WorldWideScience

Sample records for icrp biokinetic model

  1. Basis for the ICRP's age-specific biokinetic model for uranium

    International Nuclear Information System (INIS)

    Leggett, R.W.

    1994-01-01

    In an effort motivated largely by the Chernobyl nuclear accident, the International Commission on Radiological Protection (ICRP) is developing age-specific biokinetic models and dose coefficients for environmentally important radionuclides. This paper describes the ICRP's age-specific biokinetic model for uranium. The model is constructed within a physiologically based framework originally developed for application to the alkaline earth elements but sufficiently general to apply to the larger class of bone-volume-seeking elements. Transfer rates for a reference adult are based mainly on: (1) measurements of uranium in blood and excreta of several human subjects who were intravenously injected with uranium; (2) postmortem measurements of uranium in tissues of some of those subjects; (3) postmortem measurements of uranium in tissues of occupationally and non-occupationally exposed subjects; (4) data on baboons, dogs, and smaller laboratory animals exposed to uranium for experimental purposes; and (5) consideration of the physiological processes thought to control retention and translocation of uranium in the body. Transfer rates for the adult are extended to children by application of a set of generic assumptions applied by the ICRP to calcium-like elements. These assumptions were derived mainly from observations of the age-specific biokinetics of the alkaline earth elements and lead in humans and laboratory animals but are consistent with available age-specific biokinetic data on uranium. 82 refs., 17 figs., 8 tabs

  2. Relevance of the ICRP biokinetic model for dietary organically bound tritium

    International Nuclear Information System (INIS)

    Trivedi, A.

    1999-10-01

    Ingested dietary tritium can participate in metabolic processes, and become synthesized into organically bound tritium in the tissues and organs. The distribution and retention of the organically bound tritium throughout the body are much different than tritium in the body water. The International Commission on Radiological Protection (ICRP) Publication 56 (1989) has a biokinetic model to calculate dose from the ingestion of organically bound dietary tritium. The model predicts that the dose from the ingestion of organically bound dietary tritium is about 2.3 times higher than from the ingestion of the same activity of tritiated water. Under steady-state conditions, the calculated dose rate (using the first principle approach) from the ingestion of dietary organically bound tritium can be twice that from the ingestion of tritiated water. For an adult, the upper-bound dose estimate for the ingestion of dietary organically bound tritium is estimated to be close to 2.3 times higher than that of tritiated water. Therefore, given the uncertainty in the dose calculation with respect to the actual relevant dose, the ICRP biokinetic model for organically bound tritium is sufficient for dosimetry for adults. (author)

  3. Biokinetic of plutonium in human beings. Analysis and modification of ICRP 67 model

    International Nuclear Information System (INIS)

    Luciani, A.; Castellani, C. M.

    2001-01-01

    A preliminary research of the available data and empirical functions for the plutonium excretion after injection was carried out. The ICRP model presented in the Publication no. 67 was then analyzed comparing its predictions for the activity in urine and, at a lesser extent, in feces and blood, with the collected data and empirical curves. The model was modified and an optimized age-related compartmental model was developed. A new skeletal model recently developed was also introduced and age depending bone remodelling rates were assumed on the basis of the ICRP Publication 70. This model provides a better agreement with measured urinary excretion data than the current ICRP 67 model, avoiding unphysiological assumptions such as the transfer of activity from soft tissue to urinary bladder, that were part of the ICRP model. The new optimized model predictions of the activity in faeces and in blood after an injection are also closer to the available data than the ICRP 67 estimations. A good agreement with the partitioning factor of plutonium between skeleton and liver obtained from different autopsy studies was also observed [it

  4. Application of the new ICRP respiratory tract model to inhaled plutonium nitrate using experimental biokinetic data

    Energy Technology Data Exchange (ETDEWEB)

    Birchall, A.; Bailey, M.R.; Jarvis, N.S. [National Radiological Protection Board, Chilton (United Kingdom)

    1995-12-31

    This paper describes the new ICRP respiratory tract model with particular reference to inhaled plutonium nitrate. The model is used to determine the absorption rates to blood for plutonium nitrate which when combined with the plutonium excretion functions were used to predict urinary excretion in man. The implications of the new model for radiological protection are discussed. (UK).

  5. Biokinetic of plutonium in human beings. Analysis and modification of ICRP 67 model; Biocinetica del plutonio nell'organismo umano. Analisi e modifica del modello ICRP 67

    Energy Technology Data Exchange (ETDEWEB)

    Luciani, A.; Castellani, C.M. [ENEA, Divisione Protezione dell' Uomo e degli Ecosistemi, Centro Ricerche Ezio Clementel, Bologna (Italy)

    2001-07-01

    A preliminary research of the available data and empirical functions for the plutonium excretion after injection was carried out. The ICRP model presented in the Publication no. 67 was then analyzed comparing its predictions for the activity in urine and, at a lesser extent, in feces and blood, with the collected data and empirical curves. The model was modified and an optimized age-related compartmental model was developed. A new skeletal model recently developed was also introduced and age depending bone remodelling rates were assumed on the basis of the ICRP Publication 70. This model provides a better agreement with measured urinary excretion data than the current ICRP 67 model, avoiding unphysiological assumptions such as the transfer of activity from soft tissue to urinary bladder, that were part of the ICRP model. The new optimized model predictions of the activity in faeces and in blood after an injection are also closer to the available data than the ICRP 67 estimations. A good agreement with the partitioning factor of plutonium between skeleton and liver obtained from different autopsy studies was also observed. [Italian] E' stata effettuata preliminarmente una ricerca bibliografica dei dati e delle funzioni di escrezione del plutonio attualmente disponibili in letteratura. Sulla base dei risultati di tale ricerca e' stato verificato il modello proposto dall'ICRP nella Pubblicazione n. 67. Tale modello e' stato quindi modificato al fine non solo di avere una piu' realistica descrizione dei valori predetti per l'escrezione urinaria, ma anche di modellare la cinetica del plutonio evitando quelle assunzioni introdotte appositamente nel modello dell'ICRP per correggere le previsini del modello ma che mancano di una chiara spiegazione di carattere fisiologico. Esso fornisce valutazioni piu' realistiche anche per l'attivita' nelle feci e nel sangue. Il modello sviluppato comprende un modello scheletrico

  6. Consistent biokinetic models for the actinide elements

    International Nuclear Information System (INIS)

    Leggett, R.W.

    2001-01-01

    The biokinetic models for Th, Np, Pu, Am and Cm currently recommended by the International Commission on Radiological Protection (ICRP) were developed within a generic framework that depicts gradual burial of skeletal activity in bone volume, depicts recycling of activity released to blood and links excretion to retention and translocation of activity. For other actinide elements such as Ac, Pa, Bk, Cf and Es, the ICRP still uses simplistic retention models that assign all skeletal activity to bone surface and depicts one-directional flow of activity from blood to long-term depositories to excreta. This mixture of updated and older models in ICRP documents has led to inconsistencies in dose estimates and interpretation of bioassay for radionuclides with reasonably similar biokinetics. This paper proposes new biokinetic models for Ac, Pa, Bk, Cf and Es that are consistent with the updated models for Th, Np, Pu, Am and Cm. The proposed models are developed within the ICRP's generic model framework for bone-surface-seeking radionuclides, and an effort has been made to develop parameter values that are consistent with results of comparative biokinetic data on the different actinide elements. (author)

  7. The computation of ICRP dose coefficients for intakes of radionuclides with PLEIADES: biokinetic aspects.

    Science.gov (United States)

    Fell, T P

    2007-01-01

    The ICRP has published dose coefficients for the ingestion or inhalation of radionuclides in a series of reports covering intakes by workers and members of the public including children and pregnant or lactating women. The calculation of these coefficients conveniently divides into two distinct parts--the biokinetic and dosimetric. This paper gives a brief summary of the methods used to solve the biokinetic problem in the generation of dose coefficients on behalf of the ICRP, as implemented in the Health Protection Agency's internal dosimetry code PLEIADES.

  8. The computation of ICRP dose coefficients for intakes of radionuclides with PLEIADES: biokinetic aspects

    International Nuclear Information System (INIS)

    Fell, T.P.

    2007-01-01

    The ICRP has published dose coefficients for the ingestion or inhalation of radionuclides in a series of reports covering intakes by workers and members of the public including children and pregnant or lactating women. The calculation of these coefficients conveniently divides into two distinct parts - the biokinetic and dosimetric. This paper gives a brief summary of the methods used to solve the biokinetic problem in the generation of dose coefficients on behalf of the ICRP, as implemented in the Health Protection Agency's internal dosimetry code PLEIADES. (author)

  9. Reliability of a new biokinetic model of zirconium in internal dosimetry: part I, parameter uncertainty analysis.

    Science.gov (United States)

    Li, Wei Bo; Greiter, Matthias; Oeh, Uwe; Hoeschen, Christoph

    2011-12-01

    The reliability of biokinetic models is essential in internal dose assessments and radiation risk analysis for the public, occupational workers, and patients exposed to radionuclides. In this paper, a method for assessing the reliability of biokinetic models by means of uncertainty and sensitivity analysis was developed. The paper is divided into two parts. In the first part of the study published here, the uncertainty sources of the model parameters for zirconium (Zr), developed by the International Commission on Radiological Protection (ICRP), were identified and analyzed. Furthermore, the uncertainty of the biokinetic experimental measurement performed at the Helmholtz Zentrum München-German Research Center for Environmental Health (HMGU) for developing a new biokinetic model of Zr was analyzed according to the Guide to the Expression of Uncertainty in Measurement, published by the International Organization for Standardization. The confidence interval and distribution of model parameters of the ICRP and HMGU Zr biokinetic models were evaluated. As a result of computer biokinetic modelings, the mean, standard uncertainty, and confidence interval of model prediction calculated based on the model parameter uncertainty were presented and compared to the plasma clearance and urinary excretion measured after intravenous administration. It was shown that for the most important compartment, the plasma, the uncertainty evaluated for the HMGU model was much smaller than that for the ICRP model; that phenomenon was observed for other organs and tissues as well. The uncertainty of the integral of the radioactivity of Zr up to 50 y calculated by the HMGU model after ingestion by adult members of the public was shown to be smaller by a factor of two than that of the ICRP model. It was also shown that the distribution type of the model parameter strongly influences the model prediction, and the correlation of the model input parameters affects the model prediction to a

  10. A biokinetic and dosimetric model for the metabolism of uranium

    International Nuclear Information System (INIS)

    Wrenn, M.E.; Bertelli, L.; Durbin, P.W.; Eckerman, K.F.; Lipsztein, J.L.; Singh, N.P.

    1995-10-01

    Experiments involving injection and inhalation of uranium compounds into several animal species as well as those associated with humans are described and analyzed. A revised biokinetic and dosimetric model for the metabolism of uranium suitable for bioassay procedures is proposed. The model consists of a systematic part coupled to a model of the respiratory tract. The model has been tested against human data which incorporates in vivo measurements over the chest and measurements of urine, feces, and autopsy and biopsy samples.In particular the lung model of the International Commission on Radiological Protection, Publication 30 ( ICRP-30 ), has been modified in order to provide a model which more nearly predicts urinary excretion in accord with the experiences in humans and animals. We have also tested the data against the new ICRP (LUDEP) lung model. (author). 55 refs., 14 tabs., 33 figs

  11. Biokinetic models for the metabolism of uranium: an overview

    International Nuclear Information System (INIS)

    Bertelli, Luiz; Lipsztein, Joyce L.; Melo, Dunstana R.; Puerta, Anselmo; Wrenn, McDonald E.

    1997-01-01

    This work reviews the main experiments involving uranium injection and inhalation into several animal species and those associated with humans as well. The literature was carefully selected to involve the uranium intake, distribution and excretion in humans and mammals. The available biokinetic models for the uranium metabolism, proposed by ICRP in Publications 2, 30 and 69, were shortly described and tested against the data. Human data which incorporates measurements of urine, autopsy and biopsy samples were also used completing the review of models associated with the systemic part. (author). 21 refs., 4 figs

  12. The models of internal dose calculation in ICRP

    International Nuclear Information System (INIS)

    Nakano, Takashi

    1995-01-01

    There are a lot discussions about internal dose calculation in ICRP. Many efforts are devoted to improvement in models and parameters. In this report, we discuss what kind of models and parameters are used in ICRP. Models are divided into two parts, the dosimetric model and biokinetic model. The former is a mathematical phantom model, and it is mainly developed in ORNL. The results are used in many researchers. The latter is a compartment model and it has a difficulty to decide the parameter values. They are not easy to estimate because of their age dependency. ICRP officially sets values at ages of 3 month, 1 year, 5 year, 10 year, 15 year and adult, and recommends to get values among ages by linear age interpolate. But it is very difficult to solve the basic equation with these values, so we calculate by use of computers. However, it has complex shame and needs long CPU time. We should make approximated equations. The parameter values include much uncertainty because of less experimental data, especially for a child. And these models and parameter values are for Caucasian. We should inquire whether they could correctly describe other than Caucasian. The body size affects the values of calculated SAF, and the differences of metabolism change the biokinetic pattern. (author)

  13. A case of accidental intake of Molybdenum Radionuclides: analysis of data with a revised biokinetic model

    International Nuclear Information System (INIS)

    Giussani, A.; Cantone, M.C.; Tavola, F.; Lopez, M.A.; Navarro, T.

    2002-01-01

    In recent years, a series of investigations on the biokinetics of molybdenum in humans, conducted using stable isotopes of Mo as tracers, has provided valuable experimental data about the dynamics of relevant processes such as the uptake from the gut walls, the clearance from the systemic circulation and the elimination pathways. The results of these studies are in good agreement with the findings of a group of nutritionist who also performed biokinetic studies with stable tracers. All measurements show several deviations from the predictions of the current ICRP model. On the basis of these data, a preliminary revision of the biokinetic model for Mo was presented. The modified model was thus used as a starting point for a new series of biokinetic investigations, aimed at a better definition of some of its features. In a total of 54 studies conducted in 15 volunteers, the influence of the mass and of the chemical form on intestinal absorption, internal kinetics and urinary excretion was investigated

  14. Biokinetic model for 137 Cs

    International Nuclear Information System (INIS)

    Melo, Dunstana Rabelo de

    1995-01-01

    The main objective of this work was to provide a realistic biokinetic model for 137 Cs metabolism. This model was based on the retention of cesium in 57 people contaminated in the Goiania accident, ages 1 to 73 y old, complemented by data obtained in an experiment with beagle dogs, and data taken from the open literature. Cesium is distributed among all tissues and organs of the body. Its main retention site is the skeletal muscle tissue. Mathematically, cesium retention in the body may be described by a sum of three terms exponential equation. The first term represents the fraction which is rapidly eliminated in urine. This fraction is weight dependent (negative correlation). The second term represents the retention of cesium in tissues and organs of the body. For children and adolescents, the second term biological half-life is a function of the weight. For adults, it is correlated with sex. Men present a higher retention of cesium than women. The third term correspond to a retention fraction of the order of 0,1% of the initial body burden. It is characterized by a very long half-life and represents a subcellular retention of cesium in the skeletal muscle tissue. During pregnancy the transfer factor from the mother to the fetus is correlated to the amount of cesium in the blood and it is equal to 1, if the intake of cesium occurs pregnancy. (author)

  15. Surface-seeking radionuclides in the skeleton: current approach and recent developments in biokinetic modelling for humans and beagles

    International Nuclear Information System (INIS)

    Luciani, A.; Polig, E.

    2007-01-01

    In the last decade, the biokinetics of surface-seeking radionuclides in the skeleton has been the object of several studies. Investigations were carried out to determine the kinetics of plutonium and americium in the skeleton of humans and beagles. As a result of these investigations, in recent years the models presented by ICRP in Publication 67 for humans were partially revised, particularly the skeletal part. The aim of the present work is to present recent developments in the biokinetic modelling of surface-seeking radionuclides (plutonium and americium) in beagles and humans. Various assumptions and physiological interpretations of the different approaches to the biokinetic modelling of the skeleton are discussed. Current ICRP concepts and skeleton modelling of plutonium and americium in humans are compared to the latest developments in biokinetic modelling in beagles. (authors)

  16. Proposal of a new biokinetic model for niobium

    International Nuclear Information System (INIS)

    Oliveira, Roges

    2006-01-01

    There are two niobium isotopes generated in nuclear power plants: 95 Nb and 94 Nb. Workers and members of the public are subjects to intake these radionuclides in accident situation. For dose calculation purpose, it is very important to develop a model that describes in a more realistic way the kinetics of niobium inside of the human body. Presently the model adopted by ICRP (ICRP, 1989) is based on animal studies and describes the behavior of niobium in human being in a simple manner. The new model proposal describes the kinetics of the niobium from the intake into the blood until the excretion, doing this in a more realistic form and considering not only data from animals but data from human beings as well. For this objective, a workers group of a niobium extraction and processing industry exposed to stable niobium (93 Nb) in oxide insoluble form with associated uranium, was monitored for uranium and niobium determination in urinary and fecal excretion, by mass spectrometry. Based in the ratios of the niobium concentration in urinary and faecal excretion of this workers and animal data study, a new biokinetic model for niobium was proposed, with the followings modifications relative to ICRP model: a new compartment that represents muscular tissue; the fractions which are deposited into the compartment are modified; a third component in the retention equation of the bone tissue; introduction of recirculation between organs and blood. The new model was applied for a case of accidental intake and described adequately the experimental data

  17. Development, implementation and quality assurance of biokinetic models within CONRAD

    International Nuclear Information System (INIS)

    Nosske, D.; Birchall, A.; Blanchardon, E.; Breustedt, B.; Giussani, A.; Luciani, A.; Oeh, U.; Lopez, M. A.

    2008-01-01

    The work of the Task Group 5.2 'Research Studies on Biokinetic Models' of the CONRAD project is presented. New biokinetic models have been implemented by several European institutions. Quality assurance procedures included intercomparison of the results as well as quality assurance of model formulation. Additionally, the use of the models was examined leading to proposals of tuning parameters. Stable isotope studies were evaluated with respect to their implications to the new models, and new biokinetic models were proposed on the basis of their results. Furthermore, the development of a biokinetic model describing the effects of decorporation of actinides by diethylenetriaminepentaacetic acid treatment was initiated. (authors)

  18. Recent developments in biokinetic models and the calculation of internal dose coefficients

    International Nuclear Information System (INIS)

    Fell, T.P.; Phipps, A.W.; Kendall, G.M.; Stradling, G.N.

    1997-01-01

    In most cases the measurement of radioactivity in an environmental or biological sample will be followed by some estimation of dose and possibly risk, either to a population or an individual. This will normally involve the use of a dose coefficient (dose per unit intake value) taken from a compendium. In recent years the calculation of dose coefficients has seen many developments in both biokinetic modelling and computational capabilities. ICRP has recommended new models for the respiratory tract and for the systemic behavior of many of the more important elements. As well as this, a general age-dependent calculation method has been developed which involves an effectively continuous variation of both biokinetic and dosimetric parameters, facilitating more realistic estimation of doses to young people. These new developments were used in work for recent ICRP, IAEA and CEC compendia of dose coefficients for both members of the public (including children) and workers. This paper presents a general overview of the method of calculation of internal doses with particular reference to the actinides. Some of the implications for dose coefficients of the new models are discussed. For example it is shown that compared with data in ICRP Publications 30 and 54: the new respiratory tract model generally predicts lower deposition in systemic tissues per unit intake; the new biokinetic models for actinides allow for burial of material deposited on bone surfaces; age-dependent models generally feature faster turnover of material in young people. All of these factors can lead to substantially different estimates of dose and examples of the new dose coefficients are given to illustrate these differences. During the development of the new models for actinides, human bioassay data were used to validate the model. Thus, one would expect the new models to give reasonable predictions of bioassay quantities. Some examples of the bioassay applications, e.g., excretion data for the

  19. Improvements in the biokinetic model for strontium with allowance for age and gender differences in bone mineral metabolism

    International Nuclear Information System (INIS)

    Shagina, N.B.; Tolstykh, E.I.; Degteva, M.O.

    2003-01-01

    An age- and gender-dependent biokinetic model for strontium was developed based on the study of a population living along the Techa River exposed to effluents from the Mayak Production Association. To estimate parameters of a new model (Techa biokinetic model, TBM) many data sets have been assembled: our whole-body counter data on long-term retention of 90 Sr in humans, data from studies during the period of global fallout, data resulting from deliberate injections of strontium radionuclides, and non-radiological data regarding bone formation and resorption, mineral content of the body, etc. The model was developed using the basic structure of the ICRP biokinetic model for strontium, but new age- and gender-specific parameters were derived. This paper discusses the approaches applied to develop the new model. (author)

  20. Reliability of the ICRP's dose coefficients for members of the public: IV. Basis of the human alimentary tract model and uncertainties in model predictions

    International Nuclear Information System (INIS)

    Leggett, R.; Harrison, J.; Phipps, A.

    2007-01-01

    The biokinetic and dosimetric model of the gastrointestinal (GI) tract applied in current documents of the International Commission on Radiological Protection (ICRP) was developed in the mid-1960's. The model was based on features of a reference adult male and was first used by the ICRP in Publication 30, Limits for Intakes of Radionuclides by Workers (Part 1, 1979). In the late 1990's an ICRP task group was appointed to develop a biokinetic and dosimetric model of the alimentary tract that reflects updated information and addresses current needs in radiation protection. The new age-specific and gender-specific model, called the Human Alimentary Tract Model (HATM), has been completed and will replace the GI model of Publication 30 in upcoming ICRP documents. This paper discusses the basis for the structure and parameter values of the HATM, summarises the uncertainties associated with selected features and types of predictions of the HATM and examines the sensitivity of dose estimates to these uncertainties for selected radionuclides. Emphasis is on generic biokinetic features of the HATM, particularly transit times through the lumen of the alimentary tract, but key dosimetric features of the model are outlined, and the sensitivity of tissue dose estimates to uncertainties in dosimetric as well as biokinetic features of the HATM are examined for selected radionuclides. (authors)

  1. A biokinetic model for zinc for use in radiation protection

    International Nuclear Information System (INIS)

    Leggett, R.W.

    2012-01-01

    The physiology of the essential trace element zinc has been studied extensively in human subjects using kinetic analysis of time-dependent measurements of administered zinc tracers. A number of biokinetic models describing zinc exchange between plasma and tissues and endogenous excretion of zinc have been derived as fits to data for specific study groups. More rudimentary biokinetic models for zinc have been developed to estimate radiation doses from internally deposited radioisotopes of zinc. The latter models are designed to provide broadly accurate estimates of cumulative decays of zinc radioisotopes in tissues and are not intended as realistic descriptions of the directions of movement of zinc in the body. This paper reviews biokinetic data for zinc and proposes a physiologically meaningful biokinetic model for systemic zinc for use in radiation protection. The proposed model bears some resemblance to zinc models developed in physiological studies but depicts a finer division of systemic zinc and is based on a broader spectrum of data than previous models. The proposed model and the model for zinc currently recommended by the International Commission on Radiological Protection yield reasonably similar estimates of total-body retention and effective dose for internally deposited radioisotopes of zinc but much different systemic distributions of activity and much different dose estimates for some individual tissues, particularly the liver. - Highlights: ► Zinc is an essential trace element with numerous functions in the human body. ► Several biokinetic models for zinc have been developed from tracer studies on humans. ► More rudimentary biokinetic models for zinc have been developed in radiation protection. ► Biokinetic data for zinc are reviewed and a new biokinetic model is proposed for radiation protection. ► The proposed model may also be useful for investigation of zinc physiology and homeostasis.

  2. New ICRP human respiratory tract model

    International Nuclear Information System (INIS)

    Bailey, M.R.

    1993-01-01

    The new ICRP dosimetric model for the human respiratory tract is based on the premise that the large differences in radiation sensitivity of respiratory tract tissues, and the wide range of doses they receive argue for calculating specific tissue doses rather than average lung doses. The model is also directly applicable to the worldwide population of both workers and the public. The requirement to describe intake, and deposition, clearance and dosimetry in each respiratory tract region, for a wide range of subjects at various levels of exercise necessarily means that the model is more complex than that of ICRP Publication 30. The widespread use of powerful personal computers, and the availability of user-friendly software to implement the model, however, will make it widely and readily accessible when the report is published. (Author)

  3. Reliability of a new biokinetic model of zirconium in internal dosimetry: part II, parameter sensitivity analysis.

    Science.gov (United States)

    Li, Wei Bo; Greiter, Matthias; Oeh, Uwe; Hoeschen, Christoph

    2011-12-01

    The reliability of biokinetic models is essential for the assessment of internal doses and a radiation risk analysis for the public and occupational workers exposed to radionuclides. In the present study, a method for assessing the reliability of biokinetic models by means of uncertainty and sensitivity analysis was developed. In the first part of the paper, the parameter uncertainty was analyzed for two biokinetic models of zirconium (Zr); one was reported by the International Commission on Radiological Protection (ICRP), and one was developed at the Helmholtz Zentrum München-German Research Center for Environmental Health (HMGU). In the second part of the paper, the parameter uncertainties and distributions of the Zr biokinetic models evaluated in Part I are used as the model inputs for identifying the most influential parameters in the models. Furthermore, the most influential model parameter on the integral of the radioactivity of Zr over 50 y in source organs after ingestion was identified. The results of the systemic HMGU Zr model showed that over the first 10 d, the parameters of transfer rates between blood and other soft tissues have the largest influence on the content of Zr in the blood and the daily urinary excretion; however, after day 1,000, the transfer rate from bone to blood becomes dominant. For the retention in bone, the transfer rate from blood to bone surfaces has the most influence out to the endpoint of the simulation; the transfer rate from blood to the upper larger intestine contributes a lot in the later days; i.e., after day 300. The alimentary tract absorption factor (fA) influences mostly the integral of radioactivity of Zr in most source organs after ingestion.

  4. INDOSE V2.1.1, Internal Dosimetry Code Using Biokinetics Models

    International Nuclear Information System (INIS)

    Silverman, Ido

    2002-01-01

    A - Description of program or function: InDose is an internal dosimetry code developed to enable dose estimations using the new biokinetic models (presented in ICRP-56 to ICRP71) as well as the old ones. The code is written in FORTRAN90 and uses the ICRP-66 respiratory tract model and the ICRP-30 gastrointestinal tract model as well as the new and old biokinetic models. The code has been written in such a way that the user is able to change any of the parameters of any one of the models without recompiling the code. All the parameters are given in well annotated parameters files that the user may change and the code reads during invocation. As default, these files contains the values listed in ICRP publications. The full InDose code is planed to have three parts: 1) the main part includes the uptake and systemic models and is used to calculate the activities in the body tissues and excretion as a function of time for a given intake. 2) An optimization module for automatic estimation of the intake for a specific exposure case. 3) A module to calculate the dose due to the estimated intake. Currently, the code is able to perform only its main task (part 1) while the other two have to be done externally using other tools. In the future we would like to add these modules in order to provide a complete solution for the people in the laboratory. The code has been tested extensively to verify the accuracy of its results. The verification procedure was divided into three parts: 1) verification of the implementation of each model, 2) verification of the integrity of the whole code, and 3) usability test. The first two parts consisted of comparing results obtained with InDose to published results for the same cases. For example ICRP-78 monitoring data. The last part consisted of participating in the 3. EIE-IDA and assessing some of the scenarios provided in this exercise. These tests where presented in a few publications. It has been found that there is very good agreement

  5. Mathematical solutions to problems in radiological protection involving air sampling and biokinetic modelling

    International Nuclear Information System (INIS)

    Birchall, A.

    1989-04-01

    Intakes of radionuclides are estimated with the personal air sampler (PAS) and by biological monitoring techniques: in the case of plutonium, there are problems with both methods. The statistical variation in activity collected when sampling radioactive aerosols with low number concentrations was investigated. It was shown that the PAS is barely adequate for monitoring plutonium at annual limit of intake (ALI) levels in typical workplace conditions. Two algorithms were developed, enabling non-recycling and recycling compartmental models to be solved. Their accuracy and speed were investigated, and methods of dealing with partitioning, continuous intake, and radioactive progeny were discussed. Analytical, rather than numerical, methods were used. These are faster, and thus ideally suited for implementation on microcomputers. The algorithms enable non-specialists to solve quickly and easily any first order compartmental model, including all the ICRP metabolic models. Non-recycling models with up to 50 compartments can be solved in seconds: recycling models take a little longer. A biokinetic model for plutonium in man following systemic uptake was developed. The proposed ICRP lung model (1989) was represented by a first order compartmental model. These two models were combined, and the recycling algorithm was used to calculate urinary and faecal excretion of plutonium following acute or chronic intake by inhalation. The results indicate much lower urinary excretion than predicted by ICRP Publication 54. (author)

  6. The new ICRP respiratory model for radiation protection (ICRP 66) : applications and comparative evaluations

    International Nuclear Information System (INIS)

    Castellani, C.M.; Luciani, A.

    1996-02-01

    The aim of this report is to present the New ICRP Respiratory Model Tract for Radiological Protection. The model allows considering anatomical and physiological characteristics, giving reference values for children aged 3 months, 1, 5,10, and 15 years for adults; it also takes into account aerosol and gas characteristics. After a general description of the model structure, deposition, clearance and dosimetric models are presented. To compare the new and previous model (ICRP 30), dose coefficients (committed effective dose for unit intake) foe inhalation of radionuclides by workers are calculated considering aerosol granulometries with activity median aerodynamic of 1 and 5 μm, reference values for the respective publications. Dose coefficients and annual limits of intakes concerning respective dose limits (50 and 20 mSv respectively for ICRP 26 and 60) for workers and for members of population in case of dispersion of fission products aerosols, are finally calculated

  7. A physiological biokinetic model for the [7(N)-{sup 3}H]-cholesterol dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Adriano dos Santos; Martins, Joao Francisco Trencher; Velo, Alexandre Franca; Hamada, Margarida M.; Mesquita, Carlos Henrique de, E-mail: adriano_oliveira@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Cardiovascular diseases (CVD) are a major source of deaths worldwide according to WHO (World Health Organization). It is well-known that the change of the level of plasma lipoproteins, which are responsible for the cholesterol transport in the bloodstream, is a main cause of these diseases. For this reason, to know the biokinetic parameters of plasma lipoproteins and quantifies them is important to correct and deepen the understanding of associated diseases. The main objective of this work is to provide a biokinetic model in order to estimate the radiometric dose, due to the intake of [7(N){sup -3}H] –Cholesterol in physiological issues, in metabolic studies. The internal dosimetry is important to know the biological effects of radiation. The model was based on Schwartz et al (2004), using parameters for the plasmatic lipoproteins and ICRP 30 (1979) gastrointestinal tract; the dose in the compartments were calculated using the MIRD methodology and the compartmental analysis by Matlab® software. The coefficients were estimated for an adult phantom with a body mass of 73.3 kg. (author)

  8. A physiological biokinetic model for the [7(N)-3H]-cholesterol dosimetry

    International Nuclear Information System (INIS)

    Oliveira, Adriano dos Santos; Martins, Joao Francisco Trencher; Velo, Alexandre Franca; Hamada, Margarida M.; Mesquita, Carlos Henrique de

    2015-01-01

    Cardiovascular diseases (CVD) are a major source of deaths worldwide according to WHO (World Health Organization). It is well-known that the change of the level of plasma lipoproteins, which are responsible for the cholesterol transport in the bloodstream, is a main cause of these diseases. For this reason, to know the biokinetic parameters of plasma lipoproteins and quantifies them is important to correct and deepen the understanding of associated diseases. The main objective of this work is to provide a biokinetic model in order to estimate the radiometric dose, due to the intake of [7(N) -3 H] –Cholesterol in physiological issues, in metabolic studies. The internal dosimetry is important to know the biological effects of radiation. The model was based on Schwartz et al (2004), using parameters for the plasmatic lipoproteins and ICRP 30 (1979) gastrointestinal tract; the dose in the compartments were calculated using the MIRD methodology and the compartmental analysis by Matlab® software. The coefficients were estimated for an adult phantom with a body mass of 73.3 kg. (author)

  9. Stable tracer investigations in humans for assessing the biokinetics of ruthenium and zirconium radionuclides

    International Nuclear Information System (INIS)

    Veronese, I.; Cantone, M.C.; Giussani, A.; Maggioni, T.; Birattari, C.; Bondardi, M.; Groppi, F.; Garlaschelli, I.; Werner, E.; Roth, P.; Hoellriegl, V.; Louvat, P.; Felgenhauer, N.; Zilker, Th.

    2003-01-01

    The interest in the biokinetics of ruthenium and zirconium in humans is justified by the potential radiological risk represented by their radionuclides. Only a few data related to the biokinetics of ruthenium and zirconium in humans are available and, accordingly, the biokinetic models currently recommended by the ICRP for these elements are mainly based on data from animal experiments. The use of stable isotopes as tracers, coupled with a proper analytical technique (nuclear activation analysis with protons) for their determination in biological samples, represents an ethically acceptable methodology for biokinetic investigations, being free from any radiation risk for the volunteer subjects. In this work, the results obtained in eight biokinetic investigations for ruthenium, conducted on a total of three healthy volunteers, and six for zirconium, performed on a total of three subjects, are presented and compared to the predictions of the ICRP models. (author)

  10. An optimization strategy for a biokinetic model of inhaled radionuclides

    International Nuclear Information System (INIS)

    Shyr, L.J.; Griffith, W.C.; Boecker, B.B.

    1991-01-01

    Models for material disposition and dosimetry involve predictions of the biokinetics of the material among compartments representing organs and tissues in the body. Because of a lack of human data for most toxicants, many of the basic data are derived by modeling the results obtained from studies using laboratory animals. Such a biomathematical model is usually developed by adjusting the model parameters to make the model predictions match the measured retention and excretion data visually. The fitting process can be very time-consuming for a complicated model, and visual model selections may be subjective and easily biased by the scale or the data used. Due to the development of computerized optimization methods, manual fitting could benefit from an automated process. However, for a complicated model, an automated process without an optimization strategy will not be efficient, and may not produce fruitful results. In this paper, procedures for, and implementation of, an optimization strategy for a complicated mathematical model is demonstrated by optimizing a biokinetic model for 144Ce in fused aluminosilicate particles inhaled by beagle dogs. The optimized results using SimuSolv were compared to manual fitting results obtained previously using the model simulation software GASP. Also, statistical criteria provided by SimuSolv, such as likelihood function values, were used to help or verify visual model selections

  11. Software for biokinetic modeling of the radiopharmaceuticals used in PET

    International Nuclear Information System (INIS)

    Cordeiro, Leanderson P.; Vieira, Igor F.; Lima, Fernando R.A. de; Vieira, Jose W.

    2013-01-01

    In this work will be presented the current state of software in development to estimate the dose from PET images. Will be given the main biokinetic models used in PET, as well as the general features of a tool in development, whose current features allow quantitative analysis of compartmental models. Further, the tool allows display images 2D PET (in DICOM format) and quantify the intensity map of regions of interest in counts per second coincidence events. The next step is to insert in the same tool to estimate the activity concentration for ROI and estimate dose from PET images static and / or dynamic

  12. Proposal of a new biokinetic model for niobium; Proposta de um novo modelo biocinetico para o niobio

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Roges

    2006-07-01

    There are two niobium isotopes generated in nuclear power plants: 95 Nb and 94 Nb. Workers and members of the public are subjects to intake these radionuclides in accident situation. For dose calculation purpose, it is very important to develop a model that describes in a more realistic way the kinetics of niobium inside of the human body. Presently the model adopted by ICRP (ICRP, 1989) is based on animal studies and describes the behavior of niobium in human being in a simple manner. The new model proposal describes the kinetics of the niobium from the intake into the blood until the excretion, doing this in a more realistic form and considering not only data from animals but data from human beings as well. For this objective, a workers group of a niobium extraction and processing industry exposed to stable niobium (93 Nb) in oxide insoluble form with associated uranium, was monitored for uranium and niobium determination in urinary and fecal excretion, by mass spectrometry. Based in the ratios of the niobium concentration in urinary and faecal excretion of this workers and animal data study, a new biokinetic model for niobium was proposed, with the followings modifications relative to ICRP model: a new compartment that represents muscular tissue; the fractions which are deposited into the compartment are modified; a third component in the retention equation of the bone tissue; introduction of recirculation between organs and blood. The new model was applied for a case of accidental intake and described adequately the experimental data.

  13. A recycling model of the biokinetics of systemic tellurium.

    Science.gov (United States)

    Giussani, Augusto

    2014-11-01

    To develop a compartmental model of the systemic biokinetics of tellurium required for calculating the internal dose and interpreting bioassay measurements after incorporation of radioactive tellurium. The compartmental model for tellurium was developed with the software SAAM II v. 2.0 (©The Epsilon Group, Charlottesville, Virginia, USA). Model parameters were determined on the basis of published retention and excretion data in humans and animals. The model consists of two blood compartments, one compartment each for liver, kidneys, thyroid, four compartments for bone tissues and a generic compartment for the soft tissues. The model predicts a rapid urinary excretion of systemic tellurium: 45% in the first 24 h and 84% after 50 d. Faecal excretion amounts to 0.4% after 3 d and 9% after 50 d. Whole body retention is 55% after one day, and 2.8% after 100 d. These values as well as the retained fractions in the single organs are reasonably consistent with the available human and animal data (studies with swine and guinea pigs). The proposed model gives a realistic description of the available biokinetic data for tellurium and will be adopted by the International Commission on Radiological Protection for applications in internal dosimetry.

  14. The biokinetics of ruthenium in the human body

    International Nuclear Information System (INIS)

    Leggett, Richard Wayne

    2011-01-01

    The biokinetics of ruthenium (Ru) in the human body is of interest due mainly to the potential for occupational or environmental exposure to 106Ru (T1/2 = 373.6 d) and 103Ru (T1/2 = 39.3 d), which typically represent a significant portion of the fission products in a reactor inventory. During reactor operations or nuclear fuel reprocessing these ruthenium isotopes may be present as ruthenium tetroxide (RuO4) vapor, a highly mobile form of ruthenium that has been involved in a number of cases of accidental exposure to 106Ru or 103Ru. This paper summarizes the biokinetic database for ruthenium and proposes a new respiratory model for inhaled RuO4 vapor, a new biokinetic for systemic (absorbed) ruthenium, and material-specific gastrointestinal absorption fractions for ruthenium. The proposed respiratory model for RuO4 differs from the current ICRP model mainly in that it depicts slower clearance of deposited activity from the respiratory tract and lower absorption to blood than depicted in the current ICRP model. The proposed systemic biokinetic model depicts more realistic paths of movement of absorbed ruthenium in the body than the current ICRP model and, in contrast to the present model, a less uniform distribution of systemic activity. Implications of the proposed models with regard to inhalation and ingestion dose coefficients for 106Ru are examined.

  15. Uranium: biokinetics and toxicity

    International Nuclear Information System (INIS)

    Menetrier, F.; Renaud-Salis, V.; Flury-Herard, A.

    2000-01-01

    This report was achieved as a part of a collaboration with the Fuel Cycle Direction. Its aim was to give the state of the art about: the behaviour of uranium in the human organism (biokinetics) after ingestion, its toxicity (mainly renal) and the current regulation about its incorporation. Both in the upstream and in the downstream of the fuel cycle, uranium remains, quantitatively, the first element in the cycle which is, at the present time, temporarily disposed or recycled. Such a considerable quantity of uranium sets the problem of its risk on the health. In the long term, the biosphere may be affected and consequently the public may ingest water or food contaminated with uranium. In this way, radiological and chemical toxicity risk may be activated. This report emphasizes: the necessity of confirming some experimental and epidemiological biokinetic data used or not in the ICRP models. Unsolved questions remain about the gastrointestinal absorption according to chemical form (valency state, mixtures...), mass and individual variations (age, disease) further a chronic ingestion of uranium. It is well established that uranium is mainly deposited in the skeleton and the kidney. But the skeleton kinetics following a chronic ingestion and especially in some diseases has to be more elucidated; the necessity of taking into account uranium at first as a chemical toxic, essentially in the kidney and determining the threshold of functional lesion. In this way, it is important to look for some specific markers; the problem of not considering chemical toxicity of uranium in the texts regulating its incorporation

  16. A generic biokinetic model for predicting the behaviour of the lanthanide elements in the human body

    International Nuclear Information System (INIS)

    Taylor, D.M.; Leggett, R.W.

    2003-01-01

    Information on the biokinetics of the 15 elements of the lanthanide series, 57 La to 71 Lu, is too sparse to permit individual development of meaningful biokinetic models to describe the behaviour of each of the elements in humans. The lanthanides show a regular gradation in chemical properties across the series, and animal studies indicate that this is reflected in regular differences in their deposition in tissues such as the liver and skeleton. These regular differences in chemical and biological behaviour have been utilised to construct a generic lanthanide biokinetic model and to define element-specific parameters for each element in the series. This report describes the use of the available biokinetic data for humans and animals to derive the parameters for each of the elements. (author)

  17. Data file on retention and excretion of inhaled radionuclides calculated using ICRP dosimetric models

    International Nuclear Information System (INIS)

    Ishigure, Nobuhito; Nakano, Takashi; Enomoto, Hiroko; Shimo, Michikuni; Inaba, Jiro

    2000-01-01

    The authors have computed whole-body or a specific organ content and the daily urinary and faecal excretion rate of some selected radionuclides following acute intake by inhalation and ingestion, where the ICRP new respiratory tract model (ICRP Publication 66) and the latest ICRP biokinetic models were applied. The results were compiled in a file of MS Excel. The file was tentatively called MONDAI for reference. MONDAI contains the data for all radionuclides in ICRP Publications 54 and 78 and, in addition, some other radionuclides which are important from the viewpoint of occupational exposure in nuclear industry, research and medicine. They are H-3, P-32, Cr-51, Mn-54, Fe-59, Co-57, Co-58, Co-60, Zn-65, Rb-86, Sr-85, Sr-89, Sr-90, Zr-95, Ru-106, Ag-110m, Sb-124, Sb-125, I-125, I-129, I-131, Cs-134, Cs-137, Ba-140, Ce-141, Ce-144, Hg-203, Ra-226, Ra-228, Th-228, Th-232, U-234, U-235, U-238, Np-237, Pu-238, Pu-239, Pu-240, Am-241, Cm-242, Cm-244 and Cf-252. The day-by-day data up to 1000 days and the data at every 10 days up to 10000 days are presented. The following ICRP default values for the physical characteristics of the radioactive aerosols were used: AMAD=5 micron, geometric SD=2.5, particle density = 3 g/cm 3 , particle shape factor = 1.5. The subject exposed to the aerosols is the ICRP reference worker doing light work: light exercise with the ventilation rate of 1.5 m 3 /h for 5.5 h + sitting with the ventilation rate of 0.54 m 3 /h for 2.5 h. MONDAI was originally made by Version 7.0 of MS Excel for Windows 95, but the file was saved in the form of Ver. 4.0 as well as Ver. 7.0. Therefore, if the user has Ver. 4.0 or an upper version, he can open the file and operate it. With the graph-wizard of MS Excel the user can easily make a diagram for the retention or daily excretion of a radionuclide of interest. The dose coefficient (Sv/Bq intake) of each radionuclide for each absorption type given in ICRP Publication 68 was also written in each sheet. Therefore

  18. Dosimetric applications of the new ICRP lung model

    International Nuclear Information System (INIS)

    James, A.C.

    1994-06-01

    The International Commission on Radiological Protection (ICRP) has adopted a new dosimetric model of the human respiratory tract, to be issued as ICRP Publication 66. This chapter presents a summary of the main measures of the new model. The model is a general update of that in Publication 30, but is significantly broader in scope. It applies explicitly to workers and all members of the public: for inhalation of particles, gases and vapors; evaluation of dose per unit intake or exposure; and interpretation of bioassay data. The approach is fundamentally different from the Publication 30 model which calculates only the average dose to the lungs. The new model takes account of differences in radiosensitivity of respiratory tract tissues, and the wide range of doses they may receive, and calculates specific tissue doses. The model readily incorporates specific information related to the subject (age, physical activity, smoking or health status) or the exposure (aerosol size and chemical form). The application of the new model to calculate equivalent lung dose and effective dose per unit intake is illustrated for several α- and ∂-emitting radionuclides, and the new values obtained are compared with those given by the ICRP Publication 30 lung model

  19. Acute ingestion dosimetry using the ICRP 30 gastrointestinal tract model

    International Nuclear Information System (INIS)

    Cassels, B.M.

    1987-01-01

    This paper examines the gastrointestinal (GI) tract model used for dosimetry as outlined in ICRP30, to allow quick calculations of effective dose equivalents for acute radionuclide ingestion. A computer program has been developed to emulate the GI tract model. The program and associated data files are structured so that the GI tract model parameters can be varied, while the file structure and algorithm for the GI tract model should require minimal modification to allow the same theories that apply in this model to be used for other dosimetric models

  20. Exposure implications for uranium aerosols formed at a new laser enrichment facility: application of the ICRP Respiratory Tract and Systemic Model

    Energy Technology Data Exchange (ETDEWEB)

    Ansorbolo, E.; Hodgson, A.; Stradling, G.N.; Hodgson, S.; Metivier, H.; Henge-Napoli, M.H.; Jarvis, N.S.; Birchall, A

    1998-07-01

    A pilot enrichment facility developed in France employs laser technology. The development of this process has resulted in three different types of aerosols identified as variable mixtures of U{sub metal}+ UO{sub 2} and U{sub 3}O{sub 8}. A procedure is described for assessing intakes and doses after inhalation of these dusts using site and material specific data in conjunction with the most recent ICRP biokinetic models. It is concluded that exposure control could be based on either radiotoxicity or chemical toxicity and that chest monitoring and urine assay could be useful, provided that measurements are made soon after a known acute intake. (author)

  1. The new ICRP respiratory model for radiation protection (ICRP 66) : applications and comparative evaluations; Nuovo modello polmonare della ICRP per radioprotezione (ICRP 66)azioni e confronti con la modellistica precedenteIl

    Energy Technology Data Exchange (ETDEWEB)

    Castellani, C.; Luciani, A. [ENEA, Centro Ricerche Bologna (Italy). Dip. Ambiente

    1996-02-01

    The aim of this report is to present the New ICRP Respiratory Model Tract for Radiological Protection. The model allows considering anatomical and physiological characteristics, giving reference values for children aged 3 months, 1, 5,10, and 15 years for adults; it also takes into account aerosol and gas characteristics. After a general description of the model structure, deposition, clearance and dosimetric models are presented. To compare the new and previous model (ICRP 30), dose coefficients (committed effective dose for unit intake) foe inhalation of radionuclides by workers are calculated considering aerosol granulometries with activity median aerodynamic of 1 and 5 {mu}m, reference values for the respective publications. Dose coefficients and annual limits of intakes concerning respective dose limits (50 and 20 mSv respectively for ICRP 26 and 60) for workers and for members of population in case of dispersion of fission products aerosols, are finally calculated.

  2. Problems of using ICRP models for the population

    International Nuclear Information System (INIS)

    Kaul, A.; Roedler, H.D.

    1987-01-01

    ICRP Publication 30 refers to occupationally exposed adult persons. ICRP does not recommend the use of these data and models for calculating the committed dose equivalent for members of the public from the intake of radionuclides in the environment, with corrections only in respect to organ masses or intake. In its statement from the 1983 meeting in Washington, USA, the ICRP quantitatively assessed those factors which, from the viewpoint of age dependence, influence the limits on intake for the public and the organ dose factors from which these limits are derived. The present paper summarizes the results from these considerations. Additionally, the influence of age dependent weighting factors on the annual limits on intake is examined for selected radionuclides. Modifying factors are derived for body mass, retention, fractional distribution, absorption and age-dependent w T . A procedure is proposed to classify radionuclides and their compounds into individual classes characterized by different modifying factors, in order to apply the dose factors, as calculated for occupational exposure, also to members of the public. The future realization of this type of procedure remains to be further investigated. 24 refs.; 2 tabs

  3. The ratio of ICRP103 to ICRP60 calculated effective doses from CT: Monte Carlo calculations with the ADELAIDE voxel paediatric model and comparisons with published values

    International Nuclear Information System (INIS)

    Caon, Martin

    2013-01-01

    The ADELAIDE voxel model of paediatric anatomy was used with the EGSnrc Monte Carlo code to compare effective dose from computed tomography (CT) calculated with both the ICRP103 and ICRP60 definitions which are different in their tissue weighting factors and in the included tissues. The new tissue weighting factors resulted in a lower effective dose for pelvis CT (than if calculated using ICRP60 tissue weighting factors), by 6.5 % but higher effective doses for all other examinations. ICRP103 calculated effective dose for CT abdomen + pelvis was higher by 4.6 %, for CT abdomen (by 9.5 %), for CT chest + abdomen + pelvis (by 6 %), for CT chest + abdomen (by 9.6 %), for CT chest (by 10.1 %) and for cardiac CT (by 11.5 %). These values, along with published values of effective dose from CT that were calculated for both sets of tissue weighting factors were used to determine single values for the ratio ICRP103:ICRP60 calculated effective doses from CT, for seven CT examinations. The following values for ICRP103:ICRP60 are suggested for use to convert ICRP60 calculated effective dose to ICRP103 calculated effective dose for the following CT examinations: Pelvis CT, 0.75; for abdomen CT, abdomen + pelvis CT, chest + abdomen + pelvis CT, 1.00; for chest + abdomen CT, and for chest CT. 1.15; for cardiac CT 1.25.

  4. ICRP new recommendations. Committee 2's efforts

    International Nuclear Information System (INIS)

    Eckerman, K.F.

    2007-01-01

    The International Commission on Radiological Protection (ICRP) may release new primary radiation protection recommendation in 2007. Committee 2 has underway reviews of the dosimetric and biokinetic models and associated data used in calculating dose coefficients for intakes of radionuclides and exposures to external radiation fields. This paper outlines the work plans of Committee 2 during the current term, 2005-2009, in anticipation of the new primary recommendations. The two task groups of Committee 2 responsible for the computations of dose coefficients, INDOS and DOCAL, are reviewing the models and data used in the computations. INDOS is reviewing the lung model and the biokinetic models that describe the behavior of the radionuclides in the body. DOCAL is reviewing its computational formulations with the objective of harmonizing the formulation with those of nuclear medicine, and developing new computational phantoms representing the adult male and female reference individuals of ICRP Publication 89. In addition, DOCAL will issue a publication on nuclear decay data to replace ICRP Publication 38. While the current efforts are focused on updating the dose coefficients for occupational intakes of radionuclides plans are being formulated to address dose coefficients for external radiation fields which include consideration of high energy fields associated with accelerators and space travel and the updating of dose coefficients for members of the public. (author)

  5. Radiation fields, dosimetry, biokinetics and biophysical models for cancer induction by ionising radiation 1996-1999. Biokinetics and dosimetry of incorporated radionuclides. Final report

    International Nuclear Information System (INIS)

    Roth, P.; Aubineau-Laniece, I.; Bailly-Despiney, I.

    2000-01-01

    The final report 'Biokinetics and Dosimetry of Incorporated Radionuclides' presented here is one part of the 5 individual reports. The work to be carried out within this project is structured into four Work Packages: Workpackage 1 concentrates on ingested radionuclides, considering doses to the GI tract and radionuclide absorption. A major objective is the development of a new dosimetric model of the GI tract, taking account of most recent data on gut transit and dose to sensitive cells. Workpackage 2 seeks to improve and extend biokinetic and dosimetric models for systemic radionuclides. Existing models for adults and children will be extended to other elements and new models will be developed for the embryo and fetus. Workpackage 3 is to improve assessment of localised distribution of dose within tissues at the cellular level for specific examples of Auger emitters and alpha emitting isotopes, in relation to observed effects. The work will include experimental studies of dose/effect relationship and the development of localisation methods. Workpackage 4 concerns the development of computer codes for the new dosimetric models, quality assurance of the models and the calculation of dose coefficients. Formal sensitivity analysis will be used to identify critical areas of model development and to investigate the effects of variability and incertainty in biokinetic parameters. (orig.)

  6. Physiologically based pharmacokinetics model for estimating urinary excretion of short half-life nuclides in nuclear medicine

    International Nuclear Information System (INIS)

    Akahane, K.; Kai, M.; Konishi, E.; Kusama, T.; Aoki, Y.

    1995-01-01

    The biokinetic model in ICRP 53 is used for calculating absorbed dose to each organ of a patient in nuclear medicine. The ICRP model is a simple compartment model based on human data; however, the model cannot produce the biokinetics of radiopharmaceuticals under various physiological conditions. On the other hand, a physiologically based pharmacokinetics model (PBPK model) can describe the flow of radiopharmaceuticals as a compartment model for any physiological conditions theoretically. The PBPK model was applied especially for the kidney-bladder dynamics, and similar results obtained compared with the ICRP model. This suggests the possibility of the PBPK model for predicting the biokinetics of radiopharmaceuticals under various physiological conditions. (Author)

  7. Dosimetric Significance of the ICRP's Updated Guidance and Models, 1989-2003, and Implications for U.S. Federal Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Leggett, R.W.

    2003-09-10

    Over the past two decades the U.S. Environmental Protection Agency (EPA) has issued a series of Federal guidance documents for the purpose of providing the Federal and State agencies with technical information to assist their implementation of radiation protection programs. Currently recommended dose conversion factors, annual limits on intake, and derived air concentrations for intake of radionuclides are tabulated in Federal Guidance Report No. 11 (FGR 11), published in 1988. The tabulations in FGR 11 were based on dosimetric quantities and biokinetic and dosimetric models of the International Commission on Radiological Protection (ICRP) developed for application to occupational exposures. Since the publication of FGR 11 the ICRP has revised some of its dosimetric quantities and its models for workers and has also developed age-specific models and dose conversion factors for intake of radionuclides by members of the public. This report examines the extent of the changes in the inhalation and ingestion dose coefficients of FGR 11 implied by the updated recommendations of the ICRP, both for workers and members of the public.

  8. A quantitative evaluation of multiple biokinetic models using an assembled water phantom: A feasibility study.

    Directory of Open Access Journals (Sweden)

    Da-Ming Yeh

    Full Text Available This study examined the feasibility of quantitatively evaluating multiple biokinetic models and established the validity of the different compartment models using an assembled water phantom. Most commercialized phantoms are made to survey the imaging system since this is essential to increase the diagnostic accuracy for quality assurance. In contrast, few customized phantoms are specifically made to represent multi-compartment biokinetic models. This is because the complicated calculations as defined to solve the biokinetic models and the time-consuming verifications of the obtained solutions are impeded greatly the progress over the past decade. Nevertheless, in this work, five biokinetic models were separately defined by five groups of simultaneous differential equations to obtain the time-dependent radioactive concentration changes inside the water phantom. The water phantom was assembled by seven acrylic boxes in four different sizes, and the boxes were linked to varying combinations of hoses to signify the multiple biokinetic models from the biomedical perspective. The boxes that were connected by hoses were then regarded as a closed water loop with only one infusion and drain. 129.1±24.2 MBq of Tc-99m labeled methylene diphosphonate (MDP solution was thoroughly infused into the water boxes before gamma scanning; then the water was replaced with de-ionized water to simulate the biological removal rate among the boxes. The water was driven by an automatic infusion pump at 6.7 c.c./min, while the biological half-life of the four different-sized boxes (64, 144, 252, and 612 c.c. was 4.8, 10.7, 18.8, and 45.5 min, respectively. The five models of derived time-dependent concentrations for the boxes were estimated either by a self-developed program run in MATLAB or by scanning via a gamma camera facility. Either agreement or disagreement between the practical scanning and the theoretical prediction in five models was thoroughly discussed. The

  9. Incorporation of detailed eye model into polygon-mesh versions of ICRP-110 reference phantoms.

    Science.gov (United States)

    Nguyen, Thang Tat; Yeom, Yeon Soo; Kim, Han Sung; Wang, Zhao Jun; Han, Min Cheol; Kim, Chan Hyeong; Lee, Jai Ki; Zankl, Maria; Petoussi-Henss, Nina; Bolch, Wesley E; Lee, Choonsik; Chung, Beom Sun

    2015-11-21

    The dose coefficients for the eye lens reported in ICRP 2010 Publication 116 were calculated using both a stylized model and the ICRP-110 reference phantoms, according to the type of radiation, energy, and irradiation geometry. To maintain consistency of lens dose assessment, in the present study we incorporated the ICRP-116 detailed eye model into the converted polygon-mesh (PM) version of the ICRP-110 reference phantoms. After the incorporation, the dose coefficients for the eye lens were calculated and compared with those of the ICRP-116 data. The results showed generally a good agreement between the newly calculated lens dose coefficients and the values of ICRP 2010 Publication 116. Significant differences were found for some irradiation cases due mainly to the use of different types of phantoms. Considering that the PM version of the ICRP-110 reference phantoms preserve the original topology of the ICRP-110 reference phantoms, it is believed that the PM version phantoms, along with the detailed eye model, provide more reliable and consistent dose coefficients for the eye lens.

  10. Uncertainty and sensitivity analysis of biokinetic models for radiopharmaceuticals used in nuclear medicine

    International Nuclear Information System (INIS)

    Li, W. B.; Hoeschen, C.

    2010-01-01

    Mathematical models for kinetics of radiopharmaceuticals in humans were developed and are used to estimate the radiation absorbed dose for patients in nuclear medicine by the International Commission on Radiological Protection and the Medical Internal Radiation Dose (MIRD) Committee. However, due to the fact that the residence times used were derived from different subjects, partially even with different ethnic backgrounds, a large variation in the model parameters propagates to a high uncertainty of the dose estimation. In this work, a method was developed for analysing the uncertainty and sensitivity of biokinetic models that are used to calculate the residence times. The biokinetic model of 18 F-FDG (FDG) developed by the MIRD Committee was analysed by this developed method. The sources of uncertainty of all model parameters were evaluated based on the experiments. The Latin hypercube sampling technique was used to sample the parameters for model input. Kinetic modelling of FDG in humans was performed. Sensitivity of model parameters was indicated by combining the model input and output, using regression and partial correlation analysis. The transfer rate parameter of plasma to other tissue fast is the parameter with the greatest influence on the residence time of plasma. Optimisation of biokinetic data acquisition in the clinical practice by exploitation of the sensitivity of model parameters obtained in this study is discussed. (authors)

  11. Comparison in the calculation of committed effective dose using the ICRP 30 and ICRP 60 models for a repeated incorporation by inhalation of I-125

    International Nuclear Information System (INIS)

    Carreno P, A.L.; Cortes C, A.; Alonso V, G.; Serrano P, F.

    2005-01-01

    Presently work, a comparison in the calculation of committed effective dose using the models of the ICRP 30 and those of the ICRP 60 for the analysis of internal dose due to repeated incorporation of I-125 is shown. The estimations of incorporated activity are obtained starting from the proportionate data for an exercise of inter comparison, with which it should be determined the internal dose later on. For to estimate the initial activity incorporated by repeated dose was assumed that this it was given through of multiple individual incorporations which happened in the middle points of the monitoring periods. The results using the models of the ICRP 30 and of the ICRP 60 are compared and the causes of the differences are analyzed. (Author)

  12. The biokinetics of uranium migrating from embedded DU fragments

    International Nuclear Information System (INIS)

    Leggett, R.W.; Pellmar, T.C.

    2003-01-01

    Military uses of depleted uranium (DU) munitions have resulted in casualties with embedded DU fragments. Assessment of radiological or chemical health risks from these fragments requires a model relating urinary U to the rate of migration of U from the fragments, and its accumulation in systemic tissues. A detailed biokinetic model for U has been published by the International Commission on Radiological Protection (ICRP), but its applicability to U migrating from embedded DU fragments is uncertain. Recently, ) conducted a study at the Armed Forces Radiobiology Research Institute (AFRRI) on the redistribution and toxicology of U in rats with implanted DU pellets, simulating embedded fragments. This paper compares the biokinetic data from that study with the behavior of commonly studied forms of U in rats (e.g., intravenously injected U nitrate). The comparisons indicate that the biokinetics of U migrating from embedded DU is similar to that of commonly studied forms of U with regard to long-term accumulation in kidneys, bone, and liver. The results provide limited support for the application of the ICRP's model to persons with embedded DU fragments. Additional information is needed with regard to the short-term behavior of migrating U and its accumulation in lymph nodes, brain, testicles, and other infrequently studied U repositories

  13. Strontium biokinetic model for the pregnant woman and fetus: application to Techa River studies

    International Nuclear Information System (INIS)

    Shagina, N B; Tolstykh, E I; Degteva, M O; Fell, T P; Harrison, J D

    2015-01-01

    A biokinetic model for strontium (Sr) for the pregnant woman and fetus (Sr-PWF model) has been developed for use in the quantification of doses from internal radiation exposures following maternal ingestion of Sr radioisotopes before or during pregnancy. The model relates in particular to the population of the Techa River villages exposed to significant amounts of ingested Sr radioisotopes as a result of releases of liquid radioactive wastes from the Mayak plutonium production facility (Russia) in the early 1950s. The biokinetic model for Sr metabolism in the pregnant woman was based on a biokinetic model for the adult female modified to account for changes in mineral metabolism during pregnancy. The model for non-pregnant females of all ages was developed earlier with the use of extensive data on 90 Sr-body measurements in the Techa Riverside residents. To determine changes in model parameter values to take account of changing mineral metabolism during pregnancy, data from longitudinal studies of calcium homeostasis during human pregnancy were analysed and applied. Exchanges between maternal and fetal circulations and retention in fetal skeleton and soft tissues were modelled as adaptations of previously published models, taking account of data on Sr and calcium (Ca) metabolism obtained in Russia (Southern Urals and Moscow) relating to dietary calcium intakes, calcium contents in maternal and fetal skeletons and strontium transfer to the fetus. The model was validated using independent data on 90 Sr in the fetal skeleton from global fallout as well as unique data on 90 Sr-body burden in mothers and their still-born children for Techa River residents. While the Sr-PWF model has been developed specifically for ingestion of Sr isotopes by Techa River residents, it is also more widely applicable to maternal ingestion of Sr radioisotopes at different times before and during pregnancy and different ages of pregnant women in a general population. (paper)

  14. Critical review of membrane bioreactor models--part 1: biokinetic and filtration models.

    Science.gov (United States)

    Naessens, W; Maere, T; Nopens, I

    2012-10-01

    Membrane bioreactor technology exists for a couple of decades, but has not yet overwhelmed the market due to some serious drawbacks of which operational cost due to fouling is the major contributor. Knowledge buildup and optimisation for such complex systems can significantly benefit from mathematical modelling. In this paper, the vast literature on modelling MBR biokinetics and filtration is critically reviewed. It was found that models cover the wide range of empirical to detailed mechanistic descriptions and have mainly been used for knowledge development and to a lesser extent for system optimisation/control. Moreover, studies are still predominantly performed at lab or pilot scale. Trends are discussed, knowledge gaps identified and interesting routes for further research suggested. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Reliability of Current Biokinetic and Dosimetric Models for Radionuclides: A Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    Leggett, Richard Wayne [ORNL; Eckerman, Keith F [ORNL; Meck, Robert A. [U.S. Nuclear Regulatory Commission

    2008-10-01

    This report describes the results of a pilot study of the reliability of the biokinetic and dosimetric models currently used by the U.S. Nuclear Regulatory Commission (NRC) as predictors of dose per unit internal or external exposure to radionuclides. The study examines the feasibility of critically evaluating the accuracy of these models for a comprehensive set of radionuclides of concern to the NRC. Each critical evaluation would include: identification of discrepancies between the models and current databases; characterization of uncertainties in model predictions of dose per unit intake or unit external exposure; characterization of variability in dose per unit intake or unit external exposure; and evaluation of prospects for development of more accurate models. Uncertainty refers here to the level of knowledge of a central value for a population, and variability refers to quantitative differences between different members of a population. This pilot study provides a critical assessment of models for selected radionuclides representing different levels of knowledge of dose per unit exposure. The main conclusions of this study are as follows: (1) To optimize the use of available NRC resources, the full study should focus on radionuclides most frequently encountered in the workplace or environment. A list of 50 radionuclides is proposed. (2) The reliability of a dose coefficient for inhalation or ingestion of a radionuclide (i.e., an estimate of dose per unit intake) may depend strongly on the specific application. Multiple characterizations of the uncertainty in a dose coefficient for inhalation or ingestion of a radionuclide may be needed for different forms of the radionuclide and different levels of information of that form available to the dose analyst. (3) A meaningful characterization of variability in dose per unit intake of a radionuclide requires detailed information on the biokinetics of the radionuclide and hence is not feasible for many infrequently

  16. A biokinetic model of inhaled Cm compounds in dogs: Application to human exposure data

    International Nuclear Information System (INIS)

    Guilmette, R.A.; Mewhinney, J.A.

    1989-01-01

    Curium isotopes are major by-products in irradiated nuclear reactor fuel and comprise a significant fraction of the alpha-emitting radionuclide inventory. Although little use is currently being made of purified Cm sources, such usage is possible if reprocessing of spent fuel becomes feasible. Because little information is available on the biokinetics and dosimetry of inhaled Cm compounds, a study was conducted in which adult beagle dogs received a single inhalation exposure to either a monodisperse aerosol of 244Cm2O3 (1.4 micron activity median aerodynamic diameter [AMAD]; sigma g = 1.16) or a polydisperse aerosol of 244Cm (NO3)3 (1.1 micron AMAD; sigma g = 1.74). At times ranging from 4 h to 2 y after exposure, animals were sacrificed and their tissues analyzed for Cm content. The data describing the uptake and retention of 244Cm in the different organs and tissues and the measured rates of excretion of these dogs formed the basis on which a biokinetic model of Cm metabolism was constructed. This Cm model was based on a previously published model of the biokinetics of 241Am that was shown to be applicable to data from human cases of inhalation exposure to 241Am aerosols. This Cm model was found to be adequate to describe the biological distribution of Cm in dogs and was also applied to the sparse data from humans. Reasonable agreement was found between the model predictions for lung retention of Cm and for urinary excretion patterns in humans

  17. Adaptation of the ICRP models for the Techa River populations to estimate in utero and postnatal haemopoietic tissue doses from ingested strontium isotopes

    International Nuclear Information System (INIS)

    Shagina, Natalia; Tolstykh, Evgenia; Degteva, Marina; Fell, Tim; Harrison, John

    2008-01-01

    Full text: Reliable estimation of tissue doses for exposed individuals is very important in epidemiological studies. Long-term cohort studies of the Techa River populations exposed in the early 1950s due to releases of liquid radioactive wastes from the Mayak plutonium production facility (Southern Urals, Russia) are unique in allowing the quantification of risks from low-level chronic exposure of the general population and providing information on risks for persons exposed in utero. Strontium isotopes were the most important contributors to haemopoietic tissue doses for people living in the riverside settlements. Large-scale monitoring of the exposed population has provided a comprehensive database, including post mortem and in vivo measurements of 90 Sr in bones and whole body, for use in the estimation of doses. The International Commission on Radiological Protection (ICRP) has published biokinetic and dosimetric models for the calculation of doses to members of the public, including doses from in utero exposures and from intakes with breast milk. However, the ICRP models as applied to Sr required modification to provide best estimates of doses to Techa River residents. Adaptations were made to the ICRP model for Sr in children and adults to take account of population-specific features relating to bone mineral turnover and to model age and gender differences in strontium retention. Refinements in the ICRP model for Sr uptake and retention in the fetus were made to improve the treatment of discrimination against Sr, relative to Ca, in transfer from maternal to foetal blood and to take account of population-specific data on the calcium content of the maternal and fetal skeleton. Modification of the ICRP model for Sr transfer in breast-milk included adaptations relating to changes in maternal mineral metabolism during lactation and consideration of population-specific features of breast feeding in the rural population. The improved models were successfully

  18. Performance analysis of numeric solutions applied to biokinetics of radionuclides

    International Nuclear Information System (INIS)

    Mingatos, Danielle dos Santos; Bevilacqua, Joyce da Silva

    2013-01-01

    Biokinetics models for radionuclides applied to dosimetry problems are constantly reviewed by ICRP. The radionuclide trajectory could be represented by compartmental models, assuming constant transfer rates between compartments. A better understanding of physiological or biochemical phenomena, improve the comprehension of radionuclide behavior in the human body and, in general, more complex compartmental models are proposed, increasing the difficulty of obtaining the analytical solution for the system of first order differential equations. Even with constant transfer rates numerical solutions must be carefully implemented because of almost singular characteristic of the matrix of coefficients. In this work we compare numerical methods with different strategies for ICRP-78 models for Thorium-228 and Uranium-234. The impact of uncertainty in the parameters of the equations is also estimated for local and global truncation errors. (author)

  19. A physiological skeletal model for radionuclide and stable element biokinetics in children and adults

    International Nuclear Information System (INIS)

    Richardson, R.B.

    2010-01-01

    A physiological skeletal model (PSM) is described that represents the skeletal uptake, retention and clearance of both bone-surface-seeking and bone-volume-seeking radionuclides and stable elements. A key objective of the PSM is to model the higher skeletal growth and bone turnover in infants and children (compared to adults) in order to to account for their greater uptake and cancer risk from bone-seeking contaminants such as lead and plutonium. The PSM is a compartmental model that allows for the incorporation of organic and inorganic material in the bone volume via quiescent bone surfaces, forming bone surfaces and the lacuno-canaliculi system. The model uniquely incorporates a tertiary phase of mineralization via bone fluids. The PSM's structural concepts and biokinetic parameters - such as realistic mass transfers, organ and tissue masses, and bone remodelling half times - are selected mainly on the basis of physiological and anatomical criteria. For brevity, model parameter values or evaluated for adults only. The PSM is an improvement on existing skeletal models that are based more on compartment structures and pathways that rendered good fits to biokinetic data rather than on being anatomically and physiologically accurate. (author)

  20. Identification of Biokinetic Models Using the Concept of Extents.

    Science.gov (United States)

    Mašić, Alma; Srinivasan, Sriniketh; Billeter, Julien; Bonvin, Dominique; Villez, Kris

    2017-07-05

    The development of a wide array of process technologies to enable the shift from conventional biological wastewater treatment processes to resource recovery systems is matched by an increasing demand for predictive capabilities. Mathematical models are excellent tools to meet this demand. However, obtaining reliable and fit-for-purpose models remains a cumbersome task due to the inherent complexity of biological wastewater treatment processes. In this work, we present a first study in the context of environmental biotechnology that adopts and explores the use of extents as a way to simplify and streamline the dynamic process modeling task. In addition, the extent-based modeling strategy is enhanced by optimal accounting for nonlinear algebraic equilibria and nonlinear measurement equations. Finally, a thorough discussion of our results explains the benefits of extent-based modeling and its potential to turn environmental process modeling into a highly automated task.

  1. Evaluating Alternate Biokinetic Models for Trace Pollutant Cometabolism

    DEFF Research Database (Denmark)

    Liu, Li; Binning, Philip John; Smets, Barth F.

    2015-01-01

    Mathematical models of cometabolic biodegradation kinetics can improve our understanding of the relevant microbial reactions and allow us to design in situ or in-reactor applications of cometabolic bioremediation. A variety of models are available, but their ability to describe experimental data...

  2. An empirical model describing the postnatal growth of organs in ICRP reference humans: Pt. 1

    International Nuclear Information System (INIS)

    Walker, J.T.

    1991-01-01

    An empirical model is presented for describing the postnatal mass growth of lungs in ICRP reference humans. A combined exponential and logistic function containing six parameters is fitted to ICRP 23 lung data using a weighted non-linear least squares technique. The results indicate that the model delineates the data well. Further analysis shows that reference male lungs attain a higher pubertal peak velocity (PPV) and adult mass size than female lungs, although the latter reach their PPV and adult mass size first. Furthermore, the model shows that lung growth rates in infants are two to three orders of magnitude higher than those in mature adults. This finding is important because of the possible association between higher radiation risks in infants' organs that have faster cell turnover rates compared to mature adult organs. The significance of the model for ICRP dosimetric purposes will be discussed. (author)

  3. Alkaline earth metabolism: the ICRP model reformulated as a semi-Markov model

    International Nuclear Information System (INIS)

    Marcus, A.H.; Becker, A.

    1980-01-01

    Compartmental models are reformulated so as to allow power function or mixed exponential-power function residence time distributions in bone compartments. Numerical results reported for retention functions of calcium, strontium, barium and radium are in reasonable agreement with the ICRP models except at shorter time scales. The number of visits to bone is also sensitive to short-term elimination parameters, so that recycling corrections may require much more detailed analyses at both long and short time-scales. (author)

  4. A multiple-compartment model for biokinetics studies in plants

    International Nuclear Information System (INIS)

    Garcia, Fermin; Pietrobron, Flavio; Fonseca, Agnes M.F.; Mol, Anderson W.; Rodriguez, Oscar; Guzman, Fernando

    2001-01-01

    In the present work is used the system of linear equations based in the general Assimakopoulos's GMCM model , for the development of a new method that will determine the flow's parameters and transfer coefficients in plants. The need of mathematical models to quantify the penetration of a trace substance in animals and plants, has often been stressed in the literature. Usually, in radiological environment studies, it is used the mean value of contaminant concentrations on whole or edible part plant body, without taking in account vegetable physiology regularities. In this work concepts and mathematical formulation of a Vegetable Multi-compartment Model (VMCM), taking into account the plant's physiology regularities is presented. The model based in general ideas of the GMCM , and statistical Square Minimum Method STATFLUX is proposed to use in inverse sense: the experimental time dependence of concentration in each compartment, should be input, and the parameters should be determined from this data in a statistical approach. The case of Uranium metabolism is discussed. (author)

  5. Comparison of the respiratory tract models of ICRP and US EPA

    International Nuclear Information System (INIS)

    Wu Tao

    2000-01-01

    An index for the integral characterization of risk is necessary for improving risk management, comparing the effects of various practices on the environment and keeping risk as low as reasonably achievable while allowing economic development. Public health risk has been used as an index to compare and combine the risks from the presence of a variety of contaminants. In 1994, International Commission on Radiological Protection published the Publication 66 'Human Respiratory Tract Model for Radiological Protection'. Meanwhile US EPA published 'Methods for Derivation of Inhalation Reference Concentrations and Application of Inhalation Dosimetry'. Basically the concept of Reference Concentration (RfC) is similar to that of DAC used in radiation protection. Both of them are derived from the deposited amount of interested contaminants in the respiratory tract. In an attempt to assess the public health risk by combining the ICRP model and the deposited amount corresponding to values of RfC, the main application, especially the fractional deposition, of the respiratory tract model of US EPA is compared with the new respiratory tract model of ICRP. For normal nose breather, when the AMADs of monodisperse aerosol are 0.5 η m, 1 η m, 2 η m, 3 η m, 5 η m, 7 η m and 10 η m, minute volume is 1.2m 3 /h (20L/mim), the corresponding total fractional depositions calculated by the model of the US EPA are 0.33, 0.50, 0.72, 0.85, 0.95, 0.97 and 0.93. With the same condition, the total fractional deposition calculated by the ICRP model is 0.35, 0.51, 0.70, 0.78, 0.82, 0.81 and 0.77. For polydisperse aerosol with default values of ICRP for occupational and environmental exposures, the fractional depositions calculated by US EPA model are 0.82 and 0.50 while that by ICRP are 0.82 and 0.47. In conclusion, (1) The ICRP model is more accurate than the US EPA model and has a wider application. (2) For monodisperse aerosol, when the AMAD of aerosol is less than 3 η m there is no

  6. Resolutions of ICRP models with BIOKMOD: Application for the bioassays evaluation

    International Nuclear Information System (INIS)

    Sanchez, G.

    2005-01-01

    Biokmod is a tool box developed using Mathematic for solving compartmental modes. It gives analytic and numeric solutions. Biokmod solves the current ICRP models including Acute, constant, continuous variable, multi-inputs and random intakes. All parameters (deposition factors, rate transfer coefficients, fractional rate of absorption, etc.) can be modified by users. It can be also applied for evaluating unknown intakes fitting bioassay experimental data and for evacuating uncertainties in the ICRP models. There is a web version (BiokmodWeb) at http://www3.enusa.es//webMathematica/public/biokmode.html. In this article we describe the application of Biokmod for evaluating Bioassays. (Author) 8 refs

  7. Survey of the ICRP 103 detriment-model

    International Nuclear Information System (INIS)

    Emami, S.; Buermeyer, J.; Spruck, K.; Breckow, J.

    2016-01-01

    The detriment of ICRP 103 is roughly defined as the product of the (organ specific) risk coefficient and the ''damage'' that may be associated with a (organ specific) cancer or hereditary effect, respectively. This is to indicate a weighted risk according to the radiation sensitivity of the different organs and the severity of damage that may possibly arise. Whereas the risk coefficients refer to radiation exposure parameters, the scale or degree of damage is independent of these parameters. The radiation independent parameters are the lethality, the loss of quality of life and the reduced life expectancy, which are considered as quantities associated with the severity of disease or damage, respectively. These parameters may change gradually, on the one hand possibly due to an increase of cancer becoming a common disease within the population. On the other hand, possibly to a decrease of cancer due to the progress in medical diagnostics and treatments that allow patients to survive or at least maintain a higher life quality standard. The damage and therefore the detriment appears to be mostly affected by the lethality. The lethality is the quotient of mortality to incidence. The investigation of the detriment presented in this paper focuses on the influence of the lethality on the detriment from 1980-2012 in Germany and USA.

  8. Bayesian model selection validates a biokinetic model for zirconium processing in humans

    Science.gov (United States)

    2012-01-01

    Background In radiation protection, biokinetic models for zirconium processing are of crucial importance in dose estimation and further risk analysis for humans exposed to this radioactive substance. They provide limiting values of detrimental effects and build the basis for applications in internal dosimetry, the prediction for radioactive zirconium retention in various organs as well as retrospective dosimetry. Multi-compartmental models are the tool of choice for simulating the processing of zirconium. Although easily interpretable, determining the exact compartment structure and interaction mechanisms is generally daunting. In the context of observing the dynamics of multiple compartments, Bayesian methods provide efficient tools for model inference and selection. Results We are the first to apply a Markov chain Monte Carlo approach to compute Bayes factors for the evaluation of two competing models for zirconium processing in the human body after ingestion. Based on in vivo measurements of human plasma and urine levels we were able to show that a recently published model is superior to the standard model of the International Commission on Radiological Protection. The Bayes factors were estimated by means of the numerically stable thermodynamic integration in combination with a recently developed copula-based Metropolis-Hastings sampler. Conclusions In contrast to the standard model the novel model predicts lower accretion of zirconium in bones. This results in lower levels of noxious doses for exposed individuals. Moreover, the Bayesian approach allows for retrospective dose assessment, including credible intervals for the initially ingested zirconium, in a significantly more reliable fashion than previously possible. All methods presented here are readily applicable to many modeling tasks in systems biology. PMID:22863152

  9. Comparison in the calculation of committed effective dose using the ICRP 30 and ICRP 60 models for a repeated incorporation by inhalation of I-125; Comparacion en el calculo de la dosis efectiva comprometida usando los modelos del ICRP 30 y del ICRP 60 para una incorporacion repetida por inhalacion de I-125

    Energy Technology Data Exchange (ETDEWEB)

    Carreno P, A.L.; Cortes C, A. [CNSNS, Dr. Barragan 779, Col. Narvarte, Mexico D.F. (Mexico); Alonso V, G.; Serrano P, F. [IPN, Edificio de Fisica Avanzada Zacatenco, 07300 Mexico D.F. (Mexico)

    2005-07-01

    Presently work, a comparison in the calculation of committed effective dose using the models of the ICRP 30 and those of the ICRP 60 for the analysis of internal dose due to repeated incorporation of I-125 is shown. The estimations of incorporated activity are obtained starting from the proportionate data for an exercise of inter comparison, with which it should be determined the internal dose later on. For to estimate the initial activity incorporated by repeated dose was assumed that this it was given through of multiple individual incorporations which happened in the middle points of the monitoring periods. The results using the models of the ICRP 30 and of the ICRP 60 are compared and the causes of the differences are analyzed. (Author)

  10. LUDEP 1. 0, a personal computer program to implement the new ICRP respiratory tract model

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, N.S.; Birchall, A. (National Radiological Protection Board, Chilton (United Kingdom))

    1994-01-01

    The International Commission on Radiological Protection has recently approved a new model of the human respiratory tract. This model has been designed to represent realistically the deposition and biokinetic behaviour of inhaled radionuclides, and to calculate doses to the respiratory tract. In order to examine the practical application and radiological implications of the new model, a Personal Computer program has been developed. LUDEP 1.0 is a user-friendly program for the IBM-compatible PC which enables the user to calculate doses to the respiratory tract and to other organs. (author).

  11. The ICRP task group respiratory tract model - an age-dependent dosimetric model for general application

    International Nuclear Information System (INIS)

    Bailey, M.R.; Birchall, A.

    1992-01-01

    The ICRP Task Group on Human Respiratory Tract Models for Radiological Protection has developed a revised dosimetric model for the respiratory tract. Papers outlining the model, and describing each aspect of it were presented at the Third International Workshop on Respiratory Tract Dosimetry (Albuquerque 1-3 July 1990), the Proceedings of which were recently published in Radiation Protection Dosimetry Volume 38 Nos 1-3 (1991). Since the model had not changed substantially since the Workshop at Albuquerque, only a summary of the paper presented at Schloss Elmau is included in these Proceedings. (author)

  12. Estimation of parameters biokinetics from the resolution of a model compartment for I-131. Application to a patient with thyroid carcinoma hemodialysis

    International Nuclear Information System (INIS)

    Garcia, R.; Jimenez Feltstrom, D.; Luis dimon, F. J.; Sanchez Carmona, G.; Herrador Cordoba, M.

    2013-01-01

    This work aims to define a biokinetic model for the I-131, and solve it for different conditions of the patient or person affected (normal, with cancer of the thyroid or hyperthyroid). Solve the model in the case of a patient treated with I-131 for ablation of thyroid remnants with undergoing renal insufficiency and hemodialysis . Get the parameters Biokinetic this model for different situations. (Author)

  13. Revised dose limits and new respiratory tract model and their implications for annual limits of intake of radioactive materials - A review of recent ICRP publications

    International Nuclear Information System (INIS)

    Schlesinger, T.; Silverman, I.; Shapira, M.

    1996-01-01

    Ionizing radiation may cause immediate and/or delayed biological damages to the body of the exposed person and/or his/her progeny. The exposure may be caused by an external source or may arise due to internal contamination by a radioactive material. In order to prevent such exposure, or to reduce the probability that it will occur, national authorities and international organizations that are engaged in radiation safety and protection have set limits for the exposure to ionizing radiation from either source. The sensitivity of the body to ionizing radiation usually decreases with age. For this reason and due to the limited possibilities to control the exposure of the general public, different limits have been set for for occupational exposure and for the exposure of members of the public of different age groups. The general principles of these limits and guidelines for their calculations are set by the International Commission on Radiological Protection (ICRP) and published in the Annals of the ICRP. The basic philosophy of the Commission, which includes the principles of justification, optimization and dose limits, the basic radiobiological models, and the distinction between stochastic and non-stochastic effects has been presented in its publication no. 26 . Based on this philosophy, the Commission issued between 1979 and 1988 a series of publications followed by annexes and addenda known as publication no. 30 . This series presented models describing the metabolism of radioactive materials which enter the body by inhalation and ingestion, the transfer of such materials from the respiratory tract and the gastrointestinal tract to the blood, and from there to the body organs and the excretion of the material from the body. This series presented also values for biokinetic parameters of these systems and transfer paths, and methods for calculating limits on intake which ensure that the exposure from internal contamination will not exceed the dose limits set by the

  14. Revised dose limits and new respiratory tract model and their implications for annual limits of intake of radioactive materials - A review of recent ICRP publications

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, T; Silverman, I; Shapira, M [Israel Atomic Energy Commission, Yavne (Israel). Soreq Nuclear Research Center

    1996-12-01

    Ionizing radiation may cause immediate and/or delayed biological damages to the body of the exposed person and/or his/her progeny. The exposure may be caused by an external source or may arise due to internal contamination by a radioactive material. To prevent such exposure, or to reduce the probability that it will occur, national authorities and international organizations engaged in radiation safety and protection have set limits for the exposure to ionizing radiation from either source. The sensitivity of the body to ionizing radiation usually decreases with age. For this reason and due to the limited possibilities to control the exposure of the general public, different limits have been set for for occupational exposure and for the exposure of members of the public of different age groups. The general principles of these limits and guidelines for their calculations are set by the International Commission on Radiological Protection (ICRP) and published in the Annals of the ICRP. The basic philosophy of the Commission, which includes the principles of justification, optimization and dose limits, the basic radiobiological models, and the distinction between stochastic and non-stochastic effects has been presented in its publication no. 26. Based on this philosophy, the Commission issued between 1979 and 1988 a series of publications followed by annexes and addenda known as publication no. 30. This series presented models describing the metabolism of radioactive materials which enter the body by inhalation and ingestion, the transfer of such materials from the respiratory tract and the gastrointestinal tract to the blood, and from there to the body organs and the excretion of the material from the body. This series presented also values for biokinetic parameters of these systems and transfer paths, and methods for calculating limits on intake which ensure that the exposure from internal contamination will not exceed the dose limits set.

  15. Calibration of hydrodynamic behavior and biokinetics for TOC removal modeling in biofilm reactors under different hydraulic conditions.

    Science.gov (United States)

    Zeng, Ming; Soric, Audrey; Roche, Nicolas

    2013-09-01

    In this study, total organic carbon (TOC) biodegradation was simulated by GPS-X software in biofilm reactors with carriers of plastic rings and glass beads under different hydraulic conditions. Hydrodynamic model by retention time distribution and biokinetic measurement by in-situ batch test served as two significant parts of model calibration. Experimental results showed that TOC removal efficiency was stable in both media due to the enough height of column, although the actual hydraulic volume changed during the variation of hydraulic condition. Simulated TOC removal efficiencies were close to experimental ones with low theil inequality coefficient values (below 0.15). Compared with glass beads, more TOC was removed in the filter with plastic rings due to the larger actual hydraulic volume and lower half saturation coefficient in spite of its lower maximum specific growth rate of biofilm, which highlighted the importance of calibrating hydrodynamic behavior and biokinetics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Intercomparison and biokinetic model validation of radionuclide intake assessment. Report of a co-ordinated research project. 1996-1998

    International Nuclear Information System (INIS)

    1999-03-01

    This TECDOC presents the results of a Co-ordinated Research Project (CRP) on Intercomparison and Biokinetic Model Validation of Radionuclide Intake Assessment, including the conclusions of a Research Co-ordination Meeting held from 6 to 8 July 1998. The present CRP on Intercomparison and Biokinetic Model Validation of Radionuclide Intake Assessment is part of the activities of the IAEA's Occupational Protection programme. The objective of this programme is to promote an internationally harmonized approach for optimizing occupational radiation protection through: the development of guides, within the IAEA's activities for establishing standards for radiation protection, for restricting radiation exposures in the workplace and for applying current occupational radiation protection techniques; and the promotion of application of these guidelines

  17. Quantitative analysis of multiple biokinetic models using a dynamic water phantom: A feasibility study

    Science.gov (United States)

    Chiang, Fu-Tsai; Li, Pei-Jung; Chung, Shih-Ping; Pan, Lung-Fa; Pan, Lung-Kwang

    2016-01-01

    ABSTRACT This study analyzed multiple biokinetic models using a dynamic water phantom. The phantom was custom-made with acrylic materials to model metabolic mechanisms in the human body. It had 4 spherical chambers of different sizes, connected by 8 ditches to form a complex and adjustable water loop. One infusion and drain pole connected the chambers to an auxiliary silicon-based hose, respectively. The radio-active compound solution (TC-99m-MDP labeled) formed a sealed and static water loop inside the phantom. As clean feed water was infused to replace the original solution, the system mimicked metabolic mechanisms for data acquisition. Five cases with different water loop settings were tested and analyzed, with case settings changed by controlling valve poles located in the ditches. The phantom could also be changed from model A to model B by transferring its vertical configuration. The phantom was surveyed with a clinical gamma camera to determine the time-dependent intensity of every chamber. The recorded counts per pixel in each chamber were analyzed and normalized to compare with theoretical estimations from the MATLAB program. Every preset case was represented by uniquely defined, time-dependent, simultaneous differential equations, and a corresponding MATLAB program optimized the solutions by comparing theoretical calculations and practical measurements. A dimensionless agreement (AT) index was recommended to evaluate the comparison in each case. ATs varied from 5.6 to 48.7 over the 5 cases, indicating that this work presented an acceptable feasibility study. PMID:27286096

  18. Practical application of the new ICRP Human Respiratory Tract Model (invited paper)

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, M.R.; Guilmette, R.A.; Jarvis, N.S.; Roy, M

    1998-07-01

    The ICRP Publication 66 Human Respiratory Tract Model (HRTM) has been applied to calculate general-purpose dose coefficients using default values of parameters relating to the material and the subjects. The ICRP Task Group on Internal Dosimetry is developing a 'Technical Document' giving guidance on application of the HRTM in situations where using specific information can improve dose assessment. It will include an analysis of the sensitivity of doses and bioassay quantities, lung retention and excretion rates, to relevant parameter values. Guidance will be given on characterising and sampling radioactive aerosols and on determining absorption rates. Examples will be given illustrating application of the HRTM in a wide range of situations. This paper provides a selective summary of the document at its current stage of development, with emphasis on determining absorption rates. (author)

  19. An image-based skeletal tissue model for the ICRP reference newborn

    Energy Technology Data Exchange (ETDEWEB)

    Pafundi, Deanna; Lee, Choonsik; Bolch, Wesley [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL (United States); Watchman, Christopher; Bourke, Vincent [Department of Radiation Oncology, University of Arizona, Tucson, AZ (United States); Aris, John [Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL (United States); Shagina, Natalia [Urals Research Center for Radiation Medicine, Chelyabinsk (Russian Federation); Harrison, John; Fell, Tim [Radiation Protection Division, Health Protection Agency, Chilton (United Kingdom)], E-mail: wbolch@ufl.edu

    2009-07-21

    Hybrid phantoms represent a third generation of computational models of human anatomy needed for dose assessment in both external and internal radiation exposures. Recently, we presented the first whole-body hybrid phantom of the ICRP reference newborn with a skeleton constructed from both non-uniform rational B-spline and polygon-mesh surfaces (Lee et al 2007 Phys. Med. Biol. 52 3309-33). The skeleton in that model included regions of cartilage and fibrous connective tissue, with the remainder given as a homogenous mixture of cortical and trabecular bone, active marrow and miscellaneous skeletal tissues. In the present study, we present a comprehensive skeletal tissue model of the ICRP reference newborn to permit a heterogeneous representation of the skeleton in that hybrid phantom set-both male and female-that explicitly includes a delineation of cortical bone so that marrow shielding effects are correctly modeled for low-energy photons incident upon the newborn skeleton. Data sources for the tissue model were threefold. First, skeletal site-dependent volumes of homogeneous bone were obtained from whole-cadaver CT image analyses. Second, selected newborn bone specimens were acquired at autopsy and subjected to micro-CT image analysis to derive model parameters of the marrow cavity and bone trabecular 3D microarchitecture. Third, data given in ICRP Publications 70 and 89 were selected to match reference values on total skeletal tissue mass. Active marrow distributions were found to be in reasonable agreement with those given previously by the ICRP. However, significant differences were seen in total skeletal and site-specific masses of trabecular and cortical bone between the current and ICRP newborn skeletal tissue models. The latter utilizes an age-independent ratio of 80%/20% cortical and trabecular bone for the reference newborn. In the current study, a ratio closer to 40%/60% is used based upon newborn CT and micro-CT skeletal image analyses. These changes in

  20. Radon dosimetry for workers: ICRP's approach

    International Nuclear Information System (INIS)

    Marsh, James W.; Laurier, Dominique; Tirmarche, Margot

    2017-01-01

    The International Commission on Radiological Protection (ICRP) has recently published two reports on radon exposure; Publication 115 on lung cancer risks from radon and radon progeny and Publication 126 on radiological protection against radon exposure. A specific graded approach for the control of radon in workplaces is recommended where a dose assessment is required in certain situations. In its forthcoming publication on Occupational Intakes of Radionuclides (OIR) document, Part 3, effective dose coefficients for radon and thoron will be provided. These will be calculated using ICRP reference biokinetic and dosimetric models. Sufficient information and dosimetric data will be given so that site-specific dose coefficients can be calculated based on measured aerosol parameter values. However, ICRP will recommend a single dose coefficient of 12 mSv per working level month (WLM) for inhaled radon progeny to be used in most circumstances. This chosen reference value was based on both dosimetry and epidemiological data. In this paper, the application and use of dose coefficients for workplaces are discussed including the reasons for the choice of the reference value. Preliminary results of dose calculations for indoor workplaces and mines are presented. The paper also briefly describes the general approach for the management of radon exposure in workplaces based both on ICRP recommendations and the European directive (2013/59/EURATOM). (authors)

  1. Modeling Aspects of Activated Sludge Processes Part l l: Mathematical Process Modeling and Biokinetics of Activated Sludge Processes

    Energy Technology Data Exchange (ETDEWEB)

    AbdElHaleem, H S [Cairo Univ.-CivlI Eng. Dept., Giza (Egypt); EI-Ahwany, A H [CairoUlmrsity- Faculty ofEngincering - Chemical Engineering Department, Giza (Egypt); Ibrahim, H I [Helwan University- Faculty of Engineering - Biomedical Engineering Department, Helwan (Egypt); Ibrahim, G [Menofia University- Faculty of Engineering Sbebin EI Kom- Basic Eng. Sc. Dept., Menofia (Egypt)

    2004-07-01

    Mathematical process modeling and biokinetics of activated sludge process were reviewed considering different types of models. It has been evaluated the task group models of ASMI. and 2, and 3 versioned by Henze et al considering the conditions of each model and the different processes of which every model consists. It is revealed that ASMI contains some defects avoided in ASM3. Relied on homogeneity, Models can be classified into homogenous models characterized by taking the activated sludge process as one phase. In this type of models, the internal mass transfer inside the floes was neglected.. Hence, the kinetic parameter produces can be considered inaccurate. The other type of models is the heterogeneous model This type considers the mass transfer operations in addition to the biochemical reaction processes; hence, the resulted kinetic parameters can be considered more accurate than that of homogenous type.

  2. Modeling Aspects of Activated Sludge Processes Part l l: Mathematical Process Modeling and Biokinetics of Activated Sludge Processes

    International Nuclear Information System (INIS)

    AbdElHaleem, H.S.; EI-Ahwany, A. H.; Ibrahim, H.I.; Ibrahim, G.

    2004-01-01

    Mathematical process modeling and biokinetics of activated sludge process were reviewed considering different types of models. It has been evaluated the task group models of ASMI. and 2, and 3 versioned by Henze et al considering the conditions of each model and the different processes of which every model consists. It is revealed that ASMI contains some defects avoided in ASM3. Relied on homogeneity, Models can be classified into homogenous models characterized by taking the activated sludge process as one phase. In this type of models, the internal mass transfer inside the floes was neglected.. Hence, the kinetic parameter produces can be considered inaccurate. The other type of models is the heterogeneous model This type considers the mass transfer operations in addition to the biochemical reaction processes; hence, the resulted kinetic parameters can be considered more accurate than that of homogenous type

  3. Comparison of old and new ICRP models for respiratory tract dosimetry

    International Nuclear Information System (INIS)

    Boecker, B.B.

    1993-01-01

    This paper examines the historical development and application of respiratory tract dosimetry models by the International Commission for Radiological Protection, ICRP, for health protection from inhaled radioactive aerosols. Three different models are discussed, those that were included in ICRP recommendations published in 1960 and 1979, and the new ICRP Publication 66. Basic features of these models are compared and contrasted. These features include model structure, sites and frequencies of particle deposition, processes and rates of clearance of the deposited material from the respiratory tract, and consideration of the parameters involved in these processes and how various factors can influence these parameters. All three models lead to the calculation of absorbed radiation doses with differing degrees of regional and local specificity. These calculations are achieved using different tools ranging from quick hand calculations to sophisticated computerized modeling approaches. A side-by-side review of these models indicates several important trends in respiratory tract dosimetry models, the most obvious of which is the increased complexity of each new model over the past 30+ years. These increases reflect both the increasing size of the knowledge base derived from studies in laboratory animals and in human subjects and the need for models more broadly applicable for both occupational and environmental exposures. It is likely that future research will be directed to those key aspects of the new model having the largest uncertainties. The detailed design of the new model and its associated software provide excellent means of identifying useful research areas and using the resulting new information in organized and productive ways

  4. Progress in lung modelling by the ICRP Task Group

    International Nuclear Information System (INIS)

    James, A.C.; Birchall, A.

    1989-01-01

    The Task Group has reviewed the data on: (a) morphology and physiology of the human respiratory tract; (b) inspirability of aerosols and their deposition in anatomical regions as functions of respiratory parameters; (c) clearance of particles within and from the respiratory tract; (d) absorption of different materials into the blood in humans and in animals. The Task Group proposes a new model which predicts the deposition, retention and systemic uptake of materials, enabling doses absorbed by different respiratory tissues and other body organs to be evaluated. In the proposed model, clearance is described in terms of competition between the processes moving particles to the oropharynx or to lymph nodes and that of absorption into the blood. From studies with human subjects, characteristic rates and pathways are defined to represent mechanical clearance of particles from each region, which do not depend on the material. Conversely, the absorption rate is determined solely by the material: it is assumed to be the same in all parts of the respiratory tract and in other animal species. For several of the radiologically important forms of actinides, absorption rates can be derived from animal experiments, or, in some cases, directly from human data. Otherwise, default values are used, based on the current D, W and Y classification system. (author)

  5. Voxel-based models representing the male and female ICRP reference adult - the skeleton

    International Nuclear Information System (INIS)

    Zankl, M.; Eckerman, K.F.; Bolch, W.E.

    2007-01-01

    For the forthcoming update of organ dose conversion coefficients, the International Commission on Radiological Protection (ICRP) will use voxel-based computational phantoms due to their improved anatomical realism compared with the class of mathematical or stylized phantoms used previously. According to the ICRP philosophy, these phantoms should be representative of the male and female reference adults with respect to their external dimensions, their organ topology and their organ masses. To meet these requirements, reference models of an adult male and adult female have been constructed at the GSF, based on existing voxel models segmented from tomographic images of two individuals whose body height and weight closely resemble the ICRP Publication 89 reference values. The skeleton is a highly complex structure of the body, composed of cortical bone, trabecular bone, red and yellow bone marrow and endosteum ('bone surfaces' in their older terminology). The skeleton of the reference phantoms consists of 19 individually segmented bones and bone groups. Sub-division of these bones into the above-mentioned constituents would be necessary in order to allow a direct calculation of dose to red bone marrow and endosteum. However, the dimensions of the trabeculae, the cavities containing bone marrow and the endosteum layer lining these cavities are clearly smaller than the resolution of a normal CT scan and, thus, these volumes could not be segmented in the tomographic images. As an attempt to represent the gross spatial distribution of these regions as realistically as possible at the given voxel resolution, 48 individual organ identification numbers were assigned to various parts of the skeleton: every segmented bone was subdivided into an outer shell of cortical bone and a spongious core; in the shafts of the long bones, a medullary cavity was additionally segmented. Using the data from ICRP Publication 89 on elemental tissue composition, from ICRU Report 46 on material

  6. Investigation on biokinetics of 134Cs and 241Am radionuclides in three different organisms and a new evaluation by using discrete time model

    International Nuclear Information System (INIS)

    Guengoer, N.

    1999-05-01

    In this study, 134 Cs and 241 Am biokinetic experiments have been observed originally for Black Sea condition with using the gastropod Patella coerulea and the macro algae Enteremorpha linza and the common mussel Mytilus galloprovlncialis as bio indicator organisms. The experiments that have at least three originality, have been carried out very carefully and biokinetic parameters have been calculated by using classical model. The results are compared with the proportionally similar experiments in the literature globally. In this thesis, a new model application has proposed for the biokinetic evaluation for loss experiments of organisms. That is discrete time model. Loss experiments can be evaluated proportionally in a quick and easy way by using this model. Then, it can be observed that the calculated decreasing factor (r) by discrete time model, shows the loss process quality. Moreover, the loss experiments can be stopped when the decreasing factor goes to 1. So, the loss experiment can be evaluated rapidly and quickly with the adequate reliability by using discrete time model. Furthermore, the loss process in the organisms becomes slower and biologic half-lives becomes longer, when the decreasing factor (r) goes to 1. On the other hand, the biological depuration rate (k) goes to nearly zero. So, the proposed discrete time model that is applied in this thesis originally for biokinetic, can be evident that it has an adequate reliability for the biokinetic evaluation

  7. The revised International Commission on Radiological Protection (ICRP) dosimetric model for the human respiratory tract

    International Nuclear Information System (INIS)

    Bair, W.J.

    1992-05-01

    A task group has revised the dosimetric model of the respiratory tract used to calculate annual limits on intake of radionuclides. The revised model can be used to project respiratory tract doses for workers and members of the public from airborne radionuclides and to assess past exposures. Doses calculated for specific extrathoracic and thoracic tissues can be adjusted to account for differences in radiosensitivity and summed to yield two values of dose for the respiratory tract that are applicable to the ICRP tissue weighted dosimetry system

  8. Controlling intake of uranium in the workplace: Applications of biokinetic modeling and occupational monitoring data

    Energy Technology Data Exchange (ETDEWEB)

    Leggett, Richard Wayne [ORNL; Eckerman, Keith F [ORNL; McGinn, Wilson [ORNL; Meck, Dr. Robert A. [U.S. Nuclear Regulatory Commission

    2012-01-01

    This report provides methods for interpreting and applying occupational uranium monitoring data. The methods are based on current international radiation protection guidance, current information on the chemical toxicity of uranium, and best available biokinetic models for uranium. Emphasis is on air monitoring data and three types of bioassay data: the concentration of uranium in urine; the concentration of uranium in feces; and the externally measured content of uranium in the chest. Primary Reference guidance levels for prevention of chemical effects and limitation of radiation effects are selected based on a review of current scientific data and regulatory principles for setting standards. Generic investigation levels and immediate action levels are then defined in terms of these primary guidance levels. The generic investigation and immediate actions levels are stated in terms of radiation dose and concentration of uranium in the kidneys. These are not directly measurable quantities, but models can be used to relate the generic levels to the concentration of uranium in air, urine, or feces, or the total uranium activity in the chest. Default investigation and immediate action levels for uranium in air, urine, feces, and chest are recommended for situations in which there is little information on the form of uranium taken into the body. Methods are prescribed also for deriving case-specific investigation and immediate action levels for uranium in air, urine, feces, and chest when there is sufficient information on the form of uranium to narrow the range of predictions of accumulation of uranium in the main target organs for uranium: kidneys for chemical effects and lungs for radiological effects. In addition, methods for using the information herein for alternative guidance levels, different from the ones selected for this report, are described.

  9. Evaluation of the various biokinetic models of liberation from characteristic deposition fraction of brazilian population sample

    International Nuclear Information System (INIS)

    Reis, Arlene A. dos; Cardoso, Joaquim C.S.; Lourenco, Maria Cristina

    2005-01-01

    The Publication 66 of International Commission of Radiological Protection (ICRP, 1994) presented the Human Respiratory tract Model that simulates the deposition and translocation of radioactive material in the air that penetrates in the body by inhalation. The main objective of this study is to evaluate the variation in fractional activity absorbed into blood when physiological and morphological parameters from Brazilian population are applied in the deposition model. The clearance model was implemented in the software Excel (version 2000) using a system of differential equations to solve simultaneous process of translocation and absorption of material deposited. After implementation were applied in the model fractional deposition calculated by deposition model using physiological and morphological parameters from Brazilian population. The results show that the variation in the clearance model depends on the material dissolution. For materials of rapid absorption, the variations calculated are not significant. Materials of moderate and slow absorption, presented variation greater than 20% in fractional activity absorbed into blood, depending on levels of exercise. (author)

  10. Simulation of The ICRP-30 Dosimetric Model for the Respiratory Tract

    International Nuclear Information System (INIS)

    Giaddui, T.; Atia, M. A.

    2004-01-01

    Matlab was used to write a simulation program (ACID1) to simulate the ICRP-30 dosimetric model for the respiratory tract. The program (a new version of the one presented at the sixth Arab conference held in Cairo 2002) calculates a series of dosimetric quantities for the reference man as a result of the inhalation of any radionuclide. The program also plots the variation of activity with time for all organs and provided with a graphical user interface to make it friendly user. The results obtained by this program was compared with similar results obtained by other source and found to be very close. (Authors)

  11. Integrating socio-economical dimensions in the ICRP cost-benefit model (a theoretical approach)

    International Nuclear Information System (INIS)

    Lochard, Jacques.

    1981-09-01

    This report aims at analysing, from a methodological point of view, the main problems associated with the integration of socio-economical dimensions in the cost-benefit model recommended by the ICRP in its publication no. 26. After recalling the basic principles of cost-benefit analysis, the elements to be retained in the objective function characterizing the analysis, and the question of the social benefit definitions are discussed. The theory of social surplus with an illustration taken from the radiological protection field is presented [fr

  12. Radiation fields, dosimetry, biokinetics and biophysical models for cancer induction by ionising radiation 1996-1999. Executive summary

    International Nuclear Information System (INIS)

    Jacob, P.; Paretzke, H.G.; Roth, P.

    2000-01-01

    The Association Contract covers a range of research domains that are important to the Radiation Protection Research Action, especially in the areas 'Evaluation of Radiation Risks' and 'Understanding Radiation Mechanisms and Epidemiology'. Three research projects concentrate on radiation dosimetry research and two projects on the modelling of radiation carcinogenesis. The following list gives an overview on the topics and responsible scientific project leaders of the Association Contract: Study of radiation fields and dosimetry at aviation altitudes. Biokinetics and dosimetry of incorporated radionuclides. Dose reconstruction. Biophysical models for the induction of cancer by radiation. Experimental data for the induction of cancer by radiation of different qualities. (orig.)

  13. Comparison of predicted with observed biokinetics of inhaled plutonium nitrate and gadolinium oxide in humans

    International Nuclear Information System (INIS)

    Hodgson, A.; Shutt, A.L.; Etherington, G.; Hodgson, S.A.; Rance, E.; Stradling, G.N.; Youngman, M.J.; Ziesenis, A.; Kreyling, W.G.

    2003-01-01

    The absorption kinetics to blood of plutonium and gadolinium after inhalation as nitrate and oxide in humans and animals has been studied. For each material, values describing the time dependence of absorption were derived from the studies in animals and used with the ICRP human respiratory tract model to predict lung retention and cumulative amounts to blood for the volunteers inhaling the same materials. Comparison with the observed behaviour in the volunteers suggests that absorption of plutonium and gadolinium is reasonably species independent, and that data obtained from animal studies can be used to assess their biokinetic behaviour in humans. (author)

  14. Simulation of the respiratory model of tract of Publication 66 of the ICRP and their use in biological analysis

    International Nuclear Information System (INIS)

    Puerta, A.

    2001-01-01

    The International Commission Radiological Protection, ICRP in its publications 67, 68, 69 and 71 provides the loss of systematic activity of the radioactive materials by the routes of excretion and recirculation, as well as effective dose by incorporation unit coefficient, using the model of respiratory tract proposed by the ICRP, in its Publication 66, but it does not provide information on as these models in biological analysis are used. There are some specific studies for inhalation of uranium compounds made by Bertelli and collaborators using the new model of the lung. In this work it have been done a simulation of the model of respiratory tract of ICRP 66 of such form that it can be used in-vitro and in-vivo biological analysis. In order to verify the simulation were used systemic models for adult of planuin, lead, uranium, bismuth and their respective descendants and the comparison with the coefficients of dose provided by the ICRP. Finally, it shows the estimation of the temporary distribution of activity in devices and the excrete of these radionuclides and in addition the model for gases and steam in the conditions is verified that the ICRP proposes

  15. Strontium biokinetic model for the lactating woman and transfer to breast milk: application to Techa River studies

    International Nuclear Information System (INIS)

    Shagina, N B; Tolstykh, E I; Degteva, M O; Fell, T P; Smith, T J; Harrison, J D

    2015-01-01

    This paper presents a biokinetic model for strontium metabolism in the lactating woman and transfer to breast milk for members of Techa River communities exposed as a result of discharges of liquid radioactive wastes from the Mayak plutonium production facility (Russia) in the early 1950s. This model was based on that developed for the International Commission for Radiological Protection with modifications to account for population specific features of breastfeeding and maternal bone mineral metabolism. The model is based on a biokinetic model for the adult female with allowances made for changes in mineral metabolism during periods of exclusive and partial breast-feeding. The model for females of all ages was developed earlier from extensive data on 90 Sr-body measurements for Techa Riverside residents. Measurements of 90 Sr concentrations in the maternal skeleton and breast milk obtained in the1960s during monitoring of global fallout in the Southern Urals region were used for evaluation of strontium transfer to breast and breast milk. The model was validated with independent data from studies of global fallout in Canada and measurements of 90 Sr body-burden in women living in the Techa River villages who were breastfeeding during maximum 90 Sr-dietary intakes. The model will be used in evaluations of the intake of strontium radioisotopes in breast milk by children born in Techa River villages during the radioactive releases and quantification of 90 Sr retention in the maternal skeleton. (paper)

  16. Influence on dose coefficients for workers of the new metabolic models

    International Nuclear Information System (INIS)

    Gomez Parada, I.M.; Rojo, A.M.

    1998-01-01

    The International Commission on Radiological Protection (ICRP) has recently reviewed the biokinetic models used in the internal contamination dose assessment. ICRP has adopted a new model for the human respiratory tract and has updated, in ICRP Publications 56, 67 and 69, some of the biokinetic models of ICRP Publication 30. In this paper, the dose coefficients for some selected radionuclides issued in ICRP Publication 68 are compared with those obtained using the software LUPED (LUng Dose Evaluation Program). The former were calculated using the new systemic models, while the latter are based on the old metabolic models. The aim is to know to what extent the new models for systematic retention influence the dose coefficients for workers. (author) [es

  17. Accumulation of plutonium in mammalian wildlife tissues: comparison of recent data with the ICRP distribution models

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, M.; Child, D.; Davis, E.; Hotchkis, M.; Payne, T. [Australian Nuclear Science and Technology Org. (Australia); Ikeda-Ohno, A. [University of New South Wales (Australia); Twining, J. [Austral Radioecology (Australia)

    2014-07-01

    concentrations in O. cuniculus edible samples prepared according to traditional aboriginal methods were more than two orders of magnitude higher than in muscle alone. The increase was due to inclusion of GI tract components and contents in the traditional method. Our results provide new insights into the sequestration of Pu in mammalian tissues under environmental exposure conditions. These results contrast with those related to the specific forms of Pu and exposure conditions upon which the ICRP models were based. However, they provide data relevant to the assessment of key environmental legacy waste sites, and of potential release scenarios for the low-soluble oxide forms in the growing worldwide inventory of Pu associated with power production. Document available in abstract form only. (authors)

  18. Simulation of the respiratory model of tract of Publication 66 of the ICRP and their use in biological analysis; Simulacion del modelo de tracto respiratorio de la Publicacion 66 de la ICRP y su utilizacion en bioanalisis

    Energy Technology Data Exchange (ETDEWEB)

    Puerta, A. [Universidad Nacional de Colombia, Medellin (Colombia). Facultad de Ciencias. Dept. de Fisica; Bertelli, L.; Lipsztein, J. [Instituto de Radioprotecao e Dosimetria (IRD), Rio de Janeiro, RJ (Brazil)

    2001-07-01

    The International Commission Radiological Protection, ICRP in its publications 67, 68, 69 and 71 provides the loss of systematic activity of the radioactive materials by the routes of excretion and recirculation, as well as effective dose by incorporation unit coefficient, using the model of respiratory tract proposed by the ICRP, in its Publication 66, but it does not provide information on as these models in biological analysis are used. There are some specific studies for inhalation of uranium compounds made by Bertelli and collaborators using the new model of the lung. In this work it have been done a simulation of the model of respiratory tract of ICRP 66 of such form that it can be used in-vitro and in-vivo biological analysis. In order to verify the simulation were used systemic models for adult of planuin, lead, uranium, bismuth and their respective descendants and the comparison with the coefficients of dose provided by the ICRP. Finally, it shows the estimation of the temporary distribution of activity in devices and the excrete of these radionuclides and in addition the model for gases and steam in the conditions is verified that the ICRP proposes.

  19. Quantitative biokinetic analysis of radioactively labelled, inhaled Titanium dioxide Nanoparticles in a rat model

    Energy Technology Data Exchange (ETDEWEB)

    Kreyling, Wolfgang G.; Wenk, Alexander; Semmler-Behnke, Manuela [Helmholtz Zentrum Muenchen, Deutsches Forschungszentrum fuer Gesundheit und Umwelt GmbH (Germany). Inst. fuer Lungenbiologie und Erkrankungen, Netzwerk Nanopartikel und Gesundheit

    2010-09-15

    The aim of this project was the determination of the biokinetics of TiO{sub 2} nanoparticles (NP) in the whole body of healthy adult rats after NP administration to the respiratory tract - either via inhalation or instillation. We developed an own methodology to freshly synthesize and aerosolize TiO{sub 2}-NP in our lab for the use of inhalation studies. These NP underwent a detailed physical and chemical characterization providing pure polycrystalline anatase TiO{sub 2}-NP of about 20 nm (geometric standard deviation 1.6) and a specific surface area of 270 m{sup 2}/g. In addition, we developed techniques for sufficiently stable radioactive {sup 48}V labelling of the TiO{sub 2} NP. The kinetics of solubility of {sup 48}V was thoroughly determined. The methodology of quantitative biokinetics allows for a quantitative balance of the retained and excreted NP in control of the administered NP dose and provides a much more precise determination of NP fractions and concentrations of NP in organs and tissues of interest as compared to spotting biokinetics studies. Small fractions of TiO{sub 2}-NP translocate across the air-blood-barrier and accumulate in secondary target organs, soft tissue and skeleton. The amount of translocated TiO{sub 2}-NP is approximately 2% of TiO{sub 2}-NP deposited in the lungs. A prominent fraction of these translocated TiO{sub 2}-NP was found in the remainder. Smaller amounts of TiO{sub 2}-NP accumulate in secondary organs following particular kinetics. TiO{sub 2}-NP translocation was grossly accomplished within the first 2-4 hours after inhalation followed by retention in all organs and tissues studied without any detectable clearance of these biopersistent TiO{sub 2}-NP within 28 days. Therefore, our data suggest crossing of the air-blood-barrier of the lungs and subsequent accumulation in secondary organs and tissues depends on the NP material and its physico-chemical properties. Furthermore, we extrapolate that during repeated or chronic

  20. Quantitative biokinetic analysis of radioactively labelled, inhaled Titanium dioxide Nanoparticles in a rat model

    International Nuclear Information System (INIS)

    Kreyling, Wolfgang G.; Wenk, Alexander; Semmler-Behnke, Manuela

    2010-01-01

    The aim of this project was the determination of the biokinetics of TiO 2 nanoparticles (NP) in the whole body of healthy adult rats after NP administration to the respiratory tract - either via inhalation or instillation. We developed an own methodology to freshly synthesize and aerosolize TiO 2 -NP in our lab for the use of inhalation studies. These NP underwent a detailed physical and chemical characterization providing pure polycrystalline anatase TiO 2 -NP of about 20 nm (geometric standard deviation 1.6) and a specific surface area of 270 m 2 /g. In addition, we developed techniques for sufficiently stable radioactive 48 V labelling of the TiO 2 NP. The kinetics of solubility of 48 V was thoroughly determined. The methodology of quantitative biokinetics allows for a quantitative balance of the retained and excreted NP in control of the administered NP dose and provides a much more precise determination of NP fractions and concentrations of NP in organs and tissues of interest as compared to spotting biokinetics studies. Small fractions of TiO 2 -NP translocate across the air-blood-barrier and accumulate in secondary target organs, soft tissue and skeleton. The amount of translocated TiO 2 -NP is approximately 2% of TiO 2 -NP deposited in the lungs. A prominent fraction of these translocated TiO 2 -NP was found in the remainder. Smaller amounts of TiO 2 -NP accumulate in secondary organs following particular kinetics. TiO 2 -NP translocation was grossly accomplished within the first 2-4 hours after inhalation followed by retention in all organs and tissues studied without any detectable clearance of these biopersistent TiO 2 -NP within 28 days. Therefore, our data suggest crossing of the air-blood-barrier of the lungs and subsequent accumulation in secondary organs and tissues depends on the NP material and its physico-chemical properties. Furthermore, we extrapolate that during repeated or chronic exposure to insoluble NP the translocated fraction of NP will

  1. Cadmium bioavailability to Hyalella azteca from a periphyton diet compared to an artificial diet and application of a biokinetic model

    Energy Technology Data Exchange (ETDEWEB)

    Golding, Lisa A., E-mail: lisa.golding@csiro.au [Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Borgmann, Uwe [Environment Canada, 867 Lakeshore Road, Burlington, Ontario L7R 4A6 (Canada); George Dixon, D. [Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

    2013-01-15

    Differences between the bioavailability of cadmium in a periphyton diet and an artificial laboratory diet (TetraMin{sup Registered-Sign }) have important consequences for predicting bioaccumulation and toxicity in the freshwater amphipod Hyalella azteca. The assimilation efficiency (AE) of Cd was compared between periphyton and TetraMin{sup Registered-Sign} at low (1510 and 358 nmol/g ash-free dry mass respectively) and chronically lethal (31,200 and 2890 nmol/g ash-free dry mass respectively) Cd concentrations and in fresh and dry forms using a {sup 109}Cd radiotracer pulse-chase feeding technique. Assimilation efficiency of Cd from periphyton (AE = 3-14%) was lower than that for TetraMin{sup Registered-Sign} (AE = 44-86%) regardless of Cd concentration or food form. Ingestion rate (IR) was lower for dry than fresh forms of periphyton (0.042 and 0.16 g AFDM/g H. azteca/day respectively) and TetraMin{sup Registered-Sign} (0.19 and 0.87 AFDM/g H. azteca/day respectively) and depuration rate (k{sub e}) did not differ statistically with food type, form or Cd concentration (0.032-0.094 d{sup -1}). Biokinetic models with parameters of AE, IR and k{sub e} were used to estimate bioaccumulation from the separate food types. These estimates were compared to those from an independent chronic Cd saturation bioaccumulation model. While the model estimates did not concur, a sensitivity analysis indicated that AE and IR were the most influential biokinetic model parameters for Cd in periphyton and TetraMin{sup Registered-Sign} respectively. It was hypothesized that AE was underestimated for Cd in periphyton due to a non-adapted gut enzyme system and IR was overestimated for Cd in TetraMin{sup Registered-Sign} due to an initial rapid ingestion phase in H. azteca's feeding habits. This research demonstrated the importance of using ecologically relevant food types in laboratory experiments and verifying acute biokinetic model predictions of dietary metal contribution with

  2. Comparisons of calculated respiratory tract deposition of particles based on the NCRP/ITRI model and the new ICRP66 model

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Hsu-Chi; Phalen, R.F. [Univ. of California, Irvine, CA (United States); Chang, I. [Lovelace Inst., Albuquerque, NM (United States)] [and others

    1995-12-01

    The National Council on Radiation Protection and Measurements (NCRP) in the United States and the International Commission on Radiological Protection (ICRP) have been independently reviewing and revising respiratory tract dosimetry models for inhaled radioactive aerosols. The newly proposed NCRP respiratory tract dosimetry model represents a significant change in philosophy from the old ICRP Task Group model. The proposed NCRP model describes respiratory tract deposition, clearance, and dosimetry for radioactive substances inhaled by workers and the general public and is expected to be published soon. In support of the NCRP proposed model, ITRI staff members have been developing computer software. Although this software is still incomplete, the deposition portion has been completed and can be used to calculate inhaled particle deposition within the respiratory tract for particle sizes as small as radon and radon progeny ({approximately} 1 nm) to particles larger than 100 {mu}m. Recently, ICRP published their new dosimetric model for the respiratory tract, ICRP66. Based on ICRP66, the National Radiological Protection Board of the UK developed PC-based software, LUDEP, for calculating particle deposition and internal doses. The purpose of this report is to compare the calculated respiratory tract deposition of particles using the NCRP/ITRI model and the ICRP66 model, under the same particle size distribution and breathing conditions. In summary, the general trends of the deposition curves for the two models were similar.

  3. Comparisons of calculated respiratory tract deposition of particles based on the NCRP/ITRI model and the new ICRP66 model

    International Nuclear Information System (INIS)

    Yeh, Hsu-Chi; Phalen, R.F.; Chang, I.

    1995-01-01

    The National Council on Radiation Protection and Measurements (NCRP) in the United States and the International Commission on Radiological Protection (ICRP) have been independently reviewing and revising respiratory tract dosimetry models for inhaled radioactive aerosols. The newly proposed NCRP respiratory tract dosimetry model represents a significant change in philosophy from the old ICRP Task Group model. The proposed NCRP model describes respiratory tract deposition, clearance, and dosimetry for radioactive substances inhaled by workers and the general public and is expected to be published soon. In support of the NCRP proposed model, ITRI staff members have been developing computer software. Although this software is still incomplete, the deposition portion has been completed and can be used to calculate inhaled particle deposition within the respiratory tract for particle sizes as small as radon and radon progeny (∼ 1 nm) to particles larger than 100 μm. Recently, ICRP published their new dosimetric model for the respiratory tract, ICRP66. Based on ICRP66, the National Radiological Protection Board of the UK developed PC-based software, LUDEP, for calculating particle deposition and internal doses. The purpose of this report is to compare the calculated respiratory tract deposition of particles using the NCRP/ITRI model and the ICRP66 model, under the same particle size distribution and breathing conditions. In summary, the general trends of the deposition curves for the two models were similar

  4. Human respiratory tract model for radiological protection: A revision of the ICRP Dosimetric Model for the Respiratory System

    International Nuclear Information System (INIS)

    Bair, W.J.

    1989-01-01

    In 1984, the International Commission on Radiological Protection (ICRP) appointed a task group of Committee 2 to review and revise, as necessary, the ICRP Dosimetric Model for the Respiratory System. The model was originally published in 1966, modified slightly in Publication No. 19, and again in Publication No. 30 (in 1979). The task group concluded that research during the past 20 y suggested certain deficiencies in the ICRP Dosimetric Model for the Respiratory System. Research has also provided sufficient information for a revision of the model. The task group's approach has been to review, in depth, morphology and physiology of the respiratory tract; deposition of inhaled particles in the respiratory tract; clearance of deposited materials; and the nature and specific sites of damage to the respiratory tract caused by inhaled radioactive substances. This review has led to a redefinition of the regions of the respiratory tract for dosimetric purposes. The redefinition has a morphologic and physiological basis and is consistent with observed deposition and clearance of particles and with resultant pathology. Regions, as revised, are the extrathoracic (E-T) region, comprising the nasal and oral regions, the pharynx, larynx, and upper part of the trachea; the fast-clearing thoracic region (T[f]), comprising the remainder of the trachea and bronchi; and the slow-clearing thoracic region (T[s]), comprising the bronchioles, alveoli, and thoracic lymph nodes. A task group report will include models for calculating radiation doses to these regions of the respiratory tract following inhalation of representative alpha-, beta-, and gamma-emitting particulate and gaseous radionuclides. The models may be implemented as a package of computer codes available to a wide range of users

  5. Critique of the use of ICRP-29's 'Robustness Index' in evaluating uncertainties associated with radiological assessment models

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, F O; Schwarz, G; Killough, G G [Oak Ridge National Lab., TN (USA)

    1980-08-01

    Concern is expressed regarding the use of the robustness index, as proposed in ICRP 29, to characterise the uncertainties associated with a model's predictions. Results of a Monte Carlo simulation employing a model of the grass-cow-milk-infant pathway for /sup 131/I are used to elucidate the author's criticisms. It is recommended that the robustness index should be carefully examined to appraise its possible usefulness and potential dangers. Alternate methods for analysis of uncertainty are proposed.

  6. Organ burdens and excretion rates of inhaled uranium - computations using ICRP model

    International Nuclear Information System (INIS)

    Abani, M.C.; Murthy, K.B.S.; Sunta, C.M.

    1988-01-01

    Uranium being a highly toxic material, proper estimation of the body burden is very important. During manufacture of uranium fuel, it is likely to enter the body by inhalation. By the body burden and excretion measurements, one should be able to assess whether the intake is within the safe limits or not. This is possible if one performs theoretical calculations and estimates the amount of uranium which builds up in the body as a function of time. Similarly theoretical estimates in case of excretion have to be made. For this purpose, a computer programme has been developed to find out organ burdens and excretion rates resulting from exposure to a radioactive nuclide. ICRP-30 lung model has been used and cases of single instantaneous inhalation of 1 ALI as well as inhalation at a steady rate of ALI/365 per day have been considered. Using this programme, results for uranium aerosols of classes D, W and Y and sizes 0.2, 1 and 5 microns are generated by ND computers in tabular as well as graphical forms. These will be useful in conjunction with body burden measurements by direct counting or excretion analysis. (author). 7 tabs., 56 figs

  7. Generic Screening Models for Assessing Exposures to the Public and ICRP Reference Animals and Plants

    Energy Technology Data Exchange (ETDEWEB)

    Yankovich, Tamara L.; Proehl, Gerhard; Telleria, Diego [International Atomic Energy Agency, P.O. Box 100, 1400 Vienna (Austria); Berkovskyy, Volodymyr [Ukrainian Radiation Protection Institute (RPI), 53, Melnikova Street, 04050, Kiev (Ukraine)

    2014-07-01

    Exposure', and 'Generic Models for Use in Assessing the Impact of Radioactive Discharges', respectively. Volume 3 is currently being drafted and will provide coefficients that enable screening assessments for the ICRP Reference Animals and Plants (RAPs), based on the models presented in ICRP publications 108 and 114. Through the application of the same models for dispersion of radionuclides in the atmosphere and in water bodies, standardized input parameters, assumptions and approaches that are being applied to develop screening coefficients, an integrated approach is being established that can be used to estimate exposures to people and the environment and to demonstrate protection, in accordance with SF-1. This integrated approach will allow the establishment of relationships of exposures to people, and to flora and fauna for the same levels of environmental radioactivity. This paper provides an update of the current status of the SRS 19 update. (authors)

  8. Dose coefficients for radionuclides produced in high energy proton accelerator facilities. Coefficients for radionuclides not listed in ICRP publications

    CERN Document Server

    Kawai, K; Noguchi, H

    2002-01-01

    Effective dose coefficients, the committed effective dose per unit intake, by inhalation and ingestion have been calculated for 304 nuclides, including (1) 230 nuclides with half-lives >= 10 min and their daughters that are not listed in ICRP Publications and (2) 74 nuclides with half-lives < 10 min that are produced in a spallation target. Effective dose coefficients for inhalation of soluble or reactive gases have been calculated for 21 nuclides, and effective dose rates for inert gases have been calculated for 9 nuclides. Dose calculation was carried out using a general-purpose nuclear decay database DECDC developed at JAERI and a decay data library newly compiled from the ENSDF for the nuclides abundantly produced in a spallation target. The dose coefficients were calculated with the computer code DOCAP based on the respiratory tract model and biokinetic model of ICRP. The effective dose rates were calculated by considering both external irradiation from the surrounding cloud and irradiation of the lun...

  9. Biokinetics of radiolabeled Iodophenylpentadecanoic acid (I-123-IPPA) and thallium-201 in a rabbit model of chronic myocardial infarction measured using a series of thermoluminescent dosimeters

    Science.gov (United States)

    Medich, David Christopher

    1997-09-01

    The biokinetics of Iodophenylpentadecanoic acid (123I-IPPA) during a chronic period of myocardial infarction were determined and compared to 201Tl. IPPA was assessed as a perfusion and metabolic tracer in the scintigraphic diagnosis of coronary artery disease. The myocardial clearance kinetics were measured by placing a series of thermoluminescent dosimeters (TLDs) on normal and infarcted tissue to measure the local myocardial activity content over time. The arterial blood pool activity was fit to a bi-exponential function for 201Tl and a tri-exponential function for 123I-IPPA to estimate the left ventricle contribution to TLD response. At equilibrium, the blood pool contribution was estimated experimentally to be less than 5% of the total TLD response. The method was unable to resolve the initial uptake of the imaging agent due in part to the 2 minute TLD response integration time and in part to the 30 second lag time for the first TLD placement. A noticeable disparity was observed between the tracer concentrations of IPPA in normal and ischemic tissue of approximately 2:1. The fitting parameters (representing the biokinetic eigenvalue rate constants) were related to the fundamental rate constants of a recycling biokinetic model. The myocardial IPPA content within normal tissue was elevated after approximately 130 minutes post injection. This phenomenon was observed in all but one (950215) of the IPPA TLD kinetics curves.

  10. Review of ICRP Publication 60

    International Nuclear Information System (INIS)

    Heinmiller, B.E.

    1992-01-01

    The recommendations of the ICRP were last formulated in 1977. The ICRP has periodically reviewed the recommendations and issued supplementary reports on specific topics. Over the last several years, enough new information accumulated on health effects from exposure to ionizing radiation to change appreciably the assumed risk estimates from such exposure, and to prompt the ICRP to reassess its recommendations for radiological protection. The resulting recommendations were approved by the ICRP in 1990 November. This report examines the recommendations from three perspectives. The first section of the report presents background information on the development of the recommendations and the risk estimates on which they are based. The main reasons for the increase in current risk estimates from previous estimates are given. The second section of the report outlines the basic ICRP recommendations that are relevant to occupational and public radiological protection, and offers interpretation where needed. The third section of the report examines implications of the recommendations for dosimetry. the ICRP is currently working on improvements to some metabolic and dosimetric models. Because it is difficult, in some instances, to decouple the implications of this modelling work and the implications of the new recommendations, both are examined in this third section. This report documents why radiological protection standards have changed recently, what the current standards are, and how they might affect radiation dosimetry. (4 tabs., 15 refs.)

  11. Performance analysis of numeric solutions applied to biokinetics of radionuclides; Analise de desempenho de solucoes numericas aplicadas a biocinetica de radionuclideos

    Energy Technology Data Exchange (ETDEWEB)

    Mingatos, Danielle dos Santos; Bevilacqua, Joyce da Silva, E-mail: dani@ime.usp.br, E-mail: joyce@ime.usp.br [Universidade de Sao Paulo (IME/USP), SP (Brazil). Instituto de Matematica e Estatistica; Todo, Alberto Saburo; Rodrigues Junior, Orlando, E-mail: astodo@ipen.br, E-mail: rodrijr@ipen.br [Instituto de Pesquisas Energeticas Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Biokinetics models for radionuclides applied to dosimetry problems are constantly reviewed by ICRP. The radionuclide trajectory could be represented by compartmental models, assuming constant transfer rates between compartments. A better understanding of physiological or biochemical phenomena, improve the comprehension of radionuclide behavior in the human body and, in general, more complex compartmental models are proposed, increasing the difficulty of obtaining the analytical solution for the system of first order differential equations. Even with constant transfer rates numerical solutions must be carefully implemented because of almost singular characteristic of the matrix of coefficients. In this work we compare numerical methods with different strategies for ICRP-78 models for Thorium-228 and Uranium-234. The impact of uncertainty in the parameters of the equations is also estimated for local and global truncation errors. (author)

  12. Comparison of ICRP Publication 30 lung model-based predictions with measured bioassay data for airborne natural UO2 exposure

    International Nuclear Information System (INIS)

    Thind, K.S.

    1987-01-01

    In this paper a comparison is made between the build-up of U thorax burdens and the predicted total lung (lung and lymph) burden, based on the lung model provided in ICRP Publication 30 for a group of 29 atomic radiation workers at a Canadian fuel fabrication facility. A similar comparison is made between the predicted ratio of the total lung burden to urinary excretion and the ratio obtained from bioassay data. The study period for the comparison is 5 y. The inhalation input for the lung model calculations was derived from air-sampling data and the choice of particle size activity median aerodynamic diameter (AMAD) was guided by particle size measurements made at representative work locations. The pulmonary clearance half-times studied were 100, 250 and 500 d. For the purpose of this comparison, averaged exposure and averaged bioassay data for the group were used. This comparison indicates that for the conditions of this facility, the assumption of a 500-d pulmonary clearance half-time and a particle size of 1 micron (AMAD) may be too conservative. It is suggested that measurements of air concentrations and particle size used as input parameters for the ICRP Publication 30 lung model may be used to calculate bioassay parameters which may then be tested against bioassay data obtained as part of an operational health physics program, thereby giving a useful step towards defining a derived air concentration value for U in the workplace

  13. Comparison of the U-233 dog data of Stevens et al. with uranium retention functions in ICRP Publication 30 and a 3-compartment mammillary model for uranium

    International Nuclear Information System (INIS)

    Bernard, S.R.

    1983-01-01

    Stevens measured the distribution, retention, and excretion of U-233 in seven beagles each given a single injection of U-233 citrate [2.8 μCi/kg U-233 (VI) (approx.3 mg/dog)]. These data, when plotted together with results obtained with the ICRP (Pub. 30) retention functions for purposes of comparison, are seen to differ only slightly from the ICRP-30 model. The number of transformations in the body, over a fifty-year period agree within a factor of 2. A three-compartment mammillary model has been parameterized from the data of Stevens by the method of Bernard. Retention in tissues of the body is represented by a linear combination of three compartments. The data plots for the dogs and ICRP-30 model will be presented and discussed together with the three compartment mammillary model for U-233 retention, distribution, and excretion. 3 figs., 2 tabs

  14. Intercomparison between ICRP60 and ICRP103

    International Nuclear Information System (INIS)

    Mahdy, M. T. A.

    2014-04-01

    In this project inter-comparison between the recommendations from ICRP publication 60, 1900 and the recommendations from ICRP publication 103, 2007 is made. The present 2007 recommendations is an update based on the latest available scientific information of the biology and physics of radiation exposure .This comparison covers the Exposure situations, Tissue Weighting Factors wT, Radiation Weighting Factors wR, and the three Fundamental Principles of Radiological Protection and the protection of the environment. ICRP has retained its fundamental hypothesis for the induction of stochastic effects of linearity of dose and effect without threshold and a dose and dose-rate effectiveness factor (DDREF) of 2 to derive nominal risk coefficients for low doses and low dose rates. While the overall detriment from low radiation doses has remained unchanged, ICRP has made adjustments to the values of the radiation and tissue weighting factors. In particular, the tissue weighting factor for breast has increased while that for gonads has decreased. There are some presentational changes to the system of protection. While ICRP has maintained the three fundamental principles-justification, optimization of protection, and dose limitation-it has attempted to develop a more holistic approach to radiological protection covering all exposure situations-planned, existing and emergency and all radiation sources, whether of natural or artificial origin. Dose constraints and reference levels are categorized into three bands which should assist in rationalizing the many values of dose restrictions given in earlier ICRP publications. (au)

  15. The work of committee 2 of ICRP on internal dosimetry

    International Nuclear Information System (INIS)

    Stather, J.W.

    2005-01-01

    Full text: Over the last few years the Task Group of Committee 2 of ICRP on Internal Dosimetry (INDOS), in conjunction with the Task Group on Dose Calculations (DOCAL), has prepared a series of publications that have given dose coefficients for intakes of radionuclides by infants, children and adults. The most recent publications have been Publication 88 that gives doses to the embryo, fetus and newborn child from intakes of radionuclides by the mother and Publication 94 that will give doses to the newborn child from intakes of radionuclides in mothers' milk. These documents have completed the programme of work of Committee 2 on dose coefficients for members of the public. The emphasis of work on internal dosimetry by Committee 2 is now concerned with occupational exposure. This is will take into account recent advice from ICRP, including the new 2005 Recommendations of ICRP which are expected to provide revised tissue weighting factors for the calculation of effective dose. In addition ICRP has issued Publication 89 on Basic Anatomical and Physiological Data for use in Radiological Protection and in addition will have published a new Human Alimentary Tract Model (HATM). It will have implemented a human phantom for dose calculations based upon medical imaging data and updated radionuclide decay data; superseding Publication 38. In addition, the systemic models for a number of elements are being revised to take account of more recent data, and the lung clearance characteristics of a wide range of compounds relevant to occupational exposure are being reviewed. It is intended to replace Publications 30 and 68 that give biokinetic data and dose coefficients for intakes of radionuclides and Publications 54 and 78 that give information for bioassay interpretation, with a single series of publications. This series will cover both dosimetry and data for bioassay interpretation. The first report will cover radionuclides of the 31 elements covered in the series of

  16. A method for rapid estimation of internal dose to members of the public from inhalation of mixed fission products (based on the ICRP 1994 human respiratory tract model for radiological protection)

    International Nuclear Information System (INIS)

    Hou Jieli

    1999-01-01

    Based on the computing principle given in ICRP-30, a method had been given by the author for fast estimating internal dose from an intake of mixed fission products after nuclear accident. Following the ICRP-66 Human respiratory tract model published in 1994, the method was reconstructed. The doses of 1 Bq intake of mixed fission products (its AMAD = 1 μm, decay rate coefficient n = 0.2∼2.0) during the period of 1∼15 d after an accident were calculated. It is lower slightly based on ICRP 1994 respiratory tract model than that based on ICRP-30 model

  17. Uranium: biokinetics and toxicity; Biocinetique et toxicite de l'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Menetrier, F.; Renaud-Salis, V.; Flury-Herard, A

    2000-07-01

    This report was achieved as a part of a collaboration with the Fuel Cycle Direction. Its aim was to give the state of the art about: the behaviour of uranium in the human organism (biokinetics) after ingestion, its toxicity (mainly renal) and the current regulation about its incorporation. Both in the upstream and in the downstream of the fuel cycle, uranium remains, quantitatively, the first element in the cycle which is, at the present time, temporarily disposed or recycled. Such a considerable quantity of uranium sets the problem of its risk on the health. In the long term, the biosphere may be affected and consequently the public may ingest water or food contaminated with uranium. In this way, radiological and chemical toxicity risk may be activated. This report emphasizes: the necessity of confirming some experimental and epidemiological biokinetic data used or not in the ICRP models. Unsolved questions remain about the gastrointestinal absorption according to chemical form (valency state, mixtures...), mass and individual variations (age, disease) further a chronic ingestion of uranium. It is well established that uranium is mainly deposited in the skeleton and the kidney. But the skeleton kinetics following a chronic ingestion and especially in some diseases has to be more elucidated; the necessity of taking into account uranium at first as a chemical toxic, essentially in the kidney and determining the threshold of functional lesion. In this way, it is important to look for some specific markers; the problem of not considering chemical toxicity of uranium in the texts regulating its incorporation.

  18. Biological behaviour of plutonium inhaled by baboons as plutonium n-tributylphosphate complex. Comparison with ICRP models

    International Nuclear Information System (INIS)

    Metivier, H.; Duserre, C.; Rateau, G.; Legendre, N.; Masse, R.; Piechowski, J.; Menoux, B.

    1989-01-01

    In order to devise a model capable of calculating committed doses for workers contaminated by inhalation of plutonium tributylphosphate complex during reprocessing, we investigated the biokinetics of plutonium in baboons after inhalation of this chemical form. The animals were killed 0.6, 3, 15, 30, 90 and 365 days post inhalation. Urine and faeces were collected daily. After killing, the main organs were collected for chemical analysis. In order to improve our knowledge of the behaviour of systemic plutonium, three baboons were given an intravenous injection of Pu-TBP and were respectively killed 2, 30 and 365 days post injection. We observed that Pu-TBP could be classified as a W compound, with a half-time for lung clearance of 150 days. Urinary Pu excretion was 3 times higher than was expected from Durbin's model, suggesting that Pu introduced as Pu-TBP, is extremely mobile, and that the complex formed with blood proteins differs from the one formed after inhalation of plutonium nitrate. (author)

  19. Biokinetic modelling development and analysis of arsenic dissolution into the gastrointestinal tract using SAAM II

    Science.gov (United States)

    Perama, Yasmin Mohd Idris; Siong, Khoo Kok

    2018-04-01

    A mathematical model comprising 8 compartments were designed to describe the kinetic dissolution of arsenic (As) from water leach purification (WLP) waste samples ingested into the gastrointestinal system. A totally reengineered software system named Simulation, Analysis and Modelling II (SAAM II) was employed to aid in the experimental design and data analysis. As a powerful tool that creates, simulate and analyze data accurately and rapidly, SAAM II computationally creates a system of ordinary differential equations according to the specified compartmental model structure and simulates the solutions based upon the parameter and model inputs provided. The experimental design of in vitro DIN approach was applied to create an artificial gastric and gastrointestinal fluids. These synthetic fluids assay were produced to determine the concentrations of As ingested into the gastrointestinal tract. The model outputs were created based upon the experimental inputs and the recommended fractional transfer rates parameter. As a result, the measured and predicted As concentrations in gastric fluids were much similar against the time of study. In contrast, the concentrations of As in the gastrointestinal fluids were only similar during the first hour and eventually started decreasing until the fifth hours of study between the measured and predicted values. This is due to the loss of As through the fractional transfer rates of q2 compartment to corresponding compartments of q3 and q5 which are involved with excretion and distribution to the whole body, respectively. The model outputs obtained after best fit to the data were influenced significantly by the fractional transfer rates between each compartment. Therefore, a series of compartmental model created with the association of fractional transfer rates parameter with the aid of SAAM II provides better estimation that simulate the kinetic behavior of As ingested into the gastrointestinal system.

  20. A physiologically based biokinetic model for cesium in the human body

    International Nuclear Information System (INIS)

    Leggett, R.W.; Williams, L.R.; Melo, D.R.; Lipsztein, J.L.

    2003-01-01

    A physiologically descriptive model of the biological behavior of cesium in the human body has been constructed around a detailed blood flow model. The rate of transfer from plasma into a tissue is determined by the blood perfusion rate and the tissue-specific extraction fraction of Cs during passage from arterial to venous plasma. Information on tissue-specific extraction of Cs is supplemented with information on the Cs analogues, K and Rb, and known patterns of discrimination between these metals by tissues. The rate of return from a tissue to plasma is estimated from the relative contents of Cs in plasma and the tissue at equilibrium as estimated from environmental studies. Transfers of Cs other than exchange between plasma and tissues (e.g. secretions into the gastrointestinal tract) are based on a combination of physiological considerations and empirical data on Cs or related elements. Model predictions are consistent with the sizable database on the time-dependent distribution and retention of radiocesium in the human body

  1. Survey of the ICRP 103 detriment-model; Untersuchung und Bewertung des Detrimentbegriffs im Strahlenschutz

    Energy Technology Data Exchange (ETDEWEB)

    Emami, S.; Buermeyer, J.; Spruck, K.; Breckow, J. [Technische Hochschule Mittelhessen (THM), Giessen (Germany). Inst. fuer Medizinische Physik und Strahlenschutz (IMPS)

    2016-07-01

    The detriment of ICRP 103 is roughly defined as the product of the (organ specific) risk coefficient and the ''damage'' that may be associated with a (organ specific) cancer or hereditary effect, respectively. This is to indicate a weighted risk according to the radiation sensitivity of the different organs and the severity of damage that may possibly arise. Whereas the risk coefficients refer to radiation exposure parameters, the scale or degree of damage is independent of these parameters. The radiation independent parameters are the lethality, the loss of quality of life and the reduced life expectancy, which are considered as quantities associated with the severity of disease or damage, respectively. These parameters may change gradually, on the one hand possibly due to an increase of cancer becoming a common disease within the population. On the other hand, possibly to a decrease of cancer due to the progress in medical diagnostics and treatments that allow patients to survive or at least maintain a higher life quality standard. The damage and therefore the detriment appears to be mostly affected by the lethality. The lethality is the quotient of mortality to incidence. The investigation of the detriment presented in this paper focuses on the influence of the lethality on the detriment from 1980-2012 in Germany and USA.

  2. Comparative biokinetics of radiogallium and radioindium in mice

    International Nuclear Information System (INIS)

    Tsui, B.M.W.; Lathrop, K.A.

    1978-01-01

    The biokinetics of radiogallium and radioindium in normal mice are compared using the compartmental modelling analysis. The rate constants obtained provide useful information in understanding the physiological and biochemical kinetics of radionuclides in the intact object. A comparison of the compartmental models for gallium and indium reveals the similarities and differences between the biokinetics of the two radionuclides. Furthermore, the results provide valuable information and guidance for human studies and clinical use

  3. A comparison of radiological risk assessment models: Risk assessment models used by the BEIR V Committee, UNSCEAR, ICRP, and EPA (for NESHAP)

    International Nuclear Information System (INIS)

    Wahl, L.E.

    1994-03-01

    Radiological risk assessments and resulting risk estimates have been developed by numerous national and international organizations, including the National Research Council's fifth Committee on the Biological Effects of Ionizing Radiations (BEIR V), the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), and the International Commission on Radiological Protection (ICRP). A fourth organization, the Environmental Protection Agency (EPA), has also performed a risk assessment as a basis for the National Emission Standards for Hazardous Air Pollutants (NESHAP). This paper compares the EPA's model of risk assessment with the models used by the BEIR V Committee, UNSCEAR, and ICRP. Comparison is made of the values chosen by each organization for several model parameters: populations used in studies and population transfer coefficients, dose-response curves and dose-rate effects, risk projection methods, and risk estimates. This comparison suggests that the EPA has based its risk assessment on outdated information and that the organization should consider adopting the method used by the BEIR V Committee, UNSCEAR, or ICRP

  4. An image-based skeletal dosimetry model for the ICRP reference adult male-internal electron sources

    International Nuclear Information System (INIS)

    Hough, Matthew; Johnson, Perry; Bolch, Wesley; Rajon, Didier; Jokisch, Derek; Lee, Choonsik

    2011-01-01

    In this study, a comprehensive electron dosimetry model of the adult male skeletal tissues is presented. The model is constructed using the University of Florida adult male hybrid phantom of Lee et al (2010 Phys. Med. Biol. 55 339-63) and the EGSnrc-based Paired Image Radiation Transport code of Shah et al (2005 J. Nucl. Med. 46 344-53). Target tissues include the active bone marrow, associated with radiogenic leukemia, and total shallow marrow, associated with radiogenic bone cancer. Monoenergetic electron emissions are considered over the energy range 1 keV to 10 MeV for the following sources: bone marrow (active and inactive), trabecular bone (surfaces and volumes), and cortical bone (surfaces and volumes). Specific absorbed fractions are computed according to the MIRD schema, and are given as skeletal-averaged values in the paper with site-specific values reported in both tabular and graphical format in an electronic annex available from http://stacks.iop.org/0031-9155/56/2309/mmedia. The distribution of cortical bone and spongiosa at the macroscopic dimensions of the phantom, as well as the distribution of trabecular bone and marrow tissues at the microscopic dimensions of the phantom, is imposed through detailed analyses of whole-body ex vivo CT images (1 mm resolution) and spongiosa-specific ex vivo microCT images (30 μm resolution), respectively, taken from a 40 year male cadaver. The method utilized in this work includes: (1) explicit accounting for changes in marrow self-dose with variations in marrow cellularity, (2) explicit accounting for electron escape from spongiosa, (3) explicit consideration of spongiosa cross-fire from cortical bone, and (4) explicit consideration of the ICRP's change in the surrogate tissue region defining the location of the osteoprogenitor cells (from a 10 μm endosteal layer covering the trabecular and cortical surfaces to a 50 μm shallow marrow layer covering trabecular and medullary cavity surfaces). Skeletal

  5. An image-based skeletal dosimetry model for the ICRP reference adult male-internal electron sources

    Energy Technology Data Exchange (ETDEWEB)

    Hough, Matthew; Johnson, Perry; Bolch, Wesley [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL (United States); Rajon, Didier [Department of Neurosurgery, University of Florida, Gainesville, FL (United States); Jokisch, Derek [Department of Physics and Astronomy, Francis Marion University, Florence, SC (United States); Lee, Choonsik, E-mail: wbolch@ufl.edu [Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD (United States)

    2011-04-21

    In this study, a comprehensive electron dosimetry model of the adult male skeletal tissues is presented. The model is constructed using the University of Florida adult male hybrid phantom of Lee et al (2010 Phys. Med. Biol. 55 339-63) and the EGSnrc-based Paired Image Radiation Transport code of Shah et al (2005 J. Nucl. Med. 46 344-53). Target tissues include the active bone marrow, associated with radiogenic leukemia, and total shallow marrow, associated with radiogenic bone cancer. Monoenergetic electron emissions are considered over the energy range 1 keV to 10 MeV for the following sources: bone marrow (active and inactive), trabecular bone (surfaces and volumes), and cortical bone (surfaces and volumes). Specific absorbed fractions are computed according to the MIRD schema, and are given as skeletal-averaged values in the paper with site-specific values reported in both tabular and graphical format in an electronic annex available from http://stacks.iop.org/0031-9155/56/2309/mmedia. The distribution of cortical bone and spongiosa at the macroscopic dimensions of the phantom, as well as the distribution of trabecular bone and marrow tissues at the microscopic dimensions of the phantom, is imposed through detailed analyses of whole-body ex vivo CT images (1 mm resolution) and spongiosa-specific ex vivo microCT images (30 {mu}m resolution), respectively, taken from a 40 year male cadaver. The method utilized in this work includes: (1) explicit accounting for changes in marrow self-dose with variations in marrow cellularity, (2) explicit accounting for electron escape from spongiosa, (3) explicit consideration of spongiosa cross-fire from cortical bone, and (4) explicit consideration of the ICRP's change in the surrogate tissue region defining the location of the osteoprogenitor cells (from a 10 {mu}m endosteal layer covering the trabecular and cortical surfaces to a 50 {mu}m shallow marrow layer covering trabecular and medullary cavity surfaces). Skeletal

  6. Safety philosophy of ICRP

    International Nuclear Information System (INIS)

    Kato, Kazuaki

    1995-01-01

    Measures are important as the means to realize philosophy. Accordingly, it is meaningful to take measures as the object when the philosophy of ICRP is considered. As to controllable risk factors, restraint shall be done so as to make the risk being brought about as small as possible. When it is not necessary to limit restraining means, risk-free is ideal. Ionizing radiation is one of risk factors. The risk that ICRP speaks is the loss of the probability of maintaining life. The object of radiation protection is limited to the exposure to controllable radiation, and the aim of protection is to minimize risk under the condition of as low as reasonably achievable. The philosophy of ICRP and the problems in the measures are discussed. ICRP and ICRU must reconfirm the allotment of roles. Radiation protection system is composed of system of radiation dosimetry and system of dose limitation. The mission of ICRP is to recommend political decision, and it may make the political declaration 'The radiation below a certain amount may be regarded as safe'. It is better only to recommend the conversion relation of radiation dose and risk. The desire and demand to ICRP are mentioned. (K.I.)

  7. Whole body MR-PET: a new internal dosimetry method for radiation transport calculation from biokinetic model data

    International Nuclear Information System (INIS)

    Nunes, Ana; Alves, Francisco; Patrício, Miguel

    2014-01-01

    In order to ensure the safe usage of new radiopharmaceuticals in Positron Emission Tomography (PET), it is necessary to quantify the doses delivered to the organs and tissues within the patients’ bodies. A framework that allows estimating the dose delivered by PET has been established by the MIRD Committee [1, 2] and ICRP []. Although this covers the most important terms and concepts in Internal Radiation Dosimetry (IRD), it does not provide a detailed guide to assist in the development of a full dosimetric study. We discuss the development, implementation, assessment and validation of an accurate method for IRD studies of PET radiotracers.

  8. Application of physiological parameters of a sample of the Brazilian population in different levels of exercise, on the deposition model of the ICRP Publication 66

    International Nuclear Information System (INIS)

    Reis, Arlene A. dos; Cardoso, Joaquim C.S.; Lourenco, Maria C.

    2005-01-01

    The Human Respiratory Tract Model (HRTM) proposed by the ICRP Publication 66 accounts for the morphology and physiology of the respiratory tract. The characteristics of air drawn into the lungs and exhaled are greatly influenced by the morphology of the respiratory tract, which causes numerous changes in pressure, flow rate, direction and humidity as air moves into and out of the lungs. The model uses morphological and physiological parameters from the Caucasian man to establish deposition fractions in the respiratory tract regions. The ICRP recommends, for a reliable evaluation of the regional deposition, the use of parameters from a local population when information is available. The main purpose of this study is to verify the influence in using the morphology and physiology parameters representative of a sample of the Brazilian population, in different levels of exercise, on the deposition model of the ICRP Publication 66. The deposition model was implemented using software Excel for Windows (version 2000). The results suggest a significant variation in fractional deposition when Brazilian parameters are applied in the model. The variations are not the same for all regions of the respiratory tract and depend on levels of exercise. (author)

  9. Implementation of the ICRP 66 respiratory tract model: example of occupational exposure to uranium oxides formed in a new laser enrichment process

    International Nuclear Information System (INIS)

    Ansoborlo, E.; Henge-Napoli, M.H.; Hodgson, A.; Stradling, G.N.; Birchall, A.

    1996-01-01

    A new uranium enrichment facility using laser isotopic separation generates aerosols consisting of U metal + UO 2 : with traces of UPON. Results of lung absorption to blood showed that the U metal + UO 2 transportability was appreciably greater than for other industrial forms of UO 2 . Taking into account the new ICRP human respiratory tract model, the data were used as a basis for assessing the dose coefficient, for the dust sampled at the workplace. (author)

  10. The respiratory tract deposition model proposed by the ICRP Task Group

    International Nuclear Information System (INIS)

    James, A.C.; Briant, J.K.; Stahlhofen, W.; Rudolf, G.; Gehr, P.

    1990-11-01

    The Task Group has developed a new model of the deposition of inhaled aerosols in each anatomical region of the respiratory tract. The model is used to evaluate the fraction of airborne activity that is deposited in respiratory regions having distinct retention characteristics and clearance pathways: the anterior nares, the extrathoracic airways of the naso- and oropharynx and larynx, the bronchi, the bronchioles, and the alveolated airways of the lung. Drawn from experimental data on total and regional deposition in human subjects, the model is based on extrapolation of these data by means of a detailed theoretical model of aerosol transport and deposition within the lung. The Task Group model applies to all practical conditions, and for aerosol particles and vapors from atomic size up to very coarse aerosols with an activity median aerodynamic diameter of 100 μm. The model is designed to predict regional deposition in different subjects, including adults of either sex, children of various ages, and infants, and also to account for anatomical differences among Caucasian and non-Caucasian subjects. The Task Group model represents aerosol inhalability and regional deposition in different subjects by algebraic expressions of aerosol size, breathing rates, standard lung volumes, and scaling factors for airway dimensions. 35 refs., 13 figs., 2 tabs

  11. 1990 recommendations of ICRP

    International Nuclear Information System (INIS)

    Clarke, R.H.

    1991-01-01

    The Main Commission of ICRP finalised its new recommendations during its November 1990 meeting. The recommendations will appear in the Annals of the ICRP in 1991 as Publication 60. This paper represents a personal summary of these recommendations. It covers the basic biological risk estimates and the conceptual framework of the system of radiological protection, the definition of radiation detriment and its use both in the definition of radiation quantities and in the establishment of the dose limits adopted by the Main Commissions. (author)

  12. Review of ICRP recommendations

    International Nuclear Information System (INIS)

    Goldfinch, E.P.

    1987-01-01

    Events in both the scientific world and in the public domain have added pressure to review the recommendations of the ICRP on which radiation protection legislation in most countries is founded. A brief editorial pleads for clarity in ICRP recommendations, suggests the use solely of cumulative with age individual occupational dose limits, suggests that collective doses including both occupational and to the public should be kept as low as reasonably achievable, judged on quantitative economic grounds, and suggests the setting of a probability for serious accidents which may be disregarded in planning. (UK)

  13. ICRP - history and developments

    International Nuclear Information System (INIS)

    Lokan, K.H.

    1990-01-01

    A brief history is presented of the evolution of radiation protection concepts, largely through the activities of the International Commission on Radiological Protection and their adoption in Australia by the National Health and Medical Research Council. Changes which have taken place since the preparation of the Code of Practice for Radiation Protection in the Mining and Milling of Radioactive Ores (1980) are described, and likely future directions in radiation protection are suggested. A list of the ICRP publications since ICRP-26 is provided. 4 refs

  14. Foetal dose conversion coefficients for ICRP-compliant pregnant models from idealised proton exposures

    International Nuclear Information System (INIS)

    Taranenko, V.; Xu, X. G.

    2009-01-01

    Protection of pregnant women and their foetus against external proton irradiations poses a unique challenge. Assessment of foetal dose due to external protons in galactic cosmic rays and as secondaries generated in aircraft walls is especially important during high-altitude flights. This paper reports a set of fluence to absorbed dose conversion coefficients for the foetus and its brain for external monoenergetic proton beams of six standard configurations (the antero-posterior, the postero-anterior, the right lateral, the left lateral, the rotational and the isotropic). The pregnant female anatomical definitions at each of the three gestational periods (3, 6 and 9 months) are based on newly developed RPI-P series of models whose organ masses were matched within 1% with the International Commission on Radiological Protection reference values. Proton interactions and the transport of secondary particles were carefully simulated using the Monte Carlo N-Particle extended code (MCNPX) and the phantoms consisting of several million voxels at 3 mm resolution. When choosing the physics models in the MCNPX, it was found that the advanced Cascade-Exciton intranuclear cascade model showed a maximum of 9% foetal dose increase compared with the default model combination at intermediate energies below 5 GeV. Foetal dose results from this study are tabulated and compared with previously published data that were based on simplified anatomy. The comparison showed a strong dependence upon the source geometry, energy and gestation period: The dose differences are typically less than 20% for all sources except ISO where systematically 40-80% of higher doses were observed. Below 200 MeV, a larger discrepancy in dose was found due to the Bragg peak shift caused by different anatomy. The tabulated foetal doses represent the latest and most detailed study to date offering a useful set of data to improve radiation protection dosimetry against external protons. (authors)

  15. An image-based skeletal dosimetry model for the ICRP reference newborn-internal electron sources

    International Nuclear Information System (INIS)

    Pafundi, Deanna; Lee, Choonsik; Bolch, Wesley; Rajon, Didier; Jokisch, Derek

    2010-01-01

    In this study, a comprehensive electron dosimetry model of newborn skeletal tissues is presented. The model is constructed using the University of Florida newborn hybrid phantom of Lee et al (2007 Phys. Med. Biol. 52 3309-33), the newborn skeletal tissue model of Pafundi et al (2009 Phys. Med. Biol. 54 4497-531) and the EGSnrc-based Paired Image Radiation Transport code of Shah et al (2005 J. Nucl. Med. 46 344-53). Target tissues include the active bone marrow (surrogate tissue for hematopoietic stem cells), shallow marrow (surrogate tissue for osteoprogenitor cells) and unossified cartilage (surrogate tissue for chondrocytes). Monoenergetic electron emissions are considered over the energy range 1 keV to 10 MeV for the following source tissues: active marrow, trabecular bone (surfaces and volumes), cortical bone (surfaces and volumes) and cartilage. Transport results are reported as specific absorbed fractions according to the MIRD schema and are given as skeletal-averaged values in the paper with bone-specific values reported in both tabular and graphic format as electronic annexes (supplementary data). The method utilized in this work uniquely includes (1) explicit accounting for the finite size and shape of newborn ossification centers (spongiosa regions), (2) explicit accounting for active and shallow marrow dose from electron emissions in cortical bone as well as sites of unossified cartilage, (3) proper accounting of the distribution of trabecular and cortical volumes and surfaces in the newborn skeleton when considering mineral bone sources and (4) explicit consideration of the marrow cellularity changes for active marrow self-irradiation as applicable to radionuclide therapy of diseased marrow in the newborn child.

  16. An image-based skeletal dosimetry model for the ICRP reference newborn-internal electron sources

    Energy Technology Data Exchange (ETDEWEB)

    Pafundi, Deanna; Lee, Choonsik; Bolch, Wesley [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL (United States); Rajon, Didier [Department of Neurosurgery, University of Florida, Gainesville, FL (United States); Jokisch, Derek [Department of Physics and Astronomy, Francis Marion University, Florence, SC (United States)], E-mail: wbolch@ufl.edu

    2010-04-07

    In this study, a comprehensive electron dosimetry model of newborn skeletal tissues is presented. The model is constructed using the University of Florida newborn hybrid phantom of Lee et al (2007 Phys. Med. Biol. 52 3309-33), the newborn skeletal tissue model of Pafundi et al (2009 Phys. Med. Biol. 54 4497-531) and the EGSnrc-based Paired Image Radiation Transport code of Shah et al (2005 J. Nucl. Med. 46 344-53). Target tissues include the active bone marrow (surrogate tissue for hematopoietic stem cells), shallow marrow (surrogate tissue for osteoprogenitor cells) and unossified cartilage (surrogate tissue for chondrocytes). Monoenergetic electron emissions are considered over the energy range 1 keV to 10 MeV for the following source tissues: active marrow, trabecular bone (surfaces and volumes), cortical bone (surfaces and volumes) and cartilage. Transport results are reported as specific absorbed fractions according to the MIRD schema and are given as skeletal-averaged values in the paper with bone-specific values reported in both tabular and graphic format as electronic annexes (supplementary data). The method utilized in this work uniquely includes (1) explicit accounting for the finite size and shape of newborn ossification centers (spongiosa regions), (2) explicit accounting for active and shallow marrow dose from electron emissions in cortical bone as well as sites of unossified cartilage, (3) proper accounting of the distribution of trabecular and cortical volumes and surfaces in the newborn skeleton when considering mineral bone sources and (4) explicit consideration of the marrow cellularity changes for active marrow self-irradiation as applicable to radionuclide therapy of diseased marrow in the newborn child.

  17. Radiation fields, dosimetry, biokinetics and biophysical models for cancer induction by ionising radiation 1996 - 1999. Mid-term reports for the period 1996-1997

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, P; Paretzke, H G; Roth, P [GSF - Forschungszentrum fuer Umwelt und Gesundheit Neuherberg GmbH, Oberschleissheim (Germany). Inst. fuer Strahlenschutz; Michael, B D [Mount Vernon Hospital, Northwood (United Kingdom). Gray Lab.; O` Sullivan, D [Dublin Inst. for Advanced Studies (Ireland)

    1999-12-31

    The main objectives of the first dosimetry project are the measurement of neutron and charged particle flux and energy spectra at altitudes in civil aviation, the determination of response characteristics for detectors, the investigation of calibration procedures, and the evaluation of exposures of aircrews. The overall objective of the second dosimetry project is to improve estimates of dose following the intake of radionuclides by adults and children. The work includes the development of biokinetic and dosimetric models, including models of the gastrointestinal tract, for the systemic behaviour of radionuclides, and for the developing embryo and foetus. Further subjects are target cell dosimetry for short-range particles and the development of computational tools for sensitivity and uncertainty analysis models. The third dosimetry project encompasses the study of different methods for retrospective dose assessments for individuals or groups of individuals accidentally exposed to increased levels of radiation. The methods investigated include electron paramagnetic resonance (EPR) of tooth enamel and chromosome painting (FISH) for lymphocytes in peripheral blood for individual retrospective dose assessments, luminescence techniques on materials in inhabited environment (ceramics, bricks) and model calculations using environmental data as input. (orig.)

  18. Radiation fields, dosimetry, biokinetics and biophysical models for cancer induction by ionising radiation 1996 - 1999. Mid-term reports for the period 1996-1997

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, P.; Paretzke, H.G.; Roth, P. [GSF - Forschungszentrum fuer Umwelt und Gesundheit Neuherberg GmbH, Oberschleissheim (Germany). Inst. fuer Strahlenschutz; Michael, B.D. [Mount Vernon Hospital, Northwood (United Kingdom). Gray Lab.; O`Sullivan, D. [Dublin Inst. for Advanced Studies (Ireland)

    1998-12-31

    The main objectives of the first dosimetry project are the measurement of neutron and charged particle flux and energy spectra at altitudes in civil aviation, the determination of response characteristics for detectors, the investigation of calibration procedures, and the evaluation of exposures of aircrews. The overall objective of the second dosimetry project is to improve estimates of dose following the intake of radionuclides by adults and children. The work includes the development of biokinetic and dosimetric models, including models of the gastrointestinal tract, for the systemic behaviour of radionuclides, and for the developing embryo and foetus. Further subjects are target cell dosimetry for short-range particles and the development of computational tools for sensitivity and uncertainty analysis models. The third dosimetry project encompasses the study of different methods for retrospective dose assessments for individuals or groups of individuals accidentally exposed to increased levels of radiation. The methods investigated include electron paramagnetic resonance (EPR) of tooth enamel and chromosome painting (FISH) for lymphocytes in peripheral blood for individual retrospective dose assessments, luminescence techniques on materials in inhabited environment (ceramics, bricks) and model calculations using environmental data as input. (orig.)

  19. Radiation fields, dosimetry, biokinetics and biophysical models for cancer induction by ionising radiation 1996 - 1999. Mid-term reports for the period 1996-1997

    International Nuclear Information System (INIS)

    Jacob, P.; Paretzke, H.G.; Roth, P.

    1998-01-01

    The main objectives of the first dosimetry project are the measurement of neutron and charged particle flux and energy spectra at altitudes in civil aviation, the determination of response characteristics for detectors, the investigation of calibration procedures, and the evaluation of exposures of aircrews. The overall objective of the second dosimetry project is to improve estimates of dose following the intake of radionuclides by adults and children. The work includes the development of biokinetic and dosimetric models, including models of the gastrointestinal tract, for the systemic behaviour of radionuclides, and for the developing embryo and foetus. Further subjects are target cell dosimetry for short-range particles and the development of computational tools for sensitivity and uncertainty analysis models. The third dosimetry project encompasses the study of different methods for retrospective dose assessments for individuals or groups of individuals accidentally exposed to increased levels of radiation. The methods investigated include electron paramagnetic resonance (EPR) of tooth enamel and chromosome painting (FISH) for lymphocytes in peripheral blood for individual retrospective dose assessments, luminescence techniques on materials in inhabited environment (ceramics, bricks) and model calculations using environmental data as input. (orig.)

  20. Impact of ICRP publication 68

    International Nuclear Information System (INIS)

    Carter, M.W.; Woods, D.A.

    1996-01-01

    ICRP Publication 61 was a temporary replacement for ICRP Publication 30. It gave ALIs but not the underlying dose conversion factors. ICRP Publication 68 has now been issued to replace Publication 61; it contains the dose conversion factors but not the ALIs, so comparison is impossible without carrying out calculations. This paper presents comparisons between the two publications and calculates the ICRP Publication 68 ALIs for some of the more common radionuclides. (author)

  1. An outgoing energy flux boundary condition for finite difference ICRP antenna models

    International Nuclear Information System (INIS)

    Batchelor, D.B.; Carter, M.D.

    1992-11-01

    For antennas at the ion cyclotron range of frequencies (ICRF) modeling in vacuum can now be carried out to a high level of detail such that shaping of the current straps, isolating septa, and discrete Faraday shield structures can be included. An efficient approach would be to solve for the fields in the vacuum region near the antenna in three dimensions by finite methods and to match this solution at the plasma-vacuum interface to a solution obtained in the plasma region in one dimension by Fourier methods. This approach has been difficult to carry out because boundary conditions must be imposed at the edge of the finite difference grid on a point-by-point basis, whereas the condition for outgoing energy flux into the plasma is known only in terms of the Fourier transform of the plasma fields. A technique is presented by which a boundary condition can be imposed on the computational grid of a three-dimensional finite difference, or finite element, code by constraining the discrete Fourier transform of the fields at the boundary points to satisfy an outgoing energy flux condition appropriate for the plasma. The boundary condition at a specific grid point appears as a coupling to other grid points on the boundary, with weighting determined by a kemel calctdated from the plasma surface impedance matrix for the various plasma Fourier modes. This boundary condition has been implemented in a finite difference solution of a simple problem in two dimensions, which can also be solved directly by Fourier transformation. Results are presented, and it is shown that the proposed boundary condition does enforce outgoing energy flux and yields the same solution as is obtained by Fourier methods

  2. Biokinetics and dosimetry of a hybrid formulation of 9mTc-BN and 99mTc-RGD2 starting from optic images in a murine model

    International Nuclear Information System (INIS)

    Cornejo A, L. G.

    2015-01-01

    This work has the purpose of evaluate the biokinetics and absorbed dose of radiation of hybrid formulation 99m Tc-BN / 99m Tc-RGD 2 in a murine model by optical imaging techniques using the multimodal preclinical in vivo image system Xtreme. The used method were the 99m Tc-BN, 99m Tc-RGD 2 and 99m Tc-BN/ 99m Tc-RGD 2 formulas, with specific recognition for GRPr and the integrin s α(v)β(3) and α(v)β(5) respectively, was injected in the vein tail of three nude mousses with induce breast cancer tumors (cell line T-47-D), by the preclinical multimodal imaging system Xtreme (Bruker), optical images in different times was acquired (5, 10, 20 min, 2 and 24 h), using Images Processing Toolbox of MATLAB these images was transform from RGB format to gray scales and sectioned in five independent images corresponding to heart, kidneys, bladder and tumor areas. The intensity of each images was computed in counts per pixel, then those intensities was corrected for background, attenuation and scattering, using different factors for each phenomena previously calculated. Finally the activity values quantified vs time was fitted into a biokinetic model to obtain the disintegrations number and cumulate activities in each organ. With these data the radiation absorbed dose were calculated using MIRD methodology. Results: The number of disintegration and absorbed dose calculated in MBq h/MBq and mGy/MBq, of injected mouse with the 99m Tc-BN/ 99m Tc-RGD 2 formulation, was: 0.035 ± 0.65 E-02, 0.25 x 10 -5 ± 0.46 E-07; 0.393 ± 0.51 E-1, 2.85 E-05 ± 3.7 E-06; 0.306 ± 0.21 E-01, 2.11 E-05 ± 1.45 E-06 and 0.151 ± 0.19 E-01, 1.09 E-05 ± 1.42 E-06 , in heart, kidneys, bladder and tumor, respectively. The number of disintegration obtained in kidneys is comparable to those reported for Trinidad B. 2014 Conclusions: Our results demonstrated that using optical images and a code for image analyses development in MATLAB, could achieve comparable quantitative results as the conventional

  3. The ICRP working party on bioassay interpretation

    International Nuclear Information System (INIS)

    Fry, F.A.; Lipsztein, J.L.; Birchall, A.

    2003-01-01

    In recent years there have been many developments in modelling the behaviour of radionuclides in the human body. The current generation of models are designed to be more 'realistic' than the previous generation of simple compartment models. The International Commission on Radiological Protection (ICRP) uses these models to produce dose coefficients and recognises that there is a need to give more guidance on how these models can be used to interpret bioassay data. A working party has been set up to address the issue. This paper describes some of the problems, some approaches to solving the problems and the progress of the ICRP working party. (author)

  4. The ICRP 2007 recommendations

    International Nuclear Information System (INIS)

    Streffer, C.

    2007-01-01

    The last comprehensive International Commission on Radiological Protection (ICRP) recommendations have been published in 1991(1). Since that time new data in physics and biology that are relevant for radiological protection have appeared in the scientific literature. Also, the general thinking about safety standards at the workplace as well as for the protection of the public has developed. Thus, a review of the recommendations is needed. However, as the present standards have worked well, these new recommendations should build on the present ones. Only a process of further development should take place allowing for the following key points: - new biological and physical information and trends in the setting of safety standards; - improvement in the presentation of the recommendations; as much stability in the recommendations as is consistent with the new information and environmental aspects will be included. The fundamental principles of radiological protection will remain the same as they have been described in ICRP publication 60(1): Justification: Actions involving new exposures or changes in exposures of individuals have to be justified in advance. A positive net benefit must result. Optimisation: Exposures should be as low as reasonably achievable and should be optimised in relation to with dose constraints. Dose limits: The values will not to be changed from Publication 60. Dose constraints: Development of the concept proposed in Publication 60 will be explained. The ICRP Committees have prepared foundation documents in the fields for which they are responsible and their members have the corresponding expertise. These foundation documents will support the decisions and explain the various statements of the Main Commission in a broader sense. Some of them will be published as Annexes to the recommendations (Annex A: Biological and Epidemiological Information on Health Risks Attributable to Ionising Radiation; Annex B: Quantities used in Radiological

  5. The ICRP 2007 recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Streffer, C. [Chairman of ICRP Committee 2, Institute of Science and Ethics, University Duisburg-Essen, 45117 Essen (Germany)

    2007-07-01

    The last comprehensive International Commission on Radiological Protection (ICRP) recommendations have been published in 1991(1). Since that time new data in physics and biology that are relevant for radiological protection have appeared in the scientific literature. Also, the general thinking about safety standards at the workplace as well as for the protection of the public has developed. Thus, a review of the recommendations is needed. However, as the present standards have worked well, these new recommendations should build on the present ones. Only a process of further development should take place allowing for the following key points: - new biological and physical information and trends in the setting of safety standards; - improvement in the presentation of the recommendations; as much stability in the recommendations as is consistent with the new information and environmental aspects will be included. The fundamental principles of radiological protection will remain the same as they have been described in ICRP publication 60(1): Justification: Actions involving new exposures or changes in exposures of individuals have to be justified in advance. A positive net benefit must result. Optimisation: Exposures should be as low as reasonably achievable and should be optimised in relation to with dose constraints. Dose limits: The values will not to be changed from Publication 60. Dose constraints: Development of the concept proposed in Publication 60 will be explained. The ICRP Committees have prepared foundation documents in the fields for which they are responsible and their members have the corresponding expertise. These foundation documents will support the decisions and explain the various statements of the Main Commission in a broader sense. Some of them will be published as Annexes to the recommendations (Annex A: Biological and Epidemiological Information on Health Risks Attributable to Ionising Radiation; Annex B: Quantities used in Radiological

  6. New ICRP recommendations on occupational limits for radon daughters

    International Nuclear Information System (INIS)

    Jacobi, W.

    1981-01-01

    The ICRP has recommended in 1959 for the first time a maximum permissible concentration (MPC) for the occupational exposure to radon and its short-lived daughters. Since this time more realistic dosimetric models for radon daughters have been developed. Taking into account epidemiological and new dosimetric findings the ICRP has adopted in March this year new recommendations on occupational limits for inhalation of 222 Rn, 220 Rn and their short-lived daughters. This report will be published this year as ICRP Publication 32 (ICRP 1981). The recommended limits for radon daughters were derived from the basic dose and risk limits as they were proposed by ICRP in its new basic recommendations (ICRP Publ. 26, 1977). In the following this basic system of dose limitation is shortly outlined before the special recommendations for radon daughters are described

  7. Current Activities and Plans of ICRP

    International Nuclear Information System (INIS)

    Valentin, J.

    2001-01-01

    Full text: The International Commission on Radiological Protection (ICRP) is established to advance for the public benefit the science of (ionising) radiation protection by providing recommendations and guidance, aiming at an appropriate standard of protection without unduly limiting beneficial practices. The Main Commission of ICRP recently launched a Task Group on new, consolidated Recommendations, based on world-wide consultations through IRPA on concepts proposed by the ICRP Chairman. It has also established a Task Group on protection of the environment, to review the Commission's policy that if humans are protected to the degree thought necessary, then other species are adequately protected. Task Groups of Committee 1 (Radiation effects) are planning reports on cancer risks at low doses; radiation effects on the embryo/fetus; and radiation quality effects. Committee 2 (Doses from radiation exposures) has Task Groups on internal dosimetry and on dose calculations, currently drafting reports on embryo/fetus dose coefficients; application of the ICRP lung model, and radionuclide transfer to breast milk. Task Groups on the human alimentary tract and on reference man are also preparing reports. Committee 3 (Protection in medicine) has initiated a series of practical reports on pregnancy and medical radiation; interventional radiology; accident prevention in radiotherapy; computed tomography; and release of patients after therapy with unsealed sources; as well as its series on new radiopharmaceuticals. Committee 4 (Application of ICRP recommendations) is providing input to the Main Commission Task Groups and is proposing a Task Group on radiation in space flight. Information about ICRP activities is available at www.icrp.org. (author)

  8. Development of derived limits for radiological protection against ionizing radiation based on ICRP-60 recommendations

    International Nuclear Information System (INIS)

    Jang, S. Y.; Lee, B. S.

    1999-01-01

    Derived limits such as the Annual Limit on Intake (ALI), Derived Air Concentration (DAC) and Effluent Concentration Limit (ECL) for radiological protection against ionizing radiation based on ICRP-60 recommendations were calculated using dose limits and committed effective dose coefficients of the basic Safety Standards of IAEA (i.e. safety series 115; BSS-96). Derived limits regarding occupational exposure were derived using methodologies of ICRP-61 and dose limit stated in ICRP -60. ECL in air and water for the control of radioactive discharge into the environment were derived using methodologies of 10 CFR part 20 and dose limit stated in ICRP-60. In order to analyze the impact of implementing derived limits on nuclear facilities, the derived values in this study were compared with those prescribed in 10 CFR part 20 as well as the Maximum Permissible Concentrations (MPC) of Notice No. 98-12 of the Ministry of Science and Technology (MOST). According to the comparison results, ECLs in air and water for the control of radioactive discharge into the environment in this study are shown to have lower values (i.e. more conservative), for most part, than those in Notice No. 98-12. These differences are due to the reduction of dose limit, adoption of a weighting factor for age-dependency in dose coefficients, and application of new respiratory tract model and bio-kinetics model. Especially, for uranium elements (i.e., 235 U, 238 U, etc.), which are governing ones in the nuclear fuel industries, ECLs in water are approximately a magnitude in the order of two lower than those in Notice No. 98-12. These are attributable to the adoption of a weighting factor for age-dependency in dose coefficients, newly recommended dose coefficients for ingestion pathway, and reduction of dose limit. It was found out that the differences in ECLs in water for uranium elements originated mostly from ingestion dose coefficients recommended by BSS-96. (author). 6 refs., 2 tabs., 5 figs

  9. The biokinetic of incorporates radionuclides; Die Biokinetik von inkorporierten Radionukliden

    Energy Technology Data Exchange (ETDEWEB)

    Breustedt, Bastian [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany). Inst. fuer Strahlenforschung; Giussani, Augusto [Bundesamt fuer Strahlenschutz, Oberschleissheim (Germany). Arbeitsgruppe ' ' Externe und interne Dosimetrie, Biokinetik' '

    2017-08-01

    Incorporated radionuclides from nuclear accidents, fission product releases or nuclear medical administration are distributed in the human body in organs and tissue, absorbed 9or excreted. The interpretation of incorporation monitoring results and the estimation of the internal doses that cannot be measured directly need mathematical methods and the formulation of biokinetic models.

  10. The new ICRP recommendations

    International Nuclear Information System (INIS)

    Schlesinger, T.

    1977-01-01

    The new ICRP recommendations are based on the concept of risk. The doses received by workers have to be justified and kept as low as practically achievable. The acceptable annual occupational risk is of the order of 10 -4 . This corresponds to an average annual dose equivalent of about 5 mSv(0.5 Rem). The annual dose equivalent limit for whole body irradiation will remain 50 mSv/year (5 Rem/year) provided that the average is about 1/10th of this value. The concept of the critical organ is abandoned and is replaced by the concept of equidetriment. (author)

  11. Study of the influence of radionuclide biokinetics on in vivo counting using voxel phantoms

    International Nuclear Information System (INIS)

    Lamart, St.

    2008-10-01

    The in vivo measurement is an efficient method to estimate the retention of activity in case of internal contamination. However, it is currently limited by the use of physical phantoms for the calibration, not enabling to reproduce neither the morphology of the measured person nor the actual distribution of the contamination. The current method of calibration therefore leads to significant systematic uncertainties on the quantification of the contamination. To improve the in vivo measurement, the Laboratory of Internal Dose Assessment (LEDI, IRSN) has developed an original numerical calibration method with the OEDIPE software. It is based on voxel phantoms created from the medical images of persons, and associated with the MCNPX Monte Carlo code of particle transport. The first version of this software enabled to model simple homogeneous sources and to better estimate the systematic uncertainties in the lung counting of actinides due to the detector position and to the heterogeneous distribution of activity inside the lungs. However, it was not possible to take into account the dynamic feature, and often heterogeneous distribution between body organs and tissues of the activity. Still, the efficiency of the detection system depends on the distribution of the source of activity. The main purpose of the thesis work is to answer to the question: what is the influence of the biokinetics of the radionuclides on the in vivo counting? To answer it, it was necessary to deeply modify OEDIPE. This new development enabled to model the source of activity more realistically from the reference biokinetic models defined by the ICRP. The first part of the work consisted in developing the numerical tools needed to integrate the biokinetics in OEDIPE. Then, a methodology was developed to quantify its influence on the in vivo counting from the results of simulations. This method was carried out and validated on the model of the in vivo counting system of the LEDI. Finally, the

  12. Identification of nevadensin as an important herb-based constituent inhibiting estragole bioactivation and physiology-based biokinetic modeling of its possible in vivo effect

    International Nuclear Information System (INIS)

    Alhusainy, W.; Paini, A.; Punt, A.; Louisse, J.; Spenkelink, A.; Vervoort, J.; Delatour, T.; Scholz, G.; Schilter, B.; Adams, T.; Bladeren, P.J. van; Rietjens, I.M.C.M.

    2010-01-01

    Estragole is a natural constituent of several herbs and spices including sweet basil. In rodent bioassays, estragole induces hepatomas, an effect ascribed to estragole bioactivation to 1'-sulfooxyestragole resulting in DNA adduct formation. The present paper identifies nevadensin as a basil constituent able to inhibit DNA adduct formation in rat hepatocytes exposed to the proximate carcinogen 1'-hydroxyestragole and nevadensin. This inhibition occurs at the level of sulfotransferase (SULT)-mediated bioactivation of 1'-hydroxyestragole. The Ki for SULT inhibition by nevadensin was 4 nM in male rat and human liver fractions. Furthermore, nevadensin up to 20 μM did not inhibit 1'-hydroxyestragole detoxification by glucuronidation and oxidation. The inhibition of SULT by nevadensin was incorporated into the recently developed physiologically based biokinetic (PBBK) rat and human models for estragole bioactivation and detoxification. The results predict that co-administration of estragole at a level inducing hepatic tumors in vivo (50 mg/kg bw) with nevadensin at a molar ratio of 0.06, representing the ratio of their occurrence in basil, results in almost 100% inhibition of the ultimate carcinogen 1'-sulfooxyestragole when assuming 100% uptake of nevadensin. Assuming 1% uptake, inhibition would still amount to more than 83%. Altogether these data point at a nevadensin-mediated inhibition of the formation of the ultimate carcinogenic metabolite of estragole, without reducing the capacity to detoxify 1'-hydroxyestragole via glucuronidation or oxidation. These data also point at a potential reduction of the cancer risk when estragole exposure occurs within a food matrix containing SULT inhibitors compared to what is observed upon exposure to pure estragole.

  13. Innovative characteristics of the new dosimetric model for the human respiratory tract studied by the ICRP appointed Task Group of Committee 2

    CERN Document Server

    Melandri, C; Tarroni, G

    1991-01-01

    In 1984, the ICRP appointed a Task Group of Committee 2 to review and revise, as necessary, the current lung dosimetric model. On the basis of the knowledge acquired during the past 20 years, the Task Group's approach has been to review, in depth, the morphology and physiology of the human respiratory tract, inspirability of aerosols and regional deposition of inhaled particles as functions of aerosol size and breathing parameters, clearance of deposited materials, nature and specific sites of damage to the respiratory system caused by inhaled radioactive substances. In the proposed model, clearance from the three regions of the respiratory tract (extrathoracic ET, fast-clearing thoracic T sub f and slow-clearing thoracic T sub s , comprising lymph nodes) is described in terms of competition between the mechanical processes moving particles, which do not depend on the substances, and those of absorption into the blood, determined solely by the material. A Task Group report will also include models for calcula...

  14. Towards a consensus-based biokinetic model for green microalgae - The ASM-A.

    Science.gov (United States)

    Wágner, Dorottya S; Valverde-Pérez, Borja; Sæbø, Mariann; Bregua de la Sotilla, Marta; Van Wagenen, Jonathan; Smets, Barth F; Plósz, Benedek Gy

    2016-10-15

    Cultivation of microalgae in open ponds and closed photobioreactors (PBRs) using wastewater resources offers an opportunity for biochemical nutrient recovery. Effective reactor system design and process control of PBRs requires process models. Several models with different complexities have been developed to predict microalgal growth. However, none of these models can effectively describe all the relevant processes when microalgal growth is coupled with nutrient removal and recovery from wastewaters. Here, we present a mathematical model developed to simulate green microalgal growth (ASM-A) using the systematic approach of the activated sludge modelling (ASM) framework. The process model - identified based on a literature review and using new experimental data - accounts for factors influencing photoautotrophic and heterotrophic microalgal growth, nutrient uptake and storage (i.e. Droop model) and decay of microalgae. Model parameters were estimated using laboratory-scale batch and sequenced batch experiments using the novel Latin Hypercube Sampling based Simplex (LHSS) method. The model was evaluated using independent data obtained in a 24-L PBR operated in sequenced batch mode. Identifiability of the model was assessed. The model can effectively describe microalgal biomass growth, ammonia and phosphate concentrations as well as the phosphorus storage using a set of average parameter values estimated with the experimental data. A statistical analysis of simulation and measured data suggests that culture history and substrate availability can introduce significant variability on parameter values for predicting the reaction rates for bulk nitrate and the intracellularly stored nitrogen state-variables, thereby requiring scenario specific model calibration. ASM-A was identified using standard cultivation medium and it can provide a platform for extensions accounting for factors influencing algal growth and nutrient storage using wastewater resources. Copyright

  15. Radiation fields, dosimetry, biokinetics and biophysical models for cancer induction by ionising radiation 1996-1999. Dose reconstruction. Final report

    International Nuclear Information System (INIS)

    Jacob, P.; Aragno, D.; Bailiff, I.K.

    2000-01-01

    The project Dose Reconstruction was conducted within the five work packages: - EPR with teeth, - Chromosome painting (FISH) in lymphocytes, - Luminescence methods, - Modelling, and - Evaluation. (orig.)

  16. Radiation protection. Basic concepts of ICRP

    International Nuclear Information System (INIS)

    Saito, Tsutomu; Hirata, Hideki

    2014-01-01

    The title subject is easily explained. Main international organizations for radiation protection are United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), International Commission on Radiological Protection (ICRP) and International Atomic Energy Agency (IAEA). The UNSCEAR objectively summarizes and publishes scientific findings; ICRP, an NGO, takes part in recommending the radiological protection from the expertized aspect; and IAEA, a UN autonomy, aims at peaceful usage of atomic power. These organizations support the legal regulation and standard of nations. The purpose of the ICRP recommendation (Pub. 103, 2007) is to contribute to the appropriate protection of radiation hazardous effects, which are assumed to be linearly proportional (the model of linear no-threshold, LNT) that radiation risk exists even at the lowest dose. When a change in the single cell results in hazardous alteration, the causative effects are called stochastic effects, which include the mutation leading to cancer formation and genetic effect in offspring (not observed in man). ICRP says the validity of LNT for the stochastic effects essentially from the protective aspect, although epidemiological data support it at >100 mSv exposure. The deterministic effects are caused by loss of cell itself or of its function, where the threshold is defined to be the dose causing >1% of disorder or death. Radiation protective system against exposure is on the situation (programmed, emergent and natural), category (occupational, public and medical) and 3 principles of justification, optimization and application of dose limit. (T.T.)

  17. DOSE210, A Semi-empirical Model for Prediction of Organ Distribution and Radiation Doses from Long Term Exposure to 210Pb and 210Po

    International Nuclear Information System (INIS)

    Salmon, P.L.; Bondarenko, O.A.; Henshaw, D.L.

    1999-01-01

    The DOSE210 model is an internal dosimetric model for 210 Pb and 210 Po which is based on current ICRP generic models. It is constrained and validated by reference to up-to-date published biokinetic data for both nuclides. The model has been validated primarily in regard to the relation between levels of chronic lifetime intake and organ concentrations of 210 Pb and 210 Po. To this end some adjustments to current ICRP biokinetic parameters have been made. The most substantial changes have been made to bone surface biokinetics of 210 Pb and 210 Po to reflect recent experimental studies on the microdistribution and radioactive equilibrium of these nuclides in bone, as well as measurements in biopsied human red bone marrow. An important dosimetric prediction of DOSE210 is a substantially lower dose to skeletal tissues from internal 210 Pb and 210 Po than that predicted by the current ICRP model. The most significant dose component predicted from lifetime environmental exposure to 210 Pb and 210 Po is the alpha dose to liver and kidney in infancy. Recycling of historic intakes of 210 Pb in the adult, principally from bone, is calculated to account for 22% of 210 Pb present in the plasma. (author)

  18. Towards a consensus-based biokinetic model for green microalgae – The ASM-A

    DEFF Research Database (Denmark)

    Wágner, Dorottya Sarolta; Valverde Pérez, Borja; Sæbø, Mariann

    2016-01-01

    developed to predict microalgal growth. However, none of these models can effectively describe all the relevant processes when microalgal growth is coupled with nutrient removal and recovery from wastewaters. Here, we present a mathematical model developed to simulate green microalgal growth (ASM-A) using...... and substrate availability can introduce significant variability on parameter values for predicting the reaction rates for bulk nitrate and the intracellularly stored nitrogen state-variables, thereby requiring scenario specific model calibration. ASM-A was identified using standard cultivation medium...

  19. UK experience with ICRP26 and ICRP30

    International Nuclear Information System (INIS)

    Dray, C.H.

    1991-01-01

    ICRP26 was adopted in January 1977 which took into account information emerging since the adoption of ICRP9 in September 1969 and specified the basic criteria for dose limitation which still apply today. ICRP30 defines the limits for intakes for radionuclides for workers, and enables the health physicist and regulatory bodies to make appropriate limits for annual intake, air contamination etc, to comply requirements of dose-equivalent commitment and committed dose equivalent. The publication of ICRP26 is reflected in European Communities directive 80/836/Euratom. Council Directive of 15th July 1980 amending the Directive laying down the basic safety standards for the health protection of general public and workers against the dangers of ionizing radiations. This document being required the member states to bring the requirements of the directive within their legislation. In the United Kingdom this was accomplished by the publication of the Ionizing Radiations Regulations 1985

  20. The new ICRP general recommendations

    International Nuclear Information System (INIS)

    Sasaki, Y.; Lochard, J.; Holm, L.E.; Niwa, O.; Ishigure, N.; Kosako, T.; Kai, M.

    2007-01-01

    The new draft ICRP recommendations was presented by the ICRP chair, Professor Lars-Eric Holm. His presentation was followed by presentations by Japanese members of the various (CRP committees, discussing their views of the draft recommendations based on their own technical experience. After these presentations, questions from the floor raised many of the key issues of the conference: dose constrains, the LNT hypothesis, dose bands, etc. This showed that the conference participants had carefully and completely read the draft, and were very interested in building a final ICRP recommendation that appropriately addresses all their concerns. These issues were also discussed throughout the entire conference. (author)

  1. The STATFLUX code: a statistical method for calculation of flow and set of parameters, based on the Multiple-Compartment Biokinetical Model

    Science.gov (United States)

    Garcia, F.; Mesa, J.; Arruda-Neto, J. D. T.; Helene, O.; Vanin, V.; Milian, F.; Deppman, A.; Rodrigues, T. E.; Rodriguez, O.

    2007-03-01

    radioactive substances, through environmental pathways, is very important for radiological protection of populations. One such pathway, associated with the food chain, is the grass-animal-man sequence. The distribution of trace elements in humans and laboratory animals has been intensively studied over the past 60 years [R.C. Pendlenton, C.W. Mays, R.D. Lloyd, A.L. Brooks, Differential accumulation of iodine-131 from local fallout in people and milk, Health Phys. 9 (1963) 1253-1262]. In addition, investigations on the incidence of cancer in humans, and a possible causal relationship to radioactive fallout, have been undertaken [E.S. Weiss, M.L. Rallison, W.T. London, W.T. Carlyle Thompson, Thyroid nodularity in southwestern Utah school children exposed to fallout radiation, Amer. J. Public Health 61 (1971) 241-249; M.L. Rallison, B.M. Dobyns, F.R. Keating, J.E. Rall, F.H. Tyler, Thyroid diseases in children, Amer. J. Med. 56 (1974) 457-463; J.L. Lyon, M.R. Klauber, J.W. Gardner, K.S. Udall, Childhood leukemia associated with fallout from nuclear testing, N. Engl. J. Med. 300 (1979) 397-402]. From the pathways of entry of radionuclides in the human (or animal) body, ingestion is the most important because it is closely related to life-long alimentary (or dietary) habits. Those radionuclides which are able to enter the living cells by either metabolic or other processes give rise to localized doses which can be very high. The evaluation of these internally localized doses is of paramount importance for the assessment of radiobiological risks and radiological protection. The time behavior of trace concentration in organs is the principal input for prediction of internal doses after acute or chronic exposure. The General Multiple-Compartment Model (GMCM) is the powerful and more accepted method for biokinetical studies, which allows the calculation of concentration of trace elements in organs as a function of time, when the flow parameters of the model are known. However, few

  2. HUMTRN: documentation and verification for an ICRP-based age- and sex-specific human simulation model for radionuclide dose assessment

    International Nuclear Information System (INIS)

    Gallegos, A.F.; Wenzel, W.J.

    1984-06-01

    The dynamic human simulation model HUMTRN is designed specifically as a major module of BIOTRAN to integrate climatic, hydrologic, atmospheric, food crop, and herbivore simulation with human dietary and physiological characteristics, and metabolism and radionuclides to predict radiation doses to selected organs of both sexes in different age groups. The model is based on age- and weight-specific equations developed for predicting human radionuclide transport from metabolic and physical characteristics. These characteristics are modeled from studies documented by the International Commission on Radiological Protection (ICRP 23). HUMTRN allows cumulative doses from uranium or plutonium radionuclides to be predicted by modeling age-specific anatomical, physiological, and metabolic properties of individuals between 1 and 70 years of age and can track radiation exposure and radionuclide metabolism for any age group for specified daily or yearly time periods. The simulated daily dose integration of eight or more simultaneous air, water, and food intakes gives a new, comprehensive, dynamic picture of radionuclide intake, uptake, and hazard analysis for complex scenarios. A detailed example using site-specific data based on the Pantex studies is included for verification. 14 references, 24 figures, 10 tables

  3. Innovative characteristics of the new dosimetric model for the human respiratory tract studied by the ICRP appointed Task Group of Committee 2

    International Nuclear Information System (INIS)

    Melandri, C.; Battisti, P.; Tarroni, G.

    1991-02-01

    In 1984, the ICRP appointed a Task Group of Committee 2 to review and revise, as necessary, the current lung dosimetric model. On the basis of the knowledge acquired during the past 20 years, the Task Group's approach has been to review, in depth, the morphology and physiology of the human respiratory tract, inspirability of aerosols and regional deposition of inhaled particles as functions of aerosol size and breathing parameters, clearance of deposited materials, nature and specific sites of damage to the respiratory system caused by inhaled radioactive substances. In the proposed model, clearance from the three regions of the respiratory tract (extrathoracic ET, fast-clearing thoracic T f and slow-clearing thoracic T s , comprising lymph nodes) is described in terms of competition between the mechanical processes moving particles, which do not depend on the substances, and those of absorption into the blood, determined solely by the material. A Task Group report will also include models for calculating radiation doses to tissues of the respiratory system following inhalation of α, β and γ emitting particulate and gaseous radionuclides. (author)

  4. The biokinetics of Rhuthenium and Zirconium radionuclides in humans studied with stable tracers

    International Nuclear Information System (INIS)

    Veronese, I.; Cantone, M.C.; Giussani, A.

    2002-01-01

    The assessment of the internal radiation dose delivered by radionuclides incorporated in the human body after accidental release into the environment requires the use of suitable biokinetic models. These models describe the absorption of radionuclides into the blood circulation, their distribution and retention in various organs and tissues, and the excretion routes. Biokinetic models are also employed for interpreting bioassay measurements in exposed subjects, like activity concentration measurements in body fluids (e.g. urine, blood), in order to estimate the incorporated amount of radioactive substances. The reliability of a biokinetic model is closely linked to the available experimental data used to develop the model itself. Biokinetic data for human subjects are available for most essential elements, as well as for some important non-essential elements such as caesium, lead, radium, uranium, americium and plutonium. For many other radionuclides, either very little or no information is available from human studies, and the respective models must be derived from other sources. These may include results from studies in animals, comparative data on the behaviour of similar radionuclides or chemical analogues in vitro. Biokinetic models developed from such a variety of data sources can be applied to humans only with a limited degree of confidence. The availability of data directly obtained on human subjects is therefore fundamental to set up more reliable and realistic models. Ruthenium and zirconium are among the elements characterised by a serious lack of reliable data in humans

  5. Biokinetics of radiotellurium in rats

    International Nuclear Information System (INIS)

    Nishimura, Y.; Sahoo, S.K.; Kim, S.; Homma-Takeda, S.; Watanabe, Y.; Inaba, J.

    2003-01-01

    Radiotellurium is present in the environment primarily due to its release during nuclear reactor accidents. Little is known of tellurium metabolism in juveniles, although the element is relatively abundant and has a number of industrial uses. A biokinetic study of radiotellurium in rats was done using gamma-ray counting. Wistar strain rats were used to determine the uptake of H 2 123 Te m O 3 by the whole-body retention of juvenile rats and the conceptus in relation to its gestational stages, by measurements in the placenta, fetal membranes, fetal fluid, and fetus. The whole-body retention of 123 Te m in juvenile rats was higher than that of adult rats. The relative concentration in the placenta and fetal membranes was higher than in the fetus. No activity was observed in the fetal fluid. These results indicate that the placenta and fetal membranes play significant roles as barriers to the transfer of 123 Te m into the fetus. The ratio, relative concentration in fetus/relative concentration in mother (C F /C M ), was calculated. The C F /C M ratio was dependent on the stage of gestation and ranged from 0.2 to 0.5. A little 123 Te m was transferred to the suckling rats through the mother's milk when the isotope was administered intravenously to the mother. (author)

  6. ICRP putting wealth before health

    International Nuclear Information System (INIS)

    Green, P.

    1990-01-01

    Reductions in recommended dose limits for radiation workers set by the International Commission for Radiological Protection do not go far enough. The ICRP has put industry profitability before worker safety, and their recommendations should not be the basis for UK or European law. (author)

  7. ICRP 60 - the next step

    International Nuclear Information System (INIS)

    Harding, L.K.; Thomson, W.H.

    1993-01-01

    Following the publication in 1990 of the recommendations proposed by the International Commission on Radiological protection (ICRP 60), this editorial briefly highlights the advice given by the NRPB to UK government departments on how to implement those recommendations regarding occupational, medical and public exposure. (UK)

  8. Workers and the ICRP recommendations

    International Nuclear Information System (INIS)

    Zerbib, J.C.

    1979-01-01

    In both the preparation and the application of the recommendations presented by the ICRP one important voice has been absent: that of the workers in the nuclear industry. A large number of specialists are studying their situation from all points of view, in their different capacities as workers, consumers and male or female members of the public, but this extensive study is being done without consulting them, without their opinion even being asked for. The paper discusses such deficiencies, in particular all those aspects which distinguish these recommendations from a legal text. The lack of conciseness in the definition of the limit which the average annual dose to a large group of workers must not exceed (500 mrad) is considered. The possibility of a large number of workers being exposed for a long period is not acceptable if the decision is left to the manager of a nuclear facility alone. Cost-benefit analysis, as it is described in the ICRP text, cannot be considered to provide credible protection from the point of view of workers. Moreover, the various ICRP recommendations fail to mention such important matters as allowance for low-dose effects, disparities in the social security coverage offered to various categories of workers in the event of occupational illness, and the increasing use of migrant workers for difficult decontamination and maitenance tasks. At a time when it is thought that nuclear technology can be standardized, the French Democratic Labour Confederation (CFDT) expresses its fears concerning the practical application of the ICRP recommendations; for example, the text of ICRP Publication 26 has not yet been translated into French, but Euratom has already proposed directives for its application in Member States

  9. ICRP (1991) and deterministic effects

    International Nuclear Information System (INIS)

    Mole, R.H.

    1992-01-01

    A critical review of ICRP Publication 60 (1991) shows that considerable revisions are needed in both language and thinking about deterministic effects (DE). ICRP (1991) makes a welcome and clear distinction between change, caused by irradiation; damage, some degree of deleterious change, for example to cells, but not necessarily deleterious to the exposed individual; harm, clinically observable deleterious effects expressed in individuals or their descendants; and detriment, a complex concept combining the probability, severity and time of expression of harm (para42). (All added emphases come from the author.) Unfortunately these distinctions are not carried through into the discussion of deterministic effects (DE) and two important terms are left undefined. Presumably effect may refer to change, damage, harm or detriment, according to context. Clinically observable is also undefined although its meaning is crucial to any consideration of DE since DE are defined as causing observable harm (para 20). (Author)

  10. A computational code for resolution of general compartment models applied to internal dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Claro, Thiago R.; Todo, Alberto S., E-mail: claro@usp.br, E-mail: astodo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The dose resulting from internal contamination can be estimated with the use of biokinetic models combined with experimental results obtained from bio analysis and the knowledge of the incorporation time. The biokinetics models can be represented by a set of compartments expressing the transportation, retention and elimination of radionuclides from the body. The ICRP publications, number 66, 78 and 100, present compartmental models for the respiratory tract, gastrointestinal tract and for systemic distribution for an array of radionuclides of interest for the radiological protection. The objective of this work is to develop a computational code for designing, visualization and resolution of compartmental models of any nature. There are available four different techniques for the resolution of system of differential equations, including semi-analytical and numerical methods. The software was developed in C{ne} programming, using a Microsoft Access database and XML standards for file exchange with other applications. Compartmental models for uranium, thorium and iodine radionuclides were generated for the validation of the CBT software. The models were subsequently solved by SSID software and the results compared with the values published in the issue 78 of ICRP. In all cases the system is in accordance with the values published by ICRP. (author)

  11. A computational code for resolution of general compartment models applied to internal dosimetry

    International Nuclear Information System (INIS)

    Claro, Thiago R.; Todo, Alberto S.

    2011-01-01

    The dose resulting from internal contamination can be estimated with the use of biokinetic models combined with experimental results obtained from bio analysis and the knowledge of the incorporation time. The biokinetics models can be represented by a set of compartments expressing the transportation, retention and elimination of radionuclides from the body. The ICRP publications, number 66, 78 and 100, present compartmental models for the respiratory tract, gastrointestinal tract and for systemic distribution for an array of radionuclides of interest for the radiological protection. The objective of this work is to develop a computational code for designing, visualization and resolution of compartmental models of any nature. There are available four different techniques for the resolution of system of differential equations, including semi-analytical and numerical methods. The software was developed in C≠ programming, using a Microsoft Access database and XML standards for file exchange with other applications. Compartmental models for uranium, thorium and iodine radionuclides were generated for the validation of the CBT software. The models were subsequently solved by SSID software and the results compared with the values published in the issue 78 of ICRP. In all cases the system is in accordance with the values published by ICRP. (author)

  12. Internal dosimetry data and methods of ICRP. Part 1

    International Nuclear Information System (INIS)

    Ford, M.R.; Bernard, S.R.; Dillman, L.T.; Watson, S.B.

    1978-01-01

    The methodology being used to update the International Commission on Radiological Protection (ICRP) report of Committee 2, ICRP Publication 2 on Permissible Dose for Internal Radiation, is described. The system of differential equations, which is used to calculate the cumulated activity in the lungs, gastrointestinal tract, other body organs, and the transfer compartment of reference man, is presented. These equations describe the physical decay and metabolism of a radionuclide as governed by the lung and gastrointestinal tract models adopted by Committee 2 from models developed for the ICRP. The equations also take into account organ uptake and retention following intake into blood and the contribution of activity from radioactive daughter nuclides. Additionally, the scheme for estimating the dose from immersion in a radioactive cloud and the scheme for computing the nuclear decay data needed for all of the dose computations are presented. In computing the immersion dose, estimates for both the infinite and the finite cloud are considered

  13. Potential impacts of ICRP 60 and 61 on transportation

    International Nuclear Information System (INIS)

    Rawl, R.R.

    1992-01-01

    The International Commission on Radiological Protection (ICRP) has issued its ''1990 Recommendations of the International Commission on Radiation Protection'' that provide guidance on controlling exposure to ionizing radiation (1). The ICRP recommendations and their incorporation into the International Atomic Energy Agency's (IAEA) ''Basic Safety Standards,'' Safety Series No. 9, provide the basis on which the IAEA ''Regulation for the Safe Transport of Radioactive Materials,'' Safety Series No. 6, are built. The transportation regulations are developed to ensure safety during the movement of radioactive materials and to provide reasonable assurance the transportation activities comply with the basic radiation protection principles of Safety Series No. 9. During the 1985 revision of the IAEA transport regulations, a comprehensive model was developed to derive Type A (non-accident resistant) package contents limits that were consistent with Safety Series No.9 and, consequently, the earlier ICRP recommendations (2). Now that ICRP 60 has been published, the IAEA and Member States are faced with the task of evaluating how the transport regulations need to be revised to conform with the new recommendations. Several potentially significant issues need to be addressed to determine whether the old linkages between the recommendations and the transport regulations require modification. This paper addresses the issues that arise from the revisions to the ICRP recommendations and how the transportation regulations may be affected

  14. Biokinetics and internal dosimetry of inhaled metal tritide particles

    Science.gov (United States)

    Wang, Yansheng

    1998-12-01

    Metal tritides (MT), stable chemical compounds of tritium, are widely used in nuclear engineering facilities. MT particles can be released as aerosols. Inhaling MT particles is a potential occupational radiation hazard. Little information is available on their dissolution behavior, biokinetics, and dosimetry. The objectives of present dissertation are to estimate dissolution rates, to develop biokinetic models, to improve internal dosimetric considerations, and to classify MT materials. This study consisted of three phases: In vitro dissolution in a simulated lung fluid, In vivo rat experiments on retention and clearance, and biokinetic modeling and dosimetric evaluation. There was a supporting study on self- absorption of tritium beta in MT particles. MT materials used in this study were titanium (Ti) and zirconium (Zr) tritides. Results shows considerable self-absorption of beta particles and their energy, even for respirable MT particles smaller than 5 μm. The self-absorption factors should be required for counting MT particle samples and for estimating absorbed dose to tissues. In vitro and in vivo dissolution data indicate that Ti and Zr tritides are poorly soluble materials. Ti tritide belongs to the W class or M type while Zr tritide can be classified as Y class or S type. Due to long retention time of the MT particles, tritium betas directly from the particles contribute over 90% of the absorbed dose to lung. The lung dose contributes most of the effective dose to the whole body. Dissolved tritium including tritiated water (HTO) and organically bound tritium (OBT) has less effect on the lung dose and effective dose. Results on the annual limit on intake (ALI) indicate that the current radiation protection guideline based on HTO is not adequate for inhalation exposure to MT particles and needs to be modified. The biokinetic models developed in this study have predictive powers to estimate the consequences of a human inhalation exposure to MT aerosols. The

  15. Intercomparison of concepts in ICRP 60 and ICRP 103

    International Nuclear Information System (INIS)

    Youssif, B. E.

    2013-04-01

    The ICRP has produced recommendation three times in the last 30 years, In 2007, the ICRP approved new recommendations, These revised Recommendations for a System of Radiological Protection formally replace the Commission’s previous, 1990, Recommendations; and updated, consolidated, and developed the additional guidance on the control of exposure from radiation sources issued since 1990. The purpose of this study is to highlight and review some of major changes that have taken place. To compare between the 1990 recommendations (ICRP 60) and the 2007 recommendations (ICRP 103) according to radiological studies updated. The 2007 Recommendations update the radiation and tissue weighting factors in the quantities equivalent and effective dose .The major differences for tissue weighting factors increased by about a factor of two for breast and remainder tissues. Whilst the gonads are decreased by about a factor of two. The major change of WR for protons is a reduction from five to two reflecting a better understanding of the dosimetry of proton. For neutrons there is a reduction of WR of about a factor of two for thermal neutrons. An update on the radiation detriment has been made; based on the latest available scientific information of the biology and physics of radiation exposure. The detrimental nominal risk coefficient in 2007 Recommendations is lower by about 25% compared to 1990 Recommendations. Publication 103 maintains the Commission’s three fundamental principles of radiological protection, namely justification, optimisation, and the application of dose limits, clarifying how they apply to radiation sources delivering exposure and to individuals receiving exposure. The 2007 Recommendations evolve from the previous process-based protection approach using practices and interventions by moving to an approach based on the exposure situation. The recommendations recognise planned, emergency, and existing exposure situations, and apply the fundamental principles

  16. Selenium-75 and technetium-95m biokinetics in rats at different physiological states

    International Nuclear Information System (INIS)

    Archimbaud, Yves; Grillon, Gerard; Poncy, Jean-Luc; Masse, Roland

    1992-06-01

    Selenium 79 ( 79 Se) and technetium ( 99 Tc), beta emitters, components of nuclear wastes, may increase the dose equivalent to members of the public. Data used by ICRP show that there is relatively little information on Te and Se biokinetics at different physiologic stages. Retention was almost equivalent for young, male adult and pregnant rat. Selenium was concentrated in the testis, the kidneys, the liver and the spleen as technetium was in the skin, the thyroid and the kidneys. The biological half-time for Se and Te was respectively 20 and 41 days for pregnant rats, 33 and 15 days for young rats. Placental transfer per one fetus was 0.56% of the initial activity for Te and 1.27% for Se. These data point out the eventually high doses delivered to the skin for Te and to the testis for Se. They may be taken into consideration in estimating risk by humans at different stages of life [fr

  17. Improvement of skeleton conversion in ICRP reference phantom conversion project

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhao Jun; Yeom, Yeon Soo; Thang, Nguyen Tat; Kim, Han Sung; Han, Min Cheol; Kim, Chan Hyeong [Dept. of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of); Kim, Seong Hoon [Dept. of Radiation Oncology, College of Medicine, Hanyang University, Seoul (Korea, Republic of)

    2014-11-15

    In the previous skeleton conversion, most bones were directly converted from the ICRP voxel phantoms by using the 3D rendering method whereas several complex-shape bones (cranium, ribs, spines, feet, and hands) were not able to be directly converted. We alternatively employed the corresponding well-defined polygonal models and attempted to adjust them to match the voxel models. However, this approach was unsatisfactory. The shapes of the alternative models were significantly different from those of the voxel models, making it virtually impossible to exactly match the voxel models as shown in Fig. 3 (left). In order to overcome the difficulty in the complex bone conversion, the present study developed a new conversion method and converted these complex bones voxel models of the ICRP male phantom to polygonal models. The present study developed the new conversion method and successfully improved polygonal models for cranium, ribs, and spines for the ICRP male phantom. The new conversion method will be also applied to the complex bone conversion for the ICRP female phantom as well as other complex organ conversion in the future.

  18. Improvement of skeleton conversion in ICRP reference phantom conversion project

    International Nuclear Information System (INIS)

    Wang, Zhao Jun; Yeom, Yeon Soo; Thang, Nguyen Tat; Kim, Han Sung; Han, Min Cheol; Kim, Chan Hyeong; Kim, Seong Hoon

    2014-01-01

    In the previous skeleton conversion, most bones were directly converted from the ICRP voxel phantoms by using the 3D rendering method whereas several complex-shape bones (cranium, ribs, spines, feet, and hands) were not able to be directly converted. We alternatively employed the corresponding well-defined polygonal models and attempted to adjust them to match the voxel models. However, this approach was unsatisfactory. The shapes of the alternative models were significantly different from those of the voxel models, making it virtually impossible to exactly match the voxel models as shown in Fig. 3 (left). In order to overcome the difficulty in the complex bone conversion, the present study developed a new conversion method and converted these complex bones voxel models of the ICRP male phantom to polygonal models. The present study developed the new conversion method and successfully improved polygonal models for cranium, ribs, and spines for the ICRP male phantom. The new conversion method will be also applied to the complex bone conversion for the ICRP female phantom as well as other complex organ conversion in the future

  19. The work of committee 2 of ICRP on internal dosimetry

    International Nuclear Information System (INIS)

    Stather, J. W.

    2007-01-01

    Over the last few years Committee 2 of ICRP has been responsible for preparing a series of publications giving dose coefficients for intakes of radionuclides by members of the public. The last report in this series covers doses to the offspring in mothers' milk and should be issued in 2005. The emphasis of work on internal dosimetry is now concerned with occupational exposure. It is intended to replace Publications 30 and 68 that give biokinetic data and dose coefficients for intakes of radionuclides and Publications 54 and 78 that give information for bioassay interpretation, with a single series of publications. The first report of the series is expected to cover radionuclides of the elements addressed in the publications on dose coefficients for members of the public. It will also take into account new recommendations from the Commission. Subsequent publications will cover additional elements. A supporting Guidance Document is also being developed that will give more comprehensive advice on the interpretation of bioassay data. The need for this document was identified following recent interlaboratory comparisons that have shown wide variations in the way monitoring data can be interpreted in different laboratories. (authors)

  20. Dosimetric methodology of the ICRP

    International Nuclear Information System (INIS)

    Eckerman, K.F.

    1994-01-01

    Establishment of guidance for the protection of workers and members of the public from radiation exposures necessitates estimation of the radiation dose to tissues of the body at risk. The dosimetric methodology formulated by the International Commission on Radiological Protection (ICRP) is intended to be responsive to this need. While developed for radiation protection, elements of the methodology are often applied in addressing other radiation issues; e.g., risk assessment. This chapter provides an overview of the methodology, discusses its recent extension to age-dependent considerations, and illustrates specific aspects of the methodology through a number of numerical examples

  1. ICRP: Engaging with the RP profession

    International Nuclear Information System (INIS)

    Clement, Ch

    2014-01-01

    Just as the ICRP system of radiological protection must adapt to changes in scientific understanding, social and ethical values, and practical experience, ICRP itself continues to adapt as an organisation. One aspect of the continual modernisation of ICRP is a greater emphasis on engaging with the radiological protection profession.Ten years ago, on August 8, 2004, ICRP formally began open consultation on what was then referred to as the draft “2005 Recommendations of ICRP”. As most readers will know, this was published in due course as ICRP Publication 103, “The 2007 Recommendations of the International Commission on Radiological Protection” (ICRP, 2007).Being managed through the ICRP website, it opened up the possibility for anyone, anywhere, with an internet connection and an interest in radiological protection, to review the draft document and submit comments directly to ICRP.Open consultation on draft publications is but one aspect of ICRP’s efforts to become a more open and transparent organisation, and to increase engagement with the radiological protection profession. A modern arrangement for formal relations with other international organisations was established in 2012 with the objective of being more inclusive, effective, and efficient. In addition, there are efforts underway to seek the support needed to enable ICRP to broaden awareness of our recommendations, particularly in the medical field, and to increase engagement through social media and at relevant conferences, symposia, meetings, etc

  2. Foetal dosimetry--is the ICRP dosimetric system for humans now complete?

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Steve [Westlakes Research Institute, Cumbria (United Kingdom)

    2002-03-01

    Internal dosimetry is possibly the most complex area of science associated with radiological protection, and has a long history. Primary control of internal exposure now relied on control of annual intakes rather than limitation of organ burdens. Although it took nearly a decade for regulations and hence the practice of occupational radiation protection to fully adopt the new recommendations, the new dosimetric concepts were quite rapidly adopted in the assessment of public exposure because the new methods provided a more natural means of assessing the significance of exposure to a combination of external and internal exposure involving a number of different radionuclides. As a result, following the ICRP's initial publication of dosimetric models for occupational exposure, adaptations became available to cover environmental exposure, including the exposure of infants and children. Increasingly sophisticated biokinetic and dosimetric models have now been developed which, together with the welcome availability of dose per unit intake factors in CD-ROM form make it easy for the radiation protection practitioner to assess committed effective doses, and committed equivalent doses to individual organs, to occupationally exposed adults and environmentally exposed infants, children and adults. The inability to readily assess doses to the developing foetus has, however, long been perceived as a significant gap in knowledge with implications for the study of childhood leukaemia in the vicinity of nuclear installations and possibly also the control of occupational exposure for women of child-bearing age. The first systematic assessment of doses to the foetus was in connection with the study of childhood leukaemia in the vicinity of Sellafield in the UK, for which preliminary models were developed. Since that time a few publications giving guidance on the calculation of foetal doses have emerged and more sophisticated assessments of foetal dose have been reported

  3. Radiation fields, dosimetry, biokinetics and biophysical models for cancer induction by ionising radiation 1996-1999. Biophysical models for the induction of cancer by radiation. Final report

    International Nuclear Information System (INIS)

    Paretzke, H.G.; Ballarini, F.; Brugmans, M.

    2000-01-01

    The overall project is organised into seven work packages. WP1 concentrates on the development of mechanistic, quantitative models for radiation oncogenesis using selected data sets from radiation epidemiology and from experimental animal studies. WP2 concentrates on the development of mechanistic, mathematical models for the induction of chromosome aberrations. WP3 develops mechanistic models for radiation mutagenesis, particularly using the HPRT-mutation as a paradigm. WP4 will develop mechanistic models for damage and repair of DNA, and compare these with experimentally derived data. WP5 concentrates on the improvement of our knowledge on the chemical reaction pathways of initial radiation chemical species in particular those that migrate to react with the DNA and on their simulation in track structure codes. WP6 models by track structure simulation codes the production of initial physical and chemical species, within DNA, water and other components of mammalian cells, in the tracks of charged particles following the physical processes of energy transfer, migration, absorption, and decay of excited states. WP7 concentrates on the determination of the start spectra of those tracks considered in WP6 for different impinging radiation fields and different irradiated biological objects. (orig.)

  4. Radiobiological basis of radiation protection and ICRP 2007 general recommendations

    International Nuclear Information System (INIS)

    Rao, B.S.

    2014-01-01

    The ICRP 2007 General Recommendations are based on the detailed review of the new information on the biological effects and risk evaluation done during the last decade. Most of this information reinforces the validity of earlier findings. Since the publication of ICRP 60 general recommendations in 1991(ICRP 1991b), sufficient new information on the health effects of ionizing radiations has accrued based on radiobiological and epidemiological studies (UNSCEAR 2000, ICRP Publication 99). There is an improvement in understanding the mechanistic aspects of the induction of radiation damage at cellular level. Biophysical studies based on Monte Carlo track structure codes have provided information on the nature of critical damage to DNA leading to the radiation effects at cellular level. Experimental work with model animal systems has provided information on the role of post irradiation repair processes and the genes influencing the process of radiation carcinogenesis. Longer follow up of A-Bomb survivors of Hiroshima and Nagasaki now provides a more reliable risk estimate based on the cancer incidence data and also a better model for the transfer of risk among different populations with varying frequency of background incidence. At present it is clear that the breast cancer contributes substantially to the radiation risk and provides quantitative risk estimates for brain and salivary glands. In the light of the new information, Tissue Weighting factors (WT) have been revised

  5. The new ICRP general recommendations

    International Nuclear Information System (INIS)

    Mason, Ch.; Kosako, T.; Kuniyoshi, H.; Kiryu, Y.; Choi, H.S.; Burns, P.A.; Pan, Z.Q.; Xia, Y.

    2007-01-01

    Regulatory views from Japan, South Korea, Australia, China and Indonesia were explained based on their regional context. Some issues, for example 'optimisation', 'dose constrains', 'natural radioactivity', were addressed from the viewpoint of how each country's current regulation system would adopt these new recommendations. It was noted that there would be a need for some flexibility in applying these new recommendations since different countries have different regulatory criteria and benchmarks as well different decision-making processes. It was also noted that definitions and terminologies should be given serious consideration with regard to non-English speaking countries to assure that the new ICRP recommendations are clearly understood, not misinterpreted, easily translated and finally applied in the field of radiation protection. In addition, some recent radiation protection activities, as well as views on utilisation of nuclear power in several countries were presented. (authors)

  6. Possible implications of draft ICRP recommendations

    International Nuclear Information System (INIS)

    2003-01-01

    The Committee on Radiation Protection and Public Health (CRPPH) of the OECD Nuclear Energy Agency (NEA) has, since its inception, worked to develop and improve international norms in the area of radiological protection of the public, workers and the environment. International radiological protection norms continue to evolve, with significant new steps having been taken by the International Radiological Protection Commission (ICRP). Since the issuance of its 1990 recommendations, which form the basis of the international system of radiological protection, the ICRP has continued to add to them. The sum of these recommendations has become overly complicated and at times incoherent. In 1999 the ICRP therefore began to re-evaluate its recommendations with the aim of consolidation, simplification and clarification. New ICRP recommendations are due to be published in 2005. The CRPPH is contributing to the development of these new recommendations by providing the views of regulators and practitioners from its member countries. This report summarises the views of the CRPPH regarding the conceptual framework that the ICRP has recently proposed as the basis for its forthcoming detailed recommendations. The CRPPH highly appreciates the open stakeholder process that the ICRP has initiated to gather input for the development of new recommendations. This document, which is supported by the NEA Committee on Radiation Protection and Public Health, and by the NEA Radioactive Waste Management Committee, provides detailed suggestions with regard to the proposed ICRP framework. The stakeholder views expressed in this report have been presented to the ICRP at the second NEA/ICRP Forum in April 2003, and have persuaded the ICRP to reintroduce several key concepts into its proposed new system. (author)

  7. Potential impacts of ICRP 60 and 61 on transportation

    International Nuclear Information System (INIS)

    Rawl, Richard R.

    1992-01-01

    The International Commission on Radiological Protection (IGRP) has issued its '1990 Recommendations of the International Commission on Radiation Protection' that provide guidance on controlling exposure to ionizing radiation. The ICRP recommendations and their incorporation into the International Atomic Energy Agency's (IAEA) 'Basic Safety Standards', Safety Series No. 9, provide the basis on which the IAEA 'Regulations for the Safe Transport of Radioactive Materials', Safety Series No. 6, are built. The transportation regulations are developed to ensure safety during the movement of radioactive materials and to provide reasonable assurance the transportation activities comply with the basic radiation protection principles of Safety Series No. 9. During the 1985 revision of the IAEA transport regulations, a comprehensive model was developed to derive Type A (non-accident resistant) package contents limits that were consistent with Safety Series No. 9 and, consequently, the earlier ICRP recommendations. Now that ICRP 60 has been published, the IAEA and Member States are faced with the task of evaluating how the transport regulations need to be revised to conform with the new recommendations. Several potentially significant issues need to be addressed to determine whether the old linkages between the recommendations and the transport regulations require modification. This paper addresses the issues that arise from the revisions to the ICRP recommendations and how the transportation regulations may be affected. (author)

  8. Potential impact of ICRP-30 on the calculated risk from waste repositories

    International Nuclear Information System (INIS)

    Croff, A.G.

    1981-01-01

    As a result of the large body of information that has been gathered since ICRP-2 was published (1959), the ICRP has undertaken the task of updating its radiation protection guidance. This update involves revision of the primary radiation guidance as well as the recalculation of intake limits (ICRP-30) based on update biological models, updated nuclide decay schemes, and a new method accounting for simultaneous dose to more than one organ. A detailed analysis of the impacts of ICRP-30 on waste repository safety and risk analyses would require an extensive and detailed study that has not yet been undertaken. Nevertheless, it is possible to identify, in an approximate manner, the impact of using ICRP-30 instead of 10 CFR 20/ICRP-2 in calculating the risk from radioactive repositories. Toward this end, the numerical guidance of ICRP-30 has been obtained and converted into RCG values for the general public using the same methods that were employed in deriving 10 CFR 20. The conversion was cross-checked by comparing 10 CFR 20 and ICRP-30-based values that were known to have remained the same. The most restrictive ICRP-30 RCGs were incorporated into the ORIGEN2 computer code, which was then used to calculate the toxicity of some radioactive materials of interest in waste repository considerations. As a basis for discussion, the toxicities of the spent fuel from a PWR and of the uranium ore required to make the fuel are given for both the 10 CFR 20 and ICRP-30-based RCGs. As is evident, the use of the revised RCGs reduces the toxicity of the spent fuel at times less than 100 years and increases the toxicity at times thereafter

  9. Biokinetics and dosimetry of radioactively labelled organic C-14 compounds

    International Nuclear Information System (INIS)

    Krins, A.; Sahre, P.; Schoenmuth, T.

    2003-12-01

    The report starts with summarising research work and the resulting scientific information in connection with the dosimetry of C-14 labelled organic compounds. Biokinetic models are developed for compounds such as benzene, phenol, aniline, nitrobenzene, and a selection of pharmaceuticals, in order to show the radioactivity distribution after administration of the C-14 labelled substances. Based on the those models, dose coefficients and excretion rates are derived. The following synoptic view of the available data library leads on to a discussion of various aspects, as eg. the question of whether and how monitoring for detection of incorporation of C-14 administered with labelled organic compounds is possible. None of the questions and aspects arising in connection with this subject can be adequately dealt with in the present document, but concepts and methods are presented which permit an interpretation of radioactivity excretion data measured after incorporation of C-14 labelled organic substances. (orig./CB) [de

  10. Empleo de isótopos radiactivos en estudios biocinéticos con animales de experimentación Use of radioisotopes in biokinetic models with experimental animals

    Directory of Open Access Journals (Sweden)

    F. R. Martín Martín

    2002-06-01

    Full Text Available En el presente trabajo se pretende realizar una revisión de las diferentes técnicas radioisotópicas que se utilizan con animales de experimentación a la hora de desarrollar modelos biocinéticos tanto de sustancias como de elementos químicos presentes en el medio ambiente. Dicha experimentación permite relacionar la exposición externa a un xenobiótico con la medida interna de la dosis en el organismo y, consecuentemente, sus posibles efectos tóxicos, todo ello con vistas a evaluar los efectos adversos que pudieran existir sobre la salud humana. Se hace hincapié en la macroautorradiografía de animal completo, técnica que permite la detección, localización y cuantificación del radionucleido de interés en diferentes órganos/tejidos del organismo y, por tanto, contribuye a la estimación de la dosis interna y al conocimiento del comportamiento biocinético del compuesto/elemento objeto de estudio. Se presentan algunos ejemplos de la utilidad de esta técnica en estudios biocinéticos con animales de experimentación de interés en diferentes áreas relacionadas con la Salud y el Medio Ambiente. Se destaca la utilidad que presenta esta experimentación a la hora de extrapolar el comportamiento metabólico de contaminantes de máxima radiotoxicidad en personas expuestas a la radiación ionizante, con el objeto de optimizar las evaluaciones dosimétricas y los protocolos de vigilancia que ayudan a conocer con más exactitud los daños de la exposición interna sobre la salud humana.Biokinetic models are useful tools to relate external exposures to internal measures of dose. The knowledge of internal dose and factors that influence absorption, distribution, metabolism, and elimination in experimental animals provide a scientific rationale for estimating low-dose human risk. A bioanalytical procedure to support biokinetic studies is the use of radiolabeled compounds, so that mass balance, autoradiography, and preliminary metabolism

  11. ICRP guidance on radioactive waste disposal

    International Nuclear Information System (INIS)

    Cooper, J.R.

    2002-01-01

    The International Commission on Radiological Protection (ICRP) issued recommendations for a system of radiological protection in 1991 as the 1990 Recommendations. Guidance on the application of these recommendations in the general area of waste disposal was issued in 1997 as Publication 77 and guidance specific to disposal of solid long-lived radioactive waste was issued as Publication 81. This paper summarises ICRP guidance in radiological protection requirements for waste disposal concentrating on the ones of relevance to the geological disposal of solid radioactive waste. Suggestions are made for areas where further work is required to apply the ICRP guidance. (author)

  12. ICRP Publication 116—the first ICRP/ICRU application of the male and female adult reference computational phantoms

    CERN Document Server

    Petoussi-Henss, Nina; Eckerman, Keith F; Endo, Akira; Hertel, Nolan; Hunt, John; Menzel, Hans G; Pelliccioni, Maurizio; Schlattl, Helmut; Zankl, Maria

    2014-01-01

    ICRP Publication 116 on `Conversion coefficients for radiological protection quantities for external radiation exposures', provides fluence-to-dose conversion coefficients for organ-absorbed doses and effective dose for various types of external exposures (ICRP 2010 ICRP Publication 116). The publication supersedes the ICRP Publication 74 (ICRP 1996 ICRP Publication 74, ICRU 1998 ICRU Report 57), including new particle types and expanding the energy ranges considered. The coefficients were calculated using the ICRP/ICRU computational phantoms (ICRP 2009 ICRP Publication 110) representing the reference adult male and reference adult female (ICRP 2002 ICRP Publication 89), together with a variety of Monte Carlo codes simulating the radiation transport in the body. Idealized whole-body irradiation from unidirectional and rotational parallel beams as well as isotropic irradiation was considered for a large variety of incident radiations and energy ranges. Comparison of the effective doses with operational quantit...

  13. Biokinetic study of 131I following ablation dose administration

    International Nuclear Information System (INIS)

    Nascimento, A.C.H.; Lipsztein, J.L.; Lucena, E.A.; Dantas, B.M.; Rebelo, A.M.O.; Mello, R.C.

    2002-01-01

    Aim: The aim of this investigation is to study biokinetics from internally 131 I deposited for thyroid cancer patients during radioiodine therapy (2 to 3 days), after ablation dose administration (3.7 GBq). These data will help in the elaboration of a metabolic model, which will permit absorbed dose assessment for this specific case, since the biokinetic models for iodine available in scientific literature can not be applied to thyroidectomized patient's studies. Material and Methods: Four females patients, between 22 and 50 years old, without metastases, between 1.9 to 6% of remnant thyroid tissue uptake, agreed to contribute to this study. For the in vivo bioassay, periodical measurements were performed along internment time (2 to 3 days), just after Na 131 I dose administration (3.7 GBq). For this, we used the counting system for Nuclear Medicine model 13S002, IEN/CNEN- Brazil, which was adapted with lead filters, in order to allow the work with high rate counting. The measurements were performed in two geometries: thyroid region and thigh. Results: For each patient, we have done approximately 26 measurements for both geometries, starting at the first hour following dose administration until the release from hospital of patient. The results of counting rate (cps) were plotted against time (h). The measurements suggest a relation between remnant thyroid tissue uptake values and the time where counting rates start decreasing. In addition, it was observed a correlation between remnant thyroid tissue radioactive burdens and the circulating iodine through time. Conclusion: It is necessary to follow-up a greater number of patients aiming to confirm the observed correlations and with a greater number of measurements during the first 24 hours, in other to delimit the time range of increasing and decreasing counting rate

  14. ICRP-26 and skin contamination

    International Nuclear Information System (INIS)

    Finnigan, T.; Huda, W.; Newbery, G.R.

    1979-01-01

    The experience of dealing with skin contamination incidents at The Radiochemical Centre over a 3-year period is presented. Data are given for the primary isotopes involved, the duration of skin contamination, and the skin doses that arise from these incidents. The methods employed in performing dosimetry for skin contamination are discussed and examples involving the isotopes carbon-14 and indium-111 are described. For skin contamination incidents, the mode of penetration of the activity into skin is normally not known and this can be of major significance for the final skin dose estimate. The operational health physics difficulties encountered in complying with both ICRP-26 and UK legislation for skin contamination are considered. In the event of multiple exposure (i.e. skin doses calculated from whole body film badges, extremity TLD dose meters and skin contamination) there is ambiguity in the precise meaning of the skin dose. The usefulness of Derived Working Levels is also discussed. Experience at The Radiochemical Centre has shown that good plant design, proper training and prompt action in dealing with contamination incidents ensures that overexposures to skin from accidental contamination are rare occurrences. (author)

  15. Transuranic biokinetic parameters for marine invertebrates--a review.

    Science.gov (United States)

    Ryan, T P

    2002-04-01

    A catalogue of biokinetic parameters for the transuranic elements plutonium, americium, curium, neptunium, and californium in marine invertebrates is presented. The parameters considered are: the seawater-animal concentration factor (CF); the sediment-animal concentration ratio (CR); transuranic assimilation efficiency; transuranic tissue distribution and transuranic elimination rates. With respect to the seawater-animal CF, authors differ considerably on how they define this parameter and a seven-point reporting system is suggested. Transuranic uptake from sediment by animals is characterised by low CRs. The assimilation efficiencies of transuranic elements in marine invertebrates are high compared to vertebrates and mammals in general and the distribution of transuranics within the body tissue of an animal is dependent on the uptake path. The elimination of transuranics from most species examined conformed to a standard biphasic exponential model though some examples with three elimination phases were identified.

  16. Biokinetics of radionuclides and treatment of accidental intakes

    International Nuclear Information System (INIS)

    Taylor, D.M.; Stradling, G.N.; Menetrier, F.

    2003-01-01

    This paper describes the objectives and reviews the progress of EULEP Working Party 5, convened under the auspices of the European Union's Fifth Framework Programme, to 'cluster' two EU-supported contracts, Biokinetics and Dosimetry of Internal Contamination (BIODOS (EU Contract FIS5-1999-00214)) and Radionuclide Biokinetics Database (EULEP) ( RBDATA-EULEP (Concerted Action Contract FIS5-1999-00218), and two non-EU funded projects, Biokinetics of Radionuclides in Human Volunteers (RNHV (non-EU Funded Project) and Treatment of Accidental Intakes of Radionuclides (TAIR (part-funded by EULEP)). (author)

  17. ICRP risk estimates - an alternative view

    International Nuclear Information System (INIS)

    Morgan, K.Z.

    1987-01-01

    This criticism of the worth of the ICRP Main Commission spans 60 years, reviewed by a member of the Commission. Beginning in 1960 two serious radiation exposure problems (occupational exposure in uranium mines and population exposure from testing of nuclear weapons) came to their attention. One might have expected ICRP to be the first to try to reduce these exposures but it was conspicuous by its silence. In 1958 ICRP set limits of exposure for radiation workers and member of the public. Nineteen years later (1977) when it was realized that the risk of radiation induced cancer was ten to thirty times what it was perceived to be in 1958, ICRP might have been expected to recommend a major reduction in permissible exposure levels, but to the dismay of some it increased them. It was also a great disappointment when in 1977, levels of MPC of radionuclides in air, water and food were increased for a large fraction of the more dangerous radionuclides. The reactor accident at Chernobyl calls for a number of new ICRP recommendations. When can we expect them? (author)

  18. Respectful doubts on the new ICRP recommendations

    International Nuclear Information System (INIS)

    Diaz de la Cruz, F.

    1992-01-01

    The admiration and deference an International Organization, as ICRP, deserves not only by its altruistic mission but also by the eminent and distinguished scientists who work for it, in some way 'dazzles' to simple students of its theories and, in some way 'force' us to accept, sometimes without any critical, serious and previous meditation, its recommendations. But it is not the bad thing this kind of 'blindness' we have before the almighty ...ICRP dixit..., the worst thing is that non-specialist and non-specialized persons believe as 'dogmas' and 'axioms' the ICRP recommednations and make of them legal dispositions through standards and regulations. Standards an regulations which can frustate an industrial or any other type of peaceful nuclear activity due to the economic or the social reasons derived from ICRP recommendations. The inflexibility (weakened in the arguments but strengthened in the recommendations) of this influent Organism on the 'linearity without threshold' in the dose-effect relationship and the compromises of the International Labor Organization (ILO) with respect ICRP recommedations provole irrational, ilogical and non desirable answers. (author)

  19. Biokinetic model-based multi-objective optimization of Dunaliella tertiolecta cultivation using elitist non-dominated sorting genetic algorithm with inheritance.

    Science.gov (United States)

    Sinha, Snehal K; Kumar, Mithilesh; Guria, Chandan; Kumar, Anup; Banerjee, Chiranjib

    2017-10-01

    Algal model based multi-objective optimization using elitist non-dominated sorting genetic algorithm with inheritance was carried out for batch cultivation of Dunaliella tertiolecta using NPK-fertilizer. Optimization problems involving two- and three-objective functions were solved simultaneously. The objective functions are: maximization of algae-biomass and lipid productivity with minimization of cultivation time and cost. Time variant light intensity and temperature including NPK-fertilizer, NaCl and NaHCO 3 loadings are the important decision variables. Algal model involving Monod/Andrews adsorption kinetics and Droop model with internal nutrient cell quota was used for optimization studies. Sets of non-dominated (equally good) Pareto optimal solutions were obtained for the problems studied. It was observed that time variant optimal light intensity and temperature trajectories, including optimum NPK fertilizer, NaCl and NaHCO 3 concentration has significant influence to improve biomass and lipid productivity under minimum cultivation time and cost. Proposed optimization studies may be helpful to implement the control strategy in scale-up operation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. An empirical multivariate log-normal distribution representing uncertainty of biokinetic parameters for 137Cs

    International Nuclear Information System (INIS)

    Miller, G.; Martz, H.; Bertelli, L.; Melo, D.

    2008-01-01

    A simplified biokinetic model for 137 Cs has six parameters representing transfer of material to and from various compartments. Using a Bayesian analysis, the joint probability distribution of these six parameters is determined empirically for two cases with quite a lot of bioassay data. The distribution is found to be a multivariate log-normal. Correlations between different parameters are obtained. The method utilises a fairly large number of pre-determined forward biokinetic calculations, whose results are stored in interpolation tables. Four different methods to sample the multidimensional parameter space with a limited number of samples are investigated: random, stratified, Latin Hypercube sampling with a uniform distribution of parameters and importance sampling using a lognormal distribution that approximates the posterior distribution. The importance sampling method gives much smaller sampling uncertainty. No sampling method-dependent differences are perceptible for the uniform distribution methods. (authors)

  1. Environmental radiation protection. The new ICRP concept

    International Nuclear Information System (INIS)

    Kaps, C.; Lorenz, B.

    2013-01-01

    Protection of the environment regarding radiation protection was so far reduced to the concept: if man is protected the environment is protected well enough. This was derived from the radiosensitivity curve, according to which highly developed organisms are more sensible to radiation than less highly developed. ICRP publication 103 put this simple concept in question. Even before, ICRP set up a committee to discuss this theme. End of 2012 ICRP released a new concept of environmental protection regarding different exposure situations and brought it up for discussion in the internet. This concept is based on Reference Animals and Plants (RAPs) and analogous to the concept of the protection for man. The exposure for representative organisms regarding ionizing radiation shall be estimated and compared with Derived Consideration Reference Levels (DCRLs). If the DCRLs are reached or exceeded there is a need to react. This concept raises several questions. (orig.)

  2. Laboratory-scale in situ bioremediation in heterogeneous porous media: biokinetics-limited scenario.

    Science.gov (United States)

    Song, Xin; Hong, Eunyoung; Seagren, Eric A

    2014-03-01

    Subsurface heterogeneities influence interfacial mass-transfer processes and affect the application of in situ bioremediation by impacting the availability of substrates to the microorganisms. However, for difficult-to-degrade compounds, and/or cases with inhibitory biodegradation conditions, slow biokinetics may also limit the overall bioremediation rate, or be as limiting as mass-transfer processes. In this work, a quantitative framework based on a set of dimensionless coefficients was used to capture the effects of the competing interfacial and biokinetic processes and define the overall rate-limiting process. An integrated numerical modeling and experimental approach was used to evaluate application of the quantitative framework for a scenario in which slow-biokinetics limited the overall bioremediation rate of a polycyclic aromatic hydrocarbon (naphthalene). Numerical modeling was conducted to simulate the groundwater flow and naphthalene transport and verify the system parameters, which were used in the quantitative framework application. The experiments examined the movement and biodegradation of naphthalene in a saturated, heterogeneous intermediate-scale flow cell with two layers of contrasting hydraulic conductivities. These experiments were conducted in two phases: Phase I, simulating an inhibited slow biodegradation; and Phase II, simulating an engineered bioremediation, with system perturbations selected to enhance the slow biodegradation rate. In Phase II, two engineered perturbations to the system were selected to examine their ability to enhance in situ biodegradation. In the first perturbation, nitrogen and phosphorus in excess of the required stoichiometric amounts were spiked into the influent solution to mimic a common remedial action taken in the field. The results showed that this perturbation had a moderate positive impact, consistent with slow biokinetics being the overall rate-limiting process. However, the second perturbation, which was to

  3. Correspondence of the ICRP database of dose coefficients (1996) to 2007 recommendations of the ICRP

    International Nuclear Information System (INIS)

    Kadatskaya, M.M.

    2012-01-01

    The new IAEA international safety standards, issued in 2011, recommend in practical implementation of the 2007 Recommendations of the ICRP continue to use dosimetric database developed in 1996. This article presents method and results of the calculation of committed effective dose of internal exposure in accordance with the new definition of this quantity given in 2007 Recommendations of the ICRP. It is shown that in the control of internal doses in accordance with the 2007 Recommendations of the ICRP it is allowed to use dose factors which were released in 1996. (authors)

  4. Comparison of Radiation Dose Rates with the Flux to Dose Conversion Factors Recommended in ICRP-74 and ICRP-116

    International Nuclear Information System (INIS)

    Jeong, Hae Sun; Kil, A Reum; Lee, Jo Eun; Jeong, Hyo Joon; Kim, Eun Han; Han, Moon Hee; Hwang, Won Tae

    2016-01-01

    The evaluation of radiation shielding has been performed for the design and maintenance of various facilities using radioactive sources such as nuclear fuel, accelerator, and radionuclide. The conversion of flux to dose mainly used in nuclear and radiation fields has been generally made with the dose coefficients presented in ICRP Publication 74 (ICRP- 74), which are produced based on ICRP Publication 60. On the other hand, ICRP Publication 116 (ICRP-116), which adopts the protection system of ICRP Publication 103, has recently been published and provides the dose conversion coefficients calculated with a variety of Monte Carlo codes. The coefficients have more than an update of those in ICRP-74, including new particle types and a greatly expanded energy range. In this study, a shielding evaluation of a specific container for neutron and gamma sources was performed with the MCNP6 code. The dose rates from neutron and gamma-ray sources were calculated using the MCNP6 codes, and these results were based on the flux to dose conversion factors recommended in ICRP-74 and ICRP-116. As a result, the dose rates evaluated with ICRP-74 were generally shown higher than those with ICRP-116. For neutrons, the difference is mainly occurred by the decrease of radiation weighting factors in a part of energy ranges in the ICRP-116 recommendations. For gamma-rays, the ICRP-74 recommendation applied with the kerma approximation leads to overestimated results than the other assessment

  5. What we expect of ICRP new recommendations

    International Nuclear Information System (INIS)

    Yoshikawa, S.

    2004-01-01

    We believe that it is essential for Japan to continue to maintain and promote nuclear power generation. To promote nuclear power generation, we believe it is important that the effect of low-level radiation on humans and the exposure dose limits have to be widely and properly understood by the general public and radiation workers. From such a point of view, we express our agreement with ICRP latest attempt that is aimed at preparing a simple and easy-to understanding radiological protection system. We would like to express some of our opinions about ICRP new recommendations. - The relation between PAL and the conventional dose limit should be shown clearly. - Optimisation on low-enough level (natural background level) should be omitted. - The process of optimisation must take the state of affairs in each country into consideration. - The dose limits (100 mSv/5 yrs and 50 mSv/yr) for workers should not be changed. (Single-year dose limit of 20 mSv/yr has no flexibility and has serious impact on nuclear power operators.). - Full discussion is necessary to establish the radiological protection criteria for environment. We appreciate ICRP's releases and calls for opinions regarding the new recommendations. We hope ICRP continues to disclose the status of discussion in a timely manner, and invite opinions. (author)

  6. Pregnancy and medical irradiation. ICRP-84

    International Nuclear Information System (INIS)

    2001-01-01

    A translation to Spanish of the ICRP document number 84. The exposure to ionising radiation of pregnant patients and radiation workers is a relevant subject in radiation protection, concerning not only the prevention but also the estimation of the associated risks. Great anxiety and unnecessary termination of pregnancies may be the consequences of the lack of correlation between the perception of risks by the pregnant woman and the involved professionals and their real magnitude. The International Commission on Radiation Protection has edited in 2000 the document ICRP 84 'Pregnancy and Medical Irradiation', addressed to medical and sanitary personnel. This document has been written as a practical guide which describes the effects of prenatal exposure to ionising radiation , the dose-thresholds and their relationship with the gestational age. It includes occupationally exposed women, patients undergoing medical procedures and public members. Most of diagnostic procedures properly done do not imply induction of deterministic effects in embryo/fetus. Therapeutical procedures could be associated with significant risks of deterministic effects. Childhood cancer induction is an stochastic effect without threshold and every 'in utero' exposure will increase their probability. With the aim of facilitating the diffusion of this document in the Ibero-American community , the Argentine Society of Radiation Protection (SAR) and the Spanish Society of Radiation Protection (SEPR) have worked together to producing a spanish version of ICRP84 , that is now presented in this publication, authorized by the ICRP

  7. Remarks of the SFRP working group about ICRP recommendations

    International Nuclear Information System (INIS)

    Schieber, C.; Cordoliani, Y.S.

    2005-01-01

    Remarks of the SFRP working group about ICRP recommendations. The International Commission on Radiological Protection has proposed last summer on its Web site the draft text of the 2005 ICRP recommendations for consultation. As it was done for the previous drafts, the French Society for Radiation Protection, has sent his comments to the ICRP, through a specific working group. The text sent to the ICRP is presented here to the readers of the SFRP's Journal. (author)

  8. ICRP Publication 84 of the ICRP. Pregnancy and medical irradiation; ICRP publication 84 de la CIPR. Grossesse et irradiation medicale

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    In this volume, the ICRP answers questions relative to medical irradiation of pregnant women, that without responses could lead to unappropriated behaviours. It gives the circumstances for a women to be irradiated, the radiation doses delivered by the radiological procedures for a diagnosis and for a therapy. The risks for the fetus and the woman are tackled, their part in the general risks of the pregnancy and the information to give to the future mother. (N.C.)

  9. ICRP-Radiation protection principles and practice

    International Nuclear Information System (INIS)

    Fry, R.M.

    1982-01-01

    A brief survey is given of the history of ICRP, its basic standards and recommendations and their rationale, from its foundation in 1928 to the latest major review of its recommendation in 1977. In this time the basic radiation standard for whole body irradiation of a radiation worker has dropped from the equivalent of 50 r per year (in 1934) through 15 rem per year (1954) to 5 rem per year in 1958. ICRP recommendations include maximum permissible doses for particular organs and a comprehensive list of derived limits governing the intake of radionuclides into the body, and dose limits for members of the public. Emphasis in current radiation protection practice is on avoiding all unnecessary exposures and keeping doses as far below dose limits as is reasonably achievable. The use of cost-benefit analysis to optimize protection and some of its inherent difficulties, is discussed

  10. Retention of tritium in reference persons: a metabolic model. Derivation of parameters and application of the model to the general public and to workers

    International Nuclear Information System (INIS)

    Galeriu, D; Melintescu, A

    2010-01-01

    Tritium ( 3 H) is a radioactive isotope of hydrogen that is ubiquitous in environmental and biological systems. Following debate on the human health risk from exposure to tritium, there have been claims that the current biokinetic model recommended by the International Commission on Radiological Protection (ICRP) may underestimate tritium doses. A new generic model for tritium in mammals, based on energy metabolism and body composition, together with all its input data, has been described in a recent paper and successfully tested for farm and laboratory mammals. That model considers only dietary intake of tritium and was extended to humans. This paper presents the latest development of the human model with explicit consideration of brain energy metabolism. Model testing with human experimental data on organically bound tritium (OBT) in urine after tritiated water (HTO) or OBT intakes is presented. Predicted absorbed doses show a moderate increase for OBT intakes compared with doses recommended by the ICRP. Infants have higher tritium retention-a factor of 2 longer than the ICRP estimate. The highest tritium concentration is in adipose tissue, which has a very low radiobiological sensitivity. The ranges of uncertainty in retention and doses are investigated. The advantage of the new model is its ability to be applied to the interpretation of bioassay data.

  11. Retention of tritium in reference persons: a metabolic model. Derivation of parameters and application of the model to the general public and to workers

    Energy Technology Data Exchange (ETDEWEB)

    Galeriu, D; Melintescu, A, E-mail: galdan@ifin.nipne.r, E-mail: dangaler@yahoo.co [' Horia Hulubei' National Institute for Physics and Nuclear Engineering, Department of Life and Environmental Physics, 407 Atomistilor Street, Bucharest-Magurele, POB MG-6, RO-077125 (Romania)

    2010-09-15

    Tritium ({sup 3}H) is a radioactive isotope of hydrogen that is ubiquitous in environmental and biological systems. Following debate on the human health risk from exposure to tritium, there have been claims that the current biokinetic model recommended by the International Commission on Radiological Protection (ICRP) may underestimate tritium doses. A new generic model for tritium in mammals, based on energy metabolism and body composition, together with all its input data, has been described in a recent paper and successfully tested for farm and laboratory mammals. That model considers only dietary intake of tritium and was extended to humans. This paper presents the latest development of the human model with explicit consideration of brain energy metabolism. Model testing with human experimental data on organically bound tritium (OBT) in urine after tritiated water (HTO) or OBT intakes is presented. Predicted absorbed doses show a moderate increase for OBT intakes compared with doses recommended by the ICRP. Infants have higher tritium retention-a factor of 2 longer than the ICRP estimate. The highest tritium concentration is in adipose tissue, which has a very low radiobiological sensitivity. The ranges of uncertainty in retention and doses are investigated. The advantage of the new model is its ability to be applied to the interpretation of bioassay data.

  12. Conversion of ICRP male reference phantom to polygon-surface phantom

    International Nuclear Information System (INIS)

    Yeom, Yeon Soo; Han, Min Cheol; Kim, Chan Hyeong; Jeong, Jong Hwi

    2013-01-01

    The International Commission on Radiological Protection (ICRP) reference phantoms, developed based on computed tomography images of human bodies, provide much more realism of human anatomy than the previously used MIRD5 (Medical Internal Radiation Dose) mathematical phantoms. It has been, however, realized that the ICRP reference phantoms have some critical limitations showing a considerable amount of holes for the skin and wall organs mainly due to the nature of voxels of which the phantoms are made, especially due to their low voxel resolutions. To address this problem, we are planning to develop the polygon-surface version of ICRP reference phantoms by directly converting the ICRP reference phantoms (voxel phantoms) to polygon-surface phantoms. The objective of this preliminary study is to see if it is indeed possible to construct the high-quality polygon-surface phantoms based on the ICRP reference phantoms maintaining identical organ morphology and also to identify any potential issues, and technologies to address these issues, in advance. For this purpose, in the present study, the ICRP reference male phantom was roughly converted to a polygon-surface phantom. Then, the constructed phantom was implemented in Geant4, Monte Carlo particle transport code, for dose calculations, and the calculated dose values were compared with those of the original ICRP reference phantom to see how much the calculated dose values are sensitive to the accuracy of the conversion process. The results of the present study show that it is certainly possible to convert the ICRP reference phantoms to surface phantoms with enough accuracy. In spite of using relatively less resources (<2 man-months), we were able to construct the polygon-surface phantom with the organ masses perfectly matching the ICRP reference values. The analysis of the calculated dose values also implies that the dose values are indeed not very sensitive to the detailed morphology of the organ models in the phantom

  13. Assessing internal exposure in the absence of an appropriate model: two cases involving an incidental inhalation of transuranic elements

    International Nuclear Information System (INIS)

    Blanchin, N.; Grappin, L.; Guillermin, A.M.; Lafon, P.; Miele, A.; Berard, P.; Blanchardon, E.; Fottorino, R.

    2008-01-01

    Two incidents involving internal exposure by inhalation of transuranic compounds are presented herein. The results of the measurements of urinary and faecal excretions of the two individuals involved do not concur with the values predicted by the ICRP models that should be applied by default, according to the circumstances of the incidents and the chemical form of the products involved: oxide in the first case and nitrate in the second. These cases are remarkable in the similarity of their biokinetic behaviour even though they occurred in different situations and involved different chemical compounds. Both situations provide an illustration of the management of internal contamination events. The precautions to be taken and the questions that the physician should ask himself in the estimation of the internal dose are listed as follows: What type of examinations should be prescribed and at what frequency? What analysis results should be used in assessing the dose? How can the effect of the Ca-DTPA treatment be assessed? How long is it necessary to perform radio toxicological exams before assessing the dose? What should be done if the ICRP model corresponding to the initial circumstances does not fit the measurement data? Finally, our selected hypotheses, used to explain specific biokinetic behaviour and to estimate its intake in both cases, are detailed. These incidental contaminations suggest that further studies should be carried out to develop a new model for inhalation of transuranic compounds that would follow neither the S nor the M absorption type of the respiratory tract model of ICRP publication 66. (authors)

  14. Assessing internal exposure in the absence of an appropriate model: two cases involving an incidental inhalation of transuranic elements

    International Nuclear Information System (INIS)

    Blanchin, Nicolas; Fottorino, Robert; Grappin, Louise; Guillermin, Anne-Marie; Lafon, Philippe; Miele, Alain; Berard, Philippe; Blanchardon, Eric

    2008-01-01

    Two incidents involving internal exposure by inhalation of transuranic compounds are presented herein. The results of the measurements of urinary and faecal excretions of the two individuals involved do not concur with the values predicted by the ICRP models that should be applied by default, according to the circumstances of the incidents and the chemical form of the products involved: oxide in the first case and nitrate in the second. These cases are remarkable in the similarity of their biokinetic behaviour even though they occurred in different situations and involved different chemical compounds. Both situations provide an illustration of the management of internal contamination events. The precautions to be taken and the questions that the physician should ask himself in the estimation of the internal dose are listed as follows: a) What type of examinations should be prescribed and at what frequency?; b) What analysis results should be used in assessing the dose?; c) How can the effect of the Ca-DTPA treatment be assessed?; d) How long is it necessary to perform radio toxicological exams before assessing the dose?; e) What should be done if the ICRP model corresponding to the initial circumstances does not fit the measurement data? Finally, our selected hypotheses, used to explain specific biokinetic behaviour and to estimate its intake in both cases, are detailed. These incidental contaminations suggest that further studies should be carried out to develop a new model for inhalation of transuranic compounds that would follow neither the S nor the M absorption type of the respiratory tract model of ICRP publication 66. (author)

  15. Biokinetics – the development of a health profession from physical ...

    African Journals Online (AJOL)

    Biokinetics – the development of a health profession from physical education - a historical perspective. ... In this respect some medical aid funds supported this philosophy of health promotion, as the curative treatment of health problems are becoming increasingly expensive and are burdening health-care costs. At present ...

  16. Calculation of skin dose due to beta contamination using the new quantity of the ICRP 116: the local skin dose

    International Nuclear Information System (INIS)

    Bourgois, L.; Menard, S.; Comte, N.

    2017-01-01

    Values of the new protection quantity Local Skin Dose 'LSD', introduced by the International Commission on Radiological Protection (ICRP) Publication 116, were calculated for 134 β - or β + emitting radionuclides, using the Monte Carlo code MCNP6. Two types of source geometry are considered: a point source and disc-type surface contamination (the source is placed in contact with the skin). This new protection quantity is compared with the operational quantity H2 (0.07, 0 deg.), leading us to conclude that, in accordance with the rules of the ICRP, the operational quantity over-estimates the protection quantity to a reasonable extent, except in very rare cases for very low average beta energies. Thus, with the new skin model described in ICRP 116, there are no longer any major differences between the operational quantities and protection quantities estimated with the skin model described in ICRP 74. (authors)

  17. Development of skeletal system for mesh-type ICRP reference adult phantoms

    Science.gov (United States)

    Yeom, Yeon Soo; Wang, Zhao Jun; Tat Nguyen, Thang; Kim, Han Sung; Choi, Chansoo; Han, Min Cheol; Kim, Chan Hyeong; Lee, Jai Ki; Chung, Beom Sun; Zankl, Maria; Petoussi-Henss, Nina; Bolch, Wesley E.; Lee, Choonsik

    2016-10-01

    The reference adult computational phantoms of the international commission on radiological protection (ICRP) described in Publication 110 are voxel-type computational phantoms based on whole-body computed tomography (CT) images of adult male and female patients. The voxel resolutions of these phantoms are in the order of a few millimeters and smaller tissues such as the eye lens, the skin, and the walls of some organs cannot be properly defined in the phantoms, resulting in limitations in dose coefficient calculations for weakly penetrating radiations. In order to address the limitations of the ICRP-110 phantoms, an ICRP Task Group has been recently formulated and the voxel phantoms are now being converted to a high-quality mesh format. As a part of the conversion project, in the present study, the skeleton models, one of the most important and complex organs of the body, were constructed. The constructed skeleton models were then tested by calculating red bone marrow (RBM) and endosteum dose coefficients (DCs) for broad parallel beams of photons and electrons and comparing the calculated values with those of the original ICRP-110 phantoms. The results show that for the photon exposures, there is a generally good agreement in the DCs between the mesh-type phantoms and the original voxel-type ICRP-110 phantoms; that is, the dose discrepancies were less than 7% in all cases except for the 0.03 MeV cases, for which the maximum difference was 14%. On the other hand, for the electron exposures (⩽4 MeV), the DCs of the mesh-type phantoms deviate from those of the ICRP-110 phantoms by up to ~1600 times at 0.03 MeV, which is indeed due to the improvement of the skeletal anatomy of the developed skeleton mesh models.

  18. 99mTc-UBI Biokinetics: A Specific Peptide for Infection Detection

    Science.gov (United States)

    Rodríguez-Cortés, J.; Meléndez-Alafort, L.; Herrera-Rodríguez, R.; Ferro-Flores, G.; Mitsoura, E.; Martínez-Duncker, C.

    2003-09-01

    Recently, antimicrobial peptides have been proposed as new agents to distinguish between bacterial infections and sterile inflammatory processes. Based on these considerations, Ubiquicidin peptide 29-41 (UBI) has been labeled with 99mTc using a new direct method showing a radiochemical purity > 97 %, high stability in human serum, and low protein binding. In addition 99mTc-UBI showed a specific in vitro and in vivo binding to bacteria. However its biokinetic parameters have not been evaluated since it is one of the new generation radiopharmaceuticals based on peptide structures. Therefore the aim of this project was to establish the biokinetic model for 99mTc-UBI. An activity from 74 to 148 MBq was injected to patients with bone infection and 5 whole body scans were taken at 1, 30, 120, 240 min and 24 h after radiopharmaceutical administration, with a dual head scanner. Urine was collected for 24 h. An antropomorphic phantom was previously used to calculate the effect of attenuation and scattered radiation on the gamma camera acquisition images. ROIs of the selected organs in patients (kidney, liver, heart, bone, soft tissue and lesion) were drawn, and attenuation and scatter corrected. The % urine elimination at 24 h and time integrated ROIs (cpm/pixel/ROIs) were used to obtain the residence time (τ) in each tissue and to establish the biokinetic model. Pharmacokinetic data show that blood clearance is biexponential with a mean residence time in the central compartment of 0.52 h. The images showed non-accumulation in metabolic organs. More than 75 % of the injected activity was eliminated by renal clearance 4 h after 99mTc-UBI administration. The mean radiation dose calculated according to the MIRD formalism was 0.130 mGy/MBq for kidney and the effective dose was 4.29 × 10-3 mSv/MBq.

  19. What do we know? where do we go from here? implications for ICRP developments

    International Nuclear Information System (INIS)

    Clarke, R.

    2002-01-01

    This first Nea forum is ' in collaboration with ICRP' and we wanted views from participants regarding our initiative on radiological protection of the environment. The members of the main Commission of ICRP who have attended this forum have been delighted with the outcome. ICRP has a range of options for its future activity with regard to radiological protection of the environment, starting with withdrawing altogether from the subject, through maintaining our current assertion, to fully developing a new policy. The emerging consensus from this meeting would suggest that the key elements of a system would involve a clear set of objectives and principles, an agreed set of quantities and units, a reference set of dose models for a defined number of reference fauna and flora, basic knowledge of radiation effects, a means of demonstrating compliance, regular views and revisions as new knowledge develops. (N.C.)

  20. The postnatal growth of ICRP target organs in reference humans: Spleen and liver

    International Nuclear Information System (INIS)

    Walker, J.T.

    1989-01-01

    Attempts to improve radiation dose estimates to infants and children are hampered because of the lack of mathematical models that describe the age variation in anatomical and physiological parameters. Specifically, for one anatomical parameter, organ size, there are no growth models available to the health physics community. In this paper, an empirical mathematical model is introduced for estimating age-specific masses of two ICRP target organs: the spleen and liver. That model, the Power Logistic Additive (PLA) growth model, is fitted to ICRP 23 organ growth data to determine five growth parameters. This model assumes that organs grow under the influence of two main processes: a primary (power function) and a sexual maturation (logistic function) process, which are additive from birth to adulthood. The results show that the model describes the ICRP growth data quite well. Growth parameters and tables listing the predicted masses and mass velocities as a function of age for each organ are provided for application in the ICRP modeling system

  1. New ICRP recommendations 2005: without full consensus?

    International Nuclear Information System (INIS)

    Novakovic, M.

    2005-01-01

    Ionising radiation is viewed as one of the most studied of all known carcinogens. Over the last 50 years Recommendations of International Commission for Radiological Protection (ICRP) have been changed regularly every 10 years. At the beginning these changes were significant, sometimes even radical, according to quick acquiring of new scientific evidence on physical, biological and health effects of radiation. In order to handle each new situation evolution of the radiation protection system has been extended and new portions have been added (the ubiquitous exposure of public to radon gas and its progeny, and the need to develop an appropriate response to emergency situations, increasing social desire to participate in decision making processes, concern for the protection of non-human species and environment), that resulted in a system that is increasingly complicated. Over the last few years very broad discussions of major radiation protection concepts have been encouraged by the ICRP in order to achieve consensus on a more operational and coherent system of radiation protection elaborated in a transparent fashion, and presented in readily understandable terms. This process for the first time involves a broad spectrum of stake holders in these discussions. It is further assumed that these debates will eventually result in consensus on the basis for the next round of ICRP general recommendations, probably in the 2005. While now it is certain that the consensus is not yet reached within the international community and the discussion of these issues will continue for some time the new recommendations should be seen as a consolidation of recommendations from 1990 to give a single unified set that can be simply and coherently expressed. The paper presents essential issues of the outcome of the Commission discussions and improvement of the current system of radiation protection.(author)

  2. Calculation of local skin doses with ICRP adult mesh-type reference computational phantoms

    Science.gov (United States)

    Yeom, Yeon Soo; Han, Haegin; Choi, Chansoo; Nguyen, Thang Tat; Lee, Hanjin; Shin, Bangho; Kim, Chan Hyeong; Han, Min Cheol

    2018-01-01

    Recently, Task Group 103 of the International Commission on Radiological Protection (ICRP) developed new mesh-type reference computational phantoms (MRCPs) for adult males and females in order to address the limitations of the current voxel-type reference phantoms described in ICRP Publication 110 due to their limited voxel resolutions and the nature of the voxel geometry. One of the substantial advantages of the MRCPs over the ICRP-110 reference phantoms is the inclusion of a 50-μm-thick radiosensitive skin basal-cell layer; however, a methodology for calculating the local skin dose (LSD), i.e., the maximum dose to the basal layer averaged over a 1-cm2 area, has yet to be developed. In the present study, a dedicated program for the LSD calculation with the MRCPs was developed based on the mean shift algorithm and the Geant4 Monte Carlo code. The developed program was used to calculate local skin dose coefficients (LSDCs) for electrons and alpha particles, which were then compared with the values given in ICRP Publication 116 that were produced with a simple tissue-equivalent cube model. The results of the present study show that the LSDCs of the MRCPs are generally in good agreement with the ICRP-116 values for alpha particles, but for electrons, significant differences are found at energies higher than 0.15 MeV. The LSDCs of the MRCPs are greater than the ICRP-116 values by as much as 2.7 times at 10 MeV, which is due mainly to the different curvature between realistic MRCPs ( i.e., curved) and the simple cube model ( i.e., flat).

  3. The work of Committee 2 of ICRP on internal dosimetry

    International Nuclear Information System (INIS)

    Stather, J.W.

    2007-01-01

    Following publication of new recommendations by ICRP, a series of publications on Occupational Intakes of Radionuclides (OIR) will give both dose coefficients for intakes of radionuclides and data for the interpretation of bioassay information. Account will be taken of revised tissue weighting factors given in the new recommendations and a number of additional developments. These include new human phantoms based upon medical imaging data for calculating doses to body tissues and the new Human Alimentary Tract Model. In addition, parameter values for the Human Respiratory Tract Model are being reviewed, radionuclide decay data are being updated and systemic models for a number of elements revised to take account of more recent data and to provide models that are appropriate for both dosimetry and for bioassay interpretation. The OIR series of publications will be accompanied by a supporting Guidance Document that will give advice on the interpretation of bioassay data. (author)

  4. ICRP-26, the recommendations on radiological protection

    International Nuclear Information System (INIS)

    Jun, J.S.

    1983-01-01

    Since the last ICRP recommendations on radiological protection was pubished in 1966 as it's publication 9, the revised edition of the recommendations had first been published in 1977, accommodating up-to-date knowledge of radiobiology and operational experiences of radiation protection built up for over a decade. In this article, the new version of the recommendations is reviewed in comparison with those of the publication 9, while the corrections and modifications made afterward are introduced together with the recent trends and responses of the experts in various countries for the pracical adoption or legislation of the recommendations. (Author)

  5. The direction of ICRP - new recommendations

    International Nuclear Information System (INIS)

    Clarke, R.H.

    2004-01-01

    ICRP has been stimulating discussion, during the past three years, on the best way of expressing protection philosophy for the next publication of its Recommendations, which it hopes will be by 2005. The present recommendations were initiated by Publication 60 in 1990 and have subsequently been complemented by additional publications over the last twelve years. In this paper the totality of those recommendations is summarised and used to indicate a way forward to produce a simplified and more coherent statement of protection philosophy for the start of the 21. century. (author)

  6. Pregnancy and medical irradiation. ICRP-84; Embarazo e irradiacion medica. ICRP-84

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    A translation to Spanish of the ICRP document number 84. The exposure to ionising radiation of pregnant patients and radiation workers is a relevant subject in radiation protection, concerning not only the prevention but also the estimation of the associated risks. Great anxiety and unnecessary termination of pregnancies may be the consequences of the lack of correlation between the perception of risks by the pregnant woman and the involved professionals and their real magnitude. The International Commission on Radiation Protection has edited in 2000 the document ICRP 84 'Pregnancy and Medical Irradiation', addressed to medical and sanitary personnel. This document has been written as a practical guide which describes the effects of prenatal exposure to ionising radiation , the dose-thresholds and their relationship with the gestational age. It includes occupationally exposed women, patients undergoing medical procedures and public members. Most of diagnostic procedures properly done do not imply induction of deterministic effects in embryo/fetus. Therapeutical procedures could be associated with significant risks of deterministic effects. Childhood cancer induction is an stochastic effect without threshold and every 'in utero' exposure will increase their probability. With the aim of facilitating the diffusion of this document in the Ibero-American community , the Argentine Society of Radiation Protection (SAR) and the Spanish Society of Radiation Protection (SEPR) have worked together to producing a spanish version of ICRP84 , that is now presented in this publication, authorized by the ICRP.

  7. The recommendations of ICRP Publication 111 in the light of the ICRP dialogue initiative in Fukushima.

    Science.gov (United States)

    Lochard, J

    2016-12-01

    Publication 111, published by the International Commission on Radiological Protection (ICRP) in 2009, provided the first recommendations for dealing with the long-term recovery phase after a nuclear accident. Its focus is on the protection of people living in long-term contaminated areas after a nuclear accident, drawing on the experience of the Belarus population, Cumbrian sheep farmers in the UK, and Sami reindeer herders in Norway affected by the fallout from Chernobyl. The ICRP dialogue initiative in Fukushima confirmed what had been identified after Chernobyl, namely the very strong concern for health, particularly that of children, loss of control over everyday life, apprehension about the future, disintegration of family life and of the social and economic fabric, and the threat to the autonomy and dignity of affected people. Through their testimonies and reflections, the participants of the 12 dialogue meetings shed light on this complex situation. The ICRP dialogue initiative also confirmed that the wellbeing of the affected people is at stake, and radiological protection must focus on rehabilitation of their living conditions. The challenge is to incorporate the important clarifications resulting from the ICRP dialogue initiative into the updated version of Publication 111 that is currently in development. This paper does not necessarily reflect the views of the International Commission on Radiological Protection.

  8. Biokinetics aand dosimetry of inhaled 238PuO2 in the beagle dog: An update

    International Nuclear Information System (INIS)

    Guilmette, R.A.; Griffith, W.C.; Diel, J.H.

    1994-01-01

    The temporal and spatial distributions of 238 Pu have been measured during the course of a dose-response study of the biological effects of inhaled 238 PuO 2 in Beagle dogs. These measurements were done on the dose-response study animals, as well as a separate group of dogs exposed to similar aerosols and killed serially out to 4 y after exposure. The data from this latter group provided the basis for the development of a biokinetic/dosimetric model for 238 PuO 2 in dogs. Since the publication of this model, several important findings have been made that affected the dosimetric evaluations. The first involved the discovery of significant quantities of natural uranium (U) in the feces samples. The U was measured with the plutonium (Pu), which inflated the values for purported Pu in feces. The second finding involved the addition of Pu biokinetics data from the dose-response dogs, which increased the period of observation from 4 y to 15 y; these later data were not consistent with the earlier model predictions. The purpose of this investigation was (1) to remove the analytical bias in the 238 Pu radiochemical data due to the U and (2) to modify the original model of Mewhinney and Diel, taking into account all data from both studies

  9. Different biokinetics of nanomedicines linking to their toxicity; an overview

    Directory of Open Access Journals (Sweden)

    Abdollahi Mohammad

    2013-02-01

    Full Text Available Abstract In spite of the extreme rise to the knowledge of nanotechnology in pharmaceutical sciences, there are currently limited experimental works studying the interactions between nanoparticles (NPs and the biological system. Adjustment of size and surface area plays the main role in the reaction between NPs and cells leading to their increased entrance into cells through skin, gastrointestinal and respiratory system. Moreover, change in physicochemical reactivity of NPs causes them to interact with circulatory and cellular proteins differentially leading to the altered parameters of their biokinetics, including adsorption, distribution, translocation, transformation, and elimination. A direct relationship between the surface area, reactive oxygen species generating capability, and proinflammatory effects of NPs have been found in respiratory tract toxicity. Additionally, complement-mediated hypersensitivity reactions to liposomes and other lipid-based nanodrugs have been well defined. Inhalation studies of some NPs have confirmed the translocation of inhaled materials to extra pulmonary organs such as central nervous system (CNS via olfactory neurons and induction of inflammatory response. Injectable uncoated NPs have a tendency to remain on the injection site while the poly ethanol glycol (PEG-coated NPs can be notably drained from the injection site to get as far as the lymph nodes where they accumulate. This confirms the existence of channels within the extracellular matrix for NPs to move along. Furthermore, induction of DNA strand breaks and formation of micronuclei have been recorded for exposure to some NPs such as single-walled carbon nanotubes. In the recent years, most of the studies have simply outlined better efficacy of nanodrugs, but few discussed their possible toxic reactions specially if used chronically. Therefore, we emphasize that this part of the nanoscience must not be undermined and toxicologists must be sensitive to

  10. Radiologic protection in pediatric radiology: ICRP recommendations

    International Nuclear Information System (INIS)

    Sanchez, Ramon; Khong, Pek-Lan; Ringertz, Hans

    2013-01-01

    ICRP has provided an updated overview of radiation protection principles in pediatric radiology. The authors recommend that staff, radiologists, medical physicists and vendors involved in pediatric radiology read this document. For conventional radiography, the report gives advice on patient positioning, immobilization, shielding and appropriate exposure conditions. It describes extensively the use of pulsed fluoroscopy, the importance of limiting fluoroscopy time, and how shielding and geometry must be used to avoid unnecessary radiation to the patient and operator. Furthermore, the use of fluoroscopy in interventional procedures with emphasis on dose reduction to patients and staff is discussed in light of the increasing frequency, complexity and length ofthe procedures. CT is the main reason that medical imaging in several developed countries is the highest annual per capita effective radiation dose from man-made sources. The ICRP report gives extensive descriptions of how CT protocols can be optimized to minimize radiation exposure in pediatric patients. The importance of balancing image quality with acceptable noise in pediatric imaging and the controversies regarding the use of protective shielding in CT are also discussed.

  11. Where do we stand with ICRP60?

    International Nuclear Information System (INIS)

    Harding, L.K.; Thomson, W.H.

    1993-01-01

    We have examined the implications of ICRP60 for nuclear medicine. Radiation doses to staff are currently low and reduction of the dose limits will have little impact. However, the proposed figures for the foetus may have implications for pregnant women where the workloads are high. With nursing staff on the ward, laboratory staff or indeed departmental porters there seems little problem. Radiation dose to the fingers is, however, a key factor, and ensuring that nor further restrictions are placed on the proposed dose limits is important. The concept of constraints is becoming clearer but will need further thought, particularly with regard to exposure of the general public. The previous basis for declaring controlled and supervised areas has been abandoned, and the situation is now less clear. A most important area of debate will be the patient who is a controlled area, and great care will have to be taken to ensure that the number of patients in this category is not increased so that many more patients need to be kept in hospital. Exposure of the general public is also an issue and expanding the concept of medical exposure to include carers is an important development. This should prevent a number of unnecessary restrictions and adds weight to the point that two waiting rooms are not justified in nuclear medicine departments. ICRP recommendations will soon be incorporated into the legislation of member states and it is important for everyone to ensure that drafts are read carefully and that national proposals are not too restrictive. (orig.)

  12. Biokinetics and bacterial communities of propionate oxidizing bacteria in phased anaerobic sludge digestion systems.

    Science.gov (United States)

    Zamanzadeh, Mirzaman; Parker, Wayne J; Verastegui, Yris; Neufeld, Josh D

    2013-03-15

    Phased anaerobic digestion is a promising technology and may be a potential source of bio-energy production. Anaerobic digesters are widely used for sewage sludge stabilization and thus a better understanding of the microbial process and kinetics may allow increased volatile solids reduction and methane production through robust process operation. In this study, we analyzed the impact of phase separation and operational conditions on the bio-kinetic characteristics and communities of bacteria associated with four phased anaerobic digestion systems. In addition to significant differences between bacterial communities associated with different digester operating temperatures, our results also revealed that bacterial communities in the phased anaerobic digestion systems differed between the 1st and 2nd phase digesters and we identified strong community composition correlations with several measured physicochemical parameters. The maximum specific growth rates of propionate oxidizing bacteria (POB) in the mesophilic and thermophilic 1st phases were 11 and 23.7 mgCOD mgCOD(-1) d(-1), respectively, while those of the mesophilic and thermophilic 2nd-phase digesters were 6.7 and 18.6 mgCOD mgCOD(-1) d(-1), respectively. Hence, the biokinetic characteristics of the POB population were dependent on the digester loading. In addition, we observed that the temperature dependency factor (θ) values were higher for the less heavily loaded digesters as compared to the values obtained for the 1st-phase digesters. Our results suggested the appropriate application of two sets of POB bio-kinetic that reflect the differing growth responses as a function of propionate concentration (and/or organic loading rates). Also, modeling acetogenesis in phased anaerobic sludge digestion systems will be improved considering a population shift in separate phases. On the basis of the bio-kinetic values estimated in various digesters, high levels of propionate in the thermophilic digesters may be

  13. Management of radon: a review of ICRP recommendations

    International Nuclear Information System (INIS)

    Vaillant, Ludovic; Bataille, Céline

    2012-01-01

    This article proposes a review of past and current ICRP publications dealing with the management of radon exposures. Its main objective is to identify and discuss the driving factors that have been used by the Commission during the last 50 years so as to better appreciate current issues regarding radon exposure management. The analysis shows that major evolutions took place in very recent years. As far as the management of radon exposures is concerned, ICRP recommended, until ICRP Publication 103 (ICRP 2007 ICRP Publication 103; Ann. ICRP 37), to use action levels and to consider only exposures above these levels. The Commission has reviewed its approach and now proposes to manage any radon exposure through the application of the optimisation principle and associated reference levels. As far as the assessment of the radon risk is concerned, it appears that the successive changes made by ICRP did not have a strong impact on the values of radon gas concentration recommended as action levels either in dwellings or in workplaces. The major change occurred in late 2009 with the publication of the ICRP Statement on Radon, which acknowledged that the radon risk has been underestimated by a factor of 2, thus inducing a major revision of radon reference levels. (review)

  14. Assessing the reliability of dose coefficients for exposure to radioiodine by members of the public, accounting for dosimetric and risk model uncertainties.

    Science.gov (United States)

    Puncher, M; Zhang, W; Harrison, J D; Wakeford, R

    2017-06-26

    Assessments of risk to a specific population group resulting from internal exposure to a particular radionuclide can be used to assess the reliability of the appropriate International Commission on Radiological Protection (ICRP) dose coefficients used as a radiation protection device for the specified exposure pathway. An estimate of the uncertainty on the associated risk is important for informing judgments on reliability; a derived uncertainty factor, UF, is an estimate of the 95% probable geometric difference between the best risk estimate and the nominal risk and is a useful tool for making this assessment. This paper describes the application of parameter uncertainty analysis to quantify uncertainties resulting from internal exposures to radioiodine by members of the public, specifically 1, 10 and 20-year old females from the population of England and Wales. Best estimates of thyroid cancer incidence risk (lifetime attributable risk) are calculated for ingestion or inhalation of 129 I and 131 I, accounting for uncertainties in biokinetic model and cancer risk model parameter values. These estimates are compared with the equivalent ICRP derived nominal age-, sex- and population-averaged estimates of excess thyroid cancer incidence to obtain UFs. Derived UF values for ingestion or inhalation of 131 I for 1 year, 10-year and 20-year olds are around 28, 12 and 6, respectively, when compared with ICRP Publication 103 nominal values, and 9, 7 and 14, respectively, when compared with ICRP Publication 60 values. Broadly similar results were obtained for 129 I. The uncertainties on risk estimates are largely determined by uncertainties on risk model parameters rather than uncertainties on biokinetic model parameters. An examination of the sensitivity of the results to the risk models and populations used in the calculations show variations in the central estimates of risk of a factor of around 2-3. It is assumed that the direct proportionality of excess thyroid cancer

  15. Biokinetics and dosimetry of a hybrid formulation of {sup 9{sup m}}Tc-BN and {sup 99m}Tc-RGD{sub 2} starting from optic images in a murine model; Biocinetica y dosimetria de una formulacion hibrida de {sup 99m}Tc-BN y {sup 99m}Tc-RGD{sub 2} a partir de imagenes opticas en un modelo murino

    Energy Technology Data Exchange (ETDEWEB)

    Cornejo A, L. G.

    2015-07-01

    This work has the purpose of evaluate the biokinetics and absorbed dose of radiation of hybrid formulation {sup 99m}Tc-BN /{sup 99m}Tc-RGD{sub 2} in a murine model by optical imaging techniques using the multimodal preclinical in vivo image system Xtreme. The used method were the {sup 99m}Tc-BN, {sup 99m}Tc-RGD{sub 2} and {sup 99m}Tc-BN/{sup 99m}Tc-RGD{sub 2} formulas, with specific recognition for GRPr and the integrin s α(v)β(3) and α(v)β(5) respectively, was injected in the vein tail of three nude mousses with induce breast cancer tumors (cell line T-47-D), by the preclinical multimodal imaging system Xtreme (Bruker), optical images in different times was acquired (5, 10, 20 min, 2 and 24 h), using Images Processing Toolbox of MATLAB these images was transform from RGB format to gray scales and sectioned in five independent images corresponding to heart, kidneys, bladder and tumor areas. The intensity of each images was computed in counts per pixel, then those intensities was corrected for background, attenuation and scattering, using different factors for each phenomena previously calculated. Finally the activity values quantified vs time was fitted into a biokinetic model to obtain the disintegrations number and cumulate activities in each organ. With these data the radiation absorbed dose were calculated using MIRD methodology. Results: The number of disintegration and absorbed dose calculated in MBq h/MBq and mGy/MBq, of injected mouse with the {sup 99m}Tc-BN/{sup 99m}Tc-RGD{sub 2} formulation, was: 0.035 ± 0.65 E-02, 0.25 x 10{sub -5} ± 0.46 E-07; 0.393 ± 0.51 E-1, 2.85 E-05 ± 3.7 E-06; 0.306 ± 0.21 E-01, 2.11 E-05 ± 1.45 E-06 and 0.151 ± 0.19 E-01, 1.09 E-05 ± 1.42 E-06 , in heart, kidneys, bladder and tumor, respectively. The number of disintegration obtained in kidneys is comparable to those reported for Trinidad B. 2014 Conclusions: Our results demonstrated that using optical images and a code for image analyses development in MATLAB, could

  16. Activities of the ICRP task group on dose calculations (DOCAL)

    International Nuclear Information System (INIS)

    Bertelli, Luiz

    1997-01-01

    Full text. The International Commission of Radiological Protection has been doing many efforts to improve dose calculations due to intake of radionuclides by workers and members of the public. More specifically, the biokinetic models have become more and more physiologically based and developed for age-groups ranging from the embryo to the adult. The dosimetric aspects have also been very carefully revised and a new series of phantoms encompassing all developing stages of embryo and fetus were also envisaged. In order to assure the quality of the calculations, dose coefficients have been derived by two different laboratories and the results and methods have been frequently compared and discussed. A CD-ROM has been prepared allowing the user to obtain dose coefficients for the several age-groups for ingestion and inhalation of all important radionuclides. Inhalation dose coefficients will be available for several AMADs. For the particular case of embryo and fetus, doses will be calculated when the intake occurred before and during gestation for single and chronic patterns of intake

  17. Import of ICRP 60 for general mining

    International Nuclear Information System (INIS)

    O'Riordan, M.C.

    1992-01-01

    Because of the ubiquity of natural, the International Commission on Radiological Protection limits the definition of occupational exposure to circumstances that can reasonably be regarded as the responsibility of management. Radon in workplaces in given as the prime example in ICRP Publication 60, the new recommendations of the Commission. But not all workplaces are to be included, and the Commission advises that agencies should identify the particular circumstances in which protection is required. It offers some guidance: spas, uranium mines, other underground mines and caves are mentioned. Few would dispute the suggestion that underground exposure to radon in general non-uranium mining may be appreciable and that the system of protection needs to be applied in the industry. Conditions in underground mining are examined in this paper. (author)

  18. ICRP policy for radioactive waste disposal

    International Nuclear Information System (INIS)

    Nenot, Jean-Claude

    2002-01-01

    Jean-Claude Nenot (IPSN, France) gave an overview of recommendations from ICRP during the past 25 years that are relevant to the safety of waste disposal. These recommendations were primarily concerned with public exposure, and suggested that the necessary system of protection should be controlled through the principles of constrained optimisation and prescriptive limits. The principles of justification, optimisation and dose and risk limitation were applicable to waste management. Justification should however be applied to the practice resulting in the generation of waste rather than to waste management per se. As regards optimisation, this should be interpreted in a subtler manner than the simple application of cost-benefit analysis, as an aggregation of very small doses over future world populations would be essentially meaningless. The primary criterion should therefore be the dose to an individual from a relevant critical group, and optimisation should also take account of social and economic factors. The application of dose limits had intrinsic difficulties because of multiple sources, through restrictions determined as a result of monitoring could be envisaged. The approach to dealing with potential future intrusion presented a particular difficulty (as compared to natural processes) because the probability of occurrence could not realistically be determined and therefore a risk-based approach was not recommended. Instead, prospective doses should be assessed against criteria for intervention situations, as proposed in ICRP 82, i.e. action (in terms of a preventative design change, for example) was unlikely to be justifiable at hypothetical and uncertain future dose levels below about 10 mSv/year

  19. Radiation exposure of the patient in diagnostic nuclear medicine. Experimental studies of the biokinetics of 111In-DTPA-D-Phe1-octreotide, 99mTc-MIBI, 14C-triolein and 14C-urea, and development of dosimetric models

    International Nuclear Information System (INIS)

    Leide Svegborn, S.

    1999-03-01

    Biokinetic and dosimetric models for a number of clinically used radiopharmaceuticals, for which information on the radiation dosimetry is scarce, have been produced. On patients undergoing investigations with 111 In-DTPA-D-Phe 1 -octreotide (for diagnosis of neuroendocrine tumours) and 99m Tc-MIBI (for myocardial perfusion imaging), whole body gamma camera scanning was performed several times after administration of the radiopharmaceutical. Total body and organ activity content was determined using the geometric mean of the number of counts in two 180 deg opposed planar images. A thorough investigation of sources influencing the accuracy of the quantification of activity was carried out, showing an overall uncertainty varying from 10% to 30% for organs with a significant uptake and 5% for the whole body. The activity in blood and urine was also measured. 111 In-DTPA-D-Phe 1 -octreotide was predominantly excreted via the kidney-bladder system and a typical investigation with 1200 MBq resulted in an effective dose of 8.4 mSv (0.076 mSv/MBq). 99m Tc-MIBI was to a great extent excreted via the gastrointestinal tract and an investigation with 1200 MBq resulted in an effective dose of 13 mSv (0.011 mSv/MBq). Accelerator mass spectrometry (AMS) was used to investigate the possibility to measure ultra-low activity concentrations of 14 CO 2 , in exhaled air from patients undergoing 14 C-breath tests, with special application to 14 C-triolein (for study of fat malabsorption). AMS was proven to be a useful technique for long-term retention studies of 14 C, and was used together with liquid scintillation counting in an investigation of the biokinetics of 14 C-urea in adult and paediatric patients (for diagnosis of Helicobacter pylori infection in the upper gastrointestinal tract). The effective dose for 14 C-urea was 0.019 mSv/MBq for adults and from 0.041 to 0.019 mSv/MBq for seven- to fourteen -year-old children, resulting in an effective dose of approximately 0.002 mSv per

  20. Radiation exposure of the patient in diagnostic nuclear medicine. Experimental studies of the biokinetics of {sup 111}In-DTPA-D-Phe{sup 1}-octreotide, {sup 99m}Tc-MIBI, {sup 14}C-triolein and {sup 14}C-urea, and development of dosimetric models

    Energy Technology Data Exchange (ETDEWEB)

    Leide Svegborn, S

    1999-03-01

    Biokinetic and dosimetric models for a number of clinically used radiopharmaceuticals, for which information on the radiation dosimetry is scarce, have been produced. On patients undergoing investigations with {sup 111}In-DTPA-D-Phe{sup 1}-octreotide (for diagnosis of neuroendocrine tumours) and {sup 99m}Tc-MIBI (for myocardial perfusion imaging), whole body gamma camera scanning was performed several times after administration of the radiopharmaceutical. Total body and organ activity content was determined using the geometric mean of the number of counts in two 180 deg opposed planar images. A thorough investigation of sources influencing the accuracy of the quantification of activity was carried out, showing an overall uncertainty varying from 10% to 30% for organs with a significant uptake and 5% for the whole body. The activity in blood and urine was also measured. {sup 111}In-DTPA-D-Phe{sup 1}-octreotide was predominantly excreted via the kidney-bladder system and a typical investigation with 1200 MBq resulted in an effective dose of 8.4 mSv (0.076 mSv/MBq). {sup 99m}Tc-MIBI was to a great extent excreted via the gastrointestinal tract and an investigation with 1200 MBq resulted in an effective dose of 13 mSv (0.011 mSv/MBq). Accelerator mass spectrometry (AMS) was used to investigate the possibility to measure ultra-low activity concentrations of {sup 14}CO{sub 2}, in exhaled air from patients undergoing {sup 14}C-breath tests, with special application to {sup 14}C-triolein (for study of fat malabsorption). AMS was proven to be a useful technique for long-term retention studies of {sup 14}C, and was used together with liquid scintillation counting in an investigation of the biokinetics of {sup 14}C-urea in adult and paediatric patients (for diagnosis of Helicobacter pylori infection in the upper gastrointestinal tract). The effective dose for {sup 14}C-urea was 0.019 mSv/MBq for adults and from 0.041 to 0.019 mSv/MBq for seven- to fourteen -year-old children

  1. Publication of ICRP 60 and 61

    Energy Technology Data Exchange (ETDEWEB)

    Goldfinch, E P

    1990-01-01

    After considerable deliberation and consultation, the International Commission on Radiological Protection (ICRP) has published its 1990 recommendations and resultant annual limits on intakes for workers. The effects of these new recommendations will be considered by the International Atomic Energy Agency (IAEA) in relation to its transport regulations and supporting documents during the current revision process. This revision process should lead to the publication of revised regulations in 1996. Initially, the immediate reaction in some areas is that the revised dose limits and annual limits should automatically result in straightforward reductions in the A{sub 1} and A{sub 2} values in the regulations, and in reduction in the permitted radiation levels on and around packages, conveyances etc. However, this reaction is questioned for the reason that it is necessary to separately examine the radiological consequences in routine transport and in accidents (''normal conditions of transport'' and ''accident conditions'' in the terminology of the regulations). Because accidents to radioactive material packaging are rare, the potential harm to individuals is not likely to be repeated. Thus a lowering of the dose limit may not be necessary. (author).

  2. ICRP risk assessment-another view (24 november 1986)

    International Nuclear Information System (INIS)

    Morgan, K.Z.

    1988-01-01

    Beginning in 1960 two serious radiation exposure problems (occupational exposure in uranium mines and population exposure from testing of nuclear weapons) came to the attention. One might have expected ICRP to be the first to try to reduce these exposures but it was conspicuous by its silence. In 1958 ICRP set limits of exposure for radiation workers and members of the public. Nineteen years later (1977) when it was realized that the risk of radiation induced cancer was ten to thirty times what it was estimated to be in 1958, ICRP might have been expected to recommend a significant reduction in permissible exposure levels, but to the dismay of some it increased them. It was also a great disappointment when in 1977, levels of maximum permissible concentration of radionuclides in air, water and food were increased for a large fraction of the more dangerous radionuclides. The reactor accident at Chernobyl calls for a number of new ICRP recommendations [fr

  3. Basic concepts and assumptions behind the ICRP recommendations

    International Nuclear Information System (INIS)

    Lindell, B.

    1981-03-01

    The paper gives a review of the current radiation protection recommendations by the International Commission on Radiological Protection (ICRP). It discusses concepts like stochastic effects, radiation detriments, collective dose, dose equivalent and dose limits. (G.B.)

  4. Biokinetics and dosimetric studies about 99mTc(V)DMSA distribution

    International Nuclear Information System (INIS)

    Correia, M.B.L.; Magnata, S.S.L.P.; Silva, I.M.S.; Lima, F.F.; Catanho, M.T.J.A.

    2008-01-01

    Research for radiodiagnostic agents should considerate biological critical parameters as half-life effective, target/not target uptake ratio and metabolites that together will determinate the biokinetic. Each parameter give own contribution in the absorbed dose. The dimercaptosuccinic acid (DMSA) labeled with 99m Tc(VN) is a radiopharmaceutical which has well established role in medullar thyroid carcinoma and has been proposed in complementary evaluation of bone metastasis. The aim of this work was study the biokinetics and dosimetry of 99m Tc(V)-DMSA by animal model. The 99m Tc(V)-DMSA was prepared by (III)DMSA kit alkalized. The methodology used mice, 70 days old, both males and females. The animals (n=5) received 99m Tc(V)DMSA administered IV (tail vein). After determinate times (30 min, 1h, 5h and 12h) the animals were sacrificed, the organs (blood, lungs, kidneys, muscle and bone) were excised and the activities were measured by a gamma counter. The results were evaluated based on %activity/g and the absorbed dose was estimated by extrapolation of data from animal to human, using the residence time to each organ in the MIRDOSE 3.0 program. The results show that the majority of organs reaches the top uptake at 30 min, the kidney has the greatest uptake in this time, (4.81 ± 1.38) % activity per gram, while the bone presents its highest uptake at 1h (5.49 ± 0.47)% activity per gram, after 1h all the organs had activity exponential decrease. About the absorbed dose estimated to human scale, the preliminary results showed higher value to bone, being the soft tissue dose relatively low. These dose values, however, are submitted to biological implications which are under studying yet. The biokinetic profile of 99m Tc(V)-DMSA, prepared from a DMSA kit by IPEN, was well established, allowing quantifying of residence time, while the dosimetric model presented preliminary data which directs to new analyzes

  5. A constructive critique to the ICRP's system and counter proposal

    International Nuclear Information System (INIS)

    Katoh, K.

    1998-01-01

    In the author's opinion, there is a need for continuous efforts in revising the systems of radiation protection designed and operated according to ICRP recommendations. The fundamentals of the ICRP system of radiation protection are analyzed and classified into scientific and political or strategic features. Several proposals for changes are presented, concerning the restoration of the causality relation for radiation protection, the criteria for safety controlling, and the methodology of exposure control. (A.K.)

  6. Radiological protection: a summary handbook of ICRP publications and recommendations

    International Nuclear Information System (INIS)

    Nagaratnam, A.

    1995-01-01

    The biological effects of radiation and potential risks therefrom far exceeds the knowledge of any other hazardous agent, whether in the industrial field, or in the general environment affecting members of the public. The International Commission on Radiological Protection (ICRP) has been playing a pioneering role for decades in this direction. The extensive database that has been established over the decades by the ICRP, the methodologies, techniques and the organizational structures that have been developed to control radiation hazards, and, above all, the philosophy of risk evaluation and management that has been evolved by ICRP, would serve as valuable guides not only to those concerned with radiological protection but to scientist, technologist and administrators involved in all facets of occupational and industrial safety, as well as those concerned with environmental protection. From 1959 to the end of 1993 ICRP has brought out 64 publications running to around 9000 pages. It is important that everyone connected with the uses of ionizing radiations should be familiar with at least the basic features of the thinking of ICRP as embodied in these publications. The present handbook attempts to give in a concise, consolidated and codified form the salient features of all the relevant information contained in the voluminous ICRP publications. The material has been presented in 7 parts, each dealing with one major aspect of the recommendations, and summarizing the various publications connected with it. A separate note following the preface gives a brief summary of the way the contents of the handbook have been arranged. refs., tabs., figs

  7. Fundamental ICRP recommendations at the start of the 21st century: status of the revision of ICRP publication 60

    International Nuclear Information System (INIS)

    Valentin, J.

    2002-01-01

    The basic recommendations of the International Commission on Radiological Protection, ICRP, are either re-stated or revised at intervals of about 15 years, most recently in ICRP Publication 60, adopted in 1990. ICRP plan to issue its next recommendations around 2005. Through extensive consultation, the active participation of the radiological protection community was recruited already at the conceptual stage. Based on the vast input received, ICRP is currently preparing draft recommendations. These are likely to emphasise egalitarian values more than utilitarian ones, to be holistic rather than anthropocentric, and to be formatted as a relatively concise set of actual recommendations underpinned by separate publications with more detail. The draft will again be circulated worldwide and comments will be discussed in 2004 with a view to approval of the recommendations in 2005 and publication in 2005 or 2006. Thus, integration into legislation would be possible sometime between 2006 and 2010, say. (orig.) [de

  8. Hybrid pregnant reference phantom series based on adult female ICRP reference phantom

    Science.gov (United States)

    Rafat-Motavalli, Laleh; Miri-Hakimabad, Hashem; Hoseinian-Azghadi, Elie

    2018-03-01

    This paper presents boundary representation (BREP) models of pregnant female and her fetus at the end of each trimester. The International Commission on Radiological Protection (ICRP) female reference voxel phantom was used as a base template in development process of the pregnant hybrid phantom series. The differences in shape and location of the displaced maternal organs caused by enlarging uterus were also taken into account. The CT and MR images of fetus specimens and pregnant patients of various ages were used to replace the maternal abdominal pelvic organs of template phantom and insert the fetus inside the gravid uterus. Each fetal model contains 21 different organs and tissues. The skeletal model of the fetus also includes age-dependent cartilaginous and ossified skeletal components. The replaced maternal organ models were converted to NURBS surfaces and then modified to conform to reference values of ICRP Publication 89. The particular feature of current series compared to the previously developed pregnant phantoms is being constructed upon the basis of ICRP reference phantom. The maternal replaced organ models are NURBS surfaces. With this great potential, they might have the feasibility of being converted to high quality polygon mesh phantoms.

  9. Biokinetic behavior of Tc in the red abalone, Haliotis rufescens: a reassessment

    International Nuclear Information System (INIS)

    Beasley, T.M.; Lorz, H.V.; Gonor, J.J.

    1981-01-01

    The biokinetic behavior of /sup 95m/Tc in the red abalone, Haliotis rufescens, is reviewed in light of recent experiments on other molluscs. Additional experimentation has confirmed that, when uptake is directly from labeled seawater, abalone exhibit concentration factors in excess of 100. Bivalve molluscs under the same experimental conditions have concentration factors that do not exceed 2. However, uptake and loss kinetics cannot be described by a single compartment model as had been previously advanced. Assimilation of /sup 95m/Tc by the abalone following a single feeding of labeled macroalga, Nereocystis pyrifera, is high (approx. 45%) and loss kinetics are similar to those observed following direct uptake from seawater

  10. Biokinetic behavior of technetium in the red abalone, Haliotis rufescens: a re-assessment

    Energy Technology Data Exchange (ETDEWEB)

    Beasley, T.M.; Lorz, H.V.; Gonor, J.J. (Oregon State Univ., Newport (USA). Marine Science Center)

    1982-10-01

    The biokinetic behavior of sup(95m)Tc in the red abalone, haliotis rufescens, is reviewed in light of recent experiments with other molluscs. Additional experimentation has confirmed that, when uptake is directly from labeled seawater, abalones exhibit concentration factors in excess of 100. Bivalve molluscs under the same experimental conditions have concentration factors that do not exceed 2. However, uptake and loss kinetics in the abalone cannot be described by a single compartment model as had been previously advanced. Assimilation of sup(95m)Tc by abalones following a single feeding of labeled macroalga, Nereocystis luetkeana, approximately equal to 45% and loss kinetics are similar to those observed following direct uptake from seawater.

  11. Biokinetic behavior of technetium in the red abalone, Haliotis rufescens: a re-assessment

    Energy Technology Data Exchange (ETDEWEB)

    Beasley, T.M.; Lorz, H.V.; Gonor, J.J.

    1982-10-01

    The biokinetic behavior of /sup 95m/Tc in the red abalone, Haliotis rufescens, is reviewed in light of recent experiments with other molluscs. Additional experimentation has confirmed that, when uptake is directly from labelled seawater, abalones exhibit concentration factors in excess of 100. Bivalve molluscs under the same experimental conditions have concentration factors that do not exceed 2. However, uptake and loss kinetics in the abalone cannot be described by a single compartment model as had been previously advanced. Assimilation of /sup 95m/Tc by abalones following a single feeding of labeled macroalga, Nereocystis luetkeana, is approximately 45% and loss kinetics are similar to those observed following direct uptake from seawater.

  12. Biokinetic behavior of technetium in the red abalone, Haliotis rufescens: a re-assessment

    International Nuclear Information System (INIS)

    Beasley, T.M.; Lorz, H.V.; Gonor, J.J.

    1982-01-01

    The biokinetic behavior of sup(95m)Tc in the red abalone, haliotis rufescens, is reviewed in light of recent experiments with other molluscs. Additional experimentation has confirmed that, when uptake is directly from labeled seawater, abalones exhibit concentration factors in excess of 100. Bivalve molluscs under the same experimental conditions have concentration factors that do not exceed 2. However, uptake and loss kinetics in the abalone cannot be described by a single compartment model as had been previously advanced. Assimilation of sup(95m)Tc by abalones following a single feeding of labeled macroalga, Nereocystis luetkeana, approximately equal to 45% and loss kinetics are similar to those observed following direct uptake from seawater. (author)

  13. The application of equilibrium models to incidence situations using the example of the exposure pathway human milk

    International Nuclear Information System (INIS)

    Steiner, Martin; Karcher, Klaus; Nosske, Dietmar

    2012-01-01

    The radiation exposure after a short-term release of radioactive substances is often calculated assuming equilibrium conditions. An example is that of the German Incident Calculation Bases for nuclear power plants with pressurized water reactors. Here, the contamination of human milk is calculated using transfer factors. Applying this equilibrium model to incident situations raises the question whether baby's radiation exposure is adequately assessed. This contribution shows that compliance with the relevant dose limits of paragraph 49 of the German Radiation Protection Ordinance is ensured for design basis accidents on the assumption that the hypothetical breastfeeding period starts at the beginning of the activity release. Comparative analyses were performed against the biokinetic models applied by ICRP for radiation protection purposes, taking the reference nuclides 137 Cs, 90 Sr, 131 I, 241 Am and long-lived plutonium isotopes as examples. (orig.)

  14. The application of equilibrium models to incidence situations using the example of the exposure pathway human milk

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Martin; Karcher, Klaus; Nosske, Dietmar [Bundesamt fuer Strahlenschutz, Oberschleissheim (Germany)

    2012-06-15

    The radiation exposure after a short-term release of radioactive substances is often calculated assuming equilibrium conditions. An example is that of the German Incident Calculation Bases for nuclear power plants with pressurized water reactors. Here, the contamination of human milk is calculated using transfer factors. Applying this equilibrium model to incident situations raises the question whether baby's radiation exposure is adequately assessed. This contribution shows that compliance with the relevant dose limits of paragraph 49 of the German Radiation Protection Ordinance is ensured for design basis accidents on the assumption that the hypothetical breastfeeding period starts at the beginning of the activity release. Comparative analyses were performed against the biokinetic models applied by ICRP for radiation protection purposes, taking the reference nuclides {sup 137}Cs, {sup 90}Sr, {sup 131}I, {sup 241}Am and long-lived plutonium isotopes as examples. (orig.)

  15. Compared biokinetic and biological studies of chronic and acute inhalations of uranium compounds in the rat

    International Nuclear Information System (INIS)

    Monleau, M.

    2005-12-01

    Uranium is a natural, radioactive heavy metal, widely used in the nuclear industry in various chemical and isotopic forms. Its use in the fuel cycle involves the risk of radiological exposure for the workers, mainly via the inhalation of uranium particles. According to the workplace configuration, uranium contaminations can be acute or repeated, involve various chemical forms and different levels of enrichment, as well as involving one or several components. The dosimetric concepts and models available for workers' radiological protection, as well as most of the studies of the biological effects, correspond to acute exposure situations. Moreover the processes leading to pathological effects are little known in vivo. In this context, the main question is to know whether exposures due to repeated inhalation by rats induce the element kinetics and toxicity, which may be different from those observed after an acute exposure. In this study, comparison of the experimental and theoretical biokinetics of an insoluble uranium repeatedly inhaled over three weeks shows that a chronic contamination is correctly modelled, except for bone retention, by the sum of acute, successive and independent incorporations. Moreover, the kinetics of a soluble uranium inhaled irregularly can be modified by previous repeated exposure to an insoluble uranium. In certain cases therefore, exposure to uranium could modify its biokinetics during later exposures. At a toxicological level, the study demonstrates that the uranium particles inhaled repeatedly induce behavioural disruptions and genotoxic effects resulting in various sorts of DNA damage, in several cell types and certainly depending on the quantity inhaled. Exposures involving several uraniferous components produce a synergy effect. Moreover, repeated inhalations worsen the genotoxic effects in comparison to an acute exposure. This work demonstrates the importance of not ignoring the effects of the repetition of uranium exposure. It

  16. A biokinetic study of {sup 209}Po in man

    Energy Technology Data Exchange (ETDEWEB)

    Henricsson, C.F.; Ranebo, Y. [Department of Medical Radiation Physics, Clinical Sciences in Lund, Lund University, Skane University Hospital in Lund (Sweden); Hansson, M. [Medical Radiation Physics, Department of Clinical Sciences in Malmoe, Lund University, Skane University Hospital in Malmoe (Sweden); Raeaef, C.L., E-mail: Christopher.Raaf@med.lu.se [Medical Radiation Physics, Department of Clinical Sciences in Malmoe, Lund University, Skane University Hospital in Malmoe (Sweden); Holm, E. [Norwegian Radiation Protection Authority, Osteras (Norway)

    2012-10-15

    Five adult volunteers participated in a biokinetic study of radioactive polonium. Portions of about 10 Bq of {sup 209}Po were orally administrated to four of the volunteers in a single ingestion. The fifth volunteer ingested a daily amount of 53 mBq of 209Po for 243 d to study the time to achieve equilibrium between intake and excretion for protracted intakes. For the subjects ingesting single intakes of {sup 209}Po complete sampling of urine and feces was subsequently collected the first few days upon the ingestion. The samples were processed with radiochemical extraction and analyzed with alpha spectrometry. In the study, the maximum daily excretion rates in feces were 18-50% of the ingested activity, observed within 3 d after intake. Regarding the urine excretion, the daily excretion peaked, on average, at 0.15-1% of the ingested activity within two days upon intake. These results indicate an average gastro-intestinal uptake fraction of 0.46 {+-} 0.08, which agrees well with earlier biokinetic studies of polonium in man. -- Highlights: Black-Right-Pointing-Pointer Human metabolism of an oral intake of polonium. Black-Right-Pointing-Pointer 4 individuals were administrated about 10 Bq polonium-209. Black-Right-Pointing-Pointer Gastro-intestinal uptake fraction, if orally administrated polonium-209 was investigated. Black-Right-Pointing-Pointer The biological half-time of polonium in human body was studied.

  17. Biokinetics of 131I in human organism

    International Nuclear Information System (INIS)

    Hermanska, J.; Nemec, J.; Karny, M.; Guy, T.V.; Jirsa, L.; Blazek, T.

    1995-01-01

    Time evolution of the cumulated activity in human body is one of the key characteristics determining medical impacts of ionizing radiation. In nuclear medicine, so called effective half-life is mostly used for the evolution description. This quantity is usually estimated by fitting a straight line in semi-logarithmic coordinates. Its novel Bayesian estimate was also proposed and its advantageous properties were verified. During extensive tests, it was found that the effective half-live has limited use as the underlying deterministic relationship time - activity can hardly be taken as (mono)exponential. It stimulated the research for a better and still simple model. A quadratic dependence of ln(activity) on ln(time) was found as an adequate candidate. Preliminary experiments on a restricted set of real data were promising enough to justify its further elaboration. (authors) 1 tab., 19 refs

  18. Accuracy of internal dose calculations with special consideration of radiopharmaceutical biokinetics

    International Nuclear Information System (INIS)

    Roedler, H.D.

    1981-01-01

    The individual steps of internal dose calculation, including the models and data used, as well as error considerations, are analysed following a short synopsis on the formalism of absorbed dose calculation. The mean dose in a target tissue depends on the administered activity, the residence time of the activity in the source tissues and the mean absorbed dose in the target tissue per transformation in a source tissue. Usually, a standard dosage is applied in radionuclide studies except in children. Actually administered and nomial activities generally differ by less than 10%. For the purpose of internal dose calculation, the biokinetics of a radiopharmaceutical are reflected in the residence times for the individual source tissues. The methods and the evaluation of measurements of biodistribution and retention data are discussed. The extrapolation of animal data to man is treated in some detail, including a survey of the methods used, as well as an attempt for validating these methods. None of these seem to yield more convincing results than the direct transfer of the residence times from animal to man, at least for the two radiopharmaceuticals discussed. The minimum period of measurement to derive residence times for the purpose of dose calculation has been determined as about one physical half-time. Some problems of the dose per transformation to a phantom are presented, including the age- or size-dependence of the internal dose. Organ doses to the phantom, calculated from different apparently reliable sets of biokinetic data, are generally compatible within a factor of 2 to 3, and somatically effective doses are generally compatible within a factor of less than 2

  19. Potential impacts of ICRP 60 and 61 on the transportation regulations

    International Nuclear Information System (INIS)

    Rawl, R.R.; Eckerman, K.F.; Wangler, M.E.; Punch, F.; Carriker, A.W.

    1992-01-01

    The International Commission on Radiation Protection (ICRP) has been providing recommendations for limitations on radiation exposure for decades. The ICRP recommendations address ionizing radiation and are concerned with protecting humans from its effects. These recommendations assist regulatory and advisory agencies in establishing and promulgating national regulations and practices in radiation Protection. Most countries have incorporated at least some aspect of the recommendations in their regulations since about 1956 when the first basic prowdon standard was Published in ICRP 2. Since that time ICRP has issued two major revisions to the recommendations. ICRP 26 was published in 1977 and ICRP 60 was published in 1991. These last two publications have companion works, ICRP 30 atid ICRP 61, that contain Annual Limits of Intake (ALI) for radiation workers. This report discusses the impacts of ICRP 60 and 61 on transport regulations

  20. Board advice following publication of the 1990 Recommendations of ICRP

    International Nuclear Information System (INIS)

    1991-11-01

    The International Commission on Radiological Protection (ICRP) has published new Recommendations and the Board has a statutory duty to advise Government and those with responsibilities for radiation protection on the acceptability to and the applicability in the UK of those Recommendations. The Board wishes to consult widely before finalising the advice which is proposed in this document. In general, the Board endorses the conceptual framework for radiological protection recommended by ICRP. In particular, the distinction between practices and intervention is useful and is consistent with the way in which the Board has presented its recent advice. A major new concept is that of a constraint. The Board believes that the introduction of constraints provides a powerful method for improving protection against ionising radiation. The advice in this consultative document is for maximum generic values of dose constraints for both workers and the public. Finally the Board proposes to endorse the use of the radiological quantities recommended by ICRP. (author)

  1. Amiodarone biokinetics, the formation of its major oxidative metabolite and neurotoxicity after acute and repeated exposure of brain cell cultures.

    Science.gov (United States)

    Pomponio, Giuliana; Zurich, Marie-Gabrielle; Schultz, Luise; Weiss, Dieter G; Romanelli, Luca; Gramowski-Voss, Alexandra; Di Consiglio, Emma; Testai, Emanuela

    2015-12-25

    The difficulty in mimicking nervous system complexity and cell-cell interactions as well as the lack of kinetics information has limited the use of in vitro neurotoxicity data. Here, we assessed the biokinetic profile as well as the neurotoxicity of Amiodarone after acute and repeated exposure in two advanced rodent brain cell culture models, consisting of both neurons and glial cells organized in 2 or 3 dimensions to mimic the brain histiotypic structure and function. A strategy was applied to evidence the abiotic processes possibly affecting Amiodarone in vitro bioavailability, showing its ability to adsorb to the plastic devices. At clinically relevant Amiodarone concentrations, known to induce neurotoxicity in some patients during therapeutic treatment, a complete uptake was observed in both models in 24 h, after single exposure. After repeated treatments, bioaccumulation was observed, especially in the 3D cell model, together with a greater alteration of neurotoxicity markers. After 14 days, Amiodarone major oxidative metabolite (mono-N-desethylamiodarone) was detected at limited levels, indicating the presence of active drug metabolism enzymes (i.e. cytochrome P450) in both models. The assessment of biokinetics provides useful information on the relevance of in vitro toxicity data and should be considered in the design of an Integrated Testing Strategy aimed to identify specific neurotoxic alerts, and to improve the neurotoxicity assay predictivity for human acute and repeated exposure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. The biokinetics and radiotoxicology of curium: A comparison with americium

    Energy Technology Data Exchange (ETDEWEB)

    Menetrier, F. [CEA, Fontenay-aux-Roses (France); Taylor, D.M. [School of Chemistry, Cardiff University, Cardiff CF10 3AT (United Kingdom)], E-mail: davtay@btinternet.com; Comte, A. [CEA, Fontenay-aux-Roses (France)

    2008-05-15

    The human and animal data on the biokinetics of {sup 242}Cm and {sup 244}Cm are reviewed and shown to be very similar to those for {sup 241}Am. Liver and skeleton are the main organs of deposition and the retention of curium in the skeleton is very prolonged in all the species examined. Retention of both curium and americium in the liver appears to be species-dependent, being relatively rapidly removed from the liver of rats, and probably humans, but being tenaciously retained in dogs and some other species. The radiotoxicity of curium is also reviewed and it is shown that, as with {sup 241}Am, lung and bone tumour induction are the major hazards from inhaled and systemically deposited {sup 244}Cm. The use of chelating agents for the treatment of accidental contamination of the human body with {sup 242,244}Cm is also discussed.

  3. The Effect of Body Size in Mercury Accumulation Biokinetic of Cockle Shell (Anadara Granosa)

    International Nuclear Information System (INIS)

    Wahyu Retno Prihatiningsih

    2007-01-01

    Accumulation of mercury biokinetic in cockle shell (Anadara granosa) through water pathway has been investigated under laboratory condition. The objective of research is to find the effect of body size in mercury biokinetic of Anadara granosa and to find bioindicator based on biokinetic parameter. The research shows that body size of Anadara granosa give an effect to concentration factor and could barrier mercury contaminant. Concentration factor for size 1.9, 2.5 and 3.9 cm of biota moving high and reach steady state condition after 24 days. Concentration factor of Anadara granosa in size 1.9, 2.5 and 3.9 is 0.1476, 0.1645 and 0.2573 day. Based on mechanism of mercury biokinetic process, it was proof that Anadara granosa is an ideal invertebrate for bioindicator. (author)

  4. Implementation of the ICRP 2007 recommendations in Korea

    International Nuclear Information System (INIS)

    Cho, Kun-Woo

    2008-01-01

    Full text: International Commission on Radiological Protection (ICRP) is about to publish new recommendations on radiation protection. International Atomic Energy Agency (IAEA) is also under process in revising its International Basic Safety Standards (BSS) to take into account of the changes of the ICRP recommendations. As soon as the revision of the BSS is completed, Korean government is considering to implement those changes in the BSS and the ICRP recommendations into its national radiation protection laws and regulations. This paper introduces the current activities and future prospects in this matter. In the 2007 ICRP recommendations, there are some new concepts, principles and quantities such as the changes in the nominal risk coefficient for cancer and hereditary effects, new definitions on the tissue weighting factors and radiation weighting factors for neutron and proton, extended application of the dose constraints in all exposure situations in source-related radiation protection, and the introduction of new system of protection for non-human species. Based on the study carried out by KINS so far, the following points are identified as major areas that need for further in-depth review and consideration for the implementation of the ICRP 2007 recommendations into Korean radiation protection laws and regulations; changes in the radiation risk factors, radiation weighting factors and tissue weighting factors, maintenance of the ICRP 60 dose limits, practical application of the dose constraints and determination of the reference levels in many source to individual exposure relationships, change from process-based system to exposure situation-based system, strengthening of the principle of optimization in all exposure situations, system of radiation protection for the environment, practical application of the exclusion and exemption principles, active participation of the stake holders, changes in glossary etc. The study for the implementation of the ICRP

  5. The recommendations of the ICRP: the reasons for a change

    International Nuclear Information System (INIS)

    Sugier, A.; Nenot, J.C.; Lecomte, J.F.

    2005-01-01

    Since its foundation in 1928, the International Commission on Radiological Protection (ICRP) has regularly produced recommendations on the protection against ionising radiation; these recommendations are currently taken up by international organisations and by states. Since 1990, date of issue of the most recent recommendations (Publication 60), advances in scientific knowledge, technical developments, feedback and desire to meet modern societal developments, have incited the ICRP to modify its system of protection. The latest draft, which was recently presented openly for consultation and proposals, is described and discussed. (author)

  6. Application in the Nordic countries of ICRP publication 26

    International Nuclear Information System (INIS)

    2006-01-01

    The radiation protection institutes of the five Nordic countries, Denmark, Finland, Iceland, Norway and Sweden, published in 1976 a joint report on the applicability of international radiation protection recommendations in the Nordic countries. The report was mainly based on the set of recommendations issued by the International Commission on Radiological Protection (ICRP). In the report it was stated that 'if the basic recommendations of ICRP are subsequently revised, it is the intention of the radiation protection institutes to consider equivalent changes in the recommended basis for regulatory texts and, if there is full agreement, jointly to announce changes which may be made in respect to the principles which have been recommended here'. In 1977 ICRP published its revised basic recommendations (ICRP Publication 26) which resulted from the examination of new information during the last decade and since the Commission's previous basic recommendations (ICRP Publication 9 adopted in 1965. In 1978 the representatives of the radiation protection institutes of the Nordic countries agreed at their meeting in Helsinki to prepare a joint policy document on the application of the revised ICRP recommendations in the Nordic countries. In common with the previous joint report of the Nordic radiation protection institutes of 1976 the present recommendations deal only with ionizing radiation. In the new recommendations ICRP has more clearly than in the previous recommendations systematized the basic principles in radiation protection by crystallizing its system of dose limitation in three main points: a) no practice shall be adopted unless its introduction produces a positive net benefit; b) all exposures shall be kept as low as reasonably achievable, economic and social factors being taken into account; and C) the dose equivalent to individuals shall not exceed the limits recommended for the appropriate circumstances by the Commission. The levels for basic dose

  7. ICRP Recommendations to the Protection of People Living in Long-Term Contaminated Areas ICRP publication 111 in brief

    International Nuclear Information System (INIS)

    Salama, S.; Gomaa, M. A.; Rashad, S.

    2013-01-01

    The main aim of the present study is to through some lights on ICRP free release publication at 4 April 2011-Internationally Known as ICRP publication 111. The title of the publication is (application of the commission's recommendations to the protection of people living in long-term contaminated areas after a nuclear accident or a radiation emergency). Nuclear accidents or a radiation emergency may cause contamination. The contamination may be spread on a large area. There are people living in these areas. For many factors the people refuse to leave their homes. They want to stay along their life as in the case of the normal conditions. So, it is important to facilitate their stay and make it safe. This is not easy. But it is possible without neglect the radiation hazard. The radiation hazard is effective on the life fields. It is harmful in plants, animals, foods, water, milk and the buildings it self. With considering the radiological protection principles the living of the people for a long time could be a fact of the life and will be more easy and safe. Optimization principle has priority to apply. This publication achieves these purposes.The ICRP-111 is translated into Arabic at August 2012. This work is a continuation of the efforts series to translate some of the most important of the ICRP radiological protection references into the Arabic; aiming to maximize the benefit. The previous translations include, ICRP-105 (radiation protection in medicine) and ICRP -113 (education and training in radiological protection for diagnostic and interventional procedures).

  8. Biokinetics of zinc oxide nanoparticles: toxicokinetics, biological fates, and protein interaction

    Directory of Open Access Journals (Sweden)

    Choi SJ

    2014-12-01

    Full Text Available Soo-Jin Choi,1 Jin-Ho Choy2 1Department of Food Science and Technology, Seoul Women's University, 2Center for Intelligent Nano Bio Materials (CINBM, Department of Bioinspired Science and Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, South Korea Abstract: Biokinetic studies of zinc oxide (ZnO nanoparticles involve systematic and quantitative analyses of absorption, distribution, metabolism, and excretion in plasma and tissues of whole animals after exposure. A full understanding of the biokinetics provides basic information about nanoparticle entry into systemic circulation, target organs of accumulation and toxicity, and elimination time, which is important for predicting the long-term toxic potential of nanoparticles. Biokinetic behaviors can be dependent on physicochemical properties, dissolution property in biological fluids, and nanoparticle–protein interaction. Moreover, the determination of biological fates of ZnO nanoparticles in the systemic circulation and tissues is critical in interpreting biokinetic behaviors and predicting toxicity potential as well as mechanism. This review focuses on physicochemical factors affecting the biokinetics of ZnO nanoparticles, in concert with understanding bioavailable fates and their interaction with proteins. Keywords: ZnO nanoparticles, biokinetics, distribution, excretion, fate, interaction

  9. ICRP proposal on radiation protection of non-human species - with TAEA perspective-

    International Nuclear Information System (INIS)

    Okyar, H. B.

    2006-01-01

    Interest in the protection of the environment has greatly increased in recent years, in relation to all aspects of human activities. Such interest has been accompanied by the development and application of various means of assessing and managing the many forms of human impact upon it. Up to now, the International Commission on Radiation Protection (ICRP) has not published any recommendations on how to assess or manage radiation effects in non-human species. The Turkish Atomic Energy Authority (TAEA) which is the regulatory body of Turkey in radiation protection also recognises that there is a current lack of consistency at international level with respect to addressing such issues in relation to radioactivity, and therefore believes that a more proactive approach is now necessary. The Commission has decided to develop a framework for the assessment of radiation effects in non-human species in order to fill a conceptual gap in radiation protection. The proposed system does not intend to set regulatory standards, but rather to provide guidance and help regulators and operators demonstrate compliance with existing legislation. ICRP developed a small set of reference animals and plants, plus their relevant data bases to serve as a basis for the more fundamental understanding and interpretation of the relationships between exposure and dose, and between dose and certain categories of effect. This concept is similar to that of the reference individual (reference man) used for human radiological protection, in that it is intended to act as a basis for calculations and decisions. The Commission has now established a system to continue the work with defining effects end-points of interest, the types of reference organisms to be used by ICRP, and defining a set of reference dose models for assessing and managing radiation exposure in non-human species. This talk will provide a review of ICRP proposed framework for radiation protection of the environment with TAEA comments

  10. Creation of a voxel phantom of the ICRP reference crab.

    Science.gov (United States)

    Caffrey, E A; Higley, K A

    2013-06-01

    The International Commission on Radiological Protection (ICRP) has modeled twelve reference animal and plant (RAP) species using simple geometric shapes in Monte-Carlo (MCNP) based simulations. The focus has now shifted to creating voxel phantoms of each RAP in order to estimate doses to biota with a higher degree of confidence. This paper describes the creation of a voxel model of a Dungeness crab from CT images with shell, gills, gonads, hepatopancreas, and heart identified and segmented. Absorbed fractions were tabulated for each organ as a source and target at twelve photon and nine electron energies: 0.01, 0.015, 0.02, 0.03, 0.05, 0.1, 0.2, 0.5, 1.0, 1.5, 2.0, and 4.0 MeV for photons and 0.1, 0.2, 0.4, 0.5, 0.7, 1.0, 1.5, 2.0 and 4.0 MeV for electrons. AFs whose error exceeded 5% are marked with an underline in the data tables; AFs whose error was higher than 10% were excluded, and are shown in the tabulated data as a dashed line. A representative sample of the data is shown in Figs. 3-8; the entire data set is available as an electronic appendix. The results are consistent with previous small organism studies (Kinase, 2008; Stabin et al., 2006), and suggest that AF values are highly dependent on source organ location and mass. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. A component of the Indian Climate Research Programme (ICRP)

    Indian Academy of Sciences (India)

    The Indian Climate Research Programme (ICRP) focuses on the study of climate variability and its impact on agriculture. To address the role of the Bay of Bengal in monsoon variability, a process study was organised during July-August 1999, deploying research ships, buoys, INSAT, coastal radar and conventional ...

  12. Non-stochastic effects: compatibility with present ICRP recommendations

    International Nuclear Information System (INIS)

    Field, S.B.; Upton, A.C.; New York Univ., NY

    1985-01-01

    The present recommendations of the ICRP (International Commission on Radiological Protection) are almost entirely based on 'stochastic effects' of ionizing radiation, i.e. cancer induction and heritable effects. In a recent report the compatibility of present recommendations with non-stochastic effects has been considered. The present paper is a summary of these findings. (author)

  13. Status of ICRP recommendations at nuclear power plants

    International Nuclear Information System (INIS)

    Kaneko, Masahito

    1996-01-01

    Results of actual radiation exposure in nuclear power plants and related matters were presented for discussion of the principle of radiation protection involved in ICRP recommendations, which is prerequisite for safe operation of the plants and for treatment of radioactive waste. There were no personnel with actual exposure dose exceeding 50 mSv/y in 1995. Total exposure dose was 66.32 psn.Sv. and mean dose equivalent/personnel, 1.0 mSv. The amount of radioactive gasses and liquids released in the environment was far lower (<1/7,000) than that for the exposure index of 50 microSv/y in the public around the plant. The marked decrease in the amount of radioactive solid waste was noted in the plants. The laws and ICRP recommendations have been the basis for agreement between labor and management in the plant: e.g., the proposed voluntary dose was 30 mSv/y. This was also true for the recommendations in 1990. Finally, followings were proposed to ICRP: re-examination of linear theory without threshold, consideration for the balance between the radiation and other kind of hazardous materials and factors, carefulness in changing the recommendation concept, and exclusion of more severe limitations than those included in ICRP recommendations. (K.H.)

  14. Basic concepts and assumptions behind the new ICRP recommendations

    International Nuclear Information System (INIS)

    Lindell, B.

    1979-01-01

    A review is given of some of the basic concepts and assumptions behind the current recommendations by the International Commission on Radiological Protection in ICRP Publications 26 and 28, which form the basis for the revision of the Basic Safety Standards jointly undertaken by IAEA, ILO, NEA and WHO. Special attention is given to the assumption of a linear, non-threshold dose-response relationship for stochastic radiation effects such as cancer and hereditary harm. The three basic principles of protection are discussed: justification of practice, optimization of protection and individual risk limitation. In the new ICRP recommendations particular emphasis is given to the principle of keeping all radiation doses as low as is reasonably achievable. A consequence of this is that the ICRP dose limits are now given as boundary conditions for the justification and optimization procedures rather than as values that should be used for purposes of planning and design. The fractional increase in total risk at various ages after continuous exposure near the dose limits is given as an illustration. The need for taking other sources, present and future, into account when applying the dose limits leads to the use of the commitment concept. This is briefly discussed as well as the new quantity, the effective dose equivalent, introduced by ICRP. (author)

  15. Overview of ICRP Committee 4: application of the Commission's recommendations.

    Science.gov (United States)

    Cool, D A

    2016-06-01

    Committee 4 develops principles and recommendations on radiological protection of people in all exposure situations. The committee meeting in 2014 was hosted by GE Healthcare in Arlington Heights, IL, USA on 27 July-1 August 2014. The programme of work of Committee 4 encompasses several broad areas, including a series of reports covering various aspects of existing exposure situations, leading the efforts of the International Commission on Radiological Protection (ICRP) to update and elaborate recommendations in light of the accident at Fukushima Daiichi nuclear power plant for emergencies and living in contaminated areas, elaborating the underpinnings of the system of radiological protection, and developing focussed reports on specific topic areas in consultation with ICRP's special liaison organisations. Committee 4 has six active Task Groups working on naturally occurring radioactive material; cosmic radiation in aviation; updates of ICRP Publications 109 and 111; ethics of radiological protection; surface and near-surface disposal of solid radioactive waste; and exposures resulting from contaminated sites from past industrial, military, and nuclear activities. In addition, there is a Working Party on tolerability of risk, and ongoing work with the various special liaison organisations of ICRP. © The International Society for Prosthetics and Orthotics.

  16. The work of Committee 2 of ICRP in developing dose coefficients for the embryo and fetus following intakes of radionuclides by the mother

    International Nuclear Information System (INIS)

    Stather, J.W.; Phipps, A.W.

    1999-01-01

    Committee 2 of the International Commission on Radiological Protection has the responsibility for calculating radiation doses from intakes of radionuclides for all age groups in the population. This includes the development of models for calculating doses to the embryo and fetus following intakes of radionuclides by the mother. The development of both biokinetic and dosimetric models are reviewed and the results of preliminary dose calculations presented. (orig.) [de

  17. Biokinetics and dosimetry with 177Lu-DOTA-TATE in athymic mice with induced pancreatic malignant tumours

    Science.gov (United States)

    Rodríguez-Cortés, J.; de Murphy, C. Arteaga; Ferro-Flores, Ge; Pedraza-López, M.; Murphy-Stack, E.

    Malignant pancreatic tumours induced in athymic mice are a good model for peptide receptor targeted radiotherapy. The objective of this research was to determine biokinetic parameters in mice, in order to estimate the induced pancreatic tumour absorbed doses and to evaluate an `in house' 177Lu-DOTA-TATE radiopharmaceutical as part of preclinical studies for targeted therapy in humans. AR42J murine pancreas cancer cells expressing somatostatin receptors, were implanted in athymic mice (nD22) to obtain biokinetic and dosimetric data of 177Lu-DOTA-TATE. The mean tumour uptake 2 h post injection was 14.76±1.9% I.A./g; kidney and pancreas uptake, at the same time, were 7.27±1.1% I.A./g (1.71±0.90%/organ) and 4.20±0.98% I.A./g (0.42±0.03%/organ), respectively. The mean absorbed dose to tumour, kidney and pancreas was 0.58±0.02 Gy/MBq; 0.23±0.01 Gy/MBq and 0.14±0.01 Gy/MBq, respectively. These studies justify further dosimetric estimations to ensure that 177Lu-DOTA-TATE will act as expected in humans.

  18. Biokinetics and dosimetry of target-specific radiopharmaceuticals for molecular imaging and therapy

    International Nuclear Information System (INIS)

    Ferro F, G.; Torres G, E.; Gonzalez V, A.; Murphy, C.A. de

    2006-01-01

    Molecular imaging techniques directly or indirectly monitor and record the spatiotemporal distribution of molecular or cellular processes for biochemical, biologic, diagnostic or therapeutic applications. 99m Tc-HYNlC-TOC has shown high in vitro and in vivo stability, rapid background clearance and rapid detection of somatostatin receptor-positive tumors. Therapies using radiolabeled anti-CD20 have demonstrated their efficacy in patients with B-cell non Hodgkin's Iymphoma (NHL). The aim of this study was to establish biokinetic models for 99m Tc-HYNlC-TOC and 188 Re-anti-CD20 prepared from Iyophilized kits, and to evaluate their dosimetry as target-specific radiopharmaceuticals. Whole-body images were acquired at different times after 99m Tc-HYNlC-TOC or 188 Re-anti-CD20 administration obtained from instant freeze-dried kit formulations with radiochemical purities > 95 %. Regions of interest (ROls) were drawn around source organs on each time frame. The cpm of each ROI was converted to activity using the conjugate view counting method. The image sequence was used to extrapolate time-activity curves in each organ, to adjust the biokinetic model using the SAAM software, and to calculate the total number of disintegrations (N) that occurred in the source regions. N data were the input for the OLINDA/EXM code to calculate internal radiation dose estimates. 99m Tc-HYNlC-TOC images showed an average tumor/blood (heart) ratio of 4.3 ± 0.7 in receptor-positive tumors at 1 h and the mean radiation absorbed dose calculated for a study using 740 MBq was 24, 21.5, 5.5 and 1.0 mSv for spleen, kidneys, liver and bone marrow respectively and the effective dose was 4.4 mSv. Results showed that after administration of 7 GBq of 188 Re-anti-CD20 the absorbed dose to whole body would be 0.7 Gy (0.1 mGy/MBq) which is the indicated dose for non Hodgkin's Iymphome therapies. (Author)

  19. Multigenerational cadmium acclimation and biokinetics in Daphnia magna

    International Nuclear Information System (INIS)

    Guan Rui; Wang Wenxiong

    2006-01-01

    A Cd exposure (3 μg L -1 ) experiment was conducted for six successive generations to investigate the responses to chronic Cd stress in Daphnia magna. We observed a biphasic accumulation of Cd in the six generations and suggested a similar pattern with respect to daphnids' tolerance. Cd assimilation efficiencies, daphnid growth, and reproduction corresponded to the changes of tolerance, which was partially accounted for by metallothionein induction. When maternally exposed neonates grew in Cd-free water for one or two generations, their growth, MT concentration and biokinetic parameters partially or totally recovered. The rapid recovery suggests the high potential for ecological restoration from Cd pollution. Our results indicate that the tolerance of sensitive D. magna clones to Cd was dependent on long-term or multigenerational exposure. The tolerance developed within the first several generations might not be maintained, and the animals may become even more sensitive to Cd stress in subsequent generations. - Tolerance of sensitive Daphnia magna clones to cadmium was dependent on long-term or multigenerational exposure

  20. ICRP-recommendations on dose limits for workers

    International Nuclear Information System (INIS)

    Beninson, D.J.

    1976-01-01

    Dose limits proposed by the ICRP have been incorporated in most national and international standards and their respect has caused a distribution of doses with a average not exceeding 1/10 of the maximum permissible dose. This distribution corresponds to a risk which is well within the risks in 'safe industries'. There are at present some inconsistancies in the current system of recommended limits, for example having the same limit of 5 rem for the whole-body and also for some organs. Hopefully, this incosistancy will be removed in the next recommendation of the ICRP. But the whole-body limit of 5 rem in a year has been safe and there is little ground to reduce this limit on the basis of comparisons with 'safe industries'. (orig./HP) [de

  1. Recommendations of ICRP for radiation protection in 2005

    International Nuclear Information System (INIS)

    Holm, L. E.

    2004-01-01

    The present recommendations of the International Commission on Radiological Protection (ICRP) were published in 1991, and since then, the ICRP has provided additional recommendations. The system of protection has become increasingly co plex with time, and the Commission has decided to adopt a new set of recommendations in 2005- These should be seen as a consolidation of earlier recommendations. The new recommendations will recognize where the responsibility for justifying the introduction of a new practice lies, maintain the existing dose limits for individuals, develop the concept of dose constraints, require optimisation of protection from any source to ensure that exposures are as law as reasonably achievable, include of a policy for protection of non-human species, and clarify the dramatics quantities. The Commission intends to adopt the new recommendations in 2005, and this will be 15 years after the current recommendations were adopted. (Author) 13 refs

  2. ICRP recommendations and the safe disposal of radioactive waste

    International Nuclear Information System (INIS)

    Webb, G.A.M.; Barraclough, I.M.

    1991-01-01

    There are some special difficulties in setting up and applying radiological protection principle to the disposal of solid radioactive wastes. These were recognized by the International Commission on Radiological Protection (ICRP). One difficulty is the uncertain or probabilistic nature of some of the events or processes that could occur and affect the integrity of a waste repository. The other feature of solid waste disposal that causes difficulty is the length of time period of concern. The practical problem is the difficulties in predicting future conditions and in making the useful estimate of long term radiation impact with sufficient confidence. In this paper, the proposals made by the ICRP to deal with the above difficulties are briefly reviewed. Some suggestions are made as to how the criteria might be clarified, and the necessary calculation made to match the criteria. The reappraisal of the criteria for assessing the radiological safety of waste repositories is needed. (K.I.)

  3. Implementation of the 1990 recommendations of the ICRP

    International Nuclear Information System (INIS)

    Hock, R.

    1994-01-01

    Detailed investigations have been made of the consequences of ICRP Publication 60 for nuclear power plants. A methodology has not yet been defined for handling the aspect of design against accidents within the framework of ICRP 60. Other new requirements, i.e. new individual limits and the application of higher risk factors, may pose minor problems for plants of older design. In plants of recent collective doses for plant personnel and for the public are already so low that the increase in risk factors will not require additional protection measures. The new limit for the individual dose accumulated during five calendar years may require additional surveillance of a few persons in plants of older design. Intakes of radionuclides are a minor contributor to dose, even at these low levels of exposure. Uncertainties in the determination of a committed dose rather than the actual dose can therefore be tolerated. (Author)

  4. Board advice following publication of the 1990 Recommendations of ICRP

    CERN Document Server

    United Kingdom. At. Energy Res. Establ. Nat. Radiolog. Protect. Board. Harwell

    1991-01-01

    The International Commission on Radiological Protection (ICRP) has published new Recommendations and the board has a statutory duty to advise Government and those with responsibilities for radiation protection on the acceptability to and the applicability in the UK of those Recommendations. The Board wishes to consult widely before finalising the advice which is proposed in this document. In general, the Board endorses the conceptual framework for radiological protection recommended by ICRP. In particular, the distinction between practices and intervention is useful and is consistent with the way in which the Board has presented its recent advice. A major new concept is that of a constraint. The Board believes that the introduction of constraints provides a powerful method for improving protection against ionising radiation. The advice in this consultative document is for maximum generic values of dose constraints for both workers and the public. Finally the Board proposes to endorse the use of the radiologic...

  5. Uses and limitations of dosimetric data in ICRP 30

    International Nuclear Information System (INIS)

    Eckerman, K.F.

    1985-01-01

    The ICRP recommendations of Publications 26 and 30 provide a well founded, logical approach to radiation protection. These recommendations lend themselves to scientific scrutiny and evaluation much more than the earlier recommendations. While there are many issues which national authorities may find necessary to address as they develop their national radiation protection guidance, the long awaited revision of the ICRP recommendations provides the technical bases upon which such guidance can be developed. The acceptance of the new recommendations by national authorities and the radiation protection community appears to be related to the lack of substantial departure in the numerical value of the secondry limits from the previous limits. This reflects an apparent concensus that the earlier recommendations provided an adequate level of protection. It thus appears reasonable to suggest that a similar level of protection is offered by the new recommendations. 24 refs., 2 figs., 7 tabs

  6. Rethinking basic concepts in ICRP's system of dose limitation

    International Nuclear Information System (INIS)

    Mills, W.A.; Mossman, K.L.

    1991-01-01

    The present criterion for radiation protection appears to be exposure reduction rather than adequate protection of health. The 1990 ICRP draft recommendations for a system of dose limitation would further implement this more restrictive criterion by implementing certain academic concepts and assumptions. These concepts and assumptions are discussed and the suggestion is made that the radiation protection community needs to carefully examine the need for the complex system proposed

  7. The instrumentation calibration reduction program (ICRP) at Northeast Utilities

    International Nuclear Information System (INIS)

    Wyckoff, R.; Blanch, P.

    1987-01-01

    Northeast Utilities (NU) funded a project to study the feasibility of determining the state of core exit thermocouple (CET) calibration without having to have direct access to the CETs. Although the CETs were the prime focus, other safety related sensors were investigated. This paper describes presumptions and methods employed in the first phase, the feasibility study. Additionally, it describes the cost/benefit analysis which can be used by any utility to determine ICRP payback

  8. Work of ICRP Committee 4 on the implementation of the new ICRP recommendations

    International Nuclear Information System (INIS)

    Lochard, J.

    2010-01-01

    ICRP Mission was founded in 1928 by the international Society of Radiology to advance for the public benefit the science of radiological protection, in particular by providing recommendations and guidance on all aspects of protection against ionizing radiation. The commission has five committees, plus a scientific secretariat. It has task groups and working parties which are established either by the main commission or by the committees. It consists of 82 members from 24 countries and six continents. It has 7 approximately 100 external experts participating in task groups. It also has an international community of experts in radiological protection. Committee 4 is concerned with providing advice on the application of the recommended system of protection in all its facets for occupational and public exposure. It also acts as the major point of contact with other international organizations and professional societies concerned with protection against ionizing radiation. The priorities of Committee 4 (2009 -2013) are to: . Develop advice on the implementation of the new recommendations and contribute to their dissemination . Review the ethics and values (precautionary principles, tolerability of risk, equity, sustainable development¡¦) underlying the principles and concepts of the radiation protection system . Enhance the dialogue and cooperation with international organizations and professionals The programme of work for Committee 4 was outlined: a) Task Group N¡Æ 76 : Application of the Commission.s Recommendations to NORM b) Task Group N¡Æ 80 : Application of the Commission.s Recommendations as applied to the geological disposal of long-lived solid radioactive waste c) Task Group N¡Æ 81 : Application of the Commission.s Recommendations to radon exposure d) Committee 4 programme of work (4): Task Group (to be established): Application of the Commission.s Recommendations to the protection of aircraft crew to cosmic rays e) Committee 4 programme of work (5

  9. Implications of the 1990 ICRP recommendations for the mining industry

    International Nuclear Information System (INIS)

    Fry, R.M.

    1992-01-01

    Significant radiological protection problems arise in the mining and processing of uranium and thorium bearing ores, beach sands and other materials that have enhanced levels of uranium (e.g. phosphate). They are at their most extreme in the underground mining of uranium. Under the new ICRP 60 occupational dose limits it may be necessary to subject virtually all mining operations to some degree of radiological surveillance. There are three principal modes of radiation exposure in uranium mining operations: gamma rays, an external whole body radiation hazard; the inhalation of radon daughter products; and the inhalation of ore dust containing the long-lived alpha emitting daughter products of uranium, principally 230Th and 226Ra. A number of the new recommendations in ICRP60 considered to have significant implications for the mining industry in general and the above mentioned issues in particular are discussed. These include the definition of occupational exposure occupational dose limit, the review of the radon dose limits, the system of radiological protection. The major conclusions and recommendation of the IAEA Technical Committee to Explore the Impact of the new ICRP Occupational Dose Limits in the operation of underground mines are also summarized. 18 refs., 1 tab

  10. ICRP publication 26. Its applicability in a nuclear power programme

    International Nuclear Information System (INIS)

    Wilson, R.; Donnelly, K.

    1980-01-01

    Ontario Hydro is a major Canadian provincial utility with more than 5 GW(e) installed nuclear electricity generating capacity and with a planned commitment to an additional 8.5 GW(e), all units being of the CANDU pressurized heavy-water type. The radiation protection programme, in addition to complying with Canadian Federal regulations, has been consistent with the philosophy and intent of ICRP recommendations and is frequently reviewed to ensure compliance with these recommendations, the most recent of which is ICRP-26. The application of the ALARA principle in this power reactor programme is described. A set of general guidelines has been established, the main features of which are: (a) achieving a dose consumption per unit of electricity generated which is low compared with reactors of a similar type; (b) ensuring that stations are operable with the dose equivalent of their labour-dictated manpower; (c) ensuring that the risk to atomic radiation workers is compatible with a corporate fatality rate standard of 8 man-hours worked. Achievement of these guidelines has necessitated implementing a continued dose-management programme. This programme is described generally. The cost applied to justify a dose reduction of 1 man.Sv is given, and a comparison is made with the equivalent life costs this implies and the costs used by safety agencies for other risk-reduction activities. Finally, some practical problems associated with some of the recommendations of ICRP-26 are discussed. (author)

  11. Biokinetics and dosimetry in patients of 99mTc-EDDA/HYNIC-Tyr3-octreotide prepared from lyophilized kits.

    Science.gov (United States)

    González-Vázquez, Armando; Ferro-Flores, Guillermina; Arteaga de Murphy, Consuelo; Gutiérrez-García, Zohar

    2006-07-01

    99mTc-EDDA/HYNIC-Tyr3-octreotide (99mTc-HYNIC-TOC) has shown high in vitro and in vivo stability, rapid background clearance and rapid detection of somatostatin receptor-positive tumors. The aim of this study was to establish a biokinetic model for 99mTc-HYNIC-TOC prepared from lyophilized kits, and to evaluate its dosimetry as a tumor imaging agent in patients with histologically confirmed neuroendocrine tumors. Whole-body images from eight patients were acquired at 5, 60, 90, 180 min and 24 h after 99mTc-HYNIC-TOC administration obtained from instant freeze-dried kit formulations with radiochemical purities >95%. Regions of interest (ROIs) were drawn around source organs on each time frame. The same set of ROIs was used for all eight scans and the count per minute (cpm) of each ROI was converted to activity using the conjugate view counting method. The image sequence was used to extrapolate 99mTc-HYNIC-TOC time-activity curves in each organ, to adjust a biokinetic model using the SAAM software, and to calculate the total number of disintegrations (N) that occurred in the source regions. N data were the input for the OLINDA/EXM code to calculate internal radiation dose estimates. Images showed an average tumor/blood (heart) ratio of 4.3+/-0.7 in receptor-positive tumors at 1 h. The mean radiation absorbed dose calculated for a study using 740 MBq was 24, 21.5, 5.5 and 1.0 mSv for spleen, kidneys, liver and bone marrow respectively and the effective dose was 4.4 mSv.

  12. Distribution and biokinetic analysis of {sup 210}Pb and {sup 210}Po in poultry due to ingestion of dicalcium phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Casacuberta, N., E-mail: Nuria.Casacuberta@uab.es [Departament de Fisica and Institut de Ciencia i Tecnologia Ambientals, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Traversa, F.L. [Departament d' Electronica, Escola Tecnica Superior d' Enginyeria, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Masque, P.; Garcia-Orellana, J. [Departament de Fisica and Institut de Ciencia i Tecnologia Ambientals, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Anguita, M.; Gasa, J. [Departament de Ciencia Animal i dels Aliments, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Garcia-Tenorio, R. [Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla (Spain)

    2010-09-15

    Dicalcium phosphate (DCP) is used as a calcium supplement for food producing animals (i.e., cattle, poultry and pig). When DCP is produced via wet acid digestion of the phosphate rock and depending on the acid used in the industrial process, the final product can result in enhanced {sup 210}Pb and {sup 210}Po specific activities ({approx} 2000 Bq.kg{sup -1}). Both {sup 210}Pb and {sup 210}Po are of great interest because their contribution to the dose received by ingestion is potentially large. The aims of this work are to examine the accumulation of {sup 210}Pb and {sup 210}Po in chicken tissues during the first 42 days of life and to build a suitable single-compartment biokinetic model to understand the behavior of both radionuclides within the entire animal using the experimental results. Three commercial corn-soybean-based diets containing different amounts and sources of DCP were fed to broilers during a period of 42 days. The results show that diets containing enhanced concentrations of {sup 210}Pb and {sup 210}Po lead to larger specific accumulation in broiler tissues compared to the blank diet. Radionuclides do not accumulate homogeneously within the animal body: {sup 210}Pb follows the calcium pathways to some extent and accumulates largely in bones, while {sup 210}Po accumulates to a large extent in liver and kidneys. However, the total amount of radionuclide accumulation in tissues is small compared to the amounts excreted in feces. The single-compartment non-linear biokinetic model proposed here for {sup 210}Pb and {sup 210}Po in the whole animal takes into account the size evolution and is self-consistent in that no fitting parameterization of intake and excretions rates is required.

  13. Biokinetics and dosimetry in patients of 99mTc-EDDA/HYNIC-Tyr3-octreotide prepared from lyophilized kits

    International Nuclear Information System (INIS)

    Gonzalez-Vazquez, Armando; Ferro-Flores, Guillermina; Arteaga de Murphy, Consuelo; Gutierrez-Garcia, Zohar

    2006-01-01

    99m Tc-EDDA/HYNIC-Tyr 3 -octreotide ( 99m Tc-HYNIC-TOC) has shown high in vitro and in vivo stability, rapid background clearance and rapid detection of somatostatin receptor-positive tumors. The aim of this study was to establish a biokinetic model for 99m Tc-HYNIC-TOC prepared from lyophilized kits, and to evaluate its dosimetry as a tumor imaging agent in patients with histologically confirmed neuroendocrine tumors. Whole-body images from eight patients were acquired at 5, 60, 90, 180 min and 24 h after 99m Tc-HYNIC-TOC administration obtained from instant freeze-dried kit formulations with radiochemical purities >95%. Regions of interest (ROIs) were drawn around source organs on each time frame. The same set of ROIs was used for all eight scans and the count per minute (cpm) of each ROI was converted to activity using the conjugate view counting method. The image sequence was used to extrapolate 99m Tc-HYNIC-TOC time-activity curves in each organ, to adjust a biokinetic model using the SAAM software, and to calculate the total number of disintegrations (N) that occurred in the source regions. N data were the input for the OLINDA/EXM code to calculate internal radiation dose estimates. Images showed an average tumor/blood (heart) ratio of 4.3±0.7 in receptor-positive tumors at 1 h. The mean radiation absorbed dose calculated for a study using 740 MBq was 24, 21.5, 5.5 and 1.0 mSv for spleen, kidneys, liver and bone marrow respectively and the effective dose was 4.4 mSv

  14. Biokinetics and dosimetry of {sup 111}In-DOTA-NOC-ATE compared with {sup 111}In-DTPA-octreotide

    Energy Technology Data Exchange (ETDEWEB)

    Boubaker, Ariane; Prior, John O.; Champendal, Melanie; Bischof Delaloye, Angelika [Lausanne University Hospital, CHUV, Department of Nuclear Medicine, Lausanne (Switzerland); Willi, Jean-Pierre [University Hospital of Geneva, Department of Nuclear Medicine, Geneva 14 (Switzerland); Kosinski, Marek; Baechler, Sebastien [Lausanne University Hospital, Institute of Radiation Physics, Lausanne (Switzerland); Maecke, Helmut R. [University Hospital of Freiburg, Department of Nuclear Medicine, Freiburg (Germany); Ginj, Mihaela [University Health Network, Joint Department of Medical Imaging, Toronto, ON (Canada); Buchegger, Franz [Lausanne University Hospital, CHUV, Department of Nuclear Medicine, Lausanne (Switzerland); University Hospital of Geneva, Department of Nuclear Medicine, Geneva 14 (Switzerland)

    2012-12-15

    The biokinetics and dosimetry of {sup 111}In-DOTA-NOC-ATE (NOCATE), a high-affinity ligand of SSTR-2 and SSTR-5, and {sup 111}In-DTPA-octreotide (Octreoscan trademark, OCTREO) were compared in the same patients. Seventeen patients (10 men, 7 women; mean age 60 years), referred for an OCTREO scan for imaging of a neuroendocrine tumour (15), thymoma (1) or medullary thyroid carcinoma (1), agreed to undergo a second study with NOCATE. Whole-body anterior-posterior scans were recorded 0.5 (100 % reference scan), 4, 24 and 48 h (17 patients) and 120 h (5 patients) after injection. In 16 patients the OCTREO scan (178 {+-} 15 MBq) was performed 16 {+-} 5 days before the NOCATE scan (108 {+-} 14 MBq) with identical timing; 1 patient had the NOCATE scan before the OCTREO scan. Blood samples were obtained from 14 patients 5 min to 48 h after injection. Activities expressed as percent of the initial (reference) activity in the whole body, lung, kidney, liver, spleen and blood were fitted to biexponential or single exponential functions. Dosimetry was performed using OLINDA/EXM. Initial whole-body, lung and kidney activities were similar, but retention of NOCATE was higher than that of OCTREO. Liver and spleen uptakes of NOCATE were higher from the start (p < 0.001) and remained so over time. Whole-body activity showed similar {alpha} and {beta} half-lives, but the {beta} fraction of NOCATE was double that of OCTREO. Blood T{sub 1/2}{beta} for NOCATE was longer (19 vs. 6 h). As a result, the effective dose of NOCATE (105 {mu}Sv/MBq) exceeded that of OCTREO (52 {mu}Sv/MBq), and the latter result was similar to the ICRP 106 value of 54 {mu}Sv/MBq. Differential activity measurement in blood cells and plasma showed an average of <5 % of NOCATE and OCTREO attached to globular blood components. NOCATE showed a slower clearance from normal tissues and its effective dose was roughly double that of OCTREO. (orig.)

  15. ICRP 2015. International symposium on the radiation protection system. Report and reflection on a significant symposium

    International Nuclear Information System (INIS)

    Lorenz, Bernd

    2016-01-01

    The ICRP international symposium on the radiation protection system provides always extensive information on new developments in radiation protection. The ICRP 2105 discussed the following issues: radiation effects of low dose irradiation, dose coefficients for internal and external exposures, radiation protection in nuclear medicine, application of ICRP recommendations, environmental protection, studies on existing exposure situations, medical radiation protection today, science behind radiation doses, new developments in radiation effects, and ethics in radiation protection.

  16. Biokinetics of 13C in the human body after oral administration of 13C-labeled glucose as an index for the biokinetics of 14C.

    Science.gov (United States)

    Masuda, Tsuyoshi; Tako, Yasuhiro; Matsushita, Kensaku; Takeda, Hiroshi; Endo, Masahiro; Nakamura, Yuji; Hisamatsu, Shun'ichi

    2016-09-01

    The retention of 13 C in the human body after oral administration of 13 C-labeled glucose was studied in three healthy volunteer subjects to estimate the 50 year cumulative body burden for 13 C as an index of the committed dose of the radioisotope 14 C. After administration of 13 C-labeled glucose, the volunteers ingested controlled diets with a fixed number of calories for 112 d. Samples of breath and urine were collected up to 112 d after administration. Samples of feces were collected up to 14 d after administration. Hair samples were obtained at 119 d after administration and analyzed as a representative index of the rate of excretion of organic 13 C via pathways such as skin cell exfoliation and mucus secretion. All samples were analyzed for 13 C/ 12 C atomic ratio to determine the rate of excretion via each pathway. We then constructed a metabolic model with a total of four pathways (breath, urine, feces, and other) comprising seven compartments. We determined the values of the biokinetic parameters in the model by using the obtained excretion data. From 74% to 94% of the 13 C administered was excreted in breath, whereas    0.1). In addition, the dataset for one of the three subjects was markedly different from those of the other two. When we estimated the 50 year cumulative body burden for 13 C by using our model and we included non-statistically significant parameters, a considerable cumulative body burden was found in the compartments excreting to the other pathway. Although our results on the cumulative body burden of 13 C from orally administered carbon as glucose were inconclusive, we found that the compartments excreting to the other pathway had a markedly long residence time and therefore should be studied further to clarify the fate of carbon in the human body. In addition to excreta, data for serum and blood cell samples were also collected from the subjects to examine the metabolism of 13 C in human body.

  17. Implications of the ICRP draft recommendations for ALIs

    International Nuclear Information System (INIS)

    Stather, J.W.; Kendall, G.M.; Phipps, A.W.

    1990-01-01

    The results of the calculations summarised here suggest that under the new scheme for calculating annual limits on intake proposed by ICRP there may still be a need for an organ dose limit. This would lose one of the main advantages of the new scheme, namely that ALIs could be strictly additive. Adjusting the weighting factors and allocating the 'remainder' to possibly two tissues with the highest doses would result in effectances from different radionuclides which were not strictly additive. If, however, for practical purposes effectance could be taken to be additive, then the resulting ALIs could be apportioned between different radionuclides as desired. (author)

  18. Effect of new ICRP guidelines on radiological protection

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The new limits proposed by ICRP and under consideration (at the time of writing) by AECB (Atomic Energy Control Board of Canada) reduce the maximum exposure of atomic radiation workers from 50 to 20 mSv per year, and that of the general public from 5 to 1 mSv. The new guidelines will have three main effects: first, some licensees may have difficulty in complying; secondly, many workers may have to be reclassified as atomic radiation workers; thirdly, extensive retraining will be needed. Activities affected include reactor retubing and underground uranium mining

  19. Thought about ICRP TG84 report. What beyond it

    International Nuclear Information System (INIS)

    Niwa, Ohtsura

    2013-01-01

    Explained was the ICRP TG84 Report (Report of ICRP Task Group 84 on Initial Lessons Learned from the Nuclear Power Plant Accident in Japan vis-a-vis the ICRP System of Radiological Protection: Issues Identified from the NPP Accident in Japan and Recommendations to Improve the System of Radiation Protection; presented in October, 2012), together with author's thought about it. The Report contained 18 items and their related proposals: Inferring radiation risks (and the misunderstanding of nominal risk coefficients), Attributing radiation effects from low dose exposures, Quantifying radiation exposure, Assessing the importance of internal exposures, Managing emergency crisis, Protecting rescuers and volunteers, Responding with medical aid, Justifying necessary but disruptive protective actions, Transiting from an emergency to an existing situation, Rehabilitating evacuated areas, Categorizing public exposures due to an accident, Restricting individual doses of members of the public, Caring for infants and children, Considering pregnant women and their foetuses and embryos, Monitoring public protection, Dealing with 'contamination' of territories, rubble and residues, and consumer products, Recognizing the importance of psychological consequences, and Fostering the sharing of information. The Report also contained 11 Recommendations of actions for the Commission to take. The author had been installed as the Chair of Radiation Council in February, 2011, just before the Accident in March, and had had to concern the definition of various post-Accident dose limits in Japan, having had often faced the inefficiency of measures. He thought the ICRP protecting system was difficult to understand due to 2 reasons: one was that the system had been written aiming at experts of radiological protection and the other, that the system had been composed not only from science but also from an incorporated standard of social values, which resulted in inconsiderateness to the general

  20. A profile of Biokinetics service provided by the University of Kwa ...

    African Journals Online (AJOL)

    Biokinetics can be viewed as an emerging member of the South African health professions in comparison to the longstanding professions of physiotherapy, chiropractics and occupational therapy which were established in 1924, 1939 and 1945, respectively. The aim of this investigation was to determine the profile of the ...

  1. A stake holder dialogue on the implications of the ICRP recommendations

    International Nuclear Information System (INIS)

    2008-01-01

    Since its inception the NEA Committee on Radiation Protection and Public Health (CRPPH) has been involved in the assessment and implementation of the recommendations of the International Commission on Radiological Protection (ICRP). The development of new general ICRP recommendations, to replace those of the 1990 ICRP Publication 60, was thus of great interest to the NEA and its member countries. As a result, the NEA initiated a process of interaction and dialogue with the ICRP to ensure that the views and concerns of NEA member countries could be voiced and appropriately addressed in the new ICRP recommendations. The new ICRP recommendations were approved by the ICRP Main Commission in March 2007, by which point the NEA had sponsored 7 international conferences and produced 13 publications on the subject. This report is the summary of the three international dialogue conferences (held in Tokyo, 5-6 July 2006, Washington, DC, 28-29 August 2006, and Prague, 24-25 October 2006) that were organised to provide the ICRP with feedback regarding the June 2006 draft of its new recommendations. It includes a presentation of the key points of the draft recommendations, a summary of the suggestions made during the three conferences, and an assessment of the significant evolution that has been seen in the ICRP presentation of its draft recommendations over the course of the conference series. (authors)

  2. Effect of wastewater treatment on bio-kinetics of dissolved oxygen in Ravi river

    International Nuclear Information System (INIS)

    Haider, H.; Ali, W.

    2010-01-01

    Waste management studies are usually done using calibrated and verified water quality models. Ravi River located in Lahore, Pakistan is receiving untreated wastewater from number of out falls and . Surfaced rains and thus model calibration and verification are done using the data under the prevailing conditions. The water quality objectives can only be met with wastewater treatment wherein the model rate coefficients may change. The objective of this paper is to study the changes that may occur in these coefficients as a result of wastewater treatment. For this purpose, long-term BOD analyses have been carried out using river water and wastewater after different degrees of treatment. A laboratory scale biological reactor was used to study the effect of biological treatment on rate coefficients at 3, 6 and 10 days detention times. The study results show that CBOD biokinetic rate coefficient (K) reduces significantly from 0.25 day/sup -1/ for raw waste water to 0.1 day for the wastewater treatment for 3 days detention time in the biological reactor. Further reductions in the value of K to 0.07 day/sup -1 and 0.05 day/sup -1/ occurred for a treatment level corresponding to 6 and 10 days detention times, respectively. The NBOD rate coefficient (K/sub n/ was found to be 0.08 day/sup -1/ for 3 days detention time and 0.06 day/sup -1/ after treatment in the biological reactor at 6 and 10 days detention times. (author)

  3. Biokinetic and dosimetric studies of 188Re-hyaluronic acid: a new radiopharmaceutical for treatment of hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Melendez-Alafort, Laura; Nadali, Anna; Zangoni, Elena; Banzato, Alessandra; Rondina, Maria; Rosato, Antonio; Mazzi, Ulderico

    2009-01-01

    Hepatocellular carcinoma (HCC) is the most common primary liver cancer and has very limited therapeutic options. Recently, it has been found that hyaluronic acid (HA) shows selective binding to CD44 receptors expressed in most cancer histotypes. Since the trend in cancer treatment is the use of targeted radionuclide therapy, the aim of this research was to label HA with rhenium-188 and to evaluate its potential use as a hepatocarcinoma therapeutic radiopharmaceutical. Methods: 188 Re-HA was prepared by a direct labelling method to produce a ReO(O-COO) 2 -type coordination complex. 188 Re-HA protein binding and its stability in saline, phosphate buffer, human serum and cysteine solutions were determined. Biokinetic and dosimetric data were estimated in healthy mice (n=60) using the Medical Internal Radiation Dose methodology and mouse model beta-absorbed fractions. To evaluate liver toxicity, alanine aminotranferase (AST) and aspartate aminotranferase (ALT) levels in mice were assessed and the liver maximum tolerated dose (MTD) of 188 Re-HA was determined. Results: A stable complex of 188 Re-HA was obtained with high radiochemical purity (>90%) and low serum protein binding (2%). Biokinetic studies showed a rapid blood clearance (T 1/2 α=21 min). Four hours after administration, 188 Re-HA was almost totally removed from the blood by the liver due to the selective uptake via HA-specific receptors (73.47±5.11% of the injected dose). The liver MTD in mice was ∼40 Gy after 7.4 MBq of 188 Re-HA injection. Conclusions: 188 Re-HA complex showed good stability, pharmacokinetic and dosimetric characteristics that confirm its potential as a new agent for HCC radiation therapy.

  4. Biokinetic and dosimetric studies of {sup 188}Re-hyaluronic acid: a new radiopharmaceutical for treatment of hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Melendez-Alafort, Laura [Dipartimento di Scienze Farmaceutiche, Universita degli Studi di Padova, 35131 Padua (Italy); Nadali, Anna; Zangoni, Elena [Dipartimento di Scienze Farmaceutiche, Universita degli Studi di Padova, 35131 Padua (Italy); Banzato, Alessandra; Rondina, Maria [Dipartimento di Scienze Oncologiche e Chirurgiche, Universita degli Studi di Padova, Padua (Italy); Rosato, Antonio [Dipartimento di Scienze Oncologiche e Chirurgiche, Universita degli Studi di Padova, Padua (Italy); Istituto Oncologico Veneto, IOV, Padova, Padua (Italy); Mazzi, Ulderico [Dipartimento di Scienze Farmaceutiche, Universita degli Studi di Padova, 35131 Padua (Italy)

    2009-08-15

    Hepatocellular carcinoma (HCC) is the most common primary liver cancer and has very limited therapeutic options. Recently, it has been found that hyaluronic acid (HA) shows selective binding to CD44 receptors expressed in most cancer histotypes. Since the trend in cancer treatment is the use of targeted radionuclide therapy, the aim of this research was to label HA with rhenium-188 and to evaluate its potential use as a hepatocarcinoma therapeutic radiopharmaceutical. Methods: {sup 188}Re-HA was prepared by a direct labelling method to produce a ReO(O-COO){sub 2}-type coordination complex. {sup 188}Re-HA protein binding and its stability in saline, phosphate buffer, human serum and cysteine solutions were determined. Biokinetic and dosimetric data were estimated in healthy mice (n=60) using the Medical Internal Radiation Dose methodology and mouse model beta-absorbed fractions. To evaluate liver toxicity, alanine aminotranferase (AST) and aspartate aminotranferase (ALT) levels in mice were assessed and the liver maximum tolerated dose (MTD) of {sup 188}Re-HA was determined. Results: A stable complex of {sup 188}Re-HA was obtained with high radiochemical purity (>90%) and low serum protein binding (2%). Biokinetic studies showed a rapid blood clearance (T{sub 1/2}{alpha}=21 min). Four hours after administration, {sup 188}Re-HA was almost totally removed from the blood by the liver due to the selective uptake via HA-specific receptors (73.47{+-}5.11% of the injected dose). The liver MTD in mice was {approx}40 Gy after 7.4 MBq of {sup 188}Re-HA injection. Conclusions: {sup 188}Re-HA complex showed good stability, pharmacokinetic and dosimetric characteristics that confirm its potential as a new agent for HCC radiation therapy.

  5. Radiological protection in medicine: work of ICRP Committee 3

    International Nuclear Information System (INIS)

    Vañó, E.; Cosset, J.M.; Rehani, M.M.

    2012-01-01

    Committee 3 of the International Commission on Radiological Protection (ICRP) is concerned with protection in medicine, and develops recommendations and guidance on the protection of patients, staff, and the public against radiation exposure in medicine. This paper presents an overview of the work of Committee 3 over recent years, and the work in progress agreed at the last annual meeting in Bethesda, MD in October 2011. The reports published by ICRP dealing with radiological protection in medicine in the last 10 years cover topics on: education and training in radiological protection; preventing accidental exposures in radiation therapy; dose to patients from radiopharmaceuticals; radiation safety aspects of brachytherapy; release of patients after therapy with unsealed radionuclides; managing patient dose in digital radiology and computed tomography; avoidance of radiation injuries from medical interventional procedures; pregnancy and medical radiation; and diagnostic reference levels in medical imaging. Three new reports will be published in the coming months dealing with aspects of radiological protection in fluoroscopically guided procedures outside imaging departments; cardiology; and paediatric radiology. The work in progress agreed by Committee 3 is also described.

  6. New radiobiological findings bearing on the 1977 ICRP recommendations

    International Nuclear Information System (INIS)

    Dobson, R.L.

    1979-01-01

    Recent experiments on low-level irradiation during development raise questions relevant to ICRP Publication 26. Mice and monkeys were studied; the measured endpoint was the radiation-induced loss of female germ cells. Three issues are examined. The first is the numerical value of Q (quality factor) appropriate for low-energy beta rays. Comparisons of tritium with gamma radiation were made under conditions of chronic, low-level exposure, and the relative biological effectiveness (RBE) was found to approach 3. Its bearing on ICRP's recommendations concerning Q applicable to tritium is discussed. Second, female germ cells in squirrel monkeys before birth were discovered to be extraordinarily radiosensitive, more easily destroyed than those of mice. If this holds for other primates too, it has radiation-protection implications hitherto overlooked. Third, the contrast between massive germ-cell loss from chronic exposure in prenatal squirrel monkeys and reported radioresistance of oocytes to acute exposure in rhesus monkeys, unless due to species difference, suggests that during development protracted irradiation may be especially injurious. This also could have important radiation-protection implications and is under investigation

  7. ICRP recommendations in the present and in the short term

    International Nuclear Information System (INIS)

    Valentin, Jack

    2003-01-01

    The recommendations of ICRP are either re-stated or revised at intervals of about 15 years, most recently in 1990. The protection philosophy in Publication 60 comprises justification of the practice or intervention considered; optimisation of protection; dose and risk limits and constraints to restrict the options in optimisation. For medical exposures, dose and risk limits and formal constraints are irrelevant, but Diagnostic Reference Levels serve a similar purpose. Building on this foundation, ICRP plans to issue its next recommendations around 2005. The 2005 Recommendations are likely to emphasise protection of the individual more than protection of society; to aim at protection of non-human species as well as man; to summarise and simplify advice given in various reports after Publication 60, and to be formatted as concise recommendations underpinned by separate publications with more detail. The draft will be circulated and comments will be discussed in 2004 with a view approval of the recommendations in 2005 and publication in 2005 or 2006. Thus, integration into legislation may be possible sometime between 2006 and 2010. (author)

  8. ICRP and impairment of mental function following prenatal irradiation

    International Nuclear Information System (INIS)

    Mole, R.H.

    1992-01-01

    A brief account is given of mental retardation and intelligence testing in unirradiated human populations, without which it is not possible to judge the 1991 ICRP Recommendations relating to mental impairment. The dose-response used by ICRP (1991) for the reduction of IQ by irradiation in utero has no radiobiological basis because IQ values are derived from intelligence test scores by transforming the scale of measurement. It is also defective because it assumed that IQ is distributed normally whereas this is so only in normal school children, not in a population in general including retarded persons. There seems good evidence for a substantial threshold of dose for both reduction in IQ and increase in severe mental retardation (SMR). The four prenatally irradiated bomb survivors with SMR and intrauterine dose in the dose range 1-49 cGy were not intelligence tested, so the relation between SMR and IQ in that practically important dose range cannot be examined directly, SMR is a deterministic phenomenon, so is not expected to occur unless dose exceeds a threshold. The threshold doses for SMR based on linear dose-responses using ungrouped doses were 46 and 55 cGy DS86 intrauterine dose (Otake et al 1987). The threshold 50 cGy derived here for reduction in IQ is closely similar. Mild mental retardation has not been reported as a diagnosis in bombs survivors exposed in utero. (Author)

  9. ICRP recommendations on 'managing patient dose in digital radiology'

    International Nuclear Information System (INIS)

    Vano, E.

    2005-01-01

    The International Commission on Radiological Protection (ICRP) approved the publication of a document on 'Managing patient dose in digital radiology' in 2003. The paper describes the content of the report and some of its key points, together with the formal recommendations of the Commission on this topic. With digital techniques exists not only the potential to improve the practice of radiology but also the risk to overuse radiation. The main advantages of digital imaging: wide dynamic range, post-processing, multiple viewing options, electronic transfer and archiving possibilities are clear but overexposures can occur without an adverse impact on image quality. It is expected that the ICRP report helps to profit from the benefits of this important technological advance in medical imaging with the best management of radiation doses to the patients. It is also expected to promote training actions before the digital techniques are introduced in the radiology departments and to foster the industry to offer enough technical and dosimetric information to radiologists, radiographers and medical physicists to help in the optimisation of the imaging. (authors)

  10. New ICRP recommendations and radiation safety of an NPP

    International Nuclear Information System (INIS)

    Janzekovic, H.

    2007-01-01

    In March 2007 the fundamental radiation protection recommendations used world-widely in nuclear facilities were approved by the ICRP. Implementation of radiation safety standards in an NPP is a challenging issue related to all NPP phases from planning a site and its design to its decommissioning also because if neglected it could be very difficult if not impossible to implement improvement of radiation safety later during operation or decommissioning without a substantial cost. The standards are changing with a period of 15 years which is small regarding a prolonged lifetime of many NPPs and also foreseen lifetime of new NPPs, i.e. 60 years. The new recommendations are actually an upgrading of the ICRP 60. Among other changes new sets of wR and wT are given, as well as an update of around 50 different values related to doses. Two new concepts are also tackled i.e. terrorist attacks and protection of the environment. The influence of the new recommendations on the radiation safety of NPPs can be analysed by a selection of four renewed or new concepts: types of exposure situation, dose constraints, source-related approach and safety and security. Their implementation could lead to upgrading the radiation safety of future or existing NPPs as well as of decommissioning processes. Some of the concepts were already extensively and successfully used by designers of modifications or of new NPPs, as well as by operators. (author)

  11. A framework for assessing the impact of ionising radiation on non-human species ICRP Publication 91

    International Nuclear Information System (INIS)

    Valentin, J.

    2003-01-01

    In its 1990 Recommendations, the ICRP indicated that it believed that the standards of environmental control needed to protect man to the degree currently thought desirable would ensure that other species are not put at risk. The ICRP considers that its system of radiological protection has provided a fairly good indirect protection of the human habitat. However, no internationally agreed criteria or policies explicitly address protection of the environment from ionising radiation, and it is difficult to determine or demonstrate whether or not the environment is adequately protected from potential impacts of radiation under different circumstances. The present report suggests a framework, based on scientific and ethical-philosophical principles, by which a policy for the protection of non-human species could be achieved. The primary purpose of developing such a framework is to fill a conceptual gap in radiological protection; it does not reflect any particular concern over environmental radiation hazards. The proposed framework is designed to harmonise with the ICRP's approach to the protection of human beings, but does not intend to set regulatory standards. Instead, the proposed framework is intended to be a practical tool to provide high-level advice and guidance for regulators and operators. An agreed set of quantities and units, a set of reference dose models, reference dose-per-unit-intake (or unit exposure), and reference fauna and flora are required to serve as a basis for the more fundamental understanding and interpretation of the relationships between exposure and dose and between dose and certain categories of effect, for a few, clearly defined types of animals and plants. As a first step, a small set of reference fauna and flora with supporting databases will be developed by the ICRP. Others can then develop more area- and situation-specific approaches to assess and manage risks to non-human species

  12. The mandate and work of ICRP Committee 3 on radiological protection in medicine.

    Science.gov (United States)

    Miller, D L; Martin, C J; Rehani, M M

    2018-01-01

    The mandate of Committee 3 of the International Commission on Radiological Protection (ICRP) is concerned with the protection of persons and unborn children when ionising radiation is used in medical diagnosis, therapy, and biomedical research. Protection in veterinary medicine has been newly added to the mandate. Committee 3 develops recommendations and guidance in these areas. The most recent documents published by ICRP that relate to radiological protection in medicine are 'Radiological protection in cone beam computed tomography' (ICRP Publication 129) and 'Radiological protection in ion beam radiotherapy' (ICRP Publication 127). A report in cooperation with ICRP Committee 2 entitled 'Radiation dose to patients from radiopharmaceuticals: a compendium of current information related to frequently used substances' (ICRP Publication 128) has also been published. 'Diagnostic reference levels in medical imaging' (ICRP Publication 135), published in 2017, provides specific advice on the setting and use of diagnostic reference levels for diagnostic and interventional radiology, digital imaging, computed tomography, nuclear medicine, paediatrics, and multi-modality procedures. 'Occupational radiological protection in interventional procedures' was published in March 2018 as ICRP Publication 139. A document on radiological protection in therapy with radiopharmaceuticals is likely to be published in 2018. Work is in progress on several other topics, including appropriate use of effective dose in collaboration with the other ICRP committees, guidance for occupational radiological protection in brachytherapy, justification in medical imaging, and radiation doses to patients from radiopharmaceuticals (an update to ICRP Publication 128). Committee 3 is also considering the development of guidance on radiological protection in medicine related to individual radiosusceptibility, in collaboration with ICRP Committee 1.

  13. Development of polygonal surface version of ICRP reference phantoms: Preliminary study for posture change

    International Nuclear Information System (INIS)

    Nguyen, Tat Thang; Yeom, Yeon Soo; Han, Min Cheol; Kim, Chan Hyeong

    2013-01-01

    Even though International Commission on Radiological Protection (ICRP) officially adopted a set of adult male and female voxel phantoms as the ICRP reference phantoms, there are several critical limitations due to the nature of voxel geometry and their low voxel resolutions. In order to overcome these limitations of the ICRP phantoms, we are currently developing polygonal surface version of ICRP reference phantoms by directly converting the ICRP voxel phantoms to polygonal surface geometries. Among the many advantages of the ICRP polygonal surface phantom, especially, it is flexible and deformable. In principle, it is, therefore, possible to make the posture-changed ICRP phantoms which can provide more accurate dose values for exposure situations strongly relevant to worker's postures. As a preliminary study for developing the posture-changed ICRP phantoms, in this work we changed the posture of the preliminary version of ICRP male polygon-surface phantom constructed in the previous study. Organ doses were then compared between original and posture-changed phantoms. In the present study, we successfully changed a posture of the preliminary version of ICRP male polygon-surface phantom to the walking posture. From this results, it was explicitly shown that the polygon-surface version of the ICRP phantoms can be sufficiently modified to be various postures with the posture-changing method used in this study. In addition, it was demonstrated that phantom's posture must be considered in certain exposure situations, which can differ dose values from the conventional standing-posture phantom

  14. Radionuclide decorporation: matching the biokinetics of actinides by transdermal delivery of pro-chelators.

    Science.gov (United States)

    Zhang, Yong; Sadgrove, Matthew P; Mumper, Russell J; Jay, Michael

    2013-10-01

    The threat of nuclear terrorism by the deliberate detonation of a nuclear weapon or radiological dispersion device ("dirty bomb") has made emergency response planning a priority. The only FDA-approved treatments for contamination with isotopes of the transuranic elements Am, Pu, and Cm are the Ca and Zn salts of diethylenetriaminepentaacetic acid (DTPA). These injectable products are not well suited for use in a mass contamination scenario as they require skilled professionals for their administration and are rapidly cleared from the circulation. To overcome the mismatch in the pharmacokinetics of the DTPA and the biokinetics of these transuranic elements, which are slowly released from contamination sites, the penta-ethyl ester of DTPA (C2E5) was prepared and formulated in a nonaqueous gel for transdermal administration. When gels comprised of 40% C2E5, 40-45% Miglyol® 840, and 15-20% ethyl cellulose were spiked with [(14)C]-C2E5 and applied to rat skin; over 60% of the applied dose was absorbed within a 24-h period. Radioactivity was observed in urinary and fecal excretions for over 3 days after removal of the gel. Using an (241)Am wound contamination model, transdermal C2E5 gels were able to enhance total body elimination and reduce the liver and skeletal burden of (241)Am in a dose-dependent manner. The efficacy achieved by a single 1,000 mg/kg dose to contaminated rats was statistically comparable to intravenous Ca-DTPA at 14 mg/kg. The effectiveness of this treatment, favorable sustained release profile of pro-chelators, and ease of administration support its use following radiological emergencies and for its inclusion in the Strategic National Stockpile.

  15. 99mTc-exendin(9-39)/octreotide: biokinetics and radiation dosimetry in healthy individuals.

    Science.gov (United States)

    Ocampo-García, Blanca E; Santos-Cuevas, Clara L; Luna-Gutiérrez, Myrna A; Ignacio-Alvarez, Eleazar; Pedraza-López, Martha; Manzano-Mayoral, Cesar

    2017-11-01

    About 90% of insulinomas are benign and 5-15% are malignant. Benign insulinomas express the glucagon-like peptide-1 receptor (GLP-1R, which recognizes exendin-4 and low levels of the somatostatin receptor (SSTR, which recognizes octreotide), whereas malignant insulinomas overexpress SSTR and low levels of GLP-1R. Recently, Lys(Tc-EDDA/HYNIC)-exendin(9-39)/Tc-EDDA/HYNIC-Tyr-octreotide was formulated to detect 100% of insulinomas. The aim of this study was to estimate the biokinetics and dosimetry of Tc-exendin(9-39)/octreotide in four healthy individuals. Tc-exendin(9-39)/octreotide was obtained from a lyophilized formulation with radiochemical purities of more than 97%, determined by reversed-phase high-performance liquid chromatography. Whole-body images from four healthy individuals were acquired at 20 min, 2, 6, and 24 h after Tc-exendin(9-39)/octreotide administration. Regions of interest were drawn around the source organs on each time frame. Each region of interest was corrected by background, attenuation, scattered radiation, and physical decay. The image sequence was used to extrapolate the Tc-exendin(9-39)/octreotide time-activity curves of each organ to adjust the biokinetic model and calculate the total number of disintegrations (N) that occurred in the source regions. N data were the input for the OLINDA/EXM code to calculate internal radiation doses. Furthermore, in a patient suspicious of harboring an insulinoma, whole-body single-photon emission computed tomography/computed tomography images were obtained at 3 h. For four healthy individuals, the blood activity showed a half-life value of 1.20 min for the fast component (T1/2 α=ln 2/34.71), 8.7 min for the first slow component (T1/2 β=ln 2/4.76), and 1.7 h for the second slow component (T1/2 γ=ln 2/0.401). The average equivalent doses calculated for a study using 555 MBq were 15.10, 4.13, 3.08, 2.61, and 1.90 mSv for the kidneys, upper large intestinal wall, lower large

  16. International radiation protection recommendations. Five years experience of ICRP Publication 26

    International Nuclear Information System (INIS)

    Lindell, B.; Beninson, D.; Sowby, F.D.

    1983-01-01

    The International Commission on Radiological Protection has issued radiation protection recommendations since 1928. The latest set of basic recommendations was adopted by the Commission on 17 January 1977, and subsequently published as ICRP Publication 26. This document has met with a wider interest than any of the previous ICRP recommendations. It has been considered to mark a radical change in the protection policy advocated by ICRP. It is not often appreciated that recommendations which are believed to be 'new' in ICRP Publication 26 had already been made in ICRP Publication 9 more than ten years earlier. In any event, ICRP Publication 26 has had a substantial impact on regulatory work in countries all over the world. It forms the basis for the Basic Safety Standards of the international organizations IAEA, ILO, OECD/NEA and WHO. The paper refers to the experience gained in using the new ICRP recommendations over the five years that have passed since ICRP Publication 26 was adopted and discusses some of the problems that have arisen in the practical application of the new recommendations in various countries. (author)

  17. Radiation Protection for Radon in Dwellings - Consequences of the ICRP Publication 115

    International Nuclear Information System (INIS)

    Azzam, Jai T.; Breckow, J.; Grimm, V.; Grund, A.

    2013-01-01

    In the last decade several epidemiological studies on risk estimations due to exposure to radon in dwellings revealed higher risks to radon exposure than estimated previously. Thus, in ICRP Publication 115 (ICRP, 2011) a revised nominal probability coefficient for radon and its progeny-induced lung cancer was propounded. Based on the results of the exposure from residential studies and underground miners, the risk of lung cancer was estimated as 5x10 -4 per WLM (lifetime excess absolute risk, LEAR) and 8x10 -1 0 per Bqxh/m 3 , respectively. In the former Publication 65 (ICRP, 1993), the coefficient has been 2.83x10 -4 per WLM and 4x10 -1 0 per Bqxh/m 3 , respectively. Typical radon activity concentration in dwellings is about 60 Bq/m? in many parts of Europe. According to the ICRP Publication 65-dose coefficients, this concentration leads to a mean annual effective dose of 1.2 mSv. If the new nominal risk coefficient from ICRP Publication 115 is applied, the effective dose due to radon in dwellings increases to approximately 2.3 mSv per year. Referring the reference level of 10 mSv/a for radon exposure in dwellings in ICRP Publication 103 (ICRP, 2007) and based on the new recommendations in ICRP Publication 115, actions have to be taken to reduce the upper reference level for radon gas in dwellings from 600 Bq/m 3 to 300 Bq/m 3 .(author)

  18. Impact of ICRP-60 on the operation of underground mines

    International Nuclear Information System (INIS)

    Hussein, A.Z.; Hussein, M.I.

    2001-01-01

    Reduction of occupational exposure from: 50 mSv to 20 mSv per annum for uranium miners faces difficulties. For miners this affects the gamma radiation dose and ALI's except radon gas and its short lived daughters of Uranium and Thorium whereas the ICRP planned to review radon daughters exposure limits. New dose limits introduce other mines, e.g. phosphate mines, to be considered as occupational areas. Reclassification of radiation workers has to be done; control, licensing, cost, Gamma dose rate is influenced by the grade and type of ore body and the mining method. The primary mode of radionuclide intake in the mine environment is inhalation, however, ventilation is the principal control of airborne dust. The current average radon daughters dose rate in several underground mines among those are phosphate mines in Egypt is well above 20 mSv/a. Recorded values of Egyptian phosphate mines are more than 1 WL of radon daughters (1WL = 62 uSv/h) considering 2000 h/y, therefore, the annual dose = 124 mSv/a. Mining method dictated by location, size and shape of ore body, hydrology. Priority is given for conventional safety of work place, e.g. rock collapse as well as care of economics of the process and mine development. It is well defined that the control of gamma radiation dose is very much dependent upon the geometry of ore body. Shielding of ore trucks could not be justified (fuel consumption and its pollution). Bulk ore handling method may reduce gamma doses but it generates dust which may increase inhalation doses of long lived alpha emitters. Ventilation is the principal method to control inhalation hazards of dust and radon daughters, but high rates of ventilation has reverse effects of generating more dust and drying wet surfaces of ores. Accordingly, reduction in radon daughters exposure will result in high cost of production. In Egypt radon and thoron (risk/problems) are previously monitored in phosphate mines (upper Egypt). Values greater than 1 WL were

  19. Explanation of ICRP publication 81 in consideration of geologic disposal

    International Nuclear Information System (INIS)

    Kosako, Toshiso; Sugiura, Nobuyuki; Yamamoto, Hideaki

    2003-01-01

    The International Commission on Radiological Protection which has published various recommendations on the radiation protection describes the system of radiation protection on the disposal of radioactive waste in Publication 46, 77 and 81. Especially, Publication 81, Radiation Protection Recommendations as Applied to the Disposal of Long-lived Solid Radioactive Waste, was published in order to supplement, update and clarify the material in Publication 46 published in 1985 in consideration of the recent international progress in the disposal of radioactive waste. At present, the study is in progress to materialize the concept and the safety regulation of geologic disposal in Japan, and it is important to reflect appropriately these international publications. This paper explains each paragraph in Publication 81 in order to understand the system of radiation protection on the geologic disposal fully and concretely, paying attention to the mutual relationship among each paragraph, the development of ICRP recommendations and the relationship to other publications. (author)

  20. The work of ICRP Committee 1 on radiation effects

    International Nuclear Information System (INIS)

    Rëhm, W.

    2018-01-01

    Among the four ICRP Committees, Committee 1 deals with the effects of ionizing radiation. For example, this committee considers the risks and mechanisms of induction of cancer and heritable disease; discusses the risks, severity, and mechanisms of induction of tissue/organ damage and developmental defects; and reviews effects of ionizing radiation on non-human biota on a population level. The present paper gives an overview on the recent activities of the committee including the last meetings in Chennai, India, in 2016, and in Paris, France, in 2017. The paper also discusses briefly the focus of the currently active C1 Task Groups on alpha emitters, low-dose and low-dose-rate effects, and detriment calculation methodology

  1. Application of ICRP recommendations relevant to internal dose

    International Nuclear Information System (INIS)

    Cowser, K.E.; Snyder, W.S.; Struxness, E.G.

    1969-01-01

    The intent of this paper is to review several of the basic concepts of radiation protection (with emphasis on internal dose) currently recommended by the International Commission on radiological Protection (ICRP), to summarize the assumptions and methods used in the calculation of internal dose, and to illustrate by example the practical application of the pertinent guidelines. Two broad subject areas are considered: (1) standards of radiation protection and (2) bases of internal dose estimation. Topics discussed within the framework of radiation protection standards include maximum permissible dose, categories of radiation exposure, maximum permissible dose commitment, simultaneous internal and external exposure, multiple organ exposure, and size of the exposed group. Discussion of internal dose estimation is limited to selected items that include the body burden of radionuclides and the calculation of absorbed dose, the dose equivalent, the derivation of maximum permissible concentration (MPC), the relationship of stable element intake to the MPC, and short term and chronic exposure situations. (author)

  2. Application of ICRP recommendations relevant to internal dose

    Energy Technology Data Exchange (ETDEWEB)

    Cowser, K E; Snyder, W S; Struxness, E G [Health Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    1969-07-01

    The intent of this paper is to review several of the basic concepts of radiation protection (with emphasis on internal dose) currently recommended by the International Commission on radiological Protection (ICRP), to summarize the assumptions and methods used in the calculation of internal dose, and to illustrate by example the practical application of the pertinent guidelines. Two broad subject areas are considered: (1) standards of radiation protection and (2) bases of internal dose estimation. Topics discussed within the framework of radiation protection standards include maximum permissible dose, categories of radiation exposure, maximum permissible dose commitment, simultaneous internal and external exposure, multiple organ exposure, and size of the exposed group. Discussion of internal dose estimation is limited to selected items that include the body burden of radionuclides and the calculation of absorbed dose, the dose equivalent, the derivation of maximum permissible concentration (MPC), the relationship of stable element intake to the MPC, and short term and chronic exposure situations. (author)

  3. Practical applications of the new ICRP recommendation to external dosimetry

    International Nuclear Information System (INIS)

    Kraus, W.

    1992-01-01

    Focussing on external dosimetry for occupational exposure the consequences of the new quantities equivalent dose (radiation weighting factor), effective dose (tissue weighting factor) and the ICRU operational quantities for individual and area dosimetry are discussed. Despite some arguments against the new quantities they should be introduced as rapidly as possible to keep international uniformity in radiation protection monitoring. It is shown that they provide a conservative estimate of the effective dose for photons and neutrons. In photon dosimetry only minor changes of the conversion factors relating operational quantities to effective dose is observed. In neutron dosimetry the conversion factors change by a factor of up to 2. It is pointed out that there is a urgent need to calculate standardized conversion factors for field quantities -operational quantities- organ and effective dose in a joint effort of ICRP and ICRU. This includes standardization of calibration methods for individual dosimetry using suitable phantoms instead of the sphere. (author)

  4. Transposition of ICRP-60 recommendations into French uranium mining regulation

    International Nuclear Information System (INIS)

    Bernhard, S.

    2001-01-01

    Directive 96/29/Euratom, drawn up from recommendations of the ICRP 60, must be transposed into French legislation before 13 May 2000. For the French uranium mining sector, two ministerial decrees, one for workers, the other for the environment, must be modified to take account of the new European rules. These modifications entail new statutory limits either for the workers, or to characterise the radiological impact on the environment. For the workers, the implementation since 1980 of a policy of optimising radiation protection in French mines enables us to envisage that these limits will be respected. For the environment, the application of new limits involves a new approach for the assessment of public doses, with the precise definition of critical groups and their realistic exposure scenario. (author)

  5. Conversion of ICRP male reference phantom to polygon-surface phantom

    Science.gov (United States)

    Yeom, Yeon Soo; Han, Min Cheol; Kim, Chan Hyeong; Jeong, Jong Hwi

    2013-10-01

    The International Commission on Radiological Protection (ICRP) reference phantoms, developed based on computed tomography images of human bodies, provide much more realism of human anatomy than the previously used MIRD5 (Medical Internal Radiation Dose) mathematical phantoms. It has been, however, realized that the ICRP reference phantoms have some critical limitations showing a considerable amount of holes for the skin and wall organs mainly due to the nature of voxels of which the phantoms are made, especially due to their low voxel resolutions. To address this problem, we are planning to develop the polygon-surface version of ICRP reference phantoms by directly converting the ICRP reference phantoms (voxel phantoms) to polygon-surface phantoms. The objective of this preliminary study is to see if it is indeed possible to construct the high-quality polygon-surface phantoms based on the ICRP reference phantoms maintaining identical organ morphology and also to identify any potential issues, and technologies to address these issues, in advance. For this purpose, in the present study, the ICRP reference male phantom was roughly converted to a polygon-surface phantom. Then, the constructed phantom was implemented in Geant4, Monte Carlo particle transport code, for dose calculations, and the calculated dose values were compared with those of the original ICRP reference phantom to see how much the calculated dose values are sensitive to the accuracy of the conversion process. The results of the present study show that it is certainly possible to convert the ICRP reference phantoms to surface phantoms with enough accuracy. In spite of using relatively less resources (original ICRP reference phantoms, it is believed that the polygon-surface version of ICRP reference phantoms properly developed will not only provide the same or similar dose values (say, difference <5 or 10%) for highly penetrating radiations, but also provide correct dose values for the weakly penetrating

  6. Application of ICRP risk conception for giving a medical opinion on occupational diseases

    International Nuclear Information System (INIS)

    Stopp, G.

    1983-01-01

    Past practice to accept a uniform organ burden of 200 WLM for giving a medical opinion on cancer as an occupational disease does no longer correspond to international tendencies. Moreover, in case of different age of incidence such a procedure does not allow for the established facts of an age specific doubling rate of the normal lung cancer incidence rate. On the basis of the ICRP risk conception a simple model has been developed for the time-dependent realization of the life-time risk. This is used for calculating the minimum accumulated dose necessary for confirming diseases or death as an occupational disease. The calculation method starts from different age-groups and takes into account the different age at the beginning of exposure and the different duration of exposure. The organ burden is given by WLM values with the conversion factor 1 WLM = 1 rem effective

  7. Mechanism of cisplatin proximal tubule toxicity revealed by integrating transcriptomics, proteomics, metabolomics and biokinetics.

    Science.gov (United States)

    Wilmes, Anja; Bielow, Chris; Ranninger, Christina; Bellwon, Patricia; Aschauer, Lydia; Limonciel, Alice; Chassaigne, Hubert; Kristl, Theresa; Aiche, Stephan; Huber, Christian G; Guillou, Claude; Hewitt, Philipp; Leonard, Martin O; Dekant, Wolfgang; Bois, Frederic; Jennings, Paul

    2015-12-25

    Cisplatin is one of the most widely used chemotherapeutic agents for the treatment of solid tumours. The major dose-limiting factor is nephrotoxicity, in particular in the proximal tubule. Here, we use an integrated omics approach, including transcriptomics, proteomics and metabolomics coupled to biokinetics to identify cell stress response pathways induced by cisplatin. The human renal proximal tubular cell line RPTEC/TERT1 was treated with sub-cytotoxic concentrations of cisplatin (0.5 and 2 μM) in a daily repeat dose treating regime for up to 14 days. Biokinetic analysis showed that cisplatin was taken up from the basolateral compartment, transported to the apical compartment, and accumulated in cells over time. This is in line with basolateral uptake of cisplatin via organic cation transporter 2 and bioactivation via gamma-glutamyl transpeptidase located on the apical side of proximal tubular cells. Cisplatin affected several pathways including, p53 signalling, Nrf2 mediated oxidative stress response, mitochondrial processes, mTOR and AMPK signalling. In addition, we identified novel pathways changed by cisplatin, including eIF2 signalling, actin nucleation via the ARP/WASP complex and regulation of cell polarization. In conclusion, using an integrated omic approach together with biokinetics we have identified both novel and established mechanisms of cisplatin toxicity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Key implications of the new ICRP recommendations: contribution of the C.R.P.P.H. expert group on the implications of ICRP recommendations (E.G.I.R.)

    International Nuclear Information System (INIS)

    Lazo, T.

    2003-01-01

    The International Commission of Radiological Protection (ICRP) has embarked on a broad programme of consultation in order to collect concepts, ideas and views regarding how radiological protection should be managed at the start of the 21 st century. The results of this consultation will be a new set of comprehensive ICRP recommendations, updating and consolidating ICRP publication 60 and all subsequent ICRP recommendations. It is expected that the new ICRP general recommendations will be published in 2005 with additional more detailed building block recommendations being published in subsequent years. (N.C.)

  9. ZZ NUCDECAY, Nuclear Decay Data for Radiation Dosimetry Calculation for ICRP and MIRD

    International Nuclear Information System (INIS)

    Eckerman, K.F.; Westfall, R.J.; Ryman, J.C.; Cristy, M.

    1995-01-01

    1 - Description of program or function: - ICRP38: Format: Special format. Number of groups: Energies and intensities of radiations emitted; designed to address the needs in medical, environmental, and occupational radiation protection. Nuclides: 825 + 13 radionuclides. Origin: ENSDF (data used in preparing ICRP Publication 38). - MIRD: Format: Special format. Number of groups: Energies and intensities of radiations emitted; designed to address the needs in medical, environmental, and occupational radiation protection. Nuclides: 242 radionuclides. Origin: ENSDF (monograph of the MIRD Committee). The unabridged data used in preparing ICRP Publication 38 and a monograph of the MIRD Committee are distributed in electronic form in this package. The data are assembled in two collections. The collection referred to as ICRP38 consists of data on the energies and intensities of radiations emitted by the 825 radionuclides reported, although abridged, in ICRP Publication 38 plus an additional 13 radionuclides evaluated during preparation of a monograph for the MIRD Committee. The second collection, denoted as MIRD, contains data for the 242 radionuclides in the MIRD monograph noted above. Each collection consists of three ASCII files: (1) the index file (ICRP38.IDX or MIRD.IDX) is a sorted list of the radionuclides with pointers into the data files; (2) the radiation file (ICRP38.RAD or MIRD.RAD) contains data on the energies and intensities of the emitted radiations; (3) the beta spectra file (ICRP38.BET or MIRD.BET) contains the spectra for all beta emitters in the collection. 161 radionuclides of the MIRD collection have later ENSDF dates than those in the ICRP38 collection. In most instances, the differences are of no dosimetric significance, but considerable differences may exist for some nuclides. 2 - Method of solution: This data base has been designed to address the needs in medical, environmental, and occupational radiation protection. Calculations of the spatial

  10. Development of an Age- and Gender-specific Model for Strontium Metabolism in Humans

    International Nuclear Information System (INIS)

    Shagina, N. B.; Degteva, M. O.; Tolstykh, E. I.

    2004-01-01

    This paper presents a development of a new biokinetic model for strontium, which accounts for age and gender differences of metabolism in humans. This model was developed based on the long-term follow-up of the residents living on the banks of the Techa River (Southern Urals, Russia) contaminated with 89,90Sr in 1950-1956. The new model uses the structure of ICRP model for strontium but model parameters have been estimated to account for age, gender and population differences in strontium retention and elimination. Estimates of age- and gender-specific model parameters were derived from (a) the results of long-term measurements of 90Sr-body burden for the Techa River population; (b) experimental studies of calcium and strontium metabolism in humans and (c) non-radiological data regarding bone metabolism (mineral content of the body, bone turnover, etc). As a result, the new model satisfactorily describes data on long-term retention of 90Sr in residents of the Techa River settlements of all ages and both genders and also data from studies during the period of global fallout in the UK and the USA and experimental data on strontium retention in humans. The new model can be used to calculate dose from 89,90Sr for the Techa River residents and also for other populations with similar parameters of skeletal maturation and also for other populations with similar parameters of skeletal maturation and involution. (Author) 27 refs

  11. Consideration of the ICRP 2006 revised tissue weighting factors on age-dependent values of the effective dose for external photons

    Science.gov (United States)

    Lee, Choonsik; Lee, Choonik; Han, Eun Young; Bolch, Wesley E.

    2007-01-01

    The effective dose recommended by the International Commission on Radiological Protection (ICRP) is the sum of organ equivalent doses weighted by corresponding tissue weighting factors, wT. ICRP is in the process of revising its 1990 recommendations on the effective dose where new values of organs and tissue weighting factors have been proposed and published in draft form for consultation by the radiological protection community. In its 5 June 2006 draft recommendations, new organs and tissues have been introduced in the effective dose which do not exist within the 1987 Oak Ridge National Laboratory (ORNL) phantom series (e.g., salivary glands). Recently, the investigators at University of Florida have updated the series of ORNL phantoms by implementing new organ models and adopting organ-specific elemental composition and densities. In this study, the effective dose changes caused by the transition from the current recommendation of ICRP Publication 60 to the 2006 draft recommendations were investigated for external photon irradiation across the range of ICRP reference ages (newborn, 1-year, 5-year, 10-year, 15-year and adult) and for six idealized irradiation geometries: anterior-posterior (AP), posterior-anterior (PA), left-lateral (LLAT), right-lateral (RLAT), rotational (ROT) and isotropic (ISO). Organ-absorbed doses were calculated by implementing the revised ORNL phantoms in the Monte Carlo radiation transport code, MCNPX2.5, after which effective doses were calculated under the 1990 and draft 2006 evaluation schemes of the ICRP. Effective doses calculated under the 2006 draft scheme were slightly higher than estimated under ICRP Publication 60 methods for all irradiation geometries exclusive of the AP geometry where an opposite trend was observed. The effective doses of the adult phantom were more greatly affected by the change in tissue weighting factors than that seen within the paediatric members of the phantom series. Additionally, dose conversion

  12. A comprehensive approach to age-dependent dosimetric modeling

    International Nuclear Information System (INIS)

    Leggett, R.W.; Cristy, M.; Eckerman, K.F.

    1986-01-01

    In the absence of age-specific biokinetic models, current retention models of the International Commission on Radiological Protection (ICRP) frequently are used as a point of departure for evaluation of exposures to the general population. These models were designed and intended for estimation of long-term integrated doses to the adult worker. Their format and empirical basis preclude incorporation of much valuable physiological information and physiologically reasonable assumptions that could be used in characterizing the age-specific behavior of radioelements in humans. In this paper we discuss a comprehensive approach to age-dependent dosimetric modeling in which consideration is given not only to changes with age in masses and relative geometries of body organs and tissues but also to best available physiological and radiobiological information relating to the age-specific biobehavior of radionuclides. This approach is useful in obtaining more accurate estimates of long-term dose commitments as a function of age at intake, but it may be particularly valuable in establishing more accurate estimates of dose rate as a function of age. Age-specific dose rates are needed for a proper analysis of the potential effects on estimates or risk of elevated dose rates per unit intake in certain stages of life, elevated response per unit dose received during some stages of life, and age-specific non-radiogenic competing risks

  13. A comprehensive approach to age-dependent dosimetric modeling

    International Nuclear Information System (INIS)

    Leggett, R.W.; Cristy, M.; Eckerman, K.F.

    1987-01-01

    In the absence of age-specific biokinetic models, current retention models of the International Commission of Radiological Protection (ICRP) frequently are used as a point of departure for evaluation of exposures to the general population. These models were designed and intended for estimation of long-term integrated doses to the adult worker. Their format and empirical basis preclude incorporation of much valuable physiological information and physiologically reasonable assumptions that could be used in characterizing the age-specific behavior of radioelements in humans. In this paper a comprehensive approach to age-dependent dosimetric modeling is discussed in which consideration is given not only to changes with age in masses and relative geometries of body organs and tissues but also to best available physiological and radiobiological information relating to the age-specific biobehavior of radionuclides. This approach is useful in obtaining more accurate estimates of long-term dose commitments as a function of age at intake, but it may be particularly valuable in establishing more accurate estimates of dose rate as a function of age. Age-specific dose rates are needed for a proper analysis of the potential effects on estimates of risk of elevated dose rates per unit intake in certain stages of life, elevated response per unit dose received during some stages of life, and age-specific non-radiogenic competing risks. 16 refs.; 3 figs.; 1 table

  14. Efficiency factors for Phoswich based lung monitor using ICRP Voxel phantoms

    International Nuclear Information System (INIS)

    Manohari, M.; Mathiyarasu, R.; Rajagopal, V.; Jose, M.T.; Venkatraman, B.

    2016-01-01

    The actinide contamination in lungs is measured either using array of HPGe detector or Phoswich based lung monitors. This paper discusses the results obtained during numerical calibration of Phoswich based lung counting system using ICRP VOXEL phantoms. The results are also compared with measured efficiency values obtained using LLNL phantom. The efficiency factors of 241 Am present in the lungs for phoswich detector was simulated using ICRP male voxel phantom and compared with experimentally observed values using LLNL Phantom. The observed deviation is 12%. The efficiency of the same for female subjects was estimated using ICRP female voxel phantom for both supine and posterior geometries

  15. Diagnostic Reference Levels in the 1990 and 1996 Recommendations of the ICRP (invited paper)

    International Nuclear Information System (INIS)

    Drexler, G.

    1998-01-01

    A review of and some comments on the paragraphs in the ICRP Publications 60 and 73 are presented, which are relevant to diagnostic reference doses. The content of the statements is traced back by approximately 50 years when ICRP's preoccupation with the future health and well-being of the population is reflected in guidance for characterisation of 'normal operational conditions'. The early ICRP levels of reference doses are compared with the values currently discussed to demonstrate the importance of diagnostic reference doses in the process of optimisation and to show the importance of a continuous review and update of these levels. (author)

  16. User's manual to the ICRP Code: a series of computer programs to perform dosimetric calculations for the ICRP Committee 2 report

    International Nuclear Information System (INIS)

    Watson, S.B.; Ford, M.R.

    1980-02-01

    A computer code has been developed that implements the recommendations of ICRP Committee 2 for computing limits for occupational exposure of radionuclides. The purpose of this report is to describe the various modules of the computer code and to present a description of the methods and criteria used to compute the tables published in the Committee 2 report. The computer code contains three modules of which: (1) one computes specific effective energy; (2) one calculates cumulated activity; and (3) one computes dose and the series of ICRP tables. The description of the first two modules emphasizes the new ICRP Committee 2 recommendations in computing specific effective energy and cumulated activity. For the third module, the complex criteria are discussed for calculating the tables of committed dose equivalent, weighted committed dose equivalents, annual limit of intake, and derived air concentration

  17. User's manual to the ICRP Code: a series of computer programs to perform dosimetric calculations for the ICRP Committee 2 report

    Energy Technology Data Exchange (ETDEWEB)

    Watson, S.B.; Ford, M.R.

    1980-02-01

    A computer code has been developed that implements the recommendations of ICRP Committee 2 for computing limits for occupational exposure of radionuclides. The purpose of this report is to describe the various modules of the computer code and to present a description of the methods and criteria used to compute the tables published in the Committee 2 report. The computer code contains three modules of which: (1) one computes specific effective energy; (2) one calculates cumulated activity; and (3) one computes dose and the series of ICRP tables. The description of the first two modules emphasizes the new ICRP Committee 2 recommendations in computing specific effective energy and cumulated activity. For the third module, the complex criteria are discussed for calculating the tables of committed dose equivalent, weighted committed dose equivalents, annual limit of intake, and derived air concentration.

  18. A conception of practical application of the ICRP Publ. 60

    International Nuclear Information System (INIS)

    Numakunai, Takao

    1999-01-01

    The report of view for practical application of ICRP Publ. 60 in Japanese regulations and its technical guideline proposal were published by the Advisory Committee of radiation protection in June, 1998 and April, 1999, respectively. This paper described the summary of the above reports and essential conception for the actual application. Following items were summarized: the change of technical terms such as the use of ''dose'' in place of dose equivalent, dose limits in occupational exposure (the effective dose limit not to exceed 100 mSv/5 y and 50 mSv/y), dose limits in women's occupational exposure (not to exceed 5 mSv/3 mth), the working area (the controlled area), public dose limits with consideration for medical exposure, exposure by natural sources of radiation, exposure in volunteers and nursing persons, occupational health service for radiation workers, emergency exposure (100 mSv; 300 mSv for lens and 1 Sv for skin), intervention in the public at emergency exposure, document, and the system for radiation control. It was expected for suitable institutions and groups to develop and make the guideline through the examination of the reports. (K.H.)

  19. Waste Management within the Framework of ICRP Recommendations

    International Nuclear Information System (INIS)

    Jensen, M.; Larsson, C.M.

    2004-01-01

    There are good reasons why ICRP should revisit the issue of solid radioactive waste disposal after the new recommendations have been established. One reason is the relation between radiation protection and the concept of sustainable development. Since the post-closure regulations determine the maximum burden for future generations at the disposal site, it is natural to make such a link. If we assume the continuation of the practice of nuclear power production or an alternative production with equivalent risk burdens, it is natural to consider the combined effect of present and future activities, particularly for long-lived radioactive waste. This leads to a suggested margin for dose to the public from a single repository. Another issue is the biosphere assumed in the assessment of exposure from a hypothetical outflow from the repository in the future. The existing regulations require dose or risk to be determined in most national standards. The issue of the future biosphere therefore cannot be avoided. However, if several possible future human activities in alternative biospheres have to be assumed in reviewing if the standard is met, the process can be said to take future generations need into account, also in harmony with the sustainable development. (Author)

  20. A conception of practical application of the ICRP Publ. 60

    Energy Technology Data Exchange (ETDEWEB)

    Numakunai, Takao [Inst. of Radiation Measurements, Tokai, Ibaraki (Japan)

    1999-09-01

    The report of view for practical application of ICRP Publ. 60 in Japanese regulations and its technical guideline proposal were published by the Advisory Committee of radiation protection in June, 1998 and April, 1999, respectively. This paper described the summary of the above reports and essential conception for the actual application. Following items were summarized: the change of technical terms such as the use of ''dose'' in place of dose equivalent, dose limits in occupational exposure (the effective dose limit not to exceed 100 mSv/5 y and 50 mSv/y), dose limits in women's occupational exposure (not to exceed 5 mSv/3 mth), the working area (the controlled area), public dose limits with consideration for medical exposure, exposure by natural sources of radiation, exposure in volunteers and nursing persons, occupational health service for radiation workers, emergency exposure (100 mSv; 300 mSv for lens and 1 Sv for skin), intervention in the public at emergency exposure, document, and the system for radiation control. It was expected for suitable institutions and groups to develop and make the guideline through the examination of the reports. (K.H.)

  1. Application of ICRP recommendations to radioactive waste isolation

    International Nuclear Information System (INIS)

    Beninson, D.; Lindell, B.

    1984-01-01

    Some radioactive waste categories require isolation from the biosphere for extended periods of time. Various mechanisms can be expected in the future leakage of radionuclides; some are the result of 'normal', expected processes, while others would be the result of random disruptive events. In the second case, the exposures can only be evaluated on a probabilistic basis. Nevertheless, the three basic principles for protection usually recommended by ICRP still apply: individual risk limitation, optimization of protection, and justification of practice. In the individual-related assessment, the requirement should be that the overall probability of death from exposure to waste products (considering both the probability of dose and the probability of death, given the dose) should not exceed the probability of death at the dose 'upper bound' that national authorities would designate for the practice. In the source-related assessment for optimization of protection, the detriment should be assessed over relevant time periods and be the basis for marginal cost-benefit analysis of the various potential improvements in the combined isolation provided by the engineering and geological features. (author)

  2. Challenges of ICRP 60 for uranium refining and conversion facilities

    International Nuclear Information System (INIS)

    Takala, J.M.

    1998-01-01

    Cameco Corporation operates high-grade uranium mines in northern Saskatchewan and uranium refining and conversion facilities in Ontario. The dose limits for these and all other nuclear facilities in Canada are 50 mSv per year and 4 WLM per year, which are applied separately. However, the upcoming incorporation of the recommendations in ICRP 60 into the Canadian regulations will result in several important changes. In addition to a more restrictive dose limit, the new regulations will require that all radiation exposures be combined into a single index of exposure. Meeting the new lower dose limits of 50 mSv per year and 100 mSv per 5 years will not be a major problem at Cameco facilities. However, the incorporation of long-lived radioactive dust exposures into the dose calculation will be a major challenge. This will cause the most difficulty at the uranium refining and conversion facilities where much of the process involves handling a variety of uranium compounds in the form of a dry powder. At the uranium conversion facilities the control of exposure to airborne uranium is achieved through a combination of lung counting, urinalysis, and fixed area monitors. To progress from a system of exposure control to dose estimation to individual workers will require some major changes. (author)

  3. Implementation of the ICRP-60 Recommendations by Swiss Pharmaceutical Companies

    International Nuclear Information System (INIS)

    Sturm, R. P.; Traub, K.; Berlepsch, P.; Reischmann, F. J.; Zoubek, N.

    2004-01-01

    Switzerland was among the first countries that adapted its national law to the recommendations of the ICRP-publication No. 60. Already in 1991, the Federal Parliament enacted a new Radiological Protection Act. In 1994, the Federal Government adopted the new Radiation Protection Ordinance. Federal Ministries followed with technical ordinances and guidelines, e.g., for radioactive waste in 1996, for handling open sources in 1997, for X-rays in 1998 and for the training and dosimetry of radiation workers in 1999. In 1996, the Council of the European Union (Switzerland is not a member of the EU) decreed the Directive for the Protection of the Health of Workers and the General Public against the Dangers Arising from Ionising Radiation. Based on this directive, Germany adopted a new Radiation Protection Ordinance in 2001 and a new X-Ray-Ordinance in 2002. To transform the ordinances into radiation protection in the workplace further technical ordinances and guidelines are under development. Almost ten years ago, users of ionising radiation in Switzerland had to deal with the problems of implementing the new radiation protection legislation into their local rules that Germany and other EU companies are facing now. Therefore it may be interesting and helpful for authorities and companies in the EU to learn from the experience of their Swiss colleagues. (Author) 4 refs

  4. Safety of irradiated patients: a new publication of the ICRP and Dutch practice

    International Nuclear Information System (INIS)

    Engel, G.L.

    1986-01-01

    The ICRP publication 44 and two publications of the Dutch Health Council are mutually compared and confronted with the Dutch practice. Irradiation risks, precision and aspects of organization are considered. (G.J.P.)

  5. The implications of ICRP publication (60) 1990 for public exposure to natural radiation

    International Nuclear Information System (INIS)

    Laughlin, J.Mc.

    1992-01-01

    The implications of the new ICRP recommendations on the control of public exposure to natural radiation are described. As ICRP differentiates between Practices and Interventions the application of the basic recommendations in the case of natural radiation exposures will be discussed in this context. Particular emphasis will be placed on public exposure to indoor radon with some discussion on situations in which occupational and public exposure to this source occur together. This major source of public exposure i discussed in relation to both ICRP 60 and ICRP 39. Some of the difficulties that the new recommendations may give rise to in the management of natural radiation exposures are discussed. One of the major changes in the new recommendations concerns the area of risk. This will be briefly discussed as regards the ways in which the risk arising from public exposure to natural radiation may be assessed. (author)

  6. Radiation Safety Analysis In The NFEC For Assessing Possible Implementation Of The ICRP-60 Standard

    International Nuclear Information System (INIS)

    Yowono, I.

    1998-01-01

    Radiation safety analysis of the 3 facilities in the nuclear fuel element center (NFEC) for assessing possible implementation of the ICRP-60 standard has been done. The analysis has covered the radiation dose received by workers, dose rate in the working area, surface contamination level, air contamination level and the level of radioactive gas release to the environment. The analysis has been based on BATAN regulation and ICRP-60 standard. The result of the analysis has showed that the highest radiation dose received has been found to be only around 15% of the set value in the ICRP-60 standard and only 6% of the set value in the BATAN regulation. Thus the ICRP-60 as radiation safety standard could be implemented without changing the laboratory design

  7. The recommendations 2007 of the International Commission of Radiological Protection (ICRP)

    International Nuclear Information System (INIS)

    Sugier, A.; Lecomte, J.F.; Nenot, J.C.

    2007-01-01

    This article deals with the 2007 Recommendations of the International Commission on Radiological Protection (ICRP), in particular in the situations of emergency exposure, after an accident or to natural radioactivity. (authors)

  8. The system of radiation dose assessment and dose conversion coefficients in the ICRP and FGR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, So Ra; Min, Byung Il; Park, Kihyun; Yang, Byung Mo; Suh, Kyung Suk [Nuclear Environmental Safety Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    The International Commission on Radiological Protection (ICRP) recommendations and the Federal Guidance Report (FGR) published by the U.S. Environmental Protection Agency (EPA) have been widely applied worldwide in the fields of radiation protection and dose assessment. The dose conversion coefficients of the ICRP and FGR are widely used for assessing exposure doses. However, before the coefficients are used, the user must thoroughly understand the derivation process of the coefficients to ensure that they are used appropriately in the evaluation. The ICRP provides recommendations to regulatory and advisory agencies, mainly in the form of guidance on the fundamental principles on which appropriate radiological protection can be based. The FGR provides federal and state agencies with technical information to assist their implementation of radiation protection programs for the U.S. population. The system of radiation dose assessment and dose conversion coefficients in the ICRP and FGR is reviewed in this study. A thorough understanding of their background is essential for the proper use of dose conversion coefficients. The FGR dose assessment system was strongly influenced by the ICRP and the U.S. National Council on Radiation Protection and Measurements (NCRP), and is hence consistent with those recommendations. Moreover, the ICRP and FGR both used the scientific data reported by Biological Effects of Ionizing Radiation (BEIR) and United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) as their primary source of information. The difference between the ICRP and FGR lies in the fact that the ICRP utilized information regarding a population of diverse races, whereas the FGR utilized data on the American population, as its goal was to provide guidelines for radiological protection in the US. The contents of this study are expected to be utilized as basic research material in the areas of radiation protection and dose assessment.

  9. Analysis of the new ICRP recommendations from the point of view of environmental impact

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    1978-01-01

    The paper analyses the implications of the new ICRP recommendations referring optimization and justification as they apply to the nuclear power industry, in particular referring to its environmental impact. It also discusses the possible effects of applying this requirements on regional nuclear power programmes. The possibility of extrapolating the ICRP recommendations for use as a basis for nuclear safety aspects of nuclear power reactors is also analyzed. (author)

  10. Implications of recent ICRP recommendations for risk assessments for radioactive waste disposal and cleanup

    International Nuclear Information System (INIS)

    Devgun, J.S.

    1992-01-01

    The International Commission on Radiological Protection (ICRP) adopted a new set of recommendations in November 1990 which were issued at ICRP Publication No. 60 in March 1991. These recommendations incorporate new radiobiological information and outline a comprehensive system of radiological protection. This paper evaluates the implications of these new recommendations vis a vis risk assessments for radioactive waste disposal and remediation of radioactively contaminated sites

  11. The system of radiation dose assessment and dose conversion coefficients in the ICRP and FGR

    International Nuclear Information System (INIS)

    Kim, So Ra; Min, Byung Il; Park, Kihyun; Yang, Byung Mo; Suh, Kyung Suk

    2016-01-01

    The International Commission on Radiological Protection (ICRP) recommendations and the Federal Guidance Report (FGR) published by the U.S. Environmental Protection Agency (EPA) have been widely applied worldwide in the fields of radiation protection and dose assessment. The dose conversion coefficients of the ICRP and FGR are widely used for assessing exposure doses. However, before the coefficients are used, the user must thoroughly understand the derivation process of the coefficients to ensure that they are used appropriately in the evaluation. The ICRP provides recommendations to regulatory and advisory agencies, mainly in the form of guidance on the fundamental principles on which appropriate radiological protection can be based. The FGR provides federal and state agencies with technical information to assist their implementation of radiation protection programs for the U.S. population. The system of radiation dose assessment and dose conversion coefficients in the ICRP and FGR is reviewed in this study. A thorough understanding of their background is essential for the proper use of dose conversion coefficients. The FGR dose assessment system was strongly influenced by the ICRP and the U.S. National Council on Radiation Protection and Measurements (NCRP), and is hence consistent with those recommendations. Moreover, the ICRP and FGR both used the scientific data reported by Biological Effects of Ionizing Radiation (BEIR) and United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) as their primary source of information. The difference between the ICRP and FGR lies in the fact that the ICRP utilized information regarding a population of diverse races, whereas the FGR utilized data on the American population, as its goal was to provide guidelines for radiological protection in the US. The contents of this study are expected to be utilized as basic research material in the areas of radiation protection and dose assessment

  12. Evaluation of the effect of change in the radiosensitive tissue weights listed in the ICRP in estimate of effective dose

    International Nuclear Information System (INIS)

    Vieira, Jose W.; Leal Neto, Viriato; Lopes Filho, Ferdinand J.; Lima Filho, Jose M.; Santana, Ivan E.; Andrade, Pedro H.A.; Cabral, Manuela O.M.

    2015-01-01

    For photons and electrons, the effective dose by gender is a weighted sum of the absorbed doses in radiosensitive organs and tissue of the human body. Effective dose is estimated using Exposure Computational Models (ECM) of both genders for the same age group. The FSTA and MSTA ECMs were developed by researchers from DEN/UFPE and consist of voxel phantoms representing adults coupled to EGSnrc Monte Carlo Code, which, in the folder designed for users of EGS, codes were added to simulate some radioactive sources. The reports 60 and 103 of the ICRP provide the factors that weigh the radiosensitivity of organs and tissues (W T ) required to estimate the effective dose. The two lists were placed in the FSTA and MSTA to simulate radiodiagnostic examination in different regions of the body (cranium, abdomen and thorax). The dosimetric data produced allowed an analysis of the effect of the change in the w T from the report 60 to the 103. The highest mean percent relative error, 64.3%, occurred in the results for the cranium due to the increase of the w T for most of the organs and tissues in the head and trunk in the updated list. In this case, it can be concluded that the values of the effective dose with the wT of the ICRP 60 were underestimated. Other types of simulators of radioactive sources can be used in investigating this problem and other variables related to the phantom can be considered for that proposes a W T 's list specific for the Brazilian population or recommend unrestricted use the ICRP data. (author)

  13. Evaluation of the effect of change in the radiosensitive tissue weights listed in the ICRP in estimate of effective dose

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Jose W.; Leal Neto, Viriato; Lopes Filho, Ferdinand J.; Lima Filho, Jose M.; Santana, Ivan E., E-mail: jose.wilson@recife.ifpe.edu.br [Instituto Federal de Educacao, Ciencia e Tecnologia de Pernambuco, (IFPE), Recife, PE (Brazil); Andrade, Pedro H.A.; Cabral, Manuela O.M. [Universidade Federal de Pernambuco (DEN/UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear; Lima, Vanildo J.M. [Universidade Federal de Pernambuco (DA/UFPE), Recife, PE (Brazil). Departamento de Anatomia; Lima, Fernando R.A., E-mail: falima@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN/CNEN-NE), Recife, PE (Brazil)

    2015-07-01

    For photons and electrons, the effective dose by gender is a weighted sum of the absorbed doses in radiosensitive organs and tissue of the human body. Effective dose is estimated using Exposure Computational Models (ECM) of both genders for the same age group. The FSTA and MSTA ECMs were developed by researchers from DEN/UFPE and consist of voxel phantoms representing adults coupled to EGSnrc Monte Carlo Code, which, in the folder designed for users of EGS, codes were added to simulate some radioactive sources. The reports 60 and 103 of the ICRP provide the factors that weigh the radiosensitivity of organs and tissues (W{sub T}) required to estimate the effective dose. The two lists were placed in the FSTA and MSTA to simulate radiodiagnostic examination in different regions of the body (cranium, abdomen and thorax). The dosimetric data produced allowed an analysis of the effect of the change in the w{sub T} from the report 60 to the 103. The highest mean percent relative error, 64.3%, occurred in the results for the cranium due to the increase of the w{sub T} for most of the organs and tissues in the head and trunk in the updated list. In this case, it can be concluded that the values of the effective dose with the wT of the ICRP 60 were underestimated. Other types of simulators of radioactive sources can be used in investigating this problem and other variables related to the phantom can be considered for that proposes a W{sub T}'s list specific for the Brazilian population or recommend unrestricted use the ICRP data. (author)

  14. Implications of draft ICRP recommendations: the View of the OECD Nuclear Energy Agency

    International Nuclear Information System (INIS)

    Magnusson, S.; Lazo, T.

    2006-01-01

    Full text: The OECD Nuclear Energy Agency has taken an active interest in the work being performed by the International Commission on Radiological Protection (ICRP) to develop a new set of general recommendations. As several key junctures, the Nea, through the lead of its Committee on Radiation Protection and Public Health (C.R.P.P.H.) has performed in-depth analyses of the possible implications that draft ICRP materials, in order to inform policy makers of the regulatory and application implications that would result should draft ICRP Recommendations for a system of radiological protection be published. Comments from the Nea have constructively contributed to the ICRP development process, and it is hoped that the final ICRP recommendations in this area will be developed to best serve the needs of national and international radiation protection policy makers, regulators and implementers. Having assessed and commented on previous drafts, the C.R.P.P.H. has co-ordinated the views of all the relevant standing technical committees within the OECD Nuclear Energy Agency to provide constructive suggestions as to how the text could be usefully improved. Comments were requested from the Nea committees dealing with radioactive waste management, nuclear safety, nuclear regulatory activities, nuclear development and nuclear science. The present paper summarises the results of the C.R.P.P.H. review process related to the new ICRP recommendations. (author)

  15. A perspective on the ICRP approach to Radiation protection of the environment

    International Nuclear Information System (INIS)

    Mossman, K.L.

    2003-01-01

    The ICRP, in response to concerns by the environmental community, has begun the process of addressing radiation protection of non-human species. Concerns have been raised that the current framework for radiation protection fails to adequately protect the environment. Although most everyone agrees that some change to the ICRP radiation protection framework is called for, the extent of the revision is debatable. In May 2000, the ICRP set up a Task Group to provide advice on the development of a policy for the protection of the environment and to suggest a framework for environmental protection based on scientific, ethical, and philosophical principles. Based on Task Group input, ICRP intends to develop a framework for protection of the environment that can be integrated into an overall system of protection. This paper explores four major issues that serve to identify questions that ICRP should consider in its 2005 recommendations regarding radiation protection of the environment: (1) the role of ICRP, (2) defining the environment and criteria for protection, (3) the framework for environmental protection, and (4) risk management. (author)

  16. Modification of male adult simulator posture of ICRP 110 reference

    International Nuclear Information System (INIS)

    Galeano, Diego C.; Souza, Divanizia N.; Santos, Willian S.; Carvalho Junior, Alberico B.

    2014-01-01

    Voxel simulators are usually constructed based on computed tomography and magnetic resonance, so the supine position (lying) is the most used. This may result in a overestimated or underestimated the radiation dose, depending on the exposure scenario adopted. Thus, the objective was to change the attitude of the male adult simulator reference ICRP 110, AM (Adult Male), to a sitting posture. For change of posture were possible, it was necessary increasing the number of slices that comprise AM simulator by reducing the height of the voxel of 8.0 mm to 2.0 mm, thus making each voxel approximately cubic. A subroutine was created in Visual Monte Carlo software (VMC) to rotate the thigh region of the simulator and position it between the region of the leg and trunk. The ScionImage software was used to rebuild and soften the contours of the knee and hip of the simulator in a sitting posture, and 3D visualization of the simulator was used VolView software. The AM simulator in the seated position has the same anatomical features of the simulator in the standing posture. Using the MCNPX code [ref] was carried out the conversion coefficients for calculating the AP irradiation geometry (anteroposterior) comparing the AM simulator standing and sitting in order to evaluate the difference scattering and absorption of radiation by the two simulators. The result shows a difference up to 100% in the fluency conversion coefficients in nearby organs located in the pelvic region and in organs with distribution in the whole body (such as skin, muscle, lymph nodes and skeletal)

  17. The ICRP message;Le message de la CIPR

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz Lopez, P. [Groupe de travail de la CIPR sur la prevention des expositions accidentelles liees a l' utilisation des nouvelles technologies de Radiotherapie par Faisceau Externe, Madrid (Spain)

    2009-12-15

    The ICRP gives its recommendations in the case of use of new technologies in radiotherapy: lessons learned from conventional technologies and also applicable to the new ones. Training, and specialization of the personnel as well as the need in personnel must be evaluated again. Managers of a radiotherapy service should bear in mind that the work environment must focus on concentration and avoid the risk of inattention. Manufacturers, for their part must provide reliable equipment with correct calibration files and documentation. the acquisition and implementation programs must focus not only on devices for treatment but also on treatment planning systems, computer systems and imaging devices used in radiation therapy, software, procedures and whole clinical process. The devices and procedures need to be re-classified after any changes to hardware, including upgrades and updates of software. The dosimetry protocols must be developed specially for the low doses irradiations and non standard irradiations. To increase the dose without increasing a probability of complication in sane tissues it is necessary to use a conformal therapy with a positioning of the patient. Communication is essential, especially concerning the activities of maintenance and repair that must ne notified to the physicists. In the same way, procedures of failures management in the computer systems must be implemented in order to avoid a loss of data susceptible to lead to serious accidental irradiations. The return of experience can be an help and then must be integrated in personnel training that is encouraged to share the experience in matter of incidents by providing information in a data base such the R.O.S.I.S. data base (radiation oncology safety information system). Before introducing new technologies it is recommended to realize probabilistic safety evaluations in order to develop quality assurance programmes integrating risk factors as, by example the analysis of failure modes and

  18. A model for the transfer of alkaline earth elements to the fetus

    International Nuclear Information System (INIS)

    Fell, T.P.; Harrison, J.D.; Leggett, R.W.

    2001-01-01

    A biokinetic model has been developed for the transfer of calcium, strontium, barium and radium to the human fetus. For the mother, ICRP models were adapted for pregnancy to include increases in gastrointestinal absorption, urinary excretion and bone turnover rates. The fetus was modelled with blood, soft tissue and bone compartments. Fetal requirements for Ca were determined by skeletal calcification, and recycling between fetal and maternal blood was included. Daily transfer of Sr, Ba and Ra to the fetus was taken to be lower than for Ca by factors of 0.6 for Sr and 0.4 for Ba and Ra. For acute intakes in late pregnancy at 35 weeks after conception, when maximum transfer occurs, the model predicts whole-body fetus:mother concentration ratios (C F :C M ) of 18 for Ca, 8 for Sr and 2 for Ba and Ra, respectively. Estimates of committed equivalent doses to the red bone marrow of offspring, including in utero and postnatal dose, after maternal ingestion in late pregnancy, were greater than corresponding doses in adults by factors of 20-30 for 45 Ca, 2-3 for 90 Sr and 3-4 for 226 Ra but slightly lower (0.8-0.9) for 133 Ba. (author)

  19. ICRP 2015. International symposium on the radiation protection system. Report and reflection on a significant symposium; ICRP 2015. 3. Internationales Symposium zum System des Strahlenschutzes. Bericht und Reflexion ueber ein bedeutsames Symposium

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Bernd

    2016-08-01

    The ICRP international symposium on the radiation protection system provides always extensive information on new developments in radiation protection. The ICRP 2105 discussed the following issues: radiation effects of low dose irradiation, dose coefficients for internal and external exposures, radiation protection in nuclear medicine, application of ICRP recommendations, environmental protection, studies on existing exposure situations, medical radiation protection today, science behind radiation doses, new developments in radiation effects, and ethics in radiation protection.

  20. The new recommendations of ICRP and their possible consequences for operating nuclear installations

    International Nuclear Information System (INIS)

    Lorenz, Bernd; Hesse, Johannes; Schwarz, Wolfgang; Kapteinat, Heinzpeter; Holl, Matthias

    2008-01-01

    Full text: After an extensive and very open debate within the Radiation Protection Community the new recommendations of the ICRP on the basic principles of radiation protection have been issued in 2007. The German nuclear industry has watched the process intensively and tried to bring in their large amount of experience from the daily radiation protection practice in numerous nuclear installations. Notably the ICRP seemed to follow some of the comments given by those experienced operators. The ICRP key message 'stability and continuity' is highly welcomed by industry. The dose levels resulting from well managed operations today are far below the dose limits due to a working system of ALARA thinking and doing. The basic principles of radiation protection as pointed out by ICRP decades ago have been proven to be an effective tool and are an essential part of the legal system of most countries with developed nuclear industries. Unfortunately, not all of the comments of the experienced operators have been considered to the desirable extend. A mayor point of criticism is the central role ICRP devoted to the use of dose constraints for any source. Dose constraints do play a role in today's practice of radiation protection but they have been rather supplementary than central in the system. The idea that for all sources, and there might be Hundreds or Thousands sometimes very tiny sources in a practice, a dose constraint shall exist sounds quite inappropriate. Another example which might disturb the great vision of 'stability and continuity' is the change of ICRP into a different view on protection. Instead of processes now situations are in the focus. There are some doubts about the benefits of such a move. People will always ask if there is a change of content when using a different terminology. A lot of fruitless discussions will probably result. Nevertheless, in spite of some criticism the new ICRP will contribute to strengthen the protection regime and industry will

  1. CUEX methodology for assessing radiological impacts in the context of ICRP Recommendations

    International Nuclear Information System (INIS)

    Rohwer, P.S.; Kaye, S.V.; Struxness, E.G.

    1975-01-01

    The Cumulative Exposure Index (CUEX) methodology was developed to estimate and assess, in the context of International Commission on Radiological Protection (ICRP) Recommendations, the total radiation dose to man due to environmental releases of radioactivity from nuclear applications. Each CUEX, a time-integrated radionuclide concentration (e.g.μCi.h.cm -3 ), reflects the selected annual dose limit for the reference organ and the estimated total dose to that organ via all exposure modes for a specific exposure situation. To assess the radiological significance of an environmental release of radioactivity, calculated or measured radionuclide concentrations in a suitable environmental sampling medium are compared with CUEXs determined for that medium under comparable conditions. The models and computer codes used in the CUEX methodology to predict environmental transport and to estimate radiation dose have been thoroughly tested. These models and codes are identified and described briefly. Calculation of a CUEX is shown step by step. An application of the methodology to a hypothetical atmospheric release involving four radionuclides illustrates use of the CUEX computer code to assess the radiological significance of a release, and to determine the relative importance (i.e. percentage of the estimated total dose contributed) of each radionuclide and each mode of exposure. The data requirements of the system are shown to be extensive, but not excessive in view of the assessments and analyses provided by the CUEX code. (author)

  2. Calculated organ doses for Mayak production association central hall using ICRP and MCNP.

    Science.gov (United States)

    Choe, Dong-Ok; Shelkey, Brenda N; Wilde, Justin L; Walk, Heidi A; Slaughter, David M

    2003-03-01

    As part of an ongoing dose reconstruction project, equivalent organ dose rates from photons and neutrons were estimated using the energy spectra measured in the central hall above the graphite reactor core located in the Russian Mayak Production Association facility. Reconstruction of the work environment was necessary due to the lack of personal dosimeter data for neutrons in the time period prior to 1987. A typical worker scenario for the central hall was developed for the Monte Carlo Neutron Photon-4B (MCNP) code. The resultant equivalent dose rates for neutrons and photons were compared with the equivalent dose rates derived from calculations using the conversion coefficients in the International Commission on Radiological Protection Publications 51 and 74 in order to validate the model scenario for this Russian facility. The MCNP results were in good agreement with the results of the ICRP publications indicating the modeling scenario was consistent with actual work conditions given the spectra provided. The MCNP code will allow for additional orientations to accurately reflect source locations.

  3. The 10th international congress of IRPA. The development of models for internal dosimetry

    International Nuclear Information System (INIS)

    Stather, J.W.

    2000-01-01

    In the past ten years a series of Publications have been issued by Committee 2 of the International Commission on Radiological Protection (ICRP) giving dose coefficients for intakes of radionuclides by inhalation and ingestion for both members of the public and workers. The biokinetic and dosimetric models used in the calculation of dose coefficients have been based largely on the model structure adopted in ICRP Publication 30 although new, physiologically-based models, involving recycling of radionuclides have been developed for both the alkaline earth and actinide elements. In addition, a new model for the human respiratory tract (HRTM) has been developed. A comprehensive series of dose coefficients have also been published by ICRP on CD-ROM. The series of reports giving dose coefficients for members of the public of various ages is to be completed with the issue of two further reports. The first will give dose coefficients for the embryo, fetus and newborn child following intakes of radionuclides by the mother either before or during pregnancy. Models for infants and children can generally be based on those for adults, with modifications to parameter values, but in the case of the embryo and fetus, fundamentally new models have had to be developed. Models are also being developed for calculating radiation doses to the offspring as a result of the intake of radionuclides in breast milk. The HRTM used for calculating inhalation dose coefficients was developed to allow the use of material specific data. To date, however, it has only been applied using default model parameters. A technical report is being developed that will give guidance on the practical application of the HRTM in circumstances which require the use of data on the deposition and solubility characteristics of specific inhaled materials. The present model used for assessing doses from ingestion of radionuclides was prepared in 1966. An improved model for the human alimentary tract is being developed

  4. Biokinetics and dosimetry in patients of {sup 99m}Tc-EDDA/HYNIC-Tyr{sup 3}-octreotide prepared from lyophilized kits

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Vazquez, Armando [Departamento de Medicina Nuclear, Hospital Militar (Mexico); Facultad de Medicina, Universidad Autonoma del Estado de Mexico (Mexico); Ferro-Flores, Guillermina [Departamento de Materiales Radiactivos, Gerencia de Aplicaciones Nucleares en la Salud, Instituto Nacional de Investigaciones Nucleares, Km. 36.5 Carretera Mexico-Toluca, Ocoyoacac, Estado de Mexico, C.P. 52045 (Mexico)]. E-mail: gff@nuclear.inin.mx; Arteaga de Murphy, Consuelo [Departamento de Medicina Nuclear, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran (Mexico); Gutierrez-Garcia, Zohar [Departamento de Medicina Nuclear, Hospital Militar (Mexico)

    2006-07-15

    {sup 99m}Tc-EDDA/HYNIC-Tyr{sup 3}-octreotide ({sup 99m}Tc-HYNIC-TOC) has shown high in vitro and in vivo stability, rapid background clearance and rapid detection of somatostatin receptor-positive tumors. The aim of this study was to establish a biokinetic model for {sup 99m}Tc-HYNIC-TOC prepared from lyophilized kits, and to evaluate its dosimetry as a tumor imaging agent in patients with histologically confirmed neuroendocrine tumors. Whole-body images from eight patients were acquired at 5, 60, 90, 180 min and 24 h after {sup 99m}Tc-HYNIC-TOC administration obtained from instant freeze-dried kit formulations with radiochemical purities >95%. Regions of interest (ROIs) were drawn around source organs on each time frame. The same set of ROIs was used for all eight scans and the count per minute (cpm) of each ROI was converted to activity using the conjugate view counting method. The image sequence was used to extrapolate {sup 99m}Tc-HYNIC-TOC time-activity curves in each organ, to adjust a biokinetic model using the SAAM software, and to calculate the total number of disintegrations (N) that occurred in the source regions. N data were the input for the OLINDA/EXM code to calculate internal radiation dose estimates. Images showed an average tumor/blood (heart) ratio of 4.3{+-}0.7 in receptor-positive tumors at 1 h. The mean radiation absorbed dose calculated for a study using 740 MBq was 24, 21.5, 5.5 and 1.0 mSv for spleen, kidneys, liver and bone marrow respectively and the effective dose was 4.4 mSv.

  5. Biokinetic study of plutonium and americium associated to the particulates of soil

    International Nuclear Information System (INIS)

    Espinosa, A.; Aragon, A.; Martinez, J.; Iranzo, C.E.

    1996-01-01

    The object of this study is to determine the biokinetic parameters of different Plutonium isotopes and Americium inhaled in the state in which they are found in the environment as a result of their deposition in the soil, from an aviation accident that generated different plutonium oxides. to achieve this objective, two lines of work planned. One was the determination of the mineralogical composition and associations that plutonium and americium present in that soil 22 years after the nuclear accident. Other studies were directed to determine the biokinetic of the plutonium isotopes and americium (contained in the dust) deposited tracheally and inhaled by laboratory animals (rats) and in vitro experiments by pulmonary leaching simulation. The in vivo tests have been developed in NRPB (U.K.) and the in vitro experiment, geochemical associations studies, assessment of internal doses to humans resulting from intake of plutonium and americium bearing dusts present in the contaminated area and establishment of ALIs for inhalation, were carried out in CIEMAT (Spain). In this work only determinations and experiments carried out by CIEMAT are includes as a part of the EU Project ''INHALATION AND INGESTION OF RADIONUCLIDES'' contract: FI3P-CT920064a. (Author) 10 refs

  6. Acquisition of biokinetic data for internal dose calculations for some novel radiopharmaceuticals

    International Nuclear Information System (INIS)

    Smith, T.; Zanelli, G.D.; Crawley, C.W.

    1986-01-01

    Estimation of radiation dose commitment, expresses as an effective dose equivalent, is a prior requisite to the application for a license to administer radiopharmaceuticals and, therefore, in the case of novel radiopharmaceuticals is leading to an increasing awareness of the need for dosimetry-orientated studies. In this laboratory potential new radiopharmaceuticals are investigated initially by animal studies to assess the possible distribution in man, and subsequently in controlled volunteer studies designed to obtain the maximum possible amount of biokinetic data to allow accurate estimation of radiation dose. A variety of techniques are used for this purpose, including profile counting, partial and whole-body scanning by LFOV gamma camera and whole-body counting, in addition to the analysis of radioactivity in blood and excreta. The use of these techniques is illustrated for the acquisition of biokinetic data and subsequent dosimetry of three novel radiopharmaceuticals: 77 Br-p-bromospiperone (quantification of dopamine receptors in the brain). 99 Tc/sup m/-porphyrins and 99 Tc/sup m/ DEPE (a possible novel blood pool marker for MUGA studies). 14 references, 14 figures, 2 tables

  7. Implementation of the NCRP wound model for interpretation of bioassay data for intake of radionuclides through contaminated wounds

    International Nuclear Information System (INIS)

    Ishigure, Nobuhito

    2009-01-01

    Emergency response preparedness for radiological accidents involving wound contamination has become more important, considering the current extending tendency in the nuclear industry related to the nuclear fuel cycle. The US National Council on Radiation Protection and Measurements (NCRP) proposed a biokinetic and dosimetric model for the intake of radionuclides through contaminated wounds in 2007. The present paper describes the implementation of this NCRP wound model for the prediction of systemic behaviour of some important radioactive elements encountered in workplaces related to the nuclear industry. The NCRP wound model was linked to the current ICRP systemic model at each blood compartment and simultaneous differential equations for the content of radioactivity in each compartment and excreta were solved with the Runge-Kutta method. The results of the calculation of wound, whole-body or specific organ retention and daily urinary or faecal excretion rate of some selected elements will be useful for the interpretation of bioassay data and dose assessment for cases of wound contamination. (author)

  8. Proceedings of the 15th nuclear safety research association symposium ICRP's 2005 Recommendations on radiological protection

    International Nuclear Information System (INIS)

    2003-02-01

    This is the document of the Symposium in the title, held in Tokyo, 2003. The document contains the greeting by chairperson (Toshiso Kosako, International Commission of Radiological Protection (ICRP) member, Tokyo University): lecture 1; for the title subject presented as ''ICRP's 2005 Recommendations on Radiological Protection'' with its slides entitled ''The Evolution of the System of Radiological Protection-The Justification for ICRP's 2005 Recommendations'' by L.-E. Holm (ICRP Vice-Chairman, Swedish Radiation Protection Authority): lecture 2; ''Protection of the Environment: from Ethics to Genetics''' with slides, ''Ionising Radiation and the Environment'', by R. J. Pentreath (ICRP member, The University of Reading, the United Kingdom (UK)): respectively followed by discussion with 3 Japanese panelists for each lecture: and chairperson's summary. The chair's greeting is about the rise of interest in environmental radiation protection, its background, and related trends in The Organization for Economic Co-operation and Development (OECD)/Nuclear Energy Agency (NEA) Committee on Radiation Protection and Public Health (CRPPH). L-EH's presentation involves sections of the background of the recommendations and protection of the environment, mentioning some of the proposed changes in the Commission's recommendations for its 2005 Recommendations. RJP's presentation involves sections of a philosophical platform, environmental management, relevance to radiation and its effects, points of reference and discussion where the impact of radionuclides and radiation in environment on various biological systems is mentioned in view for future. (R.T.)

  9. The evolution of thoughts from ICRP 46 concept of potential exposure

    International Nuclear Information System (INIS)

    Sugier, A.

    2008-01-01

    Since issuing its latest basic recommendations in 1991 as ICRP Publication 60, the Commission has reviewed these recommendations regularly and, from time to time, has issued supplementary reports in the Annals of the ICRP. The extent of these supplementary reports has indicated a need for consolidation and rationalization. New scientific data have also been published since Publication 60, and while the biological and physical assumptions and concepts remain robust, some updating is required. In addition, there have been societal developments in that more emphasis is now given on the protection of individuals and stakeholder involvement in the management of radiological risk. Finally, it has also become apparent that the radiological protection of non-human species should receive more emphasis than in the past. It is against this background that the Commission has now decided to adopt a revised set of Recommendations while at the same time maintaining stability with the previous recommendations. Following several years of an open and worldwide discussion process, mainly through web consultation, ICRP intends to publish its new recommendations in 2007. In the context of AEN/NEA seminar on safety case for the deep disposal of radioactive waste, it appeared necessary first of all to examine the above mentioned evolution of ICRP system, as well as to recall the main ICRP publications on potential exposure and waste disposal and finally to focus on the main recommendations on solid waste disposal which are still valid. (author)

  10. Aspects of ICRP 60 and ICRU 47 relevant to individual monitoring of external exposure

    International Nuclear Information System (INIS)

    Dietze, G.; Menzel, H.G.

    1994-01-01

    Exposure limits recommended by the ICRP and used in regulations are expressed in risk related quantities such as effective dose or effective dose equivalent. Operational quantities such as ambient dose equivalent or personal dose equivalent are defined in phantoms and are designed to give reasonable estimates of exposure limiting quantities. The readings of individual dosemeters are calibrated in terms of operational quantities. The international commissions involved in the definition of risk related quantities (ICRP) and operational quantities (ICRU) have introduced various new definitions and modifications to previous quantities used in their respective publications ICRP 60 and ICRU 39, ICRU 47. The consequences of these alterations for the relationships between quantities within the hierarchy have to be examined and the new quantitative relationships (conversion coefficients) between basic physical radiation quantities such as particle fluence or air kerma and the new quantities have to be evaluated. In 1992, the ICRP and ICRU charged a joint task group with addressing these tasks with a view to revising ICRP Publication 51. This paper presents an outline for the subject of the report to be prepared by the task group. An introduction to the new phantom-based quantities is given and conceptional differences between the newly introduced and the previous quantities are discussed. (author)

  11. Comments on ICRP-60 rationale for dose limits for the pregnant worker

    International Nuclear Information System (INIS)

    Myers, D.K.

    1992-06-01

    ICRP Publication 60 has recently recommended new dose limits for the radiation exposure of pregnant workers. These new dose limits for pregnant workers are more restrictive than the current limits in force in Canada. Recent presentations by Dr. R.H. Mole have faulted the arguments provided by ICRP as justification for reducing the previously recommended limits for pregnant radiation workers. The present paper provides a brief review of the development of the human conceptus, of the biological effects of low doses of radiation on the foetus, and discusses R.H. Mole's comments on ICRP-60. On the critical issues concerning the presence or absence of threshold doses for induction of specific biological endpoints, Dr. Mole and ICRP-60 appear to be in agreement. The basic disagreement between Dr. Mole and ICRP-60 seems to revolve around the philosophical question of whether dose limits should be based on quantitative risks to the foetus or whether dose limits to the pregnant worker should provide a standard of protection to the foetus which is broadly comparable with that provided for members of the general public. Further research is recommended on one of the topics raised by Dr. Mole, namely, foetal doses from radionuclides inhaled or ingested by the mother

  12. Controllable dose: the ICRP discussion paper does not go far enough

    International Nuclear Information System (INIS)

    Carter, M.W.

    2000-01-01

    The current ICRP recommendations and the associated dosimetry have confused the public, lawyers and politicians and have been the subject of dissension within the Health Physics Community. Currently recommended limits are different for occupational exposure, exposure of the public, exposure to radon in dwellings and exposure to radon in workplaces. Current recommendations do not cover exposure in accident situations. The recommended limits do not apply to natural background radiation exposures. This suggests that the unit of radiation dose is variable depending on the circumstances and that artificially produced radiation is more harmful than natural radiation. The use of collective dose and the LNT model has resulted, in the opinion of some, in waste of money spent in trying to reduce doses that may be already too small to produce detectable harm. The recent discussion papers (Clarke, 1998, Clarke 1999), introducing the concept of controllable dose, are a valuable starting point for changing and improving the basis on which regulations are made. It is the author's opinion that the discussion paper does not go far enough and that the confusion is largely the result of failing to separate the scientific aspects from the regulatory aspects of controlling radiation dose. Only by making such a separation can we provide understandable regulations without compromising scientific research into radiation risks. Copyright (2000) Australasian Radiation Protection Society Inc

  13. Comparison between two clones of Daphnia magna: effects of multigenerational cadmium exposure on toxicity, individual fitness, and biokinetics.

    Science.gov (United States)

    Guan, Rui; Wang, Wen-Xiong

    2006-03-10

    We investigated the effects of genotype (two different clones) and multigenerational Cd-exposure history on Cd toxicity, individual fitness, and biokinetics in populations of a freshwater cladoceran Daphnia magna. The adults of the tolerant (T) clone had longer mean-survival-time than the sensitive (S) clone in both control groups (without Cd-exposure) and continuous Cd-exposure groups, but the two clones showed comparable resistances to acute Cd stress in the recovery groups. The body concentration of metallothionein (MT) played a critical role in handling Cd stress, which mainly accounted for the significant difference between the two clones in terms of survival distribution. High comparability of these two clones in individual fitness parameters and biokinetics suggested that these parameters are unlikely driven by genetic variation. For each specific clone, continuous Cd-exposure inhibited the animal growth, elevated the MT induction, and increased the Cd uptake rate (ingestion rate, assimilation efficiency from dietary phase, and uptake rate from dissolved phase), all of which enhanced the weight-specific Cd accumulation in daphnids' bodies. The strong dependence of biokinetic parameters on environmental factors (e.g., food concentrations, pH, dissolved or dietary metal concentration, and metal exposure histories) rather than on genotypes implied the great potential of using biokinetics in inter-lab comparisons and environmental risk assessments.

  14. Comparison between two clones of Daphnia magna: Effects of multigenerational cadmium exposure on toxicity, individual fitness, and biokinetics

    International Nuclear Information System (INIS)

    Guan Rui; Wang Wenxiong

    2006-01-01

    We investigated the effects of genotype (two different clones) and multigenerational Cd-exposure history on Cd toxicity, individual fitness, and biokinetics in populations of a freshwater cladoceran Daphnia magna. The adults of the tolerant (T) clone had longer mean-survival-time than the sensitive (S) clone in both control groups (without Cd-exposure) and continuous Cd-exposure groups, but the two clones showed comparable resistances to acute Cd stress in the recovery groups. The body concentration of metallothionein (MT) played a critical role in handling Cd stress, which mainly accounted for the significant difference between the two clones in terms of survival distribution. High comparability of these two clones in individual fitness parameters and biokinetics suggested that these parameters are unlikely driven by genetic variation. For each specific clone, continuous Cd-exposure inhibited the animal growth, elevated the MT induction, and increased the Cd uptake rate (ingestion rate, assimilation efficiency from dietary phase, and uptake rate from dissolved phase), all of which enhanced the weight-specific Cd accumulation in daphnids' bodies. The strong dependence of biokinetic parameters on environmental factors (e.g., food concentrations, pH, dissolved or dietary metal concentration, and metal exposure histories) rather than on genotypes implied the great potential of using biokinetics in inter-lab comparisons and environmental risk assessments

  15. The in vitro biokinetics of chlorpromazine and diazepam in aggregating rat brain cell cultures after repeated exposure

    NARCIS (Netherlands)

    Broeders, Jessica J W; Hermens, Joop L M; Blaauboer, Bas J; Zurich, Marie-Gabrielle

    2015-01-01

    Neurotoxic effects of compounds can be tested in vitro using cell systems. One example is aggregating rat brain cell cultures. For the extrapolation of in vitro data to the in vivo situation, it is important to take the biokinetics of the test compound into account. In addition, the exposure in vivo

  16. A novel bench-scale column assay to investigate site-specific nitrification biokinetics in biological rapid sand filters

    DEFF Research Database (Denmark)

    Tatari, Karolina; Smets, Barth F.; Albrechtsen, Hans-Jørgen

    2013-01-01

    A bench-scale assay was developed to obtain site-specific nitrification biokinetic information from biological rapid sand filters employed in groundwater treatment. The experimental set-up uses granular material subsampled from a full-scale filter, packed in a column, and operated with controlled...

  17. Depth investigation of rapid sand filters for drinking water production reveals strong stratification in nitrification biokinetic behavior

    DEFF Research Database (Denmark)

    Tatari, Karolina; Smets, Barth F.; Albrechtsen, Hans-Jørgen

    2016-01-01

    The biokinetic behavior of NH4 + removal was investigated at different depths of a rapid sand filter treating groundwater for drinking water preparation. Filter materials from the top, middle and bottom layers of a full-scale filter were exposed to various controlled NH4 + loadings in a continuous...

  18. Biokinetics of {sup 131}I in human organism

    Energy Technology Data Exchange (ETDEWEB)

    Hermanska, J; Nemec, J [Faculty Hospital Motol, Prague (Czech Republic). Clinic of Nuclear Madecine; Karny, M; Guy, T V [Academy of Sciences of the Czech Republic, Prague (Czech Republic). Ist. of Information Theory and Automation; Jirsa, L; Blazek, T [Charles Univ., Prague (Czech Republic). 2nd Medical Faculty

    1996-12-31

    Time evolution of the cumulated activity in human body is one of the key characteristics determining medical impacts of ionizing radiation. In nuclear medicine, so called effective half-life is mostly used for the evolution description. This quantity is usually estimated by fitting a straight line in semi-logarithmic coordinates. Its novel Bayesian estimate was also proposed and its advantageous properties were verified. During extensive tests, it was found that the effective half-live has limited use as the underlying deterministic relationship time - activity can hardly be taken as (mono)exponential. It stimulated the research for a better and still simple model. A quadratic dependence of ln(activity) on ln(time) was found as an adequate candidate. Preliminary experiments on a restricted set of real data were promising enough to justify its further elaboration. (authors) 1 tab., 19 refs.

  19. Investigations on the biokinetics of carbon 14 in algae cultures

    International Nuclear Information System (INIS)

    Leister, W.

    1981-01-01

    The uptake of 14 C by Scenedesmus quadricauda is quantitatively investigated by simulation models of radio ecological relevance. Due to the complexing of the procedures in the natural ecosystem, it was only possible to consider idealized conditions. The batch culture ressembles the conditons of still waters or relatively still waters without notable water exchange. The effect of the 14 C enrichment, as well as the drastic carbon reduction in the substrate as a result of algae growth, was avoided in the modified batch culture under conditions of simultaneous substrate diffusion by means of a permeation system. The 14 C and 12 C uptake of the cells thus took place solely under the conditions of constant concentration in the culture medium. The consequences for flowing water resulting from a nuclear power plant accident are to be simulated for the extent of the 14 C uptake by green algae using the continuous culture model with dynamic 14 C exposure. The continuous infusion of 14 C in the continuous culture corresponds to the possible cases where 14 C escapes into a flowing water at a constant rate over a long period of time, whether this may be via chronical release from a nuclear power plant or by 'fallout' resulting from nuclear arms testing. The results shown lead to the conclusion that the emission of 14 C to the environment, which according to prognoses will be considerably higher after the year 2000, presents a serious radioactivity potential which man and environment will have to live with should these developments continue and the prognoses come true. (orig./MG) [de

  20. Education and training in radiological protection for diagnostic and interventional procedures ICRP 113 in brief

    International Nuclear Information System (INIS)

    Salama, S.; Gomaa, M. A.; Alshoufi, J.H.

    2013-01-01

    The international commission on radiological protection (ICRP) is the primary body in protection against ionizing radiation. Among its latest publication is ICRP publication 113 e ducation and training in radiological protection for diagnostic and interventional procedures . This document introduces diagnostic and interventional medical procedures using ionizing radiations in deep details. The document is approved by the commission in October 2010 and translated into Arabic at December 2011. This work is a continuation of the efforts series to translate some of the most important of the radiological protection references into the Arabic; aiming to maximize the benefit. The previous translation include WHO handbook on indoor radon: a public health perspective, issued by world health organization 2009 and Radiation Protection in Medicine, ICRP Publication 105 2007 that translated into Arabic with support of Arab atomic energy authority at 2011.

  1. ALI and DAC for transuranic elements based on the metabolic data presented in ICRP Publication 48

    International Nuclear Information System (INIS)

    Togawa, Orihiko; Yamaguchi, Yukichi; Homma, Toshimitsu

    1987-07-01

    The recently published ICRP report, ICRP Publication 48, presents the new metabolic data of some transuranic elements, compared with those employed in the calculation of ALI and DAC in ICRP Publication 30. Values of ALI and DAC for 72 radionuclides were calculated using the metabolic data presented in the Publication 48. The calculation was performed by a computer code system DOSDAC, which can systematically calculate ALI and DAC by the same method as that described in the Publication 30. The calculated values of ALI and DAC were tabulated in the same format as that of the supplements to the Publication 30. For the convenience of using in the dose assessment, also given are values of committed effective dose equivalent per intake of unit activity. It is expected that these values will be applied to the radiation protection purposes. (author)

  2. On revision of definition of doses for radiation protection in ICRP 1990 recommendations

    International Nuclear Information System (INIS)

    Yoshizawa, Michio

    1995-01-01

    The recommendation of ICRP is to give the guideline to the organizations and experts concerned to radiation protection including regulatory authorities on the basic rule which becomes the basis of proper radiation protection, and the radiation protection in respective countries has been carried out, respecting this ICRP recommendation. In 1990, ICRP revised this basic recommendation, and published as Publication 60. In this 1990 recommendation, as the matters that give impact to the dose evaluation of external exposure, the introduction of the new concept of dose, namely radiation weighting factor and equivalent dose, the revision of radiation quality factor and so on are enumerated. As to the 1990 recommendation, absorbed dose and organ dose, radiation weighting factor, equivalent dose, effective dose, quality factor-LET relation, the summation with the former quantities and the operational quantity of ICRU are described. The reason why radiation weighting factor and equivalent dose were introduced are discussed, including the inference of the author. (K.I.)

  3. Biokinetic aspects of tissue-bound tritium in algae

    International Nuclear Information System (INIS)

    Strack, S.; Kistner, G.

    1978-01-01

    For the estimate of the radiation exposure of man and for the calculation of the risk of artificial tritium from nuclear power plants, organic tissue-bound tritium is of decisive importance. In model experiments, a tritium incorporation of 61 to 71% was found from tritiated water (HTO) into organic matter of planctonic algae under reproducible conditions and this was related to the theoretical value. In further experiments the tritium release from these high tritiated algae was of interest. Kept in darkness in tritium-free, non-sterile river water, so that autolytic processes and bacterial decomposition could occur, the concentration of HTO was measured over a period of three weeks. A relatively long half-life of tissue-bound tritium was found under various temperature conditions. Therefore it must be considered that a significant retention of tritium in biological matter has to be taken into account in a natural ecosystem. In streams into which the cooling water of a nuclear reactor is released all conditions are found already for a long turnover and cycling of artificial tritium in living organisms as well as the conditions for a favourable transport of tritium by food chains to man. (Auth.)

  4. Comparison between Brazilian radiation protection norm and ICRP recommendations published in 2007

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Wagner de S.; Py Junior, Delcy de A., E-mail: pereiraws@gmail.com [Industrias Nucleares do Brasil (INB), Pocos de Caldas, MG (Brazil). Unidade de Tratamento de Minerio. Servico de Radioprotecao. Grupo Multidisciplinar de Radioprotecao; Pereira, Juliana R. de S., E-mail: pereirarsj@gmail.com [Universidade Federal de Alfenas, Pocos de Caldas, MG (Brazil). Campus Pocos de Caldas; Kelecom, Alphonse, E-mail: akelecom@id.uff.br [Universidade Federal Fluminense (GETA/LARARA-PLS/UFF), Niteroi, RJ (Brazil). Laboratorio de Radiobiologia e Radiometria Pedro Lopes dos Santos. Grupo de Estudos em Temas Ambientais; Mortagua, Valter, E-mail: Valter@inb.gov.br [Usina de lnterlagos (USIN), Sao Paulo, SP (Brazil). Coordenacao

    2013-07-01

    In the year 2007, ICRP published a set of recommendations (The 2007 Recommendations of the International Commission on Radiological Protection, Publication 103), which changed some important concepts. This work aims to compare the Brazilian radiation protection basic norm with the new ICRP recommendations, by checking the existing differences. The main difference between ICRP publication 60 and ICRP publication 103 is the changing of the concept of protection based on process, by using the concepts of practice and intervention, to the protection based in the exposition situation, by using the concepts of planned exposure, emergency and existing situation. Other important difference lies in the values of the radiation and tissue weighting factors, in the quantities equivalent and effective dose, and updating the radiation detriment based on the latest available scientific information of the biology and physics of radiation exposure. At last, the demonstration of the environment radiation protection must be clear, and this concept is not found in Brazilian nuclear legislation. Also some similarities were found. The fundamental principles of the Brazilian norms are the same as that of ICRP 103, which are the justification principle, the optimization principle and the application of dose limits. The individual effective dose limit of Brazilian norm is the same of the ICRP 103, established as 20 mSv per year. In order to adequate the Brazilian norm it is necessary to change its concept of protection and the values of radiation and tissue weighting, and updating the radiation detriment, besides making clear the concept of protection of the environment. It is important to notice that although the Brazilian norm is not in complete agreement with all international recommendations, it must be completely followed as the norm which is in use in the country. (author)

  5. The use of the ICRP principles for controlling risks from potential exposure

    International Nuclear Information System (INIS)

    Cunningham, R.; Gonzalez, A.J.

    1991-01-01

    Heretofore, ICRP recommendations for radiation protection mainly apply to radiation exposures that are expected to occur with near certainty during normal operation of radiation sources. It is anticipated that the new ICRP recommendations will deal more comprehensively with radiation safety by including consideration of exposure which might or might not occur, but for which a probability of occurrence can be assigned (potential exposure). This paper discusses issues and principles for a system of radiation safety which accommodates both radiation protection and nuclear safety standards and covers both normal and potential exposures. The principles are formulated by interpreting and extrapolating the principles of justification, optimization and dose limitation currently employed for normal exposure

  6. A regulatory view on the applicability of the new ICRP recommendations to nuclear safety aspects

    International Nuclear Information System (INIS)

    Gonzalez Gomez, E.; Naegelin, R.; Vuorinen, A.P.U.

    1991-01-01

    The new ICRP recommendations will cause several changes in the radiological practice. This paper discusses these changes from the point of regulatory view of nuclear safety. To avoid adverse short-term effects, the new risk estimates should be adopted in radiation protection standards with great care. The ultimate objective of nuclear safety is to protect people environment and property against radiological hazards. Improvements in principles and practices developed by the ICRP are important in reaching the primary goal. A severe nuclear accident must be prevented in advance. Every scientific and technical means have to used; optimization is not the solution of the problem

  7. Role IAEA implementation of ICRP-60 on regulations the safe transport of radioactive material

    International Nuclear Information System (INIS)

    Elshinawy, R.K.M.; Gomaa, M.A.

    1994-01-01

    In november 1990, the (ICRP) adopted its 1990 recommendations (ICRP-60) ( 1). These recommendations will significantly influence not only IAEA's basic safety standards (safety series 9) ( 2), but also the IAEA regulations for the safe transport of radioactive material ( 3) and its supporting documents ( 4-6). IAEA experts are currently engaged in the revision of the transport regulations. This revision process led to the publication of the revised transport regulations of 1966. The transport regulations are developed to ensure safety during movement of radioactive materials, and to provide reasonable assurance that the transport activities comply with the basic safety standards for radiation protection

  8. ALI and DAC for transuranic elements based on the metabolic data presented in ICRP publication 48

    OpenAIRE

    外川 織彦; 山口 勇吉; 本間 俊充

    1987-01-01

    最近刊行されたICRPの報告書、ICRP Publication 48にはICRP Publication 30の年摂取限度(ALI)と誘導空気中濃度(DAC)の計算に採用されたデータと比較して、いくつかの超ウラン元素について新しい代謝データが示されている。

  9. Nanomaterial translocation - the biokinetics, tissue accumulation, toxicity and fate of materials in secondary organs

    DEFF Research Database (Denmark)

    Kermanizadeh, Ali; Balharry, Dominique; Wallin, Håkan

    2015-01-01

    into the toxicity posed by the NMs in these secondary organs is expanding due to the realisation that some materials may reach and accumulate in these target sites. The translocation to secondary organs includes, but is not limited to, the hepatic, central nervous, cardiovascular and renal systems. Current data...... dioxide and quantum dots) or fast (e.g. zinc oxide) solubility. The translocation of NMs following intratracheal, intranasal and pharyngeal aspiration is higher (up to 10% of administered dose), however the relevance of these routes for risk assessment is questionable. Uptake of the materials from....... For toxicological and risk evaluation, further information on the toxicokinetics and persistence of NMs is crucial. The overall aim of this review is to outline the data currently available in the literature on the biokinetics, accumulation, toxicity and eventual fate of NMs in order to assess the potential risks...

  10. Biokinetics of carbohydrate and lipid matabolism in normal laying hen; pt. 3

    International Nuclear Information System (INIS)

    Chiang, Y.H.; Riis, P.M.

    1979-01-01

    The radiochemical purity of sup(14)C(U)-glucose solution to be injected to normal laying hen was investigated for studying biokinetics of carbohydrate and lipid metabolism. The liquid scintillation counter was employed for determining the activity of carbon-14. The barium hydroxide and zinc sulfate were adopted to precipitate the protein in the solution. The glucose content in the solution was observed as 0.912 mg per ml. applying Hultman's method. The specific activity of sup(14)C(U)-glucose solution was known as 31.3 nCi/mg glucose. The glucose pentaacetate was synthesized to isolate the pure glucose from the solution. The specific activity of pure glucose was measured as 28.5 nCi/mg glucose. Therefore, it was known that the radiochemical purity of the solution was 82.7%. (Author)

  11. Development of internal dosimetry protocols using the code MCNPx and voxelized phantoms of Reference of ICRP 110; Desenvolvimento de protocolos de dosimetria interna empregando o codigo MCNPx e fantomas voxelizados de referencia da ICRP 110

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, B.M.; Fonseca, T.C.F., E-mail: bmm@cdtn.br [Centro de esenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Trindade, B.M.; Campos, T.P.R. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-04-01

    The objective of this work was to perform internal dosimetry calculations for {sup 18}F-FDG employing the MCNPx code and ICRP 110 voxelized reference phantoms (RCP{sub A}F and RCP{sub A}M). The methodologies developed and validated here represent protocols of internal dosimetry holding a better anthropomorphic and anthropometric representation of the human model in which heterogeneous distributions of the emissions can be adopted, useful in the study of new radiopharmaceuticals and internal contamination cases. The reference phantoms were implemented to run on MCNPx. Biodistribution data of {sup 18}F-FDG radiopharmaceutical provided in ICRP 128 were used in the simulations. The organs average absorbed doses and the effective doses were calculated for each model. The values obtained were compared with two reference works available in the literature for validation purposes. The means of the difference of our values and Zankl et al., 2012 reference values were -0.3% for RCP{sub A}M and -0.4% for RCP{sub A}F. Considering Hadid et al., 2013 reference values, the means of the deviation were -2.9% and -2.2% for RCP{sub A}M and RCP{sub A}F respectively. No statistically significant differences were observed (p <0.01) between the reference values and the values calculated by the internal dosimetry protocols developed by our group. Considering the {sup 18}F-FDG validation study performed in this work, the internal dosimetry protocols developed by our group have produced suitable dosimetry data. (author)

  12. Applicability of dose conversion coefficients of ICRP 74 to Asian adult males: Monte Carlo simulation study

    International Nuclear Information System (INIS)

    Lee, Choonsik; Lee, Choonik; Lee, Jai-Ki

    2007-01-01

    International Commission on Radiological Protection (ICRP) reported comprehensive dose conversion coefficients for adult population, which is exposed to external photon sources in the Publication 74. However, those quantities were calculated from so-called stylized (or mathematical) phantoms composed of simplified mathematical surface equations so that the discrepancy between the phantoms and real human anatomy has been investigated by several authors using Caucasian-based voxel phantoms. To address anatomical and racial limitations of the stylized phantoms, several Asian-based voxel phantoms have been developed by Korean and Japanese investigators, independently. In the current study, photon dose conversion coefficients of ICRP 74 were compared with those from a total of five Asian-based male voxel phantoms, whose body dimensions were almost identical. Those of representative radio-sensitive organs (testes, red bone marrow, colon, lungs, and stomach), and effective dose conversion coefficients were obtained for comparison. Even though organ doses for testes, colon and lungs, and effective doses from ICRP 74 agreed well with those from Asian voxel phantoms within 10%, absorbed doses for red bone marrow and stomach showed significant discrepancies up to 30% which was mainly attributed to difference of phantom description between stylized and voxel phantoms. This study showed that the ICRP 74 dosimetry data, which have been reported to be unrealistic compared to those from Caucasian-based voxel phantoms, are also not appropriate for Asian population

  13. Optimization of radiological protection and dose constraints in the new draft ICRP Recommendations 2006

    International Nuclear Information System (INIS)

    Klener, V.

    2007-01-01

    The overall concept of the new ICRP Recommendations 2006 is analyzed, the concept of dose constraints as a basic tool of radiological protection management is described, arguments and criticisms against the current proposal are cited and points of dispute highlighted, and perspectives of the Recommendations are assessed. (author)

  14. Significance of the new ICRP dose limits in the Indian context

    International Nuclear Information System (INIS)

    Mehta, S.K.

    1993-01-01

    The ICRP estimates the risk quantities using the primary risk coefficients from the results of Japanese survivor studies (with DDREF of 2) along with the all-causes mortality and survival probabilities of the Swedish population. In the present work, risk quantities have been computed using the ICRP estimates of the attributable conditional cancer death probability rates for different exposure levels along with the survival probabilities of the Indian population from the official Indian life tables. For this purpose the parameters of the latest Indian life tables are extrapolated beyond the highest tabulated age of 70 years by 'logit transformation' using the parameters of the complete Indian life table to age 100 years for the period 1951-60 as standard. The results of the present work show that the Indian and the Swedish-ICRP risk quantity estimates are consistent as a function of the life expectancies of the populations and that the Swedish-ICRP risk quantity estimates contain safety factors of about 2 in the Indian context. (author)

  15. The programme of work on committee 2 of ICRP on internal dosimetry

    International Nuclear Information System (INIS)

    Stather, J.W.

    1997-01-01

    Committee 2 of ICRP has the responsibility for establishing secondary standards based on the Commission's recommended dose limits. The Committee has an extensive programme of work related to internally incorporated radionuclides which was reviewed at its September, 1997 meeting in Oxford, England. It is summarized below. (author)

  16. Reference methodologies and datasets of ICRP Committee 2 on doses from radiation exposure

    International Nuclear Information System (INIS)

    Berkovskyvl, V.; Harrison, J.D.

    2018-01-01

    A quantitative characterisation of exposures is a core element of the ICRP system of protection of people and the environment from harmful effects of ionizing radiation. Such prospective and retrospective characterisations, or 'dose assessments', are required by international and national safety standards for public, occupational and medical exposures that can occur in various exposure situations

  17. The ICRP 60 and the agency's regulations for the safe transport of radioactive material

    International Nuclear Information System (INIS)

    Biaggio, A.L.; Novo, R.G.

    1993-01-01

    The International Commission on Radiological Protection (ICRP) has adopted its new '1990 Recommendations of the International Commission on Radiological Protection' in November 1990, they were published in 1991 as 'ICRP Publication 60.' Two main scenarios are considered by the new ICRP's recommendations: a) Protection in proposed and continuing practices (further subdivided as protection against actual exposures and protection against potential exposures); and b) Protection by intervention. Although intervention means any activity in order to decrease the overall exposure, removing existing sources, modifying pathways or reducing the number of exposed individuals, in relation to the transport of radioactive materials, protection by intervention is related mainly to emergency planning, while protection against actual and potential exposures can be considered as the subject of most of the requirements of the 'Regulations for the Safe Transport of Radioactive Material', of the International Atomic Energy Agency (IAEA). The on-going revision of the IAEA Safety Series No. 9, which is aimed at putting this publication in line with the new ICRP recommendations will, for the first time, provide a convalidated radiological framework for the 1996 revision of the Agency Transport Regulations. However, to adapt to the transport area the radiological principles and criteria will require a significant effort and a carefully evaluation of the overall impact of each change proposed. (J.P.N.)

  18. ICRP 's view on protection of non-human species from ionising radiation

    International Nuclear Information System (INIS)

    Holm, L.E.

    2003-01-01

    The International Commission on Radiological Protection (ICRP) is currently reviewing its existing recommendations for radiological protection. Up till now, it has not published any recommendations as to how assessment or management of radiation effects in non-human organisms should be carried out. The Commission set up a Task Group in the year 2000 to address this issue, and recently adopted the Task Group's report. The report addresses the role that ICRP could play in this important and developing area, building on the approach that has been developed for human protection. ICRP will develop a small set of Reference Fauna and Flora, plus their relevant databases to serve as a basis for the more fundamental understanding and interpretation of the relationships between exposure and dose, and between dose and certain categories of effect. The concept of Reference Fauna and Flora is similar to that of Reference Man used for human radiological protection, in that it is intended to act as a basis for calculations and decision-making. The decision by the Commission to develop a framework for the assessment of radiation effects in non-human species has not been driven by any particular concern over environmental radiation hazards. It has rather been developed to fill a conceptual gap in radiological protection, and to clarify how ICRP can contribute to the attainment of society's goals of environmental protection by developing a protection policy based on scientific and ethical-philosophical principles. (author)

  19. Committee 2 of the ICRP: overview of the current and future work

    International Nuclear Information System (INIS)

    Kaul, A.

    1997-01-01

    An overview of the current and future work of ICRP Committee 2 was briefly discussed, the discussion was limited to internal dosimetry. The main topics were as follows: (1) Internal dose to members of the public; (2) Internal dose to the workers; (3) Internal dose to patients using radiopharmaceuticals

  20. Analysis of the criteria used by the international commission on radiological protection (ICRP) to justify the setting of numerical reference values. Report No. 277

    International Nuclear Information System (INIS)

    Schieber, C.; Schneider, T.; Lochard, J.; Crouail, P.

    2005-05-01

    Following its Publication 60, ICRP has proposed nine reports specifying quantified values for dose constraints, action levels, etc. Some 25 values have been identified in all these publications. Since a few years, ICRP is preparing new recommendations in order to provide 'a more coherent and comprehensible system'. The objective of ICRP is to propose to select among the existing quantified values, a few values that could encompass all the other ones. These values are not intended to replace the currently recommended values which remain valid. In this perspective, IRSN has asked CEPN to make a review of all the values introduced in the ICRP publications in order to obtain a broad view of the rationalities proposed by ICRP in the determination of these values. The following Publications of ICRP have been reviewed: - ICRP 60 - 1990 - 1990 Recommendations of ICRP, - ICRP 62 - 1992 - Radiological protection in biomedical research, - ICRP 63 - 1992 - Principles for intervention for protection of the public in a radiological emergency, - ICRP 64 - 1993 - Protection from potential exposure: a conceptual framework, - ICRP 65 - 1993 - Protection against radon-222 at home and at work, - ICRP 68 - 1994 - Dose coefficients for intakes of radionuclides by workers, - ICRP 75 - 1997 - General principles for the radiation protection of workers, - ICRP 77 - 1997 - Radiological protection policy for the disposal of radioactive waste, - ICRP 81 - 2000 - Radiation protection recommendations as applied to the disposal of long-lived solid radioactive waste, - ICRP 82 - 2000 - Protection of the public in situations of prolonged radiation exposure. The different quantitative values found in these publications are presented in this report, grouped by type of value: individual dose limits, 'maximum' individual dose, dose constraints, exemption, action and intervention levels. The rationalities proposed by ICRP for setting these values are presented, mainly based on the quotation of ICRP

  1. A review of contributions of human tissue studies to biokinetics, bio-effects and dosimetry of plutonium in man

    International Nuclear Information System (INIS)

    Kathren, R. L.

    2004-01-01

    This paper briefly reviews the contributions made by human tissue studies to improved understanding of the biokinetics, dosimetry and potential bio-effects of plutonium in man. It includes consideration of tissue donations from both environmental and occupational populations, along with a brief history of human experience with plutonium and consideration of the bio-ethical aspects of post-mortem human tissue sampling. (authors)

  2. ICRP PUBLICATION 122: radiological protection in geological disposal of long-lived solid radioactive waste.

    Science.gov (United States)

    Weiss, W; Larsson, C-M; McKenney, C; Minon, J-P; Mobbs, S; Schneider, T; Umeki, H; Hilden, W; Pescatore, C; Vesterlind, M

    2013-06-01

    This report updates and consolidates previous recommendations of the International Commission on Radiological Protection (ICRP) related to solid waste disposal (ICRP, 1985, 1997b, 1998). The recommendations given apply specifically to geological disposal of long-lived solid radioactive waste. The report explains how the ICRP system of radiological protection described in Publication 103 (ICRP, 2007) can be applied in the context of the geological disposal of long-lived solid radioactive waste. Although the report is written as a standalone document, previous ICRP recommendations not dealt with in depth in the report are still valid. The 2007 ICRP system of radiological protection evolves from the previous process-based protection approach relying on the distinction between practices and interventions by moving to an approach based on the distinction between three types of exposure situation: planned, emergency and existing. The Recommendations maintains the Commission's three fundamental principles of radiological protection namely: justification, optimisation of protection and the application of dose limits. They also maintain the current individual dose limits for effective dose and equivalent dose from all regulated sources in planned exposure situations. They re-enforce the principle of optimisation of radiological protection, which applies in a similar way to all exposure situations, subject to restrictions on individual doses: constraints for planned exposure situations, and reference levels for emergency and existing exposure situations. The Recommendations also include an approach for developing a framework to demonstrate radiological protection of the environment. This report describes the different stages in the life time of a geological disposal facility, and addresses the application of relevant radiological protection principles for each stage depending on the various exposure situations that can be encountered. In particular, the crucial factor that

  3. ICRP PUBLICATION 122: Radiological Protection in Geological Disposal of Long-lived Solid Radioactive Waste

    International Nuclear Information System (INIS)

    Weiss, W.; Larsson, C-M.; McKenney, C.; Minon, J-P.; Mobbs, S.; Schneider, T.; Umeki, H.; Hilden, W.; Pescatore, C.; Vesterlind, M.

    2013-01-01

    This report updates and consolidates previous recommendations of the International Commission on Radiological Protection (ICRP) related to solid waste disposal (ICRP, 1985, 1997b, 1998). The recommendations given apply specifically to geological disposal of long-lived solid radioactive waste. The report explains how the ICRP system of radiological protection described in Publication 103 (ICRP, 2007) can be applied in the context of the geological disposal of long-lived solid radioactive waste. Although the report is written as a standalone document, previous ICRP recommendations not dealt with in depth in the report are still valid. The 2007 ICRP system of radiological protection evolves from the previous process-based protection approach relying on the distinction between practices and interventions by moving to an approach based on the distinction between three types of exposure situation: planned, emergency and existing. The Recommendations maintains the Commission’s three fundamental principles of radiological protection namely: justification, optimisation of protection and the application of dose limits. They also maintain the current individual dose limits for effective dose and equivalent dose from all regulated sources in planned exposure situations. They re-enforce the principle of optimisation of radiological protection, which applies in a similar way to all exposure situations, subject to restrictions on individual doses: constraints for planned exposure situations, and reference levels for emergency and existing exposure situations. The Recommendations also include an approach for developing a framework to demonstrate radiological protection of the environment. This report describes the different stages in the life time of a geological disposal facility, and addresses the application of relevant radiological protection principles for each stage depending on the various exposure situations that can be encountered. In particular, the crucial factor that

  4. Application of the Commission’s recommendations: the activities of ICRP Committee 4

    International Nuclear Information System (INIS)

    Lochard, Jacques

    2012-01-01

    Committee 4 of the International Commission on Radiological Protection (ICRP) is responsible for developing principles, recommendations, and guidance on the protection of man against radiation exposure; and considering their practical application in all exposure situations. The Committee also acts as a major point of contact between ICRP and other international organisations and professional bodies concerned with protection against ionising radiation. The current work of the Committee involves the development of a series of reports on implementation of the 2007 Recommendations, and a reflection on the ethical foundations of the radiological protection system. Following the accident in Fukushima, Committee 4 also initiated an analysis of management of the consequences of the accident, with the objective of revising, if necessary, the Commission’s publications on emergency and post-accident situations.

  5. Population specific absorption studies for some diet incorporated trace elements : comparison with ICRP data

    International Nuclear Information System (INIS)

    Parameswaran, M.; Dang, H.S.

    1999-01-01

    Daily intake and excretion can provide an important information regarding the absorption through the gastro-intestinal tract (f1 factor) of trace elements incorporated in diet. The absorption may depend upon the kind of diet consumed, the content of the fibre, protein etc and it could be quite different for two populations groups with entirely different food habits. ICRP has provided data on the intake and excretion of 63 trace elements by Caucasian population representing North American and European adults. This paper reports intake and excretion of twelve elements Na, K, Ca, Mg, Cu, Mn, Rb, Fe, Zn, Sr, Li and Cr for an urban adult Indian population group and compares with corresponding data on ICRP reference man. (author)

  6. Views from the japanese nuclear industry and radiation protection professionals on the draft ICRP recommendations

    International Nuclear Information System (INIS)

    Yonekura, Y.; Choi, H.S.; Muto, S.; Oda, K.; Ishiguchi, T.

    2007-01-01

    The views of the Japanese nuclear industry, radiation protection professionals, and medical professionals on the concepts of the draft recommendations were presented. Specific concerns and suggestions were expressed in each of these fields based on practical considerations and experiences in operational radiation protection. It was noted that there is no need to complicate the current system, in particular without effectively expressed and rational reasoning. However, in general, speakers and participants in these discussions showed an understanding of ICRP publications. (authors)

  7. Recommendations of the International Commission on Radiological Protecion (1977) ICRP Publication 26

    International Nuclear Information System (INIS)

    1977-07-01

    The subject is dealt with under the following headings: principles of radiation protection (the reports of ICRP; basis for establishing dose limits; types of radiation harm; occupational dose limits; estimates of tissue dose equivalent; uniformity of tissue dose equivalent; systems of dose limitation; protection of members of the public; exposure of the population); radiation protection in practice (protection standards, types of exposure). (U.K.)

  8. Present situation and influence of new ICRP recommendations on radioactive material transport regulations

    International Nuclear Information System (INIS)

    Hamard, J.; Ringot, C.

    1991-01-01

    The publication of new ICRP recommendations will involve the revision of IAEA standards and consequently the revision of transport regulations for radioactive materials. Transport regulations are briefly reviewed and application for radiation protection of workers and public is examined. Influence of new recommendations on transport regulations and eventual modifications on classification and transport of materials, packaging design and permissible exposure for workers and public in the prospect of regulation revision forecasted for 1995

  9. Overview of the ICRP/ICRU adult reference computational phantoms and dose conversion coefficients for external idealised exposures

    CERN Document Server

    Endo, A; Zankl, M; Bolch, W E; Eckerman, K F; Hertel, N E; Hunt, J G; Pelliccioni, M; Schlattl, H; Menzel, H-G

    2014-01-01

    This paper reviews the ICRP Publications 110 and 116 describing the reference computational phantoms and dose conversion coefficients for external exposures. The International Commission on Radiological Protection (ICRP) in its 2007 Recommendations made several revisions to the methods of calculation of the protection quantities. In order to implement these recommendations, the DOCAL task group of the ICRP developed computational phantoms representing the reference adult male and female and then calculated a set of dose conversion coefficients for various types of idealised external exposures. This paper focuses on the dose conversion coefficients for neutrons and investigates their relationship with the conversion coefficients of the protection and operational quantities of ICRP Publication 74. Contributing factors to the differences between these sets of conversion coefficients are discussed in terms of the changes in phantoms employed and the radiation and tissue weighting factors.

  10. Experience in the application of the new ICRP recommendations in Hungary

    International Nuclear Information System (INIS)

    Sztanyik, L.B.; Bojtor, I.

    1982-01-01

    In connection with the introduction of nuclear power in Hungary and the increasing use of radioactive substances and other sources of ionizing radiation for industrial, medical and research purposes, comprehensive legislation on the use of atomic energy has recently been introduced. An Atomic Energy Act was passed by Parliament, the supreme legislative body of the country, in 1980. Accompanying this, an enacting clause was issued by the Council of Ministers, and several ministerial orders were published subsequently on particular rules and regulations for atomic energy applications. In preparing this legislation, the new principles and recommendations of the ICRP on radiation protection were taken into consideration as much as possible. The basic principles of radiation protection, including justification of the proposed operation or practice, reduction of any necessary exposure to a level as low as is reasonably achievable, and limitation of dose to individuals to the values recommended by the ICRP have been adopted and incorporated into the text of the Act. Disagreement has been found, however, when the balancing of costs and benefits as well as the acceptability of the level of risk were proposed for inclusion. In the latter question some professional objections have also been encountered. Limitation of individual monitoring and assessment of dose to workers designated to work in Condition A, as recommended by the ICRP, seems to involve a risk that a major proportion of ''overexposures'', i.e. exposures exceeding the investigation level, remains undiscovered. (author)

  11. Nuclear decay data for dosimetry calculation. Revised data of ICRP Publication 38

    International Nuclear Information System (INIS)

    Endo, Akira; Yamaguchi, Yasuhiro

    2005-02-01

    New nuclear decay data used for dose calculation have been compiled for 1034 radionuclides, which are significant in medical, environmental and occupational exposures. The decay data were assembled from decay data sets of the Evaluated Nuclear Structure Data File (ENSDF), the latest version as of 2003. Basic nuclear properties in the ENSDF that are particularly important for calculating energies and intensities of radiations were examined and updated by referring to UNBASE2003/AME2003, the database for nuclear and decay properties of nuclides. In addition, modification of incomplete ENSDF was done for their format errors, level schemes, normalization records, and so on. The energies and intensities of emitted radiations by the nuclear decay and the subsequent atomic process were computed from the ENSDF using the computer code EDISTR04. EDISTR04 is an enhanced version of EDISTR used for assembling ICRP Publication 38 (ICRP38), and incorporates updates of atomic data and computation methods for calculating atomic radiations and spontaneous fission radiations. Quality assurance of the compiled data has been made by comparisons with various experimental data and decay databases prepared from different computer codes and data libraries. A package of the data files, called DECDC2 (Nuclear DECay Data for Dosimetry Calculation, Version 2), will succeed ICRP38 that has been used extensively in dose calculation and will be utilized in various fields. (author)

  12. Implications of ICRP recommendations on the management of radiation protection of workers

    International Nuclear Information System (INIS)

    Huyskens, C.J.

    1992-01-01

    The new ICRP recommendations [1] give a slightly revised definition of occupational exposure. Guidance is given with respect to the exposure at work related no natural radiation sources. Where ICRP recommends a source related definition of occupational exposure, the Basic Safety Standards of the European Communities [3] and consequently legislation in member states depart from an effect related definition of workers. Mutual divergence regarding this identification issue will be discussed in this paper. Operational radiation protection is commonly based on the principles of classification of workers, classification of working conditions and classification of places of work. From the management view point, the rationale for applying classification is to balancing the nature and the scale of control measures, monitoring and surveillance, using resources in the most appropriate way. In previous recommendations [2] ICRP has given criteria for classification, based on the projected level of individual annual dose, relative to the recommended dose limits for occupational exposure. This guidance is now regarded as crude and arbitrary and therefore withdrawn. This paper will address some consequences of the revised recommendations as well as options for implementation in the European Community basic safety standards. (author)

  13. Impact on Dose Coefficients Calculated with ICRP Adult Mesh-type Reference Computational Phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Yeom, Yeon Soo; Nguyen, Thang Tat; Choi, Chan Soo; Lee, Han Jin; Han, Hae Gin; Han, Min Cheol; Shin, Bang Ho; Kim, Chan Hyeong [Dept. of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of)

    2017-04-15

    In 2016, the International Commission on Radiological Protection (ICRP) formulated a new Task Group (TG) (i.e., TG 103) within Committee 2. The ultimate aim of the TG 103 is to develop the mesh-type reference computational phantoms (MRCPs) that can address dosimetric limitations of the currently used voxel-type reference computational phantoms (VRCPs) due to their limited voxel resolutions. The objective of the present study is to investigate dosimetric impact of the adult MRCPs by comparing dose coefficients (DCs) calculated with the MRCPs for some external and internal exposure cases and the reference DCs in ICRP Publications 116 and 133 that were produced with the adult VRCPs. In the present study, the DCs calculated with the adult MRCPs for some exposure cases were compared with the values in ICRP Publications 116 and 133. This comparison shows that in general the MRCPs provide very similar DCs for uncharged particles, but for charged particles provide significantly different DCs due to the improvement of the MRCPs.

  14. The work of ICRP on the ethical foundations of the system of radiological protection

    International Nuclear Information System (INIS)

    Cho, Kun-Woo

    2017-01-01

    The International Commission on Radiological Protection (ICRP) has established Task Group 94 (TG 94) to develop a publication on the ethical foundations of the system of radiological protection aiming to consolidate the basis of ICRP's recommendations, to improve the understanding of the system and to provide a basis for communication on radiation risk and its perception. Through the review of the publications of the Commission and the conduct of a series of workshops, TG 94 has identified the key components of the ethical theories and principles relevant to the system of radiological protection. The purpose of eliciting the ethical values underpinning the system of radiological protection is not only to clarify the rationale of the recommendations made by the Commission, but also to assist in discussions related to its practical implementation. The report nearing completion by TG 94 will present the key steps concerning the scientific, ethical and practical evolutions of the system of radiological protection since the first ICRP publication in 1928, describe the core ethical values underpinning the present system and address the key procedural aspects for its implementation. (authors)

  15. Application of the ICRP recommendations to revised secondary radiation protection standards

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Corley, J.P.

    1988-01-01

    In 1977, the International Commission on Radiological Protection (ICRP) issued Publication No. 26 containing its recommendations for major changes in the conceptual basis for radiation protection. The new recommendations consider total risk (to the whole body) instead of controlling (critical-organ) risk. Subsequent publications and explanatory statements most useful for providing clarification of the intent of the new recommendations have not resolved practical problems encountered in attempting to apply them to either occupational or public exposures. Some of the problems that still exist in applying these recommendations for estimating doses to members of the public include the following: allowance for age differences within an exposed population group, definition of 50-y dose versus lifetime (70-y) dose, definition of negligible risk levels for individual and collective doses, and derivation of appropriate concentration guidelines. The United States is in the process of adopting the revised recommendations of the ICRP. In addition to adopting versions of the primary radiation protection standards, both the U.S. Nuclear Regulatory Commission and the U.S. Department of Energy have developed draft secondary standards that are similar to the Derived Air Concentration values given by the ICRP. This paper presents a brief history of the development of these revised secondary standards, discusses their technical bases, provides a comparison of them, and discusses their limitations and potential misapplication

  16. Implementation of the 1990 Recommendations of ICRP in the countries of the European community

    International Nuclear Information System (INIS)

    Stather, J.W.; Clarke, R.H.

    1992-01-01

    The International Commission on Radiological Protection (ICRP) has published new Recommendations in ICRP Publication 60. These 1990 Recommendations provide a System of Radiological Protection that takes account of the most recent information on the effects on health of exposure to ionizing radiation and trends in the setting of safety standards. Within the European Community the Recommendations of ICRP are implemented through a Euratom Directive which is binding on Member States and which is at present being revised by the Article 31 Group and must eventually be ratified by the Council of Ministers. It is expected that the new Directive will broadly endorse the principles of protection given in the 1990 recommendations together with the dose limits for both workers and members of the public. There are likely to be some modifications to the 1990 Recommendations that are mainly related to their practical application. As it will be some time before the Directive is incorporated in national regulations a number of Member States have taken independent initiatives. The development of dose constraints for occupational, medical and public exposure is being seen by national organizations in many countries as a significant new approach to improving standards of radiation protection. (author)

  17. Current status on preparation of dose conversion factors based on 1990 ICRP recommendations

    International Nuclear Information System (INIS)

    Yoshizawa, Michio

    1996-01-01

    The current status of arrangement of dose conversion factors for operational quantities are explained on the basis of 1995 ICRP-ICRU recommendations. The dose conversion factors of photon, neutron and electron were recommended by ICRP Publ. 74. It's contents are described. The relation between new dose conversion factors and the laws in connection with protecting radiation are explained. The dose conversion factors of 1 cm-, 3 mm- and 70 μm - dose equivalent which were introduced into the laws connected therewith in Japan are accepted the same values of ICRP Publ. 51 for photon and neutron. I mentioned the points of discussing about new dose conversion factors which are expected to be recommended. The laws have to show the dose conversion factors to be used by calculation and estimation of radiation shield, etc. The limit of energy of ICRU individual dose equivalent for photon is now until 1 MeV, but the value is insufficient and necessary to 10 MeV as same as the ambient dose equivalent in due consideration of atomic energy facilities. JAERI is preparing these dose conversion factors now. (S.Y.)

  18. Transition of radiation protection standards in ICRP recommendations and Japan's response

    International Nuclear Information System (INIS)

    Shirabe, Masashi

    2016-01-01

    Radiation protection standards are the standards set for the purpose of preventing radiation hazard and other damage. This paper confirm what the International Commission on Radiological Protection (ICRP) recommended against the standard value on public exposure in Japan's laws and regulations, and how the Japanese government responded in introducing it into Japan's laws and regulations. There were delays of 6 to 12 years for the introduction of ICRP recommendations into the laws and regulations. Compared with response to the copyright treaty, which was extremely quick with the delays of only 1 to 2 years, these delays were very large. In Japan's laws and regulations, there are no regulations on the standard value for public exposure, and introduction of the recommended standard value of 1 mSv/year from ICRP has been avoided by the government. It is supposed that the reason for not introducing radiation dose limit and dose constraint value of public exposure was due to the lobbying of electric companies. After the Fukushima Daiichi nuclear accident, the former Nuclear Safety Commission set the reference level for emergency exposure situation at 20 mSv/year. Although there is the long-term target of 1 mSv/year for existing exposure, no reference level has been set yet. Due to these delays or avoidances, the rights of people suffering from radiation exposure are restricted, while perhaps the benefits of electric companies are being protected. (A.O.)

  19. Derived limits for radiological protection against ionizing radiation based on ICRP-60 recommendations

    International Nuclear Information System (INIS)

    Jang, Si Young; Lee, Byung Soo

    2000-01-01

    In Korea the dose limits are reduced and are set at the ICRP-60 limits. However, derived limits tabulated as MPC in air and water are sill specified in Notice Nol 98-12. There are some discrepancies between the primary dose limits and MPCs in air and water. Therefore, in order to accept ICRP-60 recommendations fully, derived limits such as ALI, DAC, ECL for radiological protection against ionizing radiation based on ICRP-60 recommendations were calculated using modified methods of those of 10 CFR part 20, dose limits and committed effective dose coefficients of the Basic Safety Standards of the IAEA. The derived limits in this study were also compared with those prescribed in 10 CFR part 20 as well as MPCs of Notice No.98-12 in order to analyze the impact of implementing derived limits on nuclear facilities. ECLs in air and water for the control of radioactive discharge into the environment in this study are shown to have lower values (i.e. more conservative), for most part, than those in Notice No. 98-12. Especially, for uranium elements, ECLs in water are approximately a magnitude in the order of two lower than those in Notice No. 98-12. (author)

  20. Protection of the Environment: Current ICRP Work and EC-Funded Research

    International Nuclear Information System (INIS)

    Larsson, C.M.; Holm, L.E.

    2003-01-01

    The requirement for assessments of the environmental effects of radiation, i.e. effects on non-human biota, is increasing due to growing public concern for environmental protection issues and integration of environmental impact assessments into the regulatory process. Thus, there is a strong need to establish a framework for the assessment of environmental impact of ionising radiation, as well as a system for protection of the environment from ionising radiation. These ambitions are reflected in a number of international efforts and various 'systems' have been proposed or are under development. This paper considers the current discussions on environmental protection within the International Commission on Radiological Protection (ICRP), as part of the Commission's ongoing revision of its recommendations as laid out in Publication 60. Furthermore, the paper reviews work within the EC-funded FASSET (Framework for ASSessment of Environmental impacT) project. The concepts developed both by ICRP and FASSET are similar, and the FASSET approach and results may illustrate how forthcoming ICRP recommendations could be turned into practical application. (orig.)

  1. Outlines of ICRP publication 74 and new dose conversion coefficients for external radiation

    International Nuclear Information System (INIS)

    Yamaguchi, Yasuhiro

    1998-01-01

    Combined task group of ICRP and ICRU reported the ICRP Publication 74 (1996) which is a summary report of their collection, analysis and evaluation of many data and dose conversion coefficients. Concerning the new coefficients, the author described this review as follows: History until Publication 74. Doses recommended at present: for protection quantity, the mean absorption dose of organ and tissue, equivalent dose and effective dose and for operational quantity, the ambient dose equivalent, directional dose equivalent and individual dose equivalent. Changes which can have an influence on the dose evaluation; introduction of radiation weighting factor (WR), changing of tissue weighting factor (WR), changing of the equation for Q-L relation and updating of physical data. New dose conversion coefficients; for photon, neutron and electron. Comparison of new and present coefficients; concerning the quality factor Q, particularly for neutron Q. New relations of protection and operational quantities; for field and individual monitoring. General conclusion of Publication 74. The Publication gives a certain direction for problems in evaluation of external exposure dose which have been discussed since the ICRP Fundamental Recommendation 1990 was issued. However, there still remain many problems especially in validity of the WR and of equation for Q-L relation. (K.H.)

  2. The Involvement of IRPA in the Development of ICRP and Other International Standards

    International Nuclear Information System (INIS)

    Webb, G.A.M.

    2001-01-01

    Full text: One of the main items in the IRPA constitution is to encourage the establishment and continuous review of universally acceptable radiation protection standards or recommendations through the international bodies concerned. This matter was discussed in depth at the Associate Societies Forum during the IRPA-10 Congress in Hiroshima in May 2000. A clear consensus existed among societies present that IRPA must play a larger role in the standard setting process. The mechanisms to fulfil this role have still to be elaborated but two processes have been identified. One for collecting and transmitting societies views on proposals by standards-setting bodies and another for quickly informing societies about the developments within international bodies on which IRPA acts as an observer. An example of the first was when IRPA invited its Member Societies to comment on Professor Roger Clarke's Controllable Dose proposal. The IRPA 10 Congress in May 2000 in Hiroshima provided the obvious focus for discussing the responses from the various Societies. These have been brought together in a report entitled IRPA Member Societies' Contributions to the development of new ICRP Recommendations and transmitted to ICRP by the IRPA Secretariat. The second procedure is more established as IRPA has observer status with a number of organisations including ICRP, IAEA and NEA and on interagency committees such as the Interagency Committee on Radiation Safety Standards (IACRS). (author)

  3. Bioavailability and Biokinetics of Anthocyanins From Red Grape Juice and Red Wine

    Directory of Open Access Journals (Sweden)

    Roland Bitsch

    2004-01-01

    Full Text Available In a comparative study, 9 healthy volunteers ingested a single oral dose of 400 mL red grape juice or red wine with dose-adjusted anthocyanin content (283.5 mg or 279.6 mg, resp. in crossover. The content of anthocyanin glucosides was detected in plasma and urinary excretion. Additionally, the plasmatic antioxidant activity was assessed after intake. Based on the plasma content, biokinetic criteria of the single anthocyanins were calculated, such as AUC, cmax, tmax, and the elimination rate t1/2. The urinary excretion of total anthocyanins differed significantly and amounted to 0.18% (red wine and 0.23% (red grape juice of the administered dose. Additionally, the plasmatic antioxidant activity increased to higher levels after juice ingestion compared to wine. The intestinal absorption of the anthocyanins of red grape juice seemed to be improved compared to red wine, suggesting a possible synergistic effect of the glucose content of the juice. The improved absorption resulted in an enhanced plasmatic bioactivity.

  4. Uniquely high turnover of nickel in contaminated oysters Crassostrea hongkongensis: Biokinetics and subcellular distribution.

    Science.gov (United States)

    Yin, Qijun; Wang, Wen-Xiong

    2018-01-01

    Despite the environmental concerns regarding nickel (Ni) especially in China, it has received little attention in aquatic animals due to its comparatively weak toxicity. In the present study, we explored the bioaccumulation, biokinetics, and subcellular distribution of Ni in an estuarine oyster Crassostrea hongkongensis. We demonstrated that Ni represented a new pattern of bioaccumulation in oysters characterized by rapid elimination and low dissolved uptake. The waterborne uptake rate constant and dietary assimilation efficiency were 0.036L/g/h and 28%, respectively, and dissolved uptake was the predominant exposure route. The efflux rate constant was positively related to tissue Ni concentration, with the highest efflux of 0.155d -1 . Such high elimination resulted in a high Ni turnover and steady-state condition reached rapidly, as shown with a 4-week waterborne exposure experiment at different Ni concentrations. Ni in oysters was mainly sequestered in metallothionein-like protein (MTLP), metal-rich granule, and cellular debris. MTLP was the most important binding fraction during accumulation and depuration, and played a dynamic role leading to rapid Ni elimination. Pre-exposure to Ni significantly reduced the dissolved uptake, probably accompanied by depressed filtration activity. Overall, the high turnover and regulation of Ni in oysters were achieved by enhanced efflux, suppressed uptake, and sequestration of most Ni into the detoxified pool. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Decoupling of cadmium biokinetics and metallothionein turnover in a marine polychaete after metal exposure

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Tania Y.-T. [Department of Biology, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong (China); Rainbow, Philip S. [Department of Zoology, Natural History Museum, Cromwell Road, London SW7 5BD (United Kingdom); Amiard-Triquet, Claude; Amiard, Jean-Claude [Universite de Nantes, Faculte de Pharmacie, MMS EA2160, Service d' ecotoxicologie, F-44000 Nantes (France); Wang Wenxiong [Department of Biology, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong (China)], E-mail: wwang@ust.hk

    2008-08-11

    This study investigated the kinetics of Cd bioaccumulation, detoxification, subcellular distribution, and efflux in the nereid polychaete Perinereis aibuhitensis after Cd pre-exposure. Cd pre-exposure increased the Cd body burden in the worms, but did not affect the overall Cd uptake and efflux rates and metallothionein-like protein (MTLP) concentrations. During short-term exposure to dissolved Cd, Cd in the cytosolic fraction increased after Cd pre-exposure, and this fraction also increased during the Cd efflux period, indicating that the insoluble fraction of Cd was presumably lost at a faster rate than the loss of cytosolic Cd. Even though the MTLP concentration remained comparable after Cd pre-exposure, both the MTLP synthesis rate and the degradation rate increased, thus leading to a high MTLP turnover in the Cd-exposed worms. However, Cd uptake and efflux into different protein size fractions did not follow the patterns of MTLP synthesis and degradation, strongly suggesting that Cd kinetics is decoupled from the MTLP kinetics in the worms. Our study adds to an increasing body of evidence on the complicated relationship between metal biokinetics and MTLP kinetics in different groups of marine invertebrates which have strong contrasts in their metal handling strategies.

  6. Decoupling of cadmium biokinetics and metallothionein turnover in a marine polychaete after metal exposure

    International Nuclear Information System (INIS)

    Ng, Tania Y.-T.; Rainbow, Philip S.; Amiard-Triquet, Claude; Amiard, Jean-Claude; Wang Wenxiong

    2008-01-01

    This study investigated the kinetics of Cd bioaccumulation, detoxification, subcellular distribution, and efflux in the nereid polychaete Perinereis aibuhitensis after Cd pre-exposure. Cd pre-exposure increased the Cd body burden in the worms, but did not affect the overall Cd uptake and efflux rates and metallothionein-like protein (MTLP) concentrations. During short-term exposure to dissolved Cd, Cd in the cytosolic fraction increased after Cd pre-exposure, and this fraction also increased during the Cd efflux period, indicating that the insoluble fraction of Cd was presumably lost at a faster rate than the loss of cytosolic Cd. Even though the MTLP concentration remained comparable after Cd pre-exposure, both the MTLP synthesis rate and the degradation rate increased, thus leading to a high MTLP turnover in the Cd-exposed worms. However, Cd uptake and efflux into different protein size fractions did not follow the patterns of MTLP synthesis and degradation, strongly suggesting that Cd kinetics is decoupled from the MTLP kinetics in the worms. Our study adds to an increasing body of evidence on the complicated relationship between metal biokinetics and MTLP kinetics in different groups of marine invertebrates which have strong contrasts in their metal handling strategies

  7. 99mTc-labeled PSMA inhibitor: Biokinetics and radiation dosimetry in healthy subjects and imaging of prostate cancer tumors in patients.

    Science.gov (United States)

    Santos-Cuevas, Clara; Davanzo, Jenny; Ferro-Flores, Guillermina; García-Pérez, Francisco O; Ocampo-García, Blanca; Ignacio-Alvarez, Eleazar; Gómez-Argumosa, Edgar; Pedraza-López, Martha

    2017-09-01

    The prostate-specific membrane antigen (PSMA) is expressed in epithelial cells of the prostate and highly overexpressed in 95% of advanced prostate cancers. The aims of this study was to estimate the biokinetics and dosimetry of 99m Tc-EDDA/HYNIC-iPSMA ( 99m Tc-labeled PSMA inhibitor) in eight healthy subjects and evaluate its usefulness as a tumor-imaging agent in eight prostate cancer patients. 99m Tc-EDDA/HYNIC-iPSMA was obtained from a lyophilized formulation with radiochemical purities >98%, determined by reversed-phase HPLC and ITLC-SG analyses. Whole-body images from eight healthy subjects were acquired at 20min, and at 2, 6 and 24h after 99m Tc-EDDA/HYNIC-iPSMA administration. Regions of interest (ROIs) were drawn around the source organs on each time frame. Each ROI was corrected by background, attenuation, scattered radiation and physical decay. The image sequence was used to extrapolate the 99m Tc-EDDA/HYNIC-iPSMA time-activity curves of each organ to adjust the biokinetic model and calculate the total number of disintegrations (N) that occurred in the source regions. N data were the input for the OLINDA/EXM code to calculate internal radiation doses. In eight prostate cancer patients with histologically confirmed cancer, whole-body SPECT/CT images were obtained at 3h. The blood activity showed a half-life value of 4.98min for the fast component (T 1/2 α=ln2/8.34), 2.49h for the first slow component (T 1/2 β=ln2/0.278), and 9.24h for the second slow component (T 1/2 γ=ln2/0.076). Images from patients showed an average tumor/background ratio of 8.99±3.27 at 3h. The average equivalent doses calculated for a study using 740MBq were 3.80, 7.06, 9.69, 10.70, and 28.80mSv for the breast, spleen, salivary glands, liver, and kidneys respectively, with an effective dose of 3.42±0.78mSv. All the absorbed doses were comparable to those known for most of the 99m Tc studies. 99m Tc-EDDA/HYNIC-iPSMA obtained from kit formulations showed high tumor uptake in

  8. Discussion on Implementation of ICRP Recommendations Concerning Reference Levels and Optimisation

    International Nuclear Information System (INIS)

    2013-02-01

    International Commission on Radiological Protection (ICRP) Publication 103, 'The 2007 Recommendations of the International Commission on Radiological Protection', issued in 2007, defines emergency exposure situations as unexpected situations that may require the implementation of urgent protective actions and perhaps longer term protective actions. The ICRP continues to recommend optimisation and the use of reference levels to ensure an adequate degree of protection in regard to exposure to ionising radiation in emergency exposure situations. Reference levels represent the level of dose or risk above which it is judged to be inappropriate to plan to allow exposures to occur and for which protective actions should therefore be planned and optimised. National authorities are responsible for establishing reference levels. The Expert Group on the Implementation of New International Recommendations for Emergency Exposure Situations (EGIRES) performed a survey to analyse the established processes for optimisation of the protection strategy for emergency exposure situations and for practical implementation of the reference level concept in several member states of the Nuclear Energy Agency (NEA). The EGIRES collected information on several national optimisation strategy definitions, on optimisation of protection for different protective actions, and also on optimisation of urgent protective actions. In addition, national criteria for setting reference levels, their use, and relevant processes, including specific triggers and dosimetric quantifies in setting reference levels, are focus points that the EGIRES also evaluated. The analysis of national responses to this 2011 survey shows many differences in the interpretation and application of the established processes and suggests that most countries are still in the early stages of implementing these processes. Since 2011, national authorities have continued their study of the ICRP recommendations to incorporate them into

  9. A methodology for practical implementation of ICRP recommendations for optimization

    International Nuclear Information System (INIS)

    Webb, G.A.M.; Clarke, R.H.

    1979-01-01

    The system of dose limitation recommended by the Commission has been restated in its most recent recommendations with the requirements implying cost benefit analysis elevated to pride of place. The main subject of this paper is discussion of the problems involved in carrying out differential cost benefit analysis (optimization) studies. The various quantities such as Effective Dose Equivalent and Collective Effective Dose Equivalent Commitment needed to carry out these studies are discussed, their strengths and weaknesses identified and suggestions made as to how they should be used in practice. In particular the implications underlying the use of the collective quantities as the independent variable in these studies are clarified and examined. The need for the maximum realism in calculational models and parameters used in the calculation of collective quantities for optimization studies is stressed, with the corollary of conservative calculations for comparison with dose limits. The methods for calculating costs are examined, both for the plant or equipment installed to reduce doses and for the cost associated with the consequent reduction in health detriment. Some practical problems are cited in both the theory and practice of optimization. It is concluded that optimization is not yet sufficiently developed in either basic formalism or practical application. Some areas are identified where further work is needed. (author)

  10. Recommendations of the publication ICRP-84: pregnancy and medical irradiation for radiotherapy; Recomendaciones de la publicacion ICRP-84: embarazo e irradiacion medica para radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Rojkind, Roberto H [Autoridad Regulatoria Nuclear, Buenos Aires (Argentina)

    2001-07-01

    The malignant diseases in the pregnant women are relatively not much frequent, and some of these cases can be applied radiotherapy for the tumours treatment. The doses involved in the radio therapeutics procedures can produce a significant foetal damage, and the patient or worker has the right to know the magnitude and the potential effects that can be results of the radiotherapy exposure. The publication ICRP-84 of the International Commission of Radiological Protection approaches specific aspect of the individual justification of the medical exposure of the patient pregnant woman, and recommends work procedures for the dose optimization that will receive the fetus. In this communication is commented the content of the radiotherapy section of the mentioned publication.

  11. Energy use and carbon footprints differ dramatically for diverse wastewater-derived carbonaceous substrates: An integrated exploration of biokinetics and life-cycle assessment.

    Science.gov (United States)

    Li, Yanbo; Wang, Xu; Butler, David; Liu, Junxin; Qu, Jiuhui

    2017-03-21

    Energy neutrality and reduction of carbon emissions are significant challenges to the enhanced sustainability of wastewater treatment plants (WWTPs). Harvesting energy from wastewater carbonaceous substrates can offset energy demands and enable net power generation; yet, there is limited research about how carbonaceous substrates influence energy and carbon implications of WWTPs with integrated energy recovery at systems-level. Consequently, this research uses biokinetics modelling and life cycle assessment philology to explore this notion, by tracing and assessing the quantitative flows of energy embodied or captured, and by exploring the carbon footprint throughout an energy-intensive activated sludge process with integrated energy recovery facilities. The results indicate that energy use and carbon footprint per cubic meter of wastewater treated, varies markedly with the carbon substrate. Compared with systems driven with proteins, carbohydrates or other short-chain fatty acids, systems fed with acetic acid realized energy neutrality with maximal net gain of power from methane combustion (0.198 kWh) and incineration of residual biosolids (0.153 kWh); and also achieved a negative carbon footprint (72.6 g CO 2 ). The findings from this work help us to better understand and develop new technical schemes for improving the energy efficiency of WWTPs by repurposing the stream of carbon substrates across systems.

  12. From Technique of Tattooing to Biokinetics and Toxicology of Injected Tattoo Ink Particles and Chemicals.

    Science.gov (United States)

    Serup, Jørgen

    2017-01-01

    Tattoo colourants are colourful nano- and microparticles, which are practically insoluble and thus permanent once installed in the dermis by the tattooist. Tattoo ink also has soluble ingredients and contaminants. Pigments can distribute via the lymph and possibly also directly to the blood, and a minute fraction may over time undergo metabolic breakdown and as hapten(s) induce allergic reactions of red tattoos. Carbon black of black tattoos has a tendency to agglomerate and form larger bodies that can elicit foreign body reactions in black tattoos and even granuloma formation with overlap to sarcoidosis in the clinic. Very little is known about the biokinetics and safety profile of the many tattoo pigments in use, and no specific pigment-related chemical of tattoo ink causing identified adverse reactions in humans has been depicted. Inks have many ingredients and contaminants. Insoluble and soluble ingredients of inks supposedly have very different characteristics of absorption, distribution, metabolism, and excretion, with pigments being extremely slowly excreted, contrasting soluble ingredients with fast elimination. Tattoos are a single-dose exposure. Controlling the safety of tattoo inks by banning potentially critical chemicals hitherto has been unsuccessful due to lacking documentation of clinical and epidemiological relevance and because the tattoo industry is already internationally established, free, and in the ownership of the people. Doctors treating patients with tattoo complications consequently have a key role in identifying risk situations and local outbreaks, which needs clarification, therapy, and the intervention of authorities. In the treatment of complications, as seen in general practice and in other specialties, basic insight into the fate of tattoo pigments in the body is necessary. Tattoo complications are complicated and facetted with many entities and disease mechanisms; they are a new subspecialty in medicine and dermatology. © 2017 S

  13. Optimisation of Protection as applicable to geological disposal: the ICRP view

    International Nuclear Information System (INIS)

    Weiss, W.

    2010-01-01

    Wolfgang Weiss (BfS), vice-chair of ICRP Committee 4, recalled that the role of optimisation is to select the best protection options under the prevailing circumstances based on scientific considerations, societal concerns and ethical aspects as well as considerations of transparency. An important role of the concept of optimisation of protection is to foster a 'safety culture' and thereby to engender a state of thinking in everyone responsible for control of radiation exposures, such that they are continuously asking themselves the question, 'Have I done all that I reasonably can to avoid or reduce these doses?' Clearly, the answer to this question is a matter of judgement and necessitates co-operation between all parties involved and, as a minimum, the operating management and the regulatory agencies, but the dialogue would be more complete if other stakeholders were also involved. What kinds of checks and balances or factors would be needed to be considered for an 'optimal' system? Can indicators be identified? Quantitative methods may provide input to this dialogue but they should never be the sole input. The ICRP considers that the parameters to take into account include also social considerations and values, environmental considerations, as well as technical and economic considerations. Wolfgang Weiss approached the question of the distinction to be made between system optimisation (in the sense of taking account of social and economic as well as of all types of hazards) and optimisation of radiological protection. The position of the ICRP is that the system of protection that it proposes is based on both science (quantification of the health risk) and value judgement (what is an acceptable risk?) and optimisation is the recommended process to integrate both aspects. Indeed, there has been evolution since the old system of intervention levels to the new system, whereby, even if the level of the dose or risk (which is called constraint in ICRP-81 ) is met

  14. The regulatory consequences of Publication 60 of the ICRP (International Commission on Radiological Protection)

    International Nuclear Information System (INIS)

    Sugier, Annie

    1992-01-01

    The system of radiological protection recommended by the ICRP for future and existing proposed and continuing practices is based on the following general principles: justification, optimisation and limitation of exposure levels. This means that no practice involving exposures to radiation should be adopted unless it produces sufficient benefit to the exposed individuals or to the society to offset the radiation detriment it causes. In relation to any particular source within a practice, the magnitude of individual doses, the number of people exposed, and the likelihood of incurring exposures where these are not certain to be received should all be kept as low as reasonably achievable, economic and social factors being taken into account. The exposure of individuals resulting from the combination of all the relevant practices should be subject to dose limits, or to some control of risk in the case of potential exposures. The system for radiological protection and the values of the limits associated with it, are related the state of knowledge of the effects of radiation. This explains the periodic revision of the corresponding regulatory texts. In a field of such complexity, concerned by disciplines as diverse as medicine, biology, chemistry, statistics, etc., the question naturally arises as to which authority has the capacity to determine an agreed policy. As far as the European Community is concerned, the basic standards related to radiation protection are the subject of Directives which have to be incorporated into national laws by each member state. These directives are under review taking into account explicitly the ICRP recommendations. International agencies whose mission is concerned with the effects of ionising radiation, publish also basic standards related to radiological protection which are not imposed to the participating states except when they collaborate with those bodies, and which mainly act as international references. Such norms also comply with

  15. Radiation-induced cataracts: the Health Protection Agency's response to the ICRP statement on tissue reactions and recommendation on the dose limit for the eye lens.

    Science.gov (United States)

    Bouffler, Simon; Ainsbury, Elizabeth; Gilvin, Phil; Harrison, John

    2012-12-01

    This paper presents the response of the Health Protection Agency (HPA) to the 2011 statement from the International Commission on Radiological Protection (ICRP) on tissue reactions and recommendation of a reduced dose limit for the lens of the eye. The response takes the form of a brief review of the most recent epidemiological and mechanistic evidence. This is presented together with a discussion of dose limits in the context of the related risk and the current status of eye dosimetry, which is relevant for implementation of the limits. It is concluded that although further work is desirable to quantify better the risk at low doses and following protracted exposures, along with research into the mechanistic basis for radiation cataractogenesis to inform selection of risk projection models, the HPA endorses the conclusion reached by the ICRP in their 2011 statement that the equivalent dose limit for the lens of the eye should be reduced from 150 to 20 mSv per year, averaged over a five year period, with no year's dose exceeding 50 mSv.

  16. How to understand the radiation effects of small dose - some critical comments on ICRP recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Matsuura, T. [Radiation Education Forum, Minato-ku, Tokyo (Japan)

    1997-10-01

    The widespread feeling of `radiophobia` by the general public has its basis on the ICRP`s `linear no-threshold` hypothesis in dose-response relationship for low dose radiation from the standpoint of radiation protection. Although this common feeling served as a merit for constructing the `safety culture` of society, it has now become a large obstacle for the development of peaceful uses of nuclear technology as a demerit. Recently many data have been accumulated for the radiation effects of low dose, both epidemiologically and experimentally. Although in general it is very difficult to obtain clear evidence of presence or absence of threshold, it seems to be true that the risk by radiation exposure at low level (the definition of which is below 0.2 Gy) is not so large as that of extrapolation from the high or medium dose range. In fact, many data suggest that some quite different mechanisms are working in low dose from high dose, such as `adaptive response`, and a new concept, `radiation hormesis`, has emerged, that the low level radiation is not only quite harmless but is rather necessary for living cells or beneficial for human health. In this paper, some critical comments on ICRP recommendations are given as a personal view by the author. These include: (1) a question of exact assessment of exposed dose by A-bomb survivors used for the epidemiological data, which are regarded to be the most authentic and important; (2) a brief summary of effects at the natural radiation level, including the high background area data; (3) the importance of dose rate effect, which reflects the living matter`s repairability from radiation injury, and (4) the proposal of new paradigm by adopting the reasonable `de minimis` level (below which there is no harm) both for low dose and at low dose rate. A simple mathematical analysis for representative data of dose rate effect was shown as an appendix 50 refs., 2 tabs., 4 figs.

  17. ZZ NUCDECAYCALC, Nuclear Decay Data for Radiation Dosimetry Calculation for ICRP

    International Nuclear Information System (INIS)

    2002-01-01

    1 - Description or function: The Dosimetry Research Group (DRG) of the Health Sciences Research Division at ORNL has for several years maintained data bases of nuclear decay data for use in dosimetric calculations. The data on mean and unique energy plus intensity have been previously published, in abridged form, in Publication 38 of the International Commission on Radiological Protection (ICRP 1983). This data base was designed to address the needs in medical, environmental, and occupational radiation protection. DLC-172/NUCDECAY is required by the CCC-620/SEECAL program to calculate age-dependent specific effective energies. 2 - Methods: The unabridged data used in preparing ICRP Publication 38 are distributed in electronic form in this package. The collection consists of data on the energies and intensities of radiations emitted by the 825 radionuclides reported, although abridged, in ICRP Publication 38 plus an additional 13 radionuclides evaluated during preparation of a monograph for the Medical Internal Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine. Each collection is contained in an ASCII file (INDEXR.DAT) which is a sorted list of the radionuclides containing the decay chain information. The utility code DecayCalc extracts the decay data from the library for radionuclide(s) specified by the user. It computes the activities of radionuclides present after decay and ingrowth over a user-specified time period from 1 minute to 50 years. Decay data for any decay chain may be displayed and printed either in tabular form or graphically. DecayCalc, in a slightly modified version, will be a part of CCC-553/Rascal v3. DecayCalc is a Windows application that runs under Microsoft Windows 95 or 98, or Microsoft Windows NT 4.0 or later. The Compac Fortran 77 compiler was used to compile the code. The full source for DecayCalc is not provided but will be distributed when Rascal V3 is released

  18. Control of radiocaesium discharges to the Irish Sea: ICRP-26 in practice

    International Nuclear Information System (INIS)

    Handyside, I.; Hunt, G.J.; Partington, C.

    1982-01-01

    Experience of application of the ICRP dose limitation system is described in the context of control of radioactive waste discharges to the north-east Irish Sea from the British Nuclear Fuels Limited (BNFL) Sellafield Works. The radiological significance of these discharges is mainly due to radiocaesium from the magnox fuel storage ponds. The discharges increased in 1974 owing to corrosion of magnox fuel; radiation exposure of the public mainly through the fish and shellfish consumption pathway also increased. BNFL, in consultation with Government Departments, decided to install an ion-exchange treatment plant to remove radioactivity from pond effluents. This plant is presently being built and will provide a long-term reduction in radiocaesium discharges. Optimization will play a major part in determining its operating regime. Meanwhile, measures to reduce discharges have been taken by circulating pond water through skips of zeolite installed in the ponds. Differential cost-benefit analysis has been used to indicate the optimum replacement rate of skips; experience of this is described. A range of skip costs was used to allow for some factors which were not uniquely definable. Detrimental costs were estimated from collective dose commitments and a range of values of the man-Sv from Pound 2000 to Pound 50,000. Other, non-quantifiable, factors were relevant. Following these considerations, the current skip replacement frequency is about 30 year -1 . Skips are presently reducing collective effective dose equivalent commitments to the UK and European populations by about half, or some 150 man-Sv.year -1 . Finally, to demonstrate conformity with the overall ICRP dose limitation system, compliance with dose limits is described. Effective dose equivalents to the relevant critical groups for the years 1977 to 1980 are presented. The use of zeolite skips has, here too, given significant reductions over this time, from 33% to (provisionally) 15% of the ICRP-recommended dose

  19. Implementation of current NCRP and ICRP guidance and revised 10 CFR Part 20: Proceedings

    International Nuclear Information System (INIS)

    Jorgensen, D.B.; Seagondollar, L.W.; Watson, J.E. Jr.

    1991-01-01

    The 24th Annual Midyear Topical Meeting of the Health Physics Society, ''Implementation of Current NCRP and ICRP Guidance and Revised 10 CFR Part 20'' was held in North Carolina on January 22--January 24, 1991. The meeting featured symposia on the Basis for Change and Regulatory Implementation, Benefits and Problems in Implementation at Various Types of Facilities, Health Physics Monitoring Requirements and Record Keeping, Exposure Management, ALARA, and Dose Limit for Embryo/Fetus -- Impact on Employer and Employee. Individual papers are referenced separately

  20. The ICRP principles applied to radiation protection of the patient in diagnostic radiology

    International Nuclear Information System (INIS)

    Carlsson, S.; Mattsson, S.

    1994-01-01

    The International Commission on Radiation Protection (ICRP) has published new recommendations in Publication 60. These take account of the new biological information and trends in the setting of radiation protection standards since 1977. The main principle for radiation protection of the patient is that the exposure should be justified not only at a broad level but also with respect to the individual patient. Protection arrangements should be optimised using reference dose levels as an upper bound of the optimisation process. The reference levels should be applied with flexibility and based on sound clinical judgement. (authors)

  1. ICRP and UNSCEAR: Their roles in defining the most important biomedical effects of ionizing radiation

    International Nuclear Information System (INIS)

    Butler, G.C.

    The history of ICRP from its origin in the British X-ray and Radiation Protection Committee (1921) to the present is described. Particular attention is directed to the evolution of occupational dose limits, which show a gradual decline, and to the perceptions of the most important effects on human beings. Recent developments in derived (or secondary) dose limits are also described. Basic to the dose limits are the risk estimates. UNSCEAR, since its establishment in 1955, has provided leadership in estimating numerically the risks of genetic defects and malignancy from exposure to ionizing radiation. The usefulness of providing risk estimates for public education has severe limitations. (author)

  2. The implications of ICRP publication 74 for the design of the LHC shielding

    International Nuclear Information System (INIS)

    Stevenson, G.R.

    1997-01-01

    A joint committee of the International Commission on Radiological Protection (ICRP) and the International Commission on Radiation Units and Measurements (ICRU) have recently published a report recommending new factors for the conversion of the fluence of neutrons, photons and electrons into radiologically significant quantities. Both the quantities specified and the numerical values of the conversion coefficients are different from previously published values. This report investigates the effect of these changes on the predictions of shielding requirements for the LHC and suggests that only minor policy adjustments are necessary. (author)

  3. The ICRP principles applied to radiation protection of the patient in diagnostic radiology

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, S [Department of Medical Physics, s-451 80 Uddevalla (Sweden); Mattsson, S [Department of Radiation Physics, University of Lund, S-214 01 Malmo (Sweden)

    1994-12-31

    The International Commission on Radiation Protection (ICRP) has published new recommendations in Publication 60. These take account of the new biological information and trends in the setting of radiation protection standards since 1977. The main principle for radiation protection of the patient is that the exposure should be justified not only at a broad level but also with respect to the individual patient. Protection arrangements should be optimised using reference dose levels as an upper bound of the optimisation process. The reference levels should be applied with flexibility and based on sound clinical judgement. (authors). 7 refs.

  4. The work of the task group of committee 2 of ICRP on age-dependent dosimetry

    International Nuclear Information System (INIS)

    Stather, J.W.; Kaul, A.; Metivier, H.

    1996-01-01

    With the accident at Chernobyl and developing concern in regard to the consequences of discharging radionuclides into the environment has come increasing awareness of the need to assess radiation doses to all age groups in the population. In 1987, ICRP set up a Task Group of Committee 2 on Age-dependent Dosimetry with the responsibility for calculating internationally agreed dose coefficients for members of the public. This covered the calculation and ingestion, as well as doses to the embryo and fetus from intakes of radionuclides by the mother. This paper reviews the programme of work.(authors). 17 refs., 6 tabs

  5. Environmental protection against ionizing radiations: the way proposed by the ICRP, its origin and its analysis

    International Nuclear Information System (INIS)

    Brechignac, F.

    2003-01-01

    Face to the conceptual lack relative to the radiation protection of environment and when numerous legislative texts begin to come about the species protection, the ICRP began a thought that aims to recommend a frame according to evaluate the impact of ionizing radiations on environment. This choice emphasizes the parallel man-environment by putting the two parts to protect at the same level. The unknown part is essentially the interactions of ecosystem but the future knowledge will be progressively integrated as they will be known. (N.C.)

  6. Stake holders' views on the implications of the new ICRP recommendations: an environmental perspective

    International Nuclear Information System (INIS)

    Carroll, S.

    2003-01-01

    The development of the new ICRP Recommendations are of significant interest to environmental organisations. There are several issues of particular interest: 1. whether the 'approach and the numbers are right'? in the general recommendations; 2. to what extent the understandings being developed for both human and non-human species will effectively address concerns regarding protecting the health of people and the environment; and 3. to what extent these new recommendations will inform the broader regulatory and policy debates, in particular those concerning the uses of nuclear power, fuel cycle developments and radioactive waste management practices. This presentation will explore various aspects of these issues from the perspectives of environmental organisations. (author)

  7. The radiation protection policy of the ICRP: new approaches and false debates, by the Dr Nenot

    International Nuclear Information System (INIS)

    Nenot, J.C.

    2000-01-01

    The thoughts led within the ICRP during the last months and the new approach for the radiation protection policy presented by its president Roger Clarke arouse in the specialized media, numerous debates and interpretations. In an article called 'Low and very low doses: towards a change of regulation?' the R.G.N. has evoked some aspects of themes in discussion(number 3 - 1999 - may-june). In this article, the Dr Jean-Claude Nenot relates the context in which the debate has been developed and gives some interpretation errors that if they should last, would risk to maintain a sterile controversy. (N.C.)

  8. The new ICRP recommendations' project: A broader approach of the optimisation of radiation protection

    International Nuclear Information System (INIS)

    Lochard, J.

    2005-01-01

    In the framework of the preparation of its new recommendations ICRP has developed a new text on the optimisation of radiological protection. This text prolongs the previous publications on the principle (Publications 37 and 45) reminding the need to adopt a pragmatic approach combining quantitative techniques when they are relevant as well as know-how and past experience which are often sufficient to ensure good protection. Moreover, it aims at adapting the optimisation process to the recent evolutions of risk management with the increasing role of stakeholder involvement in the decision framing. (author)

  9. Overview of the ICRP/ICRU adult reference computational phantoms and dose conversion coefficients for external idealised exposures

    International Nuclear Information System (INIS)

    Endo, Akira; Petoussi-Henss, Nina; Zankl, Maria; Schlattl, Helmut; Bolch, Wesley E.; Eckerman, Keith F.; Hertel, Nolan E.; Hunt, John G.; Pelliccioni, Maurizio; Menzel, Hans-Georg

    2014-01-01

    This paper reviews the ICRP Publications 110 and 116 describing the reference computational phantoms and dose conversion coefficients for external exposures. The International Commission on Radiological Protection (ICRP) in its 2007 Recommendations made several revisions to the methods of calculation of the protection quantities. In order to implement these recommendations, the DOCAL task group of the ICRP developed computational phantoms representing the reference adult male and female and then calculated a set of dose conversion coefficients for various types of idealised external exposures. This paper focuses on the dose conversion coefficients for neutrons and investigates their relationship with the conversion coefficients of the protection and operational quantities of ICRP Publication 74. Contributing factors to the differences between these sets of conversion coefficients are discussed in terms of the changes in phantoms employed and the radiation and tissue weighting factors. This paper briefly reviews the reference computational phantoms and dose conversion coefficients for external exposures that were published jointly by ICRP and ICRU. Both these publications appeared as a consequence of the ICRP 2007 Recommendations; to implement these recommendations, the ICRP has developed reference computational phantoms representing the adult male and female. These phantoms are used to calculate reference dose conversion coefficients for external and internal sources. Using the reference phantoms and methodology consistent with the 2007 Recommendations, dose conversion coefficients for both effective doses and organ-absorbed doses for various types of idealised external exposures have been calculated. These data sets supersede the existing ICRP/ICRU data sets and expand the particle types and energy ranges. For neutrons, the new effective dose conversion coefficients become smaller compared with those in ICRP74, for energies below hundreds of keV. This is mainly

  10. Problems encountered in embodying the principles of ICRP-26 and the revised IAEA safety standards into UK national legislation

    International Nuclear Information System (INIS)

    Beaver, P.F.

    1979-01-01

    This paper describes the United Kingdom procedures and format for safety legislation and goes on to show how the necessary legislation for radiological protection will fit into the general framework. The United Kingdom, as a member of the European Community and EURATOM, is bound to implement the Euratom Directive on radiological protection within the next few years. The latest draft of the Directive takes account of the recommendations of ICRP-26 and further, a recent draft of the revised IAEA Basic Safety Standards is a composite of both the Directive and ICRP-26. Thus, the effect of embodying the principles of the Directive is to embody the principles of ICRP-26 and the Basic Safety Standards. Some of the problems which have been met are described and in particular there is discussion of the problems arising from the incorporation of the three ICRP-26 facets of dose control, namely justification, optimization and limitation, into a legislative package. The UK system of evolving safety legislation now requires considerable participation by all the parties affected (or by their representatives). This paper indicates that the involvement of persons affected, coupled with a legislative package which consists of a hierarchy of (a) regulations; (b) codes of practice; and (c) guidance notes, will result in the fundamental principles of ICRP-26 being incorporated into UK legislation in a totally acceptable way. (author)

  11. Parametric study of a thorium model

    International Nuclear Information System (INIS)

    Lourenco, M.C.; Lipsztein, J.L.; Szwarcwald, C.L.

    2002-01-01

    Models for radionuclides distribution in the human body and dosimetry involve assumptions on the biokinetic behavior of the material among compartments representing organs and tissues in the body. One of the most important problem in biokinetic modeling is the assignment of transfer coefficients and biological half-lives to body compartments. In Brazil there are many areas of high natural radioactivity, where the population is chronically exposed to radionuclides of the thorium series. The uncertainties of the thorium biokinetic model are a major cause of uncertainty in the estimates of the committed dose equivalent of the population living in high background areas. The purpose of this study is to discuss the variability in the thorium activities accumulated in the body compartments in relation to the variations in the transfer coefficients and compartments biological half-lives of a thorium-recycling model for continuous exposure. Multiple regression analysis methods were applied to analyze the results. (author)

  12. Compared biokinetic and biological studies of chronic and acute inhalations of uranium compounds in the rat; Etudes biocinetique et biologique comparees d'inhalations chroniques et aigues de composes uraniferes chez le rat

    Energy Technology Data Exchange (ETDEWEB)

    Monleau, M

    2005-12-15

    Uranium is a natural, radioactive heavy metal, widely used in the nuclear industry in various chemical and isotopic forms. Its use in the fuel cycle involves the risk of radiological exposure for the workers, mainly via the inhalation of uranium particles. According to the workplace configuration, uranium contaminations can be acute or repeated, involve various chemical forms and different levels of enrichment, as well as involving one or several components. The dosimetric concepts and models available for workers' radiological protection, as well as most of the studies of the biological effects, correspond to acute exposure situations. Moreover the processes leading to pathological effects are little known in vivo. In this context, the main question is to know whether exposures due to repeated inhalation by rats induce the element kinetics and toxicity, which may be different from those observed after an acute exposure. In this study, comparison of the experimental and theoretical biokinetics of an insoluble uranium repeatedly inhaled over three weeks shows that a chronic contamination is correctly modelled, except for bone retention, by the sum of acute, successive and independent incorporations. Moreover, the kinetics of a soluble uranium inhaled irregularly can be modified by previous repeated exposure to an insoluble uranium. In certain cases therefore, exposure to uranium could modify its biokinetics during later exposures. At a toxicological level, the study demonstrates that the uranium particles inhaled repeatedly induce behavioural disruptions and genotoxic effects resulting in various sorts of DNA damage, in several cell types and certainly depending on the quantity inhaled. Exposures involving several uraniferous components produce a synergy effect. Moreover, repeated inhalations worsen the genotoxic effects in comparison to an acute exposure. This work demonstrates the importance of not ignoring the effects of the repetition of uranium exposure. It

  13. Compared biokinetic and biological studies of chronic and acute inhalations of uranium compounds in the rat; Etudes biocinetique et biologique comparees d'inhalations chroniques et aigues de composes uraniferes chez le rat

    Energy Technology Data Exchange (ETDEWEB)

    Monleau, M

    2005-12-15

    Uranium is a natural, radioactive heavy metal, widely used in the nuclear industry in various chemical and isotopic forms. Its use in the fuel cycle involves the risk of radiological exposure for the workers, mainly via the inhalation of uranium particles. According to the workplace configuration, uranium contaminations can be acute or repeated, involve various chemical forms and different levels of enrichment, as well as involving one or several components. The dosimetric concepts and models available for workers' radiological protection, as well as most of the studies of the biological effects, correspond to acute exposure situations. Moreover the processes leading to pathological effects are little known in vivo. In this context, the main question is to know whether exposures due to repeated inhalation by rats induce the element kinetics and toxicity, which may be different from those observed after an acute exposure. In this study, comparison of the experimental and theoretical biokinetics of an insoluble uranium repeatedly inhaled over three weeks shows that a chronic contamination is correctly modelled, except for bone retention, by the sum of acute, successive and independent incorporations. Moreover, the kinetics of a soluble uranium inhaled irregularly can be modified by previous repeated exposure to an insoluble uranium. In certain cases therefore, exposure to uranium could modify its biokinetics during later exposures. At a toxicological level, the study demonstrates that the uranium particles inhaled repeatedly induce behavioural disruptions and genotoxic effects resulting in various sorts of DNA damage, in several cell types and certainly depending on the quantity inhaled. Exposures involving several uraniferous components produce a synergy effect. Moreover, repeated inhalations worsen the genotoxic effects in comparison to an acute exposure. This work demonstrates the importance of not ignoring the effects of the repetition of uranium exposure

  14. Methodology for the application of the I.C.R.P. optimization principle. The case of radioactive effluent control systems in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Lochard, Jacques; Maccia, Carlo; Pages, Pierre.

    1980-10-01

    This report aims at giving a detailed methodology to help improving decision making process in the radiation protection field, according to the optimization principle of the ICRP. A model was elaborated in such a general way as to be applicable for public as well as occupational radiation protection. The main steps of the model are: 1) the assessment of collective doses and residual health effects associated with a given radiation protection level, 2) the determination of protection costs, 3) the decision analysis: cost effectiveness and cost-benefit analysis. The model is implemented by means of a conversational computer program. This methodology is exemplified with the problem of the choice of waste treatment systems for the PWRs in France. The public impact of radioactive releases is evaluated for the population within 100 km around the site. The main results are presented for two existing sites of the French nuclear program [fr

  15. Practical implications of ICRP26 for recording and regulation of radiation exposure

    International Nuclear Information System (INIS)

    Ward, F.A.; Woodhouse, J.A.; Kennedy, J.W.

    1982-01-01

    The paper compares the system of dose limitation recommended in ICRP Publication 26 with that based upon previous ICRP Publications upon which the current United Kingdom Legislation is based. Particular attention is given to the implication of the place given to the concept of committed dose in the system of dose limitation. The present dosimetry procedures in use within British Nuclear Fuels Ltd are outlined together with their practical limitations, and attention is drawn to the particular technical problems associated with plutonium uptake assessments. A number of other practical issues are identified such as dose records and the supplementary dose information which would require recording and the need for the re-education of employees in the new control concepts. A proposal is presented for internal dose recording based initially upon environmental measurements but subject to subsequent modification by preferred assessments based upon in-vivo and urinalysis techniques. Finally an assessment and, where appropriate, suspension procedure is proposed to control long-term exposure arising from plutonium intakes based upon an averaging period of 15 years. (author)

  16. Application of the ICRP approach for radiological protection of the marine environment in generic impact assessments

    Energy Technology Data Exchange (ETDEWEB)

    Kliaus, Viktoryia [Republican Scientific-Practical Centre of Hygiene, Laboratory of Radiation Safety, Akademicheskaya str. 8, 220012, Minsk (Belarus); Telleria, Diego M. [IAEA-Assessment and Management of Environmental Releases Unit, Wagramer Strasse 5 - PO Box 100, A-1400, Vienna (Austria); Cabianca, Tiberio [Centre for Radiation, Chemical and Environmental Hazards, PHE, Chilton, Didcot, Oxfordshire OX11 0RQ (United Kingdom)

    2014-07-01

    This paper presents a way to use the ICRP approach for protection of the environment in generic assessments of the radiological impact of radioactive releases to the marine environment. Generic assessments of radiological impact to the environment are needed in certain circumstances, for example, when input data are limited or when the likely radiological consequences are expected to be not significant. Under these circumstances the effort in performing the assessment must be commensurate with the potential radiological consequences. The generic assessment described in this paper is a simple tool which provides reasonable and cautious results and is applicable to multiple exposure scenarios associated with the assessment of the radiological impact of releases to the marine the environment. This generic assessment can be also used to provide preliminary results which, when compared to radiological criteria, may determine the need of further specific assessments. The ICRP based its approach to protect the environment in the definition of a set of reference animals and plants and the use of related radiological criteria, in the form of derived consideration reference levels. The paper discusses selection and exposure conditions of the reference animals and plants, methods to estimate their doses and the use of the radiological criteria, for the purpose of a generic assessment. The IAEA is elaborating applications of these generic impact assessments presented in the paper to be included in international guidance under development. (authors)

  17. Monte Carlo based water/medium stopping-power ratios for various ICRP and ICRU tissues

    International Nuclear Information System (INIS)

    Fernandez-Varea, Jose M; Carrasco, Pablo; Panettieri, Vanessa; Brualla, Lorenzo

    2007-01-01

    Water/medium stopping-power ratios, s w,m , have been calculated for several ICRP and ICRU tissues, namely adipose tissue, brain, cortical bone, liver, lung (deflated and inflated) and spongiosa. The considered clinical beams were 6 and 18 MV x-rays and the field size was 10 x 10 cm 2 . Fluence distributions were scored at a depth of 10 cm using the Monte Carlo code PENELOPE. The collision stopping powers for the studied tissues were evaluated employing the formalism of ICRU Report 37 (1984 Stopping Powers for Electrons and Positrons (Bethesda, MD: ICRU)). The Bragg-Gray values of s w,m calculated with these ingredients range from about 0.98 (adipose tissue) to nearly 1.14 (cortical bone), displaying a rather small variation with beam quality. Excellent agreement, to within 0.1%, is found with stopping-power ratios reported by Siebers et al (2000a Phys. Med. Biol. 45 983-95) for cortical bone, inflated lung and spongiosa. In the case of cortical bone, s w,m changes approximately 2% when either ICRP or ICRU compositions are adopted, whereas the stopping-power ratios of lung, brain and adipose tissue are less sensitive to the selected composition. The mass density of lung also influences the calculated values of s w,m , reducing them by around 1% (6 MV) and 2% (18 MV) when going from deflated to inflated lung

  18. ICRP Publication 138: Ethical Foundations of the System of Radiological Protection.

    Science.gov (United States)

    Cho, K-W; Cantone, M-C; Kurihara-Saio, C; Le Guen, B; Martinez, N; Oughton, D; Schneider, T; Toohey, R; ZöLzer, F

    2018-02-01

    Despite a longstanding recognition that radiological protection is not only a matter of science, but also ethics, ICRP publications have rarely addressed the ethical foundations of the system of radiological protection explicitly. The purpose of this publication is to describe how the Commission has relied on ethical values, either intentionally or indirectly, in developing the system of radiological protection with the objective of presenting a coherent view of how ethics is part of this system. In so doing, it helps to clarify the inherent value judgements made in achieving the aim of the radiological protection system as underlined by the Commission in Publication 103. Although primarily addressed to the radiological protection community, this publication is also intended to address authorities, operators, workers, medical professionals, patients, the public, and its representatives (e.g. NGOs) acting in the interest of the protection of people and the environment. This publication provides the key steps concerning the scientific, ethical, and practical evolutions of the system of radiological protection since the first ICRP publication in 1928. It then describes the four core ethical values underpinning the present system: beneficence/ non-maleficence, prudence, justice, and dignity. It also discusses how these core ethical values relate to the principles of radiological protection, namely justification, optimisation, and limitation. The publication finally addresses key procedural values that are required for the practical implementation of the system, focusing on accountability, transparency, and inclusiveness. The Commission sees this publication as a founding document to be elaborated further in different situations and circumstances.

  19. Application of the ICRP recommendations in medical radiation practice and in medical monitoring of workers

    International Nuclear Information System (INIS)

    Lafontaine, A.

    1979-01-01

    Medical exposure in connection with an existing or suspected illness may be made subject to the ICRP principles, but it must be realized that the dose limitation system cannot necessarily be applied when the individual at risk is the one benefiting from examination or treatment. Justification is the responsibility of the doctor prescribing the examination or treatment and/or of the person carrying it out. Optimization will be achieved by virtue of the rules imposed on doctors and by the requirements applicable to equipment and techniques. The same rules and requirements apply mutatis mutandis to check-ups, routine medical examinations, examinations for professional purposes, medico-legal examinations and medical research. In the last case ethical rules and criteria for the validity of the proposed research also need to be applied. Medical monitoring of workers must take the ICRP principles into account, but a qualified doctor should nevertheless be able to form his own judgement on the basis of his knowledge of different types of exposure (both to radiation and to other agents), to intervene in cases of accidental or planned exposure, and to gather data in order to evaluate the long-term effects and the consequences of occupational exposure in terms of doses to the public. Moreover, the doctor should inform the worker of his conclusions and recommendations. (author)

  20. Policy and technical matters for the application of ICRP 1977 recommendations to Japanese radiation protection regulations

    International Nuclear Information System (INIS)

    Hamada, Tatsuji

    1987-01-01

    Tens years has passed since 1977 when the ICRP recommendations were made, and the work of revising the Japanese radiation regulations in response to the recommendations is almost completed. The work has been conducted mainly by an elemental group established under the Radiation Council. The elemental group submitted the first interim report to the Council in 1980, which presented recommendations on the objectives of radiation protection, dose equivalent limits for the general public, facilities inspection and products testing, medical surveillance, etc. After making deliberations in response to studies by the ICRP working group, the elemental group compiled the second interim report in July 1981. Further studies were conducted and the final report was submitted to the Council in March 1983. The final report covered the definitions of such terms as 'dose equivalent', dose equivalent limit for workers, exposure dose in the event of emergency, dose equivalent limit for the general public, various standards for protection, classification of workers by working conditions, classification of work sites monitoring of exposure dose, and implementation of medical surveillance. After making deliberations, the Council submitted a report in 1986 to government agencies concerned, whose contents are almost the same as those of the above final report except for some amendments. (Nogami, K.)

  1. The implications of the new ICRP recommendations on the legislation community radiation protection

    International Nuclear Information System (INIS)

    Eriskat, H.

    1992-01-01

    One of the fundamental tasks attributed to the European Community by the Euratom Treaty is to establish uniform safety standards for the health protection of the general public and workers against the dangers of ionising radiation. Ever since 1959, when for the first time, following a proposal by the Commission, the Council of Ministers issued the Basic Safety Standards under form of a Directive, they were reviewed and amended on a regular basis taking into account to a large extent the recommendations of the International Commission on Radiological Protection (ICRP). The aim of the ongoing revision of the Basic Safety Standards Directives (80/836 EURATOM and 84/466 EURATOM) is to reinforce radiation protection thoughout the Community to assure the best possible protection of the workers and public. This partial revision of the basic safety standards needs careful interpretation of the ICRP recommendations, taking into account existing legislation in Member States and an evaluation of the applicability of such a revision in both implementation in legislation and in the daily practice of radiation protection. At the same time, the actual revision's impact on other community Directives in the area of radiation protection has to be considered and, if necessary, these Directives have to be brought in line with the modified Basic Safety Standards. Finally, this revision has to take into account as well the possible repercussion on radiation protection of the future single European Market in order to continue to assure the high level of protection obtained until now. (author)

  2. Radiation safety concerns for pregnant or breast feeding patients. The positions of the NCRP and the ICRP

    International Nuclear Information System (INIS)

    Meinhold, C.B.

    1997-01-01

    For many years, protecting the fetus has been a concern of the National Council on Radiation Protection and Measurements (NCRP) and the International Commission on Radiological Protection (ICRP). Early recommendations focused on the possibility of a wide variety of detrimental developmental effects while later recommendations focused on the potential for severe mental retardation and/or reduction in the intelligence quotient (I.Q.). The latest recommendations also note that the risk of cancer for the fetus is probably two to three times greater per Sv than in the adult. For all these reasons, the NCRP and the ICRP have provided guidance to physicians on taking all reasonable steps to ascertain whether any woman requiring a radiological or nuclear medicine procedure is pregnant or nursing a child. The NCRP and the ICRP also advise the clinician to postpone such procedures until after delivery or cessation of nursing, if possible

  3. Radiation safety concerns for pregnant or breast feeding patients. The positions of the NCRP and the ICRP

    Energy Technology Data Exchange (ETDEWEB)

    Meinhold, C.B. [Brookhaven National Lab., Upton, NY (United States)

    1997-01-01

    For many years, protecting the fetus has been a concern of the National Council on Radiation Protection and Measurements (NCRP) and the International Commission on Radiological Protection (ICRP). Early recommendations focused on the possibility of a wide variety of detrimental developmental effects while later recommendations focused on the potential for severe mental retardation and/or reduction in the intelligence quotient (I.Q.). The latest recommendations also note that the risk of cancer for the fetus is probably two to three times greater per Sv than in the adult. For all these reasons, the NCRP and the ICRP have provided guidance to physicians on taking all reasonable steps to ascertain whether any woman requiring a radiological or nuclear medicine procedure is pregnant or nursing a child. The NCRP and the ICRP also advise the clinician to postpone such procedures until after delivery or cessation of nursing, if possible.

  4. Decision-making about chronic radiation exposure to the public. New recommendations from the ICRP

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, A.J. [Division of Radiation and Waste Safety, International Atomic Energy Agency, Vienna (Austria)

    2000-05-01

    The paper discusses decision-making in situations of chronic exposure within the framework of a forthcoming related ICRP report on the subject which has been produced by an ICRP Task Group chaired by the author. This ICRP report will provide guidance on the application of the ICRP System of Radiological Protection to prolonged exposure situations afflicting members of the public. It will address the general application of the System to the control of prolonged exposures resulting from practices and to the undertaking of interventions in prolonged exposure situations, and will provide recommendations on generic reference levels for such interventions. It will also consider some specific situations and will discuss a number of issues that have been of concern, namely: natural radiation sources that may give rise to high doses; the restoration and rehabilitation of sites where human activities involving radioactive substances have been carried out; the return to 'normality' following an accident that has released radioactive substances to the environment; and the global marketing of commodities for public consumption that contain relatively high levels of radioactive substances. Annexes will provide some examples of prolonged exposure situations and will discuss the radiological protection quantities, radiation-induced health effects and aspects of the System of Radiological Protection relevant to prolonged exposure. The quantitative recommendations for prolonged exposures provided in the report will be as follows: generic reference levels for intervention, in terms of existing annual doses, of < or approx. 100 mSv, above which intervention is almost always justifiable (situations for which the annual dose threshold for deterministic effects in relevant organs is exceeded will almost always require intervention), and of < or approx.10 mSv, below which intervention is not likely to be justifiable (and above which it may be necessary); intervention exemption

  5. Evaluation of the use of ICRP 60 dose conversion factors in a postclosure assessment of a deep geological disposal system

    International Nuclear Information System (INIS)

    Palattao, M.V.B.; Hajas, W.C.; Goodwin, B.W.

    1997-05-01

    An Environmental Impact Statement (EIS) of the concept for disposal of Canada's nuclear fuel waste was completed in 1994 and is currently under review by an independent Review Panel. This EIS included a postclosure assessment case study to estimate the annual effective dose equivalent in sieverts per year to members of the public; these estimates were obtained using dose conversion factors (DCFS) based on the 1977 recommendations of the International Commission on Radiation Protection (ICRP). However, in 1990 the ICRP revised these recommendations based on additional biological information and developments in radiation protection. This report describes a study of how the more recent recommendations of the ICRP would affect the results of the postclosure assessment case study presented in the EIS. The report includes a theoretical description of how DCFs are used and a comparison of results from computer simulations using the 1977 and the 1990 ICRP recommendations. In the EIS case study, which was based on the 1977 ICRP recommendations, the total dose rate to a member of the critical group is more than six orders of magnitude below the dose rate associated with the regulatory criterion for individual radiological risk. The total dose rate to 10 4 years is dominated by 129 I, with smaller contributions from 36 C1 and 14 C. If the 1990 ICRP recommendations were implemented, the total dose rate would be mostly affected by the new DCF for 129 I, and would increase by about 67%. Even with this increase, the total dose rate would still remain many orders of magnitude lower than the dose rate associated with the regulatory risk criterion. (author)

  6. Towards a coherent conceptual framework for emergency preparedness/response and rehabilitation - the application of the new ICRP recommendations given in ICRP 103

    International Nuclear Information System (INIS)

    Weiss, W.

    2009-01-01

    In the past, most emphasis in planning for and response to an emergency situation has been placed on selected protective measures in the early phase of an emergency to keep the doses received below levels where severe deterministic health effects can be excluded and/or where the risk of stochastic effects in the population is considered 'acceptable'. Less emphasis has been placed on the development of comprehensive protection strategies which include considerations of the consequences of all exposure pathways and all phases, e.g. long-term rehabilitation. In its new publication 103, ICRP proposed a coherent conceptual framework for protection in all types of exposure situations including 'emergency exposure situations' and 'existing exposure situations'. In the context of developing protection strategies for these exposure situations, the Commission recommends that national authorities set reference levels between, typically, 20 mSv and 100 mSv annual effective dose (emergency exposure situation) and 1 mSv and 20 mSv (existing exposure situation). In order to optimise protection strategies, it is necessary to identify the dominant exposure pathways, the timescales over which the dose will be received, and the effectiveness of available protection options. The characteristics of the development and implementation of such protection strategies is described.

  7. On the incorporation of biokinetic and mechanistic data in modeling for risk assessment

    NARCIS (Netherlands)

    Clewell, H.J.

    2007-01-01

    The goal of the studies described in this thesis was to foster the increased use of emerging scientific information and innovative methods in chemical risk assessments, in order to assure the protection of public health while limiting the economic and social consequences of over-regulation. The

  8. The translation of the new ICRP recommendations into practice: a new challenge for International Co-operation

    International Nuclear Information System (INIS)

    Ilari, O.; Gonzalez, A.; Boutrif, E.; Hanson, G.; Borras, C.

    1992-01-01

    The new ICRP recommendations have introduced several elements of novelty which may have a significant impact on the requirements and costs of radiation protection in Member countries. There is now a need for a conversion of the ICRP guidance into terms that are sufficiently practical and straightforward to facilitate their transfer into regulatory texts and operational practices at the national level. The paper discusses the strategy adopted for the revision of the Basic Safety Standards for Radiation Protection and highlights the main issues to be considered in this work.(author)

  9. Dose concepts and the achievability of protection for the disposal of long-lived solid waste according to ICRP

    International Nuclear Information System (INIS)

    Sugier, A.; Schneider, Th.

    2010-01-01

    Th. Schneider introduced the subject explaining that the main strength of the ICRP is to set up a unified protection system applicable to all types of exposure situations. In 2007, the ICRP issued ICRP 103 which formally replaces the previous recommendations that were issued in 1991 as ICRP 60. One of the major features of the new recommendations is the evolution from 'the previous process-based protection approach using practices and interventions to a situation-based approach applying the fundamental principles of protection to all controllable exposure situations' in a similar way. In the case of radioactive waste disposal, the long timescale to be dealt with led ICRP to publish the dedicated recommendations ICRP 81 (1999) based on ICRP 60. Th. Schneider presented then a series of issues raised by the radioactive waste management community, relating the recommendations of ICRP 81 to the new orientations provided by ICRP 103. Radiation detriment is a complex construction based on not directly measurable quantities such as equivalent and effective doses. Effective dose is a risk-related quantity and should not be used in assessing health effects on a specific individual. Dose and risk as well as the radiation detriment are still appropriate for long term evaluation even though there are uncertainties associated with the assessment of the dose. It would be a mistake to consider that the ICRP dosimetric quantities and the radiation detriment are not appropriate for long term evaluations, but their meaning must be understood. What is at stake is not to evaluate the level of health of a group of population in 10 6 years from now, but to estimate through a comparison (risk indicator associated with several options of protection at the design level of the repository) the level of protection achieved by a radioactive waste strategy. Current radiological protection criteria are a reasonable basis to assess the disposal strategy. They give a general appreciation of the

  10. ICRP path forward to the next recommendations. WNA (World Nuclear Association) preliminary views on the ICRP (International Commission on Radiological Protection) proposed profound changes to the current RP system and on continuing to build an international consensus towards an improved proposal

    International Nuclear Information System (INIS)

    Saint-Pierre, S.

    2006-01-01

    For several years, international policy on radiological protection has been under discussion with a view to a significant revision (recently delayed until 2006-2007). The focal point of this discussion has been an evolving draft proposal of the International Commission on Radiological Protection (ICRP). The ICRP's seminal role in its field is well-known. Generally, ICRP recommendations are translated into the international and national standards that govern industry operations worldwide. (author)

  11. Recommendations of the publication ICRP-84: pregnancy and medical irradiation for radiotherapy

    International Nuclear Information System (INIS)

    Rojkind, Roberto H.

    2001-01-01

    The malignant diseases in the pregnant women are relatively not much frequent, and some of these cases can be applied radiotherapy for the tumours treatment. The doses involved in the radio therapeutics procedures can produce a significant foetal damage, and the patient or worker has the right to know the magnitude and the potential effects that can be results of the radiotherapy exposure. The publication ICRP-84 of the International Commission of Radiological Protection approaches specific aspect of the individual justification of the medical exposure of the patient pregnant woman, and recommends work procedures for the dose optimization that will receive the fetus. In this communication is commented the content of the radiotherapy section of the mentioned publication

  12. Release of patients after radionuclide therapy. With contributions from the [International Commission on Radiological Protection] ICRP

    International Nuclear Information System (INIS)

    2009-01-01

    The use of unsealed radiopharmaceuticals for treatment of disease is common practice worldwide. This approach was widely employed some years ago and, following a decline, there has recently been a resurgence of interest in it. The combination of newly accessible radionuclides, improved labelling technology and developments in biotechnology has resulted in more enthusiasm and a wider range of applications for this form of therapy. Radionuclide treatments are performed with either the patient admitted to hospital or as an outpatient only. The criteria to determine which approach is best vary considerably, and are not always closely linked with the well established standards of radiation protection practice. Safety issues for the patient, their family, associated carers, staff and the general public arise with either approach. The potential risks are from both external irradiation and contamination. The International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS) specify the dose constraints and limits for all of these groups, and their more general provisions with respect to the as low as reasonably achievable principle and justification also apply. One way of managing exposures of the various groups is to control when patients are released from hospital. While they are in hospital, it is relatively easy to control exposure. Once they have returned to their family in the community, they must be advised on how to restrict the exposure of those people that they will come into contact with. Until recently, the International Commission on Radiological Protection (ICRP) did not provide specific advice in this area, and relied on the application of dose limits and constraints. However, regulators in some countries took a prescriptive approach, often using estimates of retained activity as a release criterion. These only loosely relate to dose limits. This publication attempts to bring newly available advice

  13. Implementations of new ICRP recommendations in the operation of the spanish nuclear power plants

    International Nuclear Information System (INIS)

    Sollet Sanudo, E.

    1992-01-01

    The International Commission on Radiological Protection (ICRP) has recently reviewed its basic recommendations including a strong reduction in the annual dose limit for exposed workers to ionising radiation, New dose limits in occupational exposure will have a direct impact in all activities concerning radiation exposure. The likely effect on the nuclear industry of a major decrease in exposure limits is discussed and the approaches taken to minimize radiation exposures is presented. Changes to the philosophy of radiation protection that would allow accommodation of lower limits are suggested. Improvements to dose tracking and dose monitoring techniques are discussed. Methods for reducing existing radiation fields and for preventing future radiation field increases are briefly reviewed. Additionally, actions taken in the Spanish nuclear industry to identify collective groups and tasks potentially affected by the reduced new recommended limits are presented. (author)

  14. Implications of the new ICRP recommendations for the management of post-accidental situations

    International Nuclear Information System (INIS)

    Coulon, R.; Kelly, N.

    1992-01-01

    From an analysis of the new ICRP recommendations in relation with the management of post-accidental situations, there appears that no significant changes in comparison with the present situation will result. The consequences are rather an attempt to further clarify and justify the way in which the system of radiation protection applies to such situations, corresponding clearly to 'intervention situation', especially: - the use of the justification and optimization principles for the decision of implementing a protective measure. - the use of 'intervention levels' instead of individual 'dose limits'. In addition, and although there is no link at all between the dose limits applying in 'practices situations' and the intervention levels, the increase of risk factors could also result in a change of intervention levels. (author)

  15. Optimisation and decisions in radiological protection - A report of the work of an ICRP task group

    International Nuclear Information System (INIS)

    Webb, G.A.M.

    1988-01-01

    In 1984 the International Commission on Radiological Protection (ICRP) established a Task Group of Committee 4 to produce a report on methods for optimisation of protection other than cost-benefit analysis. As the work of the task group progressed it became clear that it would be more useful to produce a report on the entire field of application of optimisation, mainly to show how the various techniques including cost-benefit analysis could be applied appropriately to problems at different levels of complexity. This paper reports on the main ideas that have been developed by the task group. It must be emphasised that these ideas have not been endorsed by Committee 4 nor approved by the Commission so they can not yet be considered as recommendations

  16. Basic anatomical and physiological data for use in radiological protection: reference values ICRP Publication 89

    International Nuclear Information System (INIS)

    Valentin, J.

    2002-01-01

    This report presents detailed information on age- and gender-related differences in the anatomical and physiological characteristics of reference individuals. These reference values provide needed input to prospective dosimetry calculations for radiation protection purposes for both workers and members of the general public. The purpose of this report is to consolidate and unify in one publication, important new information on reference anatomical and physiological values that has become available since Publication 23 was published by the ICRP in 1975. There are two aspects of this work. The first is to revise and extend the information in Publication 23 as appropriate. The second is to provide additional information on individual variation among grossly normal individuals resulting from differences in age, gender, race, or other factors. This publication collects, unifies, and expands the updated ICRP reference values for the purpose of providing a comprehensive and consistent set of age- and gender-specific reference values for anatomical and physiological features of the human body pertinent to radiation dosimetry. The reference values given in this report are based on: (a) anatomical and physiological information not published before by the ICRP; (b) recent ICRP publications containing reference value information; and (c) information in Publication 23 that is still considered valid and appropriate for radiation protection purposes. Moving from the past emphasis on 'Reference Man', the new report presents a series of reference values for both male and female subjects of six different ages: newborn, 1 year, 5 years, 10 years, 15 years, and adult. In selecting reference values, the Commission has used data on Western Europeans and North Americans because these populations have been well studied with respect to anatomy, body composition, and physiology. When appropriate, comparisons are made between the chosen reference values and data from several Asian

  17. Basic anatomical and physiological data for use in radiological protection: reference values ICRP Publication 89

    Energy Technology Data Exchange (ETDEWEB)

    Valentin, J

    2002-12-01

    This report presents detailed information on age- and gender-related differences in the anatomical and physiological characteristics of reference individuals. These reference values provide needed input to prospective dosimetry calculations for radiation protection purposes for both workers and members of the general public. The purpose of this report is to consolidate and unify in one publication, important new information on reference anatomical and physiological values that has become available since Publication 23 was published by the ICRP in 1975. There are two aspects of this work. The first is to revise and extend the information in Publication 23 as appropriate. The second is to provide additional information on individual variation among grossly normal individuals resulting from differences in age, gender, race, or other factors. This publication collects, unifies, and expands the updated ICRP reference values for the purpose of providing a comprehensive and consistent set of age- and gender-specific reference values for anatomical and physiological