

    2014-07-01

    With the increasing prevalence of systems allowing automated, real-time transmission of blood glucose data there is a need for pattern recognition techniques that can inform of deleterious patterns in glycemic control when people test. We evaluated the utility of pattern identification with a novel pattern identification system named Vigilant™ and compared it to standard pattern identification methods in diabetes. To characterize the importance of an identified pattern we evaluated the relative risk of future hypoglycemic and hyperglycemic events in diurnal periods following identification of a pattern in a data set of 536 patients with diabetes. We evaluated events 2 days, 7 days, 30 days, and 61-90 days from pattern identification, across diabetes types and cohorts of glycemic control, and also compared the system to 6 pattern identification methods consisting of deleterious event counts and percentages over 5-, 14-, and 30-day windows. Episodes of hypoglycemia, hyperglycemia, severe hypoglycemia, and severe hyperglycemia were 120%, 46%, 123%, and 76% more likely after pattern identification, respectively, compared to periods when no pattern was identified. The system was also significantly more predictive of deleterious events than other pattern identification methods evaluated, and was persistently predictive up to 3 months after pattern identification. The system identified patterns that are significantly predictive of deleterious glycemic events, and more so relative to many pattern identification methods used in diabetes management today. Further study will inform how improved pattern identification can lead to improved glycemic control. © 2014 Diabetes Technology Society.

  20. Identification and authentication. Common biometric methods review

    OpenAIRE

    Lysak, A.

    2012-01-01

    Major biometric methods used for identification and authentication purposes in modern computing systems are considered in the article. Basic classification, application areas and key differences are given.

  1. The Detection of Subsynchronous Oscillation in HVDC Based on the Stochastic Subspace Identification Method

    Directory of Open Access Journals (Sweden)

    Chen Shi

    2014-01-01

    Full Text Available Subsynchronous oscillation (SSO usually caused by series compensation, power system stabilizer (PSS, high voltage direct current transmission (HVDC and other power electronic equipment, which will affect the safe operation of generator shafting even the system. It is very important to identify the modal parameters of SSO to take effective control strategies as well. Since the identification accuracy of traditional methods are not high enough, the stochastic subspace identification (SSI method is proposed to improve the identification accuracy of subsynchronous oscillation modal. The stochastic subspace identification method was compared with the other two methods on subsynchronous oscillation IEEE benchmark model and Xiang-Shang HVDC system model, the simulation results show that the stochastic subspace identification method has the advantages of high identification precision, high operation efficiency and strong ability of anti-noise.

  2. Modal–Physical Hybrid System Identification of High-rise Building via Subspace and Inverse-Mode Methods

    Directory of Open Access Journals (Sweden)

    Kohei Fujita

    2017-08-01

    Full Text Available A system identification (SI problem of high-rise buildings is investigated under restricted data environments. The shear and bending stiffnesses of a shear-bending model (SB model representing the high-rise buildings are identified via the smart combination of the subspace and inverse-mode methods. Since the shear and bending stiffnesses of the SB model can be identified in the inverse-mode method by using the lowest mode of horizontal displacements and floor rotation angles, the lowest mode of the objective building is identified first by using the subspace method. Identification of the lowest mode is performed by using the amplitude of transfer functions derived in the subspace method. Considering the resolution in measuring the floor rotation angles in lower stories, floor rotation angles in most stories are predicted from the floor rotation angle at the top floor. An empirical equation of floor rotation angles is proposed by investigating those for various building models. From the viewpoint of application of the present SI method to practical situations, a non-simultaneous measurement system is also proposed. In order to investigate the reliability and accuracy of the proposed SI method, a 10-story building frame subjected to micro-tremor is examined.

  3. Comparison of four methods for rapid identification of Staphylococcus aureus directly from BACTEC 9240 blood culture system

    Directory of Open Access Journals (Sweden)

    N S Ozen

    2011-01-01

    Full Text Available Purpose: Differentiation of Staphylococcus aureus (S. aureus from coagulase-negative staphylococci is very important in blood stream infections. Identification of S. aureus and coagulase-negative staphylococci (CoNS from blood cultures takes generally 18-24 h after positive signaling on continuously monitored automated blood culture system. In this study, we evaluated the performance of tube coagulase test (TCT, slide agglutination test (Dry Spot Staphytect Plus, conventional polymerase chain reaction (PCR and LightCycler Staphylococcus MGrade kit directly from blood culture bottles to achieve rapid identification of S. aureus by using the BACTEC 9240 blood culture system. Materials and Methods: A total of 129 BACTEC 9240 bottles growing gram-positive cocci suggesting Staphylococci were tested directly from blood culture broths (BCBs with TCT, Dry Spot Staphytect Plus, conventional PCR and LightCycler Staphylococcus MGrade kit for rapid identification of S. aureus. Results: The sensitivities of the tests were 99, 68, 99 and 100%, respectively. Conclusion: Our results suggested that 2 h TCT was found to be simple and inexpensive method for the rapid identification of S. aureus directly from positive blood cultures.

  4. Process identification method based on the Z transformation; Methode d'identification de processus par la transformation en Z

    Energy Technology Data Exchange (ETDEWEB)

    Zwingelstein, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    A simple method is described for identifying the transfer function of a linear retard-less system, based on the inversion of the Z transformation of the transmittance using a computer. It is assumed in this study that the signals at the entrance and at the exit of the circuit considered are of the deterministic type. The study includes: the theoretical principle of the inversion of the Z transformation, details about programming simulation, and identification of filters whose degrees vary from the first to the fifth order. (authors) [French] On decrit une methode simple d'identification de fonction de transfert d'un systeme lineaire sans retard, qui repose sur l'inversion de la transformee en Z de la transmittance a l'aide d'un calculateur. On suppose dans cette etude, que les signaux a l'entree et a la sortie du circuit considere sont de type deterministe. L'etude comporte: le principe theorique de l'inversion de la transformation en Z, les details de la programmation, la simulation et l'identification de filtres dont le degre varie du premier au cinquieme ordre. (auteurs)

  5. A Comfort-Aware Energy Efficient HVAC System Based on the Subspace Identification Method

    Directory of Open Access Journals (Sweden)

    O. Tsakiridis

    2016-01-01

    Full Text Available A proactive heating method is presented aiming at reducing the energy consumption in a HVAC system while maintaining the thermal comfort of the occupants. The proposed technique fuses time predictions for the zones’ temperatures, based on a deterministic subspace identification method, and zones’ occupancy predictions, based on a mobility model, in a decision scheme that is capable of regulating the balance between the total energy consumed and the total discomfort cost. Simulation results for various occupation-mobility models demonstrate the efficiency of the proposed technique.

  6. PARAMETRIC IDENTIFICATION OF STOCHASTIC SYSTEM BY NON-GRADIENT RANDOM SEARCHING

    Directory of Open Access Journals (Sweden)

    A. A. Lobaty

    2017-01-01

    Full Text Available At this moment we know a great variety of identification objects, tasks and methods and its significance is constantly increasing in various fields of science and technology.  The identification problem is dependent on a priori information about identification object, besides that  the existing approaches and methods of identification are determined by the form of mathematical models (deterministic, stochastic, frequency, temporal, spectral etc.. The paper considers a problem for determination of system parameters  (identification object which is assigned by the stochastic mathematical model including random functions of time. It has been shown  that while making optimization of the stochastic systems subject to random actions deterministic methods can be applied only for a limited approximate optimization of the system by taking into account average random effects and fixed structure of the system. The paper proposes an algorithm for identification of  parameters in a mathematical model of  the stochastic system by non-gradient random searching. A specific  feature  of the algorithm is its applicability  practically to mathematic models of any type because the applied algorithm does not depend on linearization and differentiability of functions included in the mathematical model of the system. The proposed algorithm  ensures searching of  an extremum for the specified quality criteria in terms of external uncertainties and limitations while using random searching of parameters for a mathematical model of the system. The paper presents results of the investigations on operational capability of the considered identification method  while using mathematical simulation of hypothetical control system with a priori unknown parameter values of the mathematical model. The presented results of the mathematical simulation obviously demonstrate the operational capability of the proposed identification method.

  7. Subspace identification of distributed clusters of homogeneous systems

    NARCIS (Netherlands)

    Yu, C.; Verhaegen, M.H.G.

    2017-01-01

    This note studies the identification of a network comprised of interconnected clusters of LTI systems. Each cluster consists of homogeneous dynamical systems, and its interconnections with the rest of the network are unmeasurable. A subspace identification method is proposed for identifying a single

  8. Genetic Algorithm-Based Identification of Fractional-Order Systems

    Directory of Open Access Journals (Sweden)

    Shengxi Zhou

    2013-05-01

    Full Text Available Fractional calculus has become an increasingly popular tool for modeling the complex behaviors of physical systems from diverse domains. One of the key issues to apply fractional calculus to engineering problems is to achieve the parameter identification of fractional-order systems. A time-domain identification algorithm based on a genetic algorithm (GA is proposed in this paper. The multi-variable parameter identification is converted into a parameter optimization by applying GA to the identification of fractional-order systems. To evaluate the identification accuracy and stability, the time-domain output error considering the condition variation is designed as the fitness function for parameter optimization. The identification process is established under various noise levels and excitation levels. The effects of external excitation and the noise level on the identification accuracy are analyzed in detail. The simulation results show that the proposed method could identify the parameters of both commensurate rate and non-commensurate rate fractional-order systems from the data with noise. It is also observed that excitation signal is an important factor influencing the identification accuracy of fractional-order systems.

  9. A identification system for chemical warfare agents with PGNAA method

    International Nuclear Information System (INIS)

    Wang Bairong; Yin Guanghua; Yang Zhongping

    2006-01-01

    The principle and the experimental commanding of Chemical warfare Agents Identification with PGNAA method are discussed in this paper. The choosing of Detector, neutron source and the data processing method are detailed. Finally, a set of experimental instruments composed of Cf-232 and BGO detector is developed based on the theory discussed above. (authors)

  10. Nuclear material enrichment identification method based on cross-correlation and high order spectra

    International Nuclear Information System (INIS)

    Yang Fan; Wei Biao; Feng Peng; Mi Deling; Ren Yong

    2013-01-01

    In order to enhance the sensitivity of nuclear material identification system (NMIS) against the change of nuclear material enrichment, the principle of high order statistic feature is introduced and applied to traditional NMIS. We present a new enrichment identification method based on cross-correlation and high order spectrum algorithm. By applying the identification method to NMIS, the 3D graphs with nuclear material character are presented and can be used as new signatures to identify the enrichment of nuclear materials. The simulation result shows that the identification method could suppress the background noises, electronic system noises, and improve the sensitivity against enrichment change to exponential order with no system structure modification. (authors)

  11. LPV system identification using series expansion models

    NARCIS (Netherlands)

    Toth, R.; Heuberger, P.S.C.; Hof, Van den P.M.J.; Santos, dos P.L.; Perdicoúlis, T.P.A.; Novara, C.; Ramos, J.A.; Rivera, D.E.

    2011-01-01

    This review volume reports the state-of-the-art in Linear Parameter Varying (LPV) system identification. Written by world renowned researchers, the book contains twelve chapters, focusing on the most recent LPV identification methods for both discrete-time and continuous-time models, using different

  12. HOC Based Blind Identification of Hydroturbine Shaft Volterra System

    Directory of Open Access Journals (Sweden)

    Bing Bai

    2017-01-01

    Full Text Available In order to identify the quadratic Volterra system simplified from the hydroturbine shaft system, a blind identification method based on the third-order cumulants and a reversely recursive method are proposed. The input sequence of the system under consideration is an unobservable independent identically distributed (i.i.d., zero-mean and non-Gaussian stationary signal, and the observed signals are the superposition of the system output signal and Gaussian noise. To calculate the third-order moment of the output signal, a computer loop judgment method is put forward to determine the coefficient. When using optimization method to identify the time domain kernels, we combined the traditional optimization algorithm (direct search method with genetic algorithm (GA and constituted the hybrid genetic algorithm (HGA. Finally, according to the prototype observation signal and the time domain kernel parameters obtained from identification, the input signal of the system can be gained recursively. To test the proposed method, three numerical experiments and engineering application have been carried out. The results show that the method is applicable to the blind identification of the hydroturbine shaft system and has strong universality; the input signal obtained by the reversely recursive method can be approximately taken as the random excitation acted on the runner of the hydroturbine shaft system.

  13. Improved system blind identification based on second-order ...

    Indian Academy of Sciences (India)

    An improved system blind identification method based on second- order cyclostationary statistics and the properties of group delay, has been ... In the last decade, there has been considerable research on achieving blind identification.

  14. Comparison of four methods for rapid identification of Staphylococcus aureus directly from BACTEC 9240 blood culture system.

    Science.gov (United States)

    Ozen, N S; Ogunc, D; Mutlu, D; Ongut, G; Baysan, B O; Gunseren, F

    2011-01-01

    Differentiation of Staphylococcus aureus (S. aureus) from coagulase-negative staphylococci is very important in blood stream infections. Identification of S. aureus and coagulase-negative staphylococci (CoNS) from blood cultures takes generally 18-24 h after positive signaling on continuously monitored automated blood culture system. In this study, we evaluated the performance of tube coagulase test (TCT), slide agglutination test (Dry Spot Staphytect Plus), conventional polymerase chain reaction (PCR) and LightCycler Staphylococcus MGrade kit directly from blood culture bottles to achieve rapid identification of S. aureus by using the BACTEC 9240 blood culture system. A total of 129 BACTEC 9240 bottles growing gram-positive cocci suggesting Staphylococci were tested directly from blood culture broths (BCBs) with TCT, Dry Spot Staphytect Plus, conventional PCR and LightCycler Staphylococcus MGrade kit for rapid identification of S. aureus. The sensitivities of the tests were 99, 68, 99 and 100%, respectively. Our results suggested that 2 h TCT was found to be simple and inexpensive method for the rapid identification of S. aureus directly from positive blood cultures.

  15. Computational botany methods for automated species identification

    CERN Document Server

    Remagnino, Paolo; Wilkin, Paul; Cope, James; Kirkup, Don

    2017-01-01

    This book discusses innovative methods for mining information from images of plants, especially leaves, and highlights the diagnostic features that can be implemented in fully automatic systems for identifying plant species. Adopting a multidisciplinary approach, it explores the problem of plant species identification, covering both the concepts of taxonomy and morphology. It then provides an overview of morphometrics, including the historical background and the main steps in the morphometric analysis of leaves together with a number of applications. The core of the book focuses on novel diagnostic methods for plant species identification developed from a computer scientist’s perspective. It then concludes with a chapter on the characterization of botanists' visions, which highlights important cognitive aspects that can be implemented in a computer system to more accurately replicate the human expert’s fixation process. The book not only represents an authoritative guide to advanced computational tools fo...

  16. A bimodal biometric identification system

    Science.gov (United States)

    Laghari, Mohammad S.; Khuwaja, Gulzar A.

    2013-03-01

    Biometrics consists of methods for uniquely recognizing humans based upon one or more intrinsic physical or behavioral traits. Physicals are related to the shape of the body. Behavioral are related to the behavior of a person. However, biometric authentication systems suffer from imprecision and difficulty in person recognition due to a number of reasons and no single biometrics is expected to effectively satisfy the requirements of all verification and/or identification applications. Bimodal biometric systems are expected to be more reliable due to the presence of two pieces of evidence and also be able to meet the severe performance requirements imposed by various applications. This paper presents a neural network based bimodal biometric identification system by using human face and handwritten signature features.

  17. Practical Modeling and Comprehensive System Identification of a BLDC Motor

    Directory of Open Access Journals (Sweden)

    Changle Xiang

    2015-01-01

    Full Text Available The aim of this paper is to outline all the steps in a rigorous and simple procedure for system identification of BLDC motor. A practical mathematical model for identification is derived. Frequency domain identification techniques and time domain estimation method are combined to obtain the unknown parameters. The methods in time domain are founded on the least squares approximation method and a disturbance observer. Only the availability of experimental data for rotor speed and armature current are required for identification. The proposed identification method is systematically investigated, and the final identified model is validated by experimental results performed on a typical BLDC motor in UAV.

  18. A steam generating unit identification using subspace methods

    International Nuclear Information System (INIS)

    Poshtan, J.; Mojallali, H.

    2002-01-01

    A Valid boiler model is a tool for the improvement of the steam generation control system and hence results boiler efficiency enhancement. However, methods of obtaining such a model are not readily found in the open literature and are often specific to a particular plant. This paper presents boiler model using a new method in system identification called S ubspace methods . This method is shown to provide an accurate state space model for boiler in a few numbers of operations, directly from input-output data without any prior knowledge of the system equations and any requirement to several stages of testing

  19. Blind system identification of two-thermocouple sensor based on cross-relation method

    Science.gov (United States)

    Li, Yanfeng; Zhang, Zhijie; Hao, Xiaojian

    2018-03-01

    In dynamic temperature measurement, the dynamic characteristics of the sensor affect the accuracy of the measurement results. Thermocouples are widely used for temperature measurement in harsh conditions due to their low cost, robustness, and reliability, but because of the presence of the thermal inertia, there is a dynamic error in the dynamic temperature measurement. In order to eliminate the dynamic error, two-thermocouple sensor was used to measure dynamic gas temperature in constant velocity flow environments in this paper. Blind system identification of two-thermocouple sensor based on a cross-relation method was carried out. Particle swarm optimization algorithm was used to estimate time constants of two thermocouples and compared with the grid based search method. The method was validated on the experimental equipment built by using high temperature furnace, and the input dynamic temperature was reconstructed by using the output data of the thermocouple with small time constant.

  20. Challenges in parameter identification of large structural dynamic systems

    International Nuclear Information System (INIS)

    Koh, C.G.

    2001-01-01

    In theory, it is possible to determine the parameters of a structural or mechanical system by subjecting it to some dynamic excitation and measuring the response. Considerable research has been carried out in this subject area known as the system identification over the past two decades. Nevertheless, the challenges associated with numerical convergence are still formidable when the system is large in terms of the number of degrees of freedom and number of unknowns. While many methods work for small systems, the convergence becomes difficult, if not impossible, for large systems. In this keynote lecture, both classical and non-classical system identification methods for dynamic testing and vibration-based inspection are discussed. For classical methods, the extended Kalman filter (EKF) approach is used. On this basis, a substructural identification method has been developed as a strategy to deal with large structural systems. This is achieved by reducing the problem size, thereby significantly improving the numerical convergence and efficiency. Two versions of this method are presented each with its own merits. A numerical example of frame structure with 20 unknown parameters is illustrated. For non-classical methods, the Genetic Algorithm (GA) is shown to be applicable with relative ease due to its 'forward analysis' nature. The computational time is, however, still enormous for large structural systems due to the combinatorial explosion problem. A model GA method has been developed to address this problem and tested with considerable success on a relatively large system of 50 degrees of freedom, accounting for input and output noise effects. An advantages of this GA-based identification method is that the objective function can be defined in response measured. Numerical studies show that the method is relatively robust, as it does in response measured. Numerical studies show that the method is relatively robust, as it dos not require good initial guess and the

  1. Improving substructure identification accuracy of shear structures using virtual control system

    Science.gov (United States)

    Zhang, Dongyu; Yang, Yang; Wang, Tingqiang; Li, Hui

    2018-02-01

    Substructure identification is a powerful tool to identify the parameters of a complex structure. Previously, the authors developed an inductive substructure identification method for shear structures. The identification error analysis showed that the identification accuracy of this method is significantly influenced by the magnitudes of two key structural responses near a certain frequency; if these responses are unfavorable, the method cannot provide accurate estimation results. In this paper, a novel method is proposed to improve the substructure identification accuracy by introducing a virtual control system (VCS) into the structure. A virtual control system is a self-balanced system, which consists of some control devices and a set of self-balanced forces. The self-balanced forces counterbalance the forces that the control devices apply on the structure. The control devices are combined with the structure to form a controlled structure used to replace the original structure in the substructure identification; and the self-balance forces are treated as known external excitations to the controlled structure. By optimally tuning the VCS’s parameters, the dynamic characteristics of the controlled structure can be changed such that the original structural responses become more favorable for the substructure identification and, thus, the identification accuracy is improved. A numerical example of 6-story shear structure is utilized to verify the effectiveness of the VCS based controlled substructure identification method. Finally, shake table tests are conducted on a 3-story structural model to verify the efficacy of the VCS to enhance the identification accuracy of the structural parameters.

  2. Radionuclide identification using subtractive clustering method

    International Nuclear Information System (INIS)

    Farias, Marcos Santana; Mourelle, Luiza de Macedo

    2011-01-01

    Radionuclide identification is crucial to planning protective measures in emergency situations. This paper presents the application of a method for a classification system of radioactive elements with a fast and efficient response. To achieve this goal is proposed the application of subtractive clustering algorithm. The proposed application can be implemented in reconfigurable hardware, a flexible medium to implement digital hardware circuits. (author)

  3. Identification of time-varying nonlinear systems using differential evolution algorithm

    DEFF Research Database (Denmark)

    Perisic, Nevena; Green, Peter L; Worden, Keith

    2013-01-01

    (DE) algorithm for the identification of time-varying systems. DE is an evolutionary optimisation method developed to perform direct search in a continuous space without requiring any derivative estimation. DE is modified so that the objective function changes with time to account for the continuing......, thus identification of time-varying systems with nonlinearities can be a very challenging task. In order to avoid conventional least squares and gradient identification methods which require uni-modal and double differentiable objective functions, this work proposes a modified differential evolution...... inclusion of new data within an error metric. This paper presents results of identification of a time-varying SDOF system with Coulomb friction using simulated noise-free and noisy data for the case of time-varying friction coefficient, stiffness and damping. The obtained results are promising and the focus...

  4. Identification of System Parameters by the Random Decrement Technique

    DEFF Research Database (Denmark)

    Brincker, Rune; Kirkegaard, Poul Henning; Rytter, Anders

    -Walker equations and finally least square fitting of the theoretical correlation function. The results are compared to the results of fitting an Auto Regressive Moving Average(ARMA) model directly to the system output. All investigations are performed on the simulated output from a single degree-off-freedom system......The aim of this paper is to investigate and illustrate the possibilities of using correlation functions estimated by the Random Decrement Technique as a basis for parameter identification. A two-stage system identification method is used: first the correlation functions are estimated by the Random...... Decrement technique and then the system parameters are identified from the correlation function estimates. Three different techniques are used in the parameters identification process: a simple non-paramatic method, estimation of an Auto Regressive(AR) model by solving an overdetermined set of Yule...

  5. Structural System Identification with Extended Kalman Filter and Orthogonal Decomposition of Excitation

    Directory of Open Access Journals (Sweden)

    Y. Ding

    2014-01-01

    Full Text Available Both the structural parameter and external excitation have coupling influence on structural response. A new system identification method in time domain is proposed to simultaneously evaluate structural parameter and external excitation. The method can be used for linear and hysteresis nonlinear structural condition assessment based on incomplete structural responses. In this method, the structural excitation is decomposed by orthogonal approximation. With this approximation, the strongly time-variant excitation identification is transformed to gentle time-variant, even constant parameters identification. Then the extended Kalman filter is applied to simultaneously identify state vector including the structural parameters and excitation orthogonal parameters in state space based on incomplete measurements. The proposed method is validated numerically with the simulation of three-story linear and nonlinear structures subject to external force. The external force on the top floor and the structural parameters are simultaneously identified with the proposed system identification method. Results from both simulations indicate that the proposed method is capable of identifing the dynamic load and structural parameters fairly accurately with contaminated incomplete measurement for both of the linear and nonlinear structural systems.

  6. Technical efficiency and economic viability of different cattle identification methods allowed by the Brazilian traceability system

    Directory of Open Access Journals (Sweden)

    Marcos Aurelio Lopes

    2017-03-01

    Full Text Available We aimed to evaluate the technical efficiency and economic viability of the implementation and use of four cattle identification methods allowed by the Brazilian traceability system. The study was conducted in a beef cattle production system located in the State of Mato Grosso, from January to June 2012. Four identification methods (treatments were compared: T1: ear tag in one ear and ear button in the other ear (eabu; T2: ear tag and iron brand on the right leg (eaib; T3: ear tag in one ear and tattoo on the other ear (eata; and T4: ear tag in one ear and electronic ear tag (eael on the other. Each treatment was applied to 60 Nelore animals, totaling 240 animals, divided equally into three life stages (calves, young cattle, adult cattle. The study had two phases: implementation (phase 1 and reading and transfer of identification numbers to an electronic database (phase 2. All operating expenses related to the two phases of the study were determined. The database was constructed, and the statistical analyses were performed using SPSS® 17.0 software. Regarding the time spent on implementation (phase 1, conventional ear tags and electronic ear tags produced similar results, which were lower than those of hot iron and tattoo methods, which differed from each other. Regarding the time required for reading the numbers on animals and their transcription into a database (phase 2, electronic ear-tagging was the fastest method, followed by conventional ear tag, hot iron and tattoo. Among the methods analyzed, the electronic ear tag had the highest technical efficiency because it required less time to implement identifiers and to complete the process of reading and transcription to an electronic database and because it did not exhibit any errors. However, the cost of using the electronic ear-tagging method was higher primarily due to the cost of the device.

  7. An identification method for damping ratio in rotor systems

    Science.gov (United States)

    Wang, Weimin; Li, Qihang; Gao, Jinji; Yao, Jianfei; Allaire, Paul

    2016-02-01

    Centrifugal compressor testing with magnetic bearing excitations is the last step to assure the compressor rotordynamic stability in the designed operating conditions. To meet the challenges of stability evaluation, a new method combining the rational polynomials method (RPM) with the weighted instrumental variables (WIV) estimator to fit the directional frequency response function (dFRF) is presented. Numerical simulation results show that the method suggested in this paper can identify the damping ratio of the first forward and backward modes with high accuracy, even in a severe noise environment. Experimental tests were conducted to study the effect of different bearing configurations on the stability of rotor. Furthermore, two example centrifugal compressors (a nine-stage straight-through and a six-stage back-to-back) were employed to verify the feasibility of identification method in industrial configurations as well.

  8. Hob Identification Methods

    Directory of Open Access Journals (Sweden)

    Andrzej Piotrowski

    2018-03-01

    Full Text Available In industrial practice, hobs are manufactured and used. The problem boils down to the identification of a hob with defining its profile, which depends on many design and technological parameters (such as the grinding wheel size, profile, type and positioning during machining. This makes the basis for the correct execution and sharpening of the tool. The accuracy of the hob determines the quality of gear wheel teeth being shaped. The article presents the hob identification methods that are possible to be used in industrial and laboratory practice.

  9. Online Identification of a Mechanical System in the Frequency Domain with Short-Time DFT

    Directory of Open Access Journals (Sweden)

    Niko Nevaranta

    2015-07-01

    Full Text Available A proper system identification method is of great importance in the process of acquiring an analytical model that adequately represents the characteristics of the monitored system. While the use of different time-domain online identification techniques has been widely recognized as a powerful approach for system diagnostics, the frequency domain identification techniques have primarily been considered for offline commissioning purposes. This paper addresses issues in the online frequency domain identification of a flexible two-mass mechanical system with varying dynamics, and a particular attention is paid to detect the changes in the system dynamics. An online identification method is presented that is based on a recursive Kalman filter configured to perform like a discrete Fourier transform (DFT at a selected set of frequencies. The experimental online identification results are compared with the corresponding values obtained from the offline-identified frequency responses. The results show an acceptable agreement and demonstrate the feasibility of the proposed identification method.

  10. Evaluating current automatic de-identification methods with Veteran’s health administration clinical documents

    Directory of Open Access Journals (Sweden)

    Ferrández Oscar

    2012-07-01

    Full Text Available Abstract Background The increased use and adoption of Electronic Health Records (EHR causes a tremendous growth in digital information useful for clinicians, researchers and many other operational purposes. However, this information is rich in Protected Health Information (PHI, which severely restricts its access and possible uses. A number of investigators have developed methods for automatically de-identifying EHR documents by removing PHI, as specified in the Health Insurance Portability and Accountability Act “Safe Harbor” method. This study focuses on the evaluation of existing automated text de-identification methods and tools, as applied to Veterans Health Administration (VHA clinical documents, to assess which methods perform better with each category of PHI found in our clinical notes; and when new methods are needed to improve performance. Methods We installed and evaluated five text de-identification systems “out-of-the-box” using a corpus of VHA clinical documents. The systems based on machine learning methods were trained with the 2006 i2b2 de-identification corpora and evaluated with our VHA corpus, and also evaluated with a ten-fold cross-validation experiment using our VHA corpus. We counted exact, partial, and fully contained matches with reference annotations, considering each PHI type separately, or only one unique ‘PHI’ category. Performance of the systems was assessed using recall (equivalent to sensitivity and precision (equivalent to positive predictive value metrics, as well as the F2-measure. Results Overall, systems based on rules and pattern matching achieved better recall, and precision was always better with systems based on machine learning approaches. The highest “out-of-the-box” F2-measure was 67% for partial matches; the best precision and recall were 95% and 78%, respectively. Finally, the ten-fold cross validation experiment allowed for an increase of the F2-measure to 79% with partial matches

  11. Optimized Experiment Design for Marine Systems Identification

    DEFF Research Database (Denmark)

    Blanke, M.; Knudsen, Morten

    1999-01-01

    Simulation of maneuvring and design of motion controls for marine systems require non-linear mathematical models, which often have more than one-hundred parameters. Model identification is hence an extremely difficult task. This paper discusses experiment design for marine systems identification...... and proposes a sensitivity approach to solve the practical experiment design problem. The applicability of the sensitivity approach is demonstrated on a large non-linear model of surge, sway, roll and yaw of a ship. The use of the method is illustrated for a container-ship where both model and full-scale tests...

  12. Identification of Nonlinear Dynamic Systems Possessing Some Non-linearities

    Directory of Open Access Journals (Sweden)

    Y. N. Pavlov

    2015-01-01

    Full Text Available The subject of this work is the problem of identification of nonlinear dynamic systems based on the experimental data obtained by applying test signals to the system. The goal is to determinate coefficients of differential equations of systems by experimental frequency hodographs and separate similar, but different, in essence, forces: dissipative forces with the square of the first derivative in the motion equations and dissipative force from the action of dry friction. There was a proposal to use the harmonic linearization method to approximate each of the nonlinearity of "quadratic friction" and "dry friction" by linear friction with the appropriate harmonic linearization coefficient.Assume that a frequency transfer function of the identified system has a known form. Assume as well that there are disturbances while obtaining frequency characteristics of the realworld system. As a result, the points of experimentally obtained hodograph move randomly. Searching for solution of the identification problem was in the hodograph class, specified by the system model, which has the form of the frequency transfer function the same as the form of the frequency transfer function of the system identified. Minimizing a proximity criterion (measure of the experimentally obtained system hodograph and the system hodograph model for all the experimental points described and previously published by one of the authors allowed searching for the unknown coefficients of the frequenc ransfer function of the system model. The paper shows the possibility to identify a nonlinear dynamic system with multiple nonlinearities, obtained on the experimental samples of the frequency system hodograph. The proposed algorithm allows to select the nonlinearity of the type "quadratic friction" and "dry friction", i.e. also in the case where the nonlinearity is dependent on the same dynamic parameter, in particular, on the derivative of the system output value. For the dynamic

  13. Dynamic Stiffness Transfer Function of an Electromechanical Actuator Using System Identification

    Science.gov (United States)

    Kim, Sang Hwa; Tahk, Min-Jea

    2018-04-01

    In the aeroelastic analysis of flight vehicles with electromechanical actuators (EMAs), an accurate prediction of flutter requires dynamic stiffness characteristics of the EMA. The dynamic stiffness transfer function of the EMA with brushless direct current (BLDC) motor can be obtained by conducting complicated mathematical calculations of control algorithms and mechanical/electrical nonlinearities using linearization techniques. Thus, system identification approaches using experimental data, as an alternative, have considerable advantages. However, the test setup for system identification is expensive and complex, and experimental procedures for data collection are time-consuming tasks. To obtain the dynamic stiffness transfer function, this paper proposes a linear system identification method that uses information obtained from a reliable dynamic stiffness model with a control algorithm and nonlinearities. The results of this study show that the system identification procedure is compact, and the transfer function is able to describe the dynamic stiffness characteristics of the EMA. In addition, to verify the validity of the system identification method, the simulation results of the dynamic stiffness transfer function and the dynamic stiffness model were compared with the experimental data for various external loads.

  14. PWL approximation of nonlinear dynamical systems, part II: identification issues

    International Nuclear Information System (INIS)

    De Feo, O; Storace, M

    2005-01-01

    This paper and its companion address the problem of the approximation/identification of nonlinear dynamical systems depending on parameters, with a view to their circuit implementation. The proposed method is based on a piecewise-linear approximation technique. In particular, this paper describes a black-box identification method based on state space reconstruction and PWL approximation, and applies it to some particularly significant dynamical systems (two topological normal forms and the Colpitts oscillator)

  15. Identification of Parameters in Active Magnetic Bearing Systems

    DEFF Research Database (Denmark)

    Lauridsen, Jonas Skjødt; Voigt, Andreas Jauernik; Mandrup-Poulsen, Christian

    2016-01-01

    A method for identifying uncertain parameters in Active Magnetic Bearing (AMB) based rotordynamic systems is introduced and adapted for experimental application. The Closed Loop Identification (CLI) method is utilised to estimate the current/force factors Ki and the displacement/force factors Ks...... as well as a time constant Τe for a first order approxima-tion of unknown actuator dynamics. To assess the precision with which CLI method can be employed to estimate AMBparameters the factors Ki, estimated using the CLI method, is compared to Ki factors attained through a Static Loading(SL) method....... The CLI method and SL method produce similar results, indicating that the CLI method is able to performclosed loop identification of uncertain AMB parameters....

  16. Computational methods for protein identification from mass spectrometry data.

    Directory of Open Access Journals (Sweden)

    Leo McHugh

    2008-02-01

    Full Text Available Protein identification using mass spectrometry is an indispensable computational tool in the life sciences. A dramatic increase in the use of proteomic strategies to understand the biology of living systems generates an ongoing need for more effective, efficient, and accurate computational methods for protein identification. A wide range of computational methods, each with various implementations, are available to complement different proteomic approaches. A solid knowledge of the range of algorithms available and, more critically, the accuracy and effectiveness of these techniques is essential to ensure as many of the proteins as possible, within any particular experiment, are correctly identified. Here, we undertake a systematic review of the currently available methods and algorithms for interpreting, managing, and analyzing biological data associated with protein identification. We summarize the advances in computational solutions as they have responded to corresponding advances in mass spectrometry hardware. The evolution of scoring algorithms and metrics for automated protein identification are also discussed with a focus on the relative performance of different techniques. We also consider the relative advantages and limitations of different techniques in particular biological contexts. Finally, we present our perspective on future developments in the area of computational protein identification by considering the most recent literature on new and promising approaches to the problem as well as identifying areas yet to be explored and the potential application of methods from other areas of computational biology.

  17. System Identification of Mistuned Bladed Disks from Traveling Wave Response Measurements

    Science.gov (United States)

    Feiner, D. M.; Griffin, J. H.; Jones, K. W.; Kenyon, J. A.; Mehmed, O.; Kurkov, A. P.

    2003-01-01

    A new approach to modal analysis is presented. By applying this technique to bladed disk system identification methods, one can determine the mistuning in a rotor based on its response to a traveling wave excitation. This allows system identification to be performed under rotating conditions, and thus expands the applicability of existing mistuning identification techniques from integrally bladed rotors to conventional bladed disks.

  18. Complete functional characterization of sensory neurons by system identification.

    Science.gov (United States)

    Wu, Michael C-K; David, Stephen V; Gallant, Jack L

    2006-01-01

    System identification is a growing approach to sensory neurophysiology that facilitates the development of quantitative functional models of sensory processing. This approach provides a clear set of guidelines for combining experimental data with other knowledge about sensory function to obtain a description that optimally predicts the way that neurons process sensory information. This prediction paradigm provides an objective method for evaluating and comparing computational models. In this chapter we review many of the system identification algorithms that have been used in sensory neurophysiology, and we show how they can be viewed as variants of a single statistical inference problem. We then review many of the practical issues that arise when applying these methods to neurophysiological experiments: stimulus selection, behavioral control, model visualization, and validation. Finally we discuss several problems to which system identification has been applied recently, including one important long-term goal of sensory neuroscience: developing models of sensory systems that accurately predict neuronal responses under completely natural conditions.

  19. Optimum Identification Method of Sorting Green Household Waste

    Directory of Open Access Journals (Sweden)

    Daud Mohd Hisam

    2016-01-01

    Full Text Available This project is related to design of sorting facility for reducing, reusing, recycling green waste material, and in particular to invent an automatic system to distinguish household waste in order to separate them from the main waste stream. The project focuses on thorough analysis of the properties of green household waste. The method of identification is using capacitive sensor where the characteristic data taken on three different sensor drive frequency. Three types of material have been chosen as a medium of this research, to be separated using the selected method. Based on capacitance characteristics and its ability to penetrate green object, optimum identification method is expected to be recognized in this project. The output capacitance sensor is in analogue value. The results demonstrate that the information from the sensor is enough to recognize the materials that have been selected.

  20. Nuclear power plant transient identification using a neuro-fuzzy inference system

    International Nuclear Information System (INIS)

    Mol, Antonio Carlos de Abreu; Oliveira, Mauro Vitor de; Santos, Isaac Jose Antonio Luchetti dos; Carvalho, Paulo Victor Rodrigues de; Grecco, Claudio Henrique dos Santos; Auguto, Silas Cordeiro

    2005-01-01

    Transient identification in Nuclear Power Plant (NPP) is often a very hard task and may involve a great amount of human cognition. The early identification of unexpected departures from steady state behavior is an essential step for the operation, control and accident management in nuclear power plants. The basis for the identification of a change in the system is that different system faults and anomalies lead to different patterns of evolution of the involved process variables. During an abnormal event, the operator must monitor a great amount of information from the instruments, that represents a specific type of event. In this work, an approach for the identification of transients is presented, aiming at helping the operator to make a decision relative to the procedure to be followed in situations of accidents/transients at nuclear power plants. In this way, a diagnostic strategy based on hierarchical use artificial neural networks (ANN) for a first level transient diagnose. After the ANN has done a preliminary transient type identification, a fuzzy-logic system analyzes the results emitting reliability degree of it. In order to validate the method, a Nuclear Power Plant transient identification problem, comprising postulated accidents, is proposed. Noisy data was used to evaluate the method robustness. The results obtained reveal the ability of the method in dealing with dynamic identification of transients and its reliability degree. (author)

  1. Comparison of Enzymatic Method Rapid Yeast Plus System with RFLP-PCR for Identification of Isolated Yeast from Vulvovaginal Candidiasis.

    Science.gov (United States)

    Hossein, Moallaei; Mirhendi, Seied Hossein; Brandão, João; Mirdashti, Reza; Rosado, Laura

    2011-09-01

    To compare two identification methods, i.e., restriction fragment length polymorphism (RFLP)-PCR analysis and enzymatic method Rapid TM Yeast Plus System to identify different species causing vulvovaginal candidiasis (VVC). Vaginal discharges of women who had attended the gynecology outpatient clinic of Mobini Hospital in Sabzevar, Iran were collected using cotton swabs and were cultured on Sabouraud dextrose agar. Isolated yeasts were identified by germ-tube testing and Rapid TM Yeast Plus System (Remel USA). For molecular identification, the isolated DNA was amplified with ITS1 and ITS4 universal primers and PCR products digested with the enzyme HpaІІ followed by agarose gel electrophoresis. Epidemiological and clinical features of women with respect to identified species were also evaluated. Out of 231 subjects enrolled, 62 VVC cases were detected. The isolated species were identified as follows: Candida albicans, 24 (38.7%), C. glabrata, 15 (24.2%), C. kefyr, 13 (21.0%) C. krusei, 9 (14.5%), and Saccharomyces cerevisiae, 1 (1.6%) by RFLP-PCR method; whereas findings by Rapid TM Yeast Plus System were C. albicans, 24 (38.7%), C. glabrata, 5 (8%), C. kefyr, 11 (17.7%) C. krusei, 2 (3.2%), S. cerevisiae, 9 (14.5%), and C. tropicalis, 6 (9.6%) as well as other nonpathogenic yeasts, 4 (6.9%). Statistical comparison showed that there is no significant difference in identification of C. albicans by the two methods; although, in this study, it was not true about other species of yeasts. A correlation between clinical and laboratory findings is important as it enables us to administer an appropriate treatment on time.

  2. A Systematic Identification Method for Thermodynamic Property Modelling

    DEFF Research Database (Denmark)

    Ana Perederic, Olivia; Cunico, Larissa; Sarup, Bent

    2017-01-01

    In this work, a systematic identification method for thermodynamic property modelling is proposed. The aim of the method is to improve the quality of phase equilibria prediction by group contribution based property prediction models. The method is applied to lipid systems where the Original UNIFAC...... model is used. Using the proposed method for estimating the interaction parameters using only VLE data, a better phase equilibria prediction for both VLE and SLE was obtained. The results were validated and compared with the original model performance...

  3. Biometric and Emotion Identification: An ECG Compression Based Method.

    Science.gov (United States)

    Brás, Susana; Ferreira, Jacqueline H T; Soares, Sandra C; Pinho, Armando J

    2018-01-01

    We present an innovative and robust solution to both biometric and emotion identification using the electrocardiogram (ECG). The ECG represents the electrical signal that comes from the contraction of the heart muscles, indirectly representing the flow of blood inside the heart, it is known to convey a key that allows biometric identification. Moreover, due to its relationship with the nervous system, it also varies as a function of the emotional state. The use of information-theoretic data models, associated with data compression algorithms, allowed to effectively compare ECG records and infer the person identity, as well as emotional state at the time of data collection. The proposed method does not require ECG wave delineation or alignment, which reduces preprocessing error. The method is divided into three steps: (1) conversion of the real-valued ECG record into a symbolic time-series, using a quantization process; (2) conditional compression of the symbolic representation of the ECG, using the symbolic ECG records stored in the database as reference; (3) identification of the ECG record class, using a 1-NN (nearest neighbor) classifier. We obtained over 98% of accuracy in biometric identification, whereas in emotion recognition we attained over 90%. Therefore, the method adequately identify the person, and his/her emotion. Also, the proposed method is flexible and may be adapted to different problems, by the alteration of the templates for training the model.

  4. Identification of System Parameters by the Random Decrement Technique

    DEFF Research Database (Denmark)

    Brincker, Rune; Kirkegaard, Poul Henning; Rytter, Anders

    1991-01-01

    -Walker equations and finally, least-square fitting of the theoretical correlation function. The results are compared to the results of fitting an Auto Regressive Moving Average (ARMA) model directly to the system output from a single-degree-of-freedom system loaded by white noise.......The aim of this paper is to investigate and illustrate the possibilities of using correlation functions estimated by the Random Decrement Technique as a basis for parameter identification. A two-stage system identification system is used: first, the correlation functions are estimated by the Random...... Decrement Technique, and then the system parameters are identified from the correlation function estimates. Three different techniques are used in the parameter identification process: a simple non-parametric method, estimation of an Auto Regressive (AR) model by solving an overdetermined set of Yule...

  5. Research of Uncertainty Reasoning in Pineapple Disease Identification System

    Science.gov (United States)

    Liu, Liqun; Fan, Haifeng

    In order to deal with the uncertainty of evidences mostly existing in pineapple disease identification system, a reasoning model based on evidence credibility factor was established. The uncertainty reasoning method is discussed,including: uncertain representation of knowledge, uncertain representation of rules, uncertain representation of multi-evidences and update of reasoning rules. The reasoning can fully reflect the uncertainty in disease identification and reduce the influence of subjective factors on the accuracy of the system.

  6. Music Identification System Using MPEG-7 Audio Signature Descriptors

    Science.gov (United States)

    You, Shingchern D.; Chen, Wei-Hwa; Chen, Woei-Kae

    2013-01-01

    This paper describes a multiresolution system based on MPEG-7 audio signature descriptors for music identification. Such an identification system may be used to detect illegally copied music circulated over the Internet. In the proposed system, low-resolution descriptors are used to search likely candidates, and then full-resolution descriptors are used to identify the unknown (query) audio. With this arrangement, the proposed system achieves both high speed and high accuracy. To deal with the problem that a piece of query audio may not be inside the system's database, we suggest two different methods to find the decision threshold. Simulation results show that the proposed method II can achieve an accuracy of 99.4% for query inputs both inside and outside the database. Overall, it is highly possible to use the proposed system for copyright control. PMID:23533359

  7. Individual feature identification method for nuclear accident emergency decision-making

    International Nuclear Information System (INIS)

    Chen Yingfeng; Wang Jianlong; Lin Xiaoling; Yang Yongxin; Lu Xincheng

    2014-01-01

    According to the individual feature identification method and combining with the characteristics of nuclear accident emergency decision-making, the evaluation index system of the nuclear accident emergency decision-making was determined on the basis of investigation and analysis. The effectiveness of the nuclear accident emergency decision-making was evaluated based on the individual standards by solving the individual features of the individual standard identification decisions. The case study shows that the optimization result is reasonable, objective and reliable, and it can provide an effective analysis method and decision-making support for optimization of nuclear accident emergency protective measures. (authors)

  8. In-core sipping method for the identification of failed fuel assemblies

    International Nuclear Information System (INIS)

    Wu Zhongwang; Zhang Yajun

    2000-01-01

    The failed fuel assembly identification system is an important safety system which ensures safe operations of reactor and immediate treatment of failed fuel rod cladding. The system uses an internationally recognized method to identify failed fuel assemblies in a reactor with fuel element cases. The in-core sipping method is customary used to identify failed fuel assemblies during refueling or after fuel rod cladding failure accidents. The test is usually performed after reactor shutdown by taking samples from each fuel element case while the cases are still in their original core positions. The sample activity is then measured to identify failed fuel assemblies. A failed fuel assembly identification system was designed for the NHR-200 based on the properties of the NHR-200 and national requirements. the design provides an internationally recognized level of safety to ensure the safety of NHR-200

  9. Using wavelet multi-resolution nature to accelerate the identification of fractional order system

    International Nuclear Information System (INIS)

    Li Yuan-Lu; Meng Xiao; Ding Ya-Qing

    2017-01-01

    Because of the fractional order derivatives, the identification of the fractional order system (FOS) is more complex than that of an integral order system (IOS). In order to avoid high time consumption in the system identification, the least-squares method is used to find other parameters by fixing the fractional derivative order. Hereafter, the optimal parameters of a system will be found by varying the derivative order in an interval. In addition, the operational matrix of the fractional order integration combined with the multi-resolution nature of a wavelet is used to accelerate the FOS identification, which is achieved by discarding wavelet coefficients of high-frequency components of input and output signals. In the end, the identifications of some known fractional order systems and an elastic torsion system are used to verify the proposed method. (paper)

  10. System identification using Nuclear Norm & Tabu Search optimization

    Science.gov (United States)

    Ahmed, Asif A.; Schoen, Marco P.; Bosworth, Ken W.

    2018-01-01

    In recent years, subspace System Identification (SI) algorithms have seen increased research, stemming from advanced minimization methods being applied to the Nuclear Norm (NN) approach in system identification. These minimization algorithms are based on hard computing methodologies. To the authors’ knowledge, as of now, there has been no work reported that utilizes soft computing algorithms to address the minimization problem within the nuclear norm SI framework. A linear, time-invariant, discrete time system is used in this work as the basic model for characterizing a dynamical system to be identified. The main objective is to extract a mathematical model from collected experimental input-output data. Hankel matrices are constructed from experimental data, and the extended observability matrix is employed to define an estimated output of the system. This estimated output and the actual - measured - output are utilized to construct a minimization problem. An embedded rank measure assures minimum state realization outcomes. Current NN-SI algorithms employ hard computing algorithms for minimization. In this work, we propose a simple Tabu Search (TS) algorithm for minimization. TS algorithm based SI is compared with the iterative Alternating Direction Method of Multipliers (ADMM) line search optimization based NN-SI. For comparison, several different benchmark system identification problems are solved by both approaches. Results show improved performance of the proposed SI-TS algorithm compared to the NN-SI ADMM algorithm.

  11. Improved Stochastic Subspace System Identification for Structural Health Monitoring

    Science.gov (United States)

    Chang, Chia-Ming; Loh, Chin-Hsiung

    2015-07-01

    Structural health monitoring acquires structural information through numerous sensor measurements. Vibrational measurement data render the dynamic characteristics of structures to be extracted, in particular of the modal properties such as natural frequencies, damping, and mode shapes. The stochastic subspace system identification has been recognized as a power tool which can present a structure in the modal coordinates. To obtain qualitative identified data, this tool needs to spend computational expense on a large set of measurements. In study, a stochastic system identification framework is proposed to improve the efficiency and quality of the conventional stochastic subspace system identification. This framework includes 1) measured signal processing, 2) efficient space projection, 3) system order selection, and 4) modal property derivation. The measured signal processing employs the singular spectrum analysis algorithm to lower the noise components as well as to present a data set in a reduced dimension. The subspace is subsequently derived from the data set presented in a delayed coordinate. With the proposed order selection criteria, the number of structural modes is determined, resulting in the modal properties. This system identification framework is applied to a real-world bridge for exploring the feasibility in real-time applications. The results show that this improved system identification method significantly decreases computational time, while qualitative modal parameters are still attained.

  12. Music Identification System Using MPEG-7 Audio Signature Descriptors

    Directory of Open Access Journals (Sweden)

    Shingchern D. You

    2013-01-01

    Full Text Available This paper describes a multiresolution system based on MPEG-7 audio signature descriptors for music identification. Such an identification system may be used to detect illegally copied music circulated over the Internet. In the proposed system, low-resolution descriptors are used to search likely candidates, and then full-resolution descriptors are used to identify the unknown (query audio. With this arrangement, the proposed system achieves both high speed and high accuracy. To deal with the problem that a piece of query audio may not be inside the system’s database, we suggest two different methods to find the decision threshold. Simulation results show that the proposed method II can achieve an accuracy of 99.4% for query inputs both inside and outside the database. Overall, it is highly possible to use the proposed system for copyright control.

  13. Biometric and Emotion Identification: An ECG Compression Based Method

    Directory of Open Access Journals (Sweden)

    Susana Brás

    2018-04-01

    Full Text Available We present an innovative and robust solution to both biometric and emotion identification using the electrocardiogram (ECG. The ECG represents the electrical signal that comes from the contraction of the heart muscles, indirectly representing the flow of blood inside the heart, it is known to convey a key that allows biometric identification. Moreover, due to its relationship with the nervous system, it also varies as a function of the emotional state. The use of information-theoretic data models, associated with data compression algorithms, allowed to effectively compare ECG records and infer the person identity, as well as emotional state at the time of data collection. The proposed method does not require ECG wave delineation or alignment, which reduces preprocessing error. The method is divided into three steps: (1 conversion of the real-valued ECG record into a symbolic time-series, using a quantization process; (2 conditional compression of the symbolic representation of the ECG, using the symbolic ECG records stored in the database as reference; (3 identification of the ECG record class, using a 1-NN (nearest neighbor classifier. We obtained over 98% of accuracy in biometric identification, whereas in emotion recognition we attained over 90%. Therefore, the method adequately identify the person, and his/her emotion. Also, the proposed method is flexible and may be adapted to different problems, by the alteration of the templates for training the model.

  14. Biometric and Emotion Identification: An ECG Compression Based Method

    Science.gov (United States)

    Brás, Susana; Ferreira, Jacqueline H. T.; Soares, Sandra C.; Pinho, Armando J.

    2018-01-01

    We present an innovative and robust solution to both biometric and emotion identification using the electrocardiogram (ECG). The ECG represents the electrical signal that comes from the contraction of the heart muscles, indirectly representing the flow of blood inside the heart, it is known to convey a key that allows biometric identification. Moreover, due to its relationship with the nervous system, it also varies as a function of the emotional state. The use of information-theoretic data models, associated with data compression algorithms, allowed to effectively compare ECG records and infer the person identity, as well as emotional state at the time of data collection. The proposed method does not require ECG wave delineation or alignment, which reduces preprocessing error. The method is divided into three steps: (1) conversion of the real-valued ECG record into a symbolic time-series, using a quantization process; (2) conditional compression of the symbolic representation of the ECG, using the symbolic ECG records stored in the database as reference; (3) identification of the ECG record class, using a 1-NN (nearest neighbor) classifier. We obtained over 98% of accuracy in biometric identification, whereas in emotion recognition we attained over 90%. Therefore, the method adequately identify the person, and his/her emotion. Also, the proposed method is flexible and may be adapted to different problems, by the alteration of the templates for training the model. PMID:29670564

  15. [A accurate identification method for Chinese materia medica--systematic identification of Chinese materia medica].

    Science.gov (United States)

    Wang, Xue-Yong; Liao, Cai-Li; Liu, Si-Qi; Liu, Chun-Sheng; Shao, Ai-Juan; Huang, Lu-Qi

    2013-05-01

    This paper put forward a more accurate identification method for identification of Chinese materia medica (CMM), the systematic identification of Chinese materia medica (SICMM) , which might solve difficulties in CMM identification used the ordinary traditional ways. Concepts, mechanisms and methods of SICMM were systematically introduced and possibility was proved by experiments. The establishment of SICMM will solve problems in identification of Chinese materia medica not only in phenotypic characters like the mnorphous, microstructure, chemical constituents, but also further discovery evolution and classification of species, subspecies and population in medical plants. The establishment of SICMM will improve the development of identification of CMM and create a more extensive study space.

  16. An Identification Key for Selecting Methods for Sustainability Assessments

    Directory of Open Access Journals (Sweden)

    Michiel C. Zijp

    2015-03-01

    Full Text Available Sustainability assessments can play an important role in decision making. This role starts with selecting appropriate methods for a given situation. We observed that scientists, consultants, and decision-makers often do not systematically perform a problem analyses that guides the choice of the method, partly related to a lack of systematic, though sufficiently versatile approaches to do so. Therefore, we developed and propose a new step towards method selection on the basis of question articulation: the Sustainability Assessment Identification Key. The identification key was designed to lead its user through all important choices needed for comprehensive question articulation. Subsequently, methods that fit the resulting specific questions are suggested by the key. The key consists of five domains, of which three determine method selection and two the design or use of the method. Each domain consists of four or more criteria that need specification. For example in the domain “system boundaries”, amongst others, the spatial and temporal scales are specified. The key was tested (retrospectively on a set of thirty case studies. Using the key appeared to contribute to improved: (i transparency in the link between the question and method selection; (ii consistency between questions asked and answers provided; and (iii internal consistency in methodological design. There is latitude to develop the current initial key further, not only for selecting methods pertinent to a problem definition, but also as a principle for associated opportunities such as stakeholder identification.

  17. Star identification methods, techniques and algorithms

    CERN Document Server

    Zhang, Guangjun

    2017-01-01

    This book summarizes the research advances in star identification that the author’s team has made over the past 10 years, systematically introducing the principles of star identification, general methods, key techniques and practicable algorithms. It also offers examples of hardware implementation and performance evaluation for the star identification algorithms. Star identification is the key step for celestial navigation and greatly improves the performance of star sensors, and as such the book include the fundamentals of star sensors and celestial navigation, the processing of the star catalog and star images, star identification using modified triangle algorithms, star identification using star patterns and using neural networks, rapid star tracking using star matching between adjacent frames, as well as implementation hardware and using performance tests for star identification. It is not only valuable as a reference book for star sensor designers and researchers working in pattern recognition and othe...

  18. A Gender Identification System for Customers in a Shop Using Infrared Area Scanners

    Science.gov (United States)

    Tajima, Takuya; Kimura, Haruhiko; Abe, Takehiko; Abe, Koji; Nakamoto, Yoshinori

    Information about customers in shops plays an important role in marketing analysis. Currently, in convenience stores and supermarkets, the identification of customer's gender is examined by clerks. On the other hand, gender identification systems using camera images are investigated. However, these systems have a problem of invading human privacies in identifying attributes of customers. The proposed system identifies gender by using infrared area scanners and Bayesian network. In the proposed system, since infrared area scanners do not take customers' images directly, invasion of privacies are not occurred. The proposed method uses three parameters of height, walking speed and pace for humans. In general, it is shown that these parameters have factors of sexual distinction in humans, and Bayesian network is designed with these three parameters. The proposed method resolves the existent problems of restricting the locations where the systems are set and invading human privacies. Experimental results using data obtained from 450 people show that the identification rate for the proposed method was 91.3% on the average of both of male and female identifications.

  19. Identification Male Fertility Through Abnormalities Sperm Based Morphology (Teratospermia) using Invariant Moment Method

    Science.gov (United States)

    Syahputra, M. F.; Chairani, R.; Seniman; Rahmat, R. F.; Abdullah, D.; Napitupulu, D.; Setiawan, M. I.; Albra, W.; Erliana, C. I.; Andayani, U.

    2018-03-01

    Sperm morphology is still a standard laboratory analysis in diagnosing infertility in men. Manually identification of sperm form is still not accurate, the difficulty in seeing the form of the invisible sperm from the digital microscope image is often a weakness in the process of identification and takes a long time. Therefore, male fertility identification application system is needed Through sperm abnormalities based on sperm morphology (teratospermia). The method used is invariant moment method. This study uses 15 data testing and 20 data training sperm image. That the process of male fertility identification through sperm abnormalities based on sperm morphology (teratospermia) has an accuracy rate of 80.77%. Use of time to process Identification of male fertility through sperm abnormalities Based on sperm morphology (teratospermia) during 0.4369 seconds.

  20. Modeling emotional content of music using system identification.

    Science.gov (United States)

    Korhonen, Mark D; Clausi, David A; Jernigan, M Ed

    2006-06-01

    Research was conducted to develop a methodology to model the emotional content of music as a function of time and musical features. Emotion is quantified using the dimensions valence and arousal, and system-identification techniques are used to create the models. Results demonstrate that system identification provides a means to generalize the emotional content for a genre of music. The average R2 statistic of a valid linear model structure is 21.9% for valence and 78.4% for arousal. The proposed method of constructing models of emotional content generalizes previous time-series models and removes ambiguity from classifiers of emotion.

  1. System Identification of a Non-Uniformly Sampled Multi-Rate System in Aluminium Electrolysis Cells

    Directory of Open Access Journals (Sweden)

    Håkon Viumdal

    2014-07-01

    Full Text Available Standard system identification algorithms are usually designed to generate mathematical models with equidistant sampling instants, that are equal for both input variables and output variables. Unfortunately, real industrial data sets are often disrupted by missing samples, variations of sampling rates in the different variables (also known as multi-rate systems, and intermittent measurements. In industries with varying events based maintenance or manual operational measures, intermittent measurements are performed leading to uneven sampling rates. Such is the case with aluminium smelters, where in addition the materials fed into the cell create even more irregularity in sampling. Both measurements and feeding are mostly manually controlled. A simplified simulation of the metal level in an aluminium electrolysis cell is performed based on mass balance considerations. System identification methods based on Prediction Error Methods (PEM such as Ordinary Least Squares (OLS, and the sub-space method combined Deterministic and Stochastic system identification and Realization (DSR, and its variants are applied to the model of a single electrolysis cell as found in the aluminium smelters. Aliasing phenomena due to large sampling intervals can be crucial in avoiding unsuitable models, but with knowledge about the system dynamics, it is easier to optimize the sampling performance, and hence achieve successful models. The results based on the simulation studies of molten aluminium height in the cells using the various algorithms give results which tally well with the synthetic data sets used. System identification on a smaller data set from a real plant is also implemented in this work. Finally, some concrete suggestions are made for using these models in the smelters.

  2. Frequency response function-based explicit framework for dynamic identification in human-structure systems

    Science.gov (United States)

    Wei, Xiaojun; Živanović, Stana

    2018-05-01

    The aim of this paper is to propose a novel theoretical framework for dynamic identification in a structure occupied by a single human. The framework enables the prediction of the dynamics of the human-structure system from the known properties of the individual system components, the identification of human body dynamics from the known dynamics of the empty structure and the human-structure system and the identification of the properties of the structure from the known dynamics of the human and the human-structure system. The novelty of the proposed framework is the provision of closed-form solutions in terms of frequency response functions obtained by curve fitting measured data. The advantages of the framework over existing methods are that there is neither need for nonlinear optimisation nor need for spatial/modal models of the empty structure and the human-structure system. In addition, the second-order perturbation method is employed to quantify the effect of uncertainties in human body dynamics on the dynamic identification of the empty structure and the human-structure system. The explicit formulation makes the method computationally efficient and straightforward to use. A series of numerical examples and experiments are provided to illustrate the working of the method.

  3. The power grid AGC frequency bias coefficient online identification method based on wide area information

    Science.gov (United States)

    Wang, Zian; Li, Shiguang; Yu, Ting

    2015-12-01

    This paper propose online identification method of regional frequency deviation coefficient based on the analysis of interconnected grid AGC adjustment response mechanism of regional frequency deviation coefficient and the generator online real-time operation state by measured data through PMU, analyze the optimization method of regional frequency deviation coefficient in case of the actual operation state of the power system and achieve a more accurate and efficient automatic generation control in power system. Verify the validity of the online identification method of regional frequency deviation coefficient by establishing the long-term frequency control simulation model of two-regional interconnected power system.

  4. Time-Delay System Identification Using Genetic Algorithm

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Seested, Glen Thane

    2013-01-01

    problem through an identification approach using the real coded Genetic Algorithm (GA). The desired FOPDT/SOPDT model is directly identified based on the measured system's input and output data. In order to evaluate the quality and performance of this GA-based approach, the proposed method is compared...

  5. Coherency Identification of Generators Using a PAM Algorithm for Dynamic Reduction of Power Systems

    Directory of Open Access Journals (Sweden)

    Seung-Il Moon

    2012-11-01

    Full Text Available This paper presents a new coherency identification method for dynamic reduction of a power system. To achieve dynamic reduction, coherency-based equivalence techniques divide generators into groups according to coherency, and then aggregate them. In order to minimize the changes in the dynamic response of the reduced equivalent system, coherency identification of the generators should be clearly defined. The objective of the proposed coherency identification method is to determine the optimal coherent groups of generators with respect to the dynamic response, using the Partitioning Around Medoids (PAM algorithm. For this purpose, the coherency between generators is first evaluated from the dynamic simulation time response, and in the proposed method this result is then used to define a dissimilarity index. Based on the PAM algorithm, the coherent generator groups are then determined so that the sum of the index in each group is minimized. This approach ensures that the dynamic characteristics of the original system are preserved, by providing the optimized coherency identification. To validate the effectiveness of the technique, simulated cases with an IEEE 39-bus test system are evaluated using PSS/E. The proposed method is compared with an existing coherency identification method, which uses the K-means algorithm, and is found to provide a better estimate of the original system

  6. Development of evaluation method for software hazard identification techniques

    International Nuclear Information System (INIS)

    Huang, H. W.; Chen, M. H.; Shih, C.; Yih, S.; Kuo, C. T.; Wang, L. H.; Yu, Y. C.; Chen, C. W.

    2006-01-01

    This research evaluated the applicable software hazard identification techniques nowadays, such as, Preliminary Hazard Analysis (PHA), Failure Modes and Effects Analysis (FMEA), Fault Tree Analysis (FTA), Markov chain modeling, Dynamic Flow-graph Methodology (DFM), and simulation-based model analysis; and then determined indexes in view of their characteristics, which include dynamic capability, completeness, achievability, detail, signal/noise ratio, complexity, and implementation cost. By this proposed method, the analysts can evaluate various software hazard identification combinations for specific purpose. According to the case study results, the traditional PHA + FMEA + FTA (with failure rate) + Markov chain modeling (with transfer rate) combination is not competitive due to the dilemma for obtaining acceptable software failure rates. However, the systematic architecture of FTA and Markov chain modeling is still valuable for realizing the software fault structure. The system centric techniques, such as DFM and simulation-based model-analysis, show the advantage on dynamic capability, achievability, detail, signal/noise ratio. However, their disadvantages are the completeness complexity and implementation cost. This evaluation method can be a platform to reach common consensus for the stakeholders. Following the evolution of software hazard identification techniques, the evaluation results could be changed. However, the insight of software hazard identification techniques is much more important than the numbers obtained by the evaluation. (authors)

  7. Comparison of biochemical and molecular methods for the identification of bacterial isolates associated with failed loggerhead sea turtle eggs.

    Science.gov (United States)

    Awong-Taylor, J; Craven, K S; Griffiths, L; Bass, C; Muscarella, M

    2008-05-01

    Comparison of biochemical vs molecular methods for identification of microbial populations associated with failed loggerhead turtle eggs. Two biochemical (API and Microgen) and one molecular methods (16s rRNA analysis) were compared in the areas of cost, identification, corroboration of data with other methods, ease of use, resources and software. The molecular method was costly and identified only 66% of the isolates tested compared with 74% for API. A 74% discrepancy in identifications occurred between API and 16s rRNA analysis. The two biochemical methods were comparable in cost, but Microgen was easier to use and yielded the lowest discrepancy among identifications (29%) when compared with both API 20 enteric (API 20E) and API 20 nonenteric (API 20NE) combined. A comparison of API 20E and API 20NE indicated an 83% discrepancy between the two methods. The Microgen identification system appears to be better suited than API or 16s rRNA analysis for identification of environmental isolates associated with failed loggerhead eggs. Most identification methods are not intended for use with environmental isolates. A comparison of identification systems would provide better options for identifying environmental bacteria for ecological studies.

  8. Nonlinear System Identification via Basis Functions Based Time Domain Volterra Model

    Directory of Open Access Journals (Sweden)

    Yazid Edwar

    2014-07-01

    Full Text Available This paper proposes basis functions based time domain Volterra model for nonlinear system identification. The Volterra kernels are expanded by using complex exponential basis functions and estimated via genetic algorithm (GA. The accuracy and practicability of the proposed method are then assessed experimentally from a scaled 1:100 model of a prototype truss spar platform. Identification results in time and frequency domain are presented and coherent functions are performed to check the quality of the identification results. It is shown that results between experimental data and proposed method are in good agreement.

  9. Parameter identification based synchronization for a class of chaotic systems with offset vectors

    International Nuclear Information System (INIS)

    Chen Cailian; Feng Gang; Guan Xinping

    2004-01-01

    Based on a parameter identification scheme, a novel synchronization method is presented for a class of chaotic systems with offset vectors which can be represented by the so-called T-S fuzzy model. It is shown that the slave system can synchronize the master system and the unknown parameters of the master system can be identified simultaneously. The delayed feedback technique is also developed in order to reduce the energy and time required for the identification and synchronization. Numerical simulations demonstrate the effectiveness of the proposed method

  10. System parameter identification information criteria and algorithms

    CERN Document Server

    Chen, Badong; Hu, Jinchun; Principe, Jose C

    2013-01-01

    Recently, criterion functions based on information theoretic measures (entropy, mutual information, information divergence) have attracted attention and become an emerging area of study in signal processing and system identification domain. This book presents a systematic framework for system identification and information processing, investigating system identification from an information theory point of view. The book is divided into six chapters, which cover the information needed to understand the theory and application of system parameter identification. The authors' research pr

  11. Method of Increasing Identification Accuracy under Experimental Tests of Dynamic Objects

    Directory of Open Access Journals (Sweden)

    Y. N. Pavlov

    2015-01-01

    Full Text Available The work concerns a problem of increasing identification accuracy of linear dynamic systems on the basis of experimental data obtained by applying test signals to the system.The work is aimed at considering a possibility to use the experimentally obtained hodograph counting to determine parameters of this system in a specific context of the linear dynamic system of the second order.An offer was to use a method of harmonious linearization and a described cut method.The type of frequency transfer function of the identified system was assumed as known.It was supposed that when obtaining the frequency characteristics of a real system there are disturbances interfering with experiment as a result of which points of experimentally received hodograph are random displaced.An identification problem solution was searched in a class of the hodograph set by the system model, which had the same type of frequency transfer function, as the type of frequency transfer function of the identified system.The unknown coefficients of frequency transfer function of the system model were searched through minimizing a proximity criterion (measure of the experimentally received hodograph of the system and of the system model hodograph over the entire aggregate of points. One of the authors described this criterion in the earlier publication.The solution to a problem of nonlinear dynamic system identification by the frequency hodograph was reduced to the solution of the system of equations of the rather unknown linear parameters of frequency transfer function of the system model.The program to simulate a process of the pseudo-experimental data, containing random errors, and determine parameters of this system is developed for a dynamic system of the second order.A conducted computing experiment is conducted to estimate an error at which the offered algorithm defines the values of parameters of this system.

  12. Multiple independent identification decisions: a method of calibrating eyewitness identifications.

    Science.gov (United States)

    Pryke, Sean; Lindsay, R C L; Dysart, Jennifer E; Dupuis, Paul

    2004-02-01

    Two experiments (N = 147 and N = 90) explored the use of multiple independent lineups to identify a target seen live. In Experiment 1, simultaneous face, body, and sequential voice lineups were used. In Experiment 2, sequential face, body, voice, and clothing lineups were used. Both studies demonstrated that multiple identifications (by the same witness) from independent lineups of different features are highly diagnostic of suspect guilt (G. L. Wells & R. C. L. Lindsay, 1980). The number of suspect and foil selections from multiple independent lineups provides a powerful method of calibrating the accuracy of eyewitness identification. Implications for use of current methods are discussed. ((c) 2004 APA, all rights reserved)

  13. [Personal identification with biometric and genetic methods].

    Science.gov (United States)

    Cabanis, Emmanuel-Alain; Le Gall, Jean-Yves; Ardaillou, Raymond

    2007-11-01

    The need for personal identification is growing in many avenues of society. To "identify" a person is to establish a link between his or her observed characteristics and those previously stored in a database. To "authenticate" is to decide whether or not someone is the person he or she claims to be. These two objectives can now be achieved by analysing biometric data and genetic prints. All biometric techniques proceed in several stages: acquisition of an image or physical parameters, encoding them with a mathematical model, comparing the results of this model with those contained in the database, and calculating the error risk. These techniques must be usable worldwide and must examine specific and permanent personal data. The most widely used are facial recognition, digital prints (flexion folds and dermatoglyphs, that offer the advantage of leaving marks), and the surface and texture of the iris. Other biometric techniques analyse behaviours such as walking, signing, typing, or speaking. Implanted radio-transmitters are another means of identification. All these systems are evaluated on the basis of the same parameters, namely the false rejection rate, the false acceptance rate, and the failure-to-enrol rate. The uses of biometrics are increasing and diversifying, and now include national and international identification systems, control of access to protected sites, criminal and victim identification, and transaction security. Genetic methods can identify individuals almost infallibly, based on short tandem repeats of 2-5 nucleotides, or microsatellites. The most recent kits analyze 11-16 independent autosomal markers. Mitochondrial DNA and Y chromosome DNA can also be analyzed. These genetic tests are currently used to identify suspected criminals or their victims from biological samples, and to establish paternity. Personal identification raises many ethical questions, however, such as when to create and how to use a database while preserving personal freedom

  14. Identification of Staphylococcus species with the API STAPH-IDENT system.

    Science.gov (United States)

    Kloos, W E; Wolfshohl, J F

    1982-01-01

    The API STAPH-IDENT system was compared with conventional methods for the identification of 14 Staphylococcus species. Conventional methods included the Kloos and Schleifer simplified scheme and DNA-DNA hybridization. The API STAPH-IDENT strip utilizes a battery of 10 miniaturized biochemical tests, including alkaline phosphatase, urease, beta-glucosidase, beta-glucuronidase, and beta-galactosidase activity, aerobic acid formation from D-(+)-mannose, D-mannitol, D-(+)-trehalose, and salicin, and utilization of arginine. Reactions of cultures were determined after 5 h of incubation at 35 degrees C. Results indicated a high degree of congruence (greater than 90%) between the expedient API system and conventional methods for most species. The addition of a test for novobiocin susceptibility to the API system increased the accuracy of identification of S. saprophyticus, S. cohnii, and S. hominis, significantly. Several strains of S. hominis, S. haemolyticus, and S. warneri which were difficult to separate with the Kloos and Schleifer simplified scheme were accurately resolved by the API system. PMID:6752190

  15. Identification of Clearance and Contact Stiffness in a Simplified Barrel-Cradle Structure of Artillery System

    Directory of Open Access Journals (Sweden)

    Bing Li

    2015-02-01

    Full Text Available In gun barrel-cradle structure, the presence of clearance usually changes the dynamic response of muzzle and results in shooting dispersion (under continuous firing condition. The parameter estimation of such clearance nonlinear system is the prerequisite for establishing quantitative relation between the clearance and muzzle disturbance. In this paper, the restoring force surface (RFS method and the nonlinear identification through feedback of outputs (NIFO method are first combined for parameter identification in a simplified barrel-cradle structure. With the RFS method, clearance value can be obtained by analyzing the restoring force plot. Then the contact stiffness can be identified by using NIFO method. This identification process is verified in a single-degree-of-freedom (SDOF system with clearance. To adapt to the rigid-flexible coupled beam system with clearances which is simplified from the barrel-cradle structure, a modification for the combined method mentioned above is proposed. The core idea of the modification is reducing the continuous system to multiple-degree-of-freedom (MDOF system to reserve the nonlinear characteristics through modal transformation matrix. The advantage of this transformation is that the linear parts of the MDOF systems are decoupled, which greatly reduces the difficulty of identification. The simulation results have shown the effectiveness of current method.

  16. BoB, a best-of-breed automated text de-identification system for VHA clinical documents.

    Science.gov (United States)

    Ferrández, Oscar; South, Brett R; Shen, Shuying; Friedlin, F Jeffrey; Samore, Matthew H; Meystre, Stéphane M

    2013-01-01

    De-identification allows faster and more collaborative clinical research while protecting patient confidentiality. Clinical narrative de-identification is a tedious process that can be alleviated by automated natural language processing methods. The goal of this research is the development of an automated text de-identification system for Veterans Health Administration (VHA) clinical documents. We devised a novel stepwise hybrid approach designed to improve the current strategies used for text de-identification. The proposed system is based on a previous study on the best de-identification methods for VHA documents. This best-of-breed automated clinical text de-identification system (aka BoB) tackles the problem as two separate tasks: (1) maximize patient confidentiality by redacting as much protected health information (PHI) as possible; and (2) leave de-identified documents in a usable state preserving as much clinical information as possible. We evaluated BoB with a manually annotated corpus of a variety of VHA clinical notes, as well as with the 2006 i2b2 de-identification challenge corpus. We present evaluations at the instance- and token-level, with detailed results for BoB's main components. Moreover, an existing text de-identification system was also included in our evaluation. BoB's design efficiently takes advantage of the methods implemented in its pipeline, resulting in high sensitivity values (especially for sensitive PHI categories) and a limited number of false positives. Our system successfully addressed VHA clinical document de-identification, and its hybrid stepwise design demonstrates robustness and efficiency, prioritizing patient confidentiality while leaving most clinical information intact.

  17. Transient identification system with noising data and 'don't know' response

    International Nuclear Information System (INIS)

    Mol, Antonio C. de A.; Martinez, Aquilino S.; Schirru, Roberto

    2002-01-01

    In the last years, many different approaches based on neural network (NN) has been proposed for transient identification in nuclear power plants (NPP). Some of them focus the dynamic identification using recurrent neural networks however, they are not able to deal with unrecognized transients. Other kind of solution uses competitive learning in order to allow the 'don't know' response. In this case dynamic, dynamic features are not well represented. This work presents a new approach for neural network based transient identification which allows either dynamic identification and 'don't know'response. Such approach uses two multilayer neural networks trained with backpropagation algorithm. The first one is responsible for the dynamic identification. This NN uses, a short set (in a movable time window) of recent measurements of each variable avoiding the necessity of using starting events. The other one is used to validate the instantaneous identification (from the first net) through the validation of each variable. This net is responsible for allowing the system to provide 'don't know' response. In order to validate the method a NPP transient identification problem comprising 15 postulated accidents, simulated for a pressurized water reactor, was proposed in the validation process it has been considered noising data in other to evaluate the method robustness. Obtained results reveal the ability of the method in dealing with both dynamic identification of transients and correct 'don't know' response. In order to validate the method, a NPP transient identification problem comprising 15 postulated accidents simulated for a pressurized water reactor, was proposed in the validation process it has been considered noising data in order to evaluate the method robustness. Obtained results reveal the ability of the method in dealing with both dynamic identification of transients and correct 'don't know' response. (author)

  18. Subspace System Identification of the Kalman Filter

    Directory of Open Access Journals (Sweden)

    David Di Ruscio

    2003-07-01

    Full Text Available Some proofs concerning a subspace identification algorithm are presented. It is proved that the Kalman filter gain and the noise innovations process can be identified directly from known input and output data without explicitly solving the Riccati equation. Furthermore, it is in general and for colored inputs, proved that the subspace identification of the states only is possible if the deterministic part of the system is known or identified beforehand. However, if the inputs are white, then, it is proved that the states can be identified directly. Some alternative projection matrices which can be used to compute the extended observability matrix directly from the data are presented. Furthermore, an efficient method for computing the deterministic part of the system is presented. The closed loop subspace identification problem is also addressed and it is shown that this problem is solved and unbiased estimates are obtained by simply including a filter in the feedback. Furthermore, an algorithm for consistent closed loop subspace estimation is presented. This algorithm is using the controller parameters in order to overcome the bias problem.

  19. Identification for automotive systems

    CERN Document Server

    Hjalmarsson, Håkan; Re, Luigi

    2012-01-01

    Increasing complexity and performance and reliability expectations make modeling of automotive system both more difficult and more urgent. Automotive control has slowly evolved from an add-on to classical engine and vehicle design to a key technology to enforce consumption, pollution and safety limits. Modeling, however, is still mainly based on classical methods, even though much progress has been done in the identification community to speed it up and improve it. This book, the product of a workshop of representatives of different communities, offers an insight on how to close the gap and exploit this progress for the next generations of vehicles.

  20. Time-Delay System Identification Using Genetic Algorithm

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Seested, Glen Thane

    2013-01-01

    Due to the unknown dead-time coefficient, the time-delay system identification turns to be a non-convex optimization problem. This paper investigates the identification of a simple time-delay system, named First-Order-Plus-Dead-Time (FOPDT), by using the Genetic Algorithm (GA) technique. The qual......Due to the unknown dead-time coefficient, the time-delay system identification turns to be a non-convex optimization problem. This paper investigates the identification of a simple time-delay system, named First-Order-Plus-Dead-Time (FOPDT), by using the Genetic Algorithm (GA) technique...

  1. The Automated System for Identification of License Plates of Cars

    Directory of Open Access Journals (Sweden)

    FRATAVCHAN, V.

    2008-04-01

    Full Text Available The paper focuses on the automated traffic rule control system. It examines the basic scheme of the system, basic constituents, principles of constituent interactions, search methods of moving objects, localization, and identification of the license plate.

  2. Parameter Identification with the Random Perturbation Particle Swarm Optimization Method and Sensitivity Analysis of an Advanced Pressurized Water Reactor Nuclear Power Plant Model for Power Systems

    Directory of Open Access Journals (Sweden)

    Li Wang

    2017-02-01

    Full Text Available The ability to obtain appropriate parameters for an advanced pressurized water reactor (PWR unit model is of great significance for power system analysis. The attributes of that ability include the following: nonlinear relationships, long transition time, intercoupled parameters and difficult obtainment from practical test, posed complexity and difficult parameter identification. In this paper, a model and a parameter identification method for the PWR primary loop system were investigated. A parameter identification process was proposed, using a particle swarm optimization (PSO algorithm that is based on random perturbation (RP-PSO. The identification process included model variable initialization based on the differential equations of each sub-module and program setting method, parameter obtainment through sub-module identification in the Matlab/Simulink Software (Math Works Inc., Natick, MA, USA as well as adaptation analysis for an integrated model. A lot of parameter identification work was carried out, the results of which verified the effectiveness of the method. It was found that the change of some parameters, like the fuel temperature and coolant temperature feedback coefficients, changed the model gain, of which the trajectory sensitivities were not zero. Thus, obtaining their appropriate values had significant effects on the simulation results. The trajectory sensitivities of some parameters in the core neutron dynamic module were interrelated, causing the parameters to be difficult to identify. The model parameter sensitivity could be different, which would be influenced by the model input conditions, reflecting the parameter identifiability difficulty degree for various input conditions.

  3. Application of Story-wise Shear Building Identification Method to Actual Ambient Vibration

    Directory of Open Access Journals (Sweden)

    Kohei eFujita

    2015-02-01

    Full Text Available A sophisticated and smart story stiffness System Identification (SI method for a shear building model is applied to a full-scale building frame subjected to micro-tremors. The advantageous and novel feature is that not only the modal parameters, such as natural frequencies and damping ratios, but also the physical model parameters, such as story stiffnesses and damping coefficients, can be identified using micro-tremors. While the building responses to earthquake ground motions are necessary in the previous SI method, it is shown in this paper that the micro-tremor measurements in a full-scale 5 story building frame can be used for identification within the same framework. The SI using micro-tremor measurements leads to the enhanced usability of the previously proposed story-wise shear building identification method. The degree of ARX models and cut-off frequencies of band-pass filter are determined to derive reliable results.

  4. Electro-optical fuel pin identification system

    International Nuclear Information System (INIS)

    Kirchner, T.L.

    1978-09-01

    A prototype Electro-Optical Fuel Pin Identification System referred to as the Fuel Pin Identification System (FPIS) has been developed by the Hanford Engineering Development Laboratory (HEDL) in support of the Fast Flux Test Facility (FFTF) presently under construction at HEDL. The system is designed to remotely read an alpha-numeric identification number that is roll stamped on the top of the fuel pin end cap. The prototype FPIS consists of four major subassemblies: optical read head, digital compression electronics, video display, and line printer

  5. Proportionate Minimum Error Entropy Algorithm for Sparse System Identification

    Directory of Open Access Journals (Sweden)

    Zongze Wu

    2015-08-01

    Full Text Available Sparse system identification has received a great deal of attention due to its broad applicability. The proportionate normalized least mean square (PNLMS algorithm, as a popular tool, achieves excellent performance for sparse system identification. In previous studies, most of the cost functions used in proportionate-type sparse adaptive algorithms are based on the mean square error (MSE criterion, which is optimal only when the measurement noise is Gaussian. However, this condition does not hold in most real-world environments. In this work, we use the minimum error entropy (MEE criterion, an alternative to the conventional MSE criterion, to develop the proportionate minimum error entropy (PMEE algorithm for sparse system identification, which may achieve much better performance than the MSE based methods especially in heavy-tailed non-Gaussian situations. Moreover, we analyze the convergence of the proposed algorithm and derive a sufficient condition that ensures the mean square convergence. Simulation results confirm the excellent performance of the new algorithm.

  6. Identification methods of irradiated food

    International Nuclear Information System (INIS)

    Raffi, J.J.

    1991-01-01

    After a general review of the different possible methods, the stress is put upon the ones close to application: electron spin resonance, thermoluminescence and method of lipids. The problem of the specificity of each method is discussed (proof or presumption): they are then placed in the context of the programme of identification of irradiated foods just co-organized by the author with the Community Bureau of Reference (CEC) [fr

  7. System Identification with Quantized Observations

    CERN Document Server

    Wang, Le Yi; Zhang, Jifeng; Zhao, Yanlong

    2010-01-01

    This book presents recently developed methodologies that utilize quantized information in system identification and explores their potential in extending control capabilities for systems with limited sensor information or networked systems. The results of these methodologies can be applied to signal processing and control design of communication and computer networks, sensor networks, mobile agents, coordinated data fusion, remote sensing, telemedicine, and other fields in which noise-corrupted quantized data need to be processed. Providing a comprehensive coverage of quantized identification,

  8. Embedded System for Biometric Identification

    OpenAIRE

    Rosli, Ahmad Nasir Che

    2010-01-01

    This chapter describes the design and implementation of an Embedded System for Biometric Identification from hardware and software perspectives. The first part of the chapter describes the idea of biometric identification. This includes the definition of

  9. Substructure identification for shear structures: cross-power spectral density method

    International Nuclear Information System (INIS)

    Zhang, Dongyu; Johnson, Erik A

    2012-01-01

    In this paper, a substructure identification method for shear structures is proposed. A shear structure is divided into many small substructures; utilizing the dynamic equilibrium of a one-floor substructure, an inductive identification problem is formulated, using the cross-power spectral densities between structural floor accelerations and a reference response, to estimate the parameters of that one story. Repeating this procedure, all story parameters of the shear structure are identified from top to bottom recursively. An identification error analysis is performed for the proposed substructure method, revealing how uncertain factors (e.g. measurement noise) in the identification process affect the identification accuracy. According to the error analysis, a smart reference selection rule is designed to choose the optimal reference response that further enhances the identification accuracy. Moreover, based on the identification error analysis, explicit formulae are developed to calculate the variances of the parameter identification errors. A ten-story shear structure is used to illustrate the effectiveness of the proposed substructure method. The simulation results show that the method, combined with the reference selection rule, can very accurately identify structural parameters despite large measurement noise. Furthermore, the proposed formulae provide good predictions for the variances of the parameter identification errors, which are vital for providing accurate warnings of structural damage. (paper)

  10. Kalman and particle filtering methods for full vehicle and tyre identification

    Science.gov (United States)

    Bogdanski, Karol; Best, Matthew C.

    2018-05-01

    This paper considers identification of all significant vehicle handling dynamics of a test vehicle, including identification of a combined-slip tyre model, using only those sensors currently available on most vehicle controller area network buses. Using an appropriately simple but efficient model structure, all of the independent parameters are found from test vehicle data, with the resulting model accuracy demonstrated on independent validation data. The paper extends previous work on augmented Kalman Filter state estimators to concentrate wholly on parameter identification. It also serves as a review of three alternative filtering methods; identifying forms of the unscented Kalman filter, extended Kalman filter and particle filter are proposed and compared for effectiveness, complexity and computational efficiency. All three filters are suited to applications of system identification and the Kalman Filters can also operate in real-time in on-line model predictive controllers or estimators.

  11. An overview of modal-based damage identification methods

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, C.R.; Doebling, S.W. [Los Alamos National Lab., NM (United States). Engineering Analysis Group

    1997-09-01

    This paper provides an overview of methods that examine changes in measured vibration response to detect, locate, and characterize damage in structural and mechanical systems. The basic idea behind this technology is that modal parameters (notably frequencies, mode shapes, and modal damping) are functions of the physical properties of the structure (mass, damping, and stiffness). Therefore, changes in the physical properties will cause detectable changes in the modal properties. The motivation for the development of this technology is first provided. The methods are then categorized according to various criteria such as the level of damage detection provided, model-based vs. non-model-based methods and linear vs. nonlinear methods. This overview is limited to methods that can be adapted to a wide range of structures (i.e., are not dependent on a particular assumed model form for the system such as beam-bending behavior and methods and that are not based on updating finite element models). Next, the methods are described in general terms including difficulties associated with their implementation and their fidelity. Past, current and future-planned applications of this technology to actual engineering systems are summarized. The paper concludes with a discussion of critical issues for future research in the area of modal-based damage identification.

  12. Identification of continuous-time systems from samples of input ...

    Indian Academy of Sciences (India)

    Abstract. This paper presents an introductory survey of the methods that have been developed for identification of continuous-time systems from samples of input±output data. The two basic approaches may be described as (i) the indirect method, where first a discrete-time model is estimated from the sampled data and then ...

  13. Construction, implementation and testing of an image identification system using computer vision methods for fruit flies with economic importance (Diptera: Tephritidae).

    Science.gov (United States)

    Wang, Jiang-Ning; Chen, Xiao-Lin; Hou, Xin-Wen; Zhou, Li-Bing; Zhu, Chao-Dong; Ji, Li-Qiang

    2017-07-01

    Many species of Tephritidae are damaging to fruit, which might negatively impact international fruit trade. Automatic or semi-automatic identification of fruit flies are greatly needed for diagnosing causes of damage and quarantine protocols for economically relevant insects. A fruit fly image identification system named AFIS1.0 has been developed using 74 species belonging to six genera, which include the majority of pests in the Tephritidae. The system combines automated image identification and manual verification, balancing operability and accuracy. AFIS1.0 integrates image analysis and expert system into a content-based image retrieval framework. In the the automatic identification module, AFIS1.0 gives candidate identification results. Afterwards users can do manual selection based on comparing unidentified images with a subset of images corresponding to the automatic identification result. The system uses Gabor surface features in automated identification and yielded an overall classification success rate of 87% to the species level by Independent Multi-part Image Automatic Identification Test. The system is useful for users with or without specific expertise on Tephritidae in the task of rapid and effective identification of fruit flies. It makes the application of computer vision technology to fruit fly recognition much closer to production level. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Rotor-System Log-Decrement Identification Using Short-Time Fourier-Transform Filter

    Directory of Open Access Journals (Sweden)

    Qihang Li

    2015-01-01

    Full Text Available With the increase of the centrifugal compressor capability, such as large scale LNG and CO2 reinjection, the stability margin evaluation is crucial to assure the compressor work in the designed operating conditions in field. Improving the precision of parameter identification of stability is essential and necessary as well. Based on the time-varying characteristics of response vibration during the sine-swept process, a short-time Fourier transform (STFT filter was introduced to increase the signal-noise ratio and improve the accuracy of the estimated stability parameters. A finite element model was established to simulate the sine-swept process, and the simulated vibration signals were used to study the filtering effect and demonstrate the feasibility to identify the stability parameters by using Multiple-Input and Multiple-Output system identification method that combines the prediction error method and instrumental variable method. Simulation results show that the identification method with STFT filter improves the estimated accuracy much well and makes the curves of frequency response function clearer. Experiment was carried out on a test rig as well, which indicates the identification method is feasible in stability identification, and the results of experiment indicate that STFT filter works very well.

  15. Performance Assessment of the CapitalBio Mycobacterium Identification Array System for Identification of Mycobacteria

    Science.gov (United States)

    Liu, Jingbo; Yan, Zihe; Han, Min; Han, Zhijun; Jin, Lingjie; Zhao, Yanlin

    2012-01-01

    The CapitalBio Mycobacterium identification microarray system is a rapid system for the detection of Mycobacterium tuberculosis. The performance of this system was assessed with 24 reference strains, 486 Mycobacterium tuberculosis clinical isolates, and 40 clinical samples and then compared to the “gold standard” of DNA sequencing. The CapitalBio Mycobacterium identification microarray system showed highly concordant identification results of 100% and 98.4% for Mycobacterium tuberculosis complex (MTC) and nontuberculous mycobacteria (NTM), respectively. The sensitivity and specificity of the CapitalBio Mycobacterium identification array for identification of Mycobacterium tuberculosis isolates were 99.6% and 100%, respectively, for direct detection and identification of clinical samples, and the overall sensitivity was 52.5%. It was 100% for sputum, 16.7% for pleural fluid, and 10% for bronchoalveolar lavage fluid, respectively. The total assay was completed in 6 h, including DNA extraction, PCR, and hybridization. The results of this study confirm the utility of this system for the rapid identification of mycobacteria and suggest that the CapitalBio Mycobacterium identification array is a molecular diagnostic technique with high sensitivity and specificity that has the capacity to quickly identify most mycobacteria. PMID:22090408

  16. Data-Driven Photovoltaic System Modeling Based on Nonlinear System Identification

    Directory of Open Access Journals (Sweden)

    Ayedh Alqahtani

    2016-01-01

    Full Text Available Solar photovoltaic (PV energy sources are rapidly gaining potential growth and popularity compared to conventional fossil fuel sources. As the merging of PV systems with existing power sources increases, reliable and accurate PV system identification is essential, to address the highly nonlinear change in PV system dynamic and operational characteristics. This paper deals with the identification of a PV system characteristic with a switch-mode power converter. Measured input-output data are collected from a real PV panel to be used for the identification. The data are divided into estimation and validation sets. The identification methodology is discussed. A Hammerstein-Wiener model is identified and selected due to its suitability to best capture the PV system dynamics, and results and discussion are provided to demonstrate the accuracy of the selected model structure.

  17. Adaptive lag synchronization and parameters adaptive lag identification of chaotic systems

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yuhua, E-mail: yuhuaxu2004@163.co [College of Information Science and Technology, Donghua University, Shanghai 201620 (China) and Department of Mathematics, Yunyang Teachers' College, Hubei, Shiyan 442000 (China); Zhou Wuneng, E-mail: wnzhou@163.co [College of Information Science and Technology, Donghua University, Shanghai 201620 (China) and Key Laboratory of Wireless Sensor Network and Communication, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Fang Jian' an, E-mail: jafang@dhu.edu.c [College of Information Science and Technology, Donghua University, Shanghai 201620 (China); Sun Wen, E-mail: sunwen_2201@163.co [School of Mathematics and Information, Yangtze University, Hubei, Jingzhou 434023 (China)

    2010-07-26

    This Letter investigates the problem of adaptive lag synchronization and parameters adaptive lag identification of chaotic systems. In comparison with those of existing parameters identification schemes, the unknown parameters are identified by adaptive lag laws, and the delay time is also identified in this Letter. Numerical simulations are also given to show the effectiveness of the proposed method.

  18. Comparison Study of Subspace Identification Methods Applied to Flexible Structures

    Science.gov (United States)

    Abdelghani, M.; Verhaegen, M.; Van Overschee, P.; De Moor, B.

    1998-09-01

    In the past few years, various time domain methods for identifying dynamic models of mechanical structures from modal experimental data have appeared. Much attention has been given recently to so-called subspace methods for identifying state space models. This paper presents a detailed comparison study of these subspace identification methods: the eigensystem realisation algorithm with observer/Kalman filter Markov parameters computed from input/output data (ERA/OM), the robust version of the numerical algorithm for subspace system identification (N4SID), and a refined version of the past outputs scheme of the multiple-output error state space (MOESP) family of algorithms. The comparison is performed by simulating experimental data using the five mode reduced model of the NASA Mini-Mast structure. The general conclusion is that for the case of white noise excitations as well as coloured noise excitations, the N4SID/MOESP algorithms perform equally well but give better results (improved transfer function estimates, improved estimates of the output) compared to the ERA/OM algorithm. The key computational step in the three algorithms is the approximation of the extended observability matrix of the system to be identified, for N4SID/MOESP, or of the observer for the system to be identified, for the ERA/OM. Furthermore, the three algorithms only require the specification of one dimensioning parameter.

  19. Prediction-error identification of LPV systems : present and beyond

    NARCIS (Netherlands)

    Toth, R.; Heuberger, P.S.C.; Hof, Van den P.M.J.; Mohammadpour, J.; Scherer, C. W.

    2012-01-01

    The proposed chapter aims at presenting a unified framework of prediction-error based identification of LPV systems using freshly developed theoretical results. Recently, these methods have got a considerable attention as they have certain advantages in terms of computational complexity, optimality

  20. Identification of MIMO systems with sparse transfer function coefficients

    Science.gov (United States)

    Qiu, Wanzhi; Saleem, Syed Khusro; Skafidas, Efstratios

    2012-12-01

    We study the problem of estimating transfer functions of multivariable (multiple-input multiple-output--MIMO) systems with sparse coefficients. We note that subspace identification methods are powerful and convenient tools in dealing with MIMO systems since they neither require nonlinear optimization nor impose any canonical form on the systems. However, subspace-based methods are inefficient for systems with sparse transfer function coefficients since they work on state space models. We propose a two-step algorithm where the first step identifies the system order using the subspace principle in a state space format, while the second step estimates coefficients of the transfer functions via L1-norm convex optimization. The proposed algorithm retains good features of subspace methods with improved noise-robustness for sparse systems.

  1. A network identity authentication system based on Fingerprint identification technology

    Science.gov (United States)

    Xia, Hong-Bin; Xu, Wen-Bo; Liu, Yuan

    2005-10-01

    Fingerprint verification is one of the most reliable personal identification methods. However, most of the automatic fingerprint identification system (AFIS) is not run via Internet/Intranet environment to meet today's increasing Electric commerce requirements. This paper describes the design and implementation of the archetype system of identity authentication based on fingerprint biometrics technology, and the system can run via Internet environment. And in our system the COM and ASP technology are used to integrate Fingerprint technology with Web database technology, The Fingerprint image preprocessing algorithms are programmed into COM, which deployed on the internet information server. The system's design and structure are proposed, and the key points are discussed. The prototype system of identity authentication based on Fingerprint have been successfully tested and evaluated on our university's distant education applications in an internet environment.

  2. Control-based method to identify underlying delays of a nonlinear dynamical system.

    Science.gov (United States)

    Yu, Dongchuan; Frasca, Mattia; Liu, Fang

    2008-10-01

    We suggest several stationary state control-based delay identification methods which do not require any structural information about the controlled systems and are applicable to systems described by delayed ordinary differential equations. This proposed technique includes three steps: (i) driving a system to a steady state; (ii) perturbing the control signal for shifting the steady state; and (iii) identifying all delays by detecting the time that the system is abruptly drawn out of stationarity. Some aspects especially important for applications are discussed as well, including interaction delay identification, stationary state convergence speed, performance comparison, and the influence of noise on delay identification. Several examples are presented to illustrate the reliability and robustness of all delay identification methods suggested.

  3. Gain Scheduling Control based on Closed-Loop System Identification

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    the first and a second operating point is identified in closed-loop using system identification methods with open-loop properties. Next, a linear controller is designed for this linearised model, and gain scheduling control can subsequently be achieved by interpolating between each controller...

  4. Dynamic Friction Parameter Identification Method with LuGre Model for Direct-Drive Rotary Torque Motor

    Directory of Open Access Journals (Sweden)

    Xingjian Wang

    2016-01-01

    Full Text Available Attainment of high-performance motion/velocity control objectives for the Direct-Drive Rotary (DDR torque motor should fully consider practical nonlinearities in controller design, such as dynamic friction. The LuGre model has been widely utilized to describe nonlinear friction behavior; however, parameter identification for the LuGre model remains a challenge. A new dynamic friction parameter identification method for LuGre model is proposed in this study. Static parameters are identified through a series of constant velocity experiments, while dynamic parameters are obtained through a presliding process. Novel evolutionary algorithm (NEA is utilized to increase identification accuracy. Experimental results gathered from the identification experiments conducted in the study for a practical DDR torque motor control system validate the effectiveness of the proposed method.

  5. Parameters identification of hydraulic turbine governing system using improved gravitational search algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Chaoshun Li; Jianzhong Zhou [College of Hydroelectric Digitization Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2011-01-15

    Parameter identification of hydraulic turbine governing system (HTGS) is crucial in precise modeling of hydropower plant and provides support for the analysis of stability of power system. In this paper, a newly developed optimization algorithm, called gravitational search algorithm (GSA), is introduced and applied in parameter identification of HTGS, and the GSA is improved by combination of the search strategy of particle swarm optimization. Furthermore, a new weighted objective function is proposed in the identification frame. The improved gravitational search algorithm (IGSA), together with genetic algorithm, particle swarm optimization and GSA, is employed in parameter identification experiments and the procedure is validated by comparing experimental and simulated results. Consequently, IGSA is shown to locate more precise parameter values than the compared methods with higher efficiency. (author)

  6. Parameters identification of hydraulic turbine governing system using improved gravitational search algorithm

    International Nuclear Information System (INIS)

    Li Chaoshun; Zhou Jianzhong

    2011-01-01

    Parameter identification of hydraulic turbine governing system (HTGS) is crucial in precise modeling of hydropower plant and provides support for the analysis of stability of power system. In this paper, a newly developed optimization algorithm, called gravitational search algorithm (GSA), is introduced and applied in parameter identification of HTGS, and the GSA is improved by combination of the search strategy of particle swarm optimization. Furthermore, a new weighted objective function is proposed in the identification frame. The improved gravitational search algorithm (IGSA), together with genetic algorithm, particle swarm optimization and GSA, is employed in parameter identification experiments and the procedure is validated by comparing experimental and simulated results. Consequently, IGSA is shown to locate more precise parameter values than the compared methods with higher efficiency.

  7. Access control and personal identification systems

    CERN Document Server

    Bowers, Dan M

    1988-01-01

    Access Control and Personal Identification Systems provides an education in the field of access control and personal identification systems, which is essential in selecting the appropriate equipment, dealing intelligently with vendors in purchases of the equipment, and integrating the equipment into a total effective system. Access control devices and systems comprise an important part of almost every security system, but are seldom the sole source of security. In order for the goals of the total system to be met, the other portions of the security system must also be well planned and executed

  8. Evaluation of the MIT RMID 1000 system for the identification of Listeria species.

    Science.gov (United States)

    Ricardi, John; Haavig, David; Cruz, Lasaunta; Paoli, George; Gehring, Andrew

    2010-01-01

    The Micro Imaging Technology (MIT) 1000 Rapid Microbial Identification (RMID) System is a device that uses the principles of light scattering coupled with proprietary algorithms to identify bacteria after being cultured and placed in a vial of filtered water. This specific method is for pure culture identification of Listeria spp. A total of 81 microorganisms (55 isolates) were tested by the MIT 1000 System, of which 25 were Listeria spp. and 30 a variety of other bacterial species. In addition, a total of 406 tests over seven different ruggedness parameters were tested by the MIT 1000 System to determine its flexibility to the specifications stated in the MIT 1000 System User Guide in areas where they might be deviated by a user to shorten the test cycle. Overall, MIT concluded that the MIT 1000 System had an accuracy performance that should certify this Performance Test Method for the identification of Listeria spp. This report discusses the tests performed, results achieved, and conclusions, along with several reference documents to enable a higher understanding of the technology used by the MIT 1000 System.

  9. Frequency domain indirect identification of AMB rotor systems based on fictitious proportional feedback gain

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Hyeong Joon [Dept. of Mechanical Engineering, Soongsil University, Seoul (Korea, Republic of); Kim, Chan Jung [Dept. of Mechanical Design Engineering, Pukyong National University, Busan(Korea, Republic of)

    2016-12-15

    It is very difficult to directly identify an unstable system with uncertain dynamics from frequency domain input-output data. Hence, in these cases, closed-loop frequency responses calculated using a fictitious feedback could be more identifiable than open-loop data. This paper presents a frequency domain indirect identification of AMB rotor systems based on a Fictitious proportional feedback gain (FPFG). The closed-loop effect due to the FPFG can enhance the detectability of the system by moving the system poles, and significantly weigh the target mode in the frequency domain. The effectiveness of the proposed identification method was verified through the frequency domain identification of active magnetic bearing rotor systems.

  10. Case studies using the United States Coast Guard's Oil Identification System for petroleum spill source identification

    International Nuclear Information System (INIS)

    Grosser, P.W.; Castellano, F.P.

    1993-01-01

    The Oil Identification System (OIS) was developed in the 1970's at the Coast Guard Research and Development Center, to determine the unique, intrinsic properties which would allow the matching of a spilled oil with its correct source. The Central Oil Identification Laboratory (COIL) was established in 1978 as the operating facility to implement the OIS. The OIS encompasses four analytical methods; thin layer chromatography, fluorescence spectroscopy, infrared spectroscopy and gas chromatography. A sample can be studied according to each individual method or multi-methods approach can be chosen if no single technique gives unequivocal results. Combined these methods are greater than 99% effective. The authors recently utilized the OIS and the COIL for three petroleum spill investigations in New York. As part of the investigation to determine the source(s) of several different petroleum product spills, OIS was conducted along with a review of groundwater sample chromatograms

  11. Denture identification using unique identification authority of India barcode

    OpenAIRE

    Sudhindra Mahoorkar; Anoop Jain

    2013-01-01

    Over the years, various denture marking systems have been reported in the literature for personal identification. They have been broadly divided into surface marking and inclusion methods. In this technique, patient's unique identification number and barcode printed in the patient's Aadhaar card issued by Unique Identification Authority of India (UIDAI) are used as denture markers. This article describes a simple, quick, and economical method for identification of individual.

  12. Denture identification using unique identification authority of India barcode.

    Science.gov (United States)

    Mahoorkar, Sudhindra; Jain, Anoop

    2013-01-01

    Over the years, various denture marking systems have been reported in the literature for personal identification. They have been broadly divided into surface marking and inclusion methods. In this technique, patient's unique identification number and barcode printed in the patient's Aadhaar card issued by Unique Identification Authority of India (UIDAI) are used as denture markers. This article describes a simple, quick, and economical method for identification of individual.

  13. Collaborative evaluation of the Abbott yeast identification system.

    OpenAIRE

    Cooper, B H; Prowant, S; Alexander, B; Brunson, D H

    1984-01-01

    The Abbott yeast identification system (Abbott Laboratories, Diagnostics Division, Irving, Tex.) is a 24-h, instrumental method for identifying medically important yeasts, based on matrix analysis of 19 biochemical reactions and the germ tube test. The system was evaluated in two clinical laboratories by using 179 coded isolates, which included a high percentage of the less frequently encountered species. Based upon results with these coded isolates and from previously obtained laboratory dat...

  14. An Automatic Parameter Identification Method for a PMSM Drive with LC-Filter

    DEFF Research Database (Denmark)

    Bech, Michael Møller; Christensen, Jeppe Haals; Weber, Magnus L.

    2016-01-01

    of the PMSM fed through an LC-filter. Based on the measured current response, model parameters for both the filter (L, R, C) and the PMSM (L and R) are estimated: First, the frequency response of the system is estimated using Welch Modified Periodogram method and then an optimization algorithm is used to find...... the parameters in an analytical reference model that minimize the model error. To demonstrate the practical feasibility of the method, a fully functional drive including an embedded real-time controller has been built. In addition to modulation, data acquisition and control the whole parameter identification...... method is also implemented on the real-time controller. Based on laboratory experiments on a 22 kW drive, it is concluded that the embedded identification method can estimate the five parameters in less than ten seconds....

  15. Measurement methods for high energy particle identification in gaseous mixture detectors

    International Nuclear Information System (INIS)

    Marchand, Patrick.

    1981-01-01

    In this work, we discuss some methods for high energy particle identification. We study and design a MWPC equipped with a preamplifier gap for increased resolution. In addition, we propose a new mehod of counting primary collisions. The electronic system used for multiplexing analog wire signals is also described [fr

  16. Identification techniques for phenomenological models of hysteresis based on the conjugate gradient method

    International Nuclear Information System (INIS)

    Andrei, Petru; Oniciuc, Liviu; Stancu, Alexandru; Stoleriu, Laurentiu

    2007-01-01

    An identification technique for the parameters of phenomenological models of hysteresis is presented. The basic idea of our technique is to set up a system of equations for the parameters of the model as a function of known quantities on the major or minor hysteresis loops (e.g. coercive force, susceptibilities at various points, remanence), or other magnetization curves. This system of equations can be either over or underspecified and is solved by using the conjugate gradient method. Numerical results related to the identification of parameters in the Energetic, Jiles-Atherton, and Preisach models are presented

  17. Face recognition system and method using face pattern words and face pattern bytes

    Science.gov (United States)

    Zheng, Yufeng

    2014-12-23

    The present invention provides a novel system and method for identifying individuals and for face recognition utilizing facial features for face identification. The system and method of the invention comprise creating facial features or face patterns called face pattern words and face pattern bytes for face identification. The invention also provides for pattern recognitions for identification other than face recognition. The invention further provides a means for identifying individuals based on visible and/or thermal images of those individuals by utilizing computer software implemented by instructions on a computer or computer system and a computer readable medium containing instructions on a computer system for face recognition and identification.

  18. An online ID identification system for liquefied-gas cylinder plant

    Science.gov (United States)

    He, Jin; Ding, Zhenwen; Han, Lei; Zhang, Hao

    2017-11-01

    An automatic ID identification system for gas cylinders' online production was developed based on the production conditions and requirements of the Technical Committee for Standardization of Gas Cylinders. A cylinder ID image acquisition system was designed to improve the image contrast of ID regions on gas cylinders against the background. Then the ID digits region was located by the CNN template matching algorithm. Following that, an adaptive threshold method based on the analysis of local average grey value and standard deviation was proposed to overcome defects of non-uniform background in the segmentation results. To improve the single digit identification accuracy, two BP neural networks were trained respectively for the identification of all digits and the easily confusable digits. If the single digit was classified as one of confusable digits by the former BP neural network, it was further tested by the later one, and the later result was taken as the final identification result of this single digit. At last, the majority voting was adopted to decide the final identification result for the 6-digit cylinder ID. The developed system was installed on a production line of a liquefied-petroleum-gas cylinder plant and worked in parallel with the existing weighing step on the line. Through the field test, the correct identification rate for single ID digit was 94.73%, and none of the tested 2000 cylinder ID was misclassified through the majority voting.

  19. Probability of identification: a statistical model for the validation of qualitative botanical identification methods.

    Science.gov (United States)

    LaBudde, Robert A; Harnly, James M

    2012-01-01

    A qualitative botanical identification method (BIM) is an analytical procedure that returns a binary result (1 = Identified, 0 = Not Identified). A BIM may be used by a buyer, manufacturer, or regulator to determine whether a botanical material being tested is the same as the target (desired) material, or whether it contains excessive nontarget (undesirable) material. The report describes the development and validation of studies for a BIM based on the proportion of replicates identified, or probability of identification (POI), as the basic observed statistic. The statistical procedures proposed for data analysis follow closely those of the probability of detection, and harmonize the statistical concepts and parameters between quantitative and qualitative method validation. Use of POI statistics also harmonizes statistical concepts for botanical, microbiological, toxin, and other analyte identification methods that produce binary results. The POI statistical model provides a tool for graphical representation of response curves for qualitative methods, reporting of descriptive statistics, and application of performance requirements. Single collaborator and multicollaborative study examples are given.

  20. Variable identification in group method of data handling methodology

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Iraci Martinez, E-mail: martinez@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Bueno, Elaine Inacio [Instituto Federal de Educacao, Ciencia e Tecnologia, Guarulhos, SP (Brazil)

    2011-07-01

    The Group Method of Data Handling - GMDH is a combinatorial multi-layer algorithm in which a network of layers and nodes is generated using a number of inputs from the data stream being evaluated. The GMDH network topology has been traditionally determined using a layer by layer pruning process based on a preselected criterion of what constitutes the best nodes at each level. The traditional GMDH method is based on an underlying assumption that the data can be modeled by using an approximation of the Volterra Series or Kolmorgorov-Gabor polynomial. A Monitoring and Diagnosis System was developed based on GMDH and Artificial Neural Network - ANN methodologies, and applied to the IPEN research Reactor IEA-R1. The GMDH was used to study the best set of variables to be used to train an ANN, resulting in a best monitoring variable estimative. The system performs the monitoring by comparing these estimative calculated values with measured ones. The IPEN Reactor Data Acquisition System is composed of 58 variables (process and nuclear variables). As the GMDH is a self-organizing methodology, the input variables choice is made automatically, and the real input variables used in the Monitoring and Diagnosis System were not showed in the final result. This work presents a study of variable identification of GMDH methodology by means of an algorithm that works in parallel with the GMDH algorithm and traces the initial variables paths, resulting in an identification of the variables that composes the best Monitoring and Diagnosis Model. (author)

  1. Variable identification in group method of data handling methodology

    International Nuclear Information System (INIS)

    Pereira, Iraci Martinez; Bueno, Elaine Inacio

    2011-01-01

    The Group Method of Data Handling - GMDH is a combinatorial multi-layer algorithm in which a network of layers and nodes is generated using a number of inputs from the data stream being evaluated. The GMDH network topology has been traditionally determined using a layer by layer pruning process based on a preselected criterion of what constitutes the best nodes at each level. The traditional GMDH method is based on an underlying assumption that the data can be modeled by using an approximation of the Volterra Series or Kolmorgorov-Gabor polynomial. A Monitoring and Diagnosis System was developed based on GMDH and Artificial Neural Network - ANN methodologies, and applied to the IPEN research Reactor IEA-R1. The GMDH was used to study the best set of variables to be used to train an ANN, resulting in a best monitoring variable estimative. The system performs the monitoring by comparing these estimative calculated values with measured ones. The IPEN Reactor Data Acquisition System is composed of 58 variables (process and nuclear variables). As the GMDH is a self-organizing methodology, the input variables choice is made automatically, and the real input variables used in the Monitoring and Diagnosis System were not showed in the final result. This work presents a study of variable identification of GMDH methodology by means of an algorithm that works in parallel with the GMDH algorithm and traces the initial variables paths, resulting in an identification of the variables that composes the best Monitoring and Diagnosis Model. (author)

  2. Reduced Complexity Volterra Models for Nonlinear System Identification

    Directory of Open Access Journals (Sweden)

    Hacıoğlu Rıfat

    2001-01-01

    Full Text Available A broad class of nonlinear systems and filters can be modeled by the Volterra series representation. However, its practical use in nonlinear system identification is sometimes limited due to the large number of parameters associated with the Volterra filter′s structure. The parametric complexity also complicates design procedures based upon such a model. This limitation for system identification is addressed in this paper using a Fixed Pole Expansion Technique (FPET within the Volterra model structure. The FPET approach employs orthonormal basis functions derived from fixed (real or complex pole locations to expand the Volterra kernels and reduce the number of estimated parameters. That the performance of FPET can considerably reduce the number of estimated parameters is demonstrated by a digital satellite channel example in which we use the proposed method to identify the channel dynamics. Furthermore, a gradient-descent procedure that adaptively selects the pole locations in the FPET structure is developed in the paper.

  3. Performance evaluation of three automated identification systems in detecting carbapenem-resistant Enterobacteriaceae.

    Science.gov (United States)

    He, Qingwen; Chen, Weiyuan; Huang, Liya; Lin, Qili; Zhang, Jingling; Liu, Rui; Li, Bin

    2016-06-21

    Carbapenem-resistant Enterobacteriaceae (CRE) is prevalent around the world. Rapid and accurate detection of CRE is urgently needed to provide effective treatment. Automated identification systems have been widely used in clinical microbiology laboratories for rapid and high-efficient identification of pathogenic bacteria. However, critical evaluation and comparison are needed to determine the specificity and accuracy of different systems. The aim of this study was to evaluate the performance of three commonly used automated identification systems on the detection of CRE. A total of 81 non-repetitive clinical CRE isolates were collected from August 2011 to August 2012 in a Chinese university hospital, and all the isolates were confirmed to be resistant to carbapenems by the agar dilution method. The potential presence of carbapenemase genotypes of the 81 isolates was detected by PCR and sequencing. Using 81 clinical CRE isolates, we evaluated and compared the performance of three automated identification systems, MicroScan WalkAway 96 Plus, Phoenix 100, and Vitek 2 Compact, which are commonly used in China. To identify CRE, the comparator methodology was agar dilution method, while the PCR and sequencing was the comparator one to identify CPE. PCR and sequencing analysis showed that 48 of the 81 CRE isolates carried carbapenemase genes, including 23 (28.4 %) IMP-4, 14 (17.3 %) IMP-8, 5 (6.2 %) NDM-1, and 8 (9.9 %) KPC-2. Notably, one Klebsiella pneumoniae isolate produced both IMP-4 and NDM-1. One Klebsiella oxytoca isolate produced both KPC-2 and IMP-8. Of the 81 clinical CRE isolates, 56 (69.1 %), 33 (40.7 %) and 77 (95.1 %) were identified as CRE by MicroScan WalkAway 96 Plus, Phoenix 100, and Vitek 2 Compact, respectively. The sensitivities/specificities of MicroScan WalkAway, Phoenix 100 and Vitek 2 were 93.8/42.4 %, 54.2/66.7 %, and 75.0/36.4 %, respectively. The MicroScan WalkAway and Viteck2 systems are more reliable in clinical identification of

  4. Parameter Identification of Ship Maneuvering Models Using Recursive Least Square Method Based on Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Man Zhu

    2017-03-01

    Full Text Available Determination of ship maneuvering models is a tough task of ship maneuverability prediction. Among several prime approaches of estimating ship maneuvering models, system identification combined with the full-scale or free- running model test is preferred. In this contribution, real-time system identification programs using recursive identification method, such as the recursive least square method (RLS, are exerted for on-line identification of ship maneuvering models. However, this method seriously depends on the objects of study and initial values of identified parameters. To overcome this, an intelligent technology, i.e., support vector machines (SVM, is firstly used to estimate initial values of the identified parameters with finite samples. As real measured motion data of the Mariner class ship always involve noise from sensors and external disturbances, the zigzag simulation test data include a substantial quantity of Gaussian white noise. Wavelet method and empirical mode decomposition (EMD are used to filter the data corrupted by noise, respectively. The choice of the sample number for SVM to decide initial values of identified parameters is extensively discussed and analyzed. With de-noised motion data as input-output training samples, parameters of ship maneuvering models are estimated using RLS and SVM-RLS, respectively. The comparison between identification results and true values of parameters demonstrates that both the identified ship maneuvering models from RLS and SVM-RLS have reasonable agreements with simulated motions of the ship, and the increment of the sample for SVM positively affects the identification results. Furthermore, SVM-RLS using data de-noised by EMD shows the highest accuracy and best convergence.

  5. Portraits of Benvenuto Cellini and Anthropological Methods of Their Identification

    Science.gov (United States)

    Nasobin, Oleg

    2016-01-01

    Modern methods of biometric identification are increasingly applied in order to attribute works of art. They are based on developments in the 19th century anthropological methods. So, this article describes how the successional anthropological methods were applied for the identification of Benvenuto Cellini's portraits. Objective comparison of…

  6. Process identification method based on the Z transformation

    International Nuclear Information System (INIS)

    Zwingelstein, G.

    1968-01-01

    A simple method is described for identifying the transfer function of a linear retard-less system, based on the inversion of the Z transformation of the transmittance using a computer. It is assumed in this study that the signals at the entrance and at the exit of the circuit considered are of the deterministic type. The study includes: the theoretical principle of the inversion of the Z transformation, details about programming simulation, and identification of filters whose degrees vary from the first to the fifth order. (authors) [fr

  7. Damping characteristic identification of non-linear soil-structural system interaction by phase resonance

    International Nuclear Information System (INIS)

    Poterasu, V.F.

    1984-01-01

    It is presented a method and the phase resonance for damping characteristic identification of non-linear soil-structural interaction. The algorithm can be applied in case of any, not necessarily, damping characteristic of the system examined. For the identification, the system is harmonically excited and are considered the super-harmonic amplitudes for odd and even powers of the x. The response of shear beam system for different levels of base excitation and for different locations of the load is considered. (Author) [pt

  8. System identification through nonstationary data using Time-Frequency Blind Source Separation

    Science.gov (United States)

    Guo, Yanlin; Kareem, Ahsan

    2016-06-01

    Classical output-only system identification (SI) methods are based on the assumption of stationarity of the system response. However, measured response of buildings and bridges is usually non-stationary due to strong winds (e.g. typhoon, and thunder storm etc.), earthquakes and time-varying vehicle motions. Accordingly, the response data may have time-varying frequency contents and/or overlapping of modal frequencies due to non-stationary colored excitation. This renders traditional methods problematic for modal separation and identification. To address these challenges, a new SI technique based on Time-Frequency Blind Source Separation (TFBSS) is proposed. By selectively utilizing "effective" information in local regions of the time-frequency plane, where only one mode contributes to energy, the proposed technique can successfully identify mode shapes and recover modal responses from the non-stationary response where the traditional SI methods often encounter difficulties. This technique can also handle response with closely spaced modes which is a well-known challenge for the identification of large-scale structures. Based on the separated modal responses, frequency and damping can be easily identified using SI methods based on a single degree of freedom (SDOF) system. In addition to the exclusive advantage of handling non-stationary data and closely spaced modes, the proposed technique also benefits from the absence of the end effects and low sensitivity to noise in modal separation. The efficacy of the proposed technique is demonstrated using several simulation based studies, and compared to the popular Second-Order Blind Identification (SOBI) scheme. It is also noted that even some non-stationary response data can be analyzed by the stationary method SOBI. This paper also delineates non-stationary cases where SOBI and the proposed scheme perform comparably and highlights cases where the proposed approach is more advantageous. Finally, the performance of the

  9. Chaotic System Identification Based on a Fuzzy Wiener Model with Particle Swarm Optimization

    International Nuclear Information System (INIS)

    Yong, Li; Ying-Gan, Tang

    2010-01-01

    A fuzzy Wiener model is proposed to identify chaotic systems. The proposed fuzzy Wiener model consists of two parts, one is a linear dynamic subsystem and the other is a static nonlinear part, which is represented by the Takagi–Sugeno fuzzy model. Identification of chaotic systems is converted to find optimal parameters of the fuzzy Wiener model by minimizing the state error between the original chaotic system and the fuzzy Wiener model. Particle swarm optimization algorithm, a global optimizer, is used to search the optimal parameter of the fuzzy Wiener model. The proposed method can identify the parameters of the linear part and nonlinear part simultaneously. Numerical simulations for Henón and Lozi chaotic system identification show the effectiveness of the proposed method

  10. Event storm detection and identification in communication systems

    International Nuclear Information System (INIS)

    Albaghdadi, Mouayad; Briley, Bruce; Evens, Martha

    2006-01-01

    Event storms are the manifestation of an important class of abnormal behaviors in communication systems. They occur when a large number of nodes throughout the system generate a set of events within a small period of time. It is essential for network management systems to detect every event storm and identify its cause, in order to prevent and repair potential system faults. This paper presents a set of techniques for the effective detection and identification of event storms in communication systems. First, we introduce a new algorithm to synchronize events to a single node in the system. Second, the system's event log is modeled as a normally distributed random process. This is achieved by using data analysis techniques to explore and then model the statistical behavior of the event log. Third, event storm detection is proposed using a simple test statistic combined with an exponential smoothing technique to overcome the non-stationary behavior of event logs. Fourth, the system is divided into non-overlapping regions to locate the main contributing regions of a storm. We show that this technique provides us with a method for event storm identification. Finally, experimental results from a commercially deployed multimedia communication system that uses these techniques demonstrate their effectiveness

  11. Improved gravitational search algorithm for parameter identification of water turbine regulation system

    International Nuclear Information System (INIS)

    Chen, Zhihuan; Yuan, Xiaohui; Tian, Hao; Ji, Bin

    2014-01-01

    Highlights: • We propose an improved gravitational search algorithm (IGSA). • IGSA is applied to parameter identification of water turbine regulation system (WTRS). • WTRS is modeled by considering the impact of turbine speed on torque and water flow. • Weighted objective function strategy is applied to parameter identification of WTRS. - Abstract: Parameter identification of water turbine regulation system (WTRS) is crucial in precise modeling hydropower generating unit (HGU) and provides support for the adaptive control and stability analysis of power system. In this paper, an improved gravitational search algorithm (IGSA) is proposed and applied to solve the identification problem for WTRS system under load and no-load running conditions. This newly algorithm which is based on standard gravitational search algorithm (GSA) accelerates convergence speed with combination of the search strategy of particle swarm optimization and elastic-ball method. Chaotic mutation which is devised to stepping out the local optimal with a certain probability is also added into the algorithm to avoid premature. Furthermore, a new kind of model associated to the engineering practices is built and analyzed in the simulation tests. An illustrative example for parameter identification of WTRS is used to verify the feasibility and effectiveness of the proposed IGSA, as compared with standard GSA and particle swarm optimization in terms of parameter identification accuracy and convergence speed. The simulation results show that IGSA performs best for all identification indicators

  12. Edge detection of iris of the eye for human biometric identification system

    Directory of Open Access Journals (Sweden)

    Kateryna O. Tryfonova

    2015-03-01

    Full Text Available Method of human biometric identification by iris of the eye is considered as one of the most accurate and reliable methods of identification. Aim of the research is to solve the problem of edge detection of digital image of the human eye iris to be able to implement human biometric identification system by means of mobile device. To achieve this aim the algorithm of edge detection by Canny is considered in work. It consists of the following steps: smoothing, finding gradients, non-maximum suppression, double thresholding with hysteresis. The software implementation of the Canny algorithm is carried out for the Android mobile platform with the use of high level programming language Java.

  13. Impact of identity theft on methods of identification.

    Science.gov (United States)

    McLemore, Jerri; Hodges, Walker; Wyman, Amy

    2011-06-01

    Responsibility for confirming a decedent's identity commonly falls on the shoulders of the coroner or medical examiner. Misidentification of bodies results in emotional turmoil for the next-of-kin and can negatively impact the coroner's or medical examiner's career. To avoid such mishaps, the use of scientific methods to establish a positive identification is advocated. The use of scientific methods of identification may not be reliable in cases where the decedent had assumed the identity of another person. Case studies of erroneously identified bodies due to identity theft from the state medical examiner offices in Iowa and New Mexico are presented. This article discusses the scope and major concepts of identity theft and how identity theft prevents the guarantee of a positive identification.

  14. Numerical study on identification of transfer functions in a feedback system and model reduction

    International Nuclear Information System (INIS)

    Kishida, Kuniharu

    1997-01-01

    Identification of transfer function matrices in a feedback system is discussed by using the singular value decomposition of Hankel matrix from the viewpoint of inverse problems. A method of model reduction is considered, and selection criteria are proposed for identification of them. Transformation formula between open loop and closed loop transfer function matrices are determined from the feedback loop structure, and they are needed for identification of open loop transfer function matrices under such a condition where the feedback system is in a minimum phase. Though the identifiability of open loop transfer function matrices can be examined in the framework of innovation model equivalent to the feedback system, there are pole-zero cancellations in the identification of them. The method to reduce a model order of an open loop transfer function is discussed by using the singular value decomposition of a gramian given by the open loop transfer function with higher degree. To check reliability of the present algorithm, a simulation study is performed for an example. (author)

  15. Microbial System for Identification of Antibiotic Residues in Milk

    OpenAIRE

    Nagel, Orlando Guillermo; Molina Pons, Mª Pilar; Althaus, Rafael Lisandro

    2011-01-01

    [EN] The aim of this study was to evaluate the ResScreen (R) microbiological system for the identification of antibiotic residues in milk. This microbiological system consists of two methods, the BT (betalactams and tetracyclines) and BS (betalactams and sulfamides) bioassays, containing spores of G. stearothermophilus subsp. calidolactis, culture media and indicators (acid-base and redox). The detection limits of 29 antimicrobial agents were calculated using a logistic regression model. ...

  16. Model Identification for Control of Display Units in Supermarket Refrigeration Systems

    DEFF Research Database (Denmark)

    O'Connell, Niamh; Madsen, Henrik; Andersen, Philip Hvidthøft Delff

    in a supermarket refrigeration system. The grey-box modelling approach is adopted, using stochastic differential equations to define the dynamics of the model, combining prior knowledge of the physical system with data-driven modelling. Model identification is performed using the forward selection method...... model can contribute to the extension of the control capabilities of the entire supermarket refrigeration system....

  17. Identification methods for irradiated wheat

    International Nuclear Information System (INIS)

    Zhu Shengtao; Kume, Tamikazu; Ishigaki, Isao.

    1992-02-01

    The effect of irradiation on wheat seeds was examined using various kinds of analytical methods for the identification of irradiated seeds. In germination test, the growth of sprouts was markedly inhibited at 500Gy, which was not affected by storage. The decrease in germination percentage was detected at 3300Gy. The results of enzymatic activity change in the germ measured by Vita-Scope germinator showed that the seeds irradiated at 10kGy could be identified. The content of amino acids in ungerminated and germinated seeds were analyzed. Irradiation at 10kGy caused the decrease of lysine content but the change was small which need very careful operation to detect it. The chemiluminescence intensity increased with radiation dose and decreased during storage. The wheat irradiated at 10kGy could be identified even after 3 months storage. In the electron spin resonance (ESR) spectrum analysis, the signal intensity with the g value f 2.0055 of skinned wheat seeds increased with radiation dose. Among these methods, germination test was the most sensitive and effective for identification of irradiated wheat. (author)

  18. Incremental Closed-loop Identification of Linear Parameter Varying Systems

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    2011-01-01

    , closed-loop system identification is more difficult than open-loop identification. In this paper we prove that the so-called Hansen Scheme, a technique known from linear time-invariant systems theory for transforming closed-loop system identification problems into open-loop-like problems, can be extended...

  19. Identification of chaotic systems by neural network with hybrid learning algorithm

    International Nuclear Information System (INIS)

    Pan, S.-T.; Lai, C.-C.

    2008-01-01

    Based on the genetic algorithm (GA) and steepest descent method (SDM), this paper proposes a hybrid algorithm for the learning of neural networks to identify chaotic systems. The systems in question are the logistic map and the Duffing equation. Different identification schemes are used to identify both the logistic map and the Duffing equation, respectively. Simulation results show that our hybrid algorithm is more efficient than that of other methods

  20. Comparing Different Fault Identification Algorithms in Distributed Power System

    Science.gov (United States)

    Alkaabi, Salim

    A power system is a huge complex system that delivers the electrical power from the generation units to the consumers. As the demand for electrical power increases, distributed power generation was introduced to the power system. Faults may occur in the power system at any time in different locations. These faults cause a huge damage to the system as they might lead to full failure of the power system. Using distributed generation in the power system made it even harder to identify the location of the faults in the system. The main objective of this work is to test the different fault location identification algorithms while tested on a power system with the different amount of power injected using distributed generators. As faults may lead the system to full failure, this is an important area for research. In this thesis different fault location identification algorithms have been tested and compared while the different amount of power is injected from distributed generators. The algorithms were tested on IEEE 34 node test feeder using MATLAB and the results were compared to find when these algorithms might fail and the reliability of these methods.

  1. An inertial parameter identification method of eliminating system damping effect for a six-degree-of-freedom parallel manipulator

    Directory of Open Access Journals (Sweden)

    Tian Tixian

    2015-04-01

    Full Text Available A new simple and effective inertial parameter identification method based on sinusoidal vibrations of a six-degree-of-freedom parallel manipulator is proposed. Compared with previously known identification algorithms, the advantages of the new approach are there is no need to design the excitation trajectory to consider the condition number of the observation matrix and the inertial matrix can be accurately defined regardless of the effect of viscous friction. In addition, the use of a sinusoidal exciting trajectory allows calculation of the velocities and accelerations from the measured position response. Simulations show that the new approach has acceptable tolerance of dry friction when using a simple coupling parameter modified formula. The experimental application to the hydraulically driven Stewart platform demonstrates the capability and efficiency of the proposed identification method.

  2. System for identification of microorganism and detection of infectious disorder

    DEFF Research Database (Denmark)

    2013-01-01

    Methods for the identification of microorganisms or infectious disorders are disclosed, comprising obtaining a suitable sample from sources such as persons, animals, plants, food, water or soil. The methods also comprise providing tailored nucleic acid substrate(s) designed to react with a type 1...... topoisomerase from one or more microorganism(s) or infectious agent(s), and incubating said substrate with said sample, or extracts or preparations from the sample, so that the substrate is processed by said topoisomerase if said microorganism(s) or infectious agent(s) is present in the sample. Finally......, processed substrates are identified and potentially quantified by one or more of a range of standard molecular biology methods and read-out systems. The identification and potential quantification of microorganisms and infectious agents, including but not limited to Plasmodium falciparum and Mycobacterium...

  3. The identification method of the nuclear fragments in emulsions

    International Nuclear Information System (INIS)

    Jipa, Alexandru; Ocheseanu, Silvia; Caramarcu, Costin; Calin, Marius; Constantin, Florin; Stan, Emil

    2003-01-01

    The visualization detectors have been successfully used from the beginning of the study of the relativistic nuclear collisions. One of these detectors used in such experiments is the nuclear emulsion. To increase the speed of the passage from pictures to experimental data different methods and tools have been proposed during the time. For identifying the nuclear fragments obtained in the relativistic radioactive beams multiple layers of nuclear emulsions have been exposed in experiments performed at the Synchrophasotron from the JINR Dubna (BECQUEREL Collaboration). The nuclear fragments have been identified using PAVICOM scanning and measuring system. In the present work an identification method based on a real time image processing machine and a reconstruction algorithm based on special conformal transforms is proposed. The results obtained by this method are compared with those obtained using PAVICOM device. Because in this study only pictures have been used, not initial nuclear emulsions, some difficulties in the identification of the nuclear fragments with higher polar angles can appear. Generally, comparable results have been obtained. The authors thank Dr. Pavel Zarubin from JINR Dubna, Laboratory of High Energy Physics, and Dr. Maria Haiduc, Institute of Space Sciences Bucharest-Magurele, for the pictures of the nuclear emulsions exposed in these experiments. (authors)

  4. System Identification for Nonlinear FOPDT Model with Input-Dependent Dead-Time

    DEFF Research Database (Denmark)

    Sun, Zhen; Yang, Zhenyu

    2011-01-01

    An on-line iterative method of system identification for a kind of nonlinear FOPDT system is proposed in the paper. The considered nonlinear FOPDT model is an extension of the standard FOPDT model by means that its dead time depends on the input signal and the other parameters are time dependent....

  5. System Identification A Frequency Domain Approach

    CERN Document Server

    Pintelon, Rik

    2012-01-01

    System identification is a general term used to describe mathematical tools and algorithms that build dynamical models from measured data. Used for prediction, control, physical interpretation, and the designing of any electrical systems, they are vital in the fields of electrical, mechanical, civil, and chemical engineering. Focusing mainly on frequency domain techniques, System Identification: A Frequency Domain Approach, Second Edition also studies in detail the similarities and differences with the classical time domain approach. It high??lights many of the important steps in the identi

  6. Identification of chaotic memristor systems based on piecewise adaptive Legendre filters

    International Nuclear Information System (INIS)

    Zhao, Yibo; Zhang, Xiuzai; Xu, Jin; Guo, Yecai

    2015-01-01

    Memristor is a nonlinear device, which plays an important role in the design and implementation of chaotic systems. In order to be able to understand in-depth the complex nonlinear dynamic behaviors in chaotic memristor systems, modeling or identification of its nonlinear model is very important premise. This paper presents a chaotic memristor system identification method based on piecewise adaptive Legendre filters. The threshold decomposition is carried out for the input vector, and also the input signal subintervals via decomposition satisfy the convergence condition of the adaptive Legendre filters. Then the adaptive Legendre filter structure and adaptive weight update algorithm are derived. Final computer simulation results show the effectiveness as well as fast convergence characteristics.

  7. Identification problems in linear transformation system

    International Nuclear Information System (INIS)

    Delforge, Jacques.

    1975-01-01

    An attempt was made to solve the theoretical and numerical difficulties involved in the identification problem relative to the linear part of P. Delattre's theory of transformation systems. The theoretical difficulties are due to the very important problem of the uniqueness of the solution, which must be demonstrated in order to justify the value of the solution found. Simple criteria have been found when measurements are possible on all the equivalence classes, but the problem remains imperfectly solved when certain evolution curves are unknown. The numerical difficulties are of two kinds: a slow convergence of iterative methods and a strong repercussion of numerical and experimental errors on the solution. In the former case a fast convergence was obtained by transformation of the parametric space, while in the latter it was possible, from sensitivity functions, to estimate the errors, to define and measure the conditioning of the identification problem then to minimize this conditioning as a function of the experimental conditions [fr

  8. Automated dental identification system: An aid to forensic odontology

    Directory of Open Access Journals (Sweden)

    Parvathi Devi

    2011-01-01

    Full Text Available Automated dental identification system is computer-aided software for the postmortem identification of deceased individuals based on dental characteristics specifically radiographs. This system is receiving increased attention because of the large number of victims encountered in the mass disasters and it is 90% more time saving and accurate than the conventional radiographic methods. This technique is based on the intensity of the overall region of tooth image and therefore it does not necessitate the presence of sharp boundary between the teeth. It provides automated search and matching capabilities for digitized radiographs and photographic dental images and compares the teeth present in multiple digitized dental records in order to access their similarity. This paper highlights the functionality of its components and techniques used in realizing these components.

  9. Identification of Successive ``Unobservable'' Cyber Data Attacks in Power Systems Through Matrix Decomposition

    Science.gov (United States)

    Gao, Pengzhi; Wang, Meng; Chow, Joe H.; Ghiocel, Scott G.; Fardanesh, Bruce; Stefopoulos, George; Razanousky, Michael P.

    2016-11-01

    This paper presents a new framework of identifying a series of cyber data attacks on power system synchrophasor measurements. We focus on detecting "unobservable" cyber data attacks that cannot be detected by any existing method that purely relies on measurements received at one time instant. Leveraging the approximate low-rank property of phasor measurement unit (PMU) data, we formulate the identification problem of successive unobservable cyber attacks as a matrix decomposition problem of a low-rank matrix plus a transformed column-sparse matrix. We propose a convex-optimization-based method and provide its theoretical guarantee in the data identification. Numerical experiments on actual PMU data from the Central New York power system and synthetic data are conducted to verify the effectiveness of the proposed method.

  10. The application of an artificial immune system for solving the identification problem

    Directory of Open Access Journals (Sweden)

    Astachova Irina

    2017-01-01

    Full Text Available Ecological prognosis sets the identification task, which is to find the capacity of pollution sources based on the available experimental data. This problem is an inverse problem, for the solution of which the method of symbolic regression is considered. The distributed artificial immune system is used as an algorithm for the problem solving. The artificial immune system (AIS is a model that allows solving various problems of identification, its concept was borrowed from biology. The solution is sought using a distributed version of the artificial immune system, which is implemented through a network. This distributed network can operate in any heterogeneous environment, which is achieved through the use of cross-platform Python programming language. AIS demonstrates the ability to restore the original function in the problem of identification. The obtained solution for the test data is represented by the graph.

  11. Comparative Evaluations of Four Specification Methods for Real-Time Systems

    Science.gov (United States)

    1989-12-01

    December 1989 Comparative Evaluations of Four Specification Methods for Real - Time Systems David P. Wood William G. Wood Specification and Design Methods...Methods for Real - Time Systems Abstract: A number of methods have been proposed in the last decade for the specification of system and software requirements...and software specification for real - time systems . Our process for the identification of methods that meet the above criteria is described in greater

  12. Performance of Dower's inverse transform and Frank lead system for Identification of Myocardial Infarction.

    Science.gov (United States)

    Aranda, A; Bonizzi, P; Karel, J; Peeters, R

    2015-08-01

    This study performs a comparison between Dower's inverse transform and Frank lead system for Myocardial Infarction (MI) identification. We have selected a set of relevant features for MI detection from the vectorcardiogram and used the lasso method after that to build a model for the Dower's inverse transform and one for the Frank leads system. Then we analyzed the performance between both models on MI detection. The proposed methods have been tested using PhysioNet PTB database that contains 550 records from which 368 are MIs. Two main conclusions are coming from this study. The first one is that Dower's inverse transform performs equally well than Frank leads in identification of MI patients. The second one is that lead positions have a large influence on the accuracy of MI patient identification.

  13. Closed-loop System Identification with New Sensors

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, K; Stoustrup, Jakob

    2008-01-01

    This paper deals with system identification of new system dynamics revealed by online introduction of new sensors in existing multi-variable linear control systems. The so-called "Hansen Scheme" utilises the dual Youla-Kucera parameterisation of all systems stabilised by a given linear controller...... to transform closed-loop system identification problems into open-loop-like problems. We show that this scheme can be formally extended to accomodate extra sensors in a nice way. The approach is illustrated on a simple simulation example....

  14. Parametric system identification of catamaran for improving controller design

    Science.gov (United States)

    Timpitak, Surasak; Prempraneerach, Pradya; Pengwang, Eakkachai

    2018-01-01

    This paper presents an estimation of simplified dynamic model for only surge- and yaw- motions of catamaran by using system identification (SI) techniques to determine associated unknown parameters. These methods will enhance the performance of designing processes for the motion control system of Unmanned Surface Vehicle (USV). The simulation results demonstrate an effective way to solve for damping forces and to determine added masses by applying least-square and AutoRegressive Exogenous (ARX) methods. Both methods are then evaluated according to estimated parametric errors from the vehicle’s dynamic model. The ARX method, which yields better estimated accuracy, can then be applied to identify unknown parameters as well as to help improving a controller design of a real unmanned catamaran.

  15. A Parameter Identification Method for Helicopter Noise Source Identification and Physics-Based Semi-Empirical Modeling

    Science.gov (United States)

    Greenwood, Eric, II; Schmitz, Fredric H.

    2010-01-01

    A new physics-based parameter identification method for rotor harmonic noise sources is developed using an acoustic inverse simulation technique. This new method allows for the identification of individual rotor harmonic noise sources and allows them to be characterized in terms of their individual non-dimensional governing parameters. This new method is applied to both wind tunnel measurements and ground noise measurements of two-bladed rotors. The method is shown to match the parametric trends of main rotor Blade-Vortex Interaction (BVI) noise, allowing accurate estimates of BVI noise to be made for operating conditions based on a small number of measurements taken at different operating conditions.

  16. 75 FR 25137 - Changes to Standard Numbering System, Vessel Identification System, and Boating Accident Report...

    Science.gov (United States)

    2010-05-07

    ...-2003-14963] RIN 1625-AB45 Changes to Standard Numbering System, Vessel Identification System, and... System (SNS), the Vessel Identification System (VIS), and casualty reporting; require validation of... Standard Numbering System U.S.C. United States Code VIS Vessel Identification System III. Background Coast...

  17. Comparison of identification methods for oral asaccharolytic Eubacterium species.

    Science.gov (United States)

    Wade, W G; Slayne, M A; Aldred, M J

    1990-12-01

    Thirty one strains of oral, asaccharolytic Eubacterium spp. and the type strains of E. brachy, E. nodatum and E. timidum were subjected to three identification techniques--protein-profile analysis, determination of metabolic end-products, and the API ATB32A identification kit. Five clusters were obtained from numerical analysis of protein profiles and excellent correlations were seen with the other two methods. Protein profiles alone allowed unequivocal identification.

  18. Metamodel-based inverse method for parameter identification: elastic-plastic damage model

    Science.gov (United States)

    Huang, Changwu; El Hami, Abdelkhalak; Radi, Bouchaïb

    2017-04-01

    This article proposed a metamodel-based inverse method for material parameter identification and applies it to elastic-plastic damage model parameter identification. An elastic-plastic damage model is presented and implemented in numerical simulation. The metamodel-based inverse method is proposed in order to overcome the disadvantage in computational cost of the inverse method. In the metamodel-based inverse method, a Kriging metamodel is constructed based on the experimental design in order to model the relationship between material parameters and the objective function values in the inverse problem, and then the optimization procedure is executed by the use of a metamodel. The applications of the presented material model and proposed parameter identification method in the standard A 2017-T4 tensile test prove that the presented elastic-plastic damage model is adequate to describe the material's mechanical behaviour and that the proposed metamodel-based inverse method not only enhances the efficiency of parameter identification but also gives reliable results.

  19. Identification of metabolic system parameters using global optimization methods

    Directory of Open Access Journals (Sweden)

    Gatzke Edward P

    2006-01-01

    Full Text Available Abstract Background The problem of estimating the parameters of dynamic models of complex biological systems from time series data is becoming increasingly important. Methods and results Particular consideration is given to metabolic systems that are formulated as Generalized Mass Action (GMA models. The estimation problem is posed as a global optimization task, for which novel techniques can be applied to determine the best set of parameter values given the measured responses of the biological system. The challenge is that this task is nonconvex. Nonetheless, deterministic optimization techniques can be used to find a global solution that best reconciles the model parameters and measurements. Specifically, the paper employs branch-and-bound principles to identify the best set of model parameters from observed time course data and illustrates this method with an existing model of the fermentation pathway in Saccharomyces cerevisiae. This is a relatively simple yet representative system with five dependent states and a total of 19 unknown parameters of which the values are to be determined. Conclusion The efficacy of the branch-and-reduce algorithm is illustrated by the S. cerevisiae example. The method described in this paper is likely to be widely applicable in the dynamic modeling of metabolic networks.

  20. Identification of clinical yeasts by Vitek MS system compared with API ID 32 C.

    Science.gov (United States)

    Durán-Valle, M Teresa; Sanz-Rodríguez, Nuria; Muñoz-Paraíso, Carmen; Almagro-Moltó, María; Gómez-Garcés, José Luis

    2014-05-01

    We performed a clinical evaluation of the Vitek MS matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) system with the commercial database version 2.0 for rapid identification of medically important yeasts as compared with the conventional phenotypic method API ID 32 C. We tested 161 clinical isolates, nine isolates from culture collections and five reference strains. In case of discrepant results or no identification with one or both methods, molecular identification techniques were employed. Concordance between both methods was observed with 160/175 isolates (91.42%) and misidentifications by both systems occurred only when taxa were not included in the respective databases, i.e., one isolate of Candida etchellsii was identified as C. globosa by Vitek MS and two isolates of C. orthopsilosis were identified as C. parapsilosis by API ID 32 C. Vitek MS could not identify nine strains (5.14%) and API ID 32 C did not identify 13 (7.42%). Vitek MS was more reliable than API ID 32 C and reduced the time required for the identification of clinical isolates to only a few minutes.

  1. Multi-level RF identification system

    Science.gov (United States)

    Steele, Kerry D.; Anderson, Gordon A.; Gilbert, Ronald W.

    2004-07-20

    A radio frequency identification system having a radio frequency transceiver for generating a continuous wave RF interrogation signal that impinges upon an RF identification tag. An oscillation circuit in the RF identification tag modulates the interrogation signal with a subcarrier of a predetermined frequency and modulates the frequency-modulated signal back to the transmitting interrogator. The interrogator recovers and analyzes the subcarrier signal and determines its frequency. The interrogator generates an output indicative of the frequency of the subcarrier frequency, thereby identifying the responding RFID tag as one of a "class" of RFID tags configured to respond with a subcarrier signal of a predetermined frequency.

  2. Vehicle Dynamic Prediction Systems with On-Line Identification of Vehicle Parameters and Road Conditions

    Science.gov (United States)

    Hsu, Ling-Yuan; Chen, Tsung-Lin

    2012-01-01

    This paper presents a vehicle dynamics prediction system, which consists of a sensor fusion system and a vehicle parameter identification system. This sensor fusion system can obtain the six degree-of-freedom vehicle dynamics and two road angles without using a vehicle model. The vehicle parameter identification system uses the vehicle dynamics from the sensor fusion system to identify ten vehicle parameters in real time, including vehicle mass, moment of inertial, and road friction coefficients. With above two systems, the future vehicle dynamics is predicted by using a vehicle dynamics model, obtained from the parameter identification system, to propagate with time the current vehicle state values, obtained from the sensor fusion system. Comparing with most existing literatures in this field, the proposed approach improves the prediction accuracy both by incorporating more vehicle dynamics to the prediction system and by on-line identification to minimize the vehicle modeling errors. Simulation results show that the proposed method successfully predicts the vehicle dynamics in a left-hand turn event and a rollover event. The prediction inaccuracy is 0.51% in a left-hand turn event and 27.3% in a rollover event. PMID:23202231

  3. Writer identification system for Ethiopic handwriting | Demoze | Zede ...

    African Journals Online (AJOL)

    Writer identification is a popular and ongoing research area having a wide variety of applications in banking, criminal justice system, access control, determining the authenticity of handwritten mails, etc. In this paper, an off-line text independent Ethiopic writer identification system has been proposed. The system uses 50 ...

  4. Method of and system for identification or estimation of a refractive index of a liquid

    DEFF Research Database (Denmark)

    2015-01-01

    This invention relates to a method of and a system (100) for identification or estimation of a refractive index of a liquid (120) comprising a light receiving part (111) adapted to receive polarised or non-polarised light (125; 135), a light emitting part (112) adapted, during use, to transmit...... light (130), an optical structure (110) being adapted to receive, during use, polarised light (125) via or from the light receiving part (111), and being adapted to receive, during use, a liquid (120) having a predetermined refractive index to be identified or estimated, and a first polariser (115......); is adapted, during use, to pass the received light (135) through the optical path so that a narrow wavelength range of the transmitted light (130) is influenced by the predetermined refractive index of the received liquid (120) and that the influenced narrow wavelength range, when observed by a user and...

  5. [A comparative study between the Vitek YBC and Microscan Walk Away RYID automated systems with conventional phenotypic methods for the identification of yeasts of clinical interest].

    Science.gov (United States)

    Ferrara, Giuseppe; Mercedes Panizol, Maria; Mazzone, Marja; Delia Pequeneze, Maria; Reviakina, Vera

    2014-12-01

    The aim of this study was to compare the identification of clin- ically relevant yeasts by the Vitek YBC and Microscan Walk Away RYID automated methods with conventional phenotypic methods. One hundred and ninety three yeast strains isolated from clinical samples and five controls strains were used. All the yeasts were identified by the automated methods previously mentioned and conventional phenotypic methods such as carbohydrate assimilation, visualization of microscopic morphology on corn meal agar and the use of chromogenic agar. Variables were assessed by 2 x 2 contingency tables, McNemar's Chi square, the Kappa index, and concordance values were calculated, as well as major and minor errors for the automated methods. Yeasts were divided into two groups: (1) frequent isolation and (2) rare isolation. The Vitek YBC and Microscan Walk Away RYID systems were concordant in 88.4 and 85.9% respectively, when compared to conventional phenotypic methods. Although both automated systems can be used for yeasts identification, the presence of major and minor errors indicates the possibility of misidentifications; therefore, the operator of this equipment must use in parallel, phenotypic tests such as visualization of microscopic morphology on corn meal agar and chromogenic agar, especially against infrequently isolated yeasts. Automated systems are a valuable tool; however, the expertise and judgment of the microbiologist are an important strength to ensure the quality of the results.

  6. System Identification, Environmental Modelling, and Control System Design

    CERN Document Server

    Garnier, Hugues

    2012-01-01

    System Identification, Environmetric Modelling, and Control Systems Design is dedicated to Professor Peter Young on the occasion of his seventieth birthday. Professor Young has been a pioneer in systems and control, and over the past 45 years he has influenced many developments in this field. This volume is comprised of a collection of contributions by leading experts in system identification, time-series analysis, environmetric modelling and control system design – modern research in topics that reflect important areas of interest in Professor Young’s research career. Recent theoretical developments in and relevant applications of these areas are explored treating the various subjects broadly and in depth. The authoritative and up-to-date research presented here will be of interest to academic researcher in control and disciplines related to environmental research, particularly those to with water systems. The tutorial style in which many of the contributions are composed also makes the book suitable as ...

  7. Multivariate methods for particle identification

    CERN Document Server

    Visan, Cosmin

    2013-01-01

    The purpose of this project was to evaluate several MultiVariate methods in order to determine which one, if any, offers better results in Particle Identification (PID) than a simple n$\\sigma$ cut on the response of the ALICE PID detectors. The particles considered in the analysis were Pions, Kaons and Protons and the detectors used were TPC and TOF. When used with the same input n$\\sigma$ variables, the results show similar perfoance between the Rectangular Cuts Optimization method and the simple n$\\sigma$ cuts. The method MLP and BDT show poor results for certain ranges of momentum. The KNN method is the best performing, showing similar results for Pions and Protons as the Cuts method, and better results for Kaons. The extension of the methods to include additional input variables leads to poor results, related to instabilities still to be investigated.

  8. A virtual closed loop method for closed loop identification

    NARCIS (Netherlands)

    Agüero, J.C.; Goodwin, G.C.; Hof, Van den P.M.J.

    2011-01-01

    Indirect methods for the identification of linear plant models on the basis of closed loop data are based on the use of (reconstructed) input signals that are uncorrelated with the noise. This generally requires exact (linear) controller knowledge. On the other hand, direct identification requires

  9. Secret-key and identification rates for biometric identification systems with protected templates

    NARCIS (Netherlands)

    Ignatenko, T.; Willems, F.M.J.

    2010-01-01

    In this paper we consider secret generation in biometric identification systems with protected templates. This problem is closely related to the study of the bio metric identification capacity [Willems et al., 2003] and [O’Sullivan and Sclmmid, 2002] and the common randomness generation scheme

  10. Metodology of identification parameters of models control objects of automatic trailing system

    Directory of Open Access Journals (Sweden)

    I.V. Zimchuk

    2017-04-01

    Full Text Available The determining factor for the successful solution of the problem of synthesis of optimal control systems of different processes are adequacy of mathematical model of control object. In practice, the options can differ from the objects taken priori, causing a need to clarification of them. In this context, the article presents the results of the development and application of methods parameters identification of mathematical models of control object of automatic trailing system. The stated problem in the article is solved provided that control object is fully controlled and observed, and a differential equation of control object is known a priori. The coefficients of this equation to be determined. Identifying quality criterion is to minimize the integral value of squared error of identification. The method is based on a description of the dynamics of the object in space state. Equation of identification synthesized using the vector-matrix representation of model. This equation describes the interconnection of coefficients of matrix state and control with inputs and outputs of object. The initial data for calculation are the results of experimental investigation of the reaction of phase coordinates of control object at a typical input signal. The process of calculating the model parameters is reduced to solving the system of equations of the first order each. Application the above approach is illustrated in the example identification of coefficients transfer function of control object first order. Results of digital simulation are presented, they are confirming the justice of set out mathematical calculations. The approach enables to do the identification of models of one-dimensional and multidimensional objects and does not require a large amount of calculation for its implementation. The order of identified model is limited capabilities of measurement phase coordinates of corresponding control object. The practical significance of the work is

  11. Cavity parameters identification for TESLA control system development

    Energy Technology Data Exchange (ETDEWEB)

    Czarski, T.; Pozniak, K.T.; Romaniuk, R.S. [Warsaw Univ. of Technology (Poland). ELHEP Lab., ISE; Simrock, S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2005-07-01

    The control system modeling for the TESLA - TeV-Energy Superconducting Linear Accelerator project has been developed for the efficient stabilization of the pulsed, accelerating EM field of the resonator. The cavity parameters identification is an essential task for the comprehensive control algorithm. The TESLA cavity simulator has been successfully implemented by applying very high speed FPGA - Field Programmable Gate Array technology. The electromechanical model of the cavity resonator includes the basic features - Lorentz force detuning and beam loading. The parameters identification bases on the electrical model of the cavity. The model is represented by the state space equation for the envelope of the cavity voltage driven by the current generator and the beam loading. For a given model structure, the over-determined matrix equation is created covering the long enough measurement range with the solution according to the least squares method. A low degree polynomial approximation is applied to estimate the time-varying cavity detuning during the pulse. The measurement channel distortion is considered, leading to the external cavity model seen by the controller. The comprehensive algorithm of the cavity parameters identification has been implemented in the Matlab system with different modes of the operation. Some experimental results have been presented for different cavity operational conditions. The following considerations have lead to the synthesis of the efficient algorithm for the cavity control system predicted for the potential FPGA technology implementation. (orig.)

  12. Cavity parameters identification for TESLA control system development

    International Nuclear Information System (INIS)

    Czarski, T.; Pozniak, K.T.; Romaniuk, R.S.

    2005-01-01

    The control system modeling for the TESLA - TeV-Energy Superconducting Linear Accelerator project has been developed for the efficient stabilization of the pulsed, accelerating EM field of the resonator. The cavity parameters identification is an essential task for the comprehensive control algorithm. The TESLA cavity simulator has been successfully implemented by applying very high speed FPGA - Field Programmable Gate Array technology. The electromechanical model of the cavity resonator includes the basic features - Lorentz force detuning and beam loading. The parameters identification bases on the electrical model of the cavity. The model is represented by the state space equation for the envelope of the cavity voltage driven by the current generator and the beam loading. For a given model structure, the over-determined matrix equation is created covering the long enough measurement range with the solution according to the least squares method. A low degree polynomial approximation is applied to estimate the time-varying cavity detuning during the pulse. The measurement channel distortion is considered, leading to the external cavity model seen by the controller. The comprehensive algorithm of the cavity parameters identification has been implemented in the Matlab system with different modes of the operation. Some experimental results have been presented for different cavity operational conditions. The following considerations have lead to the synthesis of the efficient algorithm for the cavity control system predicted for the potential FPGA technology implementation. (orig.)

  13. Active Magnetic Bearings Stiffness and Damping Identification from Frequency Characteristics of Control System

    Directory of Open Access Journals (Sweden)

    Chaowu Jin

    2016-01-01

    Full Text Available At present, the stiffness and damping identification for active magnetic bearings (AMBs are still in the stage of theoretical analysis. The theoretical analysis indicates that if the mechanical structure and system parameters are determined, AMBs stiffness and damping are only related to frequency characteristic of control system, ignoring operating condition. More importantly, few verification methods are proposed. Considering the shortcomings of the theoretical identification, this paper obtains these coefficients from the experiment by using the magnetic bearing as a sine exciter. The identification results show that AMBs stiffness and damping have a great relationship with the control system and rotating speed. Specifically, at low rotating speed, the stiffness and damping can be obtained from the rotor static suspension by adding the same excitation frequency. However, at high speed, different from the static suspension situation, the AMBs supporting coefficients are not only related to the frequency characteristics of control system, but also related to the system operating conditions.

  14. Closed-loop Identification for Control of Linear Parameter Varying Systems

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    2014-01-01

    , closed- loop system identification is more difficult than open-loop identification. In this paper we prove that the so-called Hansen Scheme, a technique known from linear time-invariant systems theory for transforming closed-loop system identification problems into open-loop-like problems, can...

  15. Parameter Identification for Salinity in a Quasilinear Thermodynamic System of Sea Ice

    OpenAIRE

    Wei Lv; Xiaojiao Li; Enmin Feng

    2014-01-01

    This study is intended to provide a parameter identification method to determine salinity of sea ice by temperature and salinity observations. A quasilinear thermodynamic system of sea ice with unknown salinity is described and its property is proved. Then, a parameter identification model is established and the existence of its optimal solution is discussed. The salinity profile is calculated by the temperature and salinity data, which were measured at Nella Fjord around Zhongshan Station, A...

  16. Review on applied foods and analyzed methods in identification testing of irradiated foods

    International Nuclear Information System (INIS)

    Kim, Kwang Hoon; Lee, Hoo Chul; Park, Sung Hyun; Kim, Soo Jin; Kim, Kwan Soo; Jeong, Il Yun; Lee, Ju Woon; Yook, Hong Sun

    2010-01-01

    Identification methods of irradiated foods have been adopted as official test by EU and Codex. PSL, TL, ESR and GC/MS methods were registered in Korea food code on 2009 and put in force as control system of verification for labelling of food irradiation. But most generally applicable PSL and TL methods are specified applicable foods according to domestic approved items. Unlike these specifications, foods unpermitted in Korea are included in applicable items of ESR and GC/MS methods. According to recent research data, numerous food groups are possible to effective legal control by identification and these items are demanded to permit regulations for irradiation additionally. Especially, the prohibition of irradiation for meats or seafoods is not harmonized with international standards and interacts as trade friction or industrial restrictions due to unprepared domestic regulation. Hence, extension of domestic legal permission for food irradiation can contrive to related industrial development and also can reduce trade friction and enhance international competitiveness

  17. System Identification for Experimental Study for Polymerization Catalyst Reaction in Fluidized Bed

    Directory of Open Access Journals (Sweden)

    Ahmmed Saadi Ibrehem

    2011-11-01

    Full Text Available In this work, system identification method is used to capture the reactor characteristics of production rate of polyethylene (PE based on published experimental data. The identification method is used to measure the percentage effect on the production rate of PE by measuring the effect of input factors of temperature of reaction, hydrogen concentration, and [Al]/[Ti] molar catalyst ratio. Temperature of reaction has big effects equal 52.4 % on the output of the system and 47.6 % on interaction of the system's parameters compare to other two factors. Also, hydrogen concentration has big effect equal 45.66 % on the output of the system and 14.7 % on interaction of the system's parameters. [Al]/[Ti] molar catalyst ratio has big effect on interaction of the system equal 28.6 and 1.94 % on the output of the system but less than the reaction temperature and hydrogen concentration. All these results depend on experiment results and these results are very important in industrial plants. ©2011 BCREC UNDIP. All rights reserved(Received: 13rd May 2011; Revised: 27th July 2011; Accepted: 22th September 2011[How to Cite: Ahmmed S. Ibrehem. (2011. System Identification for Experimental Study for Polymerization Catalyst Reaction in Fluidized Bed. Bulletin of Chemical Reaction Engineering & Catalysis, 6 (2: 137-146. doi:10.9767/bcrec.6.2.874.137-146][How to Link / DOI: http://dx,doi.org/10.9767/bcrec.6.2.874.137-146 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/874 ] | View in 

  18. Thermal Signature Identification System (TheSIS)

    Science.gov (United States)

    Merritt, Scott; Bean, Brian

    2015-01-01

    We characterize both nonlinear and high order linear responses of fiber-optic and optoelectronic components using spread spectrum temperature cycling methods. This Thermal Signature Identification System (TheSIS) provides much more detail than conventional narrowband or quasi-static temperature profiling methods. This detail allows us to match components more thoroughly, detect subtle reversible shifts in performance, and investigate the cause of instabilities or irreversible changes. In particular, we create parameterized models of athermal fiber Bragg gratings (FBGs), delay line interferometers (DLIs), and distributed feedback (DFB) lasers, then subject the alternative models to selection via the Akaike Information Criterion (AIC). Detailed pairing of components, e.g. FBGs, is accomplished by means of weighted distance metrics or norms, rather than on the basis of a single parameter, such as center wavelength.

  19. Primary Identification Methods and their Effectiveness in Mass Disaster Situations: A Literature Review

    Directory of Open Access Journals (Sweden)

    Naiara M. Gaglietti

    2017-06-01

    Full Text Available Mass disasters generally result in an elevated number of casualties that need identification. The primary identification methods listed by INTERPOL (DNA, fingerprint and forensic dentistry have a very important role in helping and speeding up the victim identification process. The present study sought to report mass destruction cases found in the literature published from 2005 to 2015 that have used the primary human identification methods. This study has been done as a literature review using the keywords: disasters, natural disasters, disaster victims, and human identification in a total of 16 selected papers and 13 listed disasters. It has been concluded that the primary identification methods are capable and efficient to perform a safe and satisfactory identification of mass disasters victims, used both separately or in combination.

  20. Ensemble of different approaches for a reliable person re-identification system

    Directory of Open Access Journals (Sweden)

    Loris Nanni

    2016-07-01

    Full Text Available An ensemble of approaches for reliable person re-identification is proposed in this paper. The proposed ensemble is built combining widely used person re-identification systems using different color spaces and some variants of state-of-the-art approaches that are proposed in this paper. Different descriptors are tested, and both texture and color features are extracted from the images; then the different descriptors are compared using different distance measures (e.g., the Euclidean distance, angle, and the Jeffrey distance. To improve performance, a method based on skeleton detection, extracted from the depth map, is also applied when the depth map is available. The proposed ensemble is validated on three widely used datasets (CAVIAR4REID, IAS, and VIPeR, keeping the same parameter set of each approach constant across all tests to avoid overfitting and to demonstrate that the proposed system can be considered a general-purpose person re-identification system. Our experimental results show that the proposed system offers significant improvements over baseline approaches. The source code used for the approaches tested in this paper will be available at https://www.dei.unipd.it/node/2357 and http://robotics.dei.unipd.it/reid/.

  1. Modeling and identification of induction micromachines in microelectromechanical systems applications

    Energy Technology Data Exchange (ETDEWEB)

    Lyshevski, S.E. [Purdue University at Indianapolis (United States). Dept. of Electrical and Computer Engineering

    2002-11-01

    Microelectromechanical systems (MEMS), which integrate motion microstructures, radiating energy microdevices, controlling and signal processing integrated circuits (ICs), are widely used. Rotational and translational electromagnetic based micromachines are used in MEMS as actuators and sensors. Brushless high performance micromachines are the preferable choice in different MEMS applications, and therefore, synchronous and induction micromachines are the best candidates. Affordability, good performance characteristics (efficiency, controllability, robustness, reliability, power and torque densities etc.) and expanded operating envelopes result in a strong interest in the application of induction micromachines. In addition, induction micromachines can be easily fabricated using surface micromachining and high aspect ratio fabrication technologies. Thus, it is anticipated that induction micromachines, controlled using different control algorithms implemented using ICs, will be widely used in MEMS. Controllers can be implemented using specifically designed ICs to attain superior performance, maximize efficiency and controllability, minimize losses and electromagnetic interference, reduce noise and vibration, etc. In order to design controllers, the induction micromachine must be modeled, and its mathematical model parameters must be identified. Using microelectromechanics, nonlinear mathematical models are derived. This paper illustrates the application of nonlinear identification methods as applied to identify the unknown parameters of three phase induction micromachines. Two identification methods are studied. In particular, nonlinear error mapping technique and least squares identification are researched. Analytical and numerical results, as well as practical capabilities and effectiveness, are illustrated, identifying the unknown parameters of a three phase brushless induction micromotor. Experimental results fully support the identification methods. (author)

  2. [Comparison between conventional methods, ChromAgar Candida® and PCR method for the identification of Candida species in clinical isolates].

    Science.gov (United States)

    Estrada-Barraza, Deyanira; Dávalos Martínez, Arturo; Flores-Padilla, Luis; Mendoza-De Elias, Roberto; Sánchez-Vargas, Luis Octavio

    2011-01-01

    The increase in the incidence of yeast species causing fungemia in susceptible immunocompromised patients in the last two decades and the low sensitivity of conventional blood culture has led to the need to develop alternative approaches for the early detection and identification of causative species. The aim of this study was to compare the usefulness of molecular testing by the polymerase chain reaction (PCR) and conventional methods to identify clinical isolates of different species, using the ID32C ATB system (bioMérieux, France), chromogenic culture Chromagar Candida® (CHROMagar, France) and morphogenesis in corn meal agar. We studied 79 isolates, in which the most prevalent species using the system ID32C and PCR was C. albicans, followed by C. tropicalis, C. glabrata and C .krusei. PCR patterns obtained for the identification of clinical isolates were stable and consistent in the various independent studies and showed good reproducibility, concluding that PCR with species-specific primers that amplify genes ITS1 and ITS2 for rRNA or topoisomerase II primers is a very specific and sensitive method for the identification of C. glabrata, C. krusei, C. albicans, and with less specificity for C. tropicalis. Copyright © 2010 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  3. Robust uncertainty evaluation for system identification on distributed wireless platforms

    Science.gov (United States)

    Crinière, Antoine; Döhler, Michael; Le Cam, Vincent; Mevel, Laurent

    2016-04-01

    Health monitoring of civil structures by system identification procedures from automatic control is now accepted as a valid approach. These methods provide frequencies and modeshapes from the structure over time. For a continuous monitoring the excitation of a structure is usually ambient, thus unknown and assumed to be noise. Hence, all estimates from the vibration measurements are realizations of random variables with inherent uncertainty due to (unknown) process and measurement noise and finite data length. The underlying algorithms are usually running under Matlab under the assumption of large memory pool and considerable computational power. Even under these premises, computational and memory usage are heavy and not realistic for being embedded in on-site sensor platforms such as the PEGASE platform. Moreover, the current push for distributed wireless systems calls for algorithmic adaptation for lowering data exchanges and maximizing local processing. Finally, the recent breakthrough in system identification allows us to process both frequency information and its related uncertainty together from one and only one data sequence, at the expense of computational and memory explosion that require even more careful attention than before. The current approach will focus on presenting a system identification procedure called multi-setup subspace identification that allows to process both frequencies and their related variances from a set of interconnected wireless systems with all computation running locally within the limited memory pool of each system before being merged on a host supervisor. Careful attention will be given to data exchanges and I/O satisfying OGC standards, as well as minimizing memory footprints and maximizing computational efficiency. Those systems are built in a way of autonomous operations on field and could be later included in a wide distributed architecture such as the Cloud2SM project. The usefulness of these strategies is illustrated on

  4. Simple Sample Preparation Method for Direct Microbial Identification and Susceptibility Testing From Positive Blood Cultures.

    Science.gov (United States)

    Pan, Hong-Wei; Li, Wei; Li, Rong-Guo; Li, Yong; Zhang, Yi; Sun, En-Hua

    2018-01-01

    Rapid identification and determination of the antibiotic susceptibility profiles of the infectious agents in patients with bloodstream infections are critical steps in choosing an effective targeted antibiotic for treatment. However, there has been minimal effort focused on developing combined methods for the simultaneous direct identification and antibiotic susceptibility determination of bacteria in positive blood cultures. In this study, we constructed a lysis-centrifugation-wash procedure to prepare a bacterial pellet from positive blood cultures, which can be used directly for identification by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) and antibiotic susceptibility testing by the Vitek 2 system. The method was evaluated using a total of 129 clinical bacteria-positive blood cultures. The whole sample preparation process could be completed in identification was 96.49% for gram-negative bacteria and 97.22% for gram-positive bacteria. Vitek 2 antimicrobial susceptibility testing of gram-negative bacteria showed an agreement rate of antimicrobial categories of 96.89% with a minor error, major error, and very major error rate of 2.63, 0.24, and 0.24%, respectively. Category agreement of antimicrobials against gram-positive bacteria was 92.81%, with a minor error, major error, and very major error rate of 4.51, 1.22, and 1.46%, respectively. These results indicated that our direct antibiotic susceptibility analysis method worked well compared to the conventional culture-dependent laboratory method. Overall, this fast, easy, and accurate method can facilitate the direct identification and antibiotic susceptibility testing of bacteria in positive blood cultures.

  5. A topological method for vortex identification in turbulent flows

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Qiang; Chen, Huai; Li, Danxun [State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084 (China); Chen, Qigang, E-mail: lidx@mail.tsinghua.edu.cn [School of Civil Engineering, Beijing Jiaotong University, Beijing 100044 (China)

    2017-02-15

    We present a novel vortex identification method based on structured vorticity ( ω {sub s}) of the direction field of flow (velocity vectors set to unit magnitude). As a direct measure of streamline curvature is insensitive to vortex strength, ω {sub s} is effective in detecting vortices of various strengths. The effectiveness has been tested against both analytical flows (pure shear flow, Oseen vortex flow, strong outward spiraling motion, straining flow, Taylor–Green flow) and experimental flows (closed cavity flow, closed and open channel flow). Comparison of the new method with the swirling-strength method indicates that the new method shows promise as being a simple and effective criterion for vortex identification. (paper)

  6. Application of identification techniques to remote manipulator system flight data

    Science.gov (United States)

    Shepard, G. D.; Lepanto, J. A.; Metzinger, R. W.; Fogel, E.

    1983-01-01

    This paper addresses the application of identification techniques to flight data from the Space Shuttle Remote Manipulator System (RMS). A description of the remote manipulator, including structural and control system characteristics, sensors, and actuators is given. A brief overview of system identification procedures is presented, and the practical aspects of implementing system identification algorithms are discussed. In particular, the problems posed by desampling rate, numerical error, and system nonlinearities are considered. Simulation predictions of damping, frequency, and system order are compared with values identified from flight data to support an evaluation of RMS structural and control system models. Finally, conclusions are drawn regarding the application of identification techniques to flight data obtained from a flexible space structure.

  7. A portable air jet actuator device for mechanical system identification

    Science.gov (United States)

    Belden, Jesse; Staats, Wayne L.; Mazumdar, Anirban; Hunter, Ian W.

    2011-03-01

    System identification of limb mechanics can help diagnose ailments and can aid in the optimization of robotic limb control parameters and designs. An interesting fluid phenomenon—the Coandă effect—is utilized in a portable actuator to provide a stochastic binary force disturbance to a limb system. The design of the actuator is approached with the goal of creating a portable device which could be deployed on human or robotic limbs for in situ mechanical system identification. The viability of the device is demonstrated by identifying the parameters of an underdamped elastic beam system with fixed inertia and stiffness and variable damping. The nonparametric compliance impulse response yielded from the system identification is modeled as a second-order system and the resultant parameters are found to be in excellent agreement with those found using more traditional system identification techniques. The current design could be further miniaturized and developed as a portable, wireless, unrestrained mechanical system identification instrument for less intrusive and more widespread use.

  8. Container for waste, identification code reading device thereof, method and system for controlling waste by using them

    International Nuclear Information System (INIS)

    Kikuchi, Takashi; Yoshida, Tomiji; Omote, Tatsuyuki.

    1991-01-01

    In the conventional method of controlling waste containers by labels attached thereto, the data relevant to wastes contained in the waste containers are limited. Further, if the label should be peeled off, there is a possibility that the wastes therein can no more be identified. Then, in the present invention, an identification plate is previously attached, to which mechanically readable codes or visually readable letters or numerical figures are written. Then, the identification codes can be read in a remote control manner at high speed and high reliability and the waste containers can be managed only by the identification codes of the containers. Further, the identification codes on the container are made so as to be free from aging degradation, thereby enabling to manage waste containers for long time storage. With such a constitution, since data can be inputted from an input terminal and a great amount of data such as concerning the source of wastes can be managed collectively on a software, the data can be managed easily. (T.M.)

  9. A Novel Degradation Identification Method for Wind Turbine Pitch System

    Science.gov (United States)

    Guo, Hui-Dong

    2018-04-01

    It’s difficult for traditional threshold value method to identify degradation of operating equipment accurately. An novel degradation evaluation method suitable for wind turbine condition maintenance strategy implementation was proposed in this paper. Based on the analysis of typical variable-speed pitch-to-feather control principle and monitoring parameters for pitch system, a multi input multi output (MIMO) regression model was applied to pitch system, where wind speed, power generation regarding as input parameters, wheel rotation speed, pitch angle and motor driving currency for three blades as output parameters. Then, the difference between the on-line measurement and the calculated value from the MIMO regression model applying least square support vector machines (LSSVM) method was defined as the Observed Vector of the system. The Gaussian mixture model (GMM) was applied to fitting the distribution of the multi dimension Observed Vectors. Applying the model established, the Degradation Index was calculated using the SCADA data of a wind turbine damaged its pitch bearing retainer and rolling body, which illustrated the feasibility of the provided method.

  10. [Evaluation of common commercial systems for the identification of yeast isolates in microbiology laboratories: a multicenter study].

    Science.gov (United States)

    Karabıçak, Nilgün; Uludağ Altun, Hatice; Karatuna, Onur; Hazırolan, Gülşen; Aksu, Neriman; Adiloğlu, Ali; Akyar, Işın

    2015-04-01

    Accurate and rapid identification of yeast isolates have become important in recent years for not only antifungal susceptibility testing due to the species-specific clinical resistance breakpoints but also early initiation of appropriate antifungal therapy. In clinical microbiology laboratories species identification of yeasts is often performed with several commercial systems based on biochemical properties and rarely according to the physiological and morphological characteristics. The aim of this study was to compare the two common commercial systems, VITEK 2 YST ID Card (Vitek; bioMérieux, France) and API 20C AUX (API; bioMérieux, France) with conventional mycological methods. A total of 473 clinical yeast strains isolated from clinical specimens in different university and training/research hospitals and identified by Vitek system were included in the study. The isolates were re-identified with API and conventional methods including morphological identification in the Mycology Reference Laboratory of the Public Health Institute of Turkey. Candida dubliniensis MYA 583, Candida krusei ATCC 6258, Candida parapsilosis ATCC 22019, Candida albicans ATCC 10231 and Cryptococcus neoformans ATCC 32268 were used as quality control strains and those standard strains were studied consecutively 10 days with both of the methods. The results of identification by Vitek and API were compared with the results of conventional methods for those 473 yeast isolates [6 genus (Candida, Cryptococcus, Blastoshizomyces, Rhodotorula, Saccharomyces, Trichosporon), 17 species (5 common and 12 rarely isolated)]. The performances of the systems were better (Vitek: 95%; API: 96%) for the commonly detected species (C.albicans, C.parapsilosis, C.glabrata, C.tropicalis and C.krusei) than those for rarely detected species (Vitek: 78.4%; API: 71.6%) (p= 0.155). Misidentification or unidentification were mostly detected for C.parapsilosis (Vitek: 6/87; API: 7/87) and C.glabrata (Vitek: 9/104; API

  11. Attendance fingerprint identification system using arduino and single board computer

    Science.gov (United States)

    Muchtar, M. A.; Seniman; Arisandi, D.; Hasanah, S.

    2018-03-01

    Fingerprint is one of the most unique parts of the human body that distinguishes one person from others and is easily accessed. This uniqueness is supported by technology that can automatically identify or recognize a person called fingerprint sensor. Yet, the existing Fingerprint Sensor can only do fingerprint identification on one machine. For the mentioned reason, we need a method to be able to recognize each user in a different fingerprint sensor. The purpose of this research is to build fingerprint sensor system for fingerprint data management to be centralized so identification can be done in each Fingerprint Sensor. The result of this research shows that by using Arduino and Raspberry Pi, data processing can be centralized so that fingerprint identification can be done in each fingerprint sensor with 98.5 % success rate of centralized server recording.

  12. Time domain system identification of longitudinal dynamics of single rotor model helicopter using sidpac

    International Nuclear Information System (INIS)

    Khaizer, A.N.; Hussain, I.

    2015-01-01

    This paper presents a time-domain approach for identification of longitudinal dynamics of single rotor model helicopter. A frequency sweep excitation input signal is applied for hover flying mode widely used for space state linearized model. A fully automated programmed flight test method provides high quality flight data for system identification using the computer controlled flight simulator X-plane. The flight test data were recorded, analyzed and reduced using the SIDPAC (System Identification Programs for Air Craft) toolbox for MATLAB, resulting in an aerodynamic model of single rotor helicopter. Finally, the identified model of single rotor helicopter is validated on Raptor 30-class model helicopter at hover showing the reliability of proposed approach. (author)

  13. Identification of fractional-order systems with unknown initial values and structure

    Energy Technology Data Exchange (ETDEWEB)

    Du, Wei, E-mail: duwei0203@gmail.com [Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Miao, Qingying, E-mail: qymiao@sjtu.edu.cn [School of Continuing Education, Shanghai Jiao Tong University, Shanghai 200030 (China); Tong, Le, E-mail: tongle0328@gmail.com [Faculty of Applied Science and Textiles, The Hong Kong Polytechnic University, Hong Kong (China); Tang, Yang [Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China)

    2017-06-21

    In this paper, the identification problem of fractional-order chaotic systems is proposed and investigated via an evolutionary optimization approach. Different with other studies to date, this research focuses on the identification of fractional-order chaotic systems with not only unknown orders and parameters, but also unknown initial values and structure. A group of fractional-order chaotic systems, i.e., Lorenz, Lü, Chen, Rössler, Arneodo and Volta chaotic systems, are set as the system candidate pool. The identification problem of fractional-order chaotic systems in this research belongs to mixed integer nonlinear optimization in essence. A powerful evolutionary algorithm called composite differential evolution (CoDE) is introduced for the identification problem presented in this paper. Extensive experiments are carried out to show that the fractional-order chaotic systems with unknown initial values and structure can be successfully identified by means of CoDE. - Highlights: • Unknown initial values and structure are introduced in the identification of fractional-order chaotic systems; • Only a series of output is utilized in the identification of fractional-order chaotic systems; • CoDE is used for the identification problem and the results are satisfactory when compared with other DE variants.

  14. Rapid screening of guar gum using portable Raman spectral identification methods.

    Science.gov (United States)

    Srivastava, Hirsch K; Wolfgang, Steven; Rodriguez, Jason D

    2016-01-25

    Guar gum is a well-known inactive ingredient (excipient) used in a variety of oral pharmaceutical dosage forms as a thickener and stabilizer of suspensions and as a binder of powders. It is also widely used as a food ingredient in which case alternatives with similar properties, including chemically similar gums, are readily available. Recent supply shortages and price fluctuations have caused guar gum to come under increasing scrutiny for possible adulteration by substitution of cheaper alternatives. One way that the U.S. FDA is attempting to screen pharmaceutical ingredients at risk for adulteration or substitution is through field-deployable spectroscopic screening. Here we report a comprehensive approach to evaluate two field-deployable Raman methods--spectral correlation and principal component analysis--to differentiate guar gum from other gums. We report a comparison of the sensitivity of the spectroscopic screening methods with current compendial identification tests. The ability of the spectroscopic methods to perform unambiguous identification of guar gum compared to other gums makes them an enhanced surveillance alternative to the current compendial identification tests, which are largely subjective in nature. Our findings indicate that Raman spectral identification methods perform better than compendial identification methods and are able to distinguish guar gum from other gums with 100% accuracy for samples tested by spectral correlation and principal component analysis. Published by Elsevier B.V.

  15. Non-parametric system identification from non-linear stochastic response

    DEFF Research Database (Denmark)

    Rüdinger, Finn; Krenk, Steen

    2001-01-01

    An estimation method is proposed for identification of non-linear stiffness and damping of single-degree-of-freedom systems under stationary white noise excitation. Non-parametric estimates of the stiffness and damping along with an estimate of the white noise intensity are obtained by suitable...... of the energy at mean-level crossings, which yields the damping relative to white noise intensity. Finally, an estimate of the noise intensity is extracted by estimating the absolute damping from the autocovariance functions of a set of modified phase plane variables at different energy levels. The method...

  16. Simple Sample Preparation Method for Direct Microbial Identification and Susceptibility Testing From Positive Blood Cultures

    Directory of Open Access Journals (Sweden)

    Hong-wei Pan

    2018-03-01

    Full Text Available Rapid identification and determination of the antibiotic susceptibility profiles of the infectious agents in patients with bloodstream infections are critical steps in choosing an effective targeted antibiotic for treatment. However, there has been minimal effort focused on developing combined methods for the simultaneous direct identification and antibiotic susceptibility determination of bacteria in positive blood cultures. In this study, we constructed a lysis-centrifugation-wash procedure to prepare a bacterial pellet from positive blood cultures, which can be used directly for identification by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS and antibiotic susceptibility testing by the Vitek 2 system. The method was evaluated using a total of 129 clinical bacteria-positive blood cultures. The whole sample preparation process could be completed in <15 min. The correct rate of direct MALDI-TOF MS identification was 96.49% for gram-negative bacteria and 97.22% for gram-positive bacteria. Vitek 2 antimicrobial susceptibility testing of gram-negative bacteria showed an agreement rate of antimicrobial categories of 96.89% with a minor error, major error, and very major error rate of 2.63, 0.24, and 0.24%, respectively. Category agreement of antimicrobials against gram-positive bacteria was 92.81%, with a minor error, major error, and very major error rate of 4.51, 1.22, and 1.46%, respectively. These results indicated that our direct antibiotic susceptibility analysis method worked well compared to the conventional culture-dependent laboratory method. Overall, this fast, easy, and accurate method can facilitate the direct identification and antibiotic susceptibility testing of bacteria in positive blood cultures.

  17. The electronic identification, signature and security of information systems

    Directory of Open Access Journals (Sweden)

    Horovèák Pavel

    2002-12-01

    Full Text Available The contribution deals with the actual methods and technologies of information and communication systems security. It introduces the overview of electronic identification elements such as static password, dynamic password and single sign-on. Into this category belong also biometric and dynamic characteristics of verified person. Widespread is authentication based on identification elements ownership, such as various cards and authentication calculators. In the next part is specified a definition and characterization of electronic signature, its basic functions and certificate categories. Practical utilization of electronic signature consists of electronic signature acquirement, signature of outgoing email message, receiving of electronic signature and verification of electronic signature. The use of electronic signature is continuously growing and in connection with legislation development it exercises in all resorts.

  18. Observability in electric power networks: identification critical measures methods; Observabilidade em redes de energia eletrica: metodos de identificacao de medidas criticas

    Energy Technology Data Exchange (ETDEWEB)

    London Junior, Joao Bosco Augusto

    1997-07-01

    One of the most important functions of the control and operation centers is to maintain service reliability in a electrical power system. In order to obtain a reliable operation of the power system, it is important to identify the critical measurements, and then to improve the measurement system using pseudo measurements. The goal of this work is to determine more efficient methods for critical measurement identification. A brief review of the some methods for observability analysis as well as two methodologies to identify critical measurements are presented. The first method has a combinatorial nature; the second one is supported by uni modular M matrix (incidence matrix of measurements for branches) and A matrix (incidence matrix of branch for nodes). The second method needs a combinatorial algorithm to be feasible, so that it becomes a slow method. Two new methods for critical measurements identification are presented in this work: the first one is based on the theory developed by Bretas (1996a), to analyse observability using graph paths; the second methods is supported y the Slutsker and Scudder (1987) theory, where identification is reached throughout the analysis of the jacobian matrix. (author)

  19. Assessment of the underlying systems involved in standing balance: the additional value of electromyography in system identification and parameter estimation

    NARCIS (Netherlands)

    Pasma, J.H.; Kordelaar, J. van; Kam, D. de; Weerdesteyn, V.G.M.; Schouten, A.C.; Kooij, H. van der

    2017-01-01

    BACKGROUND: Closed loop system identification (CLSIT) is a method to disentangle the contribution of underlying systems in standing balance. We investigated whether taking into account lower leg muscle activation in CLSIT could improve the reliability and accuracy of estimated parameters identifying

  20. Assessment of the underlying systems involved in standing balance : the additional value of electromyography in system identification and parameter estimation

    NARCIS (Netherlands)

    Pasma, J. H.; Van Kordelaar, J.; de Kam, D.; Weerdesteyn, V.; Schouten, A. C.; Van Der Kooij, H.

    2017-01-01

    Background: Closed loop system identification (CLSIT) is a method to disentangle the contribution of underlying systems in standing balance. We investigated whether taking into account lower leg muscle activation in CLSIT could improve the reliability and accuracy of estimated parameters identifying

  1. Assessment of the underlying systems involved in standing balance : The additional value of electromyography in system identification and parameter estimation

    NARCIS (Netherlands)

    Pasma, J.H.; van Kordelaar, J.; de Kam, D.; Weerdesteyn, V.; Schouten, A.C.; van der Kooij, H.

    2017-01-01

    Background: Closed loop system identification (CLSIT) is a method to disentangle the contribution of underlying systems in standing balance. We investigated whether taking into account lower leg muscle activation in CLSIT could improve the reliability and accuracy of estimated parameters

  2. Comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry systems for the identification of clinical filamentous fungi.

    Science.gov (United States)

    Huang, Yanfei; Zhang, Mingxin; Zhu, Min; Wang, Mei; Sun, Yufeng; Gu, Haitong; Cao, Jingjing; Li, Xue; Zhang, Shaoya; Wang, Jinglin; Lu, Xinxin

    2017-07-01

    Infections caused by filamentous fungi have become a health concern, and require rapid and accurate identification in order for effective treatment of the pathogens. To compare the performance of two MALDI-TOF MS systems (Bruker Microflex LT and Xiamen Microtyper) in the identification of filamentous fungal species. A total of 374 clinical filamentous fungal isolates sequentially collected in the Clinical Laboratory at the Beijing Tongren Hospital between January 2014 and December 2015 were identified by traditional phenotypic methods, Bruker Microflex LT and Xiamen Microtyper MALDI-TOF MS, respectively. The discrepancy between these methods was resolved by sequencing for definitive identification. Bruker Microflex LT and Xiamen Microtyper had similar correct species ID (98.9 vs. 99.2%), genus ID (99.7 vs. 100%), mis-ID (0.3 vs. 0%) and no ID (0 vs. 0). The rate of correct species identification by both MALDI-TOF MS (98.9 and 99.2%, respectively) was much higher compared with phenotypic approach (91.9%). Both MALDI-TOF MS systems provide accurate identification of clinical filamentous fungi compared with conventional phenotypic method, and have the potential to replace identification for routine identification of these fungi in clinical mycology laboratories. Both systems have similar performance in the identification of clinical filamentous fungi.

  3. Development of the method of aggregation to determine the current storage area using computer vision and radiofrequency identification

    Science.gov (United States)

    Astafiev, A.; Orlov, A.; Privezencev, D.

    2018-01-01

    The article is devoted to the development of technology and software for the construction of positioning and control systems in industrial plants based on aggregation to determine the current storage area using computer vision and radiofrequency identification. It describes the developed of the project of hardware for industrial products positioning system in the territory of a plant on the basis of radio-frequency grid. It describes the development of the project of hardware for industrial products positioning system in the plant on the basis of computer vision methods. It describes the development of the method of aggregation to determine the current storage area using computer vision and radiofrequency identification. Experimental studies in laboratory and production conditions have been conducted and described in the article.

  4. Systems and Methods for RFID-Enabled Dispenser

    Science.gov (United States)

    Fink, Patrick W. (Inventor); Lin, Gregory Y. (Inventor); Kennedy, Timothy F. (Inventor); Ngo, Phong H. (Inventor); Byerly, Diane (Inventor)

    2015-01-01

    Methods, apparatuses and systems for radio frequency identification (RFID)-enabled information collection are disclosed, including an enclosure, a collector coupled to the enclosure, an interrogator, a processor, and one or more RFID field sensors, each having an individual identification, disposed within the enclosure. In operation, the interrogator transmits an incident signal to the collector, causing the collector to generate an electromagnetic field within the enclosure. The electromagnetic field is affected by one or more influences. RFID sensors respond to the electromagnetic field by transmitting reflected signals containing the individual identifications of the responding RFID sensors to the interrogator. The interrogator receives the reflected signals, measures one or more returned signal strength indications ("RSSI") of the reflected signals and sends the RSSI measurements and identification of the responding RFID sensors to the processor to determine one or more facts about the influences. Other embodiments are also described.

  5. Knowledge-based methods for control systems

    International Nuclear Information System (INIS)

    Larsson, J.E.

    1992-01-01

    This thesis consists of three projects which combine artificial intelligence and control. The first part describes an expert system interface for system identification, using the interactive identification program Idpac. The interface works as an intelligent help system, using the command spy strategy. It contains a multitude of help system ideas. The concept of scripts is introduced as a data structure used to describe the procedural part of the knowledge in the interface. Production rules are used to represent diagnostic knowledge. A small knowledge database of scripts and rules has been developed and an example run is shown. The second part describes an expert system for frequency response analysis. This is one of the oldest and most widely used methods to determine the dynamics of a stable linear system. Though quite simple, it requires knowledge and experience of the user, in order to produce reliable results. The expert system is designed to help the user in performing the analysis. It checks whether the system is linear, finds the frequency and amplitude ranges, verifies the results, and, if errors should occur, tries to give explanation and remedies for them. The third part describes three diagnostic methods for use with industrial processes. They are measurement validation, i.e., consistency checking of sensor and measurement values using any redundancy of instrumentation; alarm analysis, i.e. analysis of multiple alarm situations to find which alarms are directly connected to primary faults and which alarms are consequential effects of the primary ones; and fault diagnosis, i.e., a search for the causes of and remedies for faults. The three methods use multilevel flow models, (MFM), to describe the target process. They have been implemented in the programming tool G2, and successfully tested on two small processes. (164 refs.) (au)

  6. Nonlinear System Identification Using Quasi-ARX RBFN Models with a Parameter-Classified Scheme

    Directory of Open Access Journals (Sweden)

    Lan Wang

    2017-01-01

    Full Text Available Quasi-linear autoregressive with exogenous inputs (Quasi-ARX models have received considerable attention for their usefulness in nonlinear system identification and control. In this paper, identification methods of quasi-ARX type models are reviewed and categorized in three main groups, and a two-step learning approach is proposed as an extension of the parameter-classified methods to identify the quasi-ARX radial basis function network (RBFN model. Firstly, a clustering method is utilized to provide statistical properties of the dataset for determining the parameters nonlinear to the model, which are interpreted meaningfully in the sense of interpolation parameters of a local linear model. Secondly, support vector regression is used to estimate the parameters linear to the model; meanwhile, an explicit kernel mapping is given in terms of the nonlinear parameter identification procedure, in which the model is transformed from the nonlinear-in-nature to the linear-in-parameter. Numerical and real cases are carried out finally to demonstrate the effectiveness and generalization ability of the proposed method.

  7. System Identification of a Heaving Point Absorber: Design of Experiment and Device Modeling

    Directory of Open Access Journals (Sweden)

    Giorgio Bacelli

    2017-04-01

    Full Text Available Empirically based modeling is an essential aspect of design for a wave energy converter. Empirically based models are used in structural, mechanical and control design processes, as well as for performance prediction. Both the design of experiments and methods used in system identification have a strong impact on the quality of the resulting model. This study considers the system identification and model validation process based on data collected from a wave tank test of a model-scale wave energy converter. Experimental design and data processing techniques based on general system identification procedures are discussed and compared with the practices often followed for wave tank testing. The general system identification processes are shown to have a number of advantages, including an increased signal-to-noise ratio, reduced experimental time and higher frequency resolution. The experimental wave tank data is used to produce multiple models using different formulations to represent the dynamics of the wave energy converter. These models are validated and their performance is compared against one another. While most models of wave energy converters use a formulation with surface elevation as an input, this study shows that a model using a hull pressure measurement to incorporate the wave excitation phenomenon has better accuracy.

  8. Nonlinear dynamical system identification using unscented Kalman filter

    Science.gov (United States)

    Rehman, M. Javvad ur; Dass, Sarat Chandra; Asirvadam, Vijanth Sagayan

    2016-11-01

    Kalman Filter is the most suitable choice for linear state space and Gaussian error distribution from decades. In general practical systems are not linear and Gaussian so these assumptions give inconsistent results. System Identification for nonlinear dynamical systems is a difficult task to perform. Usually, Extended Kalman Filter (EKF) is used to deal with non-linearity in which Jacobian method is used for linearizing the system dynamics, But it has been observed that in highly non-linear environment performance of EKF is poor. Unscented Kalman Filter (UKF) is proposed here as a better option because instead of analytical linearization of state space, UKF performs statistical linearization by using sigma point calculated from deterministic samples. Formation of the posterior distribution is based on the propagation of mean and covariance through sigma points.

  9. MALDI-TOF MS Versus VITEK®2: Comparison of Systems for the Identification of Microorganisms Responsible for Bacteremia.

    Science.gov (United States)

    Febbraro, Filomena; Rodio, Donatella Maria; Puggioni, Gianluca; Antonelli, Guido; Pietropaolo, Valeria; Trancassini, Maria

    2016-12-01

    We evaluated the reliability and accuracy of the combined use of MALDI-TOF MS and classical ID VITEK 2 to identify monomicrobial infection in blood culture bottles. In total, 70 consecutive positive blood cultures were included in this study. Positive blood culture bottles were subjected to Gram staining and subcultured on solid media. Isolates grown from such culture media were used for classical ID using VITEK 2 system. In parallel, an aliquot was subjected to a lysing-centrifugation method and used for the identification with the MALDI-TOF system. Results evidenced the correct genus and species identification of 91.4 % of microorganisms responsible for bacteremia with an agreement to the species and the genus level. If compared with the standard method VITEK 2 , our simple and cost-effective sample preparation method would be very useful for rapid identification of microorganisms using blood culture bottles. In fact, the direct method showed rapid and reliable results, especially for the gram-negative group.

  10. A Novel Identification Methodology for the Coordinate Relationship between a 3D Vision System and a Legged Robot.

    Science.gov (United States)

    Chai, Xun; Gao, Feng; Pan, Yang; Qi, Chenkun; Xu, Yilin

    2015-04-22

    Coordinate identification between vision systems and robots is quite a challenging issue in the field of intelligent robotic applications, involving steps such as perceiving the immediate environment, building the terrain map and planning the locomotion automatically. It is now well established that current identification methods have non-negligible limitations such as a difficult feature matching, the requirement of external tools and the intervention of multiple people. In this paper, we propose a novel methodology to identify the geometric parameters of 3D vision systems mounted on robots without involving other people or additional equipment. In particular, our method focuses on legged robots which have complex body structures and excellent locomotion ability compared to their wheeled/tracked counterparts. The parameters can be identified only by moving robots on a relatively flat ground. Concretely, an estimation approach is provided to calculate the ground plane. In addition, the relationship between the robot and the ground is modeled. The parameters are obtained by formulating the identification problem as an optimization problem. The methodology is integrated on a legged robot called "Octopus", which can traverse through rough terrains with high stability after obtaining the identification parameters of its mounted vision system using the proposed method. Diverse experiments in different environments demonstrate our novel method is accurate and robust.

  11. Performance of an optical identification and interrogation system

    Science.gov (United States)

    Venugopalan, A.; Ghosh, A. K.; Verma, P.; Cheng, S.

    2008-04-01

    A free space optics based identification and interrogation system has been designed. The applications of the proposed system lie primarily in areas which require a secure means of mutual identification and information exchange between optical readers and tags. Conventional RFIDs raise issues regarding security threats, electromagnetic interference and health safety. The security of RF-ID chips is low due to the wide spatial spread of radio waves. Malicious nodes can read data being transmitted on the network, if they are in the receiving range. The proposed system provides an alternative which utilizes the narrow paraxial beams of lasers and an RSA-based authentication scheme. These provide enhanced security to communication between a tag and the base station or reader. The optical reader can also perform remote identification and the tag can be read from a far off distance, given line of sight. The free space optical identification and interrogation system can be used for inventory management, security systems at airports, port security, communication with high security systems, etc. to name a few. The proposed system was implemented with low-cost, off-the-shelf components and its performance in terms of throughput and bit error rate has been measured and analyzed. The range of operation with a bit-error-rate lower than 10-9 was measured to be about 4.5 m. The security of the system is based on the strengths of the RSA encryption scheme implemented using more than 1024 bits.

  12. Attributes identification of nuclear material by non-destructive radiation measurement methods

    International Nuclear Information System (INIS)

    Gan Lin

    2002-01-01

    Full text: The nuclear materials should be controlled under the regulation of National Safeguard System. The non-destructive analysis method, which is simple and quick, provide a effective process in determining the nuclear materials, nuclear scraps and wastes. The method play a very important role in the fields of nuclear material control and physical protection against the illegal removal and smuggling of nuclear material. The application of non-destructive analysis in attributes identification of nuclear material is briefly described in this paper. The attributes determined by radioactive detection technique are useful tolls to identify the characterization of special nuclear material (isotopic composition, enrichment etc.). (author)

  13. An application of multilevel flow modelling method for nuclear plant state identification

    International Nuclear Information System (INIS)

    Businaro, T.; Di Lorenzo, A.; Meo, G.B.; Rabbani, M.I.; Rubino, E.

    1986-01-01

    With the advent of advanced digital techniques it has been rendered possible, necessity of which has long since been recognised, to develop a computer based man-machine interface and hance an expert system based on knowledge based decision making for operator support in the control rooms of nuclear plants. The Multilevel Flow Modelling method developed at RISO Laboratories, Denmark, has been applied in the present experiment to model Italian PEC reactor and to verify applicability of this method in plant state identification. In MFM method functional structure of a process plant is described in terms of a set of interrelated mass and energy flow structures on different levels of physical aggregation

  14. Identification of general linear mechanical systems

    Science.gov (United States)

    Sirlin, S. W.; Longman, R. W.; Juang, J. N.

    1983-01-01

    Previous work in identification theory has been concerned with the general first order time derivative form. Linear mechanical systems, a large and important class, naturally have a second order form. This paper utilizes this additional structural information for the purpose of identification. A realization is obtained from input-output data, and then knowledge of the system input, output, and inertia matrices is used to determine a set of linear equations whereby we identify the remaining unknown system matrices. Necessary and sufficient conditions on the number, type and placement of sensors and actuators are given which guarantee identificability, and less stringent conditions are given which guarantee generic identifiability. Both a priori identifiability and a posteriori identifiability are considered, i.e., identifiability being insured prior to obtaining data, and identifiability being assured with a given data set.

  15. A Bayesian statistical method for particle identification in shower counters

    International Nuclear Information System (INIS)

    Takashimizu, N.; Kimura, A.; Shibata, A.; Sasaki, T.

    2004-01-01

    We report an attempt on identifying particles using a Bayesian statistical method. We have developed the mathematical model and software for this purpose. We tried to identify electrons and charged pions in shower counters using this method. We designed an ideal shower counter and studied the efficiency of identification using Monte Carlo simulation based on Geant4. Without having any other information, e.g. charges of particles which are given by tracking detectors, we have achieved 95% identifications of both particles

  16. 3D anisotropic modeling and identification for airborne EM systems based on the spectral-element method

    Science.gov (United States)

    Huang, Xin; Yin, Chang-Chun; Cao, Xiao-Yue; Liu, Yun-He; Zhang, Bo; Cai, Jing

    2017-09-01

    The airborne electromagnetic (AEM) method has a high sampling rate and survey flexibility. However, traditional numerical modeling approaches must use high-resolution physical grids to guarantee modeling accuracy, especially for complex geological structures such as anisotropic earth. This can lead to huge computational costs. To solve this problem, we propose a spectral-element (SE) method for 3D AEM anisotropic modeling, which combines the advantages of spectral and finite-element methods. Thus, the SE method has accuracy as high as that of the spectral method and the ability to model complex geology inherited from the finite-element method. The SE method can improve the modeling accuracy within discrete grids and reduce the dependence of modeling results on the grids. This helps achieve high-accuracy anisotropic AEM modeling. We first introduced a rotating tensor of anisotropic conductivity to Maxwell's equations and described the electrical field via SE basis functions based on GLL interpolation polynomials. We used the Galerkin weighted residual method to establish the linear equation system for the SE method, and we took a vertical magnetic dipole as the transmission source for our AEM modeling. We then applied fourth-order SE calculations with coarse physical grids to check the accuracy of our modeling results against a 1D semi-analytical solution for an anisotropic half-space model and verified the high accuracy of the SE. Moreover, we conducted AEM modeling for different anisotropic 3D abnormal bodies using two physical grid scales and three orders of SE to obtain the convergence conditions for different anisotropic abnormal bodies. Finally, we studied the identification of anisotropy for single anisotropic abnormal bodies, anisotropic surrounding rock, and single anisotropic abnormal body embedded in an anisotropic surrounding rock. This approach will play a key role in the inversion and interpretation of AEM data collected in regions with anisotropic

  17. Particle identification methods in High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Va' Vra, J.

    2000-01-27

    This paper deals with two major particle identification methods: dE/dx and Cherenkov detection. In the first method, the authors systematically compare existing dE/dx data with various predictions available in the literature, such as the Particle Data group recommendation, and judge the overall consistency. To my knowledge, such comparison was not done yet in a published form for the gaseous detectors used in High-Energy physics. As far as the second method, there are two major Cherenkov light detection techniques: the threshold and the Ring imaging methods. The authors discuss the recent trend in these techniques.

  18. The Development Of Mathematical Model For Automated Fingerprint Identification Systems Analysis

    International Nuclear Information System (INIS)

    Ardisasmita, M. Syamsa

    2001-01-01

    Fingerprint has a strong oriented and periodic structure composed of dark lines of raised skin (ridges) and clear lines of lowered skin (furrows)that twist to form a distinct pattern. Although the manner in which the ridges flow is distinctive, other characteristics of the fingerprint called m inutiae a re what are most unique to the individual. These features are particular patterns consisting of terminations or bifurcations of the ridges. To assert if two fingerprints are from the same finger or not, experts detect those minutiae. AFIS (Automated Fingerprint Identification Systems) extract and compare these features for determining a match. The classic methods of fingerprints recognition are not suitable for direct implementation in form of computer algorithms. The creation of a finger's model was however the necessity of development of new, better algorithms of analysis. This paper presents a new numerical methods of fingerprints' simulation based on mathematical model of arrangement of dermatoglyphics and creation of minutiae. This paper describes also the design and implementation of an automated fingerprint identification systems which operates in two stages: minutiae extraction and minutiae matching

  19. Identification of fractional-order systems with time delays using block pulse functions

    Science.gov (United States)

    Tang, Yinggan; Li, Ning; Liu, Minmin; Lu, Yao; Wang, Weiwei

    2017-07-01

    In this paper, a novel method based on block pulse functions is proposed to identify continuous-time fractional-order systems with time delays. First, the operational matrices of block pulse functions for fractional integral operator and time delay operator are derived. Then, these operational matrices are applied to convert the continuous-time fractional-order systems with time delays to an algebraic equation. Finally, the system's parameters along with the differentiation orders and the time delays are all simultaneously estimated through minimizing a quadric error function. The proposed method reduces the computation complexity of the identification process, and also it does not require the system's differentiation orders to be commensurate. The effectiveness of the proposed method are demonstrated by several numerical examples.

  20. Molecular-Based Identification and Detection of Salmonella in Food Production Systems: Current Perspectives.

    Science.gov (United States)

    Ricke, Steven C; Kim, Sun Ae; Shi, Zhaohao; Park, Si Hong

    2018-04-19

    Salmonella remains a prominent cause of foodborne illnesses and can originate from a wide range of food products. Given the continued presence of pathogenic Salmonella in food production systems, there is a consistent need to improve identification and detection methods that can identify this pathogen at all stages in food systems. Methods for subtyping have evolved over the years, and the introduction of whole genome sequencing and advancements in PCR technologies has greatly improved the resolution for differentiating strains within a particular serovar. This, in turn, has led to the continued improvement in Salmonella detection technologies for utilization in food production systems. In this review, the focus will be on recent advancements in these technologies, as well as potential issues associated with the application of these tools in food production. In addition, the recent and emerging research developments on Salmonella detection and identification methodologies and their potential application in food production systems will be discussed. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. A Galerkin discretisation-based identification for parameters in nonlinear mechanical systems

    Science.gov (United States)

    Liu, Zuolin; Xu, Jian

    2018-04-01

    In the paper, a new parameter identification method is proposed for mechanical systems. Based on the idea of Galerkin finite-element method, the displacement over time history is approximated by piecewise linear functions, and the second-order terms in model equation are eliminated by integrating by parts. In this way, the lost function of integration form is derived. Being different with the existing methods, the lost function actually is a quadratic sum of integration over the whole time history. Then for linear or nonlinear systems, the optimisation of the lost function can be applied with traditional least-squares algorithm or the iterative one, respectively. Such method could be used to effectively identify parameters in linear and arbitrary nonlinear mechanical systems. Simulation results show that even under the condition of sparse data or low sampling frequency, this method could still guarantee high accuracy in identifying linear and nonlinear parameters.

  2. Modeling of Biometric Identification System Using the Colored Petri Nets

    Science.gov (United States)

    Petrosyan, G. R.; Ter-Vardanyan, L. A.; Gaboutchian, A. V.

    2015-05-01

    In this paper we present a model of biometric identification system transformed into Petri Nets. Petri Nets, as a graphical and mathematical tool, provide a uniform environment for modelling, formal analysis, and design of discrete event systems. The main objective of this paper is to introduce the fundamental concepts of Petri Nets to the researchers and practitioners, both from identification systems, who are involved in the work in the areas of modelling and analysis of biometric identification types of systems, as well as those who may potentially be involved in these areas. In addition, the paper introduces high-level Petri Nets, as Colored Petri Nets (CPN). In this paper the model of Colored Petri Net describes the identification process much simpler.

  3. Non-whole beat correlation method for the identification of an unbalance response of a dual-rotor system with a slight rotating speed difference

    Science.gov (United States)

    Zhang, Z. X.; Wang, L. Z.; Jin, Z. J.; Zhang, Q.; Li, X. L.

    2013-08-01

    The efficient identification of the unbalanced responses in the inner and outer rotors from the beat vibration is the key step in the dynamic balancing of a dual-rotor system with a slight rotating speed difference. This paper proposes a non-whole beat correlation method to identify the unbalance responses whose integral time is shorter than the whole beat correlation method. The principle, algorithm and parameter selection of the proposed method is emphatically demonstrated in this paper. From the numerical simulation and balancing experiment conducted on horizontal decanter centrifuge, conclusions can be drawn that the proposed approach is feasible and practicable. This method makes important sense in developing the field balancing equipment based on portable Single Chip Microcomputer (SCMC) with low expense.

  4. Comparison of Vitek Matrix-assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Versus Conventional Methods in Candida Identification.

    Science.gov (United States)

    Keçeli, Sema Aşkın; Dündar, Devrim; Tamer, Gülden Sönmez

    2016-02-01

    Candida species are generally identified by conventional methods such as germ tube or morphological appearance on corn meal agar, biochemical methods using API kits and molecular biological methods. Alternative to these methods, rapid and accurate identification methods of microorganisms called matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDİ-TOF MS) has recently been described. In this study, Candida identification results by API Candida kit, API 20C AUX kit and identifications on corn meal agar (CMA) are compared with the results obtained on Vitek-MS. All results were confirmed by sequencing internal transcribed spacer (ITS) regions of rDNA. Totally, 97 Candida strains were identified by germ tube test, CMA, API and Vitek-MS. Vitek-MS results were compatible with 74.2 % of API 20C AUX and 81.4 % of CMA results. The difference between the results of API Candida and API 20C AUX was detected. The ratio of discrepancy between Vitek-MS and API 20C AUX was 25.8 %. Candida species mostly identified as C. famata or C. tropicalis by and not compatible with API kits were identified as C. albicans by Vitek-MS. Sixteen Candida species having discrepant results with Vitek-MS, API or CMA were randomly chosen, and ITS sequence analysis was performed. The results of sequencing were compatible 56.2 % with API 20C AUX, 50 % with CMA and 93.7 % with Vitek-MS. When compared with conventional identification methods, MS results are more reliable and rapid for Candida identification. MS system may be used as routine identification method in clinical microbiology laboratories.

  5. Dynamic mode decomposition for compressive system identification

    Science.gov (United States)

    Bai, Zhe; Kaiser, Eurika; Proctor, Joshua L.; Kutz, J. Nathan; Brunton, Steven L.

    2017-11-01

    Dynamic mode decomposition has emerged as a leading technique to identify spatiotemporal coherent structures from high-dimensional data. In this work, we integrate and unify two recent innovations that extend DMD to systems with actuation and systems with heavily subsampled measurements. When combined, these methods yield a novel framework for compressive system identification, where it is possible to identify a low-order model from limited input-output data and reconstruct the associated full-state dynamic modes with compressed sensing, providing interpretability of the state of the reduced-order model. When full-state data is available, it is possible to dramatically accelerate downstream computations by first compressing the data. We demonstrate this unified framework on simulated data of fluid flow past a pitching airfoil, investigating the effects of sensor noise, different types of measurements (e.g., point sensors, Gaussian random projections, etc.), compression ratios, and different choices of actuation (e.g., localized, broadband, etc.). This example provides a challenging and realistic test-case for the proposed method, and results indicate that the dominant coherent structures and dynamics are well characterized even with heavily subsampled data.

  6. Establishment of a Fast Chemical Identification System for screening of counterfeit drugs of macrolide antibiotics.

    Science.gov (United States)

    Hu, Chang-Qin; Zou, Wen-Buo; Hu, Wang-Sheng; Ma, Xiao-Kang; Yang, Min-Zhi; Zhou, Shi-Lin; Sheng, Jin-Fang; Li, Yuan; Cheng, Shuang-Hong; Xue, Jing

    2006-01-23

    A Fast Chemical Identification System (FCIS) consisting of two colour reactions based on functional groups in molecules of macrolide antibiotics and two TLC methods was developed for screening of fake macrolide drugs. The active ingredients could be extracted from their oral preparations by absolute alcohol. Sulfuric acid reaction as a common reaction of macrolides was first used to distinguish the macrolides from other types of drugs and then 16-membered macrolides and 14-membered ones were distinguished by potassium permanganate reactions depending on the time of loss of colour in the test solution; after which a TLC method carried out on a GF(254) plate (5 cm x 10 cm) was chosen to further identification of the macrolides. The mobile phase A consisting of ethyl acetate, hexane and ammonia (100:15:15, v/v) was used for the identification of 14-membered macrolides, and the mobile phase B consisting of trichloromethane, methanol and ammonia (100:5:1, v/v) was used for the identification of 16-membered ones. A suspected counterfeit macrolide preparation can be identified within 40 min. The system can be used under different conditions and has the virtues of robustness, simplicity and speed.

  7. Identification of Burkholderia spp. in the Clinical Microbiology Laboratory: Comparison of Conventional and Molecular Methods

    Science.gov (United States)

    van Pelt, Cindy; Verduin, Cees M.; Goessens, Wil H. F.; Vos, Margreet C.; Tümmler, Burkhard; Segonds, Christine; Reubsaet, Frans; Verbrugh, Henri; van Belkum, Alex

    1999-01-01

    Cystic fibrosis (CF) predisposes patients to bacterial colonization and infection of the lower airways. Several species belonging to the genus Burkholderia are potential CF-related pathogens, but microbiological identification may be complicated. This situation is not in the least due to the poorly defined taxonomic status of these bacteria, and further validation of the available diagnostic assays is required. A total of 114 geographically diverse bacterial isolates, previously identified in reference laboratories as Burkholderia cepacia (n = 51), B. gladioli (n = 14), Ralstonia pickettii (n = 6), B. multivorans (n = 2), Stenotrophomonas maltophilia (n = 3), and Pseudomonas aeruginosa (n = 11), were collected from environmental, clinical, and reference sources. In addition, 27 clinical isolates putatively identified as Burkholderia spp. were recovered from the sputum of Dutch CF patients. All isolates were used to evaluate the accuracy of two selective growth media, four systems for biochemical identification (API 20NE, Vitek GNI, Vitek NFC, and MicroScan), and three different PCR-based assays. The PCR assays amplify different parts of the ribosomal DNA operon, either alone or in combination with cleavage by various restriction enzymes (PCR-restriction fragment length polymorphism [RFLP] analysis). The best system for the biochemical identification of B. cepacia appeared to be the API 20NE test. None of the biochemical assays successfully grouped the B. gladioli strains. The PCR-RFLP method appeared to be the optimal method for accurate nucleic acid-mediated identification of the different Burkholderia spp. With this method, B. gladioli was also reliably classified in a separate group. For the laboratory diagnosis of B. cepacia, we recommend parallel cultures on blood agar medium and selective agar plates. Further identification of colonies with a Burkholderia phenotype should be performed with the API 20NE test. For final confirmation of species identities, PCR

  8. TLM modeling and system identification of optimized antenna structures

    Directory of Open Access Journals (Sweden)

    N. Fichtner

    2008-05-01

    Full Text Available The transmission line matrix (TLM method in conjunction with the genetic algorithm (GA is presented for the bandwidth optimization of a low profile patch antenna. The optimization routine is supplemented by a system identification (SI procedure. By the SI the model parameters of the structure are estimated which is used for a reduction of the total TLM simulation time. The SI utilizes a new stability criterion of the physical poles for the parameter extraction.

  9. Modeling, estimation and identification methods for static shape determination of flexible structures. [for large space structure design

    Science.gov (United States)

    Rodriguez, G.; Scheid, R. E., Jr.

    1986-01-01

    This paper outlines methods for modeling, identification and estimation for static determination of flexible structures. The shape estimation schemes are based on structural models specified by (possibly interconnected) elliptic partial differential equations. The identification techniques provide approximate knowledge of parameters in elliptic systems. The techniques are based on the method of maximum-likelihood that finds parameter values such that the likelihood functional associated with the system model is maximized. The estimation methods are obtained by means of a function-space approach that seeks to obtain the conditional mean of the state given the data and a white noise characterization of model errors. The solutions are obtained in a batch-processing mode in which all the data is processed simultaneously. After methods for computing the optimal estimates are developed, an analysis of the second-order statistics of the estimates and of the related estimation error is conducted. In addition to outlining the above theoretical results, the paper presents typical flexible structure simulations illustrating performance of the shape determination methods.

  10. A touch probe method of operating an implantable RFID tag for orthopedic implant identification.

    Science.gov (United States)

    Liu, Xiaoyu; Berger, J Lee; Ogirala, Ajay; Mickle, Marlin H

    2013-06-01

    The major problem in operating an implantable radio-frequency identification (RFID) tag embedded on an orthopedic implant is low efficiency because of metallic interference. To improve the efficiency, this paper proposes a method of operating an implantable passive RFID tag using a touch probe at 13.56 MHz. This technology relies on the electric field interaction between two pairs of electrodes, one being a part of the touch probe placed on the surface of tissue and the other being a part of the tag installed under the tissue. Compared with using a conventional RFID antenna such as a loop antenna, this method has a better performance in the near field operation range to reduce interference with the orthopedic implant. Properly matching the touch probe and the tag to the tissue and the implant reduces signal attenuation and increases the overall system efficiency. The experiments have shown that this method has a great performance in the near field transcutaneous operation and can be used for orthopedic implant identification.

  11. Identification system by eye retinal pattern

    International Nuclear Information System (INIS)

    Sunagawa, Takahisa; Shibata, Susumu

    1987-01-01

    Identification system by eye retinal pattern is introduced from the view-point of history of R and D, measurement, apparatus, evaluation tests, safety and application. According to our evaluation tests, enrolling time is approximately less than 1 min, verification time is a few seconds and false accept rate is 0 %. Evaluation tests at Sandia National Laboratories in USA show the comparison data of false accept rates such as 0 % for eye retinal pattern, 10.5 % for finger-print, 5.8 % for signature dynamics and 17.7 % for speaker voice. The identification system by eye retinal pattern has only three applications in Japan, but there has been a number of experience in USA. This fact suggests that the system will become an important means for physical protections not only in nuclear field but also in other industrial fields in Japan. (author)

  12. A fast iterative recursive least squares algorithm for Wiener model identification of highly nonlinear systems.

    Science.gov (United States)

    Kazemi, Mahdi; Arefi, Mohammad Mehdi

    2017-03-01

    In this paper, an online identification algorithm is presented for nonlinear systems in the presence of output colored noise. The proposed method is based on extended recursive least squares (ERLS) algorithm, where the identified system is in polynomial Wiener form. To this end, an unknown intermediate signal is estimated by using an inner iterative algorithm. The iterative recursive algorithm adaptively modifies the vector of parameters of the presented Wiener model when the system parameters vary. In addition, to increase the robustness of the proposed method against variations, a robust RLS algorithm is applied to the model. Simulation results are provided to show the effectiveness of the proposed approach. Results confirm that the proposed method has fast convergence rate with robust characteristics, which increases the efficiency of the proposed model and identification approach. For instance, the FIT criterion will be achieved 92% in CSTR process where about 400 data is used. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Four-year prospective study of STAPH-IDENT system and conventional method for reference identification of Staphylococcus, Stomatococcus, and Micrococcus spp..

    Science.gov (United States)

    Rhoden, D L; Miller, J M

    1995-01-01

    A 4-year prospective study compared the accuracy of the STAPH-IDENT system (bioMérieux Vitek, Inc., Hazelwood, Mo.) with that of the reference procedure of the Centers for Disease Control and Prevention for the identification of Staphylococcus species, Stomatococcus mucilaginosus, and Micrococcus species. The study compared the results from 1,106 cultures (500 eye cultures, 217 strains submitted for reference identification, and 389 known stock strains) representing 21 species of the family Micrococcaceae. The overall agreement of genus and species identifications was 81.1%. The percent agreement for the five most common clinical isolates was as follows: Staphylococcus epidermidis, 97.1% (517 isolates); Staphylococcus hominis, 82.5% (57 isolates); Staphylococcus aureus, 77.2% (162 isolates); Staphylococcus haemolyticus, 75.8% (61 isolates); and Staphylococcus warneri, 64.1% (39 isolates). The lowest percent agreement was with Staphylococcus cohnii (11.1%; (9 isolates). Of the 217 isolates sent to the Centers for Disease Control and Prevention for identification, 60.4% (131) were correctly identified by the STAPH-IDENT system. Of these, S. epidermidis accounted for 23.9%, S. aureus accounted for 15.6%, S. warneri accounted for 6.9%, Staphylococcus lugdunensis accounted for 6.5%, S. haemolyticus accounted for 5.5%, and S. hominis accounted for 4.1%. The STAPH-IDENT system did not perform adequately when dealing with commonly encountered organisms and is unsuitable for identifying uncommon isolates. PMID:7699074

  14. Fuel number identification method and device therefor

    International Nuclear Information System (INIS)

    Doi, Takami; Seno, Makoto; Tanaka, Keiji

    1998-01-01

    The present invention provides a method of and a device for automatically identifying the number on the upper surface of a fuel of a fuel assembly in a PWR type reactor. Namely, the number on the upper surface of the fuel assembly of the PWR is not arranged in a row, but indent letters are dispersed to predetermined positions of the surface to be indented. Accordingly, the identification of letters is difficult. In the present invention, the letters are identified by the following procedures. Procedure (1): the letters are detected while having a corner portion of the upper surface of a fuel assembly where the number is indented as characteristic points. A procedure (2): a letter region is determined to a relative position based on the characteristic points while determining indent letters having the same direction as one group. A procedure (3): a letter identification treatment is applied to the letter images in the above-mentioned letter region to identify them. A neural network is used for the letter identification treatment. (N.H.)

  15. A Development of Common Cause Failure Propagation Paths Identification Method Using Coloured Petri Nets

    International Nuclear Information System (INIS)

    Yim, Ho Bin; Park, Jae Min; Lee, Chang Gyun; Huh, Jae Young; Lee, Gyu Cheon

    2017-01-01

    The concept of Common-Cause Failure (CCF) first appeared in the aerospace industry several decades ago, and nuclear power industry actively adopted the concept to the nuclear power plant (NPP) system analysis after the TMI accident. Since digital Instrumentation and Control (I and C) systems were applied to the NPP design, the CCF issues once again drew attention from the nuclear power industry in 90's. Identification of CCF has not been considered as a challenging issue because of its simplicity. However, as the systems become more complex and interconnected, demands are increasing to analyze CCF in more detail, for example, CCF with multiple initiating events or supporting situation awareness of the operation crew. The newly suggested CCF propagation paths identification method, CCF-SIREn, is expected to resolve path identification issue more practically and efficiently. CCF-SIREn uses general diagrams so that the compatibility and usability can be hugely increased. It also offers up-to-date CCF information with a least analysis effort whenever the ordinary NPP design change processes are made. A back-propagation technique is still under development to find out root-causes from the suspiciously responding signals, alarms and components. The probabilistic approach is also under consideration to prioritize defined CCF.

  16. System risk evolution analysis and risk critical event identification based on event sequence diagram

    International Nuclear Information System (INIS)

    Luo, Pengcheng; Hu, Yang

    2013-01-01

    During system operation, the environmental, operational and usage conditions are time-varying, which causes the fluctuations of the system state variables (SSVs). These fluctuations change the accidents’ probabilities and then result in the system risk evolution (SRE). This inherent relation makes it feasible to realize risk control by monitoring the SSVs in real time, herein, the quantitative analysis of SRE is essential. Besides, some events in the process of SRE are critical to system risk, because they act like the “demarcative points” of safety and accident, and this characteristic makes each of them a key point of risk control. Therefore, analysis of SRE and identification of risk critical events (RCEs) are remarkably meaningful to ensure the system to operate safely. In this context, an event sequence diagram (ESD) based method of SRE analysis and the related Monte Carlo solution are presented; RCE and risk sensitive variable (RSV) are defined, and the corresponding identification methods are also proposed. Finally, the proposed approaches are exemplified with an accident scenario of an aircraft getting into the icing region

  17. Comparison of PCR method with the culture method for identification of gonococci from endocervical swabs

    Directory of Open Access Journals (Sweden)

    Alam A

    2002-01-01

    Full Text Available Gonococcal infection remains still a major cause of morbidity among sexually active individuals. Diagnosis of the infection in a female case is more difficult than that in a male. This was a prospective study among 269 female commercial sex workers (CSWs to screen them for gonococcal infection, comparing the rapid method of identification of gonococci by polymerase chain reaction (PCR with the selective culture method. A total of 92 (34.2% CSWs were identified positive for Neisseria gonorrhoeae by combination of the two methods. The PCR method identified 87 of the specimens to harbour cppB gene of N. gonorrhoeae, whereas culture method identified 83 specimens showing colonies of gonococci. Taking into consideration of the total positive cases (92, the PCR method showed a sensitivity of 94.57%, whereas sensitivity of culture method was 90.22%. The selective culture method appears to be the most applicable in the identification of gonococci from clinical specimens, particularly in the less resourceful countries like Bangladesh.

  18. System identification via sparse multiple kernel-based regularization using sequential convex optimization techniques

    DEFF Research Database (Denmark)

    Chen, Tianshi; Andersen, Martin Skovgaard; Ljung, Lennart

    2014-01-01

    Model estimation and structure detection with short data records are two issues that receive increasing interests in System Identification. In this paper, a multiple kernel-based regularization method is proposed to handle those issues. Multiple kernels are conic combinations of fixed kernels...

  19. CVA identification of nonlinear systems with LPV state-space models of affine dependence

    NARCIS (Netherlands)

    Larimore, W.E.; Cox, P.B.; Toth, R.

    2015-01-01

    This paper discusses an improvement on the extension of linear subspace methods (originally developed in the Linear Time-Invariant (LTI) context) to the identification of Linear Parameter-Varying (LPV) and state-affine nonlinear system models. This includes the fitting of a special polynomial

  20. Methods of Identification and Evaluation of Brownfield Sites

    Directory of Open Access Journals (Sweden)

    Safet Kurtović

    2014-04-01

    Full Text Available The basic objective of this paper was to determine the importance and potential restoration of brownfield sites in terms of economic prosperity of a particular region or country. In addition, in a theoretical sense, this paper presents the methods used in the identification of brownfield sites such as Smart Growth Network model and Thomas GIS model, and methods for evaluation of brownfield sites or the indexing method, cost-benefit and multivariate analysis.

  1. Variation in Microbial Identification System accuracy for yeast identification depending on commercial source of Sabouraud dextrose agar.

    Science.gov (United States)

    Kellogg, J A; Bankert, D A; Chaturvedi, V

    1999-06-01

    The accuracy of the Microbial Identification System (MIS; MIDI, Inc. ) for identification of yeasts to the species level was compared by using 438 isolates grown on prepoured BBL Sabouraud dextrose agar (SDA) and prepoured Remel SDA. Correct identification was observed for 326 (74%) of the yeasts cultured on BBL SDA versus only 214 (49%) of yeasts grown on Remel SDA (P < 0.001). The commercial source of the SDA used in the MIS procedure significantly influences the system's accuracy.

  2. System identification and the modeling of sailing yachts

    Science.gov (United States)

    Legursky, Katrina

    This research represents an exploration of sailing yacht dynamics with full-scale sailing motion data, physics-based models, and system identification techniques. The goal is to provide a method of obtaining and validating suitable physics-based dynamics models for use in control system design on autonomous sailing platforms, which have the capacity to serve as mobile, long range, high endurance autonomous ocean sensing platforms. The primary contributions of this study to the state-of-the-art are the formulation of a five degree-of-freedom (DOF) linear multi-input multi-output (MIMO) state space model of sailing yacht dynamics, the process for identification of this model from full-scale data, a description of the maneuvers performed during on-water tests, and an analysis method to validate estimated models. The techniques and results described herein can be directly applied to and tested on existing autonomous sailing platforms. A full-scale experiment on a 23ft monohull sailing yacht is developed to collect motion data for physics-based model identification. Measurements include 3 axes of accelerations, velocities, angular rates, and attitude angles in addition to apparent wind speed and direction. The sailing yacht herein is treated as a dynamic system with two control inputs, the rudder angle, deltaR, and the mainsail angle, delta B, which are also measured. Over 20 hours of full scale sailing motion data is collected, representing three sail configurations corresponding to a range of wind speeds: the Full Main and Genoa (abbrev. Genoa) for lower wind speeds, the Full Main and Jib (abbrev. Jib) for mid-range wind speeds, and the Reefed Main and Jib (abbrev. Reef) for the highest wind speeds. The data also covers true wind angles from upwind through a beam reach. A physics-based non-linear model to describe sailing yacht motion is outlined, including descriptions of methods to model the aerodynamics and hydrodynamics of a sailing yacht in surge, sway, roll, and

  3. Moving force identification based on modified preconditioned conjugate gradient method

    Science.gov (United States)

    Chen, Zhen; Chan, Tommy H. T.; Nguyen, Andy

    2018-06-01

    This paper develops a modified preconditioned conjugate gradient (M-PCG) method for moving force identification (MFI) by improving the conjugate gradient (CG) and preconditioned conjugate gradient (PCG) methods with a modified Gram-Schmidt algorithm. The method aims to obtain more accurate and more efficient identification results from the responses of bridge deck caused by vehicles passing by, which are known to be sensitive to ill-posed problems that exist in the inverse problem. A simply supported beam model with biaxial time-varying forces is used to generate numerical simulations with various analysis scenarios to assess the effectiveness of the method. Evaluation results show that regularization matrix L and number of iterations j are very important influence factors to identification accuracy and noise immunity of M-PCG. Compared with the conventional counterpart SVD embedded in the time domain method (TDM) and the standard form of CG, the M-PCG with proper regularization matrix has many advantages such as better adaptability and more robust to ill-posed problems. More importantly, it is shown that the average optimal numbers of iterations of M-PCG can be reduced by more than 70% compared with PCG and this apparently makes M-PCG a preferred choice for field MFI applications.

  4. Structural system identification: Structural dynamics model validation

    Energy Technology Data Exchange (ETDEWEB)

    Red-Horse, J.R.

    1997-04-01

    Structural system identification is concerned with the development of systematic procedures and tools for developing predictive analytical models based on a physical structure`s dynamic response characteristics. It is a multidisciplinary process that involves the ability (1) to define high fidelity physics-based analysis models, (2) to acquire accurate test-derived information for physical specimens using diagnostic experiments, (3) to validate the numerical simulation model by reconciling differences that inevitably exist between the analysis model and the experimental data, and (4) to quantify uncertainties in the final system models and subsequent numerical simulations. The goal of this project was to develop structural system identification techniques and software suitable for both research and production applications in code and model validation.

  5. An iterated cubature unscented Kalman filter for large-DoF systems identification with noisy data

    Science.gov (United States)

    Ghorbani, Esmaeil; Cha, Young-Jin

    2018-04-01

    Structural and mechanical system identification under dynamic loading has been an important research topic over the last three or four decades. Many Kalman-filtering-based approaches have been developed for linear and nonlinear systems. For example, to predict nonlinear systems, an unscented Kalman filter was applied. However, from extensive literature reviews, the unscented Kalman filter still showed weak performance on systems with large degrees of freedom. In this research, a modified unscented Kalman filter is proposed by integration of a cubature Kalman filter to improve the system identification performance of systems with large degrees of freedom. The novelty of this work lies on conjugating the unscented transform with the cubature integration concept to find a more accurate output from the transformation of the state vector and its related covariance matrix. To evaluate the proposed method, three different numerical models (i.e., the single degree-of-freedom Bouc-Wen model, the linear 3-degrees-of-freedom system, and the 10-degrees-of-freedom system) are investigated. To evaluate the robustness of the proposed method, high levels of noise in the measured response data are considered. The results show that the proposed method is significantly superior to the traditional UKF for noisy measured data in systems with large degrees of freedom.

  6. A Novel Identification Methodology for the Coordinate Relationship between a 3D Vision System and a Legged Robot

    Directory of Open Access Journals (Sweden)

    Xun Chai

    2015-04-01

    Full Text Available Coordinate identification between vision systems and robots is quite a challenging issue in the field of intelligent robotic applications, involving steps such as perceiving the immediate environment, building the terrain map and planning the locomotion automatically. It is now well established that current identification methods have non-negligible limitations such as a difficult feature matching, the requirement of external tools and the intervention of multiple people. In this paper, we propose a novel methodology to identify the geometric parameters of 3D vision systems mounted on robots without involving other people or additional equipment. In particular, our method focuses on legged robots which have complex body structures and excellent locomotion ability compared to their wheeled/tracked counterparts. The parameters can be identified only by moving robots on a relatively flat ground. Concretely, an estimation approach is provided to calculate the ground plane. In addition, the relationship between the robot and the ground is modeled. The parameters are obtained by formulating the identification problem as an optimization problem. The methodology is integrated on a legged robot called “Octopus”, which can traverse through rough terrains with high stability after obtaining the identification parameters of its mounted vision system using the proposed method. Diverse experiments in different environments demonstrate our novel method is accurate and robust.

  7. Direct bacterial identification in positive blood cultures by use of two commercial matrix-assisted laser desorption ionization-time of flight mass spectrometry systems.

    Science.gov (United States)

    Chen, Jonathan H K; Ho, Pak-Leung; Kwan, Grace S W; She, Kevin K K; Siu, Gilman K H; Cheng, Vincent C C; Yuen, Kwok-Yung; Yam, Wing-Cheong

    2013-06-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for the identification of bacteria and fungi was recently introduced in microbiology laboratories. This technology could greatly improve the clinical management of patients and guidance for chemotherapy. In this study, we used a commercial MALDI Sepsityper extraction method to evaluate the performance of two commercial MALDI-TOF MS systems, the Vitek MS IVD (bioMérieux) and the Microflex LT Biotyper (Bruker Daltonics) for direct bacterial identification in positive blood cultures. In 181 monomicrobial cultures, both systems generated genus to species level identifications for >90% of the specimens (Biotyper, 177/181 [97.8%]; Vitek MS IVD, 167/181 [92.3%]). Overall, the Biotyper system generated significantly more accurate identifications than the Vitek MS IVD system (P = 0.016; 177 versus 167 out of 181 specimens). The Biotyper system identified the minority species among polymicrobial blood cultures. We also compared the performance of an in-house extraction method with that of the Sepsityper on both MALDI-TOF MS systems. The in-house method generated more correct identifications at the genus level than the Sepsityper (96.7% versus 93.5%) on the Biotyper system, whereas the two methods exhibited the same performance level (88.0% versus 88.0%) on the Vitek MS IVD system. Our study confirmed the practical advantages of MALDI-TOF MS, and our in-house extraction method reduced the reagent cost to $1 per specimen, with a shorter turnaround time of 3 h, which is highly cost-effective for a diagnostic microbiology service.

  8. Reliability of System Identification Techniques to Assess Standing Balance in Healthy Elderly.

    Directory of Open Access Journals (Sweden)

    Jantsje H Pasma

    Full Text Available System identification techniques have the potential to assess the contribution of the underlying systems involved in standing balance by applying well-known disturbances. We investigated the reliability of standing balance parameters obtained with multivariate closed loop system identification techniques.In twelve healthy elderly balance tests were performed twice a day during three days. Body sway was measured during two minutes of standing with eyes closed and the Balance test Room (BalRoom was used to apply four disturbances simultaneously: two sensory disturbances, to the proprioceptive and the visual system, and two mechanical disturbances applied at the leg and trunk segment. Using system identification techniques, sensitivity functions of the sensory disturbances and the neuromuscular controller were estimated. Based on the generalizability theory (G theory, systematic errors and sources of variability were assessed using linear mixed models and reliability was assessed by computing indexes of dependability (ID, standard error of measurement (SEM and minimal detectable change (MDC.A systematic error was found between the first and second trial in the sensitivity functions. No systematic error was found in the neuromuscular controller and body sway. The reliability of 15 of 25 parameters and body sway were moderate to excellent when the results of two trials on three days were averaged. To reach an excellent reliability on one day in 7 out of 25 parameters, it was predicted that at least seven trials must be averaged.This study shows that system identification techniques are a promising method to assess the underlying systems involved in standing balance in elderly. However, most of the parameters do not appear to be reliable unless a large number of trials are collected across multiple days. To reach an excellent reliability in one third of the parameters, a training session for participants is needed and at least seven trials of two

  9. Recent developments in learning control and system identification for robots and structures

    Science.gov (United States)

    Phan, M.; Juang, J.-N.; Longman, R. W.

    1990-01-01

    This paper reviews recent results in learning control and learning system identification, with particular emphasis on discrete-time formulation, and their relation to adaptive theory. Related continuous-time results are also discussed. Among the topics presented are proportional, derivative, and integral learning controllers, time-domain formulation of discrete learning algorithms. Newly developed techniques are described including the concept of the repetition domain, and the repetition domain formulation of learning control by linear feedback, model reference learning control, indirect learning control with parameter estimation, as well as related basic concepts, recursive and non-recursive methods for learning identification.

  10. Lessons Learned from Development of De-identification System for Biomedical Research in a Korean Tertiary Hospital.

    Science.gov (United States)

    Shin, Soo-Yong; Lyu, Yongman; Shin, Yongdon; Choi, Hyo Joung; Park, Jihyun; Kim, Woo-Sung; Lee, Jae Ho

    2013-06-01

    The Korean government has enacted two laws, namely, the Personal Information Protection Act and the Bioethics and Safety Act to prevent the unauthorized use of medical information. To protect patients' privacy by complying with governmental regulations and improve the convenience of research, Asan Medical Center has been developing a de-identification system for biomedical research. We reviewed Korean regulations to define the scope of the de-identification methods and well-known previous biomedical research platforms to extract the functionalities of the systems. Based on these review results, we implemented necessary programs based on the Asan Medical Center Information System framework which was built using the Microsoft. NET Framework and C#. The developed de-identification system comprises three main components: a de-identification tool, a search tool, and a chart review tool. The de-identification tool can substitute a randomly assigned research ID for a hospital patient ID, remove the identifiers in the structured format, and mask them in the unstructured format, i.e., texts. This tool achieved 98.14% precision and 97.39% recall for 6,520 clinical notes. The search tool can find the number of patients which satisfies given search criteria. The chart review tool can provide de-identified patient's clinical data for review purposes. We found that a clinical data warehouse was essential for successful implementation of the de-identification system, and this system should be tightly linked to an electronic Institutional Review Board system for easy operation of honest brokers. Additionally, we found that a secure cloud environment could be adopted to protect patients' privacy more thoroughly.

  11. System and Method for RFID-Enabled Information Collection

    Science.gov (United States)

    Fink, Patrick W. (Inventor); Lin, Gregory Y. (Inventor); Kennedy, Timothy F. (Inventor); Ngo, Phong H. (Inventor); Byerly, Diane (Inventor)

    2016-01-01

    Methods, apparatuses and systems for radio frequency identification (RFID)-enabled information collection are disclosed, including an enclosure, a collector coupled to the enclosure, an interrogator, a processor, and one or more RFID field sensors, each having an individual identification, disposed within the enclosure. In operation, the interrogator transmits an incident signal to the collector, causing the collector to generate an electromagnetic field within the enclosure. The electromagnetic field is affected by one or more influences. RFID sensors respond to the electromagnetic field by transmitting reflected signals containing the individual identifications of the responding RFID sensors to the interrogator. The interrogator receives the reflected signals, measures one or more returned signal strength indications ("RSSI") of the reflected signals and sends the RSSI measurements and identification of the responding RFID sensors to the processor to determine one or more facts about the influences. Other embodiments are also described.

  12. Algorithm for personal identification in distance learning system based on registration of keyboard rhythm

    Science.gov (United States)

    Nikitin, P. V.; Savinov, A. N.; Bazhenov, R. I.; Sivandaev, S. V.

    2018-05-01

    The article describes the method of identifying a person in distance learning systems based on a keyboard rhythm. An algorithm for the organization of access control is proposed, which implements authentication, identification and verification of a person using the keyboard rhythm. Authentication methods based on biometric personal parameters, including those based on the keyboard rhythm, due to the inexistence of biometric characteristics without a particular person, are able to provide an advanced accuracy and inability to refuse authorship and convenience for operators of automated systems, in comparison with other methods of conformity checking. Methods of permanent hidden keyboard monitoring allow detecting the substitution of a student and blocking the key system.

  13. Cross-Correlation-Based Structural System Identification Using Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Hyungchul Yoon

    2017-09-01

    Full Text Available Computer vision techniques have been employed to characterize dynamic properties of structures, as well as to capture structural motion for system identification purposes. All of these methods leverage image-processing techniques using a stationary camera. This requirement makes finding an effective location for camera installation difficult, because civil infrastructure (i.e., bridges, buildings, etc. are often difficult to access, being constructed over rivers, roads, or other obstacles. This paper seeks to use video from Unmanned Aerial Vehicles (UAVs to address this problem. As opposed to the traditional way of using stationary cameras, the use of UAVs brings the issue of the camera itself moving; thus, the displacements of the structure obtained by processing UAV video are relative to the UAV camera. Some efforts have been reported to compensate for the camera motion, but they require certain assumptions that may be difficult to satisfy. This paper proposes a new method for structural system identification using the UAV video directly. Several challenges are addressed, including: (1 estimation of an appropriate scale factor; and (2 compensation for the rolling shutter effect. Experimental validation is carried out to validate the proposed approach. The experimental results demonstrate the efficacy and significant potential of the proposed approach.

  14. Biometric identification systems: the science of transaction facilitation

    Science.gov (United States)

    Rogers, Robert R.

    1994-10-01

    The future ofthe "secure transaction" and the success ofall undertakings that depend on absolute certainty that the individuals involved really are who and what they represent themselves to be is dependent upon the successful development of absolutely accurate, low-cost and easy-to-operate Biometric Identification Systems. Whether these transactions are political, military, financial or administrative (e.g. health cards, drivers licenses, welfare entitlement, national identification cards, credit card transactions, etc.), the need for such secure and positive identification has never been greater -and yet we are only at the beginning ofan era in which we will see the emergence and proliferation of Biometric Identification Systems in nearly every field ofhuman endeavor. Proper application ofthese systems will change the way the world operates, and that is precisely the goal ofComparator Systems Corporation. Just as with the photo-copier 40 years ago and the personal computer 20 years ago, the potential applications for positive personal identification are going to make the Biometric Identification System a commonplace component in the standard practice ofbusiness, and in interhuman relationships ofall kinds. The development of new and specific application hardware, as well as the necessary algorithms and related software required for integration into existing operating procedures and newly developed systems alike, has been a more-than-a-decade-long process at Comparator -and we are now on the verge of delivering these systems to the world markets so urgently in need of them. An individual could feel extremely confident and satisfied ifhe could present his credit, debit, or ATM card at any point of sale and, after inserting his card, could simply place his finger on a glass panel and in less than a second be positively accepted as being the person that the card purported him to be; not to mention the security and satisfaction of the vendor involved in knowing that

  15. A portable system for nuclear, chemical agent, and explosives identification

    International Nuclear Information System (INIS)

    Parker, W.E.; Buckley, W.M.; Kreek, S.A.; Mauger, G.J.; Lavietes, A.D.; Dougan, A.D.; Caffrey, A.J.

    2001-01-01

    The FRIS/PINS hybrid integrates the LLNL-developed Field Radionuclide Identification System (FRIS) with the INEEL-developed Portable Isotopic Neutron Spectroscopy (PINS) chemical assay system to yield a combined general radioisotope, special nuclear material, and chemical weapons/explosives detection and identification system. The PINS system uses a neutron source and a high-purity germanium γ-ray detector. The FRIS system uses an electromechanically cooled germanium detector and its own analysis software to detect and identify special nuclear material and other radioisotopes. The FRIS/PINS combined system also uses the electromechanically-cooled germanium detector. There is no other currently available integrated technology that can combine a prompt-gamma neutron-activation analysis capability for CWE with a passive radioisotope measurement and identification capability for special nuclear material

  16. A Portable System for Nuclear, Chemical Agent and Explosives Identification

    International Nuclear Information System (INIS)

    Parker, W.E.; Buckley, W.M.; Kreek, S.A.; Caffrey, A.J.; Mauger, G.J.; Lavietes, A.D.; Dougan, A.D.

    2000-01-01

    The FRIS/PINS hybrid integrates the LLNL-developed Field Radionuclide Identification System (FRIS) with the INEEL-developed Portable Isotopic Neutron Spectroscopy (PINS) chemical assay system to yield a combined general radioisotope, special nuclear material, and chemical weapons/explosives detection and identification system. The PINS system uses a neutron source and a high-purity germanium γ-ray detector. The FRIS system uses an electrochemically cooled germanium detector and its own analysis software to detect and identify special nuclear material and other radioisotopes. The FRIS/PINS combined system also uses the electromechanically-cooled germanium detector. There is no other currently available integrated technology that can combine an active neutron interrogation and analysis capability for CWE with a passive radioisotope measurement and identification capability for special nuclear material

  17. A review of output-only structural mode identification literature employing blind source separation methods

    Science.gov (United States)

    Sadhu, A.; Narasimhan, S.; Antoni, J.

    2017-09-01

    Output-only modal identification has seen significant activity in recent years, especially in large-scale structures where controlled input force generation is often difficult to achieve. This has led to the development of new system identification methods which do not require controlled input. They often work satisfactorily if they satisfy some general assumptions - not overly restrictive - regarding the stochasticity of the input. Hundreds of papers covering a wide range of applications appear every year related to the extraction of modal properties from output measurement data in more than two dozen mechanical, aerospace and civil engineering journals. In little more than a decade, concepts of blind source separation (BSS) from the field of acoustic signal processing have been adopted by several researchers and shown that they can be attractive tools to undertake output-only modal identification. Originally intended to separate distinct audio sources from a mixture of recordings, mathematical equivalence to problems in linear structural dynamics have since been firmly established. This has enabled many of the developments in the field of BSS to be modified and applied to output-only modal identification problems. This paper reviews over hundred articles related to the application of BSS and their variants to output-only modal identification. The main contribution of the paper is to present a literature review of the papers which have appeared on the subject. While a brief treatment of the basic ideas are presented where relevant, a comprehensive and critical explanation of their contents is not attempted. Specific issues related to output-only modal identification and the relative advantages and limitations of BSS methods both from theoretical and application standpoints are discussed. Gap areas requiring additional work are also summarized and the paper concludes with possible future trends in this area.

  18. Limitations of the Current Microbial Identification System for Identification of Clinical Yeast Isolates

    Science.gov (United States)

    Kellogg, James A.; Bankert, David A.; Chaturvedi, Vishnu

    1998-01-01

    The ability of the rapid, computerized Microbial Identification System (MIS; Microbial ID, Inc.) to identify a variety of clinical isolates of yeast species was compared to the abilities of a combination of tests including the Yeast Biochemical Card (bioMerieux Vitek), determination of microscopic morphology on cornmeal agar with Tween 80, and when necessary, conventional biochemical tests and/or the API 20C Aux system (bioMerieux Vitek) to identify the same yeast isolates. The MIS chromatographically analyzes cellular fatty acids and compares the results with the fatty acid profiles in its database. Yeast isolates were subcultured onto Sabouraud dextrose agar and were incubated at 28°C for 24 h. The resulting colonies were saponified, methylated, extracted, and chromatographically analyzed (by version 3.8 of the MIS YSTCLN database) according to the manufacturer’s instructions. Of 477 isolates of 23 species tested, 448 (94%) were given species names by the MIS and 29 (6%) were unidentified (specified as “no match” by the MIS). Of the 448 isolates given names by the MIS, only 335 (75%) of the identifications were correct to the species level. While the MIS correctly identified only 102 (82%) of 124 isolates of Candida glabrata, the predictive value of an MIS identification of unknown isolates as C. glabrata was 100% (102 of 102) because no isolates of other species were misidentified as C. glabrata. In contrast, while the MIS correctly identified 100% (15 of 15) of the isolates of Saccharomyces cerevisiae, the predictive value of an MIS identification of unknown isolates as S. cerevisiae was only 47% (15 of 32), because 17 isolates of C. glabrata were misidentified as S. cerevisiae. The low predictive values for accuracy associated with MIS identifications for most of the remaining yeast species indicate that the procedure and/or database for the system need to be improved. PMID:9574676

  19. Structural system identification based on variational mode decomposition

    Science.gov (United States)

    Bagheri, Abdollah; Ozbulut, Osman E.; Harris, Devin K.

    2018-03-01

    In this paper, a new structural identification method is proposed to identify the modal properties of engineering structures based on dynamic response decomposition using the variational mode decomposition (VMD). The VMD approach is a decomposition algorithm that has been developed as a means to overcome some of the drawbacks and limitations of the empirical mode decomposition method. The VMD-based modal identification algorithm decomposes the acceleration signal into a series of distinct modal responses and their respective center frequencies, such that when combined their cumulative modal responses reproduce the original acceleration response. The decaying amplitude of the extracted modal responses is then used to identify the modal damping ratios using a linear fitting function on modal response data. Finally, after extracting modal responses from available sensors, the mode shape vector for each of the decomposed modes in the system is identified from all obtained modal response data. To demonstrate the efficiency of the algorithm, a series of numerical, laboratory, and field case studies were evaluated. The laboratory case study utilized the vibration response of a three-story shear frame, whereas the field study leveraged the ambient vibration response of a pedestrian bridge to characterize the modal properties of the structure. The modal properties of the shear frame were computed using analytical approach for a comparison with the experimental modal frequencies. Results from these case studies demonstrated that the proposed method is efficient and accurate in identifying modal data of the structures.

  20. Using systems approach to build education process based on technologies of interactive support and students identification

    Directory of Open Access Journals (Sweden)

    Alexey I. Komarov

    2017-12-01

    Full Text Available In the article systems approach to build educational complex with using IT and didactic methods is discussed. Technologies for each level of educational system are determined. Such kind of system supports interactivity and dual-identification (teaching materials – students due to systems approach offered by authors and optimizes reaching of educational goalsIn the article systems approach to build educational complex with using IT and didactic methods is discussed. Technologies for each level of educational system are determined. Such kind of system supports interactivity and dual-identification (teaching materials – students due to systems approach offered by authors and optimizes reaching of educational goals. Different combinations of technologies are possible to use depending on education form, but main idea of systematic data processing remains unchanged. One of the main contentions of this research consists in the possibility to use the learning time as criterion of student preparedness and quality of training material. Time analysis is important part of whole system which is designed to increase the efficiency of the learning process.

  1. Closed and Open Loop Subspace System Identification of the Kalman Filter

    Directory of Open Access Journals (Sweden)

    David Di Ruscio

    2009-04-01

    Full Text Available Some methods for consistent closed loop subspace system identification presented in the literature are analyzed and compared to a recently published subspace algorithm for both open as well as for closed loop data, the DSR_e algorithm. Some new variants of this algorithm are presented and discussed. Simulation experiments are included in order to illustrate if the algorithms are variance efficient or not.

  2. COMPARATIVE ANALYSIS OF METHODS FOR IDENTIFICATION OF NONTUBERCULOUS MYCOBACTERIA ISOLATED FROM CLINICAL MATERIAL

    Directory of Open Access Journals (Sweden)

    A. V. Lyamin

    2017-01-01

    Full Text Available Recently there has been a significant increase in the incidence of mycobacteriosis, which is due to an increase in the proportion of immunosuppressed patients, the presence of these various comorbid conditions, as well as the improvement of diagnostic methods. Selecting the most accurate method of identification is extremely important in determining treatment strategy of patients. The aim of the study was to conduct a comparative analysis of modern methods of identification NTMB isolated from clinical specimens in 2015 in the Samara region. The work was carried out identification of 78 strains of microorganisms. Laboratory diagnosis was carried out using the DNA hybridization method and MALDI-ToF mass spectrometry. When microbial identification using MALDI-ToF mass spectrometry was isolated 16 strains (20.5% M. kansasii; 11 strains (14.1% M. avium and M. fortuitum; 9 strains (11.5% M. gordonae; strain 3 (3.8% M. peregrinum, M. szulgai, M. chimera intracellulare group, strain 2 (2.6% M. abscessus, M. septicum, M. paragordonae, M. senegalence, 1 strain (1.3% M. chelonae, M. frederiksbergense, M. monacense, M. lentiflavum. By using mass spectrometry, it was identified 15 types NTMB compared with 9 types — by DNA hybridization. Full match identification results was observed only in 45 (57.7% strains of divergent strains were found in 16 (20.5%. Most often when using the DNA hybridization method, discrepancy was detected in slow-growing cultures (9 strains with a predominance of microorganisms identified as M. gordonae. Among the representatives of fast-growing NTMB, seven investigations were identified in the identification, more often among representatives of the M. fortuitum and M. peregrinum groups. Particular attention should be paid to the identification of the M. kansasii strain by a molecular genetic method, which mass spectrometry was defined as M. bovis. Both cultures of M. tuberculosis complex, which were identified by MALDI

  3. Utility of 16S rDNA Sequencing for Identification of Rare Pathogenic Bacteria.

    Science.gov (United States)

    Loong, Shih Keng; Khor, Chee Sieng; Jafar, Faizatul Lela; AbuBakar, Sazaly

    2016-11-01

    Phenotypic identification systems are established methods for laboratory identification of bacteria causing human infections. Here, the utility of phenotypic identification systems was compared against 16S rDNA identification method on clinical isolates obtained during a 5-year study period, with special emphasis on isolates that gave unsatisfactory identification. One hundred and eighty-seven clinical bacteria isolates were tested with commercial phenotypic identification systems and 16S rDNA sequencing. Isolate identities determined using phenotypic identification systems and 16S rDNA sequencing were compared for similarity at genus and species level, with 16S rDNA sequencing as the reference method. Phenotypic identification systems identified ~46% (86/187) of the isolates with identity similar to that identified using 16S rDNA sequencing. Approximately 39% (73/187) and ~15% (28/187) of the isolates showed different genus identity and could not be identified using the phenotypic identification systems, respectively. Both methods succeeded in determining the species identities of 55 isolates; however, only ~69% (38/55) of the isolates matched at species level. 16S rDNA sequencing could not determine the species of ~20% (37/187) of the isolates. The 16S rDNA sequencing is a useful method over the phenotypic identification systems for the identification of rare and difficult to identify bacteria species. The 16S rDNA sequencing method, however, does have limitation for species-level identification of some bacteria highlighting the need for better bacterial pathogen identification tools. © 2016 Wiley Periodicals, Inc.

  4. Design and development of a prototype hot spot identification system

    International Nuclear Information System (INIS)

    Jain, Amit; Thakur, Vaishali M.; Anilkumar, Rekha; Sawant, Pravin; Chaudhury, Probal; Pradeepkumar, K.S.

    2015-01-01

    The proper assessment of radiological environments inside nuclear facilities require accurate spatial mapping of the gamma ray field. A prototype Hotspot Identification System has been designed and developed in-house for gamma ray imaging by combining a gamma spectrometer with a pinhole collimator and a digital camera. The system can rapidly determine the location, distribution and intensity of gamma ray sources by carrying a scan of the suspected locations. The measured data was compared with simulated values for NaI(Tl) response, generated using the MCNP 4B Transport code. The data obtained by experimental and theoretical method are in good agreement. (author)

  5. Data based identification and prediction of nonlinear and complex dynamical systems

    Science.gov (United States)

    Wang, Wen-Xu; Lai, Ying-Cheng; Grebogi, Celso

    2016-07-01

    systems theories with tools from statistical physics, optimization, engineering control, applied mathematics, and scientific computing enables the development of a number of paradigms to address the problem of nonlinear and complex systems reconstruction. In this Review, we describe the recent advances in this forefront and rapidly evolving field, with a focus on compressive sensing based methods. In particular, compressive sensing is a paradigm developed in recent years in applied mathematics, electrical engineering, and nonlinear physics to reconstruct sparse signals using only limited data. It has broad applications ranging from image compression/reconstruction to the analysis of large-scale sensor networks, and it has become a powerful technique to obtain high-fidelity signals for applications where sufficient observations are not available. We will describe in detail how compressive sensing can be exploited to address a diverse array of problems in data based reconstruction of nonlinear and complex networked systems. The problems include identification of chaotic systems and prediction of catastrophic bifurcations, forecasting future attractors of time-varying nonlinear systems, reconstruction of complex networks with oscillatory and evolutionary game dynamics, detection of hidden nodes, identification of chaotic elements in neuronal networks, reconstruction of complex geospatial networks and nodal positioning, and reconstruction of complex spreading networks with binary data.. A number of alternative methods, such as those based on system response to external driving, synchronization, and noise-induced dynamical correlation, will also be discussed. Due to the high relevance of network reconstruction to biological sciences, a special section is devoted to a brief survey of the current methods to infer biological networks. Finally, a number of open problems including control and controllability of complex nonlinear dynamical networks are discussed. The methods

  6. Data based identification and prediction of nonlinear and complex dynamical systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wen-Xu [School of Systems Science, Beijing Normal University, Beijing, 100875 (China); Business School, University of Shanghai for Science and Technology, Shanghai 200093 (China); Lai, Ying-Cheng, E-mail: Ying-Cheng.Lai@asu.edu [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287 (United States); Department of Physics, Arizona State University, Tempe, AZ 85287 (United States); Institute for Complex Systems and Mathematical Biology, King’s College, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom); Grebogi, Celso [Institute for Complex Systems and Mathematical Biology, King’s College, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom)

    2016-07-12

    dynamical systems theories with tools from statistical physics, optimization, engineering control, applied mathematics, and scientific computing enables the development of a number of paradigms to address the problem of nonlinear and complex systems reconstruction. In this Review, we describe the recent advances in this forefront and rapidly evolving field, with a focus on compressive sensing based methods. In particular, compressive sensing is a paradigm developed in recent years in applied mathematics, electrical engineering, and nonlinear physics to reconstruct sparse signals using only limited data. It has broad applications ranging from image compression/reconstruction to the analysis of large-scale sensor networks, and it has become a powerful technique to obtain high-fidelity signals for applications where sufficient observations are not available. We will describe in detail how compressive sensing can be exploited to address a diverse array of problems in data based reconstruction of nonlinear and complex networked systems. The problems include identification of chaotic systems and prediction of catastrophic bifurcations, forecasting future attractors of time-varying nonlinear systems, reconstruction of complex networks with oscillatory and evolutionary game dynamics, detection of hidden nodes, identification of chaotic elements in neuronal networks, reconstruction of complex geospatial networks and nodal positioning, and reconstruction of complex spreading networks with binary data.. A number of alternative methods, such as those based on system response to external driving, synchronization, and noise-induced dynamical correlation, will also be discussed. Due to the high relevance of network reconstruction to biological sciences, a special section is devoted to a brief survey of the current methods to infer biological networks. Finally, a number of open problems including control and controllability of complex nonlinear dynamical networks are discussed. The methods

  7. Data based identification and prediction of nonlinear and complex dynamical systems

    International Nuclear Information System (INIS)

    Wang, Wen-Xu; Lai, Ying-Cheng; Grebogi, Celso

    2016-01-01

    dynamical systems theories with tools from statistical physics, optimization, engineering control, applied mathematics, and scientific computing enables the development of a number of paradigms to address the problem of nonlinear and complex systems reconstruction. In this Review, we describe the recent advances in this forefront and rapidly evolving field, with a focus on compressive sensing based methods. In particular, compressive sensing is a paradigm developed in recent years in applied mathematics, electrical engineering, and nonlinear physics to reconstruct sparse signals using only limited data. It has broad applications ranging from image compression/reconstruction to the analysis of large-scale sensor networks, and it has become a powerful technique to obtain high-fidelity signals for applications where sufficient observations are not available. We will describe in detail how compressive sensing can be exploited to address a diverse array of problems in data based reconstruction of nonlinear and complex networked systems. The problems include identification of chaotic systems and prediction of catastrophic bifurcations, forecasting future attractors of time-varying nonlinear systems, reconstruction of complex networks with oscillatory and evolutionary game dynamics, detection of hidden nodes, identification of chaotic elements in neuronal networks, reconstruction of complex geospatial networks and nodal positioning, and reconstruction of complex spreading networks with binary data.. A number of alternative methods, such as those based on system response to external driving, synchronization, and noise-induced dynamical correlation, will also be discussed. Due to the high relevance of network reconstruction to biological sciences, a special section is devoted to a brief survey of the current methods to infer biological networks. Finally, a number of open problems including control and controllability of complex nonlinear dynamical networks are discussed. The methods

  8. [Comparison of methods for the identification of the most common yeasts in the clinical microbiology laboratory].

    Science.gov (United States)

    Guelfand, L; Grisolía, P; Bozzano, C; Kaufman, S

    2003-01-01

    We evaluated different methods for the routine identification of medically important yeasts. A total of 150 clinical isolates: 25 C. albicans, 25 C. tropicalis, 25 C. glabrata, 25 C. parapsilosis, 8 C. guilliermondii, 11 C. krusei and 31 Cryptococcus neoformans were tested by Yeast Biochemical Card bioMerieux Vitek (YBC), CHROMagar Candida (CHR). The addition of yeast morphology in Corn Meal agar-Tween 80 (AM) to YBC and CHR was also evaluated. The reference methods used were: API 20C, germ tube formation, AM, Christensen urea and Birdseed agar. YBC identified 135 yeasts with an overall accuracy of 90%. Sensitivity (S) and specificity (E) were: 92-98% for C. albicans and C. tropicalis; 84-99% for C. papapsilosis; 100-99% for C. glabrata; 91-100% for C. krusei; 63-98% for C. guilliermondii and 90-99% for Cryptococcus neoformans, respectively. CHR identified correctly 100% for C. albicans, 92% for C. tropicalis and 91% for C. krusei. Both methods combined with AM provided 100% S and E. We found that YBC system was appropriate for identification of yeasts isolated from human sources. CHR was effective and easy to use for identification of C. albicans, C. tropicalis and C. krusei. The routine use of AM with both methods is recommended.

  9. Identification of sewage leaks by active remote-sensing methods

    Science.gov (United States)

    Goldshleger, Naftaly; Basson, Uri

    2016-04-01

    The increasing length of sewage pipelines, and concomitant risk of leaks due to urban and industrial growth and development is exposing the surrounding land to contamination risk and environmental harm. It is therefore important to locate such leaks in a timely manner, to minimize the damage. Advances in active remote sensing Ground Penetrating Radar (GPR) and Frequency Domain Electromagnetic (FDEM) technologies was used to identify leaking potentially responsible for pollution and to identify minor spills before they cause widespread damage. This study focused on the development of these electromagnetic methods to replace conventional acoustic methods for the identification of leaks along sewage pipes. Electromagnetic methods provide an additional advantage in that they allow mapping of the fluid-transport system in the subsurface. Leak-detection systems using GPR and FDEM are not limited to large amounts of water, but enable detecting leaks of tens of liters per hour, because they can locate increases in environmental moisture content of only a few percentage along the pipes. The importance and uniqueness of this research lies in the development of practical tools to provide a snapshot and monitoring of the spatial changes in soil moisture content up to depths of about 3-4 m, in open and paved areas, at relatively low cost, in real time or close to real time. Spatial measurements performed using GPR and FDEM systems allow monitoring many tens of thousands of measurement points per hectare, thus providing a picture of the spatial situation along pipelines and the surrounding. The main purpose of this study was to develop a method for detecting sewage leaks using the above-proposed geophysical methods, since their contaminants can severely affect public health. We focused on identifying, locating and characterizing such leaks in sewage pipes in residential and industrial areas.

  10. [Combine fats products: methodic opportunities of it identification].

    Science.gov (United States)

    Viktorova, E V; Kulakova, S N; Mikhaĭlov, N A

    2006-01-01

    At present time very topical problem is falsification of milk fat. The number of methods was considered to detection of milk fat authention and possibilities his difference from combined fat products. The analysis of modern approaches to valuation of milk fat authention has showed that the main method for detection of fat nature is gas chromatography analysis. The computer method of express identification of fat products is proposed for quick getting of information about accessory of examine fat to nature milk or combined fat product.

  11. Identification of lead acid battery parameters using kalman filtering in photovoltaic system

    International Nuclear Information System (INIS)

    Boutte, Aissa

    2006-01-01

    The conventional methods of battery identification parameters consist in estimating the state of charge (SOC), and in establishing a command adapted to charge or to discharge the battery, based on electrical model developed with fixed parameters, These methods are inefficient. The causes of this ineffectiveness are different: In the first place model does not adapt itself with the battery (fixed parameters, lack of modulated parameters, a big non-linearity ...).Secondly, the impossibility for the developed algorithms, to adapt itself with the change of the battery's parameters. New models of identification are used by combining the conventional methods with adaptive and dynamic techniques. They already used in other domains where they have proved a good efficiency and a robustness. Taking into consideration the problems mentioned, and trying to resolve them, we have chosen among the various methods of estimation, Kalman filter (KF) known for its efficiency, in the field of tracking parameters. In this work we try tp represent new ideas, to identify battery parameters using KF method and make an experimental analysis of the performance of this method by using Lead Acid Battery, which is a part of a photovoltaic system (PV).(Author)

  12. Large deviations and queueing networks: Methods for rate function identification

    OpenAIRE

    Atar, Rami; Dupuis, Paul

    1999-01-01

    This paper considers the problem of rate function identification for multidimensional queueing models with feedback. A set of techniques are introduced which allow this identification when the model possesses certain structural properties. The main tools used are representation formulas for exponential integrals, weak convergence methods, and the regularity properties of associated Skorokhod Problems. Two examples are treated as special cases of the general theory: the classical Jackson netwo...

  13. Species identification of clinical isolates of anaerobic bacteria: a comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry systems

    DEFF Research Database (Denmark)

    Justesen, Ulrik Stenz; Holm, Anette; Knudsen, Elisa

    2011-01-01

    We compared two matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) systems (Shimadzu/SARAMIS and Bruker) on a collection of consecutive clinically important anaerobic bacteria (n = 290). The Bruker system had more correct identifications to the species level...... (67.2% versus 49.0%), but also more incorrect identifications (7.9% versus 1.4%). The system databases need to be optimized to increase identification levels. However, MALDI-TOF MS in its present version seems to be a fast and inexpensive method for identification of most clinically important...

  14. The PLR-DTW method for ECG based biometric identification.

    Science.gov (United States)

    Shen, Jun; Bao, Shu-Di; Yang, Li-Cai; Li, Ye

    2011-01-01

    There has been a surge of research on electrocardiogram (ECG) signal based biometric for person identification. Though most of the existing studies claimed that ECG signal is unique to an individual and can be a viable biometric, one of the main difficulties for real-world applications of ECG biometric is the accuracy performance. To address this problem, this study proposes a PLR-DTW method for ECG biometric, where the Piecewise Linear Representation (PLR) is used to keep important information of an ECG signal segment while reduce the data dimension at the same time if necessary, and the Dynamic Time Warping (DTW) is used for similarity measures between two signal segments. The performance evaluation was carried out on three ECG databases, and the existing method using wavelet coefficients, which was proved to have good accuracy performance, was selected for comparison. The analysis results show that the PLR-DTW method achieves an accuracy rate of 100% for identification, while the one using wavelet coefficients achieved only around 93%.

  15. Development of a New Marker System for Identification of Spirodela polyrhiza and Landoltia punctata

    Directory of Open Access Journals (Sweden)

    Bo Feng

    2017-01-01

    Full Text Available Lemnaceae (commonly called duckweed is an aquatic plant ideal for quantitative analysis in plant sciences. Several species of this family represent the smallest and fastest growing flowering plants. Different ecotypes of the same species vary in their biochemical and physiological properties. Thus, selecting of desirable ecotypes of a species is very important. Here, we developed a simple and rapid molecular identification system for Spirodela polyrhiza and Landoltia punctata based on the sequence polymorphism. First, several pairs of primers were designed and three markers were selected as good for identification. After PCR amplification, DNA fragments (the combination of three PCR products in different duckweeds were detected using capillary electrophoresis. The high-resolution capillary electrophoresis displayed high identity to the sequencing results. The combination of the PCR products containing several DNA fragments highly improved the identification frequency. These results indicate that this method is not only good for interspecies identification but also ideal for intraspecies distinguishing. Meanwhile, 11 haplotypes were found in both the S. polyrhiza and L. punctata ecotypes. The results suggest that this marker system is useful for large-scale identification of duckweed and for the screening of desirable ecotypes to improve the diverse usage in duckweed utilization.

  16. Libraries for spectrum identification: Method of normalized coordinates versus linear correlation

    International Nuclear Information System (INIS)

    Ferrero, A.; Lucena, P.; Herrera, R.G.; Dona, A.; Fernandez-Reyes, R.; Laserna, J.J.

    2008-01-01

    In this work it is proposed that an easy solution based directly on linear algebra in order to obtain the relation between a spectrum and a spectrum base. This solution is based on the algebraic determination of an unknown spectrum coordinates with respect to a spectral library base. The identification capacity comparison between this algebraic method and the linear correlation method has been shown using experimental spectra of polymers. Unlike the linear correlation (where the presence of impurities may decrease the discrimination capacity), this method allows to detect quantitatively the existence of a mixture of several substances in a sample and, consequently, to beer in mind impurities for improving the identification

  17. The BESIII muon identification system

    International Nuclear Information System (INIS)

    Zhang Jiawen; Qian Sen; Chen Jin; Du Zhizhen; Han Jifeng; Li Rubo; Liu Jichen; Liang Hao; Mao, Yajun; Ma Liehua; Wang Yifang; Xie Yigang; Xie Yuguang; Zhang Qingmin; Zhao Jianbing; Zhao, T.; Zhou, Yongzhao

    2010-01-01

    The muon identification system of BESIII experiment at the IHEP is described. The muon counter (MUC) is composed of resistive plate chambers (RPCs) working in self-quenching streamer mode with the gas mixture Ar/C 2 F 4 H 2 /C 4 H 10 =50/42/8. The design, the construction, the mass production and the quality control result of the detectors are described in detail. The paper also presents the performance of the bare RPCs and the superlayer modules with cosmic rays. Finally, the subsystems of MUC, including the RPC superlayer modules, the gas systems, the HV and LV system and the readout electronic system, are also presented.

  18. Engineering systems for novel automation methods

    International Nuclear Information System (INIS)

    Fischer, H.D.

    1997-01-01

    Modern automation methods of Optimal Control, or for state reconstruction or parameter identification, require a discrete dynamic path model. This is established among others by time and location discretisation of a system of partial differential equations. The digital wave filter principle is paricularly suitable for this purpose, since the numeric stability of the derived algorithms can be easily guaranteed, and their robustness as to effects of word length limitations can be proven. This principle is also particularly attractive in that it can be excellently integrated into currently existing engineering systems for instrumentation and control. (orig./CB) [de

  19. Performance study of LMS based adaptive algorithms for unknown system identification

    Energy Technology Data Exchange (ETDEWEB)

    Javed, Shazia; Ahmad, Noor Atinah [School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Penang (Malaysia)

    2014-07-10

    Adaptive filtering techniques have gained much popularity in the modeling of unknown system identification problem. These techniques can be classified as either iterative or direct. Iterative techniques include stochastic descent method and its improved versions in affine space. In this paper we present a comparative study of the least mean square (LMS) algorithm and some improved versions of LMS, more precisely the normalized LMS (NLMS), LMS-Newton, transform domain LMS (TDLMS) and affine projection algorithm (APA). The performance evaluation of these algorithms is carried out using adaptive system identification (ASI) model with random input signals, in which the unknown (measured) signal is assumed to be contaminated by output noise. Simulation results are recorded to compare the performance in terms of convergence speed, robustness, misalignment, and their sensitivity to the spectral properties of input signals. Main objective of this comparative study is to observe the effects of fast convergence rate of improved versions of LMS algorithms on their robustness and misalignment.

  20. Performance study of LMS based adaptive algorithms for unknown system identification

    International Nuclear Information System (INIS)

    Javed, Shazia; Ahmad, Noor Atinah

    2014-01-01

    Adaptive filtering techniques have gained much popularity in the modeling of unknown system identification problem. These techniques can be classified as either iterative or direct. Iterative techniques include stochastic descent method and its improved versions in affine space. In this paper we present a comparative study of the least mean square (LMS) algorithm and some improved versions of LMS, more precisely the normalized LMS (NLMS), LMS-Newton, transform domain LMS (TDLMS) and affine projection algorithm (APA). The performance evaluation of these algorithms is carried out using adaptive system identification (ASI) model with random input signals, in which the unknown (measured) signal is assumed to be contaminated by output noise. Simulation results are recorded to compare the performance in terms of convergence speed, robustness, misalignment, and their sensitivity to the spectral properties of input signals. Main objective of this comparative study is to observe the effects of fast convergence rate of improved versions of LMS algorithms on their robustness and misalignment

  1. A Method of Fire Scenarios Identification in a Consolidated Fire Risk Analysis

    International Nuclear Information System (INIS)

    Lim, Ho Gon; Han, Sang Hoon; Yang, Joon Eon

    2010-01-01

    Conventional fire PSA consider only two cases of fire scenarios, that is one for fire without propagation and the other for single propagation to neighboring compartment. Recently, a consolidated fire risk analysis using single fault tree (FT) was developed. However, the fire scenario identification in the new method is similar to conventional fire analysis method. The present study develops a new method of fire scenario identification in a consolidated fire risk analysis method. An equation for fire propagation is developed to identify fire scenario and a mapping method of fire scenarios into internal event risk model is discussed. Finally, an algorithm for automatic program is suggested

  2. [Identification of Dens Draconis and Os Draconis by XRD method].

    Science.gov (United States)

    Chen, Guang-Yun; Wu, Qi-Nan; Shen, Bei; Chen, Rong

    2012-04-01

    To establish an XRD method for evaluating the quality of Os Draconis and Dens Draconis and applying in judgement of the counterfeit. Dens Draconis, Os Draconis and the counterfeit of Os Draconis were analyzed by XRD. Their diffraction patterns were clustered analysis and evaluated their similarity degree. Established the analytical method of Dens Draconis and Os Draconis basing the features fingerprint information of the 10 common peaks by XRD pattern. Obtained the XRD pattern of the counterfeit of Os Draconis. The similarity degree of separate sources of Dens Draconis was high,while the similarity degree of separate sources of Os Draconis was significant different from each other. This method can be used for identification and evaluation of Os Draconis and Dens Draconis. It also can be used for identification the counterfeit of Os Draconis effectively.

  3. Televison assessment and identification system for the plutonium protection system

    International Nuclear Information System (INIS)

    Greenwoll, D.A.

    1979-02-01

    This report covers the selection, description, and use of the components comprising the Television Assessment and Identification System in the Hanford Plutonium Protection System. This work was sponsored by the Department of Energy/Office of Safeguards and Security (DOE/OSS) as part of the overall Sandia Fixed Facility Physical Protection Program

  4. Los Alamos Scientific Laboratory electronic vehicle identification system

    International Nuclear Information System (INIS)

    Landt, J.A.; Bobbett, R.E.; Koelle, A.R.; Salazar, P.H.

    1980-01-01

    A three-digit electronic identification system is described. Digits may be decimal (1000 combinations) or hexidecimal (8192 combinations). Battery-powered transponders are interrogated with a lower-power (1 W) radio signal. Line-of-sight interrogations up to 33 m (100 ft) are possible. Successful interrogations up to 7 m (20 ft) are possible for concealed transponders (that is, in the engine compartment). Vehicles moving at high rates of speed can be interrogated. This system provides data in a computer-compatible RS232 format. The system can be used for other applications with little or no modification. A similar system is in present use for identification and temperature monitoring of livestock. No unforeseen problems exist for expanding the coding scheme to identify larger numbers of objects

  5. Identification and compensation of friction for a novel two-axis differential micro-feed system

    Science.gov (United States)

    Du, Fuxin; Zhang, Mingyang; Wang, Zhaoguo; Yu, Chen; Feng, Xianying; Li, Peigang

    2018-06-01

    Non-linear friction in a conventional drive feed system (CDFS) feeding at low speed is one of the main factors that lead to the complexity of the feed drive. The CDFS will inevitably enter or approach a non-linear creeping work area at extremely low speed. A novel two-axis differential micro-feed system (TDMS) is developed in this paper to overcome the accuracy limitation of CDFS. A dynamic model of TDMS is first established. Then, a novel all-component friction parameter identification method (ACFPIM) using a genetic algorithm (GA) to identify the friction parameters of a TDMS is introduced. The friction parameters of the ball screw and linear motion guides are identified independently using the method, assuring the accurate modelling of friction force at all components. A proportional-derivate feed drive position controller with an observer-based friction compensator is implemented to achieve an accurate trajectory tracking performance. Finally, comparative experiments demonstrate the effectiveness of the TDMS in inhibiting the disadvantageous influence of non-linear friction and the validity of the proposed identification method for TDMS.

  6. a five year review of api20e bacteria identification system's

    African Journals Online (AJOL)

    The API20E system (API; bioMérieux, France) is a plastic strip with microtubes containing dehydrated substrates, originally designed for the identification of Enterobacteriaceae so that identification of fermenters with the system would be straightforward. The API20E system was extended to include non- fermenters by the ...

  7. AUTOMATIC RECOGNITION OF CORONAL TYPE II RADIO BURSTS: THE AUTOMATED RADIO BURST IDENTIFICATION SYSTEM METHOD AND FIRST OBSERVATIONS

    International Nuclear Information System (INIS)

    Lobzin, Vasili V.; Cairns, Iver H.; Robinson, Peter A.; Steward, Graham; Patterson, Garth

    2010-01-01

    Major space weather events such as solar flares and coronal mass ejections are usually accompanied by solar radio bursts, which can potentially be used for real-time space weather forecasts. Type II radio bursts are produced near the local plasma frequency and its harmonic by fast electrons accelerated by a shock wave moving through the corona and solar wind with a typical speed of ∼1000 km s -1 . The coronal bursts have dynamic spectra with frequency gradually falling with time and durations of several minutes. This Letter presents a new method developed to detect type II coronal radio bursts automatically and describes its implementation in an extended Automated Radio Burst Identification System (ARBIS 2). Preliminary tests of the method with spectra obtained in 2002 show that the performance of the current implementation is quite high, ∼80%, while the probability of false positives is reasonably low, with one false positive per 100-200 hr for high solar activity and less than one false event per 10000 hr for low solar activity periods. The first automatically detected coronal type II radio burst is also presented.

  8. MAC, A System for Automatically IPR Identification, Collection and Distribution

    Science.gov (United States)

    Serrão, Carlos

    Controlling Intellectual Property Rights (IPR) in the Digital World is a very hard challenge. The facility to create multiple bit-by-bit identical copies from original IPR works creates the opportunities for digital piracy. One of the most affected industries by this fact is the Music Industry. The Music Industry has supported huge losses during the last few years due to this fact. Moreover, this fact is also affecting the way that music rights collecting and distributing societies are operating to assure a correct music IPR identification, collection and distribution. In this article a system for automating this IPR identification, collection and distribution is presented and described. This system makes usage of advanced automatic audio identification system based on audio fingerprinting technology. This paper will present the details of the system and present a use-case scenario where this system is being used.

  9. System identification and structural health monitoring of bridge structures

    OpenAIRE

    Islami, Kleidi

    2013-01-01

    This research study addresses two issues for the identification of structural characteristics of civil infrastructure systems. The first one is related to the problem of dynamic system identification, by means of experimental and operational modal analysis, applied to a large variety of bridge structures. Based on time and frequency domain techniques and mainly with output-only acceleration, velocity or strain data, modal parameters have been estimated for suspension bridges, masonry arch bri...

  10. A kernel-based approach to MIMO LPV state-space identification and application to a nonlinear process system

    NARCIS (Netherlands)

    Rizvi, S.Z.; Mohammadpour, J.; Toth, R.; Meskin, N.

    2015-01-01

    This paper first describes the development of a nonparametric identification method for linear parameter-varying (LPV) state-space models and then applies it to a nonlinear process system. The proposed method uses kernel-based least-squares support vector machines (LS-SVM). While parametric

  11. Physics-based mathematical models for quantum devices via experimental system identification

    Energy Technology Data Exchange (ETDEWEB)

    Schirmer, S G; Oi, D K L; Devitt, S J [Department of Applied Maths and Theoretical Physics, University of Cambridge, Wilberforce Rd, Cambridge, CB3 0WA (United Kingdom); SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430 (Japan)], E-mail: sgs29@cam.ac.uk

    2008-03-15

    We consider the task of intrinsic control system identification for quantum devices. The problem of experimental determination of subspace confinement is considered, and simple general strategies for full Hamiltonian identification and decoherence characterization of a controlled two-level system are presented.

  12. Time-Efficient Cloning Attacks Identification in Large-Scale RFID Systems

    Directory of Open Access Journals (Sweden)

    Ju-min Zhao

    2017-01-01

    Full Text Available Radio Frequency Identification (RFID is an emerging technology for electronic labeling of objects for the purpose of automatically identifying, categorizing, locating, and tracking the objects. But in their current form RFID systems are susceptible to cloning attacks that seriously threaten RFID applications but are hard to prevent. Existing protocols aimed at detecting whether there are cloning attacks in single-reader RFID systems. In this paper, we investigate the cloning attacks identification in the multireader scenario and first propose a time-efficient protocol, called the time-efficient Cloning Attacks Identification Protocol (CAIP to identify all cloned tags in multireaders RFID systems. We evaluate the performance of CAIP through extensive simulations. The results show that CAIP can identify all the cloned tags in large-scale RFID systems fairly fast with required accuracy.

  13. Comparison of three methods for identification of pathogenic Neisseria species

    Energy Technology Data Exchange (ETDEWEB)

    Appelbaum, P.C.; Lawrence, R.B.

    1979-05-01

    A radiometric procedure was compared with the Minitek and Cystine Trypticase Agar sugar degradation methods for identification of 113 Neisseria species (58 Neisseria meningitidis, 51 Neisseria gonorrhoeae, 2 Neisseria lactamica, 2 Neisseria sicca). Identification of meningococci and gonoccoi was confirmed by agglutination and fluorescent antibody techniques, respectively. The Minitek method identified 97% of meningococci, 92% of gonococci, and 100% of other Neisseria after 4 h of incubation. The radiometric (Bactec) procedure identified 100% of gonococci and 100% of miscellaneous Neisseria after 3 h, but problems were encountered with meningococci: 45% of the later strains yielded index values for fructose between 20 and 28 (recommended negative cut-off point, less than 20), with strongly positive (greater than 100) glucose and maltose and negative o-nitrophenyl-beta-0-galactopyranoside reactions in all 58 strains. The Cystine Trypticase Agar method identified 91% of meningococci, ases.

  14. A Portable, Air-Jet-Actuator-Based Device for System Identification

    Science.gov (United States)

    Staats, Wayne; Belden, Jesse; Mazumdar, Anirban; Hunter, Ian

    2010-11-01

    System identification (ID) of human and robotic limbs could help in diagnosis of ailments and aid in optimization of control parameters and future redesigns. We present a self-contained actuator, which uses the Coanda effect to rapidly switch the direction of a high speed air jet to create a binary stochastic force input to a limb for system ID. The design of the actuator is approached with the goal of creating a portable device, which could deployed on robot or human limbs for in situ identification. The viability of the device is demonstrated by performing stochastic system ID on an underdamped elastic beam system with fixed inertia and stiffness, and variable damping. The non-parametric impulse response yielded from the stochastic system ID is modeled as a second order system, and the resultant parameters are found to be in excellent agreement with those found using more traditional system ID techniques. The current design could be further miniaturized and developed as a portable, wireless, on-site multi-axis system identification system for less intrusive and more widespread use.

  15. 21 CFR 880.6300 - Implantable radiofrequency transponder system for patient identification and health information.

    Science.gov (United States)

    2010-04-01

    ... patient identification and health information. 880.6300 Section 880.6300 Food and Drugs FOOD AND DRUG... radiofrequency transponder system for patient identification and health information. (a) Identification. An implantable radiofrequency transponder system for patient identification and health information is a device...

  16. A method for model identification and parameter estimation

    International Nuclear Information System (INIS)

    Bambach, M; Heinkenschloss, M; Herty, M

    2013-01-01

    We propose and analyze a new method for the identification of a parameter-dependent model that best describes a given system. This problem arises, for example, in the mathematical modeling of material behavior where several competing constitutive equations are available to describe a given material. In this case, the models are differential equations that arise from the different constitutive equations, and the unknown parameters are coefficients in the constitutive equations. One has to determine the best-suited constitutive equations for a given material and application from experiments. We assume that the true model is one of the N possible parameter-dependent models. To identify the correct model and the corresponding parameters, we can perform experiments, where for each experiment we prescribe an input to the system and observe a part of the system state. Our approach consists of two stages. In the first stage, for each pair of models we determine the experiment, i.e. system input and observation, that best differentiates between the two models, and measure the distance between the two models. Then we conduct N(N − 1) or, depending on the approach taken, N(N − 1)/2 experiments and use the result of the experiments as well as the previously computed model distances to determine the true model. We provide sufficient conditions on the model distances and measurement errors which guarantee that our approach identifies the correct model. Given the model, we identify the corresponding model parameters in the second stage. The problem in the second stage is a standard parameter estimation problem and we use a method suitable for the given application. We illustrate our approach on three examples, including one where the models are elliptic partial differential equations with different parameterized right-hand sides and an example where we identify the constitutive equation in a problem from computational viscoplasticity. (paper)

  17. Crystal identification for a dual-layer-offset LYSO based PET system via Lu-176 background radiation and mean shift algorithm

    Science.gov (United States)

    Wei, Qingyang; Ma, Tianyu; Xu, Tianpeng; Zeng, Ming; Gu, Yu; Dai, Tiantian; Liu, Yaqiang

    2018-01-01

    Modern positron emission tomography (PET) detectors are made from pixelated scintillation crystal arrays and readout by Anger logic. The interaction position of the gamma-ray should be assigned to a crystal using a crystal position map or look-up table. Crystal identification is a critical procedure for pixelated PET systems. In this paper, we propose a novel crystal identification method for a dual-layer-offset LYSO based animal PET system via Lu-176 background radiation and mean shift algorithm. Single photon event data of the Lu-176 background radiation are acquired in list-mode for 3 h to generate a single photon flood map (SPFM). Coincidence events are obtained from the same data using time information to generate a coincidence flood map (CFM). The CFM is used to identify the peaks of the inner layer using the mean shift algorithm. The response of the inner layer is deducted from the SPFM by subtracting CFM. Then, the peaks of the outer layer are also identified using the mean shift algorithm. The automatically identified peaks are manually inspected by a graphical user interface program. Finally, a crystal position map is generated using a distance criterion based on these peaks. The proposed method is verified on the animal PET system with 48 detector blocks on a laptop with an Intel i7-5500U processor. The total runtime for whole system peak identification is 67.9 s. Results show that the automatic crystal identification has 99.98% and 99.09% accuracy for the peaks of the inner and outer layers of the whole system respectively. In conclusion, the proposed method is suitable for the dual-layer-offset lutetium based PET system to perform crystal identification instead of external radiation sources.

  18. System identification with information theoretic criteria

    NARCIS (Netherlands)

    A.A. Stoorvogel; J.H. van Schuppen (Jan)

    1995-01-01

    textabstractAttention is focused in this paper on the approximation problem of system identification with information theoretic criteria. For a class of problems it is shown that the criterion of mutual information rate is identical to the criterion of exponential-of-quadratic cost and to

  19. Improved Palmprint Identification System

    Directory of Open Access Journals (Sweden)

    Harshala C. Salave

    2015-03-01

    Full Text Available Abstract Generally private information is provided by using passwords or Personal Identification Numbers which is easy to implement but it is very easily stolen or forgotten or hack. In Biometrics for individuals identification uses human physiological which are constant throughout life like palm face DNA iris etc. or behavioral characteristicswhich is not constant in life like voice signature keystroke etc.. But mostly gain more attention to palmprint identification and is becoming more popular technique using for identification and promising alternatives to the traditional password or PIN based authentication techniques. In this paper propose palmprint identification using veins on the palm and fingers. Here use fusion of techniques such as Discrete Wavelet transformDWT Canny Edge Detector Gaussian Filter Principle Component AnalysisPCA.

  20. Vibration system identification of Paks and Kozloduy reactor buildings on the basis of the blast test results

    International Nuclear Information System (INIS)

    Varpasuo, P.

    1999-01-01

    System identification allows to build mathematical models of a dynamic system based on measured data. System identification is carried out by adjusting parameters within a given model until its output coincides as well as possible with the measured output. The aim of this study is to investigate and model the behavior of complex vibratory systems on the basis of measured excitation and response. The first part of the study describes the theory used in the analysis and the software tools used in the analysis. The second part of the study describes the investigation and modeling of the response of single degree of freedom oscillator excited by sinusoidal and blast excitation. In the third part of the study the system identification of the Kozloduy NPP unit 5 reactor building and Paks NPP unit 1 reactor building is studied and the models are estimated using the method of segmentation of excitation and response. System identification is carried out using MATLAB software by adjusting parameters within a given model until its output coincides as well as possible with the measured output. The types of models used for the were: l) ARX models; 2) ARMAX model; 3) Output-Error (OE) models; 4) Box-Jenkins (BJ) models; 5) State-space models. The model coefficients for different models were calculated using the least-squares and maximum likelihood estimation methods available in MATLAB system identification toolbox. Excitation was in both Paks and Kozloduy case the measured free-field excitation and responses were the vibration responses of the building on the foundation slab level and top of the building. By examining the established models the frequency characteristics of vibration systems were determined with 95 % accuracy and the amplitude response with 80 % accuracy. In case of the steady state response of sinusoidally excited single dof oscillator the modelling gave almost exact results. But in the case of the blast response of the reactor building the obtaining of the

  1. Impulse response identification with deterministic inputs using non-parametric methods

    International Nuclear Information System (INIS)

    Bhargava, U.K.; Kashyap, R.L.; Goodman, D.M.

    1985-01-01

    This paper addresses the problem of impulse response identification using non-parametric methods. Although the techniques developed herein apply to the truncated, untruncated, and the circulant models, we focus on the truncated model which is useful in certain applications. Two methods of impulse response identification will be presented. The first is based on the minimization of the C/sub L/ Statistic, which is an estimate of the mean-square prediction error; the second is a Bayesian approach. For both of these methods, we consider the effects of using both the identity matrix and the Laplacian matrix as weights on the energy in the impulse response. In addition, we present a method for estimating the effective length of the impulse response. Estimating the length is particularly important in the truncated case. Finally, we develop a method for estimating the noise variance at the output. Often, prior information on the noise variance is not available, and a good estimate is crucial to the success of estimating the impulse response with a nonparametric technique

  2. System identification: a frequency domain approach

    National Research Council Canada - National Science Library

    Pintelon, R; Schoukens, J

    2001-01-01

    ... in the Identification Process 17 1.4.1 Collect Information about the System 17 1.4.2 Select a Model Structure to Represent the System 17 1.4.3 Match the Selected Model Structure to the Measurements 19 1.4.4 Validate the Selected Model 19 1.4.5 Conclusion 19 A Statistical Approach to the Estimation Problem 1.5.1 Least Squares Estimation 20 1.5.2 Weighted Least Squar...

  3. Health monitoring system for transmission shafts based on adaptive parameter identification

    Science.gov (United States)

    Souflas, I.; Pezouvanis, A.; Ebrahimi, K. M.

    2018-05-01

    A health monitoring system for a transmission shaft is proposed. The solution is based on the real-time identification of the physical characteristics of the transmission shaft i.e. stiffness and damping coefficients, by using a physical oriented model and linear recursive identification. The efficacy of the suggested condition monitoring system is demonstrated on a prototype transient engine testing facility equipped with a transmission shaft capable of varying its physical properties. Simulation studies reveal that coupling shaft faults can be detected and isolated using the proposed condition monitoring system. Besides, the performance of various recursive identification algorithms is addressed. The results of this work recommend that the health status of engine dynamometer shafts can be monitored using a simple lumped-parameter shaft model and a linear recursive identification algorithm which makes the concept practically viable.

  4. Model Predictive Control Based on System Re-Identification (MPC-SRI) to Control Bio-H2 Production from Biomass

    Science.gov (United States)

    Wahid, A.; Taqwallah, H. M. H.

    2018-03-01

    Compressors and a steam reformer are the important units in biohydrogen from biomass plant. The compressors are useful for achieving high-pressure operating conditions while the steam reformer is the main process to produce H2 gas. To control them, in this research used a model predictive control (MPC) expected to have better controller performance than conventional controllers. Because of the explicit model empowerment in MPC, obtaining a better model is the main objective before employing MPC. The common way to get the empirical model is through the identification system, so that obtained a first-order plus dead-time (FOPDT) model. This study has already improved that way since used the system re-identification (SRI) based on closed loop mode. Based on this method the results of the compressor pressure control and temperature control of steam reformer were that MPC based on system re-identification (MPC-SRI) has better performance than MPC without system re-identification (MPCWSRI) and the proportional-integral (PI) controller, by % improvement of 73% against MPCWSRI and 75% against the PI controller.

  5. Algorithms and tools for system identification using prior knowledge

    International Nuclear Information System (INIS)

    Lindskog, P.

    1994-01-01

    One of the hardest problems in system identification is that of model structure selection. In this thesis two different kinds of a priori process knowledge are used to address this fundamental problem. Concentrating on linear model structures, the first prior advantage of is knowledge about the systems' dominating time constants and resonance frequencies. The idea is to generalize FIR modelling by replacing the usual delay operator with discrete so-called Laguerre or Kautz filters. The generalization is such that stability, the linear regression structure and the approximation ability of the FIR model structure is retained, whereas the prior is used to reduce the number of parameters needed to arrive at a reasonable model. Tailorized and efficient system identification algorithms for these model structures are detailed in this work. The usefulness of the proposed methods is demonstrated through concrete simulation and application studies. The other approach is referred to as semi-physical modelling. The main idea is to use simple physical insight into the application, often in terms of a set of unstructured equations, in order to come up with suitable nonlinear transformation of the raw measurements, so as to allow for a good model structure. Semi-physical modelling is less ''ambitious'' than physical modelling in that no complete physical structure is sought, just combinations of inputs and outputs that can be subjected to more or less standard model structures, such as linear regressions. The suggested modelling procedure shows a first step where symbolic computations are employed to determine a suitable model structure - a set of regressors. We show how constructive methods from commutative and differential algebra can be applied for this. Subsequently, different numerical schemes for finding a subset of ''good'' regressors and for estimating the corresponding linear-in-the-parameters model are discussed. 107 refs, figs, tabs

  6. Probability of identification (POI): a statistical model for the validation of qualitative botanical identification methods

    Science.gov (United States)

    A qualitative botanical identification method (BIM) is an analytical procedure which returns a binary result (1 = Identified, 0 = Not Identified). A BIM may be used by a buyer, manufacturer, or regulator to determine whether a botanical material being tested is the same as the target (desired) mate...

  7. Development of a Data Acquisition System for Unmanned Aerial Vehicle (UAV) System Identification

    Science.gov (United States)

    Lear, Donald Joseph

    Aircraft system identification techniques are developed for fixed wing Unmanned Aerial Vehicles (UAV). The use of a designed flight experiment with measured system inputs/outputs can be used to derive aircraft stability derivatives. This project set out to develop a methodology to support an experiment to model pitch damping in the longitudinal short-period mode of a UAV. A Central Composite Response Surface Design was formed using angle of attack and power levels as factors to test for the pitching moment coefficient response induced by a multistep pitching maneuver. Selecting a high-quality data acquisition platform was critical to the success of the project. This system was designed to support fixed wing research through the addition of a custom air data vane capable of measuring angle of attack and sideslip, as well as an airspeed sensor. A Pixhawk autopilot system serves as the core and modification of the device firmware allowed for the integration of custom sensors and custom RC channels dedicated to performing system identification maneuvers. Tests were performed on all existing Pixhawk sensors to validate stated uncertainty values. The air data system was calibrated in a low speed wind tunnel and dynamic performance was verified. The assembled system was then installed in a commercially available UAV known as an Air Titan FPV in order to test the Pixhawk's automated flight maneuvers and determine the final performance of each sensor. Flight testing showed all the critical sensors produced acceptable data for further research. The Air Titan FPV airframe was found to be very flexible and did not lend itself well to accurate measurement of inertial properties. This realization prohibited the construction of the required math models for longitudinal dynamics. It is recommended that future projects using the developed methods choose an aircraft with a more rigid airframe.

  8. Reduction of low frequency vibration of truck driver and seating system through system parameter identification, sensitivity analysis and active control

    Science.gov (United States)

    Wang, Xu; Bi, Fengrong; Du, Haiping

    2018-05-01

    This paper aims to develop an 5-degree-of-freedom driver and seating system model for optimal vibration control. A new method for identification of the driver seating system parameters from experimental vibration measurement has been developed. The parameter sensitivity analysis has been conducted considering the random excitation frequency and system parameter uncertainty. The most and least sensitive system parameters for the transmissibility ratio have been identified. The optimised PID controllers have been developed to reduce the driver's body vibration.

  9. System Identification and Embedded Controller Design for Pneumatic Actuator with Stiffness Characteristic

    Directory of Open Access Journals (Sweden)

    Khairuddin Osman

    2014-01-01

    Full Text Available This paper presents model and controller design applications to pneumatic actuator embedded system. Two model strategies of position and force are proposed to realize compliance control for stiffness characteristic. Model of the pneumatic actuator system (transfer function is obtained from system identification (SI method. Next, combination of predictive functional control with observer (PFC-O design is selected as a new control strategy for pneumatic system. Performance assessment of the controller is performed in MATLAB and validated through real-time experiments using national instrument (NI devices and programmable system on chip (PSoC microcontroller. Result shows that the new controller is adapted to the system and able to successfully control both simulation and real-time experiments.

  10. A Student Information Management System Based on Fingerprint Identification and Data Security Transmission

    Directory of Open Access Journals (Sweden)

    Pengtao Yang

    2017-01-01

    Full Text Available A new type of student information management system is designed to implement student information identification and management based on fingerprint identification. In order to ensure the security of data transmission, this paper proposes a data encryption method based on an improved AES algorithm. A new S-box is cleverly designed, which can significantly reduce the encryption time by improving ByteSub, ShiftRow, and MixColumn in the round transformation of the traditional AES algorithm with the process of look-up table. Experimental results show that the proposed algorithm can significantly improve the encryption time compared with the traditional AES algorithm.

  11. REVIEW OF METHODS FOR THE SURVEILLANCE AND ACCESS CONTROL USING THE THERMAL IMAGING SYSTEM

    Directory of Open Access Journals (Sweden)

    Mate Krišto

    2016-12-01

    Full Text Available This paper presents methods for human detection for application in the field of national security in the context of state border surveillance. Except in the context of state border security, the presented methods can be applied to monitor other protected object and infrastructure such as ports and airports, power plants, water supply systems, oil pipelines, etc. Presented methods are based on use of thermal imaging systems for the human detection, recognition and identification. In addition to methods for the detection of persons, are presented and methods for face recognition and identification of the person. The use of such systems has special significance in the context of national security in the domain of timely detection of illegal crossing of state border or illegal movement near buildings, which are of special importance for national security such as traffic infrastructure facilities, power plants, military bases, especially in mountain or forests areas. In this context, thermal imaging has significant advantages over the optical camera surveillance systems because thermal imaging is robust to weather conditions and due to such an infrared thermal system can successfully applied in any weather conditions, or the periods of the day. Featured are procedures that has human detection results as well as a brief survey of specific implementation in terms of the use of infrared thermal imagers mounted on autonomous vehicles (AV and unmanned aerial vehicles (UAV. In addition to the above in this paper are described techniques and methods of face detection and human identification based on thermal image (thermogram.

  12. Fundamental limits for privacy-preserving biometric identification systems that support authentication

    NARCIS (Netherlands)

    Ignatenko, T.; Willems, F.M.J.

    2015-01-01

    In this paper we analyze two types of biometric identification systems with protected templates that also support authentication. In the first system two terminals observe biometric enrollment and identification sequences of a number of individuals. It is the goal of these terminals to form a common

  13. 28 CFR 20.36 - Participation in the Interstate Identification Index System.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Participation in the Interstate Identification Index System. 20.36 Section 20.36 Judicial Administration DEPARTMENT OF JUSTICE CRIMINAL JUSTICE... in the Interstate Identification Index System. (a) In order to acquire and retain direct access to...

  14. 2009 United States Automatic Identification System Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2009 United States Automatic Identification System Database contains vessel traffic data for planning purposes within the U.S. coastal waters. The database is...

  15. 2014 United States Automatic Identification System Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2014 United States Automatic Identification System Database contains vessel traffic data for planning purposes within the U.S. coastal waters. The database is...

  16. 2012 United States Automatic Identification System Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2012 United States Automatic Identification System Database contains vessel traffic data for planning purposes within the U.S. coastal waters. The database is...

  17. 2010 United States Automatic Identification System Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2010 United States Automatic Identification System Database contains vessel traffic data for planning purposes within the U.S. coastal waters. The database is...

  18. 2011 United States Automatic Identification System Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2011 United States Automatic Identification System Database contains vessel traffic data for planning purposes within the U.S. coastal waters. The database is...

  19. Analysis of blind identification methods for estimation of kinetic parameters in dynamic medical imaging

    Science.gov (United States)

    Riabkov, Dmitri

    Compartment modeling of dynamic medical image data implies that the concentration of the tracer over time in a particular region of the organ of interest is well-modeled as a convolution of the tissue response with the tracer concentration in the blood stream. The tissue response is different for different tissues while the blood input is assumed to be the same for different tissues. The kinetic parameters characterizing the tissue responses can be estimated by blind identification methods. These algorithms use the simultaneous measurements of concentration in separate regions of the organ; if the regions have different responses, the measurement of the blood input function may not be required. In this work it is shown that the blind identification problem has a unique solution for two-compartment model tissue response. For two-compartment model tissue responses in dynamic cardiac MRI imaging conditions with gadolinium-DTPA contrast agent, three blind identification algorithms are analyzed here to assess their utility: Eigenvector-based Algorithm for Multichannel Blind Deconvolution (EVAM), Cross Relations (CR), and Iterative Quadratic Maximum Likelihood (IQML). Comparisons of accuracy with conventional (not blind) identification techniques where the blood input is known are made as well. The statistical accuracies of estimation for the three methods are evaluated and compared for multiple parameter sets. The results show that the IQML method gives more accurate estimates than the other two blind identification methods. A proof is presented here that three-compartment model blind identification is not unique in the case of only two regions. It is shown that it is likely unique for the case of more than two regions, but this has not been proved analytically. For the three-compartment model the tissue responses in dynamic FDG PET imaging conditions are analyzed with the blind identification algorithms EVAM and Separable variables Least Squares (SLS). A method of

  20. Utilization of IR laser pumped anti-Stokes emission of Er-Yb doped systems for identification of securities

    International Nuclear Information System (INIS)

    Kuzmin, A.N.; Ryabtsev, G.I.; Ketko, G.A.; Gorelenko, A.Yu.; Demidovich, A.A.; Strek, W.; Maruszewicz, K.; Deren, P.

    1996-01-01

    In this paper we present a utilization of anti-Stokes luminescence of Er-Yb systems for identification of securities. A simple method of detection of an up-conversion phenomenon in such system by means of IR laser operating in the region 960-1010 nm is proposed. (author)

  1. General hybrid projective complete dislocated synchronization with non-derivative and derivative coupling based on parameter identification in several chaotic and hyperchaotic systems

    International Nuclear Information System (INIS)

    Sun Jun-Wei; Shen Yi; Zhang Guo-Dong; Wang Yan-Feng; Cui Guang-Zhao

    2013-01-01

    According to the Lyapunov stability theorem, a new general hybrid projective complete dislocated synchronization scheme with non-derivative and derivative coupling based on parameter identification is proposed under the framework of drive-response systems. Every state variable of the response system equals the summation of the hybrid drive systems in the previous hybrid synchronization. However, every state variable of the drive system equals the summation of the hybrid response systems while evolving with time in our method. Complete synchronization, hybrid dislocated synchronization, projective synchronization, non-derivative and derivative coupling, and parameter identification are included as its special item. The Lorenz chaotic system, Rössler chaotic system, memristor chaotic oscillator system, and hyperchaotic Lü system are discussed to show the effectiveness of the proposed methods. (general)

  2. Load power device, system and method of load control and management employing load identification

    Science.gov (United States)

    Yang, Yi; Luebke, Charles John; Schoepf, Thomas J.

    2018-01-09

    A load power device includes a power input, at least one power output for at least one load, a plurality of sensors structured to sense voltage and current at the at least one power output, and a processor. The processor provides: (a) load identification based upon the sensed voltage and current, and (b) load control and management based upon the load identification.

  3. Fault diagnostics of dynamic system operation using a fault tree based method

    International Nuclear Information System (INIS)

    Hurdle, E.E.; Bartlett, L.M.; Andrews, J.D.

    2009-01-01

    For conventional systems, their availability can be considerably improved by reducing the time taken to restore the system to the working state when faults occur. Fault identification can be a significant proportion of the time taken in the repair process. Having diagnosed the problem the restoration of the system back to its fully functioning condition can then take place. This paper expands the capability of previous approaches to fault detection and identification using fault trees for application to dynamically changing systems. The technique has two phases. The first phase is modelling and preparation carried out offline. This gathers information on the effects that sub-system failure will have on the system performance. Causes of the sub-system failures are developed in the form of fault trees. The second phase is application. Sensors are installed on the system to provide information about current system performance from which the potential causes can be deduced. A simple system example is used to demonstrate the features of the method. To illustrate the potential for the method to deal with additional system complexity and redundancy, a section from an aircraft fuel system is used. A discussion of the results is provided.

  4. The impact of parameter identification methods on drug therapy control in an intensive care unit

    NARCIS (Netherlands)

    Hann, C.E.; Chase, J.G.; Ypma, M.F.; Elfring, J.; Nor, N.H.M.; Lawrence, P.; Shaw, G.M.

    2008-01-01

    This paper investigates the impact of fast parameter identification methods, which do not require any forward simulations, on model-based glucose control, using retrospective data in the Christchurch Hospital Intensive Care Unit. The integral-based identification method has been previously

  5. New pattern recognition system in the e-nose for Chinese spirit identification

    International Nuclear Information System (INIS)

    Zeng Hui; Li Qiang; Gu Yu

    2016-01-01

    This paper presents a new pattern recognition system for Chinese spirit identification by using the polymer quartz piezoelectric crystal sensor based e-nose. The sensors are designed based on quartz crystal microbalance (QCM) principle, and they could capture different vibration frequency signal values for Chinese spirit identification. For each sensor in an 8-channel sensor array, seven characteristic values of the original vibration frequency signal values, i.e., average value (A), root-mean-square value (RMS), shape factor value (S f ), crest factor value (C f ), impulse factor value (I f ), clearance factor value (CL f ), kurtosis factor value (K v ) are first extracted. Then the dimension of the characteristic values is reduced by the principle components analysis (PCA) method. Finally the back propagation (BP) neutral network algorithm is used to recognize Chinese spirits. The experimental results show that the recognition rate of six kinds of Chinese spirits is 93.33% and our proposed new pattern recognition system can identify Chinese spirits effectively. (paper)

  6. A new identification method for energetic ion ΔE-E telescopes

    International Nuclear Information System (INIS)

    Martin, Cesar; Bronchalo, Enrique; Medina, Jose

    2007-01-01

    A new ion identification method for ΔE-E telescopes is presented. The method works by counting data points under ΔE(E) curves on ΔE-E diagrams. These curves are obtained by simulating the telescope response to a flux of energetic ions. The method is checked against three published methods applied to several experimental data sets

  7. A new identification method for energetic ion {delta}E-E telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Cesar [Departamento de Fisica, Universidad de Alcala, 28871 Alcala de Henares, Madrid (Spain); Institut fuer Experimentelle und Angewandte Physik, Christian-Albrechts, Universitaet zu Kiel, 24118 Kiel (Germany); Bronchalo, Enrique [Departamento de Fisica, Universidad de Alcala, 28871 Alcala de Henares, Madrid (Spain); Departamento de Fisica y Arquitectura de Computadores, Universidad Miguel Hernandez, Avda. Universidad s/n, 03202 Elche, Alicante (Spain)], E-mail: ebronchalo@umh.es; Medina, Jose [Departamento de Fisica, Universidad de Alcala, 28871 Alcala de Henares, Madrid (Spain)

    2007-11-21

    A new ion identification method for {delta}E-E telescopes is presented. The method works by counting data points under {delta}E(E) curves on {delta}E-E diagrams. These curves are obtained by simulating the telescope response to a flux of energetic ions. The method is checked against three published methods applied to several experimental data sets.

  8. Developing a multimodal biometric authentication system using soft computing methods.

    Science.gov (United States)

    Malcangi, Mario

    2015-01-01

    Robust personal authentication is becoming ever more important in computer-based applications. Among a variety of methods, biometric offers several advantages, mainly in embedded system applications. Hard and soft multi-biometric, combined with hard and soft computing methods, can be applied to improve the personal authentication process and to generalize the applicability. This chapter describes the embedded implementation of a multi-biometric (voiceprint and fingerprint) multimodal identification system based on hard computing methods (DSP) for feature extraction and matching, an artificial neural network (ANN) for soft feature pattern matching, and a fuzzy logic engine (FLE) for data fusion and decision.

  9. LPV Identification of a Heat Distribution System

    DEFF Research Database (Denmark)

    Trangbæk, K; Bendtsen, Jan Dimon

    2010-01-01

    This paper deals with incremental system identification of district heating systems to improve control performance. As long as various parameters, e.g. valve settings, are kept fixed, the dynamics of district heating systems can be approximated well by linear models; however, the dynamics change ....... The approach is tested on a laboratory setup emulating a district heating system, where local controllers regulate pumps connected to a common supply. Experiments show that cross-couplings in the system can indeed be identified in closed-loop operation....

  10. Expert system based radionuclide identification

    International Nuclear Information System (INIS)

    Aarnio, P.A.; Ala-Heikkil, J.J.; Hakulinen, T.T.; Nikkinen, M.T.

    1998-01-01

    An expert system coupled with the gamma spectrum analysis system SAMPO has been developed for automating the qualitative identification of radionuclides as well as for determining the quantitative parameters of the spectrum components. The program is written in C-language and runs in various environments ranging from PCs to UNIX workstations. The expert system utilizes a complete gamma library with over 2600 nuclides and 80,000 lines, and a rule base of about fifty criteria including energies, relative peak intensities, genesis modes, half lives, parent-daughter relationships, etc. The rule base is furthermore extensible by the user. This is not an original contribution but a somewhat updated version of papers and reports previously published elsewhere. (author)

  11. Parameter identification of Rossler's chaotic system by an evolutionary algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Chang, W.-D. [Department of Computer and Communication, Shu-Te University, Kaohsiung 824, Taiwan (China)]. E-mail: wdchang@mail.stu.edu.tw

    2006-09-15

    In this paper, a differential evolution (DE) algorithm is applied to parameter identification of Rossler's chaotic system. The differential evolution has been shown to possess a powerful searching capability for finding the solutions for a given optimization problem, and it allows for parameter solution to appear directly in the form of floating point without further numerical coding or decoding. Three unknown parameters of Rossler's Chaotic system are optimally estimated by using the DE algorithm. Finally, a numerical example is given to verify the effectiveness of the proposed method.

  12. System Identification for Integrated Aircraft Development and Flight Testing (l’Identification des systemes pour le developpement integre des aeronefs et les essais en vol)

    Science.gov (United States)

    1999-03-01

    aerodynamics to affect load motions. The effects include a load trail angle in proportion to the drag specific force, and modification of the load pendulum...equations algorithm for flight data filtering architeture . and data consistency checking; and SCIDNT 8, an output architecture. error identification...accelerations at the seven sensor locations, identified system is proportional to the number When system identification is performed, as of flexible modes

  13. SLD Identification: A Survey of Methods Used by School Psychologists

    Science.gov (United States)

    Watson, Michael D., Jr.; Simon, Joan B.; Nunnley, Lenora

    2016-01-01

    IDEA 2004 opened the door for states, and in some cases districts, to choose among three different methods for identifying children with Specific Learning Disabilities (SLDs). This study provides an in-depth look at SLD identification practices in a state that allows school psychologists to use any of the three methods. Eighty-four school…

  14. A Dissipation Gap Method for full-field measurement-based identification of elasto-plastic material parameters

    KAUST Repository

    Blaysat, Benoît

    2012-05-18

    Using enriched data such as displacement fields obtained from digital image correlation is a pathway to the local identification of material parameters. Up to now, most of the identification techniques for nonlinear models are based on Finite Element Updating Methods. This article explains how an appropriate use of the Dissipation Gap Method can help in this context and be an interesting alternative to these classical techniques. The Dissipation Gap Methods rely on the concept of error in dissipation that has been used mainly for the verification of finite element simulations. We provide here an original application of these founding developments to the identification of material parameters for nonlinear behaviors. The proposed technique and especially the main technical keypoint of building the admissible fields are described in detail. The approach is then illustrated through the identification of heterogeneous isotropic elasto-plastic properties. The basic numerical features highlighted through these simple examples demonstrate this approach to be a promising tool for nonlinear identification. © 2012 John Wiley & Sons, Ltd.

  15. Simulation and Domain Identification of Sea Ice Thermodynamic System

    Directory of Open Access Journals (Sweden)

    Bing Tan

    2012-01-01

    Full Text Available Based on the measured data and characteristics of sea ice temperature distribution in space and time, this study is intended to consider a parabolic partial differential equation of the thermodynamic field of sea ice (coupled by snow, ice, and sea water layers with a time-dependent domain and its parameter identification problem. An optimal model with state constraints is presented with the thicknesses of snow and sea ice as parametric variables and the deviation between the calculated and measured sea ice temperatures as the performance criterion. The unique existence of the weak solution of the thermodynamic system is proved. The properties of the identification problem and the existence of the optimal parameter are discussed, and the one-order necessary condition is derived. Finally, based on the nonoverlapping domain decomposition method and semi-implicit difference scheme, an optimization algorithm is proposed for the numerical simulation. Results show that the simulated temperature of sea ice fit well with the measured data, and the better fit is corresponding to the deeper sea ice.

  16. On the efficiency of high-energy particle identification statistical methods

    International Nuclear Information System (INIS)

    Chilingaryan, A.A.

    1982-01-01

    An attempt is made to analyze the statistical methods of making decisions on the high-energy particle identification. The Bayesian approach is shown to provide the most complete account of the primary discriminative information between the particles of various tupes. It does not impose rigid requirements on the density form of the probability function and ensures the account of the a priori information as compared with the Neyman-Pearson approach, the mimimax technique and the heristic rules of the decision limits construction in the variant region of the specially chosen parameter. The methods based on the concept of the nearest neighbourhood are shown to be the most effective one among the local methods of the probability function density estimation. The probability distances between the training sample classes are suggested to make a decision on selecting the high-energy particle detector optimal parameters. The method proposed and the software constructed are tested on the problem of the cosmic radiation hadron identification by means of transition radiation detectors (the ''PION'' experiment)

  17. Comparison among four proposed direct blood culture microbial identification methods using MALDI-TOF MS.

    Science.gov (United States)

    Bazzi, Ali M; Rabaan, Ali A; El Edaily, Zeyad; John, Susan; Fawarah, Mahmoud M; Al-Tawfiq, Jaffar A

    Matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF) mass spectrometry facilitates rapid and accurate identification of pathogens, which is critical for sepsis patients. In this study, we assessed the accuracy in identification of both Gram-negative and Gram-positive bacteria, except for Streptococcus viridans, using four rapid blood culture methods with Vitek MALDI-TOF-MS. We compared our proposed lysis centrifugation followed by washing and 30% acetic acid treatment method (method 2) with two other lysis centrifugation methods (washing and 30% formic acid treatment (method 1); 100% ethanol treatment (method 3)), and picking colonies from 90 to 180min subculture plates (method 4). Methods 1 and 2 identified all organisms down to species level with 100% accuracy, except for Streptococcus viridans, Streptococcus pyogenes, Enterobacter cloacae and Proteus vulgaris. The latter two were identified to genus level with 100% accuracy. Each method exhibited excellent accuracy and precision in terms of identification to genus level with certain limitations. Copyright © 2016 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  18. Comparison among four proposed direct blood culture microbial identification methods using MALDI-TOF MS

    Directory of Open Access Journals (Sweden)

    Ali M. Bazzi

    2017-05-01

    Full Text Available Summary: Matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF mass spectrometry facilitates rapid and accurate identification of pathogens, which is critical for sepsis patients.In this study, we assessed the accuracy in identification of both Gram-negative and Gram-positive bacteria, except for Streptococcus viridans, using four rapid blood culture methods with Vitek MALDI-TOF-MS. We compared our proposed lysis centrifugation followed by washing and 30% acetic acid treatment method (method 2 with two other lysis centrifugation methods (washing and 30% formic acid treatment (method 1; 100% ethanol treatment (method 3, and picking colonies from 90 to 180 min subculture plates (method 4. Methods 1 and 2 identified all organisms down to species level with 100% accuracy, except for Streptococcus viridans, Streptococcus pyogenes, Enterobacter cloacae and Proteus vulgaris. The latter two were identified to genus level with 100% accuracy. Each method exhibited excellent accuracy and precision in terms of identification to genus level with certain limitations. Keywords: MALDI-TOF, Gram-negative, Gram-positive, Sepsis, Blood culture

  19. Experiment design for identification of structured linear systems

    NARCIS (Netherlands)

    Potters, M.G.

    2016-01-01

    Experiment Design for system identification involves the design of an optimal input signal with the purpose of accurately estimating unknown parameters in a system. Specifically, in the Least-Costly Experiment Design (LCED) framework, the optimal input signal results from an optimisation problem in

  20. The Accuracy of Parameter Estimation in System Identification of Noisy Aircraft Load Measurement. Ph.D. Thesis

    Science.gov (United States)

    Kong, Jeffrey

    1994-01-01

    This thesis focuses on the subject of the accuracy of parameter estimation and system identification techniques. Motivated by a complicated load measurement from NASA Dryden Flight Research Center, advanced system identification techniques are needed. The objective of this problem is to accurately predict the load experienced by the aircraft wing structure during flight determined from a set of calibrated load and gage response relationship. We can then model the problem as a black box input-output system identification from which the system parameter has to be estimated. Traditional LS (Least Square) techniques and the issues of noisy data and model accuracy are addressed. A statistical bound reflecting the change in residual is derived in order to understand the effects of the perturbations on the data. Due to the intrinsic nature of the LS problem, LS solution faces the dilemma of the trade off between model accuracy and noise sensitivity. A method of conflicting performance indices is presented, thus allowing us to improve the noise sensitivity while at the same time configuring the degredation of the model accuracy. SVD techniques for data reduction are studied and the equivalence of the Correspondence Analysis (CA) and Total Least Squares Criteria are proved. We also looked at nonlinear LS problems with NASA F-111 data set as an example. Conventional methods are neither easily applicable nor suitable for the specific load problem since the exact model of the system is unknown. Neural Network (NN) does not require prior information on the model of the system. This robustness motivated us to apply the NN techniques on our load problem. Simulation results for the NN methods used in both the single load and the 'warning signal' problems are both useful and encouraging. The performance of the NN (for single load estimate) is better than the LS approach, whereas no conventional approach was tried for the 'warning signals' problems. The NN design methodology is also

  1. The discrete adjoint method for parameter identification in multibody system dynamics.

    Science.gov (United States)

    Lauß, Thomas; Oberpeilsteiner, Stefan; Steiner, Wolfgang; Nachbagauer, Karin

    2018-01-01

    The adjoint method is an elegant approach for the computation of the gradient of a cost function to identify a set of parameters. An additional set of differential equations has to be solved to compute the adjoint variables, which are further used for the gradient computation. However, the accuracy of the numerical solution of the adjoint differential equation has a great impact on the gradient. Hence, an alternative approach is the discrete adjoint method , where the adjoint differential equations are replaced by algebraic equations. Therefore, a finite difference scheme is constructed for the adjoint system directly from the numerical time integration method. The method provides the exact gradient of the discretized cost function subjected to the discretized equations of motion.

  2. Point source identification in nonlinear advection–diffusion–reaction systems

    International Nuclear Information System (INIS)

    Mamonov, A V; Tsai, Y-H R

    2013-01-01

    We consider a problem of identification of point sources in time-dependent advection–diffusion systems with a nonlinear reaction term. The linear counterpart of the problem in question can be reduced to solving a system of nonlinear algebraic equations via the use of adjoint equations. We extend this approach by constructing an algorithm that solves the problem iteratively to account for the nonlinearity of the reaction term. We study the question of improving the quality of source identification by adding more measurements adaptively using the solution obtained previously with a smaller number of measurements. (paper)

  3. Variation in Microbial Identification System Accuracy for Yeast Identification Depending on Commercial Source of Sabouraud Dextrose Agar

    OpenAIRE

    Kellogg, James A.; Bankert, David A.; Chaturvedi, Vishnu

    1999-01-01

    The accuracy of the Microbial Identification System (MIS; MIDI, Inc.) for identification of yeasts to the species level was compared by using 438 isolates grown on prepoured BBL Sabouraud dextrose agar (SDA) and prepoured Remel SDA. Correct identification was observed for 326 (74%) of the yeasts cultured on BBL SDA versus only 214 (49%) of yeasts grown on Remel SDA (P < 0.001). The commercial source of the SDA used in the MIS procedure significantly influences the system’s accuracy.

  4. A Framework for People Re-Identification in Multi-Camera Surveillance Systems

    Science.gov (United States)

    Ammar, Sirine; Zaghden, Nizar; Neji, Mahmoud

    2017-01-01

    People re-identification has been a very active research topic recently in computer vision. It is an important application in surveillance system with disjoint cameras. This paper is focused on the implementation of a human re-identification system. First the face of detected people is divided into three parts and some soft-biometric traits are…

  5. A biometric identification system based on eigenpalm and eigenfinger features.

    Science.gov (United States)

    Ribaric, Slobodan; Fratric, Ivan

    2005-11-01

    This paper presents a multimodal biometric identification system based on the features of the human hand. We describe a new biometric approach to personal identification using eigenfinger and eigenpalm features, with fusion applied at the matching-score level. The identification process can be divided into the following phases: capturing the image; preprocessing; extracting and normalizing the palm and strip-like finger subimages; extracting the eigenpalm and eigenfinger features based on the K-L transform; matching and fusion; and, finally, a decision based on the (k, l)-NN classifier and thresholding. The system was tested on a database of 237 people (1,820 hand images). The experimental results showed the effectiveness of the system in terms of the recognition rate (100 percent), the equal error rate (EER = 0.58 percent), and the total error rate (TER = 0.72 percent).

  6. Model Updating Nonlinear System Identification Toolbox, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology (ZONA) proposes to develop an enhanced model updating nonlinear system identification (MUNSID) methodology that utilizes flight data with...

  7. Results of a Demonstration Assessment of Passive System Reliability Utilizing the Reliability Method for Passive Systems (RMPS)

    Energy Technology Data Exchange (ETDEWEB)

    Bucknor, Matthew; Grabaskas, David; Brunett, Acacia; Grelle, Austin

    2015-04-26

    Advanced small modular reactor designs include many advantageous design features such as passively driven safety systems that are arguably more reliable and cost effective relative to conventional active systems. Despite their attractiveness, a reliability assessment of passive systems can be difficult using conventional reliability methods due to the nature of passive systems. Simple deviations in boundary conditions can induce functional failures in a passive system, and intermediate or unexpected operating modes can also occur. As part of an ongoing project, Argonne National Laboratory is investigating various methodologies to address passive system reliability. The Reliability Method for Passive Systems (RMPS), a systematic approach for examining reliability, is one technique chosen for this analysis. This methodology is combined with the Risk-Informed Safety Margin Characterization (RISMC) approach to assess the reliability of a passive system and the impact of its associated uncertainties. For this demonstration problem, an integrated plant model of an advanced small modular pool-type sodium fast reactor with a passive reactor cavity cooling system is subjected to a station blackout using RELAP5-3D. This paper discusses important aspects of the reliability assessment, including deployment of the methodology, the uncertainty identification and quantification process, and identification of key risk metrics.

  8. Identification of Dynamic Flow Stress Curves Using the Virtual Fields Methods: Theoretical Feasibility Analysis

    Science.gov (United States)

    Leem, Dohyun; Kim, Jin-Hwan; Barlat, Frédéric; Song, Jung Han; Lee, Myoung-Gyu

    2018-03-01

    An inverse approach based on the virtual fields method (VFM) is presented to identify the material hardening parameters under dynamic deformation. This dynamic-VFM (D-VFM) method does not require load information for the parameter identification. Instead, it utilizes acceleration fields in a specimen's gage region. To investigate the feasibility of the proposed inverse approach for dynamic deformation, the virtual experiments using dynamic finite element simulations were conducted. The simulation could provide all the necessary data for the identification such as displacement, strain, and acceleration fields. The accuracy of the identification results was evaluated by changing several parameters such as specimen geometry, velocity, and traction boundary conditions. The analysis clearly shows that the D-VFM which utilizes acceleration fields can be a good alternative to the conventional identification procedure that uses load information. Also, it was found that proper deformation conditions are required for generating sufficient acceleration fields during dynamic deformation to enhance the identification accuracy with the D-VFM.

  9. The review of identification and assay methods of β-blockers

    Directory of Open Access Journals (Sweden)

    Ольга Олександрівна Віслоус

    2015-10-01

    Full Text Available Every year the number of β-blockers on the pharmaceutical market is increasing, requiring systematization of their standardization methods.Aim of research. The aim of our research is to study literature data about identification and assay methods of β-blockers with different direction of action – selective (praktolol, metoprolol, atenolol, acebutolol, betaxolol, bevantolol, bisoprolol, celiprolol, esmolol, epanolol, esatenolol, nebivolol, Talinolol, non-selective (alprenolol, Oxprenololum, pindolol, propranolol, timolol, sotalol, nadolol, mepindolol, karteol, tertatolol, bopindolol, bupranolol, penbutolol, kloranolol and combined (labetalol, carvedilol.Methods. The analytical review of literature sources about β-blockers analysis by physical, chemical, and physicochemical methods.Results. After literature sources’ analyzing it was found that physical and physicochemical constants are basically used for β-blockers pharmacopoeial analysis; both physicochemical values and chemical reactions are used in forensic analysis, resulting in the article.It was founded that titration methods, mostly acid-base titration method, are used for β-blockers assay in the analysis of substances. For β-blockers detection in biological fluids and dosage forms, active pharmaceutical ingredients and metabolites mixture separation one should prefer physicochemical methods, such as gas chromatography and liquid chromatography, absorption UV-Visible spectroscopy, fluorometry, etc.Conclusion. The results have shown can be used for the further search of the identification and assay optimal methods of β-blockers both pure and mixed with other active substances and excipients

  10. Evolution of the US Coast Guard's oil identification system

    International Nuclear Information System (INIS)

    Hendrick, M.S.; Reilly, T.R.

    1993-01-01

    The U.S. Coast Guard, tasked with the development of open-quotes procedures and techniques to be employed in identifying ... oil and hazardous substances . . . open-quotes by the 1972 Federal Water Pollution Control Act (FWPCA), developed the Oil Identification System (OIS). The OIS was based on four analytical laboratory techniques: infrared (IR) and fluorescence (FL) spectroscopy, gas chromatography (GC), and thin- layer chromatography (TLC). A Central Oil Identification Laboratory (COIL) began operation in 1977, and field laboratories (FOILS) using two of the techniques (FL and TLC) were established in many Marine Safety Offices to screen possible sources. Development of the OIS was documented in two formal reports, in 1974 and 1977. The current implementation of the OIS at COIL is still based on a multimethod approach, but it incorporates today's state-of-the-art technology and responds to the current needs of the Coast Guard. One pervasive force for change has been the affordability of computers. The rapid development of computerized instruments has resulted in improvements in the performance, ruggedness, and prices of analytical laboratory equipment. All the instruments in the authors' laboratory at the present time are interfaced to or have internal computerized data-handling systems. Fourier-transform infrared spectrometers (FTIR) have replaced older mechanically scanning, dispersive IR instruments. High-performance liquid chromatography (HPLC) has replaced TLC completely. A gas chromatography/mass spectrometer (GC/MS), a room-size research tool in 1977, sits on a benchtop in the laboratory today, and a standard method for oil identification is being developed for this technique. Laboratory strategies are now based on finding the most efficient use of resources, as rapid response times are not necessary in all cases. It may also be possible in the near future to resume field testing

  11. A comparative study of non-parametric models for identification of ...

    African Journals Online (AJOL)

    However, the frequency response method using random binary signals was good for unpredicted white noise characteristics and considered the best method for non-parametric system identifica-tion. The autoregressive external input (ARX) model was very useful for system identification, but on applicati-on, few input ...

  12. Biometric identification based on feature fusion with PCA and SVM

    Science.gov (United States)

    Lefkovits, László; Lefkovits, Szidónia; Emerich, Simina

    2018-04-01

    Biometric identification is gaining ground compared to traditional identification methods. Many biometric measurements may be used for secure human identification. The most reliable among them is the iris pattern because of its uniqueness, stability, unforgeability and inalterability over time. The approach presented in this paper is a fusion of different feature descriptor methods such as HOG, LIOP, LBP, used for extracting iris texture information. The classifiers obtained through the SVM and PCA methods demonstrate the effectiveness of our system applied to one and both irises. The performances measured are highly accurate and foreshadow a fusion system with a rate of identification approaching 100% on the UPOL database.

  13. Toxicity identification evaluation methods for identification of toxicants in refinery effluents

    International Nuclear Information System (INIS)

    Barten, K.A.; Mount, D.R.; Hackett, J.R.

    1993-01-01

    During the last five years, the authors have used Toxicity Identification Evaluation (TIE) methods to characterize and identify the source(s) of toxicity in effluents from dozens of municipal and industrial facilities. In most cases, specific chemicals responsible for toxicity have been identified. Although generally successful, the initial experience was that for several refinery effluents, they were able only to qualitatively characterize the presence of organic toxicants; standard toxicant identification procedures were not able to isolate specific organic chemicals. They believe that organic toxicity in these refinery effluents is caused by multiple organic compounds rather than by just a few; evidence for this includes an inability to isolate toxicity in a small number of fractions using liquid chromatography and the presence of very large numbers of compounds in isolated fractions. There is also evidence that the toxicant(s) may be ionic, in that the toxicity of whole effluent and isolated fractions often show increasing toxicity with decreasing pH. Finally, positive-pressure filtration has also reduced toxicity in some samples. In this presentation the authors summarize their experiences with refinery effluents, focusing on typical patterns they have observed and alternative procedures they have used to better understand the nature of these toxicants

  14. EFFICIENCY ANALYSIS OF HASHING METHODS FOR FILE SYSTEMS IN USER MODE

    Directory of Open Access Journals (Sweden)

    E. Y. Ivanov

    2013-05-01

    Full Text Available The article deals with characteristics and performance of interaction protocols between virtual file system and file system, their influence on processing power of microkernel operating systems. User mode implementation of ext2 file system for MINIX 3 OS is used to show that in microkernel operating systems file object identification time might increase up to 26 times in comparison with monolithic systems. Therefore, we present efficiency analysis of various hashing methods for file systems, running in user mode. Studies have shown that using hashing methods recommended in this paper it is possible to achieve competitive performance of the considered component of I/O stacks in microkernel and monolithic operating systems.

  15. Upport vector machines for nonlinear kernel ARMA system identification.

    Science.gov (United States)

    Martínez-Ramón, Manel; Rojo-Alvarez, José Luis; Camps-Valls, Gustavo; Muñioz-Marí, Jordi; Navia-Vázquez, Angel; Soria-Olivas, Emilio; Figueiras-Vidal, Aníbal R

    2006-11-01

    Nonlinear system identification based on support vector machines (SVM) has been usually addressed by means of the standard SVM regression (SVR), which can be seen as an implicit nonlinear autoregressive and moving average (ARMA) model in some reproducing kernel Hilbert space (RKHS). The proposal of this letter is twofold. First, the explicit consideration of an ARMA model in an RKHS (SVM-ARMA2K) is proposed. We show that stating the ARMA equations in an RKHS leads to solving the regularized normal equations in that RKHS, in terms of the autocorrelation and cross correlation of the (nonlinearly) transformed input and output discrete time processes. Second, a general class of SVM-based system identification nonlinear models is presented, based on the use of composite Mercer's kernels. This general class can improve model flexibility by emphasizing the input-output cross information (SVM-ARMA4K), which leads to straightforward and natural combinations of implicit and explicit ARMA models (SVR-ARMA2K and SVR-ARMA4K). Capabilities of these different SVM-based system identification schemes are illustrated with two benchmark problems.

  16. Task Characterisation and Cross-Platform Programming Through System Identification

    Directory of Open Access Journals (Sweden)

    Theocharis Kyriacou

    2005-12-01

    Full Text Available Developing robust and reliable control code for autonomous mobile robots is difficult, because the interaction between a physical robot and the environment is highly complex, it is subject to noise and variation, and therefore partly unpredictable. This means that to date it is not possible to predict robot behaviour, based on theoretical models. Instead, current methods to develop robot control code still require a substantial trial-and-error component to the software design process. Such iterative refinement could be reduced, we argue, if a more profound theoretical understanding of robot-environment interaction existed. In this paper, we therefore present a modelling method that generates a faithful model of a robot's interaction with its environment, based on data logged while observing a physical robot's behaviour. Because this modelling method — nonlinear modelling using polynomials — is commonly used in the engineering discipline of system identification, we refer to it here as “robot identification”. We show in this paper that using robot identification to obtain a computer model of robot-environment interaction offers several distinct advantages: Very compact representations (one-line programs of the robot control program are generated The model can be analysed, for example through sensitivity analysis, leading to a better understanding of the essential parameters underlying the robot's behaviour, and The generated, compact robot code can be used for cross-platform robot programming, allowing fast transfer of robot code from one type of robot to another. We demonstrate these points through experiments with a Magellan Pro and a Nomad 200 mobile robot.

  17. Process identification of the SCR system of coal-fired power plant for de-NOx based on historical operation data.

    Science.gov (United States)

    Li, Jian; Shi, Raoqiao; Xu, Chuanlong; Wang, Shimin

    2018-05-08

    The selective catalytic reduction (SCR) system, as one principal flue gas treatment method employed for the NO x emission control of the coal-fired power plant, is nonlinear and time-varying with great inertia and large time delay. It is difficult for the present SCR control system to achieve satisfactory performance with the traditional feedback and feedforward control strategies. Although some improved control strategies, such as the Smith predictor control and the model predictive control, have been proposed for this issue, a well-matched identification model is essentially required to realize a superior control of the SCR system. Industrial field experiment is an alternative way to identify the SCR system model in the coal-fired power plant. But it undesirably disturbs the operation system and is costly in time and manpower. In this paper, a process identification model of the SCR system is proposed and developed by applying the asymptotic method to the sufficiently excited data, selected from the original historical operation database of a 350 MW coal-fired power plant according to the condition number of the Fisher information matrix. Numerical simulations are carried out based on the practical historical operation data to evaluate the performance of the proposed model. Results show that the proposed model can efficiently achieve the process identification of the SCR system.

  18. Bacterial rapid identification with matrix assisted laser desorption/ionization time-of-flight mass spectrometry: development of an 'in-house method' and comparison with Bruker Sepsityper(®) kit.

    Science.gov (United States)

    Frédéric Ric, S; Antoine, M; Bodson, A; Lissoir, B

    2015-10-01

    The objective of this study was to compare an in-house matrix-assisted laser desorption ionization with time of flight (MALDI-TOF) method and a commercial MALDI-TOF kit (Sepsityper(®) kit) for direct bacterial identification in positive blood cultures. We also evaluated the time saved and the cost associated with the rapid identification techniques. We used the BACTEC(®) automated system for detecting positive blood cultures. Direct identification using Sepsityper kit and the in-house method were compared with conventional identification by MALDI-TOF using pure bacterial culture on the solid phase. We also evaluated different cut-off scores for rapid bacterial identification. In total, 127 positive blood vials were selected. The rate of rapid identification with the MALDI Sepsityper kit was 25.2% with the standard cut-off and 33.9% with the enlarged cut-off, while the results for the in-house method were 44.1 and 61.4%, respectively. Error rates with the enlarged cut-off were 6.98 (n = 3) and 2.56% (n = 2) for Sepsityper and the in-house method, respectively. Identification rates were higher for gram-negative bacteria. Direct bacterial identification succeeded in supplying rapid identification of the causative organism in cases of sepsis. The time taken to obtain a result was nearly 24  hours shorter for the direct bacterial identification methods than for conventional MALDI-TOF on solid phase culture. Compared with the Sepsityper kit, the in-house method offered better results and fewer errors, was more cost-effective and easier to use.

  19. Identification of complex systems by artificial neural networks. Applications to mechanical frictions

    International Nuclear Information System (INIS)

    Dominguez, Manuel

    1998-01-01

    In the frame of complex systems modelization, we describe in this report the contribution of neural networks to mechanical friction modelization. This thesis is divided in three parts, each one corresponding to every stage of the realized work. The first part takes stock of the properties of neural networks by replacing them in the statistic frame of learning theory (particularly: non-linear and non-parametric regression models) and by showing the existing links with other more 'classic' techniques from automatics. We show then how identification models can be integrated in the neural networks description as a larger nonlinear model class. A methodology of neural networks use have been developed. We focused on validation techniques using correlation functions for non-linear systems, and on the use of regularization methods. The second part deals with the problematic of friction in mechanical systems. Particularly, we present the main current identified physical phenomena, which are integrated in advanced friction modelization. Characterization of these phenomena allows us to state a priori knowledge to be used in the identification stage. We expose some of the most well-known friction models: Dahl's model, Reset Integrator and Canuda's dynamical model, which are then used in simulation studies. The last part links the former one by illustrating a real-world application: an electric jack from SFIM-Industries, used in the Very Large Telescope (VLT) control scheme. This part begins with physical system presentation. The results are compared with more 'classic' methods. We finish using neural networks compensation scheme in closed-loop control. (author) [fr

  20. A Rapid Identification Method for Calamine Using Near-Infrared Spectroscopy Based on Multi-Reference Correlation Coefficient Method and Back Propagation Artificial Neural Network.

    Science.gov (United States)

    Sun, Yangbo; Chen, Long; Huang, Bisheng; Chen, Keli

    2017-07-01

    As a mineral, the traditional Chinese medicine calamine has a similar shape to many other minerals. Investigations of commercially available calamine samples have shown that there are many fake and inferior calamine goods sold on the market. The conventional identification method for calamine is complicated, therefore as a result of the large scale of calamine samples, a rapid identification method is needed. To establish a qualitative model using near-infrared (NIR) spectroscopy for rapid identification of various calamine samples, large quantities of calamine samples including crude products, counterfeits and processed products were collected and correctly identified using the physicochemical and powder X-ray diffraction method. The NIR spectroscopy method was used to analyze these samples by combining the multi-reference correlation coefficient (MRCC) method and the error back propagation artificial neural network algorithm (BP-ANN), so as to realize the qualitative identification of calamine samples. The accuracy rate of the model based on NIR and MRCC methods was 85%; in addition, the model, which took comprehensive multiple factors into consideration, can be used to identify crude calamine products, its counterfeits and processed products. Furthermore, by in-putting the correlation coefficients of multiple references as the spectral feature data of samples into BP-ANN, a BP-ANN model of qualitative identification was established, of which the accuracy rate was increased to 95%. The MRCC method can be used as a NIR-based method in the process of BP-ANN modeling.

  1. Study of Biometric Identification Method Based on Naked Footprint

    Directory of Open Access Journals (Sweden)

    Raji Rafiu King

    2013-10-01

    Full Text Available The scale of deployment of biometric identity-verification systems has recently seen an enormous increase owing to the need for more secure and reliable way of identifying people. Footprint identification which can be defined as the measurement of footprint features for recognizing the identity of a user has surfaced recently. This study is based on a biometric personal identification method using static footprint features viz. friction ridge / texture and foot shape / silhouette. To begin with, naked footprints of users are captured; images then undergo pre processing followed by the extraction of two features; shape using Gradient Vector Flow (GVF) snake model and minutiae extraction respectively. Matching is then effected based on these two features followed by a fusion of these two results for either a reject or accept decision. Our shape matching feature is based on cosine similarity while the texture one is based on miniature score matching. The results from our research establish that the naked footprint is a credible biometric feature as two barefoot impressions of an individual match perfectly while that of two different persons shows a great deal of dissimilarity. Normal 0 false false false IN X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Doi: 10.12777/ijse.5.2.29-35 How to cite this article: King

  2. Same day identification and full panel antimicrobial susceptibility testing of bacteria from positive blood culture bottles made possible by a combined lysis-filtration method with MALDI-TOF VITEK mass spectrometry and the VITEK2 system.

    Directory of Open Access Journals (Sweden)

    Alexandra Machen

    Full Text Available Rapid identification and antimicrobial susceptibility testing of microorganisms causing bloodstream infections or sepsis have the potential to improve patient care. This proof-of-principle study evaluates the Lysis-Filtration Method for identification as well as antimicrobial susceptibility testing of bacteria directly from positive blood culture bottles in a clinical setting. A total of 100 non-duplicated positive blood cultures were tested and 1012 microorganism-antimicrobial combinations were assessed. An aliquot of non-charcoal blood culture broth was incubated with lysis buffer briefly before being filtered and washed. Microorganisms recovered from the filter membrane were first identified by using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight VITEK® Mass Spectrometry (VITEK MS. After quick identification from VITEK MS, filtered microorganisms were inoculated to VITEK®2 system for full panel antimicrobial susceptibility testing analysis. Of 100 bottles tested, the VITEK MS resulted in 94.0% correct organism identification to the species level. Compared to the conventional antimicrobial susceptibility testing methods, direct antimicrobial susceptibility testing from VITEK®2 resulted in 93.5% (946/1012 category agreement of antimicrobials tested, with 3.6% (36/1012 minor error, 1.7% (7/1012 major error, and 1.3% (13/1012 very major error of antimicrobials. The average time to identification and antimicrobial susceptibility testing was 11.4 hours by using the Lysis-Filtration method for both VITEK MS and VITEK®2 compared to 56.3 hours by using conventional methods (p<0.00001. Thus, the same-day results of microorganism identification and antimicrobial susceptibility testing directly from positive blood culture can be achieved and can be used for appropriate antibiotic therapy and antibiotic stewardship.

  3. Same Day Identification and Full Panel Antimicrobial Susceptibility Testing of Bacteria from Positive Blood Culture Bottles Made Possible by a Combined Lysis-Filtration Method with MALDI-TOF VITEK Mass Spectrometry and the VITEK2 System

    Science.gov (United States)

    Machen, Alexandra; Drake, Tim; Wang, Yun F. (Wayne)

    2014-01-01

    Rapid identification and antimicrobial susceptibility testing of microorganisms causing bloodstream infections or sepsis have the potential to improve patient care. This proof-of-principle study evaluates the Lysis-Filtration Method for identification as well as antimicrobial susceptibility testing of bacteria directly from positive blood culture bottles in a clinical setting. A total of 100 non-duplicated positive blood cultures were tested and 1012 microorganism-antimicrobial combinations were assessed. An aliquot of non-charcoal blood culture broth was incubated with lysis buffer briefly before being filtered and washed. Microorganisms recovered from the filter membrane were first identified by using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight VITEK® Mass Spectrometry (VITEK MS). After quick identification from VITEK MS, filtered microorganisms were inoculated to VITEK®2 system for full panel antimicrobial susceptibility testing analysis. Of 100 bottles tested, the VITEK MS resulted in 94.0% correct organism identification to the species level. Compared to the conventional antimicrobial susceptibility testing methods, direct antimicrobial susceptibility testing from VITEK®2 resulted in 93.5% (946/1012) category agreement of antimicrobials tested, with 3.6% (36/1012) minor error, 1.7% (7/1012) major error, and 1.3% (13/1012) very major error of antimicrobials. The average time to identification and antimicrobial susceptibility testing was 11.4 hours by using the Lysis-Filtration method for both VITEK MS and VITEK®2 compared to 56.3 hours by using conventional methods (p<0.00001). Thus, the same-day results of microorganism identification and antimicrobial susceptibility testing directly from positive blood culture can be achieved and can be used for appropriate antibiotic therapy and antibiotic stewardship. PMID:24551067

  4. Identification of Staphylococcus species and subspecies with the MicroScan Pos ID and Rapid Pos ID panel systems.

    Science.gov (United States)

    Kloos, W E; George, C G

    1991-01-01

    The accuracies of the MicroScan Pos ID and Rapid Pos ID panel systems (Baxter Diagnostic Inc., MicroScan Division, West Sacramento, Calif.) were compared with each other and with the accuracies of conventional methods for the identification of 25 Staphylococcus species and 4 subspecies. Conventional methods included those used in the original descriptions of species and subspecies and DNA-DNA hybridization. The Pos ID panel uses a battery of 18 tests, and the Rapid Pos ID panel uses a battery of 42 tests for the identification of Staphylococcus species. The Pos ID panel has modified conventional and chromogenic tests that can be read after 15 to 48 h of incubation; the Rapid Pos ID panel has tests that use fluorogenic substrates or fluorometric indicators, and test results can be read after 2 h of incubation in the autoSCAN-W/A. Results indicated that both MicroScan systems had a high degree of congruence (greater than or equal to 90%) with conventional methods for the species S. capitis, S. aureus, S. auricularis, S. saprophyticus, S. cohnii, S. arlettae, S. carnosus, S. lentus, and S. sciuri and, in particular, the subspecies S. capitis subsp. capitis and S. cohnii subsp. cohnii. The Rapid Pos ID panel system also had greater than or equal to 90% congruence with conventional methods for S. epidermidis, S. caprae, S. warneri subsp. 2, S. xylosus, S. kloosii, and S. caseolyticus. For both MicroScan systems, congruence with conventional methods was 80 to 90% for S. haemolyticus subsp. 1, S. equorum, S. intermedius, and S. hyicus; and in addition, with the Rapid Pos ID panel system congruence was 80 to 89% for S. capitis subsp. ureolyticus, S. warneri subsp. 1, S. hominis, S. cohnii subsp. urealyticum, and S. simulans. The MicroScan systems identified a lower percentage (50 to 75%) of strains of S. lugdunensis, S. gallinarum, S. schleiferi, and S. chromogenes, although the addition of specific tests to the systems might increase the accuracy of identification

  5. Identification of the unstable human postural control system

    Directory of Open Access Journals (Sweden)

    Sungjae eHwang

    2016-03-01

    Full Text Available Maintaining upright bipedal posture requires a control system that continually adapts to changing environmental conditions, such as different support surfaces. Behavioral changes associated with different support surfaces, such as the predominance of an ankle or hip strategy, is considered to reflect a change in the control strategy. However, tracing such behavioral changes to a specific component in a closed loop control system is challenging. Here we used the joint input-output (JIO method of closed-loop system identification to identify the musculoskeletal and neural feedback components of the human postural control loop. The goal was to establish changes in the control loop corresponding to behavioral changes observed on different support surfaces. Subjects were simultaneously perturbed by two independent mechanical and two independent sensory perturbations while standing on a normal or short support surface. The results show a dramatic phase reversal between visual input and body kinematics due to the change in surface condition from trunk leads legs to legs lead trunk with increasing frequency of the visual perturbation. Through decomposition of the control loop, we found that behavioral change is not necessarily due to a change in control strategy, but in the case of different support surfaces, is linked to changes in properties of the plant. The JIO method is an important tool to identify the contribution of specific components within a closed loop control system to overall postural behavior and may be useful to devise better treatment of balance disorders.

  6. A fuzzy logic-based damage identification method for simply-supported bridge using modal shape ratios

    Directory of Open Access Journals (Sweden)

    Hanbing Liu

    2012-08-01

    Full Text Available A fuzzy logic system (FLS is established for damage identification of simply supported bridge. A novel damage indicator is developed based on ratios of mode shape components between before and after damage. Numerical simulation of a simply-supported bridge is presented to demonstrate the memory, inference and anti-noise ability of the proposed method. The bridge is divided into eight elements and nine nodes, the damage indicator vector at characteristic nodes is used as the input measurement of FLS. Results reveal that FLS can detect damage of training patterns with an accuracy of 100%. Aiming at other test patterns, the FLS also possesses favorable inference ability, the identification accuracy for single damage location is up to 93.75%. Tests with noise simulated data show that the FLS possesses favorable anti-noise ability.

  7. Modelling of Biometric Identification System with Given Parameters Using Colored Petri Nets

    Science.gov (United States)

    Petrosyan, G.; Ter-Vardanyan, L.; Gaboutchian, A.

    2017-05-01

    Biometric identification systems use given parameters and function on the basis of Colored Petri Nets as a modelling language developed for systems in which communication, synchronization and distributed resources play an important role. Colored Petri Nets combine the strengths of Classical Petri Nets with the power of a high-level programming language. Coloured Petri Nets have both, formal intuitive and graphical presentations. Graphical CPN model consists of a set of interacting modules which include a network of places, transitions and arcs. Mathematical representation has a well-defined syntax and semantics, as well as defines system behavioural properties. One of the best known features used in biometric is the human finger print pattern. During the last decade other human features have become of interest, such as iris-based or face recognition. The objective of this paper is to introduce the fundamental concepts of Petri Nets in relation to tooth shape analysis. Biometric identification systems functioning has two phases: data enrollment phase and identification phase. During the data enrollment phase images of teeth are added to database. This record contains enrollment data as a noisy version of the biometrical data corresponding to the individual. During the identification phase an unknown individual is observed again and is compared to the enrollment data in the database and then system estimates the individual. The purpose of modeling biometric identification system by means of Petri Nets is to reveal the following aspects of the functioning model: the efficiency of the model, behavior of the model, mistakes and accidents in the model, feasibility of the model simplification or substitution of its separate components for more effective components without interfering system functioning. The results of biometric identification system modeling and evaluating are presented and discussed.

  8. White blood cells identification system based on convolutional deep neural learning networks.

    Science.gov (United States)

    Shahin, A I; Guo, Yanhui; Amin, K M; Sharawi, Amr A

    2017-11-16

    White blood cells (WBCs) differential counting yields valued information about human health and disease. The current developed automated cell morphology equipments perform differential count which is based on blood smear image analysis. Previous identification systems for WBCs consist of successive dependent stages; pre-processing, segmentation, feature extraction, feature selection, and classification. There is a real need to employ deep learning methodologies so that the performance of previous WBCs identification systems can be increased. Classifying small limited datasets through deep learning systems is a major challenge and should be investigated. In this paper, we propose a novel identification system for WBCs based on deep convolutional neural networks. Two methodologies based on transfer learning are followed: transfer learning based on deep activation features and fine-tuning of existed deep networks. Deep acrivation featues are extracted from several pre-trained networks and employed in a traditional identification system. Moreover, a novel end-to-end convolutional deep architecture called "WBCsNet" is proposed and built from scratch. Finally, a limited balanced WBCs dataset classification is performed through the WBCsNet as a pre-trained network. During our experiments, three different public WBCs datasets (2551 images) have been used which contain 5 healthy WBCs types. The overall system accuracy achieved by the proposed WBCsNet is (96.1%) which is more than different transfer learning approaches or even the previous traditional identification system. We also present features visualization for the WBCsNet activation which reflects higher response than the pre-trained activated one. a novel WBCs identification system based on deep learning theory is proposed and a high performance WBCsNet can be employed as a pre-trained network. Copyright © 2017. Published by Elsevier B.V.

  9. Rapid method for identification of transgenic fish zygosity

    Directory of Open Access Journals (Sweden)

    . Alimuddin

    2007-07-01

    Full Text Available Identification of zygosity in transgenik fish is normally achieved by PCR analysis with genomic DNA template extracted from the tissue of progenies which are derived by mating the transgenic fish and wild-type counterpart.  This method needs relatively large amounts of fish material and is time- and labor-intensive. New approaches addressing this problem could be of great help for fish biotechnologists.  In this experiment, we applied a quantitative real-time PCR (qr-PCR method to analyze zygosity in a stable line of transgenic zebrafish (Danio rerio carrying masu salmon, Oncorhynchus masou D6-desaturase-like gene. The qr-PCR was performed using iQ SYBR Green Supermix in the iCycler iQ Real-time PCR Detection System (Bio-Rad Laboratories, USA.  Data were analyzed using the comparative cycle threshold method.  The results demonstrated a clear-cut identification of all transgenic fish (n=20 classified as a homozygous or heterozygous.  Mating of those fish with wild-type had revealed transgene transmission to the offspring following expected Mendelian laws. Thus, we found that the qTR-PCR to be effective for a rapid and precise determination of zygosity in transgenic fish. This technique could be useful in the establishment of breeding programs for mass transgenic fish production and in experiments in which zygosity effect could have a functional impact. Keywords: quantitative real-time PCR; zygosity; transgenic fish; mass production   ABSTRAK Identifikasi sigositas ikan transgenik biasanya dilakukan menggunakan analisa PCR dengan cetakan DNA genomik yang diekstraksi dari jaringan ikan hasil persilangan antara ikan transgenik dan ikan normal.   Metode ini memerlukan ikan dalam jumlah yang banyak, dan juga waktu serta tenaga.  Pendekatan baru untuk mengatasi masalah tersebut akan memberikan manfaat besar kepada peneliti bioteknologi perikanan.  Pada penelitian ini, kami menggunakan metode PCR real-time kuantitatif (krt-PCR untuk

  10. A feature point identification method for positron emission particle tracking with multiple tracers

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, Cody, E-mail: cwiggin2@vols.utk.edu [University of Tennessee-Knoxville, Department of Physics and Astronomy, 1408 Circle Drive, Knoxville, TN 37996 (United States); Santos, Roque [University of Tennessee-Knoxville, Department of Nuclear Engineering (United States); Escuela Politécnica Nacional, Departamento de Ciencias Nucleares (Ecuador); Ruggles, Arthur [University of Tennessee-Knoxville, Department of Nuclear Engineering (United States)

    2017-01-21

    A novel detection algorithm for Positron Emission Particle Tracking (PEPT) with multiple tracers based on optical feature point identification (FPI) methods is presented. This new method, the FPI method, is compared to a previous multiple PEPT method via analyses of experimental and simulated data. The FPI method outperforms the older method in cases of large particle numbers and fine time resolution. Simulated data show the FPI method to be capable of identifying 100 particles at 0.5 mm average spatial error. Detection error is seen to vary with the inverse square root of the number of lines of response (LORs) used for detection and increases as particle separation decreases. - Highlights: • A new approach to positron emission particle tracking is presented. • Using optical feature point identification analogs, multiple particle tracking is achieved. • Method is compared to previous multiple particle method. • Accuracy and applicability of method is explored.

  11. 33 CFR 164.43 - Automatic Identification System Shipborne Equipment-Prince William Sound.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Automatic Identification System Shipborne Equipment-Prince William Sound. 164.43 Section 164.43 Navigation and Navigable Waters COAST GUARD... Automatic Identification System Shipborne Equipment—Prince William Sound. (a) Until December 31, 2004, each...

  12. Model Updating Nonlinear System Identification Toolbox, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology proposes to develop an enhanced model updating nonlinear system identification (MUNSID) methodology by adopting the flight data with state-of-the-art...

  13. [Measures to prevent patient identification errors in blood collection/physiological function testing utilizing a laboratory information system].

    Science.gov (United States)

    Shimazu, Chisato; Hoshino, Satoshi; Furukawa, Taiji

    2013-08-01

    We constructed an integrated personal identification workflow chart using both bar code reading and an all in-one laboratory information system. The information system not only handles test data but also the information needed for patient guidance in the laboratory department. The reception terminals at the entrance, displays for patient guidance and patient identification tools at blood-sampling booths are all controlled by the information system. The number of patient identification errors was greatly reduced by the system. However, identification errors have not been abolished in the ultrasound department. After re-evaluation of the patient identification process in this department, we recognized that the major reason for the errors came from excessive identification workflow. Ordinarily, an ultrasound test requires patient identification 3 times, because 3 different systems are required during the entire test process, i.e. ultrasound modality system, laboratory information system and a system for producing reports. We are trying to connect the 3 different systems to develop a one-time identification workflow, but it is not a simple task and has not been completed yet. Utilization of the laboratory information system is effective, but is not yet perfect for patient identification. The most fundamental procedure for patient identification is to ask a person's name even today. Everyday checks in the ordinary workflow and everyone's participation in safety-management activity are important for the prevention of patient identification errors.

  14. Robust stator resistance identification of an IM drive using model reference adaptive system

    International Nuclear Information System (INIS)

    Madadi Kojabadi, Hossein; Abarzadeh, Mostafa; Aghaei Farouji, Said

    2013-01-01

    Highlights: ► We estimate the stator resistance and rotor speed of the IM. ► We proposed a new quantity to estimate the speed and stator resistance of IM. ► The proposed algorithm is robust to rotor resistance variations. ► We estimate the IM speed and stator resistance simultaneously to avoid speed error. - Abstract: Model reference adaptive system (MRAS) based robust stator resistance estimator for sensorless induction motor (IM) drive is proposed. The MRAS is formed with a semi-active power quantity. The proposed identification method can be achieved with on-line tuning of the stator resistance with robustness against rotor resistance variations. Stable and efficient estimation of IM speed at low region will be guaranteed by simultaneous identification of IM speed and stator resistance. The stability of proposed stator resistance estimator is checked through Popov’s hyperstability theorem. Simulation and experimental results are given to highlight the feasibility, the simplicity, and the robustness of the proposed method.

  15. General methods for modified projective synchronization of hyperchaotic systems with known or unknown parameters

    Science.gov (United States)

    Tang, Yang; Fang, Jian-an

    2008-03-01

    This work is concerned with the general methods for modified projective synchronization of hyperchaotic systems. A systematic method of active control is developed to synchronize two hyperchaotic systems with known parameters. Moreover, by combining the adaptive control and linear feedback methods, general sufficient conditions for the modified projective synchronization of identical or different chaotic systems with fully unknown or partially unknown parameters are presented. Meanwhile, the speed of parameters identification can be regulated by adjusting adaptive gain matrix. Numerical simulations verify the effectiveness of the proposed methods.

  16. Identification of Enterobacteriaceae by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using the VITEK MS system.

    Science.gov (United States)

    Richter, S S; Sercia, L; Branda, J A; Burnham, C-A D; Bythrow, M; Ferraro, M J; Garner, O B; Ginocchio, C C; Jennemann, R; Lewinski, M A; Manji, R; Mochon, A B; Rychert, J A; Westblade, L F; Procop, G W

    2013-12-01

    This multicenter study evaluated the accuracy of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry identifications from the VITEK MS system (bioMérieux, Marcy l'Etoile, France) for Enterobacteriaceae typically encountered in the clinical laboratory. Enterobacteriaceae isolates (n = 965) representing 17 genera and 40 species were analyzed on the VITEK MS system (database v2.0), in accordance with the manufacturer's instructions. Colony growth (≤72 h) was applied directly to the target slide. Matrix solution (α-cyano-4-hydroxycinnamic acid) was added and allowed to dry before mass spectrometry analysis. On the basis of the confidence level, the VITEK MS system provided a species, genus only, or no identification for each isolate. The accuracy of the mass spectrometric identification was compared to 16S rRNA gene sequencing performed at MIDI Labs (Newark, DE). Supplemental phenotypic testing was performed at bioMérieux when necessary. The VITEK MS result agreed with the reference method identification for 96.7% of the 965 isolates tested, with 83.8% correct to the species level and 12.8% limited to a genus-level identification. There was no identification for 1.7% of the isolates. The VITEK MS system misidentified 7 isolates (0.7 %) as different genera. Three Pantoea agglomerans isolates were misidentified as Enterobacter spp. and single isolates of Enterobacter cancerogenus, Escherichia hermannii, Hafnia alvei, and Raoultella ornithinolytica were misidentified as Klebsiella oxytoca, Citrobacter koseri, Obesumbacterium proteus, and Enterobacter aerogenes, respectively. Eight isolates (0.8 %) were misidentified as a different species in the correct genus. The VITEK MS system provides reliable mass spectrometric identifications for Enterobacteriaceae.

  17. Evaluation of the RapID-ANA system for identification of anaerobic bacteria of veterinary origin.

    Science.gov (United States)

    Adney, W S; Jones, R L

    1985-12-01

    This study evaluated the ability of the RapID-ANA system (Innovative Diagnostic Systems, Inc., Atlanta, Ga.) to accurately identify a spectrum of freshly isolated veterinary anaerobes. A total of 183 isolates were tested and included 7 Actinomyces spp., 53 Bacteroides spp., 32 Clostridium spp., 2 Eubacterium spp., 65 Fusobacterium spp., 1 Peptococcus spp., 22 Peptostreptococcus spp., and 1 Propionibacterium spp. All isolates were initially identified by conventional biochemical testing and gas-liquid chromatography of short-chain fatty acid metabolites. Additional tests were performed as required by the RapID-ANA system. Of these isolates, 81.4% were correctly identified to the genus level, including 59.6% to the species level, 14.2% were incorrectly identified at the genus level, and 4.4% were not identified. Initially, 20.2% of the strains were not identified because the microcodes were not in the code book. The majority of the incorrect identifications were caused by the misidentification of Fusobacterium spp. as Bacteroides spp. Errors also occurred when veterinary anaerobes not included in the data base were assigned an identification from the existing data base. The RapID-ANA system appears to be a promising new method for rapid identification of veterinary anaerobes; however, further evaluation with an extended data base is needed before the system can accurately identify all clinically significant anaerobes.

  18. General Anisotropy Identification of Paperboard with Virtual Fields Method

    Science.gov (United States)

    J.M. Considine; F. Pierron; K.T. Turner; D.W. Vahey

    2014-01-01

    This work extends previous efforts in plate bending of Virtual Fields Method (VFM) parameter identification to include a general 2-D anisotropicmaterial. Such an extension was needed for instances in which material principal directions are unknown or when specimen orientation is not aligned with material principal directions. A new fixture with a multiaxial force...

  19. High Resolution Ultrasonic Method for 3D Fingerprint Recognizable Characteristics in Biometrics Identification

    Science.gov (United States)

    Maev, R. Gr.; Bakulin, E. Yu.; Maeva, A.; Severin, F.

    Biometrics is a rapidly evolving scientific and applied discipline that studies possible ways of personal identification by means of unique biological characteristics. Such identification is important in various situations requiring restricted access to certain areas, information and personal data and for cases of medical emergencies. A number of automated biometric techniques have been developed, including fingerprint, hand shape, eye and facial recognition, thermographic imaging, etc. All these techniques differ in the recognizable parameters, usability, accuracy and cost. Among these, fingerprint recognition stands alone since a very large database of fingerprints has already been acquired. Also, fingerprints are key evidence left at a crime scene and can be used to indentify suspects. Therefore, of all automated biometric techniques, especially in the field of law enforcement, fingerprint identification seems to be the most promising. We introduce a newer development of the ultrasonic fingerprint imaging. The proposed method obtains a scan only once and then varies the C-scan gate position and width to visualize acoustic reflections from any appropriate depth inside the skin. Also, B-scans and A-scans can be recreated from any position using such data array, which gives the control over the visualization options. By setting the C-scan gate deeper inside the skin, distribution of the sweat pores (which are located along the ridges) can be easily visualized. This distribution should be unique for each individual so this provides a means of personal identification, which is not affected by any changes (accidental or intentional) of the fingers' surface conditions. This paper discusses different setups, acoustic parameters of the system, signal and image processing options and possible ways of 3-dimentional visualization that could be used as a recognizable characteristic in biometric identification.

  20. Comparison of two inductive learning methods: A case study in failed fuel identification

    Energy Technology Data Exchange (ETDEWEB)

    Reifman, J. [Argonne National Lab., IL (United States); Lee, J.C. [Michigan Univ., Ann Arbor, MI (United States). Dept. of Nuclear Engineering

    1992-05-01

    Two inductive learning methods, the ID3 and Rg algorithms, are studied as a means for systematically and automatically constructing the knowledge base of expert systems. Both inductive learning methods are general-purpose and use information entropy as a discriminatory measure in order to group objects of a common class. ID3 constructs a knowledge base by building decision trees that discriminate objects of a data set as a function of their class. Rg constructs a knowledge base by grouping objects of the same class into patterns or clusters. The two inductive methods are applied to the construction of a knowledge base for failed fuel identification in the Experimental Breeder Reactor II. Through analysis of the knowledge bases generated, the ID3 and Rg algorithms are compared for their knowledge representation, data overfitting, feature space partition, feature selection, and search procedure.

  1. Comparison of two inductive learning methods: A case study in failed fuel identification

    Energy Technology Data Exchange (ETDEWEB)

    Reifman, J. (Argonne National Lab., IL (United States)); Lee, J.C. (Michigan Univ., Ann Arbor, MI (United States). Dept. of Nuclear Engineering)

    1992-01-01

    Two inductive learning methods, the ID3 and Rg algorithms, are studied as a means for systematically and automatically constructing the knowledge base of expert systems. Both inductive learning methods are general-purpose and use information entropy as a discriminatory measure in order to group objects of a common class. ID3 constructs a knowledge base by building decision trees that discriminate objects of a data set as a function of their class. Rg constructs a knowledge base by grouping objects of the same class into patterns or clusters. The two inductive methods are applied to the construction of a knowledge base for failed fuel identification in the Experimental Breeder Reactor II. Through analysis of the knowledge bases generated, the ID3 and Rg algorithms are compared for their knowledge representation, data overfitting, feature space partition, feature selection, and search procedure.

  2. Comparison of two inductive learning methods: A case study in failed fuel identification

    International Nuclear Information System (INIS)

    Reifman, J.; Lee, J.C.

    1992-01-01

    Two inductive learning methods, the ID3 and Rg algorithms, are studied as a means for systematically and automatically constructing the knowledge base of expert systems. Both inductive learning methods are general-purpose and use information entropy as a discriminatory measure in order to group objects of a common class. ID3 constructs a knowledge base by building decision trees that discriminate objects of a data set as a function of their class. Rg constructs a knowledge base by grouping objects of the same class into patterns or clusters. The two inductive methods are applied to the construction of a knowledge base for failed fuel identification in the Experimental Breeder Reactor II. Through analysis of the knowledge bases generated, the ID3 and Rg algorithms are compared for their knowledge representation, data overfitting, feature space partition, feature selection, and search procedure

  3. IDENTIFICATION ASPECT OF METHODOLOGY DESIGN OF CONTROL SYSTEM TIME-VARIANT PROCESS

    Directory of Open Access Journals (Sweden)

    M. M. Blagoveshchenskaia

    2014-01-01

    Full Text Available Summary. Specificity of a food manufacture demands perfection of automatic control systems of processes in devices, units and installations. Creation of an adaptive control system by technological process of a food on the basis of model of control object it is necessary to carry out the additional analysis for choice algorithm of identification on real enough to representative sample of input data and output signal/data. In article on the basis of simulation it is analyzed over 53 algorithms of recurrent identification plus the basic modifications of these algorithms by 47 criteria for time-varying multivariable linear dynamic objects. On the basis of this analysis for engineering practice for a considered class of objects some algorithms are recommended. Possibilities of the software suite having for today the fullest set of parametrical identification algorithms are discussed. For given specific conditions of comparison in the package identification algorithms for identification of stationary coefficients in the equation object of the most effective were: Yzerman-1, Kaczmarz, Nagumo-Noda, Rastrigin, Kalman filter, the forgetting factor, Zipkin. When pointwise object - Kaczmarz, Nagumo-Noda, Kalman filter; showed the best result identification algorithm-Nagumo Noda.

  4. Early Prevention Method for Power Systems Instability

    DEFF Research Database (Denmark)

    Dmitrova, Evgenia

    containing no voltage sources). The main functionality of the early prevention method is to deliver control solution allowing escape from instability on the basis of data obtained by PMU measurements. The developed algorithm performs identification of the optimal node for countermeasure application...... instability was created. Utilizing synthetic PMU data, the early prevention method proposed a location and an amount of the countermeasure which will prevent instability; the prediction of the resulting stability margins corresponding to application of the suggested countermeasure was carried out....... The predicted effect of the suggested countermeasure application is in a good agreement with the results obtained by RMS dynamic simulation. Developed method enables adaptive preventive control for near real-time stability maintenance. The achieved results are opening promising perspective for power system...

  5. Single camera photogrammetry system for EEG electrode identification and localization.

    Science.gov (United States)

    Baysal, Uğur; Sengül, Gökhan

    2010-04-01

    In this study, photogrammetric coordinate measurement and color-based identification of EEG electrode positions on the human head are simultaneously implemented. A rotating, 2MP digital camera about 20 cm above the subject's head is used and the images are acquired at predefined stop points separated azimuthally at equal angular displacements. In order to realize full automation, the electrodes have been labeled by colored circular markers and an electrode recognition algorithm has been developed. The proposed method has been tested by using a plastic head phantom carrying 25 electrode markers. Electrode locations have been determined while incorporating three different methods: (i) the proposed photogrammetric method, (ii) conventional 3D radiofrequency (RF) digitizer, and (iii) coordinate measurement machine having about 6.5 mum accuracy. It is found that the proposed system automatically identifies electrodes and localizes them with a maximum error of 0.77 mm. It is suggested that this method may be used in EEG source localization applications in the human brain.

  6. Advanced 3D Object Identification System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Optra will build an Advanced 3D Object Identification System utilizing three or more high resolution imagers spaced around a launch platform. Data from each imager...

  7. A comparison of Heuristic method and Llewellyn’s rules for identification of redundant constraints

    Science.gov (United States)

    Estiningsih, Y.; Farikhin; Tjahjana, R. H.

    2018-03-01

    Important techniques in linear programming is modelling and solving practical optimization. Redundant constraints are consider for their effects on general linear programming problems. Identification and reduce redundant constraints are for avoidance of all the calculations associated when solving an associated linear programming problems. Many researchers have been proposed for identification redundant constraints. This paper a compararison of Heuristic method and Llewellyn’s rules for identification of redundant constraints.

  8. [Comparison of Phoenix™ Yeast ID Panel and API® ID 32C commercial systems for the identification of Candida species isolated from clinical samples].

    Science.gov (United States)

    Gayibova, Ülkü; Dalyan Cılo, Burcu; Ağca, Harun; Ener, Beyza

    2014-07-01

    .kefyr), however it was 38.7% for the rarely isolated ones (C.krusei, C.lusitaniae, C.inconspicua/C.norvagensis, C.catenulata), representing statistical significance (p= 0.034; x2 test). Although not significant (p= 0.31; x2 test), the rate of concordance was increased (88.1%), when adding the morphological findings to the identification process. Of 211 isolates 37 (17.5%), 50 (23.7%) and 124 (58.8%) were identified according to their growth characteristics on chromogenic agar, blood agar and SDA, respectively, indicating no statistically significant difference between the media (p> 0.05). Although genotypic identification is essential, phenotypic methods are more commonly used in routine laboratories for the identification of yeast species. However, since genotypic identification could not be performed in this study, none of the systems were accepted as the standard method and therefore the sensitivity and specificity of the systems were not calculated. On the other hand, our data indicated that the two identification systems were comparable and careful observation of yeast morphology could add confidence to the identification. In conclusion, since the Phoenix™ Yeast ID system was found more practical with easier interpretation, and the results were obtained earlier than those of the API® ID 32C system (16 hours versus 48 hours), it was thought that Phoenix™ Yeast ID system may be used reliably in the routine laboratories. However, as none of the methods evaluated was completely reliable as a stand-alone, careful evaluation is necessary for species identification.

  9. Same day identification and full panel antimicrobial susceptibility testing of bacteria from positive blood culture bottles made possible by a combined lysis-filtration method with MALDI-TOF VITEK mass spectrometry and the VITEK2 system.

    Science.gov (United States)

    Machen, Alexandra; Drake, Tim; Wang, Yun F Wayne

    2014-01-01

    Rapid identification and antimicrobial susceptibility testing of microorganisms causing bloodstream infections or sepsis have the potential to improve patient care. This proof-of-principle study evaluates the Lysis-Filtration Method for identification as well as antimicrobial susceptibility testing of bacteria directly from positive blood culture bottles in a clinical setting. A total of 100 non-duplicated positive blood cultures were tested and 1012 microorganism-antimicrobial combinations were assessed. An aliquot of non-charcoal blood culture broth was incubated with lysis buffer briefly before being filtered and washed. Microorganisms recovered from the filter membrane were first identified by using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight VITEK® Mass Spectrometry (VITEK MS). After quick identification from VITEK MS, filtered microorganisms were inoculated to VITEK®2 system for full panel antimicrobial susceptibility testing analysis. Of 100 bottles tested, the VITEK MS resulted in 94.0% correct organism identification to the species level. Compared to the conventional antimicrobial susceptibility testing methods, direct antimicrobial susceptibility testing from VITEK®2 resulted in 93.5% (946/1012) category agreement of antimicrobials tested, with 3.6% (36/1012) minor error, 1.7% (7/1012) major error, and 1.3% (13/1012) very major error of antimicrobials. The average time to identification and antimicrobial susceptibility testing was 11.4 hours by using the Lysis-Filtration method for both VITEK MS and VITEK®2 compared to 56.3 hours by using conventional methods (pdirectly from positive blood culture can be achieved and can be used for appropriate antibiotic therapy and antibiotic stewardship.

  10. An Efficient Vital Area Identification Method

    International Nuclear Information System (INIS)

    Jung, Woo Sik

    2017-01-01

    A new Vital Area Identification (VAI) method was developed in this study for minimizing the burden of VAI procedure. It was accomplished by performing simplification of sabotage event trees or Probabilistic Safety Assessment (PSA) event trees at the very first stage of VAI procedure. Target sets and prevention sets are calculated from the sabotage fault tree. The rooms in the shortest (most economical) prevention set are selected and protected as vital areas. All physical protection is emphasized to protect these vital areas. All rooms in the protected area, the sabotage of which could lead to core damage, should be incorporated into sabotage fault tree. So, sabotage fault tree development is a very difficult task that requires high engineering costs. IAEA published INFCIRC/225/Rev.5 in 2011 which includes principal international guidelines for the physical protection of nuclear material and nuclear installations. A new efficient VAI method was developed and demonstrated in this study. Since this method drastically reduces VAI problem size, it provides very quick and economical VAI procedure. A consistent and integrated VAI procedure had been developed by taking advantage of PSA results, and more efficient VAI method was further developed in this study by inserting PSA event tree simplification at the initial stage of VAI procedure.

  11. Identification of systems with distributed parameters

    International Nuclear Information System (INIS)

    Moret, J.M.

    1990-10-01

    The problem of finding a model for the dynamical response of a system with distributed parameters based on measured data is addressed. First a mathematical formalism is developed in order to obtain the specific properties of such a system. Then a linear iterative identification algorithm is proposed that includes these properties, and that produces better results than usual non linear minimisation techniques. This algorithm is further improved by an original data decimation that allow to artificially increase the sampling period without losing between sample information. These algorithms are tested with real laboratory data

  12. 78 FR 58785 - Unique Device Identification System

    Science.gov (United States)

    2013-09-24

    ... the UDI system because they are controlled in the supply chain by the kit rather than by constituent... reduce existing obstacles to the adequate identification of medical devices used in the United States. By... stated, ``We support FDA's objective to substantially reduce existing obstacles to the adequate...

  13. Stability Analysis of Neural Networks-Based System Identification

    Directory of Open Access Journals (Sweden)

    Talel Korkobi

    2008-01-01

    Full Text Available This paper treats some problems related to nonlinear systems identification. A stability analysis neural network model for identifying nonlinear dynamic systems is presented. A constrained adaptive stable backpropagation updating law is presented and used in the proposed identification approach. The proposed backpropagation training algorithm is modified to obtain an adaptive learning rate guarantying convergence stability. The proposed learning rule is the backpropagation algorithm under the condition that the learning rate belongs to a specified range defining the stability domain. Satisfying such condition, unstable phenomena during the learning process are avoided. A Lyapunov analysis leads to the computation of the expression of a convenient adaptive learning rate verifying the convergence stability criteria. Finally, the elaborated training algorithm is applied in several simulations. The results confirm the effectiveness of the CSBP algorithm.

  14. [Bacterial identification methods in the microbiology laboratory].

    Science.gov (United States)

    Bou, Germán; Fernández-Olmos, Ana; García, Celia; Sáez-Nieto, Juan Antonio; Valdezate, Sylvia

    2011-10-01

    In order to identify the agent responsible of the infectious process and understanding the pathogenic/pathological implications, clinical course, and to implement an effective antimicrobial therapy, a mainstay in the practice of clinical microbiology is the allocation of species to a microbial isolation. In daily routine practice microbiology laboratory phenotypic techniques are applied to achieve this goal. However, they have some limitations that are seen more clearly for some kinds of microorganism. Molecular methods can circumvent some of these limitations, although its implementation is not universal. This is due to higher costs and the level of expertise required for thei implementation, so molecular methods are often centralized in reference laboratories and centers. Recently, proteomics-based methods made an important breakthrough in the field of diagnostic microbiology and will undoubtedly have a major impact on the future organization of the microbiology services. This paper is a short review of the most noteworthy aspects of the three bacterial identification methods described above used in microbiology laboratories. Copyright © 2011 Elsevier España, S.L. All rights reserved.

  15. Fieldable Nuclear Material Identification System

    International Nuclear Information System (INIS)

    Radle, James E.; Archer, Daniel E.; Carter, Robert J.; Mullens, James Allen; Mihalczo, John T.; Britton, Charles L. Jr.; Lind, Randall F.; Wright, Michael C.

    2010-01-01

    The Fieldable Nuclear Material Identification System (FNMIS), funded by the NA-241 Office of Dismantlement and Transparency, provides information to determine the material attributes and identity of heavily shielded nuclear objects. This information will provide future treaty participants with verifiable information required by the treaty regime. The neutron interrogation technology uses a combination of information from induced fission neutron radiation and transmitted neutron imaging information to provide high confidence that the shielded item is consistent with the host's declaration. The combination of material identification information and the shape and configuration of the item are very difficult to spoof. When used at various points in the warhead dismantlement sequence, the information complimented by tags and seals can be used to track subassembly and piece part information as the disassembly occurs. The neutron transmission imaging has been developed during the last seven years and the signature analysis over the last several decades. The FNMIS is the culmination of the effort to put the technology in a usable configuration for potential treaty verification purposes.

  16. Hierarchically structured identification and classification method for vibrational monitoring of reactor components

    International Nuclear Information System (INIS)

    Saedtler, E.

    1981-01-01

    The dissertation discusses: 1. Approximative filter algorithms for identification of systems and hierarchical structures. 2. Adaptive statistical pattern recognition and classification. 3. Parameter selection, extraction, and modelling for an automatic control system. 4. Design of a decision tree and an adaptive diagnostic system. (orig./RW) [de

  17. Are the Conventional Commercial Yeast Identification Methods Still Helpful in the Era of New Clinical Microbiology Diagnostics? A Meta-Analysis of Their Accuracy.

    Science.gov (United States)

    Posteraro, Brunella; Efremov, Ljupcho; Leoncini, Emanuele; Amore, Rosarita; Posteraro, Patrizia; Ricciardi, Walter; Sanguinetti, Maurizio

    2015-08-01

    Accurate identification of pathogenic species is important for early appropriate patient management, but growing diversity of infectious species/strains makes the identification of clinical yeasts increasingly difficult. Among conventional methods that are commercially available, the API ID32C, AuxaColor, and Vitek 2 systems are currently the most used systems in routine clinical microbiology. We performed a systematic review and meta-analysis to estimate and to compare the accuracy of the three systems, in order to assess whether they are still of value for the species-level identification of medically relevant yeasts. After adopting rigorous selection criteria, we included 26 published studies involving Candida and non-Candida yeasts that were tested with the API ID32C (674 isolates), AuxaColor (1,740 isolates), and Vitek 2 (2,853 isolates) systems. The random-effects pooled identification ratios at the species level were 0.89 (95% confidence interval [CI], 0.80 to 0.95) for the API ID32C system, 0.89 (95% CI, 0.83 to 0.93) for the AuxaColor system, and 0.93 (95% CI, 0.89 to 0.96) for the Vitek 2 system (P for heterogeneity, 0.255). Overall, the accuracy of studies using phenotypic analysis-based comparison methods was comparable to that of studies using molecular analysis-based comparison methods. Subanalysis of studies conducted on Candida yeasts showed that the Vitek 2 system was significantly more accurate (pooled ratio, 0.94 [95% CI, 0.85 to 0.99]) than the API ID32C system (pooled ratio, 0.84 [95% CI, 0.61 to 0.99]) and the AuxaColor system (pooled ratio, 0.76 [95% CI, 0.67 to 0.84]) with respect to uncommon species (P for heterogeneity, 0.05). Nonetheless, clinical microbiologists should reconsider the usefulness of these systems, particularly in light of new diagnostic tools such as matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry, which allow for considerably shortened turnaround times and/or avoid the requirement

  18. Identification of the corporate values of an enterprise: theory, approaches, methodic

    Directory of Open Access Journals (Sweden)

    Kozlov Vladimir Aleksandrovich

    2015-07-01

    Full Text Available This article focuses on research and composition of the instrument to identify the corporate values of the enterprise and practical activities to support them. The first part based on theoretical evidence of essence and correlation between notions of ‘Corporate culture’ and ‘Corporate values’. The method of corporate values identification, based on indirect approach, is proposed and the examples are provided. The results of implemented project for corporate values identification at industrial enterprise are presented. For further support the tasks and activities for corporate values management are proposed.

  19. WH-EA: An Evolutionary Algorithm for Wiener-Hammerstein System Identification

    Directory of Open Access Journals (Sweden)

    J. Zambrano

    2018-01-01

    Full Text Available Current methods to identify Wiener-Hammerstein systems using Best Linear Approximation (BLA involve at least two steps. First, BLA is divided into obtaining front and back linear dynamics of the Wiener-Hammerstein model. Second, a refitting procedure of all parameters is carried out to reduce modelling errors. In this paper, a novel approach to identify Wiener-Hammerstein systems in a single step is proposed. This approach is based on a customized evolutionary algorithm (WH-EA able to look for the best BLA split, capturing at the same time the process static nonlinearity with high precision. Furthermore, to correct possible errors in BLA estimation, the locations of poles and zeros are subtly modified within an adequate search space to allow a fine-tuning of the model. The performance of the proposed approach is analysed by using a demonstration example and a nonlinear system identification benchmark.

  20. How automated image analysis techniques help scientists in species identification and classification?

    Science.gov (United States)

    Yousef Kalafi, Elham; Town, Christopher; Kaur Dhillon, Sarinder

    2017-09-04

    Identification of taxonomy at a specific level is time consuming and reliant upon expert ecologists. Hence the demand for automated species identification increased over the last two decades. Automation of data classification is primarily focussed on images, incorporating and analysing image data has recently become easier due to developments in computational technology. Research efforts in identification of species include specimens' image processing, extraction of identical features, followed by classifying them into correct categories. In this paper, we discuss recent automated species identification systems, categorizing and evaluating their methods. We reviewed and compared different methods in step by step scheme of automated identification and classification systems of species images. The selection of methods is influenced by many variables such as level of classification, number of training data and complexity of images. The aim of writing this paper is to provide researchers and scientists an extensive background study on work related to automated species identification, focusing on pattern recognition techniques in building such systems for biodiversity studies.

  1. A grass molecular identification system for forensic botany: a critical evaluation of the strengths and limitations.

    Science.gov (United States)

    Ward, Jodie; Gilmore, Simon R; Robertson, James; Peakall, Rod

    2009-11-01

    Plant material is frequently encountered in criminal investigations but often overlooked as potential evidence. We designed a DNA-based molecular identification system for 100 Australian grasses that consisted of a series of polymerase chain reaction assays that enabled the progressive identification of grasses to different taxonomic levels. The identification system was based on DNA sequence variation at four chloroplast and two mitochondrial loci. Seventeen informative indels and 68 single-nucleotide polymorphisms were utilized as molecular markers for subfamily to species-level identification. To identify an unknown sample to subfamily level required a minimum of four markers or nine markers for species identification. The accuracy of the system was confirmed by blind tests. We have demonstrated "proof of concept" of a molecular identification system for trace botanical samples. Our evaluation suggests that the adoption of a system that combines this approach with DNA sequencing could assist the morphological identification of grasses found as forensic evidence.

  2. Model Optimization Identification Method Based on Closed-loop Operation Data and Process Characteristics Parameters

    Directory of Open Access Journals (Sweden)

    Zhiqiang GENG

    2014-01-01

    Full Text Available Output noise is strongly related to input in closed-loop control system, which makes model identification of closed-loop difficult, even unidentified in practice. The forward channel model is chosen to isolate disturbance from the output noise to input, and identified by optimization the dynamic characteristics of the process based on closed-loop operation data. The characteristics parameters of the process, such as dead time and time constant, are calculated and estimated based on the PI/PID controller parameters and closed-loop process input/output data. And those characteristics parameters are adopted to define the search space of the optimization identification algorithm. PSO-SQP optimization algorithm is applied to integrate the global search ability of PSO with the local search ability of SQP to identify the model parameters of forward channel. The validity of proposed method has been verified by the simulation. The practicability is checked with the PI/PID controller parameter turning based on identified forward channel model.

  3. A multiplex PCR method for the identification of commercially important salmon and trout species (Oncorhynchus and Salmo) in North America.

    Science.gov (United States)

    Rasmussen Hellberg, Rosalee S; Morrissey, Michael T; Hanner, Robert H

    2010-09-01

    The purpose of this study was to develop a species-specific multiplex polymerase chain reaction (PCR) method that allows for the detection of salmon species substitution on the commercial market. Species-specific primers and TaqMan® probes were developed based on a comprehensive collection of mitochondrial 5' cytochrome c oxidase subunit I (COI) deoxyribonucleic acid (DNA) "barcode" sequences. Primers and probes were combined into multiplex assays and tested for specificity against 112 reference samples representing 25 species. Sensitivity and linearity tests were conducted using 10-fold serial dilutions of target DNA (single-species samples) and DNA admixtures containing the target species at levels of 10%, 1.0%, and 0.1% mixed with a secondary species. The specificity tests showed positive signals for the target DNA in both real-time and conventional PCR systems. Nonspecific amplification in both systems was minimal; however, false positives were detected at low levels (1.2% to 8.3%) in conventional PCR. Detection levels were similar for admixtures and single-species samples based on a 30 PCR cycle cut-off, with limits of 0.25 to 2.5 ng (1% to 10%) in conventional PCR and 0.05 to 5.0 ng (0.1% to 10%) in real-time PCR. A small-scale test with food samples showed promising results, with species identification possible even in heavily processed food items. Overall, this study presents a rapid, specific, and sensitive method for salmon species identification that can be applied to mixed-species and heavily processed samples in either conventional or real-time PCR formats. This study provides a newly developed method for salmon and trout species identification that will assist both industry and regulatory agencies in the detection and prevention of species substitution. This multiplex PCR method allows for rapid, high-throughput species identification even in heavily processed and mixed-species samples. An inter-laboratory study is currently being carried out to

  4. FRF based position controller design through system identification for A hydraulic cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Hyoung Kyu; Kim, Dong Hwan [Dept. of Mechanical Design and Robot Engineering, Seoul National University of Science and Technology, Seoul (Korea, Republic of); Park, Jong Won [Reliability Assessment Center, Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2015-11-15

    In this study, we have focused on the design of a controller and an operating program for the operation of the hydraulic actuators used in a shaker. To control the motion of the shaker accurately, the position of each hydraulic cylinder should be controlled precisely even under an uncertain environment. For this purpose, we have suggested a control algorithm using an FRF (frequency response function) based control which senses the behavior of the actuator in advance, calculates a transfer function through the system identification method, and provides the final control input. The experimental results on the performance of this system were compared with that of a simple PID control algorithm.

  5. Noncontact blood species identification method based on spatially resolved near-infrared transmission spectroscopy

    Science.gov (United States)

    Zhang, Linna; Sun, Meixiu; Wang, Zhennan; Li, Hongxiao; Li, Yingxin; Li, Gang; Lin, Ling

    2017-09-01

    The inspection and identification of whole blood are crucially significant for import-export ports and inspection and quarantine departments. In our previous research, we proved Near-Infrared diffuse transmitted spectroscopy method was potential for noninvasively identifying three blood species, including macaque, human and mouse, with samples measured in the cuvettes. However, in open sampling cases, inspectors may be endangered by virulence factors in blood samples. In this paper, we explored the noncontact measurement for classification, with blood samples measured in the vacuum blood vessels. Spatially resolved near-infrared spectroscopy was used to improve the prediction accuracy. Results showed that the prediction accuracy of the model built with nine detection points was more than 90% in identification between all five species, including chicken, goat, macaque, pig and rat, far better than the performance of the model built with single-point spectra. The results fully supported the idea that spatially resolved near-infrared spectroscopy method can improve the prediction ability, and demonstrated the feasibility of this method for noncontact blood species identification in practical applications.

  6. System identification of timber masonry walls using shaking table test

    Science.gov (United States)

    Roy, Timir B.; Guerreiro, Luis; Bagchi, Ashutosh

    2017-04-01

    Dynamic study is important in order to design, repair and rehabilitation of structures. It has played an important role in the behavior characterization of structures; such as: bridges, dams, high rise buildings etc. There had been substantial development in this area over the last few decades, especially in the field of dynamic identification techniques of structural systems. Frequency Domain Decomposition (FDD) and Time Domain Decomposition are most commonly used methods to identify modal parameters; such as: natural frequency, modal damping and mode shape. The focus of the present research is to study the dynamic characteristics of typical timber masonry walls commonly used in Portugal. For that purpose, a multi-storey structural prototype of such wall has been tested on a seismic shake table at the National Laboratory for Civil Engineering, Portugal (LNEC). Signal processing has been performed of the output response, which is collected from the shaking table experiment of the prototype using accelerometers. In the present work signal processing of the output response, based on the input response has been done in two ways: FDD and Stochastic Subspace Identification (SSI). In order to estimate the values of the modal parameters, algorithms for FDD are formulated and parametric functions for the SSI are computed. Finally, estimated values from both the methods are compared to measure the accuracy of both the techniques.

  7. Electronic palatal rugae impression: a potentially relevant technology in personal identification

    Directory of Open Access Journals (Sweden)

    Fabrizio Guerra

    2016-06-01

    Full Text Available Forensic medicine is now able to identify people through lots of different systems. Actually, fingerprints identification is the mostused identification method. To avoid identifying, many people alter or erase their fingerprints through chemical and / or abrasivesystems. The study of palatal rugae (palatoscopy is an identification technique today accepted by the international scientificcommunity as an alternative, safe and effective identification system, because of their characteristic feature of immutability andindividuality. Currently, the most used procedure is dental impression through plaster casts or photographs. The difficulties in therecording and cast’s storage limited the use of this identification system in comparison with others techniques. In order to improvethe palatal rugae analysis system, we designed a software, connected to a camera device that allows to acquire the palatal impression,to easily identify the salient palatal features and to store them in a database. This would permit a fast, simple and economicrecognition method that could be used without the need of specific staff training and that could easily be integrated with the existingfingerprint identification systems.

  8. An algebraic method for system reduction of stationary Gaussian systems

    NARCIS (Netherlands)

    D. Jibetean; J.H. van Schuppen (Jan)

    2003-01-01

    textabstractSystem identification for a particular approach reduces to system reduction, determining for a system with a high state-space dimension a system of low state-space dimension. For Gaussian systems the problem of system reduction is considered with the divergence rate criterion. The

  9. A modular structure to accident identification using neural networks

    International Nuclear Information System (INIS)

    Duque Estrada, Cassius Rodrigo

    2005-01-01

    This work uses the accident identification method based on Artificial Neural Networks (ANN) as basic blocks of a modular structure, allowing the inclusion of new accidents to be identified without modifying the ANN already trained. This structure comprises several modules for accident identification and one module for analysis. Each identification module follows the structure of the basic block. The identification modules are responsible for the recognition of an accident belonging to the specific set of events for which it were trained. The analysis module processes the output from the identification module to determine the system response. In order to test this structure it was proposed a transient identification problem comprising fifty accidents distributed in five identification modules. The results have demonstrated that the accident identification method used as basic block of a modular structure allows the inclusion of new sets of accidents, or variations of a same accident, without modifying the ANN already trained. For this, it is enough to include into the system an specific module for this new set of accidents. (author)

  10. Expert systems for structure elucidation of organic molecules by spectral methods

    International Nuclear Information System (INIS)

    Elyashberg, Mikhail E

    1999-01-01

    The state-of-the-art of the investigations aimed at creating expert systems for establishing the structure of organic molecules from IR, 1 H and 13 C NMR spectra is analysed. Computer methods used for identification of molecular fragments, generation of their structure and spectra prediction are considered. Principles of the creation of modern expert systems and general strategy of solving structural problems are discussed. The bibliography includes 174 references.

  11. State of charge estimation of lithium-ion batteries based on an improved parameter identification method

    International Nuclear Information System (INIS)

    Xia, Bizhong; Chen, Chaoren; Tian, Yong; Wang, Mingwang; Sun, Wei; Xu, Zhihui

    2015-01-01

    The SOC (state of charge) is the most important index of the battery management systems. However, it cannot be measured directly with sensors and must be estimated with mathematical techniques. An accurate battery model is crucial to exactly estimate the SOC. In order to improve the model accuracy, this paper presents an improved parameter identification method. Firstly, the concept of polarization depth is proposed based on the analysis of polarization characteristics of the lithium-ion batteries. Then, the nonlinear least square technique is applied to determine the model parameters according to data collected from pulsed discharge experiments. The results show that the proposed method can reduce the model error as compared with the conventional approach. Furthermore, a nonlinear observer presented in the previous work is utilized to verify the validity of the proposed parameter identification method in SOC estimation. Finally, experiments with different levels of discharge current are carried out to investigate the influence of polarization depth on SOC estimation. Experimental results show that the proposed method can improve the SOC estimation accuracy as compared with the conventional approach, especially under the conditions of large discharge current. - Highlights: • The polarization characteristics of lithium-ion batteries are analyzed. • The concept of polarization depth is proposed to improve model accuracy. • A nonlinear least square technique is applied to determine the model parameters. • A nonlinear observer is used as the SOC estimation algorithm. • The validity of the proposed method is verified by experimental results.

  12. Rapid identification of ascomycetous yeasts from clinical specimens by a molecular method based on flow cytometry and comparison with identifications from phenotypic assays.

    Science.gov (United States)

    Page, Brent T; Shields, Christine E; Merz, William G; Kurtzman, Cletus P

    2006-09-01

    This study was designed to compare the identification of ascomycetous yeasts recovered from clinical specimens by using phenotypic assays (PA) and a molecular flow cytometric (FC) method. Large-subunit rRNA domains 1 and 2 (D1/D2) gene sequence analysis was also performed and served as the reference for correct strain identification. A panel of 88 clinical isolates was tested that included representatives of nine commonly encountered species and six infrequently encountered species. The PA included germ tube production, fermentation of seven carbohydrates, morphology on corn meal agar, urease and phenoloxidase activities, and carbohydrate assimilation tests when needed. The FC method (Luminex) employed species-specific oligonucleotides attached to polystyrene beads, which were hybridized with D1/D2 amplicons from the unidentified isolates. The PA identified 81 of 88 strains correctly but misidentified 4 of Candida dubliniensis, 1 of C. bovina, 1 of C. palmioleophila, and 1 of C. bracarensis. The FC method correctly identified 79 of 88 strains and did not misidentify any isolate but did not identify nine isolates because oligonucleotide probes were not available in the current library. The FC assay takes approximately 5 h, whereas the PA takes from 2 h to 5 days for identification. In conclusion, PA did well with the commonly encountered species, was not accurate for uncommon species, and takes significantly longer than the FC method. These data strongly support the potential of FC technology for rapid and accurate identification of medically important yeasts. With the introduction of new antifungals, rapid, accurate identification of pathogenic yeasts is more important than ever for guiding antifungal chemotherapy.

  13. A novel method for non-parametric identification of nonlinear restoring forces in nonlinear vibrations from noisy response data: A conservative system

    International Nuclear Information System (INIS)

    Jang, T. S.; Kwon, S. H.; Han, S. L.

    2009-01-01

    A novel procedure is proposed to identify the functional form of nonlinear restoring forces in the nonlinear oscillatory motion of a conservative system. Although the problem of identification has a unique solution, formulation results in a Volterra-type of integral equation of the 'first' kind: the solution lacks stability because the integral equation is the 'first' kind. Thus, the new problem at hand is ill-posed. Inevitable small errors during the identification procedure can make the prediction of nonlinear restoring forces useless. We overcome the difficulty by using a stabilization technique of Landweber's regularization in this study. The capability of the proposed procedure is investigated through numerical examples

  14. Constructing compact Takagi-Sugeno rule systems: identification of complex interactions in epidemiological data.

    Science.gov (United States)

    Zhou, Shang-Ming; Lyons, Ronan A; Brophy, Sinead; Gravenor, Mike B

    2012-01-01

    The Takagi-Sugeno (TS) fuzzy rule system is a widely used data mining technique, and is of particular use in the identification of non-linear interactions between variables. However the number of rules increases dramatically when applied to high dimensional data sets (the curse of dimensionality). Few robust methods are available to identify important rules while removing redundant ones, and this results in limited applicability in fields such as epidemiology or bioinformatics where the interaction of many variables must be considered. Here, we develop a new parsimonious TS rule system. We propose three statistics: R, L, and ω-values, to rank the importance of each TS rule, and a forward selection procedure to construct a final model. We use our method to predict how key components of childhood deprivation combine to influence educational achievement outcome. We show that a parsimonious TS model can be constructed, based on a small subset of rules, that provides an accurate description of the relationship between deprivation indices and educational outcomes. The selected rules shed light on the synergistic relationships between the variables, and reveal that the effect of targeting specific domains of deprivation is crucially dependent on the state of the other domains. Policy decisions need to incorporate these interactions, and deprivation indices should not be considered in isolation. The TS rule system provides a basis for such decision making, and has wide applicability for the identification of non-linear interactions in complex biomedical data.

  15. Applications of wind generation for power system frequency control, inter-area oscillations damping and parameter identification

    Science.gov (United States)

    Wilches-Bernal, Felipe

    of the WTG while the second controller manipulates the reactive power control of the WTG using the current magnitude as the feedback signal. Finally, the dissertation proposes a parameter identification method for identifying and verifying the reactive power control parameters of WTGs. Using voltage and current measurements of a wind unit as an input, the proposed method estimates an optimal set of parameters such that the output current of a standalone WTG model better approximates the measured signal. Because WTG are nonlinear systems, the identification method is solved by a Gauss-Newton iteration used to calculate the solution of a nonlinear least-squares problem. The effectiveness of the proposed method is illustrated using a set of simulated data and actual PMU recordings.

  16. Online Identification of Multivariable Discrete Time Delay Systems Using a Recursive Least Square Algorithm

    Directory of Open Access Journals (Sweden)

    Saïda Bedoui

    2013-01-01

    Full Text Available This paper addresses the problem of simultaneous identification of linear discrete time delay multivariable systems. This problem involves both the estimation of the time delays and the dynamic parameters matrices. In fact, we suggest a new formulation of this problem allowing defining the time delay and the dynamic parameters in the same estimated vector and building the corresponding observation vector. Then, we use this formulation to propose a new method to identify the time delays and the parameters of these systems using the least square approach. Convergence conditions and statistics properties of the proposed method are also developed. Simulation results are presented to illustrate the performance of the proposed method. An application of the developed approach to compact disc player arm is also suggested in order to validate simulation results.

  17. Identification of fractional-order systems via a switching differential evolution subject to noise perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wu, E-mail: dtzhuwu@gmail.com [College of Information Science and Technology, Donghua University, Shanghai 201620 (China); Fang, Jian-an [College of Information Science and Technology, Donghua University, Shanghai 201620 (China); Tang, Yang, E-mail: yang.tang@pik-potsdam.de [Institute of Physics, Humboldt University, Berlin 12489 (Germany); Potsdam Institute for Climate Impact Research, Potsdam 14415 (Germany); Research Institute for Intelligent Control and System, Harbin Institute of Technology, Harbin 150006 (China); Zhang, Wenbing [Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong (China); Xu, Yulong [College of Information Science and Technology, Donghua University, Shanghai 201620 (China)

    2012-10-01

    In this Letter, a differential evolution variant, called switching DE (SDE), has been employed to estimate the orders and parameters in incommensurate fractional-order chaotic systems. The proposed algorithm includes a switching population utilization strategy, where the population size is adjusted dynamically based on the solution-searching status. Thus, this adaptive control method realizes the identification of fractional-order Lorenz, Lü and Chen systems in both deterministic and stochastic environments, respectively. Numerical simulations are provided, where comparisons are made with five other State-of-the-Art evolutionary algorithms (EAs) to verify the effectiveness of the proposed method. -- Highlights: ► Switching population utilization strategy is applied for differential evolution. ► The parameters are estimated in both deterministic and stochastic environments. ► Comparisons with five other EAs verify the effectiveness of the proposed method.

  18. Identification of fractional-order systems via a switching differential evolution subject to noise perturbations

    International Nuclear Information System (INIS)

    Zhu, Wu; Fang, Jian-an; Tang, Yang; Zhang, Wenbing; Xu, Yulong

    2012-01-01

    In this Letter, a differential evolution variant, called switching DE (SDE), has been employed to estimate the orders and parameters in incommensurate fractional-order chaotic systems. The proposed algorithm includes a switching population utilization strategy, where the population size is adjusted dynamically based on the solution-searching status. Thus, this adaptive control method realizes the identification of fractional-order Lorenz, Lü and Chen systems in both deterministic and stochastic environments, respectively. Numerical simulations are provided, where comparisons are made with five other State-of-the-Art evolutionary algorithms (EAs) to verify the effectiveness of the proposed method. -- Highlights: ► Switching population utilization strategy is applied for differential evolution. ► The parameters are estimated in both deterministic and stochastic environments. ► Comparisons with five other EAs verify the effectiveness of the proposed method.

  19. Development of advanced methods for planning electric energy distribution systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Goenen, T.; Foote, B.L.; Thompson, J.C.; Fagan, J.E.

    1979-10-01

    An extensive search was made for the identification and collection of reports published in the open literature which describes distribution planning methods and techniques. In addition, a questionnaire has been prepared and sent to a large number of electric power utility companies. A large number of these companies were visited and/or their distribution planners interviewed for the identification and description of distribution system planning methods and techniques used by these electric power utility companies and other commercial entities. Distribution systems planning models were reviewed and a set of new mixed-integer programming models were developed for the optimal expansion of the distribution systems. The models help the planner to select: (1) optimum substation locations; (2) optimum substation expansions; (3) optimum substation transformer sizes; (4) optimum load transfers between substations; (5) optimum feeder routes and sizes subject to a set of specified constraints. The models permit following existing right-of-ways and avoid areas where feeders and substations cannot be constructed. The results of computer runs were analyzed for adequacy in serving projected loads within regulation limits for both normal and emergency operation.

  20. An improved wavelet-Galerkin method for dynamic response reconstruction and parameter identification of shear-type frames

    Science.gov (United States)

    Bu, Haifeng; Wang, Dansheng; Zhou, Pin; Zhu, Hongping

    2018-04-01

    An improved wavelet-Galerkin (IWG) method based on the Daubechies wavelet is proposed for reconstructing the dynamic responses of shear structures. The proposed method flexibly manages wavelet resolution level according to excitation, thereby avoiding the weakness of the wavelet-Galerkin multiresolution analysis (WGMA) method in terms of resolution and the requirement of external excitation. IWG is implemented by this work in certain case studies, involving single- and n-degree-of-freedom frame structures subjected to a determined discrete excitation. Results demonstrate that IWG performs better than WGMA in terms of accuracy and computation efficiency. Furthermore, a new method for parameter identification based on IWG and an optimization algorithm are also developed for shear frame structures, and a simultaneous identification of structural parameters and excitation is implemented. Numerical results demonstrate that the proposed identification method is effective for shear frame structures.

  1. UPTF test instrumentation. Measurement system identification, engineering units and computed parameters

    International Nuclear Information System (INIS)

    Sarkar, J.; Liebert, J.; Laeufer, R.

    1992-11-01

    This updated version of the previous report /1/ contains, besides additional instrumentation needed for 2D/3D Programme, the supplementary instrumentation in the inlet plenum of SG simulator and hot and cold leg of broken loop, the cold leg of intact loops and the upper plenum to meet the requirements (Test Phase A) of the UPTF Programme, TRAM, sponsored by the Federal Minister of Research and Technology (BMFT) of the Federal Republic of Germany. For understanding, the derivation and the description of the identification codes for the entire conventional and advanced measurement systems classifying the function, and the equipment unit, key, as adopted in the conventional power plants, have been included. Amendments have also been made to the appendices. In particular, the list of measurement systems covering the measurement identification code, instrument, measured quantity, measuring range, band width, uncertainty and sensor location has been updated and extended to include the supplementary instrumentation. Beyond these amendments, the uncertainties of measurements have been precisely specified. The measurement identification codes which also stand for the identification of the corresponding measured quantities in engineering units and the identification codes derived therefrom for the computed parameters have been adequately detailed. (orig.)

  2. Clinical laboratory evaluation of the Auto-Microbic system for rapid identification of Enterobacteriaceae.

    OpenAIRE

    Hasyn, J J; Cundy, K R; Dietz, C C; Wong, W

    1981-01-01

    The capability of the Auto-Microbic system (Vitek Systems, Inc., Hazelwood, Mo.) has been expanded to identify members of the family Enterobacteriaceae with the use of a sealed, disposable accessory card (the Enterobacteriaceae Biochemical Card) containing 26 biochemical tests. To judge the accuracy of the AutoMicrobic system's identification in a hospital laboratory, 933 Enterobacteriaceae isolates were studied. The AutoMicrobic system provided the correct identification for 905 of the isola...

  3. Microbiological method for radiation sterilization (III). Development of identification software of spore-forming bacteria by using BBL CRYSTAL GP identification kit

    International Nuclear Information System (INIS)

    Hironiwa, Takayuki; Yamamoto, Yoko; Koshikawa, Tomihiko

    2004-01-01

    The part III in this title series describes the development of software for identification of spore-forming bacteria using the commercially available BBL CRYSTAL GP Identification Kit (Becton, Dickinson and Co., Ltd.), which is essentially for identification of Gram positive bacteria and is not always suitable for the spore-former in the radiation sterilization of medical devices. Isolation and identification of a spore-forming bacterium have to be confirmed by phase-contrast microscopy. The bacteria cultured overnight are to be inoculated in the Kit and cultured for 18-24 hr at 35-37 deg C with the lid attached by substrates for identification. Here, 30 substrates and probability of positive reactions to the substrates have been tested for spore-formers to make the computer software for final identification. The system is possible to identify 13 spp. of Bacillus, 4 of Paenibacillus, 2 of Brevibaccilus and 1 of Virgibacillus, which are the usual bioburden. For possible misidentification, re-isolation of the bacterium, prolonged culture, concentrated inoculation and re-consideration for ranking of identification the software provides are necessary as well as other identification approaches. Thus, as described in this series, the radio-resistance of, and radiation dose for, the bioburden can be evaluated more easily than hitherto, with use of the kits in radiation sterilization. (N.I.)

  4. Adaptive Kernel Canonical Correlation Analysis Algorithms for Nonparametric Identification of Wiener and Hammerstein Systems

    Directory of Open Access Journals (Sweden)

    Ignacio Santamaría

    2008-04-01

    Full Text Available This paper treats the identification of nonlinear systems that consist of a cascade of a linear channel and a nonlinearity, such as the well-known Wiener and Hammerstein systems. In particular, we follow a supervised identification approach that simultaneously identifies both parts of the nonlinear system. Given the correct restrictions on the identification problem, we show how kernel canonical correlation analysis (KCCA emerges as the logical solution to this problem. We then extend the proposed identification algorithm to an adaptive version allowing to deal with time-varying systems. In order to avoid overfitting problems, we discuss and compare three possible regularization techniques for both the batch and the adaptive versions of the proposed algorithm. Simulations are included to demonstrate the effectiveness of the presented algorithm.

  5. Parameter identification of chaos system based on unknown parameter observer

    International Nuclear Information System (INIS)

    Wang Shaoming; Luo Haigeng; Yue Chaoyuan; Liao Xiaoxin

    2008-01-01

    Parameter identification of chaos system based on unknown parameter observer is discussed generally. Based on the work of Guan et al. [X.P. Guan, H.P. Peng, L.X. Li, et al., Acta Phys. Sinica 50 (2001) 26], the design of unknown parameter observer is improved. The application of the improved approach is extended greatly. The works in some literatures [X.P. Guan, H.P. Peng, L.X. Li, et al., Acta Phys. Sinica 50 (2001) 26; J.H. Lue, S.C. Zhang, Phys. Lett. A 286 (2001) 148; X.Q. Wu, J.A. Lu, Chaos Solitons Fractals 18 (2003) 721; J. Liu, S.H. Chen, J. Xie, Chaos Solitons Fractals 19 (2004) 533] are only the special cases of our Corollaries 1 and 2. Some observers for Lue system and a new chaos system are designed to test our improved method, and simulations results demonstrate the effectiveness and feasibility of the improved approach

  6. Nonlinear State Space Modeling and System Identification for Electrohydraulic Control

    Directory of Open Access Journals (Sweden)

    Jun Yan

    2013-01-01

    Full Text Available The paper deals with nonlinear modeling and identification of an electrohydraulic control system for improving its tracking performance. We build the nonlinear state space model for analyzing the highly nonlinear system and then develop a Hammerstein-Wiener (H-W model which consists of a static input nonlinear block with two-segment polynomial nonlinearities, a linear time-invariant dynamic block, and a static output nonlinear block with single polynomial nonlinearity to describe it. We simplify the H-W model into a linear-in-parameters structure by using the key term separation principle and then use a modified recursive least square method with iterative estimation of internal variables to identify all the unknown parameters simultaneously. It is found that the proposed H-W model approximates the actual system better than the independent Hammerstein, Wiener, and ARX models. The prediction error of the H-W model is about 13%, 54%, and 58% less than the Hammerstein, Wiener, and ARX models, respectively.

  7. An Automated System for Garment Texture Design Class Identification

    Directory of Open Access Journals (Sweden)

    Emon Kumar Dey

    2015-09-01

    Full Text Available Automatic identification of garment design class might play an important role in the garments and fashion industry. To achieve this, essential initial works are found in the literature. For example, construction of a garment database, automatic segmentation of garments from real life images, categorizing them into the type of garments such as shirts, jackets, tops, skirts, etc. It is now essential to find a system such that it will be possible to identify the particular design (printed, striped or single color of garment product for an automated system to recommend the garment trends. In this paper, we have focused on this specific issue and thus propose two new descriptors namely Completed CENTRIST (cCENTRIST and Ternary CENTRIST (tCENTRIST. To test these descriptors, we used two different publically available databases. The experimental results of these databases demonstrate that both cCENTRIST and tCENTRIST achieve nearly about 3% more accuracy than the existing state-of-the art methods.

  8. An identification method of orbit responses rooting in vibration analysis of rotor during touchdowns of active magnetic bearings

    Science.gov (United States)

    Liu, Tao; Lyu, Mindong; Wang, Zixi; Yan, Shaoze

    2018-02-01

    Identification of orbit responses can make the active protection operation more easily realize for active magnetic bearings (AMB) in case of touchdowns. This paper presents an identification method of the orbit responses rooting on signal processing of rotor displacements during touchdowns. The recognition method consists of two major steps. Firstly, the combined rub and bouncing is distinguished from the other orbit responses by the mathematical expectation of axis displacements of the rotor. Because when the combined rub and bouncing occurs, the rotor of AMB will not be always close to the touchdown bearings (TDB). Secondly, we recognize the pendulum vibration and the full rub by the Fourier spectrum of displacement in horizontal direction, as the frequency characteristics of the two responses are different. The principle of the whole identification algorithm is illustrated by two sets of signal generated by a dynamic model of the specific rotor-TDB system. The universality of the method is validated by other four sets of signal. Besides, the adaptability of noise is also tested by adding white noises with different strengths, and the result is promising. As the mathematical expectation and Discrete Fourier transform are major calculations of the algorithm, the calculation quantity of the algorithm is low, so it is fast, easily realized and embedded in the AMB controller, which has an important engineering value for the protection of AMBs during touchdowns.

  9. Optical Automatic Car Identification (OACI) : Volume 1. Advanced System Specification.

    Science.gov (United States)

    1978-12-01

    A performance specification is provided in this report for an Optical Automatic Car Identification (OACI) scanner system which features 6% improved readability over existing industry scanner systems. It also includes the analysis and rationale which ...

  10. Online identification of continuous bimodal and trimodal piecewise affine systems

    NARCIS (Netherlands)

    Le, Q.T.; van den Boom, A.J.J.; Baldi, S.; Rantzer, Anders; Bagterp Jørgensen, John; Stoustrup, Jakob

    2016-01-01

    This paper investigates the identification of continuous piecewise affine systems in state space form with jointly unknown partition and subsystem matrices. The partition of the system is generated by the so-called centers. By representing continuous piecewise affine systems in the max-form and

  11. 47 CFR 76.905 - Standards for identification of cable systems subject to effective competition.

    Science.gov (United States)

    2010-10-01

    ... system. (2) The franchise area is: (i) Served by at least two unaffiliated multichannel video programming... 47 Telecommunication 4 2010-10-01 2010-10-01 false Standards for identification of cable systems... Regulation § 76.905 Standards for identification of cable systems subject to effective competition. (a) Only...

  12. Comparison of Three Commercial Systems for Identification of Yeasts Commonly Isolated in the Clinical Microbiology Laboratory

    Science.gov (United States)

    Wadlin, Jill K.; Hanko, Gayle; Stewart, Rebecca; Pape, John; Nachamkin, Irving

    1999-01-01

    We evaluated three commercial systems (RapID Yeast Plus System; Innovative Diagnostic Systems, Norcross, Ga.; API 20C Aux; bioMerieux-Vitek, Hazelwood, Mo.; and Vitek Yeast Biochemical Card, bioMerieux-Vitek) against an auxinographic and microscopic morphologic reference method for the ability to identify yeasts commonly isolated in our clinical microbiology laboratory. Two-hundred one yeast isolates were compared in the study. The RapID Yeast Plus System was significantly better than either API 20C Aux (193 versus 167 correct identifications; P clinically relevant yeasts. PMID:10325356

  13. Development of a general method for photovoltaic system analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nolay, P

    1987-01-01

    The photovoltaic conversion for energetic applications is now widely used, but its development still needs the resolution of many problems for the sizing and for the real working of the installations. The precise analysis of the components and whole system behaviour has led to the development of accurate models for the simulation of such systems. From this modelling phase, a simulation code has been built. The validation of this software has been achieved from experimental test measurements. Since the quality of the software depends on the precision of the input data, an original method of determination of component characteristics, by means of model identification, has been developed. These tools permit the prediction of system behaviour and the dynamic simulation of systems under real conditions. Used for the study of photovoltaic system sizing, this software has allowed the definition of new concepts which will serve as a basis for the development of a sizing method.

  14. Structure identification of an uncertain network coupled with complex-variable chaotic systems via adaptive impulsive control

    International Nuclear Information System (INIS)

    Liu Dan-Feng; Wu Zhao-Yan; Ye Qing-Ling

    2014-01-01

    In this paper, structure identification of an uncertain network coupled with complex-variable chaotic systems is investigated. Both the topological structure and the system parameters can be unknown and need to be identified. Based on impulsive stability theory and the Lyapunov function method, an impulsive control scheme combined with an adaptive strategy is adopted to design effective and universal network estimators. The restriction on the impulsive interval is relaxed by adopting an adaptive strategy. Further, the proposed method can monitor the online switching topology effectively. Several numerical simulations are provided to illustrate the effectiveness of the theoretical results. (general)

  15. Particle identification method in the CsI(Tl) scintillator used for the CHIMERA 4 pi detector

    CERN Document Server

    Alderighi, M; Basssini, R; Berceanu, I; Blicharska, J; Boiano, C; Borderie, B; Bougault, R; Bruno, M; Cali, C; Cardella, G; Cavallaro, S; D'Agostino, M; D'andrea, M; Dayras, R; De Filippo, E; Fichera, F; Geraci, E; Giustolisi, F; Grzeszczuk, A; Guardone, N; Guazzoni, P; Guinet, D; Iacono-Manno, M; Kowalski, S; La Guidara, E; Lanchais, A L; Lanzalone, G; Lanzanò, G; Le Neindre, N; Li, S; Maiolino, C; Majka, Z; Manfredi, G; Nicotra, D; Paduszynski, T; Pagano, A; Papa, M; Petrovici, C M; Piasecki, E; Pirrone, S; Politi, G; Pop, A; Porto, F; Rivet, M F; Rosato, E; Sacca, G; Sechi, G; Simion, V; Sperduto, M L; Steckmeyer, J C; Trifiró, A; Trimarchi, M; Urso, S; Vannini, G; Vigilante, M; Wilczynski, J; Wu, H; Xiao, Z; Zetta, L; Zipper, W

    2002-01-01

    The charged particle identification obtained by the analysis of signals coming from the CsI(Tl) detectors of the CHIMERA 4 pi heavy-ion detector is presented. A simple double-gate integration method, with the use of the cyclotron radiofrequency as reference time, results in low thresholds for isotopic particle identification. The dependence of the identification quality on the gate generation timing is discussed. Isotopic identification of light ions up to Beryllium is clearly seen. For the first time also the identification of Z=5 particles is observed. The identification of neutrons interacting with CsI(Tl) by (n,alpha) and (n,gamma) reactions is also discussed.

  16. A Robust Iris Identification System Based on Wavelet Packet Decomposition and Local Comparisons of the Extracted Signatures

    Directory of Open Access Journals (Sweden)

    Rossant Florence

    2010-01-01

    Full Text Available Abstract This paper presents a complete iris identification system including three main stages: iris segmentation, signature extraction, and signature comparison. An accurate and robust pupil and iris segmentation process, taking into account eyelid occlusions, is first detailed and evaluated. Then, an original wavelet-packet-based signature extraction method and a novel identification approach, based on the fusion of local distance measures, are proposed. Performance measurements validating the proposed iris signature and demonstrating the benefit of our local-based signature comparison are provided. Moreover, an exhaustive evaluation of robustness, with regards to the acquisition conditions, attests the high performances and the reliability of our system. Tests have been conducted on two different databases, the well-known CASIA database (V3 and our ISEP database. Finally, a comparison of the performances of our system with the published ones is given and discussed.

  17. Reliability Analysis Of Fire System On The Industry Facility By Use Fameca Method

    International Nuclear Information System (INIS)

    Sony T, D.T.; Situmorang, Johnny; Ismu W, Puradwi; Demon H; Mulyanto, Dwijo; Kusmono, Slamet; Santa, Sigit Asmara

    2000-01-01

    FAMECA is one of the analysis method to determine system reliability on the industry facility. Analysis is done by some procedure that is identification of component function, determination of failure mode, severity level and effect of their failure. Reliability value is determined by three combinations that is severity level, component failure value and critical component. Reliability of analysis has been done for fire system on the industry by FAMECA method. Critical component which identified is pump, air release valve, check valve, manual test valve, isolation valve, control system etc

  18. Smoothing identification of systems with small non-linearities

    Czech Academy of Sciences Publication Activity Database

    Kozánek, Jan; Piranda, J.

    2003-01-01

    Roč. 38, č. 1 (2003), s. 71-84 ISSN 0025-6455 R&D Projects: GA ČR GA101/00/1471 Institutional research plan: CEZ:AV0Z2076919 Keywords : identification * small non-linearities * smoothing methods Subject RIV: BI - Acoustics Impact factor: 0.237, year: 2003

  19. Friction ridge skin - Automated Fingerprint Identification System (AFIS)

    NARCIS (Netherlands)

    Meuwly, Didier

    2013-01-01

    This contribution describes the development and the forensic use of automated fingerprint identification systems (AFISs). AFISs were initially developed in order to overcome the limitations of the paper-based fingerprint collections, by digitizing the ten-print cards in computerized databases and to

  20. Identification of Error of Commissions in the LOCA Using the CESA Method

    Energy Technology Data Exchange (ETDEWEB)

    Tukhbyet-olla, Myeruyert; Kang, Sunkoo; Kim, Jonghyun [KEPCO international nuclear graduate school, Ulsan (Korea, Republic of)

    2015-10-15

    An Errors of commission (EOCs) can be defined as the performance of any inappropriate action that aggravates the situation. The primary focus in current PSA is placed on those sequences of hardware failures and/or EOOs that lead to unsafe system states. Although EOCs can be treated when identified, a systematic and comprehensive treatment of EOC opportunities remains outside the scope of PSAs. However, some past experiences in the nuclear industry show that EOCs have contributed to severe accidents. Some recent and emerging human reliability analysis (HRA) methods suggest approaches to identify and quantify EOCs, such as ATHEANA, MERMOS, GRS, MDTA, and CESA. The CESA method, developed by the Risk and Human Reliability Group at the Paul Scherrer Institute, is to identify potentially risk-significant EOCs, given an existing PSA. The main idea underlying the method is to catalog the key actions that are required in the procedural response to plant events and to identify specific scenarios in which these candidate actions could erroneously appear to be required. This paper aims at identifying EOCs in the LOCA by using the CESA method. This study is focused on the identification of EOCs, while the quantification of EOCs is out of scope. Then, this paper applies the CESA method to the emergency operating procedure (EOP) of LOCA for APR1400. Finally, this study presents potential EOCs that may lead to the aggravation in the mitigation of LOCA. This study has identified the EOC events for APR1400 in the LOCA using CESA method. The result identified three candidate EOCs event using operator action catalog and RAW cutset of LOCA. These candidate EOC events are inappropriate terminations of safety injection system, safety injection tank and containment spray system. Then after reviewing top 100 accident sequences of PSA, this study finally identified one EOC scenario and EOC path, that is, inappropriate termination of safety injection system.

  1. Efficient Parameterization for Grey-box Model Identification of Complex Physical Systems

    DEFF Research Database (Denmark)

    Blanke, Mogens; Knudsen, Morten Haack

    2006-01-01

    Grey box model identification preserves known physical structures in a model but with limits to the possible excitation, all parameters are rarely identifiable, and different parametrizations give significantly different model quality. Convenient methods to show which parameterizations are the be...... that need be constrained to achieve satisfactory convergence. Identification of nonlinear models for a ship illustrate the concept....

  2. Identification of the parameters of an elastic material model using the constitutive equation gap method

    KAUST Repository

    Florentin, Éric

    2010-04-23

    Today, the identification ofmaterialmodel parameters is based more and more on full-field measurements. This article explains how an appropriate use of the constitutive equation gap method (CEGM) can help in this context. The CEGM is a well-known concept which, until now, has been used mainly for the verification of finite element simulations. This has led to many developments, especially concerning the techniques for constructing statically admissible stress fields. The originality of the present study resides in the application of these recent developments to the identification problem. The proposed CEGM is described in detail, then evaluated through the identification of heterogeneous isotropic elastic properties. The results obtained are systematically compared with those of the equilibrium gap method, which is a well-known technique for the resolution of such identification problems. We prove that the use of the enhanced CEGM significantly improves the quality of the results. © Springer-Verlag 2010.

  3. Neural-net based unstable machine identification using individual energy functions. [Transient disturbances in power systems

    Energy Technology Data Exchange (ETDEWEB)

    Djukanovic, M [Institut Nikola Tesla, Belgrade (Yugoslavia); Sobajic, D J; Pao, Yohhan [Case Western Reserve Univ., Cleveland, OH (United States)

    1991-10-01

    The identification of the mode of instability plays an essential role in generating principal energy boundary hypersurfaces. We present a new method for unstable machine identification based on the use of supervised learning neural-net technology, and the adaptive pattern recognition concept. It is shown that using individual energy functions as pattern features, appropriately trained neural-nets can retrieve the reliable characterization of the transient process including critical clearing time parameter, mode of instability and energy margins. Generalization capabilities of the neural-net processing allow for these assessments to be made independently of load levels. The results obtained from computer simulations are presented using the New England power system, as an example. (author).

  4. Asymptotic inference in system identification for the atom maser.

    Science.gov (United States)

    Catana, Catalin; van Horssen, Merlijn; Guta, Madalin

    2012-11-28

    System identification is closely related to control theory and plays an increasing role in quantum engineering. In the quantum set-up, system identification is usually equated to process tomography, i.e. estimating a channel by probing it repeatedly with different input states. However, for quantum dynamical systems such as quantum Markov processes, it is more natural to consider the estimation based on continuous measurements of the output, with a given input that may be stationary. We address this problem using asymptotic statistics tools, for the specific example of estimating the Rabi frequency of an atom maser. We compute the Fisher information of different measurement processes as well as the quantum Fisher information of the atom maser, and establish the local asymptotic normality of these statistical models. The statistical notions can be expressed in terms of spectral properties of certain deformed Markov generators, and the connection to large deviations is briefly discussed.

  5. Modified Levenberg-Marquardt Method for RÖSSLER Chaotic System Fuzzy Modeling Training

    Science.gov (United States)

    Wang, Yu-Hui; Wu, Qing-Xian; Jiang, Chang-Sheng; Xue, Ya-Li; Fang, Wei

    Generally, fuzzy approximation models require some human knowledge and experience. Operator's experience is involved in the mathematics of fuzzy theory as a collection of heuristic rules. The main goal of this paper is to present a new method for identifying unknown nonlinear dynamics such as Rössler system without any human knowledge. Instead of heuristic rules, the presented method uses the input-output data pairs to identify the Rössler chaotic system. The training algorithm is a modified Levenberg-Marquardt (L-M) method, which can adjust the parameters of each linear polynomial and fuzzy membership functions on line, and do not rely on experts' experience excessively. Finally, it is applied to training Rössler chaotic system fuzzy identification. Comparing this method with the standard L-M method, the convergence speed is accelerated. The simulation results demonstrate the effectiveness of the proposed method.

  6. DNA barcode-based molecular identification system for fish species.

    Science.gov (United States)

    Kim, Sungmin; Eo, Hae-Seok; Koo, Hyeyoung; Choi, Jun-Kil; Kim, Won

    2010-12-01

    In this study, we applied DNA barcoding to identify species using short DNA sequence analysis. We examined the utility of DNA barcoding by identifying 53 Korean freshwater fish species, 233 other freshwater fish species, and 1339 saltwater fish species. We successfully developed a web-based molecular identification system for fish (MISF) using a profile hidden Markov model. MISF facilitates efficient and reliable species identification, overcoming the limitations of conventional taxonomic approaches. MISF is freely accessible at http://bioinfosys.snu.ac.kr:8080/MISF/misf.jsp .

  7. Identification Method of Mud Shale Fractures Base on Wavelet Transform

    Science.gov (United States)

    Xia, Weixu; Lai, Fuqiang; Luo, Han

    2018-01-01

    In recent years, inspired by seismic analysis technology, a new method for analysing mud shale fractures oil and gas reservoirs by logging properties has emerged. By extracting the high frequency attribute of the wavelet transform in the logging attribute, the formation information hidden in the logging signal is extracted, identified the fractures that are not recognized by conventional logging and in the identified fracture segment to show the “cycle jump”, “high value”, “spike” and other response effect is more obvious. Finally formed a complete wavelet denoising method and wavelet high frequency identification fracture method.

  8. Reduction in specimen labeling errors after implementation of a positive patient identification system in phlebotomy.

    Science.gov (United States)

    Morrison, Aileen P; Tanasijevic, Milenko J; Goonan, Ellen M; Lobo, Margaret M; Bates, Michael M; Lipsitz, Stuart R; Bates, David W; Melanson, Stacy E F

    2010-06-01

    Ensuring accurate patient identification is central to preventing medical errors, but it can be challenging. We implemented a bar code-based positive patient identification system for use in inpatient phlebotomy. A before-after design was used to evaluate the impact of the identification system on the frequency of mislabeled and unlabeled samples reported in our laboratory. Labeling errors fell from 5.45 in 10,000 before implementation to 3.2 in 10,000 afterward (P = .0013). An estimated 108 mislabeling events were prevented by the identification system in 1 year. Furthermore, a workflow step requiring manual preprinting of labels, which was accompanied by potential labeling errors in about one quarter of blood "draws," was removed as a result of the new system. After implementation, a higher percentage of patients reported having their wristband checked before phlebotomy. Bar code technology significantly reduced the rate of specimen identification errors.

  9. Evaluation of VITEK mass spectrometry (MS), a matrix-assisted laser desorption ionization time-of-flight MS system for identification of anaerobic bacteria.

    Science.gov (United States)

    Lee, Wonmok; Kim, Myungsook; Yong, Dongeun; Jeong, Seok Hoon; Lee, Kyungwon; Chong, Yunsop

    2015-01-01

    By conventional methods, the identification of anaerobic bacteria is more time consuming and requires more expertise than the identification of aerobic bacteria. Although the matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) systems are relatively less studied, they have been reported to be a promising method for the identification of anaerobes. We evaluated the performance of the VITEK MS in vitro diagnostic (IVD; 1.1 database; bioMérieux, France) in the identification of anaerobes. We used 274 anaerobic bacteria isolated from various clinical specimens. The results for the identification of the bacteria by VITEK MS were compared to those obtained by phenotypic methods and 16S rRNA gene sequencing. Among the 249 isolates included in the IVD database, the VITEK MS correctly identified 209 (83.9%) isolates to the species level and an additional 18 (7.2%) at the genus level. In particular, the VITEK MS correctly identified clinically relevant and frequently isolated anaerobic bacteria to the species level. The remaining 22 isolates (8.8%) were either not identified or misidentified. The VITEK MS could not identify the 25 isolates absent from the IVD database to the species level. The VITEK MS showed reliable identifications for clinically relevant anaerobic bacteria.

  10. Multi-centre evaluation of mass spectrometric identification of anaerobic bacteria using the VITEK® MS system.

    Science.gov (United States)

    Garner, O; Mochon, A; Branda, J; Burnham, C-A; Bythrow, M; Ferraro, M; Ginocchio, C; Jennemann, R; Manji, R; Procop, G W; Richter, S; Rychert, J; Sercia, L; Westblade, L; Lewinski, M

    2014-04-01

    Accurate and timely identification of anaerobic bacteria is critical to successful treatment. Classic phenotypic methods for identification require long turnaround times and can exhibit poor species level identification. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is an identification method that can provide rapid identification of anaerobes. We present a multi-centre study assessing the clinical performance of the VITEK(®) MS in the identification of anaerobic bacteria. Five different test sites analysed a collection of 651 unique anaerobic isolates comprising 11 different genera. Multiple species were included for several of the genera. Briefly, anaerobic isolates were applied directly to a well of a target plate. Matrix solution (α-cyano-4-hydroxycinnamic acid) was added and allowed to dry. Mass spectra results were generated with the VITEK(®) MS, and the comparative spectral analysis and organism identification were determined using the VITEK(®) MS database 2.0. Results were confirmed by 16S rRNA gene sequencing. Of the 651 isolates analysed, 91.2% (594/651) exhibited the correct species identification. An additional eight isolates were correctly identified to genus level, raising the rate of identification to 92.5%. Genus-level identification consisted of Actinomyces, Bacteroides and Prevotella species. Fusobacterium nucleatum, Actinomyces neuii and Bacteroides uniformis were notable for an increased percentage of no-identification results compared with the other anaerobes tested. VITEK(®) MS identification of clinically relevant anaerobes is highly accurate and represents a dramatic improvement over other phenotypic methods in accuracy and turnaround time. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  11. A study on switched linear system identification using game ...

    African Journals Online (AJOL)

    A study on switched linear system identification using game-theoretic strategies and neural computing. ... This study deals with application of game-theoretic strategies and neural computing to switched linear ... AJOL African Journals Online.

  12. Field Evaluation of the System Identification Approach for Tension Estimation of External Tendons

    Directory of Open Access Journals (Sweden)

    Myung-Hyun Noh

    2015-01-01

    Full Text Available Various types of external tendons are considered to verify the applicability of tension estimation method based on the finite element model with system identification technique. The proposed method is applied to estimate the tension of benchmark numerical example, model structure, and field structure. The numerical and experimental results show that the existing methods such as taut string theory and linear regression method show large error in the estimated tension when the condition of external tendon is different with the basic assumption used during the derivation of relationship between tension and natural frequency. However, the proposed method gives reasonable results for all of the considered external tendons in this study. Furthermore, the proposed method can evaluate the accuracy of estimated tension indirectly by comparing the measured and calculated natural frequencies. Therefore, the proposed method can be effectively used for field application of various types of external tendons.

  13. Bootstrapping a de-identification system for narrative patient records: cost-performance tradeoffs.

    Science.gov (United States)

    Hanauer, David; Aberdeen, John; Bayer, Samuel; Wellner, Benjamin; Clark, Cheryl; Zheng, Kai; Hirschman, Lynette

    2013-09-01

    We describe an experiment to build a de-identification system for clinical records using the open source MITRE Identification Scrubber Toolkit (MIST). We quantify the human annotation effort needed to produce a system that de-identifies at high accuracy. Using two types of clinical records (history and physical notes, and social work notes), we iteratively built statistical de-identification models by annotating 10 notes, training a model, applying the model to another 10 notes, correcting the model's output, and training from the resulting larger set of annotated notes. This was repeated for 20 rounds of 10 notes each, and then an additional 6 rounds of 20 notes each, and a final round of 40 notes. At each stage, we measured precision, recall, and F-score, and compared these to the amount of annotation time needed to complete the round. After the initial 10-note round (33min of annotation time) we achieved an F-score of 0.89. After just over 8h of annotation time (round 21) we achieved an F-score of 0.95. Number of annotation actions needed, as well as time needed, decreased in later rounds as model performance improved. Accuracy on history and physical notes exceeded that of social work notes, suggesting that the wider variety and contexts for protected health information (PHI) in social work notes is more difficult to model. It is possible, with modest effort, to build a functioning de-identification system de novo using the MIST framework. The resulting system achieved performance comparable to other high-performing de-identification systems. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Identification of protective antigens for vaccination against systemic salmonellosis

    Directory of Open Access Journals (Sweden)

    Dirk eBumann

    2014-08-01

    Full Text Available There is an urgent medical need for improved vaccines with broad serovar coverage and high efficacy against systemic salmonellosis. Subunit vaccines offer excellent safety profiles but require identification of protective antigens, which remains a challenging task. Here, I review crucial properties of Salmonella antigens that might help to narrow down the number of potential candidates from more than 4000 proteins encoded in Salmonella genomes, to a more manageable number of 50-200 most promising antigens. I also discuss complementary approaches for antigen identification and potential limitations of current pre-clinical vaccine testing.

  15. Evaluation of the Biotyper MALDI-TOF MS system for identification of Staphylococcus species.

    Science.gov (United States)

    Zhu, Wenming; Sieradzki, Krzysztof; Albrecht, Valerie; McAllister, Sigrid; Lin, Wen; Stuchlik, Olga; Limbago, Brandi; Pohl, Jan; Kamile Rasheed, J

    2015-10-01

    The Bruker Biotyper MALDI-TOF MS (Biotyper) system, with a modified 30 minute formic acid extraction method, was evaluated by its ability to identify 216 clinical Staphylococcus isolates from the CDC reference collection comprising 23 species previously identified by conventional biochemical tests. 16S rDNA sequence analysis was used to resolve discrepancies. Of these, 209 (96.8%) isolates were correctly identified: 177 (84.7%) isolates had scores ≥2.0, while 32 (15.3%) had scores between 1.70 and 1.99. The Biotyper identification was inconsistent with the biochemical identification for seven (3.2%) isolates, but the Biotyper identifications were confirmed by 16S rDNA analysis. The distribution of low scores was strongly species-dependent, e.g. only 5% of Staphylococcus epidermidis and 4.8% of Staphylococcus aureus isolates scored below 2.0, while 100% of Staphylococcus cohnii, 75% of Staphylococcus sciuri, and 60% of Staphylococcus caprae produced low but accurate Biotyper scores. Our results demonstrate that the Biotyper can reliably identify Staphylococcus species with greater accuracy than conventional biochemicals. Broadening of the reference database by inclusion of additional examples of under-represented species could further optimize Biotyper results. Published by Elsevier B.V.

  16. Multicenter Evaluation of the Vitek MS Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry System for Identification of Gram-Positive Aerobic Bacteria

    Science.gov (United States)

    Burnham, Carey-Ann D.; Bythrow, Maureen; Garner, Omai B.; Ginocchio, Christine C.; Jennemann, Rebecca; Lewinski, Michael A.; Manji, Ryhana; Mochon, A. Brian; Procop, Gary W.; Richter, Sandra S.; Sercia, Linda; Westblade, Lars F.; Ferraro, Mary Jane; Branda, John A.

    2013-01-01

    Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF) is gaining momentum as a tool for bacterial identification in the clinical microbiology laboratory. Compared with conventional methods, this technology can more readily and conveniently identify a wide range of organisms. Here, we report the findings from a multicenter study to evaluate the Vitek MS v2.0 system (bioMérieux, Inc.) for the identification of aerobic Gram-positive bacteria. A total of 1,146 unique isolates, representing 13 genera and 42 species, were analyzed, and results were compared to those obtained by nucleic acid sequence-based identification as the reference method. For 1,063 of 1,146 isolates (92.8%), the Vitek MS provided a single identification that was accurate to the species level. For an additional 31 isolates (2.7%), multiple possible identifications were provided, all correct at the genus level. Mixed-genus or single-choice incorrect identifications were provided for 18 isolates (1.6%). Although no identification was obtained for 33 isolates (2.9%), there was no specific bacterial species for which the Vitek MS consistently failed to provide identification. In a subset of 463 isolates representing commonly encountered important pathogens, 95% were accurately identified to the species level and there were no misidentifications. Also, in all but one instance, the Vitek MS correctly differentiated Streptococcus pneumoniae from other viridans group streptococci. The findings demonstrate that the Vitek MS system is highly accurate for the identification of Gram-positive aerobic bacteria in the clinical laboratory setting. PMID:23658261

  17. Multicenter evaluation of the Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry system for identification of Gram-positive aerobic bacteria.

    Science.gov (United States)

    Rychert, Jenna; Burnham, Carey-Ann D; Bythrow, Maureen; Garner, Omai B; Ginocchio, Christine C; Jennemann, Rebecca; Lewinski, Michael A; Manji, Ryhana; Mochon, A Brian; Procop, Gary W; Richter, Sandra S; Sercia, Linda; Westblade, Lars F; Ferraro, Mary Jane; Branda, John A

    2013-07-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF) is gaining momentum as a tool for bacterial identification in the clinical microbiology laboratory. Compared with conventional methods, this technology can more readily and conveniently identify a wide range of organisms. Here, we report the findings from a multicenter study to evaluate the Vitek MS v2.0 system (bioMérieux, Inc.) for the identification of aerobic Gram-positive bacteria. A total of 1,146 unique isolates, representing 13 genera and 42 species, were analyzed, and results were compared to those obtained by nucleic acid sequence-based identification as the reference method. For 1,063 of 1,146 isolates (92.8%), the Vitek MS provided a single identification that was accurate to the species level. For an additional 31 isolates (2.7%), multiple possible identifications were provided, all correct at the genus level. Mixed-genus or single-choice incorrect identifications were provided for 18 isolates (1.6%). Although no identification was obtained for 33 isolates (2.9%), there was no specific bacterial species for which the Vitek MS consistently failed to provide identification. In a subset of 463 isolates representing commonly encountered important pathogens, 95% were accurately identified to the species level and there were no misidentifications. Also, in all but one instance, the Vitek MS correctly differentiated Streptococcus pneumoniae from other viridans group streptococci. The findings demonstrate that the Vitek MS system is highly accurate for the identification of Gram-positive aerobic bacteria in the clinical laboratory setting.

  18. Microbiological method for radiation sterilization (I). General knowledge and handling technique for bacterial identification

    International Nuclear Information System (INIS)

    Koshikawa, Tomihiko

    2004-01-01

    The part I in this title series describes the basic knowledge and technique for identification of bacteria in the radiation sterilization of medical devices, where the radiation dose can be decided from the number and radio-resistance of the bioburden (bacteria on the device). Four essential, actual technologies for identification are described: isolation and storage of bacteria; decision of bacterial natures, involving 3 Gram staining methods, morphology by microscopy and/or phase-contrast microscopy, spore-forming bacteria, and size measurement by micrometry; Other test items for identification of genus, involving motility, oxygen demand, catalase, oxidase, acid production from glucose, and OF (oxidation or fermentation for glucose degradation) test; and colony observation. Media, identification kits and record forms for these are presented. (N.I.)

  19. High Resolution Spectrometer (HRS) particle-identification system

    International Nuclear Information System (INIS)

    Pratt, J.C.; Spencer, J.E.; Whitten, C.A.

    1977-08-01

    The functions of the particle-identification system (PIDS) designed for the High Resolution Spectrometer facility (HRS) at LAMPF are described, together with the mechanical layout, counter hardware, and associated electronics. The system was designed for easy use and to be applicable to currently proposed experiments at HRS. The several strobe signals that can be generated correspond to different event types or characteristics, and logic configuration and timing can be remotely controlled by computer. Concepts of discrete pattern recognition and multidimensional, analog pulse discrimination are used to distinguish between different event types

  20. Development of objective flow regime identification method using self-organizing neural network

    International Nuclear Information System (INIS)

    Lee, Jae Young; Kim, Nam Seok; Kwak, Nam Yee

    2004-01-01

    Two-phase flow shows various flow patterns according to the amount of the void and its relative velocity to the liquid flow. This variation directly affect the interfacial transfer which is the key factor for the design or analysis of the phase change systems. Especially the safety analysis of the nuclear power plant has been performed based on the numerical code furnished with the proper constitutive relations depending highly upon the flow regimes. Heavy efforts have been focused to identify the flow regime and at this moment we stand on relative very stable engineering background compare to the other research field. However, the issues related to objectiveness and transient flow regime are still open to study. Lee et al. and Ishii developed the method for the objective and instantaneous flow regime identification based on the neural network and new index of probability distribution of the flow regime which allows just one second observation for the flow regime identification. In the present paper, we developed the self-organized neural network for more objective approach to this problem. Kohonen's Self-Organizing Map (SOM) has been used for clustering, visualization, and abstraction. The SOM is trained through unsupervised competitive learning using a 'winner takes it all' policy. Therefore, its unsupervised training character delete the possible interference of the regime developer to the neural network training. After developing the computer code, we evaluate the performance of the code with the vertically upward two-phase flow in the pipes of 25.4 and 50.4 cmm I.D. Also, the sensitivity of the number of the clusters to the flow regime identification was made