WorldWideScience

Sample records for icosahedral zn-mg-dy quasicrystal

  1. Elastic properties of icosahedral and decagonal quasicrystals

    International Nuclear Information System (INIS)

    Chernikov, Mikhail A

    2005-01-01

    Problems associated with determining the symmetry properties of the elastic constant tensor of icosahedral and decagonal quasicrystals are reviewed. Notions of elastic isotropy and anisotropy are considered, and their relation to the components of the elastic constant tensor is discussed. The question is addressed of how to determine experimentally whether a system under study is elastically isotropic. Experimental results produced by resonant ultrasound spectroscopy of icosahedral Al-Li-Cu and decagonal Al-Ni-Co single quasicrystals are discussed in detail. (methodological notes)

  2. High-pressure x-ray diffraction of icosahedral Zr-Al-Ni-Cu-Ag quasicrystals

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Saksl, Karel; Rasmussen, Helge Kildahl

    2001-01-01

    temperature using synchrotron radiation. The icosahedral quasicrystal structure is retained up to the highest hydrostatic pressure used (approximately 28 GPa) and is reversible after decompression. The bulk modulus at zero pressure and its pressure derivative of the icosahedral Zr-Al-Ni-Cu-Ag quasicrystal......The effect of pressure on the structural stability of icosahedral Zr-Al-Ni-Cu-Ag quasicrystals forming from a Zr65Al7.5Ni10Cu7.5Ag10 metallic glass with a supercooled liquid region of 44 K has been investigated by in situ high-pressure angle-dispersive x-ray powder diffraction at ambient......-Al-Ni-Cu-Ag quasicrystals induced by pressure....

  3. Thin films on icosahedral AlPdMn quasicrystal

    Energy Technology Data Exchange (ETDEWEB)

    Longchamp, J.N.

    2007-07-01

    In this project, the oxidation at high temperature of the fivefold-symmetry surface of an icosahedral Al{sub 70}Pd{sub 20}M{sub 10} quasicrystal was principally investigated. The stoichiometry of the near-surface region was investigated by means of Auger electron spectroscopy and X-ray photoelectron spectroscopy and both confirmed the oxidation of only the Al atoms of the quasicrystalline substrate. The affinity of the two structures is illustrated by the CsCl-like AlPd domains observed, by means of secondary-electron imaging, after Ar{sup +}-sputtering of the quasicrystalline surface. In this project, we used the oxidized fivefold-symmetry surface of i-AlPdMn as substrate for the deposition of PbTe and CdTe. Diffraction patterns obtained from thin films of both materials exhibit, instead of the usual spots, diffraction rings. They are characteristics of nanocrystallites having a random azimuthal orientations but a well-defined polar orientation; the (001) face and the (111) face in case of PbTe and CdTe, respectively. From the diffraction patterns, average domain sizes of 35 Aa were deduced. Face-centered-cubic Al(111) domains with a similar average size are observed in this case. Angle-resolved photoemission spectroscopy investigations on the PbTe films were performed. We also performed angle-resolved photoemission spectroscopy measurements on Ag films deposited onto the fivefold-symmetry surface of icosahedral AlPdMn and onto the tenfold-symmetry surface of decagonal AlCoNi as model for confinement effects occurring due to the incompatible symmetries between the crystalline films and the quasicrystalline surfaces. By analyzing the Ag sp-derived quantum-well states, we assert that the interface with the quasiperiodic material constitutes an efficient barrier for electron propagation, due to lack of common point-group symmetries between Bloch-like and critical wave functions. Finally, the depositions of Si and Ge onto the fivefold-symmetry surface of icosahedral

  4. Stability of icosahedral quasicrystals in a simple model with two-length scales

    International Nuclear Information System (INIS)

    Jiang, Kai; Zhang, Pingwen; Shi, An-Chang

    2017-01-01

    The phase behaviour of a free energy functional with two length scales is examined by comparing the free energy of different candidate phases including three-dimensional icosahedral quasicrystals. Accurate free energy of the quasicrystals has been obtained using the recently developed projection method. The results reveal that the icosahedral quasicrystal and body-centred-cubic spherical phase are the stable ordered phases of the model. Furthermore, the difference between the results obtained from the projection method and the one-mode approximation has been analyzed in detail. The present study extends previous results on two-dimensional systems, demonstrating that the interactions between density waves at two length scales can stabilize two- and three-dimensional quasicrystals. (paper)

  5. Dynamic behaviour of the icosahedral Al–Pd–Mn quasicrystal with a Griffith crack

    International Nuclear Information System (INIS)

    Xiao-Fang, Wang; Ai-Yu, Zhu; Tian-You, Fan

    2009-01-01

    The dynamic response of an icosahedral Al–Pd–Mn quasicrystal with a Griffith crack to impact loading is investigated in this paper. The elastohydrodynamic model for the wave propagation and diffusion together with their interaction is adopted. Numerical results of stress, displacement and dynamic stress intensity factors are obtained by using the finite difference method. The effects of wave propagation, diffusion and phonon–phason coupling on the quasicrystal in the dynamic process are discussed in detail, where the phason dynamics is explored particularly. (condensed matter: structure, thermal and mechanical properties)

  6. On the low-temperature specific heat of icosahedral and decagonal quasicrystals

    International Nuclear Information System (INIS)

    Chernikov, M.A.

    2005-01-01

    Calorimetric experiments on icosahedral (Al-Re-Pd, Al-Mn-Pd) and decagonal (Al-Cu-Co, Al-Ni-Co) quasicrystals are described. For quasicrystals of both classes, the coefficient γ of the linear term to the specific heat falls into the range of 0.1-0.6 mJ/g-atom K 2 indicating a low density of energy states at Fermi level. For icosahedral Al-Mn-Pd, the cubic-in-temperature term to the specific heat is distinctly larger than the estimated contribution of long-wave acoustic excitations. On the contrary, the magnitude of the cubic-in-temperature term to the specific heat of decagonal Al-Ni-Co is in agreement,within the experimental accuracy, with the Debye acoustic contribution from the results of low-temperature measurements of the elastic modules [ru

  7. Mechanical alloying and self-propagating high-temperature synthesis of stable icosahedral quasicrystals

    International Nuclear Information System (INIS)

    Bokhonov, B.B.

    2008-01-01

    The phase evolution of the mechanically alloyed ternary 63%Al + 25%Cu + 12%Fe and 65%Al + 20%Cu + 15%Fe powder mixtures with milling time has been studied by X-ray diffraction method. It was found that an icosahedral quasicrystalline phase was formed directly during high-energy ball milling of the Al-Cu-Fe mixtures. The X-ray and scanning electron microscopic investigations demonstrated the possibility to use self-propagating high-temperature synthesis (SHS) in combination with preliminary mechanical activation for the synthesis of stable icosahedral quasicrystals. The typical morphology of the Al 63 Cu 25 Fe 12 icosahedral quasicrystals formed in the SHS process is a pentagonal dodecahedron with a size of 3-5 mm. The phase composition of the SHS products depends on the time of preliminary mechanical activation. The content of cubic intermetallic phase in SHS products increases with the time of preliminary mechanical activation of the 63%Al + 25%Cu + 12%Fe powder mixtures

  8. Very large thermal rectification in bulk composites consisting partly of icosahedral quasicrystals

    International Nuclear Information System (INIS)

    Takeuchi, Tsunehiro

    2014-01-01

    The bulk thermal rectifiers usable at a high temperature above 300 K were developed by making full use of the unusual electron thermal conductivity of icosahedral quasicrystals. The unusual electron thermal conductivity was caused by a synergy effect of quasiperiodicity and by a narrow pseudogap at the Fermi level. The rectification ratio, defined by TRR = |J large |/|J small |, reached vary large values exceeding 2.0. This significant thermal rectification would lead to new practical applications for the heat management. (paper)

  9. Dynamic stabilities of icosahedral-like clusters and their ability to form quasicrystals

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Xiaogang; Hamid, Ilyar; Duan, Haiming, E-mail: dhm@xju.edu.cn [College of Physics Science and Technology. Xinjiang University, Urumqi 830046 (China)

    2016-06-15

    The dynamic stabilities of the icosahedral-like clusters containing up to 2200 atoms are investigated for 15 metal elements. The clusters originate from five different initial structures (icosahedron, truncated decahedron, octahedron, closed-shell fragment of an HCP structure, and non-closed-shell fragment of an HCP structure). The obtained order of the dynamic stabilities of the icosahedral-like clusters can be assigned to three groups, from stronger to weaker, according to the size ranges involved: (Zr, Al, Ti) > (Cu, Fe, Co, Ni, Mg, Ag) > (Pb, Au, Pd, Pt, Rh, Ir), which correspond to the predicted formation ability of the quasicrystals. The differences of the sequences can be explained by analyzing the parameters of the Gupta-type many-body inter-atomic potentials.

  10. Positron annihilation studies of icosahedral quasicrystals and their approximants in the Al-Cu-Ru-(Si) alloy systems

    International Nuclear Information System (INIS)

    Uchiyama, H; Takahashi, T; Arinuma, K; Sato, K; Kanazawa, I; Hamada, E; Suzuki, T; Kirihara, K; Kimura, K

    2004-01-01

    The positron lifetimes for the icosahedral quasicrystal Al 62.4 Cu 25.4 Ru 12.2 and its cubic approximants (1/ 1-Al 58 Cu 31.5 Ru 10.5 , 1/ 1-Al 68 Cu 7 Ru 17 Si 8 , and 1/0-Al 55 Cu 15 Ru 20 Si 10 ), two-detector coincident Doppler broadening for the icosahedral quasicrystal Al 62.4 Cu 25.4 Ru 12.2 and its 1/ 1-Al 68 Cu 7 Ru 17 Si 8 cubic approximant, and the Doppler broadening obtained by making use of a slow positron beam for the 1/ 1-Al 58 Cu 31.5 Ru 10.5 cubic approximant have been measured. Structurally intrinsic trapping sites giving rise to saturation trapping were detected by lifetime measurements. The chemical environments of the trapping sites in the icosahedral quasicrystal Al 62.4 Cu 25.4 Ru 12.2 and the 1/ 1-Al 68 Cu 7 Ru 17 Si 8 cubic approximant were determined by coincident Doppler broadening techniques to be dominantly surrounded by Al atoms. The positron diffusion length in the 1/ 1-Al 58 Cu 31.5 Ru 10.5 cubic approximant derived from the measured S parameter measured by means of a slow positron beam was ∼ 180 A, which is clearly too short, probably due to the high concentration of trapping sites as described above. The atomic structures of the icosahedral quasicrystal Al 62.4 Cu 25.4 Ru 12.2 and its variety of approximants are discussed and compared to the present proposed model

  11. Phonons in models for icosahedral quasicrystals: low frequency behaviour an inelastic scattering properties

    International Nuclear Information System (INIS)

    Los, J.; Janssen, T.; Gaehler, F.

    1993-01-01

    A detailed study of the low frequency behaviour of the phonon spectrum for 3-dimensional tiling models of icosahedral quasicrystals is presented, in commensurate approximations with up to 10336 atoms per unit cell. The scaling behaviour of the lowest phonon branches shows that the widths of the gaps relative to the bandwidths vanish in the low frequency limit. The density of states at low frequencies is calculated by Brillouin zone integration, using either local linear or local quadratic interpolation of the branch surface. For perfect approximants it appears that there is a deviation from the normal ω 2 -behaviour already at relatively low frequencies, in the form of pseudogaps. Also randomized approximants are considered, and it turns out that the pseudogaps in the density of states are flattened by randomization. When approaching the quasiperiodic limit, the dispersion of the acoustic branches becomes more and more isotropic, and the two transversal sound velocities tend to the same value. The dynamical structure factor is determined for several approximants, and it is shown that the linearity and the isotropy of the dispersion are extended far beyond the range of the acoustic branches inside the Brillouin zone. A sharply peaked response is observed at low frequencies, and broadening at higher frequencies. To obtain these results, an efficient algorithm based on Lanczos tridiagonalisation is used. (orig.)

  12. Atomic structure and phason modes of the Sc–Zn icosahedral quasicrystal

    Directory of Open Access Journals (Sweden)

    Tsunetomo Yamada

    2016-07-01

    Full Text Available The detailed atomic structure of the binary icosahedral (i ScZn7.33 quasicrystal has been investigated by means of high-resolution synchrotron single-crystal X-ray diffraction and absolute scale measurements of diffuse scattering. The average atomic structure has been solved using the measured Bragg intensity data based on a six-dimensional model that is isostructural to the i-YbCd5.7 one. The structure is described with a quasiperiodic packing of large Tsai-type rhombic triacontahedron clusters and double Friauf polyhedra (DFP, both resulting from a close-packing of a large (Sc and a small (Zn atom. The difference in chemical composition between i-ScZn7.33 and i-YbCd5.7 was found to lie in the icosahedron shell and the DFP where in i-ScZn7.33 chemical disorder occurs on the large atom sites, which induces a significant distortion to the structure units. The intensity in reciprocal space displays a substantial amount of diffuse scattering with anisotropic distribution, located around the strong Bragg peaks, that can be fully interpreted as resulting from phason fluctuations, with a ratio of the phason elastic constants K2/K1 = −0.53, i.e. close to a threefold instability limit. This induces a relatively large perpendicular (or phason Debye–Waller factor, which explains the vanishing of `high-Qperp' reflections.

  13. Large-scale molecular dynamics simulations of shock waves in Laves crystals and icosahedral quasicrystals

    International Nuclear Information System (INIS)

    Roth, Johannes

    2002-01-01

    Quasicrystals and ordinary crystals both possess long-range translational order. But quasicrystals are aperiodic since their symmetry is non-crystallographic. The aim of this project is to study the behavior of shock waves in periodic and aperiodic structures and to compare the results. The expectation is that new types of defects are generated in the aperiodic materials. The materials studied are two models of (AlCu)Li quasicrystals and the C15 Laves phase, a low-order approximant of the quasicrystals. An elastic wave is found in the simulations up to a piston velocity of about up < 0.25 cl. Between 0.5 < up/cl < 0.5 the slope of elastic wave velocity slows down, and a new plastic wave is observed. Extended defect are generated, but no simple two-dimensional walls. The defect bands have finite width and a disordered structure. If the crystal is quenched a polycrystalline phase is obtained. For the quasicrystal the transformation is more complex since ring processes occur in the elastic regime already. Starting at about up < 0.5 cl a single plastic shock wave is observed. In this range all structures are destroyed completely

  14. Quasicrystals

    International Nuclear Information System (INIS)

    Steurer, W.

    1996-01-01

    Quasicrystals are new materials with strictly defined quasiperiodic atomic long-range order. One of their most striking features is their scaling symmetry (self-similarity) in direct and reciprocal space. The quasiperiodic order gives rise to a new type of low-energy excitations, the so-called phason modes which are related to well-defined atomic jumps. The open problems connected with the research on quasicrystals and the role of neutron scattering in their solution is discussed. (author) 13 figs., 24 refs

  15. Quasicrystals

    Energy Technology Data Exchange (ETDEWEB)

    Steurer, W [ETH Zurich, Lab. of Crystallography, Zurich (Switzerland)

    1996-11-01

    Quasicrystals are new materials with strictly defined quasiperiodic atomic long-range order. One of their most striking features is their scaling symmetry (self-similarity) in direct and reciprocal space. The quasiperiodic order gives rise to a new type of low-energy excitations, the so-called phason modes which are related to well-defined atomic jumps. The open problems connected with the research on quasicrystals and the role of neutron scattering in their solution is discussed. (author) 13 figs., 24 refs.

  16. Antiferromagnetic correlations in icosahedral R-Mg-Zn quasicrystals (R rare earth)

    Energy Technology Data Exchange (ETDEWEB)

    Charrier, B; Schmitt, D [Centre National de la Recherche Scientifique (CNRS), 38 - Grenoble (France); Ouladdiaf, B [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    Powder neutron-diffraction experiments performed on R-Mg-Zn quasicrystals have shown for the first time the existence of magnetic ordering of the rare earth in these systems at low temperature (T{sub c} {<=} 6.5 K depending on the rare earth). Both narrow and broad magnetic diffraction peaks have been observed showing the presence of two different scales of magnetic correlations. (author). 3 refs.

  17. Formation of Al70Cu20Fe10 icosahedral quasicrystal by mechanically alloyed method

    International Nuclear Information System (INIS)

    Yin Shilong; Bian Qing; Qian Liying; Zhang Aimei

    2007-01-01

    The structural evolutions of the mechanically alloyed ternary Al 70 Cu 20 Fe 10 powders with the milling time and the annealing treatment have been studied by X-ray diffraction (XRD), transmission electronic microscopy (TEM) and X-ray absorption fine-structure spectroscopy (XAFS) techniques. Results show that an Al 2 Cu compound forms with short-time milling, while a Cu 9 Al 4 compound forms with long-time milling. Fe can react with Al-Cu alloy by annealing treatment. Al 7 Cu 2 Fe compound with tetragonal structure or Al (Cu, Fe) solid solution with cubic structure may form at lower temperature, while a quasicrystal phase of Al 65 Cu 20 Fe 15 alloy may form at higher temperature

  18. The local atomic quasicrystal structure of the icosahedral Mg25Y11Zn64 alloy

    International Nuclear Information System (INIS)

    Bruehne, S; Uhrig, E; Gross, C; Assmus, W; Masadeh, A S; Billinge, S J L

    2005-01-01

    A local and medium range atomic structure model for the face centred icosahedral (fci) Mg 25 Y 11 Zn 64 alloy has been established in a sphere of r = 27 A. The model was refined by least squares techniques using the atomic pair distribution (PDF) function obtained from synchrotron powder diffraction. Three hierarchies of the atomic arrangement can be found: (i) five types of local coordination polyhedra for the single atoms, four of which are of Frank-Kasper type. In turn, they (ii) form a three-shell (Bergman) cluster containing 104 atoms, which is condensed sharing its outer shell with its neighbouring clusters, and (iii) a cluster connecting scheme corresponding to a three-dimensional tiling leaving space for a few glue atoms. Inside adjacent clusters, Y 8 cubes are tilted with respect to each other and thus allow for overall icosahedral symmetry. It is shown that the title compound is essentially isomorphic to its holmium analogue. Therefore, fci-Mg-Y-Zn can be seen as the representative structure type for the other rare earth analogues fci-Mg-Zn-RE (RE = Dy, Er, Ho, Tb) reported in the literature

  19. Scanning Tunneling Microscopy Studies of Surface Structures of Icosahedral Al-Cu-Fe Quasicrystals

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Tanhong [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    Three papers are included in this dissertation. The first paper: ''Structural aspects of the fivefold quasicrystalline Al-Cu-Fe surface from STM and dynamical LEED studies'', is in press with ''Surface Science''. The second paper: ''An STM study of the atomic structure of the icosahedral Al-Cu-Fe fivefold surface'' is submitted to ''Physical Review B, Rapid Communication''. The third paper: ''Pseudomorphic starfish: arrangement of extrinsic metal atoms on a quasicrystalline substrate'' is submitted to ''Nature''. Following the third paper are general conclusions and appendices that document the published paper ''Structural aspects of the three-fold surface of icosahedral Al-Pd-Mn'' (appearing in volume 461, issue 1-3 of ''Surface Science'' on page L521-L527, 2000), the design as well as the specifications of the aluminum evaporator used in the aluminum deposition study in this dissertation, an extended discussion of the aluminum deposition on the quasicrystalline surface, and the STM database.

  20. Elastic limit at macroscopic deformation of icosahedral Al-Pd-Mn single quasicrystals

    International Nuclear Information System (INIS)

    Ledig, L.; Bartsch, M.; Messerschmidt, U.

    2006-01-01

    Al 70.5 Pd 21 Mn 8.5 single quasicrystals were plastically deformed between 482 and 821 deg. C. The strain rate sensitivity of the flow stress was measured by stress relaxation tests. At several temperatures, the dislocation structures were imaged by diffraction contrast in a high-voltage electron microscope for determining the dislocation densities. At all temperatures, the plastic deformation starts with a range of very high work-hardening. The transition point between almost elastic and elastic-plastic deformation is called the elastic limit. At low temperatures, the deformation was stopped at about 1.5 GPa to prevent fracture. Above about 580 deg. C, the stress-strain curves bend down and show a yield point effect followed by a range of almost steady state deformation. At low temperatures, the elastic limit is much lower than the steady state flow stress or the maximum stresses reached without fracture. The activation parameters are different for the elastic limit, the range of high work-hardening and steady state deformation. The flow stresses are interpreted by the stress necessary to move individual dislocations and the athermal component due to the elastic interaction between dislocations. At low temperatures, a further component is necessary to explain the very high flow stresses reached by work-hardening

  1. Investigation of the surface terminations of icosahedral AlPdMn quasicrystal based on a modified non-spherical model

    International Nuclear Information System (INIS)

    Yu Fengmei; Zou Huamin; Wang Jianbo; Wang Renhui

    2004-01-01

    The atomic positions are obtained from a modified non-spherical model of icosahedral AlPdMn quasicrystal (Fang et al 2003 J. Phys.: Condens. Matter 15 4947) by the cut method. The four-shell pseudo-Mackay clusters (PMCs) were searched for in a box of 400 A x 400 A x 400 A. The results show that the number of atoms in the fourth shell, an icosidodecahedron, of the pseudo-Mackay cluster can vary from 15 to 30 because of the cluster overlap, and about 99.96% of the total atoms are included in such incomplete pseudo-Mackay clusters. The characteristics of the atom distribution in the planes perpendicular to a fivefold axis indicate that the planes, which are 1.56 A apart from their neighbouring planes, are expected to be the terminal surfaces. If one such a plane and its closest neighbouring plane, between which the spacing is 0.48 A, are considered as a thin layer or a corrugated surface, these layers are also the layers with the maximum density. The pair of corrugated surfaces that are 1.56 A apart have almost identical chemical composition. These planes form terraces that follow the rule of the Fibonacci sequence with two step heights, 6.60 and 4.08 A. On the corrugated surfaces perpendicular to a fivefold axis the pentagonal holes arise from the interspaces of adjacent incomplete PMCs. For the atomic planes normal to a twofold axis, the planes with spacing of 1.48 A from their adjacent planes might be expected to be the terminal surfaces, which form terraces with step heights of 6.28 and 3.88 A following the rule of the Fibonacci sequence. For the atomic planes normal to a threefold axis, the planes with spacing of 0.86 A from their adjacent planes might be expected to be the terminal surfaces. No similar results were found for the atomic layers perpendicular to a pseudo-twofold axis

  2. Scanning tuneeling microscopy studies of fivefold surfaces of icosahedral Al-Pd-Mn quasicrystals and of thin silver films on those surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Unal, Baris [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    The present work in this dissertation mainly focuses on the clean fivefold surfaces of i-Al-Pd-Mn quasicrystals as well as the nucleation and growth of Ag films on these surfaces. In addition, Ag film growth on NiAl(110) has been explored in the frame of this dissertation. First, we have investigated the equilibration of a fivefold surface of icosahedral Al-Pd-Mn quasicrystal at 900-915 K and 925-950 K, using Omicron variable temperature scanning tunneling microscope (STM). Annealing at low temperatures resulted in many voids on some terraces while the others were almost void-free. After annealing at 925-950K, void-rich terraces became much rarer. Our STM images suggest that through growth and coalescence of the voids, a different termination becomes exposed on host terraces. All of these observations in our study indicate that even after the quasicrystalline terrace-step structure appears, it evolves with time and temperature. More specifically, based on the STM observations, we conclude that during the annealing a wide range of energetically similar layers nucleate as surface terminations, however, with increasing temperature (and time) this distribution gets narrower via elimination of the metastable void-rich terraces. Next, we have examined the bulk structural models of icosahedral Al-Pd-Mn quasicrystal in terms of the densities, compositions and interplanar spacings for the fivefold planes that might represent physical surface terminations. In our analyses, we mainly have focused on four deterministic models which have no partial or mixed occupancy but we have made some comparisons with an undeterministic model. We have compared the models with each other and also with the available experimental data including STM, LEED-IV, XPD and LEIS. In all deterministic models, there are two different families of layers (a pair of planes), and the nondeterministic model contains similar group of planes. These two families differ in terms of the chemical decoration of

  3. CHANNELING IN QUASI-CRYSTALS

    NARCIS (Netherlands)

    VANVOORTHUYSEN, EHD; SMULDERS, PJM; WERKMAN, RD; DEBOER, JL; VANSMAALEN, S

    Ion-beam channeling has been observed in quasicrystals. For 1 MeV He-4+ ions in icosahedral AlCuFe the maximum effect found is 36%. The full width at half maximum of the observed dips is 1.3-degrees. The effect persists up to great depths (> 200 nm), thus showing a high degree of ordering in this

  4. A study of a stable Al-Cu-Fe quasicrystal in solid and liquid state

    International Nuclear Information System (INIS)

    Chen Lifan; Chen Xishen

    1992-01-01

    A stable Al 65 Cu 20 Fe 15 quasicrystal with an icosahedral structure is studied in solid and liquid state. It is found that the icosahedral phase in Al 65 Cu 20 Fe 15 alloy does not grow directly from the pure liquid state, but rather forms between monoclinic Al 13 Fe 4 and residual liquid state at 865degC. The melting point of the Al 65 Cu 20 Fe 15 icosahedral quasicrystal occurs at 865degC and that of the Al 65 Cu 20 Fe 15 alloy occurs at 1008degC. Moreover, the monoclinic Al 13 Fe 4 is transformed into the icosahedral phase easily at the temperature of 845degC. The icosahedral quasicrystal in Al 65 Cu 20 Fe 15 alloy has a high thermal stability even at 950degC. Above 950degC, the icosahedral structure tends to an amorphous structure. (orig.)

  5. Extended icosahedral structures

    CERN Document Server

    Jaric, Marko V

    1989-01-01

    Extended Icosahedral Structures discusses the concepts about crystal structures with extended icosahedral symmetry. This book is organized into six chapters that focus on actual modeling of extended icosahedral crystal structures. This text first presents a tiling approach to the modeling of icosahedral quasiperiodic crystals. It then describes the models for icosahedral alloys based on random connections between icosahedral units, with particular emphasis on diffraction properties. Other chapters examine the glassy structures with only icosahedral orientational order and the extent of tra

  6. Inflation and wavelets for the icosahedral Danzer tiling

    International Nuclear Information System (INIS)

    Kramer, Peter; Andrle, Miroslav

    2004-01-01

    The distribution of atoms in quasi-crystals lacks periodicity and displays point symmetry associated with non-crystallographic modules. Often it can be described by quasi-periodic tilings on R 3 built from a finite number of prototiles. The modules and the canonical tilings of five-fold and icosahedral point symmetry admit inflation symmetry. In the simplest case of stone inflation, any prototile when scaled by the golden section number τ can be packed from unscaled prototiles. Observables supported on R 3 for quasi-crystals require symmetry-adapted function spaces. We construct wavelet bases on R 3 for the icosahedral Danzer tiling. The stone inflation of the four Danzer prototiles is given explicitly in terms of Euclidean group operations acting on R 3 . By acting with the unitary representations inverse to these operations on the characteristic functions of the prototiles, we recursively provide a full orthogonal wavelet basis of R 3 . It incorporates the icosahedral and inflation symmetry

  7. ION-BEAM CHANNELING IN A QUASI-CRYSTAL

    NARCIS (Netherlands)

    VANVOORTHUYSEN, EHD; SMULDERS, PJM; WERKMAN, RD; DEBOER, JL; VANSMAALEN, S

    1992-01-01

    We have observed ion-beam channeling in a quasicrystal. For 1-MeV He-4+ ions in icosahedral Al-Cu-Fe the maximum effect found is 36%. The full width at half maximum of the observed dips is 1.3-degrees. The effect persists up to great depths (> 200 nm), thus showing a high degree of ordering in this

  8. Quasiperiodic canonical-cell tiling with pseudo icosahedral symmetry

    Science.gov (United States)

    Fujita, Nobuhisa

    2017-10-01

    Icosahedral quasicrystals and their approximants are generally described as packing of icosahedral clusters. Experimental studies show that clusters in various approximants are orderly arranged, such that their centers are located at the nodes (or vertices) of a periodic tiling composed of four basic polyhedra called the canonical cells. This so called canonical-cell geometry is likely to serve as a common framework for modeling how clusters are arranged in approximants, while its applicability seems to extend naturally to icosahedral quasicrystals. To date, however, it has not been proved yet if the canonical cells can tile the space quasiperiodically, though we usually believe that clusters in icosahedral quasicrystals are arranged such that quasiperiodic long-range order as well as icosahedral point symmetry is maintained. In this paper, we report for the first time an iterative geometrical transformation of the canonical cells defining a so-called substitution rule, which we can use to generate a class of quasiperiodic canonical-cell tilings. Every single step of the transformation proceeds as follows: each cell is first enlarged by a magnification ratio of τ3 (τ = golden mean) and then subdivided into cells of the original size. Here, cells with an identical shape can be subdivided in several distinct manners depending on how their adjacent neighbors are arranged, and sixteen types of cells are identified in terms of unique subdivision. This class of quasiperiodic canonical-cell tilings presents the first realization of three-dimensional quasiperiodic tilings with fractal atomic surfaces. There are four distinct atomic surfaces associated with four sub-modules of the primitive icosahedral module, where a representative of the four submodules corresponds to the Σ = 4 coincidence site module of the icosahedral module. It follows that the present quasiperiodic tilings involve a kind of superlattice ordering that manifests itself in satellite peaks in the

  9. Locality constraints and 2D quasicrystals

    International Nuclear Information System (INIS)

    Socolar, J.E.S.

    1990-01-01

    The plausible assumption that long-range interactions between atoms are negligible in a quasicrystal leaks to the study of tilings that obey constraints on the local configurations of tiles. The theory of such constraints (called matching rules) for 2D quasicrystal tilings is reviewed here. Different types of matching rules are defined and examples of tilings obeying them are given where known. The role of tile decoration is discussed and is shown to be significant in at least two cases (octagonal and dodecagonal duals of periodic 4-grids and 6-grids). A new result is introduced: a constructive procedure is described for generating weak matching rules for tilings with N-fold symmetry, for any N that is either a prime number or twice a prime number. The physics associated with weak matching rules, results on local growth rules, and the case of icosahedral symmetry are all briefly discussed. (author). 29 refs, 4 figs

  10. Bronze-mean hexagonal quasicrystal

    Science.gov (United States)

    Dotera, Tomonari; Bekku, Shinichi; Ziherl, Primož

    2017-10-01

    The most striking feature of conventional quasicrystals is their non-traditional symmetry characterized by icosahedral, dodecagonal, decagonal or octagonal axes. The symmetry and the aperiodicity of these materials stem from an irrational ratio of two or more length scales controlling their structure, the best-known examples being the Penrose and the Ammann-Beenker tiling as two-dimensional models related to the golden and the silver mean, respectively. Surprisingly, no other metallic-mean tilings have been discovered so far. Here we propose a self-similar bronze-mean hexagonal pattern, which may be viewed as a projection of a higher-dimensional periodic lattice with a Koch-like snowflake projection window. We use numerical simulations to demonstrate that a disordered variant of this quasicrystal can be materialized in soft polymeric colloidal particles with a core-shell architecture. Moreover, by varying the geometry of the pattern we generate a continuous sequence of structures, which provide an alternative interpretation of quasicrystalline approximants observed in several metal-silicon alloys.

  11. SIMULATION OF ION-BEAM CHANNELING IN ICOSAHEDRAL AL63CU25FE12

    NARCIS (Netherlands)

    VANVOORTHUYSEN, EHD; SMULDERS, PJM; VANSMAALEN, S

    1993-01-01

    Monte Carlo simulations of channeling on the icosahedral quasicrystal Al63Cu25Fe12 were made, using an experimentally determined structure model for this phase. The channeling effect was found to be nearly as good as for a normal, periodic crystal. Dip widths are in agreement with experimental

  12. Nonlinear photonic quasicrystals

    International Nuclear Information System (INIS)

    Freedman, B.; Bartal, G.; Segev, M.; Lifshitz, R.; Christodoulides, D.; Fleischer, J.

    2005-01-01

    Full Text:Quasicrystals are structures with long-range order and no periodicity, whose unique structural and physical properties have intrigued scientists ever since their discovery and initial theoretical analysis more than two decades ago. The lack of periodicity excludes the use of well-established theoretical and experimental tools for the analysis of quasicrystals, including such notions as the Brillouin zone and Bloch theorem. Instead, the quasiperiodic atomic arrangement gives rise to unique properties such as a hierarchy of effective Brillouin (or Jones) zones, yielding a fractal-like band structure, and the existence of unique phason degrees of freedom. Generally, in atomic quasicrystals it is very difficult to directly observe the evolution of electronic wave-packets propagating through the structure, or the dynamics of the structure itself. Photonic quasicrystals, on the other hand, are macroscopic objects and hence their internal wave dynamics can be locally excited and directly imaged. Here, we employ optical induction to create 2D photonic quasicrystals, and explore wave transport phenomena in quasicrystals in ways that were impossible until now. We demonstrate linear tunneling-transport of light initiated at different crystal sites, and observe the formation of lattice solitons when the light is made sufficiently intense. We experiment with dynamical photonic quasicrystals, in which crystal sites interact with one another, and directly observe dislocation dynamics: creation, healing, and local structural rearrangement due to phason flips. Our experiments show that photonic quasicrystals are an excellent model system through which one can study the universal features of wave dynamics in quasiperiodic structures, that should apply not only to photonics, but also to other systems such as matter waves in quasiperiodic traps, generic pattern-forming systems as in parametrically-excited surface waves, liquid quasicrystals, as well as the more familiar

  13. On the origin of the giant magnetic moment of the Al-Mn quasicrystals

    Directory of Open Access Journals (Sweden)

    Bocharov P.V.

    2011-05-01

    Full Text Available Ab initio calculations of magnetic moments for icosahedral clusters contained in crystal structures Al10Mn3, Al5Co2, Al17Mn4 (Al13Cr4Si4-type fulfilled in the framework of Density Functional Theory. The AlMn cluster having the trigonal D3h symmetry with the triangle of Mn ions in the interior has the moment being equal to three magnetic moments of a single manganese ion (4.4 μB, the moment of the tetrahedral Td cluster with the Mn tetrahedron in the interior is equal approximately to twelve magnetic moments of the single manganese ion (15.5 μB. The magnetic moment of icosahedral Al-Co clusters having the same configuration is equal to zero. The magnetic moments of the rod assembled from the icosahedral clusters with the sequence Td D3h - Td was found to be 20.5 μB. This value permits to explain the giant magnetic moment of icosahedral and decagonal Al-Mn quasicrystals and gives the indirect evidence to the hierarchical model of the quasicrystals structure proposed by the authors recently. An arrangement of magnetic moment carriers in the interior of the aluminum shell of icosahedral clusters permits to suggest the interaction between contacting manganese ions as the main origin of the giant magnetic moment of the Al-Mn quasicrystals.

  14. Harmonic excitations in quasicrystals

    International Nuclear Information System (INIS)

    Luck, J.M.

    1986-03-01

    The harmonic excitations (phonons) of quasicrystals are studied in a simple one-dimensional model. The spectrum is a Cantor set, which exhibits selfsimilarity properties. The eigenstates are generically ''critical'', i.e. neither extended nor localized

  15. Sampling on Quasicrystals

    OpenAIRE

    Grepstad, Sigrid

    2011-01-01

    We prove that quasicrystals are universal sets of stable sampling in any dimension. Necessary and sufficient density conditions for stable sampling and interpolation sets in one dimension are studied in detail.

  16. Image Sampling with Quasicrystals

    Directory of Open Access Journals (Sweden)

    Mark Grundland

    2009-07-01

    Full Text Available We investigate the use of quasicrystals in image sampling. Quasicrystals produce space-filling, non-periodic point sets that are uniformly discrete and relatively dense, thereby ensuring the sample sites are evenly spread out throughout the sampled image. Their self-similar structure can be attractive for creating sampling patterns endowed with a decorative symmetry. We present a brief general overview of the algebraic theory of cut-and-project quasicrystals based on the geometry of the golden ratio. To assess the practical utility of quasicrystal sampling, we evaluate the visual effects of a variety of non-adaptive image sampling strategies on photorealistic image reconstruction and non-photorealistic image rendering used in multiresolution image representations. For computer visualization of point sets used in image sampling, we introduce a mosaic rendering technique.

  17. Quasicrystals: A matter of definition

    OpenAIRE

    Lifshitz, Ron

    2003-01-01

    It is argued that the prevailing definition of quasicrystals, requiring them to contain an axis of symmetry that is forbidden in periodic crystals, is inadequate. This definition is too restrictive in that it excludes an important and interesting collection of structures that exhibit all the well-known properties of quasicrystals without possessing any forbidden symmetries.

  18. EXAFS spectroscopy of quasicrystals

    International Nuclear Information System (INIS)

    Menushenkov, A. P.; Rakshun, Ya. V.

    2007-01-01

    The results of the investigation of the features of the local structure of quasicrystalline materials by extended X-ray absorption fine structure (EXAFS) spectroscopy with the use of synchrotron radiation are analyzed. The advantages of this method from the point of view of deriving information about the local shifts of the atoms forming an icosahedral structure are demonstrated. The rearrangement of the local environment of copper and iron in Al-Fe-Cu ternary alloys at a transition from the crystalline to the quasicrystalline phase has been investigated. It is established that the nearest copper coordination retains the symmetry characteristic of the crystal; however, rotation and small displacements of copper matrix atoms lead to significant rearrangement of aluminum atoms around iron atoms. As a result, icosahedral clusters with pentagonal symmetry are formed around iron atoms and violation of the translational symmetry is accompanied by the transition of Al-Fe-Cu to the quasicrystalline state

  19. Crystallography of quasicrystals concepts, methods and structures

    CERN Document Server

    Walter, Steurer

    2009-01-01

    From tilings to quasicrystal structures and from surfaces to the n-dimensional approach, this book gives a full, self-contained in-depth description of the crystallography of quasicrystals. It aims not only at conveying the concepts and a precise picture of the structures of quasicrystals, butit also enables the interested reader to enter the field of quasicrystal structure analysis. Going beyond metallic quasicrystals, it also describes the new, dynamically growing field of photonic quasicrystals. The readership will be graduate students and researchers in crystallography, solid-state physics, materials science, solid- state chemistry and applied mathematics.

  20. Quasicrystals and Quantum Computing

    Science.gov (United States)

    Berezin, Alexander A.

    1997-03-01

    In Quantum (Q) Computing qubits form Q-superpositions for macroscopic times. One scheme for ultra-fast (Q) computing can be based on quasicrystals. Ultrafast processing in Q-coherent structures (and the very existence of durable Q-superpositions) may be 'consequence' of presence of entire manifold of integer arithmetic (A0, aleph-naught of Georg Cantor) at any 4-point of space-time, furthermore, at any point of any multidimensional phase space of (any) N-particle Q-system. The latter, apart from quasicrystals, can include dispersed and/or diluted systems (Berezin, 1994). In such systems such alleged centrepieces of Q-Computing as ability for fast factorization of long integers can be processed by sheer virtue of the fact that entire infinite pattern of prime numbers is instantaneously available as 'free lunch' at any instant/point. Infinitely rich pattern of A0 (including pattern of primes and almost primes) acts as 'independent' physical effect which directly generates Q-dynamics (and physical world) 'out of nothing'. Thus Q-nonlocality can be ultimately based on instantaneous interconnectedness through ever- the-same structure of A0 ('Platonic field' of integers).

  1. Structural features in icosahedral Al63Cu25Fe12

    International Nuclear Information System (INIS)

    Howell, R.H.; Solal, F.; Turchi, P.E.A.; Berger, C.; Calvayrac, Y.

    1991-01-01

    Since the discovery of a quasicrystalline phase in Al-Mn alloys a substantial amount of work has been done to understand the structural and physical properties of this new class of materials. More recently the discovery of a thermodynamically stable icosahedral phase in AlCuFe presents the opportunity to study pure quasicrystalline phases of high structural quality by eliminating known defects, especially phason disorder by conventional heat treatment. In particular it was shown that annealing treatments of as quenched samples resulted in a dramatic reduction in the width of the diffraction peaks associated with the elimination of as quenched defects, present in other quasicrystals. Positron annihilation lifetime measurements have a high sensitivity to intrinsic defects and positron annihilation radiation angular correlation measurements are well suited to measurements of electronic structure in systems where the defect effects do not dominate. We have measured positron annihilation lifetime and angular correlations on quasicrystalline samples of Al 63 Cu 25 Fe 12 in the pure icosahedral phase

  2. Transmission electron microscopy study of dislocation motion in icosahedral Al-Pd-Mn

    International Nuclear Information System (INIS)

    Mompiou, F.; Caillard, D.

    2005-01-01

    Perfect and imperfect dislocations trailing phason faults in quasi-crystals are introduced using a simplified two-dimensional aperiodic structure. Then, on the basis of observations of deformed specimens as well as in situ experiments in a transmission electron microscope, the motion of dislocations in icosahedral Al-Pd-Mn is shown to take place exclusively by climb. Under such conditions, the very high brittleness of Al-Pd-Mn at low and medium temperatures is proposed to be a consequence of the difficulty of glide, which itself appears to be an intrinsic property of the quasi-crystalline structure

  3. Synthesis and mechanical properties of conventionally cast icosahedral particle-reinforced Al-Mn(-Cu)-Be-Si alloys

    International Nuclear Information System (INIS)

    Fleury, E.; Chang, H.J.; Kim, D.H.; Kim, D.H.; Kim, W.T.

    2005-01-01

    The microstructure of the Al-Mn(-Cu)-Be-Si alloys analyzed by X-ray diffraction and TEM consisted of icosahedral (i) quasicrystal particles embedded in α Al matrix. The conjoint addition of Si and Be elements enabled the i-phase formation in diameter 10 mm specimens prepared by conventional casting technique. The size, volume fraction and stability of the i-phase were found to be dependent on the Mn content. The addition of 2 at.% Cu did not affect the formation and stability of the i-phase but contributed significantly to the enhancement of the mechanical properties. (orig.)

  4. Hydrogen storage properties for Mg–Zn–Y quasicrystal and ternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xuanli, E-mail: Xuanli.Luo@nottingham.ac.uk; Grant, David M., E-mail: David.Grant@nottingham.ac.uk; Walker, Gavin S., E-mail: Gavin.Walker@nottingham.ac.uk

    2015-10-05

    Highlights: • Quasicrystal (QC) and H-phase alloys were detected in the Zn–Mg–Y samples. • Hydrogen storage properties of Zn–Mg–Y samples were investigated. • Zn{sub 50}Mg{sub 42}Y{sub 8} showed a capacity of 0.9 wt.% and decomposition temperature of 445 °C. - Abstract: Three Zn–Mg–Y alloys with nominal compositions of Zn{sub 50}Mg{sub 42}Y{sub 8} and Zn{sub 60}Mg{sub 30}Y{sub 10} were prepared by induction melting or gas atomisation. XRD and SEM analysis shows samples ZMY-1 and ZMY-2 consisted of multiple phases including icosahedral quasicrystal (QC) i-phase, hexagonal H-phase and Mg{sub 7}Zn{sub 3}, whilst ZMY-3 contained QC only. The hydrogen storage properties of the Zn–Mg–Y quasicrystal and ternary alloys were investigated for the first time. The quasicrystal sample ZMY-3 hydrogenated at 300 °C had 0.3 wt.% capacity and the DSC decomposition peak temperature was 503 °C. Amongst the three samples, the highest hydrogen storage capacity (0.9 wt.%) and the lowest decomposition peak temperature (445 °C) was achieved by sample ZMY-1. The pressure–composition–isotherm (PCI) curve of ZMY-1 sample showed a flat plateau gave a plateau pressure of 3.5 bar at 300 °C, which indicates a lower dehydrogenation enthalpy than MgH{sub 2}.

  5. Quasicrystals Structure and Physical Properties

    CERN Document Server

    Trebin, Hans-Rainer

    2003-01-01

    A comprehensive and up-to-date review, covering the broad range of this outstanding class of materials among intermetallic alloys. Starting with metallurgy and characterization, the authors continue on to structure and mathematical modeling. They use this basis to move on to dealing with electronic, magnetic, thermal, dynamic and mechanical properties, before finally providing an insight into surfaces and thin films. The authors belong to a research program on quasicrystals, sponsored by the German Research Society and managed by Hans-Rainer Trebin, such that most of the latest results are pre

  6. The forbidden beauty of quasicrystals

    International Nuclear Information System (INIS)

    McGrath, R.; Grimm, U.; Diehl, R.

    2005-01-01

    Two decades after they were discovered, the unusual properties of quasicrystals continue to fascinate researchers from a range of disciplines. 20 years ago last month Danny Shechtman of the Technion Institute in Israel announced the discovery of a new metallic alloy. At the time Shechtman had been on sabbatical leave at the National Bureau of Standards in Washington DC, investigating the properties of mixtures of metals that had been melted together and rapidly cooled. He found that one of these alloys - aluminium manganese - displayed a diffraction pattern with 10-fold rotational symmetry. However, such symmetries were supposed to be forbidden by the laws of crystallography. This discovery generated huge excitement, confusion and significant opposition. The Journal of Applied Physics, for example, rejected Shechtman's first paper detailing the discovery on the grounds that it would not interest the physicists who read the journal. Linus Pauling - a giant of 20th-century crystallography - also dismissed the findings. But these early doubts were soon swept away by new experimental evidence, and Shechtman's paper - which was finally published in Physical Review Letters in November 1984 - has since become one of the most-cited research articles in the scientific literature. The strange new materials he had discovered were dubbed quasicrystals, a shorthand form of 'quasiperiodic crystals'. (U.K.)

  7. Core and valence level photoemission and photoabsorption study of icosahedral Al-Pd-Mn quasicrystals

    International Nuclear Information System (INIS)

    Horn, K; Theis, W; Paggel, J J; Barman, S R; Rotenberg, E; Ebert, Ph; Urban, K

    2006-01-01

    The electronic structure of quasicrystalline Al-Pd-Mn is investigated by means of valence and core level photoelectron spectroscopy. Variations of the photoionization cross section in the constituents' valence electronic levels as a function of photon energy are used to identify contributions from the different atomic species, in particular near the Pd 4d Cooper minimum. Resonant photoemission at the Mn 2p absorption edge shows the contribution of the Mn 3d states to the density of states in a region near the Fermi level. The asymmetry of Pd 3d and Mn 2p core level photoemission lines, and its difference for emission from metallic and quasicrystalline phases, are utilized to infer the contributions of the different constituents to the density of states at the Fermi level

  8. Amorphization Mechanism of Icosahedral Platinum Clusters

    International Nuclear Information System (INIS)

    Apra, Edoardo; Baletto, Francesca; Ferrando, Riccardo; Fortunelli, Alessandro

    2004-01-01

    The amorphization mechanism of high-symmetry pt nanoclusters is investigated by a combination of Molecular Dynamics simulations and Density Functional calculations. A general mechanism for amorphization, involving rosette-like structural transformations at fivefold vertices, is proposed. IN the tosette, a fivefold vertex is transformed into a hexagonal ring. We show that for icosahedral Pt nanoclusters, this transformation is associated with an energy gain, so that their most favorable structures have a low symmetry even at icosahedral magic numbers

  9. Methods for Calculating Empires in Quasicrystals

    Directory of Open Access Journals (Sweden)

    Fang Fang

    2017-10-01

    Full Text Available This paper reviews the empire problem for quasiperiodic tilings and the existing methods for generating the empires of the vertex configurations in quasicrystals, while introducing a new and more efficient method based on the cut-and-project technique. Using Penrose tiling as an example, this method finds the forced tiles with the restrictions in the high dimensional lattice (the mother lattice that can be cut-and-projected into the lower dimensional quasicrystal. We compare our method to the two existing methods, namely one method that uses the algorithm of the Fibonacci chain to force the Ammann bars in order to find the forced tiles of an empire and the method that follows the work of N.G. de Bruijn on constructing a Penrose tiling as the dual to a pentagrid. This new method is not only conceptually simple and clear, but it also allows us to calculate the empires of the vertex configurations in a defected quasicrystal by reversing the configuration of the quasicrystal to its higher dimensional lattice, where we then apply the restrictions. These advantages may provide a key guiding principle for phason dynamics and an important tool for self error-correction in quasicrystal growth.

  10. Generalized dynamics of moving dislocations in quasicrystals

    International Nuclear Information System (INIS)

    Agiasofitou, Eleni; Lazar, Markus; Kirchner, Helmut

    2010-01-01

    A theoretical framework for dislocation dynamics in quasicrystals is provided according to the continuum theory of dislocations. Firstly, we present the fundamental theory for moving dislocations in quasicrystals giving the dislocation density tensors and introducing the dislocation current tensors for the phonon and phason fields, including the Bianchi identities. Next, we give the equations of motion for the incompatible elastodynamics as well as for the incompatible elasto-hydrodynamics of quasicrystals. We continue with the derivation of the balance law of pseudomomentum thereby obtaining the generalized forms of the Eshelby stress tensor, the pseudomomentum vector, the dynamical Peach-Koehler force density and the Cherepanov force density for quasicrystals. The form of the dynamical Peach-Koehler force for a straight dislocation is obtained as well. Moreover, we deduce the balance law of energy that gives rise to the generalized forms of the field intensity vector and the elastic power density of quasicrystals. The above balance laws are produced for both models. The differences between the two models and their consequences are revealed. The influences of the phason fields as well as of the dynamical terms are also discussed.

  11. Study of the density of electrons in momentum space in the Al-Li-Cu icosahedral phase by means of positron annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Yoshikazu; Nanao, Susumu [Institute of Industrial Science, The University of Tokyo, Roppongi, Minato, Tokyo 106 (Japan); Tanigawa, Shoichiro [Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305 (Japan)

    1997-12-15

    The three-dimensional momentum density of annihilating electron - positron pairs has been studied for a single Al-Li-Cu icosahedral quasicrystal. A direct Fourier transform method is employed to reconstruct the three-dimensional momentum density from measurements of the two-dimensional angular correlation of positron annihilation radiation (2 D-ACAR). The crystallographic anisotropy in the momentum density is observed to be very small. The asphericity of the Fermi surface is not found explicitly within the experimental resolution in the momentum space. The features of the three-dimensional electron - positron momentum density agree with those obtained by means of Compton profile measurement. It is suggested that a strong lattice - electron interaction at the Fermi level occurs in this icosahedral phase. (author)

  12. Thermodynamic properties of Al-Mn, Al-Cu, and Al-Fe-Cu melts and their relations to liquid and quasicrystal structure

    International Nuclear Information System (INIS)

    Zaitsev, A I; Zaitseva, N E; Shimko, R Yu; Arutyunyan, N A; Dunaev, S F; Kraposhin, V S; Lam, Ha Thanh

    2008-01-01

    Thermodynamic properties of molten Al-Mn, Al-Cu and Al-Fe-Cu alloys in a wide temperature range of 1123-1878 K and the whole range of concentrations have been studied using the integral effusion method and Knudsen mass spectrometry. Thermodynamic functions of melts were described by the associated solution model. The possibility of icosahedral quasicrystal (i-QC) precipitation from liquid Al-Mn and Al-Cu-Fe alloys was found to be a consequence of the existence in liquid associates (clusters). A geometric model is suggested for the structure of associates in liquid

  13. Photonic crystals, amorphous materials, and quasicrystals.

    Science.gov (United States)

    Edagawa, Keiichi

    2014-06-01

    Photonic crystals consist of artificial periodic structures of dielectrics, which have attracted much attention because of their wide range of potential applications in the field of optics. We may also fabricate artificial amorphous or quasicrystalline structures of dielectrics, i.e. photonic amorphous materials or photonic quasicrystals. So far, both theoretical and experimental studies have been conducted to reveal the characteristic features of their optical properties, as compared with those of conventional photonic crystals. In this article, we review these studies and discuss various aspects of photonic amorphous materials and photonic quasicrystals, including photonic band gap formation, light propagation properties, and characteristic photonic states.

  14. Surfaces of Intermetallics: Quasicrystals and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Yuen, Chad [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    The goal of this work is to characterize surfaces of intermetallics, including quasicrystals. In this work, surface characterization is primarily focused on composition and structure using X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM) performed under ultrahigh vacuum (UHV) conditions.

  15. Quasicrystal-reinforced Mg alloys.

    Science.gov (United States)

    Kyun Kim, Young; Tae Kim, Won; Hyang Kim, Do

    2014-04-01

    The formation of the icosahedral phase (I-phase) as a secondary solidification phase in Mg-Zn-Y and Mg-Zn-Al base systems provides useful advantages in designing high performance wrought magnesium alloys. The strengthening in two-phase composites (I-phase + α -Mg) can be explained by dispersion hardening due to the presence of I-phase particles and by the strong bonding property at the I-phase/matrix interface. The presence of an additional secondary solidification phase can further enhance formability and mechanical properties. In Mg-Zn-Y alloys, the co-presence of I and Ca 2 Mg 6 Zn 3 phases by addition of Ca can significantly enhance formability, while in Mg-Zn-Al alloys, the co-presence of the I-phase and Mg 2 Sn phase leads to the enhancement of mechanical properties. Dynamic and static recrystallization are significantly accelerated by addition of Ca in Mg-Zn-Y alloy, resulting in much smaller grain size and more random texture. The high strength of Mg-Zn-Al-Sn alloys is attributed to the presence of finely distributed Mg 2 Sn and I-phase particles embedded in the α -Mg matrix.

  16. Internal and external quasicrystal inflation center and their scaling factors

    International Nuclear Information System (INIS)

    Masakova, Z.; Patera, J.; Pelantova, E.

    1998-01-01

    The properties of quasicrystals of the cut and project type - namely, self-similarities or so-called inflation properties - are studied. A complete description is given for centers of the scaling symmetry of a quasicrystal, and the relevant scaling factors are determined for each 'inflation center'. If the center is a quasicrystal point, it is called an 'internal inflation center'; otherwise, it is an 'external' one. It turns out that, for any quasicrystal point u, the set of appropriate scaling factors is a u-dependent one-dimensional quasicrystal. There are infinitely many scaling factors common to all internal inflation centers. The description of external inflation centers, which are plentiful in any quasicrystal, is a slight modification of a similar description for the interval ones

  17. Crystalline and quasicrystalline allotropes of Pb formed on the fivefold surface of icosahedral Ag-In-Yb

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, H. R., E-mail: H.R.Sharma@liv.ac.uk; Smerdon, J. A.; Nugent, P. J.; Ribeiro, A.; McGrath, R. [Surface Science Research Centre and Department of Physics, The University of Liverpool, Liverpool L69 3BX (United Kingdom); McLeod, I.; Dhanak, V. R. [Department of Physics and the Stephenson Institute for Renewable Energy, The University of Liverpool, Liverpool L69 3BX (United Kingdom); Shimoda, M. [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Tsai, A. P. [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan)

    2014-05-07

    Crystalline and quasicrystalline allotropes of Pb are formed by evaporation on the fivefold surface of the icosahedral (i) Ag-In-Yb quasicrystal under ultra-high vacuum. Lead grows in three dimensional quasicrystalline order and subsequently forms fivefold-twinned islands with the fcc(111) surface orientation atop of the quasicrystalline Pb. The islands exhibit specific heights (magic heights), possibly due to the confinement of electrons in the islands. We also study the adsorption behavior of C{sub 60} on the two allotropes of Pb. Scanning tunneling microcopy reveals that a high corrugation of the quasicrystalline Pb limits the diffusion of the C{sub 60} molecules and thus produces a disordered film, similar to adsorption behavior of the same molecules on the clean substrate surface. However, the sticking coefficient of C{sub 60} molecules atop the Pb islands approaches zero, regardless of the overall C{sub 60} coverage.

  18. Morphology and the structure of quasicrystal phase in as-cast and melt-spun Mg-Zn-Y-Zr alloys

    International Nuclear Information System (INIS)

    Tang, Y.L.; Zhao, D.S.; Shen, N.F.

    1993-01-01

    During recent years, many researchers have investigated the experimental and theoretical aspects of quasicrystal materials. In some Mg alloys (Mg 32 Al 17 Zn 32 , Mg 32 (Al,Zn) 49 , Mg 32 (Al,Zn,Cu) 49 , Mg 4 CuAl 6 and Ga 16 Mg 32 Zn 52 ), icosahedral quasicrystals (IQC) have been found. However, most of the quasicrystals in these alloys were formed under a rapid solidification condition. In the recent study on Mg-Zn-(Zr,Y) as-cast alloys, the authors identified a new Mg-rich and a Zn-rich IQC by X-ray diffraction (XRD) and electron microscopy (EM). The discovery of Mg-Zn-Y IQC is of interest because it formed in an as-cast ingot and did not contain the element Al, which is the major constituent of nearly all IQC forming alloys reported. Also, analyses on IQC in as-cast and RS Mg alloys with the composition have not previously been carried out. In this paper, TEM and XRD investigations were completed on IQC formed in a Mg-Zn-Y-Zr cast ingot and melt-spun ribbons for microstructure comparison

  19. Photonic quasicrystals for application in WDM systems

    DEFF Research Database (Denmark)

    Romero-Vivas, J.; Chigrin, D. N.; Lavrinenko, Andrei

    2005-01-01

    Photonic quasicrystals can possess an isotropic (complete) photonic bandgap even in the case of low refractive indices of the constitutive materials, which makes them atrractive optical materials with important technological applications. In this work, several aspects related to the design...... of waveguides and cavities using the two-dimensional (2D) octagonal quasiperiodic lattice are investigated numerically. As an example, the integration of waveguides and a resonating cavity to design an add/drop filer for wavelength division multiplexing applications is brieflydescribed....

  20. Levitated crystals and quasicrystals of metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhehui [Los Alamos National Laboratory; Morris, Christopher [Los Alamos National Laboratory; Goree, John A [Dept Phys and Astron., University of Iowa

    2012-07-25

    New scientific and technological opportunities exist by marrying dusty plasma research with metamaterials. Specifically, by balancing control and self-assembly, certain laboratory plasmas can become a generic levitation platform for novel structure formation and nanomaterial synthesis. We propose to experimentally investigate two dimensional (2D) and three dimensional (3D) levitated structures of metamaterials and their properties. Such structures can self assemble in laboratory plasmas, similar to levitated dust crystals which were discovered in the mid 1990's. Laboratory plasma platform for metamaterial formation eliminates substrates upon which most metamaterials have to be supported. Three types of experiments, with similar setups, are discussed here. Levitated crystal structures of metamaterials using anisotropic microparticles are the most basic of the three. The second experiment examines whether quasicrystals of metamaterials are possible. Quasicrystals, discovered in the 1980's, possess so-called forbidden symmetries according to the conventional crystallography. The proposed experiment could answer many fundamental questions about structural, thermal and dynamical properties of quasicrystals. And finally, how to use nanoparticle coated microparticles to synthesize very long carbon nanotubes is also described. All of the experiments can fit inside a standard International Space Station locker with dimensions of 8-inch x 17-inch X 18-inch. Microgravity environment is deemed essential in particular for large 3D structures and very long carbon nanotube synthesis.

  1. Photonic quasi-crystal terahertz lasers

    Science.gov (United States)

    Vitiello, Miriam Serena; Nobile, Michele; Ronzani, Alberto; Tredicucci, Alessandro; Castellano, Fabrizio; Talora, Valerio; Li, Lianhe; Linfield, Edmund H.; Davies, A. Giles

    2014-12-01

    Quasi-crystal structures do not present a full spatial periodicity but are nevertheless constructed starting from deterministic generation rules. When made of different dielectric materials, they often possess fascinating optical properties, which lie between those of periodic photonic crystals and those of a random arrangement of scatterers. Indeed, they can support extended band-like states with pseudogaps in the energy spectrum, but lacking translational invariance, they also intrinsically feature a pattern of ‘defects’, which can give rise to critically localized modes confined in space, similar to Anderson modes in random structures. If used as laser resonators, photonic quasi-crystals open up design possibilities that are simply not possible in a conventional periodic photonic crystal. In this letter, we exploit the concept of a 2D photonic quasi crystal in an electrically injected laser; specifically, we pattern the top surface of a terahertz quantum-cascade laser with a Penrose tiling of pentagonal rotational symmetry, reaching 0.1-0.2% wall-plug efficiencies and 65 mW peak output powers with characteristic surface-emitting conical beam profiles, result of the rich quasi-crystal Fourier spectrum.

  2. Lekhnitskii's formalism of one-dimensional quasicrystals and its ...

    Indian Academy of Sciences (India)

    To illustrate its utility, the generalized Lekhnitskii's formal- ism is used to analyse the coupled phonon and phason fields in an infinite quasicrystal medium con- taining an elliptic rigid inclusion. Keywords. Generalized Lekhnitskii's formalism; one-dimensional quasicrystals; plane problems; elliptic inclusion. PACS Nos 61.44.

  3. Simulation of the diffraction pattern of one dimensional quasicrystal ...

    African Journals Online (AJOL)

    The effects of the variation of atomic spacing ratio of a one dimensional quasicrystal material are investigated. The work involves the use of the solid state simulation code, Laue written by Silsbee and Drager. We are able to observe the general features of the diffraction pattern by a quasicrystal. In addition, it has been found ...

  4. Study of atomic jumps in quasi-crystals; Etude des sauts atomiques dans les quasi-cristaux

    Energy Technology Data Exchange (ETDEWEB)

    Lyonnard, S

    1997-05-07

    The terminology phason used in quasicrystals to refer to atomic jumps. The study of the hopping process is important for the understanding of many basic issues in quasi-crystallography: structure, stability, diffusion, phase transitions between quasicrystals and approximants, mechanical properties. Quasi-elastic neutron scattering allows to find the characteristics of each elementary jump: chemical species involves, relaxation times, activation energies, jump distances and orientations. We performed a series of experiments in the perfect icosahedral phases AlFeCu and AlMnPd, on both powders and single domain samples, using time-of-flight, backscattering and triple axis spectrometers. We evidenced the existence of very fast phason hopping, and studied about ten different atomic jumps. An unusual temperature dependence has been found systematically: each process is assisted by a thermally activated mechanism. The assistance process has to be determined case by case, but the more plausible explanation invokes assistance by phonons or phason clouds. Moreover, the dependence of the quasi elastic signal as a function of the momentum transfer shows that the jumps are local and do not give rise to any long-range diffusion. Phason hopping mainly corresponds to the atom moving forwards and backwards between two energetically equivalent sites. Finally, we have been able to show that the jumps occur along the various quasi-crystalline symmetry axes. (author) 91 refs.

  5. Vacancies and atomic processes in intermetallics - From crystals to quasicrystals and bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Hans-Eckhardt [Institute of Theoretical and Applied Physics, Stuttgart University, Pfaffenwaldring 57, 70569 Stuttgart (Germany); Baier, Falko [Voith Turbo Comp., Alexanderstr. 2, 89552 Heidenheim (Germany); Mueller, Markus A. [GFT Technologies A. G., Filderhauptstr. 142, 70599 Stuttgart (Germany); Reichle, Klaus J. [Philipp-Matthaeus-Hahn School, Jakob-Beutter-Str. 15, 72336 Balingen (Germany); Reimann, Klaus [NXP Semiconductors, Central Research and Development, High Tech Campus 4, 5656 AE Eindhoven (Netherlands); Rempel, Andrey A. [Institute of Solid State Chemistry, Russian Academy of Sciences, Ul. Pervomaiskaya 91, 620041 Ekaterinburg (Russian Federation); Sato, Kiminori [Tokyo Gakugei University, Nukuikita 4-1-1, Koganei, Tokyo 184-8501 (Japan); Ye, Feng [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, 30 Xue Yuan Road, Beijing 100083 (China); Zhang, Xiangyi [Yanshan University, Qinhuangdao 066004 (China); Sprengel, Wolfgang [Institute of Materials Physics, Graz University of Technology, Petersgasse 16, 8010 Graz (Austria)

    2011-10-15

    A review is given on atomic vacancies in intermetallic compounds. The intermetallic compounds cover crystalline, quasicrystalline, and bulk metallic glass (BMG) structures. Vacancies can be specifically characterized by their positron lifetimes, by the coincident measurement of the Doppler broadening of the two quanta emitted by positron-electron annihilation, or by time-differential dilatometry. By these techniques, high concentrations and low mobilities of thermal vacancies were found in open-structured B2 intermetallics such as FeAl or NiAl, whereas the concentrations of vacancies are low and their mobilities high in close-packed structure as, e.g., L1{sub 2}-Ni{sub 3}Al. The activation volumes of vacancy formation and migration are determined by high-pressure experiments. The favorable sublattice for vacancy formation is found to be the majority sublattice in Fe{sub 61}Al{sub 39} and in MoSi{sub 2}. In the icosahedral quasicrystal Al{sub 70}Pd{sub 21}Mn{sub 9} the thermal vacancy concentration is low, whereas in the BMG Zr{sub 57}Cu{sub 15.4}Ni{sub 12.6}Nb{sub 3}Al{sub 10} thermal vacancies are found in high concentrations with low mobilities. This may determine the basic mechanisms of the glass transition. Making use of the experimentally determined vacancy data, the main features of atomic diffusion studies in crystalline intermetallics, in quasicrystals, and in BMGs can be understood. Manfred Faehnle and his group have substantially contributed to the theoretical understanding of vacancies and diffusion mechanisms in intermetallics. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Bonding and doping of simple icosahedral-boride semiconductors

    International Nuclear Information System (INIS)

    Emin, David

    2004-01-01

    A simple model of the bonding and doping of a series of icosahedral-boride insulators is presented. Icosahedral borides contain clusters of boron atoms that occupy the 12 vertices of icosahedra. This particular series of icosahedral borides share both the stoichiometry B 12 X 2 , where X denotes a group V element (P or As), and a common lattice structure. The inter-icosahedral bonding of these icosahedral borides is contrasted with that of B 12 O 2 and with that of α-rhombohedral boron. Knowledge of the various types of inter-icosahedral bonding is used as a basis to address effects of inter-icosahedral atomic substitutions. The inter-icosahedral bonding is maintained when an atom of a group V element is replaced with an atom of a group IV element, thereby producing a p-type dopant. However, changes of inter-icosahedral bonding occur upon replacing an atom of a group V element with an atom of a group VI element or with a vacancy. As a result, these substitutions do not produce effective n-type dopants. Moreover, partial substitution of boron atoms for atoms of group V elements generally renders these materials p-type semiconductors

  7. NMR and NQR study of the electronic and structural properties of Al-Cu-Fe and Al-Cu-Ru quasicrystals

    International Nuclear Information System (INIS)

    Shastri, A.; Borsa, F.; Torgeson, D.R.; Shield, J.E.; Goldman, A.I.

    1994-01-01

    27 Al and 63,65 Cu NMR is reported for powdered stable Al-Cu-Fe and Al-Cu-Ru icosahedral quasicrystals and crystalline approximants, and for an Al-Pd-Mn single-grain quasicrystal. 27 Al NQR spectra at 4.2 K were observed in Al-Cu-Fe and Al-Cu-Ru samples. From quadrupole-perturbed NMR spectra at different magnetic fields, and from zero-field NQR spectra, a wide distribution of local electric-field gradient (EFG) tensor components and principal-axis-system orientations was found at the Al site. A model EFG calculation based on a 1/1 Al-Cu-Fe approximant successfully explained the observed NQR spectra. The average local gradient is largely determined by the p-electron wave function at the Al site, while the width of the distribution is due to EFG lattice contribution. Comparison of 63 Cu and 27 Al NMR shows the EFG distribution at the two sites is similar, but the electronic contribution to the EFG is considerably smaller at the Cu site, in agreement with a more s-type wave function of the conduction electrons. Overall spread of EFG values is well reproduced by calculation based on the approximant. However, the experimental spectra indicate a much larger number of nonequivalent sites when compared with the simulated NQR spectra based on the 1/1 approximant. The short-range, local chemical order is well represented by the approximant, but differences in coordination must be included at intermediate range in the quasicrystal. Measured 27 Al Knight shift, magnetic susceptibility, and nuclear spin-lattice relaxation time as a function of temperature indicate reduced density of states at the Fermi level by a factor of 7 or 8 from the value in Al metal, consistent with the notion of a pseudogap for these quasicrystals. No differences in measured parameters were detected as a function of composition of the quasicrystalline alloys

  8. Fabrication and mechanical properties of quasicrystal-reinforced Al-Mn-Mm alloys

    International Nuclear Information System (INIS)

    Jun, Joong-Hwan; Kim, Jeong-Min; Kim, Ki-Tae; Jung, Woon-Jae

    2007-01-01

    Microstructures and room temperature mechanical properties of quasicrystal-reinforced Al 94-x Mn 6 Mm x (Mm: misch metal, x = 0-6 at.%) alloys have been studied systematically. Cylindrical rod samples with 3 mm in diameter were synthesized by injection-casting into a Cu mould and analyzed by means of X-ray diffractometry, differential scanning calorimetry, optical microscopy and scanning electron microscopy with energy-dispersive X-ray spectrometry. Mechanical properties of the cylindrical rods were measured at room temperature by compression tests. The Al 94 Mn 6 alloy contains hexagonal-shape particles and long needle-shape Al 6 Mn precipitates surrounded by α-Al matrix. An addition of Mm into the Al 94 Mn 6 alloy generates icosahedral quasicrystalline phase (IQC) with an extinction of hexagonal and Al 6 Mn phases, and the fraction of IQC increases continuously with an increase in Mm content. Compressive yield strength (σ cys ) and ultimate compressive strength (σ ucs ) of the Al-Mn-Mm alloys are improved with Mm content up to 4%, whereas elongation is steeply deteriorated by the Mm addition. The Al 90 Mn 6 Mm 4 alloy exhibits the highest 570 and 783 MPa of σ cys and σ ucs , respectively, both of which are comparable to those of Al 90 Mn 6 Ce 4 alloy

  9. Mathematical theory of elasticity of quasicrystals and its applications

    CERN Document Server

    Fan, Tianyou

    2011-01-01

    This book presents a clear-cut, strict and systematic mathematical overview of the continuum mechanics of novel materials, condensed matter physics and partial differential equations, and explores the mathematical theory of elasticity of quasicrystals.

  10. XRD and HREM studies from the decomposition of icosahedral AlCuFe single-phase by high-energy ball milling

    International Nuclear Information System (INIS)

    Patino-Carachure, C.; Tellez-Vazquez, O.; Rosas, G.

    2011-01-01

    Highlights: → Point defects induced during milling leading to an order-disorder quasicrystal transition. → Nanoquasicrystalline regions of 12 nm are obtained. → Highly ordered i-phase with high symmetry transforms to a crystalline phase of intermetallic character and lower symmetry. - Abstract: In this investigation the Al 64 Cu 24 Fe 12 alloy was melted in an induction furnace and solidified under normal casting conditions. In order to obtain the icosahedral phase (i-phase) in a single-phase region, the as-cast sample was subject to a heat treatment at 700 deg. C under argon atmosphere. Subsequently, the i-phase was milled for different times in order to evaluate phase stability under heavy deformation. X-ray diffraction (XRD) and high-resolution electron microscopy (HREM) analysis were conducted to the structural characterization of ball-milled powders. XRD results indicated a reduction in quasicrystal size during mechanical ball milling to about 30 h. HREM analysis revealed the presence of aperiodic nano-domains, for example, with apparent fivefold symmetry axis. Therefore, the i-phase remains stable over the first 30 h of ball-milling time. However, among 30-50 h of mechanical milling the i-phase transforms progressively into β-cubic phase.

  11. XRD and HREM studies from the decomposition of icosahedral AlCuFe single-phase by high-energy ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Patino-Carachure, C.; Tellez-Vazquez, O. [Instituto de Investigaciones Metalurgicas, UMSNH, Edificio U, Ciudad Universitaria, Morelia, Michoacan 58000 (Mexico); Rosas, G., E-mail: grtrejo@umich.mx [Instituto de Investigaciones Metalurgicas, UMSNH, Edificio U, Ciudad Universitaria, Morelia, Michoacan 58000 (Mexico)

    2011-10-13

    Highlights: > Point defects induced during milling leading to an order-disorder quasicrystal transition. > Nanoquasicrystalline regions of 12 nm are obtained. > Highly ordered i-phase with high symmetry transforms to a crystalline phase of intermetallic character and lower symmetry. - Abstract: In this investigation the Al{sub 64}Cu{sub 24}Fe{sub 12} alloy was melted in an induction furnace and solidified under normal casting conditions. In order to obtain the icosahedral phase (i-phase) in a single-phase region, the as-cast sample was subject to a heat treatment at 700 deg. C under argon atmosphere. Subsequently, the i-phase was milled for different times in order to evaluate phase stability under heavy deformation. X-ray diffraction (XRD) and high-resolution electron microscopy (HREM) analysis were conducted to the structural characterization of ball-milled powders. XRD results indicated a reduction in quasicrystal size during mechanical ball milling to about 30 h. HREM analysis revealed the presence of aperiodic nano-domains, for example, with apparent fivefold symmetry axis. Therefore, the i-phase remains stable over the first 30 h of ball-milling time. However, among 30-50 h of mechanical milling the i-phase transforms progressively into {beta}-cubic phase.

  12. Mathematical theory of elasticity of quasicrystals and its applications

    CERN Document Server

    Fan, Tian-You

    2016-01-01

    This interdisciplinary work on condensed matter physics, the continuum mechanics of novel materials, and partial differential equations, discusses the mathematical theory of elasticity and hydrodynamics of quasicrystals, as well as its applications. By establishing new partial differential equations of higher order and their solutions under complicated boundary value and initial value conditions, the theories developed here dramatically simplify the solution of complex elasticity problems. Comprehensive and detailed mathematical derivations guide readers through the work. By combining theoretical analysis and experimental data, mathematical studies and practical applications, readers will gain a systematic, comprehensive and in-depth understanding of condensed matter physics, new continuum mechanics and applied mathematics. This new edition covers the latest developments in quasicrystal studies. In particular, it pays special attention to the hydrodynamics, soft-matter quasicrystals, and the Poisson bracket m...

  13. The RNA of turnip yellow mosaic virus exhibits icosahedral order

    International Nuclear Information System (INIS)

    Larson, Steven B.; Lucas, Robert W.; Greenwood, Aaron; McPherson, Alexander

    2005-01-01

    Difference electron density maps, based on structure factor amplitudes and experimental phases from crystals of wild-type turnip yellow mosaic virus and those of empty capsids prepared by freeze-thawing, show a large portion of the encapsidated RNA to have an icosahedral distribution. Four unique segments of base-paired, double-helical RNA, one to two turns in length, lie between 33-A and 101-A radius and are organized about either 2-fold or 5-fold icosahedral axes. In addition, single-stranded loops of RNA invade the pentameric and hexameric capsomeres where they contact the interior capsid surface. The remaining RNA, not seen in electron density maps, must serve as connecting links between these secondary structural elements and is likely icosahedrally disordered. The distribution of RNA observed crystallographically appears to be in agreement with models based on biochemical data and secondary structural analyses

  14. Contact mechanics, friction and adhesion with application to quasicrystals

    DEFF Research Database (Denmark)

    Persson, Bo; Carbone, Giuseppe; Samoilov, Vladimir N.

    2015-01-01

    We discuss the origin of friction and adhesion between hard solids such as quasicrystals. We emphasize the fundamental role of surface roughness in many contact mechanics problems, in particular for friction and adhesion between solid bodies. The most important property of rough surfaces...

  15. Properties- and applications of quasicrystals and complex metallic alloys.

    Science.gov (United States)

    Dubois, Jean-Marie

    2012-10-21

    This article aims at an account of what is known about the potential for applications of quasicrystals and related compounds, the so-called family of Complex Metallic Alloys (CMAs‡). Attention is focused at aluminium-based CMAs, which comprise a large number of crystalline compounds and quasicrystals made of aluminium alloyed with transition metals (like Fe or Cu) or normal metals like Mg. Depending on composition, the structural complexity varies from a few atoms per unit cell up to thousands of atoms. Quasicrystals appear then as CMAs of ultimate complexity and exhibit a lattice that shows no periodicity anymore in the usual 3-dimensional space. Properties change dramatically with lattice complexity and turn the metal-type behaviour of simple Al-based crystals into a far more complex behaviour, with a fingerprint of semi-conductors that may be exploited in various applications, potential or realised. An account of the ones known to the author is given in the light of the relevant properties, namely light absorption, reduced adhesion and friction, heat insulation, reinforcement of composites for mechanical devices, and few more exotic ones. The role played by the search for applications of quasicrystals in the development of the field is briefly addressed in the concluding section.

  16. Light transport through the bandedge states of Fibonacci quasicrystals

    NARCIS (Netherlands)

    Dal Negro, Luca; Oton, Claudio J.; Gaburro, Zeno; Pavesi, Lorenzo; Johnson, Patrick; Lagendijk, Aart; Righini, Roberto; Colocci, Marcello; Wiersma, Diederik S.

    2003-01-01

    The propagation of light in nonperiodic quasicrystals is studied by ultrashort pulse interferometry. Samples consist of multilayer dielectric structures of the Fibonacci type and are realized from porous silicon. We observe mode beating and strong pulse stretching in the light transport through

  17. Phase formation and stability of quasicrystal/α-Mg interfaces in the Mg–Cd–Yb system

    International Nuclear Information System (INIS)

    Ohhashi, S.; Suzuki, K.; Kato, A.; Tsai, A.P.

    2014-01-01

    Phase formation involving icosahedral quasicrystals (iQc) in the Mg–Cd–Yb system was investigated. The phase diagrams obtained revealed that the iQc is in equilibrium with either (Mg, Cd) 2 Yb or an α-Mg phase over a wide composition range at 673 K. A eutectic reaction, where the melt decomposed to a rod-like lamella structure consisting of iQc and α-Mg phases was observed for Mg 68 Cd 24 Yb 8 at 735 K. High-angle annular dark-field scanning transmission microscopy observation of the iQc in Mg 96 Cd 3 Yb 1 verified the atomic positions of the Yb icosahedra and confirmed that the i-MgCdYb is isostructural to the i-CdYb. The formation of the eutectic structure is responsible for the high stability of the iQc/α-Mg interfaces because of good lattice matching; which is coincident interplanar spacing over several planes for the two phases. This coincidence in interplanar spacing was further confirmed in the real atomic structure, for which the twofold planes of the iQc, and the [0 0 0 2] and [2 −1 −1 0] planes of α-Mg are dominant factors in determining the stability of the interfaces

  18. Hydrogenation study of suction-cast Ti{sub 40}Zr{sub 40}Ni{sub 20} quasicrystal

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Huogen; Li, Rong; Yin, Chen; Zheng, Shaotao; Zhang, Pengcheng [National Key Laboratory for Surface Physics and Chemistry, P.O. Box 718-35, Mian Yang 621907, Sichuan (China)

    2008-09-15

    Suction casting was predicted to be an usable method for improving the hydriding kinetics of Ti/Zr-based icosahedral quasicrystals (IQCs) in our previous work. To further determine it, a suction-cast Ti{sub 40}Zr{sub 40}Ni{sub 20} IQC alloy was used for hydrogenation studies by Pressure Composition Isotherm (PCI) and Temperature Programmed Desorption (TPD) techniques. The results showed that, this alloy absorbed hydrogen rapidly with obvious hydrogen pressure plateau and some reversibility, however, displayed very limited hydrogen capacity (about 0.7 wt.%) and low equilibrium pressure. After several hydrogenation/dehydrogenation cycles, the IQC structure transformed into two hydride phases, ZrH{sub 2-x} and one unknown, both of which decomposed at above 600 C, suggesting high thermo-stability for them. On the whole, indeed the suction-casting method can increase the hydrogen absorption rate of Ti/Zr-based IQCs, however, the hydrogenation properties of the Ti{sub 40}Zr{sub 40}Ni{sub 20} IQC alloy still need a mighty advancement. (author)

  19. Symmetry, stability, and diffraction properties of icosahedral crystals

    International Nuclear Information System (INIS)

    Bak, P.

    1985-01-01

    In a remarkable experiment on an Mn-Al alloy, Shechtman et al. observed a diffraction spectrum with icosahedral symmetry. This is inconsistent with discrete translational invariance since the symmetry includes a five-fold axis. In this paper, it is shown that the crystallography and diffraction pattern can be described by a six-dimensional space group. The crystal structure in 3d is obtained as a cut along a 3d hyperplane in a regular 6d crystal. Displacements of the 6d crystal along 6 orthogonal directions define 6 continuous symmetries for the icosahedral crystal, three of which are phase symmetries describing internal rearrangements of the atoms

  20. A local cellular model for growth on quasicrystals

    International Nuclear Information System (INIS)

    Chidyagwai, Prince; Reiter, Clifford A.

    2005-01-01

    The growth of real valued cellular automata using a deterministic algorithm on 2-dimensional quasicrystalline structures is investigated. Quasicrystals are intermediate between the rigid organization of crystals and disorganized random structures. Since the quasicrystalline structures may be highly symmetric or not, we are able to obtain highly organized and relatively random growth patterns. This deterministic growth produces dendrite, sector, stellar, regular polygons, round, and random DLA-like structures

  1. Forging Unsupported Metal-Boryl Bonds with Icosahedral Carboranes.

    Science.gov (United States)

    Saleh, Liban M A; Dziedzic, Rafal M; Khan, Saeed I; Spokoyny, Alexander M

    2016-06-13

    In contrast to the plethora of metal-catalyzed cross-coupling methods available for the installation of functional groups on aromatic hydrocarbons, a comparable variety of methods are currently not available for icosahedral carboranes, which are boron-rich three-dimensional aromatic analogues of aryl groups. Part of this is due to the limited understanding of the elementary steps for cross-coupling involving carboranes. Here, we report our efforts in isolating metal-boryl complexes to further our understanding of one of these elementary steps, oxidative addition. Structurally characterized examples of group 10 M-B bonds featuring icosahedral carboranes are completely unknown. Use of mercurocarboranes as a reagent to deliver M-B bonds saw divergent reactivity for platinum and palladium, with a Pt-B bond being isolated for the former, and a rare Pd-Hg bond being formed for the latter. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Reconstructing an icosahedral virus from single-particle diffraction experiments

    Science.gov (United States)

    Saldin, D. K.; Poon, H.-C.; Schwander, P.; Uddin, M.; Schmidt, M.

    2011-08-01

    The first experimental data from single-particle scattering experiments from free electron lasers (FELs) are now becoming available. The first such experiments are being performed on relatively large objects such as viruses, which produce relatively low-resolution, low-noise diffraction patterns in so-called ``diffract-and-destroy'' experiments. We describe a very simple test on the angular correlations of measured diffraction data to determine if the scattering is from an icosahedral particle. If this is confirmed, the efficient algorithm proposed can then combine diffraction data from multiple shots of particles in random unknown orientations to generate a full 3D image of the icosahedral particle. We demonstrate this with a simulation for the satellite tobacco necrosis virus (STNV), the atomic coordinates of whose asymmetric unit is given in Protein Data Bank entry 2BUK.

  3. Green's functions of one-dimensional quasicrystal bi-material with piezoelectric effect

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liangliang [College of Engineering, China Agricultural University, Beijing 100083 (China); Sinomatech Wind Power Blade Co., Ltd, Beijing 100092 (China); Wu, Di [College of Engineering, China Agricultural University, Beijing 100083 (China); Xu, Wenshuai [College of Science, China Agricultural University, Beijing 100083 (China); Yang, Lianzhi [Civil and Environmental Engineering School, University of Science and Technology Beijing, Beijing 100083 (China); Ricoeur, Andreas; Wang, Zhibin [Institute of Mechanics, University of Kassel, 34125 Kassel (Germany); Gao, Yang, E-mail: gaoyangg@gmail.com [College of Science, China Agricultural University, Beijing 100083 (China)

    2016-09-16

    Based on the Stroh formalism of one-dimensional quasicrystals with piezoelectric effect, the problems of an infinite plane composed of two different quasicrystal half-planes are taken into account. The solutions of the internal and interfacial Green's functions of quasicrystal bi-material are obtained. Moreover, numerical examples are analyzed for a quasicrystal bi-material subjected to line forces or line dislocations, showing the contour maps of the coupled fields. The impacts of changing material constants on the coupled field components are investigated. - Highlights: • Green's functions of 1D piezoelectric quasicrystal bi-material are studied. • The coupled fields subjected to line forces or line dislocations are obtained. • Mechanical behavior under the effect of different material constants is researched.

  4. Icosahedral plant viral nanoparticles - bioinspired synthesis of nanomaterials/nanostructures.

    Science.gov (United States)

    Narayanan, Kannan Badri; Han, Sung Soo

    2017-10-01

    Viral nanotechnology utilizes virus nanoparticles (VNPs) and virus-like nanoparticles (VLPs) of plant viruses as highly versatile platforms for materials synthesis and molecular entrapment that can be used in the nanotechnological fields, such as in next-generation nanoelectronics, nanocatalysis, biosensing and optics, and biomedical applications, such as for targeting, therapeutic delivery, and non-invasive in vivo imaging with high specificity and selectivity. In particular, plant virus capsids provide biotemplates for the production of novel nanostructured materials with organic/inorganic moieties incorporated in a very precise and controlled manner. Interestingly, capsid proteins of spherical plant viruses can self-assemble into well-organized icosahedral three-dimensional (3D) nanoscale multivalent architectures with high monodispersity and structural symmetry. Using viral genetic and protein engineering of icosahedral viruses with a variety of sizes, the interior, exterior and the interfaces between coat protein (CP) subunits can be manipulated to fabricate materials with a wide range of desirable properties allowing for biomineralization, encapsulation, infusion, controlled self-assembly, and multivalent ligand display of nanoparticles or molecules for varied applications. In this review, we discuss the various functional nanomaterials/nanostructures developed using the VNPs and VLPs of different icosahedral plant viruses and their nano(bio)technological and nanomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Plaster Covering of Octagonal MnSiAl Quasicrystals

    International Nuclear Information System (INIS)

    Ben-Abraham, S.; Gahlert, F.

    1999-01-01

    A likely mechanism for the formation of quasicrystals is by maximally covering space with overlapping stable atomic clusters. This presumably minimizes the energy and also creates long-range correlations and order. The purely geometric aspect was studied by Gummelt who proved that the Penrose tiling could be produced by covering the plane with overlapping copies of a single decagonal patch. Octagonal quasicrystalline phases closely related to the β-Mn structure have been observed in the CrNiSi, VNiSi, MoCrNi and MnsiAl systems. Jiang, Hovmoller and Zou have experimentally determined the structure of Mn 80 Si 15 Al 5 . It is a layer structure composed of octagonal layers A alternating with tetragonal layers B' and B'' (mutually rotated by 450 with an 84 screw axis. The layers can be described as decorations of the octagonal Ammann-Beenker tiling (ABT). The edge decoration is imposed by the structure itself in a natural way, thus, together with the maximal covering condition, enforcing the ABT. We represent the decoration abstractly by a novel two-color version of ABT, which, incidentally, has also considerable aesthetic appeal. The covering atomic cluster of the quasicrystal corresponds to an octagonal patch of the colored tiling. The pitch appears in two variants with complementary colors. Our construction yields in a natural way also the translation module (the generalization of the lattice concept) and the correct space group of the complete 3D quasicrystal. They are the centered octagonal module and the space group I8 4 /mcm, respectively

  6. Acoustic and electronic properties of one-dimensional quasicrystals

    International Nuclear Information System (INIS)

    Nori, F.; Rodriguez, J.P.

    1986-01-01

    We study the acoustic and electronic properties of one-dimensional quasicrystals. Both numerical (nonperturbative) and analytical (perturbative) results are shown. The phonon and electronic spectra exhibit a self-similar hierarchy of gaps and many localized states in the gaps. We study quasiperiodic structures with any number of layers and several types of boundary conditions. We discuss the connection between our phonon model and recent experiments on quasiperiodic GaAs-AlAs superlattices. We predict the existence of many gap states localized at the surfaces

  7. Generalized dynamics of soft-matter quasicrystals mathematical models and solutions

    CERN Document Server

    Fan, Tian-You

    2017-01-01

    The book systematically introduces the mathematical models and solutions of generalized hydrodynamics of soft-matter quasicrystals (SMQ). It provides methods for solving the initial-boundary value problems in these systems. The solutions obtained demonstrate the distribution, deformation and motion of the soft-matter quasicrystals, and determine the stress, velocity and displacement fields. The interactions between phonons, phasons and fluid phonons are discussed in some fundamental materials samples. Mathematical solutions for solid and soft-matter quasicrystals are compared, to help readers to better understand the featured properties of SMQ.

  8. Decagonal quasicrystal plate with elliptic holes subjected to out-of-plane bending moments

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lian He, E-mail: nmglilianhe@163.com [College of Mathematics Science, Inner Mongolia Normal University, Hohhot 010022 (China); College of Physical Science and Technology, Inner Mongolia University, Hohhot 010021 (China); Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Hohhot 010021 (China); Liu, Guan Ting [College of Mathematics Science, Inner Mongolia Normal University, Hohhot 010022 (China)

    2014-02-01

    In the present paper, we consider only the ideal elastic behavior, neglecting the dissipation associated with the atomic rearrangements. Under these conditions, the decagonal quasicrystal plate bending problems have been discussed. The Stroh-like formalism for the bending theory of decagonal quasicrystal plate is developed. The analytical solutions for problems of decagonal quasicrystal plate with elliptic hole subjected to out-of-plane bending moments are obtained directly by using the forms. The resultant bending moments around the hole boundaries are also given explicitly. When the phonon–phason coupling is absent, the results reduce to the corresponding solutions for the isotropic elastic plates.

  9. Platonic solids back in the sky: icosahedral inflation

    International Nuclear Information System (INIS)

    Kang, Jonghee; Nicolis, Alberto

    2016-01-01

    We generalize the model of solid inflation to an anisotropic cosmic solid. Barring fine tunings, the observed isotropy of the cosmological background and of the scalar two-point function isolate the icosahedral group as the only possible symmetry group of such a solid. In such a case, higher-point correlation functions—starting with the three-point one—are naturally maximally anisotropic, which makes the standard detection strategies highly inefficient and calls for a dedicated analysis of CMB data. The tensor two-point function can also be highly anisotropic, but only in the presence of sizable higher-derivative couplings

  10. Icosahedral symmetry described by an incommensurately modulated crystal structure model

    DEFF Research Database (Denmark)

    Wolny, Janusz; Lebech, Bente

    1986-01-01

    A crystal structure model of an incommensurately modulated structure is presented. Although six different reciprocal vectors are used to describe the model, all calculations are done in three dimensions making calculation of the real-space structure trivial. Using this model, it is shown that both...... the positions of the bragg reflections and information about the relative intensities of these reflections are in full accordance with the diffraction patterns reported for microcrystals of the rapidly quenched Al86Mn14 alloy. It is also shown that at least the local structure possesses full icosahedral...

  11. Strongly localized modes in one-dimensional defect-free magnonic quasicrystals

    International Nuclear Information System (INIS)

    Chen, C. H.; Qiu, R. Z.; Chang, C. H.; Hsueh, W. J.

    2014-01-01

    Signal storage in magnonic quasicrystals using a slow spin-wave mode, rather than the quasinormal mode of traditional periodic magnonic crystals, is proposed, which is analogous to the slow light mode in the field of optics. Compared to traditional materials, richer and more wavelength-selective sharp resonances are achieved using the quasicrystals with a fewer number of layers, because of the peculiar fractal transmission spectra of quasicrystals. The number of sharp resonance and the quality factor for the sharp resonances in the transmission spectra also increases as the generation order of the magnonic quasicrystal increases. This generic nature allows the storage of signals using spin wave, for a wide range of quasiperiodic systems

  12. Fracture analysis of one-dimensional hexagonal quasicrystals: Researches of a finite dimension rectangular plate by boundary collocation method

    Energy Technology Data Exchange (ETDEWEB)

    Jiaxing, Cheng; Dongfa, Sheng [Southwest Forestry University, Yunnan (China)

    2017-05-15

    As an important supplement and development to crystallography, the applications about quasicrystal materials have played a core role in many fields, such as manufacturing and the space industry. Due to the sensitivity of quasicrystals to defects, the research on the fracture problem of quasicrystals has attracted a great deal of attention. We present a boundary collocation method to research fracture problems for a finite dimension rectangular one-dimensional hexagonal quasicrystal plate. Because mode I and mode II problems for one- dimensional hexagonal quasicrystals are like that for the classical elastic materials, only the anti-plane problem is discussed in this paper. The correctness of the present numerical method is verified through a comparison of the present results and the existing results. And then, the size effects on stress field, stress intensity factor and energy release rate are discussed in detail. The obtained results can provide valuable references for the fracture behavior of quasicrystals.

  13. THERMAL STABILITY OF Al-Cu-Fe QUASICRYSTALS PREPARED BY SHS METHOD

    OpenAIRE

    Pavel Novák; Alena Michalcová; Milena Voděrová; Ivo Marek; Dalibor Vojtěch

    2013-01-01

    Quasicrystal-containing materials are usually prepared by rapid solidification of the melt (e.g. by melt spinning) or mechanical alloying. In this work, the method using exothermic reactions between compressed metallic powders called SHS (Self-propagating High-temperature Synthesis) was tested. The microstructure and phase composition of the product was described in dependence on cooling regime from the reaction temperature. Thermal stability of prepared Al-Cu-Fe quasicrystals was studied by...

  14. How to distinguish perfect quasi-crystals from twins and other structures using diffraction experiments?

    International Nuclear Information System (INIS)

    Wolny, J.

    1992-01-01

    Performing diffraction experiments for various lengths of coherent scattering and using the scaling of peak intensities on a number of atoms one can experimentally distinguish quasi-crystals from the other structures (e.g. twins or random). For perfect quasi-crystals peak intensities scale as N 2 , for other structures this scaling depends on concentration of atoms, behaving critical for Penrose concentration. 3 figs., 8 refs. (author)

  15. Dynamics and Geometry of Icosahedral Order in Liquid and Glassy Phases of Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Masato Shimono

    2015-07-01

    Full Text Available The geometrical properties of the icosahedral ordered structure formed in liquid and glassy phases of metallic glasses are investigated by using molecular dynamics simulations. We investigate the Zr-Cu alloy system as well as a simple model for binary alloys, in which we can change the atomic size ratio between alloying components. In both cases, we found the same nature of icosahedral order in liquid and glassy phases. The icosahedral clusters are observed in liquid phases as well as in glassy phases. As the temperature approaches to the glass transition point Tg, the density of the clusters rapidly grows and the icosahedral clusters begin to connect to each other and form a medium-range network structure. By investigating the geometry of connection between clusters in the icosahedral network, we found that the dominant connecting pattern is the one sharing seven atoms which forms a pentagonal bicap with five-fold symmetry. From a geometrical point of view, we can understand the mechanism of the formation and growth of the icosahedral order by using the Regge calculus, which is originally employed to formulate a theory of gravity. The Regge calculus tells us that the distortion energy of the pentagonal bicap could be decreased by introducing an atomic size difference between alloying elements and that the icosahedral network would be stabilized by a considerably large atomic size difference.

  16. Photonic band gap spectra in Octonacci metamaterial quasicrystals

    Science.gov (United States)

    Brandão, E. R.; Vasconcelos, M. S.; Albuquerque, E. L.; Fulco, U. L.

    2017-02-01

    In this work we study theoretically the photonic band gap spectra for a one-dimensional quasicrystal made up of SiO2 (layer A) and a metamaterial (layer B) organized following the Octonacci sequence, where its nth-stage Sn is given by the inflation rule Sn =Sn - 1Sn - 2Sn - 1 for n ≥ 3 , with initial conditions S1 = A and S2 = B . The metamaterial is characterized by a frequency dependent electric permittivity ε(ω) and magnetic permeability μ(ω) . The polariton dispersion relation is obtained analytically by employing a theoretical calculation based on a transfer-matrix approach. A quantitative analysis of the spectra is then discussed, stressing the distribution of the allowed photonic band widths for high generations of the Octonacci structure, which depict a self-similar scaling property behavior, with a power law depending on the common in-plane wavevector kx .

  17. Thermodynamic behavior of a Penrose-tiling quasicrystal

    International Nuclear Information System (INIS)

    Strandburg, K.J.; Dressel, P.R.

    1990-01-01

    The Penrose tiling provides a prototype for the quasiperiodic crystal model of quasicrystals. We report results of Monte Carlo simulations of a two-dimensional model in which a Penrose tiling is the ground state. A single energy is assigned to any violation of the Penrose matching rules. Our results support the existence of two separate phase transitions, corresponding to single- and double-arrow matching-rule disorder, respectively. Manifestations of these transitions in the behavior of ''perpendicular-space'' quantities are explored. A limited exploration of the effects of unequal double- and single-arrow matching-rule-violation energies is performed. Speculations that the Penrose pattern might be inherently prone to glassy behavior are shown to be incorrect

  18. Plasticity of decagonal Al-Ni-Co single quasicrystals

    International Nuclear Information System (INIS)

    Schall, P.

    2002-03-01

    Decagonal quasicrystals exhibit quasiperiodic order along two spatial directions and periodic order along the third. Many physical properties of these materials show an anisotropic behaviour. Three different modifications of the decagonal phase in the Al-Ni-Co system were grown as single crystals using the Bridgman and flux growth techniques: quasicrystals of a nickel-rich composition, the so-called basic Ni phase, of a composition of about Al 70 Ni 15 Co 15 and of a cobalt-rich composition, so-called basic Co. Plastic deformation experiments at constant strain rate were carried out on these phases at temperatures of about 70 to 85% of the melting temperature. Stress-relaxation tests and temperature changes were performed during the deformation to study the strain-rate and temperature sensitivity of the flow stress, respectively. Distinct anisotropies are observed in the plastic behaviour, which differ fundamentally for the three modifications. Microstructural investigations of deformed samples by transmission electron microscopy show that plastic deformation is mediated by a dislocation mechanism. Depending on orientation a pure glide, a pure climb or a mixed glide and climb process is observed. Burgers vectors were determined by convergent beam electron diffraction in direction and length. Three different types of dislocations are observed, i.e. dislocations with a periodic, quasiperiodic and a mixed Burgers vector. The Burgers vectors were identified in a current structure model. The dislocations with the periodic and the mixed Burgers vector exhibit reactions which are of fundamental importance for the macroscopic deformation behaviour. In particular, they explain the different plastic behaviours of the three modifications. (orig.)

  19. Electronic and atomic disorder in icosahedral AlPdRe

    International Nuclear Information System (INIS)

    Rapp, Oe; Karkin, A A; Goshchitskii, B N; Voronin, V I; Srinivas, V; Poon, S J

    2008-01-01

    Relations between electronic and atomic disorder of i-AlPdRe have been investigated by studies of neutron irradiated and annealed samples. The advantage with this technique is that a single sample can be monitored over a significant range of varying electronic properties, without concern for any influence of varying impurities. X-ray diffraction, the electrical resistivity and its temperature dependence, and the magnetoresistance are studied. The results show that annealings of an irradiated sample lead to improvement of the atomic order, as reflected in increased intensities of the x-ray diffraction peaks, while electronic properties change in the direction of increasing electronic disorder towards a metal-insulator transition. The observed relation in quasicrystals that improved atomic structure is associated with stronger anomalies in transport properties is thus also seen in i-AlPdRe. In particular, the variation of the diffusion constant in the region of small values of the resistivity is found to be similar for annealed polygrain samples and for single grain samples with varying Pd concentration, as evaluated from literature data, indicating a similar development of electronic disorder in both sets of samples. However, the problem remains as to why the resistivity is small in single grain samples which are atomically well-ordered. The possibility of a strong sensitivity to concentration differences is pointed out

  20. Semiconducting icosahedral boron arsenide crystal growth for neutron detection

    Science.gov (United States)

    Whiteley, C. E.; Zhang, Y.; Gong, Y.; Bakalova, S.; Mayo, A.; Edgar, J. H.; Kuball, M.

    2011-03-01

    Semiconducting icosahedral boron arsenide, B12As2, is an excellent candidate for neutron detectors, thermoelectric converters, and radioisotope batteries, for which high quality single crystals are required. Thus, the present study was undertaken to grow B12As2 crystals by precipitation from metal solutions (nickel) saturated with elemental boron (or B12As2 powder) and arsenic in a sealed quartz ampoule. B12As2 crystals of 10-15 mm were produced when a homogeneous mixture of the three elements was held at 1150 °C for 48-72 h and slowly cooled (3.5 °C/h). The crystals varied in color and transparency from black and opaque to clear and transparent. X-ray topography (XRT), and elemental analysis by energy dispersive X-ray spectroscopy (EDS) confirmed that the crystals had the expected rhombohedral structure and chemical stoichiometry. The concentrations of residual impurities (nickel, carbon, etc.) were low, as measured by Raman spectroscopy and secondary ion mass spectrometry (SIMS). Additionally, low etch-pit densities (4.4×107 cm-2) were observed after etching in molten KOH at 500 °C. Thus, the flux growth method is viable for growing large, high-quality B12As2 crystals.

  1. Studying the properties of photonic quasi-crystals by the scaling convergence method

    International Nuclear Information System (INIS)

    Ho, I-Lin; Ng, Ming-Yaw; Mai, Chien Chin; Ko, Peng Yu; Chang, Yia-Chung

    2013-01-01

    This work introduces the iterative scaling (or inflation) method to systematically approach and analyse the infinite structure of quasi-crystals. The resulting structures preserve local geometric orderings in order to prevent artificial disclination across the boundaries of super-cells, with realistic quasi-crystals coming out under high iteration (infinite super-cell). The method provides an easy way for decorations of quasi-crystalline lattices, and for compact reliefs with a quasi-periodic arrangement to underlying applications. Numerical examples for in-plane and off-plane properties of square-triangle quasi-crystals show fast convergence during iteratively geometric scaling, revealing characteristics that do not appear on regular crystals. (paper)

  2. Tamm-plasmon polaritons in one-dimensional photonic quasi-crystals.

    Science.gov (United States)

    Shukla, Mukesh Kumar; Das, Ritwick

    2018-02-01

    We present an investigation to ascertain the existence of Tamm-plasmon-polariton-like modes in one-dimensional (1D) quasi-periodic photonic systems. Photonic bandgap formation in quasi-crystals is essentially a consequence of long-range periodicity exhibited by multilayers and, thus, it can be explained using the dispersion relation in the Brillouin zone. Defining a "Zak"-like topological phase in 1D quasi-crystals, we propose a recipe to ascertain the existence of Tamm-like photonic surface modes in a metal-terminated quasi-crystal lattice. Additionally, we also explore the conditions of efficient excitation of such surface modes along with their dispersion characteristics.

  3. Dislocation-free growth of quasicrystals from two seeds due to additional phasonic degrees of freedom

    Science.gov (United States)

    Schmiedeberg, M.; Achim, C. V.; Hielscher, J.; Kapfer, S. C.; Löwen, H.

    2017-07-01

    We explore the growth of two-dimensional quasicrystals, i.e., aperiodic structures that possess long-range order, from two seeds at various distances and with different orientations by using dynamical phase-field crystal calculations. We compare the results to the growth of periodic crystals from two seeds. There, a domain border consisting of dislocations is observed in case of large distances between the seed and large angles between their orientation. Furthermore, a domain border is found if the seeds are placed at a distance that does not fit to the periodic lattice. In the case of the growth of quasicrystals, we only observe domain borders for large distances and different orientations. Note that all distances do inherently not match to a perfect domain wall-free quasicrystalline structure. Nevertheless, we find dislocation-free growth for all seeds at a small enough distance and for all seeds that approximately have the same orientation. In periodic structures, the stress that occurs due to incommensurate distances between the seeds results in phononic strain fields or, in the case of too large stresses, in dislocations. In contrast, in quasicrystals an additional phasonic strain field can occur and suppress dislocations. Phasons are additional degrees of freedom that are unique to quasicrystals. As a consequence, the additional phasonic strain field helps to distribute the stress and facilitates the growth of dislocation-free quasicrystals from multiple seeds. In contrast, in the periodic case the growth from multiple seeds most likely leads to a structure with multiple domains. Our work lays the theoretical foundations for growing perfect quasicrystals from different seeds and is therefore relevant for many applications.

  4. Thermal stability of Al-Cu-Fe quasicrystals prepared by SHS method

    Directory of Open Access Journals (Sweden)

    Pavel Novak

    2013-02-01

    Full Text Available Quasicrystal-containing materials are usually prepared by rapid solidification of the melt (e.g. by melt spinning or mechanical alloying. In this work, the method using exothermic reactions between compressed metallic powders called SHS (Self-propagating High-temperature Synthesis was tested. The microstructure and phase composition of the product was described in dependence on cooling regime from the reaction temperature. Thermal stability of prepared Al-Cu-Fe quasicrystals was studied by annealing at the temperatures of 300 and 500 °C.

  5. Measuring the Thermophysical and Structural Properties of Glass-Forming and Quasicrystal-Forming Liquids

    Science.gov (United States)

    Hyers, Robert W.; Bradshaw, Richard C.; Rogers, Jan R.; Gangopadhyay, Anup K.; Kelton, Ken F.

    2006-01-01

    The thermophysical properties of glass-forming and quasicrystal-forming alloys show many interesting features in the undercooled liquid range. Some of the features in the thermophysical property curves are expected to reflect changes in the structure and coordination of the liquid. These measurements require containerless processing such as electrostatic levitation to access the undercooled liquid regime. An overview of the state of the art in measuring the thermophysical properties and structure of undercooled liquid glass-forming and quasicrystal-forming alloys will be presented, along with the status of current measurements.

  6. THERMAL STABILITY OF Al-Cu-Fe QUASICRYSTALS PREPARED BY SHS METHOD

    Directory of Open Access Journals (Sweden)

    Pavel Novák

    2013-04-01

    Full Text Available Quasicrystal-containing materials are usually prepared by rapid solidification of the melt (e.g. by melt spinning or mechanical alloying. In this work, the method using exothermic reactions between compressed metallic powders called SHS (Self-propagating High-temperature Synthesis was tested. The microstructure and phase composition of the product was described in dependence on cooling regime from the reaction temperature. Thermal stability of prepared Al-Cu-Fe quasicrystals was studied by annealing at the temperatures of 300 and 500 °C.

  7. Comparative Study of Non-Enveloped Icosahedral Viruses Size.

    Directory of Open Access Journals (Sweden)

    Nikolai Nikitin

    Full Text Available Now, as before, transmission electron microscopy (TEM is a widely used technique for the determination of virions size. In some studies, dynamic light scattering (DLS has also been applied for this purpose. Data obtained by different authors and using different methods could vary significantly. The process of TEM sample preparation involves drying on the substrate, which can cause virions to undergo morphology changes. Therefore, other techniques should be used for measurements of virions size in liquid, (i.e. under conditions closer to native. DLS and nanoparticle tracking analysis (NTA provide supplementary data about the virions hydrodynamic diameter and aggregation state in liquid. In contrast to DLS, NTA data have a higher resolution and also are less sensitive to minor admixtures. In the present work, the size of non-enveloped icosahedral viruses of different nature was analyzed by TEM, DLS and NTA: the viruses used were the encephalomyocarditis virus (animal virus, and cauliflower mosaic virus, brome mosaic virus and bean mild mosaic virus (plant viruses. The same, freshly purified, samples of each virus were used for analysis using the different techniques. The results were compared with earlier published data and description databases. DLS data about the hydrodynamic diameter of bean mild mosaic virus, and NTA data for all examined viruses, were obtained for the first time. For all virus samples, the values of size obtained by TEM were less than virions sizes determined by DLS and NTA. The contribution of the electrical double layer (EDL in virions hydrodynamic diameter was evaluated. DLS and NTA data adjusted for EDL thickness were in better agreement with TEM results.

  8. Icosahedral binary clusters of glass-forming Lennard-Jones binary alloy

    International Nuclear Information System (INIS)

    Iwamatsu, Masao

    2007-01-01

    It is widely believed that the local icosahedral structure is related to the formation of bulk metallic glasses (BMGs). Specifically the existence of 13-atom icosahedral cluster in undercooled liquid is imagined to play a key role to initiate the glass formation as the seed of amorphous structure or to block the nucleation of regular crystal as the impurity. The existence of 13-atom icosahedral clusters in one-component liquids was predicted more than half a century ago by Frank from his total energy calculation for isolated clusters. In BMG alloys, however, the situation is less clear. In this report, we present the lowest-energy structures of 13-atom Lennard-Jones binary cluster calculated from the modified space-fixed genetic algorithm. We study, in particular, the artificial Lennard-Jones potential designed by Kob and Andersen [W. Kob, H.C. Andersen, Phys. Rev. E 51 (1995) 4626] that is known to form BMG. Curiously, the lowest-energy structures of 13-atom cluster are non-icosahedral for almost all compositions. Our result suggests that the existence of the icosahedral cluster is not a necessary condition but only a sufficient condition for glass formation

  9. Fractal spectra in generalized Fibonacci one-dimensional magnonic quasicrystals

    Energy Technology Data Exchange (ETDEWEB)

    Costa, C.H.O. [Departamento de Fisica Teorica e Experimental, Universidade Federal do Rio grande do Norte, 59072-970 Natal-RN (Brazil); Vasconcelos, M.S., E-mail: manoelvasconcelos@yahoo.com.br [Escola de Ciencias e Tecnologia, Universidade Federal do Rio grande do Norte, 59072-970 Natal-RN (Brazil); Barbosa, P.H.R.; Barbosa Filho, F.F. [Departamento de Fisica, Universidade Federal do Piaui, 64049-550 Teresina-Pi (Brazil)

    2012-07-15

    In this work we carry out a theoretical analysis of the spectra of magnons in quasiperiodic magnonic crystals arranged in accordance with generalized Fibonacci sequences in the exchange regime, by using a model based on a transfer-matrix method together random-phase approximation (RPA). The generalized Fibonacci sequences are characterized by an irrational parameter {sigma}(p,q), which rules the physical properties of the system. We discussed the magnonic fractal spectra for first three generalizations, i.e., silver, bronze and nickel mean. By varying the generation number, we have found that the fragmentation process of allowed bands makes possible the emergence of new allowed magnonic bulk bands in spectra regions that were magnonic band gaps before, such as which occurs in doped semiconductor devices. This interesting property arises in one-dimensional magnonic quasicrystals fabricated in accordance to quasiperiodic sequences, without the need to introduce some deferent atomic layer or defect in the system. We also make a qualitative and quantitative investigations on these magnonic spectra by analyzing the distribution and magnitude of allowed bulk bands in function of the generalized Fibonacci number F{sub n} and as well as how they scale as a function of the number of generations of the sequences, respectively. - Highlights: Black-Right-Pointing-Pointer Quasiperiodic magnonic crystals are arranged in accordance with the generalized Fibonacci sequence. Black-Right-Pointing-Pointer Heisenberg model in exchange regime is applied. Black-Right-Pointing-Pointer We use a theoretical model based on a transfer-matrix method together random-phase approximation. Black-Right-Pointing-Pointer Fractal spectra are characterized. Black-Right-Pointing-Pointer We analyze the distribution of allowed bulk bands in function of the generalized Fibonacci number.

  10. Non-stochastic switching and emergence of magnetic vortices in artificial quasicrystal spin ice

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, V.S., E-mail: vinayak.bhat@uky.edu [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506-0055 (United States); Farmer, B.; Smith, N.; Teipel, E.; Woods, J. [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506-0055 (United States); Sklenar, J.; Ketterson, J.B. [Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208-3112 (United States); Hastings, J.T. [Department of Electrical and Computer Engineering, University of Kentucky, Lexington, KY 40506-0055 (United States); De Long, L.E. [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506-0055 (United States)

    2014-08-15

    Highlights: • We studied magnetic reversal in a fivefold rotational symmetric artificial quasicrystal spin ice. • Our experiments and simulations suggest the presence of non-stochastic switching in the quasicrystal. • Simulations reveal a strong connection between FM reversal and formation of vortex loops in the quasicrystal. • Our study shows that the magnetic reversal in the artificial quasicrystal is a collective phenomenon. - Abstract: Previous studies of artificial spin ice have been largely restricted to periodic dot lattices. Ferromagnetic switching of segments in an applied magnetic field is stochastic in periodic spin ice systems, which makes emergent phenomena, such as the formation of vortex loops, hard to control or predict. We fabricated finite, aperiodic Penrose P2 tilings as antidot lattices with fivefold rotational symmetry in permalloy thin films. Measurements of the field dependence of the static magnetization reveal reproducible knee anomalies whose number and form are temperature dependent, which suggests they mark cooperative rearrangements of the tiling magnetic texture. Our micromagnetic simulations of the P2 tiling are in good agreement with experimental magnetization data and exhibit non-stochastic magnetic switching of segments in applied field, and vortex loops that are stable over an extended field interval during magnetic reversal.

  11. Multiple-scale structures: from Faraday waves to soft-matter quasicrystals

    Directory of Open Access Journals (Sweden)

    Samuel Savitz

    2018-05-01

    Full Text Available For many years, quasicrystals were observed only as solid-state metallic alloys, yet current research is now actively exploring their formation in a variety of soft materials, including systems of macromolecules, nanoparticles and colloids. Much effort is being invested in understanding the thermodynamic properties of these soft-matter quasicrystals in order to predict and possibly control the structures that form, and hopefully to shed light on the broader yet unresolved general questions of quasicrystal formation and stability. Moreover, the ability to control the self-assembly of soft quasicrystals may contribute to the development of novel photonics or other applications based on self-assembled metamaterials. Here a path is followed, leading to quantitative stability predictions, that starts with a model developed two decades ago to treat the formation of multiple-scale quasiperiodic Faraday waves (standing wave patterns in vibrating fluid surfaces and which was later mapped onto systems of soft particles, interacting via multiple-scale pair potentials. The article reviews, and substantially expands, the quantitative predictions of these models, while correcting a few discrepancies in earlier calculations, and presents new analytical methods for treating the models. In so doing, a number of new stable quasicrystalline structures are found with octagonal, octadecagonal and higher-order symmetries, some of which may, it is hoped, be observed in future experiments.

  12. Multiple-scale structures: from Faraday waves to soft-matter quasicrystals.

    Science.gov (United States)

    Savitz, Samuel; Babadi, Mehrtash; Lifshitz, Ron

    2018-05-01

    For many years, quasicrystals were observed only as solid-state metallic alloys, yet current research is now actively exploring their formation in a variety of soft materials, including systems of macromolecules, nanoparticles and colloids. Much effort is being invested in understanding the thermodynamic properties of these soft-matter quasicrystals in order to predict and possibly control the structures that form, and hopefully to shed light on the broader yet unresolved general questions of quasicrystal formation and stability. Moreover, the ability to control the self-assembly of soft quasicrystals may contribute to the development of novel photonics or other applications based on self-assembled metamaterials. Here a path is followed, leading to quantitative stability predictions, that starts with a model developed two decades ago to treat the formation of multiple-scale quasiperiodic Faraday waves (standing wave patterns in vibrating fluid surfaces) and which was later mapped onto systems of soft particles, interacting via multiple-scale pair potentials. The article reviews, and substantially expands, the quantitative predictions of these models, while correcting a few discrepancies in earlier calculations, and presents new analytical methods for treating the models. In so doing, a number of new stable quasicrystalline structures are found with octagonal, octadecagonal and higher-order symmetries, some of which may, it is hoped, be observed in future experiments.

  13. Moessbauer and transport studies of amorphous and icosahedral Zr-Ni-Cu-Ag-Al alloys

    International Nuclear Information System (INIS)

    Stadnik, Z.M.; Rapp, O.; Srinivas, V.; Saida, J.; Inoue, A.

    2002-01-01

    The alloy Zr 65 Al 7.5 Ni 10 Cu 7.3 Fe 0.2 Ag 10 in the amorphous and icosahedral states, and the bulk amorphous alloy Zr 65 Al 7.5 Ni 10 Cu 7.5 Ag 10 , have been studied with 57 Fe Moessbauer spectroscopy, electrical resistance and magnetoresistance techniques. The average quadrupole splitting in both alloys decreases with temperature as T 3/2 . The average quadrupole splitting in the icosahedral alloy is the largest ever reported for a metallic system. The lattice vibrations of the Fe atoms in the amorphous and icosahedral alloys are well described by a simple Debye model, with the characteristic Moessbauer temperatures of 379(29) and 439(28) K, respectively. Amorphous alloys Zr 65 Al 7. )5Ni 10 Cu 7.5 Ag 10 and Zr 65 Al 7.5 Ni 10 Cu 7.3 Fe 0.2 Ag 10 have been found to be superconducting with the transition temperature, T c , of about 1.7 K. The magnitude of Tc and the critical field slope at Tc are in agreement with previous work on Zr-based amorphous superconductors, while the low-temperature normal state resistivity is larger than typical results for binary and ternary Zr-based alloys. The resistivity of icosahedral Zr 65 Al 7.5 Ni 10 Cu 7.3 Fe 0.2 Ag 10 is larger than that for the amorphous ribbon of the same composition, as inferred both from direct measurements on the ribbons and from the observed magnetoresistance. However the icosahedral sample is non-superconducting in the measurement range down to 1.5 K. The results for the resistivity and the superconducting T c both suggest a stronger electronic disorder in the icosahedral phase than in the amorphous phase. (author)

  14. Pseudo-icosahedral Cr55Al232 -δ as a high-temperature protective material

    Science.gov (United States)

    Rosa, R.; Bhattacharya, S.; Pabla, J.; He, H.; Misuraca, J.; Nakajima, Y.; Bender, A. D.; Antonacci, A. K.; Adrip, W.; McNally, D. E.; Zebro, A.; Kamenov, P.; Geschwind, G.; Ghose, S.; Dooryhee, E.; Ibrahim, A.; Tritt, T. M.; Aronson, M. C.; Simonson, J. W.

    2018-03-01

    We report here a course of basic research into the potential suitability of a pseudo-icosahedral Cr aluminide as a material for high-temperature protective coatings. Cr55Al232 -δ [ δ =2.70 (6 ) ] exhibits high hardness at room temperature as well as low thermal conductivity and excellent oxidation resistance at 973 K, with an oxidation rate comparable to those of softer, denser benchmark materials. The origin of these promising properties can be traced to competing long-range and short-range symmetries within the pseudo-icosahedral crystal structure, suggesting new criteria for future materials research.

  15. Interaction between infinitely many dislocations and a semi-infinite crack in one-dimensional hexagonal quasicrystal

    International Nuclear Information System (INIS)

    Liu Guan-Ting; Yang Li-Ying

    2017-01-01

    By means of analytic function theory, the problems of interaction between infinitely many parallel dislocations and a semi-infinite crack in one-dimensional hexagonal quasicrystal are studied. The analytic solutions of stress fields of the interaction between infinitely many parallel dislocations and a semi-infinite crack in one-dimensional hexagonal quasicrystal are obtained. They indicate that the stress concentration occurs at the dislocation source and the tip of the crack, and the value of the stress increases with the number of the dislocations increasing. These results are the development of interaction among the finitely many defects of quasicrystals, which possesses an important reference value for studying the interaction problems of infinitely many defects in fracture mechanics of quasicrystal. (paper)

  16. Elastic properties and 2D icosahedral bonding in borides of hexagonal WC type

    International Nuclear Information System (INIS)

    Music, Denis; Schneider, Jochen M.

    2005-01-01

    Using ab initio calculations we have identified materials with bulk moduli comparable to cubic BN. These are WB, IrB, ReB and OsB crystallizing in the hexagonal WC structure. In the (0 0 0 2) planes of these compounds, we find 2D icosahedral bonding between adjacent B atoms, which has previously not been reported

  17. HCIV-1 and Other Tailless Icosahedral Internal Membrane-Containing Viruses of the Family Sphaerolipoviridae

    Directory of Open Access Journals (Sweden)

    Tatiana A. Demina

    2017-02-01

    Full Text Available Members of the virus family Sphaerolipoviridae include both archaeal viruses and bacteriophages that possess a tailless icosahedral capsid with an internal membrane. The genera Alpha- and Betasphaerolipovirus comprise viruses that infect halophilic euryarchaea, whereas viruses of thermophilic Thermus bacteria belong to the genus Gammasphaerolipovirus. Both sequence-based and structural clustering of the major capsid proteins and ATPases of sphaerolipoviruses yield three distinct clades corresponding to these three genera. Conserved virion architectural principles observed in sphaerolipoviruses suggest that these viruses belong to the PRD1-adenovirus structural lineage. Here we focus on archaeal alphasphaerolipoviruses and their related putative proviruses. The highest sequence similarities among alphasphaerolipoviruses are observed in the core structural elements of their virions: the two major capsid proteins, the major membrane protein, and a putative packaging ATPase. A recently described tailless icosahedral haloarchaeal virus, Haloarcula californiae icosahedral virus 1 (HCIV-1, has a double-stranded DNA genome and an internal membrane lining the capsid. HCIV-1 shares significant similarities with the other tailless icosahedral internal membrane-containing haloarchaeal viruses of the family Sphaerolipoviridae. The proposal to include a new virus species, Haloarcula virus HCIV1, into the genus Alphasphaerolipovirus was submitted to the International Committee on Taxonomy of Viruses (ICTV in 2016.

  18. Isoflurane as a solvent for electrochemistry. Electrooxidation study of icosahedral carborane anions in four different solvents

    Czech Academy of Sciences Publication Activity Database

    Wahab, Abdul; Kvapilová, Hana; Klíma, Jiří; Michl, Josef; Ludvík, Jiří

    2013-01-01

    Roč. 689, JAN 2013 (2013), s. 257-261 ISSN 1572-6657 R&D Projects: GA MŠk ME09002; GA ČR GC203/09/J058 Institutional support: RVO:61388955 ; RVO:61388963 Keywords : isoflurane * relative permitivity * icosahedral carborane anions Subject RIV: CG - Electrochemistry Impact factor: 2.871, year: 2013

  19. Elastic properties and 2D icosahedral bonding in borides of hexagonal WC type

    Energy Technology Data Exchange (ETDEWEB)

    Music, Denis [Materials Chemistry, RWTH-Aachen, Kopernikusstr. 16, D-52074 Aachen (Germany)]. E-mail: music@mch.rwth-aachen.de; Schneider, Jochen M. [Materials Chemistry, RWTH-Aachen, Kopernikusstr. 16, D-52074 Aachen (Germany)

    2005-01-15

    Using ab initio calculations we have identified materials with bulk moduli comparable to cubic BN. These are WB, IrB, ReB and OsB crystallizing in the hexagonal WC structure. In the (0 0 0 2) planes of these compounds, we find 2D icosahedral bonding between adjacent B atoms, which has previously not been reported.

  20. Observation of a Time Quasicrystal and Its Transition to a Superfluid Time Crystal

    Science.gov (United States)

    Autti, S.; Eltsov, V. B.; Volovik, G. E.

    2018-05-01

    We report experimental realization of a quantum time quasicrystal and its transformation to a quantum time crystal. We study Bose-Einstein condensation of magnons, associated with coherent spin precession, created in a flexible trap in superfluid 3He-B . Under a periodic drive with an oscillating magnetic field, the coherent spin precession is stabilized at a frequency smaller than that of the drive, demonstrating spontaneous breaking of discrete time translation symmetry. The induced precession frequency is incommensurate with the drive, and hence, the obtained state is a time quasicrystal. When the drive is turned off, the self-sustained coherent precession lives a macroscopically long time, now representing a time crystal with broken symmetry with respect to continuous time translations. Additionally, the magnon condensate manifests spin superfluidity, justifying calling the obtained state a time supersolid or a time supercrystal.

  1. Symmetry-Induced Light Confinement in a Photonic Quasicrystal-Based Mirrorless Cavity

    Directory of Open Access Journals (Sweden)

    Gianluigi Zito

    2016-09-01

    Full Text Available We numerically investigate the electromagnetic field localization in a two-dimensional photonic quasicrystal generated with a holographic tiling. We demonstrate that light confinement can be induced into an air mirrorless cavity by the inherent symmetry of the spatial distribution of the dielectric scatterers forming the side walls of the open cavity. Furthermore, the propagation direction can be controlled by suitable designs of the structure. This opens up new avenues for designing photonic materials and devices.

  2. Photonic crystal and photonic quasicrystal patterned in PDMS surfaces and their effect on LED radiation properties

    Energy Technology Data Exchange (ETDEWEB)

    Suslik, Lubos [Dept. of Physics, Faculty of Electrical Engineering, University of Zilina, Univerzitna 1, 010 26, Zilina (Slovakia); Pudis, Dusan, E-mail: pudis@fyzika.uniza.sk [Dept. of Physics, Faculty of Electrical Engineering, University of Zilina, Univerzitna 1, 010 26, Zilina (Slovakia); Goraus, Matej [Dept. of Physics, Faculty of Electrical Engineering, University of Zilina, Univerzitna 1, 010 26, Zilina (Slovakia); Nolte, Rainer [Fakultät für Maschinenbau FG Lichttechnik Ilmenau University of Technology, Ilmenau (Germany); Kovac, Jaroslav [Inst. of Electronics and Photonics, Slovak University of Technology, Ilkovicova 3, 812 19, Bratislava (Slovakia); Durisova, Jana; Gaso, Peter [Dept. of Physics, Faculty of Electrical Engineering, University of Zilina, Univerzitna 1, 010 26, Zilina (Slovakia); Hronec, Pavol [Inst. of Electronics and Photonics, Slovak University of Technology, Ilkovicova 3, 812 19, Bratislava (Slovakia); Schaaf, Peter [Chair Materials for Electronics, Institute of Materials Engineering and Institute of Micro- and Nanotechnologies MacroNano, TU Ilmenau, Gustav-Kirchhoff-Str. 5, 98693 Ilmenau (Germany)

    2017-02-15

    Graphical abstract: Photonic quasicrystal patterned in the surface of polydimethylsiloxane membrane (left) and radiation pattern of light emitting diode with patterned membrane applied in the surface (right). - Highlights: • We presented fabrication technique of PDMS membranes with patterned surface by photonic crystal (PhC) and photonic quasi-crystal (PQC). • Presented technique is effective for preparation PhC and PQC PDMS membranes easily implementing in the LED chip. • From the goniophotometer measurements, the membranes document effective angular emission due to the diffraction on patterned surfaces. • 12 fold symmetry PQC structure shows homogeneous radiation pattern, while the 2 fold symmetry of square PhC shows evident diffraction lobes. - Abstract: We present results of fabrication and implementation of thin polydimethylsiloxane (PDMS) membranes with patterned surface for the light emitting diode (LED). PDMS membranes were patterned by using the interference lithography in combination with embossing technique. Two-dimensional photonic crystal and photonic quasicrystal structures with different period were patterned in the surface of thin PDMS membranes with depth up to 550 nm. Patterned PDMS membranes placed on the LED chip effectively diffracted light and increased angular emission of LED radiation pattern. We presented effective technique for fabrication of patterned PDMS membranes, which could modify the emission properties of optoelectronic devices and can be applied directly on surface LEDs and small optical devices.

  3. Classification of Voronoi and Delone tiles of quasicrystals: III. Decagonal acceptance window of any size

    International Nuclear Information System (INIS)

    Masakova, Z; Patera, J; Zich, J

    2005-01-01

    This paper is the last of a series of three articles presenting a classification of Vornoi and Delone tilings determined by point sets Σ(Ω) ('quasicrystals'), built by the standard projection of the root lattice of type A 4 to a two-dimensional plane spanned by the roots of the Coxeter group H 2 (dihedral group of order 10). The acceptance window Ω for Σ(Ω) in the present paper is a regular decagon of any radius 0 k , τ = 1/2(1+√5) and k element of Z. The number of Voronoi tiles in different quasicrystal tilings varies between 3 and 12. Similarly, the number of Delone tiles is varying between 4 and 6. There are 7 VT sets of the 'generic' type and 7 of the 'singular' type. The latter occur for seven precise values of the radius of the acceptance window. Quasicrystals with acceptance windows with radii in between these values have constant VT sets, only the relative densities and arrangement of the tiles in the tilings change. Similarly, we distinguish singular and generic sets DT of Delone tiles

  4. Computer-simulated images of icosahedral, pentagonal and decagonal clusters of atoms

    International Nuclear Information System (INIS)

    Peng JuLin; Bursill, L.A.

    1989-01-01

    The aim of this work was to assess, by computer-simulation the sensitivity of high-resolution electron microscopy (HREM) images for a set of icosahedral and decagonal clusters, containing 50-400 atoms. An experimental study of both crystalline and quasy-crystalline alloys of A1(Si)Mn is presented, in which carefully-chosen electron optical conditions were established by computer simulation then used to obtain high quality images. It was concluded that while there is a very significant degree of model sensitiveness available, direct inversion from image to structure is not at realistic possibility. A reasonable procedure would be to record experimental images of known complex icosahedral alloys, in a crystalline phase, then use the computer-simulations to identify fingerprint imaging conditions whereby certain structural elements could be identified in images of quasi-crystalline or amorphous specimens. 27 refs., 12 figs., 1 tab

  5. Binding energy of large icosahedral and cuboctahedral Lennard-Jones clusters

    International Nuclear Information System (INIS)

    Northby, J.A.; Xie, J.

    1989-01-01

    It is widely believed that the lowest energy configurations for small rare gas clusters have icosahedral symmetry. This contrasts with the bulk crystal structures which have cuboctahedral fcc symmetry. It is of interest to understand the transition between this finite and bulk behavior. To model this transition in rare gas clusters we have undertaken optimization studies within the Lennard-Jones pair potential model. Using a combination of Monte Carlo and Partan Search optimization methods, the lowest energy relaxed structures of Lennard-Jones clusters having icosahedral and cuboctahedral symmetry were found. Studies were performed for complete shell clusters ranging in size from one shell having 13 atoms to 14 shells having 10,179 atoms. It was found that the icosahedral structures are lower in energy than the cuboctahedral structures for cluster sizes having 13 shells or fewer. Additional studies were performed using the more accurate Aziz-Chen [HFD-C] pair potential parameterized for argon. The conclusions appear to be relatively insensitive to the form of the potential. (orig.)

  6. Interactions among K+-Ca2+ exchange, sorption of m-dinitrobenzene, and smectite quasicrystal dynamics.

    Science.gov (United States)

    Chatterjee, Ritushree; Laird, David A; Thompson, Michael L

    2008-12-15

    The fate of organic contaminants in soils and sediments is influenced by sorption of the compounds to surfaces of soil materials. We investigated the interaction among sorption of an organic compound, cation exchange reactions, and both the size and swelling of smectite quasicrystals. Two reference smectites that vary in location and amount of layer charge, SPV (a Wyoming bentonite) and SAz-1 were initially Ca- and K-saturated and then equilibrated with mixed 0.01 M KCl and 0.005 M CaCl2 salt solutions both with and without the presence of 200 mg L(-1) m-dinitrobenzene (m-DNB). In general, sorption of m-DNB increased with the amount of K+ in the system for both clays, and the SPV sorbed more m-DNB than the SAz-1. Sorption of m-DNB increased the preference of Ca-SPV for K+ relative to Ca2+ but had little effect on K+-Ca2+ selectivity for K-SPV. Selectivity for K+ relative to Ca2+ was slightly higher for both K-SAz-1 and Ca-SAz-1 in the presence of m-DNB than in its absence. Distinct hysteresis loops were observed for the K+-Ca2+ cation exchange reactions for both clays, and the legacy of having been initially Ca- or K-saturated influenced sorption of m-DNB by SPV but had little effect for SAz-1. Suspension X-ray diffraction was used to measure changes in d-spacing and the relative thickness of smectite quasicrystals during the cation exchange and m-DNB sorption reactions. The results suggest that interactions among cation exchange and organic sorption reactions are controlled byan inherently hysteretic complex feedback process that is regulated by changes in the size and extent of swelling of smectite quasicrystals.

  7. Atomic-partial vibrational density of states of i-AlCuFe quasicrystals

    International Nuclear Information System (INIS)

    Parshin, P.P.; Zemlyanov, M.; Brand, R.A.; Dianoux, A.J.; Calvayrac, Y.

    2002-01-01

    We present new results on the separation of the atomic-partial vibrational density of states for the ternary quasicrystal i-Al 62 Cu 25.5 Fe 12.5 . The decomposition into three atomic-partial functions, Al-, Cu- and Fe-g(E), has been performed self-consistently with the calculation of the multi-phonon contributions. The results show the surprising result that both Cu- and Fe-g(E) are strongly peaked. The low-energy regions of Al- and Cu-g(E) show strong deviations from Debye behaviour due to the presence of non-propagating low-energy vibrational states. (orig.)

  8. Long range ordered magnetic and atomic structures of the quasicrystal approximant in the Tb-Au-Si system

    Czech Academy of Sciences Publication Activity Database

    Gebresenbut, G.; Andersson, M. S.; Beran, Přemysl; Manuel, P.; Nordblad, P.; Sahlberg, M.; Gomez, C. P.

    2014-01-01

    Roč. 26, č. 32 (2014), s. 322202 ISSN 0953-8984 R&D Projects: GA MŠk(XE) LM2011019 EU Projects: European Commission(XE) 283883 - NMI3-II Institutional support: RVO:61389005 Keywords : magnetic property * magnetic structure refinement * approximants of quasicrystals Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.346, year: 2014

  9. Gold icosahedral nanocages: Facile synthesis, optical properties, and fragmentation under ultrasonication

    Science.gov (United States)

    Yang, Xuan; Gilroy, Kyle D.; Vara, Madeline; Zhao, Ming; Zhou, Shan; Xia, Younan

    2017-09-01

    Because of their unique optical properties, gold nanocages are excellent candidates for biomedical applications. Traditionally, they are prepared using a method that involves the galvanic replacement reaction between Ag nanocubes and HAuCl4. Here we demonstrate a different approach for the facile synthesis of Au icosahedral nanocages containing twin boundaries, as well as a compact size below 15 nm and ultrathin walls of only a few atomic layers thick. Their optical properties could be tuned by simply controlling the etching time, a result that was also validated by computational modeling. We further evaluated the feasibility of fragmenting the nanocages using ultrasonication.

  10. Icosahedral cationic framework in the structures of MR2F7 fluorides

    International Nuclear Information System (INIS)

    Golubev, A.M.; Maksimov, B.A.; Rastsvetaeva, R.K.

    1997-01-01

    Cationic icosahedral frame formed by BiCs 6 Bi 6 icosahedrons is detected in C 5 Bi 2 F 7 structure. Similarity of cationic motives of CsBi 2 F 7 and β-KEr 2 F 7 structure types is determined, occurrence of a similar motive in RbEr 2 F 7 structure is assumed. Cationic motives of MR 2 F 7 fluorides (R=Y, Ln) are studied and dependence of cationic frame type on the ratio of metal ion radii is shown using KLn 2 F 7 fluorides as an example. 12 refs.; 4 figs.; 1 tab

  11. Ionic strength-induced formation of smectite quasicrystals enhances nitroaromatic compound sorption.

    Science.gov (United States)

    Li, Hui; Pereira, Tanya R; Teppen, Brian J; Laird, David A; Johnston, Cliff T; Boyd, Stephen A

    2007-02-15

    Sorption of organic contaminants by soils is a determinant controlling their transport and fate in the environment. The influence of ionic strength on nitroaromatic compound sorption by K+- and Ca2+ -saturated smectite was examined. Sorption of 1,3-dinitrobenzene by K-smectite increased as KCl ionic strength increased from 0.01 to 0.30 M. In contrast, sorption by Ca-smectite at CaCl2 ionic strengths of 0.015 and 0.15 M remained essentially the same. The "salting-out" effect on the decrease of 1,3-dinitrobenzene aqueous solubility within this ionic strength range was smectite with increasing KCl ionic strength. X-ray diffraction patterns and light absorbance of K-clay suspensions indicated the aggregation of clay particles and the formation of quasicrystal structures as KCI ionic strength increased. Sorption enhancement is attributed to the formation of better-ordered K-clay quasicrystals with reduced interlayer distances rather than to the salting-out effect. Dehydration of 1,3-dinitrobenzene is apparently a significant driving force for sorption, and we show for the first time that sorption of small, planar, neutral organic molecules, namely, 1,3-dinitrobenzene, causes previously expanded clay interlayers to dehydrate and collapse in aqueous suspension.

  12. Origin of quantum criticality in Yb-Al-Au approximant crystal and quasicrystal

    International Nuclear Information System (INIS)

    Watanabe, Shinji; Miyake, Kazumasa

    2016-01-01

    To get insight into the mechanism of emergence of unconventional quantum criticality observed in quasicrystal Yb 15 Al 34 Au 51 , the approximant crystal Yb 14 Al 35 Au 51 is analyzed theoretically. By constructing a minimal model for the approximant crystal, the heavy quasiparticle band is shown to emerge near the Fermi level because of strong correlation of 4f electrons at Yb. We find that charge-transfer mode between 4f electron at Yb on the 3rd shell and 3p electron at Al on the 4th shell in Tsai-type cluster is considerably enhanced with almost flat momentum dependence. The mode-coupling theory shows that magnetic as well as valence susceptibility exhibits χ ∼ T -0.5 for zero-field limit and is expressed as a single scaling function of the ratio of temperature to magnetic field T/B over four decades even in the approximant crystal when some condition is satisfied by varying parameters, e.g., by applying pressure. The key origin is clarified to be due to strong locality of the critical Yb-valence fluctuation and small Brillouin zone reflecting the large unit cell, giving rise to the extremely-small characteristic energy scale. This also gives a natural explanation for the quantum criticality in the quasicrystal corresponding to the infinite limit of the unit-cell size. (author)

  13. A Vertically Flow-Following, Icosahedral Grid Model for Medium-Range and Seasonal Prediction. Part 1: Model Description

    Science.gov (United States)

    Bleck, Rainer; Bao, Jian-Wen; Benjamin, Stanley G.; Brown, John M.; Fiorino, Michael; Henderson, Thomas B.; Lee, Jin-Luen; MacDonald, Alexander E.; Madden, Paul; Middlecoff, Jacques; hide

    2015-01-01

    A hydrostatic global weather prediction model based on an icosahedral horizontal grid and a hybrid terrain following/ isentropic vertical coordinate is described. The model is an extension to three spatial dimensions of a previously developed, icosahedral, shallow-water model featuring user-selectable horizontal resolution and employing indirect addressing techniques. The vertical grid is adaptive to maximize the portion of the atmosphere mapped into the isentropic coordinate subdomain. The model, best described as a stacked shallow-water model, is being tested extensively on real-time medium-range forecasts to ready it for possible inclusion in operational multimodel ensembles for medium-range to seasonal prediction.

  14. Band-gap creation by icosahedral symmetry in nearly-free-electron materials

    International Nuclear Information System (INIS)

    Carlsson, A.E.

    1993-01-01

    A series of numerical electronic density-of-states calculations is performed for rational approximants to a model one-electron potential based on icosahedrally arranged plane-wave components. It is found that high-order approximants can have band gaps even if the low-order approximants do not; furthermore, the magnitude of the gap increases with the order of the approximant. The results are interpreted via a two- and three-wave analysis of the energy eigenvalues at the pseudo-Jones-zone faces and edges. It is also found that the mechanism of band-gap reduction in the rational approximants is the presence of a small density of gap states. An analytic calculation shows that these gap states result from a splitting of threefold and pseudothreefold states at the valence-band edge when the icosahedral symmetry is broken. The splitting is proportional to the error with which the ratio between the approximant indices approximates τ, the golden mean. Finally, an application to the AlCuLi system is presented

  15. Formation Mechanism and Binding Energy for Body-Centred Regular Icosahedral Structure of Li13 Cluster

    International Nuclear Information System (INIS)

    Liu Weina; Li Ping; Gou Qingquan; Zhao Yanping

    2008-01-01

    The formation mechanism for the body-centred regular icosahedral structure of Li 13 cluster is proposed. The curve of the total energy versus the separation R between the nucleus at the centre and nuclei at the apexes for this structure of Li 13 has been calculated by using the method of Gou's modified arrangement channel quantum mechanics (MACQM). The result shows that the curve has a minimal energy of -96.951 39 a.u. at R = 5.46a 0 . When R approaches to infinity, the total energy of thirteen lithium atoms has the value of -96.564 38 a.u. So the binding energy of Li 13 with respect to thirteen lithium atoms is 0.387 01 a.u. Therefore the binding energy per atom for Li 13 is 0.029 77 a.u. or 0.810 eV, which is greater than the binding energy per atom of 0.453 eV for Li 2 , 0.494 eV for Li 3 , 0.7878 eV for Li 4 , 0.632 eV for Li 5 , and 0.674 eV for Li 7 calculated by us previously. This means that the Li 13 cluster may be formed stably in a body-centred regular icosahedral structure with a greater binding energy

  16. Curating viscoelastic properties of icosahedral viruses, virus-based nanomaterials, and protein cages.

    Science.gov (United States)

    Kant, Ravi; Rayaprolu, Vamseedhar; McDonald, Kaitlyn; Bothner, Brian

    2018-06-01

    The beauty, symmetry, and functionality of icosahedral virus capsids has attracted the attention of biologists, physicists, and mathematicians ever since they were first observed. Viruses and protein cages assemble into functional architectures in a range of sizes, shapes, and symmetries. To fulfill their biological roles, these structures must self-assemble, resist stress, and are often dynamic. The increasing use of icosahedral capsids and cages in materials science has driven the need to quantify them in terms of structural properties such as rigidity, stiffness, and viscoelasticity. In this study, we employed Quartz Crystal Microbalance with Dissipation technology (QCM-D) to characterize and compare the mechanical rigidity of different protein cages and viruses. We attempted to unveil the relationships between rigidity, radius, shell thickness, and triangulation number. We show that the rigidity and triangulation numbers are inversely related to each other and the comparison of rigidity and radius also follows the same trend. Our results suggest that subunit orientation, protein-protein interactions, and protein-nucleic acid interactions are important for the resistance to deformation of these complexes, however, the relationships are complex and need to be explored further. The QCM-D based viscoelastic measurements presented here help us elucidate these relationships and show the future prospect of this technique in the field of physical virology and nano-biotechnology.

  17. Analysis of phases in the structure determination of an icosahedral virus

    Energy Technology Data Exchange (ETDEWEB)

    Plevka, Pavel; Kaufmann, Bärbel; Rossmann, Michael G. (Purdue)

    2012-03-15

    The constraints imposed on structure-factor phases by noncrystallographic symmetry (NCS) allow phase improvement, phase extension to higher resolution and hence ab initio phase determination. The more numerous the NCS redundancy and the greater the volume used for solvent flattening, the greater the power for phase determination. In a case analyzed here the icosahedral NCS phasing appeared to have broken down, although later successful phase extension was possible when the envelope around the NCS region was tightened. The phases from the failed phase-determination attempt fell into four classes, all of which satisfied the NCS constraints. These four classes corresponded to the correct solution, opposite enantiomorph, Babinet inversion and opposite enantiomorph with Babinet inversion. These incorrect solutions can be seeded from structure factors belonging to reciprocal-space volumes that lie close to icosahedral NCS axes where the structure amplitudes tend to be large and the phases tend to be 0 or {pi}. Furthermore, the false solutions can spread more easily if there are large errors in defining the envelope designating the region in which NCS averaging is performed.

  18. Covalent bonds and their crucial effects on pseudogap formation in α-Al(Mn,Re)Si icosahedral quasicrystalline approximant

    International Nuclear Information System (INIS)

    Kirihara, K.; Nagata, T.; Kimura, K.; Kato, K.; Takata, M.; Nishibori, E.; Sakata, M.

    2003-01-01

    X-ray charge densities of Al-based icosahedral quasicrystalline approximant crystals α-AlReSi, α-AlMnSi, and Al 12 Re were observed by a combination of the maximum entropy method with the Rietveld method. We successfully obtained the clear images of interatomic covalent bonds between Al and transition metals (Mn, Re) and those in the Al (or Si) icosahedron in Mackay icosahedral clusters of both α-AlReSi and α-AlMnSi approximant crystals. The bonding nature of the three kinds of glue atom sites connecting Mackay icosahedral clusters was also clarified. This covalent bonding nature should strongly relate with the enhancement of the electron density-of-states pseudogap near the Fermi level. In addition, the interatomic covalent bonds of α-AlReSi are stronger than those of α-AlMnSi. This fact leads to the low effective carrier density of α-AlReSi in comparison with that of α-AlMnSi. Unlike the covalent bonding nature of an icosahedron in α-AlReSi and α-AlMnSi crystals, the Al icosahedron with an Re center atom exhibits no Al-Al interatomic covalent bonds in the Al 12 Re crystal. The tendency for metallic-covalent bonding conversion in the Al icosahedron, which is related to the atom site occupancy of the icosahedral cluster center, is also strongly supported

  19. Protruding Features of Viral Capsids Are Clustered on Icosahedral Great Circles.

    Directory of Open Access Journals (Sweden)

    David P Wilson

    Full Text Available Spherical viruses are remarkably well characterized by the Triangulation (T number developed by Casper and Klug. The T-number specifies how many viral capsid proteins are required to cover the virus, as well as how they are further subdivided into pentamer and hexamer subunits. The T-number however does not constrain the orientations of these proteins within the subunits or dictate where the proteins should place their protruding features. These protrusions often take the form of loops, spires and helices, and are significant because they aid in stability of the capsid as well as recognition by the host organism. Until now there has be no overall understanding of the placement of protrusions for spherical viruses, other than they have icosahedral symmetry. We constructed a set of gauge points based upon the work affine extensions of Keef and Twarock, which have fixed relative angular locations with which to measure the locations of these features. This work adds a new element to our understanding of the geometric arrangement of spherical viral capsid proteins; chiefly that the locations of protruding features are not found stochastically distributed in an icosahedral manner across the viral surface, but instead these features are found only in specific locations along the 15 icosahedral great circles. We have found that this result holds true as the T number and viral capsids size increases, suggesting an underlying geometric constraint on their locations. This is in spite of the fact that the constraints on the pentamers and hexamer orientations change as a function of T-number, as you need to accommodate more hexamers in the same solid angle between pentamers. The existence of this angular constraint of viral capsids suggests that there is a fitness or energetic benefit to the virus placing its protrusions in this manner. This discovery may have profound impacts on identifying and eliminating viral pathogens, understanding evolutionary

  20. Time Crystal Platform: From Quasicrystal Structures in Time to Systems with Exotic Interactions

    Science.gov (United States)

    Giergiel, Krzysztof; Miroszewski, Artur; Sacha, Krzysztof

    2018-04-01

    Time crystals are quantum many-body systems that, due to interactions between particles, are able to spontaneously self-organize their motion in a periodic way in time by analogy with the formation of crystalline structures in space in condensed matter physics. In solid state physics properties of space crystals are often investigated with the help of external potentials that are spatially periodic and reflect various crystalline structures. A similar approach can be applied for time crystals, as periodically driven systems constitute counterparts of spatially periodic systems, but in the time domain. Here we show that condensed matter problems ranging from single particles in potentials of quasicrystal structure to many-body systems with exotic long-range interactions can be realized in the time domain with an appropriate periodic driving. Moreover, it is possible to create molecules where atoms are bound together due to destructive interference if the atomic scattering length is modulated in time.

  1. Cosmic history and a candidate parent asteroid for the quasicrystal-bearing meteorite Khatyrka

    Science.gov (United States)

    Meier, Matthias M. M.; Bindi, Luca; Heck, Philipp R.; Neander, April I.; Spring, Nicole H.; Riebe, My E. I.; Maden, Colin; Baur, Heinrich; Steinhardt, Paul J.; Wieler, Rainer; Busemann, Henner

    2018-05-01

    The unique CV-type meteorite Khatyrka is the only natural sample in which "quasicrystals" and associated crystalline Cu, Al-alloys, including khatyrkite and cupalite, have been found. They are suspected to have formed in the early Solar System. To better understand the origin of these exotic phases, and the relationship of Khatyrka to other CV chondrites, we have measured He and Ne in six individual, ∼40-μm-sized olivine grains from Khatyrka. We find a cosmic-ray exposure age of about 2-4 Ma (if the meteoroid was family), and its location close to strong orbital resonances, so that the Khatyrka meteoroid could plausibly have reached Earth within its rather short cosmic-ray exposure age.

  2. Self-generation of dissipative solitons in magnonic quasicrystal active ring resonator

    International Nuclear Information System (INIS)

    Grishin, S. V.; Beginin, E. N.; Morozova, M. A.; Sharaevskii, Yu. P.; Nikitov, S. A.

    2014-01-01

    Self-generation of dissipative solitons in the magnonic quasicrystal (MQC) active ring resonator is studied theoretically and experimentally. The developed magnonic crystal has quasiperiodic Fibonacci type structure. Frequency selectivity of the MQC together with the parametric three-wave decay of magnetostatic surface spin wave (MSSW) leads to the dissipative soliton self-generation. The transfer matrix method is used to describe MQC transmission responses. Besides, the model of MQC active ring resonator is suggested. The model includes three coupled differential equations describing the parametric decay of MSSW and two differential equations of linear oscillators describing the frequency selectivity of MQC. Numerical simulation results of dissipative soliton self-generation are in a fair agreement with experimental data

  3. Mixed-mode crack tip loading and crack deflection in 1D quasicrystals

    Science.gov (United States)

    Wang, Zhibin; Scheel, Johannes; Ricoeur, Andreas

    2016-12-01

    Quasicrystals (QC) are a new class of materials besides crystals and amorphous solids and have aroused much attention of researchers since they were discovered. This paper presents a generalized fracture theory including the J-integral and crack closure integrals, relations between J1, J2 and the stress intensity factors as well as the implementation of the near-tip stress and displacement solutions of 1D QC. Different crack deflection criteria, i.e. the J-integral and maximum circumferential stress criteria, are investigated for mixed-mode loading conditions accounting for phonon-phason coupling. One focus is on the influence of phason stress intensity factors on crack deflection angles.

  4. NATO Advanced Research Workshop on Incommensurate Crystals, Liquid Crystals, and Quasi-Crystals

    CERN Document Server

    Clark, N

    1988-01-01

    In this NATO-sponsored Advanced Research Workshop we succeeded in bringing together approximately forty scientists working in the three main areas of structurally incommensurate materials: incommensurate crystals (primarily ferroelectric insulators), incommensurate liquid crystals, and metallic quasi-crystals. Although these three classes of materials are quite distinct, the commonality of the physics of the origin and descrip­ tion of these incommensurate structures is striking and evident in these proceedings. A measure of the success of this conference was the degree to which interaction among the three subgroups occurred; this was facili­ tated by approximately equal amounts of theory and experiment in the papers presented. We thank the University of Colorado for providing pleasant housing and conference facilities at a modest cost, and we are especially grate­ ful to Ann Underwood, who retyped all the manuscripts into camera-ready form. J. F. Scott Boulder, Colorado N. A. Clark v CONTENTS PART I: INCO...

  5. Simultaneous large band gaps and localization of electromagnetic and elastic waves in defect-free quasicrystals.

    Science.gov (United States)

    Yu, Tianbao; Wang, Zhong; Liu, Wenxing; Wang, Tongbiao; Liu, Nianhua; Liao, Qinghua

    2016-04-18

    We report numerically large and complete photonic and phononic band gaps that simultaneously exist in eight-fold phoxonic quasicrystals (PhXQCs). PhXQCs can possess simultaneous photonic and phononic band gaps over a wide range of geometric parameters. Abundant localized modes can be achieved in defect-free PhXQCs for all photonic and phononic polarizations. These defect-free localized modes exhibit multiform spatial distributions and can confine simultaneously electromagnetic and elastic waves in a large area, thereby providing rich selectivity and enlarging the interaction space of optical and elastic waves. The simulated results based on finite element method show that quasiperiodic structures formed of both solid rods in air and holes in solid materials can simultaneously confine and tailor electromagnetic and elastic waves; these structures showed advantages over the periodic counterparts.

  6. A low threshold nanocavity in a two-dimensional 12-fold photonic quasicrystal

    Science.gov (United States)

    Ren, Jie; Sun, XiaoHong; Wang, Shuai

    2018-05-01

    In this article, a low threshold nanocavity is built and investigated in a two-dimensional 12-fold holographic photonic quasicrystal (PQC). The cavity is formed by using the method of multi-beam common-path interference. By finely adjusting the structure parameters of the cavity, the Q factor and the mode volume are optimized, which are two keys to low-threshold on the basis of Purcell effect. Finally, an optimal cavity is obtained with Q value of 6023 and mode volume of 1.24 ×10-12cm3 . On the other hand, by Fourier Transformation of the electric field components in the cavity, the in-plane wave vectors are calculated and fitted to evaluate the cavity performance. The performance analysis of the cavity further proves the effectiveness of the optimization process. This has a guiding significance for the research of low threshold nano-laser.

  7. A narrowband filter based on 2D 8-fold photonic quasicrystal

    Science.gov (United States)

    Ren, Jie; Sun, XiaoHong; Wang, Shuai

    2018-04-01

    In this paper, a novel structure of narrowband filter based on 2D 8-fold photonic quasicrystal (PQC) is proposed and investigated. The structure size is 8 μm × 8 μm, which promises its applications in optical integrated circuits and communication devices. Finite Element Method (FEM) has been employed to investigate the band gap of the filter. The resonance wavelength, transmission coefficient and 3 dB bandwidth are analyzed by varying the parameters of the structure. By optimizing the parameters of the filter, two design formulas of resonance wavelength are obtained. Also, for its better linearity of the resonance, the structure with line-defect has also seen a large uptake in sensor design.

  8. Atomic-partial vibrational density of states of i-AlCuFe quasicrystals

    CERN Document Server

    Parshin, P P; Brand, R A; Dianoux, A J; Calvayrac, Y

    2002-01-01

    We present new results on the separation of the atomic-partial vibrational density of states for the ternary quasicrystal i-Al sub 6 sub 2 Cu sub 2 sub 5 sub . sub 5 Fe sub 1 sub 2 sub . sub 5. The decomposition into three atomic-partial functions, Al-, Cu- and Fe-g(E), has been performed self-consistently with the calculation of the multi-phonon contributions. The results show the surprising result that both Cu- and Fe-g(E) are strongly peaked. The low-energy regions of Al- and Cu-g(E) show strong deviations from Debye behaviour due to the presence of non-propagating low-energy vibrational states. (orig.)

  9. Self-generation of dissipative solitons in magnonic quasicrystal active ring resonator

    Energy Technology Data Exchange (ETDEWEB)

    Grishin, S. V., E-mail: grishfam@sgu.ru; Beginin, E. N.; Morozova, M. A.; Sharaevskii, Yu. P. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation); Nikitov, S. A. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation); Kotel' nikov Institute of Radioengineering and Electronics, Russian Academy of Science, Moscow 125009 (Russian Federation)

    2014-02-07

    Self-generation of dissipative solitons in the magnonic quasicrystal (MQC) active ring resonator is studied theoretically and experimentally. The developed magnonic crystal has quasiperiodic Fibonacci type structure. Frequency selectivity of the MQC together with the parametric three-wave decay of magnetostatic surface spin wave (MSSW) leads to the dissipative soliton self-generation. The transfer matrix method is used to describe MQC transmission responses. Besides, the model of MQC active ring resonator is suggested. The model includes three coupled differential equations describing the parametric decay of MSSW and two differential equations of linear oscillators describing the frequency selectivity of MQC. Numerical simulation results of dissipative soliton self-generation are in a fair agreement with experimental data.

  10. Salt fog corrosion behavior in a powder-processed icosahedral-phase-strengthened aluminum alloy

    International Nuclear Information System (INIS)

    Watson, T.J.; Gordillo, M.A.; Ernst, A.T.; Bedard, B.A.; Aindow, M.

    2017-01-01

    Highlights: • Pitting corrosion resistance has been evaluated for an Al-Cr-Mn-Co-Zr alloy. • Pit densities and depths are far lower than for other high-strength Al alloys. • Corrosion proceeds by selective oxidation of the Al matrix around the other phases. - Abstract: The pitting corrosion resistance has been evaluated for a powder-processed Al-Cr-Mn-Co-Zr alloy which contains ≈35% by volume of an icosahedral quasi-crystalline phase and a little Al 9 Co 2 in an Al matrix. ASTM standard salt fog exposure tests show that the alloy exhibits far lower corrosion pit densities and depths than commercial high-strength aerospace Al alloys under the same conditions. Electron microscopy data show that the salt fog exposure leads to the selective oxidation of the face-centered cubic Al matrix around the other phases, and to the development of a porous outer oxide scale.

  11. Atomic Scale coexistence of Periodic and quasiperiodic order in a2-fold A1-Ni-Co decagonal quasicrystal surface

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong Young; Ogletree, D. Frank; Salmeron, Miquel; Ribeiro,R.A.; Canfield, P.C.; Jenks, C.J.; Thiel, P.A.

    2005-11-14

    Decagonal quasicrystals are made of pairs of atomic planes with pentagonal symmetry periodically stacked along a 10-fold axis. We have investigated the atomic structure of the 2-fold surface of a decagonal Al-Ni-Co quasicrystal using scanning tunneling microscopy (STM). The surface consists of terraces separated by steps of heights 1.9, 4.7, 7.8, and 12.6{angstrom} containing rows of atoms parallel to the 10-fold direction with an internal periodicity of 4{angstrom}. The rows are arranged aperiodically, with separations that follow a Fibonacci sequence and inflation symmetry. The results indicate that the surfaces are preferentially Al-terminated and in general agreement with bulk models.

  12. A general method to quantify quasi-equivalence in icosahedral viruses.

    Science.gov (United States)

    Damodaran, K V; Reddy, Vijay S; Johnson, John E; Brooks, Charles L

    2002-12-06

    A quantitative, atom-based, method is described for comparing protein subunit interfaces in icosahedral virus capsids with quasi-equivalent surface lattices. An integrated, normalized value (between 0 and 1) based on equivalent residue contacts (Q-score) is computed for every pair of subunit interactions and scores that are significantly above zero readily identify interfaces that are quasi-equivalent to each other. The method was applied to all quasi-equivalent capsid structures (T=3, 4, 7 and 13) in the Protein Data Bank and the Q-scores were interpreted in terms of their structural underpinnings. The analysis allowed classification of T=3 structures into three groups with architectures that resemble different polyhedra with icosahedral symmetry. The preference of subunits to form dimers in the T=4 human Hepatitis B virus capsid (HBV) was clearly reflected in high Q-scores of quasi-equivalent dimers. Interesting differences between the classical T=7 capsid and polyoma-like capsids were also identified. Application of the method to the outer-shell of the T=13 Blue tongue virus core (BTVC) highlighted the modest distortion between the interfaces of the general trimers and the strict trimers of VP7 subunits. Furthermore, the method identified the quasi 2-fold symmetry in the inner capsids of the BTV and reovirus cores. The results show that the Q-scores of various quasi-symmetries represent a "fingerprint" for a particular virus capsid architecture allowing particle classification into groups based on their underlying structural and geometric features.

  13. An Exact Method to Determine the Photonic Resonances of Quasicrystals Based on Discrete Fourier Harmonics of Higher-Dimensional Atomic Surfaces

    Directory of Open Access Journals (Sweden)

    Farhad A. Namin

    2016-08-01

    Full Text Available A rigorous method for obtaining the diffraction patterns of quasicrystals is presented. Diffraction patterns are an essential analytical tool in the study of quasicrystals, since they can be used to determine their photonic resonances. Previous methods for approximating the diffraction patterns of quasicrystals have relied on evaluating the Fourier transform of finite-sized super-lattices. Our approach, on the other hand, is exact in the sense that it is based on a technique that embeds quasicrystals into higher dimensional periodic hyper-lattices, thereby completely capturing the properties of the infinite structure. The periodicity of the unit cell in the higher dimensional space can be exploited to obtain the Fourier series expansion in closed-form of the corresponding atomic surfaces. The utility of the method is demonstrated by applying it to one-dimensional Fibonacci and two-dimensional Penrose quasicrystals. The results are verified by comparing them to those obtained by using the conventional super-lattice method. It is shown that the conventional super-cell approach can lead to inaccurate results due to the continuous nature of the Fourier transform, since quasicrystals have a discrete spectrum, whereas the approach introduced in this paper generates discrete Fourier harmonics. Furthermore, the conventional approach requires very large super-cells and high-resolution sampling of the reciprocal space in order to produce accurate results leading to a very large computational burden, whereas the proposed method generates accurate results with a relatively small number of terms. Finally, we propose how this approach can be generalized from the vertex model, which assumes identical particles at all vertices, to a more realistic case where the quasicrystal is composed of different atoms.

  14. Quasi-Unit-Cell Model for an Al-Ni-Co Ideal Quasicrystal based on Clusters with Broken Tenfold Symmetry

    International Nuclear Information System (INIS)

    Abe, Eiji; Saitoh, Koh; Takakura, H.; Tsai, A. P.; Steinhardt, P. J.; Jeong, H.-C.

    2000-01-01

    We present new evidence supporting the quasi-unit-cell description of the Al 72 Ni 20 Co 8 decagonal quasicrystal which shows that the solid is composed of repeating, overlapping decagonal cluster columns with broken tenfold symmetry. We propose an atomic model which gives a significantly improved fit to electron microscopy experiments compared to a previous proposal by us and to alternative proposals with tenfold symmetric clusters. (c) 2000 The American Physical Society

  15. Textures and mechanical properties in rare-earth free quasicrystal reinforced Mg-Zn-Zr alloys prepared by extrusion

    International Nuclear Information System (INIS)

    Ohhashi, S.; Kato, A.; Demura, M.; Tsai, A.P.

    2011-01-01

    Highlights: → Powder-metallurgical warm extrusion made quasicrystal dispersing Mg alloys. → Mg extrusions containing quasicrystals showed randomized textures. → These extrusion showed the enhancement of mechanical properties at 150 deg. C. - Abstract: Microstructure and mechanical properties of quasicrystals dispersed Mg alloys prepared by warm extrusion of the mixtures of Mg and Zn-Mg-Zr quasicrystalline (Qc) powders have been studied. Strong texture oriented along a [101-bar 0] direction observed in pure Mg was reduced in Qc-dispersed samples, as verified by pole figure method and electron back scattering diffraction. The ultimate tensile strengths at 150 deg. C for Qc-dispersed extrusions were much higher than 110 MPa for pure Mg, which drastically reached 156 MPa for 15 wt.% Qc by preventing the motion of dislocations. Elongation was improved by the randomization of grain orientation: from 5.7% for pure Mg to 12.9% for 10 wt.% Qc at room temperature; from 15% for pure Mg to 37.1% for 5 wt.% Qc at 150 deg. C.

  16. Breaking Symmetry in Viral Icosahedral Capsids as Seen through the Lenses of X-ray Crystallography and Cryo-Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Kristin N. Parent

    2018-02-01

    Full Text Available The majority of viruses on Earth form capsids built by multiple copies of one or more types of a coat protein arranged with 532 symmetry, generating an icosahedral shell. This highly repetitive structure is ideal to closely pack identical protein subunits and to enclose the nucleic acid genomes. However, the icosahedral capsid is not merely a passive cage but undergoes dynamic events to promote packaging, maturation and the transfer of the viral genome into the host. These essential processes are often mediated by proteinaceous complexes that interrupt the shell’s icosahedral symmetry, providing a gateway through the capsid. In this review, we take an inventory of molecular structures observed either internally, or at the 5-fold vertices of icosahedral DNA viruses that infect bacteria, archea and eukaryotes. Taking advantage of the recent revolution in cryo-electron microscopy (cryo-EM and building upon a wealth of crystallographic structures of individual components, we review the design principles of non-icosahedral structural components that interrupt icosahedral symmetry and discuss how these macromolecules play vital roles in genome packaging, ejection and host receptor-binding.

  17. 8x8 and 10x10 Hyperspace Representations of SU(3) and 10-fold Point-Symmetry Group of Quasicrystals

    Science.gov (United States)

    Animalu, Alexander

    2012-02-01

    In order to further elucidate the unexpected 10-fold point-symmetry group structure of quasi-crystals for which the 2011 Nobel Prize in chemistry was awarded to Daniel Shechtman, we explore a correspondence principle between the number of (projective) geometric elements (points[vertices] + lines[edges] + planes[faces]) of primitive cells of periodic or quasi-periodic arrangement of hard or deformable spheres in 3-dimensional space of crystallography and elements of quantum field theory of particle physics [points ( particles, lines ( particles, planes ( currents] and hence construct 8x8 =64 = 28+36 = 26 + 38, and 10x10 =100= 64 + 36 = 74 + 26 hyperspace representations of the SU(3) symmetry of elementary particle physics and quasicrystals of condensed matter (solid state) physics respectively, As a result, we predict the Cabibbo-like angles in leptonic decay of hadrons in elementary-particle physics and the observed 10-fold symmetric diffraction pattern of quasi-crystals.

  18. Structure-based engineering of an icosahedral virus for nanomedicine and nanotechnology.

    Science.gov (United States)

    Steinmetz, N F; Lin, T; Lomonossoff, G P; Johnson, J E

    2009-01-01

    A quintessential tenet of nanotechnology is the self-assembly of nanometer-sized components into devices. Biological macromolecular systems such as viral particles were found to be suitable building blocks for nanotechnology for several reasons: viral capsids are extremely robust and can be produced in large quantities with ease, the particles self-assemble into monodisperse particles with a high degree of symmetry and polyvalency, they have the propensity to form arrays, and they offer programmability through genetic and chemical engineering. Here, we review the recent advances in engineering the icosahedral plant virus Cowpea mosaic virus (CPMV) for applications in nano-medicine and -technology. In the first part, we will discuss how the combined knowledge of the structure of CPMV at atomic resolution and the use of chimeric virus technology led to the generation of CPMV particles with short antigenic peptides for potential use as vaccine candidates. The second part focuses on the chemical addressability of CPMV. Strategies to chemically attach functional molecules at designed positions on the exterior surface of the viral particle are described. Biochemical conjugation methods led to the fabrication of electronically conducting CPMV particles and networks. In addition, functional proteins for targeted delivery to mammalian cells were successfully attached to CPMV. In the third part, we focus on the utilization of CPMV as a building block for the generation of 2D and 3D arrays. Overall, the potential applications of viral nanobuilding blocks are manifold and range from nanoelectronics to biomedical applications.

  19. Dynamics of Transformation from Platinum Icosahedral Nanoparticles to Larger FCC Crystal at Millisecond Time Resolution

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Wenpei [Univ. of Illinois at Urbana-Champaign, IL (United States). Dept. of Materials Science and Engineering and Fredrick Seitz Materials Research Lab.; Wu, Jianbo [Univ. of Illinois at Urbana-Champaign, IL (United States). Dept. of Materials Science and Engineering, Fredrick Seitz Materials Research Lab. and Dept. of Chemical and Biomolecular Engineering; Shanghai Jiao Tong Univ. (China). School of Materials Science and Engineering; Yoon, Aram [Univ. of Illinois at Urbana-Champaign, IL (United States). Dept. of Materials Science and Engineering and Fredrick Seitz Materials Research Lab.; Lu, Ping [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Qi, Liang [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Materials Science and Engineering; Wen, Jianguo [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials and Electron Microscopy Center; Miller, Dean J. [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials and Electron Microscopy Center; Mabon, James C. [Univ. of Illinois at Urbana-Champaign, IL (United States). Fredrick Seitz Materials Research Lab.; Wilson, William L. [Univ. of Illinois at Urbana-Champaign, IL (United States). Dept. of Materials Science and Engineering and Fredrick Seitz Materials Research Lab.; Yang, Hong [Univ. of Illinois at Urbana-Champaign, IL (United States). Dept. of Chemical and Biomolecular Engineering; Zuo, Jian-Min [Univ. of Illinois at Urbana-Champaign, IL (United States). Dept. of Materials Science and Engineering and Fredrick Seitz Materials Research Lab.

    2017-12-08

    Atomic motion at grain boundaries is essential to microstructure development, growth and stability of catalysts and other nanostructured materials. However, boundary atomic motion is often too fast to observe in a conventional transmission electron microscope (TEM) and too slow for ultrafast electron microscopy. We report on the entire transformation process of strained Pt icosahedral nanoparticles (ICNPs) into larger FCC crystals, captured at 2.5 ms time resolution using a fast electron camera. Results show slow diffusive dislocation motion at nm/s inside ICNPs and fast surface transformation at μm/s. By characterizing nanoparticle strain, we show that the fast transformation is driven by inhomogeneous surface stress. And interaction with pre-existing defects led to the slowdown of the transformation front inside the nanoparticles. Particle coalescence, assisted by oxygen-induced surface migration at T ≥ 300°C, also played a critical role. Thus by studying transformation in the Pt ICNPs at high time and spatial resolution, we obtain critical insights into the transformation mechanisms in strained Pt nanoparticles.

  20. In-situ investigation of the icosahedral Al-Cu-Fe phase formation in thin films

    Energy Technology Data Exchange (ETDEWEB)

    Haidara, F., E-mail: fanta.haidara@im2np.fr [IM2NP, UMR 6242 CNRS - Universite Aix-Marseille, Av. Escadrille Normandie-Niemen, Case 142, 13397 Marseille Cedex 20 (France); Duployer, B. [Universite Paul Sabatier CIRIMAT-LCMIE 2R1, 118, Route de Narbonne, 31062 Toulouse Cedex 09 (France); Mangelinck, D.; Record, M.-C. [IM2NP, UMR 6242 CNRS - Universite Aix-Marseille, Av. Escadrille Normandie-Niemen, Case 142, 13397 Marseille Cedex 20 (France)

    2012-09-05

    Highlights: Black-Right-Pointing-Pointer We investigated the phase formation of i-Al{sub 62.5}Cu{sub 25}Fe{sub 12.5} in thin films. Black-Right-Pointing-Pointer We characterized the samples by DSC and in-situ XRD and resistance measurements. Black-Right-Pointing-Pointer The resistivity value for i-Al{sub 62.5}Cu{sub 25}Fe{sub 12.5} was determined. - Abstract: This work is an investigation of the formation by reactive diffusion at high temperatures of the icosahedral phase, i-Al{sub 62.5}Cu{sub 25}Fe{sub 12.5}, in thin films. The samples were prepared by sputtering at room temperature. The elements Al, Cu and Fe were sequentially deposited onto oxidized silicon substrates. The two following stacking sequences, Al/Cu/Fe and Al/Fe/Cu, were investigated. The phase formation was studied using in situ resistivity, in situ X-ray Diffraction and Differential Scanning Calorimetry measurements. Whatever the stacking sequence, the sequences of phase formation evidenced during the heating treatment are similar. However the temperatures of formation for the first phases that are formed are different; they are higher in the case of the Al/Fe/Cu stacking sequence.

  1. Vibrational dynamics of icosahedrally symmetric biomolecular assemblies compared with predictions based on continuum elasticity.

    Science.gov (United States)

    Yang, Zheng; Bahar, Ivet; Widom, Michael

    2009-06-03

    Coarse-grained elastic network models elucidate the fluctuation dynamics of proteins around their native conformations. Low-frequency collective motions derived by simplified normal mode analysis are usually involved in biological function, and these motions often possess noteworthy symmetries related to the overall shape of the molecule. Here, insights into these motions and their frequencies are sought by considering continuum models with appropriate symmetry and boundary conditions to approximately represent the true atomistic molecular structure. We solve the elastic wave equations analytically for the case of spherical symmetry, yielding a symmetry-based classification of molecular motions together with explicit predictions for their vibrational frequencies. We address the case of icosahedral symmetry as a perturbation to the spherical case. Applications to lumazine synthase, satellite tobacco mosaic virus, and brome mosaic virus show that the spherical elastic model efficiently provides insights on collective motions that are otherwise obtained by detailed elastic network models. A major utility of the continuum models is the possibility of estimating macroscopic material properties such as the Young's modulus or Poisson's ratio for different types of viruses.

  2. Growth and decay of a two-dimensional oxide quasicrystal: High-temperature in situ microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Foerster, Stefan [Physik-Institut, Universitaet Zuerich (Switzerland); Institute of Physics, Martin-Luther-Universitaet Halle-Wittenberg, Halle (Germany); Flege, Jan Ingo; Falta, Jens [Institute of Solid State Physics, University of Bremen (Germany); MAPEX Center for Materials and Processes, University of Bremen (Germany); Zollner, Eva Maria; Schumann, Florian Otto; Hammer, Rene; Bayat, Alireza; Schindler, Karl-Michael [Institute of Physics, Martin-Luther-Universitaet Halle-Wittenberg, Halle (Germany); Widdra, Wolf [Institute of Physics, Martin-Luther-Universitaet Halle-Wittenberg, Halle (Germany); Max-Planck-Institut fuer Mikrostrukturphysik, Halle (Germany)

    2017-01-15

    The recently discovered two-dimensional oxide quasicrystal (OQC) derived from BaTiO{sub 3} on Pt(111) is the first material in which a spontaneous formation of an aperiodic structure at the interface to a periodic support has been observed. Herein, we report in situ low-energy electron microscopy (LEEM) studies on the fundamental processes involved in the OQC growth. The OQC formation proceeds in two steps via of an amorphous two-dimensional wetting layer. At 1170 K the long-range aperiodic order of the OQC develops. Annealing in O{sub 2} induces the reverse process, the conversion of the OQC into BaTiO{sub 3} islands and bare Pt(111), which has been monitored by in situ LEEM. A quantitative analysis of the temporal decay of the OQC shows that oxygen adsorption on bare Pt patches is the rate limiting step of this dewetting process. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Dislocation processes in quasicrystals-Kink-pair formation control or jog-pair formation control

    International Nuclear Information System (INIS)

    Takeuchi, Shin

    2005-01-01

    A computer simulation of dislocation in a model quasiperiodic lattice indicates that the dislocation feels a large Peierls potential when oriented in particular directions. For a dislocation with a high Peierls potential, the glide velocity and the climb velocity of the dislocation can be described almost in parallel in terms of the kink-pair formation followed by kink motion and the jog-pair formation followed by jog motion, respectively. The activation enthalpy of the kink-pair formation is the sum of the kink-pair formation enthalpy and the atomic jump activation enthalpy, while the activation enthalpy of the jog-pair formation involves the jog-pair enthalpy and the self-diffusion enthalpy. Since the kink-pair energy can be considerably larger than the jog-pair energy, the climb velocity can be faster than the glide velocity, so that the plastic deformation of quasicrystals can be brought not by dislocation glide but by dislocation climb at high temperatures

  4. Photonic band gap properties of one-dimensional Thue-Morse all-dielectric photonic quasicrystal

    Science.gov (United States)

    Yue, Chenxi; Tan, Wei; Liu, Jianjun

    2018-05-01

    In this paper, the photonic band gap (PBG) properties of one-dimensional (1D) Thue-Morse photonic quasicrystal (PQC) S4 structure are theoretically investigated by using transfer matrix method in Bragg condition. The effects of the center wavelength, relative permittivity and incident angle on PBG properties are elaborately analyzed. Numerical results reveal that, in the case of normal incidence, the symmetry and periodicity properties of the photonic band structure are presented. As the center wavelength increases, the PBG center frequency and PBG width decrease while the photonic band structure is always symmetrical about the central frequency and the photonic band structure repeats periodically in the expanding observation frequency range. With the decrease of relative permittivity contrast, the PBG width and the relative PBG width gradually decreases until PBG disappears while the symmetry of the photonic band structure always exists. In the case of oblique incidence, as the incident angle increases, multiple narrow PBGs gradually merge into a wide PBG for the TE mode while for the TM mode, the number of PBG continuously decreases and eventually disappears, i.e., multiple narrow PBGs become a wide passband for the TM mode. The research results will provide a reference for the choice of the material, the incident angle for the PBG properties and its applications of 1D Thue-Morse PQC.

  5. A pressure and magnetotransport study of binary quasicrystal YbCd5.7

    International Nuclear Information System (INIS)

    Dhar, S K; Della Mea, M; Bauer, E; Manfrinetti, P; Palenzona, A

    2004-01-01

    We have probed the quasicrystalline state in binary YbCd 5.7 by monitoring its electrical resistivity between 1.5 and 300 K in externally applied hydrostatic pressure up to 16 kbar and measuring its magnetoresistivity up to 12 T from 0.5 to 20 K. The thermal variation of the resistivity is practically unaffected by pressure, indicating the stability of the quasicrystalline state in this pressure regime. A positive magnetoresistance, Δρ/ρ, of ∼ 0.8% is observed at 0.65 K, which reduces to ∼ 0.4% at 20 K in the maximum applied field of 12 T. Though the magnetoresistance of the sample investigated is about an order of magnitude larger than expected on the basis of the empirically derived relationship Δρ/ρ ∼ ρ 1.3 observed for a large number of quasicrystals, it is much below the unusually large anomalous magnetoresistance (20-200%) reported earlier in the literature. We believe that the intrinsic magnetoresistivity of YbCd 5.7 in different samples may be primarily masked by the presence of traces of free Cd which is known to have a giant magnetoresistivity at low temperatures

  6. A theory of general solutions of 3D problems in 1D hexagonal quasicrystals

    International Nuclear Information System (INIS)

    Gao Yang; Xu Sipeng; Zhao Baosheng

    2008-01-01

    A theory of general solutions of three-dimensional (3D) problems is developed for the coupled equilibrium equations in 1D hexagonal quasicrystals (QCs), and two new general solutions, which are called generalized Lekhnitskii-Hu-Nowacki (LHN) and Elliott-Lodge (E-L) solutions, respectively, are presented based on three theorems. As a special case, the generalized LHN solution is obtained from our previous general solution by introducing three high-order displacement functions. For further simplification, considering three cases in which three characteristic roots are distinct or possibly equal to each other, the generalized E-L solution shall take different forms, and be expressed in terms of four quasi-harmonic functions which are very simple and useful. It is proved that the general solution presented by Peng and Fan is consistent with one case of the generalized E-L solution, while does not include the other two cases. It is important to note that generalized LHN and E-L solutions are complete in z-convex domains, while incomplete in the usual non-z-convex domains

  7. Room temperature deformation of in-situ grown quasicrystals embedded in Al-based cast alloy

    Directory of Open Access Journals (Sweden)

    Boštjan Markoli

    2013-12-01

    Full Text Available An Al-based cast alloy containing Mn, Be and Cu has been chosen to investigate the room temperature deformation behavior of QC particles embedded in Al-matrix. Using LOM, SEM (equipped with EDS, conventional TEM with SAED and controlled tensile and compression tests, the deformation response of AlMn2Be2Cu2 cast alloy at room temperature has been examined. Alloy consisted of Al-based matrix, primary particles and eutectic icosahedral quasicrystalline (QC i-phase and traces of Θ-Al2Cu and Al10Mn3. Tensile and compression specimens were used for evaluation of mechanical response and behavior of QC i-phase articles embedded in Al-cast alloy. It has been established that embedded QC i-phase particles undergo plastic deformation along with the Al-based matrix even under severe deformation and have the response resembling that of the metallic materials by formation of typical cup-and-cone feature prior to failure. So, we can conclude that QC i-phase has the ability to undergo plastic deformation along with the Al-matrix to greater extent contrary to e.g. intermetallics such as Θ-Al2Cu for instance.

  8. Evidence of icosahedral short-range order in Zr70Cu30 and Zr70Cu29Pd1 metallic glasses

    DEFF Research Database (Denmark)

    Saksl, K.; Franz, H.; Jovari, P.

    2003-01-01

    Change in local atomic environment during crystallization of Zr-based glassy alloys was studied by extended x-ray absorption fine structure (EXAFS) spectroscopy. The formation of icosahedral quasicrystalline phase followed by crystallization of tetragonal CuZr2 has been observed in the Zr70Cu29Pd1...... glassy alloy during annealing up to 850 K. On the other hand, the binary Zr70Cu30 alloy shows a single glassy to crystalline CuZr2 phase transformation. The local atomic environment of as-quenched Zr70Cu30 alloy is matched to an icosahedral local atomic configuration, which is similar to that of the as......-quenched Zr70Cu29Pd1 alloy and the alloy annealed at 593 K containing icosahedral phase. Considering that the supercooled liquid region appears prior to crystallization in the Zr70Cu30 glassy alloy, the observed results support the theory claiming a strong correlation between the existence of local...

  9. Assembly/disassembly of a complex icosahedral virus to incorporate heterologous nucleic acids

    Science.gov (United States)

    Pascual, Elena; Mata, Carlos P.; Carrascosa, José L.; Castón, José R.

    2017-12-01

    Hollow protein containers are widespread in nature, and include virus capsids as well as eukaryotic and bacterial complexes. Protein cages are studied extensively for applications in nanotechnology, nanomedicine and materials science. Their inner and outer surfaces can be modified chemically or genetically, and the internal cavity can be used to template, store and/or arrange molecular cargos. Virus capsids and virus-like particles (VLP, noninfectious particles) provide versatile platforms for nanoscale bioengineering. Study of capsid protein self-assembly into monodispersed particles, and of VLP structure and biophysics is necessary not only to understand natural processes, but also to infer how these platforms can be redesigned to furnish novel functional VLP. Here we address the assembly dynamics of infectious bursal disease virus (IBDV), a complex icosahedral virus. IBDV has a ~70 nm-diameter T  =  13 capsid with VP2 trimers as the only structural subunits. During capsid assembly, VP2 is synthesized as a precursor (pVP2) whose C terminus is cleaved. The pVP2 C terminus has an amphipathic helix that controls VP2 polymorphism. In the absence of the VP3 scaffolding protein, necessary for control of assembly, 466/456-residue pVP2 intermediates bearing this helix assemble into VLP only when expressed with an N-terminal His6 tag (the HT-VP2-466 protein). HT-VP2-466 capsids are optimal for genetic insertion of proteins (cargo space ~78 000 nm3). We established an in vitro assembly/disassembly system of HT-VP2-466-based VLP for heterologous nucleic acid packaging and/or encapsulation of drugs and other molecules. HT-VP2-466 (empty) capsids were disassembled and reassembled by dialysis against low-salt/basic pH and high-salt/acid pH buffers, respectively, thus illustrating the reversibility in vitro of IBDV capsid assembly. HT-VP2-466 VLP also packed heterologous DNA by non-specific confinement during assembly. These and previous results establish the bases

  10. Sulfolobus Turreted Icosahedral Virus c92 Protein Responsible for the Formation of Pyramid-Like Cellular Lysis Structures

    DEFF Research Database (Denmark)

    Snyder, Jamie C; Brumfield, Susan K; Peng, Nan

    2011-01-01

    Host cells infected by Sulfolobus turreted icosahedral virus (STIV) have been shown to produce unusual pyramid-like structures on the cell surface. These structures represent a virus-induced lysis mechanism that is present in Archaea and appears to be distinct from the holin/endolysin system desc...... disruption of c92 within STIV demonstrates that c92 is an essential protein for virus replication. Immunolocalization of c92 shows that the protein is localized to the cellular membranes forming the pyramid-like structures.......Host cells infected by Sulfolobus turreted icosahedral virus (STIV) have been shown to produce unusual pyramid-like structures on the cell surface. These structures represent a virus-induced lysis mechanism that is present in Archaea and appears to be distinct from the holin/endolysin system...... described for DNA bacteriophages. This study investigated the STIV gene products required for pyramid formation in its host Sulfolobus solfataricus. Overexpression of STIV open reading frame (ORF) c92 in S. solfataricus alone is sufficient to produce the pyramid-like lysis structures in cells. Gene...

  11. Synthesis, electronic structure, elastic properties, and interfacial behavior of icosahedral boron-rich solids

    Energy Technology Data Exchange (ETDEWEB)

    Hunold, Oliver

    2017-08-01

    Boron-rich solids are commonly characterized by icosahedral clusters, where 12 B atoms form an icosahedron, giving rise to outstanding mechanical and transport properties. However, broader applications are limited due to the high synthesis temperature required to obtain the icosahedra-based crystalline structure. Utilizing high power pulsed magnetron sputtering (HPPMS), the deposition temperature may be lowered as compared to direct current magnetron sputtering by enhanced surface diffusion. Therefore, HPPMS was utilized to investigate the influence of the substrate temperature on the structural evolution of B-rich Al-Y-B thin films. The formation of the intended AlYB{sub 14} phase together with the (Y,Al)B{sub 6} impurity phase, containing 1.8 at.% less B than AlYB{sub 14}, was observed at a growth temperature of 800 C and hence 600 C below the bulk synthesis temperature. Based on density functional theory (DFT) calculations it is inferred that minute compositional variations may lead to formation of competing phases, such as (Y,Al)B{sub 6}. Furthermore, 800 C still limits the usage significantly. Therefore, quantum mechanical material design was applied to identify phases with even higher phase stabilities compared to AlYB{sub 14}. Phase stability of T{sub 0.75}Y{sub 0.75}B{sub 14} (T= Sc, Ti, V, Y, Zr, Nb, Si) critically depends on the exact magnitude of charge transferred by T and Y to the B icosahedra. The highest phase stabilities have been identified for Sc{sub 0.75}Y{sub 0.75}B{sub 14}, Ti{sub 0.75}Y{sub 0.75}B{sub 14}, and Zr{sub 0.75}Y{sub 0.75}B{sub 14}. ln combination with Young's modulus values up to 517 GPa these phases are very interesting from a wear-resistance point of view. Still high synthesis temperatures limit the use of such systems onto technologically relevant substrate materials. However, amorphous B-rich solids, which can be synthesized without additional heating, exhibit attractive mechanical and electrical properties. Within these

  12. Thermo-elastic Green's functions for an infinite bi-material of one-dimensional hexagonal quasi-crystals

    International Nuclear Information System (INIS)

    Li, P.D.; Li, X.Y.; Zheng, R.F.

    2013-01-01

    This Letter is concerned with thermo-elastic fundamental solutions of an infinite space, which is composed of two half-infinite bodies of different one-dimensional hexagonal quasi-crystals. A point thermal source is embedded in a half-space. The interface can be either perfectly bonded or smoothly contacted. On the basis of the newly developed general solution, the temperature-induced elastic field in full space is explicitly presented in terms of elementary functions. The interactions among the temperature, phonon and phason fields are revealed. The present work can play an important role in constructing farther analytical solutions for crack, inclusion and dislocation problems. -- Highlights: ► Green's functions are constructed in terms of 10 quasi-harmonic functions. ► Thermo-elastic field of a 1D hexagonal QC bi-material body is expressed explicitly. ► Both perfectly bonded and smoothly contacted interfaces are considered

  13. Study of preferential sputtering and segregation effects on the surface composition of Al-Pd-Mn quasi-crystals

    Energy Technology Data Exchange (ETDEWEB)

    Samavat, F.; Gladys, M.; Jenks, C.; Lograsso, T.; King, M.; O' Connor, D.

    2008-02-25

    Using 2 keV He+ and Ne+ low-energy ion scattering (LEIS), it was found that the Al/Pd concentration ratio at the surface of a nominally Al69.9Pd20.5Mn9.6 quasi-crystal decreases to a steady-state value under bombardment as a result of preferential sputtering. Sputtering of an annealed surface results in a significant increase in Mn concentration on the surface which remained at annealing temperatures below 575 K. Variations of the Mn/Pd and Al/Pd ratios have been measured by LEIS as a function of temperature in the range 295-975 K for clean-annealed and sputtered surfaces. The results show that Al/Pd ratio does not significantly change from 295 to 575 K for both He+ and Ne+ but increases with sample temperatures up to 875 K.

  14. Formation of quasicrystals in Zr46.8Ti8.2Cu7.5Ni10Be27.5 bulk glass

    DEFF Research Database (Denmark)

    Wanderka, N.; Macht, M. P.; Siedel, M.

    2000-01-01

    The formation of the quasicrystalline phase is observed as a first step of crystallization during isothermal annealing of the Zr46.7Ti8.3Cu7.5Ni10Be27.5 bulk glass. The structure of the quasicrystals and the sequence of phase formation have been investigated by x-ray powder diffraction and transm......The formation of the quasicrystalline phase is observed as a first step of crystallization during isothermal annealing of the Zr46.7Ti8.3Cu7.5Ni10Be27.5 bulk glass. The structure of the quasicrystals and the sequence of phase formation have been investigated by x-ray powder diffraction...... min) at high temperatures above 683 K. (C) 2000 American Institute of Physics....

  15. Sulfolobus turreted icosahedral virus c92 protein responsible for the formation of pyramid-like cellular lysis structures.

    Science.gov (United States)

    Snyder, Jamie C; Brumfield, Susan K; Peng, Nan; She, Qunxin; Young, Mark J

    2011-07-01

    Host cells infected by Sulfolobus turreted icosahedral virus (STIV) have been shown to produce unusual pyramid-like structures on the cell surface. These structures represent a virus-induced lysis mechanism that is present in Archaea and appears to be distinct from the holin/endolysin system described for DNA bacteriophages. This study investigated the STIV gene products required for pyramid formation in its host Sulfolobus solfataricus. Overexpression of STIV open reading frame (ORF) c92 in S. solfataricus alone is sufficient to produce the pyramid-like lysis structures in cells. Gene disruption of c92 within STIV demonstrates that c92 is an essential protein for virus replication. Immunolocalization of c92 shows that the protein is localized to the cellular membranes forming the pyramid-like structures.

  16. Formation of quasicrystals and amorphous-to-quasicrystalline phase transformation kinetics in Zr65Al7.5Ni10Cu7.5Ag10 metallic glass under pressure

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Zhuang, Yanxin; Rasmussen, Helge Kildahl

    2001-01-01

    The effect of pressure on the formation of quasicrystals and the amorphous-to-quasicrystalline phase transformation kinetics in the supercooled liquid region for a Zr65Al7.5Ni10Cu7.5Ag10 metallic glass have been investigated by in situ high-pressure and high-temperature nonisothermal and isothermal...... of quasicrystals decrease, Atomic mobility is important for the formation of quasicrystals from the metallic glass whereas the relationship of the crystallization temperature vs pressure for the transition from the quasicrystalline state to intermetallic compounds may mainly depend on the thermodynamic potential...... energy barrier. To study the amorphous-to-quasicrystalline phase transformation kinetics in the metallic glass, relative volume fractions of the transferred quasicrystalline phase as a function of annealing time, obtained at 663, 673, 683, and 693 K, have been analyzed in details using 14 nucleation...

  17. Diffuse scattering from an Al72Ni20Co8 decagonal quasicrystal on an order-disorder transformation

    International Nuclear Information System (INIS)

    Abe, H; Saitoh, H; Ueno, T; Nakao, H; Matsuo, Y; Ohshima, K; Matsumoto, H

    2003-01-01

    Non-uniform distortion induced by superstructure domains has been observed during the ordering process of an order-disorder transformation in a single decagonal quasicrystal of Al 72 Ni 20 Co 8 . The full width at half maximum (FWHM) of the fundamental reflections increased below the transformation temperature, T c . At the same time, the integrated intensity of the fundamental reflections varied drastically at T c . A small hysteresis was also observed in the temperature dependences of both the FWHM and the integrated intensity of the fundamental reflections. Peak broadening of the fundamental reflections is predominantly dependent on |G par | below T c . In addition, the weak dependence of the peak broadening with |G perp | is extracted from the observed FWHM of the fundamental reflections. After deconvolution, the FWHM of the fundamental reflections appears to be a linear combination of |G par | and |G perp |. Coexistence of the non-uniform distortion and of the random phason strain contributes to the ordering process below T c . The diffuse scattering from atomic short-range order (SRO) was distributed around the ideal positions of the superstructure reflections. The SRO diffuse scattering disappeared completely above T c + 10 K. In addition, a small hysteresis of the SRO diffuse scattering was found in the temperature cycle

  18. Highly-nonlinear polarization-maintaining As2Se3-based photonic quasi-crystal fiber for supercontinuum generation

    Science.gov (United States)

    Zhao, Tongtong; Lian, Zhenggang; Benson, Trevor; Wang, Xin; Zhang, Wan; Lou, Shuqin

    2017-11-01

    We propose an As2Se3-based photonic quasi-crystal fiber (PQF) with high nonlinearity and birefringence. By optimizing the structure parameters, a nonlinear coefficient up to 2079 W-1km-1 can be achieved at the wavelength of 2 μm; the birefringence reaches up to the order of 10-2 due to the introduction of large circular air holes in the cladding. Using an optical pulse with a peak power of 6 kW, a pulse width of 150 fs, and a central wavelength of 2.94 μm as the pump pulse, a mid-infrared polarized supercontinuum is obtained by using a 15 mm long PQF. The spectral width for x- and y-polarizations covers 1 μm-10.2 μm and 1 μm-12.5 μm, respectively. The polarization state can be well maintained when the incident angle of the input pulse changes within ±2°. The proposed PQF, with high nonlinear coefficient and birefringence, has potential applications in mid-infrared polarization-maintaining supercontinuum generation.

  19. Enhanced stability of magic clusters: A case study of icosahedric Al12X, X=B, Al, Ga, C, Si, Ge, Ti, As

    International Nuclear Information System (INIS)

    Gong, X.G.; Kumar, V.

    1992-10-01

    We present results of the electronic structure and stability of some 40 valence electron icosahedric Al 12 X (X=B, Al, Ga, C, Si, Ge, Ti and As) clusters within the local spin density functional theory. It is shown that the stability of Al 13 cluster can be substantially enhanced by proper doping. For neutral clusters, substitution of C at the center of the icosahedron leads to the largest gain in energy. However, Al 12 B - is the most bounded in this family. These results are in agreement with the recent experiments which also find Al 12 B - to be highly abundant. (author). 12 refs, 4 figs, 2 tabs

  20. Synthesis and Relaxivity Studies of a DOTA-Based Nanomolecular Chelator Assembly Supported by an Icosahedral Closo-B122− -Core for MRI: A Click Chemistry Approach

    Directory of Open Access Journals (Sweden)

    Satish S. Jalisatgi

    2013-07-01

    Full Text Available An icosahedral closo-B122− scaffold based nano-sized assembly capable of carrying a high payload of Gd3+-chelates in a sterically crowded configuration is developed by employing the azide-alkyne click reaction. The twelve copies of DO3A-t-Bu-ester ligands were covalently attached to an icosahedral closo-B122− core via suitable linkers through click reaction. This nanomolecular structure supporting a high payload of Gd3+-chelate is a new member of the closomer MRI contrast agents that we are currently developing in our laboratory. The per Gd ion relaxivity (r1 of the newly synthesized MRI contrast agent was obtained in PBS, 2% tween/PBS and bovine calf serum using a 7 Tesla micro MRI instrument and was found to be slightly higher (r1 = 4.7 in PBS at 25 °C compared to the clinically used MRI contrast agents Omniscan (r1 = 4.2 in PBS at 25 °C and ProHance (r1 = 3.1 in PBS at 25 °C.

  1. Evidence of a stable binary CdCa quasicrystalline phase

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Jensen, C.H.; Rasmussen, A.R.

    2001-01-01

    Quasicrystals with a primitive icosahedral structure and a quasilattice constant of 5.1215 Angstrom have been synthesized in a binary Cd-Ca system. The thermal stability of the quasicrystal has been investigated by in situ high-temperature x-ray powder diffraction using synchrotron radiation. It ....... It is demonstrated that the binary CdCa quasicrystal is thermodynamic stable up to its melting temperature. The linear thermal expansion coefficient of the quasicrystal is 2.765x10(-5) K-1. (C) 2001 American Institute of Physics.......Quasicrystals with a primitive icosahedral structure and a quasilattice constant of 5.1215 Angstrom have been synthesized in a binary Cd-Ca system. The thermal stability of the quasicrystal has been investigated by in situ high-temperature x-ray powder diffraction using synchrotron radiation...

  2. Imaging and Quantitation of a Succession of Transient Intermediates Reveal the Reversible Self-Assembly Pathway of a Simple Icosahedral Virus Capsid.

    Science.gov (United States)

    Medrano, María; Fuertes, Miguel Ángel; Valbuena, Alejandro; Carrillo, Pablo J P; Rodríguez-Huete, Alicia; Mateu, Mauricio G

    2016-11-30

    Understanding the fundamental principles underlying supramolecular self-assembly may facilitate many developments, from novel antivirals to self-organized nanodevices. Icosahedral virus particles constitute paradigms to study self-assembly using a combination of theory and experiment. Unfortunately, assembly pathways of the structurally simplest virus capsids, those more accessible to detailed theoretical studies, have been difficult to study experimentally. We have enabled the in vitro self-assembly under close to physiological conditions of one of the simplest virus particles known, the minute virus of mice (MVM) capsid, and experimentally analyzed its pathways of assembly and disassembly. A combination of electron microscopy and high-resolution atomic force microscopy was used to structurally characterize and quantify a succession of transient assembly and disassembly intermediates. The results provided an experiment-based model for the reversible self-assembly pathway of a most simple (T = 1) icosahedral protein shell. During assembly, trimeric capsid building blocks are sequentially added to the growing capsid, with pentamers of building blocks and incomplete capsids missing one building block as conspicuous intermediates. This study provided experimental verification of many features of self-assembly of a simple T = 1 capsid predicted by molecular dynamics simulations. It also demonstrated atomic force microscopy imaging and automated analysis, in combination with electron microscopy, as a powerful single-particle approach to characterize at high resolution and quantify transient intermediates during supramolecular self-assembly/disassembly reactions. Finally, the efficient in vitro self-assembly achieved for the oncotropic, cell nucleus-targeted MVM capsid may facilitate its development as a drug-encapsidating nanoparticle for anticancer targeted drug delivery.

  3. Influence of Cr on the nucleation of primary Al and formation of twinned dendrites in Al–Zn–Cr alloys: Can icosahedral solid clusters play a role?

    International Nuclear Information System (INIS)

    Kurtuldu, Güven; Jarry, Philippe; Rappaz, Michel

    2013-01-01

    The equiaxed solidification of Al–20 wt.% Zn alloys revealed an unexpectedly large number of fine grains which are in a twin, or near-twin, relationship with their nearest neighbors when minute amounts of Cr (1000 ppm) are added to the melt. Several occurrences of neighboring grains sharing a nearly common 〈1 1 0〉 direction with a fivefold symmetry multi-twinning relationship have been found. These findings are a very strong indication that the primary face-centered cubic Al phase forms on either icosahedron quasicrystals or nuclei of the parent stable Al 45 Cr 7 phase, which exhibits several fivefold symmetry building blocks in its large monoclinic unit cell. They are further supported by thermodynamic calculations and by grains sometimes exhibiting orientations compatible with the so-called interlocked icosahedron. These results are important, not only because they provide an explanation of the nucleation of twinned dendrites in Al alloys, a topic that has remained unclear over the past 60 years despite several recent investigations, but also because they identify a so far neglected nucleation mechanism in aluminum alloys, which could also apply to other metallic systems

  4. Highly specific salt bridges govern bacteriophage P22 icosahedral capsid assembly: identification of the site in coat protein responsible for interaction with scaffolding protein.

    Science.gov (United States)

    Cortines, Juliana R; Motwani, Tina; Vyas, Aashay A; Teschke, Carolyn M

    2014-05-01

    Icosahedral virus assembly requires a series of concerted and highly specific protein-protein interactions to produce a proper capsid. In bacteriophage P22, only coat protein (gp5) and scaffolding protein (gp8) are needed to assemble a procapsid-like particle, both in vivo and in vitro. In scaffolding protein's coat binding domain, residue R293 is required for procapsid assembly, while residue K296 is important but not essential. Here, we investigate the interaction of scaffolding protein with acidic residues in the N-arm of coat protein, since this interaction has been shown to be electrostatic. Through site-directed mutagenesis of genes 5 and 8, we show that changing coat protein N-arm residue 14 from aspartic acid to alanine causes a lethal phenotype. Coat protein residue D14 is shown by cross-linking to interact with scaffolding protein residue R293 and, thus, is intimately involved in proper procapsid assembly. To a lesser extent, coat protein N-arm residue E18 is also implicated in the interaction with scaffolding protein and is involved in capsid size determination, since a cysteine mutation at this site generated petite capsids. The final acidic residue in the N-arm that was tested, E15, is shown to only weakly interact with scaffolding protein's coat binding domain. This work supports growing evidence that surface charge density may be the driving force of virus capsid protein interactions. Bacteriophage P22 infects Salmonella enterica serovar Typhimurium and is a model for icosahedral viral capsid assembly. In this system, coat protein interacts with an internal scaffolding protein, triggering the assembly of an intermediate called a procapsid. Previously, we determined that there is a single amino acid in scaffolding protein required for P22 procapsid assembly, although others modulate affinity. Here, we identify partners in coat protein. We show experimentally that relatively weak interactions between coat and scaffolding proteins are capable of driving

  5. Diffuse scattering from an Al sub 7 sub 2 Ni sub 2 sub 0 Co sub 8 decagonal quasicrystal on an order-disorder transformation

    CERN Document Server

    Abe, H; Ueno, T; Nakao, H; Matsuo, Y; Ohshima, K; Matsumoto, H

    2003-01-01

    Non-uniform distortion induced by superstructure domains has been observed during the ordering process of an order-disorder transformation in a single decagonal quasicrystal of Al sub 7 sub 2 Ni sub 2 sub 0 Co sub 8. The full width at half maximum (FWHM) of the fundamental reflections increased below the transformation temperature, T sub c. At the same time, the integrated intensity of the fundamental reflections varied drastically at T sub c. A small hysteresis was also observed in the temperature dependences of both the FWHM and the integrated intensity of the fundamental reflections. Peak broadening of the fundamental reflections is predominantly dependent on |G sup p sup a sup r | below T sub c. In addition, the weak dependence of the peak broadening with |G sup p sup e sup r sup p | is extracted from the observed FWHM of the fundamental reflections. After deconvolution, the FWHM of the fundamental reflections appears to be a linear combination of |G sup p sup a sup r | and |G sup p sup e sup r sup p |. C...

  6. Polarization filtering in the visible wavelength range using surface plasmon resonance and a sunflower-type photonic quasi-crystal fiber

    Science.gov (United States)

    Yan, Bei; Wang, Anran; Liu, Exian; Tan, Wei; Xie, Jianlan; Ge, Rui; Liu, Jianjun

    2018-04-01

    A novel polarization filter based on a sunflower-type photonic quasi-crystal fiber (PQF) is proposed in this paper. We also discuss different methods to tune the filter wavelength. The proposed filter can efficiently produce polarized light with visible wavelengths by using the resonance between the second-order surface plasmon polariton mode and the core mode of the PQF. The filtered wavelength can be tuned between 0.55 µm and 0.68 µm by adjusting the thickness of the gold film. When the thickness of the gold film is 25.3 nm, the resonance loss in the y-polarized direction reaches 11707 dB m‑1 for a wavelength of 0.6326 µm, and the full width at half maximum is only 5 nm. Due to the flexible design and absence of both polarization coupling and polarization dispersion, this polarization filter can be used in devices that require narrow-band filtering.

  7. A mimetic, semi-implicit, forward-in-time, finite volume shallow water model: comparison of hexagonal–icosahedral and cubed-sphere grids

    Directory of Open Access Journals (Sweden)

    J. Thuburn

    2014-05-01

    Full Text Available A new algorithm is presented for the solution of the shallow water equations on quasi-uniform spherical grids. It combines a mimetic finite volume spatial discretization with a Crank–Nicolson time discretization of fast waves and an accurate and conservative forward-in-time advection scheme for mass and potential vorticity (PV. The algorithm is implemented and tested on two families of grids: hexagonal–icosahedral Voronoi grids, and modified equiangular cubed-sphere grids. Results of a variety of tests are presented, including convergence of the discrete scalar Laplacian and Coriolis operators, advection, solid body rotation, flow over an isolated mountain, and a barotropically unstable jet. The results confirm a number of desirable properties for which the scheme was designed: exact mass conservation, very good available energy and potential enstrophy conservation, consistent mass, PV and tracer transport, and good preservation of balance including vanishing ∇ × ∇, steady geostrophic modes, and accurate PV advection. The scheme is stable for large wave Courant numbers and advective Courant numbers up to about 1. In the most idealized tests the overall accuracy of the scheme appears to be limited by the accuracy of the Coriolis and other mimetic spatial operators, particularly on the cubed-sphere grid. On the hexagonal grid there is no evidence for damaging effects of computational Rossby modes, despite attempts to force them explicitly.

  8. Thermodynamic consideration and ground-state search of icosahedral boron subselenide B12(B1-xSex) 2 from a first-principles cluster expansion

    Science.gov (United States)

    Ektarawong, A.

    2018-05-01

    The phase stability of icosahedral boron subselenide B12(B1-xSex) 2 , where 0.5 ≤x ≤1 , is explored using a first-principles cluster expansion. The results shows that, instead of a continuous solid solution, B12(B1-xSex) 2 is thermodynamically stable as an individual line compound at the composition of B9.5Se . The ground-state configuration of B9.5Se is represented by a mixture of B12(Se-Se), B12(B-Se), and B12(Se-B) with a ratio of 1:1:1, where they form a periodic A B C A B C ⋯ stacking sequence of B12(Se-Se), B12(B-Se), and B12(Se-B) layers along the c axis of the hexagonal conventional unit cell. The structural and electronic properties of the ground-state B9.5Se are also derived and discussed. By comparing the derived ground-state properties of B9.5Se to the existing experimental data of boron subselenide B˜13Se , I proposed that the as-synthesized boron subselenide B˜13Se , as reported in the literature, has the actual composition of B9.5Se .

  9. Structure-Based Mutagenesis of Sulfolobus Turreted Icosahedral Virus B204 Reveals Essential Residues in the Virion-Associated DNA-Packaging ATPase.

    Science.gov (United States)

    Dellas, Nikki; Snyder, Jamie C; Dills, Michael; Nicolay, Sheena J; Kerchner, Keshia M; Brumfield, Susan K; Lawrence, C Martin; Young, Mark J

    2015-12-23

    Sulfolobus turreted icosahedral virus (STIV), an archaeal virus that infects the hyperthermoacidophile Sulfolobus solfataricus, is one of the most well-studied viruses of the domain Archaea. STIV shares structural, morphological, and sequence similarities with viruses from other domains of life, all of which are thought to belong to the same viral lineage. Several of these common features include a conserved coat protein fold, an internal lipid membrane, and a DNA-packaging ATPase. B204 is the ATPase encoded by STIV and is thought to drive packaging of viral DNA during the replication process. Here, we report the crystal structure of B204 along with the biochemical analysis of B204 mutants chosen based on structural information and sequence conservation patterns observed among members of the same viral lineage and the larger FtsK/HerA superfamily to which B204 belongs. Both in vitro ATPase activity assays and transfection assays with mutant forms of B204 confirmed the essentiality of conserved and nonconserved positions. We also have identified two distinct particle morphologies during an STIV infection that differ in the presence or absence of the B204 protein. The biochemical and structural data presented here are not only informative for the STIV replication process but also can be useful in deciphering DNA-packaging mechanisms for other viruses belonging to this lineage. STIV is a virus that infects a host from the domain Archaea that replicates in high-temperature, acidic environments. While STIV has many unique features, there exist several striking similarities between this virus and others that replicate in different environments and infect a broad range of hosts from Bacteria and Eukarya. Aside from structural features shared by viruses from this lineage, there exists a significant level of sequence similarity between the ATPase genes carried by these different viruses; this gene encodes an enzyme thought to provide energy that drives DNA packaging into

  10. New Icosahedral Boron Carbide Semiconductors

    Science.gov (United States)

    Echeverria Mora, Elena Maria

    Novel semiconductor boron carbide films and boron carbide films doped with aromatic compounds have been investigated and characterized. Most of these semiconductors were formed by plasma enhanced chemical vapor deposition. The aromatic compound additives used, in this thesis, were pyridine (Py), aniline, and diaminobenzene (DAB). As one of the key parameters for semiconducting device functionality is the metal contact and, therefore, the chemical interactions or band bending that may occur at the metal/semiconductor interface, X-ray photoemission spectroscopy has been used to investigate the interaction of gold (Au) with these novel boron carbide-based semiconductors. Both n- and p-type films have been tested and pure boron carbide devices are compared to those containing aromatic compounds. The results show that boron carbide seems to behave differently from other semiconductors, opening a way for new analysis and approaches in device's functionality. By studying the electrical and optical properties of these films, it has been found that samples containing the aromatic compound exhibit an improvement in the electron-hole separation and charge extraction, as well as a decrease in the band gap. The hole carrier lifetimes for each sample were extracted from the capacitance-voltage, C(V), and current-voltage, I(V), curves. Additionally, devices, with boron carbide with the addition of pyridine, exhibited better collection of neutron capture generated pulses at ZERO applied bias, compared to the pure boron carbide samples. This is consistent with the longer carrier lifetimes estimated for these films. The I-V curves, as a function of external magnetic field, of the pure boron carbide films and films containing DAB demonstrate that significant room temperature negative magneto-resistance (> 100% for pure samples, and > 50% for samples containing DAB) is possible in the resulting dielectric thin films. Inclusion of DAB is not essential for significant negative magneto-resistance, however, these results suggest practical device applications, especially as such effects are manifested in nanoscale films with facile fabrication. Overall, the greater negative magneto-resistance, when undoped with an aromatic, suggests a material with more defects and is consistent with a shorter carrier lifetime.

  11. Enhancement of light output power of GaN-based light-emitting diodes with photonic quasi-crystal patterned on p-GaN surface and n-side sidewall roughing

    Science.gov (United States)

    2013-01-01

    In this paper, GaN-based light-emitting diodes (LEDs) with photonic quasi-crystal (PQC) structure on p-GaN surface and n-side roughing by nano-imprint lithography are fabricated and investigated. At an injection current of 20 mA, the LED with PQC structure on p-GaN surface and n-side roughing increased the light output power of the InGaN/GaN multiple quantum well LEDs by a factor of 1.42, and the wall-plug efficiency is 26% higher than the conventional GaN-based LED type. After 500-h life test (55°C/50 mA), it was found that the normalized output power of GaN-based LED with PQC structure on p-GaN surface and n-side roughing only decreased by 6%. These results offer promising potential to enhance the light output powers of commercial light-emitting devices using the technique of nano-imprint lithography. PMID:23683526

  12. Quasicrystalline metallic adlayers

    Indian Academy of Sciences (India)

    ugc

    diffraction pattern of icosahedral phase Al-. 14 at. % Mn alloys along fivefold axis. Discovery of ... Al-Mn-Si,Al-Cu-Ru,Al-Pd-Re, Al-Ni-Co, Cd-Yb, Al-Ni-Co….) Al. 63. Cu ... structure and physical properties is not easy Need for quasicrystals with.

  13. Structure, energetic and phase transition of multi shell icosahedral bimetallic nanostructures: A molecular dynamics study of NimPdn (n + m = 55 and 147)

    International Nuclear Information System (INIS)

    Hewage, Jinasena W.

    2015-01-01

    Structure, energetic and thermodynamic properties of multi shell icosahedral bimetallic nickel–palladium nanostructures with the size of 55 and 147 atoms were studied by using the molecular dynamics simulations and the microcanonical ensemble version of multiple histogram method. In 55 atoms icosahedra, two core–shell motifs, Ni 13 Pd 42 and Pd 13 Ni 42 with their isomers Pd 13 (Pd 29 Ni 13 ) and Ni 13 (Ni 29 Pd 13 ) were considered. Similarly in 147 atoms icosahedra, all mutations corresponding to the occupations of either nickel atoms or palladium atoms in the core, inner shell or outer shell and their isomers generated by interchanging thirteen core atoms with thirteen atoms of the other type in the inner and outer shells were considered. It is found that the nickel-core clusters are more stable than the palladium-core clusters and cohesive energy increases with the nickel composition. Phase transition of each cluster was studied by means of constant volume heat capacity. The trend in variation of melting temperature is opposite to the energy trend and special increase in melting points was observed for nickel-core isomers compared to the palladium-core isomers. Helmholtz free energy change with temperature for shell to core interchange of thirteen atoms revealed the thermodynamic stability of the formation of Ni core Pd shell structures and the surface segregation of palladium. - Highlights: • Nanostructures of Ni m Pd n clusters for m + n = 55 and 147 have been studied. • Structures favor the formation of nickel-core surrounded by palladium atoms. • In general, it appears the increase of cohesive energy with the nickel composition. • Calculated thermodynamic parameters confirm the energetic results. • Results show also the palladium segregation on the surface

  14. Quasicrystalline and crystalline phases in Al65Cu20(Fe, Cr)15 alloys

    International Nuclear Information System (INIS)

    Liu, W.; Koester, U.; Mueller, F.; Rosenberg, M.

    1992-01-01

    Two types of icosahedral quasicrystals are observed in Al 65 Cu 20 Fe 15-x Cr x (0 ≤ x ≤ 15) alloys, the face-centred AlCuFe-type icosahedral phase with dissoluted Cr and the primitive AlCuCr-type icosahedral phase with dissoluted Fe. In the vicinity of Al 65 Cu 20 Fe 8 Cr 7 a stable decagonal phase (a=0.45 nm and c=1.23 nm) forms competitively with the icosahedral quasicrystals. All these three quasicrystalline phases can be regarded as Hume-Rothery phases stabilized by the energy band factor. The density is measured to be 4.57, 4.44, and 4.11 g/cm 3 for the icosahedral Al 65 Cu 20 Fe 15 , the decagonal Al 65 Cu 20 Fe 8 Cr 7 , and the icosahedral Al 65 Cu 20 Cr 15 alloys, respectively. Depending on the composition in the range between Al 65 Cu 20 Fe 8 Cr 7 and Al 65 Cu 20 Cr 15 , several crystalline phases are observed during the transormation of the AlCuCr-type icosahedral phase: the 1/1-3/2-type orthorhombic (o) and the 1/0-3/2-type tetragonal (t) approximants of the decagonal phase, a hexagonal (h) phase, as well as a long-range vacancy ordered τ 3 -phase derived from a CsCl-type structure with a=0.2923 nm. The structures of all the crystalline phases are closely related to those of the icosahedral (i) and decagonal (d) quasicrystals, which leads to a definite orientation relationship as follows: i5 parallel d10 parallel o[100] parallel t[100] parallel h[001] parallel τ 3 [110]. (orig.)

  15. Contact Mechanics of a Small Icosahedral Virus

    Science.gov (United States)

    Zeng, Cheng; Hernando-Pérez, Mercedes; Dragnea, Bogdan; Ma, Xiang; van der Schoot, Paul; Zandi, Roya

    2017-07-01

    A virus binding to a surface causes stress of the virus cage near the contact area. Here, we investigate the potential role of substrate-induced structural perturbation in the mechanical response of virus particles to adsorption. This is particularly relevant to the broad category of viruses stabilized by weak noncovalent interactions. We utilize atomic force microscopy to measure height distributions of the brome mosaic virus upon adsorption from solution on atomically flat substrates and present a continuum model that captures our observations and provides estimates of elastic properties and of the interfacial energy of the virus, without recourse to indentation.

  16. Contact Mechanics of a Small Icosahedral Virus

    NARCIS (Netherlands)

    Zeng, Cheng; Hernando-Pérez, Mercedes; Ma, Xiang; Schoot, Paul van der; Zandi, Roya; Dragnea, Bogdan

    2017-01-01

    Virus binding to a surface results at least locally, at the contact area, in stress and potential structural perturbation of the virus cage. Here we address the question of the role of substrate-induced deformation in the overall virus mechanical response to the adsorption event. This question may

  17. Quasi-crystalline geometry for architectural structures

    DEFF Research Database (Denmark)

    Wester, Ture; Weinzieri, Barbara

    The quasi-crystal (QC) type of material was discovered in 1983 by Dan Schechtman from Technion, Haifa. This new crystalline structure of material broke totally with the traditional conception of crystals and geometry introducing non-periodic close packing of cells with fivefold symmetry in 3D space....... The quasi-crystal geometry can be constructed from two different cubic cells with identical rhombic facets, where the relation between the diagonals is the golden section. All cells have identical rhombic faces, identical edges and identical icosahedral/dodecahedral nodes....

  18. Contact angles of liquid metals on quasicrystals

    International Nuclear Information System (INIS)

    Bergman, Claire; Girardeaux, Christophe; Perrin-Pellegrino, Carine; Gas, Patrick; Dubois, Jean-Marie; Rivier, Nicolas

    2008-01-01

    Wetting with μm-sized Pb droplets on thin polycrystalline films of decagonal Al 13 Co 4 is reported. The films were prepared under high vacuum conditions in order to have Pb droplets lying on a clean surface. The method used is sequential deposition and annealing of specific stackings of Al and Co layers of nanometric thicknesses. A 300 nm thick Pb slab was then deposited on top of the films and dewetting experiments were followed in situ in a scanning Auger microprobe. The contact angle between the Pb droplet and the surface of the film is measured to be 49 deg. ± 7 deg. Further investigation performed by cross section transmission electron microscopy allows us to better characterize the interface. Taking into account the rugosity of the film, it is concluded that there is partial wetting of the film, which corresponds to a smaller contact angle. The comparison with other results obtained either with pure metals or with a cubic AlCo compound leads to the conclusion that the wetting behaviour of Pb on the surface of a decagonal compound is close to that of a metal with a high melting point and not significantly different from that of a crystalline compound with a small unit cell

  19. Alternative synthetic route for the heterometallic CO-releasing [Sb@Rh12(CO27]3− icosahedral carbonyl cluster and synthesis of its new unsaturated [Sb@Rh12(CO24]4− and dimeric [{Sb@Rh12Sb(CO25}2Rh(CO2PPh3]7− derivatives

    Directory of Open Access Journals (Sweden)

    Cristina Femoni

    2016-10-01

    Full Text Available The hetero-metallic [Sb@Rh12(CO27]3− cluster has been known as for over three decades thanks to Vidal and co-workers, and represents the first example of an E-centered (E=heteroatom icosahedral rhodium carbonyl cluster. However, its synthesis required high temperature (140–160 °C and elevated CO pressure (400 atm. Applying the redox condensation method for cluster preparation, we herein report a new synthetic, high-yield route for preparing [Sb@Rh12(CO27]3− under much milder conditions of temperature and pressure. Notably, when the same synthesis was carried out under N2 instead of CO atmosphere, the new isostructural but unsaturated derivative [Sb@Rh12(CO24]4− was obtained, for which we report the full X-ray structural characterization. This species represents one of the few examples of an icosahedral cluster disobeying the electron-counting Wade-Mingos rules, possessing less than the expected 170 cluster valence electrons (CVEs. Judging from IR monitoring, the two species can be obtained one from the other by switching between N2 and CO atmosphere, making [Sb@Rh12(CO27]3− a spontaneous CO-releasing molecule. Finally, the study of the chemical reactivity of [Sb@Rh12(CO27]3− with PPh3 allowed us to obtain the new [{Sb@Rh12Sb(CO25}2Rh(CO2PPh3]7− dimeric compound, for which we herein report the full X-ray structural and 31P NMR analyses.

  20. Quasi-crystalline geometry for architectural structures

    DEFF Research Database (Denmark)

    Weizierl, Barbara; Wester, Ture

    2001-01-01

    Artikel på CD-Rom 8 sider. The quasi-crystal (QC) type of material was discovered in 1983 by Dan Schechtman from Technion, Haifa. This new crystalline structure of material broke totally with the traditional conception of crystals and geometry introducing non-periodic close packing of cells...... with fivefold symmetry in 3D space. The quasi-crystal geometry can be constructed from two different cubic cells with identical rhombic facets, where the relation between the diagonals is the golden section. All cells have identical rhombic faces, identical edges and identical icosahedral/dedecahedral nodes....... The purpose of the paper is to investigate some possibilities for the application of Quasi-Crystal geometry for structures in architecture. The basis for the investigations is A: to use the Golden Cubes (the two different hexahedra consisting of rhombic facets where the length of the diagonals has the Golden...

  1. Thermal isomerization of regiospecifically 10B-labeled icosahedral carboranes

    International Nuclear Information System (INIS)

    Edvenson, G.M.; Gaines, D.F.

    1990-01-01

    Thermal treatment of regiospecifically 10 B-enriched (96%) 3-( 10 B)-1,2-C 2 n B 9 H 12 and 2-( 10 B)-1,7-C 2 n B 9 H 12 ( n B = boron with normal isotopic abundances) followed by 10 B and 11 B NMR analysis reveal that (1) 3-( 10 B)-1,2-C 2 n B 9 H 12 undergoes rearrangements that completely scramble the enriched boron atom, (2) these rearrangements occur at a rate faster than the conversion of 1,2-C 2 B 10 H 12 to 1,7-C 2 B 10 H 12 , (3) the 1,7-C 2 B 10 H 12 that is formed does not re-form 1,2-C 2 B 10 H 12 at a detectable rate, and (4) at temperatures at which 1,2-C 2 B 10 H 12 forms 1,7-C 2 B 10 H 12 at a significant rate, the latter undergoes no further rearrangements. The movement of 10 B at 350 degree C in 1,2-C 2 B 10 H 12 is compared to the movement predicted by various isomerization mechanisms. The mechanism that appears to give the closest agreement involves a 12-vertex nido intermediate. It was found that a number of previously considered mechanisms, including simple exchange between two boron sites, triangular face rotation in an icosahedron, diamond-square-diamond twist, and rotation of pentagonal pyramids, are extensions of the nido intermediate mechanism. The synthesis and thermal rearrangement of 3-F-3-( 10 B)-1,2-C 2 n B 9 H 11 demonstrate that independent intramolecular fluorine migration does not occur during rearrangement. 27 refs., 7 figs

  2. Microstructures evolution and physical properties of laser induced NbC modified nanocrystalline composites

    Science.gov (United States)

    Li, Jianing; Liu, Kegao; Yuan, Xingdong; Shan, Feihu; Zhang, Bolun; Wang, Zhe; Xu, Wenzhuo; Zhang, Zheng; An, Xiangchen

    2017-10-01

    The nanoscale quasicrystals (NQs), amorphous and ultrafine nanocrystals (UNs) modified hard composites are produced by laser cladding (LC) of the Ni60A-TiC-NbC-Sb mixed powders on the additive manufacturing (AM) TA1 titanium alloy. The LC technique is favorable to formations of icosahedral quasicrystals (I-phase) with five-fold symmetry due to its rapid cooling and solidification characteristics. The formation mechanism of this I-phase is explained here. Under the actions of NQs, amorphous and UNs, such LC composites exhibited an extremely high micro-hardness. UNs may also intertwin with amorphous, forming yarn-shape materials. This research provides essential theoretical basis to improve the quality of laser-treated composites.

  3. Extra-electron induced covalent strengthening and generalization of intrinsic ductile-to-brittle criterion.

    Science.gov (United States)

    Niu, Haiyang; Chen, Xing-Qiu; Liu, Peitao; Xing, Weiwei; Cheng, Xiyue; Li, Dianzhong; Li, Yiyi

    2012-01-01

    Traditional strengthening ways, such as strain, precipitation, and solid-solution, come into effect by pinning the motion of dislocation. Here, through first-principles calculations we report on an extra-electron induced covalent strengthening mechanism, which alters chemical bonding upon the introduction of extra-valence electrons in the matrix of parent materials. It is responsible for the brittle and high-strength properties of Al(12)W-type compounds featured by the typical fivefold icosahedral cages, which are common for quasicrystals and bulk metallic glasses (BMGs). In combination with this mechanism, we generalize ductile-to-brittle criterion in a universal hyperbolic form by integrating the classical Pettifor's Cauchy pressure with Pugh's modulus ratio for a wide variety of materials with cubic lattices. This study provides compelling evidence to correlate Pugh's modulus ratio with hardness of materials and may have implication for understanding the intrinsic brittleness of quasicrystals and BMGs.

  4. Phase stability and electronic structure of transition-metal aluminides

    International Nuclear Information System (INIS)

    Carlsson, A.E.

    1992-01-01

    This paper will describe the interplay between die electronic structure and structural energetics in simple, complex, and quasicrystalline Al-transition metal (T) intermetallics. The first example is the Ll 2 -DO 22 competition in Al 3 T compounds. Ab-initio electronic total-energy calculations reveal surprisingly large structural-energy differences, and show that the phase stability of both stoichiometric and ternary-substituted compounds correlates closely with a quasigap in the electronic density of states (DOS). Secondly, ab-initio calculations for the structural stability of the icosahedrally based Al 12 W structure reveal similar quasigap effects, and provide a simple physical explanation for the stability of the complex aluminide structures. Finally, parametrized tight-binding model calculations for the Al-Mn quasicrystal reveal a large spread in the local Mn DOS behavior, and support a two-site model for the quasicrystal's magnetic behavior

  5. Conical Dispersion and Effective Zero Refractive Index in Photonic Quasicrystals

    NARCIS (Netherlands)

    J. Dong; M Chang; X. Huang; Z. Hang; Z. Zhong; W. Chen; Z. Huang; C. Chan; X. Huang; Z. Huang

    2015-01-01

    htmlabstractIt is recognized that for a certain class of periodic photonic crystals, conical dispersion can be related to a zero-refractive index. It is not obvious whether such a notion can be extended to a noncrystalline system. We show that certain photonic quasicrystalline approximants have

  6. Piezoelectricity in quasicrystals: A group-theoretical study

    Indian Academy of Sciences (India)

    representation theory, the maximum number of non-vanishing and ..... are mild ware applications, ranging from non-stick frying pans to a self-lubricated ... and identified in several composite materials, experimental evaluation/verification.

  7. Resonant add-drop filter based on a photonic quasicrystal

    DEFF Research Database (Denmark)

    Romero-Vivas, J.; Chigrin, D. N.; Lavrinenko, Andrei

    2005-01-01

    We present a numerical study of optical properties of an octagonal quasi-periodic lattice of dielectric rods. We report on a complete photonic bandgap in TM polarization up to extremely low dielectric constants of rods. The first photonic bandgap remains open down to dielectric constant as small ...

  8. Simulation of the diffraction pattern of one dimensional quasicrystal ...

    African Journals Online (AJOL)

    In addition, it has been found that each golden mean produces a unique diffraction pattern and that the lower the golden mean the better the diffraction pattern resembles that of a periodic chain. Also the intensity of the central peak was found to decrease as the golden mean increases. However the value of golden mean ...

  9. Group theoretical treatment of the low-temperature phase transition of the Cd6Ca 1/1-cubic approximant

    International Nuclear Information System (INIS)

    Tamura, R.; Shibata, K.; Nishimoto, K.; Takeuchi, S.; Edagawa, K.; Saitoh, K.; Isobe, M.; Ueda, Y.

    2005-01-01

    An antiparallel orientational transition is reported for an intermetallic compound, i.e., Cd 6 Ca crystal, which is a 1/1-1/1-1/1 crystalline approximant to the icosahedral quasicrystal Cd 5.7 Ca. A group theoretical analysis based on the Landau theory predicts that the space group of the low-temperature phase is either C2/c or C2/m, in good agreement with the observations. Accordingly, two types of orientational orderings of Cd 4 tetrahedra, which are located in the center of icosahedral clusters, may occur below 100 K: In both cases, the Cd 4 tetrahedra are orientationally ordered in an antiparallel fashion along the [110] direction of the high temperature body-centered-cubic phase. Such a transition in a metal is reminiscent of orientational transitions in molecular solids

  10. Science Using an Electrostatic Levitation Furnace in the MUCAT Sector at the APS

    Science.gov (United States)

    Goldman, A.; Kelton, K. F.; Rogers, J. R.

    2004-01-01

    The original motivation for the construction of the BESL prototype was to obtain the first proof of a 50-year-old hypothesis regarding the solidification of liquid metals. Since the 1950s it has been known that under proper conditions liquid metals can be cooled below their melting temperature (undercooled) without crystallizing to the stable solid phase. In 1952 Frank proposed that this was because the atoms in the metallic liquid were arranged with the symmetry of an icosahedron, a Platonic solid consisting of 20 tetrahedra (4-sided pyramid-shaped polyhedra) arranged around a common center. Since this local atomic order is incompatible with the long-range translational periodicity of crystal phases, a barrier is formed to the formation of small regions of the crystal phase, the nucleation barrier. A proof of Frank's hypothesis required a direct correlation between measured icosahedral order in the undercooled liquid and the nucleation barrier. The tendency of sample containers to catalyze nucleation obscured this relation, requiring containerless techniques. Combining containerless processing techniques for electrostatically levitated droplets (ESL) with x-ray synchrotron methods, a team from Washington University, St. Louis, MO, NASA Marshall Space Flight Center, and MUCAT at the APS demonstrated an increasing icosahedral order in TiZrNi liquids with decreasing temperature below the melting temperature. The increased icosahedral order caused the transformation of the liquid to a metastable icosahedral quasicrystal phase, instead of the stable tetrahedrally-coordinated crystal intermetallic, giving the first clear demonstration of the connection between the nucleation barrier and the local structure of the liquid, verifying Frank's hypothesis for this alloy.

  11. Chalcogen and Pnicogen Bonds in Complexes of Neutral Icosahedral and Bicapped Square-Antiprismatic Heteroboranes

    Czech Academy of Sciences Publication Activity Database

    Pecina, Adam; Lepšík, Martin; Hnyk, Drahomír; Hobza, Pavel; Fanfrlík, Jindřich

    2015-01-01

    Roč. 119, č. 8 (2015), s. 1388-1395 ISSN 1089-5639 R&D Projects: GA ČR GBP208/12/G016; GA ČR GAP208/10/2269 Grant - others:GA MŠk(CZ) LM2011033; GA MŠk(CZ) ED2.1.00/03.0058; GA MŠk(CZ) ED1.1.00/02.0070 Program:ED; ED Institutional support: RVO:61388963 ; RVO:61388980 Keywords : intermolecular interaction energies * Kohn-Sham orbitals * halogen bond Subject RIV: CF - Physical ; Theoretical Chemistry; CA - Inorganic Chemistry (UACH-T) Impact factor: 2.883, year: 2015

  12. Photoluminescence Investigation of the Indirect Band Gap and Shallow Impurities in Icosahedral B12As2

    Science.gov (United States)

    2012-07-05

    semiconductor that exhibits unusual properties as the result of the bonding within the 12-atom boron icosahe- dron that is an integral part of its crystal...on interstitial sites of the boron icosahe- dron . Ni doping has produced n-type material (via a Ni interstitial) in other compounds incorporating boron

  13. Computing methods for icosahedral and symmetry-mismatch reconstruction of viruses by cryo-electron microscopy

    Science.gov (United States)

    Zhu, Bin; Cheng, Lingpeng; Liu, Hongrong

    2018-05-01

    Not Available Project supported by the National Key R&D Program of China (Grant No. 2016YFA0501100), the National Natural Science Foundation of China (Grant Nos. 91530321, 31570742, and 31570727), and Science and Technology Planning Project of Hunan Province, China (Grant No. 2017RS3033).

  14. Theory of color symmetry for periodic and quasiperiodic crystals

    International Nuclear Information System (INIS)

    Lifshitz, R.

    1997-01-01

    The author presents a theory of color symmetry applicable to the description and classification of periodic as well as quasiperiodic colored crystals. This theory is an extension to multicomponent fields of the Fourier-space approach of Rokhsar, Wright, and Mermin. It is based on the notion of indistinguishability and a generalization of the traditional concepts of color point group and color space group. The theory is applied toward (I) the classification of all black and white space-group types on standard axial quasicrystals in two and three dimensions; (II) the classification of all black and white space-group types in the icosahedral system; (III) the determination of the possible numbers of colors in a standard two-dimensional N-fold symmetric color field whose components are all indistinguishable; and (IV) the classification of two-dimensional decagonal and pentagonal n-color space-group types, explicitly listed for n≤25. copyright 1997 The American Physical Society

  15. Hydrogen absorption study of Ti-based alloys performed by melt-spinning

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, R.M.; Lemus, L.F.; Santos, D.S. dos, E-mail: rafaella@metalmat.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (PEMM/COPPEP/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Metalurgica e de Materiais

    2013-11-01

    The hydrogen absorption and desorption of Ti{sub 53}Zr{sub 27}Ni{sub 20} icosahedral quasicrystal (ICQ) and Ti{sub 50}Ni{sub 50} shape memory alloy (SMA) melt-spun ribbons was studied. Samples were exposed to hydrogen gas at 623 K and 4 MPa for 1000 minutes. The total capacity of hydrogen obtained for Ti{sub 53}Zr{sub 27}Ni{sub 20} and Ti{sub 50}Ni{sub 50} was 3.2 and 2.4 wt. % respectively. The Thermal Desorption Spectrometry (TDS) of the hydrogenated alloys shows that both alloys start to desorb hydrogen around 750 K. X-ray diffraction (XRD) patterns, performed after hydrogenation, indicate a complete amorphization of the Ti{sub 53}Zr{sub 27}Ni{sub 20} i-phase alloy, while the Ti{sub 50}Ni{sub 50} alloy remained crystalline after hydride formation. (author)

  16. Solid and liquid thermal expansion and structural observations in the quasicrystalline Cd84Yb16 compound

    International Nuclear Information System (INIS)

    Kramer, M.J.; Lograsso, T.A.; Sordelet, D.J.

    2010-01-01

    The structure of single-grain Cd 84 Yb 16 samples aligned along the twofold and fivefold axes has been followed from 300 to 1050 K using high-energy synchrotron X-rays. The quasicrystal phase is stable up to its melting temperature of 914 K and has a large linear thermal expansion of 37.1 ppm K -1 over this temperature range. The samples melt congruently over a temperature range of less than 1 K. The liquid is 7% less dense than the solid and, upon cooling from the melt, the quasicrystal phase directly solidifies within a 1 K interval. The amount of undercooling achieved, about 5-25 K, was dependent on the cooling rate. The total scattering function of the liquid is consistent with a dilute liquid Cd structure. These results agree with suggestions that the structure of the liquid must undergo reordering in order to form the solid phases. However, there is no compelling evidence for icosahedral short-range order in the liquid prior to the formation of the quasicrystalline structure.

  17. Ab initio density-functional calculations in materials science: from quasicrystals over microporous catalysts to spintronics.

    Science.gov (United States)

    Hafner, Jürgen

    2010-09-29

    During the last 20 years computer simulations based on a quantum-mechanical description of the interactions between electrons and atomic nuclei have developed an increasingly important impact on materials science, not only in promoting a deeper understanding of the fundamental physical phenomena, but also enabling the computer-assisted design of materials for future technologies. The backbone of atomic-scale computational materials science is density-functional theory (DFT) which allows us to cast the intractable complexity of electron-electron interactions into the form of an effective single-particle equation determined by the exchange-correlation functional. Progress in DFT-based calculations of the properties of materials and of simulations of processes in materials depends on: (1) the development of improved exchange-correlation functionals and advanced post-DFT methods and their implementation in highly efficient computer codes, (2) the development of methods allowing us to bridge the gaps in the temperature, pressure, time and length scales between the ab initio calculations and real-world experiments and (3) the extension of the functionality of these codes, permitting us to treat additional properties and new processes. In this paper we discuss the current status of techniques for performing quantum-based simulations on materials and present some illustrative examples of applications to complex quasiperiodic alloys, cluster-support interactions in microporous acid catalysts and magnetic nanostructures.

  18. The formation of quasicrystal phase in Al-Cu-Fe system by mechanical alloying

    OpenAIRE

    Travessa, Dilermando Nagle; Cardoso, Kátia Regina; Wolf, Witor; Jorge Junior, Alberto Moreira; Botta, Walter José

    2012-01-01

    In order to obtain quasicrystalline (QC) phase by mechanical alloying (MA) in the Al-Cu-Fe system, mixtures of elementary Al, Cu and Fe in the proportion of 65-20-15 (at. %) were produced by high energy ball milling (HEBM). A very high energy type mill (spex) and short milling times (up to 5 hours) were employed. The resulting powders were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). QC phase was not directly formed ...

  19. The formation of quasicrystal phase in Al-Cu-Fe system by mechanical alloying

    Directory of Open Access Journals (Sweden)

    Dilermando Nagle Travessa

    2012-10-01

    Full Text Available In order to obtain quasicrystalline (QC phase by mechanical alloying (MA in the Al-Cu-Fe system, mixtures of elementary Al, Cu and Fe in the proportion of 65-20-15 (at. % were produced by high energy ball milling (HEBM. A very high energy type mill (spex and short milling times (up to 5 hours were employed. The resulting powders were characterized by X-ray diffraction (XRD, differential scanning calorimetry (DSC and scanning electron microscopy (SEM. QC phase was not directly formed by milling under the conditions employed in this work. However, phase transformations identified by DSC analysis reveals that annealing after HEBM possibly results in the formation of the ψ QC phase.

  20. Powder metallurgy preparation of Al-Cu-Fe quasicrystals using mechanical alloying and Spark Plasma Sintering

    Czech Academy of Sciences Publication Activity Database

    Novák, P.; Kubatík, Tomáš František; Vystrčil, J.; Hendrych, R.; Kříž, J.; Mlynár, J.; Vojtěch, D.

    2014-01-01

    Roč. 52, September (2014), s. 131-137 ISSN 0966-9795 Institutional support: RVO:61389021 Keywords : Nanostructure intermetallics * Ternary alloys systems * Mechanical alloying and milling * Sintering * Diffraction Subject RIV: JG - Metallurgy Impact factor: 2.131, year: 2014 http://www.sciencedirect.com/science/article/pii/S0966979514001198#

  1. Portal protein functions akin to a DNA-sensor that couples genome-packaging to icosahedral capsid maturation

    Science.gov (United States)

    Lokareddy, Ravi K.; Sankhala, Rajeshwer S.; Roy, Ankoor; Afonine, Pavel V.; Motwani, Tina; Teschke, Carolyn M.; Parent, Kristin N.; Cingolani, Gino

    2017-01-01

    Tailed bacteriophages and herpesviruses assemble infectious particles via an empty precursor capsid (or ‘procapsid') built by multiple copies of coat and scaffolding protein and by one dodecameric portal protein. Genome packaging triggers rearrangement of the coat protein and release of scaffolding protein, resulting in dramatic procapsid lattice expansion. Here, we provide structural evidence that the portal protein of the bacteriophage P22 exists in two distinct dodecameric conformations: an asymmetric assembly in the procapsid (PC-portal) that is competent for high affinity binding to the large terminase packaging protein, and a symmetric ring in the mature virion (MV-portal) that has negligible affinity for the packaging motor. Modelling studies indicate the structure of PC-portal is incompatible with DNA coaxially spooled around the portal vertex, suggesting that newly packaged DNA triggers the switch from PC- to MV-conformation. Thus, we propose the signal for termination of ‘Headful Packaging' is a DNA-dependent symmetrization of portal protein. PMID:28134243

  2. Portal protein functions akin to a DNA-sensor that couples genome-packaging to icosahedral capsid maturation

    OpenAIRE

    Lokareddy, Ravi K.; Sankhala, Rajeshwer S.; Roy, Ankoor; Afonine, Pavel V.; Motwani, Tina; Teschke, Carolyn M.; Parent, Kristin N.; Cingolani, Gino

    2017-01-01

    Tailed bacteriophages and herpesviruses assemble infectious particles via an empty precursor capsid (or ?procapsid') built by multiple copies of coat and scaffolding protein and by one dodecameric portal protein. Genome packaging triggers rearrangement of the coat protein and release of scaffolding protein, resulting in dramatic procapsid lattice expansion. Here, we provide structural evidence that the portal protein of the bacteriophage P22 exists in two distinct dodecameric conformations: a...

  3. Portal protein functions akin to a DNA-sensor that couples genome-packaging to icosahedral capsid maturation

    Energy Technology Data Exchange (ETDEWEB)

    Lokareddy, Ravi K.; Sankhala, Rajeshwer S.; Roy, Ankoor; Afonine, Pavel V.; Motwani, Tina; Teschke, Carolyn M.; Parent, Kristin N.; Cingolani, Gino (Rutgers); (LBNL); (Connecticut); (TJU); (MSU)

    2017-01-30

    Tailed bacteriophages and herpesviruses assemble infectious particles via an empty precursor capsid (or ‘procapsid’) built by multiple copies of coat and scaffolding protein and by one dodecameric portal protein. Genome packaging triggers rearrangement of the coat protein and release of scaffolding protein, resulting in dramatic procapsid lattice expansion. Here, we provide structural evidence that the portal protein of the bacteriophage P22 exists in two distinct dodecameric conformations: an asymmetric assembly in the procapsid (PC-portal) that is competent for high affinity binding to the large terminase packaging protein, and a symmetric ring in the mature virion (MV-portal) that has negligible affinity for the packaging motor. Modelling studies indicate the structure of PC-portal is incompatible with DNA coaxially spooled around the portal vertex, suggesting that newly packaged DNA triggers the switch from PC- to MV-conformation. Thus, we propose the signal for termination of ‘Headful Packaging’ is a DNA-dependent symmetrization of portal protein.

  4. Structural models of increasing complexity for icosahedral boron carbide with compositions throughout the single-phase region from first principles

    Science.gov (United States)

    Ektarawong, A.; Simak, S. I.; Alling, B.

    2018-05-01

    We perform first-principles calculations to investigate the phase stability of boron carbide, concentrating on the recently proposed alternative structural models composed not only of the regularly studied B11Cp (CBC) and B12(CBC), but also of B12(CBCB) and B12( B4 ). We find that a combination of the four structural motifs can result in low-energy electron precise configurations of boron carbide. Among several considered configurations within the composition range of B10.5C and B4C , we identify in addition to the regularly studied B11Cp (CBC) at the composition of B4C two low-energy configurations, resulting in a new view of the B-C convex hull. Those are [B12 (CBC)]0.67[B12(B4)] 0.33 and [B12 (CBC)]0.67[ B12 (CBCB)]0.33, corresponding to compositions of B10.5C and B6.67C , respectively. As a consequence, B12(CBC) at the composition of B6.5C , previously suggested in the literature as a stable configuration of boron carbide, is no longer part of the B -C convex hull. By inspecting the electronic density of states as well as the elastic moduli, we find that the alternative models of boron carbide can provide a reasonably good description for electronic and elastic properties of the material in comparison with the experiments, highlighting the importance of considering B12(CBCB) and B12( B4 ), together with the previously proposed B11Cp (CBC) and B12(CBC), as the crucial ingredients for modeling boron carbide with compositions throughout the single-phase region.

  5. Investigations of the Electronic Properties and Surface Structures of Aluminium-Rich Quasicrystalline Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Barrow, Jason A. [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    The work presented in this dissertation has investigated three distinct areas of interest in the field of quasicrystals: bulk structure, transport properties, and electronic structure. First, they have described the results of a study which explored the fundamental interactions between the atomic species of the icosahedral Al-Pd-Mn quasicrystal. The goal of this work was to determine whether the pseudo-MacKay or Bergman type clusters have a special stability or are merely a geometric coincidence. This was carried out by using laser vaporization to produce gas-phase metal clusters, which were analyzed using time-of-flight mass spectrometry. Both the kinetic and thermodynamic stabilities of the clusters were probed. The data indicated no special stability for either pseudo-MacKay or Bergman type clusters as isolated units. This, however, is not proof that these clusters are simply a geometric coincidence. It is possible that such clusters only have stability in the framework of the bulk matrix and do not exist as isolated units. Next, they have reported their investigations of the bulk thermal transport properties of a decagonal Al-Ni-Co two dimensional quasicrystal in the temperature range 373K-873K. The properties of a sample oriented along the periodic axis and another oriented along the aperiodic axis were measured. A high degree of anisotropy was observed between the aperiodic and periodic directions. Additionally, the properties were measured for a sample miscut to an orientation 45° off-axis. The properties of the miscut sample were shown to have good agreement with a theoretical model used to describe thermal transport in metallic single crystals. This model only considers thermal transport by a free-electron gas; therefore, agreement with experimental data suggests the validity of the Drude free-electron model for the decagonal Al-Ni-Co at these temperatures. Consequently, the observed anisotropy may be adequately described using classical transport

  6. Non-locality and memory effects in grain dynamics on a 2D dusty plasma quasi-crystal

    International Nuclear Information System (INIS)

    Ratynskaia, S.; Rypdal, K.; Milovanov, A.; Rasmussen, J. J.; Knapek, C.; Morfill, G.

    2005-01-01

    By tuning RF-power and neutral gas pressure as control parameters in a dust plasma crystal experiment it is possible to obtain a state exhibiting rather high mobility of the dust grains through development of defects, yet maintaining the global hexagonal structure. The state exhibits higher mobility and smaller vertical structures along the rim and larger and more slowly moving and rotating crystalline domains in the core. It is different from the critical transition between the crystalline and liquid state. Trajectories of all particles in a cluster consisting of about 700 dust grains are tracked through 30.000 frames (time-steps). During this time the length of a grain trajectory is typically considerably greater than the linear size of the cluster. Variogram and rescaled range (R/S) analysis of time series of particle positions reveal super-diffusive behavior which, from a stochastic process viewpoint, often is ascribed to either long memory effects or to the presence of non-locality manifested as Levy flights giving rise to heavy algebraic tails in the position increment probability distribution function (PDF). The experimental PDF is non-gaussian, but the tails are not algebraic. The core of the PDF, however, has the shape of a truncated Levy distribution, which is shown to be stretched exponential of width that expands in time in a super-diffusive manner. Thus, super-diffusion could in principle occur without long-range time dependence in the increment time series and without algebraic tails in the PDF. Analysis of the core PDF and PDFs on different level of coarse gaining of the time series, combined with variogram and R/S analysis techniques, are employed to disentangle memory and non-locality effects. The results are discussed and interpreted in the framework of a fractional kinetics approach. (Author)

  7. Na{sub 8}Au{sub 9.8(4)}Ga{sub 7.2} and Na{sub 17}Au{sub 5.87(2)}Ga{sub 46.63}: The diversity of pseudo 5-fold symmetries in the Na–Au–Ga system

    Energy Technology Data Exchange (ETDEWEB)

    Smetana, Volodymyr; Corbett, John D., E-mail: jcorbett@iastate.edu; Miller, Gordon J.

    2013-11-15

    The Na-rich part (∼30% Na) of the Na–Au–Ga system between NaAu{sub 2}, NaGa{sub 4}, and Na{sub 22}Ga{sub 39} has been found to contain the ternary phases Na{sub 8}Au{sub 9.8(4)}Ga{sub 7.2} (I) and Na{sub 17}Au{sub 5.87(2)}Ga{sub 46.63} (II), according to the results of single crystal X-ray diffraction measurements. I is orthorhombic, Cmcm, a=5.3040(1), b=24.519(5), c=14.573(3) Å, and contains a network of clusters with local 5-fold symmetry along the a-axis. Such clusters are frequent building units in decagonal quasicrystals and their approximants. II is rhombohedral, R3{sup ¯}m, a=16.325(2), c=35.242(7) Å, and contains building blocks that are structurally identical to the Bergman-type clusters as well as fused icosahedral units known with active metals, triels and late transition elements. II also contains a polycationic network with elements of the clathrate V type structure. Tight-binding electronic structure calculations using linear muffin–tin-orbital (LMTO) methods on idealized models of I and II indicate that both compounds are metallic with evident pseudogaps at the corresponding Fermi levels. The overall Hamilton bond populations are generally dominated by Au–Ga and Au–Au bonds in I and by Ga–Ga bonds in II; moreover, the Na–Au and Na–Ga contributions in I are unexpectedly large, ∼20% of the total. A similar involvement of sodium in covalent bonding has also been found in the electron-richer i-Na{sub 13}Au{sub 12}Ga{sub 15} quasicrystal approximant. - Graphical abstract: Multiply-endohedral Bergman-related clusters in the structure of Na{sub 17}Au{sub 5.9(1)}Ga{sub 46.6.} Display Omitted - Highlights: • Two new compounds with the local 5-fold symmetry have been investigated. • Na{sub 8}Au{sub 9.8(4)}Ga{sub 7.2} is an orthorhombic approximant of the Na{sub 13}Au{sub 12}Ga{sub 15} quasicrystal. • Na{sub 17}Au{sub 5.87(2)}Ga{sub 46.63} represents a rhombohedral distortion of the Bergman-type phases.

  8. Pairing Heterocyclic Cations with closo-Icosahedral Borane and Carborane Anions, II: Benchtop Alternative Synthetic Methodologies for Binary Triazolium and Tetrazolium Salts with Significant Water Solubility (POSTPRINT)

    Science.gov (United States)

    2012-01-01

    in the stirbar=recovery flask apparatus, a proton NMR ( dimethylsulfoxide , DMSO -d6, solvent ) performed on the residue indicated essentially complete...of KX by-product that a given dry volume of silica gel might have retained using a reasonable volume of eluting solvent . For KCl, 0.4473 g (6.0mmol...collected after solvent removal. Scheme 2. Formation of the mixed mono-K=triazolium borane salt. WATER-SOLUBLE HETEROCYCLIUM BORANE-BASED SALTS 157 In this

  9. Acidities of closo-1-COOH-1,7-C2B10H11 and Amino Acids Based on Icosahedral Carbaboranes

    Czech Academy of Sciences Publication Activity Database

    Dávalos, J. Z.; Gonzalez, J.; Ramos, R.; Hnyk, Drahomír; Holub, Josef; Santaballa, J.A.; Canle, M.; Oliva, J. M.

    2014-01-01

    Roč. 118, č. 15 (2014), s. 2788-2793 ISSN 1089-5639 R&D Projects: GA ČR GAP208/10/2269 Institutional support: RVO:61388980 Keywords : energy landscapes * geochemistry * isomers * boron Subject RIV: CA - Inorganic Chemistry Impact factor: 2.693, year: 2014

  10. Binary twinned-icosahedral [B21H18](-) interacts with cyclodextrins as a precedent for its complexation with other organic motifs

    Czech Academy of Sciences Publication Activity Database

    Eyrilmez, Saltuk M.; Bernhardt, E.; Dávalos, J. Z.; Lepšík, Martin; Hobza, Pavel; Assaf, K. I.; Nau, W. M.; Holub, Josef; Oliva-Enrich, J. M.; Fanfrlík, Jindřich; Hnyk, Drahomír

    2017-01-01

    Roč. 19, č. 19 (2017), s. 11748-11752 ISSN 1463-9076 R&D Projects: GA ČR(CZ) GBP208/12/G016; GA ČR(CZ) GA15-05677S Institutional support: RVO:61388963 ; RVO:61388980 Keywords : host-guest chemistry * gas-phase basicities * mass spectrometry Subject RIV: CF - Physical ; Theoretical Chemistry ; CA - Inorganic Chemistry (UACH-T) OBOR OECD: Physical chemistry ; Inorganic and nuclear chemistry (UACH-T) Impact factor: 4.123, year: 2016 http://pubs.rsc.org/en/content/articlehtml/2017/cp/c7cp01074e

  11. Vibrational spectra and structure of icosahedral anion of monocarba-closo-dodecaborane [CB11H12]- and its nido-derivative: [CB10H13]-

    International Nuclear Information System (INIS)

    Kononova, E.G.; Bukalov, S.S.; Lejtes, L.A.; Lysenko, K.A.; Ol'shevskaya, V.A.

    2003-01-01

    Raman and IR spectra of cesium salts of monocarborane anions [closo-CB 11 H 12 ] - and [nido-CB 10 H 13 ] - were recorded, assignment of frequencies being provided. Quantum-chemical calculation of geometry of the closo-polyhedrons [B 12 H 12 ] 2- and [CB 11 H 12 ] - along with that of frequencies and forms of normal vibrations of the latter was made. Comparison of structural and spectral characteristics in the series of isoelectronic closo-polyhedrons [B 12 H 12 ] 2- , [CB 11 H 12 ] - and p-C 2 B 10 H 12 , as well as those of the closo- and nido structures, was made [ru

  12. Effects of Nb addition on icosahedral quasicrystalline phase formation and glass-forming ability of Zr--Ni--Cu--Al metallic glasses

    International Nuclear Information System (INIS)

    Fan, Cang; Li, Chunfei; Inoue, Akihisa; Haas, Volker

    2001-01-01

    This work shows that the crystallization process of Zr--Ni--Cu--Al metallic glass is greatly influenced by adding Nb as an alloying element. Based on the results of the differential scanning calorimetry experiments for metallic glasses Zr 69-x Nb x Ni 10 Cu 12 Al 9 (x=0--15at.%), the crystallization process takes place through two individual stages. For Zr 69 Ni 10 Cu 12 Al 9 (x=0), metastable hexagonal ω-Zr and a small fraction of tetragonal Zr 2 Cu are precipitated upon completion of the first exothermic reaction. Contrary to this alloy, the precipitation of a nanoquasicrystalline phase is detected when 5--10 at.% Nb is added. Furthermore, the crystallization temperature T x , supercooled liquid region ΔT x and reduced temperature T g /T L (T g is the glass transition temperature, T L the liquidus temperature) increase with increasing Nb content. These results indicate that adding Nb content to Zr--Ni--Cu--Al metallic glasses not only induces quasicrystalline phase formation, but also enhances glass-forming ability. Copyright 2001 American Institute of Physics

  13. Aleaciones cuasicristalinas Al93Fe3Cr2Ti2

    Directory of Open Access Journals (Sweden)

    García-Escorial, Asunción

    2015-12-01

    Full Text Available Aluminium alloy powder having a nominal composition of Al93Fe3Cr2Ti2 (at% has been prepared using gas atomisation. The atomised powder present a microstructure of an aluminium matrix reinforced with a spherical quasicrystalline icosahedral phase, in the range of nanometre in size. The powder was consolidated into bars using warm extrusion. The microstructure of the extruded bars retains the quasicrystalline microstructure and the bars present outstanding mechanical properties, i.e. proof stress of 280 MPa at 300 °C. Upon heating the microstructure evolves towards the equilibrium. The thermal evolution was investigated by means of x-ray diffraction, differential scanning calorimeter, scanning electron microscopy and transmission electron microscopy. According to these observations a transformation in two steps is proposed. A first step consists in the decomposition of the supersaturated solid solution of the matrix and the quasicrystals, and a second step in the transformation of the quasicrystals into the equilibrium phases.Se ha obtenido por atomización por gas polvo de la aleación Al93Fe3Cr2Ti2 (at%. Este polvo presenta una microestructura de una matriz de aluminio reforzada por precipitados icosaédricos de tamaño nanométrico. El polvo fue consolidado por extrusión en forma de barras cilíndricas. La microestructura de las barras retiene la microestructura cuasicristalina de las partículas de polvo. El material consolidado presenta propiedades mecánicas prometedoras, como un límite elástico de 280 MPA a 300 °C. Con los tratamientos térmicos, la microestructura evoluciona hacia el equilibrio. Esta evolución se estudia por difracción de rayos x, calorimetría diferencial de barrido, microscopías electrónicas de barrido y de transmisión. A la luz de los resultados obtenidos se propone que la transformación de las fases con el tiempo de tratamiento térmico ocurre en dos pasos. Primeramente, tiene lugar la descomposición de la

  14. Bulk synthesis by spray forming of Al–Cu–Fe and Al–Cu–Fe–Sn alloys containing a quasicrystalline phase

    International Nuclear Information System (INIS)

    Srivastava, V.C.; Huttunen-Saarivirta, E.; Cui, C.; Uhlenwinkel, V.; Schulz, A.; Mukhopadhyay, N.K.

    2014-01-01

    Highlights: • 40 kg Bulk material spray formed based on Al–Cu–Fe and Al–Cu–Fe + Sn. • Deposited Al–Cu–Fe alloy showed single phase bulk quasicrystals(QC). • DSC, XRD and microscopic analyses were done to ascertain the QC nature. • Sn does not help in single phase quasicrystal formation in the deposit. • The possible structural evolution mechanisms have been discussed in detail. - Abstract: In this study, Al–Cu–Fe alloys without and with the addition of Sn and containing a quasicrystalline phase were spray deposited. The spray-deposited bulk materials were characterized in terms of microstructure and hardness. The results showed that the Al 62.5 Cu 25 Fe 12.5 alloy contains the icosahedral quasicrystalline phase (i-phase) along with the minor λ-Al 13 Fe 4 phase, whereas the Al 62.5 Cu 25 Fe 12.5 + Sn alloy contains five phases: the major i-phase and the crystalline phases of Sn, θ-Al 2 Cu, λ-Al 13 Fe 4 and β-AlFe(Cu) phases. These results have been corroborated by X-ray diffraction (XRD), scanning and transmission electron microscopies (SEM and TEM) and differential scanning calorimetry (DSC). The hardness value of the Al–Cu–Fe alloy reached 10.5 GPa at 50 g load and then decreased steadily with increase in the applied load, while that for Al–Cu–Fe–Sn alloy it was originally somewhat lower, then decreased dramatically with slight increase in the applied load but stayed constant with further load increase. The hardness indentations in Al–Cu–Fe alloy introduced cracking in the material, whereas in the case of Al–Cu–Fe–Sn alloy the Sn-rich areas inhibited the crack growth. The present study provides an insight into the mechanism of phase and microstructural evolutions during spray forming of the studied alloys. Furthermore, the role of Sn in terms of microstructure and properties is highlighted

  15. Study of the viability to obtain quasicrystal in the composition AlCuFe using high-energy milling, followed by pressing and sintering

    International Nuclear Information System (INIS)

    Coelho, Rodrigo Estevam; Cruz, Ramon Mateus Santos; Esteves, Paulo Jesus Costa; Viana, Silvana Garcia; Lima, Severino Jackson Guedes de

    2009-01-01

    This work was observed the phase formations of the mixture Al-Cu-Fe processed vial mechanical alloying, powders pressing at room temperature and subsequent heat treatment. The mixture of powders was made on the nominal composition Al 65 Cu 2 0Fe 15 . A mill of high energy of the horizontal atrittor type was used to process the powders mixtures, in fixed time of two hours of milling. After milling, the powders were pressing in a die closed, with a diameter of about 28mm. The samples were observed by optical microscopy and analyzed X-ray diffractometry. The results obtained in this study provide a basis for setting parameters may be used as a basis for future research and possible applications. (author)

  16. Fivefold Symmetric Photonic Quasi-Crystal Fiber for Dispersion Compensation from S- to L-Band and Optimized at 1.55 μm

    Directory of Open Access Journals (Sweden)

    Sivacoumar Rajalingam

    2015-01-01

    Full Text Available A highly dispersive dual core quasi-periodic photonic crystal fiber is proposed for chromatic dispersion compensation. The dispersion for the dual concentric core fiber is optimized to compensate the chromatic dispersion with a high negative dispersion, accomplishing the communication bandwidth from S-band (1460 nm to L-band (1625 nm. By precise control of structural parameter we have achieved a maximum dispersion of −18,838 ps/nm-km with the phase matching wavelength centred around 1.55 μm. We also numerically investigate the influence of structural parameter and doping effects and its response on peak dispersion parameter.

  17. A partial isothermal section at 1000 ˚C of Al-Mn-Fe phase diagram in vicinity of Taylor phase and decagonal quasicrystal

    Czech Academy of Sciences Publication Activity Database

    Priputen, P.; Černíčková, I.; Lejček, Pavel; Janičkovič, D.; Janovec, J.

    2016-01-01

    Roč. 37, č. 2 (2016), 130-134 ISSN 1547-7037 R&D Projects: GA ČR GBP108/12/G043 Institutional support: RVO:68378271 Keywords : aluminium alloys * equilibria * experimental phase * intermetallics * isothermal section * phase diagram Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.938, year: 2016

  18. Alumina nanowire growth by water decomposition and the peritectic reaction of decagonal Al{sub 65}Cu{sub 15}Co{sub 20} quasicrystals

    Energy Technology Data Exchange (ETDEWEB)

    Téllez-Vázquez, J.O., E-mail: oswald.tellez@gmail.com [Instituto de Investigaciones en Metalurgia y Materiales, UMSNH, Edificio U, Ciudad Universitaria, CP 58060 Morelia Michoacán, México (Mexico); Patiño-Carachure, C., E-mail: cpatino@pampano.unacar.mx [Facultad de Ingeniería, Universidad Autónoma del Carmen, Campus III, Avenida Central S/N, Esq. Con Fracc. Mundo Maya, C.P. 24115 Ciudad del Carmen, Campeche, México (Mexico); Rosas, G., E-mail: grtrejo@yahoo07.com.mx [Instituto de Investigaciones en Metalurgia y Materiales, UMSNH, Edificio U, Ciudad Universitaria, CP 58060 Morelia Michoacán, México (Mexico)

    2016-02-15

    In this paper, the results of the Al{sub 2}O{sub 3} nanowires' growth through a chemical reaction between Al and water vapor at 1050 °C are presented. Our approach is based on two primary considerations. First, at room temperature, the Al{sub 65}Cu{sub 15}Co{sub 20} alloy is affected by the following mechanism: 2Al (s) + 3H{sub 2}O (g) → Al{sub 2}O{sub 3} (s) + H{sub 2} (g). In this reaction, the released hydrogen induces cleavage fracture of the material to form small particles. Second, the Al{sub 65}Cu{sub 15}Co{sub 20} quasicrystalline phase is transformed on heating to liquid + Al (Cu, Co) cubic phase through a peritectic reaction at 1050 °C. The Al-rich liquid then reacts with water vapor, forming Al{sub 2}O{sub 3} nanowires. X-ray diffraction (XRD) analysis shows that the formed nanowires have a hexagonal structure, and infrared analysis further confirms the presence of α-Al{sub 2}O{sub 3} phase in the final products. Transmission electron microscopy observations show that nanoparticles are present at the end of nanowires, suggesting the VLS growth mechanism. Elemental analysis by energy dispersive spectroscopy (EDS) indicates that the particles at the tip of the nanowires are mainly formed by Co and Cu alloying elements and small amounts of Al. Electron microscopy observations showed nanowires with diameters ranging from 20 to 70 nm; the average diameter was 37 nm and the nanowire lengths were up to several micrometers. - Highlights: • Hexagonal alumina nanowires are grown at 1050 °C through the VLS process. • Alumina nanowires are obtained by the decomposition of decagonal quasicrystalline phase. • The decagonal phase decomposition follows a peritectic reaction at 1030 °C. • Nanoparticles are obtained by hydrogen embrittlement mechanism. • The nanoparticles catalyze the water decomposition to form wires.

  19. Zn.sub.1-x./sub. Pd.sub.x./sub. (x=0.14-0.24): a missing link between intergrowth compounds and quasicrystal approximants

    Czech Academy of Sciences Publication Activity Database

    Gourdon, O.; Izaola, Z.; Elcoro, L.; Petříček, Václav; Miller, G.J.

    2006-01-01

    Roč. 86, 3-5 (2006), s. 419-425 ISSN 1478-6435 Grant - others:USDE(US) W-7405-ENG-82; NSF(US) DMR-99-81766; NSF(US) DMR-02-41092 Institutional research plan: CEZ:AV0Z10100521 Keywords : x-ray analysis * structural phases * symmetry Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.354, year: 2006

  20. Impact of beryllium additions on thermal and mechanical properties of conventionally solidified and melt-spun Al–4.5 wt.%Mn–x wt.%Be (x = 0, 1, 3, 5) alloys

    International Nuclear Information System (INIS)

    Öz, Turan; Karaköse, Ercan; Keskin, Mustafa

    2013-01-01

    Highlights: • Thermal and mechanical properties of Al–Mn–Be alloys were investigated. • IQC Al–Mn–Be alloys were synthesized by the CS and MS techniques. • The volume fraction of IQC increases continuously with Be content. • The melting points of the QC i-phase were determined between 652 °C and 675 °C. • The maximum H V and σ values were found to be 124 kg/mm 2 and 458 MPa with the addition of 5% Be. - Abstract: The influence of beryllium (Be) addition on the quasicrystal-forming ability, thermal and mechanical properties of Al–4.5 wt.%Mn–x wt.%Be (x = 0, 1, 3, 5) alloys was investigated in this study. Quasicrystalline Al–Mn–Be alloys were synthesized by the conventionally casting and melt spinning techniques. The microstructures of the samples were characterized by scanning electron microscopy (SEM) and the phase composition was identified by X-ray diffractometry (XRD). The phase transition during the solidification process was studied by differential scanning calorimetry (DSC) and differential thermal analysis (DTA) under an Ar atmosphere. The mechanical properties of the conventionally solidified (CS) and melt-spun (MS) samples were measured by a Vickers micro-hardness indenter and tensile-strength tests. The Al–4.5 wt.%Mn alloy has a hexagonal structure and minor dendritic icosahedral quasicrystalline phase (IQC) precipitates surrounded by an α-Al matrix. Addition of Be into the Al–4.5 wt.%Mn alloy generates intermetallic Be 4 AlMn and IQC phases with the extinction of the hexagonal phase, and the fraction of IQC increases continuously with the increase in Be content. A considerable improvement in microhardness and tensile strength values was observed due to the addition of Be in different percentages into the composition

  1. PREFACE: 6th International Conference on Aperiodic Crystals (APERIODIC'09)

    Science.gov (United States)

    Grimm, Uwe; McGrath, Rónán; Degtyareva, Olga; Sharma, Hem Raj

    2010-04-01

    on quasicrystals (Eiji Abe), complex metal alloys (Alessandra Beni) and incommensurately modulated structures (Gervais Chapuis). While these were mainly aimed at younger researchers in the field, the lectures were very well attended and appreciated by the participants. The main programme ran from Monday morning until Friday lunchtime. It comprised 13 invited and 40 contributed plenary talks, and more than 40 posters, which were presented at two afternoon/evening poster sessions. The topics covered in the programme range from mathematical foundations, mathematical models, new materials, sample preparation, structure determination, physical properties and surface properties to industrial applications. Every presenter was invited to submit an article for this proceedings volume, and the 36 peer-reviewed papers in this volume present a cross-section of the range of presentations at the conference. They have been arranged into four categories, (i) quasicrystals, (ii) modulated structures, (iii) mathematical and theoretical aspects of aperiodic order, and (iv) approximants and complex phases. Prizes for best student presentations were awarded to Heinrich Orsini-Rosenberg (ETH Zurich) for his poster Tailor-made sevenfold approximants: ab-initio investigations on formation and stability and to Holger Euchner (Universität Stuttgart) for his contributed talk on Lattice dynamics in complex metallic alloys - vibrational properties of Zn11Mg2. In addition to a cash prize, Heinrich Orsini-Rosenberg received an icosahedral teapot, which was manufactured and donated by David Warrington, and Holger Euchner received a book prize. The meeting started with a welcome reception in the University's recently refurbished Victoria Gallery and Museum. A public lecture Simple sets of shapes that tile the plane but cannot ever repeat by Professor Sir Roger Penrose FRS attracted a wide audience and gave a fascinating insight into the discovery of the Penrose tiling, which is still the paradigm

  2. [Non-empirical interatomic potentials for transition metals

    International Nuclear Information System (INIS)

    1993-01-01

    The report is divided into the following sections: potential-energy functions for d-band metals, potential-energy functions for aluminides and quasicrystals, electronic structure of complex structures and quasicrystals, potential-energy functions in transition-metal oxides, applications to defect structure and mechanical properties, and basic theory of interatomic potentials

  3. An application of Pettifor structure maps for the identification of pseudo-binary quasicrystalline intermetallics

    International Nuclear Information System (INIS)

    Ranganathan, S.; Inoue, A.

    2006-01-01

    Quasicrystal-forming ability is considered from the viewpoint of Pettifor maps, where a single phenomenological coordinate, the Mendeleev number, captures the bonding characteristics of elements in forming intermetallics. By considering the largest sized atom as the most important constituent, it is shown that most known ternary and quaternary quasicrystals can be treated as pseudo-binary intermetallics. This also results in a classification of quasicrystals into four structural classes based on the nature of the bond orbital - s, p, d or f - of the large atom with four associated related crystal structures. A colour scheme is introduced to indicate preferences for two types of sites. We propose a new classification of quasicrystals as centred on Li, Mg, Al, Ga, Ca, Sc, Y, Ti, Zr, Hf and rare earth elements, as they are the largest atoms in the constituent quasicrystals in contrast to the conventional classification based on majority species

  4. An application of Pettifor structure maps for the identification of pseudo-binary quasicrystalline intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, S. [Department of Metallurgy, Indian Institute of Science, CV Raman Avenue, Bangalore 560012, Karnataka (India) and Institute for Materials Research, Tohoku University, Sendai 9808577 (Japan)]. E-mail: rangu@met.iisc.ernet.in; Inoue, A. [Institute for Materials Research, Tohoku University, Sendai 9808577 (Japan)

    2006-08-15

    Quasicrystal-forming ability is considered from the viewpoint of Pettifor maps, where a single phenomenological coordinate, the Mendeleev number, captures the bonding characteristics of elements in forming intermetallics. By considering the largest sized atom as the most important constituent, it is shown that most known ternary and quaternary quasicrystals can be treated as pseudo-binary intermetallics. This also results in a classification of quasicrystals into four structural classes based on the nature of the bond orbital - s, p, d or f - of the large atom with four associated related crystal structures. A colour scheme is introduced to indicate preferences for two types of sites. We propose a new classification of quasicrystals as centred on Li, Mg, Al, Ga, Ca, Sc, Y, Ti, Zr, Hf and rare earth elements, as they are the largest atoms in the constituent quasicrystals in contrast to the conventional classification based on majority species.

  5. Crystallization of Zr2PdxCu1-x and Zr2NixCu1-x Metallic Glass

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Min [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    One interesting aspect of rretallic glasses is the numerous instances of the deviation of the phase selection from the amorphous state to thermodynamically stable phases during the crystallization process. Their devitrification pathways allow us to study the relationship between the original amorphous structure and their crystalline counter parts. Among the various factors of phase selections, size and electronic effects have been most extensively studied. Elucidating the phase selection process of a glassy alloy will be helpful to fill in the puzzle of the changes from disordered to ordered structures. In this thesis, Two model Zr2PdxCu1-x and Zr2NixCu1-x (x = 0, 0.25, 0.5, 0.75 and 1) glassy systems were investigated since: (1) All of the samples can be made into a homogenous metallic glass; (2) The atomic radii differ from Pd to Cu is by 11%, while Ni has nearly the identical atomic size compare to Cu. Moreover, Pd and Ni differ by only one valence electron from Cu. Thus, these systems are ideal to test the idea of the effects of electronic structure and size factors; (3) The small number of components in these pseudo binary systems readily lend themselves to theoretical modeling. Using high temperature X-ray diffraction (HTXRD) and thermal analysis, topological, size, electronic, bond and chemical distribution factors on crystallization selections in Zr2PdxCu1-x and Zr2NixCu1-x metallic glass have been explored. All Zr2PdxCu1-x compositions share the same Cu11b phase with different pathways of meta-stable, icosahedral quasicrystalline phase (i-phase), and C16 phase formations. The quasicrystal phase formation is topologically related to the increasing icosahedral short range order (SRO) with Pd content in Zr2PdxCu1-x system. Meta-stable C16 phase is competitive with

  6. AUTHOR INDEX

    Indian Academy of Sciences (India)

    Chowdhury D. Flavoured co-annihilation. 849 ... SuSeFLAV: A program for calculating super- symmetric spectra ... quasicrystals and its application. 311 .... of argon and krypton by positron impact from .... spectroscopy for quantitative elemental.

  7. Effect of iron and cerium additions on rapidly solidified Al-TM-Ce alloys

    Czech Academy of Sciences Publication Activity Database

    Michalcová, A.; Vojtěch, D.; Schumacher, G.; Novák, P.; Pližingrová, Eva

    2013-01-01

    Roč. 47, č. 6 (2013), s. 757-761 ISSN 1580-2949 Institutional support: RVO:61388980 Keywords : rapid solidification * aluminium * quasicrystals Subject RIV: CA - Inorganic Chemistry Impact factor: 0.555, year: 2013

  8. q-Derivatives, quantization methods and q-algebras

    International Nuclear Information System (INIS)

    Twarock, Reidun

    1998-01-01

    Using the example of Borel quantization on S 1 , we discuss the relation between quantization methods and q-algebras. In particular, it is shown that a q-deformation of the Witt algebra with generators labeled by Z is realized by q-difference operators. This leads to a discrete quantum mechanics. Because of Z, the discretization is equidistant. As an approach to a non-equidistant discretization of quantum mechanics one can change the Witt algebra using not the number field Z as labels but a quadratic extension of Z characterized by an irrational number τ. This extension is denoted as quasi-crystal Lie algebra, because this is a relation to one-dimensional quasicrystals. The q-deformation of this quasicrystal Lie algebra is discussed. It is pointed out that quasicrystal Lie algebras can be considered also as a 'deformed' Witt algebra with a 'deformation' of the labeling number field. Their application to the theory is discussed

  9. Multi-body forces and the energetics of transition metals, alloys, and semiconductors

    International Nuclear Information System (INIS)

    Carlsson, A.E.

    1992-01-01

    Progress over the past year is divided into 3 areas: potential-energy functions for transition-metal aluminides; electronic structure and energetics of complex structures and quasicrystals; and ceramic materials (PdO, PtO)

  10. Familial relationships in hyperthermo- and acidophilic archaeal viruses

    DEFF Research Database (Denmark)

    Happonen, Lotta Johanna; Redder, Peter; Peng, Xu

    2010-01-01

    Archaea often live in extreme, harsh environments such as acidic hot springs and hypersaline waters. To date, only two icosahedrally symmetric, membrane-containing archaeal viruses, SH1 and Sulfolobus turreted icosahedral virus (STIV), have been described in detail. We report the sequence and thr...

  11. Role of Fe substitution and quenching rate on the formation of ...

    Indian Academy of Sciences (India)

    Unknown

    (~ 10 m/sec), the alloy (Al65Cu22Cr9Fe6) shows the presence of diffuse scattering of intensities along quasi- periodic direction of the decagonal ... shown that Al–Cu–Fe system exhibits the face-centred icosahedral while Al–Cu–Cr ... system that as the quenching rate increases the icosahedral phase formation increases ...

  12. Exo-pi-bonding to an ortho-carborane hypercarbon atom: systematic icosahedral cage distortions reflected in the structures of the fluoro-, hydroxy- and amino-carboranes, 1-X-2-Ph-1,2-C2B10H10 (X=F, OH or NH2) and related anions.

    Science.gov (United States)

    Boyd, Lynn A; Clegg, William; Copley, Royston C B; Davidson, Matthew G; Fox, Mark A; Hibbert, Thomas G; Howard, Judith A K; Mackinnon, Angus; Peace, Richard J; Wade, Kenneth

    2004-09-07

    The structures of derivatives of phenyl-ortho-carborane bearing on the second cage hypercarbon atom a pi-donor substituent (F, OH, O-, NH2, NH- and CH2-) were investigated by NMR, X-ray crystallography and computational studies. The molecular structures of these compounds, notably their cage C1-C2 distances and the orientations of their pi-donor substituents (OH, NH2, NH- and CH2-) show remarkable and systematic variations with the degree of exo pi-bonding, which varies as expected with the pi-donor characteristics of the substituent.

  13. Exo-π-bonding to an ortho-carborane hypercarbon atom : systematic icosahedral cage distortions reflected in the structures of the fluoro-, hydroxy- and amino-carboranes, 1-X-2-Ph-1,2-C2B10H10 (X = F, OH or NH2) and related anions.

    OpenAIRE

    Boyd, L.A.; Clegg, W.; Copley, R.C.B.; Davidson, M.G.; Fox, M.A.; Hibbert, T.G.; Howard, J.A.K.; Mackinnon, A.; Peace, R.J.; Wade, K.

    2004-01-01

    The structures of derivatives of phenyl-ortho-carborane bearing on the second cage hypercarbon atom a pi-donor substituent (F, OH, O-, NH2, NH- and CH2-) were investigated by NMR, X-ray crystallography and computational studies. The molecular structures of these compounds, notably their cage C1-C2 distances and the orientations of their pi-donor substituents (OH, NH2, NH- and CH2-) show remarkable and systematic variations with the degree of exo pi-bonding, which varies as expected with the p...

  14. Phason elasticity and surface roughening

    International Nuclear Information System (INIS)

    Tang Leihan; Jaric, M.V.

    1990-01-01

    The phason elasticity of two-dimensional (2D) equilibrium quasicrystals is discussed in analogy with surface roughening phenomena. Taking a Penrose tiling model as an example, we show that the phason elastic energy is linear in the phason strain at zero temperature (T = 0), but becomes quadratic at any T > 0 and sufficiently small strain. Heuristic and real-space renormalization group arguments are given for the thermal roughening of the hyper-surface which represents quasicrystal tiling. Monte Carlo method is applied to illustrate the logarithmically diverging phason fluctuations and power-law diffraction intensities at T > 0. For three-dimensional systems, we present arguments which suggest a finite temperature transition between two quasicrystal phases, characterized by linear and quadratic phason elastic energy, respectively. (author). 17 refs, 12 figs

  15. Fabrication of ten-fold photonic quasicrystalline structures

    Directory of Open Access Journals (Sweden)

    XiaoHong Sun

    2015-05-01

    Full Text Available Compared to periodic crystals, quasicrystals have higher point group symmetry and are more favorable in achieving complete band-gaps. In this report, a top-cut prism interferometer is designed to fabricate ten-fold photonic quasicrystalline structures. By optimizing the exposing conditions and material characteristics, appropriate quasicrystals have been obtained in the SU8 photoresist films. Atomic Force Microscopy and laser diffraction are used to characterize the fabricated structures. The measurement results show the consistence between the theoretical design and experiments. This will provide guidance for the large-area and fast production of ten-fold quasicrystalline structures with high quality.

  16. A virus of hyperthermophilic archaea with a unique architecture among DNA viruses

    NARCIS (Netherlands)

    Rensen, Elena Ilka; Mochizuki, Tomohiro; Quemin, Emmanuelle; Schouten, S.; Krupovic, Mart; Prangishvili, David

    2016-01-01

    Viruses package their genetic material in diverse ways. Most known strategies include encapsulation of nucleic acids into spherical or filamentous virions with icosahedral or helical symmetry, respectively. Filamentous viruses with dsDNA genomes are currently associated exclusively with Archaea.

  17. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The second part of this investigation is devoted to the study of the interaction of a straight dislocation with a semi-infinite crack in an octagonal quasicrystal. Here the crack penetrates through the solid along the period direction and the dislocation line is parallel to the period direction. We first derive a general solution in ...

  18. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics. E Pan. Articles written in Pramana – Journal of Physics. Volume 70 Issue 5 May 2008 pp 911-933 Research Articles. Analytical solutions for some defect problems in 1D hexagonal and 2D octagonal quasicrystals · X Wang E Pan · More Details Abstract Fulltext PDF. We study ...

  19. Trace maps for arbitrary substitution sequences

    International Nuclear Information System (INIS)

    Avishai, Y.

    1993-01-01

    The discovery of quasi-crystals and their 1-dimensional modeling have led to a deep mathematical study of Schroedinger operators with an arbitrary deterministic potential sequence. In this work we address this problem and find trace maps for an arbitrary substitution sequence. our trace maps have lower dimensionality than those of Kolar and Nori, which make them quite attractive for actual applications. (authors)

  20. [X-ray diffraction experiments with condenser matter

    International Nuclear Information System (INIS)

    Coppens, P.

    1990-01-01

    This report discusses research on the following topics: high-T c superconductors; The response of crystal to an applied electric field; quasicrystals; surface structure and kinetics of surface layer formation; EXAFS studies of superconductors and heterostructures; effect of iron on the crystal structure of perovskite; x-ray detector development; and SAXS experiments

  1. JPRS Report, Science & Technology, Japan, Structure, Properties of Al Amorphous Alloys

    Science.gov (United States)

    1990-12-04

    present report, and to the members of the staff, particularly Masaji Nomura, Tetsuya Ishikawa , and Atsushi Koyama, of the High Energy Physics Laboratory...Aichi Educational University, and the research on Al-based quasicrystals was with Shin Takeuchi, and Kaoru Kimura, both of Tokyo University, and Takeshi

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    An important exercise in the study of rational approximants is to derive their metric, especially in relation to the corresponding quasicrystal or the underlying clusters. Kuo's model has been the widely accepted model to calculate the metric of the decagonal approximants. Using an alternate model, the metric of the ...

  3. Fatigue properties and microstructure of quasicrystalline AlFeCrTi alloy

    Czech Academy of Sciences Publication Activity Database

    Chlupová, Alice; Chlup, Zdeněk; Kruml, Tomáš

    2016-01-01

    Roč. 91, OCT (2016), s. 251-256 ISSN 0142-1123 R&D Projects: GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : Aluminium alloy * Quasicrystals * Fatigue * Fractography Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.899, year: 2016

  4. Fulltext PDF

    Indian Academy of Sciences (India)

    ments, strains, stresses, electric potential, electric fields and electric displacements induced by a straight screw dislocation line parallel to the quasiperiodic axis mov- ing along a period direction in this piezoelectric quasicrystal are then obtained by employing the obtained general solution. Also derived is the total energy of ...

  5. Dirac Sea and its Evolution

    Science.gov (United States)

    Volfson, Boris

    2013-09-01

    The hypothesis of transition from a chaotic Dirac Sea, via highly unstable positronium, into a Simhony Model of stable face-centered cubic lattice structure of electrons and positrons securely bound in vacuum space, is considered. 13.75 Billion years ago, the new lattice, which, unlike a Dirac Sea, is permeable by photons and phonons, made the Universe detectable. Many electrons and positrons ended up annihilating each other producing energy quanta and neutrino-antineutrino pairs. The weak force of the electron-positron crystal lattice, bombarded by the chirality-changing neutrinos, may have started capturing these neutrinos thus transforming from cubic crystals into a quasicrystal lattice. Unlike cubic crystal lattice, clusters of quasicrystals are "slippery" allowing the formation of centers of local torsion, where gravity condenses matter into galaxies, stars and planets. In the presence of quanta, in a quasicrystal lattice, the Majorana neutrinos' rotation flips to the opposite direction causing natural transformations in a category comprised of three components; two others being positron and electron. In other words, each particle-antiparticle pair "e-" and "e+", in an individual crystal unit, could become either a quasi- component "e- ve e+", or a quasi- component "e+ - ve e-". Five-to-six six billion years ago, a continuous stimulation of the quasicrystal aetherial lattice by the same, similar, or different, astronomical events, could have triggered Hebbian and anti-Hebbian learning processes. The Universe may have started writing script into its own aether in a code most appropriate for the quasicrystal aether "hardware": Eight three-dimensional "alphabet" characters, each corresponding to the individual quasi-crystal unit shape. They could be expressed as quantum Turing machine qubits, or, alternatively, in a binary code. The code numerals could contain terminal and nonterminal symbols of the Chomsky's hierarchy, wherein, the showers of quanta, forming the

  6. From structure of the complex to understanding of the biology

    Energy Technology Data Exchange (ETDEWEB)

    Rossmann, Michael G., E-mail: mr@purdue.edu [Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054 (United States); Arisaka, Fumio [Graduate School and School of Bioscience and Biotechnology, Tokyo Institute of Technology, 5249 Nagatsuta-cho, Yokohama 226-8501-B39 (Japan); Battisti, Anthony J.; Bowman, Valorie D.; Chipman, Paul R.; Fokine, Andrei; Hafenstein, Susan [Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054 (United States); Kanamaru, Shuji [Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054 (United States); Graduate School and School of Bioscience and Biotechnology, Tokyo Institute of Technology, 5249 Nagatsuta-cho, Yokohama 226-8501-B39 (Japan); Kostyuchenko, Victor A. [Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054 (United States); Mesyanzhinov, Vadim V.; Shneider, Mikhail M. [Laboratory of Molecular Bioengineering, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow, 117997 (Russian Federation); Morais, Marc C.; Leiman, Petr G. [Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054 (United States); Palermo, Laura M.; Parrish, Colin R. [James A. Baker Institute, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853 (United States); Xiao, Chuan [Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054 (United States)

    2007-01-01

    The most extensive structural information on viruses relates to apparently icosahedral virions and is based on X-ray crystallography and on cryo-electron microscopy single-particle reconstructions. This paper concerns itself with the study of the macromolecular complexes that constitute viruses, using structural hybrid techniques. The most extensive structural information on viruses relates to apparently icosahedral virions and is based on X-ray crystallography and on cryo-electron microscopy (cryo-EM) single-particle reconstructions. Both techniques lean heavily on imposing icosahedral symmetry, thereby obscuring any deviation from the assumed symmetry. However, tailed bacteriophages have icosahedral or prolate icosahedral heads that have one obvious unique vertex where the genome can enter for DNA packaging and exit when infecting a host cell. The presence of the tail allows cryo-EM reconstructions in which the special vertex is used to orient the head in a unique manner. Some very large dsDNA icosahedral viruses also develop special vertices thought to be required for infecting host cells. Similarly, preliminary cryo-EM data for the small ssDNA canine parvovirus complexed with receptor suggests that these viruses, previously considered to be accurately icosahedral, might have some asymmetric properties that generate one preferred receptor-binding site on the viral surface. Comparisons are made between rhinoviruses that bind receptor molecules uniformly to all 60 equivalent binding sites, canine parvovirus, which appears to have a preferred receptor-binding site, and bacteriophage T4, which gains major biological advantages on account of its unique vertex and tail organelle.

  7. From structure of the complex to understanding of the biology

    International Nuclear Information System (INIS)

    Rossmann, Michael G.; Arisaka, Fumio; Battisti, Anthony J.; Bowman, Valorie D.; Chipman, Paul R.; Fokine, Andrei; Hafenstein, Susan; Kanamaru, Shuji; Kostyuchenko, Victor A.; Mesyanzhinov, Vadim V.; Shneider, Mikhail M.; Morais, Marc C.; Leiman, Petr G.; Palermo, Laura M.; Parrish, Colin R.; Xiao, Chuan

    2007-01-01

    The most extensive structural information on viruses relates to apparently icosahedral virions and is based on X-ray crystallography and on cryo-electron microscopy single-particle reconstructions. This paper concerns itself with the study of the macromolecular complexes that constitute viruses, using structural hybrid techniques. The most extensive structural information on viruses relates to apparently icosahedral virions and is based on X-ray crystallography and on cryo-electron microscopy (cryo-EM) single-particle reconstructions. Both techniques lean heavily on imposing icosahedral symmetry, thereby obscuring any deviation from the assumed symmetry. However, tailed bacteriophages have icosahedral or prolate icosahedral heads that have one obvious unique vertex where the genome can enter for DNA packaging and exit when infecting a host cell. The presence of the tail allows cryo-EM reconstructions in which the special vertex is used to orient the head in a unique manner. Some very large dsDNA icosahedral viruses also develop special vertices thought to be required for infecting host cells. Similarly, preliminary cryo-EM data for the small ssDNA canine parvovirus complexed with receptor suggests that these viruses, previously considered to be accurately icosahedral, might have some asymmetric properties that generate one preferred receptor-binding site on the viral surface. Comparisons are made between rhinoviruses that bind receptor molecules uniformly to all 60 equivalent binding sites, canine parvovirus, which appears to have a preferred receptor-binding site, and bacteriophage T4, which gains major biological advantages on account of its unique vertex and tail organelle

  8. Quaternionic representation of the Coxeter group W(H4) and the polyhedra

    International Nuclear Information System (INIS)

    Koca, Mehmet; Al-Ajmi, Mudhahir; Koc, Ramazan

    2006-01-01

    The vertices of the four-dimensional polytope {3, 3, 5} and its dual {5, 3, 3} admitting the symmetry of the non-crystallographic Coxeter group W(H 4 ) of order 14,400 are represented in terms of quaternions with unit norm where the polytope {3, 3, 5} is represented by the elements of the binaryicosahedral group of quaternions of order 120. We projected the polytopes to three-dimensional Euclidean space where the quaternionic vertices are the orbits of the Coxeter group W(H 3 ), icosahedral group with inversion, where W(H 3 ) x Z 2 is one of the maximal subgroups of the Coxeter group W(H 4 ). The orbits of the icosahedral group W(H 3 ) in the polytope {3, 3, 5} are the conjugacy classes of the binary icosahedral group and represent a number of icosahedrons, dodecahedrons and one icosidodecahedron in three dimensions. The 15 orbits of the icosahedral group W(H 3 ) in the polytope {5, 3, 3} represent the dodecahedrons, icosidodecahedrons, small rhombicosidodecahedrons and some convex solids possessing the icosahedral symmetry. One of the convex solids with 60 vertices is very similar to the truncated icosahedron (soccer ball) but with two different edge lengths which can be taken as a realistic model of the C 60 molecule at extreme temperature and pressure

  9. Acid-induced movements in the glycoprotein shell of an alphavirus turn the spikes into membrane fusion mode

    OpenAIRE

    Haag, Lars; Garoff, Henrik; Xing, Li; Hammar, Lena; Kan, Sin-Tau; Cheng, R.Holland

    2002-01-01

    In the icosahedral (T = 4) Semliki Forest virus, the envelope protomers, i.e. E1–E2 heterodimers, make one-to-one interactions with capsid proteins below the viral lipid bilayer, transverse the membrane and form an external glycoprotein shell with projections. The shell is organized by protomer domains interacting as hexamers and pentamers around shell openings at icosahedral 2- and 5-fold axes, respectively, and the projections by other domains associating as trimers at 3- and quasi 3-fold a...

  10. Detecting Structural Features in Metallic Glass via Synchrotron Radiation Experiments Combined with Simulations

    Directory of Open Access Journals (Sweden)

    Gu-Qing Guo

    2015-11-01

    Full Text Available Revealing the essential structural features of metallic glasses (MGs will enhance the understanding of glass-forming mechanisms. In this work, a feasible scheme is provided where we performed the state-of-the-art synchrotron-radiation based experiments combined with simulations to investigate the microstructures of ZrCu amorphous compositions. It is revealed that in order to stabilize the amorphous state and optimize the topological and chemical distribution, besides the icosahedral or icosahedral-like clusters, other types of clusters also participate in the formation of the microstructure in MGs. This cluster-level co-existing feature may be popular in this class of glassy materials.

  11. Localized surface plasmon resonance in silver nanoparticles: Atomistic first-principles time-dependent density-functional theory calculations

    OpenAIRE

    Kuisma, Mikael; Sakko, Arto; Rossi, Tuomas P.; Larsen, Ask H.; Enkovaara, Jussi; Lehtovaara, Lauri; Rantala, Tapio T.

    2015-01-01

    We observe using ab initio methods that localized surface plasmon resonances in icosahedral silver nanoparticles enter the asymptotic region already between diameters of 1 and 2 nm, converging close to the classical quasistatic limit around 3.4 eV. We base the observation on time-dependent density-functional theory simulations of the icosahedral silver clusters Ag$_{55}$ (1.06 nm), Ag$_{147}$ (1.60 nm), Ag$_{309}$ (2.14 nm), and Ag$_{561}$ (2.68 nm). The simulation method combines the adiabat...

  12. Structure determination of enterovirus 71

    Energy Technology Data Exchange (ETDEWEB)

    Plevka, Pavel; Perera, Rushika; Cardosa, Jane; Kuhn, Richard J.; Rossmann, Michael G. (Purdue); (Sentinext)

    2013-02-20

    Enterovirus 71 is a picornavirus that causes hand, foot and mouth disease but may induce fatal neurological illness in infants and young children. Enterovirus 71 crystallized in a body-centered orthorhombic space group with two particles in general orientations in the crystallographic asymmetric unit. Determination of the particle orientations required that the locked rotation function excluded the twofold symmetry axes from the set of icosahedral symmetry operators. This avoided the occurrence of misleading high rotation-function values produced by the alignment of icosahedral and crystallographic twofold axes. Once the orientations and positions of the particles had been established, the structure was solved by molecular replacement and phase extension.

  13. Aperiodic order

    CERN Document Server

    Grimm, Uwe

    2017-01-01

    Quasicrystals are non-periodic solids that were discovered in 1982 by Dan Shechtman, Nobel Prize Laureate in Chemistry 2011. The mathematics that underlies this discovery or that proceeded from it, known as the theory of Aperiodic Order, is the subject of this comprehensive multi-volume series. This second volume begins to develop the theory in more depth. A collection of leading experts, among them Robert V. Moody, cover various aspects of crystallography, generalising appropriately from the classical case to the setting of aperiodically ordered structures. A strong focus is placed upon almost periodicity, a central concept of crystallography that captures the coherent repetition of local motifs or patterns, and its close links to Fourier analysis. The book opens with a foreword by Jeffrey C. Lagarias on the wider mathematical perspective and closes with an epilogue on the emergence of quasicrystals, written by Peter Kramer, one of the founders of the field.

  14. Atomic structure of a decagonal Al-Pd-Mn phase

    Science.gov (United States)

    Mihalkovič, Marek; Roth, Johannes; Trebin, Hans-Rainer

    2017-12-01

    We present a detailed structure solution for the 16 -Å decagonal quasicrystal in the Al-Pd-Mn system by means of cluster decoration and ab initio energy minimization. It is based on structure models of the ɛ and other approximant phases. The ɛ phases can be represented as subsets of a hexagon-boat-star (HBS) tiling. The decagonal phase comprises further HBS tiles. We have constructed several fictitious HBS approximants and optimized their structures individually. All tiles are decorated by two types of atomic clusters: the pseudo-Mackay icosahedron (PMI) and the large bicapped pentagonal prism (LBPP). It turns out that, whereas the PMI clusters can be kept essentially unchanged, the LBPP clusters must be adjusted in occupancy with Al atoms depending on their positions in the various tiles. In this way we obtain cluster decorations for all tiles of the decagonal quasicrystal. The calculations were confirmed by evaluation of an effective tile Hamiltonian.

  15. Mathematics of aperiodic order

    CERN Document Server

    Lenz, Daniel; Savinien, Jean

    2015-01-01

    What is order that is not based on simple repetition, that is, periodicity? How must atoms be arranged in a material so that it diffracts like a quasicrystal? How can we describe aperiodically ordered systems mathematically? Originally triggered by the – later Nobel prize-winning – discovery of quasicrystals, the investigation of aperiodic order has since become a well-established and rapidly evolving field of mathematical research with close ties to a surprising variety of branches of mathematics and physics. This book offers an overview of the state of the art in the field of aperiodic order, presented in carefully selected authoritative surveys. It is intended for non-experts with a general background in mathematics, theoretical physics or computer science, and offers a highly accessible source of first-hand information for all those interested in this rich and exciting field. Topics covered include the mathematical theory of diffraction, the dynamical systems of tilings or Delone sets, their cohomolog...

  16. Laser cladding of quasicrystalline alloys

    International Nuclear Information System (INIS)

    Audebert, F.; Sirkin, H.; Colaco, R.; Vilar, R.

    1998-01-01

    Quasicrystals are a new class of ordinated structures with metastable characteristics room temperature. Quasicrystalline phases can be obtained by rapid quenching from the melt of some alloys. In general, quasicrystals present properties which make these alloys promising for wear and corrosion resistant coatings applications. During the last years, the development of quasicrystalline coatings by means of thermal spray techniques has been impulsed. However, no references have been found of their application by means of laser techniques. In this work four claddings of quasicrystalline compositions formed over aluminium substrate, produced by a continuous CO 2 laser using simultaneous powders mixture injection are presented. The claddings were characterized by X ray diffraction, scanning electron microscopy and Vickers microhardness. (Author) 18 refs

  17. Containerless Measurement of Thermophysical Properties of Ti-Zr-Ni Alloys

    Science.gov (United States)

    Hyers, Robert; Bradshaw, Richard C.; Rogers, Jan C.; Rathz, Thomas J.; Lee, Geun W.; Gangopadhyay, Anup K.; Kelton, Kenneth F.

    2004-01-01

    The surface tension, viscosity, density, and thermal expansion of Ti-Zr-Ni alloys were measured for a number of compositions by electrostatic levitation methods. Containerless methods greatly reduce heterogeneous nucleation, increasing access to the undercooled liquid regime at finite cooling rates. The density and thermal expansion are measured optically, while the surface tension and viscosity are measured by the oscillating drop method. The measured alloys include compositions which form a metastable quasicrystal phase from the undercooled liquid, and alloys close to the composition of several multi-component bulk metallic glass-forming alloys. Measurements of surface tension show behavior typical of transition metals at high temperature, but a sudden decrease in the deeply undercooled liquid for alloys near the quasicrystal-forming composition range, but not for compositions which form the solid-solution phase first.

  18. Imaging quasiperiodic electronic states in a synthetic Penrose tiling

    Science.gov (United States)

    Collins, Laura C.; Witte, Thomas G.; Silverman, Rochelle; Green, David B.; Gomes, Kenjiro K.

    2017-06-01

    Quasicrystals possess long-range order but lack the translational symmetry of crystalline solids. In solid state physics, periodicity is one of the fundamental properties that prescribes the electronic band structure in crystals. In the absence of periodicity and the presence of quasicrystalline order, the ways that electronic states change remain a mystery. Scanning tunnelling microscopy and atomic manipulation can be used to assemble a two-dimensional quasicrystalline structure mapped upon the Penrose tiling. Here, carbon monoxide molecules are arranged on the surface of Cu(111) one at a time to form the potential landscape that mimics the ionic potential of atoms in natural materials by constraining the electrons in the two-dimensional surface state of Cu(111). The real-space images reveal the presence of the quasiperiodic order in the electronic wave functions and the Fourier analysis of our results links the energy of the resonant states to the local vertex structure of the quasicrystal.

  19. Microstructure and mechanical properties of Mg-Zn-Y alloy containing LPSO phase and I-phase

    Science.gov (United States)

    Ye, Zhijian; Teng, Xinying; Lou, Gui; Zhou, Guorong; Leng, Jinfeng

    2017-08-01

    Microstructure and mechanical properties of Mg-Zn-Y alloy including LPSO phase and I-phase was investigated. Transmission electron microscopy, x-ray diffraction analysis and differential scanning calorimeter analysis reveal that the LPSO (long period stacking ordered structure) phase and I-phase can co-exist within the α-Mg matrix. Wherein, the quasicrystal phases exist in the (I-phase  +  α-Mg) eutectic structures. In the Mg-Zn-Y alloy, it is also found that 14 H type LPSO phases consist of LPSO phase and I-phase. With the addition of quasicrystal master alloy content, the microstructures are refined, and the mechanical properties are enhanced.

  20. Charge transfers in complex transition metal alloys (Ti2Fe)

    International Nuclear Information System (INIS)

    Abramovici, G.

    1998-01-01

    We introduce a new non-orthogonal tight-binding model, for complex alloys, in which electronic structure is characterized by charge transfers. We give the analytic calculation of a charge transfer, in which overlapping two-center terms are rigorously taken into account. Then, we apply numerically this result to an approximant phase of a quasicrystal of Ti 2 Fe alloy. This model is more particularly adapted to transition metals, and gives realistic densities of states. (orig.)

  1. Condensed matter physics

    CERN Document Server

    Marder, Michael P

    2010-01-01

    This Second Edition presents an updated review of the whole field of condensed matter physics. It consolidates new and classic topics from disparate sources, teaching not only about the effective masses of electrons in semiconductor crystals and band theory, but also about quasicrystals, dynamics of phase separation, why rubber is more floppy than steel, granular materials, quantum dots, Berry phases, the quantum Hall effect, and Luttinger liquids.

  2. Pressure effect on crystallization temperature in Zr70Pd30 metallic glass

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Jeppesen, S; Saida, J.

    2004-01-01

    The pressure effect on amorphous-to-quasicrystalline-to-intermetallic phase transformations in a Zr70Pd30 metallic glass has been investigated by in situ x-ray diffraction measurements using synchrotron radiation. It is found that the glass crystallizes in two steps: (1) amorphous...... temperature for the formation of quasicrystals has been further discussed with the nucleation theory. ©2004 American Institute of Physics....

  3. Influence of initial microstructure of aluminium alloy charge after its melting on the hard metal inherited structure

    Directory of Open Access Journals (Sweden)

    Г. О. Іванов

    2016-07-01

    Full Text Available Metal properties heredity in the chain- initial hard state > liquid state > final solidified state has always been interesting for metallurgists. It is known that after the primary melting of charge there occurs microheterogenеous non-equilibrium melt with crystal-like groups of atoms and disordered area in it. With increase in temperature the melt approaches the equilibrium microhomogeneous state. The aim of this work is to study the charge microstructure influence on melt fluidity in the light of quasi-crystal model of liquid structure. Influence of isothermal heating on fluidity of aluminium melt, smelted from fine-grained and coarse-grained charge has been investigated. It has been stated that for coarse-grained metal additional melting of crystallization «genes» takes place in 1,4-quick time, as compared to fine-grained. The coefficients of exponential function for our experimental data have been calculated. It has been stated that the exponent depends on the charge microstructure, and multiplier depends on the soaking temperature. On the basis of A. Einstein equation for the calculation of liquid viscosity from the known fraction of admixtures and clean liquid viscosity an analogical equation for fluidity and calculation of quasi-crystals volume share in the melt have been derived. It has been found that the charge grain size affects the speed of quasi-crystals additional melting in the melt. The reference amount of quasi-crystals at the initial moment of large- and fine-grained charge melting has been calculated from our metallographic, experimental and estimated data

  4. Molecular interactions during the assembly of cowpea chlorotic mottle virus studied by magnetic resonance

    NARCIS (Netherlands)

    Vriend, G.

    1983-01-01

    This thesis describes the application of 1 H- and 13 C- NMR, EPR, ST-EPR and calculational methods to study cowpea chlorotic mottle virus. This virus consists of RNA encapsidated by 180 identical protein subunits, arranged icosahedrally. The

  5. Monte Carlo simulation of Su(2) lattice gauge theory with internal quark loops

    International Nuclear Information System (INIS)

    Azcoiti, V.; Nakamura, A.

    1982-01-01

    Dynamical effects of quark loops in lattice gauge theory with icosahedral group are studied. The standard Wilson action is employed and the fermionic part by a discretize pseudo fermionic method is calculated. The masses of π, rho, ω are computed and the average value of an effective fermionic action is evaluated

  6. Distinct DNA exit and packaging portals in the virus Acanthamoeba polyphaga mimivirus.

    Science.gov (United States)

    Zauberman, Nathan; Mutsafi, Yael; Halevy, Daniel Ben; Shimoni, Eyal; Klein, Eugenia; Xiao, Chuan; Sun, Siyang; Minsky, Abraham

    2008-05-13

    Icosahedral double-stranded DNA viruses use a single portal for genome delivery and packaging. The extensive structural similarity revealed by such portals in diverse viruses, as well as their invariable positioning at a unique icosahedral vertex, led to the consensus that a particular, highly conserved vertex-portal architecture is essential for viral DNA translocations. Here we present an exception to this paradigm by demonstrating that genome delivery and packaging in the virus Acanthamoeba polyphaga mimivirus occur through two distinct portals. By using high-resolution techniques, including electron tomography and cryo-scanning electron microscopy, we show that Mimivirus genome delivery entails a large-scale conformational change of the capsid, whereby five icosahedral faces open up. This opening, which occurs at a unique vertex of the capsid that we coined the "stargate", allows for the formation of a massive membrane conduit through which the viral DNA is released. A transient aperture centered at an icosahedral face distal to the DNA delivery site acts as a non-vertex DNA packaging portal. In conjunction with comparative genomic studies, our observations imply a viral packaging pathway akin to bacterial DNA segregation, which might be shared by diverse internal membrane-containing viruses.

  7. Distinct DNA exit and packaging portals in the virus Acanthamoeba polyphaga mimivirus.

    Directory of Open Access Journals (Sweden)

    Nathan Zauberman

    2008-05-01

    Full Text Available Icosahedral double-stranded DNA viruses use a single portal for genome delivery and packaging. The extensive structural similarity revealed by such portals in diverse viruses, as well as their invariable positioning at a unique icosahedral vertex, led to the consensus that a particular, highly conserved vertex-portal architecture is essential for viral DNA translocations. Here we present an exception to this paradigm by demonstrating that genome delivery and packaging in the virus Acanthamoeba polyphaga mimivirus occur through two distinct portals. By using high-resolution techniques, including electron tomography and cryo-scanning electron microscopy, we show that Mimivirus genome delivery entails a large-scale conformational change of the capsid, whereby five icosahedral faces open up. This opening, which occurs at a unique vertex of the capsid that we coined the "stargate", allows for the formation of a massive membrane conduit through which the viral DNA is released. A transient aperture centered at an icosahedral face distal to the DNA delivery site acts as a non-vertex DNA packaging portal. In conjunction with comparative genomic studies, our observations imply a viral packaging pathway akin to bacterial DNA segregation, which might be shared by diverse internal membrane-containing viruses.

  8. Relevance of capsid structure in the buckling and maturation of spherical viruses

    International Nuclear Information System (INIS)

    Aznar, María; Luque, Antoni; Reguera, David

    2012-01-01

    The shape and mechanical properties of viral capsids play an important role in several biological processes during the virus life cycle. In particular, to become infective, many viruses require a maturation stage where the capsid undergoes a buckling transition, from an initial spherical procapsid into a final icosahedral faceted shell. Here we study, using a minimal physical model, how the capsid shape and the buckling transition depend on the triangulation number T and the icosahedral class P of the virus structure. We find that, for small shells, capsids with P = 1 are most likely to produce polyhedral shapes that minimize their energy and accumulated stress, whereas viruses with P = 3 prefer to remain spherical. For big capsids, all shells are more stable adopting an icosahedral shape, in agreement with continuum elastic theory. Moreover, spherical viruses show a buckling transition to polyhedral shells under expansion, in consonance with virus maturation. The resulting icosahedral shell is mechanically stiffer, tolerates larger expansions and withstands higher internal pressures before failing, which could explain why some dsDNA viruses, which rely on the pressurization of their genetic material to facilitate the infection, undergo a buckling transition. We emphasize that the results are general and could also be applied to non-biological systems. (paper)

  9. Influences of hydrostatic pressure during casting and Pd content on as-cast phase in Zr-Al-Ni-Cu-Pd bulk alloys

    International Nuclear Information System (INIS)

    Kato, Hidemi; Inoue, Akihisa; Saida, Junji

    2004-01-01

    The influences of sample diameter (D), Pd content (x), and hydrostatic pressure (P) in a chamber during casting on the structure of as cast Zr 65 Al 7.5 Ni 10 Cu 17.5-x Pd x (x=10,17.5 at.%) bulk alloys were investigated. Zr 65 Al 7.5 Ni 10 Cu 7.5 Pd 10 and Zr 65 Al 7.5 Ni 10 Pd 17.5 alloys (D=3 mm) cast in a vacuum chamber (P∼4.0x10 -3 Pa) were mainly of the tetragonal-Zr 2 Ni equilibrium phase and nanosize icosahedral primary phase, respectively, while the same alloys cast in inert argon gas at atmospheric pressure (P∼0.1 MPa) were of the single glassy phase. Due to the higher cooling rate obtained by decreasing the sample diameter (D=2 mm) even in the vacuum chamber, the Zr 65 Al 7.5 Ni 10 Pd 17.5 alloy was still of the icosahedral phase, while the Zr 65 Al 7.5 Ni 10 Cu 7.5 Pd 10 alloy froze into a single glassy phase. These results indicate that the temperature- and time- transformation curves for the icosahedral and subsequent equilibrium phase formations in the alloy system shifts to a shorter time side with decreasing P, and the pressure sensitivity of the icosahedral phase formation increases with x

  10. New Insights into Viral Architecture via Affine Extended Symmetry Groups

    Directory of Open Access Journals (Sweden)

    T. Keef

    2008-01-01

    Full Text Available Since the seminal work of Caspar and Klug on the structure of the protein containers that encapsulate and hence protect the viral genome, it has been recognized that icosahedral symmetry is crucial for the structural organization of viruses. In particular, icosahedral symmetry has been invoked in order to predict the surface structures of viral capsids in terms of tessellations or tilings that schematically encode the locations of the protein subunits in the capsids. Whilst this approach is capable of predicting the relative locations of the proteins in the capsids, a prediction on the relative sizes of different virus particles in a family cannot be made. Moreover, information on the full 3D structure of viral particles, including the tertiary structures of the capsid proteins and the organization of the viral genome within the capsid are inaccessible with their approach. We develop here a mathematical framework based on affine extensions of the icosahedral group that allows us to address these issues. In particular, we show that the relative radii of viruses in the family of Polyomaviridae and the material boundaries in simple RNA viruses can be determined with our approach. The results complement Caspar and Klug's theory of quasi-equivalence and provide details on virus structure that have not been accessible with previous methods, implying that icosahedral symmetry is more important for virus architecture than previously appreciated.

  11. Evidence for multiple polytypes of semiconducting boron carbide (C2B10) from electronic structure

    International Nuclear Information System (INIS)

    Lunca-Popa, Petru; Brand, J I; Balaz, Snjezana; Rosa, Luis G; Boag, N M; Bai Mengjun; Robertson, B W; Dowben, P A

    2005-01-01

    Boron carbides fabricated via plasma enhanced chemical vapour deposition from different isomeric source compounds with the same C 2 B 10 H 12 closo-icosahedral structure result in materials with very different direct (optical) band gaps. This provides compelling evidence for the existence of multiple polytypes of C 2 B 10 boron carbide and is consistent with electron diffraction results

  12. Correlation of Mechanical Properties in Bulk Metallic Glasses with 27Al NMR Characteristics

    Science.gov (United States)

    2011-12-01

    recycle delay of 300 ms. Magnetization measurements were conducted at room temperature using a Quantum Design SQUID magne- tometer. The magnetization of...Gangopadhyay A K, et al. First X-ray scattering studies on electrostatically levitated metallic liquids: Demonstrated influence of local icosahedral

  13. Anodic Oxidation of 18 Halogenated and/or Methylated Derivatives of CB(11)Hu(12)(-)

    Czech Academy of Sciences Publication Activity Database

    Wahab, Abdul; Douvris, C.; Klíma, J.; Šembera, Filip; Ugolotti, Juri; Kaleta, Jiří; Ludvík, J.; Michl, Josef

    2017-01-01

    Roč. 56, č. 1 (2017), s. 269-276 ISSN 0020-1669 Institutional support: RVO:61388963 Keywords : weakly coordinating anions * dodecamethylcarba-closo-dodecaboranyl * icosahedral carborane anions Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 4.857, year: 2016

  14. Human papillomavirus E6 and E7 oncoproteins as risk factors for ...

    Indian Academy of Sciences (India)

    HPV is sexually transmitted and the viral DNA replicates extrachromosomally. The virus is non-enveloped and has an icosahedral capsid. There are approximately 118 types of HPV, which are characterized as high-risk or low-risk types. High-risk HPVs cause malignant transformation while the low-risk ones cause benign ...

  15. High order quaternary arrangement confers increased structural stability to Brucella Spp. lumazine synthase

    Energy Technology Data Exchange (ETDEWEB)

    Zylberman, V.; Craig, P.O.; Klinke, S.; Cauerhff, A.; Goldbaum, F.A. [Instituto Leloir, Buenos Aires (Argentina); Braden, B.C. [Bowie State Univ., Maryland (United States)

    2004-07-01

    The penultimate step in the pathway of riboflavin biosynthesis is catalyzed by the enzyme lumazine synthase (LS). One of the most distinctive characteristics of this enzyme is the structural quaternary divergence found in different species. The protein exists as pentameric and icosahedral forms, built from practically the same structural monomeric unit. The pentameric structure is formed by five 18 kDa monomers, each extensively contacting neighboring monomers. The icosahedral structure consists of 60 LS monomers arranged as twelve pentamers giving rise to a capsid exhibiting icosahedral 532 symmetry. In all lumazine synthases studied, the topologically equivalent active sites are located at the interfaces between adjacent subunits in the pentameric modules. The Brucella spp. lumazine synthase (BLS) sequence clearly diverges from pentameric and icosahedral enzymes. This unusual divergence prompted to further investigate on its quaternary arrangement. In the present work, we demonstrate by means of solution Light Scattering and X-ray structural analyses that BLS assembles as a very stable dimer of pentamers representing a third category of quaternary assembly for lumazine synthases. We also describe by spectroscopic studies the thermodynamic stability of this oligomeric protein, and postulate a mechanism for dissociation/unfolding of this macromolecular assembly. The higher molecular order of BLS increases its stability 20 deg C compared to pentameric lumazine synthases. The decameric arrangement described in this work highlights the importance of quaternary interactions in the stabilization of proteins. (author)

  16. High order quaternary arrangement confers increased structural stability to Brucella Spp. lumazine synthase

    International Nuclear Information System (INIS)

    Zylberman, V.; Craig, P.O.; Klinke, S.; Cauerhff, A.; Goldbaum, F.A.; Braden, B.C.

    2004-01-01

    The penultimate step in the pathway of riboflavin biosynthesis is catalyzed by the enzyme lumazine synthase (LS). One of the most distinctive characteristics of this enzyme is the structural quaternary divergence found in different species. The protein exists as pentameric and icosahedral forms, built from practically the same structural monomeric unit. The pentameric structure is formed by five 18 kDa monomers, each extensively contacting neighboring monomers. The icosahedral structure consists of 60 LS monomers arranged as twelve pentamers giving rise to a capsid exhibiting icosahedral 532 symmetry. In all lumazine synthases studied, the topologically equivalent active sites are located at the interfaces between adjacent subunits in the pentameric modules. The Brucella spp. lumazine synthase (BLS) sequence clearly diverges from pentameric and icosahedral enzymes. This unusual divergence prompted to further investigate on its quaternary arrangement. In the present work, we demonstrate by means of solution Light Scattering and X-ray structural analyses that BLS assembles as a very stable dimer of pentamers representing a third category of quaternary assembly for lumazine synthases. We also describe by spectroscopic studies the thermodynamic stability of this oligomeric protein, and postulate a mechanism for dissociation/unfolding of this macromolecular assembly. The higher molecular order of BLS increases its stability 20 deg C compared to pentameric lumazine synthases. The decameric arrangement described in this work highlights the importance of quaternary interactions in the stabilization of proteins. (author)

  17. Proteolytic processing of the primary translation products of cowpea mosaic virus RNAs

    NARCIS (Netherlands)

    Franssen, H.

    1984-01-01

    Cowpea mosaic virus (CPMV) is the type member of a group of plant viruses, the comoviruses, with a genome consisting of two single stranded RNA molecules separately encapsidated in icosahedral particles. A characteristic feature of the two genome RNAs is that they are both polyadenylated at their

  18. Advanced quadratures and periodic boundary conditions in parallel 3D Sn transport

    International Nuclear Information System (INIS)

    Manalo, K.; Yi, C.; Huang, M.; Sjoden, G.

    2013-01-01

    Significant updates in numerical quadratures have warranted investigation with 3D Sn discrete ordinates transport. We show new applications of quadrature departing from level symmetric ( 2 o) and Pn-Tn (>S 2 o). investigating 3 recently developed quadratures: Even-Odd (EO), Linear-Discontinuous Finite Element - Surface Area (LDFE-SA), and the non-symmetric Icosahedral Quadrature (IC). We discuss implementation changes to 3D Sn codes (applied to Hybrid MOC-Sn TITAN and 3D parallel PENTRAN) that can be performed to accommodate Icosahedral Quadrature, as this quadrature is not 90-degree rotation invariant. In particular, as demonstrated using PENTRAN, the properties of Icosahedral Quadrature are suitable for trivial application using periodic BCs versus that of reflective BCs. In addition to implementing periodic BCs for 3D Sn PENTRAN, we implemented a technique termed 'angular re-sweep' which properly conditions periodic BCs for outer eigenvalue iterative loop convergence. As demonstrated by two simple transport problems (3-group fixed source and 3-group reflected/periodic eigenvalue pin cell), we remark that all of the quadratures we investigated are generally superior to level symmetric quadrature, with Icosahedral Quadrature performing the most efficiently for problems tested. (authors)

  19. ACUTE HEPATITIS E: CASE REPORT

    African Journals Online (AJOL)

    2011-07-07

    Jul 7, 2011 ... with an icosahedral structure which belongs to the genus Hepevirus and ... by faecal-oral route following contamination of sources of drinking water. ... 2008; 6: 2450-2452. Prusty, B. K., Hedau, S., Singh, A. and Karl, P. D. B..

  20. Untitled

    Indian Academy of Sciences (India)

    Thus, size factor alone may not be responsible for the preferential formation of the icosahedral phase in Al-Mn-Si alloys. Electronegativity, charge transfer and other factors may also play an important role (Menon 1988). A consequence of the one-dimensional periodicity in the decagonal phase 1s that it should be possible ...

  1. Fourth class of convex equilateral polyhedron with polyhedral symmetry related to fullerenes and viruses.

    Science.gov (United States)

    Schein, Stan; Gayed, James Maurice

    2014-02-25

    The three known classes of convex polyhedron with equal edge lengths and polyhedral symmetry--tetrahedral, octahedral, and icosahedral--are the 5 Platonic polyhedra, the 13 Archimedean polyhedra--including the truncated icosahedron or soccer ball--and the 2 rhombic polyhedra reported by Johannes Kepler in 1611. (Some carbon fullerenes, inorganic cages, icosahedral viruses, geodesic structures, and protein complexes resemble these fundamental shapes.) Here we add a fourth class, "Goldberg polyhedra," which are also convex and equilateral. We begin by decorating each of the triangular facets of a tetrahedron, an octahedron, or an icosahedron with the T vertices and connecting edges of a "Goldberg triangle." We obtain the unique set of internal angles in each planar face of each polyhedron by solving a system of n equations and n variables, where the equations set the dihedral angle discrepancy about different types of edge to zero, and the variables are a subset of the internal angles in 6gons. Like the faces in Kepler's rhombic polyhedra, the 6gon faces in Goldberg polyhedra are equilateral and planar but not equiangular. We show that there is just a single tetrahedral Goldberg polyhedron, a single octahedral one, and a systematic, countable infinity of icosahedral ones, one for each Goldberg triangle. Unlike carbon fullerenes and faceted viruses, the icosahedral Goldberg polyhedra are nearly spherical. The reasoning and techniques presented here will enable discovery of still more classes of convex equilateral polyhedra with polyhedral symmetry.

  2. Design of a hyperstable 60-subunit protein icosahedron

    Science.gov (United States)

    Hsia, Yang; Bale, Jacob B.; Gonen, Shane; Shi, Dan; Sheffler, William; Fong, Kimberly K.; Nattermann, Una; Xu, Chunfu; Huang, Po-Ssu; Ravichandran, Rashmi; Yi, Sue; Davis, Trisha N.; Gonen, Tamir; King, Neil P.; Baker, David

    2016-07-01

    The icosahedron is the largest of the Platonic solids, and icosahedral protein structures are widely used in biological systems for packaging and transport. There has been considerable interest in repurposing such structures for applications ranging from targeted delivery to multivalent immunogen presentation. The ability to design proteins that self-assemble into precisely specified, highly ordered icosahedral structures would open the door to a new generation of protein containers with properties custom-tailored to specific applications. Here we describe the computational design of a 25-nanometre icosahedral nanocage that self-assembles from trimeric protein building blocks. The designed protein was produced in Escherichia coli, and found by electron microscopy to assemble into a homogenous population of icosahedral particles nearly identical to the design model. The particles are stable in 6.7 molar guanidine hydrochloride at up to 80 degrees Celsius, and undergo extremely abrupt, but reversible, disassembly between 2 molar and 2.25 molar guanidinium thiocyanate. The icosahedron is robust to genetic fusions: one or two copies of green fluorescent protein (GFP) can be fused to each of the 60 subunits to create highly fluorescent ‘standard candles’ for use in light microscopy, and a designed protein pentamer can be placed in the centre of each of the 20 pentameric faces to modulate the size of the entrance/exit channels of the cage. Such robust and customizable nanocages should have considerable utility in targeted drug delivery, vaccine design and synthetic biology.

  3. Characterization of a Nepovirus causing a leaf mottling disease in Petunia hybrida

    Science.gov (United States)

    This report describes the complete genome sequence and characterization of a new virus infecting petunia. Icosahedral virus-like particles were isolated from Petunia hybrida cuttings with interveinal chlorotic mottling. The virus was transmitted by mechanical inoculation from infected to healthy P. ...

  4. Molecular and structural characterization of fluorescent human parvovirus B19 virus-like particles

    NARCIS (Netherlands)

    Gilbert, L.; Toivola, J.; White, D.; Ihalainen, T.; Smith, W.; Lindholm, L.; Vuento, M.; Oker-Blom, C.

    2005-01-01

    Although sharing a T = 1 icosahedral symmetry with other members of the Parvoviridae family, it has been suggested that the fivefold channel of the human parvovirus B19 VP2 capsids is closed at its outside end. To investigate the possibility of placing a relatively large protein moiety at this site

  5. Quaternionic representation of the Coxeter group W(H{sub 4}) and the polyhedra

    Energy Technology Data Exchange (ETDEWEB)

    Koca, Mehmet [Department of Physics, College of Science, Sultan Qaboos University, PO Box 36, Al-Khod 123, Muscat (Oman); Al-Ajmi, Mudhahir [Department of Physics, College of Science, Sultan Qaboos University, PO Box 36, Al-Khod 123, Muscat (Oman); Koc, Ramazan [Department of Physics, Faculty of Engineering, University of Gaziantep, 27310 Gaziantep (Turkey)

    2006-11-10

    The vertices of the four-dimensional polytope {l_brace}3, 3, 5{r_brace} and its dual {l_brace}5, 3, 3{r_brace} admitting the symmetry of the non-crystallographic Coxeter group W(H{sub 4}) of order 14,400 are represented in terms of quaternions with unit norm where the polytope {l_brace}3, 3, 5{r_brace} is represented by the elements of the binaryicosahedral group of quaternions of order 120. We projected the polytopes to three-dimensional Euclidean space where the quaternionic vertices are the orbits of the Coxeter group W(H{sub 3}), icosahedral group with inversion, where W(H{sub 3}) x Z{sub 2} is one of the maximal subgroups of the Coxeter group W(H{sub 4}). The orbits of the icosahedral group W(H{sub 3}) in the polytope {l_brace}3, 3, 5{r_brace} are the conjugacy classes of the binary icosahedral group and represent a number of icosahedrons, dodecahedrons and one icosidodecahedron in three dimensions. The 15 orbits of the icosahedral group W(H{sub 3}) in the polytope {l_brace}5, 3, 3{r_brace} represent the dodecahedrons, icosidodecahedrons, small rhombicosidodecahedrons and some convex solids possessing the icosahedral symmetry. One of the convex solids with 60 vertices is very similar to the truncated icosahedron (soccer ball) but with two different edge lengths which can be taken as a realistic model of the C{sub 60} molecule at extreme temperature and pressure.

  6. Biaxiality of chiral liquid crystals

    International Nuclear Information System (INIS)

    Longa, L.; Trebin, H.R.; Fink, W.

    1993-10-01

    Using extended deGennes-Ginzburg-Landau free energy expansion in terms of the anisotropic part of the dielectric tensor field Q αβ (χ) a connection between the phase biaxiality and the stability of various chiral liquid crystalline phases is studied. In particular the cholesteric phase, the cubic Blue Phases and the phases characterized by an icosahedral space group symmetry are analysed in detail. Also a general question concerning the applicability of the mean-field approximation in describing the chiral phases is addressed. By an extensive study of the model over a wide range of the parameters a new class of phenomena, not present in the original deGennes-Ginzburg-Landau model, has been found. These include: a) re-entrant phase transitions between the cholesteric and the cubic blue phases and b) the existence of distinct phases of the same symmetry but of different biaxialities. The phase biaxiality serves here as an extra scalar order parameter. Furthermore, it has been shown that due to the presence of the competing bulk terms in the free energy, the stable phases may acquire a large degree of biaxiality, also in liquid crystalline materials composed of effectively uniaxial molecules. A study of icosahedral space group symmetries gives a partial answer to the question as to whether an icosahedral quasicrystalline liquid could be stabilized in liquid crystals. Although, in general, the stability of icosahedral structures could be enhanced by the extra terms in the free energy no absolutely stable icosahedral phase has been found. (author). 16 refs, 3 figs, 1 tab

  7. Dynamics and adsorption of gas molecules using proton beams

    International Nuclear Information System (INIS)

    Kim, J. Y.; Kim, E. K.; Lee, J. K.

    2008-04-01

    We irradiated nano sized MgO powders and carbon nanotubes by proton beams with energy of 35 MeV for different dosing time and the difference before and after the irradiation was investigated by using NO and Ar gas adsorptions studies. Particular interest was given to the irradiation of proton beams on quasicrystals made with Ti-Zr-Ni to remove the oxygen layer on the surface of the sample. Quasicrystals are known to exhibit a 5-fold rotational symmetry which is theoretically forbidden in a concept of solid state physics, and have a potential applications on large amount of hydrogen loading due to their structural complexity and chemical affinity with hydrogen. The results are summarized as four major accomplishments. 1) Proton irradiated MgO powders demonstrated the increased number of NO atomic layers in a layer-by-layer fashion suggesting that the surface of the sample became homogeneous compare to the pure samples. 2) the synchrotron based X-ray diffraction data suggests that NO molecules form an 1x1 commensurate structure on MgO (100) surface evidenced by the NO peak location at the Q values of 2.12 A -1 . 3) Proton irradiated SWCNTs exhibit the uniform Ar atomic layer formation suggesting that the surface of the CNTs can be homonized by the proton beam irradiation, and 4) 20 MeV of proton beam can effectively remove the oxygen layer on metal oxides so that Ti-Zr-Ni quasicrystals can load a large amount of hydrogen (exceeding to the density of liquid hydrogen) at room temperature.

  8. A characterization of linearly repetitive cut and project sets

    Science.gov (United States)

    Haynes, Alan; Koivusalo, Henna; Walton, James

    2018-02-01

    For the development of a mathematical theory which can be used to rigorously investigate physical properties of quasicrystals, it is necessary to understand regularity of patterns in special classes of aperiodic point sets in Euclidean space. In one dimension, prototypical mathematical models for quasicrystals are provided by Sturmian sequences and by point sets generated by substitution rules. Regularity properties of such sets are well understood, thanks mostly to well known results by Morse and Hedlund, and physicists have used this understanding to study one dimensional random Schrödinger operators and lattice gas models. A key fact which plays an important role in these problems is the existence of a subadditive ergodic theorem, which is guaranteed when the corresponding point set is linearly repetitive. In this paper we extend the one-dimensional model to cut and project sets, which generalize Sturmian sequences in higher dimensions, and which are frequently used in mathematical and physical literature as models for higher dimensional quasicrystals. By using a combination of algebraic, geometric, and dynamical techniques, together with input from higher dimensional Diophantine approximation, we give a complete characterization of all linearly repetitive cut and project sets with cubical windows. We also prove that these are precisely the collection of such sets which satisfy subadditive ergodic theorems. The results are explicit enough to allow us to apply them to known classical models, and to construct linearly repetitive cut and project sets in all pairs of dimensions and codimensions in which they exist. Research supported by EPSRC grants EP/L001462, EP/J00149X, EP/M023540. HK also gratefully acknowledges the support of the Osk. Huttunen foundation.

  9. Effect of cooling rate and Mg addition on the structural evaluation of rapidly solidified Al-20wt%Cu-12wt%Fe alloy

    Energy Technology Data Exchange (ETDEWEB)

    Karaköse, Ercan, E-mail: ekarakose@karatekin.edu.tr [Çankırı Karatekin University, Faculty of Sciences, Department of Physics, 18100 Çankırı (Turkey); Çolak, Hakan [Çankırı Karatekin University, Faculty of Sciences, Department of Chemistry, 18100 Çankırı (Turkey)

    2016-11-15

    The present work examines the effect of Mg contents and cooling rate on the morphology and mechanical properties of Al{sub 20}Cu{sub 12}Fe quasicrystalline alloy. The microstructure of the alloys was analyzed by scanning electron microscopy and the phase composition was identified by X-ray diffractometry. The melting characteristics were studied by differential thermal analysis under an Ar atmosphere. The mechanical features of the melt-spun and conventionally solidified alloys were tested by tensile-strength test and Vickers micro-hardness test. It was found that the final microstructure of the Al{sub 20}Cu{sub 12}Fe samples mainly depends on the cooling rate and Mg contents, which suggests that different cooling rates and Mg contents produce different microstructures and properties. The average grain sizes of the melt spun samples were about 100–300 nm at 35 m/s. The nanosize, dispersed, different shaped quasicrystal particles possessed a remarkable effect to the mechanical characteristics of the rapidly solidified ribbons. The microhardness values of the melt spun samples were approximately 18% higher than those of the conventionally counterparts. - Highlights: •Quasicrystal-creating materials have high potential for applications. •Different shaped nanosize quasicrystal particles were observed. •The addition of Mg has an important impact on the mechanical properties. •H{sub V} values of the MS0, MS3 and MS5 samples at 35 m/s were 8.56, 8.66 and 8.80 GPa. •The volume fraction of IQC increases with increasing cooling rates.

  10. Dislocation Dynamics During Plastic Deformation

    CERN Document Server

    Messerschmidt, Ulrich

    2010-01-01

    The book gives an overview of the dynamic behavior of dislocations and its relation to plastic deformation. It introduces the general properties of dislocations and treats the dislocation dynamics in some detail. Finally, examples are described of the processes in different classes of materials, i.e. semiconductors, ceramics, metals, intermetallic materials, and quasicrystals. The processes are illustrated by many electron micrographs of dislocations under stress and by video clips taken during in situ straining experiments in a high-voltage electron microscope showing moving dislocations. Thus, the users of the book also obtain an immediate impression and understanding of dislocation dynamics.

  11. 1995-1996 progress report

    International Nuclear Information System (INIS)

    1997-09-01

    This progress report is mainly devoted to the scientific activity of the LLB or carried out in collaboration with external laboratories. The activity of the LLB is split in several chapters dealing with: magnetism, superconductivity, structures (including lattice dynamics), phase transitions, C 60 , quasi-crystal systems, disordered systems (amorphous, liquids, crystal solid solutions), biology, soft matter (polymers and colloids), physical metallurgy and materials science. Neutron scattering is the main tool used in all these topics but other techniques are also used such as: polarized neutron reflectivity, cold neutrons diffraction, NMR, synchrotron radiation etc. (J.S.)

  12. Welcome to Crystals: A New Open-Access, Multidisciplinary Forum for Growth, Structures and Properties of Crystals

    Directory of Open Access Journals (Sweden)

    Gerd Meyer

    2010-12-01

    Full Text Available The majority of the earth’s crust is made up of crystalline material. The research areas of mineralogy, petrology, chimie minerále (inorganic chemistry and, of course, crystallography outgrew from the fascination of mankind with the color and symmetry of crystals. Crystals have translational symmetry in two or three dimensions, quasicrystals have translational symmetry in higher spaces. Further symmetries may be observed by the eye, by microscopic techniques or by the diffraction of X-ray, electron, or neutron beams. Diffraction techniques are also used, due to Max von Laue’s eminent discovery a century ago, to determine crystal structures. [...

  13. 1995-1996 progress report; Rapport d`activite 1995-1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    This progress report is mainly devoted to the scientific activity of the LLB or carried out in collaboration with external laboratories. The activity of the LLB is split in several chapters dealing with: magnetism, superconductivity, structures (including lattice dynamics), phase transitions, C{sub 60}, quasi-crystal systems, disordered systems (amorphous, liquids, crystal solid solutions), biology, soft matter (polymers and colloids), physical metallurgy and materials science. Neutron scattering is the main tool used in all these topics but other techniques are also used such as: polarized neutron reflectivity, cold neutrons diffraction, NMR, synchrotron radiation etc. (J.S.)

  14. Measures with locally finite support and spectrum.

    Science.gov (United States)

    Meyer, Yves F

    2016-03-22

    The goal of this paper is the construction of measures μ on R(n)enjoying three conflicting but fortunately compatible properties: (i) μ is a sum of weighted Dirac masses on a locally finite set, (ii) the Fourier transform μ f μ is also a sum of weighted Dirac masses on a locally finite set, and (iii) μ is not a generalized Dirac comb. We give surprisingly simple examples of such measures. These unexpected patterns strongly differ from quasicrystals, they provide us with unusual Poisson's formulas, and they might give us an unconventional insight into aperiodic order.

  15. Topology in Condensed Matter

    CERN Document Server

    Monastyrsky, M I

    2006-01-01

    This book reports new results in condensed matter physics for which topological methods and ideas are important. It considers, on the one hand, recently discovered systems such as carbon nanocrystals and, on the other hand, new topological methods used to describe more traditional systems such as the Fermi surfaces of normal metals, liquid crystals and quasicrystals. The authors of the book are renowned specialists in their fields and present the results of ongoing research, some of it obtained only very recently and not yet published in monograph form.

  16. Phonon excitations in multicomponent amorphous solids

    International Nuclear Information System (INIS)

    Vakarchuk, I.A.; Migal', V.M.; Tkachuk, V.M.

    1988-01-01

    The method of two-time temperature-dependent Green's functions is used to investigate phonon excitations in multicomponent amorphous solids. The equation obtained for the energy spectrum of the phonon excitations takes into account the damping associated with scattering of phonons by structure fluctuations. The quasicrystal approximation is considered, and as an example explicit expressions are obtained for the case of a two-component amorphous solid for the frequencies of the acoustical and optical modes and for the longitudinal and transverse velocities of sound. The damping is investigated

  17. Photonic Choke-Joints for Dual-Polarization Waveguides

    Science.gov (United States)

    Wollack, Edward J.; U-yen, Kongpop; Chuss, David T.

    2010-01-01

    Photonic choke joint (PCJ) structures for dual-polarization waveguides have been investigated for use in device and component packaging. This interface enables the realization of a high performance non-contacting waveguide joint without degrading the in-band signal propagation properties. The choke properties of two tiling approaches, symmetric square Cartesian and octagonal quasi-crystal lattices of metallic posts, are explored and optimal PCJ design parameters are presented. For each of these schemes, the experimental results for structures with finite tilings demonstrate near ideal transmission and reflection performance over a full waveguide band.

  18. Third sound in one and two dimensional modulated structures

    International Nuclear Information System (INIS)

    Komuro, T.; Kawashima, H., Shirahama, K.; Kono, K.

    1996-01-01

    An experimental technique is developed to study acoustic transmission in one and two dimensional modulated structures by employing third sound of a superfluid helium film. In particular, the Penrose lattice, which is a two dimensional quasiperiodic structure, is studied. In two dimensions, the scattering of third sound is weaker than in one dimension. Nevertheless, the authors find that the transmission spectrum in the Penrose lattice, which is a two dimensional prototype of the quasicrystal, is observable if the helium film thickness is chosen around 5 atomic layers. The transmission spectra in the Penrose lattice are explained in terms of dynamical theory of diffraction

  19. Complex photonic structures

    International Nuclear Information System (INIS)

    Wiersma, D.S.

    2013-01-01

    We discuss in detail the optical properties of complex photonic structures, in particular those with a dominating disorder component. We will focus on their general transport properties, as well as on their use as light sources (random lasers). The basis for the theory of multiple light scattering in random systems will be explained as a tutorial introduction to the topic, including the explicit calculation of the effect of coherent backscattering. We will discuss various structures that go beyond regular disordered ones, in particular Levy glasses, liquid crystals, and quasicrystals, and show examples of their optical properties both from a conceptual and practical point of view.

  20. Models of agglomeration and glass transition

    CERN Document Server

    Kerner, Richard

    2007-01-01

    This book is for any physicist interested in new vistas in the domain of non-crystalline condensed matter, aperiodic and quasi-crystalline networks and especially glass physics and chemistry. Students with an elementary background in thermodynamics and statistical physics will find the book accessible. The physics of glasses is extensively covered, focusing on their thermal and mechanical properties, as well as various models leading to the formation of the glassy states of matter from overcooled liquids. The models of agglomeration and growth are also applied to describe the formation of quasicrystals, fullerenes and, in biology, to describe virus assembly pathways.

  1. Holographic fabrication of 3D photonic crystals through interference of multi-beams with 4 + 1, 5 + 1 and 6 + 1 configurations.

    Science.gov (United States)

    George, D; Lutkenhaus, J; Lowell, D; Moazzezi, M; Adewole, M; Philipose, U; Zhang, H; Poole, Z L; Chen, K P; Lin, Y

    2014-09-22

    In this paper, we are able to fabricate 3D photonic crystals or quasi-crystals through single beam and single optical element based holographic lithography. The reflective optical elements are used to generate multiple side beams with s-polarization and one central beam with circular polarization which in turn are used for interference based holographic lithography without the need of any other bulk optics. These optical elements have been used to fabricate 3D photonic crystals with 4, 5 or 6-fold symmetry. A good agreement has been observed between fabricated holographic structures and simulated interference patterns.

  2. Anomalies in the Thermophysical Properties of Undercooled Glass-Forming Alloys

    Science.gov (United States)

    Hyers, Robert W.; Rogers, Jan R.; Kelton, Kenneth F.; Gangopadhyay, Anup

    2008-01-01

    The surface tension, viscosity, and density of several bulk metallic glass-forming alloys have been measured using noncontact techniques in the electrostatic levitation facility (ESL) at NASA Marshall Space Flight Center. All three properties show unexpected behavior in the undercooled regime. Similar deviations were previously observed in titanium-based quasicrystal-forming alloys,but the deviations in the properties of the glass-forming alloys are much more pronounced. New results for anomalous thermophysical properties in undercooled glass-forming alloys will be presented and discussed.

  3. Generalized Kubo formulas for the transport properties of incommensurate 2D atomic heterostructures

    Science.gov (United States)

    Cancès, Eric; Cazeaux, Paul; Luskin, Mitchell

    2017-06-01

    We give an exact formulation for the transport coefficients of incommensurate two-dimensional atomic multilayer systems in the tight-binding approximation. This formulation is based upon the C* algebra framework introduced by Bellissard and collaborators [Coherent and Dissipative Transport in Aperiodic Solids, Lecture Notes in Physics (Springer, 2003), Vol. 597, pp. 413-486 and J. Math. Phys. 35(10), 5373-5451 (1994)] to study aperiodic solids (disordered crystals, quasicrystals, and amorphous materials), notably in the presence of magnetic fields (quantum Hall effect). We also present numerical approximations and test our methods on a one-dimensional incommensurate bilayer system.

  4. Thermal Emission Control via Bandgap Engineering in Aperiodically Designed Nanophotonic Devices

    Directory of Open Access Journals (Sweden)

    Enrique Maciá

    2015-05-01

    Full Text Available Aperiodic photonic crystals can open up novel routes for more efficient photon management due to increased degrees of freedom in their design along with the unique properties brought about by the long-range aperiodic order as compared to their periodic counterparts. In this work we first describe the fundamental notions underlying the idea of thermal emission/absorption control on the basis of the systematic use of aperiodic multilayer designs in photonic quasicrystals. Then, we illustrate the potential applications of this approach in order to enhance the performance of daytime radiative coolers and solar thermoelectric energy generators.

  5. A self-similar transformation for a dodecagonal quasiperiodic covering with T-clusters

    International Nuclear Information System (INIS)

    Liao, Longguang; Zhang, Wenbin; Yu, Tongxu; Cao, Zexian

    2013-01-01

    A single cluster covering for the ship tiling of a dodecagonal quasiperiodic structure is obtained via a self-similar transformation, by which a turtle-like cluster, dubbed as a T-cluster, comprising seven squares, twenty regular triangles and two 30°-rhombuses, is changed into twenty scaled-down T-clusters, each centering at a vertex of the original one. Remarkably, there are three types of transformations according to the distinct configuration of the 20 scaled-down T-clusters. Detailed data for the transformations are specified. The results are expected to be helpful for the study of the physical and structural properties of dodecagonal quasicrystals. (paper)

  6. Giant regular polyhedra from calixarene carboxylates and uranyl

    Science.gov (United States)

    Pasquale, Sara; Sattin, Sara; Escudero-Adán, Eduardo C.; Martínez-Belmonte, Marta; de Mendoza, Javier

    2012-01-01

    Self-assembly of large multi-component systems is a common strategy for the bottom-up construction of discrete, well-defined, nanoscopic-sized cages. Icosahedral or pseudospherical viral capsids, built up from hundreds of identical proteins, constitute typical examples of the complexity attained by biological self-assembly. Chemical versions of the so-called 5 Platonic regular or 13 Archimedean semi-regular polyhedra are usually assembled combining molecular platforms with metals with commensurate coordination spheres. Here we report novel, self-assembled cages, using the conical-shaped carboxylic acid derivatives of calix[4]arene and calix[5]arene as ligands, and the uranyl cation UO22+ as a metallic counterpart, which coordinates with three carboxylates at the equatorial plane, giving rise to hexagonal bipyramidal architectures. As a result, octahedral and icosahedral anionic metallocages of nanoscopic dimensions are formed with an unusually small number of components. PMID:22510690

  7. Single-particle cryo-electron microscopy of Rift Valley fever virus.

    Science.gov (United States)

    Sherman, Michael B; Freiberg, Alexander N; Holbrook, Michael R; Watowich, Stanley J

    2009-04-25

    Rift Valley fever virus (RVFV; Bunyaviridae; Phlebovirus) is an emerging human and veterinary pathogen causing acute hepatitis in ruminants and has the potential to cause hemorrhagic fever in humans. We report a three-dimensional reconstruction of RVFV vaccine strain MP-12 (RVFV MP-12) by cryo-electron microcopy using icosahedral symmetry of individual virions. Although the genomic core of RVFV MP-12 is apparently poorly ordered, the glycoproteins on the virus surface are highly symmetric and arranged on a T=12 icosahedral lattice. Our RVFV MP-12 structure allowed clear identification of inter-capsomer contacts and definition of possible glycoprotein arrangements within capsomers. This structure provides a detailed model for phleboviruses, opens new avenues for high-resolution structural studies of the bunyavirus family, and aids the design of antiviral diagnostics and effective subunit vaccines.

  8. Vertical Wave Coupling associated with Stratospheric Sudden Warming Events analyzed in an Isentropic-Coordinate NWP Model.

    Science.gov (United States)

    Bleck, R.; Sun, S.; Benjamin, S.; Brown, J. M.

    2017-12-01

    Two- to four-week predictions of stratospheric sudden warming events during the winter seasons of 1999-2014, carried out with a high-resolution icosahedral NWP model using potential temperature as vertical coordinate, are inspected for commonalities in the evolution of both minor and major warmings. Emphasis is on the evolution of the potential vorticity field at different levels in the stratosphere, as well as on the sign and magnitude of the vertical component of the Eliassen-Palm flux vector suggestive of wave forcing in either direction. Material is presented shedding light on the skill of the model (FIM, developed at NOAA/ESRL) in predicting stratospheric warmings generally 2 weeks in advance. With an icosahedral grid ideally suited for studying polar processes, and a vertical coordinate faithfully reproducing details in the evolution of the potential vorticity and EP flux vector fields, FIM is found to be a good tool for investigating the SSW mechanism.

  9. Single-particle cryo-electron microscopy of Rift Valley fever virus

    International Nuclear Information System (INIS)

    Sherman, Michael B.; Freiberg, Alexander N.; Holbrook, Michael R.; Watowich, Stanley J.

    2009-01-01

    Rift Valley fever virus (RVFV; Bunyaviridae; Phlebovirus) is an emerging human and veterinary pathogen causing acute hepatitis in ruminants and has the potential to cause hemorrhagic fever in humans. We report a three-dimensional reconstruction of RVFV vaccine strain MP-12 (RVFV MP-12) by cryo-electron microcopy using icosahedral symmetry of individual virions. Although the genomic core of RVFV MP-12 is apparently poorly ordered, the glycoproteins on the virus surface are highly symmetric and arranged on a T = 12 icosahedral lattice. Our RVFV MP-12 structure allowed clear identification of inter-capsomer contacts and definition of possible glycoprotein arrangements within capsomers. This structure provides a detailed model for phleboviruses, opens new avenues for high-resolution structural studies of the bunyavirus family, and aids the design of antiviral diagnostics and effective subunit vaccines.

  10. Shellwise Mackay transformation in iron nanoclusters.

    Science.gov (United States)

    Rollmann, Georg; Gruner, Markus E; Hucht, Alfred; Meyer, Ralf; Entel, Peter; Tiago, Murilo L; Chelikowsky, James R

    2007-08-24

    Structure and magnetism of iron clusters with up to 641 atoms have been investigated by means of density functional theory calculations including full geometric optimizations. Body-centered cubic (bcc) isomers are found to be lowest in energy when the clusters contain more than about 100 atoms. In addition, another stable conformation has been identified for magic-number clusters, which lies well within the range of thermal energies as compared to the bcc isomers. Its structure is characterized by a close-packed particle core and an icosahedral surface, while intermediate shells are partially transformed along the Mackay path between icosahedral and cuboctahedral geometry. The gradual transformation results in a favorable bcc environment for the subsurface atoms. For Fe55, the shellwise Mackay-transformed morphology is a promising candidate for the ground state.

  11. A Flexible Atmospheric Modeling Framework for the CESM

    Energy Technology Data Exchange (ETDEWEB)

    Randall, David [Colorado State University; Heikes, Ross [Colorado State University; Konor, Celal [Colorado State University

    2014-11-12

    We have created two global dynamical cores based on the unified system of equations and Z-grid staggering on an icosahedral grid, which are collectively called UZIM (Unified Z-grid Icosahedral Model). The z-coordinate version (UZIM-height) can be run in hydrostatic and nonhydrostatic modes. The sigma-coordinate version (UZIM-sigma) runs in only hydrostatic mode. The super-parameterization has been included as a physics option in both models. The UZIM versions with the super-parameterization are called SUZI. With SUZI-height, we have completed aquaplanet runs. With SUZI-sigma, we are making aquaplanet runs and realistic climate simulations. SUZI-sigma includes realistic topography and a SiB3 model to parameterize the land-surface processes.

  12. Effect of processing on the microstructural development in a rapidly solidified Al-Fe-V-Si alloy

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Ranganathan, S.; Ojha, S.N.

    1993-01-01

    An Al 80 Fe 10 Si 6 alloy has been rapidly solidified using melt spinning, gas atomization and spray forming processes. The effect of processing techniques on the microstructural characteristics of the alloy has ben evaluated. The melt spun alloy has shown an icosahedral quasicrystalline phase surrounded by a rational approximant structure of the icosahedral phase. The rational approximant structure has been identified as a crystalline cubic silicide phase. The atomized powders have exhibited cellular and dendritic morphology depending on the size of particles. In addition, the second phase particles of the silicide phase are observed to decorate the cell boundaries and interdendritic regions. In contrast, the alloy processed by spray deposition has revealed an equiaxed solidification morphology with a uniform dispersion of find silicon phase inside the grain. The origin of the microstructure in the alloy processed by these techniques is discussed. The results are compared wherever possible with the commercially available Al-Fe-V-Si alloys

  13. X-ray study of rapidly cooled ribbons of Al-Cr-Zr and Al-Ni-Y-Cr-Zr alloys

    International Nuclear Information System (INIS)

    Betsofen, S.Ya.; Osintsev, O.E.; Lutsenko, A.N.; Konkevich, V.Yu.

    2002-01-01

    One investigated into phase composition, lattice spacing and structure of rapidly cooled 25-200 μm gauge strips made of Al-4,1Cr-3,2Zr and Al-1,5Cr-1,5Zr-4Ni-3Y alloys, wt. %, produced by melt spinning to a water-cooled copper disk. In Al-4,1Cr-3,2Zr alloy one detected intermetallic phases: Al 3 Zr and two Al 86 Cr 14 composition icosahedral phases apart from aluminium solid solution with 4.040-4.043 A lattice spacing. In Al-1,5Cr-1,5Zr-4Ni-3Y alloy one identified two Al 86 Cr 14 icosahedral phases and two AlNiY and Al 3 Y yttrium-containing ones, lattice spacing of aluminium solid solution was equal to 4.052-4.053 A [ru

  14. A DFT-based genetic algorithm search for AuCu nanoalloy electrocatalysts for CO2 reduction

    DEFF Research Database (Denmark)

    Lysgaard, Steen; Mýrdal, Jón Steinar Garðarsson; Hansen, Heine Anton

    2015-01-01

    Using a DFT-based genetic algorithm (GA) approach, we have determined the most stable structure and stoichiometry of a 309-atom icosahedral AuCu nanoalloy, for potential use as an electrocatalyst for CO2 reduction. The identified core–shell nano-particle consists of a copper core interspersed....... This shows that the mixed Cu135@Au174 core–shell nanoalloy has a similar adsorption energy, for the most favorable site, as a pure gold nano-particle. Cu, however, has the effect of stabilizing the icosahedral structure because Au particles are easily distorted when adding adsorbates....... that it is possible to use the LCAO mode to obtain a realistic estimate of the molecular chemisorption energy for systems where the computation in normal grid mode is not computationally feasible. These corrections are employed when calculating adsorption energies on the Cu, Au and most stable mixed particles...

  15. Non-linear effects of initial melt temperatures on microstructures and mechanical properties during quenching process of liquid Cu{sub 46}Zr{sub 54} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Mo, Yun-Fei [School of Physics and Microelectronics Science, Hunan University, Changsha, 410082 (China); Liu, Rang-Su, E-mail: liurangsu@sina.com [School of Physics and Microelectronics Science, Hunan University, Changsha, 410082 (China); Tian, Ze-An; Liang, Yong-Chao [School of Physics and Microelectronics Science, Hunan University, Changsha, 410082 (China); Zhang, Hai-Tao [School of Physics and Microelectronics Science, Hunan University, Changsha, 410082 (China); Department of Electronic and Communication Engineering, Changsha University, Changsha 410003 (China); Hou, Zhao-Yang [Department of Applied Physics, Chang’an University, Xi’an 710064 (China); Liu, Hai-Rong [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Zhang, Ai-long [College of Physics and Electronics, Hunan University of Arts and Science, Changde 415000 (China); Zhou, Li-Li [Department of Information Engineering, Gannan Medical University, Ganzhou 341000 (China); Peng, Ping [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Xie, Zhong [School of Physics and Microelectronics Science, Hunan University, Changsha, 410082 (China)

    2015-05-15

    A MD simulation of liquid Cu{sub 46}Zr{sub 54} alloys has been performed for understanding the effects of initial melt temperatures on the microstructural evolution and mechanical properties during quenching process. By using several microstructural analyzing methods, it is found that the icosahedral and defective icosahedral clusters play a key role in the microstructure transition. All the final solidification structures obtained at different initial melt temperatures are of amorphous structures, and their structural and mechanical properties are non-linearly related to the initial melt temperatures, and fluctuated in a certain range. Especially, there exists a best initial melt temperature, from which the glass configuration possesses the highest packing density, the optimal elastic constants, and the smaller extent of structural softening under deforming.

  16. Local atomic structure of Zr-Cu and Zr-Cu-Al amorphous alloys investigated by EXAFS method

    International Nuclear Information System (INIS)

    Antonowicz, J.; Pietnoczka, A.; Zalewski, W.; Bacewicz, R.; Stoica, M.; Georgarakis, K.; Yavari, A.R.

    2011-01-01

    Research highlights: → Coordination number, interatomic distances and mean square atomic displacement in Zr-Cu and Zr-Cu-Al glasses. → Icosahedral symmetry in local atomic structure. → Deviation from random mixing behavior resulting from Al addition. - Abstract: We report on extended X-ray absorption fine structure (EXAFS) study of rapidly quenched Zr-Cu and Zr-Cu-Al glassy alloys. The local atomic order around Zr and Cu atoms was investigated. From the EXAFS data fitting the values of coordination number, interatomic distances and mean square atomic displacement were obtained for wide range of compositions. It was found that icosahedral symmetry rather than that of corresponding crystalline analogs dominates in the local atomic structure of Zr-Cu and Zr-Cu-Al amorphous alloys. Judging from bonding preferences we conclude that addition of Al as an alloying element results in considerable deviation from random mixing behavior observed in binary Zr-Cu alloys.

  17. Intracellular Assembly of Cyanophage Syn5 Proceeds through a Scaffold-Containing Procapsid▿ †

    OpenAIRE

    Raytcheva, Desislava A.; Haase-Pettingell, Cameron; Piret, Jacqueline M.; King, Jonathan A.

    2010-01-01

    Syn5 is a marine cyanophage that is propagated on the marine photosynthetic cyanobacterial strain Synechococcus sp. WH8109 under laboratory conditions. Cryoelectron images of this double-stranded DNA (dsDNA) phage reveal an icosahedral capsid with short tail appendages and a single novel hornlike structure at the vertex opposite the tail. Despite the major impact of cyanophages on life in the oceans, there is limited information on cyanophage intracellular assembly processes within their phot...

  18. Synthesis of highly faceted multiply twinned gold nanocrystals stabilized by polyoxometalates

    International Nuclear Information System (INIS)

    Yuan Junhua; Chen Yuanxian; Han Dongxue; Zhang Yuanjian; Shen Yanfei; Wang Zhijuan; Niu Li

    2006-01-01

    A novel and facile chemical synthesis of highly faceted multiply twinned gold nanocrystals is reported. The gold nanocrystals are hexagonal in transmission electron microscopy and icosahedral in scanning electron microscopy. Phosphotungstic acid (PTA), which was previously reduced, serves as a reductant and stabilizer for the synthesis of gold nanocrystals. The PTA-gold nanocomposites are quite stable in aqueous solutions, and electrochemically active towards the hydrogen evolution reaction

  19. Necrotizing hepatitis in a domestic pigeon (Columba livia).

    Science.gov (United States)

    Himmel, L; O'Connor, M; Premanandan, C

    2014-11-01

    An adult male domestic pigeon (Columba livia) was presented for necropsy following natural death after a period of chronic weight loss and severe intestinal ascariasis. Histopathologic examination of the liver found moderate to marked, multifocal necrotizing hepatitis with large, basophilic intranuclear inclusion bodies. Transmission electron microscopy of affected hepatocytes demonstrated numerous intra- and perinuclear icosahedral virions arranged in a lattice structure, consistent with adenoviral infection. © The Author(s) 2014.

  20. Stability of relaxed Lennard-Jones models made of 500 to 6000 atoms

    International Nuclear Information System (INIS)

    Raoult, B.; Farges, J.; Feraudy, M.F. de; Torchet, G.

    1989-01-01

    We present a study of the stability of clusters models made of a number N of atoms in the range 500 to 6000 atoms, freely interacting through the Lennard-Jones potential. The potential energy per atom, calculated for relaxed models, shows that stable models belong to an icosahedral sequence when N<1600 and to a decahedral sequence beyond. A coexistence size range of both structures is discussed in connection with experimental results on argon clusters in free jet expansions. (orig.)

  1. Single-particle cryo-electron microscopy of Rift Valley fever virus

    OpenAIRE

    Sherman, Michael B.; Freiberg, Alexander N.; Holbrook, Michael R.; Watowich, Stanley J.

    2009-01-01

    Rift Valley fever virus (RVFV; Bunyaviridae; Phlebovirus) is an emerging human veterinary pathogen causing acute hepatitis in ruminants and has the potential to Single-particle cryo-EM reconstruction of RVFV MP-12 hemorrhagic fever in humans. We report a three-dimensional reconstruction of RVFV vaccine strain MP-12 (RVFV MP-12) by cryo-electron microcopy using icosahedral symmetry of individual virions. Although the genomic core of RVFV MP-12 is apparently poorly ordered, the glycoproteins on...

  2. Structure of small rare earth clusters

    International Nuclear Information System (INIS)

    Rayane, D.; Benamar, A.; Tribollet, B.; Broyer, M.; Melinon, P.

    1991-01-01

    Rare earth clusters are produced by the inert gas condensation technique. The observed size distribution shows large peaks at n=13, 19, 23, 26, 29, 32, 34, 37, 39, 45, .... The beginning of this sequence (up to 34) has been already observed in argon clusters and recently by our group in barium clusters; this sequence may be interpreted in terms of icosahedral structures corresponding to the addition of caps on a core icosahedron of 13 atoms. (orig.)

  3. Anodic Oxidation of 18 Halogenated and/or Methylated Derivatives of CB(11)Hu(12)(-)

    Czech Academy of Sciences Publication Activity Database

    Wahab, Abdul; Douvris, C.; Klíma, Jiří; Šembera, F.; Ugolotti, J.; Kaleta, J.; Ludvík, Jiří; Michl, J.

    2017-01-01

    Roč. 56, č. 1 (2017), s. 269-276 ISSN 0020-1669 R&D Projects: GA ČR GAP206/11/0727 Institutional support: RVO:61388955 Keywords : WEAKLY COORDINATING ANIONS * DODECAMETHYLCARBA-CLOSO-DODECABORANYL * ICOSAHEDRAL CARBORANE ANIONS Subject RIV: CG - Electrochemistry OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) Impact factor: 4.857, year: 2016

  4. Rich Ground State Chemical Ordering in Nanoparticles: Exact Solution of a Model for Ag-Au Clusters

    DEFF Research Database (Denmark)

    Larsen, Peter Mahler; Jacobsen, Karsten Wedel; Schiøtz, Jakob

    2018-01-01

    We show that nanoparticles can have very rich ground state chemical order. This is illustrated by determining the chemical ordering of Ag-Au 309-atom Mackay icosahedral nanoparticles. The energy of the nanoparticles is described using a cluster expansion model, and a Mixed Integer Programming (MIP......) approach is used to find the exact ground state configurations for all stoichiometries. The chemical ordering varies widely between the different stoichiometries, and display a rich zoo of structures with non-trivial ordering....

  5. In Vitro-Assembled Alphavirus Core-Like Particles Maintain a Structure Similar to That of Nucleocapsid Cores in Mature Virus

    OpenAIRE

    Mukhopadhyay, Suchetana; Chipman, Paul R.; Hong, Eunmee M.; Kuhn, Richard J.; Rossmann, Michael G.

    2002-01-01

    In vitro-assembled core-like particles produced from alphavirus capsid protein and nucleic acid were studied by cryoelectron microscopy. These particles were found to have a diameter of 420 Å with 240 copies of the capsid protein arranged in a T=4 icosahedral surface lattice, similar to the nucleocapsid core in mature virions. However, when the particles were subjected to gentle purification procedures, they were damaged, preventing generation of reliable structural information. Similarly, pu...

  6. Chemical properties of the predicted 32-electron systems PuSn{sub 12} and PuPb{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Dognon, J.P. [CEA Saclay, UMR 3299 CEA/CNRS SIS2M, laboratoire de chimie de coordination des elements f, 91 - Gif-sur-Yvette (France); Clavaguera, C. [Laboratoire des mecanismes reactionnels, departement de chimie, Ecole polytechnique, CNRS, 91 - Palaiseau (France); Pyykko, P. [Department of Chemistry, University of Helsinki (Finland)

    2010-06-15

    The electronic structures, as well as spectroscopic and thermodynamic properties of the title PuM{sub 12} clusters, are considered at the density functional theory level. In both cases, a Pu{sup 2+} ion is encapsulated in an icosahedral, stanna- or plumbaspherene M{sub 12}{sup 2-} cage. As suggested before for M=Pb, both systems are reported to follow a 32-electron principle for the central atom. (authors)

  7. Structural rigidity in the capsid assembly of cowpea chlorotic mottle virus

    International Nuclear Information System (INIS)

    Hespenheide, B M; Jacobs, D J; Thorpe, M F

    2004-01-01

    The cowpea chlorotic mottle virus (CCMV) has a protein cage, or capsid, which encloses its genetic material. The structure of the capsid consists of 180 copies of a single protein that self-assemble inside a cell to form a complete capsid with icosahedral symmetry. The icosahedral surface can be naturally divided into pentagonal and hexagonal faces, and the formation of either of these faces has been proposed to be the first step in the capsid assembly process. We have used the software FIRST to analyse the rigidity of pentameric and hexameric substructures of the complete capsid to explore the viability of certain capsid assembly pathways. FIRST uses the 3D pebble game to determine structural rigidity, and a brief description of this algorithm, as applied to body-bar networks, is given here. We find that the pentameric substructure, which corresponds to a pentagonal face on the icosahedral surface, provides the best structural properties for nucleating the capsid assembly process, consistent with experimental observations

  8. Correlation between local structure and stability of supercooled liquid state in Zr-based metallic glasses

    International Nuclear Information System (INIS)

    Saida, Junji; Imafuku, Muneyuki; Sato, Shigeo; Sanada, Takashi; Matsubara, Eiichiro; Inoue, Akihisa

    2007-01-01

    The correlation between the local structure and stability of supercooled liquid state is investigated in the Zr 70 (Ni, Cu) 30 binary and Zr 70 Al 10 (Ni, Cu) 20 (numbers indicate at.%) ternary metallic glasses. The Zr 70 Ni 30 binary amorphous alloy with a low stability of supercooled liquid state has a tetragonal Zr 2 Ni-like local structure around Ni atom. Meanwhile, the Zr 70 Cu 30 binary metallic glass has a different local structure of tetragonal Zr 2 Cu, where we suggest the icosahedral local structure by the quasicrystallization behavior in addition of a very small amount of noble metals. The effect of Al addition on the local structure in the Zr-Ni alloy is also examined. We have investigated that the dominant local structure changes in the icosahedral-like structure from the tetragonal Zr 2 Ni-like local structure by the Al substitution with Ni accompanying with the significant stabilization of supercooled liquid state. It is concluded that the formation of icosahedral local structure contributes to the enhancement of stability of supercooled liquid state in the Zr-based alloys

  9. Effects of Al addition on atomic structure of Cu-Zr metallic glass

    Science.gov (United States)

    Li, Feng; Zhang, Huajian; Liu, Xiongjun; Dong, Yuecheng; Yu, Chunyan; Lu, Zhaoping

    2018-02-01

    The atomic structures of Cu52Zr48 and Cu45Zr48Al7 metallic glasses (MGs) have been studied by molecular dynamic simulations. The results reveal that the molar volume of the Cu45Zr48Al7 MG is smaller than that of the Cu52Zr48 MG, although the size of the Al atom is larger than that of the Cu atom, implying an enhanced atomic packing density achieved by introducing Al into the ternary MG. Bond shortening in unlike atomic pairs Zr-Al and Cu-Al is observed in the Cu45Zr48Al7 MG, which is attributed to strong interactions between Al and (Zr, Cu) atoms. Meanwhile, the atomic packing efficiency is enhanced by the minor addition of Al. Compared with the Cu52Zr48 binary MG, the potential energy of the ternary MG decreases and the glass transition temperature increases. Structural analyses indicate that more Cu- and Al-centered full icosahedral clusters emerge in the Cu45Zr48Al7 MG as some Cu atoms are substituted by Al. Furthermore, the addition of Al leads to more icosahedral medium-range orders in the ternary MG. The increase of full icosahedral clusters and the enhancement of the packing density are responsible for the improved glass-forming ability of Cu45Zr48Al7.

  10. Quasicrystalline phase formation in the mechanically alloyed Al{sub 70}Cu{sub 20}Fe{sub 10}

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, S. N. de, E-mail: snm@dfi.uem.br; Cadore, S.; Pereira, H. A.; Santos, I. A.; Colucci, C. C.; Paesano, A. [Universidade Estadual de Maringa, Departamento de Fisica (Brazil)

    2010-01-15

    In the present work, the formation of the Al{sub 70}Cu{sub 20}Fe{sub 10} icosahedral phase by mechanical alloying the elemental powders in a high-energy planetary mill was investigated by X-ray diffraction and Moessbauer spectroscopy. It was verified that the sample milled for 80 h produces an icosahedral phase besides Al(Cu, Fe) solid solution ({beta}-phase) and Al{sub 2}Cu intermetallic phase. The Moessbauer spectrum for this sample was fitted with a distribution of quadrupole splitting, a doublet and a sextet, revealing the presence of the icosahedral phase, {beta}-phase and {alpha}-Fe, respectively. This compound is not a good hydrogen storage. The results of the X-ray diffraction and Moessbauer spectroscopy of the sample milled for 40 h and annealed at 623 deg. C for 16 h shows essentially single i-phase and tetragonal Al{sub 7}Cu{sub 2} Fe phase.

  11. Structural rigidity in the capsid assembly of cowpea chlorotic mottle virus

    Science.gov (United States)

    Hespenheide, B. M.; Jacobs, D. J.; Thorpe, M. F.

    2004-11-01

    The cowpea chlorotic mottle virus (CCMV) has a protein cage, or capsid, which encloses its genetic material. The structure of the capsid consists of 180 copies of a single protein that self-assemble inside a cell to form a complete capsid with icosahedral symmetry. The icosahedral surface can be naturally divided into pentagonal and hexagonal faces, and the formation of either of these faces has been proposed to be the first step in the capsid assembly process. We have used the software FIRST to analyse the rigidity of pentameric and hexameric substructures of the complete capsid to explore the viability of certain capsid assembly pathways. FIRST uses the 3D pebble game to determine structural rigidity, and a brief description of this algorithm, as applied to body-bar networks, is given here. We find that the pentameric substructure, which corresponds to a pentagonal face on the icosahedral surface, provides the best structural properties for nucleating the capsid assembly process, consistent with experimental observations.

  12. Short- and medium-range order in a Zr73Pt27 glass: Experimental and simulation studies

    International Nuclear Information System (INIS)

    Wang, S.Y.; Wang, C.Z.; Li, M.Z.; Huang, L.; Ott, R.T.; Kramer, M.J.; Sordelet, D.J.; Ho, K.M.

    2008-01-01

    The structure of a Zr 73 Pt 27 metallic glass, which forms a Zr 5 Pt 3 (Mn 5 Si 3 -type) phase having local atomic clusters with distorted icosahedral coordination during the primary crystallization, has been investigated by means of x-ray diffraction and combining ab initio molecular-dynamics (MD) and reverse Monte Carlo (RMC) simulations. The ab initio MD simulation provides an accurate description of short-range structural and chemical ordering in the glass. A three-dimensional atomistic model of 18?000 atoms for the glass structure has been generated by the RMC method utilizing both the structure factor S(k) from x-ray diffraction experiment and the partial pair-correlation functions from ab initio MD simulation. Honeycutt and Andersen index and Voronoi cell analyses, respectively, were used to characterize the short- and medium-range order in the atomistic structure models generated by ab initio MD and RMC simulations. The ab initio results show that an icosahedral type of short-range order is predominant in the glass state. Furthermore, analysis of the atomic model from the constrained RMC simulations reveals that the icosahedral-like clusters are packed in arrangements having higher-order correlations, thus establishing medium-range topological order up to two or three cluster shells.

  13. Reduction of variance in spectral estimates for correction of ultrasonic aberration.

    Science.gov (United States)

    Astheimer, Jeffrey P; Pilkington, Wayne C; Waag, Robert C

    2006-01-01

    A variance reduction factor is defined to describe the rate of convergence and accuracy of spectra estimated from overlapping ultrasonic scattering volumes when the scattering is from a spatially uncorrelated medium. Assuming that the individual volumes are localized by a spherically symmetric Gaussian window and that centers of the volumes are located on orbits of an icosahedral rotation group, the factor is minimized by adjusting the weight and radius of each orbit. Conditions necessary for the application of the variance reduction method, particularly for statistical estimation of aberration, are examined. The smallest possible value of the factor is found by allowing an unlimited number of centers constrained only to be within a ball rather than on icosahedral orbits. Computations using orbits formed by icosahedral vertices, face centers, and edge midpoints with a constraint radius limited to a small multiple of the Gaussian width show that a significant reduction of variance can be achieved from a small number of centers in the confined volume and that this reduction is nearly the maximum obtainable from an unlimited number of centers in the same volume.

  14. Atomic Scale Investigation of Structural Properties and Glass Forming Ability of Ti100- x Al x Metallic Glasses

    Science.gov (United States)

    Tahiri, M.; Hasnaoui, A.; Sbiaai, K.

    2018-06-01

    In this work, we employed molecular dynamics (MD) simulations to study Ti-Al metallic glasses (MGs) using the embedded atom method (EAM) potential to model the atomic interaction with different compositions. The results showed evidence of the metallic glass formation induced by the split occurring in the second peak of the radial distribution function (RDF) curves implying both Ti and Al atoms. The common neighbor analysis (CNA) method confirmed the presence of the icosahedral clusters with a maximum amount observed for an alloy with 75 pct of Al. Analysis of coordination numbers (CNs) indicated that the total CNs are nearly unchanged in these systems. Finally, Voronoi tessellation analyses (VTA) showed a higher value of the number of icosahedral units at Ti25Al75 composition. This specific composition represents a nearby peritectic point localized at a low melting point in the Ti-Al binary phase diagram. The glass forming ability (GFA) becomes important when the fraction of Al increases by forming and connecting "icosahedral-like" clusters (12-coordinated and 13-coordinated ) and by playing a main role in the structure stability of the Ti-Al MGs.

  15. Morphological evidence for phages in Xylella fastidiosa

    Directory of Open Access Journals (Sweden)

    Civerolo Edwin L

    2008-06-01

    Full Text Available Abstract Presumptive phage particles associated with Xylella fastidiosa strain Temecula-1 grown in PW broth were observed by transmission electron microscopy (TEM in ultrathin sections of bacterial cell-containing low speed centrifugation pellets and in partially purified preparations from CsCl equilibrium centrifugation density gradients. Ultrathin-sectioned cell pellets contained icosahedral particles of about 45 nm in diameter. Samples collected from CsCl density gradients revealed mostly non-tailed icosahedral but also tailed particles. The icosahedral particles could be divided into two types: a large type (about 45 nm and a small type (about 30 nm. Filamentous phage-like particles (17 × 120 to 6,300 nm were also observed. The presence of different types of phage-like particles resembling to those in several bacteriophage families provides new physical evidence, in addition to X. fastidiosa genomic information, that X. fastidiosa possesses active phages. This is the first report of phage particles released in X. fastidiosa cultures.

  16. Metastability, spectrum, and eigencurrents of the Lennard-Jones-38 network

    International Nuclear Information System (INIS)

    Cameron, Maria K.

    2014-01-01

    We develop computational tools for spectral analysis of stochastic networks representing energy landscapes of atomic and molecular clusters. Physical meaning and some properties of eigenvalues, left and right eigenvectors, and eigencurrents are discussed. We propose an approach to compute a collection of eigenpairs and corresponding eigencurrents describing the most important relaxation processes taking place in the system on its way to the equilibrium. It is suitable for large and complex stochastic networks where pairwise transition rates, given by the Arrhenius law, vary by orders of magnitude. The proposed methodology is applied to the network representing the Lennard-Jones-38 cluster created by Wales's group. Its energy landscape has a double funnel structure with a deep and narrow face-centered cubic funnel and a shallower and wider icosahedral funnel. However, the complete spectrum of the generator matrix of the Lennard-Jones-38 network has no appreciable spectral gap separating the eigenvalue corresponding to the escape from the icosahedral funnel. We provide a detailed description of the escape process from the icosahedral funnel using the eigencurrent and demonstrate a superexponential growth of the corresponding eigenvalue. The proposed spectral approach is compared to the methodology of the Transition Path Theory. Finally, we discuss whether the Lennard-Jones-38 cluster is metastable from the points of view of a mathematician and a chemical physicist, and make a connection with experimental works

  17. Structural rigidity in the capsid assembly of cowpea chlorotic mottle virus

    Energy Technology Data Exchange (ETDEWEB)

    Hespenheide, B M [Department of Physics and Astronomy, Arizona State University, PO Box 871504, Tempe, AZ 85287-1504 (United States); Jacobs, D J [Department of Physics and Astronomy, California State University, 18111 Nordhoff Street, Northridge, CA 91330-8268 (United States); Thorpe, M F [Department of Physics and Astronomy, Arizona State University, PO Box 871504, Tempe, AZ 85287-1504 (United States)

    2004-11-10

    The cowpea chlorotic mottle virus (CCMV) has a protein cage, or capsid, which encloses its genetic material. The structure of the capsid consists of 180 copies of a single protein that self-assemble inside a cell to form a complete capsid with icosahedral symmetry. The icosahedral surface can be naturally divided into pentagonal and hexagonal faces, and the formation of either of these faces has been proposed to be the first step in the capsid assembly process. We have used the software FIRST to analyse the rigidity of pentameric and hexameric substructures of the complete capsid to explore the viability of certain capsid assembly pathways. FIRST uses the 3D pebble game to determine structural rigidity, and a brief description of this algorithm, as applied to body-bar networks, is given here. We find that the pentameric substructure, which corresponds to a pentagonal face on the icosahedral surface, provides the best structural properties for nucleating the capsid assembly process, consistent with experimental observations.

  18. Atomic Scale Investigation of Structural Properties and Glass Forming Ability of Ti100-x Al x Metallic Glasses

    Science.gov (United States)

    Tahiri, M.; Hasnaoui, A.; Sbiaai, K.

    2018-03-01

    In this work, we employed molecular dynamics (MD) simulations to study Ti-Al metallic glasses (MGs) using the embedded atom method (EAM) potential to model the atomic interaction with different compositions. The results showed evidence of the metallic glass formation induced by the split occurring in the second peak of the radial distribution function (RDF) curves implying both Ti and Al atoms. The common neighbor analysis (CNA) method confirmed the presence of the icosahedral clusters with a maximum amount observed for an alloy with 75 pct of Al. Analysis of coordination numbers (CNs) indicated that the total CNs are nearly unchanged in these systems. Finally, Voronoi tessellation analyses (VTA) showed a higher value of the number of icosahedral units at Ti25Al75 composition. This specific composition represents a nearby peritectic point localized at a low melting point in the Ti-Al binary phase diagram. The glass forming ability (GFA) becomes important when the fraction of Al increases by forming and connecting "icosahedral-like" clusters (12-coordinated and 13-coordinated ) and by playing a main role in the structure stability of the Ti-Al MGs.

  19. Allosteric effects in bacteriophage HK97 procapsids revealed directly from covariance analysis of cryo EM data.

    Science.gov (United States)

    Xu, Nan; Veesler, David; Doerschuk, Peter C; Johnson, John E

    2018-05-01

    The information content of cryo EM data sets exceeds that of the electron scattering potential (cryo EM) density initially derived for structure determination. Previously we demonstrated the power of data variance analysis for characterizing regions of cryo EM density that displayed functionally important variance anomalies associated with maturation cleavage events in Nudaurelia Omega Capensis Virus and the presence or absence of a maturation protease in bacteriophage HK97 procapsids. Here we extend the analysis in two ways. First, instead of imposing icosahedral symmetry on every particle in the data set during the variance analysis, we only assume that the data set as a whole has icosahedral symmetry. This change removes artifacts of high variance along icosahedral symmetry axes, but retains all of the features previously reported in the HK97 data set. Second we present a covariance analysis that reveals correlations in structural dynamics (variance) between the interior of the HK97 procapsid with the protease and regions of the exterior (not seen in the absence of the protease). The latter analysis corresponds well with hydrogen deuterium exchange studies previously published that reveal the same correlation. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Theoretical study of phase stability and elastic properties of T0.75Y0.75B14 (T  =  Sc, Ti, V, Y, Zr, Nb, Si)

    International Nuclear Information System (INIS)

    Hunold, Oliver; Music, Denis; Schneider, Jochen M

    2016-01-01

    In this study the phase stability, elastic properties, and plastic behaviour of icosahedral transition metal borides T 0.75 Y 0.75 B 14 (T  =  Sc, Ti, V, Y, Zr, Nb, Si) have been investigated using density functional theory. Phase stability critically depends on the charge transferred by T and Y to the B icosahedra. For the metal sublattice occupancy investigated here, the minimum energy of formation is identified at an effective B icosahedra charge of  −1.8  ±  0.1. This charge corridor encompasses the highest phase stability among all the reported icosahedral transition metal boride systems so far. This data provides guidance for future experimental efforts: from a wear-resistance point of view, Sc 0.75 Y 0.75 B 14 , Ti 0.75 Y 0.75 B 14 , and Zr 0.75 Y 0.75 B 14 exhibit a rather unique and attractive combination of large Young’s modulus values ranging from 488 to 514 GPa with the highest phase stability for icosahedral transition metals borides reported so far. (paper)

  1. Effect of Ga substitution on the crystallization behaviour and glass forming ability of Zr-Al-Cu-Ni alloys

    International Nuclear Information System (INIS)

    Singh, Devinder; Yadav, T.P.; Mandal, R.K.; Tiwari, R.S.; Srivastava, O.N.

    2010-01-01

    The crystallization behaviour of melt spun Zr 69.5 Al 7.5-x Ga x Cu 12 Ni 11 (x = 0-7.5; in at.%) metallic glasses has been investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The DSC traces showed changes in crystallization behaviour with substitution of Ga. Formation of single nano-quasicrystalline phase by controlled crystallization of glasses has been found only for 0 ≤ x ≤ 1.5. Further increase of Ga content gives rise to formation of the quasicrystals together with Zr 2 Cu type crystalline phase. In addition to this, the substitution of Ga influences the size and shape of nano-quasicrystals. The glass forming abilities (GFAs) of these metallic glasses were assessed by the recognition of glass forming ability indicators, i.e. reduced glass transition temperature (T rg ) and supercooled liquid region (ΔT x ). The glass transition temperature (T g ) has been observed for all the melt spun ribbons.

  2. New quantum criticality revealed under pressure

    International Nuclear Information System (INIS)

    Watanabe, Shinji; Miyake, Kazumasa

    2017-01-01

    Unconventional quantum critical phenomena observed in Yb-based periodic crystals such as YbRh_2Si_2 and β-YbAlB_4 have been one of the central issues in strongly correlated electron systems. The common criticality has been discovered in the quasicrystal Yb_1_5Au_5_1Al_3_4, which surprisingly persists under pressure at least up to P = 1.5 GPa. The T/H scaling where the magnetic susceptibility can be expressed as a single scaling function of the ratio of the temperature T to the magnetic field H has been discovered in the quasicrystal, which is essentially the same as that observed in β-YbAlB_4. Recently, the T/H scaling as well as the common criticality has also been observed even in the approximant crystal Yb_1_4Au_5_1Al_3_5 under pressure. The theory of critical Yb-valence fluctuation gives a natural explanation for these striking phenomena in a unified way. (author)

  3. Transition between periodic and quasiperiodic structures in Al-Ni-Co

    International Nuclear Information System (INIS)

    Grushko, B.; Wittmann, R.

    1998-01-01

    A series of Al-Ni-Co alloys forming stable decagonal (D-ANC) quasicrystals was studied in as-cast and annealed states. It was shown that under certain conditions periodic structures with pseudodecagonal (PD) symmetry can be produced at the same compositions as stable decagonal quasicrystals. Different variants of D-ANC and PD were observed in a compositional range of 70-72.5 at.% Al and 13-18 at.% Co. As-cast D-ANC can be transformed to single-phase PD of the same local composition. Single-phase PDs can be transformed to D-ANC of the same composition by heating to a temperature higher than the formation temperature of these PDs. The transition between PD and D-ANC was studied in more detail in Al 71 Ni 14.5 Co 14.5 and Al 70 Ni 15 Co 15 by electron microscopy, powder X-ray diffractometry and differential thermal analysis. The results of this study do not confirm the thermodynamic stability of this PD structure. (orig.)

  4. The structure factor of primes

    Science.gov (United States)

    Zhang, G.; Martelli, F.; Torquato, S.

    2018-03-01

    Although the prime numbers are deterministic, they can be viewed, by some measures, as pseudo-random numbers. In this article, we numerically study the pair statistics of the primes using statistical-mechanical methods, particularly the structure factor S(k) in an interval M ≤slant p ≤slant M + L with M large, and L/M smaller than unity. We show that the structure factor of the prime-number configurations in such intervals exhibits well-defined Bragg-like peaks along with a small ‘diffuse’ contribution. This indicates that primes are appreciably more correlated and ordered than previously thought. Our numerical results definitively suggest an explicit formula for the locations and heights of the peaks. This formula predicts infinitely many peaks in any non-zero interval, similar to the behavior of quasicrystals. However, primes differ from quasicrystals in that the ratio between the location of any two predicted peaks is rational. We also show numerically that the diffuse part decays slowly as M and L increases. This suggests that the diffuse part vanishes in an appropriate infinite-system-size limit.

  5. The quasicrystalline phase formation in Al-Cu-Cr alloys produced by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Sviridova, T.A.; Shevchukov, A.P.; Shelekhov, E.V. [National University of Science and Technology ' MISIS' , Moscow 119049 (Russian Federation); Diakonov, D.L. [Bardin Central Research Institute for the Iron and Steel Industry, Moscow 105005 (Russian Federation); Tcherdyntsev, V.V.; Kaloshkin, S.D. [National University of Science and Technology ' MISIS' , Moscow 119049 (Russian Federation)

    2011-06-15

    Research highlights: > Formation of decagonal quasicrystalline phase in Al-Cu-Cr alloys. > Obtained decagonal phase belongs to D{sub 3} family of decagonal quasicrystals. > Decagonal phase has 1.26 nm periodicity along 10-fold axis. > Alloys were produced by combination of mechanical alloying and subsequent annealing. > Phase composition of as-milled powders depending on annealing temperature. - Abstract: Almost single-phase decagonal quasicrystal with periodicity of 1.26 nm along 10-fold axis was produced in Al{sub 69}Cu{sub 21}Cr{sub 10} and Al{sub 72.5}Cu{sub 16.5}Cr{sub 11} alloys using combination of mechanical alloying (MA) and subsequent annealing. Phase transformations of as-milled powders depending on annealing temperature in the range of 200-800 deg. C are examined. Since the transformations can be explained based on kinetic and thermodynamic reasons it seems that applied technique (short preliminary MA followed by the annealing) permits to produce the equilibrium phases rather than metastable ones.

  6. Structure and hydrogen storage properties of the hexagonal Laves phase Sc(Al{sub 1-x}Ni{sub x}){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Sahlberg, Martin, E-mail: Martin.sahlberg@kemi.uu.se [Department of Chemistry, The Angstroem Laboratory, Uppsala University, Box 538, SE-751 21 Uppsala (Sweden); Angstroem, Jonas, E-mail: jonas.angstrom@kemi.uu.se [Department of Chemistry, The Angstroem Laboratory, Uppsala University, Box 538, SE-751 21 Uppsala (Sweden); Zlotea, Claudia, E-mail: claudia.zlotea@icmpe.cnrs.fr [Chimie Metallurgique des Terres Rares, Institut de Chimie et des Materiaux de Paris Est, UMR 7182, CNRS, 2-8 rue Henri Dunant, 94320 Thiais Cedex (France); Beran, Premysl, E-mail: pberan@ujf.cas.cz [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, 25068 Rez (Czech Republic); Latroche, Michel, E-mail: michel.latroche@glvt-cnrs.fr [Chimie Metallurgique des Terres Rares, Institut de Chimie et des Materiaux de Paris Est, UMR 7182, CNRS, 2-8 rue Henri Dunant, 94320 Thiais Cedex (France); Pay Gomez, Cesar, E-mail: Cesar.paygomez@kemi.uu.se [Department of Chemistry, The Angstroem Laboratory, Uppsala University, Box 538, SE-751 21 Uppsala (Sweden)

    2012-12-15

    The crystal structures of hydrogenated and unhydrogenated Sc(Al{sub 1-x}Ni{sub x}){sub 2} Laves phases have been studied by combining several diffraction techniques and it is shown that hydrogen is situated interstitially in the A{sub 2}B{sub 2}-sites, which have the maximum number of scandium neighbours. The hydrogen absorption/desorption behaviour has also been investigated. It is shown that a solid solution of hydrogen forms in the mother compound. The hydrogen storage capacity exceeds 1.7 H/f.u. at 374 K, and the activation energy of hydrogen desorption was determined to 4.6 kJ/mol H{sub 2}. It is shown that these compounds share the same local coordination as Frank-Kasper-type approximants and quasicrystals, which opens up the possibility of finding many new hydride phases with these types of crystal structures. - Graphical abstract: The structure of ScNiAlDx, Sc atoms are shown in purple and Ni/Al atoms in blue and the iso-surfaces of deuterium in yellow. Revealed from refinements of neutron powder diffraction data. Highlights: Black-Right-Pointing-Pointer The crystal structure of ScNiAl and ScNiAlDx is reported. Black-Right-Pointing-Pointer We show the hydrogen storage properties of Sc(Al{sub 1-x}Ni{sub x}){sub 2}. Black-Right-Pointing-Pointer We discuss the possibility to store hydrogen in quasicrystals.

  7. Boundary modes in quasiperiodic elastic structures

    Science.gov (United States)

    Rosa, Matheus I. N.; Pal, Raj K.; Arruda, José R. F.; Ruzzene, Massimo

    2018-03-01

    Topological metamaterials are a new class of materials that support topological modes such as edge modes and interface modes, which are commonly immune to scattering and imperfections. This novelty has been the subject of extensive research in many branches of physics such as electronics, photonics, phononics, and acoustics. The nontrivial topological properties related to the presence of topological modes are tipically found in periodic media. However, it was recently demonstrated that structures called quasicrystals may also exhibit nontrivial topological behavior attributed to dimensions higher than that of the quasicrystal. While quasiperiodicity has received a lot of attention in the fields of crystallography and photonics, research into quasiperiodic elastic structures has been scarce. In this paper, we show how the concepts of quasiperiodicity may be applied to the design of topological mechanical metamaterials. We start by investigating the boundary modes present in quasiperiodic 1D phononic lattices. These modes have the interesting property of being localized at either one of the two different boundaries depending on the value of an additional parameter, which is remnant of the higher dimension. A smooth variation of this parameter in either time or a spatial dimension can lead to a robust transfer of energy between two sites of the structure. We present an idealized mechanical system composed by an array of coupled rods that may be used as a platform for realizing this kind of robust transfer of energy. These are preliminary investigations into a entirely new class of structures which may lead to novel engineering applications.

  8. Extraordinary Effects in Quasi-Periodic Gold Nanocavities: Enhanced Transmission and Polarization Control of Cavity Modes.

    Science.gov (United States)

    Dhama, Rakesh; Caligiuri, Vincenzo; Petti, Lucia; Rashed, Alireza R; Rippa, Massimo; Lento, Raffaella; Termine, Roberto; Caglayan, Humeyra; De Luca, Antonio

    2018-01-23

    Plasmonic quasi-periodic structures are well-known to exhibit several surprising phenomena with respect to their periodic counterparts, due to their long-range order and higher rotational symmetry. Thanks to their specific geometrical arrangement, plasmonic quasi-crystals offer unique possibilities in tailoring the coupling and propagation of surface plasmons through their lattice, a scenario in which a plethora of fascinating phenomena can take place. In this paper we investigate the extraordinary transmission phenomenon occurring in specifically patterned Thue-Morse nanocavities, demonstrating noticeable enhanced transmission, directly revealed by near-field optical experiments, performed by means of a scanning near-field optical microscope (SNOM). SNOM further provides an intuitive picture of confined plasmon modes inside the nanocavities and confirms that localization of plasmon modes is based on size and depth of nanocavities, while cross talk between close cavities via propagating plasmons holds the polarization response of patterned quasi-crystals. Our performed numerical simulations are in good agreement with the experimental results. Thus, the control on cavity size and incident polarization can be used to alter the intensity and spatial properties of confined cavity modes in such structures, which can be exploited in order to design a plasmonic device with customized optical properties and desired functionalities, to be used for several applications in quantum plasmonics.

  9. Study on Nanostructures Induced by High-Current Pulsed Electron Beam

    Directory of Open Access Journals (Sweden)

    Bo Gao

    2012-01-01

    Full Text Available Four techniques using high-current pulsed electron beam (HCPEB were proposed to obtain surface nanostructure of metal and alloys. The first method involves the distribution of several fine Mg nanoparticles on the top surface of treated samples by evaporation of pure Mg with low boiling point. The second technique uses superfast heating, melting, and cooling induced by HCPEB irradiation to refine the primary phase or the second phase in alloys to nanosized uniform distributed phases in the matrix, such as the quasicrystal phase Mg30Zn60Y10 in the quasicrystal alloy Mg67Zn30Y3. The third technique involves the refinement of eutectic silicon phase in hypereutectic Al-15Si alloys to fine particles with the size of several nanometers through solid solution and precipitation refinement. Finally, in the deformation zone induced by HCPEB irradiation, the grain size can be refined to several hundred nanometers, such as the grain size of the hypereutectic Al-15Si alloys in the deformation zone, which can reach ~400 nm after HCPEB treatment for 25 pulses. Therefore, HCPEB technology is an efficient way to obtain surface nanostructure.

  10. The structure of dodecagonal (Ta,V){sub 1.6}Te imaged by phase-contrast scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krumeich, F., E-mail: krumeich@inorg.chem.ethz.ch [Laboratory of Inorganic Chemistry, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich (Switzerland); Mueller, E.; Wepf, R.A. [Electron Microscopy ETH Zurich (EMEZ), Wolfgang-Pauli-Strasse 16, 8093 Zurich (Switzerland); Conrad, M.; Reich, C.; Harbrecht, B. [Department of Chemistry and Centre of Materials Science, Philipps-Universitaet, Hans-Meerwein-Strasse, 35032 Marburg (Germany); Nesper, R. [Laboratory of Inorganic Chemistry, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich (Switzerland)

    2012-10-15

    While HRTEM is the well-established method to characterize the structure of dodecagonal tantalum (vanadium) telluride quasicrystals and their periodic approximants, phase-contrast imaging performed on an aberration-corrected scanning transmission electron microscope (STEM) represents a favorable alternative. The (Ta,V){sub 151}Te{sub 74} clusters, the basic structural unit in all these phases, can be visualized with high resolution. A dependence of the image contrast on defocus and specimen thickness has been observed. In thin areas, the projected crystal potential is basically imaged with either dark or bright contrast at two defocus values close to Scherzer defocus as confirmed by image simulations utilizing the principle of reciprocity. Models for square-triangle tilings describing the arrangement of the basic clusters can be derived from such images. - Graphical abstract: PC-STEM image of a (Ta,V){sub 151}Te{sub 74} cluster. Highlights: Black-Right-Pointing-Pointer C{sub s}-corrected STEM is applied for the characterization of dodecagonal quasicrystals. Black-Right-Pointing-Pointer The projected potential of the structure is mirrored in the images. Black-Right-Pointing-Pointer Phase-contrast STEM imaging depends on defocus and thickness. Black-Right-Pointing-Pointer For simulations of phase-contrast STEM images, the reciprocity theorem is applicable.

  11. The 3.2 Angstrom Resolution Structure of the Polymorphic Cowpea Chlorotic Mottle Virus Ribonucleoprotein Particle

    Science.gov (United States)

    Speir, Jeffrey Alan

    Structural studies of the polymorphic cowpea chlorotic mottle virus have resulted in high resolution structures for two distinct icosahedral ribonucleoprotein particle conformations dependent upon whether acidic or basic pH conditions prevail. CCMV is stable below pH 6.5, however metal-free particles maintain a 10% increase in hydrodynamic volume at pH >=q 7.5. Identification of this swollen' form of CCMV, which can easily be disrupted with 1M NaCl, led to the first reassembly of an icosahedral virus in vitro from purified viral protein and RNA to form infectious particles, and its assembly has been the subject of biochemical and biophysical investigations for over twenty-five years. Under well defined conditions of pH, ionic strength and divalent metal ion concentration, CCMV capsid protein or capsid protein and RNA will reassemble to form icosahedral particles of various sizes, sheets, tubes, rosettes, and a variety of laminar structures which resemble virion structures from non-related virus families. Analysis of native particles at 3.2A resolution and swollen particles at 28A resolution has suggested that the chemical basis for the formation of polymorphic icosahedral and anisometric structures is: (i) hexamers formed of beta-barrel subunits stabilized by an unusual hexameric parallel beta structure made up of their N-termini, (ii) the location of protein-RNA interactions, (iii) divalent metal cation binding sites that regulate quasi-symmetrical subunit associations, (iv) charge repulsion across the same interfaces when lacking divalent metal ions at basic pH, which induces the formation of sixty 20A diameter portals for RNA release, and (v) a novel, C-terminal-based, subunit dimer assembly unit. The use of C- and N-terminal arms in CCMV has not been observed in other icosahedral RNA virus structures determined at near atomic resolution, however, their detailed interactions and roles in stabilizing the quaternary organization of CCMV are related to that found

  12. Structure of viruses: a short history.

    Science.gov (United States)

    Rossmann, Michael G

    2013-05-01

    This review is a partially personal account of the discovery of virus structure and its implication for virus function. Although I have endeavored to cover all aspects of structural virology and to acknowledge relevant individuals, I know that I have favored taking examples from my own experience in telling this story. I am anxious to apologize to all those who I might have unintentionally offended by omitting their work. The first knowledge of virus structure was a result of Stanley's studies of tobacco mosaic virus (TMV) and the subsequent X-ray fiber diffraction analysis by Bernal and Fankuchen in the 1930s. At about the same time it became apparent that crystals of small RNA plant and animal viruses could diffract X-rays, demonstrating that viruses must have distinct and unique structures. More advances were made in the 1950s with the realization by Watson and Crick that viruses might have icosahedral symmetry. With the improvement of experimental and computational techniques in the 1970s, it became possible to determine the three-dimensional, near-atomic resolution structures of some small icosahedral plant and animal RNA viruses. It was a great surprise that the protecting capsids of the first virus structures to be determined had the same architecture. The capsid proteins of these viruses all had a 'jelly-roll' fold and, furthermore, the organization of the capsid protein in the virus were similar, suggesting a common ancestral virus from which many of today's viruses have evolved. By this time a more detailed structure of TMV had also been established, but both the architecture and capsid protein fold were quite different to that of the icosahedral viruses. The small icosahedral RNA virus structures were also informative of how and where cellular receptors, anti-viral compounds, and neutralizing antibodies bound to these viruses. However, larger lipid membrane enveloped viruses did not form sufficiently ordered crystals to obtain good X-ray diffraction

  13. Next generation of the self-consistent and environment-dependent Hamiltonian: Applications to various boron allotropes from zero- to three-dimensional structures

    Energy Technology Data Exchange (ETDEWEB)

    Tandy, P.; Yu, Ming; Leahy, C.; Jayanthi, C. S.; Wu, S. Y. [Department of Physics and Astronomy, University of Louisville, Louisville, Kentucky 40292 (United States)

    2015-03-28

    An upgrade of the previous self-consistent and environment-dependent linear combination of atomic orbitals Hamiltonian (referred as SCED-LCAO) has been developed. This improved version of the semi-empirical SCED-LCAO Hamiltonian, in addition to the inclusion of self-consistent determination of charge redistribution, multi-center interactions, and modeling of electron-electron correlation, has taken into account the effect excited on the orbitals due to the atomic aggregation. This important upgrade has been subjected to a stringent test, the construction of the SCED-LCAO Hamiltonian for boron. It was shown that the Hamiltonian for boron has successfully characterized the electron deficiency of boron and captured the complex chemical bonding in various boron allotropes, including the planar and quasi-planar, the convex, the ring, the icosahedral, and the fullerene-like clusters, the two-dimensional monolayer sheets, and the bulk alpha boron, demonstrating its transferability, robustness, reliability, and predictive power. The molecular dynamics simulation scheme based on the Hamiltonian has been applied to explore the existence and the energetics of ∼230 compact boron clusters B{sub N} with N in the range from ∼100 to 768, including the random, the rhombohedral, and the spherical icosahedral structures. It was found that, energetically, clusters containing whole icosahedral B{sub 12} units are more stable for boron clusters of larger size (N > 200). The ease with which the simulations both at 0 K and finite temperatures were completed is a demonstration of the efficiency of the SCED-LCAO Hamiltonian.

  14. RNA Packing Specificity and Folding during Assembly of the Bacteriophage MS2

    Directory of Open Access Journals (Sweden)

    Ottar Rolfsson

    2008-01-01

    Full Text Available Using a combination of biochemistry, mass spectrometry, NMR spectroscopy and cryo-electron microscopy (cryo-EM, we have been able to show that quasi-equivalent conformer switching in the coat protein (CP of an RNA bacteriophage (MS2 is controlled by a sequence-specific RNA–protein interaction. The RNA component of this complex is an RNA stem-loop encompassing just 19 nts from the phage genomic RNA, which is 3569 nts in length. This binding results in the conversion of a CP dimer from a symmetrical conformation to an asymmetric one. Only when both symmetrical and asymmetrical dimers are present in solution is assembly of the T = 3 phage capsid efficient. This implies that the conformers, we have characterized by NMR correspond to the two distinct quasi-equivalent conformers seen in the 3D structure of the virion. An icosahedrally-averaged single particle cryo-EM reconstruction of the wild-type phage (to ∼9 Å resolution has revealed icosahedrally ordered density encompassing up to 90% of the single-stranded RNA genome. The RNA is seen with a novel arrangement of two concentric shells, with connections between them along the 5-fold symmetry axes. RNA in the outer shell interacts with each of the 90 CP dimers in the T = 3 capsid and although the density is icosahedrally averaged, there appears to be a different average contact at the different quasi-equivalent protein dimers: precisely the result that would be expected if protein conformer switching is RNA-mediated throughout the assembly pathway. This unprecedented RNA structure provides new constraints for models of viral assembly and we describe experiments aimed at probing these. Together, these results suggest that viral genomic RNA folding is an important factor in efficient assembly, and further suggest that RNAs that could sequester viral CPs but not fold appropriately could act as potent inhibitors of viral assembly.

  15. Changes in the stability and biomechanics of P22 bacteriophage capsid during maturation.

    Science.gov (United States)

    Kant, Ravi; Llauró, Aida; Rayaprolu, Vamseedhar; Qazi, Shefah; de Pablo, Pedro J; Douglas, Trevor; Bothner, Brian

    2018-03-15

    The capsid of P22 bacteriophage undergoes a series of structural transitions during maturation that guide it from spherical to icosahedral morphology. The transitions include the release of scaffold proteins and capsid expansion. Although P22 maturation has been investigated for decades, a unified model that incorporates thermodynamic and biophysical analyses is not available. A general and specific model of icosahedral capsid maturation is of significant interest to theoreticians searching for fundamental principles as well as virologists and material scientists seeking to alter maturation to their advantage. To address this challenge, we have combined the results from orthogonal biophysical techniques including differential scanning fluorimetry, atomic force microscopy, circular dichroism, and hydrogen-deuterium exchange mass spectrometry. By integrating these results from single particle and population measurements, an energy landscape of P22 maturation from procapsid through expanded shell to wiffle ball emerged, highlighting the role of metastable structures and the thermodynamics guiding maturation. The propagation of weak quaternary interactions across symmetric elements of the capsid is a key component for stability in P22. A surprising finding is that the progression to wiffle ball, which lacks pentamers, shows that chemical and thermal stability can be uncoupled from mechanical rigidity, elegantly demonstrating the complexity inherent in capsid protein interactions and the emergent properties that can arise from icosahedral symmetry. On a broader scale, this work demonstrates the power of applying orthogonal biophysical techniques to elucidate assembly mechanisms for supramolecular complexes and provides a framework within which other viral systems can be compared. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. The use of Nb in rapid solidified Al alloys and composites

    Energy Technology Data Exchange (ETDEWEB)

    Audebert, F., E-mail: metal@fi.uba.ar [Advanced Materials Group, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, Ciudad de Buenos Aires 1063 (Argentina); Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford (United Kingdom); Department of Mechanical Engineering and Mathematical Sciences, Oxford Brookes University, Wheatley Campus, OX33 1HX Oxford (United Kingdom); Galano, M. [Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford (United Kingdom); Saporiti, F. [Advanced Materials Group, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, Ciudad de Buenos Aires 1063 (Argentina)

    2014-12-05

    Highlights: • The use of Nb in RS Al alloys and composites has been reviewed. • Nb was found to improve the GFA of rapid solidified Al–Fe and Al–Ni alloys. • Nb has higher effect in increasing the corrosion resistance than RE in Al–Fe alloys. • Nb improves the stability of the Al–Fe–Cr icosahedral phase. • Nb improves strength, ductility and toughness of nanoquasicrystalline Al matrix composites. - Abstract: The worldwide requirements for reducing the energy consumption and pollution have increased the demand of new and high performance lightweight materials. The development of nanostructured Al-based alloys and composites is a key direction towards solving this demand. High energy prices and decreased availability of some alloying elements open up the opportunity to use non-conventional elements in Al alloys and composites. In this work the application of Nb in rapid solidified Al-based alloys and Al alloys matrix composites is reviewed. New results that clarify the effect of Nb on rapid solidified Al alloys and composites are also presented. It is observed that Nb stabilises the icosahedral Al–Fe/Cr clusters, enhances the glass forming ability and shifts the icosahedral phase decomposition towards higher temperatures. Nb provides higher corrosion resistance with respect to the pure Al and Al–Fe–RE (RE: rare earth) alloys in the amorphous and crystalline states. The use of Nb as a reinforcement to produce new Al alloy matrix composites is explored. It is observed that Nb provides higher strength, ductility and toughness to the nanoquasicrystalline matrix composite. Nb appears as a new key element that can improve several properties in rapid solidified Al alloys and composites.

  17. Structures of foot and mouth disease virus pentamers: Insight into capsid dissociation and unexpected pentamer reassociation.

    Directory of Open Access Journals (Sweden)

    Nayab Malik

    2017-09-01

    Full Text Available Foot-and-mouth disease virus (FMDV belongs to the Aphthovirus genus of the Picornaviridae, a family of small, icosahedral, non-enveloped, single-stranded RNA viruses. It is a highly infectious pathogen and is one of the biggest hindrances to the international trade of animals and animal products. FMDV capsids (which are unstable below pH6.5 release their genome into the host cell from an acidic compartment, such as that of an endosome, and in the process dissociate into pentamers. Whilst other members of the family (enteroviruses have been visualized to form an expanded intermediate capsid with holes from which inner capsid proteins (VP4, N-termini (VP1 and RNA can be released, there has been no visualization of any such state for an aphthovirus, instead the capsid appears to simply dissociate into pentamers. Here we present the 8-Å resolution structure of isolated dissociated pentamers of FMDV, lacking VP4. We also found these pentamers to re-associate into a rigid, icosahedrally symmetric assembly, which enabled their structure to be solved at higher resolution (5.2 Å. In this assembly, the pentamers unexpectedly associate 'inside out', but still with their exposed hydrophobic edges buried. Stabilizing interactions occur between the HI loop of VP2 and its symmetry related partners at the icosahedral 3-fold axes, and between the BC and EF loops of VP3 with the VP2 βB-strand and the CD loop at the 2-fold axes. A relatively extensive but subtle structural rearrangement towards the periphery of the dissociated pentamer compared to that in the mature virus provides insight into the mechanism of dissociation of FMDV and the marked difference in antigenicity.

  18. Study of the ternary alloy systems Al-Ni-Fe and Al-Cu-Ru with special regard to quasicrystalline phases

    International Nuclear Information System (INIS)

    Lemmerz, U.

    1996-07-01

    Two ternary alloy-systems, the Al-Ni-Fe system and the Al-Cu-Ru system were studied with special regard to quasicrystalline phases. Isothermal sections were established in both systems in the stoichiometric area of the quasicrystalline phase. In the Al-Ni-Fe system a new stable decagonal phase was found. Its stoichiometric range is very small around Al 71.6 Ni 23.0 Fe 5.4 . The temperature range in which it is stable lies between 847 and 930 C. The decagonal phase undergoes a eutectoid reaction to the three crystalline phases Al 3 Ni 2 , Al 3 Ni and Al 13 Fe 4 at 847 C. It melts peritectically at 930 C forming Al 13 Fe 4 , Al 3 Ni 2 and a liquid. The investigations in the Al-Cu-Ru system concentrated on the phase equilibria between the icosahedral phase and its neighbouring phases in a temperature range between 600 and 1000 C. The icosahedral phase was observed in the whole temperature range. The investigated stoichiometric area extends down to Al contents of 45%, which allows the fields of existence to be determined for the ternary phases α-AlCuRu, the icosahedral phase and Al 7 Cu 2 Ru. Binary phases were determined down to the upper (high Al content) border of AlRu. No hitherto unknown phase was observed in the investigated area. Rietveld analyses were carried out on α-AlCuRu and Al 7 Cu 2 Ru showing some discrepancies from the α-AlMnSi structure taken as a base for α-AlCuRu and confirming the Al 7 Cu 2 Fe structure for Al 7 Cu 2 Ru. (orig.)

  19. The torus parametrization of quasiperiodic LI-classes

    CERN Document Server

    Baake, M; Pleasants, P A B

    2002-01-01

    The torus parametrization of quasiperiodic local isomorphism classes is introduced and used to determine the number of elements in such a class with special symmetries or inflation properties. The method is explained in an illustrative fashion for some widely used tiling classes with golden mean rescaling, namely for the Fibonacci chain (1D), the triangle and Penrose patterns (2D) and for Kramer's and Danzer's icosahedral tilings (3D). We obtain a rather complete picture of the orbit structure within these classes, but discuss also various general results.

  20. Molecular Characterization of Tb, a New Approach for an Ancient Brucellaphage

    Directory of Open Access Journals (Sweden)

    Hong-Yan Zhao

    2009-07-01

    Full Text Available Tb (Tbilisi, the reference Brucellaphage strain, was classified as a member of the Podoviridae family with icosahedral capsids (57 ± 2 nm diameter and short tails (32 ± 3 nm long. Brucellaphage DNA was double stranded and unmethylated; its molecular size was 34.5 kilobase pairs. Some sequences were found through RAPD analysis, TA cloning technology, and structural proteins were observed by using SDS-PAGE. Thus, the results have laid the foundation for the wider use of Brucellaphage’s basic mechanisms and practical applications.

  1. Isolation of an iridovirus from pike-perch Stizostedion lucioperca

    DEFF Research Database (Denmark)

    Tapiovaara, H.; Olesen, Niels Jørgen; Linden, J.

    1998-01-01

    We have isolated a large virus from pike-perch Stizostedion lucioperca fingerlings with no signs of disease. The biochemical, structural, and serological properties of this newly isolated virus suggest that it belongs to the family Iridoviridae. The virus multiplied and was cytopathogenic...... fish iridoviruses. It is an enveloped icosahedral DNA virus. The diameter of the nucleocapsid in thin sections was 127 +/- 3 nm; in negatively stained preparates the size of the enveloped virus varied from 147 to 187 nm. In immunofluorescence the virus was stained by rabbit antisera against EHN...

  2. Wave computation on the Poincaré dodecahedral space

    Science.gov (United States)

    Bachelot-Motet, Agnès

    2013-12-01

    We compute the waves propagating on a compact 3-manifold of constant positive curvature with a non-trivial topology: the Poincaré dodecahedral space that is a plausible model of multi-connected universe. We transform the Cauchy problem to a mixed problem posed on a fundamental domain determined by the quaternionic calculus. We adopt a variational approach using a space of finite elements that is invariant under the action of the binary icosahedral group. The computation of the transient waves is validated with their spectral analysis by computing a lot of eigenvalues of the Laplace-Beltrami operator.

  3. Draft genome sequence of the Coccolithovirus Emiliania huxleyi virus 203.

    Science.gov (United States)

    Nissimov, Jozef I; Worthy, Charlotte A; Rooks, Paul; Napier, Johnathan A; Kimmance, Susan A; Henn, Matthew R; Ogata, Hiroyuki; Allen, Michael J

    2011-12-01

    The Coccolithoviridae are a recently discovered group of viruses that infect the marine coccolithophorid Emiliania huxleyi. Emiliania huxleyi virus 203 (EhV-203) has a 160- to 180-nm-diameter icosahedral structure and a genome of approximately 400 kbp, consisting of 464 coding sequences (CDSs). Here we describe the genomic features of EhV-203 together with a draft genome sequence and its annotation, highlighting the homology and heterogeneity of this genome in comparison with the EhV-86 reference genome.

  4. Draft genome sequence of the coccolithovirus Emiliania huxleyi virus 202.

    Science.gov (United States)

    Nissimov, Jozef I; Worthy, Charlotte A; Rooks, Paul; Napier, Johnathan A; Kimmance, Susan A; Henn, Matthew R; Ogata, Hiroyuki; Allen, Michael J

    2012-02-01

    Emiliania huxleyi virus 202 (EhV-202) is a member of the Coccolithoviridae, a group of viruses that infect the marine coccolithophorid Emiliania huxleyi. EhV-202 has a 160- to 180-nm-diameter icosahedral structure and a genome of approximately 407 kbp, consisting of 485 coding sequences (CDSs). Here we describe the genomic features of EhV-202, together with a draft genome sequence and its annotation, highlighting the homology and heterogeneity of this genome in comparison with the EhV-86 reference genome.

  5. Draft genome sequence of four coccolithoviruses: Emiliania huxleyi virus EhV-88, EhV-201, EhV-207, and EhV-208.

    Science.gov (United States)

    Nissimov, Jozef I; Worthy, Charlotte A; Rooks, Paul; Napier, Johnathan A; Kimmance, Susan A; Henn, Matthew R; Ogata, Hiroyuki; Allen, Michael J

    2012-03-01

    The Coccolithoviridae are a group of viruses which infect the marine coccolithophorid microalga Emiliania huxleyi. The Emiliania huxleyi viruses (known as EhVs) described herein have 160- to 180-nm diameter icosahedral structures, have genomes of approximately 400 kbp, and consist of more than 450 predicted coding sequences (CDSs). Here, we describe the genomic features of four newly sequenced coccolithoviruses (EhV-88, EhV-201, EhV-207, and EhV-208) together with their draft genome sequences and their annotations, highlighting the homology and heterogeneity of these genomes to the EhV-86 model reference genome.

  6. Study of the influence of surface anisotropy and lattice structure on the behaviour of a small magnetic cluster

    International Nuclear Information System (INIS)

    Hernandez, Laura; Pinettes, Claire

    2005-01-01

    We have studied by Monte Carlo simulations the thermal behaviour of a small (N=13 particles) cluster described by a Heisenberg model, including nearest-neighbour ferromagnetic interactions and radial surface anisotropy, in an applied magnetic field. We have studied three different lattice structures: hexagonal close packed, face centered cubic and icosahedral. We show that the zero-field thermal behaviour depends not only on the value of the anisotropy constant but also on the lattice structure. The behaviour in an applied field, additionally depends, on the different orientations of the field with respect to the crystal axes. According to these relative orientations, hysteresis cycles show different step-like characteristics

  7. Calculation of spherical harmonics and Wigner d functions by FFT. Applications to fast rotational matching in molecular replacement and implementation into AMoRe.

    Science.gov (United States)

    Trapani, Stefano; Navaza, Jorge

    2006-07-01

    The FFT calculation of spherical harmonics, Wigner D matrices and rotation function has been extended to all angular variables in the AMoRe molecular replacement software. The resulting code avoids singularity issues arising from recursive formulas, performs faster and produces results with at least the same accuracy as the original code. The new code aims at permitting accurate and more rapid computations at high angular resolution of the rotation function of large particles. Test calculations on the icosahedral IBDV VP2 subviral particle showed that the new code performs on the average 1.5 times faster than the original code.

  8. Fourier-space TEM reconstructions with symmetry adapted functions for all rotational point groups.

    Science.gov (United States)

    Trapani, Stefano; Navaza, Jorge

    2013-05-01

    A general-purpose and simple expression for the coefficients of symmetry adapted functions referred to conveniently oriented symmetry axes is given for all rotational point groups. The expression involves the computation of reduced Wigner-matrix elements corresponding to an angle specific to each group and has the computational advantage of leading to Fourier-space TEM (transmission electron microscopy) reconstruction procedures involving only real valued unknowns. Using this expression, a protocol for ab initio view and center assignment and reconstruction so far used for icosahedral particles has been tested with experimental data in other point groups. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Recasting a model atomistic glassformer as a system of icosahedra

    Energy Technology Data Exchange (ETDEWEB)

    Pinney, Rhiannon [HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Bristol Centre for Complexity Science, University of Bristol, Bristol BS8 1TS (United Kingdom); Liverpool, Tanniemola B. [School of Mathematics, University of Bristol, Bristol BS8 1TW (United Kingdom); Royall, C. Patrick, E-mail: paddy.royall@bristol.ac.uk [HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); School of Chemistry, University of Bristol, Cantock Close, Bristol BS8 1TS (United Kingdom); Centre for Nanoscience and Quantum Information, Tyndall Avenue, Bristol BS8 1FD (United Kingdom)

    2015-12-28

    We consider a binary Lennard-Jones glassformer whose super-Arrhenius dynamics are correlated with the formation of icosahedral structures. Upon cooling, these icosahedra organize into mesoclusters. We recast this glassformer as an effective system of icosahedra which we describe with a population dynamics model. This model we parameterize with data from the temperature regime accessible to molecular dynamics simulations. We then use the model to determine the population of icosahedra in mesoclusters at arbitrary temperature. Using simulation data to incorporate dynamics into the model, we predict relaxation behavior at temperatures inaccessible to conventional approaches. Our model predicts super-Arrhenius dynamics whose relaxation time remains finite for non-zero temperature.

  10. Electronic Transport Behaviors due to Charge Density Waves in Ni-Nb-Zr-H Glassy Alloys

    Science.gov (United States)

    Fukuhara, Mikio; Umemori, Yoshimasa

    2013-11-01

    The amorphous Ni-Nb-Zr-H glassy alloy containing subnanometer-sized icosahedral Zr5 Nb5Ni3 clusters exhibited four types of electronic phenomena: a metal/insulator transition, an electric current-induced voltage oscillation (Coulomb oscillation), giant capacitor behavior and an electron avalanche with superior resistivity. These findings could be excluded by charge density waves that the low-dimensional component of clusters, in which the atoms are lined up in chains along the [130] direction, plays important roles in various electron transport phenomena.

  11. Strontium clusters: electronic and geometry shell effects

    DEFF Research Database (Denmark)

    Lyalin, Andrey G.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2008-01-01

    charged strontium clusters consisting of up to 14 atoms, average bonding distances, electronic shell closures, binding energies per atom, and spectra of the density of electronic states (DOS). It is demonstrated that the size-evolution of structural and electronic properties of strontium clusters...... is governed by an interplay of the electronic and geometry shell closures. Influence of the electronic shell effects on structural rearrangements can lead to violation of the icosahedral growth motif of strontium clusters. It is shown that the excessive charge essentially affects the optimized geometry...

  12. Electrodynamical forbiddance of a strong quadrupole interaction in surface enhanced optical processes. Experimental confirmation of the existence in fullerene C{sub 60}

    Energy Technology Data Exchange (ETDEWEB)

    Polubotko, A. M., E-mail: alex.marina@mail.ioffe.ru [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Chelibanov, V. P., E-mail: Chelibanov@gmail.com [State University of Information Technologies, Mechanics and Optics (Russian Federation)

    2017-02-15

    It is demonstrated that in the SERS and SEIRA spectra of the fullerene C{sub 60}, the lines, which are forbidden in usual Raman and IR spectra and allowed in SERS and SEIRA, are absent. In addition the enhancement SERS coefficient in a single molecule detection regime is ~10{sup 8} instead of the value 10{sup 14}–10{sup 15}, characteristic for this phenomenon. These results are explained by the existence of so-called electrodynamical forbiddance of a strong quadrupole light-molecule interaction, which arises because of belonging of C{sup 60} to the icosahedral symmetry group and due to the electrodynamical law divE = 0.

  13. Comparison of Conjugate Gradient Density Matrix Search and Chebyshev Expansion Methods for Avoiding Diagonalization in Large-Scale Electronic Structure Calculations

    Science.gov (United States)

    Bates, Kevin R.; Daniels, Andrew D.; Scuseria, Gustavo E.

    1998-01-01

    We report a comparison of two linear-scaling methods which avoid the diagonalization bottleneck of traditional electronic structure algorithms. The Chebyshev expansion method (CEM) is implemented for carbon tight-binding calculations of large systems and its memory and timing requirements compared to those of our previously implemented conjugate gradient density matrix search (CG-DMS). Benchmark calculations are carried out on icosahedral fullerenes from C60 to C8640 and the linear scaling memory and CPU requirements of the CEM demonstrated. We show that the CPU requisites of the CEM and CG-DMS are similar for calculations with comparable accuracy.

  14. Microscale memory characteristics of virus-quantum dot hybrids

    Science.gov (United States)

    Portney, Nathaniel G.; Tseng, Ricky J.; Destito, Giuseppe; Strable, Erica; Yang, Yang; Manchester, Marianne; Finn, M. G.; Ozkan, Mihrimah

    2007-05-01

    An electrical multi stability effect was observed for a single layer device fabricated, comprising a hybrid virus-semiconducting quantum dot (CdSe /ZnS core/shell Qds) assembled onto icosahedral-mutant-virus template (CPMV-T184C). A substrate based bottom-up pathway was used to conjugate two different color emitting Qds for fluorescence visualization and to insert a charging/decharging factor. Pulsed wave measurements depicted distinct conductive states with repeatable and nonvolatile behavior as a functioning memory element.

  15. Boronated porphyrins in NCT: Results with a new potent tumor localizer

    International Nuclear Information System (INIS)

    Kahl, S.B.; Koo, M.S.; Laster, B.H.; Fairchild, R.G.

    1988-01-01

    Several chemical methods are available for the solubilization of boronated porphyrins. We have previously reported the tumor localization of nido carboranyl porphyrins in which the icosahedral carborane cages have been opened to give B 9 C 2 anions. One of these species has shown tumor boron levels of nearly 50 μg B/g when delivered by week-long subcutaneous infusions. We report here recent in vivo experiments with a new, highly water-soluble porphyrin based on the hematoporphyrin-type of compound in which aqueous solubility is achieved using the two propionic acid side chains of the ''natural'' porphyrin frame. 7 refs

  16. Stable structures for Al{sub 20} clusters

    Energy Technology Data Exchange (ETDEWEB)

    Yao Changhong [Department of Physics and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China)]. E-mail: phych@zju.edu.cn; Song Bin [Department of Physics and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Cao Peilin [Department of Physics and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China)

    2005-06-20

    The low-lying energy structures of Al{sub 20} cluster are obtained by full-potential linear-muffin-tin-orbital molecular-dynamics (FP-LMTO-MD) method. A set of new low-lying energy structures including a new lowest energy structure, were found in our calculation. The waist-capped double icosahedral structure, which was considered as the global minimum previously, is merely one of the low-lying structures. Comparison and discussion between Al{sub 20} and Si{sub 20} have been made.

  17. Study of the influence of surface anisotropy and lattice structure on the behaviour of a small magnetic cluster

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Laura [Laboratoire de Physique Theorique et Modelisation, CNRS-UMR 8089, Universite de Cergy-Pontoise, 5 mail Gay Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise, Cedex (France)]. E-mail: Laura.Hernandez@ptm.u-cergy.fr; Pinettes, Claire [Laboratoire de Physique Theorique et Modelisation, CNRS-UMR 8089, Universite de Cergy-Pontoise, 5 mail Gay Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise, Cedex (France)

    2005-08-15

    We have studied by Monte Carlo simulations the thermal behaviour of a small (N=13 particles) cluster described by a Heisenberg model, including nearest-neighbour ferromagnetic interactions and radial surface anisotropy, in an applied magnetic field. We have studied three different lattice structures: hexagonal close packed, face centered cubic and icosahedral. We show that the zero-field thermal behaviour depends not only on the value of the anisotropy constant but also on the lattice structure. The behaviour in an applied field, additionally depends, on the different orientations of the field with respect to the crystal axes. According to these relative orientations, hysteresis cycles show different step-like characteristics.

  18. Characterization of a novel tymovirus on tomato plants in Brazil.

    Science.gov (United States)

    de Oliveira, Virgínia Carla; Nagata, Tatsuya; Guimarães, Felipe C; Ferreira, Fernanda A; Kitajima, Elliot Watanabe; Nicolini, Cícero; de Oliveira Resende, Renato; Inoue-Nagata, Alice Kazuko

    2013-02-01

    A tymovirus was isolated in Brazil from tomato plants with severe symptoms of leaf mosaic and blistering. The virus was mechanically transmissible to solanaceous indicator host species. The infected plants contained icosahedral particles and chloroplasts with membrane deformations which are typical cytopathic effects caused by tymoviruses. Its coat protein amino acid sequence shares the maximum of 64 % identity with the tymovirus Chiltepin yellow mosaic virus, which suggested that it can be considered as a distinct member of the genus Tymovirus. In a phylogenetic tree, this tymovirus was clustered with other solanaceous-infecting tymoviruses. It was tentatively named as Tomato blistering mosaic virus (ToBMV).

  19. Structural Insights into the Coupling of Virion Assembly and Rotavirus Replication

    Science.gov (United States)

    Trask, Shane D.; McDonald, Sarah M.; Patton, John T.

    2013-01-01

    Preface Viral replication is rapid and robust, but it is far from a chaotic process. Instead, successful production of infectious progeny requires that events occur in the correct place and at the correct time. Rotavirus, a segmented double-stranded RNA virus of the Reoviridae family, seems to govern its replication through ordered disassembly and assembly of a triple-layered icosahedral capsid. In recent years, high-resolution structural data have provided unprecedented insight into these events. In this Review, we explore the current understanding of rotavirus replication and how it compares to other Reoviridae family members. PMID:22266782

  20. Riemann, topology, and physics

    CERN Document Server

    Monastyrsky, Michael I

    2008-01-01

    This significantly expanded second edition of Riemann, Topology, and Physics combines a fascinating account of the life and work of Bernhard Riemann with a lucid discussion of current interaction between topology and physics. The author, a distinguished mathematical physicist, takes into account his own research at the Riemann archives of Göttingen University and developments over the last decade that connect Riemann with numerous significant ideas and methods reflected throughout contemporary mathematics and physics. Special attention is paid in part one to results on the Riemann–Hilbert problem and, in part two, to discoveries in field theory and condensed matter such as the quantum Hall effect, quasicrystals, membranes with nontrivial topology, "fake" differential structures on 4-dimensional Euclidean space, new invariants of knots and more. In his relatively short lifetime, this great mathematician made outstanding contributions to nearly all branches of mathematics; today Riemann’s name appears prom...

  1. Numerical tools for the study of defect dynamics in quasiperiodic structures

    International Nuclear Information System (INIS)

    Barak, G.; Lifshitz, R.

    2004-01-01

    Full Text:We have developed a set of numerical tools for the quantitative study of defect dynamics in quasiperiodic structures, with the intention of addressing in the near future some of the open questions regarding the dynamics of dislocations in quasicrystals. IS'e intend to apply these tools to study dislocation motion in the dynamical equation of Lifshitz and Petrich [1] whose steady-state solutions are quasiperiodic, exhibiting dodecagonal (12-fold) rotational symmetry. Here we demonstrate our ability to inject an arbitrary set of dislocations-parametrized by the homotopy group of the D-torus (here D=4)-and quantitatively follow the positions of these dislocations as the equation evolves in time. We measure dislocation velocities as a function of applied stress and shear, as well as the phonon and phason strains that accompany this motion as the system evolves in time

  2. Soft x-ray absorption and emission spectra and the electronic structure of some exotic materials

    International Nuclear Information System (INIS)

    Ederer, D.L.; Canfield, L.R.; Callcott, T.A.; Tsang, K.L.; Zhang, C.H.; Arakawa, E.T.

    1988-01-01

    The technique of soft x-ray fluorescence spectroscopy (SXE) is complimentary to that of photoemission spectroscopy (PES). SXE probes the local partial density of states (PDOS), selects dipole allowed symmetries, and is not necessarily surface sensitive. PES on the other hand, averages over the DOS and can be used to measure the dispersion of the energy bands. PES is also very surface sensitive. We present measurements on the high T/sub c/ superconductors, the quasicrystalline phase of AlMn, and the LiAl intermetallic alloy. These measurements provide insight for theoretical modeling. In the case of the high T/sub c/ compound and the intermetallic compound the measurements are in good agreement with the theory. However, for the quasicrystals the measurements provide new insights to challenge theory. 13 refs., 3 figs

  3. High-resolution electron microscopy and its applications.

    Science.gov (United States)

    Li, F H

    1987-12-01

    A review of research on high-resolution electron microscopy (HREM) carried out at the Institute of Physics, the Chinese Academy of Sciences, is presented. Apart from the direct observation of crystal and quasicrystal defects for some alloys, oxides, minerals, etc., and the structure determination for some minute crystals, an approximate image-contrast theory named pseudo-weak-phase object approximation (PWPOA), which shows the image contrast change with crystal thickness, is described. Within the framework of PWPOA, the image contrast of lithium ions in the crystal of R-Li2Ti3O7 has been observed. The usefulness of diffraction analysis techniques such as the direct method and Patterson method in HREM is discussed. Image deconvolution and resolution enhancement for weak-phase objects by use of the direct method are illustrated. In addition, preliminary results of image restoration for thick crystals are given.

  4. Improved Spectral Calculations for Discrete Schrődinger Operators

    Science.gov (United States)

    Puelz, Charles

    This work details an O(n2) algorithm for computing spectra of discrete Schrődinger operators with periodic potentials. Spectra of these objects enhance our understanding of fundamental aperiodic physical systems and contain rich theoretical structure of interest to the mathematical community. Previous work on the Harper model led to an O(n2) algorithm relying on properties not satisfied by other aperiodic operators. Physicists working with the Fibonacci Hamiltonian, a popular quasicrystal model, have instead used a problematic dynamical map approach or a sluggish O(n3) procedure for their calculations. The algorithm presented in this work, a blend of well-established eigenvalue/vector algorithms, provides researchers with a more robust computational tool of general utility. Application to the Fibonacci Hamiltonian in the sparsely studied intermediate coupling regime reveals structure in canonical coverings of the spectrum that will prove useful in motivating conjectures regarding band combinatorics and fractal dimensions.

  5. Topology of tiling spaces

    CERN Document Server

    Sadun, Lorenzo

    2008-01-01

    Aperiodic tilings are interesting to mathematicians and scientists for both theoretical and practical reasons. The serious study of aperiodic tilings began as a solution to a problem in logic. Simpler aperiodic tilings eventually revealed hidden "symmetries" that were previously considered impossible, while the tilings themselves were quite striking. The discovery of quasicrystals showed that such aperiodicity actually occurs in nature and led to advances in materials science. Many properties of aperiodic tilings can be discerned by studying one tiling at a time. However, by studying families of tilings, further properties are revealed. This broader study naturally leads to the topology of tiling spaces. This book is an introduction to the topology of tiling spaces, with a target audience of graduate students who wish to learn about the interface of topology with aperiodic order. It isn't a comprehensive and cross-referenced tome about everything having to do with tilings, which would be too big, too hard to ...

  6. Activation of Al–Cu–Fe quasicrystalline surface: fabrication of a fine nanocomposite layer with high catalytic performance

    Directory of Open Access Journals (Sweden)

    Satoshi Kameoka

    2014-01-01

    Full Text Available A fine layered nanocomposite with a total thickness of about 200 nm was formed on the surface of an Al63Cu25Fe12 quasicrystal (QC. The nanocomposite was found to exhibit high catalytic performance for steam reforming of methanol. The nanocomposite was formed by a self-assembly process, by leaching the Al–Cu–Fe QC using a 5 wt% Na2CO3 aqueous solution followed by calcination in air at 873 K. The quasiperiodic nature of the QC played an important role in the formation of such a structure. Its high catalytic activity originated from the presence of highly dispersed copper and iron species, which also suppressed the sintering of nanoparticles.

  7. Theory of heavy-fermion compounds theory of strongly correlated Fermi-systems

    CERN Document Server

    Amusia, Miron Ya; Shaginyan, Vasily R; Stephanovich, Vladimir A

    2015-01-01

    This book explains modern and interesting physics in heavy-fermion (HF) compounds to graduate students and researchers in condensed matter physics. It presents a theory of heavy-fermion (HF) compounds such as HF metals, quantum spin liquids, quasicrystals and two-dimensional Fermi systems. The basic low-temperature properties and the scaling behavior of the compounds are described within the framework of the theory of fermion condensation quantum phase transition (FCQPT). Upon reading the book, the reader finds that HF compounds with quite different microscopic nature exhibit the same non-Fermi liquid behavior, while the data collected on very different HF systems have a universal scaling behavior, and these compounds are unexpectedly uniform despite their diversity. For the reader's convenience, the analysis of compounds is carried out in the context of salient experimental results. The numerous calculations of the non-Fermi liquid behavior, thermodynamic, relaxation and transport properties, being in good...

  8. New phenomena in epitaxial growth: solid films on quasicrystalline substrates

    International Nuclear Information System (INIS)

    Fournee, V; Thiel, P A

    2005-01-01

    An overview is given of the research conducted in the field of solid film growth on quasiperiodic surfaces. An atomistic description of quasicrystalline surfaces is presented and discussed in relation to bulk structural models. The various systems for which thin film growth has been attempted so far are reviewed. Emphasis is placed on the nucleation mechanisms of the solid films, on their growth modes in relation to the nature of the deposited metals, on the possibility of intermixing or alloying at the interface and on the epitaxial relationships at the crystal-quasicrystal interfaces. We also describe situations where the deposited elements adopt a quasiperiodic structure, which opens up the possibility of extending our understanding of the relation between quasiperiodicity and the physical properties of such structurally and chemically complex solids. (topical review)

  9. Optical fabrication of large area photonic microstructures by spliced lens

    Science.gov (United States)

    Jin, Wentao; Song, Meng; Zhang, Xuehua; Yin, Li; Li, Hong; Li, Lin

    2018-05-01

    We experimentally demonstrate a convenient approach to fabricate large area photorefractive photonic microstructures by a spliced lens device. Large area two-dimensional photonic microstructures are optically induced inside an iron-doped lithium niobate crystal. The experimental setups of our method are relatively compact and stable without complex alignment devices. It can be operated in almost any optical laboratories. We analyze the induced triangular lattice microstructures by plane wave guiding, far-field diffraction pattern imaging and Brillouin-zone spectroscopy. By designing the spliced lens appropriately, the method can be easily extended to fabricate other complex large area photonic microstructures, such as quasicrystal microstructures. Induced photonic microstructures can be fixed or erased and re-recorded in the photorefractive crystal.

  10. Plasticity characteristic obtained by indentation

    International Nuclear Information System (INIS)

    Mil'man, Yu.V.; Chugunova, S.I.; Goncharova, I.V.

    2011-01-01

    Methods for determination plasticity characteristic δH in the measurement of hardness and nanohardness are considered. Parameter δH characterizes the plasticity of a material by the part of plastic deformation in the total elastic-plastic deformation. The value of δH is defined for metals with different types of crystal lattice, covalent and partially covalent crystals, intermetallics, metallic glasses and quasicrystals. It is discussed the dependence of the plasticity characteristic δH on structural factors and temperature. Parameter δH allows to analyze and compare the plasticity of materials which are brittle at standard mechanical tests. The combination of hardness H, as the strength characteristic, and the plasticity characteristic δH makes possible the better characterization of mechanical behavior of materials than only the hardness H. The examples of plasticity characteristic δH application are represented.

  11. Advanced in X-ray fluorescence holography

    CERN Document Server

    Hayashi, K

    2002-01-01

    X-ray fluorescence holography (XFH) can resolve 'phase problem' in crystal diffraction and therefore it provides 3D atomic images around specific elements. Since first demonstration of the XFH in 1996, view of atoms has been improved rapidly with the refinement of the hologram data collection method. The present performance of the XFH makes it possible to apply to impurity, thin film and quasicrystal, and opens a way to practical tool for determination of local structure. In this paper, theory including solutions for twin image problem, advanced experimental systems and application to Si sub 0 sub . sub 9 sub 9 sub 9 Ge sub 0 sub . sub 0 sub 0 sub 1 are discussed. (author)

  12. Octonacci photonic crystals with negative refraction index materials

    Science.gov (United States)

    Brandão, E. R.; Vasconcelos, M. S.; Anselmo, D. H. A. L.

    2016-12-01

    We investigate the optical transmission spectra for s-polarized (TE) and p-polarized (TM) waves in one-dimensional photonic quasicrystals on a quasiperiodic multilayer structure made up by alternate layers of SiO2 and metamaterials, organized by following the Octonacci sequence. Maxwell's equations and the transfer-matrix technique are used to derive the transmission spectra for the propagation of normally and obliquely incident optical fields. We assume Drude-Lorentz-type dispersive response for the dielectric permittivity and magnetic permeability of the metamaterials. For normally incident waves, we observe that the spectra does not have self-similar behavior or mirror symmetry and it also features the absence of optical band gap. Also for normally incident waves, we show regions of full transmittance when the incident angle θC = 0° in a particular frequency range.

  13. Miles of tiles

    CERN Document Server

    Radin, Charles

    1999-01-01

    "In this book, we try to display the value (and joy!) of starting from a mathematically amorphous problem and combining ideas from diverse sources to produce new and significant mathematics--mathematics unforeseen from the motivating problem ..." --from the Preface The common thread throughout this book is aperiodic tilings; the best-known example is the "kite and dart" tiling. This tiling has been widely discussed, particularly since 1984 when it was adopted to model quasicrystals. The presentation uses many different areas of mathematics and physics to analyze the new features of such tilings. Although many people are aware of the existence of aperiodic tilings, and maybe even their origin in a question in logic, not everyone is familiar with their subtleties and the underlying rich mathematical theory. For the interested reader, this book fills that gap. Understanding this new type of tiling requires an unusual variety of specialties, including ergodic theory, functional analysis, group theory and ring the...

  14. Aperiodic-metamaterial-based absorber

    Directory of Open Access Journals (Sweden)

    Quanlong Yang

    2017-09-01

    Full Text Available The periodic-metamaterial-based perfect absorber has been studied broadly. Conversely, if the unit cell in the metamaterial-based absorber is arranged aperiodically (aperiodic-metamaterial-based absorber, how does it perform? Inspired by this, here we present a systematic study of the aperiodic-metamaterial-based absorber. By investigating the response of metamaterial absorbers based on periodic, Fibonacci, Thue-Morse, and quasicrystal lattices, we found that aperiodic-metamaterial-based absorbers could display similar absorption behaviors as the periodic one in one hand. However, their absorption behaviors show different tendency depending on the thicknesses of the spacer. Further studies on the angle and polarization dependence of the absorption behavior are also presented.

  15. Effects of Connectivity Disorder on the Potts Model

    International Nuclear Information System (INIS)

    Janke, W.; Weigel, M.

    2003-01-01

    The relevance of quenched, uncorrelated disorder coupling to the local energy density, its paradigm being the random-bond model, is judged by the Harris criterion. A generalization of the underlying argument to the case of spatially correlated disorder, exemplified by quasi-crystals, has been given by Luck. We address the question, whether a relevance criterion of this type is applicable to the case of spin models coupled to different kinds of random graphs. The geometrical fluctuation exponent appearing in Luck's criterion is precisely determined for the case of two-dimensional Poissonian Voronoi-Delaunay random lattices and planar, ''flat'' φ 3 Feynman diagrams. While previous work for the latter graphs is in accord with the determined relevance threshold, a preliminary analysis of the result of a Monte Carlo simulation of the three-states Pott model on Poissonian Voronoi Lattices presented here does not meet the expectation from the relevance criterion. (author)

  16. Structure and effective interactions in three-component hard sphere liquids.

    Science.gov (United States)

    König, A; Ashcroft, N W

    2001-04-01

    Complete and simple analytical expressions for the partial structure factors of the ternary hard sphere mixture are obtained within the Percus-Yevick approximation and presented as functions of relative packing fractions and relative hard sphere diameters. These solutions follow from the Laplace transform method as applied to multicomponent systems by Lebowitz [Phys. Rev. 133, A895 (1964)]. As an important application, we examine effective interactions in hard sphere liquid mixtures using the microscopic information contained in their partial structure factors. Thus the ensuring pair potential for an effective one-component system is obtained from the correlation functions by using an approximate inversion, and examples of effective potentials for three-component hard sphere mixtures are given. These mixtures may be of particular interest for the study of the packing aspects of melts that form glasses or quasicrystals, since noncrystalline solids often emerge from melts with at least three atomic constituents.

  17. Quantum pumping induced by disorder in one dimension

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Jihong [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Guo, Huaiming, E-mail: hmguo@buaa.edu.cn [Department of Physics, Beihang University, Beijing 100191 (China)

    2016-07-01

    The topological property in one dimension is protected by symmetry. Based on a concrete model, we study the effect of disorder preserving or breaking the symmetry and show the nature of symmetry protecting in the one dimensional topological phase. A stable quantum pumping can be constructed within the topological model. It is shown that an integer charge is pumped across a periodic chain in a cyclic process. Furthermore we find that not only the quantum pumping is stable to on-site disorder, but also can be induced by it. These results may be realized experimentally using quasicrystals. - Highlights: • We study the effect of disorder preserving or breaking the symmetry. • We show that an integer charge is pumped across a periodic chain in a cyclic process. • Not only the quantum pumping is stable to on-site disorder, but also can be induced by it.

  18. MSL Progress Report 1981-85

    International Nuclear Information System (INIS)

    Yalsakumar, M.C.; Ananthakrishna, G.; Sahoo, D.; Gopinathan, K.P.

    1987-01-01

    This is the third progress report since the inception of the Materials Science Laboratory in 1974 and covers the period 1981-85. In view of the long period covered by the report, the individual contributions have been kept brief so that the total length of the report is reasonable; however care has been taken to see that brevity has not obscured clarity. Significant contributions include studies of radiation damage and related defect, solid state physics, behaviour of materials under extremely low temperatures on the one hand and under high pressure and high temperatures on the other and light scattering by materials. The Laboratory has played a key role in the indigeneous development and characterisation of superconducting materials. Theoretical studies have concentrated on stochastic processes, nonlinear phenomena and the newly discovered and fascinating quasicrystals. (author)

  19. Periodically distributed objects with quasicrystalline diffraction pattern

    Energy Technology Data Exchange (ETDEWEB)

    Wolny, Janusz, E-mail: wolny@fis.agh.edu.pl; Strzalka, Radoslaw [Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland); Kuczera, Pawel [Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland); Laboratory of Crystallography, ETH Zurich, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich (Switzerland)

    2015-03-30

    It is possible to construct fully periodically distributed objects with a diffraction pattern identical to the one obtained for quasicrystals. These objects are probability distributions of distances obtained in the statistical approach to aperiodic structures distributed periodically. The diffraction patterns have been derived by using a two-mode Fourier transform—a very powerful method not used in classical crystallography. It is shown that if scaling is present in the structure, this two-mode Fourier transform can be reduced to a regular Fourier transform with appropriately rescaled scattering vectors and added phases. Detailed case studies for model sets 1D Fibonacci chain and 2D Penrose tiling are discussed. Finally, it is shown that crystalline, quasicrystalline, and approximant structures can be treated in the same way.

  20. Modern X-ray spectroscopy 3. X-ray fluorescence holography

    International Nuclear Information System (INIS)

    Hayashi, Kouichi

    2008-01-01

    X-ray fluorescence holography (XFH) provides three dimensional atomic images around specified elements. The XFH uses atoms as a wave source or monitor of interference field within a crystal sample, and therefore it can record both intensity and phase of scattered X-rays. Its current performance makes it possible to apply to ultra thin film, impurity and quasicrystal. In this article, I show the theory including solutions for twin image problem, advanced measuring system, data processing for reconstruction of the atomic images and for obtaining accurate atomic positions, applications using resonant X-ray scattering and X-ray excited optical luminescence, and an example of XFH result on the local structure around copper in silicon steal. (author)

  1. Microstructure and corrosion properties of as sub-rapid solidification Mg-Zn-Y-Nd alloy in dynamic simulated body fluid for vascular stent application.

    Science.gov (United States)

    Wang, Jun; Wang, Liguo; Guan, Shaokang; Zhu, Shijie; Ren, Chenxing; Hou, Shusen

    2010-07-01

    Magnesium alloy stent has been employed in animal and clinical experiment in recent years. It has been verified to be biocompatible and degradable due to corrosion after being implanted into blood vessel. Mg-Y-Gd-Nd alloy is usually used to construct an absorbable magnesium alloy stent. However, the corrosion resistant of as cast Mg-Y-Gd-Nd alloy is poor relatively and the control of corrosion rate is difficult. Aiming at the requirement of endovascular stent in clinic, a new biomedical Mg-Zn-Y-Nd alloy with low Zn and Y content (Zn/Y atom ratio 6) was designed, which exists quasicrystals to improve its corrosion resistance. Additionally, sub-rapid solidification processing was applied for preparation of corrosion-resisting Mg-Zn-Y-Nd and Mg-Y-Gd-Nd alloys. Compared with the as cast sample, the corrosion behavior of alloys in dynamic simulated body fluid (SBF) (the speed of body fluid: 16 ml/800 ml min(-1)) was investigated. The results show that as sub-rapid solidification Mg-Zn-Y-Nd alloy has the better corrosion resistance in dynamic SBF due to grain refinement and fine dispersion distribution of the quasicrystals and intermetallic compounds in alpha-Mg matrix. In the as cast sample, both Mg-Zn-Y-Nd and Mg-Y-Gd-Nd alloys exhibit poor corrosion resistance. Mg-Zn-Y-Nd alloy by sub-rapid solidification processing provides excellent corrosion resistance in dynamic SBF, which open a new window for biomedical materials design, especially for vascular stent application.

  2. Recubrimiento por láser de aleaciones cuasicristalinas

    Directory of Open Access Journals (Sweden)

    Audebert, F.

    1998-04-01

    Full Text Available Quasicrystals are a new class of ordenated structures with metaestable characteristics at room temperature. Quasicrystalline phases can be obtained by rapid quenching from the melt of some alloys. In general, quasicrystals present properties which make these alloys promising for wear and corrosion resistant coatings applications. During the last years, the development of quasicrystalline coatings by means of thermal spray techniques has been impulsed. However, no references have been found of their application by means of laser techniques. In this work four claddings of quasicrystalline compositions formed over aluminum substrate, produced by a continuos CO2 laser using simultaneous powders mixture injection are presented. The claddings were characterized by X ray diffraction, scanning electron microscopy and Vickers microhardness.

    Los cuasicristales constituyen un nuevo tipo de estructuras ordenadas con características metaestables a temperatura ambiente. En general, en determinadas aleaciones, pueden obtenerse por enfriamiento rápido desde el estado líquido. Han demostrado poseer buenas propiedades para su aplicación como recubrimientos resistentes al desgaste y a la corrosión. En este sentido, desde hace unos años, se ha impulsado el desarrollo de su aplicación mediante técnicas de thermal spray, aunque no se han encontrado referencias de su aplicación mediante técnicas de láser. En este trabajo, se presenta la formación de cuatro recubrimientos de aleaciones con composiciones cuasicristalinas sobre un sustrato de aluminio, utilizando un láser continuo de CO2, con inyección simultánea del material en forma de mezcla de polvos. Los mismos fueron caracterizados por difracción de rayos X, microscopía electrónica de barrido y microdureza Vickers.

  3. Development of antifriction composites based on polypyromellitimide matrix

    Energy Technology Data Exchange (ETDEWEB)

    Olifirov, L.K., E-mail: M80786@yandex.ru [National University of Science and Technology «MISIS» (Russian Federation); Kaloshkin, S.D.; Tcherdyntsev, V.V. [National University of Science and Technology «MISIS» (Russian Federation); Danilov, V.D. [Blagonravov Institute of Machines Science of Russian Academy of Sciences (Russian Federation)

    2014-02-15

    Highlights: • Polypyromellitimide powder from waste of production polyimide films were obtained. • Structure of polypyromellitimide strongly changes after high energy ball milling. • Addition of commercial polyimide powder improve moldability of polypyromellitimide. • Polypyromellitimide based composites show good tribological properties in dry friction mode. -- Abstract: A method of polypyromellitimide powder production from PM-A film was proposed and a possibility of fabricating bulk composites based on polypyromellitimide matrix was investigated. The powders were prepared by the treatment of PM-A films in a planetary ball mill. The compositions based on polypyromellitimide containing additives of Al{sub 65}Cu{sub 23}Fe{sub 12} quasicrystals, graphite, polytetrafluoroethylene and PI-PR-20 polyimide were prepared by the solid-state mixing in an IKA M20 batch mill. The bulk samples were fabricated by the compression molding technique. Thus produced materials were characterized by using the methods of sieve analysis, scanning electron microscopy, Fourier-transform infrared spectroscopy, dynamo-mechanical analysis and tribological tests. It was found that the PM-A polypyromellitimide powder had a low sinterability and, therefore, the bulk samples of unfilled PM-A and also the composites based on PM-A containing additives of Al{sub 65}Cu{sub 23}Fe{sub 12} quasicrystals, graphite and polytetrafluoroethylene exhibited a high brittleness and show unstable behavior in the tribological tests. It was found that an addition of 15 wt.% PI-PR-20 polyimide improved the sinterability of PM-A and also provides excellent antifriction properties.

  4. Components of Adenovirus Genome Packaging

    Science.gov (United States)

    Ahi, Yadvinder S.; Mittal, Suresh K.

    2016-01-01

    Adenoviruses (AdVs) are icosahedral viruses with double-stranded DNA (dsDNA) genomes. Genome packaging in AdV is thought to be similar to that seen in dsDNA containing icosahedral bacteriophages and herpesviruses. Specific recognition of the AdV genome is mediated by a packaging domain located close to the left end of the viral genome and is mediated by the viral packaging machinery. Our understanding of the role of various components of the viral packaging machinery in AdV genome packaging has greatly advanced in recent years. Characterization of empty capsids assembled in the absence of one or more components involved in packaging, identification of the unique vertex, and demonstration of the role of IVa2, the putative packaging ATPase, in genome packaging have provided compelling evidence that AdVs follow a sequential assembly pathway. This review provides a detailed discussion on the functions of the various viral and cellular factors involved in AdV genome packaging. We conclude by briefly discussing the roles of the empty capsids, assembly intermediates, scaffolding proteins, portal vertex and DNA encapsidating enzymes in AdV assembly and packaging. PMID:27721809

  5. Dynamical, structural and chemical heterogeneities in a binary metallic glass-forming liquid

    Science.gov (United States)

    Puosi, F.; Jakse, N.; Pasturel, A.

    2018-04-01

    As it approaches the glass transition, particle motion in liquids becomes highly heterogeneous and regions with virtually no mobility coexist with liquid-like domains. This complex dynamic is believed to be responsible for different phenomena including non-exponential relaxation and the breakdown of the Stokes-Einstein relation. Understanding the relationships between dynamical heterogeneities and local structure in metallic liquids and glasses is a major scientific challenge. Here we use classical molecular dynamics simulations to study the atomic dynamics and microscopic structure of Cu50Zr50 alloy in the supercooling regime. Dynamical heterogeneities are identified via an isoconfigurational analysis. We demonstrate the transition from isolated to clustering low mobility with decreasing temperature. These slow clusters, whose sizes grow upon cooling, are also associated with concentration fluctuations, characterized by a Zr-enriched phase, with a composition CuZr2 . In addition, a structural analysis of slow clusters based on Voronoi tessellation evidences an increase with respect of the bulk system of the fraction of Cu atoms having a local icosahedral order. These results are in agreement with the consolidated scenario of the relevant role played by icosahedral order in the dynamic slowing-down in supercooled metal alloys.

  6. Electrical Characterization of Irradiated Semiconducting Amorphous Hydrogenated Boron Carbide

    Science.gov (United States)

    Peterson, George Glenn

    Semiconducting amorphous partially dehydrogenated boron carbide has been explored as a neutron voltaic for operation in radiation harsh environments, such as on deep space satellites/probes. A neutron voltaic device could also be used as a solid state neutron radiation detector to provide immediate alerts for radiation workers/students, as opposed to the passive dosimetry badges utilized today. Understanding how the irradiation environment effects the electrical properties of semiconducting amorphous partially dehydrogenated boron carbide is important to predicting the stability of these devices in operation. p-n heterojunction diodes were formed from the synthesis of semiconducting amorphous partially dehydrogenated boron carbide on silicon substrates through the use of plasma enhanced chemical vapor deposition (PECVD). Many forms of structural and electrical measurements and analysis have been performed on the p-n heterojunction devices as a function of both He+ ion and neutron irradiation including: transmission electron microscopy (TEM), selected area electron diffraction (SAED), current versus voltage I(V), capacitance versus voltage C(V), conductance versus frequency G(f), and charge carrier lifetime (tau). In stark contrast to nearly all other electronic devices, the electrical performance of these p-n heterojunction diodes improved with irradiation. This is most likely the result of bond defect passivation and resolution of degraded icosahedral based carborane structures (icosahedral molecules missing a B, C, or H atom(s)).

  7. Sequence and structural characterization of great salt lake bacteriophage CW02, a member of the T7-like supergroup.

    Science.gov (United States)

    Shen, Peter S; Domek, Matthew J; Sanz-García, Eduardo; Makaju, Aman; Taylor, Ryan M; Hoggan, Ryan; Culumber, Michele D; Oberg, Craig J; Breakwell, Donald P; Prince, John T; Belnap, David M

    2012-08-01

    Halophage CW02 infects a Salinivibrio costicola-like bacterium, SA50, isolated from the Great Salt Lake. Following isolation, cultivation, and purification, CW02 was characterized by DNA sequencing, mass spectrometry, and electron microscopy. A conserved module of structural genes places CW02 in the T7 supergroup, members of which are found in diverse aquatic environments, including marine and freshwater ecosystems. CW02 has morphological similarities to viruses of the Podoviridae family. The structure of CW02, solved by cryogenic electron microscopy and three-dimensional reconstruction, enabled the fitting of a portion of the bacteriophage HK97 capsid protein into CW02 capsid density, thereby providing additional evidence that capsid proteins of tailed double-stranded DNA phages have a conserved fold. The CW02 capsid consists of bacteriophage lambda gpD-like densities that likely contribute to particle stability. Turret-like densities were found on icosahedral vertices and may represent a unique adaptation similar to what has been seen in other extremophilic viruses that infect archaea, such as Sulfolobus turreted icosahedral virus and halophage SH1.

  8. Archaeal Viruses Multiply: Temporal Screening in a Solar Saltern

    Directory of Open Access Journals (Sweden)

    Nina S. Atanasova

    2015-04-01

    Full Text Available Hypersaline environments around the world are dominated by archaea and their viruses. To date, very little is known about these viruses and their interaction with the host strains when compared to bacterial and eukaryotic viruses. We performed the first culture-dependent temporal screening of haloarchaeal viruses and their hosts in the saltern of Samut Sakhon, Thailand, during two subsequent years (2009, 2010. Altogether we obtained 36 haloarchaeal virus isolates and 36 archaeal strains, significantly increasing the number of known archaeal virus isolates. Interestingly, the morphological distribution of our temporal isolates (head-tailed, pleomorphic, and icosahedral membrane-containing viruses was similar to the outcome of our previous spatial survey supporting the observations of a global resemblance of halophilic microorganisms and their viruses. Myoviruses represented the most abundant virus morphotype with strikingly broad host ranges. The other viral morphotypes (siphoviruses, as well as pleomorphic and icosahedral internal membrane-containing viruses were more host-specific. We also identified a group of Halorubrum strains highly susceptible to numerous different viruses (up to 26. This high virus sensitivity, the abundance of broad host range viruses, and the maintenance of infectivity over a period of one year suggest constant interplay of halophilic microorganisms and their viruses within an extreme environment.

  9. Archaeal viruses multiply: temporal screening in a solar saltern.

    Science.gov (United States)

    Atanasova, Nina S; Demina, Tatiana A; Buivydas, Andrius; Bamford, Dennis H; Oksanen, Hanna M

    2015-04-10

    Hypersaline environments around the world are dominated by archaea and their viruses. To date, very little is known about these viruses and their interaction with the host strains when compared to bacterial and eukaryotic viruses. We performed the first culture-dependent temporal screening of haloarchaeal viruses and their hosts in the saltern of Samut Sakhon, Thailand, during two subsequent years (2009, 2010). Altogether we obtained 36 haloarchaeal virus isolates and 36 archaeal strains, significantly increasing the number of known archaeal virus isolates. Interestingly, the morphological distribution of our temporal isolates (head-tailed, pleomorphic, and icosahedral membrane-containing viruses) was similar to the outcome of our previous spatial survey supporting the observations of a global resemblance of halophilic microorganisms and their viruses. Myoviruses represented the most abundant virus morphotype with strikingly broad host ranges. The other viral morphotypes (siphoviruses, as well as pleomorphic and icosahedral internal membrane-containing viruses) were more host-specific. We also identified a group of Halorubrum strains highly susceptible to numerous different viruses (up to 26). This high virus sensitivity, the abundance of broad host range viruses, and the maintenance of infectivity over a period of one year suggest constant interplay of halophilic microorganisms and their viruses within an extreme environment.

  10. Shape-dependent surface magnetism of Co-Pt and Fe-Pt nanoparticles from first principles

    Science.gov (United States)

    Liu, Zhenyu; Wang, Guofeng

    2017-12-01

    In this paper, we have performed the first-principles density functional theory calculations to predict the magnetic properties of the CoPt and FePt nanoparticles in cuboctahedral, decahedral, and icosahedral shapes. The modeled alloy nanoparticles have a diameter of 1.1 nm and consist of 31 5 d Pt atoms and 24 3 d Co (or Fe) atoms. For both CoPt and FePt, we found that the decahedral nanoparticles had appreciably lower surface magnetic moments than the cuboctahedral and icosahedral nanoparticles. Our analysis indicated that this reduction in the surface magnetism was related to a large contraction of atomic spacing and high local Co (or Fe) concentration in the surface of the decahedral nanoparticles. More interestingly, we predicted that the CoPt and FePt cuboctahedral nanoparticles exhibited dramatically different surface spin structures when noncollinear magnetism was taken into account. Our calculation results revealed that surface anisotropy energy decided the fashion of surface spin canting in the CoPt and FePt nanoparticles, confirming previous predictions from atomistic Monte Carlo simulations.

  11. How viral capsids adapt to mismatched cargoes—identifying mechanisms of morphology control with simulations

    Science.gov (United States)

    Elrad, Oren

    2009-03-01

    During the replication of many viruses, hundreds to thousands of protein subunits assemble around the viral nucleic acid to form a protein shell called a capsid. Most viruses form one particular structure with astonishing fidelity; yet, recent experiments demonstrate that capsids can assemble with different sizes and morphologies to accommodate nucleic acids or other cargoes such as functionalized nanoparticles. In this talk, we will explore the mechanisms of simultaneous assembly and cargo encapsidation with a computational model that describes the assembly of icosahedral capsids around functionalized nanoparticles. With this model, we find parameter values for which subunits faithfully form empty capsids with a single morphology, but adaptively assemble into different icosahedral morphologies around nanoparticles with different diameters. Analyzing trajectories in which adaptation is or is not successful sheds light on the mechanisms by which capsid morphology may be controlled in vitro and in vivo, and suggests experiments to test these mechanisms. We compare the simulation results to recent experiments in which Brome Mosaic Virus capsid proteins assemble around functionalized nanoparticles, and describe how future experiments can test the model predictions.

  12. Elastic properties of amorphous boron suboxide based solids studied using ab initio molecular dynamics

    International Nuclear Information System (INIS)

    Music, Denis; Schneider, Jochen M

    2008-01-01

    We have studied the correlation between chemical composition, structure, chemical bonding and elastic properties of amorphous B 6 O based solids using ab initio molecular dynamics. These solids are of different chemical compositions, but the elasticity data appear to be a function of density. This is in agreement with previous experimental observations. As the density increases from 1.64 to 2.38 g cm -3 , the elastic modulus increases from 74 to 253 GPa. This may be understood by analyzing the cohesive energy and the chemical bonding of these compounds. The cohesive energy decreases from -7.051 to -7.584 eV/atom in the elastic modulus range studied. On the basis of the electron density distributions, Mulliken analysis and radial distribution functions, icosahedral bonding is the dominating bonding type. C and N promote cross-linking of icosahedra and thus increase the density, while H hinders the cross-linking by forming OH groups. The presence of icosahedral bonding is independent of the density

  13. Hydrogen storage in nanoporous carbon materials: myth and facts.

    Science.gov (United States)

    Kowalczyk, Piotr; Hołyst, Robert; Terrones, Mauricio; Terrones, Humberto

    2007-04-21

    We used Grand canonical Monte Carlo simulation to model the hydrogen storage in the primitive, gyroid, diamond, and quasi-periodic icosahedral nanoporous carbon materials and in carbon nanotubes. We found that none of the investigated nanoporous carbon materials satisfy the US Department of Energy goal of volumetric density and mass storage for automotive application (6 wt% and 45 kg H(2) m(-3)) at considered storage condition. Our calculations indicate that quasi-periodic icosahedral nanoporous carbon material can reach the 6 wt% at 3.8 MPa and 77 K, but the volumetric density does not exceed 24 kg H(2) m(-3). The bundle of single-walled carbon nanotubes can store only up to 4.5 wt%, but with high volumetric density of 42 kg H(2) m(-3). All investigated nanoporous carbon materials are not effective against compression above 20 MPa at 77 K because the adsorbed density approaches the density of the bulk fluid. It follows from this work that geometry of carbon surfaces can enhance the storage capacity only to a limited extent. Only a combination of the most effective structure with appropriate additives (metals) can provide an efficient storage medium for hydrogen in the quest for a source of "clean" energy.

  14. Latest Insights on Adenovirus Structure and Assembly

    Directory of Open Access Journals (Sweden)

    Carmen San Martín

    2012-05-01

    Full Text Available Adenovirus (AdV capsid organization is considerably complex, not only because of its large size (~950 Å and triangulation number (pseudo T = 25, but also because it contains four types of minor proteins in specialized locations modulating the quasi-equivalent icosahedral interactions. Up until 2009, only its major components (hexon, penton, and fiber had separately been described in atomic detail. Their relationships within the virion, and the location of minor coat proteins, were inferred from combining the known crystal structures with increasingly more detailed cryo-electron microscopy (cryoEM maps. There was no structural information on assembly intermediates. Later on that year, two reports described the structural differences between the mature and immature adenoviral particle, starting to shed light on the different stages of viral assembly, and giving further insights into the roles of core and minor coat proteins during morphogenesis [1,2]. Finally, in 2010, two papers describing the atomic resolution structure of the complete virion appeared [3,4]. These reports represent a veritable tour de force for two structural biology techniques: X-ray crystallography and cryoEM, as this is the largest macromolecular complex solved at high resolution by either of them. In particular, the cryoEM analysis provided an unprecedented clear picture of the complex protein networks shaping the icosahedral shell. Here I review these latest developments in the field of AdV structural studies.

  15. Atomic structure of Zr{sub 41.2}Ti{sub 13.8}Cu{sub 12.5}Ni{sub 10}Be{sub 22.5} bulk metallic glass alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hui, X. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)], E-mail: huixd01@hotmail.com; Fang, H.Z.; Chen, G.L. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Shang, S.L.; Wang, Y. [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Qin, J.Y. [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University - Southern Campus, Jinan 250061 (China); Liu, Z.K. [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)

    2009-01-15

    Ab initio molecular dynamics (AIMD) calculations were performed on the atomic configuration of Zr{sub 41.2}Ti{sub 13.8}Cu{sub 12.5}Ni{sub 10}Be{sub 22.5} bulk metallic glass. The local structures were characterized in terms of structure factors (SF), pair correlation functions (PCF), coordinate numbers, bond pairs and Voronoi polyhedra. The glass transition temperature, generalized PCF and SF predicated by AIMD are in good agreement with the experimental data. Icosahedral short-range orders (ISRO) are found to be the most dominant, in view of the presence of the majority of bond pairs with 1551, 1541 and 1431, and Voronoi polyhedra with <0,3,6,1>, <0,2,8,1>, <0,0,12,0> and <0,2,8,4>. Icosahedral medium range orders (IMROs) are formed from icosahedra via the linkage of vertex-, edge-, face- and intercross-shared atoms. The glass structure on the nanometer scale is accumulated by polyhedra through an efficient packing mode. It is suggested that the extraordinary glass-forming ability of this alloy is essentially attributable to the formation of ISRO and IMRO, and the dense packing of atoms.

  16. Plant viral nanoparticles-based HER2 vaccine: Immune response influenced by differential transport, localization and cellular interactions of particulate carriers.

    Science.gov (United States)

    Shukla, Sourabh; Myers, Jay T; Woods, Sarah E; Gong, Xingjian; Czapar, Anna E; Commandeur, Ulrich; Huang, Alex Y; Levine, Alan D; Steinmetz, Nicole F

    2017-03-01

    Cancer vaccines are designed to elicit an endogenous adaptive immune response that can successfully recognize and eliminate residual or recurring tumors. Such approaches can potentially overcome shortcomings of passive immunotherapies by generating long-lived therapeutic effects and immune memory while limiting systemic toxicities. A critical determinant of vaccine efficacy is efficient transport and delivery of tumor-associated antigens to professional antigen presenting cells (APCs). Plant viral nanoparticles (VNPs) with natural tropism for APCs and a high payload carrying capacity may be particularly effective vaccine carriers. The applicability of VNP platform technologies is governed by stringent structure-function relationships. We compare two distinct VNP platforms: icosahedral cowpea mosaic virus (CPMV) and filamentous potato virus X (PVX). Specifically, we evaluate in vivo capabilities of engineered VNPs delivering human epidermal growth factor receptor 2 (HER2) epitopes for therapy and prophylaxis of HER2 + malignancies. Our results corroborate the structure-function relationship where icosahedral CPMV particles showed significantly enhanced lymph node transport and retention, and greater uptake by/activation of APCs compared to filamentous PVX particles. These enhanced immune cell interactions and transport properties resulted in elevated HER2-specific antibody titers raised by CPMV- vs. PVX-based peptide vaccine. The 'synthetic virology' field is rapidly expanding with numerous platforms undergoing development and preclinical testing; our studies highlight the need for systematic studies to define rules guiding the design and rational choice of platform, in the context of peptide-vaccine display technologies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The Efficiency of Delone Coverings of the Canonical Tilings MATH {cal T}(*(A_4)) -> T^*(A4) and MATH {cal T}(*(D_6)) -> T^*(D6)

    Science.gov (United States)

    Papadopolos, Zorka; Kasner, Gerald

    This chapter is devoted to the coverings of the two quasiperiodic canonical tilings MATH {cal T}(*(A_4)) -> T^*(A4) and MATH {cal T}(*(D_6)) equiv {cal T}(*(2F)) -> T^*(D6) T^*(2F), obtained by projection from the root lattices A4 and D6, respectively. In the first major part of this chapter, in Sect. 5.2, we shall introduce a Delone covering MATH {cal C}(s_{{cal) T}(*(A_4)}) -> C^sT^*(A4) of the 2-dimensional decagonal tiling MATH {cal T}(*(A_4)) -> T^*(A4). In the second major part of this chapter, Sect. 5.3, we summarize the results related to the Delone covering of the icosahedral tiling MATH {cal T}(*(D_6)) -> T^*(D6), MATH {cal C}_{{cal T}(*(D_6)}) -> CT^*(D6) and determine the zero-, single-, and double- deckings and the resulting thickness of the covering. In the conclusions section, we give some suggestions as to how the definition of the Delone covering might be changed in order to reach some real (full) covering of the icosahedral tiling MATH {cal T}(*(D_6)) -> T^*(D6). In Section 5.2 the definition of the Delone covering is also changed in order to avoid an unnecessary large thickness of the covering.

  18. Gold Nanoparticles Obtained by Bio-precipitation from Gold(III) Solutions

    International Nuclear Information System (INIS)

    Gardea-Torresdey, J.L.; Tiemann, K.J.; Gamez, G.; Dokken, K.; Tehuacanero, S.; Jose-Yacaman, M.

    1999-01-01

    The use of metal nanoparticles has shown to be very important in recent industrial applications. Currently gold nanoparticles are being produced by physical methods such as evaporation. Biological processes may be an alternative to physical methods for the production of gold nanoparticles. Alfalfa biomass has shown to be effective at passively binding and reducing gold from solutions containing gold(III) ions and resulting in the formation of gold(0) nanoparticles. High resolution microscopy has shown that five different types of gold particles are present after reaction with gold(III) ions with alfalfa biomass. These particles include: fcc tetrahedral, hexagonal platelet, icosahedral multiple twinned, decahedral multiple twinned, and irregular shaped particles. Further analysis on the frequency of distribution has shown that icosahedral and irregular particles are more frequently formed. In addition, the larger particles observed may be formed through the coalescence of smaller particles. Through modification of the chemical parameters, more uniform particle size distribution may be obtained by the alfalfa bio-reduction of gold(III) from solution

  19. Stability, elastic properties and fracture toughness of Al0.75X0.75B14 (X=Sc, Ti, V, Cr, Y, Zr, Nb, Mo) investigated using ab initio calculations

    International Nuclear Information System (INIS)

    Emmerlich, Jens; Thieme, Niklas; To Baben, Moritz; Music, Denis; Schneider, Jochen M

    2013-01-01

    The effect of the transition metal valence electron concentration on the energy of formation, effective charge of B icosahedra, elastic properties, surface energy and fracture toughness was calculated using density functional theory for icosahedral transition metal borides of AlXB 14 (X=Sc, Ti, V, Cr, Y, Zr, Nb, Mo). Consistent with previous work on AlYB 14 (Kölpin et al 2009 J. Phys.: Condens. Matter 21 355006) it is shown that phase stability is generally dependent on the effective charge of the icosahedral transition metal borides. Also, ionization potential and electronegativity are identified as parameters affecting the effective charge of B icosahedra suitable for use in predicting the phase stability. Al 0.75 Y 0.75 B 14 , Al 0.75 Sc 0.75 B 14 and Al 0.75 Zr 0.75 B 14 have been identified as promising phases for application as protective coatings as they exhibit high phase stability and stiffness combined with a comparatively high fracture toughness. (paper)

  20. Local order and crystallization of dense polydisperse hard spheres

    Science.gov (United States)

    Coslovich, Daniele; Ozawa, Misaki; Berthier, Ludovic

    2018-04-01

    Computer simulations give precious insight into the microscopic behavior of supercooled liquids and glasses, but their typical time scales are orders of magnitude shorter than the experimentally relevant ones. We recently closed this gap for a class of models of size polydisperse fluids, which we successfully equilibrate beyond laboratory time scales by means of the swap Monte Carlo algorithm. In this contribution, we study the interplay between compositional and geometric local orders in a model of polydisperse hard spheres equilibrated with this algorithm. Local compositional order has a weak state dependence, while local geometric order associated to icosahedral arrangements grows more markedly but only at very high density. We quantify the correlation lengths and the degree of sphericity associated to icosahedral structures and compare these results to those for the Wahnström Lennard-Jones mixture. Finally, we analyze the structure of very dense samples that partially crystallized following a pattern incompatible with conventional fractionation scenarios. The crystal structure has the symmetry of aluminum diboride and involves a subset of small and large particles with size ratio approximately equal to 0.5.

  1. African Swine Fever Virus Undergoes Outer Envelope Disruption, Capsid Disassembly and Inner Envelope Fusion before Core Release from Multivesicular Endosomes.

    Directory of Open Access Journals (Sweden)

    Bruno Hernáez

    2016-04-01

    Full Text Available African swine fever virus (ASFV is a nucleocytoplasmic large DNA virus (NCLDV that causes a highly lethal disease in domestic pigs. As other NCLDVs, the extracellular form of ASFV possesses a multilayered structure consisting of a genome-containing nucleoid successively wrapped by a thick protein core shell, an inner lipid membrane, an icosahedral protein capsid and an outer lipid envelope. This structural complexity suggests an intricate mechanism of internalization in order to deliver the virus genome into the cytoplasm. By using flow cytometry in combination with pharmacological entry inhibitors, as well as fluorescence and electron microscopy approaches, we have dissected the entry and uncoating pathway used by ASFV to infect the macrophage, its natural host cell. We found that purified extracellular ASFV is internalized by both constitutive macropinocytosis and clathrin-mediated endocytosis. Once inside the cell, ASFV particles move from early endosomes or macropinosomes to late, multivesicular endosomes where they become uncoated. Virus uncoating requires acidic pH and involves the disruption of the outer membrane as well as of the protein capsid. As a consequence, the inner viral membrane becomes exposed and fuses with the limiting endosomal membrane to release the viral core into the cytosol. Interestingly, virus fusion is dependent on virus protein pE248R, a transmembrane polypeptide of the inner envelope that shares sequence similarity with some members of the poxviral entry/fusion complex. Collective evidence supports an entry model for ASFV that might also explain the uncoating of other multienveloped icosahedral NCLDVs.

  2. Testing of Frank's hypothesis on a containerless packing of macroscopic soft spheres and comparison with mono-atomic metallic liquids

    International Nuclear Information System (INIS)

    Sahu, K.K.; Wessels, V.; Kelton, K.F.; Loeffler, J.F.

    2011-01-01

    Highlights: → Testing of Frank's hypothesis for Centripetal Packing (CP) has been proposed. → It is shown that CP is an idealized model for Monatomic Supercooled Liquid (MSL). → The CP is fit for comparing with studies on MSL in a containerless environment. → We measure local orders in CP by HA and BOO methods for the first time. → It is shown that icosahedral order is greater in CP than MSL and reasons explored. - Abstract: It is well-known that metallic liquids can exist below their equilibrium melting temperature for a considerable time. To explain this, Frank proposed that icosahedral ordering, incompatible with crystalline long-range order, is prevalent in the atomic structure of these liquids, stabilizing them and enabling them to be supercooled. Some studies of the atomic structures of metallic liquids using Beam-line Electrostatic Levitation (BESL; containerless melting), and other techniques, support this hypothesis . Here we examine Frank's hypothesis in a system of macroscopic, monodisperse deformable spheres obtained by containerless packing under the influence of centripetal force. The local structure of this packing is analyzed and compared with atomic ensembles of liquid transition metals obtained by containerless melting using the BESL method.

  3. Nano-jewellery: C5Au12--a gold-plated diamond at molecular level.

    Science.gov (United States)

    Naumkin, F

    2006-06-07

    A mixed carbon-metal cluster is designed by combining the tetrahedral C(5) radical (with a central atom-the skeleton of the C(5)H(12) molecule) and the spherical Au(12) layer (the external atomic shell of the Au(13) cluster). The C(5)Au(12) cluster and its negative and positive ionic derivatives, C(5)Au(12)(+/-), are investigated ab initio (DFT) in terms of optimized structures and relative energies of a few spin-states, for the icosahedral-like and octahedral-like isomers. The cluster is predicted to be generally more stable in its octahedral shape (similar to C(5)H(12)) which prevails for the negative ion and may compete with the icosahedral shape for the neutral system and positive ion. Adiabatic ionization energies (AIE) and electron affinities (AEA) of C(5)Au(12), vertical electron-detachment (VDE) energies of C(5)Au(12)(-), and vertical ionization and electron-attachment energies (VIE, VEA) of C(5)Au(12) are calculated as well, and compared with those for the corresponding isomers of the Au(13) cluster. The AIE and VIE values are found to be close for the two systems, while the AEA and VDE values are significantly reduced for the radical-based species. A simple fragment-based model is proposed for the decomposition of the total interaction into carbon-gold and gold-gold components.

  4. Viral uncoating is directional: exit of the genomic RNA in a common cold virus starts with the poly-(A tail at the 3'-end.

    Directory of Open Access Journals (Sweden)

    Shushan Harutyunyan

    Full Text Available Upon infection, many RNA viruses reorganize their capsid for release of the genome into the host cell cytosol for replication. Often, this process is triggered by receptor binding and/or by the acidic environment in endosomes. In the genus Enterovirus, which includes more than 150 human rhinovirus (HRV serotypes causing the common cold, there is persuasive evidence that the viral RNA exits single-stranded through channels formed in the protein shell. We have determined the time-dependent emergence of the RNA ends from HRV2 on incubation of virions at 56°C using hybridization with specific oligonucleotides and detection by fluorescence correlation spectroscopy. We report that psoralen UV crosslinking prevents complete RNA release, allowing for identification of the sequences remaining inside the capsid. We also present the structure of uncoating intermediates in which parts of the RNA are condensed and take the form of a rod that is directed roughly towards a two-fold icosahedral axis, the presumed RNA exit point. Taken together, in contrast to schemes frequently depicted in textbooks and reviews, our findings demonstrate that exit of the RNA starts from the 3'-end. This suggests that packaging also occurs in an ordered manner resulting in the 3'-poly-(A tail becoming located close to a position of pore formation during conversion of the virion into a subviral particle. This directional genome release may be common to many icosahedral non-enveloped single-stranded RNA viruses.

  5. Structure of Cowpea mottle virus: a consensus in the genus Carmovirus

    International Nuclear Information System (INIS)

    Ke Jiyuan; Schmidt, Timothy; Chase, Elaine; Bozarth, Robert F.; Smith, Thomas J.

    2004-01-01

    Cowpea mottle virus (CPMoV) is a T = 3 virus that belongs to Carmovirus genus of the Tombusviridae family. Here, we report the crystal structure of CPMoV determined to a resolution of 7.0 A. The structures and sequences of three Carmoviruses, CPMoV, Turnip crinkle virus (TCV), and Carnation mottle virus (CarMV) have been compared to TBSV from the Tombusvirus genus. CPMoV, TCV, and CarMV all have a deletion in βC strand in the S domain relative to TBSV that may be distinctive to the genus. Although CPMoV has an elongated C-terminus like TBSV, it does not interact with the icosahedrally related P domain as observed in TBSV. In CPMoV, the termini of A and B interact with the icosahedrally related shell domains of A and C, respectively, to form a chain of interactions around the 5-fold axes. The C subunit terminus does not, however, interact with the B subunit because of quasi-equivalent differences in the P domain orientations

  6. How Can Synchrotron Radiation Techniques Be Applied for Detecting Microstructures in Amorphous Alloys?

    Directory of Open Access Journals (Sweden)

    Gu-Qing Guo

    2015-11-01

    Full Text Available In this work, how synchrotron radiation techniques can be applied for detecting the microstructure in metallic glass (MG is studied. The unit cells are the basic structural units in crystals, though it has been suggested that the co-existence of various clusters may be the universal structural feature in MG. Therefore, it is a challenge to detect microstructures of MG even at the short-range scale by directly using synchrotron radiation techniques, such as X-ray diffraction and X-ray absorption methods. Here, a feasible scheme is developed where some state-of-the-art synchrotron radiation-based experiments can be combined with simulations to investigate the microstructure in MG. By studying a typical MG composition (Zr70Pd30, it is found that various clusters do co-exist in its microstructure, and icosahedral-like clusters are the popular structural units. This is the structural origin where there is precipitation of an icosahedral quasicrystalline phase prior to phase transformation from glass to crystal when heating Zr70Pd30 MG.

  7. Quasicrystalline and crystalline precipitation during isothermal tempering in a 12Cr-9Ni-4Mo maraging stainless steel

    International Nuclear Information System (INIS)

    Liu, P.; Stigenberg, A.H.; Nilsson, J.O.

    1995-01-01

    A thorough microstructural investigation has been performed on a high strength maraging steel of the type 12%Cr-9%Ni-4%Mo-2%Cu-1%Ti. The major precipitate formed during isothermal aging at 475 C is a quasicrystalline phase possessing icosahedral symmetry termed R'-phase with a typical chemical composition of 48%Mo-33%Fe-13%Cr-2%Ni-4%Si. At 550 C the major precipitate is trigonal R-phase with a typical composition of 45%Mo-31%Fe-18%Cr-4%Ni-2%Si. At 550 C also Laves phase with a composition of 48%Mo-35%Fe-13%Cr-2%Ni-2%Si could be observed. At both 475 and 550 C an ordered phase termed L-phase precipitated. This minority phase has an ordered face centered cubic (f.c.c.) structure of type L1 0 . Its composition is typically 9%Fe-4%Cr-52%Ni-15%Mo.-16%Ti-4%Al. R'-phase formed at 475 C transformed to R-phase and Laves phase during aging at 550 C. In an analogous manner, R-phase and Laves phase formed at 550 C transformed to R'-phase during subsequent aging at 475 C. This transformation was rationalized by a strong similarity in crystal structure between quasicrystalline R'-phase of icosahedral symmetry and Frank-Kasper phases such as R-phase and Laves phase

  8. Correlative theoretical and experimental investigation of the formation of AlYB{sub 14} and competing phases

    Energy Technology Data Exchange (ETDEWEB)

    Hunold, Oliver, E-mail: hunold@mch.rwth-aachen.de; Chen, Yen-Ting; Music, Denis; Baben, Moritz to; Achenbach, Jan-Ole; Keuter, Philipp; Schneider, Jochen M. [Materials Chemistry, RWTH Aachen University, Kopernikusstr. 10, D-52074 Aachen (Germany); Persson, Per O. Å. [Department of Physics, Chemistry and Biology (IFM), Linköping University, S-58183 Linköping (Sweden); Primetzhofer, Daniel [Department of Physics and Astronomy, Uppsala University, Lägerhyddsvägen 1, S-75120 Uppsala (Sweden)

    2016-02-28

    The phase formation in the boron-rich section of the Al-Y-B system has been explored by a correlative theoretical and experimental research approach. The structure of coatings deposited via high power pulsed magnetron sputtering from a compound target was studied using elastic recoil detection analysis, electron energy loss spectroscopy spectrum imaging, as well as X-ray and electron diffraction data. The formation of AlYB{sub 14} together with the (Y,Al)B{sub 6} impurity phase, containing 1.8 at. % less B than AlYB{sub 14}, was observed at a growth temperature of 800 °C and hence 600 °C below the bulk synthesis temperature. Based on quantum mechanical calculations, we infer that minute compositional variations within the film may be responsible for the formation of both icosahedrally bonded AlYB{sub 14} and cubic (Y,Al)B{sub 6} phases. These findings are relevant for synthesis attempts of all boron rich icosahedrally bonded compounds with the space group: Imma that form ternary phases at similar compositions.

  9. Many-body effects on the structures and stability of Ba{sup 2+}Xe{sub n} (n = 1–39, 54) clusters

    Energy Technology Data Exchange (ETDEWEB)

    Abdessalem, Kawther, E-mail: kawtherabdessalem@yahoo.fr; Habli, Héla; Ghalla, Houcine [Laboratoire de Physique Quantique, Faculté des Sciences de Monastir, Université de Monastir, Avenue de l’Environnement, 5019 Monastir (Tunisia); Yaghmour, Saud Jamil [Physics Department, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Calvo, Florent [University of Grenoble Alpes, LIPHY, F-38000 Grenoble, France and CNRS, LIPHY, F-38000 Grenoble (France); Oujia, Brahim [Laboratoire de Physique Quantique, Faculté des Sciences de Monastir, Université de Monastir, Avenue de l’Environnement, 5019 Monastir (Tunisia); Physics Department, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia)

    2014-10-21

    The structures and relative stabilities of mixed Ba{sup 2+}Xe{sub n} (n = 1–39, 54) clusters have been theoretically studied using basin-hopping global optimization. Analytical potential energy surfaces were constructed from ab initio or experimental data, assuming either purely additive interactions or including many-body polarization effects and the mutual contribution of self-consistent induced dipoles. For both models the stable structures are characterized by the barium cation being coated by a shell of xenon atoms, as expected from simple energetic arguments. Icosahedral packing is dominantly found, the exceptional stability of the icosahedral motif at n = 12 being further manifested at the size n = 32 where the basic icosahedron is surrounded by a dodecahedral cage, and at n = 54 where the transition to multilayer Mackay icosahedra has occurred. Interactions between induced dipoles generally tend to decrease the Xe-Xe binding, leading to different solvation patterns at small sizes but also favoring polyicosahedral growth. Besides attenuating relative energetic stability, many-body effects affect the structures by expanding the clusters by a few percents and allowing them to deform more.

  10. Correlative theoretical and experimental investigation of the formation of AlYB_1_4 and competing phases

    International Nuclear Information System (INIS)

    Hunold, Oliver; Chen, Yen-Ting; Music, Denis; Baben, Moritz to; Achenbach, Jan-Ole; Keuter, Philipp; Schneider, Jochen M.; Persson, Per O. Å.; Primetzhofer, Daniel

    2016-01-01

    The phase formation in the boron-rich section of the Al-Y-B system has been explored by a correlative theoretical and experimental research approach. The structure of coatings deposited via high power pulsed magnetron sputtering from a compound target was studied using elastic recoil detection analysis, electron energy loss spectroscopy spectrum imaging, as well as X-ray and electron diffraction data. The formation of AlYB_1_4 together with the (Y,Al)B_6 impurity phase, containing 1.8 at. % less B than AlYB_1_4, was observed at a growth temperature of 800 °C and hence 600 °C below the bulk synthesis temperature. Based on quantum mechanical calculations, we infer that minute compositional variations within the film may be responsible for the formation of both icosahedrally bonded AlYB_1_4 and cubic (Y,Al)B_6 phases. These findings are relevant for synthesis attempts of all boron rich icosahedrally bonded compounds with the space group: Imma that form ternary phases at similar compositions.

  11. Decoration of the Truncated Tetrahedron—An Archimedean Polyhedron—To Produce a New Class of Convex Equilateral Polyhedra with Tetrahedral Symmetry

    Directory of Open Access Journals (Sweden)

    Stan Schein

    2016-08-01

    Full Text Available The Goldberg construction of symmetric cages involves pasting a patch cut out of a regular tiling onto the faces of a Platonic host polyhedron, resulting in a cage with the same symmetry as the host. For example, cutting equilateral triangular patches from a 6.6.6 tiling of hexagons and pasting them onto the full triangular faces of an icosahedron produces icosahedral fullerene cages. Here we show that pasting cutouts from a 6.6.6 tiling onto the full hexagonal and triangular faces of an Archimedean host polyhedron, the truncated tetrahedron, produces two series of tetrahedral (Td fullerene cages. Cages in the first series have 28n2 vertices (n ≥ 1. Cages in the second (leapfrog series have 3 × 28n2. We can transform all of the cages of the first series and the smallest cage of the second series into geometrically convex equilateral polyhedra. With tetrahedral (Td symmetry, these new polyhedra constitute a new class of “convex equilateral polyhedra with polyhedral symmetry”. We also show that none of the other Archimedean polyhedra, six with octahedral symmetry and six with icosahedral, can host full-face cutouts from regular tilings to produce cages with the host’s polyhedral symmetry.

  12. Nanoquasicrystalline Al–Fe–Cr–Nb alloys produced by powder metallurgy

    Energy Technology Data Exchange (ETDEWEB)

    Audebert, F., E-mail: metal@fi.uba.ar [Advanced Materials Group, Facultad de Ingeniería, Universidad de Buenos Aires. Paseo Colón 850, Buenos Aires 1063 (Argentina); Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford (United Kingdom); Galano, M. [Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford (United Kingdom); Rios, C. Triveño; Kasama, H.; Peres, M.; Kiminami, C.; Botta, W.J.; Bolfarini, C. [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos. Rodovia Washington Luiz, km 235, 13.565-905, PO Box 676, São Carlos, SP (Brazil)

    2013-11-15

    Highlights: •The feasibility to produce nanoquasicrystalline Al–Fe–Cr–Nb bars was investigated. •Refined microstructures were obtained for a melt atomization temperature >1250 °C. •Icosahedral particles were obtained in atomized powder sizes under 75 μm. •Large fraction of icosahedral particles can be retained in bars extruded at 375 °C. •Nanoquasicrystalline bars showed high ability to retain high strength at 250 °C. -- Abstract: Nano-quasicrystalline Al–Fe–Cr based alloys produced by rapid solidification processes exhibit high strength at elevated temperatures. Nevertheless, the quasicrystalline particles in these systems become unstable at high temperature limiting the industrial applications. In early works, it was observed that the use of Nb or Ta increases the stability of the Al–Fe–Cr quasicrystalline phase delaying the microstructural transformation to higher temperatures. Thus, these nano-quasicrystalline Al-based alloys have become promising new high strength material to be used at elevated temperatures in the automotive and aeronautical industries. In previous works, nano-quasicrystalline Al–Fe–Cr–Nb based alloys were obtained by rapid solidification using the melt-spinning technique. In order to obtain bulk alloys for industrial applications other fabrication routes such as powder production by gas atomization followed by compaction and extrusion are required. In the present work, the production of Al–Fe–Cr–Nb based alloys by powder atomization at laboratory scale was investigated. The powders obtained were sieved in different ranges of sizes and the microstructures were characterised by means of X-ray diffraction, scanning and transmission electron microscopy, and energy dispersive of X-ray analysis. Mechanical properties have been measured by compression tests at room temperature and at 250 °C. It was observed that a very high temperature is required to produce these alloys by gas atomization; the icosahedral

  13. Nanoquasicrystalline Al–Fe–Cr–Nb alloys produced by powder metallurgy

    International Nuclear Information System (INIS)

    Audebert, F.; Galano, M.; Rios, C. Triveño; Kasama, H.; Peres, M.; Kiminami, C.; Botta, W.J.; Bolfarini, C.

    2013-01-01

    Highlights: •The feasibility to produce nanoquasicrystalline Al–Fe–Cr–Nb bars was investigated. •Refined microstructures were obtained for a melt atomization temperature >1250 °C. •Icosahedral particles were obtained in atomized powder sizes under 75 μm. •Large fraction of icosahedral particles can be retained in bars extruded at 375 °C. •Nanoquasicrystalline bars showed high ability to retain high strength at 250 °C. -- Abstract: Nano-quasicrystalline Al–Fe–Cr based alloys produced by rapid solidification processes exhibit high strength at elevated temperatures. Nevertheless, the quasicrystalline particles in these systems become unstable at high temperature limiting the industrial applications. In early works, it was observed that the use of Nb or Ta increases the stability of the Al–Fe–Cr quasicrystalline phase delaying the microstructural transformation to higher temperatures. Thus, these nano-quasicrystalline Al-based alloys have become promising new high strength material to be used at elevated temperatures in the automotive and aeronautical industries. In previous works, nano-quasicrystalline Al–Fe–Cr–Nb based alloys were obtained by rapid solidification using the melt-spinning technique. In order to obtain bulk alloys for industrial applications other fabrication routes such as powder production by gas atomization followed by compaction and extrusion are required. In the present work, the production of Al–Fe–Cr–Nb based alloys by powder atomization at laboratory scale was investigated. The powders obtained were sieved in different ranges of sizes and the microstructures were characterised by means of X-ray diffraction, scanning and transmission electron microscopy, and energy dispersive of X-ray analysis. Mechanical properties have been measured by compression tests at room temperature and at 250 °C. It was observed that a very high temperature is required to produce these alloys by gas atomization; the icosahedral

  14. Aperiodic Volume Optics

    Science.gov (United States)

    Gerke, Tim D.

    Presented in this thesis is an investigation into aperiodic volume optical devices. The three main topics of research and discussion are the aperiodic volume optical devices that we call computer-generated volume holograms (CGVH), defects within periodic 3D photonic crystals, and non-periodic, but ordered 3D quasicrystals. The first of these devices, CGVHs, are designed and investigated numerically and experimentally. We study the performance of multi-layered amplitude computer-generated volume holograms in terms of efficiency and angular/frequency selectivity. Simulation results show that such aperiodic devices can increase diffraction efficiency relative to periodic amplitude volume holograms while maintaining angular and wavelength selectivity. CGVHs are also designed as voxelated volumes using a new projection optimization algorithm. They are investigated using a volumetric diffraction simulation and a standard 3D beam propagation technique as well as experimentally. Both simulation and experiment verify that the structures function according to their design. These represent the first diffractive structures that have the capacity for generating arbitrary transmission and reflection wave fronts and that provide the ability for multiplexing arbitrary functionality given different illumination conditions. Also investigated and discussed in this thesis are 3D photonic crystals and quasicrystals. We demonstrate that these devices can be fabricated using a femtosecond laser direct writing system that is particularly appropriate for fabrication of such arbitrary 3D structures. We also show that these devices can provide 3D partial bandgaps which could become complete bandgaps if fabricated using high index materials or by coating lower index materials with high index metals. Our fabrication method is particularly suited to the fabrication of engineered defects within the periodic or quasi-periodic systems. We demonstrate the potential for fabricating defects within

  15. Recent advances in molecular biology of parasitic viruses.

    Science.gov (United States)

    Banik, Gouri Rani; Stark, Damien; Rashid, Harunor; Ellis, John T

    2014-01-01

    The numerous protozoa that can inhabit the human gastro-intestinal tract are known, yet little is understood of the viruses which infect these protozoa. The discovery, morphologic details, purification methods of virus-like particles, genome and proteome of the parasitic viruses, Entamoeba histolytica, Giardia lamblia, Trichomonas vaginalis, and the Eimeria sp. are described in this review. The protozoan viruses share many common features: most of them are RNA or double-stranded RNA viruses, ranging between 5 and 8 kilobases, and are spherical or icosahedral in shape with an average diameter of 30-40 nm. These viruses may influence the function and pathogenicity of the protozoa which they infect, and may be important to investigate from a clinical perspective. The viruses may be used as specific genetic transfection vectors for the parasites and may represent a research tool. This review provides an overview on recent advances in the field of protozoan viruses.

  16. Roles for the coat protein telokin-like domain and the scaffolding protein amino-terminus

    Science.gov (United States)

    Suhanovsky, Margaret M.; Teschke, Carolyn M.

    2011-01-01

    Assembly of icosahedral capsids of proper size and symmetry is not understood. Residue F170 in bacteriophage P22 coat protein is critical for conformational switching during assembly. Substitutions at this site cause assembly of tubes of hexamerically arranged coat protein. Intragenic suppressors of the ts phenotype of F170A and F170K coat protein mutants were isolated. Suppressors were repeatedly found in the coat protein telokin-like domain at position 285, which caused coat protein to assemble into petite procapsids and capsids. Petite capsid assembly strongly correlated to the side chain volume of the substituted amino acid. We hypothesize that larger side chains at position 285 torque the telokin-like domain, changing flexibility of the subunit and intercapsomer contacts. Thus, a single amino acid substitution in coat protein is sufficient to change capsid size. In addition, the products of assembly of the variant coat proteins were affected by the size of the internal scaffolding protein. PMID:21784500

  17. Variable temperature investigation of the atomic structure of gold nanoparticles

    International Nuclear Information System (INIS)

    Young, N P; Kirkland, A I; Huis, M A van; Zandbergen, H W; Xu, H

    2010-01-01

    The characterisation of nanoparticle structures is the first step towards understanding and optimising their utility in important technological applications such as catalysis. Using newly developed in-situ transmission electron microscopy (TEM) specimen holders, the temperature dependent atomic structure of gold nanoparticles in the size range 5-12 nm has been investigated. In this size interval, the decahedral morphology has been identified as the most favourable structure at or above room temperature, while particle surface roughening becomes evident above 600 0 C. An icosahedral transition has also been identified at low temperature in particles under 9 nm in diameter. These experimental results are consistent with recently published temperature dependent equilibrium phase maps for gold nanoparticles.

  18. Phase transformations in the rapidly solidified Ti{sub 40}Zr{sub 20}Hf{sub 20}Pd{sub 20} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, N. [Division of Engineering Materials, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Yao Kefu [Division of Engineering Materials, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China)], E-mail: kfyao@tsinghua.edu.cn; Louzguine-Luzgin, D.V. [Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan); Qiu Shengbao [Division of Engineering Materials, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Ranganathan, S. [Department of Metallurgy, Indian Institute of Science, Bangalore 560 012 (India); Inoue, A. [Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan)

    2007-10-15

    We report that an approximant phase was initially obtained in amorphous Ti{sub 40}Zr{sub 20}Hf{sub 20}Pd{sub 20} alloy. In the initial stage of the devitrification process, the approximant phase transforms into an icosahedral (I) phase with a high thermal stability while the cF96 Zr{sub 2}Ni-type (space group Fd3-bar m with a=1.25nm and 96 atoms cell{sup -1}) particles precipitate from the amorphous matrix. Eventually the I phase grows to several hundred nanometers when annealed at about 1000K and then transforms into the Zr{sub 2}Ni-type phase with an endothermic reaction.

  19. Biocontrol of Pectobacterium carotovorum subsp. carotovorum using bacteriophage PP1.

    Science.gov (United States)

    Lim, Jeong-A; Jee, Samnyu; Lee, Dong Hwan; Roh, Eunjung; Jung, Kyusuk; Oh, Changsik; Heu, Sunggi

    2013-08-01

    Pectobacterium carotovorum subsp. carotovorum (formerly Erwinia carotovora subsp. carotovora) is a plant pathogen that causes soft rot and stem rot diseases in several crops, including Chinese cabbage, potato, and tomato. To control this bacterium, we isolated a bacteriophage, PP1, with lytic activity against P. carotovorum subsp. carotovorum. Transmission electron microscopy revealed that the PP1 phage belongs to the Podoviridae family of the order Caudovirales, which exhibit icosahedral heads and short non-contractile tails. PP1 phage showed high specificity for P. carotovorum subsp. carotovorum, and several bacteria belonging to different species and phyla were resistant to PP1. This phage showed rapid and strong lytic activity against its host bacteria in liquid medium and was stable over a broad range of pH values. Disease caused by P. carotovorum subsp. carotovorum was significantly reduced by PP1 treatment. Overall, PP1 bacteriophage effectively controls P. carotovorum subsp. carotovorum.

  20. Evolution of local atomic structure during solidification of Al2Au liquid: An ab initio study

    International Nuclear Information System (INIS)

    Xiong, L.H.; Lou, H.B.; Wang, X.D.; Debela, T.T.; Cao, Q.P.; Zhang, D.X.; Wang, S.Y.; Wang, C.Z.; Jiang, J.Z.

    2014-01-01

    The local atomic structure evolution in Al 2 Au alloy during solidification from 2000 K to 400 K was studied by ab initio molecular dynamics simulations and analyzed using the structure factor, pair correlation functions, bond angle distributions, the Honeycutt–Anderson (HA) index and Voronoi tessellation methods. It was found that the icosahedral-like clusters are negligible in the Al 2 Au stable liquid and supercooled liquid states, and the most abundant clusters are those having HA indices of 131 and 120 or Voronoi indices of 〈0, 4, 4, 0〉, 〈0, 3, 6, 0〉 and 〈0, 4, 4, 2〉 with coordination numbers of 8, 9 and 10, respectively. These clusters are similar to the local atomic structures in the CaF 2 -type Al 2 Au crystal, revealing the existence of structure heredity between liquid and crystalline phase in Al 2 Au alloy

  1. Evaluation of structural vacancies for 1/1-Al-Re-Si approximant crystals by positron annihilation spectroscopy

    Science.gov (United States)

    Yamada, K.; Suzuki, H.; Kitahata, H.; Matsushita, Y.; Nozawa, K.; Komori, F.; Yu, R. S.; Kobayashi, Y.; Ohdaira, T.; Oshima, N.; Suzuki, R.; Takagiwa, Y.; Kimura, K.; Kanazawa, I.

    2018-01-01

    The size of structural vacancies and structural vacancy density of 1/1-Al-Re-Si approximant crystals with different Re compositions were evaluated by positron annihilation lifetime and Doppler broadening measurements. Incident positrons were found to be trapped at the monovacancy-size open space surrounded by Al atoms. From a previous analysis using the maximum entropy method and Rietveld method, such an open space is shown to correspond to the centre of Al icosahedral clusters, which locates at the vertex and body centre. The structural vacancy density of non-metallic Al73Re17Si10 was larger than that of metallic Al73Re15Si12. The observed difference in the structural vacancy density reflects that in bonding nature and may explain that in the physical properties of the two samples.

  2. Molecular dynamics of coalescence and collisions of silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Guevara-Chapa, Enrique, E-mail: enrique_guevara@hotmail.com [Universidad Autónoma de Nuevo León, Facultad de Ciencias Físico Matemáticas (Mexico); Mejía-Rosales, Sergio [Universidad Autónoma de Nuevo León, Center for Innovation, Research and Development in Engineering and Technology (CIIDIT), and CICFIM-Facultad de Ciencias Físico Matemáticas (Mexico)

    2014-12-15

    We study how different relative orientations and impact velocity on the collision of two silver nanoparticles affect the first stages of the formation of a new, larger nanoparticle. In order to do this, we implemented a set of molecular dynamics simulations on the NVE ensemble on pairs of silver icosahedral nanoparticles at several relative orientations, that allowed us to follow the dynamics of the first nanoseconds of the coalescence processes. Using bond angle analysis, we found that the initial relative orientation of the twin planes has a critical role on the final stability of the resulting particle, and on the details of the dynamics itself. When the original particles have their closest twins aligned to each other, the formed nanoparticle will likely stabilize its structure onto a particle with a defined center and a low surface-to-volume ratio, while nanoparticles with misaligned twins will promote the formation of highly defective particles with a high inner energy.

  3. A dynamic lattice searching method with rotation operation for optimization of large clusters

    International Nuclear Information System (INIS)

    Wu Xia; Cai Wensheng; Shao Xueguang

    2009-01-01

    Global optimization of large clusters has been a difficult task, though much effort has been paid and many efficient methods have been proposed. During our works, a rotation operation (RO) is designed to realize the structural transformation from decahedra to icosahedra for the optimization of large clusters, by rotating the atoms below the center atom with a definite degree around the fivefold axis. Based on the RO, a development of the previous dynamic lattice searching with constructed core (DLSc), named as DLSc-RO, is presented. With an investigation of the method for the optimization of Lennard-Jones (LJ) clusters, i.e., LJ 500 , LJ 561 , LJ 600 , LJ 665-667 , LJ 670 , LJ 685 , and LJ 923 , Morse clusters, silver clusters by Gupta potential, and aluminum clusters by NP-B potential, it was found that both the global minima with icosahedral and decahedral motifs can be obtained, and the method is proved to be efficient and universal.

  4. Serial femtosecond X-ray diffraction of enveloped virus microcrystals

    Directory of Open Access Journals (Sweden)

    Robert M. Lawrence

    2015-07-01

    Full Text Available Serial femtosecond crystallography (SFX using X-ray free-electron lasers has produced high-resolution, room temperature, time-resolved protein structures. We report preliminary SFX of Sindbis virus, an enveloped icosahedral RNA virus with ∼700 Å diameter. Microcrystals delivered in viscous agarose medium diffracted to ∼40 Å resolution. Small-angle diffuse X-ray scattering overlaid Bragg peaks and analysis suggests this results from molecular transforms of individual particles. Viral proteins undergo structural changes during entry and infection, which could, in principle, be studied with SFX. This is an important step toward determining room temperature structures from virus microcrystals that may enable time-resolved studies of enveloped viruses.

  5. Molecular dynamics of coalescence and collisions of silver nanoparticles

    International Nuclear Information System (INIS)

    Guevara-Chapa, Enrique; Mejía-Rosales, Sergio

    2014-01-01

    We study how different relative orientations and impact velocity on the collision of two silver nanoparticles affect the first stages of the formation of a new, larger nanoparticle. In order to do this, we implemented a set of molecular dynamics simulations on the NVE ensemble on pairs of silver icosahedral nanoparticles at several relative orientations, that allowed us to follow the dynamics of the first nanoseconds of the coalescence processes. Using bond angle analysis, we found that the initial relative orientation of the twin planes has a critical role on the final stability of the resulting particle, and on the details of the dynamics itself. When the original particles have their closest twins aligned to each other, the formed nanoparticle will likely stabilize its structure onto a particle with a defined center and a low surface-to-volume ratio, while nanoparticles with misaligned twins will promote the formation of highly defective particles with a high inner energy

  6. A Molecular Dynamics Study of the Epitaxial Growth of Metallic Nanoclusters Softly Deposited on Substrates with Very Different Lattice Parameter

    International Nuclear Information System (INIS)

    Jimenez-Saez, J C; Perez-MartIn, A M C; Jimenez-RodrIguez, J J

    2007-01-01

    The soft deposition of Cu and Au clusters on Au(001) and Cu(001) surfaces respectively is studied by constant-temperature molecular-dynamics simulations. The initial shape of the nanoclusters is icosahedral or truncated octahedral (Wulff type). Their number of atoms ranges between 12 and 1289 atoms. Bombardment energy is of the order of a few meV/atom. The atomic interactions are mimicked by a many-body potential based on the tightbinding model. The effect of the temperature as activation to get the complete epitaxy is analysed. We have found that Cu clusters manage to align their {002} planes with the substrate by increasing the temperature. However, there is not epitaxial growth in any case since the lattice becomes bcc or important stacking faults are generated. For Au clusters, the alignment of these planes is practically independent of the temperature

  7. 'Let the phage do the work': Using the phage P22 coat protein structures as a framework to understand its folding and assembly mutants

    International Nuclear Information System (INIS)

    Teschke, Carolyn M.; Parent, Kristin N.

    2010-01-01

    The amino acid sequence of viral capsid proteins contains information about their folding, structure and self-assembly processes. While some viruses assemble from small preformed oligomers of coat proteins, other viruses such as phage P22 and herpesvirus assemble from monomeric proteins (Fuller and King, 1980). The subunit assembly process is strictly controlled through protein:protein interactions such that icosahedral structures are formed with specific symmetries, rather than aberrant structures. dsDNA viruses commonly assemble by first forming a precursor capsid that serves as a DNA packaging machine. DNA packaging is accompanied by a conformational transition of the small precursor procapsid into a larger capsid for isometric viruses. Here we highlight the pseudo-atomic structures of phage P22 coat protein and rationalize several decades of data about P22 coat protein folding, assembly and maturation generated from a combination of genetics and biochemistry.

  8. Studies on the phase diagram of boron employing a neural network potential

    Energy Technology Data Exchange (ETDEWEB)

    Morawietz, Tobias; Behler, Joerg [Lehrstuhl fuer Theoretische Chemie, Ruhr-Universitaet Bochum (Germany); Parrinello, Michele [Department of Chemistry and Applied Biosciences, ETH Zuerich (Switzerland)

    2009-07-01

    The crystalline phases of elemental boron have a structural complexity unique in the periodic table. The complex connection pattern of the icosahedral building blocks forms a formidable challenge for the construction of accurate but efficient potentials. We present a high-dimensional neural network potential for boron, which is based on first-principles calculations and can be systematically improved. The potential is several orders of magnitude faster to evaluate than the underlying density-functional theory calculations and allows to perform long molecular dynamics and metadynamics simulations of large system. By a stepwise refinement of the potential and an application of the potential in metadynamics simulations we show that starting from random atomic positions the structure of {alpha}-boron is predicted in agreement with experiment. Further, pressure-induced phase transitions of {alpha}-boron are discussed.

  9. A comparison of interatomic potentials for modeling tungsten nanocluster structures

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Jiannan; Shu, Xiaolin, E-mail: shuxlin@buaa.edu.cn; Jin, Shuo; Zhang, Xuesong; Zhang, Ying; Lu, Guang-Hong

    2017-02-15

    Molecular dynamic simulation is utilized to study the nanocluster and the fuzz structure on the PFM surface of tungsten. The polyhedral and linear cluster structures based on the icosahedron, cuboctahedron and rhombic dodecahedron are built up. Three interatomic potentials are used in calculating the relationship between the cluster energy and the number of atoms. The results are compared with first-principles calculation to show each potential’s best application scale. Furthermore, the transition between the icosahedral and the cuboctahedral clusters is observed in molecular dynamic simulation at different temperatures, which follows a critical curve for different numbers of atoms. The linear structures are proved to be stable at experimental temperatures by thermodynamics. The work presents a selection of interatomic potentials in simulating tungsten cluster systems and helps researchers understand the growth and evolution laws of clusters and the fuzz-like structure formation process in fusion devices.

  10. Evolution of local atomic structure during solidification of Al2Au liquid: An ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, L H; Lou, H B; Wang, X D; Debela, T T; Cao, Q P; Zhang, D X; Wang, S Y; Wang, C Z; Jiang, J Z

    2014-04-01

    The local atomic structure evolution in Al2Au alloy during solidification from 2000 K to 400 K was studied by ab initio molecular dynamics simulations and analyzed using the structure factor, pair correlation functions, bond angle distributions, the Honeycutt-Anderson (HA) index and Voronoi tessellation methods. It was found that the icosahedral-like clusters are negligible in the Al2Au stable liquid and supercooled liquid states, and the most abundant clusters are those having HA indices of 131 and 120 or Voronoi indices of < 0,4,4,0 >, < 0,3, 6,0 > and < 0,4,4,2 > with coordination numbers of 8, 9 and 10, respectively. These clusters are similar to the local atomic structures in the CaF2-type Al2Au crystal, revealing the existence of structure heredity between liquid and crystalline phase in Al2Au alloy. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Effect of silver nanoparticles on the dielectric properties of holmium doped silica glass

    International Nuclear Information System (INIS)

    Rejikumar, P.R.; Jyothy, P.V.; Mathew, Siby; Thomas, Vinoy; Unnikrishnan, N.V.

    2010-01-01

    The effect of silver nanoparticle co-doping on the dielectric properties of holmium doped silica glasses was studied. Silver nanoparticles of size between 20 and 22 nm were produced by the sol-gel technique. One of the samples showed an icosahedral morphology of the nanocrystal formed, along with spherical morphology. It was found that the tuning of the dielectric constant values could be accomplished by co-doping. The sample, with 1 wt% of Ho, had low dielectric constant values within the range 100 Hz-3 MHz due to the formation of quasi-molecular structures of holmium. This effect was evaded to some extent with silver co-doping as a result of the interdispersion of holmium complexes. Also it was found that the co-doping produced a higher dielectric loss which was calculated from the tan δ-log f graph. The Cole-Cole parameters and the Jonscher power law parameters were also calculated and are presented.

  12. First-principles studies on graphene-supported transition metal clusters

    International Nuclear Information System (INIS)

    Sahoo, Sanjubala; Khanna, Shiv N.; Gruner, Markus E.; Entel, Peter

    2014-01-01

    Theoretical studies on the structure, stability, and magnetic properties of icosahedral TM 13 (TM = Fe, Co, Ni) clusters, deposited on pristine (defect free) and defective graphene sheet as well as graphene flakes, have been carried out within a gradient corrected density functional framework. The defects considered in our study include a carbon vacancy for the graphene sheet and a five-membered and a seven-membered ring structures for graphene flakes (finite graphene chunks). It is observed that the presence of defect in the substrate has a profound influence on the electronic structure and magnetic properties of graphene-transition metal complexes, thereby increasing the binding strength of the TM cluster on to the graphene substrate. Among TM 13 clusters, Co 13 is absorbed relatively more strongly on pristine and defective graphene as compared to Fe 13 and Ni 13 clusters. The adsorbed clusters show reduced magnetic moment compared to the free clusters

  13. Ab initio molecular dynamics simulation of the liquid and amorphous structure of Mg65Cu25Gd10 alloy

    International Nuclear Information System (INIS)

    Gao, R.; Zhao, Y.F.; Liu, X.J.; Liu, Z.K.; Hui, X.

    2013-01-01

    The liquid and amorphous structures of Mg 65 Cu 25 Gd 10 alloy were studied by using molecular dynamics methods within the frame of density functional theory. The generalized and partial pair correlation functions, structure factors, coordination numbers and bond pairs for this alloy were analyzed. It is shown that this alloy exhibit typical characterization of liquid structure at the temperature higher than 750 K, and of amorphous structure with shoulders on the second diffuse peaks of the pair correlation functions curves at room temperature. The local short and medium range ordering tends to be increased with the decrease of temperature. Both the liquid and the amorphous structures are mainly composed of icosahedral type of bond pairs. Perfect and distorted icosahedra can be differentiated from the atomic configuration of the amorphous alloy

  14. Structural distortions in 5-10 nm silver nanoparticles under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Koski, Kristie J.; Kamp, Noelle M.; Kunz, Martin; Knight, Jason K.; Alivisatos, A.P.; Smith, R.K.

    2008-10-13

    We present experimental evidence that silver nanoparticles in the size range of 5-10 nm undergo a reversible structural transformation under hydrostatic pressures up to 10 GPa. We have used x-ray diffraction with a synchrotron light source to investigate pressure-dependent and size-dependent trends in the crystal structure of silver nanoparticles in a hydrostatic medium compressed in a diamond-anvil cell. Results suggest a reversible linear pressure-dependent rhombohedral distortion which has not been previously observed in bulk silver. We propose a mechanism for this transition that considers the bond-length distribution in idealized multiply twinned icosahedral particles. To further support this hypothesis, we also show that similar measurements of single-crystal platinum nanoparticles reveal no such distortions.

  15. Investigating the thermal dissociation of viral capsid by lattice model

    Science.gov (United States)

    Chen, Jingzhi; Chevreuil, Maelenn; Combet, Sophie; Lansac, Yves; Tresset, Guillaume

    2017-11-01

    The dissociation of icosahedral viral capsids was investigated by a homogeneous and a heterogeneous lattice model. In thermal dissociation experiments with cowpea chlorotic mottle virus and probed by small-angle neutron scattering, we observed a slight shrinkage of viral capsids, which can be related to the strengthening of the hydrophobic interaction between subunits at increasing temperature. By considering the temperature dependence of hydrophobic interaction in the homogeneous lattice model, we were able to give a better estimate of the effective charge. In the heterogeneous lattice model, two sets of lattice sites represented different capsid subunits with asymmetric interaction strengths. In that case, the dissociation of capsids was found to shift from a sharp one-step transition to a gradual two-step transition by weakening the hydrophobic interaction between AB and CC subunits. We anticipate that such lattice models will shed further light on the statistical mechanics underlying virus assembly and disassembly.

  16. Variable temperature investigation of the atomic structure of gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Young, N P; Kirkland, A I [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Huis, M A van; Zandbergen, H W [Kavli Insitute of Nanoscience, Delft University of Technolgy, Lorentzweg 1, NL-2628CJ, Delft (Netherlands); Xu, H, E-mail: neil.young@materials.ox.ac.u [Department of Geology and Geophysics, and Materials Science Program, University of Wisconsin-Madison, Madison, Wisconsin (United States)

    2010-07-01

    The characterisation of nanoparticle structures is the first step towards understanding and optimising their utility in important technological applications such as catalysis. Using newly developed in-situ transmission electron microscopy (TEM) specimen holders, the temperature dependent atomic structure of gold nanoparticles in the size range 5-12 nm has been investigated. In this size interval, the decahedral morphology has been identified as the most favourable structure at or above room temperature, while particle surface roughening becomes evident above 600{sup 0}C. An icosahedral transition has also been identified at low temperature in particles under 9 nm in diameter. These experimental results are consistent with recently published temperature dependent equilibrium phase maps for gold nanoparticles.

  17. Interplay between spherical confinement and particle shape on the self-assembly of rounded cubes.

    Science.gov (United States)

    Wang, Da; Hermes, Michiel; Kotni, Ramakrishna; Wu, Yaoting; Tasios, Nikos; Liu, Yang; de Nijs, Bart; van der Wee, Ernest B; Murray, Christopher B; Dijkstra, Marjolein; van Blaaderen, Alfons

    2018-06-08

    Self-assembly of nanoparticles (NPs) inside drying emulsion droplets provides a general strategy for hierarchical structuring of matter at different length scales. The local orientation of neighboring crystalline NPs can be crucial to optimize for instance the optical and electronic properties of the self-assembled superstructures. By integrating experiments and computer simulations, we demonstrate that the orientational correlations of cubic NPs inside drying emulsion droplets are significantly determined by their flat faces. We analyze the rich interplay of positional and orientational order as the particle shape changes from a sharp cube to a rounded cube. Sharp cubes strongly align to form simple-cubic superstructures whereas rounded cubes assemble into icosahedral clusters with additionally strong local orientational correlations. This demonstrates that the interplay between packing, confinement and shape can be utilized to develop new materials with novel properties.

  18. Microstructure and mechanical properties of a Mg–Zn–Y alloy produced by a powder metallurgy route

    Energy Technology Data Exchange (ETDEWEB)

    Asgharzadeh, H. [Department of Materials Engineering, Faculty of Mechanical Engineering, University of Tabriz, P.O. Box 51666-16471, Tabriz (Iran, Islamic Republic of); Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Yoon, E.Y. [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Chae, H.J.; Kim, T.S. [Korea Institute for Rare Metals, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of); Lee, J.W. [Korea Institute of Materials Science (KIMS), Changwon 641-831 (Korea, Republic of); Kim, H.S., E-mail: hskim@postech.ac.kr [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)

    2014-02-15

    In this paper, a bulk Mg–Zn–Y alloy reinforced by quasicrystalline particles was produced by hot extrusion of rapidly-solidified powders. MgZn{sub 4.3}Y{sub 0.7} powders with different particle sizes were prepared by an inert gas atomizer and then extruded at 380 °C with extrusion ratios of 10:1, 15:1, and 20:1. Microstructural studies were performed using an optical microscope, scanning electron microscope, transmission electron microscope, and X-ray diffraction. The mechanical strength and hardness of the extruded materials were enhanced by employing finer Mg alloy powders. More uniform deformation of powders in extruded billets with good tensile properties was achieved at higher extrusion ratios, especially for finer powders. The high strength of the MgZn{sub 4.3}Y{sub 0.7} alloy was preserved at elevated temperatures due to the presence of icosahedral phase nanoparticles.

  19. Interplay of electronic and geometry shell effects in properties of neutral and charged Sr clusters

    DEFF Research Database (Denmark)

    Lyalin, Andrey; Solov'yov, Ilia; Solov'yov, Andrey V.

    2007-01-01

    that the size evolution of structural and electronic properties of strontium clusters is governed by an interplay of the electronic and geometry shell closures. Influence of the electronic shell effects on structural rearrangements can lead to violation of the icosahedral growth motif of strontium clusters......The optimized structure and electronic properties of neutral, singly, and doubly charged strontium clusters have been investigated using ab initio theoretical methods based on density-functional theory. We have systematically calculated the optimized geometries of neutral, singly, and doubly...... charged strontium clusters consisting of up to 14 atoms, average bonding distances, electronic shell closures, binding energies per atom, the gap between the highest occupied and the lowest unoccupied molecular orbitals, and spectra of the density of electronic states (DOS). It is demonstrated...

  20. Ab initio correlated study of the Al13H- anion: Isomers, their kinetic stability and vertical detachment energies

    Science.gov (United States)

    Moc, Jerzy

    2012-01-01

    We report correlated ab initio calculations for the Al13H- cluster anion isomers, their kinetic stability and vertical detachment energies (VDEs). Of the two most energetically favored anion structures involving H atom in terminal and threefold bridged sites of the icosahedral Al13-, the higher energy ‘threefold bridged' isomer is shown to be of low kinetic stability. Our results are consistent with the recent photoelectron spectroscopy (PE) study of Grubisic et al. who observed two distinct Al13H- isomers, one of them identified as ‘metastable'. The VDE energies computed at the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVDZ level for the ‘terminal' and ‘threefold bridged' Al13H- isomers of 3.21 and 2.32 eV are in good agreement with those determined in the PE study.

  1. Structure of Hepatitis E Virion-Sized Particle Reveals an RNA-Dependent Viral Assembly Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Xing, L.; Wall, J.; Li, T.-C.; Mayazaki, N.; Simon, M. N.; Moore, M.; Wang, C.-Y.; Takeda, N.; Wakita, T.; Miyamura, T.; Cheng, R. H.

    2010-10-22

    Hepatitis E virus (HEV) induces acute hepatitis in humans with a high fatality rate in pregnant women. There is a need for anti-HEV research to understand the assembly process of HEV native capsid. Here, we produced a large virion-sized and a small T=1 capsid by expressing the HEV capsid protein in insect cells with and without the N-terminal 111 residues, respectively, for comparative structural analysis. The virion-sized capsid demonstrates a T=3 icosahedral lattice and contains RNA fragment in contrast to the RNA-free T=1 capsid. However, both capsids shared common decameric organization. The in vitro assembly further demonstrated that HEV capsid protein had the intrinsic ability to form decameric intermediate. Our data suggest that RNA binding is the extrinsic factor essential for the assembly of HEV native capsids.

  2. Studies of archaeal virus-host systems in thermal environments

    DEFF Research Database (Denmark)

    Erdmann, Susanne

    Since the first organisms were isolated from hot springs, a large number of viruses were found in these geothermal active environments, most of them infecting Archaea. Archaeal viruses form a separate lineage from those of Eukarya and Bacteria often showing exceptional morphologies and genomic...... features. Most of the isolated archaeal viruses infecting members of the Crenarchaeota have been characterized regarding their genome, the structure of their virions and their influence on the host viability. Only a few, SIRV a rod-shaped and STIV an icosahedrical virus, have been subjected to more...... extensive studies. This work investigates tailed spindle-shaped viruses that we have isolated from different geographical acidothermal, terrestrial hot springs and they primarily infect members of the genus Sulfolobales. The wide distribution of these viruses was established and, moreover, genomic...

  3. Structural Origin of the Enhanced Glass-Forming Ability Induced by Microalloying Y in the ZrCuAl Alloy

    Directory of Open Access Journals (Sweden)

    Gu-Qing Guo

    2016-03-01

    Full Text Available In this work, the structural origin of the enhanced glass-forming ability induced by microalloying Y in a ZrCuAl multicomponent system is studied by performing synchrotron radiation experiments combined with simulations. It is revealed that the addition of Y leads to the optimization of local structures, including: (1 more Zr-centered and Y-centered icosahedral-like clusters occur in the microstructure; (2 the atomic packing efficiency inside clusters and the regularity of clusters are both enhanced. These structural optimizations help to stabilize the amorphous structure in the ZrCuAlY system, and lead to a high glass-forming ability (GFA. The present work provides an understanding of GFAs in multicomponent alloys and will shed light on the development of more metallic glasses with high GFAs.

  4. Molecular dynamics simulation of structural changes during the collision of copper nanoparticles

    International Nuclear Information System (INIS)

    Rojas T, Justo; Instituto Peruano de Energia Nuclear, Lima; Copa, Betty

    2009-01-01

    Molecular dynamics simulations with embedded-atom potential (EAM) have been performed to study the energetic and structural changes during the collision and coalescence of two Cu n nanoparticles. We simulated collision of nanoparticles at several temperatures below the melting point and with different impact energy. Analyzing the potential energy change during the collision we identify three clearly defined stages. The pair correlation function and the pair analysis technique are used to reveal the structural changes in the collision process. The variation in the time of the population of different pairs has been quantified, being observed diverse structural transformations. During the collision of two equal icosahedral nanoparticles ( Cu 55 ) has been observed different behavior of 1551 pairs depending on the impact velocity. (author).

  5. Development of an x-ray beam line at the NSLS for studies in materials science using x-ray absorption spectroscopy: Annual progress report

    International Nuclear Information System (INIS)

    Sayers, D.E.

    1987-01-01

    The research programs reported span virtually the entire range of condensed matter studies involving the fields of solid state physics, chemistry, electrochemistry, materials science and biochemistry. Results are discussed for various groups. Topics reported include work on amorphous chalcogenide semiconductors, particularly photostructural changes, kinetics of structural changes and rapid quenching, bond strengths, force constants and phonons. Also reported are temperature dependent EXAFS studies of bonding in high temperature alloys, amorphous systems, disordered alloys and studies of resolve electronic structure, EXAFS and XANES studies of permanent magnet systems based on Nd 2 Fe 14 B, glancing angle EXAFS study of Nb/Al and Nb/Si interfacial systems, x-ray absorption of krypton-implanted solids and high dose implants into silicon, and x-ray absorption and EXAFS studies of superconducting oxide compounds of Cu and related magnetic systems. Work is also reported on XAFS measurements on the icosahedral phase

  6. A comparison of interatomic potentials for modeling tungsten nanocluster structures

    International Nuclear Information System (INIS)

    Hao, Jiannan; Shu, Xiaolin; Jin, Shuo; Zhang, Xuesong; Zhang, Ying; Lu, Guang-Hong

    2017-01-01

    Molecular dynamic simulation is utilized to study the nanocluster and the fuzz structure on the PFM surface of tungsten. The polyhedral and linear cluster structures based on the icosahedron, cuboctahedron and rhombic dodecahedron are built up. Three interatomic potentials are used in calculating the relationship between the cluster energy and the number of atoms. The results are compared with first-principles calculation to show each potential’s best application scale. Furthermore, the transition between the icosahedral and the cuboctahedral clusters is observed in molecular dynamic simulation at different temperatures, which follows a critical curve for different numbers of atoms. The linear structures are proved to be stable at experimental temperatures by thermodynamics. The work presents a selection of interatomic potentials in simulating tungsten cluster systems and helps researchers understand the growth and evolution laws of clusters and the fuzz-like structure formation process in fusion devices.

  7. Cluster fusion algorithm: application to Lennard-Jones clusters

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Solov'yov, Andrey V.; Greiner, Walter

    2006-01-01

    paths up to the cluster size of 150 atoms. We demonstrate that in this way all known global minima structures of the Lennard-Jones clusters can be found. Our method provides an efficient tool for the calculation and analysis of atomic cluster structure. With its use we justify the magic number sequence......We present a new general theoretical framework for modelling the cluster structure and apply it to description of the Lennard-Jones clusters. Starting from the initial tetrahedral cluster configuration, adding new atoms to the system and absorbing its energy at each step, we find cluster growing...... for the clusters of noble gas atoms and compare it with experimental observations. We report the striking correspondence of the peaks in the dependence of the second derivative of the binding energy per atom on cluster size calculated for the chain of the Lennard-Jones clusters based on the icosahedral symmetry...

  8. Cluster fusion algorithm: application to Lennard-Jones clusters

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Solov'yov, Andrey V.; Greiner, Walter

    2008-01-01

    paths up to the cluster size of 150 atoms. We demonstrate that in this way all known global minima structures of the Lennard-Jones clusters can be found. Our method provides an efficient tool for the calculation and analysis of atomic cluster structure. With its use we justify the magic number sequence......We present a new general theoretical framework for modelling the cluster structure and apply it to description of the Lennard-Jones clusters. Starting from the initial tetrahedral cluster configuration, adding new atoms to the system and absorbing its energy at each step, we find cluster growing...... for the clusters of noble gas atoms and compare it with experimental observations. We report the striking correspondence of the peaks in the dependence of the second derivative of the binding energy per atom on cluster size calculated for the chain of the Lennard-Jones clusters based on the icosahedral symmetry...

  9. Hardness and Elastic Modulus on Six-Fold Symmetry Gold Nanoparticles

    Science.gov (United States)

    Ramos, Manuel; Ortiz-Jordan, Luis; Hurtado-Macias, Abel; Flores, Sergio; Elizalde-Galindo, José T.; Rocha, Carmen; Torres, Brenda; Zarei-Chaleshtori, Maryam; Chianelli, Russell R.

    2013-01-01

    The chemical synthesis of gold nanoparticles (NP) by using gold (III) chloride trihydrate (HAuCl∙3H2O) and sodium citrate as a reducing agent in aqueous conditions at 100 °C is presented here. Gold nanoparticles areformed by a galvanic replacement mechanism as described by Lee and Messiel. Morphology of gold-NP was analyzed by way of high-resolution transmission electron microscopy; results indicate a six-fold icosahedral symmetry with an average size distribution of 22 nm. In order to understand the mechanical behaviors, like hardness and elastic moduli, gold-NP were subjected to nanoindentation measurements—obtaining a hardness value of 1.72 GPa and elastic modulus of 100 GPa in a 3–5 nm of displacement at the nanoparticle’s surface. PMID:28809302

  10. Syntheses of super-hard boron-rich solids in the B-C-N-O system

    Science.gov (United States)

    Hubert, Herve Pierre

    Alpha-rhombohedral (alpha-rh.) B-rich materials belonging to the B-C-N-O system were prepared using high-pressure, high-temperature techniques. The samples were synthesized using a multianvil device and characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and parallel electron energy-loss spectroscopy (PEELS). In the B-O system, the formation of BsbxO materials produced from mixtures of B and Bsb2Osb3 between 1 to 10 GPa and 1000 to 1800sp°C was investigated. Graphitic and diamond-like Bsb2O, reported in previous studies, were not detected. The refractory boron suboxide, nominally Bsb6O, which has the alpha-rh. B structure, is the dominant suboxide in the P and T range of our investigation. High-pressure techniques were used successfully to synthesize boron suboxide of improved purity and crystallinity, and less oxygen-deficient (i.e., closer to the nominal Bsb6O composition) in comparison to room-pressure syntheses. Quantitative analyses indicate compositions of Bsb6Osb{0.95} and Bsb6Osb{0.77} for high-pressure and room-pressure samples, respectively. The first preparation, between 4 to 5.5 GPa, of Bsb6O in which the preferred form of the material is as macroscopic near-perfect regular icosahedra (to 30 mum in diameter) is reported. The Bsb6O icosahedra are similar to the multiply-twinned particles observed in some cubic materials. However, a major difference is that Bsb6O has a rhombohedral structure that closely fits the geometrical requirements for obtaining icosahedral twins. The Bsb6O grains are neither 3D-periodic nor quasicrystalline. Their formation can be described as a Mackay packing of icosahedral Bsb{12} units and provides an alternative to crystal formation by propagation of translational symmetry. Icosahedral twins ranging from 20 nm to 30 mum in diameter, as well as micron-sized euhedral crystals (to 40 mum) were prepared. The structural similarity of compounds with the alpha

  11. Crystallization and preliminary X-ray diffraction analysis of red clover necrotic mosaic virus

    International Nuclear Information System (INIS)

    Martin, Stanton L.; Guenther, Richard H.; Sit, Tim L.; Swartz, Paul D.; Meilleur, Flora; Lommel, Steven A.; Rose, Robert B.

    2010-01-01

    Virions of red clover necrotic mosaic virus have been purified and crystallized. The space group was determined to be I23, with unit-cell parameter a = 377.8 Å. The crystals diffracted to 4 Å resolution. Red clover necrotic mosaic virus (RCNMV) is a species that belongs to the Tombusviridae family of plant viruses with a T = 3 icosahedral capsid. RCNMV virions were purified and were crystallized for X-ray analysis using the hanging-drop vapor-diffusion method. Self-rotation functions and systematic absences identified the space group as I23, with two virions in the unit cell. The crystals diffracted to better than 4 Å resolution but were very radiation-sensitive, causing rapid decay of the high-resolution reflections. The data were processed to 6 Å in the analysis presented here

  12. Pressure and cooling rate effect on polyhedron clusters in Cu-Al alloy by using molecular dynamics simulation

    Science.gov (United States)

    Celik, Fatih Ahmet

    2014-10-01

    In this study, the microstructural evolution of crystal-type and icosahedral (icos)-type polyhedrons in Cu-50 at%Al alloy based on the embedded atom method (EAM) model is studied at two cooling rates under normal and high pressures by using the molecular dynamics (MD) simulation method. The cluster-type index method (CTIM) which describes icos and defective icos polyhedrons and the new cluster-type index method (CTIM-2) which describes crystal-type polyhedrons have been used to perform polyhedron analysis in the model alloy system. The results of our simulations demonstrate that the effects of the cooling rate and pressure play an important role in the numbers of polyhedrons and their structures in the system.

  13. Pressure and cooling rate effect on polyhedron clusters in Cu–Al alloy by using molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Celik, Fatih Ahmet, E-mail: facelik@beu.edu.tr

    2014-10-01

    In this study, the microstructural evolution of crystal-type and icosahedral (icos)-type polyhedrons in Cu–50 at%Al alloy based on the embedded atom method (EAM) model is studied at two cooling rates under normal and high pressures by using the molecular dynamics (MD) simulation method. The cluster-type index method (CTIM) which describes icos and defective icos polyhedrons and the new cluster-type index method (CTIM-2) which describes crystal-type polyhedrons have been used to perform polyhedron analysis in the model alloy system. The results of our simulations demonstrate that the effects of the cooling rate and pressure play an important role in the numbers of polyhedrons and their structures in the system.

  14. Single-molecule packaging initiation in real time by a viral DNA packaging machine from bacteriophage T4.

    Science.gov (United States)

    Vafabakhsh, Reza; Kondabagil, Kiran; Earnest, Tyler; Lee, Kyung Suk; Zhang, Zhihong; Dai, Li; Dahmen, Karin A; Rao, Venigalla B; Ha, Taekjip

    2014-10-21

    Viral DNA packaging motors are among the most powerful molecular motors known. A variety of structural, biochemical, and single-molecule biophysical approaches have been used to understand their mechanochemistry. However, packaging initiation has been difficult to analyze because of its transient and highly dynamic nature. Here, we developed a single-molecule fluorescence assay that allowed visualization of packaging initiation and reinitiation in real time and quantification of motor assembly and initiation kinetics. We observed that a single bacteriophage T4 packaging machine can package multiple DNA molecules in bursts of activity separated by long pauses, suggesting that it switches between active and quiescent states. Multiple initiation pathways were discovered including, unexpectedly, direct DNA binding to the capsid portal followed by recruitment of motor subunits. Rapid succession of ATP hydrolysis was essential for efficient initiation. These observations have implications for the evolution of icosahedral viruses and regulation of virus assembly.

  15. Kohn-Sham potentials for fullerenes and spherical molecules

    International Nuclear Information System (INIS)

    Pavlyukh, Y.; Berakdar, J.

    2010-01-01

    We present a procedure for the construction of accurate Kohn-Sham potentials of quasispherical molecules starting from the first-principles valence densities. The method is demonstrated for the case of icosahedral C 20 2+ and C 60 molecules. Provided the density is N representable the Hohenberg-Kohn theorem guarantees the uniqueness of the obtained potentials. The potential is iteratively built following the suggestion of R. van Leeuwen and E. J. Baerends [Phys. Rev. A 49, 2421 (1994)]. The high symmetry of the molecules allows a parametrization of the angular dependence of the densities and the potentials using a small number of symmetry-adapted spherical harmonics. The radial behavior of these quantities is represented on a grid and the density is reconstructed from the approximate potential by numerically solving the coupled-channel Kohn-Sham equations. Subsequently, the potential is updated and the procedure is continued until convergence is achieved.

  16. Melting of “non-magic” argon clusters and extrapolation to the bulk limit

    International Nuclear Information System (INIS)

    Senn, Florian; Wiebke, Jonas; Schumann, Ole; Gohr, Sebastian; Schwerdtfeger, Peter; Pahl, Elke

    2014-01-01

    The melting of argon clusters Ar N is investigated by applying a parallel-tempering Monte Carlo algorithm for all cluster sizes in the range from 55 to 309 atoms. Extrapolation to the bulk gives a melting temperature of 85.9 K in good agreement with the previous value of 88.9 K using only Mackay icosahedral clusters for the extrapolation [E. Pahl, F. Calvo, L. Koči, and P. Schwerdtfeger, “Accurate melting temperatures for neon and argon from ab initio Monte Carlo simulations,” Angew. Chem., Int. Ed. 47, 8207 (2008)]. Our results for argon demonstrate that for the extrapolation to the bulk one does not have to restrict to magic number cluster sizes in order to obtain good estimates for the bulk melting temperature. However, the extrapolation to the bulk remains a problem, especially for the systematic selection of suitable cluster sizes

  17. Structure and solid solution properties of Cu–Ag nanoalloys

    International Nuclear Information System (INIS)

    Atanasov, Ivailo; Ferrando, Riccardo; Johnston, Roy L

    2014-01-01

    The nanoparticle phase diagram of an immiscible system is studied at the atomic level. Cu–Ag clusters with sizes 1000 and 2000 atoms, resulting from a global minimum search and belonging to icosahedral and crystalline structural motifs, are considered. We present the statistical analysis of the effect of temperature on the solubility of the two elements based on Metropolis Monte Carlo importance sampling. Our results suggest that the relevance of bulk phase diagrams to nanoparticles is limited to cases where the internal stress distribution does not deviate very much from uniform (e.g. sufficiently large crystalline clusters). In the general case, the principal interdependence between partial phase compositions and the overall cluster composition in nanoparticle phase diagrams need to be taken into account. (paper)

  18. Viral gametocytic hypertrophy caused by a papova-like virus infection in the Pacific oyster Crassostrea gigas in Korea.

    Science.gov (United States)

    Choi, Dong Lim; Lee, Nam-Sil; Choi, Hee Jung; Park, Myoung-Ae; McGladdery, Sharon E; Park, Mi Seon

    2004-06-11

    During a routine survey of the Pacific oyster Crassostrea gigas in Tongyoung (previously Chungmu) on the southern coast of Korea, basophilic inclusions were observed in the gonadal tissues. They were detected from March to May at a prevalence rate of 3.3 to 7.1%. The inclusion bodies were Feulgen-positive and stained orange-red with phloxine tartrazine. Electron microscopic observation revealed non-enveloped, icosahedral particles 40 to 45 nm in diameter. These morphological characteristics resemble those of papova virus-like inclusions previously described from Pacific and eastern (American) oysters C. virginica in North America. Although many mitochondrial bodies and intact sperm cells were observed around the inclusion body, no host reaction, such as hemocytic infiltration, was detected.

  19. Viral gametocytic hypertrophy of the Pacific oyster Crassostrea gigas in Ireland.

    Science.gov (United States)

    Cheslett, Deborah; McKiernan, Frank; Hickey, Cathy; Collins, Evelyn

    2009-02-25

    Viral gametocytic hypertrophy (VGH) was detected during an investigation of mortalities in Pacific oysters Crassostrea gigas from 2 separate Irish production sites. The basophilic inclusions were observed in the gonad tissue of oysters sampled in August and October 2007. The oysters involved did not show any macroscopic disease signs. Transmission electron microscopy demonstrated the presence of viral particles in these intranuclear inclusions. The particles were small, non-enveloped, icosahedral and approximately 50 nm in diameter, and thus had characteristics similar to the Papillomaviridae and Polyomaviridae families. No host defence reaction was observed. The viral particles described here appear to be similar to those described in C. virginica from the USA and Canada and to those described in C. gigas from Korea and France.

  20. Jahn-Teller effect fundamentals and implications for physics and chemistry

    CERN Document Server

    Koppel, Horst; Barentzen, Heinz

    2009-01-01

    The Jahn-Teller effect continues to be a paradigm for structural instabilities and dynamical processes in molecules and in the condensed phase. While the basic theorem, first published in 1937, had to await experimental verification for 15 years, the intervening years have seen rapid development, initially in the theoretical arena, followed increasingly by experimental work on molecules and crystals. Among the many important developments in the field we mention cooperative phenomena in crystals, the general importance of pseudo-Jahn-Teller couplings for symmetry-lowering phenomena in molecular systems, nonadiabatic processes at conical intersections of potential energy surfaces and extensions of the basic theory in relation to the discovery of fullerenes and other icosahedral systems. The aim of the present volume is to provide a survey of the state-of-the art in Jahn-Teller interactions at the interface of quantum chemistry and condensed matter physics.