WorldWideScience

Sample records for icat inhibits beta-catenin

  1. ICAT Inhibits beta-Catenin Binding to Tcf/Lef-Family Transcription Factors and in the General Coactivator p300 Using Independent Structural Modules

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, D. L.

    2002-01-01

    In the canonical Wnt signaling pathway, {beta}-catenin activates target genes through its interactions with Tcf/Lef-family transcription factors and additional transcriptional coactivators. The crystal structure of ICAT, an inhibitor of {beta}-catenin-mediated transcription, bound to the armadillo repeat domain of {beta}-catenin, has been determined. ICAT contains an N-terminal helilical domain that binds to repeats 11 and 12 of {beta}-catenin, and an extended C-terminal region that binds to repeats 5-10 in a manner similar that of Tcfs and other {beta}-catenin ligands. Full-length ICAT dissociates complexes of {beta}-catenin, Lef-1, and the transcriptional coactivator p300, whereas the helical domain alone selectively blocks binding to p300. The C-terminal armadillo repeats of {beta}-catenin may be an attractive target for compounds designed to disrupt aberrant {beta}-catenin-mediated transcription associated with various cancers.

  2. Ligand-dependent inhibition of beta-catenin/TCF signaling by androgen receptor.

    Science.gov (United States)

    Chesire, Dennis R; Isaacs, William B

    2002-12-01

    Beta-catenin signaling may contribute to prostate cancer (CaP) progression. Although beta-catenin is known to upregulate T cell factor (TCF) target gene expression in CaP cells, recent evidence demonstrates its capacity to enhance ligand-dependent androgen receptor (AR) function. Thus, we wished to further understand the interaction between these two pathways. We find in both CaP cells (CWR22-Rv1, LAPC-4, DU145) and non-CaP cells (HEK-293, TSU, SW480, HCT-116) that beta-catenin/TCF-related transcription (CRT), as measured by activation of a synthetic promoter and that of cyclin D1, is inhibited by androgen treatment. This inhibition is AR-dependent, as it only occurs in cells expressing AR endogenously or transiently, and is abrogated by AR antagonists. Additional analyses convey that the ligand-dependent nature of CRT suppression depends on transactivation-competent AR in the nucleus, but not on indirect effects stemming from AR target gene expression. Given the recent work identifying an AR/beta-catenin interaction, and from our finding that liganded AR does not prompt gross changes in the constitutive nuclear localization of TCF4 or mutant beta-catenin, we hypothesized that transcription factor (i.e. AR and TCF) competition for beta-catenin recruitment may explain, in part, androgen-induced suppression of CRT. To address this idea, we expressed an AR mutant lacking its DNA-binding domain (DBD). This receptor could not orchestrate ligand-dependent CRT repression, thereby providing support for those recent data implicating the AR DBD/LBD as necessary for beta-catenin interaction. Further supporting this hypothesis, TCF/LEF over-expression counteracts androgen-induced suppression of CRT, and requires beta-catenin binding activity to do so. Interestingly, TCF4 over-expression potently antagonizes AR function; however, this inhibition may occur independently of beta-catenin/TCF4 interaction. These results from TCF4 over-expression analyses, taken together, provide

  3. MiR-214 inhibits cell growth in hepatocellular carcinoma through suppression of {beta}-catenin

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaojun [Liver Diseases Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Chen, Ji [Department of Gastrointestinal Surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai (China); Li, Feng [Department of Pathology, Fujian Provincial Hospital, Fuzhou (China); Lin, Yanting [Liver Diseases Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Zhang, Xiaoping; Lv, Zhongwei [Department of Interventional Therapy, Shanghai 10th People' s Hospital, School of Medicine, Tongji University, Shanghai (China); Jiang, Jiaji, E-mail: jiang_jjcn@yahoo.com.cn [Liver Diseases Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer miR-214 is frequently downregulated in human HCC cell lines and tissues. Black-Right-Pointing-Pointer miR-214 overexpression inhibits HCC cell growth in vitro and in vivo. Black-Right-Pointing-Pointer miR-214 directly targets {beta}-catenin 3 Prime -UTR in HCC cells. Black-Right-Pointing-Pointer miR-214 regulates {beta}-catenin downstream signaling molecules. -- Abstract: Mounting evidence has shown that microRNAs (miRNAs) are implicated in carcinogenesis and can function as oncogenes or tumor suppressor genes in human cancers. Recent profile studies of miRNA expression have documented a deregulation of miRNA (miR-214) in hepatocellular carcinoma (HCC). However, its potential functions and underlying mechanisms in hepatocarcinogenesis remain largely unknown. Here, we confirmed that miR-214 is significantly downregulated in HCC cells and specimens. Ectopic overexpression of miR-214 inhibited proliferation of HCC cells in vitro and tumorigenicity in vivo. Further studies revealed that miR-214 could directly target the 3 Prime -untranslated region (3 Prime -UTR) of {beta}-catenin mRNA and suppress its protein expression. Similar to the restoring miR-214 expression, {beta}-catenin downregulation inhibited cell growth, whereas restoring the {beta}-catenin expression abolished the function of miR-214. Moreover, miR-214-mediated reduction of {beta}-catenin resulted in suppression of several downstream genes including c-Myc, cyclinD1, TCF-1, and LEF-1. These findings indicate that miR-214 serves as tumor suppressor and plays substantial roles in inhibiting the tumorigenesis of HCC through suppression of {beta}-catenin. Given these, miR-214 may serve as a useful prognostic or therapeutic target for treatment of HCC.

  4. Lupeol inhibits proliferation of human prostate cancer cells by targeting beta-catenin signaling.

    Science.gov (United States)

    Saleem, Mohammad; Murtaza, Imtiyaz; Tarapore, Rohinton S; Suh, Yewseok; Adhami, Vaqar Mustafa; Johnson, Jeremy James; Siddiqui, Imtiaz Ahmad; Khan, Naghma; Asim, Mohammad; Hafeez, Bilal Bin; Shekhani, Mohammed Talha; Li, Benyi; Mukhtar, Hasan

    2009-05-01

    Lupeol, a dietary triterpene, was shown to decrease serum prostate-specific antigen levels and inhibit the tumorigenicity of prostate cancer (CaP) cells in vivo. Here, we show that Lupeol inhibits the proliferative potential of CaP cells and delineated its mechanism of action. Employing a focused microarray of human CaP-associated genes, we found that Lupeol significantly modulates the expression level of genes such as ERBB2, tissue inhibitor of metalloproteinases-3, cyclin D1 and matrix metalloproteinase (MMP)-2 that are known to be associated with proliferation and survival. A common feature of these genes is that all of them are known to either regulate or act as downstream target of beta-catenin signaling that is highly aberrant in CaP patients. Lupeol treatment significantly (1) reduced levels of beta-catenin in the cytoplasmic and nuclear fractions, (2) modulated expression levels of glycogen synthase kinase 3 beta (GSK3beta)-axin complex (regulator of beta-catenin stability), (3) decreased the expression level and enzymatic activity of MMP-2 (downstream target of beta-catenin), (4) reduced the transcriptional activation of T Cell Factor (TCF) responsive element (marker for beta-catenin signaling) in pTK-TCF-Luc-transfected cells and (5) decreased the transcriptional activation of MMP-2 gene in pGL2-MMP-2-Luc-transfected cells. Effects of Lupeol treatment on beta-catenin degradation were significantly reduced in CaP cells where axin is knocked down through small interfering RNA transfection and GSK3beta activity is blocked. Collectively, these data suggest the multitarget efficacy of Lupeol on beta-catenin-signaling network thus resulting in the inhibition CaP cell proliferation. We suggest that Lupeol could be developed as an agent for chemoprevention as well as chemotherapy of human CaP.

  5. Dibenzocyclooctadiene lignans, gomisins J and N inhibit the Wnt/{beta}-catenin signaling pathway in HCT116 cells

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kyungsu; Lee, Kyung-Mi; Yoo, Ji-Hye; Lee, Hee Ju [Functional Food Center, Korea Institute of Science and Technology, Gangneung 210-340 (Korea, Republic of); Kim, Chul Young [Functional Food Center, Korea Institute of Science and Technology, Gangneung 210-340 (Korea, Republic of); College of Pharmacy, Hanyang University, Ansan 426-791 (Korea, Republic of); Nho, Chu Won, E-mail: cwnho@kist.re.kr [Functional Food Center, Korea Institute of Science and Technology, Gangneung 210-340 (Korea, Republic of)

    2012-11-16

    Graphical abstract: Schematic diagram of the possible molecular mechanism underlying the inhibition of the Wnt/{beta}-catenin signaling pathway and the induction of G0/G1-phase arrest by gomisins J and N, derived from the fruits of S. chinensis, in HCT116 human colon cancer cells. Highlights: Black-Right-Pointing-Pointer Gomisins J and N inhibited Wnt/{beta}-catenin signaling pathway in HCT116 cells. Black-Right-Pointing-Pointer Gomisins J and N disrupted the binding of {beta}-catenin to specific DNA sequences, TBE. Black-Right-Pointing-Pointer Gomisins J and N inhibited the HCT116 cell proliferation through G0/G1 phase arrest. Black-Right-Pointing-Pointer Gomisins J and N inhibited the expression of Cyc D1, a Wnt/{beta}-catenin target gene. -- Abstract: Here, we report that gomisin J and gomisin N, dibenzocyclooctadiene type lignans isolated from Schisandra chinensis, inhibit Wnt/{beta}-catenin signaling in HCT116 cells. Gomisins J and N appear to inhibit Wnt/{beta}-catenin signaling by disrupting the interaction between {beta}-catenin and its specific target DNA sequences (TCF binding elements, TBE) rather than by altering the expression of the {beta}-catenin protein. Gomisins J and N inhibit HCT116 cell proliferation by arresting the cell cycle at the G0/G1 phase. The G0/G1 phase arrest induced by gomisins J and N appears to be caused by a decrease in the expression of Cyclin D1, a representative target gene of the Wnt/{beta}-catenin signaling pathway, as well as Cdk2, Cdk4, and E2F-1. Therefore, gomisins J and N, the novel Wnt/{beta}-catenin inhibitors discovered in this study, may serve as potential agents for the prevention and treatment of human colorectal cancers.

  6. Bili inhibits Wnt/beta-catenin signaling by regulating the recruitment of axin to LRP6.

    Directory of Open Access Journals (Sweden)

    Lorna S Kategaya

    Full Text Available BACKGROUND: Insights into how the Frizzled/LRP6 receptor complex receives, transduces and terminates Wnt signals will enhance our understanding of the control of the Wnt/ss-catenin pathway. METHODOLOGY/PRINCIPAL FINDINGS: In pursuit of such insights, we performed a genome-wide RNAi screen in Drosophila cells expressing an activated form of LRP6 and a beta-catenin-responsive reporter. This screen resulted in the identification of Bili, a Band4.1-domain containing protein, as a negative regulator of Wnt/beta-catenin signaling. We found that the expression of Bili in Drosophila embryos and larval imaginal discs significantly overlaps with the expression of Wingless (Wg, the Drosophila Wnt ortholog, which is consistent with a potential function for Bili in the Wg pathway. We then tested the functions of Bili in both invertebrate and vertebrate animal model systems. Loss-of-function studies in Drosophila and zebrafish embryos, as well as human cultured cells, demonstrate that Bili is an evolutionarily conserved antagonist of Wnt/beta-catenin signaling. Mechanistically, we found that Bili exerts its antagonistic effects by inhibiting the recruitment of AXIN to LRP6 required during pathway activation. CONCLUSIONS: These studies identify Bili as an evolutionarily conserved negative regulator of the Wnt/beta-catenin pathway.

  7. Dominant negative inhibition of the association between beta-catenin and c-erbB-2 by N-terminally deleted beta-catenin suppresses the invasion and metastasis of cancer cells.

    Science.gov (United States)

    Shibata, T; Ochiai, A; Kanai, Y; Akimoto, S; Gotoh, M; Yasui, N; Machinami, R; Hirohashi, S

    1996-09-05

    Aberrant tyrosine phosphorylation of beta-catenin inactivates the E-cadherin-mediated cell adhesion and invasion suppressor system in cancer cells. Elucidation of the association between beta-catenin and c-erbB-2 protein prompted us to investigate whether interference with this interaction can change the invasive phenotype. In a human gastric cancer cell line, TMK-1, N-terminally deleted beta-catenin, which binds to c-erbB-2 but not to cadherin, inhibited the association between endogenous beta-catenin and c-erbB-2 protein, and suppressed the tyrosine phosphorylation of beta-catenin. Cells expressing truncated beta-catenin exhibited markedly reduced invasiveness in vitro and peritoneal metastasis in vivo, and developed an epithelial morphology. These results suggest that tyrosine phosphorylation of beta-catenin regulated by c-erbB-2 protein may play an important role in the invasion, metastasis and morphogenesis of cancer cells and that inhibition of the aberrant tyrosine phosphorylation of beta-catenin effectively prevents invasion and metastasis of cancer cells.

  8. The nonsteroidal anti-inflammatory drug, nabumetone, differentially inhibits beta-catenin signaling in the MIN mouse and azoxymethane-treated rat models of colon carcinogenesis.

    Science.gov (United States)

    Roy, Hemant K; Karolski, William J; Wali, Ramesh K; Ratashak, Anne; Hart, John; Smyrk, Thomas C

    2005-01-20

    The mechanisms through which beta-catenin signaling is inhibited during colorectal cancer chemoprevention by nonsteroidal anti-inflammatory agents is incompletely understood. We report that nabumetone decreased uninvolved intestinal mucosal beta-catenin levels in the MIN mouse with a concomitant increase in glycogen synthase kinase (GSK)-3beta levels, an enzyme that targets beta-catenin for destruction. However, in the azoxymethane-treated rat, where beta-catenin is frequently rendered GSK-3beta-insensitive, nabumetone failed to alter beta-catenin levels but did decrease beta-catenin nuclear localization and transcriptional activity as gauged by cyclin D1. In conclusion, we demonstrate that the differential mechanisms for beta-catenin suppression may be determined, at least partly, by GSK-3beta.

  9. SIRT1 inhibits proliferation of pancreatic cancer cells expressing pancreatic adenocarcinoma up-regulated factor (PAUF), a novel oncogene, by suppression of {beta}-catenin

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Il-Rae [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Koh, Sang Seok [Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-333 (Korea, Republic of); Department of Functional Genomics, University of Science and Technology, Daejeon 305-333 (Korea, Republic of); Malilas, Waraporn; Srisuttee, Ratakorn; Moon, Jeong [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Choi, Young-Whan [Department of Horticultural Bioscience, Pusan National University, Miryang 627-706 (Korea, Republic of); Horio, Yoshiyuki [Department of Pharmacology, Sapporo Medical University, Sapporo 060-8556 (Japan); Oh, Sangtaek [Department of Advanced Fermentation Fusion Science and Technology, Kookmin University, Seoul 136-702 (Korea, Republic of); Chung, Young-Hwa, E-mail: younghc@pusan.ac.kr [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer SIRT1 inhibits protein levels of {beta}-catenin and its transcriptional activity. Black-Right-Pointing-Pointer Nuclear localization of SIRT1 is not required for the decrease of {beta}-catenin expression. Black-Right-Pointing-Pointer SIRT1-mediated degradation of {beta}-catenin is not required for GSK-3{beta} and Siah-1 but for proteosome. Black-Right-Pointing-Pointer SIRT1 activation inhibits proliferation of pancreatic cancer cells expressing PAUF. -- Abstract: Because we found in a recent study that pancreatic adenocarcinoma up-regulated factor (PAUF), a novel oncogene, induces a rapid proliferation of pancreatic cells by up-regulation of {beta}-catenin, we postulated that {beta}-catenin might be a target molecule for pancreatic cancer treatment. We thus speculated whether SIRT1, known to target {beta}-catenin in a colon cancer model, suppresses {beta}-catenin in those pancreatic cancer cells that express PAUF (Panc-PAUF). We further evaluated whether such suppression would lead to inhibition of the proliferation of these cells. The ectopic expression of either SIRT1 or resveratrol (an activator of SIRT1) suppressed levels of {beta}-catenin protein and its transcriptional activity in Panc-PAUF cells. Conversely, suppression of SIRT1 expression by siRNA enhanced {beta}-catenin expression and transcriptional activity. SIRT1 mutant analysis showed that nuclear localization of SIRT1 is not required for reduction of {beta}-catenin. Treatment with MG132, a proteasomal inhibitor, restored {beta}-catenin protein levels, suggesting that SIRT1-mediated degradation of {beta}-catenin requires proteasomal activity. It was reported that inhibition of GSK-3{beta} or Siah-1 stabilizes {beta}-catenin in colon cancer cells, but suppression of GSK-3{beta} or Siah-1 using siRNA in the presence of resveratrol instead diminished {beta}-catenin protein levels in Panc-PAUF cells. This suggests that GSK-3{beta} and Siah-1 are not involved in SIRT1

  10. beta-Catenin/TCF pathway plays a vital role in selenium induced-growth inhibition and apoptosis in esophageal squamous cell carcinoma (ESCC) cells.

    Science.gov (United States)

    Zhang, Wei; Yan, Shuang; Liu, Mei; Zhang, Guo; Yang, Shangbin; He, Shun; Bai, Jinfeng; Quan, Lanping; Zhu, Hongxia; Dong, Yan; Xu, Ningzhi

    2010-10-01

    Epidemiological and experimental studies have indicated selenium could reduce the risk of some cancers. In our present study, growth inhibition and apoptosis were detected upon methylseleninic acid (MSA) treatment in human esophageal squamous cell carcinoma cell lines EC9706 and KYSE150. MSA reduced beta-catenin protein levels, while there was no significant change observed on transcriptional levels. Moreover, we found MSA accelerated the degradation of beta-catenin and activated glycogen synthase kinase 3beta (GSK-3beta). Some targets of beta-catenin/TCF pathway and apoptosis-related genes altered after MSA treatment. Notably, utilizing the inducible 293-TR/beta-catenin cell line, we found the apoptotic phenotypes induced by MSA were partially reversed by the overexpression of beta-catenin. Overall, our data indicate the effects induced by MSA in ESCC cells may act on the inhibition of beta-catenin/TCF pathway.

  11. Effects of short-hairpin RNA-inhibited {beta}-catenin expression on the growth of human multiple myeloma cells in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Wenqing, E-mail: liangwenqing_1234@126.com [Department of Orthopaedics, Shaoxing People' s Hospital, 568 Zhongxing North Road, Shaoxing 312000 (China); Yang, Chengwei [Department of Spinal Surgery, Lanzhou General Hospital, Lanzhou Military Area Command, 333 Nanbinhe Road, Lanzhou 730050 (China); Qian, Yu [Department of Orthopaedics, Shaoxing People' s Hospital, 568 Zhongxing North Road, Shaoxing 312000 (China); Fu, Qiang, E-mail: chyygklwq@hotmail.com [Department of Orthopaedics, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433 (China)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer {beta}-Catenin expression were markedly down-regulated by CTNNB1 shRNA. Black-Right-Pointing-Pointer CTNNB1 shRNA could inhibit the proliferation of RPMI8226 cells. Black-Right-Pointing-Pointer Significantly profound apoptotic cell death in CTNNB1 shRNA cells. Black-Right-Pointing-Pointer In vivo, CTNNB1 silence led to a growth inhibition of myeloma growth. Black-Right-Pointing-Pointer c-myc and {beta}-catenin in the expression cells of cleaved caspase-3 were increased. -- Abstract: Multiple myeloma (MM) is thrombogenic as a consequence of multiple hemostatic effects. Overexpression of {beta}-catenin has been observed in several types of malignant tumors, including MM. However, the relationship between {beta}-catenin expression and MM remains unclear. In the present study, RNA interference was used to inhibit {beta}-catenin expression in RPMI8226 cells. RT-PCR and Western blotting analyses showed that {beta}-catenin mRNA and protein expression were markedly down-regulated by CTNNB1 shRNA. Western blotting showed that the protein levels of cyclin D1 and glutamine synthetase were downregulated and supported the transcriptional regulatory function of {beta}-catenin. The MTT assay showed that CTNNB1 shRNA could have significant inhibitory effects on the proliferation of RPMI8226 cells. The TOPflash reporter assay demonstrated significant downregulation after CTNNB1 shRNA transfection in RPMI8226 cells. Flow cytometric analyses also showed significantly profound apoptosis in CTNNB1 shRNA cells. We found CTNNB1 silence led to growth inhibition of MM growth in vivo. Immunohistochemical analyses showed that c-myc and {beta}-catenin were reduced in CTNNB1 shRNA tumor tissues, but that expression of cleaved caspase-3 was increased. These results show that {beta}-catenin could be a new therapeutic agent that targets the biology of MM cells.

  12. Lysosomal trafficking of {beta}-catenin induced by the tea polyphenol epigallocatechin-3-gallate

    Energy Technology Data Exchange (ETDEWEB)

    Dashwood, Wan-Mohaiza [Linus Pauling Institute, 571 Weniger Hall, Oregon State University, Corvallis, OR 97331-6512 (United States); Carter, Orianna [Linus Pauling Institute, 571 Weniger Hall, Oregon State University, Corvallis, OR 97331-6512 (United States); Al-Fageeh, Mohamed [Linus Pauling Institute, 571 Weniger Hall, Oregon State University, Corvallis, OR 97331-6512 (United States); Li, Qingjie [Linus Pauling Institute, 571 Weniger Hall, Oregon State University, Corvallis, OR 97331-6512 (United States); Dashwood, Roderick H. [Linus Pauling Institute, 571 Weniger Hall, Oregon State University, Corvallis, OR 97331-6512 (United States)]. E-mail: Rod.Dashwood@oregonstate.edu

    2005-12-11

    {beta}-Catenin is a cadherin-binding protein involved in cell-cell adhesion, which also functions as a transcriptional activator when complexed in the nucleus with members of the T-cell factor (TCF)/lymphoid enhancer factor (LEF) family of proteins. There is considerable interest in mechanisms that down-regulate {beta}-catenin, since this provides an avenue for the prevention of colorectal and other cancers in which {beta}-catenin is frequently over-expressed. We show here that physiologically relevant concentrations of the tea polyphenol epigallocatechin-3-gallate (EGCG) inhibited {beta}-catenin/TCF-dependent reporter activity in human embryonic kidney 293 cells transfected with wild type or mutant {beta}-catenins, and there was a corresponding decrease in {beta}-catenin protein levels in the nuclear, cytosolic and membrane-associated fractions. However, {beta}-catenin accumulated as punctate aggregates in response to EGCG treatment, including in human colon cancer cells over-expressing {beta}-catenin endogenously. Confocal microscopy studies revealed that the aggregated {beta}-catenin in HEK293 cells was extra-nuclear and co-localized with lysosomes, suggesting that EGCG activated a pathway involving lysosomal trafficking of {beta}-catenin. Lysosomal inhibitors leupeptin and transepoxysuccinyl-L-leucylamido(4-guanido)butane produced an increase in {beta}-catenin protein in total cell lysates, without a concomitant increase in {beta}-catenin transcriptional activity. These data provide the first evidence that EGCG facilitates the trafficking of {beta}-catenin into lysosomes, presumably as a mechanism for sequestering {beta}-catenin and circumventing further nuclear transport and activation of {beta}-catenin/TCF/LEF signaling.

  13. Targeting PKC: a novel role for beta-catenin in ER stress and apoptotic signaling.

    Science.gov (United States)

    Raab, Marc S; Breitkreutz, Iris; Tonon, Giovanni; Zhang, Jing; Hayden, Patrick J; Nguyen, Thu; Fruehauf, Johannes H; Lin, Boris K; Chauhan, Dharminder; Hideshima, Teru; Munshi, Nikhil C; Anderson, Kenneth C; Podar, Klaus

    2009-02-12

    Targeting protein kinase C (PKC) isoforms by the small molecule inhibitor enzastaurin has shown promising preclinical activity in a wide range of tumor cells. We further delineated its mechanism of action in multiple myeloma (MM) cells and found a novel role of beta-catenin in regulating growth and survival of tumor cells. Specifically, inhibition of PKC leads to rapid accumulation of beta-catenin by preventing the phosphorylation required for its proteasomal degradation. Microarray analysis and small-interfering RNA (siRNA)-mediated gene silencing in MM cells revealed that accumulated beta-catenin activates early endoplasmic reticulum stress signaling via eIF2alpha, C/EBP-homologous protein (CHOP), and p21, leading to immediate growth inhibition. Furthermore, accumulated beta-catenin contributes to enzastaurin-induced cell death. Sequential knockdown of beta-catenin, c-Jun, and p73, as well as overexpression of beta-catenin or p73 confirmed that accumulated beta-catenin triggers c-Jun-dependent induction of p73, thereby conferring MM cell apoptosis. Our data reveal a novel role of beta-catenin in endoplasmic reticulum (ER) stress-mediated growth inhibition and a new proapoptotic mechanism triggered by beta-catenin on inhibition of PKC isoforms. Moreover, we identify p73 as a potential novel therapeutic target in MM. Based on these and previous data, enzastaurin is currently under clinical investigation in a variety of hematologic malignancies, including MM.

  14. Cdc42 controls progenitor cell differentiation and beta-catenin turnover in skin

    DEFF Research Database (Denmark)

    Wu, Xunwei; Quondamatteo, Fabio; Lefever, Tine

    2006-01-01

    Differentiation of skin stem cells into hair follicles (HFs) requires the inhibition of beta-catenin degradation, which is controlled by a complex containing axin and the protein kinase GSK3beta. Using conditional gene targeting in mice, we show now that the small GTPase Cdc42 is crucial...... for differentiation of skin progenitor cells into HF lineage and that it regulates the turnover of beta-catenin. In the absence of Cdc42, degradation of beta-catenin was increased corresponding to a decreased phosphorylation of GSK3beta at Ser 9 and an increased phosphorylation of axin, which is known to be required...... for binding of beta-catenin to the degradation machinery. Cdc42-mediated regulation of beta-catenin turnover was completely dependent on PKCzeta, which associated with Cdc42, Par6, and Par3. These data suggest that Cdc42 regulation of beta-catenin turnover is important for terminal differentiation of HF...

  15. Differential alterations of positive and negative regulators of beta catenin enhance endogenous expression and activity of beta catenin in A549 non small cell lung cancer (NSCLC cells

    Directory of Open Access Journals (Sweden)

    Supratim Ghatak

    2016-12-01

    Full Text Available Beta catenin has been well documented in previous studies to be involved in non small cell lung cancer (NSCLC. Beta catenin abundance and transcriptional activity are significantly regulated by several factors. Though it is well known that Akt and Gsk3 beta are respective positive and negative regulators of beta catenin, however, no single study has so far documented how the expression and activity of both positive as well as negative regulators play favorable role on beta catenin expression and activity in NSCLC. In this study, we compared expression and activity of beta catenin and its regulators in normal lung cell WI38 and NSCLC cell A549 by western blot, qRT-PCR and luciferase assay. We observed that beta catenin positive regulators (Akt and Hsp90 and negative regulators (Gsk3 beta and microRNA-214 have differential expression and/or activity in NSCLC cell A549. However the differentially altered statuses of both the positive and negative regulators rendered cumulative positive effect on beta catenin expression and activity in A549. Our study thus suggests that chemotherapeutic modulations of regulating factors are crucial when abrogation and/or inhibition of key oncogenic proteins are necessary for cancer chemotherapy.

  16. Roles of Wnt/{beta}-catenin signaling in epithelial differentiation of mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yajing; Sun, Zhaorui; Qiu, Xuefeng [Immunology and Reproductive Biology Laboratory, Medical College of Nanjing University, Nanjing 210093 (China); Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093 (China); Li, Yan [Jiangsu Centers for Diseases Prevention and Control, Nanjing 210009 (China); Qin, Jizheng [Immunology and Reproductive Biology Laboratory, Medical College of Nanjing University, Nanjing 210093 (China); Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093 (China); Han, Xiaodong, E-mail: hanxd@nju.edu.cn [Immunology and Reproductive Biology Laboratory, Medical College of Nanjing University, Nanjing 210093 (China); Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093 (China)

    2009-12-25

    Bone marrow-derived mesenchymal stem cells (MSCs) have been demonstrated to be able to differentiate into epithelial lineage, but the precise mechanisms controlling this process are unclear. Our aim is to explore the roles of Wnt/{beta}-catenin in the epithelial differentiation of MSCs. Using indirect co-culture of rat MSCs with rat airway epithelial cells (RTE), MSCs expressed several airway epithelial markers (cytokeratin 18, tight junction protein occudin, cystic fibrosis transmembrance regulator). The protein levels of some important members in Wnt/{beta}-catenin signaling were determined, suggested down-regulation of Wnt/{beta}-catenin with epithelial differentiation of MSCs. Furthermore, Wnt3{alpha} can inhibit the epithelial differentiation of MSCs. A loss of {beta}-catenin induced by Dickkopf-1 can enhance MSCs differentiation into epithelial cells. Lithium chloride transiently activated {beta}-catenin expression and subsequently decreased {beta}-catenin level and at last inhibited MSCs to differentiate into airway epithelium. Taken together, our study indicated that RTE cells can trigger epithelial differentiation of MSCs. Blocking Wnt/{beta}-catenin signaling may promote MSCs to differentiate towards airway epithelial cells.

  17. Murrayafoline A attenuates the Wnt/{beta}-catenin pathway by promoting the degradation of intracellular {beta}-catenin proteins

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyuk; Gwak, Jungsug; Cho, Munju; Ryu, Min-Jung [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of); Lee, Jee-Hyun; Kim, Sang Kyum; Kim, Young Ho [College of Pharmacy, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Lee, Gye Won [Department of Pharmaceutical Engineering, Konyang University, Nonsan 320-711 (Korea, Republic of); Yun, Mi-Young [Department of Beauty Health Care, Daejeon University, Daejeon 305-764 (Korea, Republic of); Cuong, Nguyen Manh [Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi (Viet Nam); Shin, Jae-Gook [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of); Song, Gyu-Yong, E-mail: gysong@cnu.ac.kr [College of Pharmacy, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Oh, Sangtaek, E-mail: ohsa@inje.ac.kr [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of)

    2010-01-01

    Molecular lesions in Wnt/{beta}-catenin signaling and subsequent up-regulation of {beta}-catenin response transcription (CRT) occur frequently during the development of colon cancer. To identify small molecules that suppress CRT, we screened natural compounds in a cell-based assay for detection of TOPFalsh reporter activity. Murrayafoline A, a carbazole alkaloid isolated from Glycosmis stenocarpa, antagonized CRT that was stimulated by Wnt3a-conditioned medium (Wnt3a-CM) or LiCl, an inhibitor of glycogen synthase kinase-3{beta} (GSK-3{beta}), and promoted the degradation of intracellular {beta}-catenin without altering its N-terminal phosphorylation at the Ser33/37 residues, marking it for proteasomal degradation, or the expression of Siah-1, an E3 ubiquitin ligase. Murrayafoline A repressed the expression of cyclin D1 and c-myc, which is known {beta}-catenin/T cell factor (TCF)-dependent genes and thus inhibited the proliferation of various colon cancer cells. These findings indicate that murrayafoline A may be a potential chemotherapeutic agent for use in the treatment of colon cancer.

  18. AMP-activated protein kinase (AMPK) cross-talks with canonical Wnt signaling via phosphorylation of {beta}-catenin at Ser 552

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Junxing; Yue, Wanfu; Zhu, Mei J. [Developmental Biology Group, Department of Animal Science, College of Agriculture, University of Wyoming, Laramie, WY 82071 (United States); Sreejayan, Nair [School of Pharmacy, College of Health Science, University of Wyoming, Laramie, WY 82071 (United States); Du, Min, E-mail: mindu@uwyo.edu [Developmental Biology Group, Department of Animal Science, College of Agriculture, University of Wyoming, Laramie, WY 82071 (United States)

    2010-04-23

    AMP-activated protein kinase (AMPK) is a key regulator of energy metabolism; its activity is regulated by a plethora of physiological conditions, exercises and many anti-diabetic drugs. Recent studies show that AMPK involves in cell differentiation but the underlying mechanism remains undefined. Wingless Int-1 (Wnt)/{beta}-catenin signaling pathway regulates the differentiation of mesenchymal stem cells through enhancing {beta}-catenin/T-cell transcription factor 1 (TCF) mediated transcription. The objective of this study was to determine whether AMPK cross-talks with Wnt/{beta}-catenin signaling through phosphorylation of {beta}-catenin. C3H10T1/2 mesenchymal cells were used. Chemical inhibition of AMPK and the expression of a dominant negative AMPK decreased phosphorylation of {beta}-catenin at Ser 552. The {beta}-catenin/TCF mediated transcription was correlated with AMPK activity. In vitro, pure AMPK phosphorylated {beta}-catenin at Ser 552 and the mutation of Ser 552 to Ala prevented such phosphorylation, which was further confirmed using [{gamma}-{sup 32}P]ATP autoradiography. In conclusion, AMPK phosphorylates {beta}-catenin at Ser 552, which stabilizes {beta}-catenin, enhances {beta}-catenin/TCF mediated transcription, expanding AMPK from regulation of energy metabolism to cell differentiation and development via cross-talking with the Wnt/{beta}-catenin signaling pathway.

  19. The Wnt/beta-catenin pathway interacts differentially with PTHrP signaling to control chondrocyte hypertrophy and final maturation.

    Directory of Open Access Journals (Sweden)

    Xizhi Guo

    Full Text Available Sequential proliferation, hypertrophy and maturation of chondrocytes are required for proper endochondral bone development and tightly regulated by cell signaling. The canonical Wnt signaling pathway acts through beta-catenin to promote chondrocyte hypertrophy whereas PTHrP signaling inhibits it by holding chondrocytes in proliferating states. Here we show by genetic approaches that chondrocyte hypertrophy and final maturation are two distinct developmental processes that are differentially regulated by Wnt/beta-catenin and PTHrP signaling. Wnt/beta-catenin signaling regulates initiation of chondrocyte hypertrophy by inhibiting PTHrP signaling activity, but it does not regulate PTHrP expression. In addition, Wnt/beta-catenin signaling regulates chondrocyte hypertrophy in a non-cell autonomous manner and Gdf5/Bmp signaling may be one of the downstream pathways. Furthermore, Wnt/beta-catenin signaling also controls final maturation of hypertrophic chondrocytes, but such regulation is PTHrP signaling-independent.

  20. Stimulation of Na{sup +}/K{sup +} ATPase activity and Na{sup +} coupled glucose transport by {beta}-catenin

    Energy Technology Data Exchange (ETDEWEB)

    Sopjani, Mentor [Department of Physiology, University of Tuebingen (Germany); Department of Chemistry, University of Prishtina, Kosovo (Country Unknown); Alesutan, Ioana; Wilmes, Jan [Department of Physiology, University of Tuebingen (Germany); Dermaku-Sopjani, Miribane [Department of Physiology, University of Tuebingen (Germany); Faculty of Medicine, University of Prishtina, Kosovo (Country Unknown); Lam, Rebecca S. [Department of Physiology, University of Tuebingen (Germany); Department of Molecular Neurogenetics, Max Planck Institute of Biophysics, Frankfurt/Main (Germany); Koutsouki, Evgenia [Department of Physiology, University of Tuebingen (Germany); Jakupi, Muharrem [Faculty of Medicine, University of Prishtina, Kosovo (Country Unknown); Foeller, Michael [Department of Physiology, University of Tuebingen (Germany); Lang, Florian, E-mail: florian.lang@uni-tuebingen.de [Department of Physiology, University of Tuebingen (Germany)

    2010-11-19

    Research highlights: {yields} The oncogenic transcription factor {beta}-catenin stimulates the Na{sup +}/K{sup +}-ATPase. {yields} {beta}-Catenin stimulates SGLT1 dependent Na{sup +}, glucose cotransport. {yields} The effects are independent of transcription. {yields} {beta}-Catenin sensitive transport may contribute to properties of proliferating cells. -- Abstract: {beta}-Catenin is a multifunctional protein stimulating as oncogenic transcription factor several genes important for cell proliferation. {beta}-Catenin-regulated genes include the serum- and glucocorticoid-inducible kinase SGK1, which is known to stimulate a variety of transport systems. The present study explored the possibility that {beta}-catenin influences membrane transport. To this end, {beta}-catenin was expressed in Xenopus oocytes with or without SGLT1 and electrogenic transport determined by dual electrode voltage clamp. As a result, expression of {beta}-catenin significantly enhanced the ouabain-sensitive current of the endogeneous Na{sup +}/K{sup +}-ATPase. Inhibition of vesicle trafficking by brefeldin A revealed that the stimulatory effect of {beta}-catenin on the endogenous Na{sup +}/K{sup +}-ATPase was not due to enhanced stability of the pump protein in the cell membrane. Expression of {beta}-catenin further enhanced glucose-induced current (Ig) in SGLT1-expressing oocytes. In the absence of SGLT1 Ig was negligible irrespective of {beta}-catenin expression. The stimulating effect of {beta}-catenin on both Na{sup +}/K{sup +} ATPase and SGLT1 activity was observed even in the presence of actinomycin D, an inhibitor of transcription. The experiments disclose a completely novel function of {beta}-catenin, i.e. the regulation of transport.

  1. Accumulation of phosphorylated beta-catenin enhances ROS-induced cell death in presenilin-deficient cells.

    Directory of Open Access Journals (Sweden)

    Jung H Boo

    Full Text Available Presenilin (PS is involved in many cellular events under physiological and pathological conditions. Previous reports have revealed that PS deficiency results in hyperproliferation and resistance to apoptotic cell death. In the present study, we investigated the effects of PS on beta-catenin and cell mortality during serum deprivation. Under these conditions, PS1/PS2 double-knockout MEFs showed aberrant accumulation of phospho-beta-catenin, higher ROS generation, and notable cell death. Inhibition of beta-catenin phosphorylation by LiCl reversed ROS generation and cell death in PS deficient cells. In addition, the K19/49R mutant form of beta-catenin, which undergoes normal phosphorylation but not ubiquitination, induced cytotoxicity, while the phosphorylation deficient S37A beta-catenin mutant failed to induce cytotoxicity. These results indicate that aberrant accumulation of phospho-beta-catenin underlies ROS-mediated cell death in the absence of PS. We propose that the regulation of beta-catenin is useful for identifying therapeutic targets of hyperproliferative diseases and other degenerative conditions.

  2. Interactions between PPAR Gamma and the Canonical Wnt/Beta-Catenin Pathway in Type 2 Diabetes and Colon Cancer

    Science.gov (United States)

    Claes, Victor

    2017-01-01

    In both colon cancer and type 2 diabetes, metabolic changes induced by upregulation of the Wnt/beta-catenin signaling and downregulation of peroxisome proliferator-activated receptor gamma (PPAR gamma) may help account for the frequent association of these two diseases. In both diseases, PPAR gamma is downregulated while the canonical Wnt/beta-catenin pathway is upregulated. In colon cancer, upregulation of the canonical Wnt system induces activation of pyruvate dehydrogenase kinase and deactivation of the pyruvate dehydrogenase complex. As a result, a large part of cytosolic pyruvate is converted into lactate through activation of lactate dehydrogenase. Lactate is extruded out of the cell by means of activation of monocarboxylate lactate transporter-1. This phenomenon is called Warburg effect. PPAR gamma agonists induce beta-catenin inhibition, while inhibition of the canonical Wnt/beta-catenin pathway activates PPAR gamma.

  3. Isoreserpine promotes {beta}-catenin degradation via Siah-1 up-regulation in HCT116 colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Gwak, Jungsug; Song, Taeyun [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of); Song, Jie-Young; Yun, Yeon-Sook [Laboratory of Radiation Cancer Science, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Choi, Il-Whan [Department of Microbiology, Center for Viral Disease Research, Inje University College of Medicine, Busan 614-735 (Korea, Republic of); Jeong, Yongsu [Department of Genetic Engineering, and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Shin, Jae-Gook [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of); Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Busan 614-735 (Korea, Republic of); Oh, Sangtaek, E-mail: ohsa@inje.ac.kr [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of)

    2009-09-25

    Aberrant accumulation of intracellular {beta}-catenin in intestinal epithelial cells is a frequent early event during the development of colon cancer. To identify small molecules that decrease the level of intracellular {beta}-catenin, we performed cell-based chemical screening using genetically engineered HEK293 reporter cells to detect compounds that inhibit TOPFlash reporter activity, which was stimulated by Wnt3a-conditioned medium. We found that isoreserpine promoted the degradation of intracellular {beta}-catenin by up-regulation of Siah-1 in HEK293 and HCT116 colon cancer cells. Moreover, isoreserpine repressed the expression of {beta}-catenin/T-cell factor (TCF)-dependent genes, such as cyclin D1 and c-myc, resulting in the suppression of HCT116 cell proliferation. Our findings suggest that isoreserpine can potentially be used as a chemotherapeutic agent against colon cancer.

  4. Micro RNA-214 contributes to proteasome independent downregulation of beta catenin in Huntington's disease knock-in striatal cell model STHdhQ111/Q111.

    Science.gov (United States)

    Ghatak, Supratim; Raha, Sanghamitra

    2015-04-10

    Role of beta catenin in Huntington's disease (HD) is not clear. Previous studies on HD reported varied levels of beta catenin. In the present study we showed that beta catenin is post transcriptionally down-regulated in mutant huntingtin knock-in cell model STHdhQ111/Q111. This in turn leads to decreased level of wnt/beta catenin responsive genes. We observed that Gsk3beta or Gsk3beta (phospho Ser 9) is unaltered in HD and this down-regulation of beta catenin is independent of proteasomal degradation. Finally, we showed that the overexpression of miR-214 leads to the down-regulation of beta catenin at protein level only and reduces its transcriptional activity. We concluded that, miR-214 contributes to the processes that result in proteasome independent post transcriptional down-regulation of beta catenin in STHdhQ111/Q111, probably through inhibition of protein synthesis from beta catenin mRNA. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. The low-density lipoprotein receptor-related protein 10 is a negative regulator of the canonical Wnt/{beta}-catenin signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Young-Hee; Sekiya, Manami; Hirata, Michiko; Ye, Mingjuan; Yamagishi, Azumi [Department of Molecular and Biochemical Nutrition, Graduate School of Human Life Science, Osaka City University, Osaka 558-8585 (Japan); Lee, Sang-Mi; Kang, Man-Jong [Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Hosoda, Akemi; Fukumura, Tomoe; Kim, Dong-Ho [Department of Molecular and Biochemical Nutrition, Graduate School of Human Life Science, Osaka City University, Osaka 558-8585 (Japan); Saeki, Shigeru, E-mail: saeki@life.osaka-cu.ac.jp [Department of Molecular and Biochemical Nutrition, Graduate School of Human Life Science, Osaka City University, Osaka 558-8585 (Japan)

    2010-02-19

    Wnt signaling pathways play fundamental roles in the differentiation, proliferation and functions of many cells as well as developmental, growth, and homeostatic processes in animals. Low-density lipoprotein receptor (LDLR)-related protein (LRP) 5 and LRP6 serve as coreceptors of Wnt proteins together with Frizzled receptors, triggering activation of canonical Wnt/{beta}-catenin signaling. Here, we found that LRP10, a new member of the LDLR gene family, inhibits the canonical Wnt/{beta}-catenin signaling pathway. The {beta}-catenin/T cell factor (TCF) transcriptional activity in HEK293 cells was activated by transfection with Wnt3a or LRP6, which was then inhibited by co-transfection with LRP10. Deletion of the extracellular domain of LRP10 negated its inhibitory effect. The inhibitory effect of LRP10 was consistently conserved in HEK293 cells even when GSK3{beta} phosphorylation was inhibited by incubation with lithium chloride and co-transfection with constitutively active S33Y-mutated {beta}-catenin. Nuclear {beta}-catenin accumulation was unaffected by LRP10. The present studies suggest that LRP10 may interfere with the formation of the {beta}-catenin/TCF complex and/or its binding to target DNA in the nucleus, and that the extracellular domain of LRP10 is critical for inhibition of the canonical Wnt/{beta}-catenin signaling pathway.

  6. Beta-catenin relieves I-mfa-mediated suppression of LEF-1 in mammalian cells.

    Science.gov (United States)

    Pan, Weijun; Jia, Yingying; Huang, Tao; Wang, Jiyong; Tao, Donglei; Gan, Xiaoqing; Li, Lin

    2006-12-01

    We have previously shown that beta-catenin interacts with a transcription suppressor I-mfa and, through this interaction, canonical Wnt signaling could relieve I-mfa-mediated suppression of myogenic regulatory factors (MRFs). In this study, we found that, based on this interaction, I-mfa-mediated suppression of the Wnt transcription factor T-cell factor/lymphoid enhancing factor-1 (TCF/LEF-1) can also be relieved. Our work showed that knocking down endogenous I-mfa expression mimics canonical Wnt treatment by inducing myogenesis and increasing Wnt reporter gene activity, endogenous Wnt target gene expression and expression of MRFs in P19 cells. More importantly, these I-mfa small interfering RNA (siRNA)-induced effects could be blocked by a dominant-negative mutant of LEF-1, confirming the involvement of the TCF/LEF-1 pathway. In addition, we found that beta-catenin could compete with I-mfa for binding to LEF-1 and relieve the inhibitory effects of I-mfa in overexpression systems. Furthermore, canonical Wnt was able to reduce the levels of endogenous I-mfa associated with LEF-1, while increasing that of I-mfa associated with beta-catenin. All of the evidence supports a conclusion that I-mfa can suppress myogenesis by inhibiting TCF/LEF-1 and that canonical Wnt signaling may relieve the suppression through elevating beta-catenin levels, which in turn relieve I-mfa-mediated suppression.

  7. Natural derivatives of curcumin attenuate the Wnt/beta-catenin pathway through down-regulation of the transcriptional coactivator p300.

    Science.gov (United States)

    Ryu, Min-Jung; Cho, Munju; Song, Jie-Young; Yun, Yeon-Sook; Choi, Il-Whan; Kim, Dong-Eun; Park, Byeoung-Soo; Oh, Sangtaek

    2008-12-26

    Curcumin, a component of turmeric (Curcuma longa), has been reported to suppress beta-catenin response transcription (CRT), which is aberrantly activated in colorectal cancer. However, the effects of its natural analogs (demethoxycurcumin [DMC] and bisdemethoxycurcumin [BDMC]) and metabolite (tetrahydrocurcumin [THC]) on the Wnt/beta-catenin pathway have not been investigated. Here, we show that DMC and BDMC suppressed CRT that was activated by Wnt3a conditioned-medium (Wnt3a-CM) without altering the level of intracellular beta-catenin, and inhibited the growth of various colon cancer cells, with comparable potency to curcumin. Additionally, DMC and BDMC down-regulated p300, which is a positive regulator of the Wnt/beta-catenin pathway. Notably, THC also inhibited CRT and cell proliferation, but to a much lesser degree than curcumin, DMC, or BDMC, indicating that the conjugated bonds in the central seven-carbon chain of curcuminoids are essential for the inhibition of Wnt/beta-catenin pathway and the anti-proliferative activity of curcuminoids. Thus, our findings suggest that curcumin derivatives inhibit the Wnt/beta-catenin pathway by decreasing the amount of the transcriptional coactivator p300.

  8. Discovery of Novel Drugs to Improve Bone Health in Neurofibromatosis Type 1: The Wnt/Beta-Catenin Pathway in Fracture Repair and Pseudarthrosis

    Science.gov (United States)

    2015-08-01

    neurofibromatosis. 4 To identify agents that inhibit beta-catenin signaling, we undertook a high throughput screen using mesenchymal cells exhibiting...Med 2007, 4:e249. [3] Poon R HH, Wei X, Pan J, and Alman BA: A high throughput screen identifies Nefopam as targeting cell proliferation in β...AWARD NUMBER: W81XWH-13-1-0113 TITLE: Discovery of Novel Drugs To Improve Bone Health in Neurofibromatosis Type 1: The Wnt/Beta-Catenin

  9. AU-rich elements and alternative splicing in the beta-catenin 3'UTR can influence the human beta-catenin mRNA stability.

    NARCIS (Netherlands)

    Thiele, A.; Nagamine, Y.; Hauschildt, S.; Clevers, J.C.

    2006-01-01

    Beta-catenin, the central player of the Wnt signaling cascade, is a well-known oncogene. The regulation of beta-catenin protein stability has been studied extensively while other mechanisms that control cellular levels of beta-catenin have hardly been addressed. In this study, we show that there are

  10. Concurrent Transient Activation of Wnt/{beta}-Catenin Pathway Prevents Radiation Damage to Salivary Glands

    Energy Technology Data Exchange (ETDEWEB)

    Hai Bo; Yang Zhenhua; Shangguan Lei; Zhao Yanqiu [Institute for Regenerative Medicine, Scott and White Hospital, Molecular and Cellular Medicine Department, Texas A and M Health Science Center, Temple, Texas (United States); Boyer, Arthur [Department of Radiology, Scott and White Hospital, Temple, Texas (United States); Liu, Fei, E-mail: fliu@medicine.tamhsc.edu [Institute for Regenerative Medicine, Scott and White Hospital, Molecular and Cellular Medicine Department, Texas A and M Health Science Center, Temple, Texas (United States)

    2012-05-01

    Purpose: Many head and neck cancer survivors treated with radiotherapy suffer from permanent impairment of their salivary gland function, for which few effective prevention or treatment options are available. This study explored the potential of transient activation of Wnt/{beta}-catenin signaling in preventing radiation damage to salivary glands in a preclinical model. Methods and Materials: Wnt reporter transgenic mice were exposed to 15 Gy single-dose radiation in the head and neck area to evaluate the effects of radiation on Wnt activity in salivary glands. Transient Wnt1 overexpression in basal epithelia was induced in inducible Wnt1 transgenic mice before together with, after, or without local radiation, and then saliva flow rate, histology, apoptosis, proliferation, stem cell activity, and mRNA expression were evaluated. Results: Radiation damage did not significantly affect activity of Wnt/{beta}-catenin pathway as physical damage did. Transient expression of Wnt1 in basal epithelia significantly activated the Wnt/{beta}-catenin pathway in submandibular glands of male mice but not in those of females. Concurrent transient activation of the Wnt pathway prevented chronic salivary gland dysfunction following radiation by suppressing apoptosis and preserving functional salivary stem/progenitor cells. In contrast, Wnt activation 3 days before or after irradiation did not show significant beneficial effects, mainly due to failure to inhibit acute apoptosis after radiation. Excessive Wnt activation before radiation failed to inhibit apoptosis, likely due to extensive induction of mitosis and up-regulation of proapoptosis gene PUMA while that after radiation might miss the critical treatment window. Conclusion: These results suggest that concurrent transient activation of the Wnt/{beta}-catenin pathway could prevent radiation-induced salivary gland dysfunction.

  11. The ankyrin repeat protein Diversin recruits Casein kinase Iepsilon to the beta-catenin degradation complex and acts in both canonical Wnt and Wnt/JNK signaling.

    Science.gov (United States)

    Schwarz-Romond, Thomas; Asbrand, Christian; Bakkers, Jeroen; Kühl, Michael; Schaeffer, Hans-Joerg; Huelsken, Jörg; Behrens, Jürgen; Hammerschmidt, Matthias; Birchmeier, Walter

    2002-08-15

    Wnt signals control decisive steps in development and can induce the formation of tumors. Canonical Wnt signals control the formation of the embryonic axis, and are mediated by stabilization and interaction of beta-catenin with Lef/Tcf transcription factors. An alternative branch of the Wnt pathway uses JNK to establish planar cell polarity in Drosophila and gastrulation movements in vertebrates. We describe here the vertebrate protein Diversin that interacts with two components of the canonical Wnt pathway, Casein kinase Iepsilon (CKIepsilon) and Axin/Conductin. Diversin recruits CKIepsilon to the beta-catenin degradation complex that consists of Axin/Conductin and GSK3beta and allows efficient phosphorylation of beta-catenin, thereby inhibiting beta-catenin/Tcf signals. Morpholino-based gene ablation in zebrafish shows that Diversin is crucial for axis formation, which depends on beta-catenin signaling. Diversin is also involved in JNK activation and gastrulation movements in zebrafish. Diversin is distantly related to Diego of Drosophila, which functions only in the pathway that controls planar cell polarity. Our data show that Diversin is an essential component of the Wnt-signaling pathway and acts as a molecular switch, which suppresses Wnt signals mediated by the canonical beta-catenin pathway and stimulates signaling via JNK.

  12. Alzheimer Disease: Crosstalk between the Canonical Wnt/Beta-Catenin Pathway and PPARs Alpha and Gamma

    Science.gov (United States)

    Vallée, Alexandre; Lecarpentier, Yves

    2016-01-01

    The molecular mechanisms underlying the pathophysiology of Alzheimer's disease (AD) are still not fully understood. In AD, Wnt/beta-catenin signaling has been shown to be downregulated while the peroxisome proliferator-activated receptor (PPAR) gamma (mARN and protein) is upregulated. Certain neurodegenerative diseases share the same Wnt/beta-catenin/PPAR gamma profile, such as bipolar disorder and schizophrenia. Conversely, other NDs share an opposite profile, such as amyotrophic lateral sclerosis, Parkinson's disease, Huntington's disease, multiple sclerosis, and Friedreich's ataxia. AD is characterized by the deposition of extracellular Abeta plaques and the formation of intracellular neurofibrillary tangles in the central nervous system (CNS). Activation of Wnt signaling or inhibition of both glycogen synthase kinase-3beta and Dickkopf 1, two key negative regulators of the canonical Wnt pathway, are able to protect against Abeta neurotoxicity and to ameliorate cognitive performance in AD patients. Although PPAR gamma is upregulated in AD patients, and despite the fact that it has been shown that the PPAR gamma and Wnt/beta catenin pathway systems work in an opposite manner, PPAR gamma agonists diminish learning and memory deficits, decrease Abeta activation of microglia, and prevent hippocampal and cortical neurons from dying. These beneficial effects observed in AD transgenic mice and patients might be partially due to the anti-inflammatory properties of PPAR gamma agonists. Moreover, activation of PPAR alpha upregulates transcription of the alpha-secretase gene and represents a new therapeutic treatment for AD. This review focuses largely on the behavior of two opposing pathways in AD, namely Wnt/beta-catenin signaling and PPAR gamma. It is hoped that this approach may help to develop novel AD therapeutic strategies integrating PPAR alpha signaling.

  13. Alzheimer disease: crosstalk between the canonical Wnt/beta-catenin pathway and PPARs alpha and gamma

    Directory of Open Access Journals (Sweden)

    Alexandre VALLEE

    2016-10-01

    Full Text Available The molecular mechanisms underlying the pathophysiology of Alzheimer's disease (AD are still not fully understood. In AD, Wnt/beta-catenin signaling has been shown to be downregulated while the peroxisome proliferator-activated receptor (PPAR gamma (mARN and protein is upregulated. Certain neurodegenerative diseases share the same Wnt/beta-catenin/PPAR gamma profile, such as bipolar disorder and schizophrenia. Conversely, other NDs share an opposite profile, such as amyotrophic lateral sclerosis, Parkinson's disease, Huntington's disease, multiple sclerosis and Friedreich's ataxia. AD is characterized by the deposition of extracellular Abeta plaques and the formation of intracellular neurofibrillary tangles in the central nervous system . Activation of Wnt signaling or inhibition of both glycogen synthase kinase-3beta and Dickkopf 1, two key negative regulators of the canonical Wnt pathway, are able to protect against Abeta neurotoxicity and to ameliorate cognitive performance in AD patients. Although PPAR gamma is upregulated in AD patients, and despite the fact that it has been shown that the PPAR gamma and Wnt/beta catenin pathway systems work in an opposite manner, PPAR gamma agonists diminish learning and memory deficits, decrease Abeta activation of microglia, and prevent hippocampal and cortical neurons from dying. These beneficial effects observed in AD transgenic mice and patients might be partially due to the anti-inflammatory properties of PPAR gamma agonists. Moreover, activation of PPAR alpha upregulates transcription of the alpha-secretase gene and represents a new therapeutic treatment for AD. This review focuses largely on the behavior of two opposing pathways in AD, namely Wnt/beta-catenin signaling and PPAR gamma. It is hoped that this approach may help to develop novel AD therapeutic strategies integrating PPAR alpha signaling.

  14. Neurofilament heavy polypeptide regulates the Akt-beta-catenin pathway in human esophageal squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Myoung Sook Kim

    Full Text Available Aerobic glycolysis and mitochondrial dysfunction are common features of aggressive cancer growth. We observed promoter methylation and loss of expression in neurofilament heavy polypeptide (NEFH in a significant proportion of primary esophageal squamous cell carcinoma (ESCC samples that were of a high tumor grade and advanced stage. RNA interference-mediated knockdown of NEFH accelerated ESCC cell growth in culture and increased tumorigenicity in vivo, whereas forced expression of NEFH significantly inhibited cell growth and colony formation. Loss of NEFH caused up-regulation of pyruvate kinase-M2 type and down-regulation of pyruvate dehydrogenase, via activation of the Akt/beta-catenin pathway, resulting in enhanced aerobic glycolysis and mitochondrial dysfunction. The acceleration of glycolysis and mitochondrial dysfunction in NEFH-knockdown cells was suppressed in the absence of beta-catenin expression, and was decreased by the treatment of 2-Deoxyglucose, a glycolytic inhibitor, or API-2, an Akt inhibitor. Loss of NEFH activates the Akt/beta-catenin pathway and increases glycolysis and mitochondrial dysfunction. Cancer cells with methylated NEFH can be targeted for destruction with specific inhibitors of deregulated downstream pathways.

  15. The beta-catenin/VegT-regulated early zygotic gene Xnr5 is a direct target of SOX3 regulation.

    Science.gov (United States)

    Zhang, Chi; Basta, Tamara; Jensen, Eric D; Klymkowsky, M W

    2003-12-01

    In Xenopus laevis, beta-catenin-mediated dorsal axis formation can be suppressed by overexpression of the HMG-box transcription factor XSOX3. Mutational analysis indicates that this effect is due not to the binding of XSOX3 to beta-catenin nor to its competition with beta-catenin-regulated TCF-type transcription factors for specific DNA binding sites, but rather to SOX3 binding to sites within the promoter of the early VegT- and beta-catenin-regulated dorsal-mesoderm-inducing gene Xnr5. Although B1-type SOX proteins, such as XSOX3, are commonly thought to act as transcriptional activators, XSOX3 acts as a transcriptional repressor of Xnr5 in both the intact embryo and animal caps injected with VegT RNA. Expression of a chimeric polypeptide composed of XSOX3 and a VP16 transcriptional activation domain or morpholino-induced decrease in endogenous XSOX3 polypeptide levels lead to an increase in Xnr5 expression, as does injection of an anti-XSOX3 antibody that inhibits XSOX3 DNA binding. These observations indicate that maternal XSOX3 acts in a novel manner to restrict Xnr5 expression to the vegetal hemisphere.

  16. Polarity of response to transforming growth factor-beta1 in proximal tubular epithelial cells is regulated by beta-catenin.

    Science.gov (United States)

    Zhang, Mei; Lee, Chien-Hung; Luo, Dong Dong; Krupa, Aleksandra; Fraser, Donald; Phillips, Aled

    2007-09-28

    Transforming growth factor-beta1 (TGF-beta1)-mediated loss of proximal tubular epithelial cell-cell interaction is regulated in a polarized fashion. The aim of this study was to further explore the polarity of the TGF-beta1 response and to determine the significance of R-Smad-beta-catenin association previously demonstrated to accompany adherens junction disassembly. Smad3 signaling response to TGF-beta1 was assessed by activity of the Smad3-responsive reporter gene construct (SBE)(4)-Lux and by immunoblotting for phospho-Smad proteins. Similar results were obtained with both methods. Apical application of TGF-beta1 led to increased Smad3 signaling compared with basolateral stimulation. Association of Smad proteins with beta-catenin was greater following basolateral TGFbeta-1 stimulation, as was the expression of cytoplasmic Triton-soluble beta-catenin. Inhibition of beta-catenin expression by small interfering RNA augmented Smad3 signaling. Lithium chloride, a GSK-3 inhibitor, increased expression of beta-catenin and attenuated TGF-beta1-dependent Smad3 signaling. Lithium chloride did not influence degradation of Smad3 but resulted in decreased nuclear translocation. Smad2 activation as assessed by Western blot analysis and activity of the Smad2-responsive reporter constructs ARE/MF1 was also greater following apical as compared with basolateral TGFbeta-1 stimulation, suggesting that this is a generally applicable mechanism for the regulation of TGF-beta1-dependent R-Smads. Caco-2 cells are a colonic carcinoma cell line, with known resistance to the anti-proliferative effects of TGF-beta1 and increased expression of beta-catenin. We used this cell line to address the general applicability of our observations. Inhibition of beta-catenin in this cell line by small interfering RNA resulted in increased TGF-beta1-dependent Smad3 phosphorylation and restoration of TGF-beta1 anti-proliferative effects.

  17. Lithium and neuropsychiatric therapeutics: neuroplasticity via glycogen synthase kinase-3beta, beta-catenin, and neurotrophin cascades.

    Science.gov (United States)

    Wada, Akihiko

    2009-05-01

    Mood disorders are not merely attributed to the functional defect of neurotransmission, but also are due to the structural impairment of neuroplasticity. Chronic stress decreases neurotrophin levels, precipitating or exacerbating depression; conversely, antidepressants increase expression of various neurotrophins (e.g., brain-derived neurotrophic factor and vascular endothelial growth factor), thereby blocking or reversing structural and functional pathologies via promoting neurogenesis. Since the worldwide approval of lithium therapy in 1970, lithium has been used for its anti-manic, antidepressant, and anti-suicidal effects, yet the therapeutic mechanisms at the cellular level remain not-fully defined. During the last five years, multiple lines of evidence have shown that the mood stabilization and neurogenesis by lithium are due to the lithium-induced inhibition of glycogen synthase kinase-3beta (GSK-3beta), allowing accumulation of beta-catenin and beta-catenin-dependent gene transcriptional events. Altered levels of GSK-3beta and beta-catenin are associated with various neuropsychiatric and neurodegenerative diseases, while various classical neuropsychiatric drugs inhibit GSK-3beta and up-regulate beta-catenin expression. In addition, evidence has emerged that insulin-like growth factor-I enhances antidepression, anti-anxiety, memory, neurogenesis, and angiogenesis; antidepressants up-regulate expression of insulin-like growth factor-I, while insulin-like growth factor-I up-regulates brain-derived neurotrophic factor expression and its receptor TrkB level, as well as brain-derived neurotrophic factor-induced synaptic protein levels. More importantly, physical exercise and healthy diet raise transport of peripheral circulating insulin-like growth factor I into the brain, reinforcing the expression of neurotrophins (e.g., brain-derived neurotrophic factor) and the strength of cell survival signalings (e.g., phosphoinositide 3-kinase / Akt / GSK-3beta pathway

  18. MicroRNA-320a suppresses human colon cancer cell proliferation by directly targeting {beta}-catenin

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jian-Yong [State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032 Xi' an (China); State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032 Xi' an (China); Huang, Yi [Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, 710032 Xi' an (China); Li, Ji-Peng [State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032 Xi' an (China); Zhang, Xiang; Wang, Lei [State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032 Xi' an (China); Meng, Yan-Ling [Department of Immunology, Fourth Military Medical University, 710032 Xi' an (China); Yan, Bo [State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032 Xi' an (China); Bian, Yong-Qian [State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032 Xi' an (China); Zhao, Jing [State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032 Xi' an (China); Wang, Wei-Zhong, E-mail: weichang@fmmu.edu.cn [State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032 Xi' an (China); and others

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer miR-320a is downregulated in human colorectal carcinoma. Black-Right-Pointing-Pointer Overexpression of miR-320a inhibits colon cancer cell proliferation. Black-Right-Pointing-Pointer {beta}-Catenin is a direct target of miR-320a in colon cancer cells. Black-Right-Pointing-Pointer miR-320a expression inversely correlates with mRNA expression of {beta}-catenin's target genes in human colon carcinoma. -- Abstract: Recent profile studies of microRNA (miRNA) expression have documented a deregulation of miRNA (miR-320a) in human colorectal carcinoma. However, its expression pattern and underlying mechanisms in the development and progression of colorectal carcinoma has not been elucidated clearly. Here, we performed real-time PCR to examine the expression levels of miR-320a in colon cancer cell lines and tumor tissues. And then, we investigated its biological functions in colon cancer cells by a gain of functional strategy. Further more, by the combinational approaches of bioinformatics and experimental validation, we confirmed target associations of miR-320a in colorectal carcinoma. Our results showed that miR-320a was frequently downregulated in cancer cell lines and colon cancer tissues. And we demonstrated that miR-320a restoration inhibited colon cancer cell proliferation and {beta}-catenin, a functionally oncogenic molecule was a direct target gene of miR-320a. Finally, the data of real-time PCR showed the reciprocal relationship between miR-320a and {beta}-catenin's downstream genes in colon cancer tissues. These findings indicate that miR-320a suppresses the growth of colon cancer cells by directly targeting {beta}-catenin, suggesting its application in prognosis prediction and cancer treatment.

  19. Dominant beta-catenin mutations cause intellectual disability with recognizable syndromic features

    NARCIS (Netherlands)

    Tucci, V.; Kleefstra, T.; Hardy, A.; Heise, I.; Maggi, S.; Willemsen, M.H.; Hilton, H.; Esapa, C.; Simon, M.; Buenavista, M.T.; McGuffin, L.J.; Vizor, L.; Dodero, L.; Tsaftaris, S.; Romero, R.; Nillesen, W.N.; Vissers, L.E.L.M.; Kempers, M.J.E.; Silfhout, A.T. van; Iqbal, Z.; Orlando, M.; Maccione, A.; Lassi, G.; Farisello, P.; Contestabile, A.; Tinarelli, F.; Nieus, T.; Raimondi, A.; Greco, B.; Cantatore, D.; Gasparini, L.; Berdondini, L.; Bifone, A.; Gozzi, A.; Wells, S.; Nolan, P.M.

    2014-01-01

    The recent identification of multiple dominant mutations in the gene encoding beta-catenin in both humans and mice has enabled exploration of the molecular and cellular basis of beta-catenin function in cognitive impairment. In humans, beta-catenin mutations that cause a spectrum of neurodevelopment

  20. An LRP5 receptor with internal deletion in hyperparathyroid tumors with implications for deregulated WNT/beta-catenin signaling.

    Directory of Open Access Journals (Sweden)

    Peyman Björklund

    2007-11-01

    Full Text Available BACKGROUND: Hyperparathyroidism (HPT is a common endocrine disorder with incompletely understood etiology, characterized by enlarged hyperactive parathyroid glands and increased serum concentrations of parathyroid hormone and ionized calcium. We have recently reported activation of the Wnt signaling pathway by accumulation of beta-catenin in all analyzed parathyroid tumors from patients with primary HPT (pHPT and in hyperplastic parathyroid glands from patients with uremia secondary to HPT (sHPT. Mechanisms that may account for this activation have not been identified, except for a few cases of beta-catenin (CTNNB1 stabilizing mutation in pHPT tumors. METHODS AND FINDINGS: Reverse transcription PCR and Western blot analysis showed expression of an aberrantly spliced internally truncated WNT coreceptor low-density lipoprotein receptor-related protein 5 (LRP5 in 32 out of 37 pHPT tumors (86% and 20 out of 20 sHPT tumors (100%. Stabilizing mutation of CTNNB1 and expression of the internally truncated LRP5 receptor was mutually exclusive. Expression of the truncated LRP5 receptor was required to maintain the nonphosphorylated active beta-catenin level, transcription activity of beta-catenin, MYC expression, parathyroid cell growth in vitro, and parathyroid tumor growth in a xenograft severe combined immunodeficiency (SCID mouse model. WNT3 ligand and the internally truncated LRP5 receptor strongly activated transcription, and the internally truncated LRP5 receptor was insensitive to inhibition by DKK1. CONCLUSIONS: The internally truncated LRP5 receptor is strongly implicated in deregulated activation of the WNT/beta-catenin signaling pathway in hyperparathyroid tumors, and presents a potential target for therapeutic intervention.

  1. Overexpression of EB1 in human esophageal squamous cell carcinoma (ESCC) may promote cellular growth by activating beta-catenin/TCF pathway.

    Science.gov (United States)

    Wang, Yihua; Zhou, Xiaobo; Zhu, Hongxia; Liu, Shuang; Zhou, Cuiqi; Zhang, Guo; Xue, Liyan; Lu, Ning; Quan, Lanping; Bai, Jinfeng; Zhan, Qimin; Xu, Ningzhi

    2005-10-01

    Esophageal squamous cell carcinoma (ESCC) has a multifactorial etiology involving environmental and/or genetic factors. End-binding protein 1 (EB1), which was cloned as an interacting partner of the adenomatous polyposis coli (APC) tumor suppressor protein, was previously found overexpressed in ESCC. However, the precise role of EB1 in the development of this malignancy has not yet been elucidated. In this study, we analysed freshly resected ESCC specimens and demonstrated that EB1 was overexpressed in approximately 63% of tumor samples compared to matched normal tissue. We report that overexpression of EB1 in the ESCC line EC9706 significantly promotes cell growth, whereas suppression of EB1 protein level by RNA interference significantly inhibited growth of esophageal tumor cells. In addition, EB1 overexpression induced nuclear accumulation of beta-catenin and promoted the transcriptional activity of beta-catenin/T-cell factor (TCF). These effects were partially or completely abolished by coexpression of APC or DeltaN TCF4, respectively. Also, we found that EB1 affected the interaction between beta-catenin and APC. Furthermore, EB1 overexpression was correlated with cytoplasmic/nuclear accumulation of beta-catenin in primary human ESCC. Taken together, these results support the novel hypothesis that EB1 overexpression may play a role in the development of ESCC by affecting APC function and activating the beta-catenin/TCF pathway.

  2. Mutations in the human naked cuticle homolog NKD1 found in colorectal cancer alter Wnt/Dvl/beta-catenin signaling.

    Directory of Open Access Journals (Sweden)

    Jianhui Guo

    Full Text Available BACKGROUND: Mutation of Wnt signal antagonists Apc or Axin activates beta-catenin signaling in many cancers including the majority of human colorectal adenocarcinomas. The phenotype of apc or axin mutation in the fruit fly Drosophila melanogaster is strikingly similar to that caused by mutation in the segment-polarity gene, naked cuticle (nkd. Nkd inhibits Wnt signaling by binding to the Dishevelled (Dsh/Dvl family of scaffold proteins that link Wnt receptor activation to beta-catenin accumulation and TCF-dependent transcription, but human NKD genes have yet to be directly implicated in cancer. METHODOLOGY/PRINCIPAL FINDINGS: We identify for the first time mutations in NKD1--one of two human nkd homologs--in a subset of DNA mismatch repair-deficient colorectal tumors that are not known to harbor mutations in other Wnt-pathway genes. The mutant Nkd1 proteins are defective at inhibiting Wnt signaling; in addition, the mutant Nkd1 proteins stabilize beta-catenin and promote cell proliferation, in part due to a reduced ability of each mutant Nkd1 protein to bind and destabilize Dvl proteins. CONCLUSIONS/SIGNIFICANCE: Our data raise the hypothesis that specific NKD1 mutations promote Wnt-dependent tumorigenesis in a subset of DNA mismatch-repair-deficient colorectal adenocarcinomas and possibly other Wnt-signal driven human cancers.

  3. Expressions of Beta-Catenin, SUFU and VEGFR-2 Proteins in Medulloblastoma

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiong; ZHANG Hong-mei; LI Yu; MI Can

    2007-01-01

    Objective: to investigate the expressions of beta-catenin, SUFU and VEGFR-2 proteins in medulloblastoma. Methods: Immunohistochemical staining with SP method was conducted to determine the expressions of beta-catenin, SUFU and VEGFR-2 in 33 cases of medulloblastoma and 10 normal cerebellar tissues. Results: the abnormal expression rates of beta-catenin and VEGFR-2 in medulloblastoma were significantly higher than that in normal tissue. While the positive expression of SUFU gene in medulloblastoma was significantly lower than that in 10 normal cerebellar tissues. A significant negative correlation was found between beta-catenin and SUFU proteins and a positive correlation between beta-catenin and VEGFR-2 was found in medulloblastoma. Conclusion: Beta-catenin, VEGFR-2 and SUFU have important effects on the pathogenesis and development of medulloblastoma.

  4. Regulation of mammary stem/progenitor cells by PTEN/Akt/beta-catenin signaling.

    Directory of Open Access Journals (Sweden)

    Hasan Korkaya

    2009-06-01

    Full Text Available Recent evidence suggests that many malignancies, including breast cancer, are driven by a cellular subcomponent that displays stem cell-like properties. The protein phosphatase and tensin homolog (PTEN is inactivated in a wide range of human cancers, an alteration that is associated with a poor prognosis. Because PTEN has been reported to play a role in the maintenance of embryonic and tissue-specific stem cells, we investigated the role of the PTEN/Akt pathway in the regulation of normal and malignant mammary stem/progenitor cell populations. We demonstrate that activation of this pathway, via PTEN knockdown, enriches for normal and malignant human mammary stem/progenitor cells in vitro and in vivo. Knockdown of PTEN in normal human mammary epithelial cells enriches for the stem/progenitor cell compartment, generating atypical hyperplastic lesions in humanized NOD/SCID mice. Akt-driven stem/progenitor cell enrichment is mediated by activation of the Wnt/beta-catenin pathway through the phosphorylation of GSK3-beta. In contrast to chemotherapy, the Akt inhibitor perifosine is able to target the tumorigenic cell population in breast tumor xenografts. These studies demonstrate an important role for the PTEN/PI3-K/Akt/beta-catenin pathway in the regulation of normal and malignant stem/progenitor cell populations and suggest that agents that inhibit this pathway are able to effectively target tumorigenic breast cancer cells.

  5. beta-catenin can be transported into the nucleus in a Ran-unassisted manner.

    Science.gov (United States)

    Yokoya, F; Imamoto, N; Tachibana, T; Yoneda, Y

    1999-04-01

    The nuclear accumulation of beta-catenin plays an important role in the Wingless/Wnt signaling pathway. This study describes an examination of the nuclear import of beta-catenin in living mammalian cells and in vitro semi-intact cells. When injected into the cell cytoplasm, beta-catenin rapidly migrated into the nucleus in a temperature-dependent and wheat germ agglutinin-sensitive manner. In the cell-free import assay, beta-catenin rapidly migrates into the nucleus without the exogenous addition of cytosol, Ran, or ATP/GTP. Cytoplasmic injection of mutant Ran defective in its GTP hydrolysis did not prevent beta-catenin import. Studies using tsBN2, a temperature-sensitive mutant cell line that possesses a point mutation in the RCC1 gene, showed that the import of beta-catenin is insensitive to nuclear Ran-GTP depletion. These results show that beta-catenin possesses the ability to constitutively translocate through the nuclear pores in a manner similar to importin beta in a Ran-unassisted manner. We further showed that beta-catenin also rapidly exits the nucleus in homokaryons, suggesting that the regulation of nuclear levels of beta-catenin involves both nuclear import and export of this molecule.

  6. TP53 and Beta-catenin mutations in liver tumours

    Directory of Open Access Journals (Sweden)

    Pierre Hainaut

    2007-02-01

    Full Text Available

    HBV and HCV play key roles in the etiopathogenesis of Hepatocellular carcinoma (HCC . Studies mostly based on cases from Western countries suggest distinct genetic pathways of carcinogenesis involving either TP53 or CTTNB1 mutations. Inappropriate reactivation of Wnt pathway due to mutations in CTNNB1 (Beta-Catenin gene itself is also frequently reported. Mutant Beta-catenin escapes to ubiquitination and down regulation by GSK3-B, it accumulates and trans-activates variety of oncogenes involved in neoplasmic transformation mimicking Wnt pathway activation. Taking into consideration viral infection, chromosome instability and TP53 /Beta-catenin alterations, Laurent-Puig et al. described two distinct HCC profiles in a serie of 137 HCC cases , the first one associates HBV infection with frequent chromosomal alteration and distributes with TP53 mutations, the second would be observed in HBV negative large sized tumors and distributes with Beta-catenin mutations. We have investigated the status of HBV and HCV infections and of genetic alterations in TP53 and CTTNB1 in 26 patients with HCC from Thailand. In tumours, HBV DNA was found in 19 cases (73% and HCV RNA in 4 cases (15.4% cases, 3 of whom were co-infected. Among the 19 HBV positive cases, sequencing of S gene showed genotype C in 82% and genotype B in 18%. Furthermore, 5/19 cases were negative for HBsAg and were categorized as occult HBV infections. TP53 mutations were detected in 9 cases (34,6% including 7 mutations at codon 249 (AGG to AGT, arginine to serine, considered as ";fingerprint"; of mutagenesis by aflatoxin metabolites. All cases with 249ser mutation had overt HBV infection.

    CTNNB1 mutations were found in 6/26 cases (23%, 4 of whom also had TP53 mutation. There was no significant association between CTTNB1

  7. Gamma-Secretase Inhibitor IX (GSI) Impairs Concomitant Activation of Notch and wnt-beta-catenin Pathways in CD44(+) Gastric Cancer Stem Cells.

    Science.gov (United States)

    Barat, Samarpita; Chen, Xi; Cuong Bui, Khac; Bozko, Przemyslaw; Götze, Julian; Christgen, Matthias; Krech, Till; Malek, Nisar P; Plentz, Ruben R

    2017-02-03

    Cancer stem cells (CSC) are associated with tumor resistance and are characterized in gastric cancer (GC). Studies have indicated that Notch and wnt-beta-catenin pathways are crucial for CSC development. Using CD44(+) CSCs, we investigated the role of these pathways in GC carcinogenesis. We performed cell proliferation, wound healing, invasion, tumorsphere, and apoptosis assays. Immunoblot analysis of downstream signaling targets of Notch and wnt-beta-catenin were tested after gamma-secretase inhibitor IX (GSI) treatment. Immunohistochemistry, immunofluorescence, and Fluorescence activated cell sorting (FACS) were used to determine CD44 and Hairy enhancer of split-1 (Hes1) expression in human GC tissues. CD44(+) CSCs were subcutaneously injected into NMR-nu/nu mice and treated with vehicle or GSI. GC patients with expression of CD44 and Hes1 showed overall reduced survival. CD44(+) CSCs showed high expression of Hes1. GSI treatment showed effective inhibition of cell proliferation, migration, invasion, tumor sphere formation of CD44(+) CSCs, and induced apoptosis. Importanly, Notch1 was found to be important in mediating a crosstalk between Notch and wnt-beta-catenin in CD44(+) CSCs. Our study highlights a crosstalk between Notch and wnt-beta-catenin in gastric CD44(+) CSCs. Expression of CD44 and Hes1 is associated with patient overall survival. GSI could be an alternative drug to treat GC. © Stem Cells Translational Medicine 2017.

  8. Absolute beta-catenin concentrations in Wnt pathway-stimulated and non-stimulated cells

    NARCIS (Netherlands)

    Sievers, S; Fritzsch, C; Grzegorczyk, M; Kuhnen, C; Muller, O

    2006-01-01

    The intracellular level of the proto-oncoprotein beta-catenin is a parameter for the activity of the Wnt pathway, which has been linked to carcinogenesis. The paper introduces a novel sandwich-based ELISA for the determination of the beta-catenin concentration in lysates from cells or tissues. The a

  9. Beta-Catenin and Epithelial Tumors: A Study Based on 374 Oropharyngeal Cancers

    Directory of Open Access Journals (Sweden)

    Angela Santoro

    2014-01-01

    Full Text Available Introduction. Although altered regulation of the Wnt pathway via beta-catenin is a frequent event in several human cancers, its potential implications in oral/oropharyngeal squamous cell carcinomas (OSCC/OPSCC are largely unexplored. Work purpose was to define association between beta-catenin expression and clinical-pathological parameters in 374 OSCCs/OP-SCCs by immunohistochemistry (IHC. Materials and Methods. Association between IHC detected patterns of protein expression and clinical-pathological parameters was assessed by statistical analysis and survival rates by Kaplan-Meier curves. Beta-catenin expression was also investigated in OSCC cell lines by Real-Time PCR. An additional analysis of the DNA content was performed on 22 representative OSCCs/OPSCCs by DNA-image-cytometric analysis. Results and Discussion. All carcinomas exhibited significant alterations of beta-catenin expression (P<0.05. Beta-catenin protein was mainly detected in the cytoplasm of cancerous cells and only focal nuclear positivity was observed. Higher cytoplasmic expression correlated significantly with poor histological differentiation, advanced stage, and worst patient outcome (P<0.05. By Real-Time PCR significant increase of beta-catenin mRNA was detected in OSCC cell lines and in 45% of surgical specimens. DNA ploidy study demonstrated high levels of aneuploidy in beta-catenin overexpressing carcinomas. Conclusions. This is the largest study reporting significant association between beta-catenin expression and clinical-pathological factors in patients with OSCCs/OPSCCs.

  10. P-cadherin and beta-catenin are useful prognostic markers in breast cancer patients; beta-catenin interacts with heat shock protein Hsp27.

    Science.gov (United States)

    Fanelli, Mariel A; Montt-Guevara, Magdalena; Diblasi, Angela M; Gago, Francisco E; Tello, Olga; Cuello-Carrión, F Darío; Callegari, Eduardo; Bausero, Maria A; Ciocca, Daniel R

    2008-01-01

    The cadherin-catenin proteins have in common with heat shock proteins (HSP) the capacity to bind/interact proteins of other classes. Moreover, there are common molecular pathways that connect the HSP response and the cadherin-catenin protein system. In the present study, we have explored whether in breast cancer the HSP might interact functionally with the cadherin-catenin cell adhesion system. Beta-catenin was immunoprecipitated from breast cancer biopsy samples, and the protein complexes isolated in this way were probed with antibodies against HSP family members. We are thus the first to demonstrate a specific interaction between beta-catenin and Hsp27. However, beta-catenin did not bind Hsp60, Hsp70, Hsp90, gp96, or the endoplasmic reticulum stress response protein CHOP. To confirm the finding of Hsp27-beta-catenin interaction, the 27-kDa immunoprecipitated band was excised from one-dimensional polyacrylamide gel electrophoresis gels and submitted to liquid chromatography-tandem mass spectrometry with electrospray ionization, confirming a role for Hsp27. In addition, beta-catenin interacted with other proteins including heat shock transcription factor 1, P-cadherin, and caveolin-1. In human breast cancer biopsy samples, beta-catenin was coexpressed in the same tumor areas and in the same tumor cells that expressed Hsp27. However, this coexpression was strong when beta-catenin was present in the cytoplasm of the tumor cells and not when beta-catenin was expressed at the cell surface only. Furthermore, murine breast cancer cells transfected with hsp25 showed a redistribution of beta-catenin from the cell membrane to the cytoplasm. When the prognostic significance of cadherin-catenin expression was examined by immunohistochemistry in breast cancer patients (n = 215, follow-up = >10 years), we found that the disease-free survival and overall survival were significantly shorter for patients expressing P-cadherin and for patients showing expression of beta-catenin in

  11. Expression of Beta-Catenin and APC Protein in Ovarian Epithelial Tumor and Its Implication

    Institute of Scientific and Technical Information of China (English)

    LIN Xiao; LI Yu; MI Can

    2007-01-01

    Objective: To investigate the expression of beta-catenin, APC protein and its implication in ovarian epithelial tumor. Methods: Immunohistochemical staining with SP method was conducted to determine the expression of beta-catenin and APC protein in 48 cases of ovarian epithelial tumor. Results: The abnormal expression rates of beta-catenin in ovarian malignant and borderline epithelial tumors were higher than that in benign epithelial tumors. The expression of APC protein in benign epithelial tumors was significantly greater than that in malignant epithelial tumors. A significant negative correlation was found between beta-catenin and APC protein in ovarian epithelial tumors. Conclusion: Beta-catenin and APC protein have important effect on pathogenesis and development of ovarian epithelial tumors.

  12. Snail/beta-catenin signaling protects breast cancer cells from hypoxia attack

    Energy Technology Data Exchange (ETDEWEB)

    Scherbakov, Alexander M., E-mail: alex.scherbakov@gmail.com [Laboratory of Clinical Biochemistry, Institute of Clinical Oncology, N.N. Blokhin Cancer Research Centre, Kashirskoye sh. 24, Moscow 115478 (Russian Federation); Stefanova, Lidia B.; Sorokin, Danila V.; Semina, Svetlana E. [Laboratory of Molecular Endocrinology, Institute of Carcinogenesis, N.N. Blokhin Cancer Research Centre, Kashirskoye sh. 24, Moscow 115478 (Russian Federation); Berstein, Lev M. [Laboratory of Oncoendocrinology, N.N. Petrov Research Institute of Oncology, St. Petersburg 197758 (Russian Federation); Krasil’nikov, Mikhail A. [Laboratory of Molecular Endocrinology, Institute of Carcinogenesis, N.N. Blokhin Cancer Research Centre, Kashirskoye sh. 24, Moscow 115478 (Russian Federation)

    2013-12-10

    The tolerance of cancer cells to hypoxia depends on the combination of different factors – from increase of glycolysis (Warburg Effect) to activation of intracellular growth/apoptotic pathways. Less is known about the influence of epithelial–mesenchymal transition (EMT) and EMT-associated pathways on the cell sensitivity to hypoxia. The aim of this study was to explore the role of Snail signaling, one of the key EMT pathways, in the mediating of hypoxia response and regulation of cell sensitivity to hypoxia, using as a model in vitro cultured breast cancer cells. Earlier we have shown that estrogen-independent HBL-100 breast cancer cells differ from estrogen-dependent MCF-7 cells with increased expression of Snail1, and demonstrated Snail1 involvement into formation of hormone-resistant phenotype. Because Snail1 belongs to hypoxia-activated proteins, here we studied the influence of Snail1 signaling on the cell tolerance to hypoxia. We found that Snail1-enriched HBL-100 cells were less sensitive to hypoxia-induced growth suppression if compared with MCF-7 line (31% MCF-7 vs. 71% HBL-100 cell viability after 1% O{sub 2} atmosphere for 3 days). Snail1 knock-down enhanced the hypoxia-induced inhibition of cell proliferation giving the direct evidence of Snail1 involvement into cell protection from hypoxia attack. The protective effect of Snail1 was shown to be mediated, at least in a part, via beta-catenin which positively regulated expression of HIF-1-dependent genes. Finally, we found that cell tolerance to hypoxia was accompanied with the failure in the phosphorylation of AMPK – the key energy sensor, and demonstrated an inverse relationship between AMPK and Snail/beta-catenin signaling. Totally, our data show that Snail1 and beta-catenin, besides association with loss of hormone dependence, protect cancer cells from hypoxia and may serve as an important target in the treatment of breast cancer. Moreover, we suggest that the level of these proteins as well

  13. Expressions of GSK-3beta, Beta-Catenin and PPAR-Gamma in Medulloblastoma

    Institute of Scientific and Technical Information of China (English)

    Xiong Zhang; Lu Si; Yu Li; Can Mi

    2009-01-01

    Objective: To investigate the expressions of GSK-3beta, Beta-catenin and PPAR-gamma, and their relationship in medulloblastoma, and to explore their value in clinic application.Methods: Immunohistochemical staining with SP method was conducted to determine the expressions of GSK-3beta, Beta-catenin and PPAR-gamma in 48 cases of medulloblastoma and 10 normal cerebellar tissues.Results: The rate of abnormal expressions of beta-catenin and PPAR-gamma in MB was higher than that in normal. Conversely, GSK-3beta in MB was lower than that in the normal (P<0.05). Furthermore, in medulloblastoma, beta-catenin and GSK-3beta showed a negative correlation, PPAR-gamma and beta-catenin had a positive correlation.Conclusion: Abnormal expression of beta-catenin plays a crucial role in the development of medulloblastoma. Meanwhile, PPAR-gamma and GSK-3beta which are tightly related with beta-catenin are both involved in the genesis and development of medulloblastoma.

  14. Tumors from rats given 1,2-dimethylhydrazine plus chlorophyllin or indole-3-carbinol contain transcriptional changes in beta-catenin that are independent of beta-catenin mutation status.

    Science.gov (United States)

    Wang, Rong; Dashwood, W Mohaiza; Bailey, George S; Williams, David E; Dashwood, Roderick H

    2006-10-10

    Tumors induced in the rat by 1,2-dimethylhydrazine (DMH) contain mutations in beta-catenin, but the spectrum of such mutations can be influenced by phytochemicals such as chlorophyllin (CHL) and indole-3-carbinol (I3C). In the present study, we determined the mutation status of beta-catenin in more than 50 DMH-induced colon tumors and small intestine tumors, and compared this with the concomitant expression of beta-catenin mRNA using quantitative real-time RT-PCR analysis. In total, 19/57 (33%) of the tumors harbored mutations in beta-catenin, and 14/19 (74%) of the genetic changes substituted amino acids adjacent to Ser33, a key site for phosphorylation and beta-catenin degradation. These tumors were found to express a 10-fold range of beta-catenin mRNA levels, independent of the beta-catenin mutation status and phytochemical exposure, i.e. CHL or I3C given post-initiation. However, beta-catenin mRNA levels were strongly correlated with mRNA levels of c-myc, c-jun and cyclin D1, which are targets of beta-catenin/Tcf signaling. Tumors with the highest levels of beta-catenin mRNA often had over-expressed beta-catenin protein, and those with lower beta-catenin mRNA typically had low beta-catenin protein expression, but there were exceptions (high beta-catenin mRNA/low beta-catenin protein, or vice versa). We conclude that DMH-induced mutations stabilize beta-catenin protein in tumors, which increase c-myc, c-jun and cyclin D1, but there also can be over-expression of beta-catenin itself at the mRNA level, contributing to high beta-catenin protein levels. Similar findings have been reported in primary human colon cancers and their liver metastases, compared with matched normal-looking tissue. Thus, further studies are warranted on the mechanisms that upregulate beta-catenin at the transcriptional level in human and rodent colon cancers.

  15. Multiple roles of mesenchymal beta-catenin during murine limb patterning.

    Science.gov (United States)

    Hill, Theo P; Taketo, Makoto M; Birchmeier, Walter; Hartmann, Christine

    2006-04-01

    Recently canonical Wnt signaling in the ectoderm has been shown to be required for maintenance of the apical ectodermal ridge (AER) and for dorsoventral signaling. Using conditional gain- and loss-of-function beta-catenin alleles, we have studied the role of mesenchymal beta-catenin activity during limb development. Here, we show that loss of beta-catenin results in limb truncations due to a defect in AER maintenance. Stabilization of beta-catenin also results in truncated limbs, caused by a premature regression of the AER. Concomitantly, in these limbs, the expression of Bmp2, Bmp4 and Bmp7, and of the Bmp target genes Msx1, Msx2 and gremlin, is expanded in the mesenchyme. Furthermore, we found that the expression of Lmx1b, a gene exclusively expressed in the dorsal limb mesenchyme and involved in dorsoventral patterning, is reduced upon loss of beta-catenin activity and is expanded ventrally in gain-of-function limbs. However, the known ectodermal regulators Wnt7a and engrailed 1 are expressed normally. This suggests that Lmx1b is also regulated, in part, by a beta-catenin-mediated Wnt signal, independent of the non-canoncial Wnt7a signaling pathway. In addition, loss of beta-catenin results in a severe agenesis of the scapula. Concurrently, the expression of two genes, Pax1 and Emx2, which have been implicated in scapula development, is lost in beta-catenin loss-of-function limbs; however, only Emx2 is upregulated in gain-of-function limbs. Mesenchymal beta-catenin activity is therefore required for AER maintenance, and for normal expression of Lmx1b and Emx2.

  16. Beta-catenin mutations do not contribute to cardiac fibroma pathogenesis.

    Science.gov (United States)

    Miller, Dylan V; Wang, Huamin; Wang, Hua; Fealey, Michael E; Tazelaar, Henry D

    2008-01-01

    Cardiac fibromas are the 2nd most common benign cardiac tumor occurring in children and bear a striking morphologic resemblance to soft tissue or desmoid fibromatosis. Since activating mutations in beta-catenin are common in desmoid fibromatosis as well as other spindle cell proliferations, the aim of our study was to determine if such mutations could be identified in cardiac fibroma. Nine cardiac fibromas from patients with surgical resection were examined for beta-catenin mutations by immunoperoxidase staining for beta-catenin protein and DNA sequencing of a region in exon 3 of the beta-catenin gene, where relatively conserved mutations have been described in desmoid fibromatosis. The mean age of the patients was 7.6 years (range: 10 weeks to 27 years), and 6 of the patients were male. No nuclear staining for beta-catenin was seen in the fibroma cells by immunoperoxidase methods. The beta-catenin exon 3 sequence data showed no mutations in any of the 9 tumors. We conclude that despite their morphologic similarity, cardiac fibroma and desmoid fibromatosis do not share this common molecular pathway of neoplastic growth.

  17. [Expression of beta-catenin and estrogen receptor in desmoid-type fibromatosis].

    Science.gov (United States)

    Zhang, Hong-Ying; Ke, Qi; Zhang, Zhang; Zhang, Rui; Fu, Jing; Chen, Hui-Jiao; Wei, Bing; Bu, Hong

    2010-01-01

    To detect the expression of beta-catenin and Estrogen Receptor in desmoid-type fibromatosis. Nuclear beta-catenin expression was detected by immunohistochemistry in 77 lesions with desmoid-type fibromatosis and 171 other spindle cell lesions, including superficial fibromatosis (n = 18), nodular fasciitis (n = 36), keloid (n = 16), scar (n = 10), granulation tissue (n = 9), synovial sarcoma (n = 38), neufibroma (n = 13), solitary fibrous tumor (n =12), gastrointestinal stromal tumor (n = 10), low-grade myxofibrosarcoma (n = 3), low-grade fibromyxoid sarcoma (n = 3), and smooth muscle tumor (n = 10). In addition, the immunohistochemical expressions of ER-alpha, ER-beta and Ki-67 were examined in all of the lesions with desmoid-type fibromatosis. The nuclear immunohistochemical staining for nuclear beta-catenin and ER-beta was graded as high level ( > or = 25% of cells), low level (5%-25%) or none. High-level nuclear beta-catenin staining was detected in a very limited subset of tissue types, which included 70.1% of lesions with desmoid-type fibromatosis (54/77) and 6.3% of lesions with keloid (1/16). No high-level nuclear beta-catenin staining was seen in any of the other lesions. None of the lesions with desmoid-type fibromatosis expressed ER-alpha. However, 62 (80.5%) of the lesions with desmoids-type fibromatosis were positive in ER-beta, which included 52 (67.5%) with high-level expression, and 10 (13%) with low-level expression. The Spearman correlation analysis suggested that the expression of beta-catenin was positively correlated (r = 0.867, P fibromatosis had very low Ki-67 positive rate. The recurrence of desmoids-type fibromatosis was not correlated independently with beta-catenin, ER-beta or Ki-67. High-level nuclear beta-catenin staining serves as a useful diagnostic tool for desmoid-type fibromatosis. The high expression of ER-beta in desmoid-type fibromatosis provides a biological mechanism for the antiestrogenic compounds to treat fibromatosis. There

  18. Sonic hedgehog acts as a negative regulator of {beta}-catenin signaling in the adult tongue epithelium.

    Science.gov (United States)

    Schneider, Fabian T; Schänzer, Anne; Czupalla, Cathrin J; Thom, Sonja; Engels, Knut; Schmidt, Mirko H H; Plate, Karl H; Liebner, Stefan

    2010-07-01

    Wnt/beta-catenin signaling has been implicated in taste papilla development; however, its role in epithelial maintenance and tumor progression in the adult tongue remains elusive. We show Wnt/beta-catenin pathway activation in reporter mice and by nuclear beta-catenin staining in the epithelium and taste papilla of adult mouse and human tongues. beta-Catenin activation in APC(min/+) mice, which carry a mutation in adenomatous poliposis coli (APC), up-regulates Sonic hedgehog (Shh) and Jagged-2 (JAG2) in the tongue epithelium without formation of squamous cell carcinoma (SCC). We demonstrate that Shh suppresses beta-catenin transcriptional activity in a signaling-dependent manner in vitro and in vivo. A similar regulation and function was observed for JAG2, suggesting that both pathways negatively regulate beta-catenin, thereby preventing SCC formation in the tongue. This was supported by reduced nuclear beta-catenin in the tongue epithelium of Patched(+/-) mice, exhibiting dominant active Shh signaling. At the invasive front of human tongue cancer, nuclear beta-catenin and Shh were increased, suggesting their participation in tumor progression. Interestingly, Shh but not JAG2 was able to reduce beta-catenin signaling in SCC cells, arguing for a partial loss of negative feedback on beta-catenin transcription in tongue cancer. We show for the first time that the putative Wnt/beta-catenin targets Shh and JAG2 control beta-catenin signaling in the adult tongue epithelium, a function that is partially lost in lingual SCC.

  19. Axin-mediated CKI phosphorylation of beta-catenin at Ser 45: a molecular switch for the Wnt pathway

    DEFF Research Database (Denmark)

    Amit, Sharon; Hatzubai, Ada; Birman, Yaara;

    2002-01-01

    The Wnt pathway controls numerous developmental processes via the beta-catenin-TCF/LEF transcription complex. Deregulation of the pathway results in the aberrant accumulation of beta-catenin in the nucleus, often leading to cancer. Normally, cytoplasmic beta-catenin associates with APC and axin a......, thereby precluding the initiation of the cascade. Thus, a single, CKI-dependent phosphorylation event serves as a molecular switch for the Wnt pathway. Udgivelsesdato: 2002-May-1...

  20. Wnt-3A/beta-catenin signaling induces transcription from the LEF-1 promoter.

    Science.gov (United States)

    Filali, Mohammed; Cheng, Ningli; Abbott, Duane; Leontiev, Vladimir; Engelhardt, John F

    2002-09-06

    Members of the Wnt family of secreted molecules have been established as key factors in determining cell fate and morphogenic signaling. It has long been recognized that Wnt induces morphogenic signaling through the Tcf/LEF-1 cascade by regulating free intracellular levels of beta-catenin, a co-factor for Tcf/LEF-1 transcription factors. In the present study, we have demonstrated that Wnt-3A can also directly induce transcription from the LEF-1 promoter. This induction was dependent on glycogen synthase kinase 3beta inactivation, a rise in free intracellular beta-catenin, and a short 110-bp Wnt-responsive element (WRE) in the LEF-1 promoter. Linear and internal deletion of this WRE led to a dramatic increase in constitutive LEF-1 promoter activity and loss of Wnt-3A responsiveness. In isolation, the 110-bp WRE conferred context-independent Wnt-3A or beta-catenin(S37A) responsiveness to a heterologous SV40 promoter. Studies expressing dominant active and negative forms of LEF-1, beta-catenin, GSK-3beta, and beta-catenin/LEF-1 fusions suggest that Wnt-3A activates the LEF-1 promoter through a beta-catenin-dependent and LEF-1-independent process. Wnt-3A expression also induced multiple changes in the binding of factors to the WRE and suggests that regulatory mechanisms may involve modulation of a multiprotein complex. In summary, these results provide evidence for transcriptional regulation of the LEF-1 promoter by Wnt and enhance the mechanistic understanding of Wnt/beta-catenin signaling in the regulation of LEF-1-dependent developmental processes.

  1. SUBCELLULAR LOCALIZATION OF BETA CATENIN IN COLORECTAL NON NEOPLASTIC AND NEOPLASTIC LESIONS

    Directory of Open Access Journals (Sweden)

    Diah Rini Handjari

    2011-12-01

    Full Text Available Loss of adenomatous polyposis coli (APC function is typically an early event in sporadic colorectal cancer (CRC pathogenesis. The key tumor suppressor function of the APC protein lies in its ability to destabilize free cytoplasmic beta catenin. This lead to the accumulation of nuclear beta catenin, and together with the DNA binding protein Tcf-4, function as a transcriptional activator. Accumulation of stabilized free β-catenin is considered as an early event and perhaps initiating the process in intestinal tumorigenesis. Neoplastic transformation in the CRC associated chronic colitis is considered similar to the adenoma-carcinoma sequence in sporadic CRC. The distinguish feature from the CRC-related colitis is the difference in time and frequency changes. Loss of APC function, regarded as the beginning of a very common event in sporadic CRC, but the CRC associated chronic colitis generally occurs at the end of thedysplasia-carcinoma sequence. This research was conducted to determine the subcellular location of beta catenin expression in chronic colitis, colorectal adenomas and carcinomas that were evaluated by immunohistochemical staining. It can be concluded that beta-catenin is a component that plays a role in the development of the CRC and the subcellular location of beta-catenin can describe its oncogenic activity.

  2. New regulators of Wnt/beta-catenin signaling revealed by integrative molecular screening.

    Science.gov (United States)

    Major, Michael B; Roberts, Brian S; Berndt, Jason D; Marine, Shane; Anastas, Jamie; Chung, Namjin; Ferrer, Marc; Yi, XianHua; Stoick-Cooper, Cristi L; von Haller, Priska D; Kategaya, Lorna; Chien, Andy; Angers, Stephane; MacCoss, Michael; Cleary, Michele A; Arthur, William T; Moon, Randall T

    2008-11-11

    The identification and characterization of previously unidentified signal transduction molecules has expanded our understanding of biological systems and facilitated the development of mechanism-based therapeutics. We present a highly validated small interfering RNA (siRNA) screen that functionally annotates the human genome for modulation of the Wnt/beta-catenin signal transduction pathway. Merging these functional data with an extensive Wnt/beta-catenin protein interaction network produces an integrated physical and functional map of the pathway. The power of this approach is illustrated by the positioning of siRNA screen hits into discrete physical complexes of proteins. Similarly, this approach allows one to filter discoveries made through protein-protein interaction screens for functional contribution to the phenotype of interest. Using this methodology, we characterized AGGF1 as a nuclear chromatin-associated protein that participates in beta-catenin-mediated transcription in human colon cancer cells.

  3. Expression of dickkopf-1 and beta-catenin related to the prognosis of breast cancer patients with triple negative phenotype.

    Directory of Open Access Journals (Sweden)

    Wen-Huan Xu

    Full Text Available BACKGROUND AND AIM: We investigated the prognostic importance of dickkopf-1(DKK1 and beta-catenin expression in triple negative breast cancers. METHODS: The expression of DKK1 and beta-catenin was evaluated in breast cell lines using RT-PCR and western blot. Immunohistochemistry was used to characterize the expression pattern of DKK1 and beta-catenin in 85 triple negative breast cancers and prognostic significance was assessed by Kaplan-Meier analysis and Cox proportional hazards regression modeling. RESULTS: The expression of DKK1 was confirmed in hormone-resistant breast cell lines MDA-MB-231, MDA-MB-231-HM and MDA-MB-435. Expression of DKK1 in triple negative breast cancers correlated with cytoplasmic/nuclear beta-catenin (p = 0.000. Elevated expression of DKK1 and cytoplasmic/nuclear beta-catenin in triple negative cancers indicate poor outcome of patients. DKK1 was also a prognostic factor for patients with earlier stage or no lymph node metastasis. CONCLUSION: DKK1 together with beta-catenin might be important prognostic factors in triple negative breast carcinoma. DKK1 might be a valuable biomarker in predicting the prognosis of patients with earlier stage or no lymph node metastasis. It is possible that through further understanding of the role of Wnt/beta-catenin pathway activation, beta-catenin would be a potential therapeutic target for the triple negative breast cancer.

  4. High frequency of beta-catenin heterozygous mutations in extra-abdominal fibromatosis: a potential molecular tool for disease management.

    Science.gov (United States)

    Dômont, J; Salas, S; Lacroix, L; Brouste, V; Saulnier, P; Terrier, P; Ranchère, D; Neuville, A; Leroux, A; Guillou, L; Sciot, R; Collin, F; Dufresne, A; Blay, J-Y; Le Cesne, A; Coindre, J-M; Bonvalot, S; Bénard, J

    2010-03-16

    Fibromatosis comprises distinct clinical entities, including sporadic extra-abdominal fibromatosis, which have a high tendency for recurrence, even after adequate resection. There are no known molecular biomarkers of local recurrence. We searched for beta-catenin mutations in a European multicentre series of fibromatosis tumours to relate beta-catenin mutational status to disease outcome. Direct sequencing of exon 3 beta-catenin gene was performed for 155 frozen fibromatosis tissues from all topographies. Correlation of outcome with mutation rate and type was performed on the extra-abdominal fibromatosis group (101 patients). Mutations of beta-catenin were detected in 83% of all cases. Among 101 extra-abdominal fibromatosis, similar mutation rates (87%) were observed, namely T41A (39.5%), S45P (9%), S45F (36.5%), and deletion (2%). None of the clinico-pathological parameters were found to be significantly associated with beta-catenin mutational status. With a median follow-up of 62 months, 51 patients relapsed. Five-year recurrence-free survival was significantly worse in beta-catenin-mutated tumours regardless of a specific genotype, compared with wild-type tumours (49 vs 75%, respectively, P=0.02). A high frequency (87%) of beta-catenin mutation hallmarks extra-abdominal fibromatosis from a large multicentric retrospective study. Moreover, wild-type beta-catenin seems to be an interesting prognostic marker that might be useful in the therapeutic management of extra-abdominal fibromatosis.

  5. A specific domain in alpha-catenin mediates binding to beta-catenin or plakoglobin.

    Science.gov (United States)

    Huber, O; Krohn, M; Kemler, R

    1997-08-01

    The E-cadherin-catenin adhesion complex has been the subject of many structural and functional studies because of its importance in development, normal tissue function and carcinogenesis. It is well established that the cytoplasmic domain of E-cadherin binds either beta-catenin or plakoglobin, which both can assemble alpha-catenin into the complex. Recently we have identified an alpha-catenin binding site in beta-catenin and plakoglobin and postulated, based on sequence analysis, that these protein-protein interactions are mediated by a hydrophobic interaction mechanism. Here we have now identified the reciprocal complementary binding site in alpha-catenin which mediates its interaction with beta-catenin and plakoglobin. Using in vitro association assays with C-terminal truncations of alpha-catenin expressed as recombinant fusion proteins, we found that the N-terminal 146 amino acids are required for this interaction. We then identified a peptide of 27 amino acids within this sequence (amino acid positions 117-143) which is necessary and sufficient to bind beta-catenin or plakoglobin. As shown by mutational analysis, hydrophobic amino acids within this binding site are important for the interaction. The results described here, together with our previous work, give strong support for the idea that these proteins associate by hydrophobic interactions of two alpha-helices.

  6. Parkin protects dopaminergic neurons from excessive Wnt/{beta}-catenin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Rawal, Nina [Laboratory of Molecular Neurobiology, MBB, DBRM, Karolinska Institute, S-17177 Stockholm (Sweden); Corti, Olga [Universite Pierre et Marie Curie-Paris 6, CRICM UMR-S975, Inserm, U975 (France); CNRS, UMR 7225, Paris (France); Sacchetti, Paola [Laboratory of Molecular Neurobiology, MBB, DBRM, Karolinska Institute, S-17177 Stockholm (Sweden); Ardilla-Osorio, Hector [Universite Pierre et Marie Curie-Paris 6, CRICM UMR-S975, Inserm, U975 (France); CNRS, UMR 7225, Paris (France); Sehat, Bita [Cancer Center Karolinska, Karolinska Institute, S-17177 Stockholm (Sweden); Brice, Alexis [Universite Pierre et Marie Curie-Paris 6, CRICM UMR-S975, Inserm, U975 (France); CNRS, UMR 7225, Paris (France); Department of Genetics and Cytogenetics, AP-HP, Groupe Hospitalier Pitie-Salpetriere, Paris (France); Arenas, Ernest, E-mail: Ernest.Arenas@ki.se [Laboratory of Molecular Neurobiology, MBB, DBRM, Karolinska Institute, S-17177 Stockholm (Sweden)

    2009-10-23

    Parkinson's disease (PD) is caused by degeneration of the dopaminergic (DA) neurons of the substantia nigra but the molecular mechanisms underlying the degenerative process remain elusive. Several reports suggest that cell cycle deregulation in post-mitotic neurons could lead to neuronal cell death. We now show that Parkin, an E3 ubiquitin ligase linked to familial PD, regulates {beta}-catenin protein levels in vivo. Stabilization of {beta}-catenin in differentiated primary ventral midbrain neurons results in increased levels of cyclin E and proliferation, followed by increased levels of cleaved PARP and loss of DA neurons. Wnt3a signaling also causes death of post-mitotic DA neurons in parkin null animals, suggesting that both increased stabilization and decreased degradation of {beta}-catenin results in DA cell death. These findings demonstrate a novel regulation of Wnt signaling by Parkin and suggest that Parkin protects DA neurons against excessive Wnt signaling and {beta}-catenin-induced cell death.

  7. The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells

    NARCIS (Netherlands)

    van de Wetering, M; Sancho, E; Verweij, C; de Lau, W; Oving, [No Value; Hurlstone, A; van der Horn, K; Batlle, E; Coudreuse, D; Haramis, AP; Tion-Pon-Fong, M; Moerer, P; van den Born, M; Soete, G; Pals, S; Eilers, M; Medema, R; Clevers, H

    2002-01-01

    The transactivation of TCF target genes induced by Writ pathway mutations constitutes the primary transforming event in colorectal cancer (CRC). We show that disruption of beta-catenin/TCF-4 activity in CRC cells induces a rapid G1 arrest and blocks a genetic program that is physiologically active i

  8. Expressions of Beta-catenin,E-cadherin and MMP-7 in Ovarian Epithelial Tumors

    Institute of Scientific and Technical Information of China (English)

    LIN Xiao; LI Yu; MI Can

    2008-01-01

    Objective:To investigate the expressions of Beta-catenin,E-cadherin and MMP-7 and their implications in ovarian epithelial tumor.Methods:lmmunohistochemicai staining with SP method was conducted to identify the expressions of Beta-catenin,E-cadherin and MMP-7 in ovarian epithelial tumor in 66 cases.Results:The abnormal expression rate of Beta-catenin in malignant ovarian epithelial tumor was higher than those in borderline and benign epithelial tumors(P<0.05).The positive rates of E-cadherin in benign and borderline ovarian epithelial tumors were significantly greater than that in malignant epithelial tumor.The expression rates of MMP-7 in malignant and borderline ovarian epithelial tumors were higher than that in benign epithelial tumor(P<0.05).Conclusion:The abnormal expressions of Beta-catenin,E-cadherin and MMP-7 might be used to indicate the malignance transform of ovarian epithelial tumors,but they have no significant correlation with peritoneal dropsy invasion,caul invasion and appendant invasion in ovarian epithelial tumor.

  9. Embryonic hair follicle fate change by augmented beta-catenin through Shh and Bmp signaling.

    Science.gov (United States)

    Suzuki, Kentaro; Yamaguchi, Yuji; Villacorte, Mylah; Mihara, Kenichiro; Akiyama, Masashi; Shimizu, Hiroshi; Taketo, Makoto M; Nakagata, Naomi; Tsukiyama, Tadasuke; Yamaguchi, Terry P; Birchmeier, Walter; Kato, Shigeaki; Yamada, Gen

    2009-02-01

    beta-catenin signaling is one of the key factors regulating the fate of hair follicles (HFs). To elucidate the regulatory mechanism of embryonic HF fate determination during epidermal development/differentiation, we analyzed conditional mutant mice with keratinocytes expressing constitutively active beta-catenin (K5-Cre Catnb(ex3)fl/+). The mutant mice developed scaly skin with a thickened epidermis and showed impaired epidermal stratification. The hair shaft keratins were broadly expressed in the epidermis but there was no expression of the terminal differentiation markers K1 and loricrin. Hair placode markers (Bmp2 and Shh) and follicular dermal condensate markers (noggin, patched 1 and Pdgfra) were expressed throughout the epidermis and the upper dermis, respectively. These results indicate that the embryonic epidermal keratinocytes have switched extensively to the HF fate. A series of genetic studies demonstrated that the epidermal switching to HF fate was suppressed by introducing the conditional mutation K5-Cre Catnb(ex3)fl/+Shhfl/- (with additional mutation of Shh signaling) or K5-Cre Catnb(ex3)fl/+BmprIAfl/fl (with additional mutation of Bmp signaling). These results demonstrate that Wnt/beta-catenin signaling relayed through Shh and Bmp signals is the principal regulatory mechanism underlying the HF cell fate change. Assessment of Bmp2 promoter activities suggested a putative regulation by beta-catenin signaling relayed by Shh signaling towards Bmp2. We also found that Shh protein expression was increased and expanded in the epidermis of K5-Cre Catnb(ex3)fl/+BmprIAfl/fl mice. These results indicate the presence of growth factor signal cross-talk involving beta-catenin signaling, which regulates the HF fate.

  10. Disordered beta-catenin expression and E-cadherin/CDH1 promoter methylation in gastric carcinoma

    Institute of Scientific and Technical Information of China (English)

    Li Wang; Fan Zhang; Ping-Ping Wu; Xu-Cheng Jiang; Lin Zheng; Ying-Yan Yu

    2006-01-01

    AIM: To investigate the distribution of beta-catenin in nuclei or membrane/cytoplasm of gastric carcinoma cells,the relationship between E-cadherin gene methylation and its expression, and the role of beta-catenin and E-cadherin as potential molecular markers in predicting tumor infiltration.METHODS: Twenty-nine cases of gastric carcinoma,classified as diffuse and intestinal variants, were selected for study. Nuclear and cytoplasmic proteins were purified and beta-catenin content was detected by ELISA. DNA methylation of E-cadherin/CDH1 gene promoter was studied by methylation-specific PCR and compaired with E-cadherin expression detected by immunohistochemistry.RESULTS: In 27 cases of gastric carcinoma, the ratio of beta-catenin content between nuclei and membrane/cytoplasm was correlated with the T-classification (r =0.392, P = 0.043). The significance was present between T2 and T3 groups. No correlation was detected between diffuse and intestinal variants in terms of their betacatenin distribution. In 21 cases of diffuse variants of gastric carcinoma, there was a difference in E-cadherin expression between CDH1 gene-methylated group and non-methylated group (29 % vs 71%, P = 0.027).No correlation between CDH1 gene methylation and T-classification was found, neither was the significance between E-cadherin expression and tumor infiltration grade.CONCLJSION: Comparative analysis of nuclear and membrane/cytoplasmic beta-catenin can predict local tumor infiltration. E-cadherin/CDH1 gene methylation is an important cause for its gene silence in diffuse variant gastric carcinoma. Methylation of CDH1 gene in the absence of E-cadherin is an early event in gastric carcinogenesis.

  11. Overall expression of beta-catenin outperforms its nuclear accumulation in predicting outcomes of colorectal cancers

    Institute of Scientific and Technical Information of China (English)

    Worrawit Wanitsuwan; Samommas Kanngum; Teeranut Boonpipattanapong; Rassamee Sangthong; Surasak Sangkhathat

    2008-01-01

    AIM: To examine the expression of beta-catenin in colorectal cancer and look for association with other clinico-pathological parameters.METHODS: Tumor samples from 163 cases of colorectal cancer (CRC) who had undergone primary colectomy between May, 1998 and November, 2002 with complete follow-up data for either 5 years or until death were recruited for a beta-catenin immunohistochemical study. The percentage of immunoreacted tumor cells was defined as overall staining density (OSD) and percentage of cells having nuclear localization was counted as nuclear staining density (NSD). Univariate exploration used log-rank test and multivariate survival analysis used Cox's hazard regression model.RESULTS: Beta-catenin immunoreactivity was detected in 161 samples (98.8%), of which 131 cases had nuclear staining. High OSD (≥t 75%), detected in 123 cases (75.5%), was significantly associated with earlier clinical staging (P<0.01), lower nodal status (P=0.02), non-metastatic status (P < 0.01) and better differentiation (P = 0.02). Multivariate analysis found that high OSD was independently associated with better survival [Cox's hazard ratio 0.51, 95% confidence interval (CI) 0.31-0.83]. Although high NSD (≥ 75%) was correlated with high pre-operative serum CEA (P = 0.03), well differentiation (P < 0.01), and increased staining intensity (P < 0.01), the parameter was not significantly associated with survival.CONCLUSION: Unlike previous reports, the study did not find a predictive value of nuclear beta-catenin in CRC. Instead, the overall expression of beta-catenin in CRC showed an association with better differentiation and earlier staging. Moreover, the parameter also independently predicted superior survival.

  12. Modulation of the beta-catenin signaling pathway by the dishevelled-associated protein Hipk1.

    Directory of Open Access Journals (Sweden)

    Sarah H Louie

    Full Text Available BACKGROUND: Wnts are evolutionarily conserved ligands that signal through beta-catenin-dependent and beta-catenin-independent pathways to regulate cell fate, proliferation, polarity, and movements during vertebrate development. Dishevelled (Dsh/Dvl is a multi-domain scaffold protein required for virtually all known Wnt signaling activities, raising interest in the identification and functions of Dsh-associated proteins. METHODOLOGY: We conducted a yeast-2-hybrid screen using an N-terminal fragment of Dsh, resulting in isolation of the Xenopus laevis ortholog of Hipk1. Interaction between the Dsh and Hipk1 proteins was confirmed by co-immunoprecipitation assays and mass spectrometry, and further experiments suggest that Hipk1 also complexes with the transcription factor Tcf3. Supporting a nuclear function during X. laevis development, Myc-tagged Hipk1 localizes primarily to the nucleus in animal cap explants, and the endogenous transcript is strongly expressed during gastrula and neurula stages. Experimental manipulations of Hipk1 levels indicate that Hipk1 can repress Wnt/beta-catenin target gene activation, as demonstrated by beta-catenin reporter assays in human embryonic kidney cells and by indicators of dorsal specification in X. laevis embryos at the late blastula stage. In addition, a subset of Wnt-responsive genes subsequently requires Hipk1 for activation in the involuting mesoderm during gastrulation. Moreover, either over-expression or knock-down of Hipk1 leads to perturbed convergent extension cell movements involved in both gastrulation and neural tube closure. CONCLUSIONS: These results suggest that Hipk1 contributes in a complex fashion to Dsh-dependent signaling activities during early vertebrate development. This includes regulating the transcription of Wnt/beta-catenin target genes in the nucleus, possibly in both repressive and activating ways under changing developmental contexts. This regulation is required to modulate gene

  13. Nuclear beta-catenin overexpression in metastatic sentinel lymph node is associated with synchronous liver metastasis in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Cheng Hongxia

    2011-11-01

    Full Text Available Abstract Background Beta-catenin, a component of the Wingless/Wnt signaling pathway, can activate target genes linking with the adenomatous polyposis coli (APC gene in colorectal cancer. The purpose of this study is to investigate whether nuclear beta-catenin overexpression in metastatic sentinel lymph node(s [SLN(s] is associated with synchronous liver metastasis. Methods Clinicopathological data from 355 patients (93 cases with liver metastasis and 262 cases without liver metastasis were reviewed. Beta-catenin expression in metastatic SLN(s and liver metastatic lesions was examined by immunohistochemistry. The association of nuclear beta-catenin expression in metastatic SLN(s and liver metastatic lesions was evaluated, and the relationship between nuclear beta-catenin expression and clinicopathological characteristics was analyzed. Finally, univariate and logistic multivariate regression analyses were adopted to discriminate the risk factors of liver metastasis. Results Nuclear beta-catenin overexpression in metastatic SLN(s was observed in 70 patients with liver metastasis and 31 patients without liver metastasis (75.3% vs. 11.8%; P Conclusions Nuclear beta-catenin overexpression in metastatic SLN(s is strongly associated with liver metastasis and may contribute to predict liver metastasis.

  14. Involvement of PPAR gamma and E-cadherin/beta-catenin pathway in the antiproliferative effect of conjugated linoleic acid in MCF-7 cells.

    Science.gov (United States)

    Bocca, Claudia; Bozzo, Francesca; Francica, Simona; Colombatto, Sebastiano; Miglietta, Antonella

    2007-07-15

    Conjugated linoleic acid (CLA) is a naturally occurring fatty acid, which has been shown to exert beneficial effects against breast carcinogenesis. It has been reported that CLA could modulate cellular proliferation and differentiation through the activation of peroxisome proliferator-activated receptors (PPARs). Among different PPAR isotypes, PPAR gamma is involved in growth inhibition of transformed cells. Ligands of PPAR gamma are considered as potential anticancer drugs, so CLA was tested for its ability to induce PPAR gamma expression in MCF-7 breast cancer cells. The effects of CLA and of a specific synthetic PPAR gamma antagonist were evaluated on cell growth as well as on parameters responsible for cell growth regulation. We demonstrated here that CLA stimulated the expression of PPAR gamma to levels up to control and caused PPAR gamma translocation into the nucleus. Furthermore, the overexpression of PPAR gamma positively correlates with the inhibition of cell proliferation and with the modulation of ERK signaling induced by CLA; in all cases the administration of the antagonist reverted CLA effects. The PPAR-signaling pathway is connected with the beta-catenin/E-cadherin pathway, thus we evaluated CLA effects on the expression and cellular distribution of these proteins, which are involved in cell adhesion and responsible for invasive behavior. The treatment with CLA determined the up-regulation and the redistribution of beta-catenin and E-cadherin and the antagonist reverted only the effect on beta-catenin. These studies indicate that CLA regulates PPAR gamma expression by selectively acting as an agonist and may influence cell-cell adhesion and invasiveness of MCF-7 cells. (c) 2007 Wiley-Liss, Inc.

  15. Relationship between Expression of beta-catenin and VEGFs(VEGFA,VEGF-C),VEGF Receptors-2(VEGFR-2)in Medulloblastoma

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong-mei; ZHANG Xiong; LI Yu; MI Can

    2008-01-01

    Objective:To investigate the expression of beta-catenin and VEGFs(VEGF-A,VEGF-C)and VEGF receptor-2(VEGFR-2)protein in medulloblastoma.Methods:Immunohistochemical staining with SP method Was conducted to determine the expression of beta-eatenin and VEGFs(VEGF-A,VEGF-C)and VEGFR-2 in 33 cases of medulloblastoma and 10 normal cerebellar tissues. Results:The expression rate of beta-catenin,and VEGFs (VEGF-A,VEGF-C)and VEGFR-2 in medulloblastoma were significantly higher than that in normal tissue.A significant positive correlation was found between beta-catenin and VEGFs(VEGF-A,VEGF-C)and VEGFR-2 protein in medulloblastoma. Conclusion:There was a correlation between beta-catenin and VEGFs(VEGF-A,VEGF-C)and VEGFR-2 in medulloblastoma,which may play a role in the pathogenesis and development of medulloblastoma.

  16. Bryostatin 1 modulates beta-catenin subcellular localization and transcription activity through protein kinase D1 activation.

    Science.gov (United States)

    Jaggi, Meena; Chauhan, Subhash C; Du, Cheng; Balaji, K C

    2008-09-01

    In recent years, the use of natural products for cancer prevention and treatment has received considerable attention. Bryostatin 1 is a natural macrocyclic lactone and a protein kinase D (PKD) modulator with potent antineoplastic properties that has been used to treat human cancers in clinical trials with limited success. Further understanding the mechanistic basis of Bryostatin 1 action may provide opportunities to improve clinical results of treatment with Bryostatin 1. We identified that PKD1, founding member of PKD family of serine/threonine kinases, modulates E-cadherin/beta-catenin activity, which plays an important role in cell integrity, polarity, growth, and morphogenesis. An aberrant expression and localization of E-cadherin/beta-catenin has been strongly associated with cancer progression and metastasis. In this study, we examined the effect of Bryostatin 1 treatment on PKD1 activation, beta-catenin translocation and transcription activity, and malignant phenotype of prostate cancer cells. Initial activation of PKD1 with Bryostatin 1 leads to colocalization of the cytoplasmic pool of beta-catenin with PKD1, trans-Golgi network markers, and proteins involved in vesicular trafficking. Activation of PKD1 by Bryostatin 1 decreases nuclear beta-catenin expression and beta-catenin/TCF transcription activity. Activation of PKD1 alters cellular aggregation and proliferation in prostate cancer cells associated with subcellular redistribution of E-cadherin and beta-catenin. For the first time, we have identified that Bryostatin 1 modulates beta-catenin signaling through PKD1, which identifies a novel mechanism to improve efficacy of Bryostatin 1 in clinical settings.

  17. Beta-catenin regulates myogenesis by relieving I-mfa-mediated suppression of myogenic regulatory factors in P19 cells.

    Science.gov (United States)

    Pan, Weijun; Jia, Yingying; Wang, Jiyong; Tao, Donglei; Gan, Xiaoqing; Tsiokas, Leonidas; Jing, Naihe; Wu, Dianqing; Li, Lin

    2005-11-29

    Wnt/beta-catenin signaling plays a critical role in embryonic myogenesis. Here we show that, in P19 embryonic carcinoma stem cells, Wnt/beta-catenin signaling initiates the myogenic process depends on beta-catenin-mediated relief of I-mfa (inhibitor of MyoD Family a) suppression of myogenic regulatory factors (MRFs). We found that beta-catenin interacted with I-mfa and that the interaction was enhanced by Wnt3a. In addition, we found that the interaction between beta-catenin and I-mfa was able to attenuate the interaction of I-mfa with MRFs, relieve I-mfa-mediated suppression of the transcriptional activity and cytosolic sequestration of MRFs, and initiate myogenesis in a P19 myogenic model system that expresses exogenous myogenin. This work reveals a mechanism for the regulation of MRFs during myogenesis by elucidating a beta-catenin-mediated, but lymphoid enhancing factor-1/T cell factor independent, mechanism in regulation of myogenic fate specification and differentiation of P19 mouse stem cells.

  18. Expression of Wnt-1,beta-catenin and c-myc in Ovarian Epithelial Tumor and Its Implication

    Institute of Scientific and Technical Information of China (English)

    LIN Xiao; HU Zhuo-ying

    2008-01-01

    Objective:To investigate the expression of Wnt-1, beta-catenin and c-myc in normal ovarian epithelial cell and malignant ovarian epithelial tumor. Methods:Immunohistochemical staining with SP method was conducted to identify the expression of Wnt-1,beta-catenin and c-myc in 18 samples of normal epithelial tissue and 34 cases of malignant epithelial tumor of ovary. Results:The expression rate of Wnt-1 and c-myc in malignant epithelial tumors was higher than those in normal epithelial cell(P<0.05).The abnormal expression rate of beta-catenin in malignant ovarian epithelial tumors was higher than that in normal epithelial cell(P<0.05).A significant positive correlation was found between Wnt-1, beta-catenin and c-myc in malignant ovarian epithelial tumor(P<0.05).A significant difierence of expressions of Beta-catenin and C-myc was found between serous and mutinous tumors (P<0.05). Conclusion:The abnormal expression of Wnt-1,beta-catenin and c-myc might indicate the malignant transformation in ovarian epithelial tumors.

  19. Glioblastoma microvesicles promote endothelial cell proliferation through Akt/beta-catenin pathway.

    Science.gov (United States)

    Liu, Shihai; Sun, Junfeng; Lan, Qing

    2014-01-01

    Glioblastoma tumor cells release microvesicles, which contain mRNA, miRNA and angiogenic proteins. These tumor-derived microvesicles transfer genetic information and proteins to normal cells. Previous reports demonstrated that the increased microvesicles in cerebrospinal fluid (CSF) of patients with glioblastoma up-regulate procoagulant activity. The concentration of microvesicles was closely related to thromboembolism incidence and clinical therapeutic effects of glioblastoma patients. However, it is still not clear how CSF microvesicles and what factors affect glioblastoma development. In this study, we collected the plasma and CSF from glioblastoma patients and healthy volunteers. Microvesicles acquired from serum or CSF were added to cultured endothelial cells. And the effects of these microvesicles on endothelial cells were examined. Our results showed that microvesicles from CSF of patients, but not from circulating blood, promoted endothelial cells migration and proliferation in vitro. In addition, the degree of endothelial cell proliferation triggered by microvesicles from CSF was reduced when treated with siRNA targeting Akt/beta-catenin, suggesting that the Akt/beta-catenin pathway is involved in the microvesicle-initiated endothelial cell proliferation. In conclusion, glioblastoma mainly affects microvesicles within CSF without showing significant impact on microvesicles in circulating blood. Microvesicles from the CSF of glioblastoma patients may initiate endothelial cell growth and thus promote cell invasion. This effect may be directly exerted by activated Akt/beta-catenin pathway.

  20. Global regulator SATB1 recruits beta-catenin and regulates T(H2 differentiation in Wnt-dependent manner.

    Directory of Open Access Journals (Sweden)

    Dimple Notani

    2010-01-01

    Full Text Available In vertebrates, the conserved Wnt signalling cascade promotes the stabilization and nuclear accumulation of beta-catenin, which then associates with the lymphoid enhancer factor/T cell factor proteins (LEF/TCFs to activate target genes. Wnt/beta -catenin signalling is essential for T cell development and differentiation. Here we show that special AT-rich binding protein 1 (SATB1, the T lineage-enriched chromatin organizer and global regulator, interacts with beta-catenin and recruits it to SATB1's genomic binding sites. Gene expression profiling revealed that the genes repressed by SATB1 are upregulated upon Wnt signalling. Competition between SATB1 and TCF affects the transcription of TCF-regulated genes upon beta-catenin signalling. GATA-3 is a T helper type 2 (T(H2 specific transcription factor that regulates production of T(H2 cytokines and functions as T(H2 lineage determinant. SATB1 positively regulated GATA-3 and siRNA-mediated knockdown of SATB1 downregulated GATA-3 expression in differentiating human CD4(+ T cells, suggesting that SATB1 influences T(H2 lineage commitment by reprogramming gene expression. In the presence of Dickkopf 1 (Dkk1, an inhibitor of Wnt signalling, GATA-3 is downregulated and the expression of signature T(H2 cytokines such as IL-4, IL-10, and IL-13 is reduced, indicating that Wnt signalling is essential for T(H2 differentiation. Knockdown of beta-catenin also produced similar results, confirming the role of Wnt/beta-catenin signalling in T(H2 differentiation. Furthermore, chromatin immunoprecipitation analysis revealed that SATB1 recruits beta-catenin and p300 acetyltransferase on GATA-3 promoter in differentiating T(H2 cells in a Wnt-dependent manner. SATB1 coordinates T(H2 lineage commitment by reprogramming gene expression. The SATB1:beta-catenin complex activates a number of SATB1 regulated genes, and hence this study has potential to find novel Wnt responsive genes. These results demonstrate that SATB1

  1. Aberrant distributions and relationships among E-cadherin, beta-catenin, and connexin 26 and 43 in endometrioid adenocarcinomas.

    Science.gov (United States)

    Wincewicz, Andrzej; Baltaziak, Marek; Kanczuga-Koda, Luiza; Lesniewicz, Tomasz; Rutkowski, Ryszard; Sobaniec-Lotowska, Maria; Sulkowski, Stanislaw; Koda, Mariusz; Sulkowska, Mariola

    2010-07-01

    During carcinogenesis, loss of intracellular cohesion is observed among cancer cells with altered expression of such adhesion molecules as E-cadherin and beta-catenin, and aberrant expression and cellular location of intercellular gap junction proteins-connexins. The aim of this study was to evaluate immunohistochemically the expression and relationship between E-cadherin and beta-catenin, and the connexins Cx26 and Cx43 in 86 endometrioid adenocarcinomas. The aberrant cytoplasmic translocation of the studied proteins was a predominant finding, whereas only a minority of cases showed normal, nuclear beta-catenin labeling or membranous distribution of the remaining molecules. E-cadherin was positively and significantly associated with beta-catenin (P=0.001, r=0.366), as was Cx26 with Cx43 (P<0.001, r=0.719), E-cadherin with Cx26 (P<0.001, r=0.413), and E-cadherin and Cx43 (P<0.001, r=0.434) in all cancers. A subgroup of endometrioid adenocarcinomas (FIGO IB+II) exclusively showed a positive significant association between the expression of beta-catenin and Cx26 (P=0.038, r=0.339). In addition, there were significantly more beta-catenin-positive carcinomas among superficially spreading cancers (FIGO IA) than among deeper invading neoplasms (FIGO IB+II) (P=0.056). The altered location of the studied proteins indicates impairment of their physiological functions. In particular, normal membranous distribution of E-cadherin and connexins is lost and replaced by abnormal cytoplasmic accumulation in most cancers, and thus intercellular ties are expected to be weakened and loosened as a consequence. In contrast, the lack of relationship between beta-catenin and connexins, E-cadherin seems to be closely associated with the expression of Cx26 and Cx43 in endometrioid adenocarcinomas.

  2. Loss of p53 expression is accompanied by upregulation of beta-catenin in meningiomas: a concomitant reciprocal expression.

    Science.gov (United States)

    Pećina-Šlaus, Nives; Kafka, Anja; Vladušić, Tomislav; Tomas, Davor; Logara, Monika; Skoko, Josip; Hrašćan, Reno

    2016-04-01

    Crosstalk between Wnt and p53 signalling pathways in cancer has long been suggested. Therefore in this study we have investigated the involvement of these pathways in meningiomas by analysing their main effector molecules, beta-catenin and p53. Cellular expression of p53 and beta-catenin proteins and genetic changes in TP53 were analysed by immunohistochemistry, PCR/RFLP and direct sequencing of TP53 exon 4. All the findings were analysed statistically. Our analysis showed that 47.5% of the 59 meningiomas demonstrated loss of expression of p53 protein. Moderate and strong p53 expression in the nuclei was observed in 8.5% and 6.8% of meningiomas respectively. Gross deletion of TP53 gene was observed in one meningioma, but nucleotide alterations were observed in 35.7% of meningiomas. In contrast, beta-catenin, the main Wnt signalling molecule, was upregulated in 71.2%, while strong expression was observed in 28.8% of meningiomas. The concomitant expressions of p53 and beta-catenin were investigated in the same patients. In the analysed meningiomas, the levels of the two proteins were significantly negatively correlated (P = 0.002). This indicates that meningiomas with lost p53 upregulate beta-catenin and activate Wnt signalling. Besides showing the reciprocal relationship between proteins, we also showed that the expression of p53 was significantly (P = 0.021) associated with higher meningioma grades (II and III), while beta-catenin upregulation was not associated with malignancy grades. Additionally, women exhibited significantly higher values of p53 loss when compared to males (P = 0.005). Our findings provide novel information about p53 involvement in meningeal brain tumours and reveal the complex relationship between Wnt and p53 signalling, they suggest an important role for beta-catenin in these tumours.

  3. Positive reciprocal regulation of ubiquitin C-terminal hydrolase L1 and beta-catenin/TCF signaling.

    Directory of Open Access Journals (Sweden)

    Anjali Bheda

    Full Text Available Deubiquitinating enzymes (DUBs are involved in the regulation of distinct critical cellular processes. Ubiquitin C-terminal Hydrolase L1 (UCH L1 has been linked to several neurological diseases as well as human cancer, but the physiological targets and the regulation of UCH L1 expression in vivo have been largely unexplored. Here we demonstrate that UCH L1 up-regulates beta-catenin/TCF signaling: UCH L1 forms endogenous complexes with beta-catenin, stabilizes it and up-regulates beta-catenin/TCF-dependent transcription. We also show that, reciprocally, beta-catenin/TCF signaling up-regulates expression of endogenous UCH L1 mRNA and protein. Moreover, using ChIP assay and direct mutagenesis we identify two TCF4-binding sites on the uch l1 promoter that are involved in this regulation. Since the expression and deubiquitinating activity of UCH L1 are required for its own basic promoter activity, we propose that UCH L1 up-regulates its expression by activation of the oncogenic beta-catenin/TCF signaling in transformed cells.

  4. Gata3 acts downstream of beta-catenin signaling to prevent ectopic metanephric kidney induction.

    Directory of Open Access Journals (Sweden)

    David Grote

    2008-12-01

    Full Text Available Metanephric kidney induction critically depends on mesenchymal-epithelial interactions in the caudal region of the nephric (or Wolffian duct. Central to this process, GDNF secreted from the metanephric mesenchyme induces ureter budding by activating the Ret receptor expressed in the nephric duct epithelium. A failure to regulate this pathway is believed to be responsible for a large proportion of the developmental anomalies affecting the urogenital system. Here, we show that the nephric duct-specific inactivation of the transcription factor gene Gata3 leads to massive ectopic ureter budding. This results in a spectrum of urogenital malformations including kidney adysplasia, duplex systems, and hydroureter, as well as vas deferens hyperplasia and uterine agenesis. The variability of developmental defects is reminiscent of the congenital anomalies of the kidney and urinary tract (CAKUT observed in human. We show that Gata3 inactivation causes premature nephric duct cell differentiation and loss of Ret receptor gene expression. These changes ultimately affect nephric duct epithelium homeostasis, leading to ectopic budding of interspersed cells still expressing the Ret receptor. Importantly, the formation of these ectopic buds requires both GDNF/Ret and Fgf signaling activities. We further identify Gata3 as a central mediator of beta-catenin function in the nephric duct and demonstrate that the beta-catenin/Gata3 pathway prevents premature cell differentiation independently of its role in regulating Ret expression. Together, these results establish a genetic cascade in which Gata3 acts downstream of beta-catenin, but upstream of Ret, to prevent ectopic ureter budding and premature cell differentiation in the nephric duct.

  5. Adenomatous polyposis coli alteration in digestive endocrine tumours: correlation with nuclear translocation of beta-catenin and chromosomal instability.

    Science.gov (United States)

    Pizzi, Silvia; Azzoni, Cinzia; Tamburini, Elisa; Bottarelli, Lorena; Campanini, Nicoletta; D'Adda, Tiziana; Fellegara, Giovanni; Luong, Tu Vinh; Pasquali, Claudio; Rossi, Giulio; Delle Fave, Gianfranco; Camisa, Roberta; Bordi, Cesare; Rindi, Guido

    2008-12-01

    The role of Wnt pathway in digestive endocrine tumours is debated. The aim of this work is to investigate key players in Wnt pathway by a multimodal approach. Sixty cases (49 well-differentiated and 11 poorly differentiated) were investigated for methylation of adenomatous polyposis coli (APC) and E-cadherin promoters, the loss of heterozygosity (LOH) at APC locus and beta-catenin and E-cadherin expression by immunohistochemistry. Tumours showing altered beta-catenin localization were tested for beta-catenin and APC mutations. APC promoter methylation was restricted to gastroduodenal tumours (21 out of 59, 36%), prevalent in poorly differentiated carcinomas (P=0.042) and correlating with aggressive features (high histology grade, P<0.02; tumour death, P=0.026; high fractional allelic loss, P=0.002, in turn correlating with short survival, P=0.017). LOH at APC locus was found in 14 out of 53 cases (26%, 10 gastroduodenal and 4 colorectal), prevalent in poorly differentiated carcinomas (P=0.002) and correlating with histology grade (P=0.012). beta-catenin abnormal expression was found in 41 out of 54 cases (76%), with nuclear staining correlating with APC alteration (P=0.047) and short survival (P=0.006). APC, but not beta-catenin, gene mutations were found (7 out of 35 tumours), 4 of which in the midgut. E-cadherin promoter methylation was rarely detected (2 out of 52 cases), with cytoplasmic expression in 18 out of 43 cases (42%), not correlating with any clinico-pathological feature. In conclusion, Wnt pathway alterations, as represented by abnormal beta-catenin localization, are common events in digestive endocrine tumours, but only nuclear expression correlates with tumour aggressiveness. Though with different alteration mechanisms according to anatomical site, APC plays a major role in Wnt pathway activation and in determining the high chromosomal instability observed in aggressive endocrine carcinomas.

  6. The destruction complex of beta-catenin in colorectal carcinoma and colonic adenoma.

    Science.gov (United States)

    Bourroul, Guilherme Muniz; Fragoso, Hélio José; Gomes, José Walter Feitosa; Bourroul, Vivian Sati Oba; Oshima, Celina Tizuko Fujiyama; Gomes, Thiago Simão; Saba, Gabriela Tognini; Palma, Rogério Tadeu; Waisberg, Jaques

    2016-01-01

    To evaluate the destruction complex of beta-catenin by the expression of the proteins beta-catetenin, adenomatous polyposis coli, GSK3β, axin and ubiquitin in colorectal carcinoma and colonic adenoma. Tissue samples from 64 patients with colorectal carcinoma and 53 patients with colonic adenoma were analyzed. Tissue microarray blocks and slides were prepared and subjected to immunohistochemistry with polyclonal antibodies in carcinoma, adjacent non-neoplastic mucosa, and adenoma tissues. The immunoreactivity was evaluated by the percentage of positive stained cells and by the intensity assessed through of the stained grade of proteins in the cytoplasm and nucleus of cells. In the statistical analysis, the Spearman correlation coefficient, Student's t, χ2, Mann-Whitney, and McNemar tests, and univariate logistic regression analysis were used. In colorectal carcinoma, the expressions of beta-catenin and adenomatous polyposis coli proteins were significantly higher than in colonic adenomas (pbeta-catenin, axin 1 and GSK3β proteins indicated that the destruction complex of beta-catenin was maintained, while in colorectal carcinoma, the increased expression of beta-catenin, GSK3β, axin 1, and ubiquitin proteins indicated that the destruction complex of beta-catenin was disrupted. Avaliar o complexo de destruição da betacatenina no carcinoma colorretal e no adenoma do colo pela expressão das proteínas betacatenina, adenomatous polyposis coli, GSK3β, axina e ubiquitina. Amostras de tecidos de 64 doentes com carcinoma colorretal e de 53 pacientes com adenoma do colo foram analisadas. Blocos de tecidos foram submetidos ao estudo imuno-histoquímico com anticorpos policlonais nos tecidos do carcinoma, mucosa não neoplásica adjacente e adenoma. A imunorreatividade foi avaliada pela porcentagem de positividade de células coradas e pela intensidade do grau de coloração das proteínas no citoplasma e no núcleo das células. Na análise estatística, foram

  7. Reappraisal of mesenchymal chondrosarcoma: novel morphologic observations of the hyaline cartilage and endochondral ossification and beta-catenin, Sox9, and osteocalcin immunostaining of 22 cases.

    Science.gov (United States)

    Fanburg-Smith, Julie C; Auerbach, Aaron; Marwaha, Jayson S; Wang, Zengfeng; Rushing, Elisabeth J

    2010-05-01

    Mesenchymal chondrosarcoma, a rare malignant round cell and hyaline cartilage tumor, is most commonly intraosseous but can occur in extraskeletal sites. We intensively observed the morphology and applied Sox9 (master regulator of chondrogenesis), beta-catenin (involved in bone formation, thought to inhibit chondrogenesis in a Sox9-dependent manner), and osteocalcin (a marker for osteoblastic phenotype) to 22 central nervous system and musculoskeletal mesenchymal chondrosarcoma. Cases of mesenchymal chondrosarcoma were retrieved and reviewed from our files. Immunohistochemistry and follow-up were obtained on mesenchymal chondrosarcoma and tumor controls. Twenty-two mesenchymal chondrosarcomas included 5 central nervous system (all female; mean age, 30.2; mean size, 7.8 cm; in frontal lobe [n = 4] and spinal cord [n = 1]) and 17 musculoskeletal (female-male ratio, 11:6; mean age, 31.1; mean size, 6.2 cm; 3 each of humerus and vertebrae; 2 each of pelvis, rib, tibia, neck soft tissue; one each of femur, unspecified bone, and elbow soft tissue). The hyaline cartilage in most tumors revealed a consistent linear progression of chondrocyte morphology, from resting to proliferating to hypertrophic chondrocytes. Sixty-seven percent of cases demonstrated cell death and acquired osteoblastic phenotype, cells positive for osteocalcin at the site of endochondral ossification. Small round cells of mesenchymal chondrosarcoma were negative for osteocalcin. SOX9 was positive in both components of 21 of 22 cases of mesenchymal chondrosarcoma. beta-Catenin highlighted rare nuclei at the interface between round cells and hyaline cartilage in 35% cases. Control skull and central nervous system cases were compared, including chondrosarcomas and small cell osteosarcoma, the latter positive for osteocalcin in small cells. Mesenchymal chondrosarcoma demonstrates centrally located hyaline cartilage with a linear progression of chondrocytes from resting to proliferative to hypertrophic

  8. Apc1-mediated antagonism of Wnt/beta-catenin signaling is required for retino-tectal pathfinding in the zebrafish.

    NARCIS (Netherlands)

    Paridaen, J.T.M.; Danesin, C.; Elas, A.T.; van de Water, S.G.P.; Houart, C.; Zivkovic, D.

    2009-01-01

    The tumor suppressor Apc1 is an intracellular antagonist of the Wnt/beta-catenin pathway. We examined the effects of an Apc1 loss-of-function mutation on retino-tectal axon pathfinding in zebrafish. In apc mutants, the retina is disorganized and optic nerves portray pathfinding defects at the optic

  9. RNA helicase DDX3 is a regulatory subunit of casein kinase 1 in Wnt-beta-catenin signaling

    NARCIS (Netherlands)

    Cruciat, C.M.; Dolde, C.; de Groot, R.E.; Ohkawara, B.; Reinhard, C.; Korswagen, H.C.; Niehrs, C.

    2013-01-01

    Casein kinase 1 (CK1) members play key roles in numerous biological processes. They are considered "rogue" kinases, because their enzymatic activity appears unregulated. Contrary to this notion, we have identified the DEAD-box RNA helicase DDX3 as a regulator of the Wnt-beta-catenin network, where i

  10. Effect of aspirin on the Wnt/beta-catenin pathway is mediated via protein phosphatase 2A

    NARCIS (Netherlands)

    Bos, C. L.; Kodach, L. L.; van den Brink, G. R.; Diks, S. H.; van Santen, M. M.; Richel, D. J.; Peppelenbosch, M. P.; Hardwick, J. C. H.

    2006-01-01

    Nonsteroidal anti-inflammatory drugs show chemopreventive efficacy in colon cancer, but the mechanism behind this remains unclear. Elucidating this mechanism is seen as vital to the development of new chemopreventive agents. We studied the effects of aspirin on the oncogenic Wnt/beta-catenin pathway

  11. beta-Catenin signaling is required for TGF-beta(1)-induced extracellular matrix production by airway smooth muscle cells

    NARCIS (Netherlands)

    Baarsma, Hoeke A.; Menzen, Mark H.; Halayko, Andrew J.; Meurs, Herman; Kerstjens, Huib A. M.; Gosens, Reinoud

    2011-01-01

    Baarsma HA, Menzen MH, Halayko AJ, Meurs H, Kerstjens HA, Gosens R. beta-Catenin signaling is required for TGF-beta(1)-induced extracellular matrix production by airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 301: L956-L965, 2011. First published September 9, 2011; doi: 10.1152/ajplu

  12. Apc1-mediated antagonism of Wnt/beta-catenin signaling is required for retino-tectal pathfinding in the zebrafish.

    NARCIS (Netherlands)

    Paridaen, J.T.M.; Danesin, C.; Elas, A.T.; van de Water, S.G.P.; Houart, C.; Zivkovic, D.

    2009-01-01

    The tumor suppressor Apc1 is an intracellular antagonist of the Wnt/beta-catenin pathway. We examined the effects of an Apc1 loss-of-function mutation on retino-tectal axon pathfinding in zebrafish. In apc mutants, the retina is disorganized and optic nerves portray pathfinding defects at the optic

  13. SLIT2 attenuation during lung cancer progression deregulates beta-catenin and E-cadherin and associates with poor prognosis.

    Science.gov (United States)

    Tseng, Ruo-Chia; Lee, Shih-Hua; Hsu, Han-Shui; Chen, Ben-Han; Tsai, Wan-Ching; Tzao, Ching; Wang, Yi-Ching

    2010-01-15

    Chromosome 4p15.3 is frequently deleted in late-stage lung cancer. We investigated the significance of the SLIT2 gene located in this region to lung cancer progression. SLIT2 encodes an extracellular glycoprotein that can suppress breast cancer by regulating beta-catenin. In this study, we examined alterations in the structure or expression of SLIT2, its receptor ROBO1, and beta-catenin, along with the AKT/glycogen synthase kinase 3beta (GSK3beta)/beta-transducin repeat-containing protein (betaTrCP) pathway in lung cancer cell lines and patients. Low SLIT2 expression correlated with an upward trend of pathological stage and poorer survival in lung cancer patients. Importantly, SLIT2, betaTrCP, and beta-catenin expression levels predicted postoperative recurrence of lung cancer in patients. Stimulating SLIT2 expression by various methods increased the level of E-cadherin caused by attenuation of its transcriptional repressor SNAI1. Conversely, knocking down SLIT2 expression increased cell migration and reduced cell adhesion through coordinated deregulation of beta-catenin and E-cadherin/SNAI1 in the AKT/GSK3beta/betaTrCP pathway. Our findings indicate that SLIT2 suppresses lung cancer progression, defining it as a novel "theranostic" factor with potential as a therapeutic target and prognostic predictor in lung cancer. Cancer Res; 70(2); 543-51.

  14. Loss of the tumor suppressor CYLD enhances Wnt/beta-catenin signaling through K63-linked ubiquitination of Dvl

    NARCIS (Netherlands)

    Tauriello, D.V.; Haegebarth, A.; Kuper, I.; Edelmann, M.J.; Henraat, M.; Canninga-van Dijk, M.R.; Kessler, B.M.; Clevers, H.; Maurice, M.M.

    2010-01-01

    The mechanism by which Wnt receptors transduce signals to activate downstream beta-catenin-mediated target gene transcription remains incompletely understood but involves Frizzled (Fz) receptor-mediated plasma membrane recruitment and activation of the cytoplasmic effector Dishevelled (Dvl). Here, w

  15. Effect of oxygen on cardiac differentiation in mouse iPS cells: role of hypoxia inducible factor-1 and Wnt/beta-catenin signaling.

    Directory of Open Access Journals (Sweden)

    Tanya L Medley

    Full Text Available BACKGROUND: Disturbances in oxygen levels have been found to impair cardiac organogenesis. It is known that stem cells and differentiating cells may respond variably to hypoxic conditions, whereby hypoxia may enhance stem cell pluripotency, while differentiation of multiple cell types can be restricted or enhanced under hypoxia. Here we examined whether HIF-1alpha modulated Wnt signaling affected differentiation of iPS cells into beating cardiomyocytes. OBJECTIVE: We investigated whether transient and sustained hypoxia affects differentiation of cardiomyocytes derived from murine induced pluripotent stem (iPS cells, assessed the involvement of HIF-1alpha (hypoxia-inducible factor-1alpha and the canonical Wnt pathway in this process. METHODS: Embryoid bodies (EBs derived from iPS cells were differentiated into cardiomyocytes and were exposed either to 24 h normoxia or transient hypoxia followed by a further 13 days of normoxic culture. RESULTS: At 14 days of differentiation, 59 ± 2% of normoxic EBs were beating, whilst transient hypoxia abolished beating at 14 days and EBs appeared immature. Hypoxia induced a significant increase in Brachyury and islet-1 mRNA expression, together with reduced troponin C expression. Collectively, these data suggest that transient and sustained hypoxia inhibits maturation of differentiating cardiomyocytes. Compared to normoxia, hypoxia increased HIF-1alpha, Wnt target and ligand genes in EBs, as well as accumulation of HIF-1alpha and beta-catenin in nuclear protein extracts, suggesting involvement of the Wnt/beta-catenin pathway. CONCLUSION: Hypoxia impairs cardiomyocyte differentiation and activates Wnt signaling in undifferentiated iPS cells. Taken together the study suggests that oxygenation levels play a critical role in cardiomyocyte differentiation and suggest that hypoxia may play a role in early cardiogenesis.

  16. TAZ: a beta-catenin-like molecule that regulates mesenchymal stem cell differentiation.

    Science.gov (United States)

    Hong, Jeong-Ho; Yaffe, Michael B

    2006-01-01

    Regulating the switch between proliferation and differentiation of mesenchymal stem cells is critical for the development of normal tissues, and the prevention of tumors. How mesenchymal stem cells exit from the cell cycle and differentiate into alternative cell fates such as bone, fat, and muscle, is incompletely understood. We recently discovered that a WW domain-containing molecule, TAZ, functions as a transcriptional modulator to stimulate bone development while simultaneous blocking the differentiation of mesenchymal stem cells into fat. These developmental effects occur through direct interaction between TAZ and the transcription factors Runx2 and PPARgamma, resulting in transcriptional enhancement and repression, respectively of selective programs of gene expression. We propose that TAZ, as well as a highly related molecule YAP, are functionally, though not structurally, similar to beta-catenin and integrate extracellular, membrane, and cytoskeletal-derived signals to influence mesenchymal stem cell fate.

  17. Stabilized beta-catenin in thymic epithelial cells blocks thymus development and function.

    Science.gov (United States)

    Zuklys, Saulius; Gill, Jason; Keller, Marcel P; Hauri-Hohl, Mathias; Zhanybekova, Saule; Balciunaite, Gina; Na, Kyung-Jae; Jeker, Lukas T; Hafen, Katrin; Tsukamoto, Noriyuki; Amagai, Takashi; Taketo, Makoto M; Krenger, Werner; Holländer, Georg A

    2009-03-01

    Thymic T cell development is dependent on a specialized epithelial microenvironment mainly composed of cortical and medullary thymic epithelial cells (TECs). The molecular programs governing the differentiation and maintenance of TECs remain largely unknown. Wnt signaling is central to the development and maintenance of several organ systems but a specific role of this pathway for thymus organogenesis has not yet been ascertained. In this report, we demonstrate that activation of the canonical Wnt signaling pathway by a stabilizing mutation of beta-catenin targeted exclusively to TECs changes the initial commitment of endodermal epithelia to a thymic cell fate. Consequently, the formation of a correctly composed and organized thymic microenvironment is prevented, thymic immigration of hematopoietic precursors is restricted, and intrathymic T cell differentiation is arrested at a very early developmental stage causing severe immunodeficiency. These results suggest that a precise regulation of canonical Wnt signaling in thymic epithelia is essential for normal thymus development and function.

  18. Adhesion molecules in Wilms tumor (part II : beta-catenin expression and significance

    Directory of Open Access Journals (Sweden)

    Basta-Jovanović Gordana M.

    2003-01-01

    Full Text Available Beta-catenin is a glicoprotein which has an important role in cell-cell adhesion, as well as in cell signal transmition, in u regulation of gen expression and in interaction with axin and APC (adenomatous poliposis coli. Its oncogenic role in several types of carcinomas in human population is well known. It is very likely that b-catenin as an protooncogen plays an importante role in genesis of Wilms tumor. It is well known that in 15% Wilms tumors there are b-catenin mutations, which indicates that there is a disorder in Wnt signal paththat plays an important role in Wilms tumor genesis. The aim of our study was to investigate b-catenin expression in Wilms tumor, to compaire it with the expression in normal renal tissue as well as to see if there is a positive correlation between b-catenin expression in Wilms tumor with tumor stage, histologic type and/ or prognostic group.

  19. Identification of a Wnt/Dvl/beta-Catenin --> Pitx2 pathway mediating cell-type-specific proliferation during development.

    Science.gov (United States)

    Kioussi, Chrissa; Briata, Paola; Baek, Sung Hee; Rose, David W; Hamblet, Natasha S; Herman, Thomas; Ohgi, Kenneth A; Lin, Chijen; Gleiberman, Anatoli; Wang, Jianbo; Brault, Veronique; Ruiz-Lozano, Pilar; Nguyen, H D; Kemler, Rolf; Glass, Christopher K; Wynshaw-Boris, Anthony; Rosenfeld, Michael G

    2002-11-27

    Understanding the cell type-specific molecular mechanisms by which distinct signaling pathways combinatorially control proliferation during organogenesis is a central issue in development and disease. Here, we report that the bicoid-related transcription factor Pitx2 is rapidly induced by the Wnt/Dvl/beta-catenin pathway and is required for effective cell-type-specific proliferation by directly activating specific growth-regulating genes. Regulated exchange of HDAC1/beta-catenin converts Pitx2 from repressor to activator, analogous to control of TCF/LEF1. Pitx2 then serves as a competence factor required for the temporally ordered and growth factor-dependent recruitment of a series of specific coactivator complexes that prove necessary for Cyclin D2 gene induction. The molecular strategy underlying interactions between the Wnt and growth factor-dependent signaling pathways in cardiac outflow tract and pituitary proliferation is likely to be prototypic of cell-specific proliferation strategies in other tissues.

  20. Expressions of beta-catenin, APC Protein, C-myc and Cyclin D1 in Ovarian Epithelial Tumor and Their Implication

    Institute of Scientific and Technical Information of China (English)

    LIN Xiao; LI Yu; MI Can

    2007-01-01

    Objective: To investigate the expressions of beta-catenin, protein APC (adenomatous polyposis coli protein), c-myc and cyclin D1 and their implication in ovarian epithelial tumor. Methods: Immunohistochemical staining with SP method was conducted to identify the expressions of beta-catenin, APC protein, c-myc and cyclin D1 in ovarian epithelial tumor in 48 cases. Results: The abnormal expression rate of beta-catenin in malignant and borderline ovarian epithelial tumors was higher than that in benign epithelial tumors (P<0.01). The expression rates of c-myc and cyclin-D1 in ovarian malignant and borderline epithelial tumors were higher than those in benign epithelial tumors too(P<0.05). The prevalence of APC protein positive expression in benign epithelial tumors were significantly greater than that in malignant epithelial tumors (P<0.05). A significant negative correlation was found between beta-catenin and APC protein in ovarian epithelial tumors; while a significant positive correlation was found between beta-catenin, c-myc and cyclin-D1 in ovarian epithelial tumor (P<0.05). Conclusion: The abnormal expressions of Beta-catenin, APC protein, c-myc and cyclin-D1 might be used to indicate the malignance transform of ovarian epithelial tumors.

  1. beta-catenin siRNA regulation of apoptosis- and angiogenesis-related gene expression in hepatocellular carcinoma cells: potential uses for gene therapy.

    Science.gov (United States)

    Wang, Xin-Hong; Sun, Xun; Meng, Xiang-Wei; Lv, Zhi-Wu; Du, Ya-Ju; Zhu, Yan; Chen, Jing; Kong, De-Xia; Jin, Shi-Zhu

    2010-10-01

    The molecular mechanism responsible for hepatocellular carcinoma (HCC) development remains to be defined although a number of gene pathways have been shown to play an active role, such as Wnt/beta-catenin signaling. In this study, beta-catenin small interfering RNA (siRNA) was designed, synthesized, and transfected into HCC HepG2 cells. RT-PCR and western blot assays were performed to detect expression of altered genes and proteins, and the MTT assay was used to detect cell viability. Our data showed that beta-catenin mRNA and protein expression levels were effectively knocked down by beta-catenin siRNA and subsequently, tumor cell proliferation was significantly suppressed. Flow cytometry assay showed that tumor cells were arrested at the G0/G1 phase of the cell cycles. Molecularly, expression of Smad3, p-caspase-3, and Grp78 protein were upregulated after 72 h of beta-catenin siRNA transfection, whereas expression of TERT, caspase-3, XIAP, MMP-2, MMP-9, VEGF-A, VEGF-c, and bFGF protein were reduced. However, there was no change between the expression of STAT3 and the HSP27 protein following transfection. The results from the current study demonstrated the importance of the Wnt/beta-catenin signaling pathway in regulation of gene expression in HCC. Further studies are required to investigate the role of this pathway in HCC development and targeting of this pathway to control HCC.

  2. Smed-Evi/Wntless is required for beta-catenin-dependent and -independent processes during planarian regeneration.

    Science.gov (United States)

    Adell, Teresa; Salò, Emili; Boutros, Michael; Bartscherer, Kerstin

    2009-03-01

    Planarians can regenerate a whole animal from only a small piece of their body, and have become an important model for stem cell biology. To identify regenerative processes dependent on Wnt growth factors in the planarian Schmidtea mediterranea (Smed), we analyzed RNAi phenotypes of Evi, a transmembrane protein specifically required for the secretion of Wnt ligands. We show that, during regeneration, Smed-evi loss-of-function prevents posterior identity, leading to two-headed planarians that resemble Smed-beta-catenin1 RNAi animals. In addition, we observe regeneration defects of the nervous system that are not found after Smed-beta-catenin1 RNAi. By systematic knockdown of all putative Smed Wnts in regenerating planarians, we identify Smed-WntP-1 and Smed-Wnt11-2 as the putative posterior organizers, and demonstrate that Smed-Wnt5 is a regulator of neuronal organization and growth. Thus, our study provides evidence that planarian Wnts are major regulators of regeneration, and that they signal through beta-catenin-dependent and -independent pathways.

  3. Wnt, Hedgehog and junctional Armadillo/beta-catenin establish planar polarity in the Drosophila embryo.

    Directory of Open Access Journals (Sweden)

    Pamela F Colosimo

    Full Text Available To generate specialized structures, cells must obtain positional and directional information. In multi-cellular organisms, cells use the non-canonical Wnt or planar cell polarity (PCP signaling pathway to establish directionality within a cell. In vertebrates, several Wnt molecules have been proposed as permissible polarity signals, but none has been shown to provide a directional cue. While PCP signaling components are conserved from human to fly, no PCP ligands have been reported in Drosophila. Here we report that in the epidermis of the Drosophila embryo two signaling molecules, Hedgehog (Hh and Wingless (Wg or Wnt1, provide directional cues that induce the proper orientation of Actin-rich structures in the larval cuticle. We further find that proper polarity in the late embryo also involves the asymmetric distribution and phosphorylation of Armadillo (Arm or beta-catenin at the membrane and that interference with this Arm phosphorylation leads to polarity defects. Our results suggest new roles for Hh and Wg as instructive polarizing cues that help establish directionality within a cell sheet, and a new polarity-signaling role for the membrane fraction of the oncoprotein Arm.

  4. Cx43, ZO-1, alpha-catenin and beta-catenin in cataractous lens epithelial cells

    Indian Academy of Sciences (India)

    Anshul I Arora; Kaid Johar; Devarshi U Gajjar; Darshini A Ganatra; Forum B Kayastha; Anuradha K Pal; Alpesh R Patel; Rajkumar S; Abhay R Vasavada

    2012-12-01

    Specimens of the anterior lens capsule with an attached monolayer of lens epithelial cells (LECs) were obtained from patients (=52) undergoing cataract surgery. Specimens were divided into three groups based on the type of cataract: nuclear cataract, cortical cataract and posterior subcapsular cataract (PSC). Clear lenses (=11) obtained from donor eyes were used as controls. Expression was studied by immunofluorescence, real-time PCR and Western blot. Statistical analysis was done using the student’s -test. Immunofluorescence results showed punctate localization of Cx43 at the cell boundaries in controls, nuclear cataract and PSC groups. In the cortical cataract group, cytoplasmic pools of Cx43 without any localization at the cell boundaries were observed. Real-time PCR results showed significant up-regulation of Cx43 in nuclear and cortical cataract groups. Western blot results revealed significant increase in protein levels of Cx43 and significant decrease of ZO-1 in all three cataract groups. Protein levels of alpha-catenin were decreased significantly in nuclear and cortical cataract group. There was no significant change in expression of beta-catenin in the cataractous groups. Our findings suggest that ZO-1 and alpha-catenin are important for gap junctions containing Cx43 in the LECs. Alterations in cell junction proteins may play a role during formation of different types of cataract.

  5. E-cadherin and beta-catenin expression in breast medullary carcinomas.

    Science.gov (United States)

    Charpin, C; Bonnier, P; Garcia, S; Andrac, L; Crebassa, B; Dorel, M; Lavaut, M N; Allasia, C

    1999-08-01

    The initial step of cancer invasion and metastasis is the escape of tumour cells from the primary site, involving disruption of normal cell-cell adhesion and E-cadherin (E-cad) and beta-catenin (beta-cat) down-regulation, as shown in various types of human malignancies including breast carcinomas. Medullary carcinomas are high grade and poorly differentiated tumours with syncytial typical pattern, and prognosis unexpectedly better than that in high grade breast carcinomas. In a series of 55 breast typical medullary carcinomas diagnosed according to the strict use of Ridolfi et al (Cancer 40: 1365-1385, 1977) criteria, E-cad and beta-cat were investigated using quantitative (SAMBA 2005 system) immunocytochemical assays on frozen sections. Results were compared to that obtained on paraffin sections and in a series (n=55) of grade 3 ductal carcinomas. It was shown that medullary carcinomas significantly (p<0.001) expressed more E-cad and beta-cat than grade 3 ductal carcinomas. E-cad and beta-cat correlated with high expression of P53, of c-erbB, and of Ki-67 antigens, and with lack of hormone receptors antigenic sites (p<0.001). It was concluded that favourable prognosis and syncytial pattern of typical breast medullary carcinomas likely results, at least partly, from a particular expression of cell-cell adhesion molecules, significantly limiting tumour growth and efficiently mastering the tumour cell dissemination, opposing to high proliferative activity (grade 3).

  6. Polycyclic aromatic hydrocarbons and dibutyl phthalate disrupt dorsal-ventral axis determination via the Wnt/{beta}-catenin signaling pathway in zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Fairbairn, Elise A., E-mail: efairbairn@ucdavis.edu [University of California Davis, Bodega Marine Laboratory, P.O. Box 247, Bodega Bay, CA 94923 (United States); Bonthius, Jessica, E-mail: jessica.bonthius@gmail.com [University of California Davis, Bodega Marine Laboratory, P.O. Box 247, Bodega Bay, CA 94923 (United States); Cherr, Gary N., E-mail: gncherr@ucdavis.edu [University of California Davis, Bodega Marine Laboratory, P.O. Box 247, Bodega Bay, CA 94923 (United States); Department of Environmental Toxicology, University of California Davis, Davis, CA 95616 (United States); Department of Nutrition, University of California Davis, Davis, CA 95616 (United States)

    2012-11-15

    The canonical Wnt/{beta}-catenin signaling pathway is critical during early teleost development for establishing the dorsal-ventral axis. Within this pathway, GSK-3{beta}, a key regulatory kinase in the Wnt pathway, regulates {beta}-catenin degradation and thus the ability of {beta}-catenin to enter nuclei, where it can activate expression of genes that have been linked to the specification of the dorsal-ventral axis. In this study, we describe the morphological abnormalities that resulted in zebrafish embryos when axis determination was disrupted by environmental contaminants. These abnormalities were linked to abnormal nuclear accumulation of {beta}-catenin. Furthermore, we demonstrated that the developmental abnormalities and altered nuclear {beta}-catenin accumulation occurred when embryos were exposed to commercial GSK-3{beta} inhibitors. Zebrafish embryos were exposed to commercially available GSK-3 inhibitors (GSK-3 Inhibitor IX and 1-azakenpaullone), or common environmental contaminants (dibutyl phthalate or the polycyclic aromatic hydrocarbons phenanthrene and fluorene) from the 2 to 8-cell stage through the mid-blastula transition (MBT). These embryos displayed morphological abnormalities at 12.5 h post-fertilization (hpf) that were comparable to embryos exposed to lithium chloride (LiCl) (300 mM LiCl for 10 min, prior to the MBT), a classic disruptor of embryonic axis determination. Whole-mount immunolabeling and laser scanning confocal microscopy were used to localize {beta}-catenin. The commercial GSK-3 Inhibitors as well as LiCl, dibutyl phthalate, fluorene and phenanthrene all induced an increase in the levels of nuclear {beta}-catenin throughout the embryo, indicating that the morphological abnormalities were a result of disruption of Wnt/{beta}-catenin signaling during dorsal-ventral axis specification. The ability of environmental chemicals to directly or indirectly target GSK-3{beta} was assessed. Using Western blot analysis, the ability of these

  7. Activation of the Wnt/{beta}-catenin signaling pathway is associated with glial proliferation in the adult spinal cord of ALS transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yanchun [Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong (China); Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong (China); Guan, Yingjun, E-mail: guanyj@wfmc.edu.cn [Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong (China); Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong (China); Liu, Huancai [Department of Orthopedic, Affiliated Hospital, Weifang Medical University, Weifang, Shandong (China); Wu, Xin; Yu, Li; Wang, Shanshan; Zhao, Chunyan; Du, Hongmei [Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong (China); Wang, Xin, E-mail: xwang@rics.bwh.harvard.edu [Department of Neurosurgery, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States)

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer Wnt3a and Cyclin D1 were upregulated in the spinal cord of the ALS mice. Black-Right-Pointing-Pointer {beta}-catenin translocated from the cell membrane to the nucleus in the ALS mice. Black-Right-Pointing-Pointer Wnt3a, {beta}-catenin and Cyclin D1 co-localized for astrocytes were all increased. Black-Right-Pointing-Pointer BrdU/Cyclin D1 double-positive cells were increased in the spinal cord of ALS mice. Black-Right-Pointing-Pointer BrdU/Cyclin D1/GFAP triple-positive cells were detected in the ALS mice. -- Abstract: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the progressive and fatal loss of motor neurons. In ALS, there is a significant cell proliferation in response to neurodegeneration; however, the exact molecular mechanisms of cell proliferation and differentiation are unclear. The Wnt signaling pathway has been shown to be involved in neurodegenerative processes. Wnt3a, {beta}-catenin, and Cyclin D1 are three key signaling molecules of the Wnt/{beta}-catenin signaling pathway. We determined the expression of Wnt3a, {beta}-catenin, and Cyclin D1 in the adult spinal cord of SOD1{sup G93A} ALS transgenic mice at different stages by RT-PCR, Western blot, and immunofluorescence labeling techniques. We found that the mRNA and protein of Wnt3a and Cyclin D1 in the spinal cord of the ALS mice were upregulated compared to those in wild-type mice. In addition, {beta}-catenin translocated from the cell membrane to the nucleus and subsequently activated transcription of the target gene, Cyclin D1. BrdU and Cyclin D1 double-positive cells were increased in the spinal cord of these mice. Moreover, Wnt3a, {beta}-catenin, and Cyclin D1 were also expressed in both neurons and astrocytes. The expression of Wnt3a, {beta}-catenin or Cyclin D1 in mature GFAP{sup +} astrocytes increased. Moreover, BrdU/Cyclin D1/GFAP triple-positive cells were detected in the ALS mice. Our findings suggest that

  8. Integration of the beta-catenin-dependent Wnt pathway with integrin signaling through the adaptor molecule Grb2.

    Directory of Open Access Journals (Sweden)

    Steve P Crampton

    Full Text Available BACKGROUND: THE COMPLEXITY OF WNT SIGNALING LIKELY STEMS FROM TWO SOURCES: multiple pathways emanating from frizzled receptors in response to wnt binding, and modulation of those pathways and target gene responsiveness by context-dependent signals downstream of growth factor and matrix receptors. Both rac1 and c-jun have recently been implicated in wnt signaling, however their upstream activators have not been identified. METHODOLOGY/PRINCIPAL FINDINGS: Here we identify the adapter protein Grb2, which is itself an integrator of multiple signaling pathways, as a modifier of beta-catenin-dependent wnt signaling. Grb2 synergizes with wnt3A, constitutively active (CA LRP6, Dvl2 or CA-beta-catenin to drive a LEF/TCF-responsive reporter, and dominant negative (DN Grb2 or siRNA to Grb2 block wnt3A-mediated reporter activity. MMP9 is a target of beta-catenin-dependent wnt signaling, and an MMP9 promoter reporter is also responsive to signals downstream of Grb2. Both a jnk inhibitor and DN-c-jun block transcriptional activation downstream of Dvl2 and Grb2, as does DN-rac1. Integrin ligation by collagen also synergizes with wnt signaling as does overexpression of Focal Adhesion Kinase (FAK, and this is blocked by DN-Grb2. CONCLUSIONS/SIGNIFICANCE: These data suggest that integrin ligation and FAK activation synergize with wnt signaling through a Grb2-rac-jnk-c-jun pathway, providing a context-dependent mechanism for modulation of wnt signaling.

  9. Brain metastases from lung cancer show increased expression of DVL1, DVL3 and beta-catenin and down-regulation of E-cadherin.

    Science.gov (United States)

    Kafka, Anja; Tomas, Davor; Beroš, Vili; Pećina, Hrvoje Ivan; Zeljko, Martina; Pećina-Šlaus, Nives

    2014-06-13

    The susceptibility of brain to secondary formation from lung cancer primaries is a well-known phenomenon. In contrast, the molecular basis for invasion and metastasis to the brain is largely unknown. In the present study, 31 brain metastases that originated from primary lung carcinomas were analyzed regarding over expression of Dishevelled-1 (DVL1), Dishevelled-3 (DVL3), E-cadherin (CDH1) and beta-catenin (CTNNB1). Protein expressions and localizations were analyzed by immunohistochemistry. Genetic alterations of E-cadherin were tested by polymerase chain reaction (PCR)/loss of heterozygosity (LOH). Heteroduplex was used to investigate mutations in beta-catenin. DVL1 and DVL3 showed over expression in brain metastasis in 87.1% and 90.3% of samples respectively. Nuclear staining was observed in 54.8% of cases for DVL1 and 53.3% for DVL3. The main effector of the Wnt signaling, beta-catenin, was up-regulated in 56%, and transferred to the nucleus in 36% of metastases. When DVL1 and DVL3 were up-regulated the number of cases with nuclear beta-catenin significantly increased (p=0.0001). Down-regulation of E-cadherin was observed in 80% of samples. Genetic analysis showed 36% of samples with LOH of the CDH1. In comparison to other lung cancer pathologies, the diagnoses adenocarcinoma and small cell lung cancer (SCLC) were significantly associated to CDH1 LOH (p=0.001). Microsatellite instability was detected in one metastasis from adenocarcinoma. Exon 3 of beta-catenin was not targeted. Altered expression of Dishevelled-1, Dishevelled-3, E-cadherin and beta-catenin were present in brain metastases which indicates that Wnt signaling is important and may contribute to better understanding of genetic profile conditioning lung cancer metastasis to the brain.

  10. Brain Metastases from Lung Cancer Show Increased Expression of DVL1, DVL3 and Beta-Catenin and Down-Regulation of E-Cadherin

    Directory of Open Access Journals (Sweden)

    Anja Kafka

    2014-06-01

    Full Text Available The susceptibility of brain to secondary formation from lung cancer primaries is a well-known phenomenon. In contrast, the molecular basis for invasion and metastasis to the brain is largely unknown. In the present study, 31 brain metastases that originated from primary lung carcinomas were analyzed regarding over expression of Dishevelled-1 (DVL1, Dishevelled-3 (DVL3, E-cadherin (CDH1 and beta-catenin (CTNNB1. Protein expressions and localizations were analyzed by immunohistochemistry. Genetic alterations of E-cadherin were tested by polymerase chain reaction (PCR/loss of heterozygosity (LOH. Heteroduplex was used to investigate mutations in beta-catenin. DVL1 and DVL3 showed over expression in brain metastasis in 87.1% and 90.3% of samples respectively. Nuclear staining was observed in 54.8% of cases for DVL1 and 53.3% for DVL3. The main effector of the Wnt signaling, beta-catenin, was up-regulated in 56%, and transferred to the nucleus in 36% of metastases. When DVL1 and DVL3 were up-regulated the number of cases with nuclear beta-catenin significantly increased (p = 0.0001. Down-regulation of E-cadherin was observed in 80% of samples. Genetic analysis showed 36% of samples with LOH of the CDH1. In comparison to other lung cancer pathologies, the diagnoses adenocarcinoma and small cell lung cancer (SCLC were significantly associated to CDH1 LOH (p = 0.001. Microsatellite instability was detected in one metastasis from adenocarcinoma. Exon 3 of beta-catenin was not targeted. Altered expression of Dishevelled-1, Dishevelled-3, E-cadherin and beta-catenin were present in brain metastases which indicates that Wnt signaling is important and may contribute to better understanding of genetic profile conditioning lung cancer metastasis to the brain.

  11. Analysis of beta-catenin, Ki-ras, and microsatellite stability in azoxymethane-induced colon tumors of BDIX/Orl Ico rats

    DEFF Research Database (Denmark)

    Sørensen, Nanna Møller; Kobaek-Larsen, Morten; Bonne, Anita

    2003-01-01

    The aim of the study reported here was to investigate whether the azoxymethane (AOM)-induced colon cancer rat model mimics the human situation with regard to microsatellite stability, changes in expression of beta-catenin, and/or changes in the sequence of the proto-oncogene Ki-ras. Colon cancer ...

  12. The ankyrin repeat protein Diversin recruits Casein kinase Iepsilon to the beta-catenin degradation complex and acts in both canonical Wnt and Wnt/JNK signaling.

    NARCIS (Netherlands)

    Schwarz-Romond, T.; Asbrand, C.; Bakkers, J.; Kuhl, M.; Schaeffer, H.J.; Huelsken, J.; Behrens, J.; Hammerschmidt, M.; Birchmeier, W.

    2002-01-01

    Wnt signals control decisive steps in development and can induce the formation of tumors. Canonical Wnt signals control the formation of the embryonic axis, and are mediated by stabilization and interaction of beta-catenin with Lef/Tcf transcription factors. An alternative branch of the Wnt pathway

  13. Attenuated Response to Methamphetamine Sensitization and Deficits in Motor Learning and Memory after Selective Deletion of [beta]-Catenin in Dopamine Neurons

    Science.gov (United States)

    Diaz-Ruiz, Oscar; Zhang, YaJun; Shan, Lufei; Malik, Nasir; Hoffman, Alexander F.; Ladenheim, Bruce; Cadet, Jean Lud; Lupica, Carl R.; Tagliaferro, Adriana; Brusco, Alicia; Backman, Cristina M.

    2012-01-01

    In the present study, we analyzed mice with a targeted deletion of [beta]-catenin in DA neurons (DA-[beta]cat KO mice) to address the functional significance of this molecule in the shaping of synaptic responses associated with motor learning and following exposure to drugs of abuse. Relative to controls, DA-[beta]cat KO mice showed significant…

  14. Cables links Robo-bound Abl kinase to N-cadherin-bound beta-catenin to mediate Slit-induced modulation of adhesion and transcription.

    Science.gov (United States)

    Rhee, Jinseol; Buchan, Tim; Zukerberg, Lawrence; Lilien, Jack; Balsamo, Janne

    2007-08-01

    Binding of the secreted axon guidance cue Slit to its Robo receptor results in inactivation of the neural, calcium-dependent cell-cell adhesion molecule N-cadherin, providing a rapid epigenetic mechanism for integrating guidance and adhesion information. This requires the formation of a multimolecular complex containing Robo, Abl tyrosine kinase and N-cadherin. Here we show that on binding of Slit to Robo, the adaptor protein Cables is recruited to Robo-associated Abl and forms a multimeric complex by binding directly to N-cadherin-associated beta-catenin. Complex formation results in Abl-mediated phosphorylation of beta-catenin on tyrosine 489, leading to a decrease in its affinity for N-cadherin, loss of N-cadherin function, and targeting of phospho-Y489-beta-catenin to the nucleus. Nuclear beta-catenin combines with the transcription factor Tcf/Lef and activates transcription. Thus, Slit-induced formation of the Robo-N-cadherin complex results in a rapid loss of cadherin-mediated adhesion and has more lasting effects on gene transcription.

  15. De novo mutations in beta-catenin (CTNNB1) appear to be a frequent cause of intellectual disability: expanding the mutational and clinical spectrum

    NARCIS (Netherlands)

    Kuechler, A.; Willemsen, M.H.; Albrecht, B.; Bacino, C.A.; Bartholomew, D.W.; Bokhoven, H. van; Boogaard, M.J. van den; Bramswig, N.; Buttner, C.; Cremer, K.; Czeschik, J.C.; Engels, H.; Gassen, K. van; Graf, E.; Haelst, M. van; He, W.; Hogue, J.S.; Kempers, M.; Koolen, D.; Monroe, G.; Munnik, S. de; Pastore, M.; Reis, A.; Reuter, M.S.; Tegay, D.H.; Veltman, J.; Visser, G.; Hasselt, P. van; Smeets, E.; Vissers, L.; Wieland, T.; Wissink, W.; Yntema, H.; Zink, A.M.; Strom, T.M.; Ludecke, H.J.; Kleefstra, T.; Wieczorek, D.

    2015-01-01

    Recently, de novo heterozygous loss-of-function mutations in beta-catenin (CTNNB1) were described for the first time in four individuals with intellectual disability (ID), microcephaly, limited speech and (progressive) spasticity, and functional consequences of CTNNB1 deficiency were characterized i

  16. De novo mutations in beta-catenin (CTNNB1) appear to be a frequent cause of intellectual disability : expanding the mutational and clinical spectrum

    NARCIS (Netherlands)

    Kuechler, Alma; Willemsen, Marjolein H.; Albrecht, Beate; Bacino, Carlos A.; Bartholomew, Dennis W.; van Bokhoven, Hans; van den Boogaard, Marie Jose H.; Bramswig, Nuria; Buettner, Christian; Cremer, Kirsten; Czeschik, Johanna Christina; Engels, Hartmut; van Gassen, Koen; Graf, Elisabeth; van Haelst, Mieke; He, Weimin; Hogue, Jacob S.; Kempers, Marlies; Koolen, David; Monroe, Glen; de Munnik, Sonja; Pastore, Matthew; Reis, Andre; Reuter, Miriam S.; Tegay, David H.; Veltman, Joris; Visser, Gepke; van Hasselt, Peter; Smeets, Eric E. J.; Vissers, Lisenka; Wieland, Thomas; Wissink, Willemijn; Yntema, Helger; Zink, Alexander Michael; Strom, Tim M.; Luedecke, Hermann-Josef; Kleefstra, Tjitske; Wieczorek, Dagmar

    2015-01-01

    Recently, de novo heterozygous loss-of-function mutations in beta-catenin (CTNNB1) were described for the first time in four individuals with intellectual disability (ID), microcephaly, limited speech and (progressive) spasticity, and functional consequences of CTNNB1 deficiency were characterized i

  17. Attenuated Response to Methamphetamine Sensitization and Deficits in Motor Learning and Memory after Selective Deletion of [beta]-Catenin in Dopamine Neurons

    Science.gov (United States)

    Diaz-Ruiz, Oscar; Zhang, YaJun; Shan, Lufei; Malik, Nasir; Hoffman, Alexander F.; Ladenheim, Bruce; Cadet, Jean Lud; Lupica, Carl R.; Tagliaferro, Adriana; Brusco, Alicia; Backman, Cristina M.

    2012-01-01

    In the present study, we analyzed mice with a targeted deletion of [beta]-catenin in DA neurons (DA-[beta]cat KO mice) to address the functional significance of this molecule in the shaping of synaptic responses associated with motor learning and following exposure to drugs of abuse. Relative to controls, DA-[beta]cat KO mice showed significant…

  18. Neural induction in Xenopus: requirement for ectodermal and endomesodermal signals via Chordin, Noggin, beta-Catenin, and Cerberus.

    Directory of Open Access Journals (Sweden)

    Hiroki Kuroda

    2004-05-01

    Full Text Available The origin of the signals that induce the differentiation of the central nervous system (CNS is a long-standing question in vertebrate embryology. Here we show that Xenopus neural induction starts earlier than previously thought, at the blastula stage, and requires the combined activity of two distinct signaling centers. One is the well-known Nieuwkoop center, located in dorsal-vegetal cells, which expresses Nodal-related endomesodermal inducers. The other is a blastula Chordin- and Noggin-expressing (BCNE center located in dorsal animal cells that contains both prospective neuroectoderm and Spemann organizer precursor cells. Both centers are downstream of the early beta-Catenin signal. Molecular analyses demonstrated that the BCNE center was distinct from the Nieuwkoop center, and that the Nieuwkoop center expressed the secreted protein Cerberus (Cer. We found that explanted blastula dorsal animal cap cells that have not yet contacted a mesodermal substratum can, when cultured in saline solution, express definitive neural markers and differentiate histologically into CNS tissue. Transplantation experiments showed that the BCNE region was required for brain formation, even though it lacked CNS-inducing activity when transplanted ventrally. Cell-lineage studies demonstrated that BCNE cells give rise to a large part of the brain and retina and, in more posterior regions of the embryo, to floor plate and notochord. Loss-of-function experiments with antisense morpholino oligos (MO showed that the CNS that forms in mesoderm-less Xenopus embryos (generated by injection with Cerberus-Short [CerS] mRNA required Chordin (Chd, Noggin (Nog, and their upstream regulator beta-Catenin. When mesoderm involution was prevented in dorsal marginal-zone explants, the anterior neural tissue formed in ectoderm was derived from BCNE cells and had a complete requirement for Chd. By injecting Chd morpholino oligos (Chd-MO into prospective neuroectoderm and Cerberus

  19. Expression of beta-catenin, COX-2 and iNOS in colorectal cancer: relevance of COX-2 adn iNOS inhibitors for treatment in Malaysia.

    Science.gov (United States)

    Hong, Seok Kwan; Gul, Yunus A; Ithnin, Hairuszah; Talib, Arni; Seow, Heng Fong

    2004-01-01

    Promising new pharmacological agents and gene therapy targeting cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) could modulate treatment of colorectal cancer in the future. The aim of this study was to elucidate the expression fo beta-catenin and teh presence of COX-2 and iNOS in colorectal cancer specimens in Malaysia. This is a useful prelude to future studies investigating interventions directed towards COX-2 adn iNOS. A cross-section study using retrospective data over a 2-year period (1999-2000) involved 101 archival, formalin-fixed, paraffin-embedded tissue samples of colorectal cancers that were surgically resected in a tertiary referral. COX-2 production was detected in adjacent normal tissue in 34 sample (33.7%) and in tumour tissue in 60 samples (59.4%). More tumours expressed iNOS (82/101, 81.2%) than COX-2. No iNOS expression was detected in adjacent normal tissue. Intense beta-catenin immunoreactivity at the cell-to-cell border. Poorly differentiated tumours had significantly lower total beta-catenin (p = 0.009) and COX-2 scores (p = 0.031). No significant relationships were established between pathological stage and beta-catenin, COX-2 and iNOS scores. the accumulation of beta-catenin does not seem to be sufficient to activate pathways that lead to increased COX-2 and iNOS expression. A high proportion of colorectal cancers were found to express COX-2 and a significant number produced iNOS, suggesting that their inhibitors may be potentially useful as chemotherapeutic agents in the management of colorectal cancer.

  20. Circadian rhythms, Wnt/beta-catenin pathway and PPAR alpha/gamma profiles in diseases with primary or secondary cardiac dysfunction

    Science.gov (United States)

    Lecarpentier, Yves; Claes, Victor; Duthoit, Guillaume; Hébert, Jean-Louis

    2014-01-01

    Circadian clock mechanisms are far-from-equilibrium dissipative structures. Peroxisome proliferator-activated receptors (PPAR alpha, beta/delta, and gamma) play a key role in metabolic regulatory processes, particularly in heart muscle. Links between circadian rhythms (CRs) and PPARs have been established. Mammalian CRs involve at least two critical transcription factors, CLOCK and BMAL1 (Gekakis et al., 1998; Hogenesch et al., 1998). PPAR gamma plays a major role in both glucose and lipid metabolisms and presents circadian properties which coordinate the interplay between metabolism and CRs. PPAR gamma is a major component of the vascular clock. Vascular PPAR gamma is a peripheral regulator of cardiovascular rhythms controlling circadian variations in blood pressure and heart rate through BMAL1. We focused our review on diseases with abnormalities of CRs and with primary or secondary cardiac dysfunction. Moreover, these diseases presented changes in the Wnt/beta-catenin pathway and PPARs, according to two opposed profiles. Profile 1 was defined as follows: inactivation of the Wnt/beta-catenin pathway with increased expression of PPAR gamma. Profile 2 was defined as follows: activation of the Wnt/beta-catenin pathway with decreased expression of PPAR gamma. A typical profile 1 disease is arrhythmogenic right ventricular cardiomyopathy, a genetic cardiac disease which presents mutations of the desmosomal proteins and is mainly characterized by fatty acid accumulation in adult cardiomyocytes mainly in the right ventricle. The link between PPAR gamma dysfunction and desmosomal genetic mutations occurs via inactivation of the Wnt/beta-catenin pathway presenting oscillatory properties. A typical profile 2 disease is type 2 diabetes, with activation of the Wnt/beta-catenin pathway and decreased expression of PPAR gamma. CRs abnormalities are present in numerous pathologies such as cardiovascular diseases, sympathetic/parasympathetic dysfunction, hypertension, diabetes

  1. Early activation of FGF and nodal pathways mediates cardiac specification independently of Wnt/beta-catenin signaling.

    Directory of Open Access Journals (Sweden)

    Lee J Samuel

    Full Text Available BACKGROUND: Cardiac induction, the first step in heart development in vertebrate embryos, is thought to be initiated by anterior endoderm during gastrulation, but what the signals are and how they act is unknown. Several signaling pathways, including FGF, Nodal, BMP and Wnt have been implicated in cardiac specification, in both gain- and loss-of-function experiments. However, as these pathways regulate germ layer formation and patterning, their specific roles in cardiac induction have been difficult to define. METHODOLOGY/PRINCIPAL FINDINGS: To investigate the mechanisms of cardiac induction directly we devised an assay based on conjugates of anterior endoderm from early gastrula stage Xenopus embryos as the inducing tissue and pluripotent ectodermal explants as the responding tissue. We show that the anterior endoderm produces a specific signal, as skeletal muscle is not induced. Cardiac inducing signal needs up to two hours of interaction with the responding tissue to produce an effect. While we found that the BMP pathway was not necessary, our results demonstrate that the FGF and Nodal pathways are essential for cardiogenesis. They were required only during the first hour of cardiogenesis, while sustained activation of ERK was required for at least four hours. Our results also show that transient early activation of the Wnt/beta-catenin pathway has no effect on cardiogenesis, while later activation of the pathway antagonizes cardiac differentiation. CONCLUSIONS/SIGNIFICANCE: We have described an assay for investigating the mechanisms of cardiac induction by anterior endoderm. The assay was used to provide evidence for a direct, early and transient requirement of FGF and Nodal pathways. In addition, we demonstrate that Wnt/beta-catenin pathway plays no direct role in vertebrate cardiac specification, but needs to be suppressed just prior to differentiation.

  2. MMTV-Wnt1 and -DeltaN89beta-catenin induce canonical signaling in distinct progenitors and differentially activate Hedgehog signaling within mammary tumors.

    Directory of Open Access Journals (Sweden)

    Brigitte Teissedre

    Full Text Available Canonical Wnt/beta-catenin signaling regulates stem/progenitor cells and, when perturbed, induces many human cancers. A significant proportion of human breast cancer is associated with loss of secreted Wnt antagonists and mice expressing MMTV-Wnt1 and MMTV-DeltaN89beta-catenin develop mammary adenocarcinomas. Many studies have assumed these mouse models of breast cancer to be equivalent. Here we show that MMTV-Wnt1 and MMTV-DeltaN89beta-catenin transgenes induce tumors with different phenotypes. Using axin2/conductin reporter genes we show that MMTV-Wnt1 and MMTV-DeltaN89beta-catenin activate canonical Wnt signaling within distinct cell-types. DeltaN89beta-catenin activated signaling within a luminal subpopulation scattered along ducts that exhibited a K18(+ER(-PR(-CD24(highCD49f(low profile and progenitor properties. In contrast, MMTV-Wnt1 induced canonical signaling in K14(+ basal cells with CD24/CD49f profiles characteristic of two distinct stem/progenitor cell-types. MMTV-Wnt1 produced additional profound effects on multiple cell-types that correlated with focal activation of the Hedgehog pathway. We document that large melanocytic nevi are a hitherto unreported hallmark of early hyperplastic Wnt1 glands. These nevi formed along the primary mammary ducts and were associated with Hedgehog pathway activity within a subset of melanocytes and surrounding stroma. Hh pathway activity also occurred within tumor-associated stromal and K14(+/p63(+ subpopulations in a manner correlated with Wnt1 tumor onset. These data show MMTV-Wnt1 and MMTV-DeltaN89beta-catenin induce canonical signaling in distinct progenitors and that Hedgehog pathway activation is linked to melanocytic nevi and mammary tumor onset arising from excess Wnt1 ligand. They further suggest that Hedgehog pathway activation maybe a critical component and useful indicator of breast tumors arising from unopposed Wnt1 ligand.

  3. Analysis of beta-catenin, Ki-ras, and microsatellite stability in azoxymethane-induced colon tumors of BDIX/Orl Ico rats.

    Science.gov (United States)

    Sørensen, Nanna Møller; Kobaek-Larsen, Morten; Bonne, Anita; van Zutphen, Bert; Fenger, Claus; Kristiansen, Karsten; Ritskes-Hoitinga, Merel

    2003-12-01

    The aim of the study reported here was to investigate whether the azoxymethane (AOM)-induced colon cancer rat model mimics the human situation with regard to microsatellite stability, changes in expression of beta-catenin, and/or changes in the sequence of the proto-oncogene Ki-ras. Colon cancer was induced by administration of four weekly doses of AOM (15 mg/kg of body weight per week) separated by a one-week break between the second and third injections. As the histopathologic characteristics of this model resemble those of the human counterpart, further characterization of the genetic changes was undertaken. The animals were euthanized 28 to 29 weeks after the first AOM injection, and tumor specimens were taken for histologic and DNA analyses. Since microsatellite variation was found in only a few (< 2%) specimens, the model can be considered as having stable microsatellites. This result is in accordance with those of similar studies in other rat models and with most human colorectal cancers. Immunohistochemical analyses of beta-catenin did not reveal loss of gene activity, nor did the sequencing of Ki-ras reveal mutations. These results are in contrast to most findings in comparable rat studies. The deviations may be due to differences in exposure to the carcinogen or difference in strain and/or age. The lack of beta-catenin and Ki-ras alterations in this colon cancer model is unlike human sporadic colorectal cancers where these genetic changes are common findings.

  4. beta-catenin is strongly elevated in rat colonic epithelium following short-term intermittent treatment with 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and a high-fat diet.

    Science.gov (United States)

    Wang, Rong; Dashwood, W Mohaiza; Löhr, Christiane V; Fischer, Kay A; Nakagama, Hitoshi; Williams, David E; Dashwood, Roderick H

    2008-09-01

    Colon tumors expressing high levels of beta-catenin and c-myc have been reported in male F344 rats given three short cycles of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) alternating with a high-fat (HF) diet. Using the same experimental protocol, rats were euthanized 24 h after the last dose of PhIP so as to examine early changes in colonic crypt homeostasis and beta-catenin expression, before the onset of frank tumors. PhIP/HF dosing caused a significant increase in the bromodeoxyuridine labeling index throughout the entire colon, and within the colonic crypt column cleaved caspase-3 was elevated in the basal and central zones, but reduced in the luminal region. In vehicle/HF controls, beta-catenin was immunolocalized primarily at the border between cells at the top of the crypt, whereas in rats given PhIP/HF diet there was strong cytoplasmic staining, which appeared as a gradient of increased beta-catenin extending from the base of the crypt column to the luminal region. Quantitative real-time PCR and immunoblot analyses confirmed that beta-catenin and c-myc were increased significantly in the colonic mucosa of rats given PhIP/HF diet. Collectively, these findings suggest that PhIP/HF cycling alters beta-catenin and c-myc expression in the colonic mucosa, resulting in expansion of the proliferative zone and redistribution of apoptotic cells from the lumen to the central and basal regions of the colonic crypt. Thus, during the early stages of colon carcinogenesis, alternating exposure to heterocyclic amines and a high-fat diet might facilitate molecular changes resulting in dysregulated beta-catenin and c-myc expression.

  5. The expression of syndecan-1 and -2 is associated with Gleason score and epithelial-mesenchymal transition markers, E-cadherin and beta-catenin, in prostate cancer.

    Science.gov (United States)

    Contreras, Hector R; Ledezma, Rodrigo A; Vergara, Jorge; Cifuentes, Federico; Barra, Cristina; Cabello, Pablo; Gallegos, Ivan; Morales, Bernardo; Huidobro, Christian; Castellón, Enrique A

    2010-01-01

    The epithelial-mesenchymal transition (EMT) is considered a key step in tumor progression, where the invasive cancer cells change from epithelial to mesenchymal phenotype. During this process, a decrease or loss in adhesion molecules expression and an increase in migration molecules expression are observed. The aim of this work was to determine the expression and cellular distribution of syndecan-1 and -2 (migration molecules) and E-cadherin and beta-catenin (adhesion molecules) in different stages of prostate cancer progression. A quantitative immunohistochemical study of these molecules was carried out in tissue samples from benign prostatic hyperplasia and prostate carcinoma, with low and high Gleason score, obtained from biopsies archives of the Clinic Hospital of the University of Chile and Dipreca Hospital. Polyclonal specific antibodies and amplification system of estreptavidin-biotin peroxidase and diaminobenzidine were used. Syndecan-1 was uniformly expressed in basolateral membranes of normal epithelium, changing to a granular cytoplasmatic expression pattern in carcinomas. Syndecan-2 was observed mainly in a cytoplasmatic granular pattern, with high immunostaining intensity in areas of low Gleason score. E-cadherin was detected in basolateral membrane of normal epithelia showing decreased expression in high Gleason score samples. beta-Catenin was found in cell membranes of normal epithelia changing its distribution toward the nucleus and cytoplasm in carcinoma samples. We concluded that changes in expression and cell distribution of E-cadherin and beta-catenin correlated with the progression degree of prostate adenocarcinoma, suggesting a role of these molecules as markers of progression and prognosis. Furthermore, changes in the pattern expression of syndecan-1 and -2 indicate that both molecules may be involved in the EMT and tumor progression of prostate cancer.

  6. Promotion versus suppression of rat colon carcinogenesis by chlorophyllin and chlorophyll: modulation of apoptosis, cell proliferation, and {beta}-catenin/Tcf signaling

    Energy Technology Data Exchange (ETDEWEB)

    Blum, Carmen A.; Xu Meirong; Orner, Gayle A.; Dario Diaz, G.; Li Qingjie; Dashwood, Wan Mohaiza; Bailey, George S.; Dashwood, Roderick H

    2003-03-01

    The carcinogens 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) and 1,2-dimethylhydrazine (DMH) induce colon tumors in the rat that contain mutations in {beta}-catenin, but the mutation pattern can be influenced by exposure to dietary phytochemicals, such as the water-soluble derivative of chlorophyll called chlorophyllin. Whereas chlorophyllin is an effective blocking agent during the initiation phase, post-initiation responses depend upon the exposure protocol, and can be influenced by the initiating agent and the concentration of chlorophyllin. Post-initiation treatment with 0.001% chlorophyllin (w/v) in the drinking water promoted colon carcinogenesis in the rat, but much higher concentrations (1.0% chlorophyllin) led to suppression. Bromodeoxyuridine and terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) indices revealed that the promotional concentration of 0.001% chlorophyllin increased the ratio of cell proliferation to apoptosis in the colonic crypts, whereas concentrations in the range 0.01-1.0% chlorophyllin modestly reduced this ratio. Molecular studies showed that the spectrum of {beta}-catenin mutations was markedly different in chlorophyllin-promoted colon tumors--many of the mutations led to direct substitutions of critical Ser/Thr residues within the glycogen synthase kinase-3{beta} (GSK-3{beta}) region, whereas in all other groups, including DMH and IQ controls, the mutations typically affected amino acids adjacent to Ser{sup 33}. Substitution of critical Ser/Thr residues caused {beta}-catenin and c-Jun proteins to be markedly over-expressed compared with tumors in which the mutations substituted amino acid residues flanking these critical Ser/Thr sites. In a separate study, rats were exposed to IQ or azoxymethane (AOM), a metabolite of DMH, and they were treated post-initiation with chlorophyllin, chlorophyll, copper, or phytol in the diet. Natural chlorophyll (0.08%) suppressed AOM- and IQ-induced aberrant crypt foci (ACF

  7. Promotion versus suppression of rat colon carcinogenesis by chlorophyllin and chlorophyll: modulation of apoptosis, cell proliferation, and beta-catenin/Tcf signaling.

    Science.gov (United States)

    Blum, Carmen A; Xu, Meirong; Orner, Gayle A; Darío Díaz, G; Li, Qingjie; Dashwood, Wan Mohaiza; Bailey, George S; Dashwood, Roderick H

    2003-01-01

    The carcinogens 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) and 1,2-dimethylhydrazine (DMH) induce colon tumors in the rat that contain mutations in beta-catenin, but the mutation pattern can be influenced by exposure to dietary phytochemicals, such as the water-soluble derivative of chlorophyll called chlorophyllin. Whereas chlorophyllin is an effective blocking agent during the initiation phase, post-initiation responses depend upon the exposure protocol, and can be influenced by the initiating agent and the concentration of chlorophyllin. Post-initiation treatment with 0.001% chlorophyllin (w/v) in the drinking water promoted colon carcinogenesis in the rat, but much higher concentrations (1.0% chlorophyllin) led to suppression. Bromodeoxyuridine and terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) indices revealed that the promotional concentration of 0.001% chlorophyllin increased the ratio of cell proliferation to apoptosis in the colonic crypts, whereas concentrations in the range 0.0l-1.0% chlorophyllin modestly reduced this ratio. Molecular studies showed that the spectrum of beta-catenin mutations was markedly different in chlorophyllin-promoted colon tumors--many of the mutations led to direct substitutions of critical Ser/Thr residues within the glycogen synthase kinase-3beta (GSK-3beta) region, whereas in all other groups, including DMH and IQ controls, the mutations typically affected amino acids adjacent to Ser(33). Substitution of critical Ser/Thr residues caused beta-catenin and c-Jun proteins to be markedly over-expressed compared with tumors in which the mutations substituted amino acid residues flanking these critical Ser/Thr sites. In a separate study, rats were exposed to IQ or azoxymethane (AOM), a metabolite of DMH, and they were treated post-initiation with chlorophyllin, chlorophyll, copper, or phytol in the diet. Natural chlorophyll (0.08%) suppressed AOM- and IQ-induced aberrant crypt foci (ACF), whereas

  8. E-cadherin and beta-catenin expression in Epstein-Barr virus-associated gastric carcinoma and their prognostic significance

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To examine the role of E-cadherin and betacatenin in carcinogenesis and to assess their prognostic implication in Epstein-Barr virus-associated gastric carcinomas (EBV-GCs).METHODS: We compared the frequency of E-cadherin and beta-catenin expression in 59 EBV-GCs and 120 non-EBV-GCs, and examined the association between patients' prognosis and the expressions of these proteins.RESULTS: Neither the cellular-membranous nor the cytoplasmic E-cadherin expression showed any difference between EBV-GCs and non-EBV-GCs. On the other hand, loss of membranous expression of betacatenin occurred more frequently in non-EBV-GCs than EBV-GCs [odds ratio = 0.41; 95% confidence interval (CI),0.19-0.90]. Furthermore, the nuclear and/or cytoplosmic expression of beta-catenin was seen more frequently in EBV-GCs than non-EBV-GCs (odds ratio = 2.23; 95% CI, 0.97-5.09), and was observed in a larger proportion of carcinoma cells of EBV-GCs than non-EBV-GCs (P = 0.024). Survival analysis for non-EBV-GC revealed that lymph node metastasis was significantly associated with poor prognosis (P < 0.001). Among EBVGCs, the depth of invasion (P = 0.005), lymph node metastasis (P = 0.004) and an intestinal type by Lauren classification (hazard ratio = 9.47; 95% CI, 2.67-33.6)were significantly associated with poor prognosis. On the other hand, nuclear and/or cytoplasmic expression of beta-catenin was associated with a better prognosis in patients with EBV-GC (hazard ratio = 0.32; 95% CI,0.11-0.93).CONCLUSION: We observed more frequent preservation of beta-catenin in cell membrane and accumulation in nuclei and/or cytoplasm in EBV-GCs than in non-EBV-GCs. Factors involved in the prognosis of EBV-GCs and non-EBV-GCs are different in the two conditions.

  9. Anti-cadherin-17 antibody modulates beta-catenin signaling and tumorigenicity of hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Yonggang Wang

    Full Text Available Cadherin-17 (CDH17 is an oncofetal molecule associated with poor prognostic outcomes of hepatocellular carcinoma (HCC, for which the treatment options are very limited. The present study investigates the therapeutic potential of a monoclonal antibody (Lic5 that targets the CDH17 antigen in HCC. In vitro experiments showed Lic5 could markedly reduce CDH17 expression in a dose-dependent manner, suppress β-catenin signaling, and induce cleavages of apoptotic enzymes caspase-8 and -9 in HCC cells. Treatment of animals in subcutaneous HCC xenograft model similarly demonstrated significant tumor growth inhibition (TGI using Lic5 antibody alone (5 mg/kg, i.p., t.i.w.; ca.60-65% TGI vs. vehicle at day 28, or in combination with conventional chemotherapy regimen (cisplatin 1 mg/kg; ca. 85-90% TGI. Strikingly, lung metastasis was markedly suppressed by Lic5 treatments. Immunohistochemical and western blot analyses of xenograft explants revealed inactivation of the Wnt pathway and suppression of Wnt signaling components in HCC tissues. Collectively, anti-CDH17 antibody promises as an effective biologic agent for treating malignant HCC.

  10. Neutrophil transmigration triggers repair of the lung epithelium via beta-catenin signaling.

    Science.gov (United States)

    Zemans, Rachel L; Briones, Natalie; Campbell, Megan; McClendon, Jazalle; Young, Scott K; Suzuki, Tomoko; Yang, Ivana V; De Langhe, Stijn; Reynolds, Susan D; Mason, Robert J; Kahn, Michael; Henson, Peter M; Colgan, Sean P; Downey, Gregory P

    2011-09-20

    Injury to the epithelium is integral to the pathogenesis of many inflammatory lung diseases, and epithelial repair is a critical determinant of clinical outcome. However, the signaling pathways regulating such repair are incompletely understood. We used in vitro and in vivo models to define these pathways. Human neutrophils were induced to transmigrate across monolayers of human lung epithelial cells in the physiological basolateral-to-apical direction. This allowed study of the neutrophil contribution not only to the initial epithelial injury, but also to its repair, as manifested by restoration of transepithelial resistance and reepithelialization of the denuded epithelium. Microarray analysis of epithelial gene expression revealed that neutrophil transmigration activated β-catenin signaling, and this was verified by real-time PCR, nuclear translocation of β-catenin, and TOPFlash reporter activity. Leukocyte elastase, likely via cleavage of E-cadherin, was required for activation of β-catenin signaling in response to neutrophil transmigration. Knockdown of β-catenin using shRNA delayed epithelial repair. In mice treated with intratracheal LPS or keratinocyte chemokine, neutrophil emigration resulted in activation of β-catenin signaling in alveolar type II epithelial cells, as demonstrated by cyclin D1 expression and/or reporter activity in TOPGAL mice. Attenuation of β-catenin signaling by IQ-1 inhibited alveolar type II epithelial cell proliferation in response to neutrophil migration induced by intratracheal keratinocyte chemokine. We conclude that β-catenin signaling is activated in lung epithelial cells during neutrophil transmigration, likely via elastase-mediated cleavage of E-cadherin, and regulates epithelial repair. This pathway represents a potential therapeutic target to accelerate physiological recovery in inflammatory lung diseases.

  11. MENA is a transcriptional target of the Wnt/beta-catenin pathway.

    Directory of Open Access Journals (Sweden)

    Ayaz Najafov

    Full Text Available Wnt/β-catenin signalling pathway plays important roles in embryonic development and carcinogenesis. Overactivation of the pathway is one of the most common driving forces in major cancers such as colorectal and breast cancers. The downstream effectors of the pathway and its regulation of carcinogenesis and metastasis are still not very well understood. In this study, which was based on two genome-wide transcriptomics screens, we identify MENA (ENAH, Mammalian enabled homologue as a novel transcriptional target of the Wnt/β-catenin signalling pathway. We show that the expression of MENA is upregulated upon overexpression of degradation-resistant β-catenin. Promoters of all mammalian MENA homologues contain putative binding sites for Tcf4 transcription factor--the primary effector of the Wnt/β-catenin pathway and we demonstrate functionality of these Tcf4-binding sites using luciferase reporter assays and overexpression of β-catenin, Tcf4 and dominant-negative Tcf4. In addition, lithium chloride-mediated inhibition of GSK3β also resulted in increase in MENA mRNA levels. Chromatin immunoprecipitation showed direct interaction between β-catenin and MENA promoter in Huh7 and HEK293 cells and also in mouse brain and liver tissues. Moreover, overexpression of Wnt1 and Wnt3a ligands increased MENA mRNA levels. Additionally, knock-down of MENA ortholog in D. melanogaster eyeful and sensitized eye cancer fly models resulted in increased tumor and metastasis formations. In summary, our study identifies MENA as novel nexus for the Wnt/β-catenin and the Notch signalling cascades.

  12. Pharmacologically targeting beta-catenin for NF1 associated deficiencies in fracture repair.

    Science.gov (United States)

    Baht, Gurpreet S; Nadesan, Puviindran; Silkstone, David; Alman, Benjamin A

    2017-02-22

    Patients with Neurofibromatosis type 1 display delayed fracture healing and the increased deposition of fibrous tissue at the fracture site. Severe cases can lead to non-union and even congenital pseudarthrosis. Neurofibromatosis type 1 is caused by a mutation in the NF1 gene and mice lacking the Nf1 gene show a fracture repair phenotype similar to that seen in patients. Tissue from the fracture site of patients with Neurofibromatosis type 1 and from mice deficient in the Nf1 gene both show elevated levels of β-catenin protein and activation of β-catenin mediated signaling. Constitutively elevated β-catenin leads to a delayed and fibrous fracture repair process, and (RS)-5-methyl-1-phenyl-1,3,4,6-tetrahydro-2,5-benzoxazocine (Nefopam, a centrally-acting, non-narcotic analgesic agent) inhibits β-catenin mediated signaling during skin wound repair. Here we investigate Nefopam's potential as a modulator of bone repair in mice deficient in Nf1. Mice were treated with Nefopam and investigated for bone fracture repair. Bone marrow stromal cells flushed from the long bones of unfractured mice were treated with Nefopam and investigated for osteogenic potential. Treatment with Nefopam was able to lower the β-catenin level and the Axin2 transcript level in the fracture calluses of Nf1 deficient mice. Cultures from the bone marrow of Nf1(-/-) mice had significantly lower osteoblastic colonies and mineralized nodules, which was increased when cells were cultured in the presence of Nefopam. Fracture calluses were harvested and analyzed 14days and 21days after injury. Nf1(-/-) calluses had less bone, less cartilage, and higher fibrous tissue content than control calluses. Treatment with Nefopam increased the bone and cartilage content and decreased the fibrous tissue content in Nf1(-/-) calluses. These findings present a potential treatment for patients with Neurofibromatosis 1 in the context of bone repair. Since Nefopam is already in use in patient care, it could be

  13. De novo mutations in beta-catenin (CTNNB1) appear to be a frequent cause of intellectual disability: expanding the mutational and clinical spectrum.

    Science.gov (United States)

    Kuechler, Alma; Willemsen, Marjolein H; Albrecht, Beate; Bacino, Carlos A; Bartholomew, Dennis W; van Bokhoven, Hans; van den Boogaard, Marie Jose H; Bramswig, Nuria; Büttner, Christian; Cremer, Kirsten; Czeschik, Johanna Christina; Engels, Hartmut; van Gassen, Koen; Graf, Elisabeth; van Haelst, Mieke; He, Weimin; Hogue, Jacob S; Kempers, Marlies; Koolen, David; Monroe, Glen; de Munnik, Sonja; Pastore, Matthew; Reis, André; Reuter, Miriam S; Tegay, David H; Veltman, Joris; Visser, Gepke; van Hasselt, Peter; Smeets, Eric E J; Vissers, Lisenka; Wieland, Thomas; Wissink, Willemijn; Yntema, Helger; Zink, Alexander Michael; Strom, Tim M; Lüdecke, Hermann-Josef; Kleefstra, Tjitske; Wieczorek, Dagmar

    2015-01-01

    Recently, de novo heterozygous loss-of-function mutations in beta-catenin (CTNNB1) were described for the first time in four individuals with intellectual disability (ID), microcephaly, limited speech and (progressive) spasticity, and functional consequences of CTNNB1 deficiency were characterized in a mouse model. Beta-catenin is a key downstream component of the canonical Wnt signaling pathway. Somatic gain-of-function mutations have already been found in various tumor types, whereas germline loss-of-function mutations in animal models have been shown to influence neuronal development and maturation. We report on 16 additional individuals from 15 families in whom we newly identified de novo loss-of-function CTNNB1 mutations (six nonsense, five frameshift, one missense, two splice mutation, and one whole gene deletion). All patients have ID, motor delay and speech impairment (both mostly severe) and abnormal muscle tone (truncal hypotonia and distal hypertonia/spasticity). The craniofacial phenotype comprised microcephaly (typically -2 to -4 SD) in 12 of 16 and some overlapping facial features in all individuals (broad nasal tip, small alae nasi, long and/or flat philtrum, thin upper lip vermillion). With this detailed phenotypic characterization of 16 additional individuals, we expand and further establish the clinical and mutational spectrum of inactivating CTNNB1 mutations and thereby clinically delineate this new CTNNB1 haploinsufficiency syndrome.

  14. Biphasic Role of Chondroitin Sulfate in Cardiac Differentiation of Embryonic Stem Cells through Inhibition of Wnt/beta-Catenin Signaling

    NARCIS (Netherlands)

    Prinz, R.D.; Willis, C.M.; Kuppevelt, T.H. van; Kluppel, M.

    2014-01-01

    The glycosaminoglycan chondroitin sulfate is a critical component of proteoglycans on the cell surface and in the extracellular matrix. As such, chondroitin sulfate side chains and the sulfation balance of chondroitin play important roles in the control of signaling pathways, and have a functional i

  15. Up-regulation of the ectodermal-neural cortex 1 (ENC1) gene, a downstream target of the beta-catenin/T-cell factor complex, in colorectal carcinomas.

    Science.gov (United States)

    Fujita, M; Furukawa, Y; Tsunoda, T; Tanaka, T; Ogawa, M; Nakamura, Y

    2001-11-01

    To clarify the molecular mechanisms of human carcinogenesis associated with abnormal Wnt/wingless signaling, we searched for genes the expression of which was significantly altered by introduction of wild-type AXIN1 into LoVo colon cancer cells. By means of a cDNA microarray, we compared expression profiles of LoVo cells infected with either adenoviruses expressing wild-type AXIN1 (Ad-Axin) or those expressing a control gene (Ad-LacZ). Among the genes showing altered expression, the ectodermal-neural cortex 1 (ENC1) gene was down-regulated in response to Ad-Axin. The promoter activity of ENC1 was elevated approximately 3-fold by transfection of an activated form of beta-catenin together with wild-type T-cell factor (Tcf)4 in HeLa cells. Semiquantitative reverse transcription-PCR experiments revealed that expression of ENC1 was increased in more than two-thirds of 24 primary colon cancer tissues that we examined compared with corresponding noncancerous mucosae. Introduction of exogenous ENC1 increased the growth rate of HCT116 colon cancer cells in serum-depleted medium. In other experiments, overexpression of ENC1 in HT-29 colon cancer cells suppressed the usual increase of two differentiation markers, in response to treatment with sodium butyrate, a differentiation-inducible agent. These data suggest that ENC1 is regulated by the beta-catenin/Tcf pathway and that its altered expression may contribute to colorectal carcinogenesis by suppressing differentiation of colonic cells.

  16. A Method for Serial Tissue Processing and Parallel Analysis of Aberrant Crypt Morphology, Mucin Depletion, and Beta-Catenin Staining in an Experimental Model of Colon Carcinogenesis

    Directory of Open Access Journals (Sweden)

    McGinley John N

    2010-05-01

    Full Text Available Abstract The use of architectural and morphological characteristics of cells for establishing prognostic indicators by which individual pathologies are assigned grade and stage is a well-accepted practice. Advances in automated micro- and macroscopic image acquisition and digital image analysis have created new opportunities in the field of prognostic assessment; but, one area in experimental pathology, animal models for colon cancer, has not taken advantage of these opportunities. This situation is primarily due to the methods available to evaluate the colon of the rodent for the presence of premalignant and malignant pathologies. We report a new method for the excision and processing of the entire colon of the rat and illustrate how this procedure permitted the quantitative assessment of aberrant crypt foci (ACF, a premalignant colon pathology, for characteristics consistent with progression to malignancy. ACF were detected by methylene blue staining and subjected to quantitative morphometric analysis. Colons were then restained with high iron diamine–alcian blue for assessment of mucin depletion using an image overlay to associate morphometric data with mucin depletion. The subsequent evaluation of ACF for beta-catenin staining is also demonstrated. The methods described are particularly relevant to the screening of compounds for cancer chemopreventive activity. Additional file 1 Click here for file

  17. Promoter swapping between the genes for a novel zinc finger protein and beta-catenin in pleiomorphic adenomas with t(3;8)(p21;q12) translocations.

    Science.gov (United States)

    Kas, K; Voz, M L; Röijer, E; Aström, A K; Meyen, E; Stenman, G; Van de Ven, W J

    1997-02-01

    Pleiomorphic adenoma of the salivary glands is a benign epithelial tumour occurring primarily in the major and minor salivary glands. It is by far the most common type of salivary gland tumour. Microscopically, pleiomorphic adenomas show a marked histological diversity with epithelial, myoepithelial and mesenchymal components in a variety of patterns. In addition to a cytogenetic subgroup with normal karyotypes, pleiomorphic adenomas are characterized by recurrent chromosome rearrangements, particularly reciprocal translocations, with breakpoints at 8q12, 3p21, and 12q13-15, in that order of frequency. The most common abnormality is a reciprocal t(3;8)(p21;q12). We here demonstrate that the t(3;8)(p21;q12) results in promoter swapping between PLAG1, a novel, developmentally regulated zinc finger gene at 8q12, and the constitutively expressed gene for beta-catenin (CTNNB1), a protein interface functioning in the WG/WNT signalling pathway and specification of cell fate during embryogenesis. Fusions occur in the 5'-non-coding regions of both genes, exchanging regulatory control elements while preserving the coding sequences. Due to the t(3;8)(p21;q12), PLAG1 is activated and expression levels of CTNNB1 are reduced. Activation of PLAG1 was also observed in an adenoma with a variant translocation t(8;15)(q12;q14). Our results indicate that PLAG1 activation due to promoter swapping is a crucial event in salivary gland tumourigenesis.

  18. A Method for Serial Tissue Processing and Parallel Analysis of Aberrant Crypt Morphology, Mucin Depletion, and Beta-Catenin Staining in an Experimental Model of Colon Carcinogenesis

    Directory of Open Access Journals (Sweden)

    McGinley John

    2010-01-01

    Full Text Available Abstract The use of architectural and morphological characteristics of cells for establishing prognostic indicators by which individual pathologies are assigned grade and stage is a well-accepted practice. Advances in automated micro- and macroscopic image acquisition and digital image analysis have created new opportunities in the field of prognostic assessment; but, one area in experimental pathology, animal models for colon cancer, has not taken advantage of these opportunities. This situation is primarily due to the methods available to evaluate the colon of the rodent for the presence of premalignant and malignant pathologies. We report a new method for the excision and processing of the entire colon of the rat and illustrate how this procedure permitted the quantitative assessment of aberrant crypt foci (ACF, a premalignant colon pathology, for characteristics consistent with progression to malignancy. ACF were detected by methylene blue staining and subjected to quantitative morphometric analysis. Colons were then restained with high iron diamine–alcian blue for assessment of mucin depletion using an image overlay to associate morphometric data with mucin depletion. The subsequent evaluation of ACF for beta-catenin staining is also demonstrated. The methods described are particularly relevant to the screening of compounds for cancer chemopreventive activity. Additional file 1 Click here for file

  19. Maintenance of adenomatous polyposis coli (APC)-mutant colorectal cancer is dependent on Wnt/beta-catenin signaling.

    Science.gov (United States)

    Scholer-Dahirel, Alix; Schlabach, Michael R; Loo, Alice; Bagdasarian, Linda; Meyer, Ronald; Guo, Ribo; Woolfenden, Steve; Yu, Kristine K; Markovits, Judit; Killary, Karen; Sonkin, Dmitry; Yao, Yung-Mae; Warmuth, Markus; Sellers, William R; Schlegel, Robert; Stegmeier, Frank; Mosher, Rebecca E; McLaughlin, Margaret E

    2011-10-11

    Persistent expression of certain oncogenes is required for tumor maintenance. This phenotype is referred to as oncogene addiction and has been clinically validated by anticancer therapies that specifically inhibit oncoproteins such as BCR-ABL, c-Kit, HER2, PDGFR, and EGFR. Identifying additional genes that are required for tumor maintenance may lead to new targets for anticancer drugs. Although the role of aberrant Wnt pathway activation in the initiation of colorectal cancer has been clearly established, it remains unclear whether sustained Wnt pathway activation is required for colorectal tumor maintenance. To address this question, we used inducible β-catenin shRNAs to temporally control Wnt pathway activation in vivo. Here, we show that active Wnt/β-catenin signaling is required for maintenance of colorectal tumor xenografts harboring APC mutations. Reduced tumor growth upon β-catenin inhibition was due to cell cycle arrest and differentiation. Upon reactivation of the Wnt/β-catenin pathway colorectal cancer cells resumed proliferation and reacquired a crypt progenitor phenotype. In human colonic adenocarcinomas, high levels of nuclear β-catenin correlated with crypt progenitor but not differentiation markers, suggesting that the Wnt/β-catenin pathway may also control colorectal tumor cell fate during the maintenance phase of tumors in patients. These results support efforts to treat human colorectal cancer by pharmacological inhibition of the Wnt/β-catenin pathway.

  20. Dact2 represses PITX2 transcriptional activation and cell proliferation through Wnt/beta-catenin signaling during odontogenesis.

    Directory of Open Access Journals (Sweden)

    Xiao Li

    Full Text Available Dact proteins belong to the Dapper/Frodo protein family and function as cytoplasmic attenuators in Wnt and TGFβ signaling. Previous studies show that Dact1 is a potent Wnt signaling inhibitor by promoting degradation of β-catenin. We report a new mechanism for Dact2 function as an inhibitor of the canonical Wnt signaling pathway by interacting with PITX2. PITX2 is a downstream transcription factor in Wnt/β-catenin signaling, and PITX2 synergizes with Lef-1 to activate downstream genes. Immunohistochemistry verified the expression of Dact2 in the tooth epithelium, which correlated with Pitx2 epithelial expression. Dact2 loss of function and PITX2 gain of function studies reveal a feedback mechanism for controlling Dact2 expression. Pitx2 endogenously activates Dact2 expression and Dact2 feeds back to repress Pitx2 transcriptional activity. A Topflash reporter system was employed showing PITX2 activation of Wnt signaling, which is attenuated by Dact2. Transient transfections demonstrate the inhibitory effect of Dact2 on critical dental epithelial differentiation factors during tooth development. Dact2 significantly inhibits PITX2 activation of the Dlx2 and amelogenin promoters. Multiple lines of evidence conclude the inhibition is achieved by the physical interaction between Dact2 and Pitx2 proteins. The loss of function of Dact2 also reveals increased cell proliferation due to up-regulated Wnt downstream genes, cyclinD1 and cyclinD2. In summary, we have identified a novel role for Dact2 as an inhibitor of the canonical Wnt pathway in embryonic tooth development through its regulation of cell proliferation and differentiation.

  1. Dact2 represses PITX2 transcriptional activation and cell proliferation through Wnt/beta-catenin signaling during odontogenesis.

    Science.gov (United States)

    Li, Xiao; Florez, Sergio; Wang, Jianbo; Cao, Huojun; Amendt, Brad A

    2013-01-01

    Dact proteins belong to the Dapper/Frodo protein family and function as cytoplasmic attenuators in Wnt and TGFβ signaling. Previous studies show that Dact1 is a potent Wnt signaling inhibitor by promoting degradation of β-catenin. We report a new mechanism for Dact2 function as an inhibitor of the canonical Wnt signaling pathway by interacting with PITX2. PITX2 is a downstream transcription factor in Wnt/β-catenin signaling, and PITX2 synergizes with Lef-1 to activate downstream genes. Immunohistochemistry verified the expression of Dact2 in the tooth epithelium, which correlated with Pitx2 epithelial expression. Dact2 loss of function and PITX2 gain of function studies reveal a feedback mechanism for controlling Dact2 expression. Pitx2 endogenously activates Dact2 expression and Dact2 feeds back to repress Pitx2 transcriptional activity. A Topflash reporter system was employed showing PITX2 activation of Wnt signaling, which is attenuated by Dact2. Transient transfections demonstrate the inhibitory effect of Dact2 on critical dental epithelial differentiation factors during tooth development. Dact2 significantly inhibits PITX2 activation of the Dlx2 and amelogenin promoters. Multiple lines of evidence conclude the inhibition is achieved by the physical interaction between Dact2 and Pitx2 proteins. The loss of function of Dact2 also reveals increased cell proliferation due to up-regulated Wnt downstream genes, cyclinD1 and cyclinD2. In summary, we have identified a novel role for Dact2 as an inhibitor of the canonical Wnt pathway in embryonic tooth development through its regulation of cell proliferation and differentiation.

  2. Biphasic role of chondroitin sulfate in cardiac differentiation of embryonic stem cells through inhibition of Wnt/β-catenin signaling.

    Directory of Open Access Journals (Sweden)

    Robert D Prinz

    Full Text Available The glycosaminoglycan chondroitin sulfate is a critical component of proteoglycans on the cell surface and in the extracellular matrix. As such, chondroitin sulfate side chains and the sulfation balance of chondroitin play important roles in the control of signaling pathways, and have a functional importance in human disease. In contrast, very little is known about the roles of chondroitin sulfate molecules and sulfation patterns during mammalian development and cell lineage specification. Here, we report a novel biphasic role of chondroitin sulfate in the specification of the cardiac cell lineage during embryonic stem cell differentiation through modulation of Wnt/beta-catenin signaling. Lineage marker analysis demonstrates that enzymatic elimination of endogenous chondroitin sulfates leads to defects specifically in cardiac differentiation. This is accompanied by a reduction in the number of beating cardiac foci. Mechanistically, we show that endogenous chondroitin sulfate controls cardiac differentiation in a temporal biphasic manner through inhibition of the Wnt/beta-catenin pathway, a known regulatory pathway for the cardiac lineage. Treatment with a specific exogenous chondroitin sulfate, CS-E, could mimic these biphasic effects on cardiac differentiation and Wnt/beta-catenin signaling. These results establish chondroitin sulfate and its sulfation balance as important regulators of cardiac cell lineage decisions through control of the Wnt/beta-catenin pathway. Our work suggests that targeting the chondroitin biosynthesis and sulfation machinery is a novel promising avenue in regenerative strategies after heart injury.

  3. Prolyl hydroxylase 3 inhibited the tumorigenecity of gastric cancer cells.

    Science.gov (United States)

    Cui, Lei; Qu, Jianguo; Dang, Shengchun; Mao, Zhengfa; Wang, Xuqing; Fan, Xin; Sun, Kang; Zhang, Jianxin

    2014-09-01

    Gastric cancer is one of the most common malignancies and the second leading cause of cancer-related death in the world, and it is very urgent to develop novel therapeutic strategies. Although HIF-1α is the most highly characterized target of prolyl hydroxylase 3 (PHD3), PHD3 has been shown to regulate several signal pathways independent of HIF-1α. Here, we found that the expression of PHD3 was decreased in the clinical gastric cancer samples and reversely correlated with tumor size and tumor stage. Over-expression of PHD3 in the gastric cancer cells significantly inhibited cell growth in vitro and in vivo, while knockdown the expression of PHD3 promoted the tumorigenecity of gastric cancer cells. Mechanistically, it showed that PHD3 downregulated the expression of beta-catenin and inhibited beta-catenin/T-cell factor (TCF) signaling. Taken together, our findings demonstrate that PHD3 inhibits gastric cancer by suppressing the beta-catenin/TCF signaling and PHD3 might be an important therapeutic target in gastric cancer.

  4. Sulindac inhibits beta-catenin expression in normal-appearing colon of hereditary nonpolyposis colorectal cancer and familial adenomatous polyposis patients

    NARCIS (Netherlands)

    Koornstra, JJ; Rijcken, FEM; Oldenhuis, CNAM; Zwart, N; van der Sluis, T; Hollema, H; deVries, EGE; Keller, JJ; Offerhaus, JA; Giardiello, FM; Kleibeuker, JH

    2005-01-01

    Sulindac reduces colorectal cancer risk in genetically susceptible humans and animals. The molecular mechanisms underlying these effects are incompletely understood. Many studies suggest an important role for induction of apoptosis involving the mitochondrial pathway and the death receptor pathway.

  5. Human mesenchymal stem cells inhibit endothelial proliferation and angiogenesis via cell-cell contact through modulation of the VE-Cadherin/beta-catenin signaling pathway

    NARCIS (Netherlands)

    Menge, T.; Gerber, M.; Wataha, K.; Reid, W.; Guha, S.; Cox Jr., C.S.; Dash, P.; Reitz Jr., M.S.; Khakoo, A.Y.; Pati, S.

    2013-01-01

    Over the past 10 years, a great deal has been learned about the fundamental biology and therapeutic application of bone marrow-derived human mesenchymal stem cells (MSCs). Intravenous administration of these cells is the preferred route for therapeutic delivery of MSCs. Vascular endothelial cells (E

  6. Baicalein suppresses metastasis of breast cancer cells by inhibiting EMT via downregulation of SATB1 and Wnt/&beta;-catenin pathway

    OpenAIRE

    Ma X; Yan W; Dai Z; Gao X; Ma Y; Xu Q; Jiang J; Zhang S.

    2016-01-01

    Xingcong Ma,1 Wanjun Yan,1 Zhijun Dai,1 Xiaoyan Gao,1 Yinan Ma,1 Quntao Xu,2 Jiantao Jiang,3 Shuqun Zhang11Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China, 2Department of Oncology, Institute of Health, China North Industries Group Corporation, Xi'an, Shaanxi, People's Republic of China, 3Department of Thoracic Surgery, the Second Affiliated Hospital of Xi'an...

  7. Inhibition of Tcf3 binding by I-mfa domain proteins.

    Science.gov (United States)

    Snider, L; Thirlwell, H; Miller, J R; Moon, R T; Groudine, M; Tapscott, S J

    2001-03-01

    We have determined that I-mfa, an inhibitor of several basic helix-loop-helix (bHLH) proteins, and XIC, a Xenopus ortholog of human I-mf domain-containing protein that shares a highly conserved cysteine-rich C-terminal domain with I-mfa, inhibit the activity and DNA binding of the HMG box transcription factor XTcf3. Ectopic expression of I-mfa or XIC in early Xenopus embryos inhibited dorsal axis specification, the expression of the Tcf3/beta-catenin-regulated genes siamois and Xnr3, and the ability of beta-catenin to activate reporter constructs driven by Lef/Tcf binding sites. I-mfa domain proteins can regulate both the Wnt signaling pathway and a subset of bHLH proteins, possibly coordinating the activities of these two critical developmental pathways.

  8. A Reaction-Diffusion Model of the Cadherin-Catenin System: A Possible Mechanism for Contact Inhibition and Implications for Tumorigenesis

    CERN Document Server

    Basan, Markus; Lenz, Martin; Joanny, Jean-François; Risler, Thomas

    2015-01-01

    Contact inhibition is the process by which cells switch from a motile growing state to a passive and stabilized state upon touching their neighbors. When two cells touch, an adhesion link is created between them by means of transmembrane E-cadherin proteins. Simultaneously, their actin filaments stop polymerizing in the direction perpendicular to the membrane and reorganize to create an apical belt that colocalizes with the adhesion links. Here, we propose a detailed quantitative model of the role of the cytoplasmic $\\beta$-catenin and $\\alpha$-catenin proteins in this process, treated as a reaction-diffusion system. Upon cell-cell contact, the concentration in $\\alpha$-catenin dimers increases, inhibiting actin branching and thereby reducing cellular motility and expansion pressure. This model provides a mechanism for contact inhibition that could explain previously unrelated experimental findings on the role played by E-cadherin, $\\beta$-catenin and $\\alpha$-catenin in the cellular phenotype and in tumorige...

  9. Germinated brown rice (GBR) reduces the incidence of aberrant crypt foci with the involvement of beta-catenin and COX-2 in azoxymethane-induced colon cancer in rats.

    Science.gov (United States)

    Latifah, Saiful Yazan; Armania, Nurdin; Tze, Tan Hern; Azhar, Yaacob; Nordiana, Abdul Hadi; Norazalina, Saad; Hairuszah, Ithnin; Saidi, Moin; Maznah, Ismail

    2010-03-26

    Chemoprevention has become an important area in cancer research due to the failure of current therapeutic modalities. Epidemiological and preclinical studies have demonstrated that nutrition plays a vital role in the etiology of cancer. This study was conducted to determine the chemopreventive effects of germinated brown rice (GBR) in rats induced with colon cancer. GBR is brown rice that has been claimed to be richer in nutrients compared to the common white rice. The male Sprague Dawley rats (6 weeks of age) were randomly divided into 5 groups: (G1) positive control (with colon cancer, unfed with GBR), (G2) fed with 2.5 g/kg of GBR (GBR (g)/weight of rat (kg)), (G3) fed with 5 g/kg of GBR, (G4) fed with 10 g/kg of GBR and (G5) negative control (without colon cancer, unfed with GBR). GBR was administered orally once daily via gavage after injection of 15 mg/kg of body weight of azoxymethane (AOM) once a week for two weeks, intraperitonially. After 8 weeks of treatment, animals were sacrificed and colons were removed. Colonic aberrant crypt foci (ACF) were evaluated histopathologically. Total number of ACF and AC, and multicrypt of ACF, and the expression of beta-catenin and COX-2 reduced significantly (p cancer.

  10. A novel human gene (SARM) at chromosome 17q11 encodes a protein with a SAM motif and structural similarity to Armadillo/beta-catenin that is conserved in mouse, Drosophila, and Caenorhabditis elegans.

    Science.gov (United States)

    Mink, M; Fogelgren, B; Olszewski, K; Maroy, P; Csiszar, K

    2001-06-01

    A novel human gene, SARM, encodes the orthologue of a Drosophila protein (CG7915) and contains a unique combination of the sterile alpha (SAM) and the HEAT/Armadillo motifs. The SARM gene was identified on chromosome 17q11, between markers D17S783 and D17S841 on BAC clone AC002094, which also included a HERV repeat and keratin-18-like, MAC30, TNFAIP1, HSPC017, and vitronectin genes in addition to three unknown genes. The mouse SARM gene was located on a mouse chromosome 11 BAC clone (AC002324). The SARM gene is 1.8 kb centromeric to the vitronectin gene, and the two genes share a promoter region that directs a high level of liver-specific expression of both the SARM and the vitronectin genes. In addition to the liver, the SARM gene was highly expressed in the kidney. A 0.4-kb antisense transcript was coordinately expressed with the SARM gene in the kidney and liver, while in the brain and malignant cell lines, it appeared independent of SARM gene transcription. The SARM gene encodes a protein of 690 amino acids. Based on amino acid sequence homology, we have identified a SAM motif within this derived protein. Structure modeling and protein folding recognition studies confirmed the presence of alpha-alpha right-handed superhelix-like folds consistent with the structure of the Armadillo and HEAT repeats of the beta-catenin and importin protein families. Both motifs are known to be involved in protein-protein interactions promoting the formation of diverse protein complexes. We have identified the same conserved SAM/Armadillo motif combination in the mouse, Drosophila, and Caenorhabditis elegans SARM proteins. Copyright 2001 Academic Press.

  11. A common role for various human truncated adenomatous polyposis coli isoforms in the control of beta-catenin activity and cell proliferation.

    Directory of Open Access Journals (Sweden)

    Shree Harsha Vijaya Chandra

    Full Text Available The tumour suppressor gene adenomatous polyposis coli (APC is mutated in most colorectal cancer cases, leading to the synthesis of truncated APC products and the stabilization of β-catenin. Truncated APC is almost always retained in tumour cells, suggesting that it serves an essential function. Here, RNA interference has been used to down-regulate truncated APC in several colorectal cancer cell lines expressing truncated APCs of different lengths, thereby performing an analysis covering most of the mutation cluster region (MCR. The consequences on proliferation in vitro, tumour formation in vivo and the level and transcriptional activity of β-catenin have been investigated. Down-regulation of truncated APC results in an inhibition of tumour cell population expansion in vitro in 6 cell lines out of 6 and inhibition of tumour outgrowth in vivo as analysed in one of these cell lines, HT29. This provides a general rule explaining the retention of truncated APC in colorectal tumours and defines it as a suitable target for therapeutic intervention. Actually, we also show that it is possible to design a shRNA that targets a specific truncated isoform of APC without altering the expression of wild-type APC. Down-regulation of truncated APC is accompanied by an up-regulation of the transcriptional activity of β-catenin in 5 out of 6 cell lines. Surprisingly, the increased signalling is associated in most cases (4 out of 5 with an up-regulation of β-catenin levels, indicating that truncated APC can still modulate wnt signalling through controlling the level of β-catenin. This control can happen even when truncated APC lacks the β-catenin inhibiting domain (CiD involved in targeting β-catenin for proteasomal degradation. Thus, truncated APC is an essential component of colorectal cancer cells, required for cell proliferation, possibly by adjusting β-catenin signalling to the "just right" level.

  12. Wnt/beta-catenin signaling down-regulates N-acetylglucosaminyltransferase III expression: the implications of two mutually exclusive pathways for regulation.

    Science.gov (United States)

    Xu, Qingsong; Akama, Ryota; Isaji, Tomoya; Lu, Yingying; Hashimoto, Hirokazu; Kariya, Yoshinobu; Fukuda, Tomohiko; Du, Yuguang; Gu, Jianguo

    2011-02-11

    In previous studies, we reported that N-acetylglucosaminyltransferase III (GnT-III) activity and the enzyme product, bisected N-glycans, both were induced in cells cultured under dense conditions in an E-cadherin-dependent manner (Iijima, J., Zhao, Y., Isaji, T., Kameyama, A., Nakaya, S., Wang, X., Ihara, H., Cheng, X., Nakagawa, T., Miyoshi, E., Kondo, A., Narimatsu, H., Taniguchi, N., and Gu, J. (2006) J. Biol. Chem. 281, 13038-13046). Furthermore, we found that α-catenin, a component of the E-cadherin-catenin complex, was also required for this induction (Akama, R., Sato, Y., Kariya, Y., Isaji, T., Fukuda, T., Lu, L., Taniguchi, N., Ozawa, M., and Gu, J. (2008) Proteomics 8, 3221-3228). To further explore the molecular mechanism of this regulation, the roles of β-catenin, an essential molecule in both cadherin-mediated cell adhesion and canonical Wnt signaling, were investigated. Unexpectedly, shRNA knockdown of β-catenin resulted in a dramatic increase in GnT-III expression and its product, the bisected N-glycans, which was confirmed by RT-PCR and GnT-III activity and by E4-PHA lectin blot analysis. The induction of GnT-III expression increased bisecting GlcNAc residues on β1 integrin, which led to down-regulation of integrin-mediated cell adhesion and cell migration. Immunostaining showed that nuclear localization of β-catenin was greatly suppressed; intriguingly, the knockdown of β-catenin in the nuclei was more effective than that in cell-cell contacts in the knockdown cells, which was also confirmed by Western blot analysis. Stimulation of the Wnt signaling pathway by the addition of exogenous Wnt3a or BIO, a GSK-3β inhibitor, consistently and significantly inhibited GnT-III expression and its products. Conversely, the inhibition of β-catenin translocation into the nuclei increased GnT-III activation. Taken together, the results of the present study are the first to clearly demonstrate that GnT-III expression may be precisely regulated by the

  13. Chronic chemotherapeutic stress promotes evolution of stemness and WNT/beta-catenin signaling in colorectal cancer cells: implications for clinical use of WNT-signaling inhibitors

    Science.gov (United States)

    Ayadi, Meriam; Bouygues, Anaïs; Ouaret, Djamila; Ferrand, Nathalie; Chouaib, Salem; Thiery, Jean-Paul; Muchardt, Christian; Sabbah, Michèle; Larsen, Annette K

    2015-01-01

    Most solid tumors contain a subfraction of cells with stem/progenitor cell features. Stem cells are naturally chemoresistant suggesting that chronic chemotherapeutic stress may select for cells with increased “stemness”. We carried out a comprehensive molecular and functional analysis of six independently selected colorectal cancer (CRC) cell lines with acquired resistance to three different chemotherapeutic agents derived from two distinct parental cell lines. Chronic drug exposure resulted in complex alterations of stem cell markers that could be classified into three categories: 1) one cell line, HT-29/5-FU, showed increased “stemness” and WNT-signaling, 2) three cell lines showed decreased expression of stem cell markers, decreased aldehyde dehydrogenase activity, attenuated WNT-signaling and lost the capacity to form colonospheres and 3) two cell lines displayed prominent expression of ABC transporters with a heterogeneous response for stem cell markers. While WNT-signaling could be attenuated in the HT-29/5-FU cells by the WNT-signaling inhibitors ICG-001 and PKF-118, this was not accompanied by any selective growth inhibitory effect suggesting that the cytotoxic activity of these compounds is not directly linked to WNT-signaling inhibition. We conclude that classical WNT-signaling inhibitors have toxic off-target activities that need to be addressed for clinical development. PMID:26041882

  14. Downregulation of adenomatous polyposis coli by microRNA-663 promotes odontogenic differentiation through activation of Wnt/beta-catenin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Sung; Park, Min-Gyeong; Lee, Seul Ah; Park, Sun-Young; Kim, Heung-Joong; Yu, Sun-Kyoung; Kim, Chun Sung; Kim, Su-Gwan; Oh, Ji-Su; You, Jae-Seek; Kim, Jin-Soo; Seo, Yo-Seob [Oral Biology Research Institute, School of Dentistry, Chosun University, Gwangju 501-759 (Korea, Republic of); Chun, Hong Sung [Department of Biomedical Science, Chosun University, Gwangju 501-759 (Korea, Republic of); Park, Joo-Cheol [Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, BK 21, Seoul National University, Seoul 110-749 (Korea, Republic of); Kim, Do Kyung, E-mail: kdk@chosun.ac.kr [Oral Biology Research Institute, School of Dentistry, Chosun University, Gwangju 501-759 (Korea, Republic of)

    2014-04-18

    Highlights: • miR-663 is significantly up-regulated during MDPC-23 odontoblastic cell differentiation. • miR-663 accelerates mineralization in MDPC-23 odontoblastic cells without cell proliferation. • miR-663 promotes odontoblastic cell differentiation by targeting APC and activating Wnt/β-catenin signaling in MDPC-23 cells. - Abstract: MicroRNAs (miRNAs) regulate cell differentiation by inhibiting mRNA translation or by inducing its degradation. However, the role of miRNAs in odontogenic differentiation is largely unknown. In this present study, we observed that the expression of miR-663 increased significantly during differentiation of MDPC-23 cells to odontoblasts. Furthermore, up-regulation of miR-663 expression promoted odontogenic differentiation and accelerated mineralization without proliferation in MDPC-23 cells. In addition, target gene prediction for miR-663 revealed that the mRNA of the adenomatous polyposis coli (APC) gene, which is associated with the Wnt/β-catenin signaling pathway, has a miR-663 binding site in its 3′-untranslated region (3′UTR). Furthermore, APC expressional was suppressed significantly by miR-663, and this down-regulation of APC expression triggered activation of Wnt/β-catenin signaling through accumulation of β-catenin in the nucleus. Taken together, these findings suggest that miR-663 promotes differentiation of MDPC-23 cells to odontoblasts by targeting APC-mediated activation of Wnt/β-catenin signaling. Therefore, miR-663 can be considered a critical regulator of odontoblast differentiation and can be utilized for developing miRNA-based therapeutic agents.

  15. Beta Catenin in Prostate Cancer Apoptosis

    Science.gov (United States)

    2014-04-01

    Cleaved PARP, however, was enriched in the nuclear/cytoskeletal compartment and was extracted in Sarkosyl and SDS fractions (lanes 15, 16). Caspase 3...retained strong interaction with E-Cadherin, as indicated by immunoprecipitation studies. Detergent fractionation of the cell extracts treated with the...LNCaP cells were treated with TRAIL and TZD alone or in combination for 16hrs and extracted sequentially as Fig 3: Effect of Caspase inhibitors

  16. The EIPeptiDi tool: enhancing peptide discovery in ICAT-based LC MS/MS experiments

    Directory of Open Access Journals (Sweden)

    Tradigo Giuseppe

    2007-07-01

    Full Text Available Abstract Background Isotope-coded affinity tags (ICAT is a method for quantitative proteomics based on differential isotopic labeling, sample digestion and mass spectrometry (MS. The method allows the identification and relative quantification of proteins present in two samples and consists of the following phases. First, cysteine residues are either labeled using the ICAT Light or ICAT Heavy reagent (having identical chemical properties but different masses. Then, after whole sample digestion, the labeled peptides are captured selectively using the biotin tag contained in both ICAT reagents. Finally, the simplified peptide mixture is analyzed by nanoscale liquid chromatography-tandem mass spectrometry (LC-MS/MS. Nevertheless, the ICAT LC-MS/MS method still suffers from insufficient sample-to-sample reproducibility on peptide identification. In particular, the number and the type of peptides identified in different experiments can vary considerably and, thus, the statistical (comparative analysis of sample sets is very challenging. Low information overlap at the peptide and, consequently, at the protein level, is very detrimental in situations where the number of samples to be analyzed is high. Results We designed a method for improving the data processing and peptide identification in sample sets subjected to ICAT labeling and LC-MS/MS analysis, based on cross validating MS/MS results. Such a method has been implemented in a tool, called EIPeptiDi, which boosts the ICAT data analysis software improving peptide identification throughout the input data set. Heavy/Light (H/L pairs quantified but not identified by the MS/MS routine, are assigned to peptide sequences identified in other samples, by using similarity criteria based on chromatographic retention time and Heavy/Light mass attributes. EIPeptiDi significantly improves the number of identified peptides per sample, proving that the proposed method has a considerable impact on the protein

  17. Inhibition of adipocytogenesis by canonical WNT signaling in human mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Longxiang; Glowacki, Julie; Zhou, Shuanhu, E-mail: szhou@rics.bwh.harvard.edu

    2011-08-01

    The WNT signaling pathway plays important roles in the self-renewal and differentiation of mesenchymal stem cells (MSCs). Little is known about WNT signaling in adipocyte differentiation of human MSCs. In this study, we tested the hypothesis that canonical and non-canonical WNTs differentially regulate in vitro adipocytogenesis in human MSCs. The expression of adipocyte gene PPAR{gamma}2, lipoprotein lipase, and adipsin increased during adipocytogenesis of hMSCs. Simultaneously, the expression of canonical WNT2, 10B, 13, and 14 decreased, whereas non-canonical WNT4 and 11 increased, and WNT5A was unchanged. A small molecule WNT mimetic, SB-216763, increased accumulation of {beta}-catenin protein, inhibited induction of WNT4 and 11 and inhibited adipocytogenesis. In contrast, knockdown of {beta}-catenin with siRNA resulted in spontaneous adipocytogenesis. These findings support the view that canonical WNT signaling inhibits and non-canonical WNT signaling promotes adipocytogenesis in adult human marrow-derived mesenchymal stem cells.

  18. Expressão de galectina-3 e beta-catenina em lesões pré-malignas e carcinomatosas de língua de camundongos Galectin-3 and beta-catenin expression in premalignant and carcinomatous lesions in tongue of mice

    Directory of Open Access Journals (Sweden)

    Juliana Moreira de Almeida Sant'ana

    2011-02-01

    Full Text Available INTRODUÇÃO: A galectina-3 (GAL3 apresenta importantes papéis na biologia tumoral e recentemente foi mostrada a sua participação na via de sinalização Wnt, translocando a beta-catenina para o núcleo. Expressão alterada de GAL3 e beta-catenina tem sido descrita em cânceres, mas não há estudos avaliando a expressão de ambas em displasias e carcinomas desenvolvidos em modelos de carcinogênese de língua. OBJETIVOS: Estudar a expressão de GAL3 e beta-catenina em lesões displásicas e carcinomas induzidos experimentalmente em língua de camundongos. MATERIAL E MÉTODOS: Vinte camundongos C57BL/6 machos foram desafiados com 4NQO na água de beber por 16 semanas e sacrificados na semana 16 e 32. Após o sacrifício, as línguas foram removidas, processadas, coradas por hematoxilina e eosina (HE para detecção de displasias e carcinomas. Ensaio imuno-histoquímico foi realizado para determinar o índice de positividade para GAL3 e beta-catenina nessas lesões, bem como uma correlação entre elas em carcinomas. RESULTADOS: O número de camundongos afetados por carcinoma aumentou entre as semanas 16 e 32 (22,2% vs. 88,9% e o de displasia diminuiu (66,7% vs. 11,1%. Um aumento de células positivas para beta-catenina não membranosa e GAL3 citoplasmática foi observado nas displasias e nos carcinomas, mas essa diferença não foi estatisticamente significativa. No entanto, um aumento estatisticamente significativo de GAL3 nuclear foi observado na evolução de displasia para carcinoma (p = 0,04. Nenhuma correlação foi encontrada entre beta-catenina e GAL3. CONCLUSÃO: Tanto nas displasias quanto nos carcinomas a via de sinalização Wnt está ativa, e o aumento de GAL3 nuclear nos carcinomas sugere um papel na transformação maligna do epitélio lingual.INTRODUCTION: Galectin-3 plays pivotal role in tumor biology and its participation in Wnt signaling pathway translocating beta-catenin into the nucleus has been recently demonstrated

  19. Efficient derivation of embryonic stem cells by inhibition of glycogen synthase kinase-3.

    Science.gov (United States)

    Umehara, Hiroki; Kimura, Tohru; Ohtsuka, Satoshi; Nakamura, Toshinobu; Kitajima, Kenji; Ikawa, Masahito; Okabe, Masaru; Niwa, Hitoshi; Nakano, Toru

    2007-11-01

    Embryonic stem (ES) cells are derived from the inner cell mass (ICM) of blastocysts. The use of ES cells as a source of differentiated cells holds great promise for cell transplantation therapy. The efficiency of ES cell derivation is affected by genetic variation in mice; that is, some mouse strains, such as C57BL/6, are amenable to ES cell derivation, whereas others, such as BALB/c, are refractory. Developing an efficient method to establish ES cells from strains of various genetic backgrounds should be valuable for derivation of ES cells in various mammalian species, including human. Although it is well-established that various signaling pathways, including phosphoinositide 3-kinase (PI3K)/Akt and Wnt/beta-catenin, regulate the maintenance of ES cell pluripotency, little is known about the signaling pathways involved in the derivation of ES cells from ICMs. In this study, we demonstrated that inhibition of glycogen synthase kinase-3 (GSK-3), one of the crucial molecules in the regulation of the Wnt/beta-catenin, Hedgehog, and Notch signaling pathways, dramatically augmented ES cell derivation from both C57BL/6 and BALB/c mouse strains. In contrast, Akt signaling activation enhanced the growth of ICM but did not increase the efficiency of ES cell derivation. Our study establishes an efficient means for ES cell derivation by pharmacological inhibition of GSK-3.

  20. Phantom dosimetry and image quality of i-CAT FLX cone-beam computed tomography

    Science.gov (United States)

    Ludlow, John B.; Walker, Cameron

    2013-01-01

    Introduction Increasing use of cone-beam computed tomography in orthodontics has been coupled with heightened concern with the long-term risks of x-ray exposure in orthodontic populations. An industry response to this has been to offer low-exposure alternative scanning options in newer cone-beam computed tomography models. Methods Effective doses resulting from various combinations of field size, and field location comparing child and adult anthropomorphic phantoms using the recently introduced i-CAT FLX cone-beam computed tomography unit were measured with Optical Stimulated Dosimetry using previously validated protocols. Scan protocols included High Resolution (360° rotation, 600 image frames, 120 kVp, 5 mA, 7.4 sec), Standard (360°, 300 frames, 120 kVp, 5 mA, 3.7 sec), QuickScan (180°, 160 frames, 120 kVp, 5 mA, 2 sec) and QuickScan+ (180°, 160 frames, 90 kVp, 3 mA, 2 sec). Contrast-to-noise ratio (CNR) was calculated as a quantitative measure of image quality for the various exposure options using the QUART DVT phantom. Results Child phantom doses were on average 36% greater than Adult phantom doses. QuickScan+ protocols resulted in significantly lower doses than Standard protocols for child (p=0.0167) and adult (p=0.0055) phantoms. 13×16 cm cephalometric fields of view ranged from 11–85 μSv in the adult phantom and 18–120 μSv in the child for QuickScan+ and Standard protocols respectively. CNR was reduced by approximately 2/3rds comparing QuickScan+ to Standard exposure parameters. Conclusions QuickScan+ effective doses are comparable to conventional panoramic examinations. Significant dose reductions are accompanied by significant reductions in image quality. However, this trade-off may be acceptable for certain diagnostic tasks such as interim assessment of treatment results. PMID:24286904

  1. A randomized controlled comparison of integrative cognitive-affective therapy (ICAT) and enhanced cognitive-behavioral therapy (CBT-E) for bulimia nervosa.

    Science.gov (United States)

    Wonderlich, S A; Peterson, C B; Crosby, R D; Smith, T L; Klein, M H; Mitchell, J E; Crow, S J

    2014-02-01

    The purpose of this investigation was to compare a new psychotherapy for bulimia nervosa (BN), integrative cognitive-affective therapy (ICAT), with an established treatment, 'enhanced' cognitive-behavioral therapy (CBT-E). Eighty adults with symptoms of BN were randomized to ICAT or CBT-E for 21 sessions over 19 weeks. Bulimic symptoms, measured by the Eating Disorder Examination (EDE), were assessed at baseline, at the end of treatment (EOT) and at the 4-month follow-up. Treatment outcome, measured by binge eating frequency, purging frequency, global eating disorder severity, emotion regulation, self-oriented cognition, depression, anxiety and self-esteem, was determined using generalized estimating equations (GEEs), logistic regression and a general linear model (intent-to-treat). Both treatments were associated with significant improvement in bulimic symptoms and in all measures of outcome, and no statistically significant differences were observed between the two conditions at EOT or follow-up. Intent-to-treat abstinence rates for ICAT (37.5% at EOT, 32.5% at follow-up) and CBT-E (22.5% at both EOT and follow-up) were not significantly different. ICAT was associated with significant improvements in bulimic and associated symptoms that did not differ from those obtained with CBT-E. This initial randomized controlled trial of a new individual psychotherapy for BN suggests that targeting emotion and self-oriented cognition in the context of nutritional rehabilitation may be efficacious and worthy of further study.

  2. Lithium inhibits palatal fusion and osteogenic differentiation in palatal shelves in vitro

    NARCIS (Netherlands)

    Meng, L.; Wang, X.; Torensma, R.; Hoff, J.W. Von den; Bian, Z.

    2014-01-01

    OBJECTIVE: Glycogen synthase kinase-3beta (Gsk-3beta)/beta-catenin signaling regulates development of the secondary palate. It has been unclear about the effects of Gsk-3beta/beta-catenin signaling on palatal fusion and osteogenic differentiation in palatal shelves. DESIGN: In this study, palatal sh

  3. Lithium inhibits palatal fusion and osteogenic differentiation in palatal shelves in vitro

    NARCIS (Netherlands)

    Meng, L.; Wang, X.; Torensma, R.; Hoff, J.W. Von den; Bian, Z.

    2015-01-01

    OBJECTIVE: Glycogen synthase kinase-3beta (Gsk-3beta)/beta-catenin signaling regulates development of the secondary palate. It has been unclear about the effects of Gsk-3beta/beta-catenin signaling on palatal fusion and osteogenic differentiation in palatal shelves. DESIGN: In this study, palatal sh

  4. β-Catenin signaling increases during melanoma progression and promotes tumor cell survival and chemoresistance.

    Directory of Open Access Journals (Sweden)

    Tobias Sinnberg

    Full Text Available Beta-catenin plays an important role in embryogenesis and carcinogenesis by controlling either cadherin-mediated cell adhesion or transcriptional activation of target gene expression. In many types of cancers nuclear translocation of beta-catenin has been observed. Our data indicate that during melanoma progression an increased dependency on the transcriptional function of beta-catenin takes place. Blockade of beta-catenin in metastatic melanoma cell lines efficiently induces apoptosis, inhibits proliferation, migration and invasion in monolayer and 3-dimensional skin reconstructs and decreases chemoresistance. In addition, subcutaneous melanoma growth in SCID mice was almost completely inhibited by an inducible beta-catenin knockdown. In contrast, the survival of benign melanocytes and primary melanoma cell lines was less affected by beta-catenin depletion. However, enhanced expression of beta-catenin in primary melanoma cell lines increased invasive capacity in vitro and tumor growth in the SCID mouse model. These data suggest that beta-catenin is an essential survival factor for metastatic melanoma cells, whereas it is dispensable for the survival of benign melanocytes and primary, non-invasive melanoma cells. Furthermore, beta-catenin increases tumorigenicity of primary melanoma cell lines. The differential requirements for beta-catenin signaling in aggressive melanoma versus benign melanocytic cells make beta-catenin a possible new target in melanoma therapy.

  5. CFTR and Wnt/beta-catenin signaling in lung development

    Directory of Open Access Journals (Sweden)

    Love Damon

    2008-07-01

    Full Text Available Abstract Background Cystic fibrosis transmembrane conductance regulator (CFTR was shown previously to modify stretch induced differentiation in the lung. The mechanism for CFTR modulation of lung development was examined by in utero gene transfer of either a sense or antisense construct to alter CFTR expression levels. The BAT-gal transgenic reporter mouse line, expressing β-galactosidase under a canonical Wnt/β-catenin-responsive promoter, was used to assess the relative roles of CFTR, Wnt, and parathyroid hormone-related peptide (PTHrP in lung organogenesis. Adenoviruses containing full-length CFTR, a short anti-sense CFTR gene fragment, or a reporter gene as control were used in an intra-amniotic gene therapy procedure to transiently modify CFTR expression in the fetal lung. Results A direct correlation between CFTR expression levels and PTHrP levels was found. An inverse correlation between CFTR and Wnt signaling activities was demonstrated. Conclusion These data are consistent with CFTR participating in the mechanicosensory process essential to regulate Wnt/β-Catenin signaling required for lung organogenesis.

  6. Inhibition of Midkine Augments Osteoporotic Fracture Healing.

    Directory of Open Access Journals (Sweden)

    Melanie Haffner-Luntzer

    Full Text Available The heparin-binding growth and differentiation factor midkine (Mdk is proposed to negatively regulate osteoblast activity and bone formation in the adult skeleton. As Mdk-deficient mice were protected from ovariectomy (OVX-induced bone loss, this factor may also play a role in the pathogenesis of postmenopausal osteoporosis. We have previously demonstrated that Mdk negatively influences bone regeneration during fracture healing. Here, we investigated whether the inhibition of Mdk using an Mdk-antibody (Mdk-Ab improves compromised bone healing in osteoporotic OVX-mice. Using a standardized femur osteotomy model, we demonstrated that Mdk serum levels were significantly enhanced after fracture in both non-OVX and OVX-mice, however, the increase was considerably greater in osteoporotic mice. Systemic treatment with the Mdk-Ab significantly improved bone healing in osteoporotic mice by increasing bone formation in the fracture callus. On the molecular level, we demonstrated that the OVX-induced reduction of the osteoanabolic beta-catenin signaling in the bony callus was abolished by Mdk-Ab treatment. Furthermore, the injection of the Mdk-Ab increased trabecular bone mass in the skeleton of the osteoporotic mice. These results implicate that antagonizing Mdk may be useful for the therapy of osteoporosis and osteoporotic fracture-healing complications.

  7. Computational modeling of voltage-gated Ca channels inhibition: identification of different effects on uterine and cardiac action potentials

    Directory of Open Access Journals (Sweden)

    Wing Chiu eTong

    2014-10-01

    Full Text Available The uterus and heart share the important physiological feature whereby contractile activation of the muscle tissue is regulated by the generation of periodic, spontaneous electrical action potentials (APs. Preterm birth arising from premature uterine contractions is a major complication of pregnancy and there remains a need to pursue avenues of research that facilitate the use of drugs, tocolytics, to limit these inappropriate contractions without deleterious actions on cardiac electrical excitation. A novel approach is to make use of mathematical models of uterine and cardiac APs, which incorporate many ionic currents contributing to the AP forms, and test the cell-specific responses to interventions. We have used three such models – of uterine smooth muscle cells (USMC, cardiac sinoatrial node cells (SAN and ventricular cells – to investigate the relative effects of reducing two important voltage-gated Ca currents – the L-type (ICaL and T-type (ICaT Ca currents. Reduction of ICaL (10% alone, or ICaT (40% alone, blunted USMC APs with little effect on ventricular APs and only mild effects on SAN activity. Larger reductions in either current further attenuated the USMC APs but with also greater effects on SAN APs. Encouragingly, a combination of ICaL and ICaT reduction did blunt USMC APs as intended with little detriment to APs of either cardiac cell type. Subsequent overlapping maps of ICaL and ICaT inhibition profiles from each model revealed a range of combined reductions of ICaL and ICaT over which an appreciable diminution of USMC APs could be achieved with no deleterious action on cardiac SAN or ventricular APs. This novel approach illustrates the potential for computational biology to inform us of possible uterine and cardiac cell-specific mechanisms. Incorporating such computational approaches in future studies directed at designing new, or repurposing existing, tocolytics will be beneficial for establishing a desired uterine

  8. Receptor for advanced glycation end products inhibits proliferation in osteoblast through suppression of Wnt, PI3K and ERK signaling

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guofeng [Department of Emergency Surgery, East Hospital, Tongji University School of Medicine, Shanghai 200120 (China); Xu, Jingren [Department of Traditional Chinese Orthopaedics, East Hospital, Tongji University School of Medicine, Shanghai 200120 (China); Li, Zengchun, E-mail: lizc.2007@yahoo.com.cn [Department of Emergency Surgery, East Hospital, Tongji University School of Medicine, Shanghai 200120 (China)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer RAGE overexpression suppresses cell proliferation in MC3T3-E1 cells. Black-Right-Pointing-Pointer RAGE overexpression decreases Wnt/{beta}-catenin signaling. Black-Right-Pointing-Pointer RAGE overexpression decreases ERK and PI3K signaling. Black-Right-Pointing-Pointer Inhibition of Wnt signaling abolishes PI3K signaling restored by RAGE blockade. Black-Right-Pointing-Pointer Inhibition of Wnt signaling abolishes ERK signaling restored by RAGE blockade. -- Abstract: Expression of receptor for advanced glycation end products (RAGE) plays a crucial role in bone metabolism. However, the role of RAGE in the control of osteoblast proliferation is not yet evaluated. In the present study, we demonstrate that RAGE overexpression inhibits osteoblast proliferation in vitro. The negative regulation of RAGE on cell proliferation results from suppression of Wnt, PI3K and ERK signaling, and is restored by RAGE neutralizing antibody. Prevention of Wnt signaling using Sfrp1 or DKK1 rescues RAGE-decreased PI3K and ERK signaling and cell proliferation, indicating that the altered cell growth in RAGE overexpressing cells is in part secondary to alterations in Wnt signaling. Consistently, RAGE overexpression inhibits the expression of Wnt targets cyclin D1 and c-myc, which is partially reversed by RAGE blockade. Overall, these results suggest that RAGE inhibits osteoblast proliferation via suppression of Wnt, PI3K and ERK signaling, which provides novel mechanisms by which RAGE regulates osteoblast growth.

  9. Wnt signaling interacts with Shh to regulate taste papilla development.

    Science.gov (United States)

    Iwatsuki, Ken; Liu, Hong-Xiang; Grónder, Albert; Singer, Meredith A; Lane, Timothy F; Grosschedl, Rudolf; Mistretta, Charlotte M; Margolskee, Robert F

    2007-02-13

    Wnt and Shh signaling pathways are critical for the development and maturation of many epithelial tissues. Both pathways have roles in stem cell maintenance, tissue development, and tumorigenesis. However, linkage between these pathways in mammalian systems had not been well established. Here, we report that Shh expression in fungiform papillae and formation of normal mature fungiform papillae depend on signaling through Wnt and beta-catenin. We observed that during fungiform papilla formation in mice, Shh and components of the Wnt/beta-catenin signaling pathway are expressed together in the developing placode. The elimination of Wnt/beta-catenin signaling in either Lef1 or Wnt10b knockout mice resulted in down-regulation of Shh expression. In addition, the size and number of fungiform papillae were greatly reduced in Lef1 knockout mice. By examining embryonic mouse tongues in culture we determined that activation of Wnt/beta-catenin signaling up-regulates Shh expression. We observed that blocking Shh signaling in cultured tongue explants enhanced papillae formation and was accompanied by an up-regulation of Wnt/beta-catenin signaling, indicating that Shh inhibits the Wnt/beta-catenin pathway. Exogenously added Shh suppressed expression of endogenous Shh and inhibited Wnt/beta-catenin signaling (assessed in TOPGAL mice), further implicating Shh as an inhibitor of the Wnt/beta-catenin pathway. Our observations indicate that Wnt/beta-catenin signaling and interactions between the Wnt and Shh pathways play essential roles in the development of fungiform papillae.

  10. A component of the transcriptional mediator complex inhibits RAS-dependent vulval fate specification in C. elegans.

    Science.gov (United States)

    Moghal, Nadeem; Sternberg, Paul W

    2003-01-01

    Negative regulation of receptor tyrosine kinase (RTK)/RAS signaling pathways is important for normal development and the prevention of disease in humans. We have used a genetic screen in C. elegans to identify genes that antagonize the activity of activated LET-23, a member of the EGFR family of RTKs. We identified two loss-of-function mutations in dpy-22, previously cloned as sop-1, that promote the ability of activated LET-23 to induce ectopic vulval fates. DPY-22 is a glutamine-rich protein that is most similar to human TRAP230, a component of a transcriptional mediator complex. DPY-22 has previously been shown to regulate WNT responses through inhibition of the beta-catenin-like protein BAR-1. We provide evidence that DPY-22 also inhibits RAS-dependent vulval fate specification independently of BAR-1, and probably regulates the activities of multiple transcription factors during development. Furthermore, we demonstrate that although inhibition of BAR-1-dependent gene expression has been shown to require the C-terminal glutamine-rich region, this region is dispensable for inhibition of RAS-dependent cell differentiation. Thus, the glutamine-rich region contributes to specificity of this class of mediator protein.

  11. Mechanism of inhibition of MMTV-neu and MMTV-wnt1 induced mammary oncogenesis by RARalpha agonist AM580.

    Science.gov (United States)

    Lu, Y; Bertran, S; Samuels, T-A; Mira-y-Lopez, R; Farias, E F

    2010-06-24

    We hypothesized that specific activation of a single retinoic acid receptor-alpha (RARalpha), without direct and concurrent activation of RARbeta and gamma, will inhibit mammary tumor oncogenesis in murine models relevant to human cancer. A total of 50 uniparous mouse mammary tumor virus (MMTV)-neu and 50 nuliparous MMTV-wnt1 transgenic mice were treated with RARalpha agonist (retinobenzoic acid, Am580) that was added to the diet for 40 (neu) and 35 weeks (wnt1), respectively. Among the shared antitumor effects was the inhibition of epithelial hyperplasia, a significant increase (PAm580 also induced differentiation, in both in vivo and three-dimensional (3D) cultures. In these tumors Am580 inhibited the wnt pathway, measured by loss of nuclear beta-catenin, suggesting partial oncogene dependence of therapy. Am580 treatment increased RARbeta and lowered the level of RARgamma, an isotype whose expression we linked with tumor proliferation. The anticancer effect of RARalpha, together with the newly discovered pro-proliferative role of RARgamma, suggests that specific activation of RARalpha and inhibition of RARgamma might be effective in breast cancer therapy.

  12. A case of cross-reactivity

    NARCIS (Netherlands)

    Korswagen, H.C.

    2011-01-01

    Studies using chemical inhibitors have suggested that p38 MAP kinase is a key regulator of Wnt/beta-catenin signaling. In this issue, Verkaar et al. (2011) show that cross-reactivity of p38 inhibitors with casein kinase Idelta/varepsilon is responsible for Wnt/beta-catenin pathway inhibition.

  13. Slit2 inhibits glioma cell invasion in the brain by suppression of Cdc42 activity.

    Science.gov (United States)

    Yiin, Jia-Jean; Hu, Bo; Jarzynka, Michael J; Feng, Haizhong; Liu, Kui-Wei; Wu, Jane Y; Ma, Hsin-I; Cheng, Shi-Yuan

    2009-12-01

    Acquisition of insidious invasiveness by malignant glioma cells involves multiple genetic alterations in signaling pathways. Slit2, a chemorepulsive factor, controls cell migration of neuronal and glial cells during development and inhibits chemotaxic migration of various types of cells in vitro. However, the role of Slit2 in vitro remains controversial, and the biological significance of Slit2 expression in cancer cell invasion in vivo has not yet been determined. In the present study, we characterized the effects of Slit2 expression on the migration and invasion of invasive glioma cells in vitro and in vivo. By reverse transcriptase polymerase chain reaction (PCR) analyses, Slit2 was found to be expressed at lower levels in primary glioma specimens and invasive glioma cells compared with normal human brain cells and astrocytes. Ectopic expression of Slit2 or treatment with recombinant Slit2 on glioma cells attenuates cell migration and invasion through inhibition of Cdc42 activity in vitro. Cellular depletion of Robo1, a cognate receptor for Slit2, prevented Slit2 inhibition of Cdc42 activity and glioma cell migration. In vivo, expression of Slit2 by invasive SNB19 glioma cells markedly inhibited glioma cell infiltration into the brain of mice. Moreover, impediment of glioma cell invasion by Slit2 did not affect the expression of N-cadherin and beta-catenin in glioma cells. These results provide the first evidence demonstrating that Slit2-Robo1 inhibits glioma invasion through attenuating Cdc42 activity in vitro and in the brain. Understanding the mechanisms of Slit2-Robo1 inhibition of glioma cell invasion will foster new treatments for malignant gliomas.

  14. Targeting FGF19 inhibits tumor growth in colon cancer xenograft and FGF19 transgenic hepatocellular carcinoma models.

    Science.gov (United States)

    Desnoyers, L R; Pai, R; Ferrando, R E; Hötzel, K; Le, T; Ross, J; Carano, R; D'Souza, A; Qing, J; Mohtashemi, I; Ashkenazi, A; French, D M

    2008-01-03

    Although fibroblast growth factor 19 (FGF19) can promote liver carcinogenesis in mice its involvement in human cancer is not well characterized. Here we report that FGF19 and its cognate receptor FGF receptor 4 (FGFR4) are coexpressed in primary human liver, lung and colon tumors and in a subset of human colon cancer cell lines. To test the importance of FGF19 for tumor growth, we developed an anti-FGF19 monoclonal antibody that selectively blocks the interaction of FGF19 with FGFR4. This antibody abolished FGF19-mediated activity in vitro and inhibited growth of colon tumor xenografts in vivo and effectively prevented hepatocellular carcinomas in FGF19 transgenic mice. The efficacy of the antibody in these models was linked to inhibition of FGF19-dependent activation of FGFR4, FRS2, ERK and beta-catenin. These findings suggest that the inactivation of FGF19 could be beneficial for the treatment of colon cancer, liver cancer and other malignancies involving interaction of FGF19 and FGFR4.

  15. Zona occludens-2 inhibits cyclin D1 expression and cell proliferation and exhibits changes in localization along the cell cycle.

    Science.gov (United States)

    Tapia, Rocio; Huerta, Miriam; Islas, Socorro; Avila-Flores, Antonia; Lopez-Bayghen, Esther; Weiske, Jörg; Huber, Otmar; González-Mariscal, Lorenza

    2009-02-01

    Here, we have studied the effect of the tight junction protein zona occludens (ZO)-2 on cyclin D1 (CD1) protein expression. CD1 is essential for cell progression through the G1 phase of the cell cycle. We have found that in cultures of synchronized Madin-Darby canine kidney cells, ZO-2 inhibits cell proliferation at G0/G1 and decreases CD1 protein level. These effects occur in response to a diminished CD1 translation and an augmented CD1 degradation at the proteosome triggered by ZO-2. ZO-2 overexpression decreases the amount of Glycogen synthase kinase-3beta phosphorylated at Ser9 and represses beta-catenin target gene expression. We have also explored the expression of ZO-2 through the cell cycle and demonstrate that ZO-2 enters the nucleus at the late G1 phase and leaves the nucleus when the cell is in mitosis. These results thus explain why in confluent quiescent epithelia ZO-2 is absent from the nucleus and localizes at the cellular borders, whereas in sparse proliferating cultures ZO-2 is conspicuously present at the nucleus.

  16. Use of Transportable Radiation Detection Instruments to Assess Internal Contamination from Intakes of Radionuclides Part II: Calibration Factors and ICAT Computer Program.

    Science.gov (United States)

    Anigstein, Robert; Olsher, Richard H; Loomis, Donald A; Ansari, Armin

    2016-12-01

    The detonation of a radiological dispersion device or other radiological incidents could result in widespread releases of radioactive materials and intakes of radionuclides by affected individuals. Transportable radiation monitoring instruments could be used to measure radiation from gamma-emitting radionuclides in the body for triaging individuals and assigning priorities to their bioassay samples for in vitro assessments. The present study derived sets of calibration factors for four instruments: the Ludlum Model 44-2 gamma scintillator, a survey meter containing a 2.54 × 2.54-cm NaI(Tl) crystal; the Captus 3000 thyroid uptake probe, which contains a 5.08 × 5.08-cm NaI(Tl) crystal; the Transportable Portal Monitor Model TPM-903B, which contains two 3.81 × 7.62 × 182.9-cm polyvinyltoluene plastic scintillators; and a generic instrument, such as an ionization chamber, that measures exposure rates. The calibration factors enable these instruments to be used for assessing inhaled or ingested intakes of any of four radionuclides: Co, I, Cs, and Ir. The derivations used biokinetic models embodied in the DCAL computer software system developed by the Oak Ridge National Laboratory and Monte Carlo simulations using the MCNPX radiation transport code. The three physical instruments were represented by MCNP models that were developed previously. The affected individuals comprised children of five ages who were represented by the revised Oak Ridge National Laboratory pediatric phantoms, and adult men and adult women represented by the Adult Reference Computational Phantoms described in Publication 110 of the International Commission on Radiological Protection. These calibration factors can be used to calculate intakes; the intakes can be converted to committed doses by the use of tabulated dose coefficients. These calibration factors also constitute input data to the ICAT computer program, an interactive Microsoft Windows-based software package that estimates intakes of

  17. In-TOX-icating neurogenesis

    OpenAIRE

    Karow, Marisa; Berninger, Benedikt

    2015-01-01

    Early development of the mammalian cerebral cortex proceeds via a sequence of proliferative and differentiative steps from neural stem cells toward neurons and glia. However, how these steps are molecularly orchestrated is still only partially understood. In this issue of The EMBO Journal, Artegiani and colleagues implicate Tox, a HMG-box transcription factor previously known only for its role in lymphocyte development, in early cortical development.

  18. Effect of Huayu Tongluo Herbs on Reduction of Proteinuria via Inhibition of Wnt/β-Catenin Signaling Pathway in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Lu Bai

    2017-01-01

    Full Text Available The study investigated the expression of Wnt/β-catenin pathway in diabetic rats and the intervention effect of Huayu Tongluo herbs (HTH. Ten rats were randomly selected as control group and the remaining rats were established as diabetic models. The diabetic rats were randomly divided into model group and HTH treatment group. The intervention was intragastric administration in all rats for 20 weeks. At the end of every 4 weeks, fasting blood glucose and 24 h urinary total protein quantitatively were measured. At the end of the 20th week, biochemical parameters and body weight were tested. The kidney tissues were observed under light microscope and transmission electron microscopy. We examined Wnt/beta-catenin signaling pathway key proteins and renal interstitial fibrosis related molecular markers expression. The results showed that HTH could reduce urinary protein excretion and relieve renal pathological damage. Wnt4, p-GSK3β (S9, and β-catenin expression were decreased in the signaling pathway, but GSK3β level was not changed by HTH in diabetic rats. Furthermore, the expressions of TGF-β1 and ILK were decreased, but the level of E-cadherin was increased in diabetic rats after treatment with HTH. This study demonstrated that HTH could inhibit the high expression of Wnt/β-catenin pathway in kidney of diabetic rats. The effect might be one of the main ways to reduce urinary protein excretion.

  19. Wnt/beta-catenin signaling pathway mediates oriented differentiation of hair-follicle-generating stem cells induced by keratinocyte growth factor and lithium chloride%角质细胞生长因子及氯化锂诱导毛囊干细胞定向分化中的信号通路

    Institute of Scientific and Technical Information of China (English)

    杨斌; 邓立欢; 李秉航; 吴小莹; 丁榆德; 董雪

    2014-01-01

    declined; while it increased when keratinocyte growth factor concentration increased. In K-SFM medium which contained lithium chloride, the transformation of hair-folicle-generating stem cels was obvious, showing distinct differences among groups. Especialy, the level ofβ-catenin reached the peak when lithium chloride > 10 mmol/L. However, in K-SFM medium which contained keratinocyte growth factor, hair-folicle-generating stem cels differentiated into epidermal cels and the level of β-catenin changed slightly. We found that, while spurring the differentiation of hair-folicle-generating stem cels, lithium chloride could activate Wnt/β-catenin signal pathway and inhibit GSK-3β, a vital component of degradation compound. This facilitated β-catenin expressing in the cytoplasm to translocate into the nucleus. As a result, the transcription of target gene increased. It is the most appropriate concentration to spur hair-folicle-generating stem cels differentiation when lithium chloride level is > 10 mmol/L, but the proliferation ability declines correspondingly. Keratinocyte growth factor, which can facilitate hair-folicle-generating stem cels differentiated into epidermal cels, is a key factor to accelerate proliferation ability and migration of hair-folicle-generating stem cels, re-epithelialization and healing of wound. The mechanisms of hair-folicle-generating stem cels oriented differentiation induced by lithium chloride and keratinocyte growth factor are activating Wnt/β-catenin signal pathway, inducing change of β-catenin expression, and activating the transcription of target gene related to Wnt/β-catenin signaling pathway .%背景:毛囊干细胞的增殖分化受到自身基因及外来信号的共同作用,Wnt/β-catenin信号通路在毛囊毛发发育中起重要作用,但详细机制尚未明确。  目的:探讨在角质细胞生长因子及氯化锂干预下,Wnt/β-catenin信号通路在人毛囊干细胞向毛囊乳突细胞或表皮细胞

  20. Beta-catenin accelerates human papilloma virus type-16 mediated cervical carcinogenesis in transgenic mice.

    Directory of Open Access Journals (Sweden)

    Gülay Bulut

    Full Text Available Human papilloma virus (HPV is the principal etiological agent of cervical cancer in women, and its DNA is present in virtually all of these tumors. However, exposure to the high-risk HPV types alone is insufficient for tumor development. Identifying specific collaborating factors that will lead to cervical cancer remains an unanswered question, especially because millions of women are exposed to HPV. Our earlier work using an in vitro model indicated that activation of the canonical Wnt pathway in HPV-positive epithelial cells was sufficient to induce anchorage independent growth. We therefore hypothesized that constitutive activation of this pathway might function as the "second hit." To address this possibility, we developed two double-transgenic (DT mouse models, K14-E7/ΔN87βcat and K14-HPV16/ΔN87βcat that express either the proteins encoded by the E7 oncogene or the HPV16 early region along with constitutively active β-catenin, which was expressed by linking it to the keratin-14 (K14 promoter. We initiated tumor formation by treating all groups with estrogen for six months. Invasive cervical cancer was observed in 11% of the K14-ΔN87βcat mice, expressing activated β-catenin and in 50% of the animals expressing the HPV16 E7 oncogene. In double-transgenic mice, coexpression of β-catenin and HPV16 E7 induced invasive cervical cancer at about 7 months in 94% of the cases. We did not observe cervical cancer in any group unless the mice were treated with estrogen. In the second model, K14-HPV16 mice suffered cervical dysplasias, but this phenotype was not augmented in HPV16/ΔN87βcat mice. In summary, the phenotypes of the K14-E7/ΔN87βcat mice support the hypothesis that activation of the Wnt/β-catenin pathway in HPV-associated premalignant lesions plays a functional role in accelerating cervical carcinogenesis.

  1. Leukocyte Beta-Catenin Expression Is Disturbed in Systemic Lupus Erythematosus.

    Science.gov (United States)

    Orme, Jacob J; Du, Yong; Vanarsa, Kamala; Wu, Tianfu; Satterthwaite, Anne B; Mohan, Chandra

    2016-01-01

    Wnt/β-catenin signaling is relatively understudied in immunity and autoimmunity. β-catenin blocks inflammatory mediators and favors tolerogenic dendritic cell (DC) phenotypes. We show here that leukocytes from lupus-prone mice and SLE patients express diminished β-catenin transcriptional activity, particularly in myeloid cells, although other leukocytes revealed similar trends. Serum levels of DKK-1, an inhibitor under transcriptional control of Wnt/β-catenin, were also decreased in lupus-prone mice. Surprisingly, however, preemptive deletion of β-catenin from macrophages appears to have no effect on lupus development, even in mice with varying genetic loads for lupus. Although myeloid-specific loss of β-catenin does not seem to be important for lupus development, the potential role of this transcription factor in other leukocytes and renal cells remain to be elucidated.

  2. Modulation of Beta-catenin Activity with PKD1 in Prostate Cancer

    Science.gov (United States)

    2012-04-01

    2010 initiative), NIH (NCI RO1, NCRR COBRE ) and pharmaceutical industries (Merck Pharmaceuticals, Investigator Initiated Grant). 15. SUBJECT TERMS... COBRE ) and pharmaceutical industries (Merck Pharmaceuticals, Investigator Initiated Grant). 7 BODY - Aim 1: Molecular Nature of PKD1 and β-catenin...activating LIM kinase (LIMK). 22 from the state (Governor’s 2010 initiative), NIH (NCI RO1, NCRR COBRE ) and pharmaceutical industries (Merck

  3. The Role of Siah1-Induced Degradation of beta-Catenin in Androgen Receptor Signaling

    Science.gov (United States)

    2007-11-01

    Increased Apoptosis in SIP-Deficient Thymocytes To confirm that SIP deficiency results in elevated b-cat- enin expression in the developing thymus, we...Becton Dickinson) and FlowJo software (Tree Star). Immunoblotting Cells were lysed with RIPA buffer (50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1% NP-40

  4. Functional interaction between beta-catenin and FOXO in oxidative stress signaling

    NARCIS (Netherlands)

    Essers, MAG; de Vries-Smits, LMM; Barker, N; Polderman, PE; Burgering, BMT; Korswagen, HC

    2005-01-01

    β-Catenin is a multifunctional protein that mediates Writ signaling by binding to members of the T cell factor (TCF) family of transcription factors. Here, we report an evolutionarily conserved interaction of β-catenin with FOXO transcription factors, which are regulated by insulin and oxidative str

  5. Beta-Catenin and Plakoglobin Expression during Zebrafish Tooth Development and Replacement.

    Directory of Open Access Journals (Sweden)

    Barbara Verstraeten

    Full Text Available We analyzed the protein distribution of two cadherin-associated molecules, plakoglobin and β-catenin, during the different stages of tooth development and tooth replacement in zebrafish. Plakoglobin was detected at the plasma membrane already at the onset of tooth development in the epithelial cells of the tooth. This pattern remained unaltered during further tooth development. The mesenchymal cells only showed plakoglobin from cytodifferentiation onwards. Plakoglobin 1a morpholino-injected embryos showed normal tooth development with proper initiation and differentiation. Although plakoglobin is clearly present during normal odontogenesis, the loss of plakoglobin 1a does not influence tooth development. β-catenin was found at the cell borders of all cells of the successional lamina but also in the nuclei of surrounding mesenchymal cells. Only membranous, not nuclear, β-catenin, was found during morphogenesis stage. However, during cytodifferentiation stage, both nuclear and membrane-bound β-catenin was detected in the layers of the enamel organ as well as in the differentiating odontoblasts. Nuclear β-catenin is an indication of an activated Wnt pathway, therefore suggesting a possible role for Wnt signalling during zebrafish tooth development and replacement.

  6. Beta-Catenin and Plakoglobin Expression during Zebrafish Tooth Development and Replacement.

    Science.gov (United States)

    Verstraeten, Barbara; van Hengel, Jolanda; Huysseune, Ann

    2016-01-01

    We analyzed the protein distribution of two cadherin-associated molecules, plakoglobin and β-catenin, during the different stages of tooth development and tooth replacement in zebrafish. Plakoglobin was detected at the plasma membrane already at the onset of tooth development in the epithelial cells of the tooth. This pattern remained unaltered during further tooth development. The mesenchymal cells only showed plakoglobin from cytodifferentiation onwards. Plakoglobin 1a morpholino-injected embryos showed normal tooth development with proper initiation and differentiation. Although plakoglobin is clearly present during normal odontogenesis, the loss of plakoglobin 1a does not influence tooth development. β-catenin was found at the cell borders of all cells of the successional lamina but also in the nuclei of surrounding mesenchymal cells. Only membranous, not nuclear, β-catenin, was found during morphogenesis stage. However, during cytodifferentiation stage, both nuclear and membrane-bound β-catenin was detected in the layers of the enamel organ as well as in the differentiating odontoblasts. Nuclear β-catenin is an indication of an activated Wnt pathway, therefore suggesting a possible role for Wnt signalling during zebrafish tooth development and replacement.

  7. Wnt/beta-Catenin, Foxa2, and CXCR4 Axis Controls Prostate Cancer Progression

    Science.gov (United States)

    2014-07-01

    al. Spiculated periosteal response induced by intraosseous injection of 22Rv1 prostate cancer cells resembles subset of bone metastases in prostate cancer patients. Prostate 2005; 65(4): 347-54. Appendice None

  8. HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the beta-catenin-TCF interaction

    NARCIS (Netherlands)

    Ye, F.; Chen, Y.; Hoang, T.; Montgomery, R.L.; Zhao, X.H.; Bu, H.; Hu, T.; Taketo, M.M.; van Es, J.H.; Clevers, H.; Hsieh, J.; Bassel-Duby, R.; Olson, E.N.; Lu, Q.R.

    2009-01-01

    Oligodendrocyte development is regulated by the interaction of repressors and activators in a complex transcriptional network. We found that two histone-modifying enzymes, HDAC1 and HDAC2, were required for oligodendrocyte formation. Genetic deletion of both Hdac1 and Hdac2 in oligodendrocyte lineag

  9. The Role of Siah1-Induced Degradation of Beta-Catenin in Androgen Receptor

    Science.gov (United States)

    2005-11-01

    screening . Library screening by the yeast two-hybrid method was performed as described [3] using pGilda encoding human Siah1 as a bait, cDNA libraries...functional analysis of those proteins is underway. Figure 5. Identification of SIP2 as a candidate Siah1-binding protein by two-hybrid cDNA library

  10. PTEN Regulates Beta-Catenin in Androgen Signaling: Implication in Prostate Cancer Progression

    Science.gov (United States)

    2007-03-01

    were cloned into pGEX vec- tors (Amersham Biosciences). The pGEX4T1-Smad4 and 3TP-Luc were kindly provided by Dr. Joan Massague (Memorial Sloan...expression in mammalian cells. Proc. Natl Acad. Sci. USA, 99, 5515–5520. 16. He,T.C., Zhou,S., da Costa ,L.T., Yu,J., Kinzler,K.W. and Vogelstein,B. (1998) A

  11. Polymorphisms within beta-catenin encoding gene affect multiple myeloma development and treatment.

    Science.gov (United States)

    Butrym, Aleksandra; Rybka, Justyna; Łacina, Piotr; Gębura, Katarzyna; Frontkiewicz, Diana; Bogunia-Kubik, Katarzyna; Mazur, Grzegorz

    2015-12-01

    Recent studies have suggested that cereblon (CRBN) is essential for the anti-myeloma (MM) activity of immunomodulatory drugs (IMiDs), such as thalidomide and lenalidomide, and that dysregulation of Wnt/β-catenin pathway may be one of possible reasons of lenalidomide resistance. This prompted us to analyze the effect of polymorphisms within the genes coding for cereblon (CRBN (rs121918368 C>T)) and β-catenin (CTNNB1 (rs4135385 A>G; rs4533622 A>C)). MM patients (n=142) and healthy individuals (n=123) were genotyped using the Light SNiP assays. The presence of the CTNNB1 (rs4533622) A allele was more frequently detected in patients presented with stage II-III disease according to International Staging System (63/82 vs. 26/44, p=0.043) and Durie-Salmon criteria (75/99 vs. 14/26, p=0.049). The CTNNB1 (rs4135385) AA homozygosity was more frequent among patients with better response to CTD, i.e., cyclophosphamide-thalidomide-dexamethasone (18/23 vs. 32/60, p=0.047). Patients carrying the CTNNB1 (rs4533622) AA genotype were better responders to the first line therapy with thalidomide containing regimens (pCRBN polymorphism. These results suggest that the CTNNB1 polymorphisms may affect the clinical course and response to chemotherapy in patients with multiple myeloma.

  12. Modulation of Beta-catenin activity with PKD1 in Prostate Cancer

    Science.gov (United States)

    2010-04-01

    Holcombe RF: Wnt signaling in ovarian tumorigenesis. Int J Gynecol Cancer 2008, 18:954-962. 27. Sarrio D, Moreno -Bueno G, Sanchez-Estevez C, Banon...Cancer. 2005, 5, 65; [1b] A. Sanchez- Munoz, E. Perez-Ruiz, N. Ribelles, A. Marquez, E. Alba , Expert Rev Anticancer. Ther. 2008, 8, 1907

  13. The role of APC and beta-catenin in the aetiology of aggressive fibromatosis (desmoid tumors)

    NARCIS (Netherlands)

    Lips, D.J.; Barker, N.; Clevers, H.; Hennipman, A.

    2009-01-01

    BACKGROUND: Aggressive fibromatosis (syn. desmoid tumor) is a sporadically occurring neoplastic proliferation of fibroblasts originating from musculoaponeurotic planes, forming invasively growing masses without the capability to metastasize. The choice of treatment remains surgical resection with or

  14. Developing Strategies to Block Beta-Catenin Action in Signaling and Cell Adhesion During Carcinogenesis

    Science.gov (United States)

    2001-07-01

    supports the idea that Hid functions by blocking interaction between Inhibitor-of-apoptosis (IAP) family caspase inhibitors and caspases ( Vucic el al. 1998...Development 125: 3427-3436. Vucic , D., W.J. KAISER and L. K. MILLER, 1998 Inhibitor of apoptosis PEIFER, M., D. SWEETON, M. CASEY and E. WIESCHAUS

  15. Beta-catenin: A Potential Survival Marker of Breast Cancer Stem Cells

    Science.gov (United States)

    2006-09-01

    Richards , Cancer Res 66, 1964 (Feb 15, 2006). 15. N. Lam, M. A. Chesney, J. Kimble, Curr Biol 16, 287 (Feb 7, 2006). 16. J. Zhang et al., Nature 425... Dawkins , H. J. (1998). Estrogen receptor-negative epithelial cells in mouse mammary gland development and growth. Differentiation 62, 221-226. Zhang, Y

  16. Beta-Catenin Haplo Insufficient Male Mice Do Not Lose Bone in Response to Hindlimb Unloading.

    Directory of Open Access Journals (Sweden)

    Delphine B Maurel

    Full Text Available As the β-catenin pathway has been shown to be involved in mechanotransduction, we sought to determine if haploinsufficiency would affect skeletal response to unloading. It has previously been shown that deletion of both alleles of β-catenin in bone cells results in a fragile skeleton highly susceptible to fracture, but deletion of one allele using Dmp1-Cre (Ctnnb1+/loxP; Dmp1-Cre, cKO HET has little effect on the 2 mo old skeleton. We found that under normal housing conditions, trabecular bone volume was significantly less in 5 mo old male cKO HET mice compared to controls (Ctrl/HET:Tb. BV/TV = 13.96±2.71/8.92±0.95%, Tb.N. = 4.88±0.51/3.95±0.44/mm, Tb. Sp. = 0.20±0.02/0.26±0.03mm, a 36%, 19% and 30% change respectively but not in females suggesting an age and gender related effect. Before performing suspension experiments and to control for the environmental effects, animals with the same tail attachment and housing conditions, but not suspended (NS, were compared to normally housed (NH animals. Attachment and housing resulted in weight loss in both genders and phenotypes. Cortical bone loss was observed in the cKO HET males (NH/NS, Ct BV/TV: 90.45±0.72/89.12±0.56% and both diaphyseal (0.19±0.01/0.17±0.01mm and metaphyseal (0.10±0.01/0.08±0.01mm thickness, but not in female cKO HET mice suggesting that male cKO HET mice are susceptible to attachment and housing conditions. These results with transgenic mice emphasizes the importance of proper controls when attributing skeletal responses to unloading. With suspension, cKO HET male mice did not lose bone unlike female cKO HET mice that had greater trabecular bone loss than controls (Ctrl 9%:cKO HET 21% decrease Tb. N; Ctrl 12%:cKO HET 27% increase Tb. Sp.. Suspended and non-suspended mice lost weight compared to normally housed animals. Taken together, the data suggest a protective effect of β-catenin against the effects of stress in males and partial protection against unloading in females.

  17. Glioblastoma microvesicles promote endothelial cell proliferation through Akt/beta-catenin pathway

    OpenAIRE

    Liu,Shihai; Sun, Junfeng; Lan, Qing

    2014-01-01

    Glioblastoma tumor cells release microvesicles, which contain mRNA, miRNA and angiogenic proteins. These tumor-derived microvesicles transfer genetic information and proteins to normal cells. Previous reports demonstrated that the increased microvesicles in cerebrospinal fluid (CSF) of patients with glioblastoma up-regulate procoagulant activity. The concentration of microvesicles was closely related to thromboembolism incidence and clinical therapeutic effects of glioblastoma patients. Howev...

  18. Hydrocephalus caused by conditional ablation of the Pten or beta-catenin gene

    Directory of Open Access Journals (Sweden)

    Ohtoshi Akihira

    2008-10-01

    Full Text Available Abstract To investigate the roles of Pten and β-Catenin in the midbrain, either the Pten gene or the β-catenin gene was conditionally ablated, using Dmbx1 (diencephalon/mesencephalon-expressed brain homeobox gene 1-Cre mice. Homozygous disruption of the Pten or β-catenin gene in Dmbx1-expressing cells caused severe hydrocephalus and mortality during the postnatal period. Conditional deletion of Pten resulted in enlargement of midbrain structures. β-catenin conditional mutant mice showed malformation of the superior and inferior colliculi and stenosis of the midbrain aqueduct. These results demonstrate that both Pten and β-Catenin are essential for proper midbrain development, and provide the direct evidence that mutations of both Pten and β-catenin lead to hydrocephalus.

  19. Developing Strategies to Block Beta-Catenin Action in Signaling and Cell Adhesion During Carcinogenesis

    Science.gov (United States)

    2002-07-01

    Chapel Hill NC July, 2001 "Cell adhesion, signal transduction, and cancer: the Armadillo Connection." Department of Embryology , Carnegie Institution...Published online May 30, 2001 Copyright © 2001 by Academic Prcss. All rights of reproduction in any form rescrved. Article Abelson kinase regulates epithelial...in APC2 divisions, when astral microtubules are prominent during late mutants: (1 ) abnormal mitoses owing to pseudocleavage furrow mitosis (Fig. 3i,j

  20. PTEN Regulates Beta-Catenin in Androgen Signaling: Implication in Prostate Cancer Progression

    Science.gov (United States)

    2006-03-01

    gal, -galacto- sidase; PIAS, protein inhibitor of activated STAT; RACE, rapid amplification of cDNA ends ; RLU, relative light units; shRNA, short... rapid amplification of cDNA ends ), we cloned the full-length protein. Like hZimp10 and other PIAS pro- teins, this novel protein contains a conserved

  1. Chronic alcohol consumption promotes hepatocarcinogenesis in mice through activation of beta-catenin.

    Science.gov (United States)

    Alcohol abuse is the most common cause of liver cancer in the United States, Although alcohol effects within the liver have been extensively studied, the mechanism by which alcohol causes liver cancer is complex. One mechanism involves speeding up tumor growth (promotion) by increasing the number of...

  2. Interplay between VHL/HIF1alpha and Wnt/beta-catenin pathways during colorectal tumorigenesis.

    NARCIS (Netherlands)

    Giles, R.H.; Lolkema, M.P.; Snijckers, C.M.; Belderbos, M.; Groep, P. van der; Mans, D.A.; Beest, M. van; Noort, M. van; Goldschmeding, R.; Diest, P.J. van; Clevers, H.; Voest, E.E.

    2006-01-01

    Activation of the Wnt signaling pathway initiates the transformation of colorectal epithelial cells, although the transition to metastatic cancer requires angiogenesis. We have investigated the expression of the von Hippel-Lindau (VHL) tumor suppressor in the intestines from humans and mice. Here, w

  3. Distinct Wnt signaling pathways have opposing roles in appendage regeneration.

    Science.gov (United States)

    Stoick-Cooper, Cristi L; Weidinger, Gilbert; Riehle, Kimberly J; Hubbert, Charlotte; Major, Michael B; Fausto, Nelson; Moon, Randall T

    2007-02-01

    In contrast to mammals, lower vertebrates have a remarkable capacity to regenerate complex structures damaged by injury or disease. This process, termed epimorphic regeneration, involves progenitor cells created through the reprogramming of differentiated cells or through the activation of resident stem cells. Wnt/beta-catenin signaling regulates progenitor cell fate and proliferation during embryonic development and stem cell function in adults, but its functional involvement in epimorphic regeneration has not been addressed. Using transgenic fish lines, we show that Wnt/beta-catenin signaling is activated in the regenerating zebrafish tail fin and is required for formation and subsequent proliferation of the progenitor cells of the blastema. Wnt/beta-catenin signaling appears to act upstream of FGF signaling, which has recently been found to be essential for fin regeneration. Intriguingly, increased Wnt/beta-catenin signaling is sufficient to augment regeneration, as tail fins regenerate faster in fish heterozygous for a loss-of-function mutation in axin1, a negative regulator of the pathway. Likewise, activation of Wnt/beta-catenin signaling by overexpression of wnt8 increases proliferation of progenitor cells in the regenerating fin. By contrast, overexpression of wnt5b (pipetail) reduces expression of Wnt/beta-catenin target genes, impairs proliferation of progenitors and inhibits fin regeneration. Importantly, fin regeneration is accelerated in wnt5b mutant fish. These data suggest that Wnt/beta-catenin signaling promotes regeneration, whereas a distinct pathway activated by wnt5b acts in a negative-feedback loop to limit regeneration.

  4. Respostas nutricionais de cafeeiros Catuaí e Icatu a doses de calcário em subsuperfície Nutritional response of Catuaí and Icatú coffee plants to soil subsurface liming

    Directory of Open Access Journals (Sweden)

    Luciana Aparecida Rodrigues

    2006-12-01

    Full Text Available O aprofundamento do sistema radicular no solo é condicionado por relações Ca/Al adequadas, podendo a calagem subsuperficial apresentar efeito positivo no crescimento das raízes e na absorção de nutrientes. Assim sendo, foi realizado um experimento em colunas de solo, em casa de vegetação, no qual se avaliou a absorção de Al, Ca, Mg e P por duas variedades de cafeeiros (Catuaí e Icatu, uma sensível e outra tolerante ao Al, respectivamente, em função da aplicação em subsuperfície de sete doses de calcário (0,0; 0,49; 1,7; 2,9; 4,1; 6,6 e 9,3 t ha-1. Cultivaram-se as plantas até 6,5 meses de idade, em solo acondicionado em colunas de PVC, subdivididas em três anéis. O anel superior recebeu calcário e fertilização. Nos dois anéis inferiores, as saturações por Al (m % variaram de 0 a 93 %. A aplicação de calcário na subsuperfície aumentou os teores de Ca e Mg na parte aérea e nas raízes e o teor de P nas folhas superiores de ambas as variedades. A eficiência de utilização de Ca na parte aérea e em raízes decresceu com a aplicação do calcário em subsuperfície para ambas as variedades, enquanto a eficiência de utilização de P diminuiu somente para a parte aérea da var. Icatu. A aplicação do calcário na subsuperfície reduziu o teor de Al na parte aérea da var. Icatu e em raízes da var. Catuaí. Os teores de P, Ca e Mg nas folhas foram adequados às variedades, independentemente da quantidade de calcário aplicada ao solo, indicando que a adubação e a correção da acidez da camada superficial do solo foram eficientes para manter a planta nutrida, independentemente do teor de Al na subsuperfície do solo.The Ca/Al ratio is determinant for root deepening in the soil subsurface layer. Liming this layer can improve root growth and nutrient absorption. Thus, a greenhouse trial was carried out using soil columns. Two varieties of coffee plants (Catuaí and Icatú, one Al-sensitive and the other Al

  5. Resveratrol augments the canonical Wnt signaling pathway in promoting osteoblastic differentiation of multipotent mesenchymal cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Haibin; Shang, Linshan; Li, Xi; Zhang, Xiyu; Gao, Guimin; Guo, Chenhong; Chen, Bingxi; Liu, Qiji [Key Laboratory of Experimental Teratology, MOE, Institute of Molecular Medicine and Genetics, Shandong University, 44 Wen Hua Xi Lu, Jinan, Shandong 250012 (China); Gong, Yaoqin, E-mail: yxg8@sdu.edu.cn [Key Laboratory of Experimental Teratology, MOE, Institute of Molecular Medicine and Genetics, Shandong University, 44 Wen Hua Xi Lu, Jinan, Shandong 250012 (China); Shao, Changshun, E-mail: shao@biology.rutgers.edu [Key Laboratory of Experimental Teratology, MOE, Institute of Molecular Medicine and Genetics, Shandong University, 44 Wen Hua Xi Lu, Jinan, Shandong 250012 (China); Department of Genetics, Rutgers University, Piscataway, NJ 08854 (United States)

    2009-10-15

    Resveratrol has been shown to possess many health-benefiting effects, including the promotion of bone formation. In this report we investigated the mechanism by which resveratrol promotes osteoblastic differentiation from pluripotent mesenchymal cells. Since Wnt signaling is well documented to induce osteoblastogenesis and bone formation, we characterized the factors involved in Wnt signaling in response to resveratrol treatment. Resveratrol treatment of mesenchymal cells led to an increase in stabilization and nuclear accumulation of {beta}-catenin dose-dependently and time-dependently. As a consequence of the increased nuclear accumulation of {beta}-catenin, the ability to activate transcription of {beta}-catenin-TCF/LEF target genes that are required for osteoblastic differentiation was upregulated. However, resveratrol did not affect the initial step of the Wnt signaling pathway, as resveratrol was as effective in upregulating the activity of {beta}-catenin in cells in which Lrp5 was knocked down as in control cells. In addition, while conditioned medium enriched in Wnt signaling antagonist Dkk1 was able to inhibit Wnt3a-induced {beta}-catenin upregulation, this inhibitory effect can be abolished in resveratrol-treated cells. Furthermore, we showed that the level of glycogen synthase kinase 3{beta} (GSK-3{beta}), which phosphorylates and destabilizes {beta}-catenin, was reduced in response to resveratrol treatment. The phosphorylation of GSK-3{beta} requires extracellular signal-regulated kinase (ERK)1/2. Together, our data indicate that resveratrol promotes osteoblastogenesis and bone formation by augmenting Wnt signaling.

  6. Leptin promotes osteoblast differentiation and mineralization of primary cultures of vascular smooth muscle cells by inhibiting glycogen synthase kinase (GSK)-3{beta}

    Energy Technology Data Exchange (ETDEWEB)

    Zeadin, Melec G.; Butcher, Martin K.; Shaughnessy, Stephen G. [Department of Medicine, McMaster University, Hamilton, ON (Canada); Thrombosis and Atherosclerosis Research Institute, Hamilton, ON (Canada); Werstuck, Geoff H., E-mail: Geoff.Werstuck@taari.ca [Department of Medicine, McMaster University, Hamilton, ON (Canada); Thrombosis and Atherosclerosis Research Institute, Hamilton, ON (Canada)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Leptin promotes osteoblast differentiation of primary smooth muscle cells. Black-Right-Pointing-Pointer Leptin regulates the expression of genes involved in osteoblast differentiation. Black-Right-Pointing-Pointer Constitutively active GSK-3{beta} attenuates leptin-induced osteoblast differentiation. Black-Right-Pointing-Pointer This suggests that leptin signals through GSK-3{beta} to promote osteoblast differentiation. -- Abstract: In this study, we begin to investigate the underlying mechanism of leptin-induced vascular calcification. We found that treatment of cultured bovine aortic smooth muscle cells (BASMCs) with leptin (0.5-4 {mu}g/ml) induced osteoblast differentiation in a dose-dependent manner. Furthermore, we found that leptin significantly increased the mRNA expression of osteopontin and bone sialoprotein, while down-regulating matrix gla protein (MGP) expression in BASMCs. Key factors implicated in osteoblast differentiation, including members of the Wnt signaling pathway, were examined. Exposure to leptin enhanced phosphorylation of GSK-3{beta} on serine-9 thereby inhibiting activity and promoting the nuclear accumulation of {beta}-catenin. Transfection of BASMCs with an adenovirus that expressed constitutively active GSK-3{beta} (Ad-GSK-3{beta} S9A) resulted in a >2-fold increase in GSK-3{beta} activity and a significant decrease in leptin-induced alkaline phosphatase (ALP) activity. In addition, qRT-PCR analysis showed that GSK-3{beta} activation resulted in a significant decrease in the expression of osteopontin and bone sialoprotein, but a marked increase in MGP mRNA expression. When taken together, our results suggest a mechanism by which leptin promotes osteoblast differentiation and vascular calcification in vivo.

  7. Lycopene inhibits IGF-I signal transduction and growth in normal prostate epithelial cells by decreasing DHT-modulated IGF-I production in co-cultured reactive stromal cells.

    Science.gov (United States)

    Liu, Xunxian; Allen, Jeffrey D; Arnold, Julia T; Blackman, Marc R

    2008-04-01

    Prostate stromal and epithelial cell communication is important in prostate functioning and cancer development. Primary human stromal cells from normal prostate stromal cells (PRSC) maintain a smooth muscle phenotype, whereas those from prostate cancer (6S) display reactive and fibroblastic characteristics. Dihydrotestosterone (DHT) stimulates insulin-like growth factor-I (IGF-I) production by 6S but not PSRC cells. Effects of reactive versus normal stroma on normal human prostate epithelial (NPE or PREC) cells are poorly understood. We co-cultured NPE plus 6S or PRSC cells to compare influences of different stromal cells on normal epithelium. Because NPE and PREC cells lose androgen receptor (AR) expression in culture, DHT effects must be modulated by associated stromal cells. When treated with camptothecin (CM), NPE cells, alone and in stromal co-cultures, displayed a dose-dependent increase in DNA fragmentation. NPE/6S co-cultures exhibited reduced CM-induced cell death with exposure to DHT, whereas NPE/PRSC co-cultures exhibited CM-induced cell death regardless of DHT treatment. DHT blocked CM-induced, IGF-I-mediated, NPE death in co-cultured NPE/6S cells without, but not with, added anti-IGF-I and anti-IGF-R antibodies. Lycopene consumption is inversely related to human prostate cancer risk and inhibits IGF-I and androgen signaling in rat prostate cancer. In this study, lycopene, in dietary concentrations, reversed DHT effects of 6S cells on NPE cell death, decreased 6S cell IGF-I production by reducing AR and beta-catenin nuclear localization and inhibited IGF-I-stimulated NPE and PREC growth, perhaps by attenuating IGF-I's effects on serine phosphorylation of Akt and GSK3beta and tyrosine phosphorylation of GSK3. This study expands the understanding of the preventive mechanisms of lycopene in prostate cancer.

  8. Dietary induced serum phenolic acids promote bone growth via p38 MAPK / Beta-Catenin Canonical Wnt signaling

    Science.gov (United States)

    Diet and nutritional status are critical factors that influences bone development. In this report, we demonstrate that a mixture of phenolic acids found in the serum of young rats fed blueberries (BB), significantly stimulated osteoblast differentiation, resulting in significantly increased bone mas...

  9. Functional comparison of human adenomatous polyposis coli (APC and APC-like in targeting beta-catenin for degradation.

    Directory of Open Access Journals (Sweden)

    Jean Schneikert

    Full Text Available Truncating mutations affect the adenomatous polyposis coli (APC gene in most cases of colon cancer, resulting in the stabilization of β-catenin and uncontrolled cell proliferation. We show here that colon cancer cell lines express also the paralog APC-like (APCL or APC2. RNA interference revealed that it controls the level and/or the activity of β-catenin, but it is less efficient and binds less well to β-catenin than APC, thereby providing one explanation as to why the gene is not mutated in colon cancer. A further comparison indicates that APCL down-regulates the β-catenin level despite the lack of the 15R region known to be important in APC. To understand this discrepancy, we performed immunoprecipitation experiments that revealed that phosphorylated β-catenin displays a preference for binding to the 15 amino acid repeats (15R rather than the first 20 amino acid repeat of APC. This suggests that the 15R region constitutes a gate connecting the steps of β-catenin phosphorylation and subsequent ubiquitination/degradation. Using RNA interference and domain swapping experiments, we show that APCL benefits from the 15R of truncated APC to target β-catenin for degradation, in a process likely involving heterodimerization of the two partners. Our data suggest that the functional complementation of APCL by APC constitutes a substantial facet of tumour development, because the truncating mutations of APC in colorectal tumours from familial adenomatous polyposis (FAP patients are almost always selected for the retention of at least one 15R.

  10. Retinoic acid-induced pancreatic stellate cell quiescence reduces paracrine Wnt-beta-catenin signaling to slow tumor progression

    NARCIS (Netherlands)

    Froeling, F.E.; Feig, C.; Chelala, C.; Dobson, R.; Mein, C.E.; Tuveson, D.A.; Clevers, H.; Hart, I.R.; Kocher, H.M.

    2011-01-01

    BACKGROUND & AIMS: Patients with pancreatic ductal adenocarcinoma are deficient in vitamin A, resulting in activation of pancreatic stellate cells (PSCs). We investigated whether restoration of retinol to PSCs restores their quiescence and affects adjacent cancer cells. METHODS: PSCs and cancer cell

  11. Organized Emergence of Multiple-Generations of Teeth in Snakes Is Dysregulated by Activation of Wnt/Beta-Catenin Signalling

    Science.gov (United States)

    Gaete, Marcia; Tucker, Abigail S.

    2013-01-01

    In contrast to mammals, most reptiles constantly regenerate their teeth. In the snake, the epithelial dental lamina ends in a successional lamina, which proliferates and elongates forming multiple tooth generations, all linked by a permanent dental lamina. To investigate the mechanisms used to control the initiation of new tooth germs in an ordered sequential pattern we utilized the polyphodont (multiple-generation) corn snake (Pantherophis guttatus). We observed that the dental lamina expressed the transcription factor Sox2, a multipotent stem cell marker, whereas the successional lamina cells expressed the transcription factor Lef1, a Wnt/β-catenin pathway target gene. Activation of the Wnt/β-catenin pathway in culture increased the number of developing tooth germs, in comparison to control untreated cultures. These additional tooth germs budded off from ectopic positions along the dental lamina, rather than in an ordered sequence from the successional lamina. Wnt/β-catenin activation enhanced cell proliferation, particularly in normally non-odontogenic regions of the dental lamina, which widely expressed Lef1, restricting the Sox2 domain. This suggests an expansion of the successional lamina at the expense of the dental lamina. Activation of the Wnt/β-catenin pathway in cultured snake dental organs, therefore, led to changes in proliferation and to the molecular pattern of the dental lamina, resulting in loss of the organised emergence of tooth germs. These results suggest that epithelial compartments are critical for the arrangement of organs that develop in sequence, and highlight the role of Wnt/β-catenin signalling in such processes. PMID:24019968

  12. RSPO1/beta-Catenin Signaling Pathway Regulates Oogonia Differentiation and Entry into Meiosis in the Mouse Fetal Ovary

    NARCIS (Netherlands)

    Chassot, A.A.; Gregoire, E.P.; Lavery, R.; Taketo, M.M.; de Rooij, D.G.; Adams, I.R.; Chaboissier, M.C.

    2011-01-01

    Differentiation of germ cells into male gonocytes or female oocytes is a central event in sexual reproduction. Proliferation and differentiation of fetal germ cells depend on the sex of the embryo. In male mouse embryos, germ cell proliferation is regulated by the RNA helicase Mouse Vasa homolog

  13. Organized emergence of multiple-generations of teeth in snakes is dysregulated by activation of Wnt/beta-catenin signalling.

    Science.gov (United States)

    Gaete, Marcia; Tucker, Abigail S

    2013-01-01

    In contrast to mammals, most reptiles constantly regenerate their teeth. In the snake, the epithelial dental lamina ends in a successional lamina, which proliferates and elongates forming multiple tooth generations, all linked by a permanent dental lamina. To investigate the mechanisms used to control the initiation of new tooth germs in an ordered sequential pattern we utilized the polyphodont (multiple-generation) corn snake (Pantherophis guttatus). We observed that the dental lamina expressed the transcription factor Sox2, a multipotent stem cell marker, whereas the successional lamina cells expressed the transcription factor Lef1, a Wnt/β-catenin pathway target gene. Activation of the Wnt/β-catenin pathway in culture increased the number of developing tooth germs, in comparison to control untreated cultures. These additional tooth germs budded off from ectopic positions along the dental lamina, rather than in an ordered sequence from the successional lamina. Wnt/β-catenin activation enhanced cell proliferation, particularly in normally non-odontogenic regions of the dental lamina, which widely expressed Lef1, restricting the Sox2 domain. This suggests an expansion of the successional lamina at the expense of the dental lamina. Activation of the Wnt/β-catenin pathway in cultured snake dental organs, therefore, led to changes in proliferation and to the molecular pattern of the dental lamina, resulting in loss of the organised emergence of tooth germs. These results suggest that epithelial compartments are critical for the arrangement of organs that develop in sequence, and highlight the role of Wnt/β-catenin signalling in such processes.

  14. Organized emergence of multiple-generations of teeth in snakes is dysregulated by activation of Wnt/beta-catenin signalling.

    Directory of Open Access Journals (Sweden)

    Marcia Gaete

    Full Text Available In contrast to mammals, most reptiles constantly regenerate their teeth. In the snake, the epithelial dental lamina ends in a successional lamina, which proliferates and elongates forming multiple tooth generations, all linked by a permanent dental lamina. To investigate the mechanisms used to control the initiation of new tooth germs in an ordered sequential pattern we utilized the polyphodont (multiple-generation corn snake (Pantherophis guttatus. We observed that the dental lamina expressed the transcription factor Sox2, a multipotent stem cell marker, whereas the successional lamina cells expressed the transcription factor Lef1, a Wnt/β-catenin pathway target gene. Activation of the Wnt/β-catenin pathway in culture increased the number of developing tooth germs, in comparison to control untreated cultures. These additional tooth germs budded off from ectopic positions along the dental lamina, rather than in an ordered sequence from the successional lamina. Wnt/β-catenin activation enhanced cell proliferation, particularly in normally non-odontogenic regions of the dental lamina, which widely expressed Lef1, restricting the Sox2 domain. This suggests an expansion of the successional lamina at the expense of the dental lamina. Activation of the Wnt/β-catenin pathway in cultured snake dental organs, therefore, led to changes in proliferation and to the molecular pattern of the dental lamina, resulting in loss of the organised emergence of tooth germs. These results suggest that epithelial compartments are critical for the arrangement of organs that develop in sequence, and highlight the role of Wnt/β-catenin signalling in such processes.

  15. CTNNB1 (beta-catenin) mutation identifies low grade, early stage endometrial cancer patients at increased risk of recurrence.

    Science.gov (United States)

    Kurnit, Katherine C; Kim, Grace N; Fellman, Bryan M; Urbauer, Diana L; Mills, Gordon B; Zhang, Wei; Broaddus, Russell R

    2017-03-10

    Although the majority of low grade, early stage endometrial cancer patients will have good survival outcomes with surgery alone, those patients who do recur tend to do poorly. Optimal identification of the subset of patients who are at high risk of recurrence and would benefit from adjuvant treatment has been difficult. The purpose of this study was to evaluate the impact of somatic tumor mutation on survival outcomes in this patient population. For this study, low grade was defined as endometrioid FIGO grades 1 or 2, while early stage was defined as endometrioid stages I or II (disease confined to the uterus). Next-generation sequencing was performed using panels comprised of 46-200 genes. Recurrence-free and overall survival was compared across gene mutational status in both univariate and multivariate analyses. In all, 342 patients were identified, 245 of which had endometrioid histology. For grades 1-2, stages I-II endometrioid endometrial cancer patients, age (HR 1.07, 95% CI 1.03-1.10), CTNNB1 mutation (HR 5.97, 95% CI 2.69-13.21), and TP53 mutation (HR 4.07, 95% CI 1.57-10.54) were associated with worse recurrence-free survival on multivariate analysis. When considering endometrioid tumors of all grades and stages, CTNNB1 mutant tumors were associated with significantly higher rates of grades 1-2 disease, lower rates of deep myometrial invasion, and lower rates of lymphatic/vascular space invasion. When both TP53 and CTNNB1 mutations were considered, presence of either TP53 mutation or CTNNB1 mutation remained a statistically significant predictor of recurrence-free survival on multivariate analysis and was associated with a more precise confidence interval (HR 4.69, 95% CI 2.38-9.24). Thus, mutational analysis of a 2 gene panel of CTNNB1 and TP53 can help to identify a subset of low grade, early stage endometrial cancer patients who are at high risk of recurrence.Modern Pathology advance online publication, 10 March 2017; doi:10.1038/modpathol.2017.15.

  16. CHD8, A Novel Beta-Catenin Associated Chromatin Remodeling Enzyme, Regulates Androgen Receptor Mediated Gene Transcription

    Science.gov (United States)

    2010-03-01

    NP- 40 , Nonidet P - 40 ; PPAR, peroxisome prolif- erator-activated receptor; PSA, prostate-specific antigen; SDS, sodium dodecyl sulfate; siRNA, small... Nonidet P - 40 (NP- 40 ). Cell lysates were cleared by centrifugation at 20,800 g for 10 min at 4 C and used for protein interaction studies as...or therapeutic target in prostate cancer. REFERENCES 1. Mulholland, D. J., Cheng, H., Reid, K., Rennie, P . S., and Nelson, C. C. (2002) J Biol

  17. LRP4 mutations alter Wnt/beta-catenin signaling and cause limb and kidney malformations in Cenani-Lenz syndrome.

    Science.gov (United States)

    Li, Yun; Pawlik, Barbara; Elcioglu, Nursel; Aglan, Mona; Kayserili, Hülya; Yigit, Gökhan; Percin, Ferda; Goodman, Frances; Nürnberg, Gudrun; Cenani, Asim; Urquhart, Jill; Chung, Boi-Dinh; Ismail, Samira; Amr, Khalda; Aslanger, Ayca D; Becker, Christian; Netzer, Christian; Scambler, Pete; Eyaid, Wafaa; Hamamy, Hanan; Clayton-Smith, Jill; Hennekam, Raoul; Nürnberg, Peter; Herz, Joachim; Temtamy, Samia A; Wollnik, Bernd

    2010-05-14

    Cenani-Lenz syndrome (CLS) is an autosomal-recessive congenital disorder affecting distal limb development. It is characterized mainly by syndactyly and/or oligodactyly and is now shown to be commonly associated with kidney anomalies. We used a homozygosity-mapping approach to map the CLS1 locus to chromosome 11p11.2-q13.1. By sequencing candidate genes, we identified recessive LRP4 mutations in 12 families with CLS. LRP4 belongs to the low-density lipoprotein (LDL) receptor-related proteins (LRPs), which are essential for various developmental processes. LRP4 is known to antagonize LRP6-mediated activation of canonical Wnt signaling, a function that is lost by the identified mutations. Our findings increase the spectrum of congenital anomalies associated with abnormal lipoprotein receptor-dependent signaling.

  18. LRP4 Mutations Alter Wnt/beta-Catenin Signaling and Cause Limb and Kidney Malformations in Cenani-Lenz Syndrome

    NARCIS (Netherlands)

    Y. Li; B. Pawlik; N. Elcioglu; M. Aglan; H. Kayserili; G. Yigit; F. Percin; F. Goodman; G. Nuernberg; A. Cenani; J. Urquhart; B.D. Chung; S. Ismail; K. Amr; A.D. Aslanger; C. Becker; C. Netzer; P. Scambler; W. Eyaid; H. Hamamy; J. Clayton-Smith; R. Hennekam; P. Nuernberg; J. Herz; S.A. Temtamy; B. Wollnik

    2010-01-01

    Cenani-Lenz syndrome (CLS) is an autosomal-recessive congenital disorder affecting distal limb development. It is characterized mainly by syndactyly and/or oligodactyly and is now shown to be commonly associated with kidney anomalies. We used a homozygosity-mapping approach to map the CLS1 locus to

  19. Expression and Signiifcance of WT1 and Beta-catenin Proteins in Non-small Cell Lung Cancer

    Institute of Scientific and Technical Information of China (English)

    Zhou Feng; Mao Guoxin

    2013-01-01

    Objective:To investigate the expression, clinic-pathologic signiifcance and the relevance of WT1 proteinβ-catenin protein in non-small cell lung cancer (NSCLC). Methods:A total of 48 paraffin-embedded tissue samples from patients with resected NSCLC were collected and none had received radiotherapy or chemotherapy before surgical resection. The expressions of WT1 and β-catenin proteins were detected with immunohistchemistry. All data were dealt with SPSS19.0 statistical software while the relationship between WT1 protein orβ-catenin protein and each clinical pathological characteristic was tested by Pearson X2 and Fisher’s Exact Test, and X2 test of independence of two attributes was performed for the relevant analysis of the two indexes. Results:The positive expression rates of WT1 and aberrantβ-catenin proteins were 62.5%(30/48) and 72.9%(35/48) in NSCLC, respectively. There was signiifcant association between WT1 protein and lymph node metastasis (X2 = 4.480, df = 1, P = 0.034), but no obvious connection was observed between WT1 protein and genders, ages, tumor sizes, pathological patterns, differentiated degrees and pTNM stagings (P > 0.05). Aberrant expression ofβ-catenin protein was closely correlated with differentiation degrees (X2 = 8.224, df = 2, P = 0.016), and the results of further comparisons of differentiation degrees showed that there were significant differences between highly and moderately differentiated groups (P=0.026), and between highly and lowly differentiated groups (P=0.031), but the difference between moderately and lowly differentiated groups was not significant (P = 0.655). Similar to WT1 protein, there was no close relation between the aberrant expression ofβ-catenin protein and genders, ages, tumor sizes, pathological patterns, differentiated degrees and pTNM stagings (P > 0.05). The relationship between WT1 protein expression and aberrant expression ofβ-catenin protein was analyzed by Pearson chi-square independence test (X2=5.915, P=0.015, r=0.331), indicating that the aberrant expression of WT1 protein was closely associated with that ofβ-catenin protein in NSCLC. Conclusions:1. The positive expression rate of WT1 protein expression is 62.5% in NSCLC. 2. The positive expression rate of aberrant β-catenin protein is 72.9% in NSCLC. 3. There is signiifcant association between WT1 protein and lymph node metastasis. WT1 protein expression is higher in non-lymph node metastasis group than in lymph node metastasis group (P0.05). 4. Aberrant protein ofβ-catenin is in reverse relevance with differentiation degrees, and the higher the differentiation degree is, the lower aberrant expression of β-catenin protein will be observed, but there is no significant association between the aberrant expression of β-catenin protein and genders, ages, tumor sizes, pathological patterns, differentiated degrees and pTNM stagings (P>0.05). 5. There is certain relevance between WT1 protein expression and the aberrant expression of β-catenin protein in NSCLC (P < 0.05). 6. WT1 protein andβ-catenin proteins may play certain roles in early events of NSCLC.

  20. A Nexus Consisting of Beta-Catenin and Stat3 Attenuates BRAF Inhibitor Efficacy and Mediates Acquired Resistance to Vemurafenib

    Directory of Open Access Journals (Sweden)

    Tobias Sinnberg

    2016-06-01

    In this study we show that β-catenin is stabilized and translocated to the nucleus in approximately half of the melanomas that were analyzed and which developed secondary resistance towards BRAFi. We further demonstrate that β-catenin is involved in the mediation of resistance towards vemurafenib in vitro and in vivo. Unexpectedly, β-catenin acts mainly independent of the TCF/LEF dependent canonical Wnt-signaling pathway in resistance development, which partly explains previous contradictory results about the role of β-catenin in melanoma progression and therapy resistance. We further demonstrate that β-catenin interacts with Stat3 after chronic vemurafenib treatment and both together cooperate in the acquisition and maintenance of resistance towards BRAFi.

  1. Narrative Inqui ry and Its Appl ication in Teacher knowledge Research---A Dialogue with Prof.Cheryl Craig from University of Houston%叙事探究及其在教师知识研究中的运用--与美国休斯敦大学谢丽尔·克雷格教授对话

    Institute of Scientific and Technical Information of China (English)

    魏戈; 陈向明

    2016-01-01

    美国休斯敦大学谢丽尔·克雷格教授是当代国际教育叙事研究的领军人物,并在教师知识研究领域做出了有益的探索。在本次访谈中,克雷格教授结合自己在美国南部伊格中学长达数十年的扎根研究,针对叙事探究的哲学与方法论基础、叙事探究在教师知识研究中的实际运用以及该研究方法的发展前景等问题做了详细介绍,为我们在教师教育领域开展叙事探究提供了有力的借鉴。%Cheryl Craig is the current international pioneer of narrative inquiry, and has made many intellectual contributions to teacher knowledge research field.In this interview, based on her decades of field study experience in Yeager Middle School in southern USA, Cheryl Craig introduces the theoretical foundations, appl ication and prospective development of narrative inquiry in teacher knowledge research, which could be a powerful support for us to use narrative inquiry as an approach in teacher education.

  2. Bacteriostasis of Spices EssentiaI Oi I and Its AppI ication in Dried Pork SI ice%香辛料精油抑菌及在猪肉糜脯中的应用

    Institute of Scientific and Technical Information of China (English)

    张一; 杨柳; 王磊; 陈宇飞

    2016-01-01

    The antibacterial effect of spices essential oil is studied.The antibacterial test of essential oils from cumin,nutmeg,pepper and fennel on single essential oil from Bacillussubtilis,Escherichia coli,Saccharomyces cerevisiae and Penicillum,the antibacterial test of cumin,nutmeg and their compound essential oils on four types of bacteria and the antibacteria stability test of compound essential oils on Escherichia coli and Penicilium under different temperatures and pH values,the results show that the abilities of cumin essential oil inhibiting bacteria and nutmeg inhibiting fungi are strong,which are stronger than several other spices essential oils.The effect of compound essential oils inhibiting Escherichia coli and Penicilium is obvious.The antibacterial activity of compound essential oils under different temperatures and pH values is stable,which has provided references for the application of compound essential oils as bacteriostat in food.%研究香辛料精油复配的抑菌效果,设计孜然、豆蔻、花椒、茴香4种香辛料精油分别对枯草杆菌、大肠杆菌、啤酒酵母、青霉菌单一精油的抑菌试验;孜然、豆蔻及二者复配3种精油对4种菌的抑菌试验;复配精油在不同温度、pH 下对大肠杆菌和青霉菌的抑菌稳定性试验。得出:孜然精油抑制细菌、豆蔻精油抑制真菌的能力较强,均高于其他几种香辛料精油的抑菌能力;复配精油对大肠杆菌、青霉菌的抑菌效果明显;且复配精油在不同温度和pH 下抑菌性较为稳定,为复配精油作为抑菌剂在食品中的应用提供参考。

  3. Notch1 functions as a tumor suppressor in mouse skin.

    Science.gov (United States)

    Nicolas, Michael; Wolfer, Anita; Raj, Kenneth; Kummer, J Alain; Mill, Pleasantine; van Noort, Mascha; Hui, Chi-chung; Clevers, Hans; Dotto, G Paolo; Radtke, Freddy

    2003-03-01

    Notch proteins are important in binary cell-fate decisions and inhibiting differentiation in many developmental systems, and aberrant Notch signaling is associated with tumorigenesis. The role of Notch signaling in mammalian skin is less well characterized and is mainly based on in vitro studies, which suggest that Notch signaling induces differentiation in mammalian skin. Conventional gene targeting is not applicable to establishing the role of Notch receptors or ligands in the skin because Notch1-/- embryos die during gestation. Therefore, we used a tissue-specific inducible gene-targeting approach to study the physiological role of the Notch1 receptor in the mouse epidermis and the corneal epithelium of adult mice. Unexpectedly, ablation of Notch1 results in epidermal and corneal hyperplasia followed by the development of skin tumors and facilitated chemical-induced skin carcinogenesis. Notch1 deficiency in skin and in primary keratinocytes results in increased and sustained expression of Gli2, causing the development of basal-cell carcinoma-like tumors. Furthermore, Notch1 inactivation in the epidermis results in derepressed beta-catenin signaling in cells that should normally undergo differentiation. Enhanced beta-catenin signaling can be reversed by re-introduction of a dominant active form of the Notch1 receptor. This leads to a reduction in the signaling-competent pool of beta-catenin, indicating that Notch1 can inhibit beta-catenin-mediated signaling. Our results indicate that Notch1 functions as a tumor-suppressor gene in mammalian skin.

  4. Caveolin-1 controls cell proliferation and cell death by suppressing expression of the inhibitor of apoptosis protein survivin.

    Science.gov (United States)

    Torres, Vicente A; Tapia, Julio C; Rodríguez, Diego A; Párraga, Mario; Lisboa, Pamela; Montoya, Margarita; Leyton, Lisette; Quest, Andrew F G

    2006-05-01

    Caveolin-1 is suggested to act as a tumor suppressor. We tested the hypothesis that caveolin-1 does so by repression of survivin, an Inhibitor of apoptosis protein that regulates cell-cycle progression as well as apoptosis and is commonly overexpressed in human cancers. Ectopic expression of caveolin-1 in HEK293T and ZR75 cells or siRNA-mediated silencing of caveolin-1 in NIH3T3 cells caused downregulation or upregulation of survivin mRNA and protein, respectively. Survivin downregulation in HEK293T cells was paralleled by reduced cell proliferation, increases in G0-G1 and decreases in G2-M phase of the cell cycle. In addition, apoptosis was evident, as judged by several criteria. Importantly, expression of green fluorescent protein-survivin in caveolin-1-transfected HEK293T cells restored cell proliferation and viability. In addition, expression of caveolin-1 inhibited transcriptional activity of a survivin promoter construct in a beta-catenin-Tcf/Lef-dependent manner. Furthermore, in HEK293T cells caveolin-1 associated with beta-catenin and inhibited Tcf/Lef-dependent transcription. Similar results were obtained upon caveolin-1 expression in DLD1 cells, where APC mutation leads to constitutive activation of beta-catenin-Tcf/Lef-mediated transcription of survivin. Taken together, these results suggest that anti-proliferative and pro-apoptotic properties of caveolin-1 may be attributed to reduced survivin expression via a mechanism involving diminished beta-catenin-Tcf/Lef-dependent transcription.

  5. Orai1 and Ca2+-independent phospholipase A2 are required for store-operated Icat-SOC current, Ca2+ entry, and proliferation of primary vascular smooth muscle cells.

    Science.gov (United States)

    Yang, Bo; Gwozdz, Tomasz; Dutko-Gwozdz, Joanna; Bolotina, Victoria M

    2012-03-01

    Store-operated Ca(2+) entry (SOCE) is important for multiple functions of vascular smooth muscle cells (SMC), which, depending of their phenotype, can resemble excitable and nonexcitable cells. Similar to nonexcitable cells, Orai1 was found to mediate Ca(2+)-selective (CRAC-like) current and SOCE in dedifferentiated cultured SMC and smooth muscle-derived cell lines. However, the role of Orai1 in cation-selective store-operated channels (cat-SOC), which are responsible for SOCE in primary SMC, remains unclear. Here we focus on primary SMC, and assess the role of Orai1 and Ca(2+)-independent phospholipase A(2) (iPLA(2)β, or PLA2G6) in activation of cat-SOC current (I(cat-SOC)), SOCE, and SMC proliferation. Using molecular, electrophysiological, imaging, and functional approaches, we demonstrate that molecular knockdown of either Orai1 or iPLA(2)β leads to similar inhibition of the whole cell cat-SOC current and SOCE in primary aortic SMC and results in significant reduction in DNA synthesis and impairment of SMC proliferation. This is the first demonstration that Orai1 and iPLA(2)β are equally important for cat-SOC, SOCE, and proliferation of primary aortic SMC.

  6. Lrp6 is required for convergent extension during Xenopus gastrulation.

    Science.gov (United States)

    Tahinci, Emilios; Thorne, Curtis A; Franklin, Jeffrey L; Salic, Adrian; Christian, Kelly M; Lee, Laura A; Coffey, Robert J; Lee, Ethan

    2007-11-01

    Wnt signaling regulates beta-catenin-mediated gene transcription and planar cell polarity (PCP). The Wnt co-receptor, Lrp6, is required for signaling along the beta-catenin arm. We show that Lrp6 downregulation (by morpholino injection) or overexpression in Xenopus embryos disrupts convergent extension, a hallmark feature of Wnt/PCP components. In embryos with decreased Lrp6 levels, cells of the dorsal marginal zone (DMZ), which undergoes extensive cellular rearrangements during gastrulation, exhibit decreased length:width ratios, decreased migration, and increased numbers of transient cytoplasmic protrusions. We show that Lrp6 opposes Wnt11 activity and localizes to the posterior edge of migrating DMZ cells and that Lrp6 downregulation enhances cortical and nuclear localization of Dsh and phospho-JNK, respectively. Taken together, these data suggest that Lrp6 inhibits Wnt/PCP signaling. Finally, we identify the region of the Lrp6 protein with Wnt/PCP activity to a stretch of 36 amino acids, distinct from regions required for Wnt/beta-catenin signaling. We propose a model in which Lrp6 plays a critical role in the switch from Wnt/PCP to Wnt/beta-catenin signaling.

  7. Defining BMP functions in the hair follicle by conditional ablation of BMP receptor IA.

    Science.gov (United States)

    Kobielak, Krzysztof; Pasolli, H Amalia; Alonso, Laura; Polak, Lisa; Fuchs, Elaine

    2003-11-10

    Using conditional gene targeting in mice, we show that BMP receptor IA is essential for the differentiation of progenitor cells of the inner root sheath and hair shaft. Without BMPRIA activation, GATA-3 is down-regulated and its regulated control of IRS differentiation is compromised. In contrast, Lef1 is up-regulated, but its regulated control of hair differentiation is still blocked, and BMPRIA-null follicles fail to activate Lef1/beta-catenin-regulated genes, including keratin genes. Wnt-mediated transcriptional activation can be restored by transfecting BMPRIA-null keratinocytes with a constitutively activated beta-catenin. This places the block downstream from Lef1 expression but upstream from beta-catenin stabilization. Because mice lacking the BMP inhibitor Noggin fail to express Lef1, our findings support a model, whereby a sequential inhibition and then activation of BMPRIA is necessary to define a band of hair progenitor cells, which possess enough Lef1 and stabilized beta-catenin to activate the hair specific keratin genes and generate the hair shaft.

  8. Expression profiling and functional analysis of wnt signaling mechanisms in mesenchymal stem cells.

    Science.gov (United States)

    Etheridge, S Leah; Spencer, Gary J; Heath, Deborah J; Genever, Paul G

    2004-01-01

    Through their broad differentiation potential, mesenchymal stem cells (MSCs) are candidates for a range of therapeutic applications, but the precise signaling pathways that determine their differentiated fate are not fully understood. Evidence is emerging that developmental signaling cues may be important in regulating stem cell self-renewal and differentiation programs. Here we have identified a consistent expression profile of Wnt signaling molecules in MSCs and provide evidence that an endogenous canonical Wnt pathway functions in these cells. Wnts bind to Frizzled (Fz) receptors and subsequent canonical signaling inhibits glycogen synthase kinase-3beta (GSK-3beta), causing beta-catenin translocation into the nucleus to induce target gene expression. In human MSCs isolated from bone marrow of different donors, we appear to have identified a common Wnt/Fz expression profile using reverse transcriptase polymerase chain reaction (RT-PCR). Associated Wnt signaling components, including low-density lipoprotein receptor-related protein-5 (LRP-5), kremen-1, dickkopf-1 (Dkk-1), secreted Frizzled-related peptide (sFRP)-2, sFRP3, sFRP4, Disheveled (Dvl), GSK-3beta, adenomatous polyposis coli (APC), beta-catenin,T-cell factor (TCF)-1, and TCF-4, were also identified. Nuclear beta-catenin was observed in 30%-40% of MSCs, indicative of endogenous Wnt signaling. Exposure to both Wnt3a and Li+ ions, which promotes canonical Wnt signaling by inhibiting GSK-3beta, reduced phosphorylation of beta-catenin in MSCs and increased beta-catenin nuclear translocation approximately threefold over that of the controls. Our findings indicate that autocrine Wnt signaling operates in primitive MSC populations and supports previous evidence that Wnt signaling regulates mesenchymal lineage specification. The identification of a putative common Wnt/Fz molecular signature in MSCs will contribute to our understanding of the molecular mechanisms that regulate self-renewal and lineage

  9. Actomyosin-mediated cellular tension drives increased tissue stiffness and beta-catenin activation to induce epidermal hyperplasia and tumor growth

    NARCIS (Netherlands)

    Samuel, M.S.; Lopez, J.I.; McGhee, E.J.; Croft, D.R.; Strachan, D.; Timpson, P.; Munro, J.; Schroder, E.; Zhou, J.; Brunton, V.; Barker, N.; Clevers, H.; Sansom, O.J.; Anderson, K.I.; Weaver, V.M.; Olson, M.F.

    2011-01-01

    Tumors and associated stroma manifest mechanical properties that promote cancer. Mechanosensation of tissue stiffness activates the Rho/ROCK pathway to increase actomyosin-mediated cellular tension to re-establish force equilibrium. To determine how actomyosin tension affects tissue homeostasis and

  10. Genetic and Proteomic Interrogation of Lower Confidence Candidate Genes Reveals Signaling Networks in beta-Catenin-Active Cancers | Office of Cancer Genomics

    Science.gov (United States)

    Genome-scale expression studies and comprehensive loss-of-function genetic screens have focused almost exclusively on the highest confidence candidate genes. Here, we describe a strategy for characterizing the lower confidence candidates identified by such approaches.

  11. Ubiquitin Ligase HUWE1 Regulates Axon Branching through the Wnt/beta-Catenin Pathway in a Drosophila Model for Intellectual Disability

    NARCIS (Netherlands)

    Vandewalle, J.; Langen, M.; Zschaetzsch, M.; Nijhof, B.; Kramer, J.M.; Brems, H.; Bauters, M.; Lauwers, E.; Srahna, M.; Marynen, P.; Verstreken, P.; Schenck, A.; Hassan, B.A.; Froyen, G.

    2013-01-01

    We recently reported that duplication of the E3 ubiquitin ligase HUWE1 results in intellectual disability (ID) in male patients. However, the underlying molecular mechanism remains unknown. We used Drosophila melanogaster as a model to investigate the effect of increased HUWE1 levels on the developi

  12. Alcohol consumption promotes diethylnitrosamine-induced hepatocarcinogenesis in male mice through the activation of the Wnt/Beta-catenin signaling pathway

    Science.gov (United States)

    Although alcohol effects within the liver have been extensively studied, the complex mechanisms by which alcohol causes liver cancer are not well understood. It has been suggested that ethanol (EtOH) metabolism promotes tumor growth by increasing hepatocyte proliferation. In this study, we develop...

  13. Colonic inflammation and enhanced-beta-catenin signaling accompany an increase of the Lachnospiraceae/Streptococcaceae in the hind gut of high-fat diet-fed mice

    Science.gov (United States)

    Consumption of an obesigenic / high-fat (HF) diet is associated with an increase of inflammation-related colon cancer risk and may alter the gut microbiota. To test the hypothesis that a HF feeding accelerates inflammatory processes and changes gut microbiome composition, C57BL/6 mice were fed a HF ...

  14. Casein kinase Iepsilon modulates the signaling specificities of dishevelled.

    Science.gov (United States)

    Cong, Feng; Schweizer, Liang; Varmus, Harold

    2004-03-01

    Wnt signaling is critical to many aspects of development, and aberrant activation of the Wnt signaling pathway can cause cancer. Dishevelled (Dvl) protein plays a central role in this pathway by transducing the signal from the Wnt receptor complex to the beta-catenin destruction complex. Dvl also plays a pivotal role in the planar cell polarity pathway that involves the c-Jun N-terminal kinase (JNK). How functions of Dvl are regulated in these two distinct pathways is not clear. We show that deleting the C-terminal two-thirds of Dvl, which includes the PDZ and DEP domains and is essential for Dvl-induced JNK activation, rendered the molecule a much more potent activator of the beta-catenin pathway. We also found that casein kinase Iepsilon (CKIepsilon), a previously identified positive regulator of Wnt signaling, stimulated Dvl activity in the Wnt pathway, but dramatically inhibited Dvl activity in the JNK pathway. Consistent with this, overexpression of CKIepsilon in Drosophila melanogaster stimulated Wnt signaling and disrupted planar cell polarity. We also observed a correlation between the localization and the signaling activity of Dvl in the beta-catenin pathway and the JNK pathway. Furthermore, by using RNA interference, we demonstrate that the Drosophila CKIepsilon homologue Double time positively regulates the beta-catenin pathway through Dvl and negatively regulates the Dvl-induced JNK pathway. We suggest that CKIepsilon functions as a molecular switch to direct Dvl from the JNK pathway to the beta-catenin pathway, possibly by altering the conformation of the C terminus of Dvl.

  15. ISA-97 Compliant Architecture Testbed (ICAT) Projectry Organizations

    Science.gov (United States)

    1992-03-30

    by the System Integracion Directorate of the USAISEC, August 29, 1992. The report discusses the refinement of the ISA-97 Compliant Architecture Model...with her/him a social security number, and medical results. The output of the induction transaction is a set of orders and the creation of a personnel...file. In this example, the social security number is a write to the data encyclopedia and the medical results are a write to the data encyclopedia. We

  16. Control of TCF-4 expression by VDR and vitamin D in the mouse mammary gland and colorectal cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Marcy E Beildeck

    Full Text Available BACKGROUND: The vitamin D receptor (VDR pathway is important in the prevention and potentially in the treatment of many cancers. One important mechanism of VDR action is related to its interaction with the Wnt/beta-catenin pathway. Agonist-bound VDR inhibits the oncogenic Wnt/beta-catenin/TCF pathway by interacting directly with beta-catenin and in some cells by increasing cadherin expression which, in turn, recruits beta-catenin to the membrane. Here we identify TCF-4, a transcriptional regulator and beta-catenin binding partner as an indirect target of the VDR pathway. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we show that TCF-4 (gene name TCF7L2 is decreased in the mammary gland of the VDR knockout mouse as compared to the wild-type mouse. Furthermore, we show 1,25(OH2D3 increases TCF-4 at the RNA and protein levels in several human colorectal cancer cell lines, the effect of which is completely dependent on the VDR. In silico analysis of the human and mouse TCF7L2 promoters identified several putative VDR binding elements. Although TCF7L2 promoter reporters responded to exogenous VDR, and 1,25(OH2D3, mutation analysis and chromatin immunoprecipitation assays, showed that the increase in TCF7L2 did not require recruitment of the VDR to the identified elements and indicates that the regulation by VDR is indirect. This is further confirmed by the requirement of de novo protein synthesis for this up-regulation. CONCLUSIONS/SIGNIFICANCE: Although it is generally assumed that binding of beta-catenin to members of the TCF/LEF family is cancer-promoting, recent studies have indicated that TCF-4 functions instead as a transcriptional repressor that restricts breast and colorectal cancer cell growth. Consequently, we conclude that the 1,25(OH2D3/VDR-mediated increase in TCF-4 may have a protective role in colon cancer as well as diabetes and Crohn's disease.

  17. Reciprocal inhibition in man.

    Science.gov (United States)

    Crone, C

    1993-11-01

    Reciprocal inhibition is the automatic antagonist alpha motor neurone inhibition which is evoked by contraction of the agonist muscle. This so-called natural reciprocal inhibition is a ubiquitous and pronounced phenomenon in man and must be suspected of playing a major role in the control of voluntary movements. The spinal pathways underlying this inhibitory phenomenon were studied. The disynaptic reciprocal Ia inhibitory pathway between the tibial anterior muscle and the soleus alpha motor neurones was identified and described in man. It was shown that the inhibition can be evoked in most healthy subjects at rest, but the degree of inhibition varies considerably from one subject to another. It was concluded that it corresponds to the disynaptic reciprocal Ia inhibitory pathway which has been extensively described in animal experiments. The disynaptic reciprocal inhibition was shown to increase during the dynamic phase of a dorsiflexion movement of the foot, but not during the tonic phase. However, when the peripheral afferent feedback from the contracting muscle was blocked by ischaemia, an increase of the inhibition was revealed also during the tonic phase of the dorsiflexion. The concealment of this increase during unrestrained peripheral feedback from the muscle was thought to be due to the post-activation depression mechanism; a mechanism which was described further and which probably involves reduced transmitter release at Ia afferent terminals as a result of previous activation of these afferent fibers. Hence the hypothesis was supported that alpha motor neurones and the corresponding inhibitory interneurones, which project reciprocal inhibition to the antagonist motor neurones, are activated in parallel during voluntary contraction of agonist muscles. An additional reciprocal inhibitory mechanism, the long latency reciprocal inhibition, was described between the tibial anterior muscle and the soleus alpha motor neurones. It was shown to be evoked by group I

  18. Statin's excitoprotection is mediated by sAPP and the subsequent attenuation of calpain-induced truncation events, likely via rho-ROCK signaling.

    Science.gov (United States)

    Ma, Tao; Zhao, YongBo; Kwak, Young-Don; Yang, Zhangmin; Thompson, Robert; Luo, Zhijun; Xu, Huaxi; Liao, Francesca-Fang

    2009-09-09

    The widely used cholesterol-lowering drugs, statins, were reported to reduce the incidence of stroke and the progression of Alzheimer's disease. However, little is known on how statins exert these beneficial effects. In this study, we investigated the molecular mechanisms underlying the neuroprotective actions of statins in primary cultured cortical neurons. We found that chronic treatment of neurons with a low dosage of two CNS-permeable statins (lovastatin and simvastatin) selectively reduced NMDA-induced cell death but not the caspase-mediated apoptosis. The protective effects of stains were inhibited by mevalonate, a PI3K inhibitor, and tyrphostin AG538, suggesting roles for cholesterol and insulin/IGF-1 signaling in the neurotoxic response. We further demonstrate that statins block calcium-dependent calpain activation, resulting in complete suppression of protein truncation events on multiple calpain substrates that are involved in neuronal death including CDK5 coactivator p35 cleavage to p25, GSK3 and beta-catenin. This is followed by reduced and increased nuclear translocation of p25 and beta-catenin, respectively. Under excitotoxic conditions, the activities of CDK5 and beta-catenin are exclusively regulated by calpain-mediated cleavage while apoptosis modulates beta-catenin mainly through phosphorylation. Strikingly, our data demonstrate that the calpain-blocking effect of statins is largely mediated by stimulation of alpha-secretase cleavage of APP, resulting in increased secretion of its soluble form, sAPP. Finally, our data suggest that statin-regulated sAPP secretion occurs via activation of the PI3K pathway and inhibition of ROCK signaling. Altogether, our study provides novel insights into statin-mediated neuronal excitoprotection through both cholesterol-dependent and -independent mechanisms and links them to calpain-mediated neuronal death.

  19. The calcium-sensing receptor--a driver of colon cell differentiation.

    Science.gov (United States)

    Whitfield, J F

    2009-04-01

    Dietary Ca(2+) reduces colon cell proliferation and carcinogenesis, but it becomes ineffective or even tumor-promoting during carcinogenesis. It appears that Ca(2+) and the colon cell CaSR together brake the massive cell production in normal colon crypts. The rapid proliferation of the transit-amplifying (TA) progeny of the colon stem cells at the bases of the crypts is driven by the "Wnt" signaling mechanism that stimulates proliferogenic genes and prevents apoptogenesis. It appears that TA cell cycling stops and terminal differentiation starts when the cells reach a higher level in the crypt where there is enough external Ca(2+) to stimulate the expression of CaSRs, the signals from which stimulate the expression of E-cadherin. At this point the APC (adenomatous polyposis coli) protein appears and some of it enters the nucleus. There it removes the apoptogenesis shield and stops the beta-cateninTcf-4 complex from driving further TA cell proliferation by releasing beta-catenin from the nucleus, and delivering it to cytoplasmic APCaxinGSK-3beta complexes for ultimate proteasomal destruction. Cytoplasmic beta-catenin is prevented from returning to the nucleus by destruction in APCaxinGSK-3beta complexes or locked by the emerging E-cadherin into adherens junctions which link the cell to proliferatively shut-down functioning cells with APC-dependent cytoskeletons moving up and out of the crypt. A common first step in colon carcinogenesis is the loss of functional APC which results in the retention of proliferogenic nuclear beta-cateninTcf-4. This drives the eventual appearance of mutation accumulating, apoptosis-resistant clones the proliferation of which cannot be inhibited by external Ca(2+) because of CaSR-disabling gene mutations.

  20. Potentiation of latent inhibition.

    Science.gov (United States)

    Rodriguez, Gabriel; Hall, Geoffrey

    2008-07-01

    Rats were given exposure either to an odor (almond) or a compound of odor plus taste (almond plus saline), prior to training in which the odor served as the conditioned stimulus. It was found, for both appetitive and aversive procedures, that conditioning was retarded by preexposure (a latent inhibition effect), and the extent of the retardation was greater in rats preexposed to the compound (i.e., latent inhibition to the odor was potentiated by the presence of the taste). In contrast, the presence of the taste during conditioning itself overshadowed learning about the odor. We argue that the presence of the salient taste in compound with the odor enhances the rate of associative learning, producing a rapid loss in the associability of the odor. This loss of associability will generate both overshadowing and the potentiation of latent inhibition that is observed after preexposure to the compound.

  1. Quorum sensing inhibition

    DEFF Research Database (Denmark)

    Persson, T.; Givskov, Michael Christian; Nielsen, J.

    2005-01-01

    /receptor transcriptional regulator in some clinically relevant Gram-negative bacteria. The present review contains all reported compound types that are currently known to inhibit the QS transcriptional regulator in Gram-negative bacteria. These compounds are sub-divided into two main groups, one comprising structural...

  2. Enzyme inhibition by iminosugars

    DEFF Research Database (Denmark)

    López, Óscar; Qing, Feng-Ling; Pedersen, Christian Marcus

    2013-01-01

    Imino- and azasugar glycosidase inhibitors display pH dependant inhibition reflecting that both the inhibitor and the enzyme active site have groups that change protonation state with pH. With the enzyme having two acidic groups and the inhibitor one basic group, enzyme-inhibitor complexes...

  3. 5alpha-dihydrotestosterone (DHT) retards wound closure by inhibiting re-epithelialization.

    Science.gov (United States)

    Gilliver, S C; Ruckshanthi, J P D; Hardman, M J; Zeef, L A H; Ashcroft, G S

    2009-01-01

    The ongoing search for explanations as to why elderly males heal acute skin wounds more slowly than do their female counterparts (and are more strongly disposed to conditions of chronic ulceration) has identified endogenous oestrogens and androgens as being respectively enhancers and inhibitors of repair. We previously demonstrated that blocking the conversion of testosterone to 5alpha-dihydrotestosterone (DHT) limits its ability to impair healing, suggesting that DHT is a more potent inhibitor of repair than is testosterone. The present study aimed to delineate the central mechanisms by which androgens delay repair. Whilst the contractile properties of neither rat wounds in vivo nor fibroblast-impregnated collagenous discs in vitro appeared to be influenced by androgen manipulations, the global blockade of DHT biosynthesis markedly accelerated re-epithelialization of incisional and excisional wounds and reduced local expression of beta-catenin, a key inhibitor of repair. Moreover, DHT retarded the in vitro migration of epidermal keratinocytes following scratch wounding. By contrast, it failed to influence the migratory and proliferative properties of dermal fibroblasts, suggesting that its primary inhibitory effect is upon re-epithelialization. These novel findings may be of particular significance in the context of chronic ulceration, for which being male is a key risk factor.

  4. Plastics for corrosion inhibition

    CERN Document Server

    Goldade, Victor A; Makarevich, Anna V; Kestelman, Vladimir N

    2005-01-01

    The development of polymer composites containing inhibitors of metal corrosion is an important endeavour in modern materials science and technology. Corrosion inhibitors can be located in a polymer matrix in the solid, liquid or gaseous phase. This book details the thermodynamic principles for selecting these components, their compatibility and their effectiveness. The various mechanisms of metal protection – barrier, inhibiting and electromechanical – are considered, as are the conflicting requirements placed on the structure of the combined material. Two main classes of inhibited materials (structural and films/coatings) are described in detail. Examples are given of structural plastics used in friction units subjected to mechano-chemical wear and of polymer films/coatings for protecting metal objects against corrosion.

  5. Inhibition and Brain Work

    OpenAIRE

    Buzsáki, György; Kaila, Kai; Raichle, Marcus

    2007-01-01

    The major part of the brain’s energy budget (~60%–80%) is devoted to its communication activities. While inhibition is critical to brain function, relatively little attention has been paid to its metabolic costs. Understanding how inhibitory interneurons contribute to brain energy consumption (brain work) is not only of interest in understanding a fundamental aspect of brain function but also in understanding functional brain imaging techniques which rely on measurements related to blood flow...

  6. Latent inhibition in schizophrenia.

    Science.gov (United States)

    Swerdlow, N R; Braff, D L; Hartston, H; Perry, W; Geyer, M A

    1996-05-01

    Latent inhibition (LI) refers to the retarded acquisition of a conditioned response that occurs if the subject being tested is first preexposed to the to-be-conditioned stimulus (CS) without the paired unconditioned stimulus (UCS). Because the 'irrelevance' of the to-be-conditioned stimulus is established during non-contingent preexposure, the slowed acquisition of the CS-UCS association is thought to reflect the process of overcoming this learned irrelevance. Latent inhibition has been reported to be diminished in acutely hospitalized schizophrenia patients. If acutely hospitalized schizophrenia patients are preexposed to the CS, they learn the association as fast as, and perhaps faster than, patients who are not preexposed to the CS. This finding has been interpreted as reflecting the inability of acute schizophrenia patients to ignore irrelevant stimuli. In this study, the LI paradigm was identical to the one used in previous reports of LI deficits in schizophrenia patients (Baruch et al., 1988). Latent inhibition was observed in normal control subjects (n = 73), including individuals identified as 'psychosis-prone' based on established screening criteria, and in anxiety (n = 19) and mood disorder (n = 13) patients. Learning scores (trials to criterion) in "acutely' hospitalized as well as "chronic' hospitalized schizophrenia patients (n = 45) were significantly elevated in both preexposed and non-preexposed subjects, compared to controls. Acute schizophrenia patients exhibited intact LI. Separate cohorts of acute and chronic schizophrenia patients (n = 23) and normal controls (n = 34) exhibited intact LI when tested in a new, easier-to-acquire computerized LI paradigm. These results fail to identify specific LI deficits in schizophrenia patients, and raise the possibility that previously observed LI deficits in schizophrenia patients may reflect, at least in part, performance deficits related to learning acquisition.

  7. Beneficial bacteria inhibit cachexia.

    Science.gov (United States)

    Varian, Bernard J; Goureshetti, Sravya; Poutahidis, Theofilos; Lakritz, Jessica R; Levkovich, Tatiana; Kwok, Caitlin; Teliousis, Konstantinos; Ibrahim, Yassin M; Mirabal, Sheyla; Erdman, Susan E

    2016-03-15

    Muscle wasting, known as cachexia, is a debilitating condition associated with chronic inflammation such as during cancer. Beneficial microbes have been shown to optimize systemic inflammatory tone during good health; however, interactions between microbes and host immunity in the context of cachexia are incompletely understood. Here we use mouse models to test roles for bacteria in muscle wasting syndromes. We find that feeding of a human commensal microbe, Lactobacillus reuteri, to mice is sufficient to lower systemic indices of inflammation and inhibit cachexia. Further, the microbial muscle-building phenomenon extends to normal aging as wild type animals exhibited increased growth hormone levels and up-regulation of transcription factor Forkhead Box N1 [FoxN1] associated with thymus gland retention and longevity. Interestingly, mice with a defective FoxN1 gene (athymic nude) fail to inhibit sarcopenia after L. reuteri therapy, indicating a FoxN1-mediated mechanism. In conclusion, symbiotic bacteria may serve to stimulate FoxN1 and thymic functions that regulate inflammation, offering possible alternatives for cachexia prevention and novel insights into roles for microbiota in mammalian ontogeny and phylogeny.

  8. Exchange of catenins in cadherin-catenin complex

    DEFF Research Database (Denmark)

    Klingelhöfer, Jörg; Troyanovsky, Regina B; Laur, Oscar Y;

    2003-01-01

    transduction. To reveal the possible cross-talk between these two pools, we studied whether beta-catenin is exchanged between its free and cadherin-bound states. We found that pulse-labeled beta-catenin replaces the beta-catenin bound to the cell surface prebiotinylated E-cadherin immediately after synthesis...

  9. Regulation of TRAIL receptor expression by β-catenin in colorectal tumours

    NARCIS (Netherlands)

    Jalving, M.; Heijink, D. M.; Koornstra, J. J.; Boersma-van Ek, W.; Zwart, N.; Wesseling, Johannes; Sluiter, W. J.; de Vries, E.G.E.; Kleibeuker, J. H.; de Jong, S.

    2014-01-01

    Expression of the pro-apoptotic TRAIL receptors is regulated, at least in part, by beta-catenin. We show that beta-catenin co-localizes with DR4/5 in human and mouse colorectal tumours and that downregulation of beta-catenin in cell line models reduces TRAIL receptor expression and TRAIL sensitivity

  10. Fibroblast growth factor receptor-3 (FGFR-3) regulates expression of paneth cell lineage-specific genes in intestinal epithelial cells through both TCF4/beta-catenin-dependent and -independent signaling pathways.

    Science.gov (United States)

    Brodrick, Brooks; Vidrich, Alda; Porter, Edith; Bradley, Leigh; Buzan, Jenny M; Cohn, Steven M

    2011-05-27

    Fibroblast growth factor receptor-3 (FGFR-3) expression in the developing intestine is restricted to the undifferentiated epithelial cells within the lower portion of the crypt. We previously showed that mice lacking functional FGFR-3 have a significant decrease in the number of Paneth cells in the small intestine. Here, we used Caco2 cells to investigate whether FGFR-3 signaling can directly modulate expression of Paneth cell differentiation markers through its effects on TCF4/β-catenin or through other signaling pathways downstream of this receptor. Caco2 cells treated with FGFR-3 ligands or expressing FGFR-3(K650E), a constitutively active mutant, resulted in a significantly increased expression of genes characteristic of mature Paneth cells, including human α-defensins 5 and 6 (HD5 and HD6) and Paneth cell lysozyme, whereas enterocytic differentiation markers were reduced. Activation of FGFR-3 signaling sustained high levels of β-catenin mRNA expression, leading to increased TCF4/β-catenin-regulated transcriptional activity in Caco2 cells. Sustained activity of the TCF4/β-catenin pathway was required for the induction of Paneth cell markers. Activation of the MAPK pathway by FGFR-3 is also required for the induction of Paneth cell markers in addition to and independent of the effect of FGFR-3 on TCF4/β-catenin activity. These studies suggest that coordinate activation of multiple independent signaling pathways downstream of FGFR-3 is involved in regulation of Paneth cell differentiation.

  11. Can Arousal Modulate Response Inhibition?

    Science.gov (United States)

    Weinbach, Noam; Kalanthroff, Eyal; Avnit, Amir; Henik, Avishai

    2015-01-01

    The goal of the present study was to examine if and how arousal can modulate response inhibition. Two competing hypotheses can be drawn from previous literature. One holds that alerting cues that elevate arousal should result in an impulsive response and therefore impair response inhibition. The other suggests that alerting enhances processing of…

  12. Lateral inhibition during nociceptive processing

    DEFF Research Database (Denmark)

    Quevedo, Alexandre S.; Mørch, Carsten Dahl; Andersen, Ole Kæseler

    2017-01-01

    of skin. Thus, the stimulation of the skin region between the endpoints of the lines appears to produce inhibition. These findings indicate that lateral inhibition limits spatial summation of pain and is an intrinsic component of nociceptive information processing. Disruption of such lateral inhibition......Spatial summation of pain is the increase of perceived intensity that occurs as the stimulated area increases. Spatial summation of pain is sub-additive in that increasing the stimulus area produces a disproportionately small increase in the perceived intensity of pain. A possible explanation...... for sub-additive summation may be that convergent excitatory information is modulated by lateral inhibition. To test the hypothesis that lateral inhibition may limit spatial summation of pain, we delivered different patterns of noxious thermal stimuli to the abdomens of 15 subjects using a computer...

  13. Lateral inhibition during nociceptive processing.

    Science.gov (United States)

    Quevedo, Alexandre S; Mørch, Carsten Dahl; Andersen, Ole K; Coghill, Robert C

    2017-06-01

    Spatial summation of pain (SSP) is the increase of perceived intensity that occurs as the stimulated area increases. Spatial summation of pain is subadditive in that increasing the stimulus area produces a disproportionately small increase in the perceived intensity of pain. A possible explanation for subadditive summation may be that convergent excitatory information is modulated by lateral inhibition. To test the hypothesis that lateral inhibition may limit SSP, we delivered different patterns of noxious thermal stimuli to the abdomens of 15 subjects using a computer-controlled CO2 laser. Lines (5 mm wide) of variable lengths (4, 8 cm) were compared with 2-point stimuli delivered at the same position/separation as the length of lines. When compared with one-point control stimuli, 2-point stimulus patterns produced statistically significant SSP, while no such summation was detected during line stimulus patterns. Direct comparison of pain intensity evoked by 2-point pattern stimuli with line pattern stimuli revealed that 2-point patterns were perceived as significantly more painful, despite the fact that the 2-point pattern stimulated far smaller areas of skin. Thus, the stimulation of the skin region between the endpoints of the lines appears to produce inhibition. These findings indicate that lateral inhibition limits SSP and is an intrinsic component of nociceptive information processing. Disruption of such lateral inhibition may contribute substantially to the radiation of some types of chronic pain.

  14. I-mfa domain proteins interact with Axin and affect its regulation of the Wnt and c-Jun N-terminal kinase signaling pathways.

    Science.gov (United States)

    Kusano, Shuichi; Raab-Traub, Nancy

    2002-09-01

    I-mfa has been identified as an inhibitor of myogenic basic helix-loop-helix transcription factors, and a related human I-mfa domain-containing protein (HIC) also has been identified as a protein that regulates Tat- and Tax-mediated expression of viral promoters. HIC and I-mfa represent a family of proteins that share a highly conserved cysteine-rich domain, termed the I-mfa domain. We show here that both I-mfa domain proteins, HIC and I-mfa, interacted in vivo with the Axin complex through their C-terminal I-mfa domains. This interaction inhibited Axin-mediated downregulation of free levels of cytosolic beta-catenin. I-mfa and HIC also both directly interacted with lymphocyte enhancer factor (LEF); however, I-mfa but not HIC significantly inhibited reporter constructs regulated by beta-catenin. The overexpression of HIC but not I-mfa decreased the inhibitory effects of Axin on beta-catenin-regulated reporter constructs, while both HIC and I-mfa decreased Axin-mediated c-Jun N-terminal kinase (JNK) activation. These data reveal for the first time that I-mfa domain proteins interact with the Axin complex and affect Axin regulation of both the Wnt and the JNK activation pathways. Interestingly, HIC differs from I-mfa in that I-mfa affects both Axin function and T-cell factor- or LEF-regulated transcription in the Wnt signaling pathway while HIC affects primarily Axin function.

  15. Activated sludge inhibition capacity index

    Directory of Open Access Journals (Sweden)

    V. Surerus

    2014-06-01

    Full Text Available Toxic compounds in sewage or industrial wastewater may inhibit the biological activity of activated sludge impairing the treatment process. This paper evaluates the Inhibition Capacity Index (ICI for the assessment of activated sludge in the presence of toxicants. In this study, activated sludge was obtained from industrial treatment plants and was also synthetically produced. Continuous respirometric measurements were carried out in a reactor, and the oxygen uptake rate profile obtained was used to evaluate the impact of inhibiting toxicants, such as dissolved copper, phenol, sodium alkylbenzene sulfonate and amoxicillin, on activated sludge. The results indicate that ICI is an efficient tool to quantify the intoxication capacity. The activated sludge from the pharmaceutical industry showed higher resistance than the sludge from other sources, since toxicants are widely discharged in the biological treatment system. The ICI range was from 58 to 81% when compared to the synthetic effluent with no toxic substances.

  16. Homo economicus belief inhibits trust.

    Directory of Open Access Journals (Sweden)

    Ziqiang Xin

    Full Text Available As a foundational concept in economics, the homo economicus assumption regards humans as rational and self-interested actors. In contrast, trust requires individuals to believe partners' benevolence and unselfishness. Thus, the homo economicus belief may inhibit trust. The present three experiments demonstrated that the direct exposure to homo economicus belief can weaken trust. And economic situations like profit calculation can also activate individuals' homo economicus belief and inhibit their trust. It seems that people's increasing homo economicus belief may serve as one cause of the worldwide decline of trust.

  17. Homo economicus belief inhibits trust.

    Science.gov (United States)

    Xin, Ziqiang; Liu, Guofang

    2013-01-01

    As a foundational concept in economics, the homo economicus assumption regards humans as rational and self-interested actors. In contrast, trust requires individuals to believe partners' benevolence and unselfishness. Thus, the homo economicus belief may inhibit trust. The present three experiments demonstrated that the direct exposure to homo economicus belief can weaken trust. And economic situations like profit calculation can also activate individuals' homo economicus belief and inhibit their trust. It seems that people's increasing homo economicus belief may serve as one cause of the worldwide decline of trust.

  18. Integrated Cost Analysis Teams: How ICATs Support Better Buying Power 2.0

    Science.gov (United States)

    2014-06-01

    Crunch As the DoD focused on making acquisitions more affordable, political realities intensi- fied that need. In August 2011, President Obama signed into...agreement, the automatic spending cuts would go into effect . That is exactly what hap- pened. No agreement was reached by the deadline, and the automatic...cuts went into effect (after an initial delay) in March 2013. The DoD was hit with half of the required cuts in discretionary spending. Its share of

  19. Strigolactone inhibition of shoot branching

    NARCIS (Netherlands)

    Gomez-Roldan, M.V.; Fermas, S.; Brewer, P.B.; Puech-Pages, V.; Dun, E.A.; Pillot, J.P.; Letisse, F.; Matusova, R.; Danoun, S.; Portais, J.C.; Bouwmeester, H.J.; Becard, G.; Beveridge, C.A.; Rameau, C.; Rochange, S.F.

    2008-01-01

    A carotenoid-derived hormonal signal that inhibits shoot branching in plants has long escaped identification. Strigolactones are compounds thought to be derived from carotenoids and are known to trigger the germination of parasitic plant seeds and stimulate symbiotic fungi. Here we present evidence

  20. Strigolactone inhibition of shoot branching

    NARCIS (Netherlands)

    Gomez-Roldan, M.V.; Fermas, S.; Brewer, P.B.; Puech-Pages, V.; Dun, E.A.; Pillot, J.P.; Letisse, F.; Matusova, R.; Danoun, S.; Portais, J.C.; Bouwmeester, H.J.; Becard, G.; Beveridge, C.A.; Rameau, C.; Rochange, S.F.

    2008-01-01

    A carotenoid-derived hormonal signal that inhibits shoot branching in plants has long escaped identification. Strigolactones are compounds thought to be derived from carotenoids and are known to trigger the germination of parasitic plant seeds and stimulate symbiotic fungi. Here we present evidence

  1. Methanogenic inhibition by arsenic compounds.

    Science.gov (United States)

    Sierra-Alvarez, Reyes; Cortinas, Irail; Yenal, Umur; Field, Jim A

    2004-09-01

    The acute acetoclastic methanogenic inhibition of several inorganic and organic arsenicals was assayed. Trivalent species, i.e., methylarsonous acid and arsenite, were highly inhibitory, with 50% inhibitory concentrations of 9.1 and 15.0 microM, respectively, whereas pentavalent species were generally nontoxic. The nitrophenylarsonate derivate, roxarsone, displayed moderate toxicity.

  2. Inhibition of carcinogenesis by tea.

    Science.gov (United States)

    Yang, Chung S; Maliakal, Pius; Meng, Xiaofeng

    2002-01-01

    Tea has received a great deal of attention because tea polyphenols are strong antioxidants, and tea preparations have inhibitory activity against tumorigenesis. The bioavailability and biotransformation of tea polyphenols, however, are key factors limiting these activities in vivo. The inhibition of tumorigenesis by green or black tea preparations has been demonstrated in animal models on different organ sites such as skin, lung, oral cavity, esophagus, forestomach, stomach, small intestine, colon, pancreas, and mammary gland. Epidemiological studies, however, have not yielded clear conclusions concerning the protective effects of tea consumption against cancer formation in humans. The discrepancy between the results from humans and animal models could be due to 1) the much higher doses of tea used in animals in comparison to human consumption, 2) the differences in causative factors between the cancers in humans and animals, and 3) confounding factors limiting the power of epidemiological studies to detect an effect. It is possible that tea may be only effective against specific types of cancer caused by certain etiological factors. Many mechanisms have been proposed for the inhibition of carcinogenesis by tea, including the modulation of signal transduction pathways that leads to the inhibition of cell proliferation and transformation, induction of apoptosis of preneoplastic and neoplastic cells, as well as inhibition of tumor invasion and angiogenesis. These mechanisms need to be evaluated and verified in animal models or humans in order to gain more understanding on the effect of tea consumption on human cancer.

  3. Testing of Biologically Inhibiting Surface

    DEFF Research Database (Denmark)

    Bill Madsen, Thomas; Larsen, Erup

    2003-01-01

    The main purpose of this course is to examine a newly developed biologically inhibiting material with regards to galvanic corrosion and electrochemical properties. More in detail, the concern was how the material would react when exposed to cleaning agents, here under CIP cleaning (Cleaning...

  4. Islam Does Not Inhibit Science.

    Science.gov (United States)

    Shanavas, T. O.

    1999-01-01

    Compares the science/religion relationship in both Christian and Islamic countries. Presents Muslim scholars' ideas about the presence of humans on earth. Presents ideas on active nature, Noah's curse, and the age of the universe. Refutes the notion that Islam inhibited science and advocates the belief that Islam promoted science. (YDS)

  5. Epigallocatechin gallate inhibits endothelial exocytosis.

    Science.gov (United States)

    Yamakuchi, Munekazu; Bao, Clare; Ferlito, Marcella; Lowenstein, Charles J

    2008-07-01

    Consumption of green tea is associated with a decrease in cardiovascular mortality. The beneficial health effects of green tea are attributed in part to polyphenols, organic compounds found in tea that lower blood pressure, reduce body fat, decrease LDL cholesterol, and inhibit inflammation. We hypothesized that epigallocatechin gallate (EGCG), the most abundant polyphenol in tea, inhibits endothelial exocytosis, the initial step in leukocyte trafficking and vascular inflammation. To test this hypothesis, we treated human umbilical-vein endothelial cells with EGCG and other polyphenols, and then measured endothelial exocytosis. We found that EGCG decreases endothelial exocytosis in a concentration-dependent manner, with the effects most prominent after 4 h of treatment. Other catechin polyphenols had no effect on endothelial cells. By inhibiting endothelial exocytosis, EGCG decreases leukocyte adherence to endothelial cells. In searching for the mechanism by which EGCG affects endothelial cells, we found that EGCG increases Akt phosphorylation, eNOS phosphorylation, and nitric oxide (NO) production. NOS inhibition revealed that NO mediates the anti-inflammatory effects of EGCG. Our data suggest that polyphenols can decrease vascular inflammation by increasing the synthesis of NO, which blocks endothelial exocytosis.

  6. Infant Predictors of Behavioural Inhibition

    Science.gov (United States)

    Moehler, Eva; Kagan, Jerome; Oelkers-Ax, Rieke; Brunner, Romuald; Poustka, Luise; Haffner, Johann; Resch, Franz

    2008-01-01

    Behavioural inhibition in the second year of life is a hypothesized predictor for shyness, social anxiety and depression in later childhood, adolescence and even adulthood. To search for the earliest indicators of this fundamental temperamental trait, this study examined whether behavioural characteristics in early infancy can predict behavioural…

  7. Small molecule antagonists of the Wnt/β-catenin signaling pathway target breast tumor-initiating cells in a Her2/Neu mouse model of breast cancer.

    Directory of Open Access Journals (Sweden)

    Robin M Hallett

    Full Text Available BACKGROUND: Recent evidence suggests that human breast cancer is sustained by a minor subpopulation of breast tumor-initiating cells (BTIC, which confer resistance to anticancer therapies and consequently must be eradicated to achieve durable breast cancer cure. METHODS/FINDINGS: To identify signaling pathways that might be targeted to eliminate BTIC, while sparing their normal stem and progenitor cell counterparts, we performed global gene expression profiling of BTIC- and mammary epithelial stem/progenitor cell- enriched cultures derived from mouse mammary tumors and mammary glands, respectively. Such analyses suggested a role for the Wnt/Beta-catenin signaling pathway in maintaining the viability and or sustaining the self-renewal of BTICs in vitro. To determine whether the Wnt/Beta-catenin pathway played a role in BTIC processes we employed a chemical genomics approach. We found that pharmacological inhibitors of Wnt/β-catenin signaling inhibited sphere- and colony-formation by primary breast tumor cells and primary mammary epithelial cells, as well as by tumorsphere- and mammosphere-derived cells. Serial assays of self-renewal in vitro revealed that the Wnt/Beta-catenin signaling inhibitor PKF118-310 irreversibly affected BTIC, whereas it functioned reversibly to suspend the self-renewal of mammary epithelial stem/progenitor cells. Incubation of primary tumor cells in vitro with PKF118-310 eliminated their capacity to subsequently seed tumor growth after transplant into syngeneic mice. Administration of PKF118-310 to tumor-bearing mice halted tumor growth in vivo. Moreover, viable tumor cells harvested from PKF118-310 treated mice were unable to seed the growth of secondary tumors after transplant. CONCLUSIONS: These studies demonstrate that inhibitors of Wnt/β-catenin signaling eradicated BTIC in vitro and in vivo and provide a compelling rationale for developing such antagonists for breast cancer therapy.

  8. Inhibition of glutathione biosynthesis alters compartmental redox status and the thiol proteome in organogenesis-stage rat conceptuses.

    Science.gov (United States)

    Harris, Craig; Shuster, Daniel Z; Roman Gomez, Rosaicela; Sant, Karilyn E; Reed, Matthew S; Pohl, Jan; Hansen, Jason M

    2013-10-01

    Developmental signals that control growth and differentiation are regulated by environmental factors that generate reactive oxygen species (ROS) and alter steady-state redox environments in tissues and fluids. Protein thiols are selectively oxidized and reduced in distinct spatial and temporal patterns in conjunction with changes in glutathione/glutathione disulfide (GSH/GSSG) and cysteine/cystine (Cys/CySS) redox potentials (E(h)) to regulate developmental signaling. The purpose of this study was to measure compartment-specific thiol redox status in cultured organogenesis-stage rat conceptuses and to evaluate the impact of thiol oxidation on the redox proteome. The visceral yolk sac (VYS) has the highest initial (0 h) total intracellular GSH (GSH+2GSSG) concentration (5.5 mM) and the lowest Eh (-223 mV) as determined by HPLC analysis. Total embryo (EMB) GSH concentrations ranged lower (3.2 mM) and were only slightly more oxidized than the VYS. Total GSH concentrations in yolk sac fluid (YSF) and amniotic fluid (AF) are >500-fold lower than in tissues and are highly oxidized (YSF E(h)=-121 mV and AF E(h)=-49 mV). Steady-state total Cys concentrations (Cys+2CySS) were significantly lower than GSH in tissues but were otherwise equal in VYS and EMB near 0.5 mM. On gestational day 11, total GSH and Cys concentrations in EMB and VYS increase significantly over the 6h time course while E(h) remains relatively constant. The Eh (GSH/GSSG) in YSF and AF become more reduced over time while E(h) (Cys/CySS) become more oxidized. Addition of L-buthionine-S,R-sulfoximine (BS0) to selectively inhibit GSH synthesis and mimic the effects of some GSH-depleting environmental chemicals significantly decreased VYS and EMB GSH and Cys concentrations and increased Eh over the 6h exposure period, showing a greater overall oxidation. In the YSF, BSO caused a significant increase in total Cys concentrations to 1.7 mM but did not significantly change the E(h) for Cys/CySS. A significant net

  9. Corrosion Chemistry in Inhibited HDA.

    Science.gov (United States)

    1980-11-30

    Titanium and chromium have sufficiently low Flade potentials to pass- ivate in non-oxidising acids, but Iron will only exhibit self-passivity if the...inhibition e.g. involving organic and pickling inhibitors* the rest potential can actually 4.5,4.6become more negative " This is due to cathodic rather...media. 321 stainless steel, titanium stabilised, was the particular steel studied, being very similar in composition to the 347also stainless steel

  10. Notch Signaling Inhibits Axon Regeneration

    OpenAIRE

    Bejjani, Rachid El; Hammarlund, Marc

    2012-01-01

    Many neurons have limited capacity to regenerate their axons after injury. Neurons in the mammalian CNS do not regenerate, and even neurons in the PNS often fail to regenerate to their former targets. This failure is likely due in part to pathways that actively restrict regeneration; however, only a few factors that limit regeneration are known. Here, using single-neuron analysis of regeneration in vivo, we show that Notch/lin-12 signaling inhibits the regeneration of mature C. elegans neuron...

  11. Th2 cytokines inhibit lymphangiogenesis.

    Directory of Open Access Journals (Sweden)

    Ira L Savetsky

    Full Text Available Lymphangiogenesis is the process by which new lymphatic vessels grow in response to pathologic stimuli such as wound healing, inflammation, and tumor metastasis. It is well-recognized that growth factors and cytokines regulate lymphangiogenesis by promoting or inhibiting lymphatic endothelial cell (LEC proliferation, migration and differentiation. Our group has shown that the expression of T-helper 2 (Th2 cytokines is markedly increased in lymphedema, and that these cytokines inhibit lymphatic function by increasing fibrosis and promoting changes in the extracellular matrix. However, while the evidence supporting a role for T cells and Th2 cytokines as negative regulators of lymphatic function is clear, the direct effects of Th2 cytokines on isolated LECs remains poorly understood. Using in vitro and in vivo studies, we show that physiologic doses of interleukin-4 (IL-4 and interleukin-13 (IL-13 have profound anti-lymphangiogenic effects and potently impair LEC survival, proliferation, migration, and tubule formation. Inhibition of these cytokines with targeted monoclonal antibodies in the cornea suture model specifically increases inflammatory lymphangiogenesis without concomitant changes in angiogenesis. These findings suggest that manipulation of anti-lymphangiogenic pathways may represent a novel and potent means of improving lymphangiogenesis.

  12. Conditioned inhibition and reinforcement rate.

    Science.gov (United States)

    Harris, Justin A; Kwok, Dorothy W S; Andrew, Benjamin J

    2014-07-01

    We investigated conditioned inhibition in a magazine approach paradigm. Rats were trained on a feature negative discrimination between an auditory conditioned stimulus (CS) reinforced at one rate versus a compound of that CS and a visual stimulus (L) reinforced at a lower rate. This training established L as a conditioned inhibitor. We then tested the inhibitory strength of L by presenting it in compound with other auditory CSs. L reduced responding when tested with a CS that had been reinforced at a high rate, but had less or even no inhibitory effect when tested with a CS that had been reinforced at a low rate. The inhibitory strength of L was greater if it signaled a decrease in reinforcement from an already low rate than if it signaled an equivalent decrease in reinforcement from a high rate. We conclude that the strength of inhibition is not a linear function of the change in reinforcement that it signals. We discuss the implications of this finding for models of learning (e.g., Rescorla & Wagner, 1972) that identify inhibition with a difference (subtraction) rule.

  13. Inhibiting Vimentin or beta 1-integrin Reverts Prostate Tumor Cells in IrECM and Reduces Tumor Growth

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xueping; Fournier, Marcia V.; Ware, Joy L.; Bissell, Mina J.; Zehner, Zendra E.

    2009-07-27

    Prostate epithelial cells grown embedded in laminin-rich extracellular matrix (lrECM) undergo morphological changes that closely resemble their architecture in vivo. In this study, growth characteristics of three human prostate epithelial sublines derived from the same cellular lineage, but displaying different tumorigenic and metastatic properties in vivo, were assessed in three-dimensional (3D) lrECM gels. M12, a highly tumorigenic and metastatic subline, was derived from the parental prostate epithelial P69 cell line by selection in nude mice and found to contain a deletion of 19p-q13.1. The stable reintroduction of an intact human chromosome 19 into M12 resulted in a poorly tumorigenic subline, designated F6. When embedded in lrECM gels, the nontumorigenic P69 line produced acini with clearly defined lumena. Immunostaining with antibodies to {beta}-catenin, E-cadherin or {alpha}6-, {beta}4- and {beta}1-integrins showed polarization typical of glandular epithelium. In contrast, the metastatic M12 subline produced highly disorganized cells with no evidence of polarization. The F6 subline reverted to acini-like structures exhibiting basal polarity marked with integrins. Reducing either vimentin levels via siRNA interference or {beta}1-integrin expression by the addition of the blocking antibody, AIIB2, reorganized the M12 subline into forming polarized acini. The loss of vimentin significantly reduced M12-Vim tumor growth when assessed by subcutaneous injection in athymic mice. Thus, tumorigenicity in vivo correlated with disorganized growth in 3D lrECM gels. These studies suggest that the levels of vimentin and {beta}1-integrin play a key role in the homeostasis of the normal acini in prostate and that their dysregulation may lead to tumorigenesis.

  14. The PDZ protein TIP-1 facilitates cell migration and pulmonary metastasis of human invasive breast cancer cells in athymic mice.

    Science.gov (United States)

    Han, Miaojun; Wang, Hailun; Zhang, Hua-Tang; Han, Zhaozhong

    2012-05-25

    Tax-interacting protein 1 (TIP-1, also known as Tax1bp3) inhibited proliferation of colon cancer cells through antagonizing the transcriptional activity of beta-catenin. However, in this study, elevated TIP-1 expression levels were detected in human invasive breast cancers. Studies with two human invasive breast cancer cell lines indicated that RNAi-mediated TIP-1 knockdown suppressed the cell adhesion, proliferation, migration and invasion in vitro, and inhibited tumor growth in mammary fat pads and pulmonary metastasis in athymic mice. Biochemical studies showed that TIP-1 knockdown had moderate and differential effects on the beta-catenin-regulated gene expression, but remarkably down regulated the genes for cell adhesion and motility in breast cancer cells. The decreased expression of integrins and paxillin was accompanied with reduced cell adhesion and focal adhesion formation on fibronectin-coated surface. In conclusion, this study revealed a novel oncogenic function of TIP-1 suggesting that TIP-1 holds potential as a prognostic biomarker and a therapeutic target in the treatment of human invasive breast cancers. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. The PDZ protein TIP-1 facilitates cell migration and pulmonary metastasis of human invasive breast cancer cells in athymic mice

    Energy Technology Data Exchange (ETDEWEB)

    Han, Miaojun [Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Yunnan (China); Graduate School, Chinese Academy of Sciences, Beijing (China); Department of Radiation Oncology, School of Medicine, Vanderbilt University, Nashville, TN 37232 (United States); Wang, Hailun [Department of Radiation Oncology, School of Medicine, Vanderbilt University, Nashville, TN 37232 (United States); Zhang, Hua-Tang [Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Yunnan (China); Han, Zhaozhong, E-mail: zhaozhong.han@vanderbilt.edu [Department of Radiation Oncology, School of Medicine, Vanderbilt University, Nashville, TN 37232 (United States); Department of Cancer Biology, School of Medicine, Vanderbilt University, Nashville, TN 37232 (United States); Vanderbilt-Ingram Cancer Center, School of Medicine, Vanderbilt University, Nashville, TN 37232 (United States)

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer This study has revealed novel oncogenic functions of TIP-1 in human invasive breast cancer. Black-Right-Pointing-Pointer Elevated TIP-1 expression levels in human breast cancers correlate to the disease prognosis. Black-Right-Pointing-Pointer TIP-1 knockdown suppressed the cell migration and pulmonary metastasis of human breast cancer cells. Black-Right-Pointing-Pointer TIP-1 knockdown suppressed the expression and functionality of motility-related genes. -- Abstract: Tax-interacting protein 1 (TIP-1, also known as Tax1bp3) inhibited proliferation of colon cancer cells through antagonizing the transcriptional activity of beta-catenin. However, in this study, elevated TIP-1 expression levels were detected in human invasive breast cancers. Studies with two human invasive breast cancer cell lines indicated that RNAi-mediated TIP-1 knockdown suppressed the cell adhesion, proliferation, migration and invasion in vitro, and inhibited tumor growth in mammary fat pads and pulmonary metastasis in athymic mice. Biochemical studies showed that TIP-1 knockdown had moderate and differential effects on the beta-catenin-regulated gene expression, but remarkably down regulated the genes for cell adhesion and motility in breast cancer cells. The decreased expression of integrins and paxillin was accompanied with reduced cell adhesion and focal adhesion formation on fibronectin-coated surface. In conclusion, this study revealed a novel oncogenic function of TIP-1 suggesting that TIP-1 holds potential as a prognostic biomarker and a therapeutic target in the treatment of human invasive breast cancers.

  16. Human I-mfa domain proteins specifically interact with KSHV LANA and affect its regulation of Wnt signaling-dependent transcription.

    Science.gov (United States)

    Kusano, Shuichi; Eizuru, Yoshito

    2010-06-04

    Kaposi's sarcoma-associated herpes virus (KSHV)-encoded latency-associated nuclear antigen (LANA) protein has been reported to interact with glycogen synthase kinase 3beta (GSK-3beta) and to negatively regulate its activity, leading to stimulation of GSK-3beta-dependent beta-catenin degradation. We show here that the I-mfa domain proteins, HIC (human I-mfa domain-containing protein) and I-mfa (inhibitor of MyoD family a), interacted in vivo with LANA through their C-terminal I-mfa domains. This interaction affected the intracellular localization of HIC, inhibited the LANA-dependent transactivation of a beta-catenin-regulated reporter construct, and decreased the level of the LANA.GSK-3beta complex. These data reveal for the first time that I-mfa domain proteins interact with LANA and negatively regulate LANA-mediated activation of Wnt signaling-dependent transcription by inhibiting the formation of the LANA.GSK-3beta complex.

  17. Human I-mfa domain proteins specifically interact with KSHV LANA and affect its regulation of Wnt signaling-dependent transcription

    Energy Technology Data Exchange (ETDEWEB)

    Kusano, Shuichi, E-mail: skusano@m2.kufm.kagoshima-u.ac.jp [Division of Persistent and Oncogenic Viruses, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Eizuru, Yoshito [Division of Persistent and Oncogenic Viruses, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan)

    2010-06-04

    Kaposi's sarcoma-associated herpes virus (KSHV)-encoded latency-associated nuclear antigen (LANA) protein has been reported to interact with glycogen synthase kinase 3{beta} (GSK-3{beta}) and to negatively regulate its activity, leading to stimulation of GSK-3{beta}-dependent {beta}-catenin degradation. We show here that the I-mfa domain proteins, HIC (human I-mfa domain-containing protein) and I-mfa (inhibitor of MyoD family a), interacted in vivo with LANA through their C-terminal I-mfa domains. This interaction affected the intracellular localization of HIC, inhibited the LANA-dependent transactivation of a {beta}-catenin-regulated reporter construct, and decreased the level of the LANA.GSK-3{beta} complex. These data reveal for the first time that I-mfa domain proteins interact with LANA and negatively regulate LANA-mediated activation of Wnt signaling-dependent transcription by inhibiting the formation of the LANA.GSK-3{beta} complex.

  18. Self-regulation, ego depletion, and inhibition.

    Science.gov (United States)

    Baumeister, Roy F

    2014-12-01

    Inhibition is a major form of self-regulation. As such, it depends on self-awareness and comparing oneself to standards and is also susceptible to fluctuations in willpower resources. Ego depletion is the state of reduced willpower caused by prior exertion of self-control. Ego depletion undermines inhibition both because restraints are weaker and because urges are felt more intensely than usual. Conscious inhibition of desires is a pervasive feature of everyday life and may be a requirement of life in civilized, cultural society, and in that sense it goes to the evolved core of human nature. Intentional inhibition not only restrains antisocial impulses but can also facilitate optimal performance, such as during test taking. Self-regulation and ego depletion- may also affect less intentional forms of inhibition, even chronic tendencies to inhibit. Broadly stated, inhibition is necessary for human social life and nearly all societies encourage and enforce it.

  19. Reflex excitability regulates prepulse inhibition.

    Science.gov (United States)

    Schicatano, E J; Peshori, K R; Gopalaswamy, R; Sahay, E; Evinger, C

    2000-06-01

    Presentation of a weak stimulus, a prepulse, before a reflex-evoking stimulus decreases the amplitude of the reflex response relative to reflex amplitude evoked without a preceding prepulse. For example, presenting a brief tone before a trigeminal blink-eliciting stimulus significantly reduces reflex blink amplitude. A common explanation of such data are that sensory processing of the prepulse modifies reflex circuit behavior. The current study investigates the converse hypothesis that the intrinsic characteristics of the reflex circuit rather than prepulse processing determine prepulse modification of trigeminal and acoustic reflex blinks. Unilateral lesions of substantia nigra pars compacta neurons created rats with hyperexcitable trigeminal reflex blinks but normally excitable acoustic reflex blinks. In control rats, presentation of a prepulse reduced the amplitude of both trigeminal and acoustic reflex blinks. In 6-OHDA-lesioned rats, however, the same acoustic prepulse facilitated trigeminal reflex blinks but inhibited acoustic reflex blinks. The magnitude of prepulse modification correlated with reflex excitability. Humans exhibited the same pattern of prepulse modification. An acoustic prepulse facilitated the trigeminal reflex blinks of subjects with hyperexcitable trigeminal reflex blinks caused by Parkinson's disease. The same prepulse inhibited trigeminal reflex blinks of age-matched control subjects. Prepulse modification also correlated with trigeminal reflex blink excitability. These data show that reflex modification by a prepulse reflects the intrinsic characteristics of the reflex circuit rather than an external adjustment of the reflex circuit by the prepulse.

  20. Graphene: corrosion-inhibiting coating.

    Science.gov (United States)

    Prasai, Dhiraj; Tuberquia, Juan Carlos; Harl, Robert R; Jennings, G Kane; Rogers, Bridget R; Bolotin, Kirill I

    2012-02-28

    We report the use of atomically thin layers of graphene as a protective coating that inhibits corrosion of underlying metals. Here, we employ electrochemical methods to study the corrosion inhibition of copper and nickel by either growing graphene on these metals, or by mechanically transferring multilayer graphene onto them. Cyclic voltammetry measurements reveal that the graphene coating effectively suppresses metal oxidation and oxygen reduction. Electrochemical impedance spectroscopy measurements suggest that while graphene itself is not damaged, the metal under it is corroded at cracks in the graphene film. Finally, we use Tafel analysis to quantify the corrosion rates of samples with and without graphene coatings. These results indicate that copper films coated with graphene grown via chemical vapor deposition are corroded 7 times slower in an aerated Na(2)SO(4) solution as compared to the corrosion rate of bare copper. Tafel analysis reveals that nickel with a multilayer graphene film grown on it corrodes 20 times slower while nickel surfaces coated with four layers of mechanically transferred graphene corrode 4 times slower than bare nickel. These findings establish graphene as the thinnest known corrosion-protecting coating.

  1. Greener Approach towards Corrosion Inhibition

    Directory of Open Access Journals (Sweden)

    Neha Patni

    2013-01-01

    Full Text Available Corrosion control of metals is technically, economically, environmentally, and aesthetically important. The best option is to use inhibitors for protecting metals and alloys against corrosion. As organic corrosion inhibitors are toxic in nature, so green inhibitors which are biodegradable, without any heavy metals and other toxic compounds, are promoted. Also plant products are inexpensive, renewable, and readily available. Tannins, organic amino acids, alkaloids, and organic dyes of plant origin have good corrosion-inhibiting abilities. Plant extracts contain many organic compounds, having polar atoms such as O, P, S, and N. These are adsorbed on the metal surface by these polar atoms, and protective films are formed, and various adsorption isotherms are obeyed. Various types of green inhibitors and their effect on different metals are mentioned in the paper.

  2. Inhibiting scale in oil wells

    Energy Technology Data Exchange (ETDEWEB)

    D' Errico, M.J.; Adler, S.F.

    1972-09-27

    An oil well treatment is described to inhibit the formation of hard scale by precipitation from the oil well brine of scale-forming water insoluble sulfate, carbonate, and other salts. The process consists of incorporating into the oil well during a fracturing treatment, a fluid containing a solid polymeric material characterized by molecular weight in the range of 1,000 to 15,000 and a substantially linear structure, derived by the linear polymerization of at least one monoolefinically unsaturated compound through the olefinically unsaturated group. The linear structure has pendent groups, 50% of which are carboxy groups, the carboxy groups being neutralized with a sufficient proportion of at least one compound having a cation of a metal selected from alkaline earth metals, chromium, aluminum, iron, cobalt, zinc, nickel or copper to render the polymer soluble in water at 25$C to a concentration of not more than 50 ppm. (8 claims)

  3. Latent inhibition in human adults without masking.

    Science.gov (United States)

    Escobar, Martha; Arcediano, Francisco; Miller, Ralph R

    2003-09-01

    Latent inhibition refers to attenuated responding to Cue X observed when the X-outcome pairings are preceded by X-alone presentations. It has proven difficult to obtain in human adults unless the preexposure (X-alone) presentations are embedded within a masking (i.e., distracting) task. The authors hypothesized that the difficulty in obtaining latent inhibition with unmasked tasks is related to the usual training procedures, in which the preexposure and conditioning experiences are separated by a set of instructions. Experiment 1 reports latent inhibition without masking in a task in which preexposure and conditioning occur without interruption. Experiments 2 and 3 demonstrate that this attenuation in responding to target Cue X does not pass a summation test for conditioned inhibition and is context specific, thereby confirming that it is latent inhibition. Experiments 3 and 4 confirm that introducing instructions between preexposure and conditioning disrupts latent inhibition.

  4. Enhanced latent inhibition in high schizotypy individuals

    OpenAIRE

    Granger, Kiri T.; Moran, Paula M.; Buckley, Matthew G.; Haselgrove, Mark

    2016-01-01

    Latent inhibition refers to a retardation in learning about a stimulus that has been rendered familiar by non-reinforced preexposure, relative to a non-preexposed stimulus. Latent inhibition has been shown to be inversely correlated with schizotypy, and abnormal in people with schizophrenia, but these findings are inconsistent. One potential contributing factor to this inconsistency is that many tasks that purport to measure latent inhibition are confounded by alternative effects that also re...

  5. Collaborative inhibition in spatial memory retrieval

    National Research Council Canada - National Science Library

    Sjolund, Lori A; Erdman, Matthew; Kelly, Jonathan W

    2014-01-01

    .... Two experiments were designed to explore whether collaborative inhibition, which has heretofore been studied using traditional memory stimuli such as word lists, also characterizes spatial memory retrieval...

  6. Inhibition of the dorsal premotor cortex does not repair surround inhibition in writer's cramp patients.

    Science.gov (United States)

    Veugen, Lidwien C; Hoffland, Britt S; Stegeman, Dick F; van de Warrenburg, Bart P

    2013-03-01

    Writer's cramp is a task-specific form of focal dystonia, characterized by abnormal movements and postures of the hand and arm during writing. Two consistent abnormalities in its pathophysiology are a loss of surround inhibition and overactivity of the dorsal premotor cortex (PMd). This study aimed to assess a possible link between these two phenomena by investigating whether PMd inhibition leads to an improvement of surround inhibition, in parallel with previously demonstrated writing improvement. Fifteen writer's cramp patients and ten controls performed a simple motor hand task during which surround inhibition was measured using transcranial magnetic stimulation. Motor cortical excitability was measured of the active and surround muscles at three phases of the task. Surround inhibition and writing performance were assessed before and after PMd inhibitory continuous theta burst stimulation. In contrast to healthy controls, patients did not show inhibition of the abductor digiti minimi muscle during movement initiation of the first dorsal interosseus muscle, confirming the loss of surround inhibition. PMd inhibition led to an improvement of writing speed in writer's cramp patients. However, in both groups, no changes in surround inhibition were observed. The results confirm a role for the PMd in the pathophysiology of writer's cramp. We show that PMd inhibition does not lead to restoration of the surround inhibition defect in writer's cramp, despite the improvement in writing. This questions the involvement of the PMd in the loss of surround inhibition, and perhaps also the direct link between surround inhibition and dystonia.

  7. Intestinal trefoil factor promotes invasion in non-tumorigenic Rat-2 fibroblast cell.

    Science.gov (United States)

    Chan, Victor Y W; Chan, Michael W Y; Leung, Wai-Keung; Leung, Po-Sing; Sung, Joseph J Y; Chan, Francis K L

    2005-04-15

    Intestinal trefoil factor (TFF3) is essential in regulating cell migration and maintaining mucosal integrity in gastrointestinal tract. We previously showed that TFF3 was overexpressed in gastric carcinoma. Whether TFF3 possesses malignant potential is not fully elucidated. We sought to investigate the effects of inducting TFF3 expression in a non-malignant rat fibroblast cell line (Rat-2) on the cell proliferation, invasion and the genes regulating cell invasion. Invasiveness and proliferation of transfected Rat-2 cell line were assessed using in vitro invasion chamber assay and colorimetric MTS assay. Differential mRNA expressions of invasion-related genes, namely, metalloproteinases (MMP-9), tissue inhibitors of metalloproteinases (TIMP-1), beta-catenin and E-cadherin, were determined by quantitative real-time polymerase chain reaction (PCR). We showed that TFF3 did not inhibit the proliferation of Rat-2 cells. We also demonstrated that transfection of TFF3 significantly promoted invasion of Rat-2 cells by 1.4- to 2.2-folds. There was an upregulation of beta-catenin (13.1-23.0%) and MMP-9 (43.4-92.2%) mRNA expression levels, and downregulation of E-cadherin (25.6-33.8%) and TIMP-1 (31.5-37.8%) in TFF3-transfected cells compared to controls during 48-h incubation. Our results suggested that TFF3 possesses malignant potential through promotion of cell invasiveness and alteration of invasion-related genes.

  8. Reduced surround inhibition in musicians.

    Science.gov (United States)

    Shin, Hae-Won; Kang, Suk Y; Hallett, Mark; Sohn, Young H

    2012-06-01

    To investigate whether surround inhibition (SI) in the motor system is altered in professional musicians, we performed a transcranial magnetic stimulation (TMS) study in 10 professional musicians and 15 age-matched healthy non-musicians. TMS was set to be triggered by self-initiated flexion of the index finger at different intervals ranging from 3 to 1,000 ms. Average motor evoked potential (MEP) amplitudes obtained from self-triggered TMS were normalized to average MEPs of the control TMS at rest and expressed as a percentage. Normalized MEP amplitudes of the abductor digiti minimi (ADM) muscles were compared between the musicians and non-musicians with the primary analysis being the intervals between 3 and 80 ms (during the movement). A mixed-design ANOVA revealed a significant difference in normalized ADM MEPs during the index finger flexion between groups, with less SI in the musicians. This study demonstrated that the functional operation of SI is less strong in musicians than non-musicians, perhaps due to practice of movement synergies involving both muscles. Reduced SI, however, could lead susceptible musicians to be prone to develop task-specific dystonia.

  9. Activation of Wnt signaling pathway by human papillomavirus E6 and E7 oncogenes in HPV16-positive oropharyngeal squamous carcinoma cells.

    Science.gov (United States)

    Rampias, Theodore; Boutati, Eleni; Pectasides, Eirini; Sasaki, Clarence; Kountourakis, Panteleimon; Weinberger, Paul; Psyrri, Amanda

    2010-03-01

    We sought to determine the role of human papillomavirus (HPV) E6 and E7 oncogenes in nuclear beta-catenin accumulation, a hallmark of activated canonical Wnt signaling pathway. We used HPV16-positive oropharyngeal cancer cell lines 147T and 090, HPV-negative cell line 040T, and cervical cell lines SiHa (bearing integrated HPV16) and HeLa (bearing integrated HPV18) to measure the cytoplasmic and nuclear beta-catenin levels and the beta-catenin/Tcf transcriptional activity before and after E6/E7 gene silencing. Repression of HPV E6 and E7 genes induced a substantial reduction in nuclear beta-catenin levels. Luciferase assay showed that transcriptional activation of Tcf promoter by beta-catenin was lower after silencing. The protein levels of beta-catenin are tightly regulated by the ubiquitin/proteasome system. We therefore performed expression analysis of regulators of beta-catenin degradation and nuclear transport and showed that seven in absentia homologue (Siah-1) mRNA and protein levels were substantially upregulated after E6/E7 repression. Siah-1 protein promotes the degradation of beta-catenin through the ubiquitin/proteasome system. To determine whether Siah-1 is important for the proteasomal degradation of beta-catenin in HPV16-positive oropharyngeal cancer cells, we introduced a Siah-1 expression vector into 147T and 090 cells and found substantial reduction of endogenous beta-catenin in these cells. Thus, E6 and E7 are involved in beta-catenin nuclear accumulation and activation of Wnt signaling in HPV-induced cancers. In addition, we show the significance of the endogenous Siah-1-dependent ubiquitin/proteasome pathway for beta-catenin degradation and its regulation by E6/E7 viral oncoproteins in HPV16-positive oropharyngeal cancer cells.

  10. Cellulase Inhibition by High Concentrations of Monosaccharides

    DEFF Research Database (Denmark)

    Hsieh, Chia-Wen; Cannella, David; Jørgensen, Henning

    2014-01-01

    that low free water availability contributes to cellulase inhibition. Of the hydrolytic enzymes involved, those acting on the cellulose substrate, that is, exo- and endoglucanases, were the most inhibited. The β -glucosidases were shown to be less sensitive to high monosaccharide concentrations except...

  11. A Qualitative Approach to Enzyme Inhibition

    Science.gov (United States)

    Waldrop, Grover L.

    2009-01-01

    Most general biochemistry textbooks present enzyme inhibition by showing how the basic Michaelis-Menten parameters K[subscript m] and V[subscript max] are affected mathematically by a particular type of inhibitor. This approach, while mathematically rigorous, does not lend itself to understanding how inhibition patterns are used to determine the…

  12. Inhibited and Uninhibited Types of Children.

    Science.gov (United States)

    Kagan, Jerome; And Others

    1989-01-01

    Investigates the preservation of inhibited and uninhibited behaviors in 100 children of 14, 20, 32, and 48 months. Children who had been extremely inhibited or uninhibited at 14 and 20 months differed significantly at 4 years of age in behavior and cardiac acceleration. (RJC)

  13. Inhibition: Mental Control Process or Mental Resource?

    Science.gov (United States)

    Im-Bolter, Nancie; Johnson, Janice; Ling, Daphne; Pascual-Leone, Juan

    2015-01-01

    The current study tested 2 models of inhibition in 45 children with language impairment and 45 children with normally developing language; children were aged 7 to 12 years. Of interest was whether a model of inhibition as a mental-control process (i.e., executive function) or as a mental resource would more accurately reflect the relations among…

  14. Quorum Sensing Inhibition, Relevance to Periodontics

    OpenAIRE

    Yada, Sudheer; Kamalesh, B; Sonwane, Siddharth; Guptha, Indra; Swetha, R K

    2015-01-01

    Quorum sensing helps bacteria to communicate with each other and in coordinating their behavior. Many diseases of human beings, plants, and animals are mediated by quorum sensing. Various approaches are being tried to inhibit this communication to control the diseases caused by bacteria. Periodontal pathogens also communicate through quorum sensing and new approaches to treat periodontal disease using quorum sensing inhibition need to explored.

  15. A Qualitative Approach to Enzyme Inhibition

    Science.gov (United States)

    Waldrop, Grover L.

    2009-01-01

    Most general biochemistry textbooks present enzyme inhibition by showing how the basic Michaelis-Menten parameters K[subscript m] and V[subscript max] are affected mathematically by a particular type of inhibitor. This approach, while mathematically rigorous, does not lend itself to understanding how inhibition patterns are used to determine the…

  16. Quorum sensing inhibition, relevance to periodontics.

    Science.gov (United States)

    Yada, Sudheer; Kamalesh, B; Sonwane, Siddharth; Guptha, Indra; Swetha, R K

    2015-01-01

    Quorum sensing helps bacteria to communicate with each other and in coordinating their behavior. Many diseases of human beings, plants, and animals are mediated by quorum sensing. Various approaches are being tried to inhibit this communication to control the diseases caused by bacteria. Periodontal pathogens also communicate through quorum sensing and new approaches to treat periodontal disease using quorum sensing inhibition need to explored.

  17. Inhibition in Autism: Children with Autism Have Difficulty Inhibiting Irrelevant Distractors but Not Prepotent Responses

    Science.gov (United States)

    Adams, Nena C.; Jarrold, Christopher

    2012-01-01

    Resistance to distractor inhibition tasks have previously revealed impairments in children with autism. However, on the classic Stroop task and other prepotent response tasks, children with autism show intact inhibition. These data may reflect a distinction between prepotent response and resistance to distractor inhibition. The current study…

  18. Inhibition of ethylene production by rhizobitoxine

    Energy Technology Data Exchange (ETDEWEB)

    Owens, L.D.; Lieberman, M.; Kunishi, A.

    1970-01-01

    Rhizobitoxine, an inhibitor of methionine biosynthesis in Salmonella typhimurium, inhibited ethylene production about 75% in light-grown sorghum seedlings and in senescent apple tissue. Ethylene production stimulated by indoleacetic acid and kinetin in sorghum was similarly inhibited. With both apple and sorghum, the inhibition could only be partially relieved by additions of methionine. A methionine analogue, ..cap alpha..-keto-..gamma..-methylthiobutyric acid, which has been suggested as an intermediate between methionine and ethylene, had no effect on the inhibition. Incorporation of /sup 14/C from added methionine-/sup 14/C into ethylene was curtailed by rhizobitoxine to about the same extent as was ethylene production. These results suggest that rhizobitoxine interferes with ethylene biosynthesis by blocking the conversion of methionine to ethylene and not indirectly by inhibiting the biosynthesis of methionine. Ethylene production by Penicillium digitatum, a fungus which produces ethylene via pathways not utilizing methionine as a precursor, was not affected by rhizobitoxine. 16 references, 2 figures, 4 tables.

  19. Habituation, latent inhibition, and extinction.

    Science.gov (United States)

    Jordan, Wesley P; Todd, Travis P; Bucci, David J; Leaton, Robert N

    2015-06-01

    In two conditioned suppression experiments with a latent inhibition (LI) design, we measured the habituation of rats in preexposure, their LI during conditioning, and then extinction over days. In the first experiment, lick suppression, the preexposed group (PE) showed a significant initial unconditioned response (UR) to the target stimulus and significant long-term habituation (LTH) of that response over days. The significant difference between the PE and nonpreexposed (NPE) groups on the first conditioning trial was due solely to the difference in their URs to the conditioned stimulus (CS)-a habituated response (PE) and an unhabituated response (NPE). In the second experiment, bar-press suppression, little UR to the target stimulus was apparent during preexposure, and no detectable LTH. Thus, there was no difference between the PE and NPE groups on the first conditioning trial. Whether the UR to the CS confounds the interpretation of LI (Exp. 1) or not (Exp. 2) can only be known if the UR is measured. In both experiments, LI was observed in acquisition. Also in both experiments, rats that were preexposed and then conditioned to asymptote were significantly more resistant to extinction than were the rats not preexposed. This result contrasts with the consistently reported finding that preexposure either produces less resistance to extinction or has no effect on extinction. The effect of stimulus preexposure survived conditioning to asymptote and was reflected directly in extinction. These two experiments provide a cautionary procedural note for LI experiments and have shown an unexpected extinction effect that may provide new insights into the interpretation of LI.

  20. Fear inhibition in high trait anxiety.

    Science.gov (United States)

    Kindt, Merel; Soeter, Marieke

    2014-01-01

    Trait anxiety is recognized as an individual risk factor for the development of anxiety disorders but the neurobiological mechanisms remain unknown. Here we test whether trait anxiety is associated with impaired fear inhibition utilizing the AX+/BX- conditional discrimination procedure that allows for the independent evaluation of startle fear potentiation and inhibition of fear. Sixty undergraduate students participated in the study--High Trait Anxious: n = 28 and Low Trait Anxious: n = 32. We replicated earlier findings that a transfer of conditioned inhibition for startle responses requires contingency awareness. However, contrary to the fear inhibition hypothesis, our data suggest that high trait anxious individuals show a normal fear inhibition of conditioned startle responding. Only at the cognitive level the high trait anxious individuals showed evidence for impaired inhibitory learning of the threat cue. Together with other findings where impaired fear inhibition was only observed in those PTSD patients who were either high on hyperarousal symptoms or with current anxiety symptoms, we question whether impaired fear inhibition is a biomarker for the development of anxiety disorders.

  1. BST2/Tetherin Inhibition of Alphavirus Exit

    Directory of Open Access Journals (Sweden)

    Yaw Shin Ooi

    2015-04-01

    Full Text Available Alphaviruses such as chikungunya virus (CHIKV and Semliki Forest virus (SFV are small enveloped RNA viruses that bud from the plasma membrane. Tetherin/BST2 is an interferon-induced host membrane protein that inhibits the release of many enveloped viruses via direct tethering of budded particles to the cell surface. Alphaviruses have highly organized structures and exclude host membrane proteins from the site of budding, suggesting that their release might be insensitive to tetherin inhibition. Here, we demonstrated that exogenously-expressed tetherin efficiently inhibited the release of SFV and CHIKV particles from host cells without affecting virus entry and infection. Alphavirus release was also inhibited by the endogenous levels of tetherin in HeLa cells. While rubella virus (RuV and dengue virus (DENV have structural similarities to alphaviruses, tetherin inhibited the release of RuV but not DENV. We found that two recently identified tetherin isoforms differing in length at the N-terminus exhibited distinct capabilities in restricting alphavirus release. SFV exit was efficiently inhibited by the long isoform but not the short isoform of tetherin, while both isoforms inhibited vesicular stomatitis virus exit. Thus, in spite of the organized structure of the virus particle, tetherin specifically blocks alphavirus release and shows an interesting isoform requirement.

  2. The IFITMs Inhibit Zika Virus Replication

    Directory of Open Access Journals (Sweden)

    George Savidis

    2016-06-01

    Full Text Available Zika virus has emerged as a severe health threat with a rapidly expanding range. The IFITM family of restriction factors inhibits the replication of a broad range of viruses, including the closely related flaviruses West Nile virus and dengue virus. Here, we show that IFITM1 and IFITM3 inhibit Zika virus infection early in the viral life cycle. Moreover, IFITM3 can prevent Zika-virus-induced cell death. These results suggest that strategies to boost the actions and/or levels of the IFITMs might be useful for inhibiting a broad range of emerging viruses.

  3. Reversible Inhibition of Cellular Metabolism by Ribavirin

    Science.gov (United States)

    Larsson, Alf; Stenberg, Kjell; Öberg, Bo

    1978-01-01

    The broad spectrum antiviral drug ribavirin (Virazole, 1-β-d-ribofuranosyl-1,2,4-triazole-3-carboxamide) inhibits cellular macromolecular synthesis as well as cell division in eucaryotic cells. The concentration and time dependence have been studied. One-hour treatment with 25 μM ribavirin or 18 h with 2 μM inhibited the deoxyribonucleic acid synthesis to 50%. Higher concentrations of ribavirin were required to obtain a similar inhibition of ribonucleic acid and protein synthesis. This effect on cell metabolism and cell division can be reversed by removing the drug from the cells. PMID:646339

  4. Inhibition of vimentin or B1 integrin reverts morphology of prostate tumor cells grown in laminin-rich extracellular matrix gels and reduces tumor growth in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xueping; Fournier, Marcia V; Ware, Joy L; Bissell, Mina J; Yacoub, Adly; Zehner, Zendra E

    2008-06-12

    Prostate epithelial cells grown embedded in laminin-rich extracellular matrix (lrECM) undergo morphologic changes that closely resemble their architecture in vivo. In this study, growth characteristics of three human prostate epithelial sublines derived from the same cellular lineage, but displaying different tumorigenic and metastatic properties in vivo, were assessed in three-dimensional lrECM gels. M12, a highly tumorigenic and metastatic subline, was derived from the immortalized, prostate epithelial P69 cell line by selection in athymic, nude mice and found to contain a deletion of 19p-q13.1. The stable reintroduction of an intact human chromosome 19 into M12 resulted in a poorly tumorigenic subline, designated F6. When embedded in lrECM gels, the parental, nontumorigenic P69 line produced acini with clearly defined lumena. Immunostaining with antibodies to {beta}-catenin, E-cadherin, or {alpha}6 and {beta}1 integrins showed polarization typical of glandular epithelium. In contrast, the metastatic M12 subline produced highly disorganized cells with no evidence of polarization. The F6 subline reverted to acini-like structures exhibiting basal polarity marked with integrins. Reducing either vimentin levels via small interfering RNA interference or the expression of {alpha}6 and {beta}1 integrins by the addition of blocking antibodies, reorganized the M12 subline into forming polarized acini. The loss of vimentin significantly reduced M12-Vim tumor growth when assessed by s.c. injection in athymic mice. Thus, tumorigenicity in vivo correlated with disorganized growth in three-dimensional lrECM gels. These studies suggest that the levels of vimentin and {beta}1 integrin play a key role in the homeostasis of the normal acinus in prostate and that their dysregulation may lead to tumorigenesis. [Mol Cancer Ther 2009;8(3):499-508].

  5. Lobelane inhibits methamphetamine-evoked dopamine release via inhibition of the vesicular monoamine transporter-2.

    Science.gov (United States)

    Nickell, Justin R; Krishnamurthy, Sairam; Norrholm, Seth; Deaciuc, Gabriela; Siripurapu, Kiran B; Zheng, Guangrong; Crooks, Peter A; Dwoskin, Linda P

    2010-02-01

    Lobeline is currently being evaluated in clinical trials as a methamphetamine abuse treatment. Lobeline interacts with nicotinic receptor subtypes, dopamine transporters (DATs), and vesicular monoamine transporters (VMAT2s). Methamphetamine inhibits VMAT2 and promotes dopamine (DA) release from synaptic vesicles, resulting ultimately in increased extracellular DA. The present study generated structure-activity relationships by defunctionalizing the lobeline molecule and determining effects on [(3)H]dihydrotetrabenazine binding, inhibition of [(3)H]DA uptake into striatal synaptic vesicles and synaptosomes, the mechanism of VMAT2 inhibition, and inhibition of methamphetamine-evoked DA release. Compared with lobeline, the analogs exhibited greater potency inhibiting DA transporter (DAT) function. Saturated analogs, lobelane and nor-lobelane, exhibited high potency (K(i) = 45 nM) inhibiting vesicular [(3)H]DA uptake, and lobelane competitively inhibited VMAT2 function. Lobeline and lobelane exhibited 67- and 35-fold greater potency, respectively, in inhibiting VMAT2 function compared to DAT function. Lobelane potently decreased (IC(50) = 0.65 microM; I(max) = 73%) methamphetamine-evoked DA overflow, and with a greater maximal effect compared with lobeline (IC(50) = 0.42 microM, I(max) = 56.1%). These results provide support for VMAT2 as a target for inhibition of methamphetamine effects. Both trans-isomers and demethylated analogs of lobelane had reduced or unaltered potency inhibiting VMAT2 function and lower maximal inhibition of methamphetamine-evoked DA release compared with lobelane. Thus, defunctionalization, cis-stereochemistry of the side chains, and presence of the piperidino N-methyl are structural features that afford greatest inhibition of methamphetamine-evoked DA release and enhancement of selectivity for VMAT2. The current results reveal that lobelane, a selective VMAT2 inhibitor, inhibits methamphetamine-evoked DA release and is a promising lead for

  6. Lobelane Inhibits Methamphetamine-Evoked Dopamine Release via Inhibition of the Vesicular Monoamine Transporter-2S⃞

    Science.gov (United States)

    Nickell, Justin R.; Krishnamurthy, Sairam; Norrholm, Seth; Deaciuc, Gabriela; Siripurapu, Kiran B.; Zheng, Guangrong; Crooks, Peter A.

    2010-01-01

    Lobeline is currently being evaluated in clinical trials as a methamphetamine abuse treatment. Lobeline interacts with nicotinic receptor subtypes, dopamine transporters (DATs), and vesicular monoamine transporters (VMAT2s). Methamphetamine inhibits VMAT2 and promotes dopamine (DA) release from synaptic vesicles, resulting ultimately in increased extracellular DA. The present study generated structure-activity relationships by defunctionalizing the lobeline molecule and determining effects on [3H]dihydrotetrabenazine binding, inhibition of [3H]DA uptake into striatal synaptic vesicles and synaptosomes, the mechanism of VMAT2 inhibition, and inhibition of methamphetamine-evoked DA release. Compared with lobeline, the analogs exhibited greater potency inhibiting DA transporter (DAT) function. Saturated analogs, lobelane and nor-lobelane, exhibited high potency (Ki = 45 nM) inhibiting vesicular [3H]DA uptake, and lobelane competitively inhibited VMAT2 function. Lobeline and lobelane exhibited 67- and 35-fold greater potency, respectively, in inhibiting VMAT2 function compared to DAT function. Lobelane potently decreased (IC50 = 0.65 μM; Imax = 73%) methamphetamine-evoked DA overflow, and with a greater maximal effect compared with lobeline (IC50 = 0.42 μM, Imax = 56.1%). These results provide support for VMAT2 as a target for inhibition of methamphetamine effects. Both trans-isomers and demethylated analogs of lobelane had reduced or unaltered potency inhibiting VMAT2 function and lower maximal inhibition of methamphetamine-evoked DA release compared with lobelane. Thus, defunctionalization, cis-stereochemistry of the side chains, and presence of the piperidino N-methyl are structural features that afford greatest inhibition of methamphetamine-evoked DA release and enhancement of selectivity for VMAT2. The current results reveal that lobelane, a selective VMAT2 inhibitor, inhibits methamphetamine-evoked DA release and is a promising lead for the development of a

  7. Inhibition of urinary calculi -- a spectroscopic study

    Science.gov (United States)

    Manciu, Felicia; Govani, Jayesh; Durrer, William; Reza, Layra; Pinales, Luis

    2008-10-01

    Although a considerable number of investigations have already been undertaken and many causes such as life habits, metabolic disorders, and genetic factors have been noted as sources that accelerate calculi depositions and aggregations, there are still plenty of unanswered questions regarding efficient inhibition and treatment mechanisms. Thus, in an attempt to acquire more insights, we propose here a detailed scientific study of kidney stone formation and growth inhibition based on a traditional medicine approach with Rotula Aquatica Lour (RAL) herbal extracts. A simplified single diffusion gel growth technique was used for synthesizing the samples for the present study. The unexpected Zn presence in the sample with RAL inhibitor, as revealed by XPS measurements, explains the inhibition process and the dramatic reflectance of the incident light observed in the infrared transmission studies. Raman data demonstrate potential binding of the inhibitor with the oxygen of the kidney stone. Photoluminescence results corroborate to provide additional evidence of Zn-related inhibition.

  8. Toxicants inhibiting anaerobic digestion: a review.

    Science.gov (United States)

    Chen, Jian Lin; Ortiz, Raphael; Steele, Terry W J; Stuckey, David C

    2014-12-01

    Anaerobic digestion is increasingly being used to treat wastes from many sources because of its manifold advantages over aerobic treatment, e.g. low sludge production and low energy requirements. However, anaerobic digestion is sensitive to toxicants, and a wide range of compounds can inhibit the process and cause upset or failure. Substantial research has been carried out over the years to identify specific inhibitors/toxicants, and their mechanism of toxicity in anaerobic digestion. In this review we present a detailed and critical summary of research on the inhibition of anaerobic processes by specific organic toxicants (e.g., chlorophenols, halogenated aliphatics and long chain fatty acids), inorganic toxicants (e.g., ammonia, sulfide and heavy metals) and in particular, nanomaterials, focusing on the mechanism of their inhibition/toxicity. A better understanding of the fundamental mechanisms behind inhibition/toxicity will enhance the wider application of anaerobic digestion.

  9. Glycerol inhibition of ruminal lipolysis in vitro

    Science.gov (United States)

    Supplemental glycerol inhibits rumen lipolysis, a prerequisite for rumen biohydrogenation, which is responsible for the saturation of dietary fatty acids consumed by ruminant animals. Feeding excess glycerol, however, adversely affects dry matter digestibility. To more clearly define the effect of...

  10. Neomycin inhibits angiogenin-induced angiogenesis

    OpenAIRE

    1998-01-01

    A class of angiogenesis inhibitor has emerged from our mechanistic study of the action of angiogenin, a potent angiogenic factor. Neomycin, an aminoglycoside antibiotic, inhibits nuclear translocation of human angiogenin in human endothelial cells, an essential step for angiogenin-induced angiogenesis. The phospholipase C-inhibiting activity of neomycin appears to be involved, because U-73122, another phospholipase C inhibitor, has a similar effect. In contrast, genistein, oxophenylarsine, an...

  11. Neomycin inhibits angiogenin-induced angiogenesis

    OpenAIRE

    Hu, Guo-fu

    1998-01-01

    A class of angiogenesis inhibitor has emerged from our mechanistic study of the action of angiogenin, a potent angiogenic factor. Neomycin, an aminoglycoside antibiotic, inhibits nuclear translocation of human angiogenin in human endothelial cells, an essential step for angiogenin-induced angiogenesis. The phospholipase C-inhibiting activity of neomycin appears to be involved, because U-73122, another phospholipase C inhibitor, has a similar effect. In contrast, genistein, oxophenylarsine, an...

  12. Inhibited solid propellant composition containing beryllium hydride

    Science.gov (United States)

    Thompson, W. W. (Inventor)

    1978-01-01

    An object of this invention is to provide a composition of beryllium hydride and carboxy-terminated polybutadiene which is stable. Another object of this invention is to provide a method for inhibiting the reactivity of beryllium hydride toward carboxy-terminated polybutadiene. It was found that a small amount of lecithin inhibits the reaction of beryllium hydride with the acid groups in carboxy terminated polybutadiene.

  13. The inhibition of monoamine oxidase by esomeprazole

    OpenAIRE

    2013-01-01

    Virtual screening of a library of drugs has suggested that esomeprazole, the S-enantiomer of omeprazole, may possess binding affinities for the active sites of the monoamine oxidase (MAO) A and B enzymes. Based on this finding, the current study examines the MAO inhibitory properties of esomeprazole. Using recombinant human MAO-A and MAO-B, IC50 values for the inhibition of these enzymes by esomeprazole were experimentally determined. To examine the reversibility of MAO inhibition by esomepra...

  14. Piperine, a dietary phytochemical, inhibits angiogenesis

    OpenAIRE

    2012-01-01

    Angiogenesis plays an important role in tumor progression. Piperine, a major alkaloid constituent of black pepper, has diverse physiological actions including killing of cancer cells; however, the effect of piperine on angiogenesis is not known. Here we show that piperine inhibited the proliferation and G1/S transition of human umbilical vein endothelial cells (HUVECs) without causing cell death. Piperine also inhibited HUVEC migration and tubule formation in vitro, as well as collagen-induce...

  15. Inhibition in the Human Auditory Cortex.

    Directory of Open Access Journals (Sweden)

    Koji Inui

    Full Text Available Despite their indispensable roles in sensory processing, little is known about inhibitory interneurons in humans. Inhibitory postsynaptic potentials cannot be recorded non-invasively, at least in a pure form, in humans. We herein sought to clarify whether prepulse inhibition (PPI in the auditory cortex reflected inhibition via interneurons using magnetoencephalography. An abrupt increase in sound pressure by 10 dB in a continuous sound was used to evoke the test response, and PPI was observed by inserting a weak (5 dB increase for 1 ms prepulse. The time course of the inhibition evaluated by prepulses presented at 10-800 ms before the test stimulus showed at least two temporally distinct inhibitions peaking at approximately 20-60 and 600 ms that presumably reflected IPSPs by fast spiking, parvalbumin-positive cells and somatostatin-positive, Martinotti cells, respectively. In another experiment, we confirmed that the degree of the inhibition depended on the strength of the prepulse, but not on the amplitude of the prepulse-evoked cortical response, indicating that the prepulse-evoked excitatory response and prepulse-evoked inhibition reflected activation in two different pathways. Although many diseases such as schizophrenia may involve deficits in the inhibitory system, we do not have appropriate methods to evaluate them; therefore, the easy and non-invasive method described herein may be clinically useful.

  16. Inhibition of Heme Peroxidases by Melamine

    Directory of Open Access Journals (Sweden)

    Pattaraporn Vanachayangkul

    2012-01-01

    Full Text Available In 2008 melamine-contaminated infant formula and dairy products in China led to over 50,000 hospitalizations of children due to renal injuries. In North America during 2007 and in Asia during 2004, melamine-contaminated pet food products resulted in numerous pet deaths due to renal failure. Animal studies have confirmed the potent renal toxicity of melamine combined with cyanuric acid. We showed previously that the solubility of melamine cyanurate is low at physiologic pH and ionic strength, provoking us to speculate how toxic levels of these compounds could be transported through the circulation without crystallizing until passing into the renal filtrate. We hypothesized that melamine might be sequestered by heme proteins, which could interfere with heme enzyme activity. Four heme peroxidase enzymes were selected for study: horseradish peroxidase (HRP, lactoperoxidase (LPO, and cyclooxygenase-1 and -2 (COX-1 and -2. Melamine exhibited noncompetitive inhibition of HRP (9.5±0.7mM, and LPO showed a mixed model of inhibition (14.5±4.7mM. The inhibition of HRP and LPO was confirmed using a chemiluminescent peroxidase assay. Melamine also exhibited COX-1 inhibition, but inhibition of COX-2 was not detected. Thus, our results demonstrate that melamine inhibits the activity of three heme peroxidases.

  17. Scale Inhibition of Green Inhibitor Polyepoxysuccinic Sodium

    Institute of Scientific and Technical Information of China (English)

    Feng Hui-xia; Wang Yi; Yu Shu-rong; Liang Bao-feng

    2004-01-01

    Polyepoxysuccinic acid (PESA) is the green water treatment agents recognized all over the world[1-3]. It is found that when PESA is used alone, it had good scale inhibition. PESA should be included in the category of green scale inhibitor.PESA is synthesized with maleicanhydride in the presence of catalysts. The effect on scale-in-hibiting property of the product from amount and feed times of catalyst, the reaction temperature, the reaction time were investigated. The optimum reaction conditions are as follows:n(maleic anhydride):n(Ca(OH)2):n(NaOH)=1:0.05-0.2:0.5, reaction temperature 95C, reaction time 4h.In all the references about PESA, PESA is researched as a kind of highly effective scale inhibitor or chelate. In this paper, the performance of scale inhibition of PESA is evaluated by scale static inhibitor.The results are shown in Figture1.It is evident from our experimental data (Figture1) that when inhibition for CaCO3.With the increase of PESA dosage, scale inhibition increases. When dosage is more than 6mg/L, inhibition efficiency is over 50%. The formulas give scale inhibition efficiency more than 95% at 12mg/L of total dosage.

  18. Spatially reciprocal inhibition of inhibition within a stimulus selection network in the avian midbrain.

    Science.gov (United States)

    Goddard, C Alex; Mysore, Shreesh P; Bryant, Astra S; Huguenard, John R; Knudsen, Eric I

    2014-01-01

    Reciprocal inhibition between inhibitory projection neurons has been proposed as the most efficient circuit motif to achieve the flexible selection of one stimulus among competing alternatives. However, whether such a motif exists in networks that mediate selection is unclear. Here, we study the connectivity within the nucleus isthmi pars magnocellularis (Imc), a GABAergic nucleus that mediates competitive selection in the midbrain stimulus selection network. Using laser photostimulation of caged glutamate, we find that feedback inhibitory connectivity is global within the Imc. Unlike typical lateral inhibition in other circuits, intra-Imc inhibition remains functionally powerful over long distances. Anatomically, we observed long-range axonal projections and retrograde somatic labeling from focal injections of bi-directional tracers in the Imc, consistent with spatial reciprocity of intra-Imc inhibition. Together, the data indicate that spatially reciprocal inhibition of inhibition occurs throughout the Imc. Thus, the midbrain selection circuit possesses the most efficient circuit motif possible for fast, reliable, and flexible selection.

  19. Neomycin inhibits angiogenin-induced angiogenesis.

    Science.gov (United States)

    Hu, G F

    1998-08-18

    A class of angiogenesis inhibitor has emerged from our mechanistic study of the action of angiogenin, a potent angiogenic factor. Neomycin, an aminoglycoside antibiotic, inhibits nuclear translocation of human angiogenin in human endothelial cells, an essential step for angiogenin-induced angiogenesis. The phospholipase C-inhibiting activity of neomycin appears to be involved, because U-73122, another phospholipase C inhibitor, has a similar effect. In contrast, genistein, oxophenylarsine, and staurosporine, inhibitors of tyrosine kinase, phosphotyrosine phosphatase, and protein kinase C, respectively, do not inhibit nuclear translocation of angiogenin. Neomycin inhibits angiogenin-induced proliferation of human endothelial cells in a dose-dependent manner. At 50 microM, neomycin abolishes angiogenin-induced proliferation but does not affect the basal level of proliferation and cell viability. Other aminoglycoside antibiotics, including gentamicin, streptomycin, kanamycin, amikacin, and paromomycin, have no effect on angiogenin-induced cell proliferation. Most importantly, neomycin completely inhibits angiogenin-induced angiogenesis in the chicken chorioallantoic membrane at a dose as low as 20 ng per egg. These results suggest that neomycin and its analogs are a class of agents that may be developed for anti-angiogenin therapy.

  20. Aspartate inhibits Staphylococcus aureus biofilm formation.

    Science.gov (United States)

    Yang, Hang; Wang, Mengyue; Yu, Junping; Wei, Hongping

    2015-04-01

    Biofilm formation renders Staphylococcus aureus highly resistant to conventional antibiotics and host defenses. Four D-amino acids (D-Leu, D-Met, D-Trp and D-Tyr) have been reported to be able to inhibit biofilm formation and disassemble established S. aureus biofilms. We report here for the first time that both D- and L-isoforms of aspartate (Asp) inhibited S. aureus biofilm formation on tissue culture plates. Similar biofilm inhibition effects were also observed against other staphylococcal strains, including S. saprophyticus, S. equorum, S. chromogenes and S. haemolyticus. It was found that Asp at high concentrations (>10 mM) inhibited the growth of planktonic N315 cells, but at subinhibitory concentrations decreased the cellular metabolic activity without influencing cell growth. The decreased cellular metabolic activity might be the reason for the production of less protein and DNA in the matrix of the biofilms formed in the presence of Asp. However, varied inhibition efficacies of Asp were observed for biofilms formed by clinical staphylococcal isolates. There might be mechanisms other than decreasing the metabolic activity, e.g. the biofilm phenotypes, affecting biofilm formation in the presence of Asp.

  1. Matrix metalloproteinase inhibition in atherosclerosis and stroke.

    Science.gov (United States)

    Roycik, M D; Myers, J S; Newcomer, R G; Sang, Q-X A

    2013-09-01

    Matrix metalloproteinases (MMPs) are a family of tightly regulated, zinc-dependent proteases that degrade extracellular matrix (ECM), cell surface, and intracellular proteins. Vascular remodeling, whether as a function of normal physiology or as a consequence of a myriad of pathological processes, requires degradation of the ECM. Thus, the expression and activity of many MMPs are up-regulated in numerous conditions affecting the vasculature and often exacerbate vascular dysfunction. A growing body of evidence supports the rationale of using MMP inhibitors for the treatment of cardiovascular diseases, stroke, and chronic vascular dementia. This manuscript will examine promising targets for MMP inhibition in atherosclerosis and stroke, reviewing findings in preclinical animal models and human patient studies. Strategies for MMP inhibition have progressed beyond chelating the catalytic zinc to functional blocking antibodies and peptides that target either the active site or exosites of the enzyme. While the inhibition of MMP activity presents a rational therapeutic avenue, the multiplicity of roles for MMPs and the non-selective nature of MMP inhibitors that cause unintended side-effects hinder full realization of MMP inhibition as therapy for vascular disease. For optimal therapeutic effects to be realized, specific targets for MMP inhibition in these pathologies must first be identified and then attacked by potent and selective agents during the most appropriate timepoint.

  2. Genistein inhibits differentiation of primary human adipocytes.

    Science.gov (United States)

    Park, Hea Jin; Della-Fera, Mary Anne; Hausman, Dorothy B; Rayalam, Srujana; Ambati, Suresh; Baile, Clifton A

    2009-02-01

    Genistein, a major soy isoflavone, has been reported to exhibit antiadipogenic and proapoptotic potential in vivo and in vitro. It is also a phytoestrogen which has high affinity to estrogen receptor beta. In this study, we determined the effect of genistein on adipogenesis and estrogen receptor (ER) alpha and beta expression during differentiation in primary human preadipocytes. Genistein inhibited lipid accumulation in a dose-dependent manner at concentrations of 6.25 microM and higher, with 50 microM genistein inhibiting lipid accumulation almost completely. Low concentrations of genistein (3.25 microM) increased cell viability and higher concentrations (25 and 50 microM) decreased it by 16.48+/-1.35% (P<.0001) and 50.68+/-1.34% (P<.0001). Oil Red O staining was used to confirm the effects on lipid accumulation. The inhibition of lipid accumulation was associated with inhibition of glycerol-3-phosphate dehydrogenase activity and down-regulation of expression of adipocyte-specific genes, including peroxisome proliferator-activated receptor gamma, CCAAT/enhancer binding protein alpha, glycerol-3-phosphate dehydrogenase, adipocyte fatty acid binding protein, fatty acid synthase, sterol regulatory element-binding protein 1, perilipin, leptin, lipoprotein lipase and hormone-sensitive lipase. These effects of genistein during the differentiation period were associated with down-regulation of ERalpha and ERbeta expression. This study adds to the elucidation of the molecular pathways involved in the inhibition of adipogenesis by phytoestrogens.

  3. Inhibition of ethylene production by putrescine alleviates aluminium-induced root inhibition in wheat plants.

    Science.gov (United States)

    Yu, Yan; Jin, Chongwei; Sun, Chengliang; Wang, Jinghong; Ye, Yiquan; Zhou, Weiwei; Lu, Lingli; Lin, Xianyong

    2016-01-08

    Inhibition of root elongation is one of the most distinct symptoms of aluminium (Al) toxicity. Although putrescine (Put) has been identified as an important signaling molecule involved in Al tolerance, it is yet unknown how Put mitigates Al-induced root inhibition. Here, the possible mechanism was investigated by using two wheat genotypes differing in Al resistance: Al-tolerant Xi Aimai-1 and Al-sensitive Yangmai-5. Aluminium caused more root inhibition in Yangmai-5 and increased ethylene production at the root apices compared to Xi Aimai-1, whereas the effects were significantly reversed by ethylene biosynthesis inhibitors. The simultaneous exposure of wheat seedlings to Al and ethylene donor, ethephon, or ethylene biosynthesis precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), increased ethylene production and aggravated root inhibition, which was more pronounced in Xi Aimai-1. In contrast, Put treatment decreased ethylene production and alleviated Al-induced root inhibition in both genotypes, and the effects were more conspicuous in Yangmai-5. Furthermore, our results indicated that Al-induced ethylene production was mediated by ACC synthase (ACS) and ACC oxidase, and that Put decreased ethylene production by inhibiting ACS. Altogether, these findings indicate that ethylene is involved in Al-induced root inhibition and this process could be alleviated by Put through inhibiting ACS activity.

  4. The role of (dis)inhibition in creativity: decreased inhibition improves idea generation.

    Science.gov (United States)

    Radel, Rémi; Davranche, Karen; Fournier, Marion; Dietrich, Arne

    2015-01-01

    There is now a large body of evidence showing that many different conditions related to impaired fronto-executive functioning are associated with the enhancement of some types of creativity. In this paper, we pursue the possibility that the central mechanism associated with this effect might be a reduced capacity to exert inhibition. We tested this hypothesis by exhausting the inhibition efficiency through prolonged and intensive practice of either the Simon or the Eriksen Flanker task. Performance on another inhibition task indicated that only the cognitive resources for inhibition of participants facing high inhibition demands were impaired. Subsequent creativity tests revealed that exposure to high inhibition demands led to enhanced fluency in a divergent thinking task (Alternate Uses Task), but no such changes occurred in a convergent task (Remote Associate Task; studies 1a and 1b). The same manipulation also led to a hyper-priming effect for weakly related primes in a Lexical Decision Task (Study 2). Together, these findings suggest that inhibition selectively affects some types of creative processes and that, when resources for inhibition are lacking, the frequency and the originality of ideas was facilitated.

  5. Structural basis for transcription inhibition by tagetitoxin.

    Science.gov (United States)

    Vassylyev, Dmitry G; Svetlov, Vladimir; Vassylyeva, Marina N; Perederina, Anna; Igarashi, Noriyuki; Matsugaki, Naohiro; Wakatsuki, Soichi; Artsimovitch, Irina

    2005-12-01

    Tagetitoxin (Tgt) inhibits transcription by an unknown mechanism. A structure at a resolution of 2.4 A of the Thermus thermophilus RNA polymerase (RNAP)-Tgt complex revealed that the Tgt-binding site within the RNAP secondary channel overlaps that of the stringent control effector ppGpp, which partially protects RNAP from Tgt inhibition. Tgt binding is mediated exclusively through polar interactions with the beta and beta' residues whose substitutions confer resistance to Tgt in vitro. Importantly, a Tgt phosphate, together with two active site acidic residues, coordinates the third Mg(2+) ion, which is distinct from the two catalytic metal ions. We show that Tgt inhibits all RNAP catalytic reactions and propose a mechanism in which the Tgt-bound Mg(2+) ion has a key role in stabilization of an inactive transcription intermediate. Remodeling of the active site by metal ions could be a common theme in the regulation of catalysis by nucleic acid enzymes.

  6. Mapuche herbal medicine inhibits blood platelet aggregation.

    Science.gov (United States)

    Falkenberg, Susan Skanderup; Tarnow, Inge; Guzman, Alfonso; Mølgaard, Per; Simonsen, Henrik Toft

    2012-01-01

    12 plant species traditionally used by the Mapuche people in Chile to treat wounds and inflammations have been evaluated for their direct blood platelet inhibition. Seven of the 12 tested plant species showed platelet inhibitory effect in sheep blood, and four of these were also able to inhibit the ADP- (5.0 μM) and collagen- (2.0 μg/mL) induced aggregations in human blood. These four species in respective extracts (in brackets) were Blechnum chilense (MeOH), Luma apiculata (H(2)O), Amomyrtus luma (DCM : MeOH 1 : 1) and Cestrum parqui (DCM : MeOH 1 : 1). The platelet aggregating inhibitory effects of A. luma (DCM : MeOH 1 : 1), and L. apiculata (H(2)O) were substantial and confirmed by inhibition of platelet surface activation markers.

  7. Anticancer Alkaloid Lamellarins Inhibit Protein Kinases

    Directory of Open Access Journals (Sweden)

    Laurent Meijer

    2008-10-01

    Full Text Available Lamellarins, a family of hexacyclic pyrrole alkaloids originally isolated from marine invertebrates, display promising anti-tumor activity. They induce apoptotic cell death through multi-target mechanisms, including inhibition of topoisomerase I, interaction with DNA and direct effects on mitochondria. We here report that lamellarins inhibit several protein kinases relevant to cancer such as cyclin-dependent kinases, dualspecificity tyrosine phosphorylation activated kinase 1A, casein kinase 1, glycogen synthase kinase-3 and PIM-1. A good correlation is observed between the effects of lamellarins on protein kinases and their action on cell death, suggesting that inhibition of specific kinases may contribute to the cytotoxicity of lamellarins. Structure/activity relationship suggests several paths for the optimization of lamellarins as kinase inhibitors.

  8. Mapuche Herbal Medicine Inhibits Blood Platelet Aggregation

    Directory of Open Access Journals (Sweden)

    Susan Skanderup Falkenberg

    2012-01-01

    Full Text Available 12 plant species traditionally used by the Mapuche people in Chile to treat wounds and inflammations have been evaluated for their direct blood platelet inhibition. Seven of the 12 tested plant species showed platelet inhibitory effect in sheep blood, and four of these were also able to inhibit the ADP- (5.0 μM and collagen- (2.0 μg/mL induced aggregations in human blood. These four species in respective extracts (in brackets were Blechnum chilense (MeOH, Luma apiculata (H2O, Amomyrtus luma (DCM : MeOH 1 : 1 and Cestrum parqui (DCM : MeOH 1 : 1. The platelet aggregating inhibitory effects of A. luma (DCM : MeOH 1 : 1, and L. apiculata (H2O were substantial and confirmed by inhibition of platelet surface activation markers.

  9. Complete corrosion inhibition through graphene defect passivation.

    Science.gov (United States)

    Hsieh, Ya-Ping; Hofmann, Mario; Chang, Kai-Wen; Jhu, Jian Gang; Li, Yuan-Yao; Chen, Kuang Yao; Yang, Chang Chung; Chang, Wen-Sheng; Chen, Li-Chyong

    2014-01-28

    Graphene is expected to enable superior corrosion protection due to its impermeability and chemical inertness. Previous reports, however, demonstrate limited corrosion inhibition and even corrosion enhancement of graphene on metal surfaces. To enable the reliable and complete passivation, the origin of the low inhibition efficiency of graphene was investigated. Combining electrochemical and morphological characterization techniques, nanometer-sized structural defects in chemical vapor deposition grown graphene were found to be the cause for the limited passivation effect. Extremely fast mass transport on the order of meters per second both across and parallel to graphene layers results in an inhibition efficiency of only ∼50% for Cu covered with up to three graphene layers. Through selective passivation of the defects by atomic layer deposition (ALD) an enhanced corrosion protection of more than 99% was achieved, which compares favorably with commercial corrosion protection methods.

  10. Mesoporous silica nanoparticles inhibit cellular respiration.

    Science.gov (United States)

    Tao, Zhimin; Morrow, Matthew P; Asefa, Tewodros; Sharma, Krishna K; Duncan, Cole; Anan, Abhishek; Penefsky, Harvey S; Goodisman, Jerry; Souid, Abdul-Kader

    2008-05-01

    We studied the effect of two types of mesoporous silica nanoparticles, MCM-41 and SBA-15, on mitochondrial O 2 consumption (respiration) in HL-60 (myeloid) cells, Jurkat (lymphoid) cells, and isolated mitochondria. SBA-15 inhibited cellular respiration at 25-500 microg/mL; the inhibition was concentration-dependent and time-dependent. The cellular ATP profile paralleled that of respiration. MCM-41 had no noticeable effect on respiration rate. In cells depleted of metabolic fuels, 50 microg/mL SBA-15 delayed the onset of glucose-supported respiration by 12 min and 200 microg/mL SBA-15 by 34 min; MCM-41 also delayed the onset of glucose-supported respiration. Neither SBA-15 nor MCM-41 affected cellular glutathione. Both nanoparticles inhibited respiration of isolated mitochondria and submitochondrial particles.

  11. Quantifying hydrate formation and kinetic inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Sloan, E.D.; Subramanian, S.; Matthews, P.N.; Lederhos, J.P.; Khokhar, A.A. [Colorado School of Mines, Golden, CO (United States). Center for Hydrate Research

    1998-08-01

    In the Prausnitz tradition, molecular and macroscopic evidence of hydrate formation and kinetic inhibition is presented. On the microscopic level, the first Raman spectra are presented for the formation of both uninhibited and inhibited methane hydrates with time. This method has the potential to provide a microscopic-based kinetics model. Three macroscopic aspects of natural gas hydrate kinetic inhibition are also reported: (1) The effect of hydrate dissociation residual structures was measured, which has application in decreasing the time required for subsequent formation. (2) The performance of a kinetic inhibitor (poly(N-vinylcaprolactam) or PVCap) was measured and correlated as a function of PVCap molecular weight and concentrations of PVCap, methanol, and salt in the aqueous phase. (3) Long-duration test results indicated that the use of PVCap can prevent pipeline blockage for a time exceeding the aqueous phase residence time in some gas pipelines.

  12. Inhibition of aluminum corrosion using Opuntia extract

    Energy Technology Data Exchange (ETDEWEB)

    El-Etre, A.Y

    2003-11-01

    The inhibitive action of the mucilage extracted from the modified stems of prickly pears, toward acid corrosion of aluminum, is tested using weight loss, thermometry, hydrogen evolution and polarization techniques. It was found that the extract acts as a good corrosion inhibitor for aluminum corrosion in 2.0 M HCl solution. The inhibition action of the extract was discussed in view of Langmuir adsorption isotherm. It was found that the adsorption of the extract on aluminum surface is a spontaneous process. The inhibition efficiency (IE) increases as the extract concentration is increased. The effect of temperature on the IE was studied. It was found that the presence of extract increases the activation energy of the corrosion reaction. Moreover, the thermodynamic parameters of the adsorption process were calculated. It was found also that the Opuntia extract provides a good protection to aluminum against pitting corrosion in chloride ion containing solutions.

  13. Silver-Palladium Surfaces Inhibit Biofilm Formation

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Schroll, Casper; Hilbert, Lisbeth Rischel

    2009-01-01

    Undesired biofilm formation is a major concern in many areas. In the present study, we investigated biofilm-inhibiting properties of a silver-palladium surface that kills bacteria by generating microelectric fields and electrochemical redox processes. For evaluation of the biofilm inhibition...... efficacy and study of the biofilm inhibition mechanism, the silver-sensitive Escherichia coli J53 and the silver-resistant E. coli J53[pMG101] strains were used as model organisms, and batch and flow chamber setups were used as model systems. In the case of the silver-sensitive strain, the silver......-palladium surfaces killed the bacteria and prevented biofilm formation under conditions of low or high bacterial load. In the case of the silver-resistant strain, the silver-palladium surfaces killed surface-associated bacteria and prevented biofilm formation under conditions of low bacterial load, whereas under...

  14. Neural inhibition enables selection during language processing.

    Science.gov (United States)

    Snyder, Hannah R; Hutchison, Natalie; Nyhus, Erika; Curran, Tim; Banich, Marie T; O'Reilly, Randall C; Munakata, Yuko

    2010-09-21

    Whether grocery shopping or choosing words to express a thought, selecting between options can be challenging, especially for people with anxiety. We investigate the neural mechanisms supporting selection during language processing and its breakdown in anxiety. Our neural network simulations demonstrate a critical role for competitive, inhibitory dynamics supported by GABAergic interneurons. As predicted by our model, we find that anxiety (associated with reduced neural inhibition) impairs selection among options and associated prefrontal cortical activity, even in a simple, nonaffective verb-generation task, and the GABA agonist midazolam (which increases neural inhibition) improves selection, whereas retrieval from semantic memory is unaffected when selection demands are low. Neural inhibition is key to choosing our words.

  15. Pyrilamine inhibits nicotine-induced catecholamine secretion.

    Science.gov (United States)

    Kim, Dong-Chan; Yun, So Jeong; Park, Yong-Soo; Jun, Dong-Jae; Kim, Dongjin; Jiten Singh, N; Kim, Sanguk; Kim, Kyong-Tai

    2014-07-01

    Function of nicotine, which induces activation of all parts of the body including our brain, has been receiving much attention for a long period of time and also been actively studied by researchers for its pharmacological actions in the central nervous system. The modulation of nicotine concentration and the inhibition of nicotine binding on target receptors in the brain are the key factors for smoking addiction therapy. In previous studies showed that influx of nicotine at the blood-brain barrier was through the pyrilamine-sensitive organic cation transporters. But the direct interacting mechanism of pyrilamine on the nicotine binding target receptors has not yet been clarified. The aim of the present study is to investigate the direct binding mechanisms of a pyrilamine on the nicotinic acetylcholine receptors (nAChRs). We found that pyrilamine shares the same ligand binding pocket of nicotine (NCT) on nAChRs but interacts with more amino acid residues than NCT does. The extended part of pyrilamine interacts with additional residues in the ligand binding pocket of nAChRs which are located nearby the entrance of the binding pocket. The catecholamine (CA) secretion induced by nAChR agonist (NCT') was significantly inhibited by the pyrilamine pretreatment. Real time carbon-fiber amperometry confirmed the inhibition of the NCT'-induced exocytosis by pyrilamine in a single cell level. We also found that pyrilamine inhibited the NCT'-induced [Ca(2+)]i. In contrast, pyrilamine did not affect the increase in calcium induced by high K(+). Overall, these data suggest that pyrilamine directly docks into the ligand binding site of nAChRs and specifically inhibits the nAChR-mediated effects thereby causing inhibition of CA secretion. Therefore, pyrilamine may play an important role to explore new treatments to aid smoking cessation.

  16. Peptide inhibition of human cytomegalovirus infection

    Directory of Open Access Journals (Sweden)

    Morris Cindy A

    2011-02-01

    Full Text Available Abstract Background Human cytomegalovirus (HCMV is the most prevalent congenital viral infection in the United States and Europe causing significant morbidity and mortality to both mother and child. HCMV is also an opportunistic pathogen in immunocompromised individuals, including human immunodeficiency virus (HIV- infected patients with AIDS, and solid organ and allogeneic stem cell transplantation recipients. Current treatments for HCMV-associated diseases are insufficient due to the emergence of drug-induced resistance and cytotoxicity, necessitating novel approaches to limit HCMV infection. The aim of this study was to develop therapeutic peptides targeting glycoprotein B (gB, a major glycoprotein of HCMV that is highly conserved across the Herpesviridae family, that specifically inhibit fusion of the viral envelope with the host cell membrane preventing HCMV entry and infection. Results Using the Wimley-White Interfacial Hydrophobicity Scale (WWIHS, several regions within gB were identified that display a high potential to interact with lipid bilayers of cell membranes and hydrophobic surfaces within proteins. The ability of synthetic peptides analogous to WWIHS-positive sequences of HCMV gB to inhibit viral infectivity was evaluated. Human foreskin fibroblasts (HFF were infected with the Towne-GFP strain of HCMV (0.5 MOI, preincubated with peptides at a range of concentrations (78 nm to 100 μM, and GFP-positive cells were visualized 48 hours post-infection by fluorescence microscopy and analyzed quantitatively by flow cytometry. Peptides that inhibited HCMV infection demonstrated different inhibitory concentration curves indicating that each peptide possesses distinct biophysical properties. Peptide 174-200 showed 80% inhibition of viral infection at a concentration of 100 μM, and 51% and 62% inhibition at concentrations of 5 μM and 2.5 μM, respectively. Peptide 233-263 inhibited infection by 97% and 92% at concentrations of 100

  17. Many Putative Endocrine Disruptors Inhibit Prostaglandin Synthesis

    DEFF Research Database (Denmark)

    Kristensen, David M.; Skalkam, Maria L.; Audouze, Karine Marie Laure

    2011-01-01

    Background: Prostaglandins (PGs) play key roles in development and maintenance of homeostasis of the adult body. Despite these important roles, it remains unclear whether the PG pathway is a target for endocrine disruption. However, several known endocrine disrupting compounds (EDCs) share a high...... of endocrine disruption. Results: We found that many known EDCs inhibit the PG pathway in a mouse Sertoli cell line and in human primary mast cells. The EDCs also reduced PG synthesis in ex vivo rat testis and it was correlated with a reduced testosterone production. The inhibition of PG synthesis occurs...

  18. Inhibition of spinach bolting by growth regulators

    Directory of Open Access Journals (Sweden)

    Jan Borkowski

    2015-06-01

    Full Text Available Spinach (Spinacia oleracea L. plants must be harvested during a short period of time because they bolt just after producing some edible leaves. Maleic hydrazide (MH and its commercial preparation "Antyrost" were found to inhibit bolting very strongly. The preparation Off-shoot-O showed very weak activity in suppressing bolting but diminished markedly the resistance of spinach plants to fungus diseases. Triiodobenzoic acid stimulated bolting, and the retardant succinic acid-2-2-dimethylhydrazide (SADH did not affect bolting. Application of MH to inhibit spinach bolting cannot be recommended in practice before investigating the residues of this compound in leaves.

  19. Phytic Acid Inhibits Lipid Peroxidation In Vitro

    OpenAIRE

    Alicja Zajdel; Adam Wilczok; Ludmiła Węglarz; Zofia Dzierżewicz

    2013-01-01

    Phytic acid (PA) has been recognized as a potent antioxidant and inhibitor of iron-catalyzed hydroxyl radical formation under in vitro and in vivo conditions. Therefore, the aim of the present study was to investigate, with the use of HPLC/MS/MS, whether PA is capable of inhibiting linoleic acid autoxidation and Fe(II)/ascorbate-induced peroxidation, as well as Fe(II)/ascorbate-induced lipid peroxidation in human colonic epithelial cells. PA at 100 μM and 500 μM effectively inhibited the deca...

  20. Modif ication of periareolar mastopexy%改良双环法乳房下垂矫正术

    Institute of Scientific and Technical Information of China (English)

    王琦; 谢群; 刘丹丹

    2012-01-01

    Objective To introduce the method and experience of modified periareolar mastopexy. Methods Through a periareolar incision, The epidermal tissue was incised between the out side and the inside ring. The upper quadrant of the breast was just peeled off.The flabby deep layer of the superficial fascia beneath the upper breast gland was completely removed. Then the gland was lifted up to the normal position and the superior pole of the gland was fixed to the pectoral fascia at the second intercostal space.rotated toward each other and moulded. Implant augmentation was simultaneously employed to enhance the projection^ necessary. Results A total of 28 cases of mild to moderate breast ptosis was treated with this technique, including 9 cases of mastopexy with implant augmentation, 19 cases of mammary glandular flap rotated each other. Satisfactory results were achieved with pretty breast shape and inconspicuous periaerolar scar. Conclusion This method is simple.safe and effective.lt is an optimal choice for breast ptosis in mild to moderate degree.%目的:介绍改良双环法行乳房悬吊术的方法和经验.方法:采用传统的双环法环乳晕切口,切 除双环间表皮,在皮肤与上半乳腺的腺体表面之间剥离,去除上半腺体后松弛的浅筋膜深层,上提腺体至正常位置并固定于深筋膜,同时进 行腺体的适当折叠塑形或置入乳房假体增加丰满程度.结果:共行轻、中度下垂28例(4例为单侧下垂),其中悬吊加假体隆 乳9例;腺体瓣交叉缝合悬吊塑形19例.术后乳房外形改善满意,乳头、乳晕感觉良好,效果持久.结论:本手术方法安全易行, 组织损伤小,瘢痕不明显,是矫治轻、中度乳房下垂的一种比较理想的方法.

  1. Cerebellar cortical inhibition and classical eyeblink conditioning.

    Science.gov (United States)

    Bao, Shaowen; Chen, Lu; Kim, Jeansok J; Thompson, Richard F

    2002-02-01

    The cerebellum is considered a brain structure in which memories for learned motor responses (e.g., conditioned eyeblink responses) are stored. Within the cerebellum, however, the relative importance of the cortex and the deep nuclei in motor learning/memory is not entirely clear. In this study, we show that the cerebellar cortex exerts both basal and stimulus-activated inhibition to the deep nuclei. Sequential application of a gamma-aminobutyric acid type A receptor (GABA(A)R) agonist and a noncompetitive GABA(A)R antagonist allows selective blockade of stimulus-activated inhibition. By using the same sequential agonist and antagonist methods in behaving animals, we demonstrate that the conditioned response (CR) expression and timing are completely dissociable and involve different inhibitory inputs; although the basal inhibition modulates CR expression, the conditioned stimulus-activated inhibition is required for the proper timing of the CR. In addition, complete blockade of cerebellar deep nuclear GABA(A)Rs prevents CR acquisition. Together, these results suggest that different aspects of the memories for eyeblink CRs are encoded in the cerebellar cortex and the cerebellar deep nuclei.

  2. Hawthorn extract inhibits human isolated neutrophil functions.

    Science.gov (United States)

    Dalli, Ernesto; Milara, Javier; Cortijo, Julio; Morcillo, Esteban J; Cosín-Sales, Juan; Sotillo, José Francisco

    2008-06-01

    Hawthorn extract is a popular herbal medicine given as adjunctive treatment for chronic heart failure. In contrast to the cardiac properties of hawthorn extract, its anti-inflammatory effect has been scarcely investigated. This study examines the effects of a dry extract of leaves and flowers of Crataegus laevigata on various functional outputs of human neutrophils in vitro. Incubation of human neutrophils obtained from peripheral blood of healthy donors with C. laevigata extract (0.75-250 microg/ml) inhibited N-formyl-Met-Leu-Phe (FMLP)-induced superoxide anion generation, elastase release and chemotactic migration with potency values of 43.6, 21.9, and 31.6 microg/ml, respectively. By contrast, serum-opsonized zymosan-induced phagocytosis was unaltered by plant extract. C. laevigata extract (125 microg/ml) reduced FMLP-induced leukotriene B(4) production and lipopolysaccharide-induced generation of tumour necrosis factor-alpha and interleukin-8. Extract inhibited FMLP-induced intracellular calcium signal with potency of 17.4 microg/ml. Extract also markedly inhibited the extracellular calcium entry into calcium-depleted neutrophils, and the thapsigargin-induced intracellular calcium response. In conclusion, C. laevigata extract inhibited various functional outputs of activated human neutrophils which may be relevant to the pathophysiology of cardiac failure.

  3. Stress kinase inhibition modulates acute experimental pancreatitis

    Institute of Scientific and Technical Information of China (English)

    F. Fleischer; R. Dabew; B. Goke; ACC Wagner

    2001-01-01

    AIM To examine the role of p38 during acute experimental cerulein pancreatitis.METHODS Rats were treated with cerulein with or without a specific JNK inhibitor (CEP1347)andy or a specific p38 inhbitor (SB203380) and pancreatic stress kinase activity wasdetermined. Parameters to assess pancreatitis included trypsin, amylase, lipase, pancreatic weight and histology.RESULTS JNK inhibition with CEP1347ameliorated pancreatitis, reducing pancreatic edema. In contrast, p38 inhibition with SB203580aggravated pancreatitis with higher trypsinlevels and, with induction of acinar necrosis not normally found after cerulein hyperstimulation.Simultaneous treatment with both CEP1347 and SB203580 mutually abolished the effects of either compound on cerulein pancreatitis.CONCLUSION Stress kinases modulatepancreatitis differentially. JNK seems to promote pancreatitis development, possibly by supporting inflammatory reactions such as edema formation while its inhibition ameliorates pancreatitis. In contrast, p38 may help reduce organ destruction while inhibition of p38 during induction of cerulein pancreatitis leads to the occurrence of acinar necrosis.

  4. Inhibition of denitrification by ultraviolet radiation

    Science.gov (United States)

    Mancinelli, R. L.; White, M. R.

    It has been shown that UV-A (λ = 320- 400 nm) and UV-B (λ = 280 - 320 nm) inhibit photosynthesis, nitrogen fixation and nitrification. The purpose of this study was to determine the effects, if any, on denitrification in a microbial community inhabiting the intertidal. The community studied is the microbial mat consisting primarily of Lyngbya that inhabits the Pacific marine intertidal, Baja California, Mexico. Rates of denitrification were determined using the acetylene blockage technique. Pseudomonas fluorescens (ATCC # 17400) was used as a control organism, and treated similarly to the mat samples. Samples were incubated either beneath a PAR transparent, UV opaque screen (OP3), or a mylar screen to block UV-B, or a UV transparent screen (UVT) for 2 to 3 hours. Sets of samples were also treated with nitrapyrin to inhibit nitrification, or DCMU to inhibit photosynthesis and treated similarly. Denitrification rates were greater in the UV protected samples than in the UV exposed samples the mat samples as well as for the Ps. fluorescens cultures. Killed controls exhibited no activity. In the DCMU and nitrapyrin treated samples denitrification rates were the same as in the untreated samples. These data indicate that denitrification is directly inhibited by UV radiation.

  5. Acidosis inhibits mineralization in human osteoblasts.

    Science.gov (United States)

    Takeuchi, Shoko; Hirukawa, Koji; Togari, Akifumi

    2013-09-01

    Osteoblasts and osteoclasts maintain bone volume. Acidosis affects the function of these cells including mineral metabolism. We examined the effect of acidosis on the expression of transcription factors and mineralization in human osteoblasts in vitro. Human osteoblasts (SaM-1 cells) derived from the ulnar periosteum were cultured with α-MEM containing 50 μg/ml ascorbic acid and 5 mM β-glycerophosphate (calcifying medium). Acidosis was induced by incubating the SaM-1 cells in 10 % CO₂ (pH approximately 7.0). Mineralization, which was augmented by the calcifying medium, was completely inhibited by acidosis. Acidosis depressed c-Jun mRNA and increased osteoprotegerin (OPG) production in a time-dependent manner. Depressing c-Jun mRNA expression using siRNA increased OPG production and inhibited mineralization. In addition, depressing OPG mRNA expression with siRNA enhanced mineralization in a dose-dependent manner. Acidosis or the OPG protein strongly inhibited mineralization in osteoblasts from neonatal mice. The present study was the first to demonstrate that acidosis inhibited mineralization, depressed c-Jun mRNA expression, and induced OPG production in human osteoblasts. These results suggest that OPG is involved in mineralization via c-Jun in human osteoblasts.

  6. Temporal Preparation, Response Inhibition and Impulsivity

    Science.gov (United States)

    Correa, Angel; Trivino, Monica; Perez-Duenas, Carolina; Acosta, Alberto; Lupianez, Juan

    2010-01-01

    Temporal preparation and impulsivity involve overlapping neural structures (prefrontal cortex) and cognitive functions (response inhibition and time perception), however, their interrelations had not been investigated. We studied such interrelations by comparing the performance of groups with low vs. high non-clinical trait impulsivity during a…

  7. Targeted inhibition of cancer-inflammation

    NARCIS (Netherlands)

    Gomes Coimbra, M.J.

    2012-01-01

    The new paradigm in cancer treatment that aims to inhibit the smoldering inflammatory response in tumors is explored to develop new anticancer treatments. It appears that targeted drug delivery is essential in this concept as high local levels of anti-inflammatory agents are needed to observe the

  8. Fear inhibition in high trait anxiety

    NARCIS (Netherlands)

    Kindt, M.; Soeter, M.

    2014-01-01

    Trait anxiety is recognized as an individual risk factor for the development of anxiety disorders but the neurobiological mechanisms remain unknown. Here we test whether trait anxiety is associated with impaired fear inhibition utilizing the AX+/BX- conditional discrimination procedure that allows f

  9. Serum amyloid P inhibits dermal wound healing

    Science.gov (United States)

    The repair of open wounds depends on granulation tissue formation and contraction, which is primarily mediated by myofibroblasts. A subset of myofibroblasts originates from bone-marrow-derived monocytes which differentiate into fibroblast-like cells called fibrocytes. Serum amyloid P (SAP) inhibits ...

  10. Targeted inhibition of tumor growth and angiogenesis

    NARCIS (Netherlands)

    van der Meel, R.

    2013-01-01

    Two main strategies have been pursued for the development of an effective and targeted anti-cancer treatment. The first strategy comprised the generation of a targeted nanomedicine for the inhibition of tumor cell proliferation by blocking growth factor receptor pathways. The epidermal growth factor

  11. Targeted inhibition of cancer-inflammation

    NARCIS (Netherlands)

    Gomes Coimbra, M.J.

    2012-01-01

    The new paradigm in cancer treatment that aims to inhibit the smoldering inflammatory response in tumors is explored to develop new anticancer treatments. It appears that targeted drug delivery is essential in this concept as high local levels of anti-inflammatory agents are needed to observe the be

  12. Inhibiting Intuitive Thinking in Mathematics Education

    Science.gov (United States)

    Thomas, Michael O. J.

    2015-01-01

    The papers in this issue describe recent collaborative research into the role of inhibition of intuitive thinking in mathematics education. This commentary reflects on this research from a mathematics education perspective and draws attention to some of the challenges that arise in collaboration between research fields with different cultures,…

  13. Nickel inhibits mitochondrial fatty acid oxidation.

    Science.gov (United States)

    Uppala, Radha; McKinney, Richard W; Brant, Kelly A; Fabisiak, James P; Goetzman, Eric S

    2015-08-07

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation-the pathway by which fatty acids are catabolized for energy-in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with l-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 h), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis.

  14. Search Asymmetry, Sustained Attention, and Response Inhibition

    Science.gov (United States)

    Stevenson, Hugh; Russell, Paul N.; Helton, William S.

    2011-01-01

    In the present experiment, we used search asymmetry to test whether the sustained attention to response task is a better measure of response inhibition or sustained attention. Participants performed feature present and feature absent target detection tasks using either a sustained attention to response task (SART; high Go low No-Go) or a…

  15. Target Predictability, Sustained Attention, and Response Inhibition

    Science.gov (United States)

    Carter, Leonie; Russell, Paul N.; Helton, William S.

    2013-01-01

    We examined whether the sustained attention to response task is a better measure of response inhibition or sustained attention. Participants performed a number detection task for 37.3 min using either a Sustained Attention to Response Task (SART; high Go low No-Go) or a more traditionally formatted vigilance task (TFT; high No-Go low Go) response…

  16. Salinomycin, a polyether ionophoric antibiotic, inhibits adipogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Szkudlarek-Mikho, Maria; Saunders, Rudel A. [Department of Medicine, Biochemistry and Cancer Biology, Center for Diabetes and Endocrine Research, College of Medicine, University of Toledo, Toledo, OH 43614 (United States); Yap, Sook Fan [Faculty of Medicine and Health Sciences, Department of Pre-Clinical Sciences, University of Tunku Abdul Rahman (Malaysia); Ngeow, Yun Fong [Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603 (Malaysia); Chin, Khew-Voon, E-mail: khew-voon.chin@utoledo.edu [Department of Medicine, Biochemistry and Cancer Biology, Center for Diabetes and Endocrine Research, College of Medicine, University of Toledo, Toledo, OH 43614 (United States)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer Salinomycin inhibits preadipocyte differentiation into adipocytes. Black-Right-Pointing-Pointer Salinomycin inhibits transcriptional regulation of adipogenesis. Black-Right-Pointing-Pointer Pharmacological effects of salinomycin suggest toxicity in cancer therapy. -- Abstract: The polyether ionophoric antibiotics including monensin, salinomycin, and narasin, are widely used in veterinary medicine and as food additives and growth promoters in animal husbandry including poultry farming. Their effects on human health, however, are not fully understood. Recent studies showed that salinomycin is a cancer stem cell inhibitor. Since poultry consumption has risen sharply in the last three decades, we asked whether the consumption of meat tainted with growth promoting antibiotics might have effects on adipose cells. We showed in this report that the ionophoric antibiotics inhibit the differentiation of preadipocytes into adipocytes. The block of differentiation is not due to the induction of apoptosis nor the inhibition of cell proliferation. In addition, salinomycin also suppresses the transcriptional activity of the CCAAT/enhancer binding proteins and the peroxisome proliferator-activated receptor {gamma}. These results suggest that the ionophoric antibiotics can be exploited as novel anti-obesity therapeutics and as pharmacological probes for the study of adipose biology. Further, the pharmacological effects of salinomycin could be a harbinger of its toxicity on the adipose tissue and other susceptible target cells in cancer therapy.

  17. Illustrating Enzyme Inhibition Using Gibbs Energy Profiles

    Science.gov (United States)

    Bearne, Stephen L.

    2012-01-01

    Gibbs energy profiles have great utility as teaching and learning tools because they present students with a visual representation of the energy changes that occur during enzyme catalysis. Unfortunately, most textbooks divorce discussions of traditional kinetic topics, such as enzyme inhibition, from discussions of these same topics in terms of…

  18. LOX1 inhibition with small molecules

    DEFF Research Database (Denmark)

    Gousiadou, Chryssoula; Kouskoumvekaki, Irene

    2016-01-01

    the attention as targets and great effort has been made for the discovery and design of suitable inhibitors, to which end both pharmacological and computational methods have been employed. In the present work, using pharmacophore modeling and docking, we attempt to elucidate the inhibition of LOX1 with a new...

  19. Bioluminescence inhibition of bacterial luciferase by aliphatic alcohol, amine and carboxylic acid: inhibition potency and mechanism.

    Science.gov (United States)

    Yamasaki, Shinya; Yamada, Shuto; Takehara, Kô

    2013-01-01

    The inhibitory effects of hydrophobic molecules on the bacterial luciferase, BL, luminescence reaction were analyzed using an electrochemically-controlled BL luminescence system. The inhibition potency of alkyl amines, C(n)NH(2), and fatty acids, C(m)COOH (m = n - 1), on the BL reaction increased with an increase in the alkyl chain-length of these aliphatic compounds. C(m)COOH showed lower inhibition potency than C(n)NH(2) and alkyl alcohols, C(n)OH, data for which have been previously reported. To make clear the inhibition mechanisms of the aliphatic compounds on the BL reaction, the initial rate of the BL reaction was measured and analyzed using the Dixon plot and Cornish-Bowden plot. The C(12)OH inhibited the BL reaction in competition with the substrate C(11)CHO, while C(12)NH(2) and C(11)COOH inhibited in an uncompetitive manner with the C(11)CHO. These results suggest that the alkyl chain-length and the terminal unit of the aliphatic compound determine the inhibition potency and the inhibition mechanism, respectively.

  20. Gold Nanoparticles Inhibit Matrix Metalloproteases without Cytotoxicity.

    Science.gov (United States)

    Hashimoto, M; Sasaki, J I; Yamaguchi, S; Kawai, K; Kawakami, H; Iwasaki, Y; Imazato, S

    2015-08-01

    Nanoparticles (NPs) are currently the focus of considerable attention for dental applications; however, their biological effects have not been fully elucidated. The long-term, slow release of matrix metalloproteases (MMPs) digests collagen fibrils within resin-dentin bonds. Therefore, MMP inhibitors can prolong the durability of resin-dentin bonds. However, there have been few reports evaluating the combined effect of MMP inhibition and the cytotoxic effects of NPs for dentin bonding. The aim of this study was to evaluate MMP inhibition and cytotoxic responses to gold (AuNPs) and platinum nanoparticles (PtNPs) stabilized by polyvinylpyrrolidone (PVP) in cultured murine macrophages (RAW264) by using MMP inhibition assays, measuring cell viability and inflammatory responses (quantitative reverse transcription polymerase chain reaction [RT-qPCR]), and conducting a micromorphological analysis by fluorescence and transmission electron microscopy. Cultured RAW264 cells were exposed to metal NPs at various concentrations (1, 10, 100, and 400 µg/mL). AuNPs and PtNPs markedly inhibited MMP-8 and MMP-9 activity. Although PtNPs were cytotoxic at high concentrations (100 and 400 µg/mL), no cytotoxic effects were observed for AuNPs at any concentration. Transmission electron microscopy images showed a significant nonrandom intercellular distribution for AuNPs and PtNPs, which were mostly observed to be localized in lysosomes but not in the nucleus. RT-qPCR analysis demonstrated inflammatory responses were not induced in RAW264 cells by AuNPs or PtNPs. The cytotoxicity of nanoparticles might depend on the core metal composition and arise from a "Trojan horse" effect; thus, MMP inhibition could be attributed to the surface charge of PVP, which forms the outer coating of NPs. The negative charge of the surface coating of PVP binds to Zn(2+) from the active center of MMPs by chelate binding and results in MMP inhibition. In summary, AuNPs are attractive NPs that effectively

  1. WEE1 inhibition sensitizes osteosarcoma to radiotherapy

    Directory of Open Access Journals (Sweden)

    Helder Marco N

    2011-04-01

    Full Text Available Abstract Background The use of radiotherapy in osteosarcoma (OS is controversial due to its radioresistance. OS patients currently treated with radiotherapy generally are inoperable, have painful skeletal metastases, refuse surgery or have undergone an intralesional resection of the primary tumor. After irradiation-induced DNA damage, OS cells sustain a prolonged G2 cell cycle checkpoint arrest allowing DNA repair and evasion of cell death. Inhibition of WEE1 kinase leads to abrogation of the G2 arrest and could sensitize OS cells to irradiation induced cell death. Methods WEE1 expression in OS was investigated by gene-expression data analysis and immunohistochemistry of tumor samples. WEE1 expression in OS cell lines and human osteoblasts was investigated by Western blot. The effect of WEE1 inhibition on the radiosensitivity of OS cells was assessed by cell viability and caspase activation analyses after combination treatment. The presence of DNA damage was visualized using immunofluorescence microscopy. Cell cycle effects were investigated by flow cytometry and WEE1 kinase regulation was analyzed by Western blot. Results WEE1 expression is found in the majority of tested OS tissue samples. Small molecule drug PD0166285 inhibits WEE1 kinase activity. In the presence of WEE1-inhibitor, irradiated cells fail to repair their damaged DNA, and show higher levels of caspase activation. The inhibition of WEE1 effectively abrogates the irradiation-induced G2 arrest in OS cells, forcing the cells into premature, catastrophic mitosis, thus enhancing cell death after irradiation treatment. Conclusion We show that PD0166285, a small molecule WEE1 kinase inhibitor, can abrogate the G2 checkpoint in OS cells, pushing them into mitotic catastrophe and thus sensitizing OS cells to irradiation-induced cell death. This suggests that WEE1 inhibition may be a promising strategy to enhance the radiotherapy effect in patients with OS.

  2. Inhibition of lung tumorigenesis by tea.

    Science.gov (United States)

    Yang, Chung S; Liao, Jie; Yang, Guang-yu; Lu, Gary

    2005-01-01

    Tea and tea constituents have been shown by different investigators to inhibit lung tumorigenesis in different animal model systems. This includes lung tumorigenesis in A/J mice induced by 4-(methylnitrosamino)-1-(3pyridyl)-1-butanone (NNK), N-nitrosodiethylamine, benzo[a]pyrene, N-nitrosomethylurea, or cisplatin. Inhibition of lung tumorigenesis has also been demonstrated in C3H mice treated with N-nitrosodiethylamine. In most of these experiments, reduction in tumor number and tumor size has been observed in the tea-treated group, and in some experiments, decreased tumor incidence has also been observed. The green tea constituent, epigallocatechin-3-gallate (EGCG), and the black tea constituent, theaflavins, have also been shown to be effective. Black tea preparations have been shown to reduce the incidence and number of spontaneously generated lung adenocarcinomas and rhabdomyosarcoma in A/J mice, as well as inhibit the progression of lung adenoma to adenocarcinoma. The mechanisms for the inhibitory action have not been well elucidated. It may be related to the antiproliferative, proapoptotic, and antiangiogenic activities of tea constituents that have been demonstrated in some experiments. These activities may be a result of the inhibition of key protein kinases involved in signal transduction and cell cycle regulation. Tea catechins, such as EGCG, have been suggested to be the effective components. However, a study suggests that caffeine is the key effective constituent for the inhibitory activity of lung tumorigenesis in Fisher 344 rats by black tea. In many of the experiments, tea consumption resulted in the reduction of body fat and body weight; these factors may also contribute to the inhibition of tumorigenesis.

  3. Jagged1 is the pathological link between Wnt and Notch pathways in colorectal cancer.

    Science.gov (United States)

    Rodilla, Verónica; Villanueva, Alberto; Obrador-Hevia, Antonia; Robert-Moreno, Alex; Fernández-Majada, Vanessa; Grilli, Andrea; López-Bigas, Nuria; Bellora, Nicolás; Albà, M Mar; Torres, Ferran; Duñach, Mireia; Sanjuan, Xavier; Gonzalez, Sara; Gridley, Thomas; Capella, Gabriel; Bigas, Anna; Espinosa, Lluís

    2009-04-14

    Notch has been linked to beta-catenin-dependent tumorigenesis; however, the mechanisms leading to Notch activation and the contribution of the Notch pathway to colorectal cancer is not yet understood. By microarray analysis, we have identified a group of genes downstream of Wnt/beta-catenin (down-regulated when blocking Wnt/beta-catenin) that are directly regulated by Notch (repressed by gamma-secretase inhibitors and up-regulated by active Notch1 in the absence of beta-catenin signaling). We demonstrate that Notch is downstream of Wnt in colorectal cancer cells through beta-catenin-mediated transcriptional activation of the Notch-ligand Jagged1. Consistently, expression of activated Notch1 partially reverts the effects of blocking Wnt/beta-catenin pathway in tumors implanted s.c. in nude mice. Crossing APC(Min/+) with Jagged1(+/Delta) mice is sufficient to significantly reduce the size of the polyps arising in the APC mutant background indicating that Notch is an essential modulator of tumorigenesis induced by nuclear beta-catenin. We show that this mechanism is operating in human tumors from Familial Adenomatous Polyposis patients. We conclude that Notch activation, accomplished by beta-catenin-mediated up-regulation of Jagged1, is required for tumorigenesis in the intestine. The Notch-specific genetic signature is sufficient to block differentiation and promote vasculogenesis in tumors whereas proliferation depends on both pathways.

  4. Molecular pathogenesis of focal cortical dysplasia and hemimegalencephaly.

    Science.gov (United States)

    Crino, Peter B

    2005-04-01

    My laboratory recently demonstrated that there is selective expression of phosphoribosomal S6 protein in balloon cells in focal cortical dysplasia and hemimegalencephaly but no expression of the upstream kinase, phospho-p70S6 kinase. Two proteins activated by phospho-p70S6 kinase, phospho-STAT3 and phospho-4EBP1, were not detected in balloon cells. Using complementary DNA arrays in hemimegalencephaly specimens, we found increased expression of cyclin D1 and c-myc messenger ribonucleic acids (RNAs). Expression of cyclin D1 and c-myc genes is transcriptionally activated by beta-catenin. Western analysis demonstrated increased levels of nonphosphorylated beta-catenin in hemimegalencephalic cortex. Reduced levels of Ser33, Ser37, and Thr41 phospho-beta-catenin, sites known to be phosphorylated by glycogen synthase kinase 3 and to be essential for beta-catenin inactivation, were detected in hemimegalencephaly. Enhanced transcription of cyclin D1 and c-myc messenger RNAs, increased transcriptionally active beta-catenin, and decreased Ser33/Ser37/Thr41 phospho-beta-catenin suggest activation of the Wnt-1/beta-catenin cascade in hemimegalencephaly, which can lead to aberrant cell proliferation and hemispheric enlargement during brain development. Enhanced activation of phospho-S6 and beta-catenin suggests two converging cell pathways that can be pivotal in the pathogenesis of focal cortical dysplasia and hemimegalencephaly.

  5. Noncanonical Wnt signaling promotes osteoclast differentiation and is facilitated by the human immunodeficiency virus protease inhibitor ritonavir

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, Francisco [Division of Hematology-Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY (United States); Oguma, Junya; Brown, Anthony M.C. [Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY (United States); Laurence, Jeffrey, E-mail: jlaurenc@med.cornell.edu [Division of Hematology-Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY (United States)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer First demonstration of direct role for noncanonical Wnt in osteoclast differentiation. Black-Right-Pointing-Pointer Demonstration of Ryk as a Wnt5a/b receptor in inhibition of canonical Wnt signaling. Black-Right-Pointing-Pointer Modulation of noncanonical Wnt signaling by a clinically important drug, ritonavir. Black-Right-Pointing-Pointer Establishes a mechanism for an important clinical problem: HIV-associated bone loss. -- Abstract: Wnt proteins that signal via the canonical Wnt/{beta}-catenin pathway directly regulate osteoblast differentiation. In contrast, most studies of Wnt-related effects on osteoclasts involve indirect changes. While investigating bone mineral density loss in the setting of human immunodeficiency virus (HIV) infection and its treatment with the protease inhibitor ritonavir (RTV), we observed that RTV decreased nuclear localization of {beta}-catenin, critical to canonical Wnt signaling, in primary human and murine osteoclast precursors. This occurred in parallel with upregulation of Wnt5a and Wnt5b transcripts. These Wnts typically stimulate noncanonical Wnt signaling, and this can antagonize the canonical Wnt pathway in many cell types, dependent upon Wnt receptor usage. We now document RTV-mediated upregulation of Wnt5a/b protein in osteoclast precursors. Recombinant Wnt5b and retrovirus-mediated expression of Wnt5a enhanced osteoclast differentiation from human and murine monocytic precursors, processes facilitated by RTV. In contrast, canonical Wnt signaling mediated by Wnt3a suppressed osteoclastogenesis. Both RTV and Wnt5b inhibited canonical, {beta}-catenin/T cell factor-based Wnt reporter activation in osteoclast precursors. RTV- and Wnt5-induced osteoclast differentiation were dependent upon the receptor-like tyrosine kinase Ryk, suggesting that Ryk may act as a Wnt5a/b receptor in this context. This is the first demonstration of a direct role for Wnt signaling pathways and Ryk in

  6. Amiloride inhibits the initiation of Coxsackievirus and poliovirus RNA replication by inhibiting VPg uridylylation.

    Science.gov (United States)

    Ogram, Sushma A; Boone, Christopher D; McKenna, Robert; Flanegan, James B

    2014-09-01

    The mechanism of amiloride inhibition of Coxsackievirus B3 (CVB3) and poliovirus type 1 (PV1) RNA replication was investigated using membrane-associated RNA replication complexes. Amiloride was shown to inhibit viral RNA replication and VPgpUpU synthesis. However, the drug had no effect on polymerase elongation activity during either (-) strand or (+) strand synthesis. These findings indicated that amiloride inhibited the initiation of RNA synthesis by inhibiting VPg uridylylation. In addition, in silico binding studies showed that amiloride docks in the VPg binding site on the back of the viral RNA polymerase, 3D(pol). Since VPg binding at this site on PV1 3D(pol) was previously shown to be required for VPg uridylylation, our results suggest that amiloride inhibits VPg binding to 3D(pol). In summary, our findings are consistent with a model in which amiloride inhibits VPgpUpU synthesis and viral RNA replication by competing with VPg for binding to 3D(pol).

  7. Efficient Wnt mediated intestinal hyperproliferation requires the cyclin D2-CDK4/6 complex

    Directory of Open Access Journals (Sweden)

    Sansom Owen

    2011-02-01

    Full Text Available Abstract Inactivation of the gene encoding the adenomatous polyposis coli (APC tumour suppressor protein is recognized as the key early event in the development of colorectal cancers (CRC. Apc loss leads to nuclear localization of beta-catenin and constitutive activity of the beta-catenin-Tcf4 transcription complex. This complex drives the expression of genes involved in cell cycle progression such as c-Myc and cyclin D2. Acute loss of Apc in the small intestine leads to hyperproliferation within the intestinal crypt, increased levels of apoptosis, and perturbed differentiation and migration. It has been demonstrated that c-Myc is a critical mediator of the phenotypic abnormalities that follow Apc loss in the intestine. As it may be difficult to pharmacologically inhibit transcription factors such as c-Myc, investigating more druggable targets of the Wnt-c-Myc pathway within the intestine may reveal potential therapeutic targets for CRC. Recent work in our laboratory has shown that the cyclin D2-cyclin-dependent kinase 4/6 (CDK4/6 complex promotes hyperproliferation in Apc deficient intestinal tissue and ApcMin/+ adenomas. We showed that the hyperproliferative phenotype associated with Apc loss in vivo was partially dependent on the expression of cyclin D2. Most importantly, tumour growth and development in ApcMin/+ mice was strongly perturbed in mice lacking cyclin D2. Furthermore, pharmacological inhibition of CDK4/6 suppressed the proliferation of adenomatous cells. This commentary discusses the significance of this work in providing evidence for the importance of the cyclin D2-CDK4/6 complex in colorectal adenoma formation. It also argues that inhibition of this complex may be an effective chemopreventative strategy in CRC.

  8. Emotional inhibition: a discourse analysis of disclosure.

    Science.gov (United States)

    Ellis, Darren; Cromby, John

    2012-01-01

    Evidence generated within the emotional disclosure paradigm (EDP) suggests that talking or writing about emotional experiences produces health benefits, but recent meta-analyses have questioned its efficacy. Studies within the EDP typically rely upon a unidimensional and relatively unsophisticated notion of emotional inhibition, and tend to use quantitative forms of content analysis to identify associations between percentages of word types and positive or negative health outcomes. In this article, we use a case study to show how a qualitative discourse analysis has the potential to identify more of the complexity linking the disclosure practices and styles that may be associated with emotional inhibition. This may illuminate the apparent lack of evidence for efficacy of the EDP by enabling more comprehensive theorisations of the variations within it.

  9. Inhibition Controls Asynchronous States of Neuronal Networks

    Science.gov (United States)

    Treviño, Mario

    2016-01-01

    Computations in cortical circuits require action potentials from excitatory and inhibitory neurons. In this mini-review, I first provide a quick overview of findings that indicate that GABAergic neurons play a fundamental role in coordinating spikes and generating synchronized network activity. Next, I argue that these observations helped popularize the notion that network oscillations require a high degree of spike correlations among interneurons which, in turn, produce synchronous inhibition of the local microcircuit. The aim of this text is to discuss some recent experimental and computational findings that support a complementary view: one in which interneurons participate actively in producing asynchronous states in cortical networks. This requires a proper mixture of shared excitation and inhibition leading to asynchronous activity between neighboring cells. Such contribution from interneurons would be extremely important because it would tend to reduce the spike correlation between neighboring pyramidal cells, a drop in redundancy that could enhance the information-processing capacity of neural networks. PMID:27274721

  10. Product inhibition of five Hypocrea jecorina cellulases

    DEFF Research Database (Denmark)

    Murphy, Leigh; Westh, Peter; Bohlin, Christina

    2013-01-01

    on individual cellulases hydrolyzing insoluble cellulose remains insufficient. Such knowledge is necessary to pinpoint and quantify inhibitory weak-links in cellulose hydrolysis, but has proven challenging to come by. Here we show that product inhibition of mono-component cellulases hydrolyzing unmodified...... cellulose may be monitored by calorimetry. The key advantage of this approach is that it directly measures the rate of hydrolysis while being essentially blind to the background of added product. We investigated the five major cellulases from Hypocrea jecorina (anamorph: Tricoderma reesei), Cel7A (formerly......Product inhibition of cellulolytic enzymes has been deemed a critical factor in the industrial saccharification of cellulosic biomass. Several investigations have addressed this problem using crude enzyme preparations or commercial (mixed) cellulase products, but quantitative information...

  11. Direct renin inhibition in chronic kidney disease

    DEFF Research Database (Denmark)

    Persson, Frederik; Rossing, Peter; Parving, Hans-Henrik

    2013-01-01

    that renin inhibition could hold potential for improved treatment in patients with chronic kidney disease, with diabetic nephropathy as an obvious group of patients to investigate, as the activity of the renin-angiotensin-aldosterone system is enhanced in these patients and as there is an unmet need...... early as a beneficial effect was unlikely and there was an increased frequency of side effects. Also in non-diabetic kidney disease a few intervention studies have been carried out, but there is no ongoing hard outcome study. In this review we provide the current evidence for renin inhibition in chronic...... kidney disease by reporting of the studies published so far as well as perspective on the future possibilites....

  12. How x rays inhibit amphibian limb regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Maden, M.; Wallace, H.

    1976-07-01

    The effects of an inhibiting dose of 2,000 rad of x-rays on the regenerating limbs of axolotl larvae have been examined in a histological and cytological study. Particular attention was paid to the mitotic indices of normal and irradiated epidermal and blastemal cells. Both the characteristic pattern of epidermal mitotic stimulation which normally follows amputation and the later increase in blastemal mitoses are suppressed by irradiation. In most cells the effects are permanent, but in a small proportion a mitotic delay is induced and upon subsequent division chromosome damage in the form of micronuclei is revealed. Thus irradiated cells which do divide almost certainly die. These results are discussed in relation to other theories of x-ray inhibition of regeneration with particular reference to the view that irradiated cells can be reactivated.

  13. Sulfate inhibition effect on sulfate reducing bacteria

    Directory of Open Access Journals (Sweden)

    Sulaiman Al Zuhair

    2008-12-01

    Full Text Available There is an increasing interest in the potential of bacterial sulfate reduction as an alternative method for sulfate removal from wastewater. Under anaerobic conditions, sulfate-reducing bacteria (SRB utilize sulfate to oxidize organic compounds and generate sulfide (S2-. SRB were successfully isolated from sludge samples obtained from a local petroleum refinery, and used for sulfate removal. The effects of initial sulfate concentration, temperature and pH on the rate of bacterial growth and anaerobic sulfate removal were investigated and the optimum conditions were identified. The experimental data were used to determine the parameters of two proposed kinetic model, which take into consideration substrate inhibition effect. Keywords: Sulfate Reducing Bacteria, Sulfate, Kinetic Model, Biotreatement, Inhibition Received: 31 August 2008 / Received in revised form: 18 September 2008, Accepted: 18 September 2008 Published online: 28 September 2008

  14. Theobromine inhibits sensory nerve activation and cough.

    Science.gov (United States)

    Usmani, Omar S; Belvisi, Maria G; Patel, Hema J; Crispino, Natascia; Birrell, Mark A; Korbonits, Márta; Korbonits, Dezso; Barnes, Peter J

    2005-02-01

    Cough is a common and protective reflex, but persistent coughing is debilitating and impairs quality of life. Antitussive treatment using opioids is limited by unacceptable side effects, and there is a great need for more effective remedies. The present study demonstrates that theobromine, a methylxanthine derivative present in cocoa, effectively inhibits citric acid-induced cough in guinea-pigs in vivo. Furthermore, in a randomized, double-blind, placebo-controlled study in man, theobromine suppresses capsaicin-induced cough with no adverse effects. We also demonstrate that theobromine directly inhibits capsaicin-induced sensory nerve depolarization of guinea-pig and human vagus nerve suggestive of an inhibitory effect on afferent nerve activation. These data indicate the actions of theobromine appear to be peripherally mediated. We conclude theobromine is a novel and promising treatment, which may form the basis for a new class of antitussive drugs.

  15. Cross-domain inhibition of TACE ectodomain

    DEFF Research Database (Denmark)

    Tape, Christopher J; Willems, Sofie H; Dombernowsky, Sarah L;

    2011-01-01

    Proteolytic release from the cell surface is an essential activation event for many growth factors and cytokines. TNF-a converting enzyme (TACE) is a membrane-bound metalloprotease responsible for solubilizing many pathologically significant membrane substrates and is an attractive therapeutic...... target for the treatment of cancer and arthritis. Prior attempts to antagonize cell-surface TACE activity have focused on small-molecule inhibition of the metalloprotease active site. Given the highly conserved nature of metalloprotease active sites, this paradigm has failed to produce a truly specific...... individual antibody variable domains to desired epitopes. The resulting "cross-domain" human antibody is a previously undescribed selective TACE antagonist and provides a unique alternative to small-molecule metalloprotease inhibition....

  16. Antibiotic inhibition of group I ribozyme function.

    Science.gov (United States)

    von Ahsen, U; Davies, J; Schroeder, R

    1991-09-26

    The discovery of catalytically active RNA has provided the basis for the evolutionary concept of an RNA world. It has been proposed that during evolution the functions of ancient catalytic RNA were modulated by low molecular weight effectors, related to antibiotics, present in the primordial soup. Antibiotics and RNA may have coevolved in the formation of the modern ribosome. Here we report that a set of aminoglycoside antibiotics, which are known to interact with the decoding region of the 16S ribosomal RNA of Escherichia coli, inhibit the second step of splicing of the T4 phage-derived td intron. Thus catalytic RNA seems to interact not only with a mononucleotide and an amino acid, but also with another class of biomolecules, the sugars. Splicing of other group I introns but not group II introns was inhibited. The similarity in affinity and specificity of these antibiotics for group I introns and rRNAs may result from recognition of evolutionarily conserved structures.

  17. AMPA receptor inhibition by synaptically released zinc.

    Science.gov (United States)

    Kalappa, Bopanna I; Anderson, Charles T; Goldberg, Jacob M; Lippard, Stephen J; Tzounopoulos, Thanos

    2015-12-22

    The vast amount of fast excitatory neurotransmission in the mammalian central nervous system is mediated by AMPA-subtype glutamate receptors (AMPARs). As a result, AMPAR-mediated synaptic transmission is implicated in nearly all aspects of brain development, function, and plasticity. Despite the central role of AMPARs in neurobiology, the fine-tuning of synaptic AMPA responses by endogenous modulators remains poorly understood. Here we provide evidence that endogenous zinc, released by single presynaptic action potentials, inhibits synaptic AMPA currents in the dorsal cochlear nucleus (DCN) and hippocampus. Exposure to loud sound reduces presynaptic zinc levels in the DCN and abolishes zinc inhibition, implicating zinc in experience-dependent AMPAR synaptic plasticity. Our results establish zinc as an activity-dependent, endogenous modulator of AMPARs that tunes fast excitatory neurotransmission and plasticity in glutamatergic synapses.

  18. Blocking of potentiation of latent inhibition.

    Science.gov (United States)

    Hall, Geoffrey; Rodriguez, Gabriel

    2011-01-01

    We present a theory of latent inhibition based on the Pearce-Hall (Pearce & Hall, 1980) model for classical conditioning. Its central features are (1) that the associability of a stimulus declines as it comes to predict its consequences and (2) that nonreinforced exposure to a stimulus engages an associative learning process that makes the stimulus an accurate predictor of its consequences (in this case, the occurrence of no event). A formalization of this theory is shown to accommodate the finding that preexposure in compound with another cue can potentiate latent inhibition to the target cue. It further predicts that preexposure to the added cue will eliminate the potentiation effect. An experiment using rats and the flavor-aversion procedure confirmed this prediction.

  19. The Kinetics of Carrier Transport Inhibition

    DEFF Research Database (Denmark)

    Rosenberg, T.; Wilbrandt, Robert Walter

    1962-01-01

    The kinetical treatment of enzymatic carrier transports as given in previous communications has been extended to conditions of inhibition. Various possible types of inhibitors have been considered differing in the site of attack (enzyme or carrier), in the mode of action (competing...... with the substrate for the enzyme or the carrier or for both, competing with the carrier for the enzyme, or non-competitive) and in the ability of penetrating the membrane. Experiments are reported on the inhibition of glucose and fructose transport across the human red cell membrane by phlorizine, phloretine...... the first order asymmetry severalfold (“second order asymmetry”). It was shown that a substrate competitive mode of action involving competition both for the enzyme and for the enzyme-bound carrier will result in a behaviour resembling the observed “second order asymmetry”. It is felt, therefore...

  20. Non-Classical Inhibition of Carbonic Anhydrase

    Science.gov (United States)

    Lomelino, Carrie L.; Supuran, Claudiu T.; McKenna, Robert

    2016-01-01

    Specific isoforms from the carbonic anhydrase (CA) family of zinc metalloenzymes have been associated with a variety of diseases. Isoform-specific carbonic anhydrase inhibitors (CAIs) are therefore a major focus of attention for specific disease treatments. Classical CAIs, primarily sulfonamide-based compounds and their bioisosteres, are examined as antiglaucoma, antiepileptic, antiobesity, antineuropathic pain and anticancer compounds. However, many sulfonamide compounds inhibit all CA isoforms nonspecifically, diluting drug effectiveness and causing undesired side effects due to off-target inhibition. In addition, a small but significant percentage of the general population cannot be treated with sulfonamide-based compounds due to a sulfa allergy. Therefore, CAIs must be developed that are not only isoform specific, but also non-classical, i.e. not based on sulfonamides, sulfamates, or sulfamides. This review covers the classes of non-classical CAIs and the recent advances in the development of isoform-specific inhibitors based on phenols, polyamines, coumarins and their derivatives. PMID:27438828

  1. Inhibition Controls Asynchronous States of Neuronal Networks.

    Science.gov (United States)

    Treviño, Mario

    2016-01-01

    Computations in cortical circuits require action potentials from excitatory and inhibitory neurons. In this mini-review, I first provide a quick overview of findings that indicate that GABAergic neurons play a fundamental role in coordinating spikes and generating synchronized network activity. Next, I argue that these observations helped popularize the notion that network oscillations require a high degree of spike correlations among interneurons which, in turn, produce synchronous inhibition of the local microcircuit. The aim of this text is to discuss some recent experimental and computational findings that support a complementary view: one in which interneurons participate actively in producing asynchronous states in cortical networks. This requires a proper mixture of shared excitation and inhibition leading to asynchronous activity between neighboring cells. Such contribution from interneurons would be extremely important because it would tend to reduce the spike correlation between neighboring pyramidal cells, a drop in redundancy that could enhance the information-processing capacity of neural networks.

  2. Hydroxyapatite growth inhibition by osteopontin hexapeptide sequences.

    Science.gov (United States)

    Silverman, L D; Saadia, M; Ishal, J S; Tishbi, N; Leiderman, E; Kuyunov, I; Recca, B; Reitblat, C; Viswanathan, R

    2010-06-15

    The effects of three acidic hexapeptides on in vitro hydroxyapatite growth were characterized by pH-stat kinetic studies, adsorption isotherms, and molecular modeling. The three peptides, pSDEpSDE, SDESDE, and DDDDDD, are equal-length model compounds for the acidic sequences in osteopontin, a protein that inhibits mineral formation in both calcified and noncalcified tissues. Growth rates from 1.67 mM calcium and 1.00 mM phosphate solution were measured at pH 7.4 and 37 degrees C in 150 mM NaCl. pSDEpSDE was a strong growth inhibitor when preadsorbed onto hydroxyapatite (HA) seeds from > or = 0.67 mM solutions, concentrations where adsorption isotherms showed relatively complete surface coverage. The nonphosphorylated SDESDE control showed no growth inhibition. Although it adsorbed to almost the same extent as pSDEpSDE, it rapidly desorbed under the pH-stat growth conditions while pSDEpSDE did not. DDDDDD exhibited weak inhibition as its concentration was increased and similar adsorption/desorption behavior to pSDEpSDE. Molecular modeling yielded binding energy trends based on simple adsorption of peptides on the [100] surface that were consistent with observed inhibition, but not for the [001] surface. The relatively unfavorable binding energies for peptides on the [001] surface suggest that their absorption will be primarily on the [100] face. The kinetic and adsorption data are consistent with phosphorylation of osteopontin acting to control mineral formation.

  3. An Activation Threshold Model for Response Inhibition

    Science.gov (United States)

    MacDonald, Hayley J.; McMorland, Angus J. C.; Stinear, Cathy M.; Coxon, James P.; Byblow, Winston D.

    2017-01-01

    Reactive response inhibition (RI) is the cancellation of a prepared response when it is no longer appropriate. Selectivity of RI can be examined by cueing the cancellation of one component of a prepared multi-component response. This substantially delays execution of other components. There is debate regarding whether this response delay is due to a selective neural mechanism. Here we propose a computational activation threshold model (ATM) and test it against a classical “horse-race” model using behavioural and neurophysiological data from partial RI experiments. The models comprise both facilitatory and inhibitory processes that compete upstream of motor output regions. Summary statistics (means and standard deviations) of predicted muscular and neurophysiological data were fit in both models to equivalent experimental measures by minimizing a Pearson Chi-square statistic. The ATM best captured behavioural and neurophysiological dynamics of partial RI. The ATM demonstrated that the observed modulation of corticomotor excitability during partial RI can be explained by nonselective inhibition of the prepared response. The inhibition raised the activation threshold to a level that could not be reached by the original response. This was necessarily followed by an additional phase of facilitation representing a secondary activation process in order to reach the new inhibition threshold and initiate the executed component of the response. The ATM offers a mechanistic description of the neural events underlying RI, in which partial movement cancellation results from a nonselective inhibitory event followed by subsequent initiation of a new response. The ATM provides a framework for considering and exploring the neuroanatomical constraints that underlie RI. PMID:28085907

  4. Evidence of dopaminergic processing of executive inhibition.

    Directory of Open Access Journals (Sweden)

    Rajendra D Badgaiyan

    Full Text Available Inhibition of unwanted response is an important function of the executive system. Since the inhibitory system is impaired in patients with dysregulated dopamine system, we examined dopamine neurotransmission in the human brain during processing of a task of executive inhibition. The experiment used a recently developed dynamic molecular imaging technique to detect and map dopamine released during performance of a modified Eriksen's flanker task. In this study, young healthy volunteers received an intravenous injection of a dopamine receptor ligand ((11C-raclopride after they were positioned in the PET camera. After the injection, volunteers performed the flanker task under Congruent and Incongruent conditions in a single scan session. They were required to inhibit competing options to select an appropriate response in the Incongruent but not in the Congruent condition. The PET data were dynamically acquired during the experiment and analyzed using two variants of the simplified reference region model. The analysis included estimation of a number of receptor kinetic parameters before and after initiation of the Incongruent condition. We found increase in the rate of ligand displacement (from receptor sites and decrease in the ligand binding potential in the Incongruent condition, suggesting dopamine release during task performance. These changes were observed in small areas of the putamen and caudate bilaterally but were most significant on the dorsal aspect of the body of left caudate. The results provide evidence of dopaminergic processing of executive inhibition and demonstrate that neurochemical changes associated with cognitive processing can be detected and mapped in a single scan session using dynamic molecular imaging.

  5. Matrix Extracellular Phosphoglycoprotein Inhibits Phosphate Transport

    OpenAIRE

    Marks, J; Churchill, L J; Debnam, E. S.; Unwin, R J

    2008-01-01

    The role of putative humoral factors, known as phosphatonins, in phosphate homeostasis and the relationship between phosphate handling by the kidney and gastrointestinal tract are incompletely understood. Matrix extracellular phosphoglycoprotein (MEPE), one of several candidate phosphatonins, promotes phosphaturia, but whether it also affects intestinal phosphate absorption is unknown. Here, using the in situ intestinal loop technique, we demonstrated that short-term infusion of MEPE inhibits...

  6. Caffeine Inhibits Acetylcholinesterase, But Not Butyrylcholinesterase

    Directory of Open Access Journals (Sweden)

    Petr Dobes

    2013-05-01

    Full Text Available Caffeine is an alkaloid with a stimulant effect in the body. It can interfere in transmissions based on acetylcholine, epinephrine, norepinephrine, serotonin, dopamine and glutamate. Clinical studies indicate that it can be involved in the slowing of Alzheimer disease pathology and some other effects. The effects are not well understood. In the present work, we focused on the question whether caffeine can inhibit acetylcholinesterase (AChE and/or, butyrylcholinesterase (BChE, the two enzymes participating in cholinergic neurotransmission. A standard Ellman test with human AChE and BChE was done for altering concentrations of caffeine. The test was supported by an in silico examination as well. Donepezil and tacrine were used as standards. In compliance with Dixon’s plot, caffeine was proved to be a non-competitive inhibitor of AChE and BChE. However, inhibition of BChE was quite weak, as the inhibition constant, Ki, was 13.9 ± 7.4 mol/L. Inhibition of AChE was more relevant, as Ki was found to be 175 ± 9 µmol/L. The predicted free energy of binding was −6.7 kcal/mol. The proposed binding orientation of caffeine can interact with Trp86, and it can be stabilize by Tyr337 in comparison to the smaller Ala328 in the case of human BChE; thus, it can explain the lower binding affinity of caffeine for BChE with reference to AChE. The biological relevance of the findings is discussed.

  7. Fermentation of lignocellulosic hydrolysates: Inhibition and detoxification

    Energy Technology Data Exchange (ETDEWEB)

    Palmqvist, E.

    1998-02-01

    The ethanol yield and productivity obtained during fermentation of lignocellulosic hydrolysates is decreased due to the presence of inhibiting compounds, such as weak acids, furans and phenolic compounds produced during hydrolysis. Evaluation of the effect of various biological, physical and chemical detoxification treatments by fermentation assays using Saccharomyces cerevisiae was used to characterise inhibitors. Inhibition of fermentation was decreased after removal of the non-volatile compounds, pre-fermentation by the filamentous fungus Trichoderma reesei, treatment with the lignolytic enzyme laccase, extraction with ether, and treatment with alkali. Yeast growth in lignocellulosic hydrolysates was inhibited below a certain fermentation pH, most likely due to high concentrations of undissociated weak acids. The effect of individual compounds were studied in model fermentations. Furfural is reduced to furfuryl alcohol by yeast dehydrogenases, thereby affecting the intracellular redox balance. As a result, acetaldehyde accumulated during furfural reduction, which most likely contributed to inhibition of growth. Acetic acid (10 g 1{sup -1}) and furfural (3 g 1{sup -1}) interacted antagonistically causing decreased specific growth rate, whereas no significant individual or interaction effects were detected by the lignin-derived compound 4-hydroxybenzoic acid (2 g 1{sup -1}). By maintaining a high cell mass density in the fermentor, the process was less sensitive to inhibitors affecting growth and to fluctuations in fermentation pH, and in addition the depletion rate of bioconvertible inhibitors was increased. A theoretical ethanol yield and high productivity was obtained in continuous fermentation of spruce hydrolysate when the cell mass concentration was maintained at a high level by applying cell recirculation 164 refs, 16 figs, 5 tabs

  8. Inhibition of SIRT2 suppresses hepatic fibrosis.

    Science.gov (United States)

    Arteaga, Maribel; Shang, Na; Ding, Xianzhong; Yong, Sherri; Cotler, Scott J; Denning, Mitchell F; Shimamura, Takashi; Breslin, Peter; Lüscher, Bernhard; Qiu, Wei

    2016-06-01

    Liver fibrosis can progress to cirrhosis and result in serious complications of liver disease. The pathogenesis of liver fibrosis involves the activation of hepatic stellate cells (HSCs), the underlying mechanisms of which are not fully known. Emerging evidence suggests that the classic histone deacetylases play a role in liver fibrosis, but the role of another subfamily of histone deacetylases, the sirtuins, in the development of hepatic fibrosis remains unknown. In this study, we found that blocking the activity of sirtuin 2 (SIRT2) by using inhibitors or shRNAs significantly suppressed fibrogenic gene expression in HSCs. We further demonstrated that inhibition of SIRT2 results in the degradation of c-MYC, which is important for HSC activation. In addition, we discovered that inhibition of SIRT2 suppresses the phosphorylation of ERK, which is critical for the stabilization of c-MYC. Moreover, we found that Sirt2 deficiency attenuates the hepatic fibrosis induced by carbon tetrachloride (CCl4) and thioacetamide (TAA). Furthermore, we showed that SIRT2, p-ERK, and c-MYC proteins are all overexpressed in human hepatic fibrotic tissues. These data suggest a critical role for the SIRT2/ERK/c-MYC axis in promoting hepatic fibrogenesis. Inhibition of the SIRT2/ERK/c-MYC axis represents a novel strategy to prevent and to potentially treat liver fibrosis and cirrhosis.

  9. ROCK inhibition prevents early mouse embryo development.

    Science.gov (United States)

    Duan, Xing; Chen, Kun-Lin; Zhang, Yu; Cui, Xiang-Shun; Kim, Nam-Hyung; Sun, Shao-Chen

    2014-08-01

    ROCK is a Rho-GTPase effector that is important for actin assembly and is involved in various cellular functions, including cell contraction, migration, motility, and tumor cell invasion. In this study, we investigated ROCK expression and function during early mouse embryo development. Inhibiting ROCK by Y-27632 treatment at the zygote stage resulted in first cleavage failure, and most embryos failed to develop to the 8-cell stage. When adding Y-27632 at the 8-cell stage, embryos failed to undergo compaction and could not develop into blastocysts. In addition, fluorescence staining intensity analysis indicated that actin expression at blastomere membranes was significantly reduced. After ROCK inhibition, two or more nuclei were observed in a cell, which indicated possible cytokinesis failure. Moreover, after ROCK inhibition with Y-27632, the phosphorylation levels of LIMK1/2, a downstream molecule of ROCK, were decreased at blastomere membranes. Thus, our results showed conserved roles for ROCK in this mammalian embryo model and indicated that a ROCK-LIMK1/2-actin pathway might regulate cleavage and blastocyst formation during early mouse embryo development.

  10. Alpha-amylase inhibition kinetics by caulerpenyne

    Directory of Open Access Journals (Sweden)

    S. CENGIZ

    2010-03-01

    Full Text Available Many algae have important secretions which are generally used for defensive purposes. These secretions take attentions of a lot of researchers who are wondering if these metabolites can be used for medical researches or not. Among these metabolites, caulerpenyne (CYN which is the main metabolite of Caulerpa species, have had an important place in Caulerpa researches since the results related to its determined properties such as cytotoxic, antiviral, antiproliferative and apoptotic effects have been proven by many scientific reports. In the present study, the inhibitory effect of CYN isolated from C. prolifera on alpha-amylase was investigated. The inhibition experiments were done with CYN by spectrophotometric determination method. In order to evaluate the type of inhibition Lineweaver–Burk plot was produced. The results obtained from enzyme kinetic studies exhibited an un-competitive type of inhibition, which is characterized by the difference of Vmax and KM from those of the free enzyme, of alpha-amylase in the presence of CYN. The present study showed that Caulerpa species can be a potential target for producing diabetic drugs in the light of the results obtained for CYN.

  11. Gas hydrate inhibition of drilling fluid additives

    Energy Technology Data Exchange (ETDEWEB)

    Xiaolan, L.; Baojiang, S.; Shaoran, R. [China Univ. of Petroleum, Dongying (China). Inst. of Petroleum Engineering

    2008-07-01

    Gas hydrates that form during offshore well drilling can have adverse impacts on well operational safety. The hydrates typically form in the risers and the annulus between the casing and the drillstring, and can stop the circulation of drilling fluids. In this study, experiments were conducted to measure the effect of drilling fluid additives on hydrate inhibition. Polyalcohols, well-stability control agents, lubricating agents, and polymeric materials were investigated in a stirred tank reactor at temperatures ranging from -10 degree C to 60 degrees C. Pressure, temperature, and torque were used to detect onset points of hydrate formation and dissociation. The inhibitive effect of the additives on hydrate formation was quantified. Phase boundary shifts were measured in terms of temperature difference or sub-cooling gained when chemicals were added to pure water. Results showed that the multiple hydroxyl groups in polyalcohol chemicals significantly inhibited hydrate formation. Polymeric and polyacrylamide materials had only a small impact on hydrate formation, while sulfonated methyl tannins were found to increase hydrate formation. 6 refs., 1 tab., 4 figs.

  12. Inhibition of enveloped viruses infectivity by curcumin.

    Directory of Open Access Journals (Sweden)

    Tzu-Yen Chen

    Full Text Available Curcumin, a natural compound and ingredient in curry, has antiinflammatory, antioxidant, and anticarcinogenic properties. Previously, we reported that curcumin abrogated influenza virus infectivity by inhibiting hemagglutination (HA activity. This study demonstrates a novel mechanism by which curcumin inhibits the infectivity of enveloped viruses. In all analyzed enveloped viruses, including the influenza virus, curcumin inhibited plaque formation. In contrast, the nonenveloped enterovirus 71 remained unaffected by curcumin treatment. We evaluated the effects of curcumin on the membrane structure using fluorescent dye (sulforhodamine B; SRB-containing liposomes that mimic the viral envelope. Curcumin treatment induced the leakage of SRB from these liposomes and the addition of the influenza virus reduced the leakage, indicating that curcumin disrupts the integrity of the membranes of viral envelopes and of liposomes. When testing liposomes of various diameters, we detected higher levels of SRB leakage from the smaller-sized liposomes than from the larger liposomes. Interestingly, the curcumin concentration required to reduce plaque formation was lower for the influenza virus (approximately 100 nm in diameter than for the pseudorabies virus (approximately 180 nm and the vaccinia virus (roughly 335 × 200 × 200 nm. These data provide insights on the molecular antiviral mechanisms of curcumin and its potential use as an antiviral agent for enveloped viruses.

  13. Inhibition of acetylcholinesterase by Tea Tree oil.

    Science.gov (United States)

    Mills, Clive; Cleary, Brian J; Gilmer, John F; Walsh, John J

    2004-03-01

    Pediculosis is a widespread condition reported in schoolchildren. Treatment most commonly involves the physical removal of nits using fine-toothcombs and the chemical treatment of adult lice and eggs with topical preparations. The active constituents of these preparations frequently exert their effects through inhibition of acetylcholinesterase (AChE, EC 3.1.1.7). Increasing resistance to many preparations has led to the search for more effective treatments. Tea Tree oil, otherwise known as Melaleuca oil, has been added to several preparations as an alternative treatment of head lice infestations. In this study two major constituents of Tea Tree oil, 1,8-cineole and terpinen-4-ol, were shown to inhibit acetylcholinesterase at IC50 values (inhibitor concentrations required to give 50% inhibition) of 0.04 and 10.30 mM, respectively. Four samples of Tea Tree oil tested (Tisserand, Body Treats, Main Camp and Irish Health Culture Association Pure Undiluted) showed anticholinesterase activity at IC50 values of 0.05, 0.10, 0.08 and 0.11 microL mL(-1), respectively. The results supported the hypothesis that the insecticidal activity of Tea Tree oil was attributable, in part, to the anticholinesterase activity of Tea Tree oil.

  14. Wnt signaling inhibits CTL memory programming.

    Science.gov (United States)

    Xiao, Zhengguo; Sun, Zhifeng; Smyth, Kendra; Li, Lei

    2013-12-01

    Induction of functional CTLs is one of the major goals for vaccine development and cancer therapy. Inflammatory cytokines are critical for memory CTL generation. Wnt signaling is important for CTL priming and memory formation, but its role in cytokine-driven memory CTL programming is unclear. We found that wnt signaling inhibited IL-12-driven CTL activation and memory programming. This impaired memory CTL programming was attributed to up-regulation of eomes and down-regulation of T-bet. Wnt signaling suppressed the mTOR pathway during CTL activation, which was different to its effects on other cell types. Interestingly, the impaired memory CTL programming by wnt was partially rescued by mTOR inhibitor rapamycin. In conclusion, we found that crosstalk between wnt and the IL-12 signaling inhibits T-bet and mTOR pathways and impairs memory programming which can be recovered in part by rapamycin. In addition, direct inhibition of wnt signaling during CTL activation does not affect CTL memory programming. Therefore, wnt signaling may serve as a new tool for CTL manipulation in autoimmune diseases and immune therapy for certain cancers.

  15. Deubiquitinase inhibition as a cancer therapeutic strategy.

    Science.gov (United States)

    D'Arcy, Padraig; Wang, Xin; Linder, Stig

    2015-03-01

    The ubiquitin proteasome system (UPS) is the main system for controlled protein degradation and a key regulator of fundamental cellular processes. The dependency of cancer cells on a functioning UPS has made this an attractive target for development of drugs that show selectivity for tumor cells. Deubiquitinases (DUBs, ubiquitin isopeptidases) are components of the UPS that catalyze the removal of ubiquitin moieties from target proteins or polyubiquitin chains, resulting in altered signaling or changes in protein stability. A number of DUBs regulate processes associated with cell proliferation and apoptosis, and as such represent candidate targets for cancer therapeutics. The majority of DUBs are cysteine proteases and are likely to be more "druggable" than E3 ligases. Cysteine residues in the active sites of DUBs are expected to be reactive to various electrophiles. Various compounds containing α,β-unsaturated ketones have indeed been demonstrated to inhibit cellular DUB activity. Inhibition of proteasomal cysteine DUB enzymes (i.e. USP14 and UCHL5) can be predicted to be particularly cytotoxic to cancer cells as it leads to blocking of proteasome function and accumulation of proteasomal substrates. We here provide an overall review of DUBs relevant to cancer and of various small molecules which have been demonstrated to inhibit DUB activity.

  16. Phytic Acid Inhibits Lipid Peroxidation In Vitro

    Directory of Open Access Journals (Sweden)

    Alicja Zajdel

    2013-01-01

    Full Text Available Phytic acid (PA has been recognized as a potent antioxidant and inhibitor of iron-catalyzed hydroxyl radical formation under in vitro and in vivo conditions. Therefore, the aim of the present study was to investigate, with the use of HPLC/MS/MS, whether PA is capable of inhibiting linoleic acid autoxidation and Fe(II/ascorbate-induced peroxidation, as well as Fe(II/ascorbate-induced lipid peroxidation in human colonic epithelial cells. PA at 100 μM and 500 μM effectively inhibited the decay of linoleic acid, both in the absence and presence of Fe(II/ascorbate. The observed inhibitory effect of PA on Fe(II/ascorbate-induced lipid peroxidation was lower (10–20% compared to that of autoxidation. PA did not change linoleic acid hydroperoxides concentration levels after 24 hours of Fe(II/ascorbate-induced peroxidation. In the absence of Fe(II/ascorbate, PA at 100 μM and 500 μM significantly suppressed decomposition of linoleic acid hydroperoxides. Moreover, PA at the tested nontoxic concentrations (100 μM and 500 μM significantly decreased 4-hydroxyalkenal levels in Caco-2 cells which structurally and functionally resemble the small intestinal epithelium. It is concluded that PA inhibits linoleic acid oxidation and reduces the formation of 4-hydroxyalkenals. Acting as an antioxidant it may help to prevent intestinal diseases induced by oxygen radicals and lipid peroxidation products.

  17. Phytic acid inhibits lipid peroxidation in vitro.

    Science.gov (United States)

    Zajdel, Alicja; Wilczok, Adam; Węglarz, Ludmiła; Dzierżewicz, Zofia

    2013-01-01

    Phytic acid (PA) has been recognized as a potent antioxidant and inhibitor of iron-catalyzed hydroxyl radical formation under in vitro and in vivo conditions. Therefore, the aim of the present study was to investigate, with the use of HPLC/MS/MS, whether PA is capable of inhibiting linoleic acid autoxidation and Fe(II)/ascorbate-induced peroxidation, as well as Fe(II)/ascorbate-induced lipid peroxidation in human colonic epithelial cells. PA at 100 μM and 500 μM effectively inhibited the decay of linoleic acid, both in the absence and presence of Fe(II)/ascorbate. The observed inhibitory effect of PA on Fe(II)/ascorbate-induced lipid peroxidation was lower (10-20%) compared to that of autoxidation. PA did not change linoleic acid hydroperoxides concentration levels after 24 hours of Fe(II)/ascorbate-induced peroxidation. In the absence of Fe(II)/ascorbate, PA at 100 μM and 500 μM significantly suppressed decomposition of linoleic acid hydroperoxides. Moreover, PA at the tested nontoxic concentrations (100 μM and 500 μM) significantly decreased 4-hydroxyalkenal levels in Caco-2 cells which structurally and functionally resemble the small intestinal epithelium. It is concluded that PA inhibits linoleic acid oxidation and reduces the formation of 4-hydroxyalkenals. Acting as an antioxidant it may help to prevent intestinal diseases induced by oxygen radicals and lipid peroxidation products.

  18. Trace element inhibition of phytase activity.

    Science.gov (United States)

    Santos, T; Connolly, C; Murphy, R

    2015-02-01

    Nowadays, 70 % of global monogastric feeds contains an exogenous phytase. Phytase supplementation has enabled a more efficient utilisation of phytate phosphorous (P) and reduction of P pollution. Trace minerals, such as iron (Fe), zinc (Zn), copper (Cu) and manganese (Mn) are essential for maintaining health and immunity as well as being involved in animal growth, production and reproduction. Exogenous sources of phytase and trace elements are regularly supplemented to monogastric diets and usually combined in a premix. However, the possibility for negative interaction between individual components within the premix is high and is often overlooked. Therefore, this initial study focused on assessing the potential in vitro interaction between inorganic and organic chelated sources of Fe, Zn, Cu and Mn with three commercially available phytase preparations. Additionally, this study has investigated if the degree of enzyme inhibition was dependent of the type of chelated sources. A highly significant relationship between phytase inhibition, trace mineral type as well as mineral source and concentration, p phytases for Fe and Zn, as well as for Cu with E. coli and Aspergillus niger phytases. Different chelate trace mineral sources demonstrated diversifying abilities to inhibit exogenous phytase activity.

  19. Gabapentin inhibits central sensitization during migraine

    Institute of Scientific and Technical Information of China (English)

    Yanbo Zhang; Guo Shao; Wei Zhang; Sijie Li; Jingzhong Niu; Dongmei Hu; Mingfeng Yang; Xunming Ji

    2013-01-01

    Peripheral and central sensitizations are phenomena that occur during migraine. The role of pentin, a migraine preventive drug, on central sensitization remains unclear. In this study, a rat model of migraine was established by electrical stimulation of the trigeminal ganglion, and the an-imals were given intragastric gabapentin. Changes in amino acid content in the cerebrospinal fluid and protein kinase C membrane translocation in the spinal trigeminal nucleus were examined to clarify the mechanisms underlying the efficacy of gabapentin in the treatment of central sensitization during migraine. Electrophysiology, liquid chromatography-mass spectrometry and western blot analysis results revealed that gabapentin reduces neuronal excitability in the spinal nucleus in the trigeminal nerve, decreases excitatory amino acid content and inhibits the activation of protein ki-nase C. This provides evidence that excitatory amino acids and protein kinase C are involved in the formation and maintenance of central sensitization during migraine. Gabapentin inhibits migraine by reducing excitatory amino acid content in the cerebrospinal fluid and inhibiting protein kinase C ac-tivation.

  20. Response inhibition in motor conversion disorder.

    Science.gov (United States)

    Voon, Valerie; Ekanayake, Vindhya; Wiggs, Edythe; Kranick, Sarah; Ameli, Rezvan; Harrison, Neil A; Hallett, Mark

    2013-05-01

    Conversion disorders (CDs) are unexplained neurological symptoms presumed to be related to a psychological issue. Studies focusing on conversion paralysis have suggested potential impairments in motor initiation or execution. Here we studied CD patients with aberrant or excessive motor movements and focused on motor response inhibition. We also assessed cognitive measures in multiple domains. We compared 30 CD patients and 30 age-, sex-, and education-matched healthy volunteers on a motor response inhibition task (go/no go), along with verbal motor response inhibition (color-word interference) and measures of attention, sustained attention, processing speed, language, memory, visuospatial processing, and executive function including planning and verbal fluency. CD patients had greater impairments in commission errors on the go/no go task (P conversion. Patients with nonepileptic seizures, a different form of conversion disorder, are commonly reported to have lower IQ and multiple cognitive deficits. Our results point toward potential differences between conversion disorder subgroups. © 2013 Movement Disorder Society. Copyright © 2013 Movement Disorder Society.

  1. A resorcinarene for inhibition of Aβ fibrillation.

    Science.gov (United States)

    Han, Xu; Park, Jiyong; Wu, Wei; Malagon, Andres; Wang, Lingyu; Vargas, Edgar; Wikramanayake, Athula; Houk, K N; Leblanc, Roger M

    2017-03-01

    Amyloid-β peptides (Aβ) fibrillation is the hallmark of Alzheimer's disease (AD). However, it has been challenging to discover potent agents in order to inhibit Aβ fibrillation. Herein, we demonstrated the effect of resorcinarene on inhibiting Aβ fibrillation in vitro via experimental and computational methods. Aβ were incubated with different concentrations of resorcinarene so as to monitor the kinetics by using thioflavin T binding assay. The results, which were further confirmed by far-UV CD spectroscopy and atomic force microscopy, strongly indicated that the higher concentration of resorcinarene, the more effective the inhibition of Aβ fibrillation. A cytotoxicity study showed that when sea urchin embryos were exposed to the resorcinarene, the majority survived due to the resorcinarene low toxicity. In addition, when the resorcinarene was added, the formation of toxic Aβ 42 species was delayed. Computational studies of Aβ fibrillation, including docking simulations and MD simulations, illustrated that the interaction between inhibitor resorcinarene and Aβ is driven by the non-polar interactions. These studies display a novel strategy for the exploration of promising antiamyloiddogenic agents for AD treatments.

  2. Bioassays for the determination of nitrification inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Grunditz, Camilla

    1999-07-01

    Requirements for nitrogen reduction in wastewater treatment plants were introduced in Sweden in the early 1990's. This was a governmental move to reduce the nitrogen discharges to the Baltic and Kattegat in order to prevent eutrophication. The nitrification process in wastewater treatment plants is performed by nitrifying bacteria. These are susceptible to inhibition and it is of great importance that the influent water does not contain toxic compounds. Therefore, there is a need for assays for the determination of nitrification inhibition. This thesis describes the development and applications of such bioassays. Pure cultures of Nitrosomonas sp. and Nitrobacter sp. were isolated from activated sludge of a wastewater treatment plant. These cultures were used as test organisms in the development of bioassays for nitrification inhibition measurements. The assays are based on two different principles; cell suspensions of the bacteria, performed in test tubes, and mediated amperometric biosensors with the bacteria immobilised. Ammonia oxidation and nitrite oxidation are studied separately without interference from other organisms, which makes it easier to interpret the results. The cell suspension assays were applied to samples of industrial and municipal wastewater. The Nitrosomonas and Nitrobacter assays showed to have different inhibition patterns. A large percentage of the Swedish municipal wastewater treatment plants were found to receive inhibitory influent water, but the inhibition level was generally low. Compared to an assay based on activated sludge, the screening method, the pure culture assays found more samples of influent water strongly inhibitory or stimulating. The highest correlation was found between the screening method and the Nitrosomonas assay. The Nitrobacter assay was found to be the most sensitive method. Assessment of toxicity of a number of chemical substances was studied using the biosensors, together with the cell suspension assays

  3. Antiarrhythmic Mechanisms of SK Channel Inhibition in the Rat Atrium

    DEFF Research Database (Denmark)

    Skibsbye, Lasse; Wang, Xiaodong; Axelsen, Lene Nygaard

    2015-01-01

    remains unclear. OBJECTIVES: We speculated that together with a direct inhibition of repolarizing SK current, the previously observed depolarization of the atrial resting membrane potential (RMP) after SK channel inhibition reduces sodium channel availability thereby prolonging the effective refractory...

  4. Human mesenchymal stem cell proliferation is regulated by PGE2 through differential activation of cAMP-dependent protein kinase isoforms

    DEFF Research Database (Denmark)

    Kleiveland, Charlotte Ramstad; Kassem, Moustapha; Lea, Tor

    2008-01-01

    with synthetic cAMP analogues, resulted in enhancement of proliferation. On the other side, we found that treatment of hMSC with high concentrations of PGE2 inhibited cell proliferation by arresting the cells in G0/G1 phase, an effect we found to be mediated by PKA I. Hence, the two different PKA isoforms seem....... Furthermore, PGE2 treatment leads to enhanced nuclear translocation of beta-catenin, thus influencing cell proliferation. The presence of two PKA isoforms, types I and II, prompted us to investigate their individual contribution in PGE2-mediated regulation of proliferation. Specific activation of PKA type II......The conditions used for in vitro differentiation of hMSCs contain substances that affect the activity and expression of cyclooxygenase enzymes (COX1/COX2) and thereby the synthesis of prostanoids. hMSC constitutively produce PGE2 when cultivated in vitro. In this study we have investigated effects...

  5. Profiling gene expression in human placentae of different gestational ages: an OPRU Network and UW SCOR Study.

    Science.gov (United States)

    Mikheev, Andrei M; Nabekura, Tomohiro; Kaddoumi, Amal; Bammler, Theo K; Govindarajan, Rajgopal; Hebert, Mary F; Unadkat, Jashvant D

    2008-11-01

    We used the whole-genome approach to identify major functional categories of genes whose expression depends on gestational age. Using microarray analysis, we compared gene expression profiles in the villous tissues of first (45-59 days) and second trimester (109-115 days) placentae with C-section term placentae. We found that in first trimester placentae, genes related to cell cycle, DNA, amino acids, and carbohydrate metabolism were significantly overrepresented, while genes related to signal transduction were underrepresented. Among genes involved in organism defense, we identified genes involved in chemical response, metabolism, and transport. Analysis of signal transduction pathways suggested, and subsequently confirmed independently, that the Wnt pathway was changed with gestational age leading to inhibition of beta-catenin protein expression. Our study will serve as a reference database to gain insight into the regulation of gene expression in the developing placentae and to compare with gene expression in placentae from complicated pregnancies.

  6. Effects of CDH1 gene promoter methylation on expression of E-cadherin and beta-catenin and its clinicopathological significance in colon carcinoma%上皮钙黏素1基因启动子甲基化对结肠癌上皮钙黏素和β-连接素表达的影响

    Institute of Scientific and Technical Information of China (English)

    李臣; 杨静; 董坚; 陈明清; 李文亮; 任俊宇; 陈圣雄; 李秋恬; 耿计伟; 缪延栋

    2011-01-01

    目的 探讨上皮钙黏素基因(CDH1)启动子甲基化与结肠癌上皮钙黏素(E-cadherin)及β-连接素(β-catenin)的表达及临床病理特征的关系.方法 采用甲基化特异性PCR技术检测68例结肠腺癌组织、癌旁组织及正常黏膜组织中CDH1基因启动子甲基化的状况.采用免疫组织化学法检测E-cadherin及β-catenin蛋白的表达.结果 癌旁组织及癌组织中CDH1启动子甲基化的阳性表达分别为32.4%(22/68)、57.4%(39/68),正常组织均为阴性表达(P<0.05).E-cadherin在正常组织、癌旁组织及腺癌组织中阳性表达率分别为92.6%、66.2%和44.1%.正常组织中β-catenin均表达于细胞膜上,无胞质和(或)胞核表达,而β-catenin在癌旁组织及癌组织中胞质和(或)胞核表达分别为29.4%和50.0%.CDH1基因启动子甲基化阳性率与E-cadherin表达则呈负相关(r=-0.312,P=0.01),与β-catenin胞质和(或)胞核表达呈正相关(r=0.309,P=0.018).CDH1基因启动子甲基化及E-cadherin、β-catenin的异常表达均与结肠癌分化程度及转移密切相关(P<0.05).结论 CDH1基因启动子甲基化可能是导致结肠癌E-cadherin与β-catenin异常表达及肿瘤侵袭性增强的重要原因.%Objective To investigate the relationship between methylation of the CDH1 gene promoter on the expression of E-cadherin and β-catenin, and to evaluate the correlation with clinicopathological characteristics of the colonic carcinoma. Methods Methylation specific PCR (MSP) was used to detect CDH1 gene promoter methylation in the cancer tissue, adjacent tissues and normal tissues in 68 patients. The expression of E-cadherin and β-catenin was determined by immunohistochemistry staining. Results The positive rate of CDH1 gene promoter methylation was 32.4% in adjacent tissues and 57.4% in cancer tissue, while no detectable methylation was found in all the normal tissues. The difference was statistically significant. The positive rate of E-cadherin was 92.6% in the normal tissues, 66.2% in the adjacent tissues and 44.1% in the cancer tissues. In all normal tissues, β-catenin was expressed only at the cellular membrane but not in the cytosol or nucleus, while the expression of β-catenin was present in the cytosol or nucleus in 29.4% of the adjacent tissues and 50.0% of the cancer tissues. The positive rate of CDH1 gene promoter methylation was negatively correlated with E-cadherin expression (r =-0.312,P =0.01) and positively correlated with β-catenin cytosolic/nucleus expression(r=0.309,P=0.018). The differentiation and metastasis of colonic carcinoma were associated with the aberrant expression of E-cadherin, β-catenin, and methylation of CDH1 promoter (P<0.05). Conclusion CDH1 gene promoter methylation may lead to aberrant expression of E-cadherin and β-catenin in colonic carcinoma, and may play an important role in promoting the invasion of tumor.

  7. Effect ofTougu XiaotongCapsule and itsdisassembled recipeson chondrocyte degenerationof ratsviaWnt/beta-catenin signalingpathway%透骨消痛胶囊及其拆方对退变软骨细胞Wnt/β-catenin信号通路的影响

    Institute of Scientific and Technical Information of China (English)

    吴追乐; 陈星强; 陈春蓉; 于超; 朱晓勤; 庄志强

    2016-01-01

    BACKGROUND:Previous studies have showed thatTougu XiaotongCapsule (TGXTC) exertsbetter effects on osteoarthritis, byregulatingRho/Rock signaling pathway, inhibitingsignal transduction of chondrocyte mitochondrial apoptosis pathway,varyingthe rate and pattern of subchondral bone remodeling and improving the arrangement of subchondral bone colagen fibers and calcium-phosphate crystalization. OBJECTIVE:To observe the effects of the serum containing TGXTC and itsdisassembled recipeson chondrocytedegenerationof ratsviaWnt/β-cateninsignal pathway, and to explore the maintherapeutic method forosteoarthritis in theTGXTC. METHODS:FortySprague-Dawley rats were randomlyassigned to receivethe treatment ofTGXTC,Bushen Rougan(BSRG),Huoxue Qufeng(HXQF) and normal saline, respectively, according tothe dose conversion methods ofanimaltoanimal and animaltohuman. Thenvarious drug-containing serums wereprepared for thefolowingcelular experiment.After culture and passage, chondrocytesfromSprague-Dawley ratsat passage 3 were divided into five groups: blank control, model, TGXTC, BSRG, HXQF groups. Cels in the latter four groups wereculturedin appropriate drug-containing serums(normal salineserumfor the model group) for 72 hours, folowing intervention with interleukin-1β for 24 hours.Cels in the blank control group were cultured innormal saline serum.Afterwards, cels in al the five groups were colected for detecting expression ofWnt 4, β-cateninandmatrix metaloproteinase 13at mRNA and proteinlevels using real-time PCR and western blot assay, respectively. RESULTS AND CONCLUSION:Compared with theblank control group, the expressionof Wnt 4,β-catenin, matrix metaloproteinase 13 wassignificantly increasedin the model group. Compared with the model group, the expression of Wnt 4, β-catenin, matrix metaloproteinase 13 in the TGXTC, BSRG and HXQF groups were decreasedsignificantly, sequenced as TGXTC group补肾柔肝组>活血祛风组。③结果提示透骨消痛胶囊对白细胞介素1β诱导的软骨细胞具有协同保护作用,补肾柔肝为透骨消痛胶囊治疗骨性关节炎的主要治法。

  8. Expressions of Beta-Catenin and Matrix Metalloprotein-2 in Gastric Adenocarcinomas and in Metastatic Lymph Nodes%β-连接素和基质金属蛋白酶-2在胃腺癌组织和淋巴结转移灶中的表达及其意义

    Institute of Scientific and Technical Information of China (English)

    田素芳; 熊永炎

    2010-01-01

    目的:探讨胃腺癌中β-连接素(β-cat)和基质金属蛋白酶-2(MMP-2)的表达及其与胃腺癌侵袭转移的关系.方法;用SP免疫组化法检测80例胃癌和40例淋巴结转移灶中β-cat和MMP-2的表达.结果:①β-cat在癌旁正常胃黏膜上皮为胞膜表达,而在胃腺癌组织中出现胞膜、质、核三种表达方式,MMP-2在肿瘤细胞中则为胞质表达.②β-cat的表达与胃腺癌的分化程度相关,膜表达随分化程度降低而下降,而其胞质表达随分化程度降低而升高(P<0.05).β-cat膜表达下降与淋巴结转移状态相关,β-cat胞质表达则在肿瘤原发灶显著高于转移灶(P<0.05).③MMP-2的表达随肿瘤分化程度下降、浸润深度增加而升高,在有淋巴结转移组高于淋巴结阴性组(P<0.05).④MMP-2的表达与β-cat的膜表达呈负相关.结论:β-catenin的表达异常导致细胞之间的黏附力下降,MMP-2的表达增高预示肿瘤细胞侵袭能力增强,且两者协同作用,在胃腺癌的侵袭和转移中发挥重要作用.

  9. 原癌基因WNT1、β-连环蛋白、T细胞因子4在基底细胞癌中的表达及意义%Expression and significance of WNT1, beta-catenin, TCF4 in basal cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    张胜逆; 张涛; 楚瑞琦; 刘春梅; 沈俊萍; 田文英

    2016-01-01

    目的:探讨原癌基因WNT1、β-连环蛋白(β-catenin)、T细胞因子4(TCF4)在基底细胞癌(BCC)的表达模式及意义.方法:采用免疫组化方法、免疫印迹及实时定量PCR对62例BCC和56例脂溢性角化病(SK)的皮损组织标本进行WNT1、β-catenin、TCF4基因mRNA及蛋白的表达分析.结果:WNT1、β-catenin、TCF4在BCC中的阳性率分别为87.10%(54/62)、83.87%(52/62)、93.55%(58/62)高于SK中的的25.00%(14/56)、19.64%(11/56)、10.71%(6/56),差异具有统计学意义(P值分别为9.35x10-12,2.86x10-12,1.91x10-12);WNT1、β-catenin、TCF4基因mRNA及蛋白在BCC中表达升高,差异具有统计学意义(P值分别为0.018,0.027,0.038).结论:WNT1、β-catenin、TCF4异常表达模式可能是促进BCC发生的重要因素,与BCC的发生密切相关.

  10. Allosteric Partial Inhibition of Monomeric Proteases. Sulfated Coumarins Induce Regulation, not just Inhibition, of Thrombin

    Science.gov (United States)

    Verespy III, Stephen; Mehta, Akul Y.; Afosah, Daniel; Al-Horani, Rami A.; Desai, Umesh R.

    2016-01-01

    Allosteric partial inhibition of soluble, monomeric proteases can offer major regulatory advantages, but remains a concept on paper to date; although it has been routinely documented for receptors and oligomeric proteins. Thrombin, a key protease of the coagulation cascade, displays significant conformational plasticity, which presents an attractive opportunity to discover small molecule probes that induce sub-maximal allosteric inhibition. We synthesized a focused library of some 36 sulfated coumarins to discover two agents that display sub-maximal efficacy (~50%), high potency (150-fold). Michaelis-Menten, competitive inhibition, and site-directed mutagenesis studies identified exosite 2 as the site of binding for the most potent sulfated coumarin. Stern-Volmer quenching of active site-labeled fluorophore suggested that the allosteric regulators induce intermediate structural changes in the active site as compared to those that display ~80–100% efficacy. Antithrombin inactivation of thrombin was impaired in the presence of the sulfated coumarins suggesting that allosteric partial inhibition arises from catalytic dysfunction of the active site. Overall, sulfated coumarins represent first-in-class, sub-maximal inhibitors of thrombin. The probes establish the concept of allosteric partial inhibition of soluble, monomeric proteins. This concept may lead to a new class of anticoagulants that are completely devoid of bleeding. PMID:27053426

  11. Foxp3+ T cells inhibit antitumor immune memory modulated by mTOR inhibition.

    Science.gov (United States)

    Wang, Yanping; Sparwasser, Tim; Figlin, Robert; Kim, Hyung L

    2014-04-15

    Inhibition of mTOR signaling enhances antitumor memory lymphocytes. However, pharmacologic mTOR inhibition also enhances regulatory T-cell (Treg) activity. To counter this effect, Treg control was added to mTOR inhibition in preclinical models. Tregs were controlled with CD4-depleting antibodies because CD4 depletion has high translational potential and already has a well-established safety profile in patients. The antitumor activity of the combination therapy was CD8 dependent and controlled growth of syngeneic tumors even when an adoptive immunotherapy was not used. Lymphocytes resulting from the combination therapy could be transferred into naïve mice to inhibit aggressive growth of lung metastases. The combination therapy enhanced CD8 memory formation as determined by memory markers and functional studies of immune recall. Removal of FoxP3-expressing T lymphocytes was the mechanism underlying immunologic memory formation following CD4 depletion. This was confirmed using transgenic DEREG (depletion of regulatory T cells) mice to specifically remove Foxp3(+) T cells. It was further confirmed with reciprocal studies where stimulation of immunologic memory because of CD4 depletion was completely neutralized by adoptively transferring tumor-specific Foxp3(+) T cells. Also contributing to tumor control, Tregs that eventually recovered following CD4 depletion were less immunosuppressive. These results provide a rationale for further study of mTOR inhibition and CD4 depletion in patients. ©2014 AACR.

  12. A fusion-inhibiting peptide against Rift Valley fever virus inhibits multiple, diverse viruses.

    Directory of Open Access Journals (Sweden)

    Jeffrey W Koehler

    Full Text Available For enveloped viruses, fusion of the viral envelope with a cellular membrane is critical for a productive infection to occur. This fusion process is mediated by at least three classes of fusion proteins (Class I, II, and III based on the protein sequence and structure. For Rift Valley fever virus (RVFV, the glycoprotein Gc (Class II fusion protein mediates this fusion event following entry into the endocytic pathway, allowing the viral genome access to the cell cytoplasm. Here, we show that peptides analogous to the RVFV Gc stem region inhibited RVFV infectivity in cell culture by inhibiting the fusion process. Further, we show that infectivity can be inhibited for diverse, unrelated RNA viruses that have Class I (Ebola virus, Class II (Andes virus, or Class III (vesicular stomatitis virus fusion proteins using this single peptide. Our findings are consistent with an inhibition mechanism similar to that proposed for stem peptide fusion inhibitors of dengue virus in which the RVFV inhibitory peptide first binds to both the virion and cell membranes, allowing it to traffic with the virus into the endocytic pathway. Upon acidification and rearrangement of Gc, the peptide is then able to specifically bind to Gc and prevent fusion of the viral and endocytic membranes, thus inhibiting viral infection. These results could provide novel insights into conserved features among the three classes of viral fusion proteins and offer direction for the future development of broadly active fusion inhibitors.

  13. Zinc ions bind to and inhibit activated protein C

    DEFF Research Database (Denmark)

    Zhu, Tianqing; Ubhayasekera, Wimal; Nickolaus, Noëlle

    2010-01-01

    Zn2+ ions were found to efficiently inhibit activated protein C (APC), suggesting a potential regulatory function for such inhibition. APC activity assays employing a chromogenic peptide substrate demonstrated that the inhibition was reversible and the apparent K I was 13 +/- 2 microM. k cat was ...

  14. SIRT1 controls cell proliferation by regulating contact inhibition.

    Science.gov (United States)

    Cho, Elizabeth H; Dai, Yan

    2016-09-16

    Contact inhibition keeps cell proliferation in check and serves as a built-in protection against cancer development by arresting cell division upon cell-cell contact. Yet the complete mechanism behind this anti-cancer process remains largely unclear. Here we present SIRT1 as a novel regulator of contact inhibition. SIRT1 performs a wide variety of functions in biological processes, but its involvement in contact inhibition has not been explored to date. We used NIH3T3 cells, which are sensitive to contact inhibition, and H460 and DU145 cancer cells, which lack contact inhibition, to investigate the relationship between SIRT1 and contact inhibition. We show that SIRT1 overexpression in NIH3T3 cells overcomes contact inhibition while SIRT1 knockdown in cancer cells restores their lost contact inhibition. Moreover, we demonstrate that p27 protein expression is controlled by SIRT1 in contact inhibition. Overall, our findings underline the critical role of SIRT1 in contact inhibition and suggest SIRT1 inhibition as a potential strategy to suppress cancer cell growth by restoring contact inhibition. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Inhibition of acetylcholinesterase activity by essential oil from Citrus paradisi.

    Science.gov (United States)

    Miyazawa, M; Tougo, H; Ishihara, M

    2001-01-01

    Inhibition of acetylcholinesterase (AChE) activity by essential oils of Citrus paradisi (grapefruit pink in USA) was studied. Inhibition of AChE was measured by the colorimetric method. Nootkatone and auraptene were isolated from C. paradisi oil and showed 17-24% inhibition of AChE activity at the concentration of 1.62 microg/mL.

  16. Inhibition by somatostatin interneurons in olfactory cortex

    Directory of Open Access Journals (Sweden)

    Adam M Large

    2016-08-01

    Full Text Available Inhibitory circuitry plays an integral cortical network activity. The development of transgenic mouse lines targeting unique interneuron classes has significantly advanced our understanding of the functional roles of specific inhibitory circuits in neocortical sensory processing. In contrast, considerably less is known about the circuitry and function of interneuron classes in piriform cortex, a paleocortex responsible for olfactory processing. In this study, we sought to utilize transgenic technology to investigate inhibition mediated by somatostatin (SST interneurons onto pyramidal cells, parvalbumin (PV interneurons and other interneuron classes. As a first step, we characterized the anatomical distributions and intrinsic properties of SST and PV interneurons in four transgenic lines (SST-cre, GIN, PV-cre and G42 that are commonly interbred to investigate inhibitory connectivity. Surprisingly, the distributions SST and PV cell subtypes targeted in the GIN and G42 lines were sparse in piriform cortex compared to neocortex. Moreover, two-thirds of interneurons recorded in the SST-cre line had electrophysiological properties similar to fast spiking (FS interneurons rather than regular (RS or low threshold spiking (LTS phenotypes. Nonetheless, like neocortex, we find that SST-cells broadly inhibit a number of unidentified interneuron classes including putatively identified PV cells and surprisingly, other SST cells. We also confirm that SST-cells inhibit pyramidal cell dendrites and thus, influence dendritic integration of afferent and recurrent inputs to the piriform cortex. Altogether, our findings suggest that somatostatin interneurons play an important role in regulating both excitation and the global inhibitory network during olfactory processing.

  17. Interferon-γ Inhibits Ebola Virus Infection.

    Science.gov (United States)

    Rhein, Bethany A; Powers, Linda S; Rogers, Kai; Anantpadma, Manu; Singh, Brajesh K; Sakurai, Yasuteru; Bair, Thomas; Miller-Hunt, Catherine; Sinn, Patrick; Davey, Robert A; Monick, Martha M; Maury, Wendy

    2015-01-01

    Ebola virus outbreaks, such as the 2014 Makona epidemic in West Africa, are episodic and deadly. Filovirus antivirals are currently not clinically available. Our findings suggest interferon gamma, an FDA-approved drug, may serve as a novel and effective prophylactic or treatment option. Using mouse-adapted Ebola virus, we found that murine interferon gamma administered 24 hours before or after infection robustly protects lethally-challenged mice and reduces morbidity and serum viral titers. Furthermore, we demonstrated that interferon gamma profoundly inhibits Ebola virus infection of macrophages, an early cellular target of infection. As early as six hours following in vitro infection, Ebola virus RNA levels in interferon gamma-treated macrophages were lower than in infected, untreated cells. Addition of the protein synthesis inhibitor, cycloheximide, to interferon gamma-treated macrophages did not further reduce viral RNA levels, suggesting that interferon gamma blocks life cycle events that require protein synthesis such as virus replication. Microarray studies with interferon gamma-treated human macrophages identified more than 160 interferon-stimulated genes. Ectopic expression of a select group of these genes inhibited Ebola virus infection. These studies provide new potential avenues for antiviral targeting as these genes that have not previously appreciated to inhibit negative strand RNA viruses and specifically Ebola virus infection. As treatment of interferon gamma robustly protects mice from lethal Ebola virus infection, we propose that interferon gamma should be further evaluated for its efficacy as a prophylactic and/or therapeutic strategy against filoviruses. Use of this FDA-approved drug could rapidly be deployed during future outbreaks.

  18. Brain hyaluronan binding protein inhibits tumor growth

    Institute of Scientific and Technical Information of China (English)

    高锋; 曹曼林; 王蕾

    2004-01-01

    Background Great efforts have been made to search for the angiogenic inhibitors in avascular tissues. Several proteins isolated from cartilage have been proved to have anti-angiogenic or anti-tumour effects. Because cartilage contains a great amount of hyaluronic acid (HA) oligosaccharides and abundant HA binding proteins (HABP), therefore, we speculated that HABP might be one of the factors regulating vascularization in cartilage or anti-angiogenesis in tumours. The purpose of this research was to evaluale the effects of hyaluronan binding protein on inhibiting tumour growth both in vivo and vitro. Methods A unique protein termed human brain hyaluronan (HA) binding protein (b-HABP) was cloned from human brain cDNA library. MDA-435 human breast cancer cell line was chosen as a transfectant. The in vitro underlying mechanisms were investigated by determining the possibilities of MDA-435/b-HABP colony formation on soft agar, the effects of the transfectant on the proliferation of endothelial cells and the expression levels of caspase 3 and FasL from MDA-435/b-HABP. The in vivo study included tumour growth on the chorioallantoic membrane (CAM) of chicken embryos and nude mice. Results Colony formation assay revealed that the colonies formed by MDA-435/b-HABP were greatly reduced compared to mock transfectants. The conditioned media from MDA-435/b-HABP inhibited the growth of endothelial cells in culture. Caspase 3 and FasL expressions were induced by MDA-435/b-HABP. The size of tumours of MDA-435/b-HABP in both CAM and nude mice was much smaller than that of MDA-435 alone. Conclusions Human brain hyaluronan binding protein (b-HABP) may represent a new kind of naturally existing anti-tumour substance. This brain-derived glycoprotein may block tumour growth by inducing apoptosis of cancer cells or by decreasing angiogenesis in tumour tissue via inhibiting proliferation of endothelial cells.

  19. Reliability of Transcallosal Inhibition in Healthy Adults

    Science.gov (United States)

    Fleming, Melanie K.; Newham, Di J.

    2017-01-01

    Transcallosal inhibition (TCI), assessed using transcranial magnetic stimulation, can provide insight into the neurophysiology of aging and of neurological disorders such as stroke. However, the reliability of TCI using the ipsilateral silent period (iSP) has not been formally assessed, despite its use in longitudinal studies. This study aimed to determine the reliability of iSP onset latency, duration and depth in healthy young and older adults. A sample of 18 younger (mean age 27.7 years, range: 19–42) and 13 older healthy adults (mean age 68.1 years, range: 58–79) attended four sessions whereby the iSP was measured from the first dorsal interosseous (FDI) muscle of each hand. 20 single pulse stimuli were delivered to each primary motor cortex at 80% maximum stimulator output while the participant maintained an isometric contraction of the ipsilateral FDI. The average onset latency, duration of the iSP, and depth of inhibition relative to baseline electromyography activity was calculated for each hand in each session. Intraclass correlation coefficients (ICCs) were calculated for all four sessions, or the first two sessions only. For iSP onset latency the reliability ranged from poor to good. For iSP duration there was moderate to good reliability (ICC > 0.6). Depth of inhibition demonstrated variation in reproducibility depending on which hand was assessed and whether two or four sessions were compared. Bland and Altman analyses showed wide limits of agreement between the first two sessions, particularly for iSP depth. However, there was no systematic pattern to the variability. These results indicate that although iSP duration is reliable in healthy adults, changes in longitudinal studies should be interpreted with caution, particularly for iSP depth. Future studies are needed to determine reliability in clinical populations. PMID:28119588

  20. Interferon-γ Inhibits Ebola Virus Infection.

    Directory of Open Access Journals (Sweden)

    Bethany A Rhein

    Full Text Available Ebola virus outbreaks, such as the 2014 Makona epidemic in West Africa, are episodic and deadly. Filovirus antivirals are currently not clinically available. Our findings suggest interferon gamma, an FDA-approved drug, may serve as a novel and effective prophylactic or treatment option. Using mouse-adapted Ebola virus, we found that murine interferon gamma administered 24 hours before or after infection robustly protects lethally-challenged mice and reduces morbidity and serum viral titers. Furthermore, we demonstrated that interferon gamma profoundly inhibits Ebola virus infection of macrophages, an early cellular target of infection. As early as six hours following in vitro infection, Ebola virus RNA levels in interferon gamma-treated macrophages were lower than in infected, untreated cells. Addition of the protein synthesis inhibitor, cycloheximide, to interferon gamma-treated macrophages did not further reduce viral RNA levels, suggesting that interferon gamma blocks life cycle events that require protein synthesis such as virus replication. Microarray studies with interferon gamma-treated human macrophages identified more than 160 interferon-stimulated genes. Ectopic expression of a select group of these genes inhibited Ebola virus infection. These studies provide new potential avenues for antiviral targeting as these genes that have not previously appreciated to inhibit negative strand RNA viruses and specifically Ebola virus infection. As treatment of interferon gamma robustly protects mice from lethal Ebola virus infection, we propose that interferon gamma should be further evaluated for its efficacy as a prophylactic and/or therapeutic strategy against filoviruses. Use of this FDA-approved drug could rapidly be deployed during future outbreaks.

  1. GSK-3Beta-Dependent Activation of GEF-H1/ROCK Signaling Promotes LPS-Induced Lung Vascular Endothelial Barrier Dysfunction and Acute Lung Injury.

    Science.gov (United States)

    Yi, Lei; Huang, Xiaoqin; Guo, Feng; Zhou, Zengding; Chang, Mengling; Huan, Jingning

    2017-01-01

    The bacterial endotoxin or lipopolysaccharide (LPS) leads to the extensive vascular endothelial cells (EC) injury under septic conditions. Guanine nucleotide exchange factor-H1 (GEF-H1)/ROCK signaling not only involved in LPS-induced overexpression of pro-inflammatory mediator in ECs but also implicated in LPS-induced endothelial hyper-permeability. However, the mechanisms behind LPS-induced GEF-H1/ROCK signaling activation in the progress of EC injury remain incompletely understood. GEF-H1 localized on microtubules (MT) and is suppressed in its MT-bound state. MT disassembly promotes GEF-H1 release from MT and stimulates downstream ROCK-specific GEF activity. Since glycogen synthase kinase (GSK-3beta) participates in regulating MT dynamics under pathologic conditions, we examined the pivotal roles for GSK-3beta in modulating LPS-induced activation of GEF-H1/ROCK, increase of vascular endothelial permeability and severity of acute lung injury (ALI). In this study, we found that LPS induced human pulmonary endothelial cell (HPMEC) monolayers disruption accompanied by increase in GSK-3beta activity, activation of GEF-H1/ROCK signaling and decrease in beta-catenin and ZO-1 expression. Inhibition of GSK-3beta reduced HPMEC monolayers hyper-permeability and GEF-H1/ROCK activity in response to LPS. GSK-3beta/GEF-H1/ROCK signaling is implicated in regulating the expression of beta-catenin and ZO-1. In vivo, GSK-3beta inhibition attenuated LPS-induced activation of GEF-H1/ROCK pathway, lung edema and subsequent ALI. These findings present a new mechanism of GSK-3beta-dependent exacerbation of lung micro-vascular hyper-permeability and escalation of ALI via activation of GEF-H1/ROCK signaling and disruption of intracellular junctional proteins under septic condition.

  2. A novel approach to inhibit bone resorption

    DEFF Research Database (Denmark)

    Panwar, Preety; Søe, Kent; Guido, Rafael VC;

    2016-01-01

    -dihydrotanshinone (DHT1), and the active site inhibitor, odanacatib (ODN), on bone resorption and TGF-ß1 degradation. Cell cultures, Western blot, light and scanning electron microscopy as well as energy dispersive X-ray spectroscopy, molecular modelling and enzymatic assays were used to evaluate the inhibitors. KEY...... RESULTS: DHT1 selectively inhibited the collagenase activity of CatK, without affecting the viability of osteoclasts. Both inhibitors abolished the formation of resorption trenches, with DHT1 having a slightly higher IC50 value than ODN. Maximal reductions of other resorption parameters by DHT1 and ODN...

  3. Linking algal growth inhibition to chemical activity

    DEFF Research Database (Denmark)

    Schmidt, Stine N.; Mayer, Philipp

    to chemical activity, as opposed to e.g. the total concentration. Baseline toxicity (narcosis) for neutral hydrophobic organic compounds has been shown to initiate in the narrow chemical activity range of 0.01 to 0.1. This presentation focuses on linking algal growth inhibition to chemical activity....... High-quality toxicity data are carefully selected from peer-reviewed scientific literature and QSAR databases. This presentation shows how the chemical activity concept can be used to compare and combine toxicity data across compounds and species in order to characterize toxicity – and further how...

  4. Inhibition of intestinal disaccharidase activity by pentoses

    DEFF Research Database (Denmark)

    Halschou-Jensen, Kia

    digestive enzymes. In paper 3, D-xylose and L-arabinose was investigated in vitro and in vivo. This study found that D-xylose and Larabinose inhibit both sucrase and maltase when tested in a Caco-2 cell model. In addition, 13 healthy subjects completed a randomized double-blinded cross-over study......The current health problems regarding the obesity epidemic, development of type 2 diabetes mellitus (T2D) and cardiovascular disease are a major challenge for healthcare systems worldwide.No simple or unique cure has been documented to prevent or treat this major health problem regarding T2D...

  5. Homochiral growth through enantiomeric cross-inhibition

    CERN Document Server

    Brandenburg, A; Höfner, S; Nilsson, M

    2004-01-01

    The stability and conservation properties of a recently proposed polymerization model are studied. The achiral (racemic) solution is linearly unstable once the relevant control parameter (here the fidelity of the catalyst) exceeds a critical value. The growth rate is calculated for different fidelity parameters and cross-inhibition rates. A chirality parameter is defined and shown to be conserved by the nonlinear terms of the model. Finally, a truncated version of the model is used to derive a set of two ordinary differential equations and it is argued that these equations are more realistic than those used in earlier models of that form.

  6. Novel agents inhibit human leukemic cells

    Institute of Scientific and Technical Information of China (English)

    Wei-ping YU; Juan LI

    2012-01-01

    Ouabain (OUA) and pyrithione zinc (PZ) have been proved as the potential drugs for treating acute myeloid leukemia (AML).Selected from a screening among 1040 Food and Drug Administration-approved pharmacological agents,both drugs showability to induce apoptosis of the culturing AML cells,exhibiting the poisoning effect on the cells.Studies also reveal the efficiency of the drugs in inhibiting the growth of human AML cells injected into the mice lacking of immunity and killing primary AML cells from the peripheral blood of AML patients[1].

  7. Basis of pyruvate inhibition in Thiobacillus thiooxidans.

    Science.gov (United States)

    Rao, G S; Berger, L R

    1970-05-01

    Addition of 10(-3)m pyruvic acid to cultures of Thiobacillus thiooxidans, at pH 2.3, results in its rapid intracellular accumulation and in the cessation of sulfur oxidation, CO(2) fixation, and oxygen consumption; at pH 7.0, pyruvate neither inhibits oxygen uptake nor accumulates appreciably intracellularly. Pyruvate does not affect CO(2) fixation in cell-free extracts. The data suggest that the cells of T. thiooxidans are passively permeable to pyruvic acid at low pH. Thus entry of pyruvic acid causes accumulation of pyruvate with a concomitant decrease in intracellular pH.

  8. Research on inhibition of corneal neovascularization

    Directory of Open Access Journals (Sweden)

    Zhang-Hui Yang

    2015-12-01

    Full Text Available Corneal transparency is the basis of the normal physiological functions.However, corneal neovascularization(CNVmay occur in the infection, mechanical and chemical injury or under other pathological conditions,which make the cornea lose original transparency and severe visual impairment. In recent years, along with the development of immunology, molecular biology, biochemistry and other disciplines, there is more in-depth understanding on the CNV, and clinical treatment of CNV has made new breakthroughs. This article provides an overview of the inhibition of CNV.

  9. Quassinoid inhibition of AP-1 function does not correlate with cytotoxicity or protein synthesis inhibition.

    Science.gov (United States)

    Beutler, John A; Kang, Moon-Il; Robert, Francis; Clement, Jason A; Pelletier, Jerry; Colburn, Nancy H; McKee, Tawnya C; Goncharova, Ekaterina; McMahon, James B; Henrich, Curtis J

    2009-03-27

    Several quassinoids were identified in a high-throughput screening assay as inhibitors of the transcription factor AP-1. Further biological characterization revealed that while their effect was not specific to AP-1, protein synthesis inhibition and cell growth assays were inconsistent with a mechanism of simple protein synthesis inhibition. Numerous plant extracts from the plant family Simaroubaceae were also identified in the same screen; bioassay-guided fractionation of one extract (Ailanthus triphylla) yielded two known quassinoids, ailanthinone (3) and glaucarubinone (4), which were also identified in the pure compound screening procedure.

  10. Thymoquinone Inhibits Escherichia coli ATP Synthase and Cell Growth

    OpenAIRE

    2015-01-01

    We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control...

  11. Copper, aluminum, iron and calcium inhibit human acetylcholinesterase in vitro.

    Science.gov (United States)

    Pohanka, Miroslav

    2014-01-01

    Acetylcholinesterase (AChE) is an important part of cholinergic nerves where it participates in termination of neurotransmission. AChE can be inhibited by e.g. some Alzheimer disease drugs, nerve agents, and secondary metabolites. In this work, metal salts aluminum chloride, calcium chloride, cupric chloride, ferric chloride, potassium chloride, magnesium chloride and sodium chloride were tested for their ability to inhibit AChE. Standard Ellman assay based on human recombinant AChE was done and inhibition was measured using Dixon plot. No inhibition was proved for sodium, potassium and magnesium ions. However, aluminum, cupric, ferric and calcium ions were able to inhibit AChE via noncompetitive mechanism of inhibition. Though the inhibition is much weaker when compared to e.g. drugs with noncompetitive mechanism of action, biological relevance of the findings can be anticipated.

  12. A comparator view of Pavlovian and differential inhibition.

    Science.gov (United States)

    Urcelay, Gonzalo P; Miller, Ralph R

    2006-07-01

    In 3 experiments using rats as subjects, the authors varied trial spacing to investigate the conditions under which Pavlovian and differential inhibition are observed. Experiment 1 compared Pavlovian and differential inhibition with spaced training trials. Spaced trials resulted in only the Pavlovian inhibitor passing both summation and retardation tests. Conversely, Experiment 2 compared these 2 types of inhibition with massed training trials. This training resulted in only the differential inhibitor passing both tests for conditioned inhibition. Finally, in Experiment 3 all subjects experienced Pavlovian inhibition training with massed trials. Although this training by itself did not result in behavior indicative of inhibition, subjects that also experienced posttraining extinction of the training context did pass both tests for inhibition. Overall, these results are anticipated by the extended comparator hypothesis (Denniston, Savastano, & Miller, 2001) but are problematic for most contemporary associative learning theories.

  13. Optogenetic and chemogenetic strategies for sustained inhibition of pain

    Science.gov (United States)

    Iyer, Shrivats M.; Vesuna, Sam; Ramakrishnan, Charu; Huynh, Karen; Young, Stephanie; Berndt, Andre; Lee, Soo Yeun; Gorini, Christopher J.; Deisseroth, Karl; Delp, Scott L.

    2016-01-01

    Spatially targeted, genetically-specific strategies for sustained inhibition of nociceptors may help transform pain science and clinical management. Previous optogenetic strategies to inhibit pain have required constant illumination, and chemogenetic approaches in the periphery have not been shown to inhibit pain. Here, we show that the step-function inhibitory channelrhodopsin, SwiChR, can be used to persistently inhibit pain for long periods of time through infrequent transdermally delivered light pulses, reducing required light exposure by >98% and resolving a long-standing limitation in optogenetic inhibition. We demonstrate that the viral expression of the hM4D receptor in small-diameter primary afferent nociceptor enables chemogenetic inhibition of mechanical and thermal nociception thresholds. Finally, we develop optoPAIN, an optogenetic platform to non-invasively assess changes in pain sensitivity, and use this technique to examine pharmacological and chemogenetic inhibition of pain. PMID:27484850

  14. Ehrlich tumor inhibition using doxorubicin containing liposomes.

    Science.gov (United States)

    Elbialy, Nihal Saad; Mady, Mohsen Mahmoud

    2015-04-01

    Ehrlich tumors were grown in female balb mice by subcutaneous injection of Ehrlich ascites carcinoma cells. Mice bearing Ehrlich tumor were injected with saline, DOX in solution or DOX encapsulated within liposomes prepared from DMPC/CHOL/DPPG/PEG-PE (100:100:60:4) in molar ratio. Cytotoxicity assay showed that the IC50 of liposomes containing DOX was greater than that DOX only. Tumor growth inhibition curves in terms of mean tumor size (cm(3)) were presented. All the DOX formulations were effective in preventing tumor growth compared to saline. Treatment with DOX loaded liposomes displayed a pronounced inhibition in tumor growth than treatment with DOX only. Histopathological examination of the entire tumor sections for the various groups revealed marked differences in cellular features accompanied by varying degrees in necrosis percentage ranging from 12% for saline treated mice to 70% for DOX loaded liposome treated mice. The proposed liposomal formulation can efficiently deliver the drug into the tumor cells by endocytosis (or passive diffusion) and lead to a high concentration of DOX in the tumor cells. The study showed that the formulation of liposomal doxorubicin improved the therapeutic index of DOX and had increased anti-tumor activity against Ehrlich tumor models.

  15. In search of lost presynaptic inhibition.

    Science.gov (United States)

    Rudomin, Pablo

    2009-06-01

    This chapter presents an historical review on the development of some of the main findings on presynaptic inhibition. Particular attention is given to recent studies pertaining the differential GABAa control of the synaptic effectiveness of muscle, cutaneous and articular afferents, to some of the problems arising with the identification of the interneurons mediating the GABAergic depolarization of primary afferents (PAD) of muscle afferents, on the influence of the spontaneous activity of discrete sets of dorsal horn neurons on the pathways mediating PAD of muscle and cutaneous afferents, and to the unmasking of the cutaneous-evoked responses in the lumbosacral spinal cord and associated changes in tonic PAD that follow acute and chronic section of cutaneous nerves. The concluding remarks are addressed to several issues that need to be considered to have a better understanding of the functional role of presynaptic inhibition and PAD on motor performance and sensory processing and on their possible contribution to the shaping of a higher coherence between the cortically programmed and the executed movements.

  16. Safrole oxide inhibits angiogenesis by inducing apoptosis.

    Science.gov (United States)

    Zhao, Jing; Miao, Junying; Zhao, Baoxiang; Zhang, Shangli; Yin, Deling

    2005-06-01

    Our previous studies indicate that 3, 4-(methylenedioxy)-1-(2', 3'-epoxypropyl)-benzene (safrole oxide), a newly synthesized compound, induces apoptosis in vascular endothelial cells (VECs) and A549 lung cancer cells. To our knowledge, the inhibition of angiogenesis by safrole oxide has not been reported yet. We report here that cultured rat aorta treated with safrole oxide exhibited a significant microvessel reduction as determined by counting the number of microvessels in a phase contrast microscope. There were more microvessels formed in the presence of A549 lung cancer cells in rat aorta model, while a dramatic inhibition of angiogenesis was obtained by adding 220-450 micromol l(-1) of safrole oxide to the growth medium (Psafrole oxide produced only some abortive endothelial cells but not microvessels. Furthermore, safrole oxide induced antiangiogenic effect in the chorioallantoic membranes (CAM) as a dose dependent manner. Eggs treated with 2-11 micromol 100 microl(-1) per egg of the safrole oxide for 48 h exhibited a significant reduction in blood vessel area of the CAM, a process likely mediated by apoptosis as demonstrated by DNA fragmentation. Our results suggest that safrole oxide has antiangiogenic activity and this effect might occur by induction of cellular apoptosis.

  17. Phenols displaying tyrosinase inhibition from Humulus lupulus.

    Science.gov (United States)

    Kim, Dae Wook; Woo, Hyun Sim; Kim, Jeong Yoon; Ryuk, Jin Ah; Park, Ki Hun; Ko, Byoung Seob

    2016-10-01

    Tyrosinase is the rate-limiting enzyme for the production of melanin and other pigments via the oxidation of l-tyrosine. The methanol extract from Humulus lupulus showed potent inhibition against mushroom tyrosinase. The bioactivity-guided fractionation of this methanol extract resulted in the isolation of seven flavonoids (1-7), identified as xanthohumol (1), 4'-O-methylxanthohumol (2), xanthohumol C (3), flavokawain C (4), xanthoumol B (5), 6-prenylnaringenin (6) and isoxanthohumol (7). All isolated flavonoids (1-7) effectively inhibited the monophenolase (IC50s = 15.4-58.4 µM) and diphenolase (IC50s = 27.1-117.4 µM) activities of tyrosinase. Kinetic studies using Lineweaver-Burk and Dixon-plots revealed that chalcones (1-5) were competitive inhibitors, whereas flavanones (6 and 7) exhibited both mixed and non-competitive inhibitory characteristics. In conclusion, this study is the first to demonstrate that the phenolic phytochemicals of H. lupulus display potent inhibitory activities against tyrosinase.

  18. Therapeutic proteasome inhibition in experimental acute pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Tamás Letoha; Tamás Takács; Liliána Z Fehér; László Pecze; Csaba Somlai; Ilona Varga; József Kaszaki; Gábor Tóth; Csaba Vizier; László Tiszlavicz

    2007-01-01

    AIM: To establish the therapeutic potential of proteasome inhibition, we examined the therapeutic effects of MG132 (Z-Leu-Leu-Leu-aldehyde) in an experimental model of acute pancreatitis.METHODS: Pancreatitis was induced in rats by two hourly intraperitoneal (ip) injections of cholecystokinin octapeptide (CCK; 2 × 100 μg/kg) and the proteasome inhibitor MG132 (10 mg/kg ip) was administered 30 min after the second CCK injection. Animals were sacrificed 4 h after the first injection of CCK.RESULTS: Administering the proteasome inhibitor MG132 (at a dose of 10 mg/kg, ip) 90 min after the onset of pancreatic inflammation induced the expression of cell-protective 72 kDa heat shock protein (HSP72) and decreased DNA-binding of nuclear factor-κB (NF-κB).Furthermore MG132 treatment resulted in milder inflammatory response and cellular damage, as revealed by improved laboratory and histological parameters of pancreatitis and associated oxidative stress.CONCLUSION: Our findings suggest that proteasome inhibition might be beneficial not only for the prevention,but also for the therapy of acute pancreatitis.

  19. Platelets Inhibit Migration of Canine Osteosarcoma Cells.

    Science.gov (United States)

    Bulla, S C; Badial, P R; Silva, R C; Lunsford, K; Bulla, C

    2017-01-01

    The interaction between platelets and tumour cells is important for tumour growth and metastasis. Thrombocytopenia or antiplatelet treatment negatively impact on cancer metastasis, demonstrating potentially important roles for platelets in tumour progression. To our knowledge, there is no information regarding the role of platelets in cancer progression in dogs. This study was designed to test whether canine platelets affected the migratory behaviour of three canine osteosarcoma cell lines and to give insights of molecular mechanisms. Intact platelets, platelet lysate and platelet releasate inhibited the migration of canine osteosarcoma cell lines. Addition of blood leucocytes to the platelet samples did not alter the inhibitory effect on migration. Platelet treatment also significantly downregulated the transcriptional levels of SNAI2 and TWIST1 genes. The interaction between canine platelets or molecules released during platelet activation and these tumour cell lines inhibits their migration, which suggests that canine platelets might antagonize metastasis of canine osteosarcoma. This effect is probably due to, at least in part, downregulation of genes related to epithelial-mesenchymal transition. Copyright © 2016. Published by Elsevier Ltd.

  20. Understanding biocatalyst inhibition by carboxylic acids.

    Science.gov (United States)

    Jarboe, Laura R; Royce, Liam A; Liu, Ping

    2013-09-03

    Carboxylic acids are an attractive biorenewable chemical in terms of their flexibility and usage as precursors for a variety of industrial chemicals. It has been demonstrated that such carboxylic acids can be fermentatively produced using engineered microbes, such as Escherichia coli and Saccharomyces cerevisiae. However, like many other attractive biorenewable fuels and chemicals, carboxylic acids become inhibitory to these microbes at concentrations below the desired yield and titer. In fact, their potency as microbial inhibitors is highlighted by the fact that many of these carboxylic acids are routinely used as food preservatives. This review highlights the current knowledge regarding the impact that saturated, straight-chain carboxylic acids, such as hexanoic, octanoic, decanoic, and lauric acids can have on E. coli and S. cerevisiae, with the goal of identifying metabolic engineering strategies to increase robustness. Key effects of these carboxylic acids include damage to the cell membrane and a decrease of the microbial internal pH. Certain changes in cell membrane properties, such as composition, fluidity, integrity, and hydrophobicity, and intracellular pH are often associated with increased tolerance. The availability of appropriate exporters, such as Pdr12, can also increase tolerance. The effect on metabolic processes, such as maintaining appropriate respiratory function, regulation of Lrp activity and inhibition of production of key metabolites such as methionine, are also considered. Understanding the mechanisms of biocatalyst inhibition by these desirable products can aid in the engineering of robust strains with improved industrial performance.

  1. Understanding biocatalyst inhibition by carboxylic acids

    Directory of Open Access Journals (Sweden)

    Laura R Jarboe

    2013-09-01

    Full Text Available Carboxylic acids are an attractive biorenewable chemical in terms of their flexibility and usage as precursors for a variety of industrial chemicals. It has been demonstrated that such carboxylic acids can be fermentatively produced using engineered microbes, such as Escherichia coli and Saccharomyces cerevisiae. However, like many other attractive biorenewable fuels and chemicals, carboxylic acids become inhibitory to these microbes at concentrations below the desired yield and titer. In fact, their potency as microbial inhibitors is highlighted by the fact that many of these carboxylic acids are routinely used as food preservatives. This review highlights the current knowledge regarding the impact that saturated, straight-chain carboxylic acids, such as hexanoic, octanoic, decanoic and lauric acids can have on E. coli and S. cerevisiae, with the goal of identifying metabolic engineering strategies to increase robustness. Key effects of these carboxylic acids include damage to the cell membrane and a decrease of the microbial internal pH. Certain changes in cell membrane properties, such as composition, fluidity, integrity and hydrophobicity, and intracellular pH are often associated with increased tolerance. The availability of appropriate exporters, such as Pdr12, can also increase tolerance. The effect on metabolic processes, such as maintaining appropriate respiratory function, regulation of Lrp activity and inhibition of production of key metabolites such as methionine, are also considered. Understanding the mechanisms of biocatalyst inhibition by these desirable products can aid in the engineering of robust strains with improved industrial performance.

  2. Calcineurin/NFAT signalling inhibits myeloid haematopoiesis.

    Science.gov (United States)

    Fric, Jan; Lim, Clarice X F; Koh, Esther G L; Hofmann, Benjamin; Chen, Jinmiao; Tay, Hock Soon; Mohammad Isa, Siti Aminah Bte; Mortellaro, Alessandra; Ruedl, Christiane; Ricciardi-Castagnoli, Paola

    2012-04-01

    Nuclear factor of activated T cells (NFAT) comprises a family of transcription factors that regulate T cell development, activation and differentiation. NFAT signalling can also mediate granulocyte and dendritic cell (DC) activation, but it is unknown whether NFAT influences their development from progenitors. Here, we report a novel role for calcineurin/NFAT signalling as a negative regulator of myeloid haematopoiesis. Reconstituting lethally irradiated mice with haematopoietic stem cells expressing an NFAT-inhibitory peptide resulted in enhanced development of the myeloid compartment. Culturing bone marrow cells in media supplemented with Flt3-L in the presence of the calcineurin/NFAT inhibitor Cyclosporin A increased numbers of differentiated DC. Global gene expression analysis of untreated DC and NFAT-inhibited DC revealed differential expression of transcripts that regulate cell cycle and apoptosis. In conclusion, these results provide evidence that calcineurin/NFAT signalling negatively regulates myeloid lineage development. The finding that inhibition of NFAT enhances myeloid development provides a novel insight into understanding how the treatment with drugs targeting calcineurin/NFAT signalling influence the homeostasis of the innate immune system.

  3. Tigecycline inhibits proliferation of Acanthamoeba castellanii.

    Science.gov (United States)

    Jha, Bijay Kumar; Seo, Incheol; Kong, Hyun-Hee; Suh, Seong-Il; Suh, Min-Ho; Baek, Won-Ki

    2015-03-01

    Acanthamoeba is an opportunistic protozoan parasite responsible for different diseases in humans, such as granulomatous amoebic encephalitis and amoebic keratitis. Tigecycline, a third-generation tetracycline antibiotic, has potential activity to treat most of the antibiotic resistant bacterial infections. The effects of tigecycline in eukaryotic cells as well as parasites are less well studied. In the present study, we tested the effects of tigecycline on trophozoites of Acanthamoeba castellanii. The inhibitory effect of tigecycline on Acanthamoeba was determined by resazurin reduction and trypan blue exclusion assays. We found that tigecycline significantly inhibited the growth of Acanthamoeba (46.4 % inhibition at the concentration of 100 μM) without affecting cell viability and induction of encystation, whereas other tetracycline groups of antibiotics such as tetracycline and doxycycline showed no inhibitory effects. Furthermore, tigecycline decreased cellular adenosine triphosphate (ATP) level by 26 % than the control and increased mitochondrial mass, suggesting mitochondrial dysfunction in tigecycline-treated cells. These findings suggest that mitochondrial dysfunction with decreased ATP production might play an important mechanism of tigecycline in suppression of Acanthamoeba proliferation.

  4. Effects of renin inhibition in systemic hypertension.

    Science.gov (United States)

    Anderson, P W; Do, Y S; Schambelan, M; Horton, R; Boger, R S; Luther, R R; Hsueh, W A

    1990-12-01

    The effect of the direct renin inhibitor enalkiren (Abbott Laboratories) was examined in 8 healthy patients with essential hypertension. With an unrestricted sodium diet, plasma renin concentration was inhibited within 10 minutes by intravenous enalkiren and remained essentially undetectable for greater than or equal to 6 hours (11.9 +/- 4 to 1.0 +/- 0.6 ng angiotensin I/ml/hour, p less than 0.05). Mean arterial blood pressure declined gradually (108 +/- 5 to 84 +/- 4 mm Hg, p = 0.02), as did plasma aldosterone concentration (14.4 +/- 3.8 to 4.4 +/- 0.8 ng/dl, p = 0.03), whereas plasma immunoreactive active renin concentration increased progressively (35 +/- 14 to 160 +/- 60 pg/ml, p greater than 0.05). Urinary excretion of the stable metabolite of prostacyclin (6-keto-prostaglandin F1 alpha) decreased slightly, but not significantly (42 +/- 10 to 33 +/- 11 ng/g creatinine, p = 0.13). The addition of a diuretic decreased baseline blood pressure and increased baseline plasma renin and aldosterone values. Blood pressure responses to enalkiren were slightly (though not significantly) greater than those observed before diuretic administration. We conclude that enalkiren is effective in decreasing blood pressure and in inhibiting the renin system, without significantly altering urinary prostacyclin excretion, in patients with essential hypertension. These results suggest that the renin system contributes to the maintenance of elevated blood pressure in some patients with essential hypertension.

  5. Kaempferol inhibits thrombosis and platelet activation.

    Science.gov (United States)

    Choi, Jun-Hui; Park, Se-Eun; Kim, Sung-Jun; Kim, Seung

    2015-08-01

    The objectives of the present study were to investigate whether kaempferol affects pro-coagulant proteinase activity, fibrin clot formation, blood clot and thrombin (or collagen/epinephrine)-stimulated platelet activation, thrombosis, and coagulation in ICR (Imprinting Control Region) mice and SD (Sprague-Dawley) rats. Kaempferol significantly inhibited the enzymatic activities of thrombin and FXa by 68 ± 1.6% and 52 ± 2.4%, respectively. Kaempferol also inhibited fibrin polymer formation in turbidity. Microscopic analysis was performed using a fluorescent conjugate. Kaempferol completely attenuated phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, p38, c-Jun N-terminal kinase (JNK) 1/2, and phosphoinositide 3-kinase (PI3K)/PKB (AKT) in thrombin-stimulated platelets and delayed aggregation time (clotting) by 34.6% in an assay of collagen/epinephrine-stimulated platelet activation. Moreover, kaempferol protected against thrombosis development in 3 animal models, including collagen/epinephrine- and thrombin-induced acute thromboembolism models and an FeCl3-induced carotid arterial thrombus model. The ex vivo anticoagulant effect of kaempferol was further confirmed in ICR mice. This study demonstrated that kaempferol may be clinically useful due to its ability to reduce or prevent thrombotic challenge.

  6. Inhibition of saccades elicits attentional suppression.

    Science.gov (United States)

    Dhawan, Saurabh; Deubel, Heiner; Jonikaitis, Donatas

    2013-05-17

    Visuospatial attention has been shown to have a central role in planning and generation of saccades but what role, if any, it plays in inhibition of saccades remains unclear. In this study, we used an oculomotor delayed match- or nonmatch-to-sample task in which a cued location has to be encoded and memorized for one of two very different goals-to plan a saccade to it or to avoid making a saccade to it. We measured the spatial allocation of attention during the delay and found that while marking a location as a future saccade target resulted in an attentional benefit at that location, marking it as forbidden to saccades led to an attentional cost. Additionally, saccade trajectories were found to deviate away more from the "don't look" location than from a saccade-irrelevant distractor confirming greater inhibition of an actively forbidden location in oculomotor programming. Our finding that attention is suppressed at locations forbidden to saccades confirms and complements the claim of a selective and obligatory coupling between saccades and attention-saccades at the memorized location could neither be planned nor suppressed independent of a corresponding effect on attentional performance.

  7. Targeting Sphingosine Kinase-1 To Inhibit Melanoma

    Science.gov (United States)

    Madhunapantula, SubbaRao V.; Hengst, Jeremy; Gowda, Raghavendra; Fox, Todd E.; Yun, Jong K; Robertson, Gavin P.

    2012-01-01

    SUMMARY Resistance to therapies develops rapidly for melanoma leading to more aggressive disease. Therefore, agents are needed that specifically inhibit proteins or pathways controlling the development of this disease, which can be combined, dependent on genes deregulated in a particular patient’s tumors. This study shows that elevated sphingosine-1-phosphate (S-1-P) levels resulting from increased activity of sphingosine kinase-1 (SPHK1) occur in advanced melanomas. Targeting SPHK1 using siRNA decreased anchorage dependent and independent growth as well as sensitized melanoma cells to apoptosis inducing agents. Pharmacological SPHK1 inhibitors SKI-I but not SKI-II decreased S-1-P content, elevated ceramide levels, caused a G2-M block and induced apoptotic cell death in melanomas. Targeting SPHK1 using siRNA or the pharmacological agent called SKI-I, decreased the levels of pAKT. Furthermore, SKI-I inhibited the expression of CYCLIN D1 protein and increased the activity of caspase-3/7, which in turn led to the degradation of PARP. In animals, SKI-I but not SKI-II retarded melanoma growth by 25-40%. Thus, targeting SPHK1 using siRNAs or SKI-I has therapeutic potential for melanoma treatment either alone or in combination with other targeted agents. PMID:22236408

  8. Diacylglycerol Kinase Inhibition and Vascular Function.

    Science.gov (United States)

    Choi, Hyehun; Allahdadi, Kyan J; Tostes, Rita C A; Webb, R Clinton

    2009-01-01

    Diacylglycerol kinases (DGKs), a family of lipid kinases, convert diacylglycerol (DG) to phosphatidic acid (PA). Acting as a second messenger, DG activates protein kinase C (PKC). PA, a signaling lipid, regulates diverse functions involved in physiological responses. Since DGK modulates two lipid second messengers, DG and PA, regulation of DGK could induce related cellular responses. Currently, there are 10 mammalian isoforms of DGK that are categorized into five groups based on their structural features. These diverse isoforms of DGK are considered to activate distinct cellular functions according to extracellular stimuli. Each DGK isoform is thought to play various roles inside the cell, depending on its subcellular localization (nuclear, ER, Golgi complex or cytoplasm). In vascular smooth muscle, vasoconstrictors such as angiotensin II, endothelin-1 and norepinephrine stimulate contraction by increasing inositol trisphosphate (IP(3)), calcium, DG and PKC activity. Inhibition of DGK could increase DG availability and decrease PA levels, as well as alter intracellular responses, including calcium-mediated and PKC-mediated vascular contraction. The purpose of this review is to demonstrate a role of DGK in vascular function. Selective inhibition of DGK isoforms may represent a novel therapeutic approach in vascular dysfunction.

  9. Chromosome tips damaged in anaphase inhibit cytokinesis.

    Directory of Open Access Journals (Sweden)

    Norman M Baker

    Full Text Available Genome maintenance is ensured by a variety of biochemical sensors and pathways that repair accumulated damage. During mitosis, the mechanisms that sense and resolve DNA damage remain elusive. Studies have demonstrated that damage accumulated on lagging chromosomes can activate the spindle assembly checkpoint. However, there is little known regarding damage to DNA after anaphase onset. In this study, we demonstrate that laser-induced damage to chromosome tips (presumptive telomeres in anaphase of Potorous tridactylis cells (PtK2 inhibits cytokinesis. In contrast, equivalent irradiation of non-telomeric chromosome regions or control irradiations in either the adjacent cytoplasm or adjacent to chromosome tips near the spindle midzone during anaphase caused no change in the eventual completion of cytokinesis. Damage to only one chromosome tip caused either complete absence of furrow formation, a prolonged delay in furrow formation, or furrow regression. When multiple chromosome tips were irradiated in the same cell, the cytokinesis defects increased, suggesting a potential dose-dependent mechanism. These results suggest a mechanism in which dysfunctional telomeres inhibit mitotic exit.

  10. Ribosome Inactivating Proteins from Plants Inhibiting Viruses

    Institute of Scientific and Technical Information of China (English)

    Inderdeep Kaur; R C Gupta; Munish Puri

    2011-01-01

    Many plants contain ribosome inactivating proteins (RIPs) with N-glycosidase activity,which depurinate large ribosomal RNA and arrest protein synthesis.RIPs so far tested inhibit replication of mRNA as well as DNA viruses and these proteins,isolated from plants,are found to be effective against a broad range of viruses such as human immunodeficiency virus (HIV),hepatitis B virus (HBV) and herpes simplex virus (HSV).Most of the research work related to RIPs has been focused on antiviral activity against HIV; however,the exact mechanism of antiviral activity is still not clear.The mechanism of antiviral activity was thought to follow inactivation of the host cell ribosome,leading to inhibition of viral protein translation and host cell death.Enzymatic activity of RIPs is not hmited to depurination of the large rRNA,in addition they can depurinate viral DNA as well as RNA.Recently,Phase Ⅰ/Ⅱ clinical trials have demonstrated the potential use of RIPs for treating patients with HIV disease.The aim of this review is to focus on various RIPs from plants associated with anti-HIV activity.

  11. Inhibition by acrolein of light-induced stomatal opening through inhibition of inward-rectifying potassium channels in Arabidopsis thaliana.

    Science.gov (United States)

    Islam, Md Moshiul; Ye, Wenxiu; Matsushima, Daiki; Khokon, Md Atiqur Rahman; Munemasa, Shintaro; Nakamura, Yoshimasa; Murata, Yoshiyuki

    2015-01-01

    Acrolein is a reactive α,β-unsaturated aldehyde derived from lipid peroxides, which are produced in plants under a variety of stress. We investigated effects of acrolein on light-induced stomatal opening using Arabidopsis thaliana. Acrolein inhibited light-induced stomatal opening in a dose-dependent manner. Acrolein at 100 μM inhibited plasma membrane inward-rectifying potassium (Kin) channels in guard cells. Acrolein at 100 μM inhibited Kin channel KAT1 expressed in a heterologous system using Xenopus leaves oocytes. These results suggest that acrolein inhibits light-induced stomatal opening through inhibition of Kin channels in guard cells.

  12. Distinct Neural Correlates for Two Types of Inhibition in Bilinguals: Response Inhibition versus Interference Suppression

    Science.gov (United States)

    Luk, Gigi; Anderson, John A. E.; Craik, Fergus I. M.; Grady, Cheryl; Bialystok, Ellen

    2010-01-01

    To examine the effects of bilingualism on cognitive control, we studied monolingual and bilingual young adults performing a flanker task with functional MRI. The trial types of primary interest for this report were incongruent and no-go trials, representing interference suppression and response inhibition, respectively. Response times were similar…

  13. Ketoconazole inhibits the cellular uptake of anandamide via inhibition of FAAH at pharmacologically relevant concentrations.

    Directory of Open Access Journals (Sweden)

    Emmelie Björklund

    Full Text Available BACKGROUND: The antifungal compound ketoconazole has, in addition to its ability to interfere with fungal ergosterol synthesis, effects upon other enzymes including human CYP3A4, CYP17, lipoxygenase and thromboxane synthetase. In the present study, we have investigated whether ketoconazole affects the cellular uptake and hydrolysis of the endogenous cannabinoid receptor ligand anandamide (AEA. METHODOLOGY/PRINCIPAL FINDINGS: The effects of ketoconazole upon endocannabinoid uptake were investigated using HepG2, CaCo2, PC-3 and C6 cell lines. Fatty acid amide hydrolase (FAAH activity was measured in HepG2 cell lysates and in intact C6 cells. Ketoconazole inhibited the uptake of AEA by HepG2 cells and CaCo2 cells with IC50 values of 17 and 18 µM, respectively. In contrast, it had modest effects upon AEA uptake in PC-3 cells, which have a low expression of FAAH. In cell-free HepG2 lysates, ketoconazole inhibited FAAH activity with an IC50 value (for the inhibitable component of 34 µM. CONCLUSIONS/SIGNIFICANCE: The present study indicates that ketoconazole can inhibit the cellular uptake of AEA at pharmacologically relevant concentrations, primarily due to its effects upon FAAH. Ketoconazole may be useful as a template for the design of dual-action FAAH/CYP17 inhibitors as a novel strategy for the treatment of prostate cancer.

  14. 3-Bromopyruvate inhibits human gastric cancer tumor growth in nude mice via the inhibition of glycolysis.

    Science.gov (United States)

    Xian, Shu-Lin; Cao, Wei; Zhang, Xiao-Dong; Lu, Yun-Fei

    2015-02-01

    Tumor cells primarily depend upon glycolysis in order to gain energy. Therefore, the inhibition of glycolysis may inhibit tumor growth. Our previous study demonstrated that 3-bromopyruvate (3-BrPA) inhibited gastric cancer cell proliferation in vitro. However, the ability of 3-BrPA to suppress tumor growth in vivo, and its underlying mechanism, have yet to be elucidated. The aim of the present study was to investigate the inhibitory effect of 3-BrPA in an animal model of gastric cancer. It was identified that 3-BrPA exhibited strong inhibitory effects upon xenograft tumor growth in nude mice. In addition, the antitumor function of 3-BrPA exhibited a dose-effect association, which was similar to that of the chemotherapeutic agent, 5-fluorouracil. Furthermore, 3-BrPA exhibited low toxicity in the blood, liver and kidneys of the nude mice. The present study hypothesized that the inhibitory effect of 3-BrPA is achieved through the inhibition of hexokinase activity, which leads to the downregulation of B-cell lymphoma 2 (Bcl-2) expression, the upregulation of Bcl-2-associated X protein expression and the subsequent activation of caspase-3. These data suggest that 3-BrPA may be a novel therapy for the treatment of gastric cancer.

  15. Effects of lorazepam on short latency afferent inhibition and short latency intracortical inhibition in humans.

    Science.gov (United States)

    Di Lazzaro, V; Oliviero, A; Saturno, E; Dileone, M; Pilato, F; Nardone, R; Ranieri, F; Musumeci, G; Fiorilla, T; Tonali, P

    2005-04-15

    Experimental studies have demonstrated that the GABAergic system modulates acetylcholine release and, through GABA(A) receptors, tonically inhibits cholinergic activity. Little is known about the effects of GABA on the cholinergic activity in the human central nervous system. In vivo evaluation of some cholinergic circuits of the human brain has recently been introduced using a transcranial magnetic stimulation (TMS) protocol based on coupling peripheral nerve stimulation with TMS of the motor cortex. Peripheral nerve inputs have an inhibitory effect on motor cortex excitability at short intervals (short latency afferent inhibition, SAI). We investigated whether GABA(A) activity enhancement by lorazepam modifies SAI. We also evaluated the effects produced by lorazepam on a different TMS protocol of cortical inhibition, the short interval intracortical inhibition (SICI), which is believed to be directly related to GABA(A) activity. In 10 healthy volunteers, the effects of lorazepam were compared with those produced by quetiapine, a psychotropic drug with sedative effects with no appreciable affinity at cholinergic muscarinic and benzodiazepine receptors, and with those of a placebo using a randomized double-blind study design. Administration of lorazepam produced a significant increase in SICI (F(3,9) = 3.19, P = 0.039). In contrast to SICI, SAI was significantly reduced by lorazepam (F(3,9) = 9.39, P = 0.0002). Our findings demonstrate that GABA(A) activity enhancement determines a suppression of SAI and an increase of SICI.

  16. Inhibition of the V-ATPase by Archazolid A - a new strategy to inhibit EMT.

    Science.gov (United States)

    Merk, Henriette; Messer, Philipp; Ardelt, Maximilian A; Lamb, Don C; Zahler, Stefan; Müller, Rolf; Vollmar, Angelika M; Pachmayr, Johanna

    2017-08-03

    Epithelial-mesenchymal transition (EMT) induces tumor-initiating cells (TICs) which account for tumor recurrence, metastasis and therapeutic resistance. Strategies to interfere with EMT are rare but urgently needed to improve cancer therapy. By using the myxobacterial natural compound Archazolid A as a tool, we elucidate the V-ATPase, a multimeric proton pump that regulates lysosomal acidification, as a crucial player in EMT and identify the inhibition of V-ATPase by Archazolid A as promising strategy to block EMT. Genetic knockdown and pharmacologic inhibition of the V-ATPase by Archazolid A interfere with the EMT process and inhibit TIC generation, as shown by a reduced formation of mammospheres and decreased cell motility. As underlying mechanism, V-ATPase-inhibition by Archazolid A disturbs the turnover of E-cadherin: Archazolid abrogates E-cadherin loss during EMT by interfering with its internalization and recycling. Our study elucidates V-ATPase as essential player in EMT by regulating E-cadherin turnover.  Archazolid A is suggested as a promising therapeutic agent to block EMT and the generation of TICs. Copyright ©2017, American Association for Cancer Research.

  17. Doxycycline inhibits leukemic cell migration via inhibition of matrix metalloproteinases and phosphorylation of focal adhesion kinase.

    Science.gov (United States)

    Wang, Chunhuai; Xiang, Ru; Zhang, Xiangzhong; Chen, Yunxian

    2015-09-01

    Doxycycline, a tetracycline-based antibiotic, has been reported to attenuate melanoma cell migration through inhibiting the focal adhesion kinase (FAK) signaling pathway. However, it remains to be elucidated whether doxycycline exerts this effect on leukemia cell migration. The present study aimed to examine the role of doxycycline in leukemia cell migration. The invasion capacities of the human leukemia cell lines KG1a (acute myelogenous leukemia) and K562 (chronic myelogenous leukemia) were evaluated using Matrigel® matrix‑coated Transwell® chamber assays; leukemic cell lines treated with doxycycline (1 µg/ml) or anti‑β1‑integrin antibodies were added to the upper chamber, while untreated cells were included as controls. Reverse transcription quantitative polymerase chain reaction was performed in order to further understand the influence of doxycycline treatment on the expression of FAK and gelatinases in the KG1a and K562 leukemic cell lines. In addition, FAK protein expression and phosphorylation were determined using western blot analysis in order to investigate the mechanism by which doxycycline inhibited leukemic cell migration. The results revealed that doxycycline treatment significantly attenuated the migration of KG1a and K562 cells, which was demonstrated to be associated with inhibition of the expression and phosphorylation of FAK. In addition, doxycycline treatment inhibited matrix metalloproteinase (MMP)‑2 and MMP‑9 expression. Furthermore, incubation with blocking anti‑β1‑integrin antibodies had an analogous inhibitory effect on leukemic cell migration to that of doxycycline. In conclusion, the results of the present study suggested that doxycycline attenuated leukemic cell migration through inhibiting the FAK signaling pathway. Therefore, doxycycline may have potential for use as a novel strategy for the treatment of leukemia.

  18. Equol inhibits growth, induces atresia, and inhibits steroidogenesis of mouse antral follicles in vitro.

    Science.gov (United States)

    Mahalingam, Sharada; Gao, Liying; Gonnering, Marni; Helferich, William; Flaws, Jodi A

    2016-03-15

    Equol is a non-steroidal estrogen metabolite produced by microbial conversion of daidzein, a major soy isoflavone, in the gut of some humans and many animal species. Isoflavones and their metabolites can affect endogenous estradiol production, action, and metabolism, potentially influencing ovarian follicle function. However, no studies have examined the effects of equol on intact ovarian antral follicles, which are responsible for sex steroid synthesis and further development into ovulatory follicles. Thus, the present study tested the hypothesis that equol inhibits antral follicle growth, increases follicle atresia, and inhibits steroidogenesis in the adult mouse ovary. To test this hypothesis, antral follicles isolated from adult CD-1 mice were cultured with vehicle control (dimethyl sulfoxide; DMSO) or equol (600 nM, 6 μM, 36 μM, and 100 μM) for 48 and 96 h. Every 24h, follicle diameters were measured to monitor growth. At 48 and 96 h, the culture medium was subjected to measurement of hormone levels, and the cultured follicles were subjected to gene expression analysis. Additionally, follicles were histologically evaluated for signs of atresia after 96 h of culture. The results indicate that equol (100 μM) inhibited follicle growth, altered the mRNA levels of bcl2-associated X protein and B cell leukemia/lymphoma 2, and induced follicle atresia. Further, equol decreased the levels of estradiol, testosterone, androstenedione, and progesterone, and it decreased mRNA levels of cholesterol side-chain cleavage, steroid 17-α-hydroxalase, and aromatase. Collectively, these data indicate that equol inhibits growth, increases atresia, and inhibits steroidogenesis of cultured mouse antral follicles.

  19. Neural and behavioral mechanisms of proactive and reactive inhibition.

    Science.gov (United States)

    Meyer, Heidi C; Bucci, David J

    2016-10-01

    Response inhibition is an important component of adaptive behavior. Substantial prior research has focused on reactive inhibition, which refers to the cessation of a motor response that is already in progress. More recently, a growing number of studies have begun to examine mechanisms underlying proactive inhibition, whereby preparatory processes result in a response being withheld before it is initiated. It has become apparent that proactive inhibition is an essential component of the overall ability to regulate behavior and has implications for the success of reactive inhibition. Moreover, successful inhibition relies on learning the meaning of specific environmental cues that signal when a behavioral response should be withheld. Proactive inhibitory control is mediated by stopping goals, which reflect the desired outcome of inhibition and include information about how and when inhibition should be implemented. However, little is known about the circuits and cellular processes that encode and represent features in the environment that indicate the necessity for proactive inhibition or how these representations are implemented in response inhibition. In this article, we will review the brain circuits and systems involved in implementing inhibitory control through both reactive and proactive mechanisms. We also comment on possible cellular mechanisms that may contribute to inhibitory control processes, noting that substantial further research is necessary in this regard. Furthermore, we will outline a number of ways in which the temporal dynamics underlying the generation of the proactive inhibitory signal may be particularly important for parsing out the neurobiological correlates that contribute to the learning processes underlying various aspects of inhibitory control.

  20. Ubiquitylation of terminal deoxynucleotidyltransferase inhibits its activity.

    Directory of Open Access Journals (Sweden)

    So Maezawa

    Full Text Available Terminal deoxynucleotidyltransferase (TdT, which template-independently synthesizes DNA during V(DJ recombination in lymphoid cells, is ubiquitylated by a BPOZ-2/Cul3 complex, as the ubiquitin ligase, and then degraded by the 26 S proteasome. We show here that TdT is ubiquitylated by the Cul3-based ubiquitylation system in vitro. Because TdT could also be ubiquitylated in the absence of Cul/BPOZ-2, we determined that it could also be directly ubiquitylated by the E2 proteins UbcH5a/b/c and UbcH6, E3-independently. Furthermore, the ubiquitylated TdT inhibited its nucleotidyltransferase activity.

  1. Inhibiting bacterial toxins by channel blockage.

    Science.gov (United States)

    Bezrukov, Sergey M; Nestorovich, Ekaterina M

    2016-03-01

    Emergent rational drug design techniques explore individual properties of target biomolecules, small and macromolecule drug candidates, and the physical forces governing their interactions. In this minireview, we focus on the single-molecule biophysical studies of channel-forming bacterial toxins that suggest new approaches for their inhibition. We discuss several examples of blockage of bacterial pore-forming and AB-type toxins by the tailor-made compounds. In the concluding remarks, the most effective rationally designed pore-blocking antitoxins are compared with the small-molecule inhibitors of ion-selective channels of neurophysiology. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Transcranial magnetic stimulation (TMS) inhibits cortical dendrites.

    Science.gov (United States)

    Murphy, Sean C; Palmer, Lucy M; Nyffeler, Thomas; Müri, René M; Larkum, Matthew E

    2016-03-18

    One of the leading approaches to non-invasively treat a variety of brain disorders is transcranial magnetic stimulation (TMS). However, despite its clinical prevalence, very little is known about the action of TMS at the cellular level let alone what effect it might have at the subcellular level (e.g. dendrites). Here, we examine the effect of single-pulse TMS on dendritic activity in layer 5 pyramidal neurons of the somatosensory cortex using an optical fiber imaging approach. We find that TMS causes GABAB-mediated inhibition of sensory-evoked dendritic Ca(2+) activity. We conclude that TMS directly activates fibers within the upper cortical layers that leads to the activation of dendrite-targeting inhibitory neurons which in turn suppress dendritic Ca(2+) activity. This result implies a specificity of TMS at the dendritic level that could in principle be exploited for investigating these structures non-invasively.

  3. IL-1β Inhibits Human Osteoblast Migration

    Science.gov (United States)

    Hengartner, Nina-Emily; Fiedler, Jörg; Ignatius, Anita; Brenner, Rolf E

    2013-01-01

    Bone has a high capacity for self-renewal and repair. Prolonged local secretion of interleukin 1β (IL-1β), however, is known to be associated with severe bone loss and delayed fracture healing. Since induction of bone resorption by IL-1β may not sufficiently explain these pathologic processes, we investigated, in vitro, if and how IL-1β affects migration of multipotent mesenchymal stromal cells (MSC) or osteoblasts. We found that homogenous exposure to IL-1β significantly diminished both nondirectional migration and site-directed migration toward the chemotactic factors platelet-derived growth factor (PDGF)-BB and insulinlike growth factor 1 (IGF-1) in osteoblasts. Exposure to a concentration gradient of IL-1β induced an even stronger inhibition of migration and completely abolished the migratory response of osteoblasts toward PDGF-BB, IGF-1, vascular endothelial growth factor A (VEGF-A) and the complement factor C5a. IL-1β induced extracellular signal-regulated kinases 1 and 2 (ERK1/2) and c-Jun N-terminal kinases (JNK) activation and inhibition of these signaling pathways suggested an involvement in the IL-1β effects on osteoblast migration. In contrast, basal migration of MSC and their migratory activity toward PDGF-BB was found to be unaffected by IL-1β. These results indicate that the presence of IL-1β leads to impaired recruitment of osteoblasts which might influence early stages of fracture healing and could have pathological relevance for bone remodeling in inflammatory bone disease. PMID:23508571

  4. Inhibition of Quorum Sensing in Staphylococcus spp.

    Science.gov (United States)

    Brackman, Gilles; Coenye, Tom

    2015-01-01

    The Gram-positive, facultative anaerobic coccus-shaped bacteria of the genus Staphylococcus are among the most important causative agents of acute and chronic bacterial infections in humans as well as in animals. Treatment of Staphylococcus infections has become increasingly challenging due to the growing problem of antibiotic resistance. For this reason innovative antimicrobials with novel targets and modes of action are needed. Since the discovery that QS is used by Staphylococcus spp. to coordinate the expression of several genes involved in virulence, biofilm formation and pathogenicity, QS inhibition has gained increasing attention as an alternative anti-pathogenic strategy. A major advantage compared with antibiotic therapy is that QSIs are used in concentrations that do not affect bacterial growth. For this reason, it is expected that these compounds would exert less pressure towards the development of resistance. However, some important points still need to be addressed. Although several inhibitors have proven to be active antipathogenic agents in vitro and in several in vivo models, it is still unknown whether these compounds will also be useful in humans. Furthermore, several fundamental mechanisms by which the different QS systems in Staphylococcus spp. exert their regulatory functions and how they are inhibited by QSIs are still poorly understood. In order to achieve real-life applications with QSIs, these challenges should be addressed and more research will be needed. In this article, we will discuss the different QS systems present in Staphylococcus spp., how they are used to control virulence and biofilm formation and how they can be blocked.

  5. Inhibition of morphine metabolism by ketamine.

    Science.gov (United States)

    Qi, Xiaoxin; Evans, Allan M; Wang, Jiping; Miners, John O; Upton, Richard N; Milne, Robert W

    2010-05-01

    Clinical observation of a synergistic effect of ketamine on morphine analgesia remains controversial. Although a pharmacodynamic basis for an interaction has been explored in animal and clinical studies, the possibility of a pharmacokinetic mechanism has not been investigated. Whereas both morphine and morphine-6-glucuronide are effective analgesics, morphine-3-glucuronide (M3G) lacks activity. Thus, changes in the metabolism and disposition of morphine may result in an altered response. First, we investigated the interaction between morphine and ketamine in the isolated perfused rat liver preparation. The clearance of morphine was decreased from 16.8 +/- 4.6 ml/min in the control period to 7.7 +/- 2.8 ml/min in the ketamine-treatment period, with the formation clearance of M3G decreasing from 8.0 +/- 4.1 ml/min to 2.1 +/- 1.1 ml/min. Fractional conversion of morphine to M3G was significantly decreased from 0.46 +/- 0.17 in the control period to 0.28 +/- 0.14 upon the addition of ketamine. The possible mechanism of the interaction was further investigated in vitro with rat liver microsomes as the enzyme source. The formation of M3G followed single-enzyme Michaelis-Menten kinetics, with a mean apparent K(m) of 2.18 +/- 0.45 mM and V(max) of 8.67 +/- 0.59 nmol/min/mg. Ketamine inhibited morphine 3-glucuronidation noncompetitively, with a mean K(i) value of 33.3 +/- 7.9 microM. The results demonstrate that ketamine inhibits the glucuronidation of morphine in a rat model.

  6. Enoxacin Directly Inhibits Osteoclastogenesis without Inducing Apoptosis*

    Science.gov (United States)

    Toro, Edgardo J.; Zuo, Jian; Ostrov, David A.; Catalfamo, Dana; Bradaschia-Correa, Vivian; Arana-Chavez, Victor; Caridad, Aliana R.; Neubert, John K.; Wronski, Thomas J.; Wallet, Shannon M.; Holliday, L. Shannon

    2012-01-01

    Enoxacin has been identified as a small molecule inhibitor of binding between the B2-subunit of vacuolar H+-ATPase (V-ATPase) and microfilaments. It inhibits bone resorption by calcitriol-stimulated mouse marrow cultures. We hypothesized that enoxacin acts directly and specifically on osteoclasts by disrupting the interaction between plasma membrane-directed V-ATPases, which contain the osteoclast-selective a3-subunit of V-ATPase, and microfilaments. Consistent with this hypothesis, enoxacin dose-dependently reduced the number of multinuclear cells expressing tartrate-resistant acid phosphatase (TRAP) activity produced by RANK-L-stimulated osteoclast precursors. Enoxacin (50 μm) did not induce apoptosis as measured by TUNEL and caspase-3 assays. V-ATPases containing the a3-subunit, but not the “housekeeping” a1-subunit, were isolated bound to actin. Treatment with enoxacin reduced the association of V-ATPase subunits with the detergent-insoluble cytoskeleton. Quantitative PCR revealed that enoxacin triggered significant reductions in several osteoclast-selective mRNAs, but levels of various osteoclast proteins were not reduced, as determined by quantitative immunoblots, even when their mRNA levels were reduced. Immunoblots demonstrated that proteolytic processing of TRAP5b and the cytoskeletal protein l-plastin was altered in cells treated with 50 μm enoxacin. Flow cytometry revealed that enoxacin treatment favored the expression of high levels of DC-STAMP on the surface of osteoclasts. Our data show that enoxacin directly inhibits osteoclast formation without affecting cell viability by a novel mechanism that involves changes in posttranslational processing and trafficking of several proteins with known roles in osteoclast function. We propose that these effects are downstream to blocking the binding interaction between a3-containing V-ATPases and microfilaments. PMID:22474295

  7. Enoxacin directly inhibits osteoclastogenesis without inducing apoptosis.

    Science.gov (United States)

    Toro, Edgardo J; Zuo, Jian; Ostrov, David A; Catalfamo, Dana; Bradaschia-Correa, Vivian; Arana-Chavez, Victor; Caridad, Aliana R; Neubert, John K; Wronski, Thomas J; Wallet, Shannon M; Holliday, L Shannon

    2012-05-18

    Enoxacin has been identified as a small molecule inhibitor of binding between the B2-subunit of vacuolar H+-ATPase (V-ATPase) and microfilaments. It inhibits bone resorption by calcitriol-stimulated mouse marrow cultures. We hypothesized that enoxacin acts directly and specifically on osteoclasts by disrupting the interaction between plasma membrane-directed V-ATPases, which contain the osteoclast-selective a3-subunit of V-ATPase, and microfilaments. Consistent with this hypothesis, enoxacin dose-dependently reduced the number of multinuclear cells expressing tartrate-resistant acid phosphatase (TRAP) activity produced by RANK-L-stimulated osteoclast precursors. Enoxacin (50 μM) did not induce apoptosis as measured by TUNEL and caspase-3 assays. V-ATPases containing the a3-subunit, but not the "housekeeping" a1-subunit, were isolated bound to actin. Treatment with enoxacin reduced the association of V-ATPase subunits with the detergent-insoluble cytoskeleton. Quantitative PCR revealed that enoxacin triggered significant reductions in several osteoclast-selective mRNAs, but levels of various osteoclast proteins were not reduced, as determined by quantitative immunoblots, even when their mRNA levels were reduced. Immunoblots demonstrated that proteolytic processing of TRAP5b and the cytoskeletal protein L-plastin was altered in cells treated with 50 μM enoxacin. Flow cytometry revealed that enoxacin treatment favored the expression of high levels of DC-STAMP on the surface of osteoclasts. Our data show that enoxacin directly inhibits osteoclast formation without affecting cell viability by a novel mechanism that involves changes in posttranslational processing and trafficking of several proteins with known roles in osteoclast function. We propose that these effects are downstream to blocking the binding interaction between a3-containing V-ATPases and microfilaments.

  8. Cartilage proteoglycans inhibit fibronectin-mediated adhesion

    Science.gov (United States)

    Rich, A. M.; Pearlstein, E.; Weissmann, G.; Hoffstein, S. T.

    1981-09-01

    Normal tissues and organs show, on histological examination, a pattern of cellular and acellular zones that is characteristic and unique for each organ or tissue. This pattern is maintained in health but is sometimes destroyed by disease. For example, in mobile joints, the articular surfaces consist of relatively acellular hyaline cartilage, and the joint space is enclosed by a capsule of loose connective tissue with a lining of fibroblasts and macrophages. In the normal joint these cells are confined to the synovial lining and the articular surface remains acellular. In in vitro culture, macrophages and their precursor monocytes are very adhesive, and fibroblasts can migrate and overgrow surfaces such as collagen or plastic used for tissue culture. The fibroblasts adhere to collagen by means of fibronectin, which they synthesize and secrete1. Because the collagen of cartilage is capable of binding serum fibronectin2 and fibronectin is present in cartilage during its development3, these cells should, in theory, slowly migrate from the synovial lining to the articular surface. It is their absence from the articular cartilage in normal circumstances, and then presence in such pathological states as rheumatoid arthritis, that is striking. We therefore set out to determine whether a component of cartilage could prevent fibroblast adherence in a defined adhesion assay. As normal cartilage is composed of 50% proteoglycans and 50% collagen by dry weight4, we tested the possibility that the proteoglycans in cartilage inhibit fibroblast adhesion to collagen. We present here evidence that fibroblast spreading and adhesion to collagenous substrates is inhibited by cartilage proteoglycans.

  9. Reconciling the role of serotonin in behavioral inhibition and aversion: acute tryptophan depletion abolishes punishment-induced inhibition in humans.

    Science.gov (United States)

    Crockett, Molly J; Clark, Luke; Robbins, Trevor W

    2009-09-23

    The neuromodulator serotonin has been implicated in a large number of affective and executive functions, but its precise contribution to motivation remains unclear. One influential hypothesis has implicated serotonin in aversive processing; another has proposed a more general role for serotonin in behavioral inhibition. Because behavioral inhibition is a prepotent reaction to aversive outcomes, it has been a challenge to reconcile these two accounts. Here, we show that serotonin is critical for punishment-induced inhibition but not overall motor response inhibition or reporting aversive outcomes. We used acute tryptophan depletion to temporarily lower brain serotonin in healthy human volunteers as they completed a novel task designed to obtain separate measures of motor response inhibition, punishment-induced inhibition, and sensitivity to aversive outcomes. After a placebo treatment, participants were slower to respond under punishment conditions compared with reward conditions. Tryptophan depletion abolished this punishment-induced inhibition without affecting overall motor response inhibition or the ability to adjust response bias in line with punishment contingencies. The magnitude of reduction in punishment-induced inhibition depended on the degree to which tryptophan depletion reduced plasma tryptophan levels. These findings extend and clarify previous research on the role of serotonin in aversive processing and behavioral inhibition and fit with current theorizing on the involvement of serotonin in predicting aversive outcomes.

  10. Firing regulation of fast-spiking interneurons by autaptic inhibition

    Science.gov (United States)

    Guo, Daqing; Chen, Mingming; Perc, Matjaž; Wu, Shengdun; Xia, Chuan; Zhang, Yangsong; Xu, Peng; Xia, Yang; Yao, Dezhong

    2016-05-01

    Fast-spiking (FS) interneurons in the brain are self-innervated by powerful inhibitory GABAergic autaptic connections. By computational modelling, we investigate how autaptic inhibition regulates the firing response of such interneurons. Our results indicate that autaptic inhibition both boosts the current threshold for action potential generation and modulates the input-output gain of FS interneurons. The autaptic transmission delay is identified as a key parameter that controls the firing patterns and determines multistability regions of FS interneurons. Furthermore, we observe that neuronal noise influences the firing regulation of FS interneurons by autaptic inhibition and extends their dynamic range for encoding inputs. Importantly, autaptic inhibition modulates noise-induced irregular firing of FS interneurons, such that coherent firing appears at an optimal autaptic inhibition level. Our results reveal the functional roles of autaptic inhibition in taming the firing dynamics of FS interneurons.

  11. Btk inhibition treats TLR7/IFN driven murine lupus.

    Science.gov (United States)

    Bender, Andrew T; Pereira, Albertina; Fu, Kai; Samy, Eileen; Wu, Yin; Liu-Bujalski, Lesley; Caldwell, Richard; Chen, Yi-Ying; Tian, Hui; Morandi, Federica; Head, Jared; Koehler, Ursula; Genest, Melinda; Okitsu, Shinji L; Xu, Daigen; Grenningloh, Roland

    2016-03-01

    Bruton's tyrosine kinase (Btk) is expressed in a variety of immune cells and previous work has demonstrated that blocking Btk is a promising strategy for treating autoimmune diseases. Herein, we utilized a tool Btk inhibitor, M7583, to determine the therapeutic efficacy of Btk inhibition in two mouse lupus models driven by TLR7 activation and type I interferon. In BXSB-Yaa lupus mice, Btk inhibition reduced autoantibodies, nephritis, and mortality. In the pristane-induced DBA/1 lupus model, Btk inhibition suppressed arthritis, but autoantibodies and the IFN gene signature were not significantly affected; suggesting efficacy was mediated through inhibition of Fc receptors. In vitro studies using primary human macrophages revealed that Btk inhibition can block activation by immune complexes and TLR7 which contributes to tissue damage in SLE. Overall, our results provide translational insight into how Btk inhibition may provide benefit to a variety of SLE patients by affecting both BCR and FcR signaling.

  12. Latent inhibition and autonomic responses: a psychophysiological approach.

    Science.gov (United States)

    Vaitl, D; Lipp, O V

    1997-10-01

    Latent inhibition, retarded learning after preexposure to the to-be-conditioned stimulus, has been implied as a tool for the investigation of attentional deficits in schizophrenia and related disorders. The present paper reviews research that used Pavlovian conditioning as indexed by autonomic responses (electrodermal, vasomotor, cardiac) to investigate latent inhibition in adult humans. Latent inhibition has been demonstrated repeatedly in healthy subjects in absence of a masking task that is required in other latent inhibition paradigms. Moreover, latent inhibition of Pavlovian conditioning is stimulus-specific and increases with an increased number of preexposure trials which mirrors results from research in animals. A reduction of latent inhibition has been shown in healthy subjects who score high on questionnaire measures of psychosis proneness and in unmedicated schizophrenic patients. The latter result was obtained in a within-subject paradigm that holds promise for research with patient samples.

  13. Molecular mechanisms of DNA repair inhibition by caffeine

    Energy Technology Data Exchange (ETDEWEB)

    Selby, C.P.; Sancar, A. (Univ. of North Carolina School of Medicine, Chapel Hill (USA))

    1990-05-01

    Caffeine potentiates the mutagenic and lethal effects of genotoxic agents. It is thought that this is due, at least in some organisms, to inhibition of DNA repair. However, direct evidence for inhibition of repair enzymes has been lacking. Using purified Escherichia coli DNA photolyase and (A)BC excinuclease, we show that the drug inhibits photoreactivation and nucleotide excision repair by two different mechanisms. Caffeine inhibits photoreactivation by interfering with the specific binding of photolyase to damaged DNA, and it inhibits nucleotide excision repair by promoting nonspecific binding of the damage-recognition subunit, UvrA, of (A)BC excinuclease. A number of other intercalators, including acriflavin and ethidium bromide, appear to inhibit the excinuclease by a similar mechanism--that is, by trapping the UvrA subunit in nonproductive complexes on undamaged DNA.

  14. [Inhibition of aromatics on ammonia-oxidizing activity of sediment].

    Science.gov (United States)

    Dong, Chun-hong; Hu, Hong-ying; Wei, Dong-bin; Huang, Xia; Qian, Yi

    2004-03-01

    The inhibition of 24 aromatics on ammonia-oxidizing activity of nitrifying bacteria in sediment was measured. The effects of the kind, number and position of substituted groups on ammonia-oxidizing activity of nitrifying bacteria were discussed. The inhibition of mono-substituted benzenes on ammonia-oxidizing activity of nitrifying bacteria were in order of -OH > -NO2 > -NH2 > -Cl > -CH3 > -H. The position of substituted groups of di-substituted benzenes also affected the inhibition, and the inhibitions of dimethylbenzenes(xylene) were in order of meta-> ortho-> para-. The increase in number of substituted group on benzene-ring enhanced the inhibition of aromatics studied in this study on nitrifying bacteria. There was a linear relationship between inhibition (IC50, mumol.L-1) of aromatics on ammonia-oxidizing activity and total electronegativity (sigma E) of aromatics: lgIC50 = 14.72 - 0.91 sigma E.

  15. Study on the Inhibition of Fermented Soybean to Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    LU Yan; WANG Wei; SHAN Yi; E Zhiqiang; WANG Liqun

    2009-01-01

    In the experiment, the inhibition of isoflavones extracted from soybean and tempe to SP2/0 and Hela cells was studied,and the inhibition rate of each unit for cancer cells was also studied. The results showed that the inhibition rate of tempe isoflavones to SP2/0 was 96.9% and to Hela cells was 69.5% when the concentration was 20 μg·mL-1. In the same condition, the inhibition rate of soybean isoflavones was 83.16% and 60.5%. With the decline of concentration, the inhibition rate decreased. The inhibition of isoflavones to SP2/0 did not exist when the concentration was 5-1.25 μg·mL-1.

  16. Molecular alterations associated with sulindac-resistant colon tumors in ApcMin/+ mice.

    Science.gov (United States)

    Greenspan, Emily J; Nichols, Frank C; Rosenberg, Daniel W

    2010-09-01

    Although nonsteroidal anti-inflammatory drugs (NSAID), including sulindac, have been used extensively as chemopreventive agents for colorectal cancer, results are not consistent. NSAIDs, most reportedly sulindac, often do not cause a complete regression of adenomas and some patients develop resistance to NSAID treatment. In this study, we evaluated the effect of sulindac on colon tumorigenesis in the Apc(Min/+) mouse model. Sulindac (180 ppm) given in drinking water for 9 weeks to Apc(Min/+) mice significantly reduced the size of colon tumors, but actually caused an increase in colon tumor multiplicity relative to untreated controls (average of 5.5 versus 1.6 tumors per mouse, respectively; P sulindac significantly reduced tumor size and multiplicity relative to untreated controls (average of 2.3 versus 42.0 tumors per mouse, respectively; P sulindac treatment. Sulindac is also known to exert its growth inhibitory effects through regulation of many noncyclooxygenase targets, including p21, beta-catenin, E-cadherin, mitochondrial apoptotic proteins, and peroxisome proliferator-activated receptor-gamma. We found that sulindac treatment protected against E-cadherin loss in colon tumors, with associated inhibition of nuclear beta-catenin accumulation. Importantly, p21(WAF1/cip1) and peroxisome proliferator-activated receptor-gamma expression were absent in colon tumors from sulindac-treated mice, suggesting that loss of these proteins is necessary for drug resistance. Together, these observations may be translatable to designing novel clinical therapies using combinations of agents that target multiple molecular pathways to overcome sulindac resistance.

  17. Intestinal trefoil factor controls the expression of the adenomatous polyposis coli-catenin and the E-cadherin-catenin complexes in human colon carcinoma cells.

    Science.gov (United States)

    Efstathiou, J A; Noda, M; Rowan, A; Dixon, C; Chinery, R; Jawhari, A; Hattori, T; Wright, N A; Bodmer, W F; Pignatelli, M

    1998-03-17

    Intestinal trefoil factor 3 (TFF3) is a member of the trefoil family of peptides, small molecules constitutively expressed in epithelial tissues, including the gastrointestinal tract. TFF3 has been shown to promote migration of intestinal epithelial cells in vitro and to enhance mucosal healing and epithelial restitution in vivo. In this study, we evaluated the effect of recombinant TFF3 (rTFF3) stimulation on the expression and cellular localization of the epithelial (E)-cadherin-catenin complex, a prime mediator of Ca2+ dependent cell-cell adhesion, and the adenomatous polyposis coli (APC)-catenin complex in HT29, HCT116, and SW480 colorectal carcinoma cell lines. Stimulation by rTFF3 (10(-9) M and 10(-8) M) for 20-24 hr led to cell detachment and to a reduction in intercellular adhesion in HT29 and HCT116 cells. In both cell lines, E-cadherin expression was down-regulated. The expression of APC, alpha-catenin and beta-catenin also was decreased in HT29 cells, with a translocation of APC into the nucleus. No change in either cell adhesion or in the expression of E-cadherin, the catenins, and APC was detected in SW480 cells. In addition, TFF3 induced DNA fragmentation and morphological changes characteristic of apoptosis in HT29. Tyrphostin, a competitive inhibitor of protein tyrosine kinases, inhibited the effects of TFF3. Our results indicate that by perturbing the complexes between E-cadherin, beta-catenin, and associated proteins, TFF3 may modulate epithelial cell adhesion, migration, and survival.

  18. Inhibition of Action, Thought, and Emotion: A Selective Neurobiological Review

    OpenAIRE

    Dillon, Daniel; Pizzagalli, Diego

    2007-01-01

    The neural bases of inhibitory function are reviewed, covering data from paradigms assessing inhibition of motor responses (antisaccade, go/nogo, stop-signal), cognitive sets (e.g., Wisconsin Card Sort Test), and emotion (fear extinction). The frontal cortex supports performance on these paradigms, but the specific neural circuitry varies: response inhibition depends upon fronto-basal ganglia networks, inhibition of cognitive sets is supported by orbitofrontal cortex, and retention of fear ex...

  19. Inhibition of poliovirus RNA synthesis by brefeldin A.

    OpenAIRE

    Maynell, L A; Kirkegaard, K; Klymkowsky, M W

    1992-01-01

    Brefeldin A (BFA), a fungal metabolite that blocks transport of newly synthesized proteins from the endoplasmic reticulum, was found to inhibit poliovirus replication 10(5)- to 10(6)-fold. BFA does not inhibit entry of poliovirus into the cell or translation of viral RNA. Poliovirus RNA synthesis, however, is completely inhibited by BFA. A specific class of membranous vesicles, with which the poliovirus replication complex is physically associated, is known to proliferate in poliovirus-infect...

  20. Acute inhibition of corticosteroidogenesis by inhibitors of calmodulin action.

    Science.gov (United States)

    Carsia, R V; Moyle, W R; Wolff, D J; Malamed, S

    1982-11-01

    To identify the possible role of calmodulin in ACTH function, we tested the ability of chlorpromazine (CP) and other calmodulin antagonists to inhibit steroidogenesis of isolated adrenocortical cells of the rat. CP reversibly inhibited maximal ACTH-induced corticosterone (B) production. The presence of the drug did not alter the ED50 of ACTH stimulation (3.2 X 10(3) pg/ml), suggesting that it inhibited ACTH-induced steroidogenesis in a noncompetitive manner. The CP concentration required for half-maximal inhibition was 8.2 microM, a value close to the dissociation constant of the CP-calmodulin complex (5.3 microM). Concentrations greater than 40 microM resulted in complete inhibition. Similar concentrations of CP inhibited ACTH-induced cAMP accumulation in a dose-dependent manner, indicating an effect of the drug on early events in ACTH action. In addition, CP also apparently acted at a site distal to the point of cAMP formation, as shown by the finding that it inhibited cAMP-induced B production. CP inhibition of ACTH-induced B production was independent of the Ca2+ concentration, suggesting that the drug did not compete with Ca2+ directly. Concentrations of CP greater than 20 microM inhibited protein synthesis as measured by leucine incorporation into cellular proteins. Thus, although the inhibitory effect of high concentrations of CP on steroidogenesis might be explained by an effect on protein synthesis, the inhibition seen at 10 microM appeared to be independent of protein synthesis. Other antagonists of calmodulin action inhibited maximal ACTH-induced B production with the following relative potencies: trifluoperazine greater than CP greater than haloperidol greater than chlordiazepoxide. This order is similar to that reported for inhibition of calmodulin-activated phosphodiesterase and for binding to calmodulin. These findings suggest that calmodulin may modulate the effect of ACTH on steroidogenesis at multiple sites.

  1. High molecular weight polysaccharide that binds and inhibits virus

    Science.gov (United States)

    Konowalchuk, Thomas W

    2014-01-14

    This invention provides a high molecular weight polysaccharide capable of binding to and inhibiting virus and related pharmaceutical formulations and methods on inhibiting viral infectivity and/or pathogenicity, as well as immunogenic compositions. The invention further methods of inhibiting the growth of cancer cells and of ameliorating a symptom of aging. Additionally, the invention provides methods of detecting and/or quantifying and/or isolating viruses.

  2. Inhibition of human aromatase complex (CYP19) by antiepileptic drugs

    DEFF Research Database (Denmark)

    Jacobsen, Naja Wessel; Halling-Sørensen, Bent; Birkved, Franziska Maria A Kramer

    2008-01-01

    transfected insect cells using dibenzylfluorescein as substrate. The drugs inhibiting CYP19 were: lamotrigine, oxcarbazepine, tiagabine, phenobarbital, phenytoin, ethosuximide, and valproate. The inhibitory effects (50% reduction in activity compared to enzymes without inhibitor present) were in the range...... with valproate and phenobarbital. When adding carbamazepine to a range of valproate concentrations no additional inhibition was seen. The data for some of the AEDs show that side effects on steroid synthesis in humans due to inhibition of aromatase should be considered....

  3. Are individual differences in arithmetic fact retrieval related to inhibition?

    OpenAIRE

    Bellon, Elien

    2016-01-01

    Although it has been proposed that inhibition is related to individual differences in mathematical achievement, it is not clear how it is related to specific aspects of mathematical skills, such as arithmetic fact retrieval. The present study therefore investigated the association between inhibition and arithmetic fact retrieval and further examined the unique role of inhibition in individual differences in arithmetic fact retrieval, in addition to numerical magnitude processin...

  4. High molecular weight polysaccharide that binds and inhibits virus

    Energy Technology Data Exchange (ETDEWEB)

    Konowalchuk, Thomas W.; Konowalchuk, Jack

    2017-07-18

    This invention provides a high molecular weight polysaccharide capable of binding to and inhibiting virus and related pharmaceutical formulations and methods of inhibiting viral infectivity and/or pathogenicity, as well as immunogenic compositions. The invention further includes methods of inhibiting the growth of cancer cells and of ameliorating a symptom of aging. Additionally, the invention provides methods of detecting and/or quantifying and/or isolating viruses.

  5. Functional networks underlying latent inhibition learning in the mouse brain

    OpenAIRE

    Puga, Frank; Barrett, Douglas W.; Bastida, Christel C.; Gonzalez-Lima, F.

    2007-01-01

    The present study reports the first comprehensive map of brain networks underlying latent inhibition learning and the first application of structural equation modeling to cytochrome oxidase data. In latent inhibition, repeated exposure to a stimulus results in a latent form of learning that inhibits subsequent associations with that stimulus. As neuronal energy demand to form learned associations changes, so does the induction of the respiratory enzyme cytochrome oxidase. Therefore, cytochrom...

  6. Protection from Latent Inhibition Provided by a Conditioned Inhibitor

    OpenAIRE

    McConnell, Bridget L.; Wheeler, Daniel S.; Urcelay, Gonzalo P; Miller, Ralph R.

    2009-01-01

    Two conditioned suppression experiments with rats investigated the influence on latent inhibition of compounding a Pavlovian conditioned inhibitor with the target cue during preexposure treatment. Results were compared to subjects that received conventional latent inhibition training, no preexposure, or preexposure to the target cue in compound with a neutral stimulus. In Experiment 1, greater attenuation of the latent inhibition effect was observed in subjects that received target preexposur...

  7. A small yeast RNA inhibits HCV IRES mediated translation and inhibits replication of poliovirus in vivo

    Institute of Scientific and Technical Information of China (English)

    Xue-Song Liang; Jian-Qi Lian; Yong-Xing Zhou; Qing-He Nie; Chun-Qiu Hao

    2003-01-01

    AIM: To investigate the anti-virus infection activity of internal ribosome entry site (IRES) specific inhibitor RNA (IRNA).METHODS: IRNA eukaryotic vector pcRz-IRNA or mIRNA eukaryotic vector pcRz-mIRNA was tansfected into human hepatocarcinoma cells (HHCC), then selected with neomycin G418 for 4 to 8 weeks, and then infected with polio virus vaccinas line. The cytopethogenesis effect was investigated and the cell extract was collected. At last the polio virus titer of different cells was determined by plaque assay.RESULTS: Constitutive expression of IRNA was not detrimental to cell growth. HCV IRES-mediated capindependent translation was markedly inhibited in cells constitutively expressing IRNA compared to control hepatoma cells. However, cap-dependent translation was not significantly affected in these cell line. Additionally, HHCC cells constitutively expressing IRNA became refractory to infection of polio virus.CONCLUSION: IRES specific IRNA can inhibit HCV IRES mediated translation and poliovirus replication.

  8. Schedule of Punishment and Inhibition of Aggression in Children

    Science.gov (United States)

    Parke, Ross D.; Deur, Jan L.

    1972-01-01

    Data showed that consistent punishment resulted in faster inhibition than inconsistent punishment; subjects who were punished showed less persistence than subjects placed on an extinction schedule. (Authors)

  9. Selective and nonselective inhibition of competitors in picture naming.

    Science.gov (United States)

    Shao, Zeshu; Meyer, Antje S; Roelofs, Ardi

    2013-11-01

    The present study examined the relation between nonselective inhibition and selective inhibition in picture naming performance. Nonselective inhibition refers to the ability to suppress any unwanted response, whereas selective inhibition refers to the ability to suppress specific competing responses. The degree of competition in picture naming was manipulated by presenting targets along with distractor words that could be semantically related (e.g., a picture of a dog combined with the word cat) or unrelated (tree) to the picture name. The mean naming response time (RT) was longer in the related than in the unrelated condition, reflecting semantic interference. Delta plot analyses showed that participants with small mean semantic interference effects employed selective inhibition more effectively than did participants with larger semantic interference effects. The participants were also tested on the stop-signal task, which taps nonselective inhibition. Their performance on this task was correlated with their mean naming RT but, importantly, not with the selective inhibition indexed by the delta plot analyses and the magnitude of the semantic interference effect. These results indicate that nonselective inhibition ability and selective inhibition of competitors in picture naming are separable to some extent.

  10. Inhibition behavior for copper corrosion by photoelectrochemical methods

    Institute of Scientific and Technical Information of China (English)

    徐群杰; 周国定

    2003-01-01

    The application of photoelectrochemical methods in the inhibition effects for copper corrosion was described. The methods include cyclic voltammetry photocurrent measurements, intensity modulated photocurrent spectrum(IMPS) and laser-scanning photoelectrochemical microscopic method(PEM) which have been applied to the evaluation of inhibitors and inhibition behavior. The inhibition effect of BTA for copper corrosion is better than that of 4CBTA, 5CBTA, CBT-1, PTD, BT-250, CBTME and CBTBE at the same concentration. The inhibition mechanism of the derivatives of BTA with-COOH group(4CBTA, 5CBTA, CBT-1) is different from those with estergroup(CBTME, CBTBE).

  11. Osmotic stress inhibits thymidine incorporation into soybean protoplast DNA.

    Science.gov (United States)

    Cress, D E

    1982-10-01

    DNA synthesis in protoplasts isolated from soybean cell suspension cultures has been investigated by [(3)H] thymidine uptake and incorporation kinetics. Initial rates of incorporation in exponential and 5-fluorodeoxyuridine synchronized protoplasts are inhibited by increased osmolarities of the medium. The inhibition was not readily reversible during 3 h culture in low osmotic medium. Velocity sedimentation analyses of replicating DNA from such protoplasts shows a complex pattern of inhibition. The inhibition probably effects replicon initiation as well as strand elongation and ligation of replication intermediates.

  12. Glyphosate and AMPA inhibit cancer cell growth through inhibiting intracellular glycine synthesis

    Directory of Open Access Journals (Sweden)

    Li Q

    2013-07-01

    Full Text Available Qingli Li,1,2 Mark J Lambrechts,1 Qiuyang Zhang,1 Sen Liu,1 Dongxia Ge,1 Rutie Yin,2 Mingrong Xi,2 Zongbing You1 1Departments of Structural and Cellular Biology and Orthopaedic Surgery, Tulane Cancer Center and Louisiana Cancer Research Consortium, Tulane Center for Stem Cell Research and Regenerative Medicine, and Tulane Center for Aging, Tulane University Health Sciences Center, New Orleans, LA, USA; 2Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China Abstract: Glycine is a nonessential amino acid that is reversibly converted from serine intracellularly by serine hydroxymethyltransferase. Glyphosate and its degradation product, aminomethylphosphonic acid (AMPA, are analogs to glycine, thus they may inhibit serine hydroxymethyltransferase to decrease intracellular glycine synthesis. In this study, we found that glyphosate and AMPA inhibited cell growth in eight human cancer cell lines but not in two immortalized human normal prostatic epithelial cell lines. AMPA arrested C4-2B and PC-3 cancer cells in the G1/G0 phase and inhibited entry into the S phase of the cell cycle. AMPA also promoted apoptosis in C4-2B and PC-3 cancer cell lines. AMPA upregulated p53 and p21 protein levels as well as procaspase 9 protein levels in C4-2B cells, whereas it downregulated cyclin D3 protein levels. AMPA also activated caspase 3 and induced cleavage of poly (adenosine diphosphate [ADP]-ribose polymerase. This study provides the first evidence that glyphosate and AMPA can inhibit proliferation and promote apoptosis of cancer cells but not normal cells, suggesting that they have potentials to be developed into a new anticancer therapy. Keywords: serine hydroxymethyltransferase, prostate cancer, apoptosis

  13. Nifuroxazide inhibits survival of multiple myeloma cells by directly inhibiting STAT3

    OpenAIRE

    2008-01-01

    Constitutive activation of the transcription factor STAT3 contributes to the pathogenesis of many cancers, including multiple myeloma (MM). Since STAT3 is dispensable in most normal tissue, targeted inhibition of STAT3 is an attractive therapy for patients with these cancers. To identify STAT3 inhibitors, we developed a transcriptionally based assay and screened a library of compounds known to be safe in humans. We found the drug nifuroxazide to be an effective inhibitor of STAT3 function. Ni...

  14. Pirfenidone inhibits post-traumatic proliferative vitreoretinopathy.

    Science.gov (United States)

    Khanum, B N M K; Guha, R; Sur, V P; Nandi, S; Basak, S K; Konar, A; Hazra, S

    2017-03-17

    PurposeThe purpose of the study was to evaluate the efficacy and safety of intravitreal pirfenidone for inhibition of proliferative vitreoretinopathy (PVR) in a model of penetrating ocular injury.Patients and methodsPenetrating trauma was induced on the retina of rabbit and treated either with 0.1 ml of phosphate-buffered saline (PBS) or 0.1 ml of 0.5% pirfenidone, and development of PVR was evaluated clinically and graded after 1 month. Histopathology and immunohistochemistry with transforming growth factor beta (TGFβ), alpha smooth muscle actin (αSMA), and collagen-1 were performed to assess the fibrotic changes. Expression of cytokines in the vitro-retinal tissues at different time points following pirfenidone and PBS injection was examined by RT-PCR. Availability of pirfenidone in the vitreous of rabbit at various time points was determined by high-performance liquid chromatography following injection of 0.1 ml of 0.5% pirfenidone. In normal rabbit eye, 0.1 ml of 0.5% pirfenidone was injected to evaluate any toxic effect.ResultsClinical assessment and grading revealed prevention of PVR formation in pirfenidone-treated animals, gross histology, and histopathology confirmed the observation. Immunohistochemistry showed prevention in the expression of collagen-I, αSMA, and TGFβ in the pirfenidone-treated eyes compared to the PBS-treated eyes. Pirfenidone inhibited increased gene expression of cytokines observed in control eyes. Pirfenidone could be detected up to 48 h in the vitreous of rabbit eye following single intravitreal injection. Pirfenidone did not show any adverse effect following intravitreal injection; eyes were devoid of any abnormal clinical sign, intraocular pressure, and electroretinography did not show any significant change and histology of retina remained unchanged.ConclusionThis animal study shows that pirfenidone might be a potential therapy for PVR. Further clinical study will be useful to evaluate the clinical application of

  15. Inhibition of autophagy induced by proteasome inhibition increases cell death in human SHG-44 glioma cells

    Institute of Scientific and Technical Information of China (English)

    Peng-fei GE; Ji-zhou ZHANG; Xiao-fei WANG; Fan-kai MENG; Wen-chen LI; Yong-xin LUAN; Feng LING; Yi-nan LUO

    2009-01-01

    Aim:The ubiquitin-proteasome system (UPS) and lysosome-dependent macroautophagy (autophagy) are two major intracellular pathways for protein degradation.Recent studies suggest that proteasome inhibitors may reduce tumor growth and activate autophagy.Due to the dual roles of autophagy in tumor cell survival and death,the effect of autophagy on the destiny of glioma cells remains unclear.In this study,we sought to investigate whether inhibition of the proteasome can induce autophagy and the effects of autophagy on the fate of human SHG-44 glioma cells.Methods:The proteasome inhibitor MG-132 was used to induce autophagy in SHG-44 glioma cells,and the effect of autophagy on the survival of SHG-44 glioma cells was investigated using an autophagy inhibitor 3-MA.Cell viability was measured by MTT assay.Apoptosis and cell cycle were detected by flow cytometry.The expression of autophagy related proteins was determined by Western blot.Results:MG-132 inhibited cell proliferation,induced cell death and cell cycle arrest at G~JM phase,and activated autophagy in SHG-44 glioma cells.The expression of autophagy-related Beclin-1 and LC3-1 was significantly up-regulated and part of LC3-1 was converted into LC3-11.However,when SHG-44 glioma cells were co-treated with MG-132 and 3-MA,the cells became less viable,but cell death and cell numbers at G2/M phase increased.Moreover,the accumulation of acidic vesicular organelles was decreased,the expression of Beclin-1 and LC3 was significantly down-regulated and the conversion of LC3-11 from LC3-1 was also inhibited.Conclusion:Inhibition of the proteasome can induce autophagy in human SHG-44 glioma cells,and inhibition of autophagy increases cell death.This discovery may shed new light on the effect of autophagy on modulating the fate of SHG-44 glioma cells.

  16. Pharmacologic inhibition of lactate production prevents myofibroblast differentiation.

    Science.gov (United States)

    Kottmann, Robert Matthew; Trawick, Emma; Judge, Jennifer L; Wahl, Lindsay A; Epa, Amali P; Owens, Kristina M; Thatcher, Thomas H; Phipps, Richard P; Sime, Patricia J

    2015-12-01

    Myofibroblasts are one of the primary cell types responsible for the accumulation of extracellular matrix in fibrosing diseases, and targeting myofibroblast differentiation is an important therapeutic strategy for the treatment of pulmonary fibrosis. Transforming growth factor-β (TGF-β) has been shown to be an important inducer of myofibroblast differentiation. We previously demonstrated that lactate dehydrogenase and its metabolic product lactic acid are important mediators of myofibroblast differentiation, via acid-induced activation of latent TGF-β. Here we explore whether pharmacologic inhibition of LDH activity can prevent TGF-β-induced myofibroblast differentiation. Primary human lung fibroblasts from healthy patients and those with pulmonary fibrosis were treated with TGF-β and or gossypol, an LDH inhibitor. Protein and RNA were analyzed for markers of myofibroblast differentiation and extracellular matrix generation. Gossypol inhibited TGF-β-induced expression of the myofibroblast marker α-smooth muscle actin (α-SMA) in a dose-dependent manner in both healthy and fibrotic human lung fibroblasts. Gossypol also inhibited expression of collagen 1, collagen 3, and fibronectin. Gossypol inhibited LDH activity, the generation of extracellular lactic acid, and the rate of extracellular acidification in a dose-dependent manner. Furthermore, gossypol inhibited TGF-β bioactivity in a dose-dependent manner. Concurrent treatment with an LDH siRNA increased the ability of gossypol to inhibit TGF-β-induced myofibroblast differentiation. Gossypol inhibits TGF-β-induced myofibroblast differentiation through inhibition of LDH, inhibition of extracellular accumulation of lactic acid, and inhibition of TGF-β bioactivity. These data support the hypothesis that pharmacologic inhibition of LDH may play an important role in the treatment of pulmonary fibrosis.

  17. The grapevine polygalacturonase-inhibiting protein (VvPGIP1) reduces Botrytis cinerea susceptibility in transgenic tobacco and differentially inhibits fungal polygalacturonases

    NARCIS (Netherlands)

    Joubert, D.A.; Slaughter, A.R.; Kemp, G.; Becker, J.V.W.; Krooshof, G.H.; Bergmann, C.; Benen, J.A.E.; Pretorius, I.S.; Vivier, M.A.

    2006-01-01

    Polygalacturonase-inhibiting proteins (PGIPs) selectively inhibit polygalacturonases (PGs) secreted by invading plant pathogenic fungi. PGIPs display differential inhibition towards PGs from different fungi, also towards different isoforms of PGs originating from a specific pathogen. Recently, a PGI

  18. Inhibition of foodborne pathogens by pomegranate juice.

    Science.gov (United States)

    Haghayeghi, Koorosh; Shetty, Kalidas; Labbé, Ronald

    2013-05-01

    Pomegranates have health-promoting benefits because of their polyphenol constituents. Previous studies have demonstrated the antimicrobial activity of aqueous and organic extracts of pomegranate components and by-products. We sought to determine the antimicrobial activity against 40 foodborne pathogens representing eight bacterial species using juice itself. In addition, we sought to determine the synergistic antimicrobial activity between pomegranate juice and other plant products displaying antimicrobial activity. The antimicrobial activity of pomegranate juice was dependent on the test organism, which varied to highly susceptible (four Gram-positive species) to unaffected (Salmonella and Escherichia coli O157:H7). Two Gram-negative species, which were inhibited were Helicobacter pylori and Vibrio parahemolyticus. No synergistic antimicrobial activity was seen between pomegranate and either barberry, oregano, or cranberry. The antimicrobial activity of pomegranate juice is dependent on the test organism and extraction method. The sensitivity of H. pylori suggests that pomegranate juice may be an alternative or supplemental treatment for gastric ulcers caused by this organism.

  19. Say it with me: stuttering inhibited.

    Science.gov (United States)

    Saltuklaroglu, Tim; Dayalu, Vikram N; Kalinowski, Joseph; Stuart, Andrew; Rastatter, Michael P

    2004-04-01

    This study examined fluency enhancement in people who stutter via the concomitant presentation of silently mouthed visual speech. Ten adults who stutter recited memorized text while watching another speaker silently mouth linguistically equivalent and linguistically different material. Relative to a control condition, in which no concomitant stimulus was provided, stuttering was reduced by 71% in the linguistically equivalent condition versus only 35% in the linguistically different condition. Despite being an 'incomplete' second speech signal, visual speech possesses the capacity to immediately and substantially enhance fluency when it is linguistically equivalent to the intended utterance. It is suggested that fluency enhancement via concomitantly presented external speech is achieved through the extraction of relevant speech gestures from the external speech signal that compliment the intended production, thereby compensating for possible internal inconsistencies in the matching of speech codes in people who stutter. As visual speech perception relies on fewer redundant cues to demarcate the intended gestures, when used as an external stuttering inhibitor, higher degrees of linguistic equivalence seem to be necessary for optimal stuttering inhibition.

  20. Aspirin, cyclooxygenase inhibition and colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    Carlos; Sostres; Carla; Jerusalen; Gargallo; Angel; Lanas

    2014-01-01

    Colorectal cancer(CRC)is the third most common type of cancer worldwide.Screening measures are far from adequate and not widely available in resourcepoor settings.Primary prevention strategies therefore remain necessary to reduce the risk of developing CRC.Increasing evidence from epidemiological studies,randomized clinical trials and basic science supports the effectiveness of aspirin,as well as other non-steroidal anti-inflammatory drugs,for chemoprevention of several types of cancer,including CRC.This includes the prevention of adenoma recurrence and reduction of CRC incidence and mortality.The detectable benefit of daily low-dose aspirin(at least 75 mg),as used to prevent cardiovascular disease events,strongly suggests that its antiplatelet action is central to explaining its antitumor efficacy.Daily low-dose aspirin achieves complete and persistent inhibition of cyclooxygenase(COX)-1 in platelets(in pre-systemic circulation)while causing alimited and rapidly reversible inhibitory effect on COX-2and/or COX-1 expressed in nucleated cells.Aspirin has a short half-life in human circulation(about 20 minutes);nucleated cells have the ability to resynthesize acetylated COX isozymes within a few hours,while platelets do not.COX-independent mechanisms of aspirin have been suggested to explain its chemopreventive effects but this concept remains to be demonstrated in vivo at clinical doses.