WorldWideScience

Sample records for hz repetition rate

  1. Operation and Thermal Modeling of the ISIS H– Source from 50 to 2 Hz Repetition Rates

    CERN Document Server

    Pereira, H; Lettry, J

    2013-01-01

    CERN’s Linac4 accelerator H− ion source, currently under construction, will operate at a 2 Hz repetition rate, with pulse length of 0.5 ms and a beam current of 80 mA. Its reliability must exceed 99 % with a mandatory 3 month uninterrupted operation period. A Penning ion source is successfully operated at ISIS; at 50 Hz repetition rate it reliably provides 55 mA H− pulses of 0.25 ms duration over 1 month. The discharge plasma ignition is very sensitive to the temperatures of the discharge region, especially of its cathode. The investigation by modeling and measurement of operation parameters suitable for arc ignition and H− production at 2 Hz is of paramount importance and must be understood prior to the implementation of discharge ion sources in the Linac4 accelerator. In its original configuration, the ISIS H− source delivers beam only if the repetition rate is above 12.5 Hz, this paper describes the implementation of a temperature control of the discharge region aiming at lower repetition rate op...

  2. A 7.8 kV nanosecond pulse generator with a 500 Hz repetition rate

    Science.gov (United States)

    Lin, M.; Liao, H.; Liu, M.; Zhu, G.; Yang, Z.; Shi, P.; Lu, Q.; Sun, X.

    2018-04-01

    Pseudospark switches are widely used in pulsed power applications. In this paper, we present the design and performance of a 500 Hz repetition rate high-voltage pulse generator to drive TDI-series pseudospark switches. A high-voltage pulse is produced by discharging an 8 μF capacitor through a primary windings of a setup isolation transformer using a single metal-oxide-semiconductor field-effect transistor (MOSFET) as a control switch. In addition, a self-break spark gap is used to steepen the pulse front. The pulse generator can deliver a high-voltage pulse with a peak trigger voltage of 7.8 kV, a peak trigger current of 63 A, a full width at half maximum (FWHM) of ~30 ns, and a rise time of 5 ns to the trigger pin of the pseudospark switch. During burst mode operation, the generator achieved up to a 500 Hz repetition rate. Meanwhile, we also provide an AC heater power circuit for heating a H2 reservoir. This pulse generator can be used in circuits with TDI-series pseudospark switches with either a grounded cathode or with a cathode electrically floating operation. The details of the circuits and their implementation are described in the paper.

  3. A fast 30 kV 5 kHz repetition rate resonant capacitor charger

    NARCIS (Netherlands)

    Beckers, F.J.C.M.; Huiskamp, T.; van Heesch, E.J.M.; Pemen, A.J.M.

    2016-01-01

    A novel circuit topology of a fast 30 kV resonant capacitor charger is presented in this paper. The charger is designed for high repetition rate spark gap based pulsed power modulators. A spark gap can fire spontaneously (pre-firing) during charging of a capacitor bank due to poor dielectric

  4. Vibrational sum-frequency generation spectroscopy of lipid bilayers at repetition rates up to 100 kHz

    Science.gov (United States)

    Yesudas, Freeda; Mero, Mark; Kneipp, Janina; Heiner, Zsuzsanna

    2018-03-01

    Broadband vibrational sum-frequency generation (BB-VSFG) spectroscopy has become a well-established surface analytical tool capable of identifying the orientation and structure of molecular layers. A straightforward way to boost the sensitivity of the technique could be to increase the laser repetition rate beyond that of standard BB-VSFG spectrometers, which rely on Ti:sapphire lasers operating at repetition rates of 1-5 kHz. Nevertheless, possible thermally induced artifacts in the vibrational spectra due to higher laser average powers are unexplored. Here, we discuss laser power induced temperature accumulation effects that distort the BB-VSFG spectra of 1,2-diacyl-sn-glycero-3-phosphocholine at an interface between two transparent phases at repetition rates of 5, 10, 50, and 100 kHz at constant pulse energy. No heat-induced distortions were found in the spectra, suggesting that the increase in the laser repetition rate provides a feasible route to an improved signal-to-noise ratio or shorter data acquisition times in BB-VSFG spectroscopy for thin films on transparent substrates. The results have implications for future BB-VSFG spectrometers pushing the detection limit for molecular layers with low surface coverage.

  5. Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at kHz repetition rate

    Science.gov (United States)

    He, Z.-H.; Thomas, A. G. R.; Beaurepaire, B.; Nees, J. A.; Hou, B.; Malka, V.; Krushelnick, K.; Faure, J.

    2013-02-01

    We show that electron bunches in the 50-100 keV range can be produced from a laser wakefield accelerator using 10 mJ, 35 fs laser pulses operating at 0.5 kHz. It is shown that using a solenoid magnetic lens, the electron bunch distribution can be shaped. The resulting transverse and longitudinal coherence is suitable for producing diffraction images from a polycrystalline 10 nm aluminum foil. The high repetition rate, the stability of the electron source, and the fact that its uncorrelated bunch duration is below 100 fs make this approach promising for the development of sub-100 fs ultrafast electron diffraction experiments.

  6. Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at kHz repetition rate

    Energy Technology Data Exchange (ETDEWEB)

    He, Z.-H.; Thomas, A. G. R.; Nees, J. A.; Hou, B.; Krushelnick, K. [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48106-2099 (United States); Beaurepaire, B.; Malka, V.; Faure, J. [Laboratoire d' Optique Appliquee, ENSTA-CNRS-Ecole Polytechnique, UMR 7639, 91761 Palaiseau (France)

    2013-02-11

    We show that electron bunches in the 50-100 keV range can be produced from a laser wakefield accelerator using 10 mJ, 35 fs laser pulses operating at 0.5 kHz. It is shown that using a solenoid magnetic lens, the electron bunch distribution can be shaped. The resulting transverse and longitudinal coherence is suitable for producing diffraction images from a polycrystalline 10 nm aluminum foil. The high repetition rate, the stability of the electron source, and the fact that its uncorrelated bunch duration is below 100 fs make this approach promising for the development of sub-100 fs ultrafast electron diffraction experiments.

  7. Gyromagnetic nonlinear transmission line generator of high voltage pulses modulated at 4 GHz frequency with 1000 Hz pulse repetition rate

    International Nuclear Information System (INIS)

    Ulmasculov, M R; Sharypov, K A; Shunailov, S A; Shpak, V G; Yalandin, M I; Pedos, M S; Rukin, S N

    2017-01-01

    Results of testing of a generator based on a solid-state drive and the parallel gyromagnetic nonlinear transmission lines with external bias are presented. Stable rf-modulated high-voltage nanosecond pulses were shaped in each of the four channels in 1 s packets with 1000 Hz repetition frequencies. Pulse amplitude reaches -175 kV, at a modulation depth of rf-oscillations to 50 % and the effective frequency ∼4 GHz. (paper)

  8. Thin liquid sheet target capabilities for ultra-intense laser acceleration of ions at a kHz repetition rate

    Science.gov (United States)

    Klim, Adam; Morrison, J.; Orban, C.; Chowdhury, E.; Frische, K.; Feister, S.; Roquemore, M.

    2017-10-01

    The success of laser-accelerated ion experiments depends crucially on a number of factors including how thin the targets can be created. We present experimental results demonstrating extremely thin (under 200 nm) glycol sheet targets that can be used for ultra-intense laser-accelerated ion experiments conducted at the Air Force Research Laboratory at Wright-Patterson Air Force Base. Importantly, these experiments operate at a kHz repetition rate and the recovery time of the liquid targets is fast enough to allow the laser to interact with a refreshed, thin target on every shot. These thin targets can be used to produce energetic electrons, light ions, and neutrons as well as x-rays, we present results from liquid glycol targets which are useful for proton acceleration experiments via the mechanism of Target Normal Sheath Acceleration (TNSA). In future work, we will create thin sheets from deuterated water in order to perform laser-accelerated deuteron experiments. This research was sponsored by the Quantum and Non-Equilibrium Processes Division of the AFOSR, under the management of Dr. Enrique Parra, and support from the DOD HPCMP Internship Program.

  9. 500 MW peak power degenerated optical parametric amplifier delivering 52 fs pulses at 97 kHz repetition rate.

    Science.gov (United States)

    Rothhardt, J; Hädrich, S; Röser, F; Limpert, J; Tünnermann, A

    2008-06-09

    We present a high peak power degenerated parametric amplifier operating at 1030 nm and 97 kHz repetition rate. Pulses of a state-of-the art fiber chirped-pulse amplification (FCPA) system with 840 fs pulse duration and 410 microJ pulse energy are used as pump and seed source for a two stage optical parametric amplifier. Additional spectral broadening of the seed signal in a photonic crystal fiber creates enough bandwidth for ultrashort pulse generation. Subsequent amplification of the broadband seed signal in two 1 mm BBO crystals results in 41 microJ output pulse energy. Compression in a SF 11 prism compressor yields 37 microJ pulses as short as 52 fs. Thus, pulse shortening of more than one order of magnitude is achieved. Further scaling in terms of average power and pulse energy seems possible and will be discussed, since both concepts involved, the fiber laser and the parametric amplifier have the reputation to be immune against thermo-optical effects.

  10. High-average-power 2 μm few-cycle optical parametric chirped pulse amplifier at 100 kHz repetition rate.

    Science.gov (United States)

    Shamir, Yariv; Rothhardt, Jan; Hädrich, Steffen; Demmler, Stefan; Tschernajew, Maxim; Limpert, Jens; Tünnermann, Andreas

    2015-12-01

    Sources of long wavelengths few-cycle high repetition rate pulses are becoming increasingly important for a plethora of applications, e.g., in high-field physics. Here, we report on the realization of a tunable optical parametric chirped pulse amplifier at 100 kHz repetition rate. At a central wavelength of 2 μm, the system delivered 33 fs pulses and a 6 W average power corresponding to 60 μJ pulse energy with gigawatt-level peak powers. Idler absorption and its crystal heating is experimentally investigated for a BBO. Strategies for further power scaling to several tens of watts of average power are discussed.

  11. Testing of super conducting low-beta 704 Mhz cavities at 50 Hz pulse repetition rate in view of SPL- first results

    CERN Document Server

    Höfle, W; Lollierou, J; Valuch, D; Chel, S; Devanz, G; Desmons, M; Piquet, O; Paparella, R; Pierini, P

    2010-01-01

    In the framework of the preparatory phase for the luminosity upgrade of the LHC (SLHC-PP ) it is foreseen to characterize two superconducting RF cavities and demonstrate compliance of the required SPL field stability in amplitude and phase using a prototype LLRF system. We report on the preparation for testing of two superconducting low-beta cavities at 50 Hz pulse repetition rate including the setting-up of the low level RF control system to evaluate the performance of the piezo-tuning system and cavity field stability in amplitude and phase. Results from tests with 50 Hz pulse repetition rate are presented. Simulations of the RF system will be used to predict the necessary specifications for power and bandwidth to control the cavity field and derive specifications for the RF system and its control. Exemplary results of the simulation are presented.

  12. The Multidisk Diode-Pumped High Power Yb:YAG Laser Amplifier of High-Intensity Laser System with 1 kHz Repetition Rate

    Science.gov (United States)

    Kuptsov, G. V.; Petrov, V. V.; Petrov, V. A.; Laptev, A. V.; Kirpichnikov, A. V.; Pestryakov, E. V.

    2018-04-01

    The source of instabilities in the multidisk diode-pumped high power Yb:YAG laser amplifier with cryogenic closed-loop cooling in the laser amplification channel of the high-intensity laser system with 1 kHz repetition rate was determined. Dissected copper mounts were designed and used to suppress instabilities and to achieve repeatability of the system. The equilibrium temperature dependency of the active elements on average power was measured. The seed laser for the multidisk amplifier was numerically simulated and designed to allow one to increase pulses output energy after the amplifier up to 500 mJ.

  13. High power all-solid-state fourth harmonic generation of 266 nm at the pulse repetition rate of 100 kHz

    International Nuclear Information System (INIS)

    Liu, Q; Yan, X P; Fu, X; Gong, M; Wang, D S

    2009-01-01

    14.8 W UV laser at 266 nm was reported with the extra cavity frequency quartered configuration. The fundamental frequency IR source is a high-power high-beam-quality acoustic-optic Q-switched Nd:YVO 4 master-oscillator-power-amplifier laser. The type-I phase-matched LBO and type-I phase-matched BBO crystals were used as the extra-cavity frequency doubled and quartered crystal respectively. 14.8 W UV laser of 266 nm was obtained at the pulse repetition rate of 100 kHz with the conversion efficiency of 18.3% from green to UV, and the pulse duration of the UV laser was 10 ns corresponding to the pulse peak power of 14.8 kW. At 150 kHz, 11.5 W power output was obtained. The highest peak power of 21 kW was also achieved at 80 kHz with the average output power of 14.5 W

  14. Nanosecond pulsed power generator for a voltage amplitude up to 300 kV and a repetition rate up to 16 Hz for fine disintegration of quartz

    Energy Technology Data Exchange (ETDEWEB)

    Krastelev, E. G., E-mail: ekrastelev@yandex.ru; Sedin, A. A.; Tugushev, V. I. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2015-12-15

    A generator of high-power high-voltage nanosecond pulses is intended for electrical discharge disintegration of mineral quartz and other nonconducting minerals. It includes a 320 kV Marx pulsed voltage generator, a high-voltage glycerin-insulated coaxial peaking capacitor, and an output gas spark switch followed by a load, an electric discharge disintegration chamber. The main parameters of the generator are as follows: a voltage pulse amplitude of up to 300 kV, an output impedance of ≈10 Ω, a discharge current amplitude of up to 25 kA for a half-period of 80–90 ns, and a pulse repetition rate of up to 16 Hz.

  15. Nanosecond pulsed power generator for a voltage amplitude up to 300 kV and a repetition rate up to 16 Hz for fine disintegration of quartz

    International Nuclear Information System (INIS)

    Krastelev, E. G.; Sedin, A. A.; Tugushev, V. I.

    2015-01-01

    A generator of high-power high-voltage nanosecond pulses is intended for electrical discharge disintegration of mineral quartz and other nonconducting minerals. It includes a 320 kV Marx pulsed voltage generator, a high-voltage glycerin-insulated coaxial peaking capacitor, and an output gas spark switch followed by a load, an electric discharge disintegration chamber. The main parameters of the generator are as follows: a voltage pulse amplitude of up to 300 kV, an output impedance of ≈10 Ω, a discharge current amplitude of up to 25 kA for a half-period of 80–90 ns, and a pulse repetition rate of up to 16 Hz

  16. A Retrospective Chart Review of 10 Hz Versus 20 Hz Repetitive Transcranial Magnetic Stimulation for Depression

    Directory of Open Access Journals (Sweden)

    Kristie L. DeBlasio

    2012-12-01

    Full Text Available We performed a retrospective chart review to examine the progress of patients with depression who received different frequencies of repetitive transcranial magnetic stimulation (rTMS delivered to the left dorsolateral prefrontal cortex (DLPFC. rTMS is a safe and effective alternative treatment for patients with various psychological and medical conditions. During treatment, a coil delivering a time-varying magnetic pulse placed over the scalp penetrates the skull, resulting in clinical improvement. There were 47 patients and three distinct treatment groups found: 10 Hz, 20 Hz, and a separate group who received both frequencies (10/20 Hz. The primary outcome indicator was the difference in Beck Depression Inventory–II (BDI-II scores. Secondary outcomes included categorical indicators of remission, response, and partial response rates as assessed with the BDI-II. In all 3 groups, the majority of patients had depression that remitted, with the highest rate occurring in the 20 Hz group. There were similar response rates in the 10 Hz and 20 Hz groups. There were no patients in the 10/20 Hz group whose depression responded and the highest partial response and nonresponse rates occurred in this group. Although within-group differences were significant from baseline to end of treatment, there were no between-group differences.

  17. Compact generator with semiconductor current interrupter, voltage to 300 kV and pulse repetition rate to 2 kHz

    International Nuclear Information System (INIS)

    Lyubutin, S.K.; Rukin, S.N.; Slovikovskij, B.G.

    2000-01-01

    Compact generator with a semiconductor current interrupter (SOS-diode), forming on the resistive load pulses with the amplitude up to 300 kV, duration from 30 up to 50 ns and the pulse sequence frequency 300 Hz by long operation and up to 2 kHz in the 30-second packet, is described. The generator contains a thyristor charge unit, magnetic compressor and inductive storage with a semiconductor current interrupter on the SOS-diode basis. The generator mean output capacity by the pulse maximum sequence frequency and 250 kV voltage equals 16 kw. The generator dimensions are 0.85 x 0.65 x 0.42 m, its mass equals approximately 115 kg [ru

  18. Multi-purpose two- and three-dimensional momentum imaging of charged particles for attosecond experiments at 1 kHz repetition rate

    Energy Technology Data Exchange (ETDEWEB)

    Månsson, Erik P., E-mail: erik.mansson@sljus.lu.se; Sorensen, Stacey L.; Gisselbrecht, Mathieu [Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden); Arnold, Cord L.; Kroon, David; Guénot, Diego; Fordell, Thomas; Johnsson, Per; L’Huillier, Anne [Division of Atomic Physics, Lund University, Box 118, 221 00 Lund (Sweden); Lépine, Franck [Institut Lumière Matière, UMR5306, Université Lyon 1-CNRS, 10 rue Ada Byron, 69622 Villeurbanne cedex (France)

    2014-12-15

    We report on the versatile design and operation of a two-sided spectrometer for the imaging of charged-particle momenta in two dimensions (2D) and three dimensions (3D). The benefits of 3D detection are to discern particles of different mass and to study correlations between fragments from multi-ionization processes, while 2D detectors are more efficient for single-ionization applications. Combining these detector types in one instrument allows us to detect positive and negative particles simultaneously and to reduce acquisition times by using the 2D detector at a higher ionization rate when the third dimension is not required. The combined access to electronic and nuclear dynamics available when both sides are used together is important for studying photoreactions in samples of increasing complexity. The possibilities and limitations of 3D momentum imaging of electrons or ions in the same spectrometer geometry are investigated analytically and three different modes of operation demonstrated experimentally, with infrared or extreme ultraviolet light and an atomic/molecular beam.

  19. Priming With 1-Hz Repetitive Transcranial Magnetic Stimulation Over Contralesional Leg Motor Cortex Does Not Increase the Rate of Regaining Ambulation Within 3 Months of Stroke: A Randomized Controlled Trial.

    Science.gov (United States)

    Huang, Ying-Zu; Lin, Li-Fong; Chang, Kwang-Hwa; Hu, Chaur-Jong; Liou, Tsan-Hon; Lin, Yen-Nung

    2018-05-01

    The potential benefits of repetitive transcranial magnetic stimulation (rTMS), applied either alone or as a combination treatment, on recovery of lower limbs after stroke have been insufficiently studied. The aim of the study was to evaluate the effect of priming with 1-Hz repetitive transcranial magnetic stimulation over contralesional leg motor area with a double-cone coil before physical therapy on regaining ambulation. Thirty-eight subacute stroke patients with significant leg disabilities were randomly assigned into the experimental group or control group to receive a 15-min real or sham 1-Hz repetitive transcranial magnetic stimulation, respectively, over the contralesional motor cortex representing the quadriceps muscle followed by 45-min physical therapy for 15 sessions for 3 wks. Functional measures, motor evoked potentials, and quality of life were assessed. There was no significant difference between experimental group and control group regarding the recovery in ambulation, balance, motor functions, and activity of daily living. No significant difference was found in other functional measures and the quality of life. Only the control group displayed significantly increased cortical excitability of the contralesional hemisphere after the intervention. The present study found that insufficient evidence that contralesional priming with 1-Hz repetitive transcranial magnetic stimulation improves ambulatory and other motor functions among patients with a severe leg dysfunction in subacute stroke.

  20. High repetition rate intense ion beam source

    International Nuclear Information System (INIS)

    Hammer, D.A.; Glidden, S.C.; Noonan, B.

    1992-01-01

    This final report describes a ≤ 150kV, 40kA, 100ns high repetition rate pulsed power system and intense ion beam source which is now in operation at Cornell University. Operation of the Magnetically-controlled Anode Plasma (MAP) ion diode at > 100Hz (burst mode for up to 10 pulse bursts) provides an initial look at repetition rate limitations of both the ion diode and beam diagnostics. The pulsed power systems are capable of ≥ 1kHz operation (up to 10 pulse bursts), but ion diode operation was limited to ∼100Hz because of diagnostic limitations. By varying MAP diode operating parameters, ion beams can be extracted at a few 10s of keV or at up to 150keV, the corresponding accelerating gap impedance ranging from about 1Ω to about 10Ω. The ability to make hundreds of test pulses per day at an average repetition rate of about 2 pulses per minute permits statistical analysis of diode operation as a function of various parameters. Most diode components have now survived more than 10 4 pulses, and the design and construction of the various pulsed power components of the MAP diode which have enabled us to reach this point are discussed. A high speed data acquisition system and companion analysis software capable of acquiring pulse data at 1ms intervals (in bursts of up to 10 pulses) and processing it in ≤ min is described

  1. Closed-cycle 1-kHz-pulse-repetition-frequency HF(DF) laser

    Science.gov (United States)

    Harris, Michael R.; Morris, A. V.; Gorton, Eric K.

    1998-05-01

    We describe the design and performance of a closed cycle, high pulse repetition frequency HF(DF) laser. A short duration, glow discharge is formed in a 10 SF6:1 H2(D2) gas mixture at a total pressure of approximately 110 torr. A pair of profiled electrodes define a 15 X 0.5 X 0.5 cm3 discharge volume through which gas flow is forced in the direction transverse to the optical axis. A centrifugal fan provides adequate gas flow to enable operation up to 3 kHz repetition frequency. The fan also passes the gas through a scrubber cell in which ground state HF(DF) is eliminated from the gas stream. An automated gas make-up system replenishes the spent fuel gases removed by the scrubber. Total gas admission is regulated by monitoring the system pressure, whilst the correct fuel balance is maintained through measurement of the discharge voltage. The HF(DF) generation rate is determined to be close to 5 X 1019 molecules per second per watt of laser output. Typical mean laser output powers of up to 3 watts can be delivered for extended periods of time. The primary limitation to life is found to be the discharge pre- ionization system. A distributed resistance corona pre- ionizer is shown to be advantageous when compared with an alternative arc array scheme.

  2. Properties of water surface discharge at different pulse repetition rates

    International Nuclear Information System (INIS)

    Ruma,; Yoshihara, K.; Hosseini, S. H. R.; Sakugawa, T.; Akiyama, H.; Akiyama, M.; Lukeš, P.

    2014-01-01

    The properties of water surface discharge plasma for variety of pulse repetition rates are investigated. A magnetic pulse compression (MPC) pulsed power modulator able to deliver pulse repetition rates up to 1000 Hz, with 0.5 J per pulse energy output at 25 kV, was used as the pulsed power source. Positive pulse with a point-to-plane electrode configuration was used for the experiments. The concentration and production yield of hydrogen peroxide (H 2 O 2 ) were quantitatively measured and orange II organic dye was treated, to evaluate the chemical properties of the discharge reactor. Experimental results show that the physical and chemical properties of water surface discharge are not influenced by pulse repetition rate, very different from those observed for under water discharge. The production yield of H 2 O 2 and degradation rate per pulse of the dye did not significantly vary at different pulse repetition rates under a constant discharge mode on water surface. In addition, the solution temperature, pH, and conductivity for both water surface and underwater discharge reactors were measured to compare their plasma properties for different pulse repetition rates. The results confirm that surface discharge can be employed at high pulse repetition rates as a reliable and advantageous method for industrial and environmental decontamination applications.

  3. Iodine laser of high efficiency and fast repetition rate

    Energy Technology Data Exchange (ETDEWEB)

    Hohla, K; Witte, K J

    1976-07-01

    The scaling laws of an iodine laser of high efficiency and fast repetition rate are reported. The laser is pumped with a new kind of low pressure Hg-UV-lamps which convert 32% of the electrical input in UV-light in the absorption band of the iodine laser and which can be fired up to 100 Hz. Details of a 10 kJ/1 nsec system as dimensions, energy density, repetition rate, flow velocity, gas composition and gas pressure and the overall efficiency are given which is expected to be about 2%.

  4. High repetition rate burst-mode spark gap

    International Nuclear Information System (INIS)

    Faltens, A.; Reginato, L.; Hester, R.; Chesterman, A.; Cook, E.; Yokota, T.; Dexter, W.

    1978-01-01

    Results are presented on the design and testing of a pressurized gas blown spark gap switch capable of high repetition rates in a burst mode of operation. The switch parameters which have been achieved are as follows: 220-kV, 42-kA, a five pulse burst at 1-kHz, 12-ns risetime, 2-ns jitter at a pulse width of 50-ns

  5. High repetition rate ultrashort laser cuts a path through fog

    Science.gov (United States)

    de la Cruz, Lorena; Schubert, Elise; Mongin, Denis; Klingebiel, Sandro; Schultze, Marcel; Metzger, Thomas; Michel, Knut; Kasparian, Jérôme; Wolf, Jean-Pierre

    2016-12-01

    We experimentally demonstrate that the transmission of a 1030 nm, 1.3 ps laser beam of 100 mJ energy through fog increases when its repetition rate increases to the kHz range. Due to the efficient energy deposition by the laser filaments in the air, a shockwave ejects the fog droplets from a substantial volume of the beam, at a moderate energy cost. This process opens prospects for applications requiring the transmission of laser beams through fogs and clouds.

  6. Crystallization of 21.25Gd2O3-63.75MoO3-15B2O3 glass induced by femtosecond laser at the repetition rate of 250 kHz

    International Nuclear Information System (INIS)

    Zhong, M.J.; Han, Y.M.; Liu, L.P.; Zhou, P.; Du, Y.Y.; Guo, Q.T.; Ma, H.L.; Dai, Y.

    2010-01-01

    We report the formation of β'-Gd 2 (MoO 4 ) 3 (GMO) crystal on the surface of the 21.25Gd 2 O 3 -63.75MoO 3 -15B 2 O 3 glass, induced by 250 kHz, 800 nm femtosecond laser irradiation. The morphology of the modified region in the glass was clearly examined by scanning electron microscopy (SEM). By micro-Raman spectra, the laser-induced crystals were confirmed to be GMO phases and it is found that these crystals have a strong dependence on the number and power of the femtosecond laser pulses. When the irradiation laser power was 900 mW, not only the Raman peaks of GMO crystals but also some new peaks at 214 cm -1 , 240 cm -1 , 466 cm -1 , 664 cm -1 and 994 cm -1 which belong to the MoO 3 crystals were observed. The possible mechanisms are proposed to explain these phenomena.

  7. 5 Hz repetitive transcranial magnetic stimulation over the ipsilesional sensory cortex enhances motor learning after stroke

    Directory of Open Access Journals (Sweden)

    Sonia M Brodie

    2014-03-01

    Full Text Available Sensory feedback is critical for motor learning, and thus to neurorehabilitation after stroke. Whether enhancing sensory feedback by applying excitatory repetitive transcranial magnetic stimulation (rTMS over the ipsilesional primary sensory cortex (IL-S1 might enhance motor learning in chronic stroke has yet to be investigated. The present study investigated the effects of 5 Hz rTMS over IL-S1 paired with skilled motor practice on motor learning, hemiparetic cutaneous somatosensation, and motor function. Individuals with unilateral chronic stroke were pseudo-randomly divided into either Active or Sham 5 Hz rTMS groups (n=11/group. Following stimulation, both groups practiced a Serial Tracking Task (STT with the hemiparetic arm; this was repeated for 5 days. Performance on the STT was quantified by response time, peak velocity, and cumulative distance tracked at baseline, during the 5 days of practice, and at a no-rTMS retention test. Cutaneous somatosensation was measured using two-point discrimination. Standardized sensorimotor tests were performed to assess whether the effects might generalize to impact hemiparetic arm function. The active 5Hz rTMS + training group demonstrated significantly greater improvements in STT performance [response time (F1,286.04=13.016, p< 0.0005, peak velocity (F1,285.95=4.111, p=0.044, and cumulative distance (F1,285.92=4.076, p=0.044] and cutaneous somatosensation (F1,21.15=8.793, p=0.007 across all sessions compared to the sham rTMS + training group. Measures of upper extremity motor function were not significantly different for either group. Our preliminary results suggest that, when paired with motor practice, 5Hz rTMS over IL-S1 enhances motor learning related change in individuals with chronic stroke, potentially as a consequence of improved cutaneous somatosensation, however no improvement in general upper extremity function was observed.

  8. Scaling of black silicon processing time by high repetition rate femtosecond lasers

    Directory of Open Access Journals (Sweden)

    Nava Giorgio

    2013-11-01

    Full Text Available Surface texturing of silicon substrates is performed by femtosecond laser irradiation at high repetition rates. Various fabrication parameters are optimized in order to achieve very high absorptance in the visible region from the micro-structured silicon wafer as compared to the unstructured one. A 70-fold reduction of the processing time is demonstrated by increasing the laser repetition rate from 1 kHz to 200 kHz. Further scaling up to 1 MHz can be foreseen.

  9. Two discharge modes of a repetitive nanosecond pulsed helium glow discharge under sub-atmospheric pressure in the repetition frequency range of 20 to 600 kHz

    Science.gov (United States)

    Kikuchi, Yusuke; Maegawa, Takuya; Otsubo, Akira; Nishimura, Yoshimi; Nagata, Masayoshi; Yatsuzuka, Mitsuyasu

    2018-05-01

    Two discharge modes, α and γ, of a repetitive nanosecond pulsed helium glow discharge at a gas pressure of 10 kPa in the repetition frequency range from 20 to 600 kHz are reported for the first time. The pulsed glow discharge is produced in a pair of parallel plate metal electrodes without insertion of dielectrics. The α mode discharge is volumetrically produced in the electrode gap at a low-repetition frequency, whereas the γ mode discharge is localized at the cathode surface at a high-repetition frequency. At high-repetition frequency, the time interval between voltage pulses is shorter than the lifetime of the afterglow produced by the preceding discharge. Then, the γ mode discharge is maintained by a large number of secondary electrons emitted from the cathode exposed to high-density ions and metastable helium atoms in the afterglow. In the α mode discharge with a low-repetition frequency operation, primary electrons due to gas ionization dominate the ionization process. Thus, a large discharge voltage is needed for the excitation of the α mode discharge. It is established that the bifurcation of α-γ discharge mode, accompanied by a decrease in the discharge voltage, occurs at the high-repetition frequency of ∼120 kHz.

  10. A copper bromide vapour laser with a high pulse repetition rate

    International Nuclear Information System (INIS)

    Shiyanov, D V; Evtushenko, Gennadii S; Sukhanov, V B; Fedorov, V F

    2002-01-01

    The results of an experimental study of a copper bromide vapour laser with a discharge-channel diameter above 2.5 cm and a high pump-pulse repetition rate are presented. A TGU1-1000/25 high-power tacitron used as a switch made it possible to obtain for the first time a fairly high output radiation power for pump-pulse repetition rates exceeding 200 kHz. At a maximum pump-pulse repetition rate of 250 kHz achieved in a laser tube 2.6 cm in diameter and 76 cm long, the output power was 1.5 W. The output powers of 3 and 10.5 W were reached for pump-pulse repetition rates of 200 and 100 kHz, respectively. These characteristics were obtained without circulating a buffer gas and (or) low-concentration active impurities through the active volume. (active media. lasers)

  11. Partial clinical response to 2 weeks of 2 Hz repetitive transcranial magnetic stimulation to the right parietal cortex in depression

    NARCIS (Netherlands)

    Schutter, D.J.L.G.; Laman, D.M.; Honk, E.J. van; Vergouwen, A.C.M.; Koerselman, F.

    2009-01-01

    The aim of this treatment study was to evaluate the therapeutic effects of repetitive transcranial magnetic stimulation (rTMS) over the right parietal cortex in depression. In a double-blind, sham-controlled design ten consecutive sessions of 2 Hz rTMS (inter-pulse interval 0.5 s) at 90% motor

  12. Closed cycle high-repetition-rate pulsed HF laser

    Science.gov (United States)

    Harris, Michael R.; Morris, A. V.; Gorton, Eric K.

    1997-04-01

    The design and performance of a closed cycle high repetition rate HF laser is described. A short pulse, glow discharge is formed in a 10 SF6:1 H2 gas mixture at a total pressure of approximately 110 torr within a 15 by 0.5 by 0.5 cm3 volume. Transverse, recirculated gas flow adequate to enable repetitive operation up to 3 kHz is imposed by a centrifugal fan. The fan also forces the gas through a scrubber cell to eliminate ground state HF from the gas stream. An automated gas make-up system replenishes spent gas removed by the scrubber. Typical mean laser output powers up to 3 W can be maintained for extended periods of operation.

  13. Femtosecond Ti:sapphire cryogenic amplifier with high gain and MHz repetition rate

    DEFF Research Database (Denmark)

    Dantan, Aurelien Romain; Laurat, Julien; Ourjoumtsev, Alexei

    2007-01-01

    We demonstrate high gain amplification of 160-femtosecond pulses in a compact double-pass cryogenic Ti:sapphire amplifier. The setup involves a negative GVD mirrors recompression stage, and operates with a repetition rate between 0.2 and 4 MHz with a continuous pump laser. Amplification factors a...... as high as 17 and 320 nJ Fourier-limited pulses are obtained at a 800 kHz repetition rate....

  14. Generation of µW level plateau harmonics at high repetition rate.

    Science.gov (United States)

    Hädrich, S; Krebs, M; Rothhardt, J; Carstens, H; Demmler, S; Limpert, J; Tünnermann, A

    2011-09-26

    The process of high harmonic generation allows for coherent transfer of infrared laser light to the extreme ultraviolet spectral range opening a variety of applications. The low conversion efficiency of this process calls for optimization or higher repetition rate intense ultrashort pulse lasers. Here we present state-of-the-art fiber laser systems for the generation of high harmonics up to 1 MHz repetition rate. We perform measurements of the average power with a calibrated spectrometer and achieved µW harmonics between 45 nm and 61 nm (H23-H17) at a repetition rate of 50 kHz. Additionally, we show the potential for few-cycle pulses at high average power and repetition rate that may enable water-window harmonics at unprecedented repetition rate. © 2011 Optical Society of America

  15. Pressure pain thresholds increase after preconditioning 1 Hz repetitive transcranial magnetic stimulation with transcranial direct current stimulation.

    Science.gov (United States)

    Moloney, Tonya M; Witney, Alice G

    2014-01-01

    The primary motor cortex (M1) is an effective target of non-invasive cortical stimulation (NICS) for pain threshold modulation. It has been suggested that the initial level of cortical excitability of M1 plays a key role in the plastic effects of NICS. Here we investigate whether transcranial direct current stimulation (tDCS) primed 1 Hz repetitive transcranial magnetic stimulation (rTMS) modulates experimental pressure pain thresholds and if this is related to observed alterations in cortical excitability. 15 healthy, male participants received 10 min 1 mA anodal, cathodal and sham tDCS to the left M1 before 15 min 1 Hz rTMS in separate sessions over a period of 3 weeks. Motor cortical excitability was recorded at baseline, post-tDCS priming and post-rTMS through recording motor evoked potentials (MEPs) from right FDI muscle. Pressure pain thresholds were determined by quantitative sensory testing (QST) through a computerized algometer, on the palmar thenar of the right hand pre- and post-stimulation. Cathodal tDCS-primed 1 Hz-rTMS was found to reverse the expected suppressive effect of 1 Hz rTMS on cortical excitability; leading to an overall increase in activity (ppain thresholds (ppain. This study demonstrates that priming the M1 before stimulation of 1 Hz-rTMS modulates experimental pressure pain thresholds in a safe and controlled manner, producing a form of analgesia.

  16. Repetitive 1 Hz fast-heating fusion driver HAMA pumped by diode pumped solid state laser

    International Nuclear Information System (INIS)

    Mori, Yoshitaka; Sekine, Takashi; Komeda, Osamu

    2014-01-01

    We describe a repetitive fast-heating fusion driver called HAMA pumped by Diode Pumped Solid State Laser (DPSSL) to realize the counter irradiation of sequential implosion and heating laser beams. HAMA was designed to activate DPSSL for inertial confinement fusion (ICF) research and to realize a unified ICF machine for power plants. The details of a four-beam alignment scheme and the results of the counter irradiation of stainless plates are shown. (author)

  17. Additional biological therapies for attention-deficit hyperactivity disorder: repetitive transcranical magnetic stimulation of 1 Hz helps to reduce methylphenidate

    Directory of Open Access Journals (Sweden)

    Helmut Niederhofer

    2011-12-01

    Full Text Available Excessive hyperactivity, impulsiveness and attentional difficulties characterize attentiondeficit hyperactivity disorder (ADHD. The aim of this case report is to signal the possible therapeutic effectiveness of the repetitive transcranial magnetic stimulation (rTMS. Low frequency (1Hz, 1200 stim/die for five days was applied on the impending scalp in the motor additional area of a patient suffering from combined type ADHD who received methylphenidate (MPH. We saw a significant improvement, especially according to criteria associated with hyperactivity. The improvement lasted for at least three weeks and suggested the final reduction in dosage of MPH.to 10 mg.

  18. Photocathodes for High Repetition Rate Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi, Ilan [Stony Brook Univ., NY (United States). Dept. of Physics and Astronomy. Center for Accelerator Science and Education

    2014-04-20

    This proposal brought together teams at Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL) and Stony Brook University (SBU) to study photocathodes for high repetition rate light sources such as Free Electron Lasers (FEL) and Energy Recovery Linacs (ERL). Below details the Principal Investigators and contact information. Each PI submits separately for a budget through his corresponding institute. The work done under this grant comprises a comprehensive program on critical aspects of the production of the electron beams needed for future user facilities. Our program pioneered in situ and in operando diagnostics for alkali antimonide growth. The focus is on development of photocathodes for high repetition rate Free Electron Lasers (FELs) and Energy Recovery Linacs (ERLs), including testing SRF photoguns, both normal-­conducting and superconducting. Teams from BNL, LBNL and Stony Brook University (SBU) led this research, and coordinated their work over a range of topics. The work leveraged a robust infrastructure of existing facilities and the support was used for carrying out the research at these facilities. The program concentrated in three areas: a) Physics and chemistry of alkali-­antimonide cathodes (BNL – LBNL) b) Development and testing of a diamond amplifier for photocathodes (SBU -­ BNL) c) Tests of both cathodes in superconducting RF photoguns (SBU) and copper RF photoguns (LBNL) Our work made extensive use of synchrotron radiation materials science techniques, such as powder-­ and single-­crystal diffraction, x-­ray fluorescence, EXAFS and variable energy XPS. BNL and LBNL have many complementary facilities at the two light sources associated with these laboratories (NSLS and ALS, respectively); use of these will be a major thrust of our program and bring our understanding of these complex materials to a new level. In addition, CHESS at Cornell will be used to continue seamlessly throughout the NSLS dark period and

  19. Pressure pain thresholds increase after preconditioning 1 Hz repetitive transcranial magnetic stimulation with transcranial direct current stimulation.

    Directory of Open Access Journals (Sweden)

    Tonya M Moloney

    Full Text Available BACKGROUND: The primary motor cortex (M1 is an effective target of non-invasive cortical stimulation (NICS for pain threshold modulation. It has been suggested that the initial level of cortical excitability of M1 plays a key role in the plastic effects of NICS. OBJECTIVE: Here we investigate whether transcranial direct current stimulation (tDCS primed 1 Hz repetitive transcranial magnetic stimulation (rTMS modulates experimental pressure pain thresholds and if this is related to observed alterations in cortical excitability. METHOD: 15 healthy, male participants received 10 min 1 mA anodal, cathodal and sham tDCS to the left M1 before 15 min 1 Hz rTMS in separate sessions over a period of 3 weeks. Motor cortical excitability was recorded at baseline, post-tDCS priming and post-rTMS through recording motor evoked potentials (MEPs from right FDI muscle. Pressure pain thresholds were determined by quantitative sensory testing (QST through a computerized algometer, on the palmar thenar of the right hand pre- and post-stimulation. RESULTS: Cathodal tDCS-primed 1 Hz-rTMS was found to reverse the expected suppressive effect of 1 Hz rTMS on cortical excitability; leading to an overall increase in activity (p<0.001 with a parallel increase in pressure pain thresholds (p<0.01. In contrast, anodal tDCS-primed 1 Hz-rTMS resulted in a corresponding decrease in cortical excitability (p<0.05, with no significant effect on pressure pain. CONCLUSION: This study demonstrates that priming the M1 before stimulation of 1 Hz-rTMS modulates experimental pressure pain thresholds in a safe and controlled manner, producing a form of analgesia.

  20. A high-repetition rate LWFA for studies of laser propagation and electron generation

    Science.gov (United States)

    He, Zhaohan; Easter, James; Hou, Bixue; Krushelnick, Karl; Nees, John; Thomas, Alec

    2010-11-01

    Advances in ultrafast optics today have enabled laser systems to deliver ever shorter and more intense pulses. When focused, such laser pulses can easily exceed relativistic intensities where the wakefield created by the strong laser electric field can be used to accelerate electrons. Laser wakefield acceleration of electrons holds promise for future compact electron accelerators or drivers of other radiation sources in many scientific, medical and engineering applications. We present experimental studies of laser wakefield acceleration using the λ-cubed laser at the University of Michigan -- a table-top high-power laser system operating at 500 Hz repetition rate. The high repetition rate allows statistical studies of laser propagation and electron acceleration which are not accessible with typical sub-0.1 Hz repetition rate systems. In addition, we compare the experiments with particle-in-cell simulations using the code OSIRIS.

  1. High repetition rate, high energy, actively Q-switched all-in-fiber laser

    Science.gov (United States)

    Lecourt, J. B.; Bertrand, A.; Guillemet, S.; Hernandez, Y.; Giannone, D.

    2010-05-01

    We report an actively Q-switched Ytterbium-doped all-in-fibre laser delivering 10ns pulses with high repetition rate (from 100kHz to 1MHz). The laser operation has been validated at three different wavelengths (1040, 1050 and 1064nm). The laser can deliver up to 20Watts average power with an high beam quality (M2 = 1).

  2. A high repetition rate XUV seeding source for FLASH2

    International Nuclear Information System (INIS)

    Willner, Arik

    2012-05-01

    Improved performance of free-electron laser (FEL) light sources in terms of timing stability, pulse shape and spectral properties of the amplified FEL pulses is of interest in material science, the fields of ultrafast dynamics, biology, chemistry and even special branches in industry. A promising scheme for such an improvement is direct seeding with high harmonic generation (HHG) in a noble gas target. A free-electron laser seeded by an external extreme ultraviolet (XUV) source is planned for FLASH2 at DESY in Hamburg. The requirements for the XUV/soft X-ray source can be summarized as follows: A repetition rate of at least 100 kHz in a 10 Hz burst is needed at variable wavelengths from 10 to 40 nm and pulse energies of several nJ within a single laser harmonic. This application requires a laser amplifier system with exceptional parameters, mJ-level pulse energy, 10-15 fs pulse duration at 100 kHz (1 MHz) burst repetition rate. A new optical parametric chirped-pulse amplification (OPCPA) system is under development in order to meet these requirements, and very promising results have been achieved in the last three years. In parallel to this development, a new HHG concept is necessary to sustain high average power of the driving laser system and to generate harmonics with high conversion efficiencies. Currently, the highest conversion efficiency with HHG has been demonstrated using gas-filled capillary targets. For our application, only a free-jet target can be used for HHG, in order to overcome damage threshold limitations of HHG target optics at a high repetition rate. A novel dual-gas multijet gas target has been developed and first experiments show remarkable control of the degree of phase matching forming the basis for improved control of the harmonic photon flux and the XUV pulse characteristics. The basic idea behind the dual-gas concept is the insertion of matching zones in between multiple HHG sources. These matching sections are filled with hydrogen which

  3. A high repetition rate XUV seeding source for FLASH2

    Energy Technology Data Exchange (ETDEWEB)

    Willner, Arik

    2012-05-15

    Improved performance of free-electron laser (FEL) light sources in terms of timing stability, pulse shape and spectral properties of the amplified FEL pulses is of interest in material science, the fields of ultrafast dynamics, biology, chemistry and even special branches in industry. A promising scheme for such an improvement is direct seeding with high harmonic generation (HHG) in a noble gas target. A free-electron laser seeded by an external extreme ultraviolet (XUV) source is planned for FLASH2 at DESY in Hamburg. The requirements for the XUV/soft X-ray source can be summarized as follows: A repetition rate of at least 100 kHz in a 10 Hz burst is needed at variable wavelengths from 10 to 40 nm and pulse energies of several nJ within a single laser harmonic. This application requires a laser amplifier system with exceptional parameters, mJ-level pulse energy, 10-15 fs pulse duration at 100 kHz (1 MHz) burst repetition rate. A new optical parametric chirped-pulse amplification (OPCPA) system is under development in order to meet these requirements, and very promising results have been achieved in the last three years. In parallel to this development, a new HHG concept is necessary to sustain high average power of the driving laser system and to generate harmonics with high conversion efficiencies. Currently, the highest conversion efficiency with HHG has been demonstrated using gas-filled capillary targets. For our application, only a free-jet target can be used for HHG, in order to overcome damage threshold limitations of HHG target optics at a high repetition rate. A novel dual-gas multijet gas target has been developed and first experiments show remarkable control of the degree of phase matching forming the basis for improved control of the harmonic photon flux and the XUV pulse characteristics. The basic idea behind the dual-gas concept is the insertion of matching zones in between multiple HHG sources. These matching sections are filled with hydrogen which

  4. Solid state pump lasers with high power and high repetition rate

    International Nuclear Information System (INIS)

    Oba, Masaki; Kato, Masaaki; Arisawa, Takashi

    1995-01-01

    We built a laser diode pumped solid state green laser (LDPSSGL) rated at high repetition rate. Two laser heads are placed in one cavity with a rotator in between to design to avoid thermal lensing and thermal birefringence effect. Although average green laser power higher than 10 W was obtained at 1 kHz repetition rate with pulse width of 20-30 nsec, the beam quality was so much deteriorated that energy efficiency was as low as 2 %. Learning from this experience that high power oscillator causes a lot of thermal distortion not only in the laser rod but also in the Q-switch device, we proceeded to built a oscillator/amplifier system. A low power oscillator has a slab type crystal in the cavity. As a result spatial distribution of laser power was extremely improved. As we expect that the high repetition rate solid state laser should be CW operated Q-switch type laser from the view point of lifetime of diode lasers, a conventional arc lamp pumped CW Q-switch green YAG laser of which the repetition rate is changeable from 1 kHz to 5 kHz and the pulse width is 250-570 nsec was also tested to obtain pumping characteristics of a dye laser as a function of power, pulse width etc., and dye laser pulse width of 100-130 nsec were obtained. (author)

  5. Electrode patterning of ITO thin films by high repetition rate fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Lin, H.K., E-mail: HKLin@mail.npust.edu.tw; Hsu, W.C.

    2014-07-01

    Indium tin oxide (ITO) thin films are deposited on glass substrates using a radio frequency magnetron sputtering system. As-deposited ITO thin film was 100 nm in thickness and a transmittance of ITO film on glass substrate was 79% at 550 nm. Conductive electrodes are then patterned on the ITO films using a high repetition rate fiber laser system followed by a wet chemical etching process. The electrical, optical and structural properties of the patterned samples are evaluated by means of a four-point probe technique, spectrophotometer, X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The results show that the samples annealed with a pulse repetition rate of 150 kHz or 400 kHz have a low sheet resistivity of 21 Ω/□ and a high optical transmittance of 90%. In addition, it is shown that a higher pulse repetition rate reduces both the residual stress and the surface roughness of the patterned specimens. Therefore, the present results suggest that a pulse repetition rate of 400 kHz represents the optimal processing condition for the patterning of crack-free ITO-coated glass substrates with good electrical and optical properties.

  6. Electrode patterning of ITO thin films by high repetition rate fiber laser

    International Nuclear Information System (INIS)

    Lin, H.K.; Hsu, W.C.

    2014-01-01

    Indium tin oxide (ITO) thin films are deposited on glass substrates using a radio frequency magnetron sputtering system. As-deposited ITO thin film was 100 nm in thickness and a transmittance of ITO film on glass substrate was 79% at 550 nm. Conductive electrodes are then patterned on the ITO films using a high repetition rate fiber laser system followed by a wet chemical etching process. The electrical, optical and structural properties of the patterned samples are evaluated by means of a four-point probe technique, spectrophotometer, X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The results show that the samples annealed with a pulse repetition rate of 150 kHz or 400 kHz have a low sheet resistivity of 21 Ω/□ and a high optical transmittance of 90%. In addition, it is shown that a higher pulse repetition rate reduces both the residual stress and the surface roughness of the patterned specimens. Therefore, the present results suggest that a pulse repetition rate of 400 kHz represents the optimal processing condition for the patterning of crack-free ITO-coated glass substrates with good electrical and optical properties.

  7. Advances in high repetition rate, ultra-short, gigawatt laser systems for time-resolved spectroscopy

    International Nuclear Information System (INIS)

    DiMauro, L.F.

    1991-01-01

    The objective of this article is to emphasize the current advances in the development of high-repetition rate amplifier pumps. Although this review highlights amplifier pump development, any recent data from achieved outputs via the tunable amplifier section is also discussed. The first section describes desirable parameters attributable to the pump amplifier while the rest of the article deals with specific examples for various options. The pump amplifiers can be characterized into two distinct classes; those achieving operation in the hundred hertz regime and those performing at repetition rates ≥1kHz. 23 refs., 4 figs

  8. Acute and chronic effects of hypercalcaemia on cortical excitability as studied by 5 Hz repetitive transcranial magnetic stimulation.

    Science.gov (United States)

    Iacovelli, Elisa; Gilio, Francesca; Mascia, Maria Lucia; Scillitani, Alfredo; Romagnoli, Elisabetta; Pichiorri, Floriana; Fucile, Sergio; Minisola, Salvatore; Inghilleri, Maurizio

    2011-04-01

    We designed the present study to disclose changes in cortical excitability in humans with hypercalcaemia, by delivering repetitive transcranial magnetic stimulation (rTMS) over the primary motor area (M1). In 22 patients with chronic hypercalcaemia related to primary hyperparathyroidism and 22 age-matched healthy subjects 5 Hz-rTMS was delivered at rest and during a sustained voluntary contraction of the target muscle. Changes in the resting motor threshold (RMT), motor evoked potential (MEP) amplitudes and cortical silent period (CSP) duration were measured and compared in patients and healthy controls. Two of the 22 patients were re-tested after parathyroidectomy when serum calcium had normalized. In a subgroup of healthy subjects, changes in the rTMS parameters were tested before and after acute hypercalcaemia. No significant difference between healthy normocalcaemic subjects and chronic hypercalcaemic patients was found in the RMT values and MEP amplitude and CSP duration evoked by the first stimulus of the trains. During the course of 5 Hz-rTMS trains, MEP size increased significantly less in patients with chronic hypercalcaemia than in healthy subjects, whereas the CSP duration lengthened to a similar extent in both groups. In the two patients studied after parathyroidectomy, rTMS elicited a normal MEP amplitude facilitation. Our findings indicate that acute hypercalcaemia significantly decreased the MEP amplitude facilitation. Given that 5 Hz-rTMS modulates cortical excitability through mechanisms resembling short-term synaptic enhancement, the reduction of MEP amplitude facilitation by hypercalcaemia may be related to Ca2+-dependent changes in synaptic plasticity.

  9. 5 Hz Repetitive transcranial magnetic stimulation for posttraumatic stress disorder comorbid with major depressive disorder.

    Science.gov (United States)

    Carpenter, Linda L; Conelea, Christine; Tyrka, Audrey R; Welch, Emma S; Greenberg, Benjamin D; Price, Lawrence H; Niedzwiecki, Matthew; Yip, Agustin G; Barnes, Jennifer; Philip, Noah S

    2018-08-01

    Standard clinical protocols for repetitive transcranial magnetic stimulation (rTMS) for major depressive disorder (MDD) apply 10 Hz pulses over left prefrontal cortex, yet little is known about the effects of rTMS in more diagnostically complex depressed patients. Posttraumatic stress disorder (PTSD) is commonly comorbid with MDD, and while rTMS has been shown to alleviate PTSD symptoms in preliminary studies, ideal parameters remain unclear. We conducted a prospective, open-label study of 5 Hz rTMS for patients with comorbid PTSD + MDD and hypothesized stimulation would reduce symptoms of both disorders. Outpatients (N = 40) with PTSD + MDD and at least moderate global severity were enrolled. 5 Hz rTMS included up to 40 daily sessions followed by a 5-session taper. Symptoms were measured using the PTSD Checklist (PCL-5) and Inventory of Depressive Symptomatology, Self-Report (IDS-SR). Baseline-to-endpoint changes were analyzed. The intent-to-treat population included 35 participants. Stimulation significantly reduced PTSD symptoms (PCL-5 baseline mean ± SD score 52.2 ± 13.1 versus endpoint 34.0 ± 21.6; p < .001); 23 patients (48.6%) met a pre-defined categorical PTSD response criteria. MDD symptoms also improved significantly (IDS-SR, baseline 47.8 ± 11.9 to endpoint 30.9 ± 18.9; p < .001); 15 patients (42.9%) demonstrated categorical response and 12 (34.3%) remitted. PTSD and MDD symptom change was highly correlated (r = 0.91, p < .001). Unblinded single-arm study, with modest sample size. Significant and clinically meaningful reductions in both MDD and PTSD symptoms were observed following stimulation. The preliminary efficacy of 5 Hz rTMS for both symptom domains in patients with comorbid disorders supports future controlled studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Design of a low emittance and high repetition rate S-band photoinjector

    Science.gov (United States)

    Han, Jang-Hui

    2014-09-01

    As an electron beam injector of X-ray free-electron lasers (FELs), photoinjectors have been developed for the past few decades. Such an injector starting with a photocathode RF gun provides high brightness beams and therefore it is being adopted as an injector of X-ray FELs. In this paper we show how to improve photoinjector performance in terms of emittance and repetition rates by means of injector components optimization, especially with the gun. Transverse emittance at the end of an injector is reduced by optimizing the gun design, gun solenoid position, and accelerating section position. The repetition rate of an injector mainly depends on the gun. It is discussed that a repetition rate of 1 kHz at a normal-conducting S-band photoinjector is feasible by adopting a coaxial RF coupler and improving cooling-water channels surrounding the gun.

  11. Design and Development of High-Repetition-Rate Satellite Laser Ranging System

    Science.gov (United States)

    Choi, Eun-Jung; Bang, Seong-Cheol; Sung, Ki-Pyoung; Lim, Hyung-Chul; Jung, Chan-Gyu; Kim, In-Yeung; Choi, Jae-Seung

    2015-09-01

    The Accurate Ranging System for Geodetic Observation ? Mobile (ARGO-M) was successfully developed as the first Korean mobile Satellite Laser Ranging (SLR) system in 2012, and has joined in the International Laser Ranging Service (ILRS) tracking network, DAEdeoK (DAEK) station. The DAEK SLR station was approved as a validated station in April 2014, through the ILRS station ¡°data validation¡± process. The ARGO-M system is designed to enable 2 kHz laser ranging with millimeter-level precision for geodetic, remote sensing, navigation, and experimental satellites equipped with Laser Retroreflector Arrays (LRAs). In this paper, we present the design and development of a next generation high-repetition-rate SLR system for ARGO-M. The laser ranging rate up to 10 kHz is becoming an important issue in the SLR community to improve ranging precision. To implement high-repetition-rate SLR system, the High-repetition-rate SLR operation system (HSLR-10) was designed and developed using ARGO-M Range Gate Generator (A-RGG), so as to enable laser ranging from 50 Hz to 10 kHz. HSLR-10 includes both hardware controlling software and data post-processing software. This paper shows the design and development of key technologies of high-repetition-rate SLR system. The developed system was tested successfully at DAEK station and then moved to Sejong station, a new Korean SLR station, on July 1, 2015. HSLR-10 will begin normal operations at Sejong station in the near future.

  12. Very high repetition-rate electro-optical cavity-dumped Nd: YVO4 laser with optics and dynamics stabilities

    Science.gov (United States)

    Liu, Xuesong; Shi, Zhaohui; Huang, Yutao; Fan, Zhongwei; Yu, Jin; Zhang, Jing; Hou, Liqun

    2015-02-01

    In this paper, a very high repetition-rate, short-pulse, electro-optical cavity-dumped Nd: YVO4 laser is experimentally and theoretically investigated. The laser performance is optimized from two aspects. Firstly, the laser resonator is designed for a good thermal stability under large pump power fluctuation through optics methods. Secondly, dynamics simulation as well as experiments verifies that cavity dumping at very high repetition rate has better stability than medium/high repetition rate. At 30 W, 880 nm pump power, up to 500 kHz, constant 5 ns, stable 1064 nm fundamental-mode laser pulses can be obtained with 10 W average output power.

  13. Temporal dynamics of high repetition rate pulsed single longitudinal ...

    Indian Academy of Sciences (India)

    ing (GIG) cavity, single-mode dye laser pumped by high repetition rate ... in a high loss cavity, a detailed theoretical study and optimization of cavity ..... rate for high conversion efficiency and longer pulse width of the single-mode dye laser.

  14. High-repetition-rate short-pulse gas discharge.

    Science.gov (United States)

    Tulip, J; Seguin, H; Mace, P N

    1979-09-01

    A high-average-power short-pulse gas discharge is described. This consists of a volume-preionized transverse discharge of the type used in gas lasers driven by a Blumlein energy storage circuit. The Blumlein circuit is fabricated from coaxial cable, is pulse-charged from a high-repetition-rate Marx-bank generator, and is switched by a high-repetition-rate segmented rail gap. The operation of this discharge under conditions typical of rare-gas halide lasers is described. A maximum of 900 pps was obtained, giving a power flow into the discharge of 30 kW.

  15. Novel fast-neutron activation counter for high repetition rate measurements

    International Nuclear Information System (INIS)

    Mahmood, S.; Springham, S. V.; Zhang, T.; Rawat, R. S.; Tan, T. L.; Krishnan, M.; Beg, F. N.; Lee, S.; Schmidt, H.; Lee, P.

    2006-01-01

    A fast-neutron beryllium activation counter has been constructed for neutron measurements on a high repetition rate deuterium plasma focus. Beryllium activation is especially suitable for measurements of DD neutron yields. The cross section for the relevant reaction, 9 Be(n,α) 6 He, results in a maximum sensitivity at the characteristic energy of the DD neutrons (∼2.5 MeV) and practically no sensitivity to neutrons with energies 6 He enabled the shot-to-shot neutron yield from the plasma focus to be measured for repetition rates from 0.2 to 3 Hz (and for a range of deuterium gas pressures). With careful analysis, the shot-to-shot yield can be measured up to a maximum repetition rate of 3 Hz, beyond which the pileup of counts from the previous shots reduces the accuracy of the measurements to an unacceptable level. This new beryllium activation counter has been cross-checked against an indium activation counter to obtain absolute neutron yields. At a charging voltage of 12.5 kV (bank energy of 2.2 kJ), the average neutron yield was found to be (7.9±0.7)x10 7 per shot (standard deviation of 4x10 7 ). It was found that activation of the plasma focus construction materials (especially aluminum) must be taken into account

  16. High speed surface cleaning by a high repetition rated TEA-CO2 laser

    International Nuclear Information System (INIS)

    Tsunemi, Akira; Hirai, Ryo; Hagiwara, Kouji; Nagasaka, Keigo; Tashiro, Hideo

    1994-01-01

    We demonstrated the feasibility of high speed cleaning of solid surfaces by the laser ablation technique using a TEA-CO 2 laser. The laser pulses with the repetition rate of 1 kHz were applied to paint, rust, moss and dirt attached on the surfaces. The attachments were effectively removed without the damage of bulk surfaces by the irradiation of line-focused sequential pulses with an energy of 300 mJ/pulse. A cleaning rate reached to 17 m 2 /hour for the case of paint removal from iron surfaces. (author)

  17. An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers

    International Nuclear Information System (INIS)

    Höppner, H; Hage, A; Tanikawa, T; Schulz, M; Faatz, B; Riedel, R; Prandolini, M J; Teubner, U; Tavella, F

    2015-01-01

    High repetition rate free-electron lasers (FEL), producing highly intense extreme ultraviolet and x-ray pulses, require new high power tunable femtosecond lasers for FEL seeding and FEL pump-probe experiments. A tunable, 112 W (burst mode) optical parametric chirped-pulse amplifier (OPCPA) is demonstrated with center frequencies ranging from 720–900 nm, pulse energies up to 1.12 mJ and a pulse duration of 30 fs at a repetition rate of 100 kHz. Since the power scalability of this OPCPA is limited by the OPCPA-pump amplifier, we also demonstrate a 6.7–13.7 kW (burst mode) thin-disk OPCPA-pump amplifier, increasing the possible OPCPA output power to many hundreds of watts. Furthermore, third and fourth harmonic generation experiments are performed and the results are used to simulate a seeded FEL with high-gain harmonic generation. (paper)

  18. A Simulation of the Effects of Varying Repetition Rate and Pulse Width of Nanosecond Discharges on Premixed Lean Methane-Air Combustion

    Directory of Open Access Journals (Sweden)

    Moon Soo Bak

    2012-01-01

    Full Text Available Two-dimensional kinetic simulation has been carried out to investigate the effects of repetition rate and pulse width of nanosecond repetitively pulsed discharges on stabilizing premixed lean methane-air combustion. The repetition rate and pulse width are varied from 10 kHz to 50 kHz and from 9 ns to 2 ns while the total power is kept constant. The lower repetition rates provide larger amounts of radicals such as O, H, and OH. However, the effect on stabilization is found to be the same for all of the tested repetition rates. The shorter pulse width is found to favor the production of species in higher electronic states, but the varying effects on stabilization are also found to be small. Our results indicate that the total deposited power is the critical element that determines the extent of stabilization over this range of discharge properties studied.

  19. Probing background ionization: positive streamers with varying pulse repetition rate and with a radioactive admixture

    International Nuclear Information System (INIS)

    Nijdam, S; Van Veldhuizen, E M; Ebert, U; Wormeester, G

    2011-01-01

    Positive streamers need a source of free electrons ahead of them to propagate. A streamer can supply these electrons by itself through photo-ionization, or the electrons can be present due to external background ionization. Here we investigate the effects of background ionization on streamer propagation and morphology by changing the gas composition and the repetition rate of the voltage pulses, and by adding a small amount of radioactive 85 Kr. We find that the general morphology of a positive streamer discharge in high-purity nitrogen depends on background ionization: at lower background ionization levels the streamers branch more and have a more feather-like appearance. This is observed both when varying the repetition rate and when adding 85 Kr, though side branches are longer with the radioactive admixture. But velocities and minimal diameters of streamers are virtually independent of the background ionization level. In air, the inception cloud breaks up into streamers at a smaller radius when the repetition rate and therefore the background ionization level is higher. When measuring the effects of the pulse repetition rate and of the radioactive admixture on the discharge morphology, we found that our estimates of background ionization levels are consistent with these observations; this gives confidence in the estimates. Streamer channels generally do not follow the paths of previous discharge channels for repetition rates of up to 10 Hz. We estimate the effect of recombination and diffusion of ions and free electrons from the previous discharge and conclude that the old trail has largely disappeared at the moment of the next voltage pulse; therefore the next streamers indeed cannot follow the old trail.

  20. A mode-locked external-cavity quantum-dot laser with a variable repetition rate

    International Nuclear Information System (INIS)

    Wu Jian; Jin Peng; Li Xin-Kun; Wei Heng; Wu Yan-Hua; Wang Fei-Fei; Chen Hong-Mei; Wu Ju; Wang Zhan-Guo

    2013-01-01

    A mode-locked external-cavity laser emitting at 1.17-μm wavelength using an InAs/GaAs quantum-dot gain medium and a discrete semiconductor saturable absorber mirror is demonstrated. By changing the external-cavity length, repetition rates of 854, 912, and 969 MHz are achieved respectively. The narrowest −3-dB radio-frequency linewidth obtained is 38 kHz, indicating that the laser is under stable mode-locking operation. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  1. HIGH REPETITION RATE MICROCHIP ER3+,YB3+:YAL3(BO34 DIODE-PUMPED LASER

    Directory of Open Access Journals (Sweden)

    K. N. Gorbachenya

    2012-01-01

    Full Text Available Diode-pumped passively Q-switched microchip Er,Yb:YAl3(BO34 laser for range-finding has been demonstrated. By using a Co2+:MgAl2O4 as a saturable absorber TEM00–mode Q-switched average output power of 315 mW was demonstrated at 1522 nm with pulse duration of 5 ns and pulse energy of 5,25 μJ at a repetition rate of 60 kHz.

  2. Characterization of a high repetition-rate laser-driven short-pulsed neutron source

    Science.gov (United States)

    Hah, J.; Nees, J. A.; Hammig, M. D.; Krushelnick, K.; Thomas, A. G. R.

    2018-05-01

    We demonstrate a repetitive, high flux, short-pulsed laser-driven neutron source using a heavy-water jet target. We measure neutron generation at 1/2 kHz repetition rate using several-mJ pulse energies, yielding a time-averaged neutron flux of 2 × 105 neutrons s‑1 (into 4π steradians). Deuteron spectra are also measured in order to understand source characteristics. Analyses of time-of-flight neutron spectra indicate that two separate populations of neutrons, ‘prompt’ and ‘delayed’, are generated at different locations. Gamma-ray emission from neutron capture 1H(n,γ) is also measured to confirm the neutron flux.

  3. High-repetition-rate hydrogen chamber: Preliminary studies

    International Nuclear Information System (INIS)

    1967-01-01

    This report is a conclusion to the tests realised with an experimental bubbles chamber in view to study the possibilities to increase the repetition rate. The more important parameters (the evolution of the bubbles, the expansion system) are considered in a theoretical way. Then the hardware is described. To end, experimental results are compared with the first evaluations. The calculations and the experimentation are against an oscillation system for the expansion. A system with a locking is to he considered. (authors) [fr

  4. High-power 355 nm ultraviolet lasers operating at ultrahigh repetition rate

    International Nuclear Information System (INIS)

    Chen, H; Liu, Q; Yan, P; Gong, M

    2013-01-01

    In this letter, we demonstrate a novel 355 nm ultraviolet (UV) laser operating at ultrahigh repetition rate from 300 kHz to 1 MHz. The hybrid fiber-MOPA–bulk amplifiers based IR source exhibits a high average power of 105 W with near-diffraction-limited beam quality, narrow linewidth and high polarization extinction ratio. Two-cascaded LBO crystals are employed for high efficiency frequency tripling, and a maximum 43.7 W of average UV power is achieved at 400 kHz, corresponding to a conversion efficiency as high as 41.6%. The pulse duration of the UV pulse can be tuned from 5 to 10 ns with good pulse peak stability (better than 2.2% (RMS)). (letter)

  5. Efficient high-peak-power and high-repetition-rate eye-safe laser using an intracavity KTP OPO

    International Nuclear Information System (INIS)

    Guo, J; Jiao, Z X; Wang, B; He, G Y

    2015-01-01

    An efficient high-peak-power and high-repetition-rate intracavity KTP optical parametric oscillator pumped by a Q-switched Nd:YVO 4 laser is demonstrated. We achieved 1.5 W output power of 1.5 μm at 10 kHz repetition rate with the pulse duration of 6 ns. The maximum peak power of 25 kW and the maximum pulse energy of 150 μJ have been obtained. The maximum conversion efficiency of 9.5% is achieved with respect to a laser diode power of 10.5 W. (paper)

  6. Research on the optoacoustic communication system for speech transmission by variable laser-pulse repetition rates

    Science.gov (United States)

    Jiang, Hongyan; Qiu, Hongbing; He, Ning; Liao, Xin

    2018-06-01

    For the optoacoustic communication from in-air platforms to submerged apparatus, a method based on speech recognition and variable laser-pulse repetition rates is proposed, which realizes character encoding and transmission for speech. Firstly, the theories and spectrum characteristics of the laser-generated underwater sound are analyzed; and moreover character conversion and encoding for speech as well as the pattern of codes for laser modulation is studied; lastly experiments to verify the system design are carried out. Results show that the optoacoustic system, where laser modulation is controlled by speech-to-character baseband codes, is beneficial to improve flexibility in receiving location for underwater targets as well as real-time performance in information transmission. In the overwater transmitter, a pulse laser is controlled to radiate by speech signals with several repetition rates randomly selected in the range of one to fifty Hz, and then in the underwater receiver laser pulse repetition rate and data can be acquired by the preamble and information codes of the corresponding laser-generated sound. When the energy of the laser pulse is appropriate, real-time transmission for speaker-independent speech can be realized in that way, which solves the problem of underwater bandwidth resource and provides a technical approach for the air-sea communication.

  7. Influence of Music Style and Rate on Repetitive Finger Tapping.

    Science.gov (United States)

    Stegemöller, Elizabeth L; Tatz, Joshua R; Warnecke, Alison; Hibbing, Paul; Bates, Brandon; Zaman, Andrew

    2018-03-09

    Auditory cues, including music, are commonly used in the treatment of persons with Parkinson's disease. Yet, how music style and movement rate modulate movement performance in persons with Parkinson's disease have been neglected and remain limited in healthy young populations. The purpose of this study was to determine how music style and movement rate influence movement performance in healthy young adults. Healthy participants were asked to perform repetitive finger movements at two pacing rates (70 and 140 beats per minute) for the following conditions: (a) a tone only, (b) activating music, and (c) relaxing music. Electromyography, movement kinematics, and variability were collected. Results revealed that the provision of music, regardless of style, reduced amplitude variability at both pacing rates. Intermovement interval was longer, and acceleration variability was reduced during both music conditions at the lower pacing rate only. These results may prove beneficial for designing therapeutic interventions for persons with Parkinson's disease.

  8. Crystallization of 21.25Gd{sub 2}O{sub 3}-63.75MoO{sub 3}-15B{sub 2}O{sub 3} glass induced by femtosecond laser at the repetition rate of 250 kHz

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, M.J.; Han, Y.M. [Department of Physics, Shanghai University, 99 Shangda Road, Shanghai 200444 (China); Liu, L.P. [Hunan Biological and Electromechanical Polytechnic, Changsha 410126 (China); Zhou, P.; Du, Y.Y.; Guo, Q.T. [Department of Physics, Shanghai University, 99 Shangda Road, Shanghai 200444 (China); Ma, H.L., E-mail: mahl@staff.shu.edu.cn [Department of Physics, Shanghai University, 99 Shangda Road, Shanghai 200444 (China); Dai, Y. [Department of Physics, Shanghai University, 99 Shangda Road, Shanghai 200444 (China)

    2010-12-01

    We report the formation of {beta}'-Gd{sub 2}(MoO{sub 4}){sub 3} (GMO) crystal on the surface of the 21.25Gd{sub 2}O{sub 3}-63.75MoO{sub 3}-15B{sub 2}O{sub 3} glass, induced by 250 kHz, 800 nm femtosecond laser irradiation. The morphology of the modified region in the glass was clearly examined by scanning electron microscopy (SEM). By micro-Raman spectra, the laser-induced crystals were confirmed to be GMO phases and it is found that these crystals have a strong dependence on the number and power of the femtosecond laser pulses. When the irradiation laser power was 900 mW, not only the Raman peaks of GMO crystals but also some new peaks at 214 cm{sup -1}, 240 cm{sup -1}, 466 cm{sup -1}, 664 cm{sup -1} and 994 cm{sup -1}which belong to the MoO{sub 3} crystals were observed. The possible mechanisms are proposed to explain these phenomena.

  9. High repetition rate laser-driven MeV ion acceleration at variable background pressures

    Science.gov (United States)

    Snyder, Joseph; Ngirmang, Gregory; Orban, Chris; Feister, Scott; Morrison, John; Frische, Kyle; Chowdhury, Enam; Roquemore, W. M.

    2017-10-01

    Ultra-intense laser-plasma interactions (LPI) can produce highly energetic photons, electrons, and ions with numerous potential real-world applications. Many of these applications will require repeatable, high repetition targets that are suitable for LPI experiments. Liquid targets can meet many of these needs, but they typically require higher chamber pressure than is used for many low repetition rate experiments. The effect of background pressure on the LPI has not been thoroughly studied. With this in mind, the Extreme Light group at the Air Force Research Lab has carried out MeV ion and electron acceleration experiments at kHz repetition rate with background pressures ranging from 30 mTorr to >1 Torr using a submicron ethylene glycol liquid sheet target. We present these results and provide two-dimensional particle-in-cell simulation results that offer insight on the thresholds for the efficient acceleration of electrons and ions. This research is supported by the Air Force Office of Scientific Research under LRIR Project 17RQCOR504 under the management of Dr. Riq Parra and Dr. Jean-Luc Cambier. Support was also provided by the DOD HPCMP Internship Program.

  10. Impact of visual repetition rate on intrinsic properties of low frequency fluctuations in the visual network.

    Directory of Open Access Journals (Sweden)

    Yi-Chia Li

    Full Text Available BACKGROUND: Visual processing network is one of the functional networks which have been reliably identified to consistently exist in human resting brains. In our work, we focused on this network and investigated the intrinsic properties of low frequency (0.01-0.08 Hz fluctuations (LFFs during changes of visual stimuli. There were two main questions to be discussed in this study: intrinsic properties of LFFs regarding (1 interactions between visual stimuli and resting-state; (2 impact of repetition rate of visual stimuli. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed scanning sessions that contained rest and visual stimuli in various repetition rates with a novel method. The method included three numerical approaches involving ICA (Independent Component Analyses, fALFF (fractional Amplitude of Low Frequency Fluctuation, and Coherence, to respectively investigate the modulations of visual network pattern, low frequency fluctuation power, and interregional functional connectivity during changes of visual stimuli. We discovered when resting-state was replaced by visual stimuli, more areas were involved in visual processing, and both stronger low frequency fluctuations and higher interregional functional connectivity occurred in visual network. With changes of visual repetition rate, the number of areas which were involved in visual processing, low frequency fluctuation power, and interregional functional connectivity in this network were also modulated. CONCLUSIONS/SIGNIFICANCE: To combine the results of prior literatures and our discoveries, intrinsic properties of LFFs in visual network are altered not only by modulations of endogenous factors (eye-open or eye-closed condition; alcohol administration and disordered behaviors (early blind, but also exogenous sensory stimuli (visual stimuli with various repetition rates. It demonstrates that the intrinsic properties of LFFs are valuable to represent physiological states of human brains.

  11. Environmentally stable picosecond Yb fiber laser with low repetition rate

    Science.gov (United States)

    Baumgartl, M.; Abreu-Afonso, J.; Díez, A.; Rothhardt, M.; Limpert, J.; Tünnermann, A.

    2013-04-01

    A SESAM-mode-locked, all-polarization-maintaining Ytterbium fiber laser producing picosecond pulses with narrow spectral bandwidth is presented. A simple linear all-fiber cavity without dispersion compensation is realized using a uniform fiber Bragg grating (FBG). Different cavity lengths are investigated and repetition rates down to 0.7 MHz are obtained. Bandwidth and pulse duration of the output pulses are mainly determined by the choice of FBG. Pulses between 30 and 200 ps are generated employing different FBGs with bandwidths between 17 and 96 pm. The experimental results are in good agreement with numerical simulations. The laser holds great potential for simple amplification setups without pulse picking.

  12. Repetition rate stabilization of an erbium-doped all-fiber laser via opto-mechanical control of the intracavity group velocity

    International Nuclear Information System (INIS)

    Shen, Xuling; He, Boqu; Zhao, Jian; Liu, Yang; Bai, Dongbi; Wang, Chao; Liu, Geping; Luo, Daping; Liu, Fengjiang; Li, Wenxue; Zeng, Heping; Yang, Kangwen; Hao, Qiang

    2015-01-01

    We present a method for stabilizing the repetition rate of an erbium-doped all-fiber laser by inserting an electronic polarization controller (EPC) in the fiber laser cavity. The device exhibited good integration, low cost, and convenient operation. Such a repetition rate stabilization may facilitate an all-fiber laser comb system with high integration. The repetition rate was phase-locked to a Rb reference more than 72 h with a low feedback voltage applied to one channel of the EPC. The repetition rate was 74.6 MHz. The standard deviation and the repetition rate linewidth were 1.4 and 1.7 mHz, respectively

  13. High energy high repetition-rate thin-disk amplifier for OPCPA pumping

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Michael

    2013-08-15

    The development of a pump laser system for a high power and high repetition rate optical parametric chirped-pulse amplification (OPCPA) is presented in this thesis. The OPCPA system requires pump pulse energies in the range of tens of millijoules at high repetition rates with sub-picosecond pulse durations. This can be achieved to some extend with Innoslab amplifier technology. However, scaling to higher pulse energies at high repetition rates may be problematic. With the thin-disk amplifier presented in this thesis, output energies of 140 mJ at 100 kHz repetition rate could be achieved in burst-mode operation, which is a world record for this type of laser amplifier. Due to its material and spectral properties, ytterbium doped YAG (Yb:YAG) is used as a gain medium for the high power amplifier stages. The low quantum defect and the comparatively large emission bandwidth makes this material the choice for high power operation and sub-picosecond compressed pulse durations. The output beam profile as well as the shape of the output bursts is ideal to pump an OPCPA system. An OPCPA output energy in the millijoule range with repetition rates of 100 kHz to 1 MHz is needed to generate seed pulses for the FEL and for the application as pump-probe laser at the FEL facility. Since the development of this laser system needs to meet requirements set by the Free-Electron Laser in Hamburg (FLASH), the amplifier is conceived for burst-mode operation. The main requirement is a high intra-burst pulse repetition rate of more than 100 kHz and a uniform pulse train (burst) with equal properties for every pulse. The burst-mode is an operation mode where the laser never reaches a lasing equilibrium, which means that the behavior of the amplifier is similar to a switch-on of the laser system for every burst. This makes the development of the amplifier system difficult. Therefore, an analytical model has been developed to study the amplification process during the burst. This includes the

  14. High energy high repetition-rate thin-disk amplifier for OPCPA pumping

    International Nuclear Information System (INIS)

    Schulz, Michael

    2013-08-01

    The development of a pump laser system for a high power and high repetition rate optical parametric chirped-pulse amplification (OPCPA) is presented in this thesis. The OPCPA system requires pump pulse energies in the range of tens of millijoules at high repetition rates with sub-picosecond pulse durations. This can be achieved to some extend with Innoslab amplifier technology. However, scaling to higher pulse energies at high repetition rates may be problematic. With the thin-disk amplifier presented in this thesis, output energies of 140 mJ at 100 kHz repetition rate could be achieved in burst-mode operation, which is a world record for this type of laser amplifier. Due to its material and spectral properties, ytterbium doped YAG (Yb:YAG) is used as a gain medium for the high power amplifier stages. The low quantum defect and the comparatively large emission bandwidth makes this material the choice for high power operation and sub-picosecond compressed pulse durations. The output beam profile as well as the shape of the output bursts is ideal to pump an OPCPA system. An OPCPA output energy in the millijoule range with repetition rates of 100 kHz to 1 MHz is needed to generate seed pulses for the FEL and for the application as pump-probe laser at the FEL facility. Since the development of this laser system needs to meet requirements set by the Free-Electron Laser in Hamburg (FLASH), the amplifier is conceived for burst-mode operation. The main requirement is a high intra-burst pulse repetition rate of more than 100 kHz and a uniform pulse train (burst) with equal properties for every pulse. The burst-mode is an operation mode where the laser never reaches a lasing equilibrium, which means that the behavior of the amplifier is similar to a switch-on of the laser system for every burst. This makes the development of the amplifier system difficult. Therefore, an analytical model has been developed to study the amplification process during the burst. This includes the

  15. The 2 Hz and 15 Hz electroacupuncture induced reverse effect on autonomic function in healthy adult using a heart rate variability analysis

    Directory of Open Access Journals (Sweden)

    Bor-An Jia

    2011-10-01

    Full Text Available The purpose of the present study was to investigate effect of electro-acupuncture (EA at different frequencies on autonomic function. Twenty healthy adult volunteers were studied, and underwent 4 sessions of EA (sham, 2 Hz, 15 Hz, and 50 Hz. Sham, 2 Hz, 15 Hz, and 50 Hz EA was applied to the bilateral Leg Three Li (足三里 zú sān lǐ, ST-36 and Upper Great Hollow (上巨虛 shàng jù xū, ST-37 acupoints. The intensity of electrical stimulation was adjusted to obtain visible twitching of the anterior tibial muscle about 2.0-2.5 mA except sham without electrical stimulation. The components of heart rate variability (HRV and blood pressure were measured before EA (BLP, EA (EAP, and post-EA periods (PEP. The results indicated that the natural logarithmic high frequency power (lnHF of HRV was greater during PEP than during the BLP in the 2 Hz EA sessions. The natural logarithmic low frequency power (lnLF of HRV was greater during the PEP than during the BLP in 15 Hz EA sessions, suggesting that 2 Hz EA apply to Leg Three Li (足三里 zú sān lǐ, ST-36 and Upper Great Hollow (上巨虛 shàng jù xū, ST-37 acupoints increased vagal activity, whereas 15 Hz EA increased sympathetic activity.

  16. High repetition rate driver circuit for modulation of injection lasers

    International Nuclear Information System (INIS)

    Dornan, B.R.; Goel, J.; Wolkstein, H.J.

    1981-01-01

    An injection laser modulator comprises a self-biased field effect transistor (FET) and an injection laser to provide a quiescent state during which lasing of the injection laser occurs in response to a high repetition rate signal of pulse coded modulation (pcm). The modulator is d.c. coupled to an input pulse source of pcm rendering it compatible with an input pulse referenced to ground and not being subject to voltage level shifting of the input pulse. The modulator circuit in its preferred and alternate embodiments provides various arrangements for high impedance input and low impedance output matching. In addition, means are provided for adjusting the bias of the FET as well as the bias of the injection laser

  17. Repetition rates in heavy ion beam driven fusion reactors

    Science.gov (United States)

    Peterson, Robert R.

    1986-01-01

    The limits on the cavity gas density required for beam propagation and condensation times for material vaporized by target explosions can determine the maximum repetition rate of Heavy Ion Beam (HIB) driven fusion reactors. If the ions are ballistically focused onto the target, the cavity gas must have a density below roughly 10-4 torr (3×1012 cm-3) at the time of propagation; other propagation schemes may allow densities as high as 1 torr or more. In some reactor designs, several kilograms of material may be vaporized off of the target chamber walls by the target generated x-rays, raising the average density in the cavity to 100 tor or more. A one-dimensional combined radiation hydrodynamics and vaporization and condensation computer code has been used to simulate the behavior of the vaporized material in the target chambers of HIB fusion reactors.

  18. Repetition rates in heavy ion beam driven fusion reactors

    International Nuclear Information System (INIS)

    Peterson, R.R.

    1986-01-01

    The limits on the cavity gas density required for beam propagation and condensation times for material vaporized by target explosions can determine the maximum repetition rate of Heavy Ion Beam (HIB) driven fusion reactors. If the ions are ballistically focused onto the target, the cavity gas must have a density below roughly 10 -4 torr (3 x 10 12 cm -3 ) at the time of propagation; other propagation schemes may allow densities as high as 1 torr or more. In some reactor designs, several kilograms of material may be vaporized off of the target chamber walls by the target generated x-rays, raising the average density in the cavity to 100 tor or more. A one-dimensional combined radiation hydrodynamics and vaporization and condensation computer code has been used to simulate the behavior of the vaporized material in the target chambers of HIB fusion reactors

  19. Heat accumulation during high repetition rate ultrafast laser interaction: Waveguide writing in borosilicate glass

    International Nuclear Information System (INIS)

    Zhang, Haibin; Eaton, Shane M; Li, Jianzhao; Herman, Peter R

    2007-01-01

    During high repetition rate (>200 kHz) ultrafast laser waveguide writing, visible heat modified zones surrounding the formed waveguide occur as a result of heat accumulation. The radii of the heat-modified zones increase with the laser net fluence, and were found to correlate with the formation of low-loss and cylindrically symmetric optical waveguides. A numerical thermal model based on the finite difference method is applied here to account for cumulative heating and diffusion effects. The model successfully shows that heat propagation and accumulation accurately predict the radius of the 'heat modified' zones observed in borosilicate glass waveguides formed across a wide range of laser exposure conditions. Such modelling promises better control of thermal effects for optimizing the fabrication and performance of three-dimensional optical devices in transparent materials

  20. Chronic treatment with rivastigmine in patients with Alzheimer's disease: a study on primary motor cortex excitability tested by 5 Hz-repetitive transcranial magnetic stimulation.

    Science.gov (United States)

    Trebbastoni, A; Gilio, F; D'Antonio, F; Cambieri, C; Ceccanti, M; de Lena, C; Inghilleri, M

    2012-05-01

    To investigate changes in cortical excitability and short-term synaptic plasticity we delivered 5 Hz repetitive transcranial magnetic stimulation (rTMS) over the primary motor cortex in 11 patients with mild-to-moderate Alzheimer's disease (AD) before and after chronic therapy with rivastigmine. Resting motor threshold (RMT), motor evoked potential (MEP), cortical silent period (CSP) after single stimulus and MEP facilitation during rTMS trains were tested three times during treatment. All patients underwent neuropsychological tests before and after receiving rivastigmine. rTMS data in patients were compared with those from age-matched healthy controls. At baseline, RMT was significantly lower in patients than in controls whereas CSP duration and single MEP amplitude were similar in both groups. In patients, rTMS failed to induce the normal MEP facilitation during the trains. Chronic rivastigmine intake significantly increased MEP amplitude after a single stimulus, whereas it left the other neurophysiological variables studied unchanged. No significant correlation was found between patients' neuropsychological test scores and TMS measures. Chronic treatment with rivastigmine has no influence on altered cortical excitability and short-term synaptic plasticity as tested by 5 Hz-rTMS. The limited clinical benefits related to cholinesterase inhibitor therapy in patients with AD depend on factors other than improved plasticity within the cortical glutamatergic circuits. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  1. Improved repetition rate mixed isotope CO{sub 2} TEA laser

    Energy Technology Data Exchange (ETDEWEB)

    Cohn, D. B., E-mail: dbctechnology@earthlink.net [DBC Technology Corp., 4221 Mesa St, Torrance, California 90505 (United States)

    2014-09-15

    A compact CO{sub 2} TEA laser has been developed for remote chemical detection that operates at a repetition rate of 250 Hz. It emits 700 mJ/pulse at 10.6 μm in a multimode beam with the {sup 12}C{sup 16}O{sub 2} isotope. With mixed {sup 12}C{sup 16}O{sub 2} plus {sup 13}C{sup 16}O{sub 2} isotopes it emits multiple lines in both isotope manifolds to improve detection of a broad range of chemicals. In particular, output pulse energies are 110 mJ/pulse at 9.77 μm, 250 mJ/pulse at 10 μm, and 550 mJ/pulse at 11.15 μm, useful for detection of the chemical agents Sarin, Tabun, and VX. Related work shows capability for long term sealed operation with a catalyst and an agile tuner at a wavelength shift rate of 200 Hz.

  2. Optically stabilized Erbium fiber frequency comb with hybrid mode-locking and a broad tunable range of repetition rate.

    Science.gov (United States)

    Yang, Honglei; Wu, Xuejian; Zhang, Hongyuan; Zhao, Shijie; Yang, Lijun; Wei, Haoyun; Li, Yan

    2016-12-01

    We present an optically stabilized Erbium fiber frequency comb with a broad repetition rate tuning range based on a hybrid mode-locked oscillator. We lock two comb modes to narrow-linewidth reference lasers in turn to investigate the best performance of control loops. The control bandwidth of fast and slow piezoelectric transducers reaches 70 kHz, while that of pump current modulation with phase-lead compensation is extended to 32 kHz, exceeding laser intrinsic response. Eventually, simultaneous lock of both loops is realized to totally phase-stabilize the comb, which will facilitate precision dual-comb spectroscopy, laser ranging, and timing distribution. In addition, a 1.8-MHz span of the repetition rate is achieved by an automatic optical delay line that is helpful in manufacturing a secondary comb with a similar repetition rate. The oscillator is housed in a homemade temperature-controlled box with an accuracy of ±0.02  K, which not only keeps high signal-to-noise ratio of the beat notes with reference lasers, but also guarantees self-starting at the same mode-locking every time.

  3. Fluorescence fluctuation of Rhodamine 6G dye for high repetition rate laser excitation

    International Nuclear Information System (INIS)

    Singh, Nageshwar; Patel, Hemant K.; Dixit, S.K.; Vora, H.S.

    2013-01-01

    In this paper, fluorescence from Rhodamine 6G dye for stationary and flowing liquid medium, excited by copper vapor laser, operating at 6 kHz pulse repetition frequency, was investigated. Large fluctuations in spectral width (about 5 nm) and spectral intensity in the fluorescence from stationary dye solution were observed, while fluctuations in the spectral width diminish in a flowing dye medium. However, this increases spectral intensity and slightly red shifts the fluorescence peak emission wavelength. Theoretical analysis was carried out to explain the observed results by incorporating the temperature induced refractive index, beam deflection and spectral variation in stationary dye solution. Numerical analysis of thermal load and contour of temperature in the optical pumped region inside the dye cell in stationary, 0.2 and 1.5 m/s flow velocity was also investigated to support our analysis. - Highlights: ► High repetition rate excitation generates inhomogeneity in the gain medium. ► Fluorescence of Rhodamine 6G in stationary and flowing medium was carried out. ► Fluorescence fluctuations lessen in flowing medium in contrast to stationary medium. ► Our theoretical and numerical analysis enlightens the experimented outcome trend.

  4. Pulse repetition rate multiplication by Talbot effect in a coaxial fiber

    Science.gov (United States)

    Dhingra, Nikhil; Saxena, Geetika Jain; Anand, Jyoti; Sharma, Enakshi K.

    2018-03-01

    We use a coaxial fiber, which is a cylindrical coupled waveguide structure consisting of two concentric cores, the inner rod and an outer ring core as a first order dispersive media to achieve temporal Talbot effect for pulse repetition rate multiplication (PRRM) in high bit rate optical fiber communication. It is observed that for an input Gaussian pulse train with pulse width, 2τ0=1ps at a repetition rate of 40 Gbps (repetition period, T=25ps), an output repetition rate of 640 Gbps can be achieved without significant distortion at a length of 40.92 m.

  5. Heavy-duty high-repetition-rate generators

    NARCIS (Netherlands)

    Heesch, van E.J.M.; Yan, K.; Pemen, A.J.M.

    2002-01-01

    We present our results on high-power repetitive pulse sources for continuous operation. Two 1-10-kW systems using advanced spark gap technology and a transmission line transformer have been tested for several hundred hours at a 60-MW pulse level. High reliability and above 90% overall efficiency are

  6. Optimization and phase matching of fiber-laser-driven high-order harmonic generation at high repetition rate.

    Science.gov (United States)

    Cabasse, Amélie; Machinet, Guillaume; Dubrouil, Antoine; Cormier, Eric; Constant, Eric

    2012-11-15

    High-repetition-rate sources are very attractive for high-order harmonic generation (HHG). However, due to their pulse characteristics (low energy, long duration), those systems require a tight focusing geometry to achieve the necessary intensity to generate harmonics. In this Letter, we investigate theoretically and experimentally the optimization of HHG in this geometry, to maximize the extreme UV (XUV) photon flux and improve the conversion efficiency. We analyze the influence of atomic gas media (Ar, Kr, or Xe), gas pressure, and interaction geometries (a gas jet and a finite and a semi-infinite gas cell). Numerical simulations allow us to define optimal conditions for HHG in this tight focusing regime and to observe the signature of on-axis phase matching. These conditions are implemented experimentally using a high-repetition-rate Yb-doped fiber laser system. We achieve optimization of emission with a recorded XUV photon flux of 4.5×10(12) photons/s generated in Xe at 100 kHz repetition rate.

  7. Development of a high repetition rate laser-plasma accelerator for ultra-fast electron diffraction experiments

    International Nuclear Information System (INIS)

    Beaurepaire, B.

    2009-01-01

    Electronic microscopy and electron diffraction allowed the understanding of the organization of atoms in matter. Using a temporally short source, one can measure atomic displacements or modifications of the electronic distribution in matter. To date, the best temporal resolution for time resolved diffraction experiments is of the order of a hundred femto-seconds (fs). Laser accelerators are good candidates to reach the femtosecond temporal resolution in electron diffraction experiments. Such accelerators used to work at a low repetition rate, so that it was necessary to develop a new one operating at a high repetition rate in order to accumulate a large amount of data. In this thesis, a laser-plasma accelerator operating at the kHz repetition rate was developed and built. This source generates electron bunches at 100 keV from 3 mJ and 25 fs laser pulses. The physics of the acceleration has been studied, and the effect of the laser wavefront on the electron transverse distribution has been demonstrated. (author)

  8. The effect of laser repetition rate on the LASiS synthesis of biocompatible silver nanoparticles in aqueous starch solution

    Directory of Open Access Journals (Sweden)

    Zamiri R

    2013-01-01

    Full Text Available Reza Zamiri,1 Azmi Zakaria,1,* Hossein Abbastabar Ahangar,2 Majid Darroudi,3 Golnoosh Zamiri,1 Zahid Rizwan,1 Gregor PC Drummen4,* 1Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; 2Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Selangor Darul Ehsan, Malaysia; 3Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology (ITMA, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; 4Bionanoscience and Bio-Imaging Program, Cellular Stress and Ageing Program, Bio&Nano-Solutions, Düsseldorf, Germany*These authors contributed to this work equallyAbstract: Laser ablation-based nanoparticle synthesis in solution is rapidly becoming popular, particularly for potential biomedical and life science applications. This method promises one pot synthesis and concomitant bio-functionalization, is devoid of toxic chemicals, does not require complicated apparatus, can be combined with natural stabilizers, is directly biocompatible, and has high particle size uniformity. Size control and reduction is generally determined by the laser settings; that the size and size distribution scales with laser fluence is well described. Conversely, the effect of the laser repetition rate on the final nanoparticle product in laser ablation is less well-documented, especially in the presence of stabilizers. Here, the influence of the laser repetition rate during laser ablation synthesis of silver nanoparticles in the presence of starch as a stabilizer was investigated. The increment of the repetition rate does not negatively influence the ablation efficiency, but rather shows increased productivity, causes a red-shift in the plasmon resonance peak of the silver–starch nanoparticles, an increase in mean particle size and size distribution, and a distinct lack of agglomerate formation. Optimal results were achieved at 10 Hz repetition rate, with a mean particle size of ~10 nm and a

  9. Bright high-repetition-rate source of narrowband extreme-ultraviolet harmonics beyond 22 eV

    Energy Technology Data Exchange (ETDEWEB)

    Wang, He [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Xu, Yiming [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Ulonska, Stefan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Robinson, Joseph S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Ranitovic, Predrag [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Kaindl, Robert A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division

    2015-06-11

    Novel table-top sources of extreme-ultraviolet light based on high-harmonic generation yield unique insight into the fundamental properties of molecules, nanomaterials or correlated solids, and enable advanced applications in imaging or metrology. Extending high-harmonic generation to high repetition rates portends great experimental benefits, yet efficient extreme-ultraviolet conversion of correspondingly weak driving pulses is challenging. In this article, we demonstrate a highly-efficient source of femtosecond extreme-ultraviolet pulses at 50-kHz repetition rate, utilizing the ultraviolet second-harmonic focused tightly into Kr gas. In this cascaded scheme, a photon flux beyond ≈3 × 1013 s-1 is generated at 22.3 eV, with 5 × 10-5 conversion efficiency that surpasses similar harmonics directly driven by the fundamental by two orders-of-magnitude. The enhancement arises from both wavelength scaling of the atomic dipole and improved spatio-temporal phase matching, confirmed by simulations. Finally, spectral isolation of a single 72-meV-wide harmonic renders this bright, 50-kHz extreme-ultraviolet source a powerful tool for ultrafast photoemission, nanoscale imaging and other applications.

  10. High-repetition-rate laser-proton acceleration from a condensed hydrogen jet

    Energy Technology Data Exchange (ETDEWEB)

    Obst, Lieselotte; Zeil, Karl; Metzkes, Josefine; Schlenvoigt, Hans-Peter; Rehwald, Martin; Sommer, Philipp; Brack, Florian; Schramm, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Goede, Sebastian; Gauthier, Maxence; Roedel, Christian; MacDonald, Michael; Schumaker, William; Glenzer, Siegfried [SLAC National Accelerator Laboratory, Stanford (United States)

    2016-07-01

    Applications of laser-accelerated protons demand a stable source of energetic particles at high repetition rates. We present the results of our experimental campaign in cooperation with MEC/SLAC at the 10Hz Ti:Sa laser Draco of Helmholtz-Zentrum Dresden-Rossendorf (HZDR), employing a pure condensed hydrogen jet as a renewable target. Draco delivers pulses of 30 fs and 5 J at 800 nm, focused to a 3 μm spot by an F/2.5 off-axis parabolic mirror. The jet's nominal electron density is approximately 30 times the critical density and its thickness is 2 μm, 5 μm or 10 μm, depending on the applied aperture on the source. Ion diagnostics reveal mono-species proton acceleration in a solid angle of at least +/-45 with respect to the incoming laser beam, with maximum energies of around 5 MeV. The expanding jet could be monitored on-shot with a temporally synchronized probe beam perpendicular to the pump laser axis. Recorded probe images resemble those of z-pinch experiments with metal wires and indicate an m=0 instability in the plasma.

  11. A high repetition rate transverse beam profile diagnostic for laser-plasma proton sources

    Science.gov (United States)

    Dover, Nicholas; Nishiuchi, Mamiko; Sakaki, Hironao; Kando, Masaki; Nishitani, Keita

    2016-10-01

    The recently upgraded J-KAREN-P laser can provide PW peak power and intensities approaching 1022 Wcm-2 at 0.1 Hz. Scaling of sheath acceleration to such high intensities predicts generation of protons to near 100 MeV, but changes in electron heating mechanisms may affect the emitted proton beam properties, such as divergence and pointing. High repetition rate simultaneous measurement of the transverse proton distribution and energy spectrum are therefore key to understanding and optimising the source. Recently plastic scintillators have been used to measure online proton beam transverse profiles, removing the need for time consuming post-processing. We are therefore developing a scintillator based transverse proton beam profile diagnostic for use in ion acceleration experiments using the J-KAREN-P laser. Differential filtering provides a coarse energy spectrum measurement, and time-gating allows differentiation of protons from other radiation. We will discuss the design and implementation of the diagnostic, as well as proof-of-principle results from initial experiments on the J-KAREN-P system demonstrating the measurement of sheath accelerated proton beams up to 20 MeV.

  12. High-energy, high-repetition-rate picosecond pulses from a quasi-CW diode-pumped Nd:YAG system.

    Science.gov (United States)

    Noom, Daniel W E; Witte, Stefan; Morgenweg, Jonas; Altmann, Robert K; Eikema, Kjeld S E

    2013-08-15

    We report on a high-power quasi-CW pumped Nd:YAG laser system, producing 130 mJ, 64 ps pulses at 1064 nm wavelength with a repetition rate of 300 Hz. Pulses from a Nd:YVO(4) oscillator are first amplified by a regenerative amplifier to the millijoule level and then further amplified in quasi-CW diode-pumped Nd:YAG modules. Pulsed diode pumping enables a high gain at repetition rates of several hundred hertz, while keeping thermal effects manageable. Birefringence compensation and multiple thermal-lensing-compensated relay-imaging stages are used to maintain a top-hat beam profile. After frequency doubling, 75 mJ pulses are obtained at 532 nm. The intensity stability is better than 1.1%, which makes this laser an attractive pump source for a high-repetition-rate optical parametric amplification system.

  13. Reduction of the beam pulse repetition rate of the Hamburg Isochronous Cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Krause, H; Langkau, R; Schirm, N [Hamburg Univ. (F.R. Germany). 1. Inst. fuer Experimentalphysik

    1976-04-01

    A system for the reduction of the beam pulse repetition rate of the energy-variable Hamburg Isochronous Cyclotron comprising beam pulse supression in the cyclotron center and in the external beam is described.

  14. On the mechanisms governing the repetition rate of mode-locked semiconductor lasers

    DEFF Research Database (Denmark)

    Mulet, Josep; Mørk, Jesper

    2004-01-01

    We investigate the mechanisms influencing the synchronization locking range of mode-locked lasers. We find that changes in repetition rates can be accomodated through a joint interplay of dispersion and pulse shaping effects....

  15. Improving the ablation efficiency of excimer laser systems with higher repetition rates through enhanced debris removal and optimized spot pattern.

    Science.gov (United States)

    Arba-Mosquera, Samuel; Klinner, Thomas

    2014-03-01

    To evaluate the reasons for the required increased radiant exposure for higher-repetition-rate excimer lasers and determine experimentally possible compensations to achieve equivalent ablation profiles maintaining the same single-pulse energies and radiant exposures for laser repetition rates ranging from 430 to 1000 Hz. Schwind eye-tech-solutions GmbH and Co. KG, Kleinostheim, Germany. Experimental study. Poly(methyl methacrylate) (PMMA) plates were photoablated. The pulse laser energy was maintained during all experiments; the effects of the flow of the debris removal, the shot pattern for the correction, and precooling the PMMA plates were evaluated in terms of achieved ablation versus repetition rate. The mean ablation performance ranged from 88% to 100%; the variability between the profile measurements ranged from 1.4% to 6.2%. Increasing the laser repetition rate from 430 Hz to 1000 Hz reduced the mean ablation performance from 98% to 91% and worsened the variability from 1.9% to 4.3%. Increasing the flow of the debris removal, precooling the PMMA plates to -18°C, and adapting the shot pattern for the thermal response of PMMA to excimer ablation helped stabilize the variability. Only adapting the shot pattern for the thermal response of PMMA to excimer ablation helped stabilize the mean ablation performance. The ablation performance of higher-repetition-rate excimer lasers on PMMA improved with improvements in the debris removal systems and shot pattern. More powerful debris removal systems and smart shot patterns in terms of thermal response improved the performance of these excimer lasers. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  16. Phase-stable, multi-µJ femtosecond pulses from a repetition-rate tunable Ti:Sa-oscillator-seeded Yb-fiber amplifier

    Science.gov (United States)

    Saule, T.; Holzberger, S.; De Vries, O.; Plötner, M.; Limpert, J.; Tünnermann, A.; Pupeza, I.

    2017-01-01

    We present a high-power, MHz-repetition-rate, phase-stable femtosecond laser system based on a phase-stabilized Ti:Sa oscillator and a multi-stage Yb-fiber chirped-pulse power amplifier. A 10-nm band around 1030 nm is split from the 7-fs oscillator output and serves as the seed for subsequent amplification by 54 dB to 80 W of average power. The µJ-level output is spectrally broadened in a solid-core fiber and compressed to 30 fs with chirped mirrors. A pulse picker prior to power amplification allows for decreasing the repetition rate from 74 MHz by a factor of up to 4 without affecting the pulse parameters. To compensate for phase jitter added by the amplifier to the feed-forward phase-stabilized seeding pulses, a self-referencing feed-back loop is implemented at the system output. An integrated out-of-loop phase noise of less than 100 mrad was measured in the band from 0.4 Hz to 400 kHz, which to the best of our knowledge corresponds to the highest phase stability ever demonstrated for high-power, multi-MHz-repetition-rate ultrafast lasers. This system will enable experiments in attosecond physics at unprecedented repetition rates, it offers ideal prerequisites for the generation and field-resolved electro-optical sampling of high-power, broadband infrared pulses, and it is suitable for phase-stable white light generation.

  17. Noiseless imaging detector for adaptive optics with kHz frame rates

    CERN Document Server

    Vallerga, J V; Mikulec, Bettina; Tremsin, A; Clark, Allan G; Siegmund, O H W; CERN. Geneva

    2004-01-01

    A new hybrid optical detector is described that has many of the attributes desired for the next generation AO wavefront sensors. The detector consists of a proximity focused MCP read out by four multi-pixel application specific integrated circuit (ASIC) chips developed at CERN (â€ワMedipix2”) with individual pixels that amplify, discriminate and count input events. The detector has 512 x 512 pixels, zero readout noise (photon counting) and can be read out at 1 kHz frame rates. The Medipix2 readout chips can be electronically shuttered down to a temporal window of a few microseconds with an accuracy of 10 nanoseconds. When used in a Shack-Hartman style wavefront sensor, it should be able to centroid approximately 5000 spots using 7 x 7 pixel sub-apertures resulting in very linear, off-null error correction terms. The quantum efficiency depends on the optical photocathode chosen for the bandpass of interest. A three year development effort for this detector technology has just been funded as part of the...

  18. Actual laser removal of black soiling crust from siliceous sandstone by high pulse repetition rate equipment: effects on surface morphology

    Directory of Open Access Journals (Sweden)

    Iglesias-Campos, M. A.

    2016-03-01

    Full Text Available This research project studies the role of pulse repetition rate in laser removal of black soiling crust from siliceous sandstone, and specifically, how laser fluence correlates with high pulse repetition rates in cleaning practice. The aim is to define practical cleaning processes and determine simple techniques for evaluation based on end-users’ perspective (restorers. Spot and surface tests were made using a Q-switched Nd:YAG laser system with a wide range of pulse repetition rates (5–200 Hz, systematically analysed and compared by macrophotography, portable microscope, stereomicroscope with 3D visualizing and area roughness measurements, SEM imaging and spectrophotometry. The results allow the conclusion that for operation under high pulse repetition rates the average of total energy applied per spot on a treated surface should be attendant upon fluence values in order to provide a systematic and accurate description of an actual laser cleaning intervention.En este trabajo se estudia el papel de la frecuencia de repetición en la limpieza láser de costras de contaminación sobre una arenisca silícea, y concretamente, como se relaciona fluencia y frecuencias elevadas en una limpieza real. Se pretende definir un procedimiento práctico de limpieza y determinar técnicas sencillas de evaluación desde el punto de vista de los usuarios finales (restauradores. Para el estudio se realizaron diferentes ensayos en spot y en superficie mediante un equipo Q-switched Nd:YAG con un amplio rango de frecuencias (5–200 Hz, que se analizaron y compararon sistemáticamente mediante macrofotografía, microscopio portátil, estereomicroscopio con visualización 3D y mediciones de rugosidad en área, imágenes SEM y espectrofotometría. Los resultados permiten proponer que, al trabajar con altas frecuencias, la media de la energía total depositada por spot en la superficie debería acompañar los valores de fluencia para describir y comprender mejor una

  19. High-repetition-rate hydrogen chamber: Preliminary studies; Chambre a hydrogene a haut taux de repetition: Etudes preliminaires

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1967-01-01

    This report is a conclusion to the tests realised with an experimental bubbles chamber in view to study the possibilities to increase the repetition rate. The more important parameters (the evolution of the bubbles, the expansion system) are considered in a theoretical way. Then the hardware is described. To end, experimental results are compared with the first evaluations. The calculations and the experimentation are against an oscillation system for the expansion. A system with a locking is to he considered. (authors) [French] Ce rapport est une conclusion aux essais realises avec une chambre a bulles experimentale en vue d'etudier les possibilites d'accroitre les taux de repetition. Les parametres les plus importants (evolution des bulles, mecanique de la detente) sont etudies par voie theorique. Puis l'appareillage est decrit. Enfin, les resultats experimentaux sont compares aux evaluations donnees au debut. Ces calculs et cette experimentation ne sont pas en faveur d'un systeme oscillant pour la detente et il faut envisager un systeme avec verrouillage. (auteurs)

  20. Measuring saccade peak velocity using a low-frequency sampling rate of 50 Hz.

    Science.gov (United States)

    Wierts, Roel; Janssen, Maurice J A; Kingma, Herman

    2008-12-01

    During the last decades, small head-mounted video eye trackers have been developed in order to record eye movements. Real-time systems-with a low sampling frequency of 50/60 Hz-are used for clinical vestibular practice, but are generally considered not to be suited for measuring fast eye movements. In this paper, it is shown that saccadic eye movements, having an amplitude of at least 5 degrees, can, in good approximation, be considered to be bandwidth limited up to a frequency of 25-30 Hz. Using the Nyquist theorem to reconstruct saccadic eye movement signals at higher temporal resolutions, it is shown that accurate values for saccade peak velocities, recorded at 50 Hz, can be obtained, but saccade peak accelerations and decelerations cannot. In conclusion, video eye trackers sampling at 50/60 Hz are appropriate for detecting the clinical relevant saccade peak velocities in contrast to what has been stated up till now.

  1. Very High-rate (50 Hz) GPS for Detection of Earthquake Ground Motions : How High Do We Need to Go?

    Science.gov (United States)

    Fang, R.

    2017-12-01

    The GPS variometric approach can measure displacements using broadcast ephemeris and a single receiver, with comparable precision to relative positioning and PPP within a short period of time. We evaluate the performance of the variometric approach to measure displacements using very high-rate (50 Hz) GPS data, which recorded from the 2013 Mw 6.6 Lushan earthquake and the 2011 Mw 9.0 Tohoku-Oki earthquake. To remove the nonlinear drift due to integration process, we present to apply a high-pass filter to reconstruct displacements using the variometric approach. Comparison between 50 Hz and 1 Hz coseismic displacements demonstrates that 1 Hz solutions often fail to faithfully manifest the seismic waves containing high-frequency (> 0.5 Hz) seismic signals, which is common for near-field stations during a moderate-magnitude earthquake. Therefore, in order to reconstruct near-field seismic waves caused by moderate or large earthquakes, it is helpful to equip monitoring stations with very high-rate GPS receivers. Results derived using the variometric approach are compared with PPP results. They display very good consistence within only a few millimeters both in static and seismic periods. High-frequency (above 10 Hz) noises of displacements derived using the variometric approach are smaller than PPP displacements in three components.

  2. Effect of Bench Press Load Knowledge on Repetitions, Rating of Perceived Exertion, and Attentional Focus.

    Science.gov (United States)

    Beaudoin, Christina M; Cox, Zachary; Dundore, Tyler; Thomas, Tayler; Kim, Johnathon; Pillivant, Daniel

    2018-02-01

    Beaudoin, CM, Cox, Z, Dundore, T, Thomas, T, Kim, J, and Pillivant, D. Effect of bench press load knowledge on repetitions, rating of perceived exertion, and attentional focus. J Strength Cond Res 32(2): 514-519, 2018-Few studies have examined the role of the teleoanticipation during resistance training. The purpose of this study was to examine the effect of bench press (BP) load knowledge on repetitions completed, ratings of perceived exertion (RPEs), and attentional focus (% associative). Thirty-six recreationally active resistance-trained men (n = 25) and women (n = 11) participated in this study (age = 20.97 ± 1.87 years; ht = 174.12 ± 9.41 cm; and mass = 80.14 ± 14.03 kg). All subjects completed 3 testing sessions: (a) 1 repetition maximum (1RM) BP determination; (b) submaximal BP repetitions to fatigue known load (KL); and (c) submaximal BP repetitions to fatigue unknown load (UL). Known load and UL sessions were randomized and counterbalanced and both completed at 70% 1RM. An estimated weight ratio was computed using the subject's estimate of the UL weight relative to the KL weight. An independent samples t-test revealed no significant testing order difference for the estimated weight ratio. Two-way repeated-measures analysis of variances revealed no significant differences in the number of repetitions (p = 0.63), RPE (p = 0.18), or attentional focus (% associative) (p = 0.93) between the KL and UL conditions. Pearson correlations found a moderate positive association between KL repetitions completed and % associative focus when the UL was completed before the KL. Load knowledge did not influence the number of repetitions, RPE, or attentional focus while completing the BP. Further research examining the use of pacing strategies, RPE, and attentional focus during KL and UL conditions are warranted.

  3. Patterning crystalline indium tin oxide by high repetition rate femtosecond laser-induced crystallization

    International Nuclear Information System (INIS)

    Cheng, Chung-Wei; Lin, Cen-Ying; Shen, Wei-Chih; Lee, Yi-Ju; Chen, Jenq-Shyong

    2010-01-01

    A method is proposed for patterning crystalline indium tin oxide (c-ITO) patterns on amorphous ITO (a-ITO) thin films by femtosecond laser irradiation at 80 MHz repetition rate followed by chemical etching. In the proposed approach, the a-ITO film is transformed into a c-ITO film over a predetermined area via the heat accumulation energy supplied by the high repetition rate laser beam, and the unirradiated a-ITO film is then removed using an acidic etchant solution. The fabricated c-ITO patterns are observed using scanning electron microscopy and cross-sectional transmission electron microscopy. The crystalline, optical, electrical properties were measured by X-ray diffraction, spectrophotometer, and four point probe station, respectively. The experimental results show that a high repetition rate reduces thermal shock and yields a corresponding improvement in the surface properties of the c-ITO patterns.

  4. High-power pre-chirp managed amplification of femtosecond pulses at high repetition rates

    International Nuclear Information System (INIS)

    Liu, Yang; Li, Wenxue; Zhao, Jian; Bai, Dongbi; Luo, Daping; Zeng, Heping

    2015-01-01

    Femtosecond pulses at 250 MHz repetition rate from a mode-locked fiber laser are amplified to high power in a pre-chirp managed amplifier. The experimental strategy offers a potential towards high-power ultrashort laser pulses at high repetition rates. By investigating the laser pulse evolution in the amplification processes, we show that self-similar evolution, finite gain bandwidth and mode instabilities determine pulse characteristics in different regimes. Further average power scaling is limited by the mode instabilities. Nevertheless, this laser system enables us to achieve sub-50 fs pulses with an average power of 93 W. (letter)

  5. Comparison on different repetition rate locking methods in Er-doped fiber laser

    Science.gov (United States)

    Yang, Kangwen; Zhao, Peng; Luo, Jiang; Huang, Kun; Hao, Qiang; Zeng, Heping

    2018-05-01

    We demonstrate a systematic comparative research on the all-optical, mechanical and opto-mechanical repetition rate control methods in an Er-doped fiber laser. A piece of Yb-doped fiber, a piezoelectric transducer and an electronic polarization controller are simultaneously added in the laser cavity as different cavity length modulators. By measuring the cavity length tuning ranges, the output power fluctuations, the temporal and frequency repetition rate stability, we show that all-optical method introduces the minimal disturbances under current experimental condition.

  6. High-q microring resonator with narrow free spectral range for pulse repetition rate multiplication

    DEFF Research Database (Denmark)

    Pu, Minhao; Ji, Hua; Frandsen, Lars Hagedorn

    2009-01-01

    We demonstrate a silicon-on-insulator microring resonator with a free-spectral-range of 0.32 nm, an extinction ratio of 27 dB, and a quality factor of ~140900 at 1550 nm that is used for pulse repetition-rate multiplication from 10 to 40 GHz.......We demonstrate a silicon-on-insulator microring resonator with a free-spectral-range of 0.32 nm, an extinction ratio of 27 dB, and a quality factor of ~140900 at 1550 nm that is used for pulse repetition-rate multiplication from 10 to 40 GHz....

  7. Generation of plasma X-ray sources via high repetition rate femtosecond laser pulses

    Science.gov (United States)

    Baguckis, Artūras; Plukis, Artūras; Reklaitis, Jonas; Remeikis, Vidmantas; Giniūnas, Linas; Vengris, Mikas

    2017-12-01

    In this study, we present the development and characterization of Cu plasma X-ray source driven by 20 W average power high repetition rate femtosecond laser in ambient atmosphere environment. The peak Cu- Kα photon flux of 2.3 × 109 photons/s into full solid angle is demonstrated (with a process conversion efficiency of 10-7), using pulses with peak intensity of 4.65 × 1014 W/cm2. Such Cu- Kα flux is significantly larger than others found in comparable experiments, performed in air environment. The effects of resonance plasma absorption process, when optimized, are shown to increase measured flux by the factor of 2-3. The relationship between X-ray photon flux and plasma-driving pulse repetition rate is quasi-linear, suggesting that fluxes could further be increased to 1010 photons/s using even higher average powers of driving radiation. These results suggest that to fully utilize the potential of high repetition rate laser sources, novel target material delivery systems (for example, jet-based ones) are required. On the other hand, this study demonstrates that high energy lasers currently used for plasma X-ray sources can be conveniently and efficiently replaced by high average power and repetition rate laser radiation, as a way to increase the brightness of the generated X-rays.

  8. Gigahertz repetition rate, sub-femtosecond timing jitter optical pulse train directly generated from a mode-locked Yb:KYW laser.

    Science.gov (United States)

    Yang, Heewon; Kim, Hyoji; Shin, Junho; Kim, Chur; Choi, Sun Young; Kim, Guang-Hoon; Rotermund, Fabian; Kim, Jungwon

    2014-01-01

    We show that a 1.13 GHz repetition rate optical pulse train with 0.70 fs high-frequency timing jitter (integration bandwidth of 17.5 kHz-10 MHz, where the measurement instrument-limited noise floor contributes 0.41 fs in 10 MHz bandwidth) can be directly generated from a free-running, single-mode diode-pumped Yb:KYW laser mode-locked by single-wall carbon nanotube-coated mirrors. To our knowledge, this is the lowest-timing-jitter optical pulse train with gigahertz repetition rate ever measured. If this pulse train is used for direct sampling of 565 MHz signals (Nyquist frequency of the pulse train), the jitter level demonstrated would correspond to the projected effective-number-of-bit of 17.8, which is much higher than the thermal noise limit of 50 Ω load resistance (~14 bits).

  9. Generation of nanosecond laser pulses at a 2.2-MHz repetition rate by a cw diode-pumped passively Q-switched Nd3+:YVO4 laser

    International Nuclear Information System (INIS)

    Nghia, Nguyen T; Hao, Nguyen V; Orlovich, Valentin A; Hung, Nguyen D

    2011-01-01

    We report a new configuration of a high-repetition rate nanosecond laser based on a semiconductor saturable absorber mirror (SESAM). The SESAM is conventional technical solution for passive mode-locking at 1064 nm and simultaneously used as a highly reflecting mirror and a saturable absorber in a high-Q and short cavity of a cw diode-end-pumped a-cut Nd 3+ :YVO 4 laser. Two laser beams are coupled out from the cavity using an intracavity low-reflection thin splitter. The laser characteristics are investigated as functions of pump and resonator parameters. Using a 1.8-W cw pump laser diode at 808 nm, the passively Q-switched SESAMbased laser generates 22-ns pulses with an average power of 275 mW at a pulse repetition rate of 2250 kHz.

  10. Low-threshold, nanosecond, high-repetition-rate vortex pulses with controllable helicity generated in Cr,Nd:YAG self-Q-switched microchip laser

    Science.gov (United States)

    He, Hong-Sen; Chen, Zhen; Li, Hong-Bin; Dong, Jun

    2018-05-01

    A high repetition rate, nanosecond, pulsed optical vortex beam has been generated in a Cr,Nd:YAG self-Q-switched microchip laser pumped by the annular-beam formed with a hollow focus lens. The lasing threshold for vortex pulses is 0.9 W. A pulse width of 6.5 ns and a repetition rate of over 330 kHz have been achieved. The average output power of 1 W and the slope efficiency of 46.6% have been obtained. The helicity of the optical vortices has been controlled by adjusting the tilted angle between Cr,Nd:YAG crystal and output coupler. The work provides a new method for developing pulsed optical vortices for potential applications on quantum communication and optical trapping.

  11. Research of narrow pulse width, high repetition rate, high output power fiber lasers for deep space exploration

    Science.gov (United States)

    Tang, Yan-feng; Li, Hong-zuo; Wang, Yan; Hao, Zi-qiang; Xiao, Dong-Ya

    2013-08-01

    As human beings expand the research in unknown areas constantly, the deep space exploration has become a hot research topic all over the world. According to the long distance and large amount of information transmission characteristics of deep space exploration, the space laser communication is the preferred mode because it has the advantages of concentrated energy, good security, and large information capacity and interference immunity. In a variety of laser source, fibre-optical pulse laser has become an important communication source in deep space laser communication system because of its small size, light weight and large power. For fiber lasers, to solve the contradiction between the high repetition rate and the peak value power is an important scientific problem. General Q technology is difficult to obtain a shorter pulse widths, This paper presents a DFB semiconductor laser integrated with Electro-absorption modulator to realize the narrow pulse width, high repetition rate of the seed source, and then using a two-cascaded high gain fiber amplifier as amplification mean, to realize the fibre-optical pulse laser with pulse width 3ns, pulse frequency 200kHz and peak power 1kW. According to the space laser atmospheric transmission window, the wavelength selects for 1.06um. It is adopted that full fibre technology to make seed source and amplification, pumping source and amplification of free-space coupled into fiber-coupled way. It can overcome that fibre lasers are vulnerable to changes in external conditions such as vibration, temperature drift and other factors affect, improving long-term stability. The fiber lasers can be modulated by PPM mode, to realize high rate modulation, because of its peak power, high transmission rate, narrow pulse width, high frequency stability, all technical indexes meet the requirements of the exploration of deep space communication technology.

  12. Effects of picosecond laser repetition rate on ablation of Cr12MoV cold work mold steel

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Baoye; Deng, Leimin; Liu, Peng; Zhang, Fei; Duan, Jun, E-mail: duans@hust.edu.cn; Zeng, Xiaoyan

    2017-07-01

    In this paper, the effects of pulse repetition rate on ablation efficiency and quality of Cr12MoV cold work mold steel have been studied using a picosecond (ps) pulse Nd:YVO{sub 4} laser system at λ= 1064 nm. The experimental results of area ablation on target surface reveal that laser repetition rate plays a significant role in controlling ablation efficiency and quality. Increasing the laser repetition rate, while keeping a constant mean power improves the ablation efficiency and quality. For each laser mean power, there is an optimal repetition rate to achieve a higher laser ablation efficiency with low surface roughness. A high ablation efficiency of 42.29, 44.11 and 47.52 μm{sup 3}/mJ, with surface roughness of 0.476, 0.463 and 0.706 μm could be achieved at laser repetition rate of 10 MHz, for laser mean power of 15, 17 and 19 W, respectively. Scanning electron microcopy images revels that the surface morphology evolves from rough with numerous craters, to flat without pores when we increased the laser repetition rate. The effects of laser repetition rate on the heat accumulation, plasma shield and ablation threshold were analyzed by numerical simulation, spectral analysis and multi-laser shot, respectively. The synergetic effects of laser repetition rate on laser ablation rate and machining quality were analyzed and discussed systemically in this paper.

  13. Optically isolated, 2 kHz repetition rate, 4 kV solid-state pulse trigger generator.

    Science.gov (United States)

    Barnett, D H; Parson, J M; Lynn, C F; Kelly, P M; Taylor, M; Calico, S; Scott, M C; Dickens, J C; Neuber, A A; Mankowski, J J

    2015-03-01

    This paper presents the design and operation characteristics of a solid-state high voltage pulse generator. Its primary utilization is aimed at triggering a gaseous spark gap with high repeatability. Specifically, the trigger generator is designed to achieve a risetime on the order of 0.1 kV/ns to trigger the first stage, trigatron spark gap of a 10-stage, 500 kV Marx generator. The major design components are comprised of a 60 W constant current DC-DC converter for high voltage charging, a single 4 kV thyristor, a step-up pulse transformer, and magnetic switch for pulse steepening. A risetime of <30 ns and pulse magnitude of 4 kV is achieved matching the simulated performance of the design.

  14. Effects of high repetition rate and beam size on hard tissue damage due to subpicosecond laser pulses

    International Nuclear Information System (INIS)

    Kim, Beop-Min; Feit, Michael D.; Rubenchik, Alexander M.; Joslin, Elizabeth J.; Eichler, Juergen; Stoller, Patrick C.; Da Silva, Luiz B.

    2000-01-01

    We report the effects of the repetition rate and the beam size on the threshold for ultrashort laser pulse induced damage in dentin. The observed results are explained as cumulative thermal effects. Our model is consistent with the experimental results and explains the dependence of the threshold on repetition rate, beam size, and exposure time. (c) 2000 American Institute of Physics

  15. A simple sub-nanosecond ultraviolet light pulse generator with high repetition rate and peak power.

    Science.gov (United States)

    Binh, P H; Trong, V D; Renucci, P; Marie, X

    2013-08-01

    We present a simple ultraviolet sub-nanosecond pulse generator using commercial ultraviolet light-emitting diodes with peak emission wavelengths of 290 nm, 318 nm, 338 nm, and 405 nm. The generator is based on step recovery diode, short-circuited transmission line, and current-shaping circuit. The narrowest pulses achieved have 630 ps full width at half maximum at repetition rate of 80 MHz. Optical pulse power in the range of several hundreds of microwatts depends on the applied bias voltage. The bias voltage dependences of the output optical pulse width and peak power are analysed and discussed. Compared to commercial UV sub-nanosecond generators, the proposed generator can produce much higher pulse repetition rate and peak power.

  16. Efficacy of intermittent Theta Burst Stimulation (iTBS) and 10-Hz high-frequency repetitive transcranial magnetic stimulation (rTMS) in treatment-resistant unipolar depression: study protocol for a randomised controlled trial.

    Science.gov (United States)

    Bulteau, Samuel; Sébille, Veronique; Fayet, Guillemette; Thomas-Ollivier, Veronique; Deschamps, Thibault; Bonnin-Rivalland, Annabelle; Laforgue, Edouard; Pichot, Anne; Valrivière, Pierre; Auffray-Calvier, Elisabeth; Fortin, June; Péréon, Yann; Vanelle, Jean-Marie; Sauvaget, Anne

    2017-01-13

    The treatment of depression remains a challenge since at least 40% of patients do not respond to initial antidepressant therapy and 20% present chronic symptoms (more than 2 years despite standard treatment administered correctly). Repetitive transcranial magnetic stimulation (rTMS) is an effective adjuvant therapy but still not ideal. Intermittent Theta Burst Stimulation (iTBS), which has only been used recently in clinical practice, could have a faster and more intense effect compared to conventional protocols, including 10-Hz high-frequency rTMS (HF-rTMS). However, no controlled study has so far highlighted the superiority of iTBS in resistant unipolar depression. This paper focuses on the design of a randomised, controlled, double-blind, single-centre study with two parallel arms, carried out in France, in an attempt to assess the efficacy of an iTBS protocol versus a standard HF- rTMS protocol. Sixty patients aged between 18 and 75 years of age will be enrolled. They must be diagnosed with major depressive disorder persisting despite treatment with two antidepressants at an effective dose over a period of 6 weeks during the current episode. The study will consist of two phases: a treatment phase comprising 20 sessions of rTMS to the left dorsolateral prefrontal cortex, localised via a neuronavigation system and a 6-month longitudinal follow-up. The primary endpoint will be the number of responders per group, defined by a decrease of at least 50% in the initial score on the Montgomery and Asberg Rating Scale (MADRS) at the end of rTMS sessions. The secondary endpoints will be: response rate 1 month after rTMS sessions; number of remissions defined by a MADRS score of iTBS superiority in the management of unipolar depression and we will discuss its effect over time. In case of a significant increase in the number of therapeutic responses with a prolonged effect, the iTBS protocol could be considered a first-line protocol in resistant unipolar depression

  17. Studies of a Linac Driver for a High Repetition Rate X-Ray FEL

    International Nuclear Information System (INIS)

    Venturini, M.; Corlett, J.; Doolittle, L.; Filippetto, D.; Papadopoulos, C.; Penn, G.; Prosnitz, D.; Qiang, J.; Reinsch, M.; Ryne, R.; Sannibale, F.; Staples, J.; Wells, R.; Wurtele, J.; Zolotorev, M.; Zholents, A.

    2011-01-01

    We report on on-going studies of a superconducting CW linac driver intended to support a high repetition rate FEL operating in the soft x-rays spectrum. We present a pointdesign for a 1.8 GeV machine tuned for 300 pC bunches and delivering low-emittance, low-energy spread beams as needed for the SASE and seeded beamlines.

  18. Meaningful Words and Non-Words Repetitive Articulatory Rate (Oral Diadochokinesis) in Persian Speaking Children.

    Science.gov (United States)

    Zamani, Peyman; Rezai, Hossein; Garmatani, Neda Tahmasebi

    2017-08-01

    Repetitive articulatory rate or Oral Diadochokinesis (oral-DDK) shows a guideline for appraisal and diagnosis of subjects with oral-motor disorder. Traditionally, meaningless words repetition has been utilized in this task and preschool children have challenges with them. Therefore, we aimed to determine some meaningful words in order to test oral-DDK in Persian speaking preschool children. Participants were 142 normally developing children, (age range 4-6 years), who were asked to produce /motæka, golabi/ as two meaningful Persian words and /pa-ta-ka/ as non-word in conventional oral-DDK task. We compared the time taken for 10-times fast repetitions of two meaningful Persian words and the tri-syllabic nonsense word /pa-ta-ka/. Praat software was used to calculate the average time that subjects took to produce the target items. In 4-5 year old children, [Formula: see text] of time taken for 10-times repetitions of /pa-ta-ka, motæka, golabi/ were [Formula: see text], and [Formula: see text] seconds respectively, and in 5-6 year old children were [Formula: see text], and [Formula: see text] seconds respectively. Findings showed that the main effect of type of words on oral diadochokinesis was significant ([Formula: see text]). Children repeated meaningful words /motæka, golabi/ faster than the non-word /pa-ta-ka/. Sex and age factors had no effect on time taken for repetition of oral-DDK test. It is suggested that Speech Therapists can use meaningful words to facilitate oral-DDK test for children.

  19. Optimization of graffiti removal on natural stone by means of high repetition rate UV laser

    International Nuclear Information System (INIS)

    Fiorucci, M.P.; López, A.J.; Ramil, A.; Pozo, S.; Rivas, T.

    2013-01-01

    The use of laser for graffiti removal is a promising alternative to conventional cleaning methods, though irradiation parameters must be carefully selected in order to achieve the effective cleaning without damaging the substrate, especially when referring to natural stone. From a practical point of view, once a safe working window is selected, it is necessary to determine the irradiation conditions to remove large paint areas, with minimal time consumption. The aim of this paper is to present a systematic procedure to select the optimum parameters for graffiti removal by means of the 3rd harmonic of a high repetition rate nanosecond Nd:YVO 4 laser. Ablation thresholds of four spray paint colors were determined and the effect of pulse repetition frequency, beam diameter and line scan separation was analyzed, obtaining a set of values which optimize the ablation process.

  20. Optimization of graffiti removal on natural stone by means of high repetition rate UV laser

    Energy Technology Data Exchange (ETDEWEB)

    Fiorucci, M.P., E-mail: m.p.fiorucci@udc.es [Centro de Investigacións Tecnolóxicas, Universidade da Coruña, 15403 Ferrol (Spain); Dpto. Enxeñaría dos Recursos Naturais e Medio Ambiente, E.T.S.E. Minas, Universidade de Vigo, 36200 Vigo (Spain); López, A.J., E-mail: ana.xesus.lopez@udc.es [Centro de Investigacións Tecnolóxicas, Universidade da Coruña, 15403 Ferrol (Spain); Ramil, A., E-mail: alberto.ramil@udc.es [Centro de Investigacións Tecnolóxicas, Universidade da Coruña, 15403 Ferrol (Spain); Pozo, S., E-mail: ipozo@uvigo.es [Dpto. Enxeñaría dos Recursos Naturais e Medio Ambiente, E.T.S.E. Minas, Universidade de Vigo, 36200 Vigo (Spain); Rivas, T., E-mail: trivas@uvigo.es [Dpto. Enxeñaría dos Recursos Naturais e Medio Ambiente, E.T.S.E. Minas, Universidade de Vigo, 36200 Vigo (Spain)

    2013-08-01

    The use of laser for graffiti removal is a promising alternative to conventional cleaning methods, though irradiation parameters must be carefully selected in order to achieve the effective cleaning without damaging the substrate, especially when referring to natural stone. From a practical point of view, once a safe working window is selected, it is necessary to determine the irradiation conditions to remove large paint areas, with minimal time consumption. The aim of this paper is to present a systematic procedure to select the optimum parameters for graffiti removal by means of the 3rd harmonic of a high repetition rate nanosecond Nd:YVO{sub 4} laser. Ablation thresholds of four spray paint colors were determined and the effect of pulse repetition frequency, beam diameter and line scan separation was analyzed, obtaining a set of values which optimize the ablation process.

  1. Influence of the laser pulse repetition rate and scanning speed on the morphology of Ag nanostructures fabricated by pulsed laser ablation of solid target in water

    Science.gov (United States)

    Nikolov, A. S.; Balchev, I. I.; Nedyalkov, N. N.; Kostadinov, I. K.; Karashanova, D. B.; Atanasova, G. B.

    2017-11-01

    Nanostructures of noble metal were produced by pulsed laser ablation in liquid. A solid Ag target was immersed in double distilled water and a CuBr laser in a master oscillator—power amplifier configuration oscillating at 511 nm and emitting pulses with duration of 30 ns at a repetition rate of up to 20 kHz was employed to produce different colloids. The impact was studied of the laser pulse repetition rate and the beam scanning speed on the morphology of the nanostructures formed. Further, the optical extinction spectra of the colloids in the UV/VIS range were measured and used to make an indirect assessment of the changes in the shape and size distribution of the nanostructures. The transmission values in the near UV range were used to estimate the efficiency of the ablation process under the different experimental conditions implemented. A visualization of the nanostructures was made possible by transmission electron microscopy (TEM). The structure and phase composition of the nanoparticles were studied by high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), while the alteration of the target surface caused by the impact of the high-repetition-rate laser illumination was investigated by X-ray photoelectron spectroscopy (XPS). The optimal conditions were determined yielding the highest efficiency in terms of amount of ablated material.

  2. Highly efficient, versatile, self-Q-switched, high-repetition-rate microchip laser generating Ince–Gaussian modes for optical trapping

    Energy Technology Data Exchange (ETDEWEB)

    Jun Dong; Yu He; Xiao Zhou; Shengchuang Bai [Department of Electronics Engineering, School of Information Science and Engineering, Xiamen, 361005 (China)

    2016-03-31

    Lasers operating in the Ince-Gaussian (IG) mode have potential applications for optical manipulation of microparticles and formation of optical vortices, as well as for optical trapping and optical tweezers. Versatile, self-Q-switched, high-peak-power, high-repetition-rate Cr, Nd:YAG microchip lasers operating in the IG mode are implemented under tilted, tightly focused laser-diode pumping. An average output power of over 2 W is obtained at an absorbed pump power of 6.4 W. The highest optical-to-optical efficiency of 33.2% is achieved at an absorbed pump power of 3.9 W. Laser pulses with a pulse energy of 7.5 μJ, pulse width of 3.5 ns and peak power of over 2 kW are obtained. A repetition rate up to 335 kHz is reached at an absorbed pump power of 5.8 W. Highly efficient, versatile, IG-mode lasers with a high repetition rate and a high peak power ensure a better flexibility in particle manipulation and optical trapping. (control of laser radiation parameters)

  3. Ultraviolet excimer laser ablation: the effect of wavelength and repetition rate on in vivo guinea pig skin

    Energy Technology Data Exchange (ETDEWEB)

    Morelli, J.; Kibbi, A.G.; Farinelli, W.; Boll, J.; Tan, O.T.

    1987-06-01

    Multiple dermatologic conditions that are currently treated with traditional cold-knife surgery are amenable to laser therapy. The ideal surgical treatment would be precise and total removal of abnormal tissue with maximal sparing of remaining structures. The ultraviolet (UV) excimer laser is capable of such precise tissue removal due to the penetration depth of 193 nm and 248 nm irradiation of 1 micron per pulse. This type of ablative tissue removal requires a high repetition rate for efficient lesional destruction. Excimer laser radiation at 193 nm is capable of high repetition rates, which are necessary while 248 nm radiation causes increasing nonspecific thermal injury as the laser repetition rate is increased.

  4. 250 DPI at 1000 Hz acquisition rate S0 lamb wave digitizing pen.

    Science.gov (United States)

    Nikolovski, Jean-Pierre; Fournier, Danièle

    2013-02-01

    This paper presents an active stylus (X, Y) flat digitizing tablet (AST). The tablet features an acquisition rate of 1000 pts/s with 0.1 mm resolution. The cordless stylus incorporates a 1-mA low-power pulse generator. Precision is limited by diffraction to about ±0.3 mm on a 57 x 57 mm region of a 71 x 71 x 1 mm digitizing plate. Selective generation and detection of the S(0) Lamb mode with a precessing tip is the key feature of this tablet. We first highlight the ultrasonic propagation inside the stylus tip and stability of Lamb wave generation when the stylus is inclined, rotated, and slid. Then, modeling of the limitations imposed by diffraction of a 1-MHz burst S(0) plane Lamb wave packet is carried out. The model takes into account high-order zero crossing detection as well as reflections and shear horizontal (SH) conversions of the S(0) Lamb mode at free edges of a glass plate. Reflection and transmission through an isotropic PZT bar are also calculated. Finally, localization precision by time difference of arrival (TDOA) is calculated and experimentally verified near the borders of the plate, taking into account the angular sensitivity of the precessing tip.

  5. Development of a cryogenic hydrogen microjet for high-intensity, high-repetition rate experiments

    Science.gov (United States)

    Kim, J. B.; Göde, S.; Glenzer, S. H.

    2016-11-01

    The advent of high-intensity, high-repetition-rate lasers has led to the need for replenishing targets of interest for high energy density sciences. We describe the design and characterization of a cryogenic microjet source, which can deliver a continuous stream of liquid hydrogen with a diameter of a few microns. The jet has been imaged at 1 μm resolution by shadowgraphy with a short pulse laser. The pointing stability has been measured at well below a mrad, for a stable free-standing filament of solid-density hydrogen.

  6. High voltage nanosecond generator with pulse repetition rate of 1,000 p.p.s.

    Energy Technology Data Exchange (ETDEWEB)

    Gubanov, V P; Korovin, S D; Stepchenko, A S [High Current Electronics Institute, Tomsk (Russian Federation)

    1997-12-31

    A compact high voltage nanosecond generator is described with a pulse repetition rate up to 1000 p.p.s. The generator includes a 30-Ohm coaxial forming line charged by a built-in Tesla transformer with a high coupling coefficient, and a high voltage (N{sub 2}) gas gap switch with gas blowing between the electrodes. The maximum forming line charge voltage is 450 kV, the pulse duration is about 4 ns, and its amplitude for a matched load is up to 200 kV. (author). 3 figs., 9 refs.

  7. Power scaling of supercontinuum seeded megahertz-repetition rate optical parametric chirped pulse amplifiers.

    Science.gov (United States)

    Riedel, R; Stephanides, A; Prandolini, M J; Gronloh, B; Jungbluth, B; Mans, T; Tavella, F

    2014-03-15

    Optical parametric chirped-pulse amplifiers with high average power are possible with novel high-power Yb:YAG amplifiers with kW-level output powers. We demonstrate a compact wavelength-tunable sub-30-fs amplifier with 11.4 W average power with 20.7% pump-to-signal conversion efficiency. For parametric amplification, a beta-barium borate crystal is pumped by a 140 W, 1 ps Yb:YAG InnoSlab amplifier at 3.25 MHz repetition rate. The broadband seed is generated via supercontinuum generation in a YAG crystal.

  8. Observation of Repetition-Rate Dependent Emission From an Un-Gated Thermionic Cathode Rf Gun

    Energy Technology Data Exchange (ETDEWEB)

    Edelen, J. P.; Sun, Y.; Harris, J.R.; Lewellen, J.W.

    2017-06-02

    Recent work at Fermilab in collaboration with the Advanced Photon Source and members of other national labs, designed an experiment to study the relationship between the RF repetition rate and the average current per RF pulse. While existing models anticipate a direct relationship between these two parameters we observed an inverse relationship. We believe this is a result of damage to the barium coating on the cathode surface caused by a change in back-bombardment power that is unaccounted for in the existing theories. These observations shed new light on the challenges and fundamental limitations associated with scaling an ungated thermionic cathode RF gun to high average current.

  9. Development of ultra high speed photographic system using high repetition rate visible laser

    International Nuclear Information System (INIS)

    Lee, Jong Min; Cha, Byung Hun; Kim, Sung Ho; Kim, Jung Bog; Lim, Chang Hwan; Cha, Hyung Ki; Song, Kyu Seok; Lee, Byung Deok; Rhi, Jong Hoon; Baik, Dae Hyun; Han, Jae Min; Rho, Si Pyo; Lee, Byung Cheol; Jeong, Do Yung; Choi, An Seong; Jeong, Chan Ik; Park, Dae Ung; Jeong, Sung Min; Lee, Sang Kil; Kim, Heon Jun; Jang, Rae gak; Jo, Do Hun; Park, Min Young

    1992-12-01

    The goal of this project is to develop and commercialize a high speed photographic system equipped with a high repetition rate visible laser. The developed system provides the characteristics of high time resolution and large number of frames. The system consists of 10 W air cooled CVL or a 30 W water cooled CVL, a rotating drum-type high speed camera with the framing rate of 35,000 fps, and a automatic control device. The system has the performance of 10 nsec time resolution, 35,000 fps framing rate, and 250 picture frames. The high speed photographic systems are widely applied to the fields such as high-efficient engine development, high-speed vibration analysis, shock wave propagation study, flow visualization analysis, weapon development, etc. (Author)

  10. Effect of pulse repetition rate and number of pulses in the analysis of polypropylene and high density polyethylene by nanosecond infrared laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Leme, Flavio O. [Laboratorio de Quimica Analitica ' Henrique Bergamin Filho' , Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Av. Centenario 303, 13416-000 Piracicaba, SP (Brazil); Godoi, Quienly [Laboratorio de Quimica Analitica ' Henrique Bergamin Filho' , Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Av. Centenario 303, 13416-000 Piracicaba, SP (Brazil); Departamento de Quimica, Universidade Federal de Sao Carlos, Rod. Washington Luis, km 235, 13565-905 Sao Carlos, SP (Brazil); Kiyataka, Paulo H.M. [Centro de Tecnologia de Embalagens, Instituto de Tecnologia de Alimentos, Av. Brasil 2880, 13070-178 Campinas, SP (Brazil); Santos, Dario [Departamento de Ciencias Exatas e da Terra, Universidade Federal de Sao Paulo, Rua Prof. Artur Riedel 275, 09972-270 Diadema, SP (Brazil); Agnelli, Jose A.M. [Departamento de Engenharia de Materiais, Universidade Federal de Sao Carlos, Rod. Washington Luis, km 235, 13565-905 Sao Carlos, SP (Brazil); and others

    2012-02-01

    Pulse repetition rates and the number of laser pulses are among the most important parameters that do affect the analysis of solid materials by laser induced breakdown spectroscopy, and the knowledge of their effects is of fundamental importance for suggesting analytical strategies when dealing with laser ablation processes of polymers. In this contribution, the influence of these parameters in the ablated mass and in the features of craters was evaluated in polypropylene and high density polyethylene plates containing pigment-based PbCrO{sub 4}. Surface characterization and craters profile were carried out by perfilometry and scanning electron microscopy. Area, volume and profile of craters were obtained using Taylor Map software. A laser induced breakdown spectroscopy system consisted of a Q-Switched Nd:YAG laser (1064 nm, 5 ns) and an Echelle spectrometer equipped with ICCD detector were used. The evaluated operating conditions consisted of 10, 25 and 50 laser pulses at 1, 5 and 10 Hz, 250 mJ/pulse (85 J cm{sup -2}), 2 {mu}s delay time and 6 {mu}s integration time gate. Differences in the topographical features among craters of both polymers were observed. The decrease in the repetition rate resulted in irregular craters and formation of edges, especially in polypropylene sample. The differences in the topographical features and ablated masses were attributed to the influence of the degree of crystallinity, crystalline melting temperature and glass transition temperature in the ablation process of the high density polyethylene and polypropylene. It was also observed that the intensities of chromium and lead emission signals obtained at 10 Hz were two times higher than at 5 Hz by keeping the number of laser pulses constant.

  11. Elemental redistribution behavior in tellurite glass induced by high repetition rate femtosecond laser irradiation

    International Nuclear Information System (INIS)

    Teng, Yu; Zhou, Jiajia; Khisro, Said Nasir; Zhou, Shifeng; Qiu, Jianrong

    2014-01-01

    Highlights: • Abnormal elements redistribution behavior was observed in tellurite glass. • The refractive index and Raman intensity distribution changed significantly. • The relative glass composition remained unchanged while the glass density changed. • First time report on the abnormal element redistribution behavior in glass. • The glass network structure determines the elemental redistribution behavior. - Abstract: The success in the fabrication of micro-structures in glassy materials using femtosecond laser irradiation has proved its potential applications in the construction of three-dimensional micro-optical components or devices. In this paper, we report the elemental redistribution behavior in tellurite glass after the irradiation of high repetition rate femtosecond laser pulses. The relative glass composition remained unchanged while the glass density changed significantly, which is quite different from previously reported results about the high repetition rate femtosecond laser induced elemental redistribution in silicate glasses. The involved mechanism is discussed with the conclusion that the glass network structure plays the key role to determine the elemental redistribution. This observation not only helps to understand the interaction process of femtosecond laser with glassy materials, but also has potential applications in the fabrication of micro-optical devices

  12. Repetition rate multiplication of frequency comb using all-pass fiber resonator

    International Nuclear Information System (INIS)

    Yang, Lijun; Yang, Honglei; Zhang, Hongyuan; Wei, Haoyun; Li, Yan

    2016-01-01

    We propose a stable method for repetition rate multiplication of a 250-MHz Er-fiber frequency comb by a phase-locked all-pass fiber ring resonator, whose phase-locking configuration is simple. The optical path length of the fiber ring resonator is automatically controlled to be accurately an odd multiple of half of the original cavity length using an electronical phase-locking unit with an optical delay line. As for shorter cavity length of the comb, high-order odd multiple is preferable. Because the power loss depends only on the net-attenuation of the fiber ring resonator, the energetic efficiency of the proposed method is high. The input and output optical spectrums show that the spectral width of the frequency comb is clearly preserved. Besides, experimental results show less pulse intensity fluctuation and 35 dB suppression ratio of side-modes while providing a good long-term and short-term frequency stability. Higher-order repetition rate multiplication to several GHz can be obtained by using several fiber ring resonators in cascade configuration.

  13. Repetition rate multiplication of frequency comb using all-pass fiber resonator

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lijun; Yang, Honglei; Zhang, Hongyuan; Wei, Haoyun; Li, Yan, E-mail: liyan@mail.tsinghua.edu.cn [State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084 (China)

    2016-09-15

    We propose a stable method for repetition rate multiplication of a 250-MHz Er-fiber frequency comb by a phase-locked all-pass fiber ring resonator, whose phase-locking configuration is simple. The optical path length of the fiber ring resonator is automatically controlled to be accurately an odd multiple of half of the original cavity length using an electronical phase-locking unit with an optical delay line. As for shorter cavity length of the comb, high-order odd multiple is preferable. Because the power loss depends only on the net-attenuation of the fiber ring resonator, the energetic efficiency of the proposed method is high. The input and output optical spectrums show that the spectral width of the frequency comb is clearly preserved. Besides, experimental results show less pulse intensity fluctuation and 35 dB suppression ratio of side-modes while providing a good long-term and short-term frequency stability. Higher-order repetition rate multiplication to several GHz can be obtained by using several fiber ring resonators in cascade configuration.

  14. Diffusively cooled thin-sheath high-repetition-rate TEA and TEMA lasers

    Science.gov (United States)

    Yatsiv, Shaul; Gabay, Amnon; Sintov, Yoav

    1993-05-01

    Transverse electric atmospheric (TEA), or multi atmospheric (TEMA) lasers deliver intense short laser pulses of considerable energies. Recurrent high repetition rate pulse trains afford substantial average power levels. In a high rep-rate operation the gas flows across the cavity and is externally cooled to maintain a reasonably low temperature. The gas flow gear and heat exchanger are bulky and costly. In this work we present a repetitively pulsed TEA or TEMA laser that combines energy and peak power features in an individual pulse with the substantial average power levels of a pulse train in a thin layer of gas. Excess heat is disposed of, by conduction through the gas, to cooled enclosing walls. The gas does not flow. The method applies to vibrational transition molecular lasers in the infrared, where elevated temperatures are deleterious to the laser operation. The gist of the method draws on the law that heat conductivity in gases does not depend on their pressure. The fact lends unique operational flexibility and compactness, desirable for industrial and research purposes.

  15. Diagnostic for a high-repetition rate electron photo-gun and first measurements

    Science.gov (United States)

    Filippetto, D.; Doolittle, L.; Huang, G.; Norum, E.; Portmann, G.; Qian, H.; Sannibale, F.

    2015-05-01

    The APEX electron source at LBNL combines the high-repetition-rate with the high beam brightness typical of photoguns, delivering low emittance electron pulses at MHz frequency. Proving the high beam quality of the beam is an essential step for the success of the experiment, opening the doors of the high average power to brightness-hungry applications as X-Ray FELs, MHz ultrafast electron diffraction etc.. As first step, a complete characterization of the beam parameters is foreseen at the Gun beam energy of 750 keV. Diagnostics for low and high current measurements have been installed and tested, and measurements of cathode lifetime and thermal emittance in a RF environment with mA current performed. The recent installation of a double slit system, a deflecting cavity and a high precision spectrometer, allow the exploration of the full 6D phase space. Here we discuss the present layout of the machine and future upgrades, showing the latest results at low and high repetition rate, together with the tools and techniques used.

  16. MHz repetition rate solid-state driver for high current induction accelerators

    International Nuclear Information System (INIS)

    Brooksby, C; Caporaso, G; Goerz, D; Hanks, R; Hickman, B; Kirbie, H; Lee, B; Saethre, R.

    1999-01-01

    A research team from the Lawrence Livermore National Laboratory and Bechtel Nevada Corporation is developing an all solid-state power source for high current induction accelerators. The original power system design, developed for heavy-ion fusion accelerators, is based on the simple idea of using an array of field effect transistors to switch energy from a pre-charged capacitor bank to an induction accelerator cell. Recently, that idea has been expanded to accommodate the greater power needs of a new class of high-current electron accelerators for advanced radiography. For this purpose, we developed a 3-stage induction adder that uses over 4,000 field effect transistors to switch peak voltages of 45 kV at currents up to 4.8 kA with pulse repetition rates of up to 2 MHz. This radically advanced power system can generate a burst of five or more pulses that vary from 200 ns to 2 ampersand micro;s at a duty cycle of up to 25%. Our new source is precise, robust, flexible, and exceeds all previous drivers for induction machines by a factor of 400 in repetition rate and a factor of 1000 in duty cycle

  17. New results on spin determination of nanosatellite BLITS from High Repetition Rate SLR data

    Science.gov (United States)

    Kucharski, D.; Kirchner, G.; Lim, H.-C.; Koidl, F.

    2013-03-01

    The nanosatellite BLITS (Ball Lens In The Space) demonstrates a successful design of the new spherical lens type satellite for Satellite Laser Ranging (SLR). The spin parameters of the satellite were calculated from more than 1000 days of SLR data collected from 6 High Repetition Rate (HRR) systems: Beijing, Changchun, Graz, Herstmonceux, Potsdam, Shanghai.Analysis of the 892 passes (September 26, 2009-June 18, 2012) shows precession of the spin axis around orientation of the along track vector calculated at the launch epoch of the satellite RA = 9h16m39s, Dec = 43.1°. The spin period of BLITS remains stable with the mean value Tmean = 5.613 s, RMS = 11 ms. The incident angle between the spin axis and the symmetry axis of the body changes within 60° range.

  18. High repetition rate tunable femtosecond pulses and broadband amplification from fiber laser pumped parametric amplifier.

    Science.gov (United States)

    Andersen, T V; Schmidt, O; Bruchmann, C; Limpert, J; Aguergaray, C; Cormier, E; Tünnermann, A

    2006-05-29

    We report on the generation of high energy femtosecond pulses at 1 MHz repetition rate from a fiber laser pumped optical parametric amplifier (OPA). Nonlinear bandwidth enhancement in fibers provides the intrinsically synchronized signal for the parametric amplifier. We demonstrate large tunability extending from 700 nm to 1500 nm of femtosecond pulses with pulse energies as high as 1.2 muJ when the OPA is seeded by a supercontinuum generated in a photonic crystal fiber. Broadband amplification over more than 85 nm is achieved at a fixed wavelength. Subsequent compression in a prism sequence resulted in 46 fs pulses. With an average power of 0.5 W these pulses have a peak-power above 10 MW. In particular, the average power and pulse energy scalability of both involved concepts, the fiber laser and the parametric amplifier, will enable easy up-scaling to higher powers.

  19. 200 ps FWHM and 100 MHz repetition rate ultrafast gated camera for optical medical functional imaging

    Science.gov (United States)

    Uhring, Wilfried; Poulet, Patrick; Hanselmann, Walter; Glazenborg, René; Zint, Virginie; Nouizi, Farouk; Dubois, Benoit; Hirschi, Werner

    2012-04-01

    The paper describes the realization of a complete optical imaging device to clinical applications like brain functional imaging by time-resolved, spectroscopic diffuse optical tomography. The entire instrument is assembled in a unique setup that includes a light source, an ultrafast time-gated intensified camera and all the electronic control units. The light source is composed of four near infrared laser diodes driven by a nanosecond electrical pulse generator working in a sequential mode at a repetition rate of 100 MHz. The resulting light pulses, at four wavelengths, are less than 80 ps FWHM. They are injected in a four-furcated optical fiber ended with a frontal light distributor to obtain a uniform illumination spot directed towards the head of the patient. Photons back-scattered by the subject are detected by the intensified CCD camera; there are resolved according to their time of flight inside the head. The very core of the intensified camera system is the image intensifier tube and its associated electrical pulse generator. The ultrafast generator produces 50 V pulses, at a repetition rate of 100 MHz and a width corresponding to the 200 ps requested gate. The photocathode and the Micro-Channel-Plate of the intensifier have been specially designed to enhance the electromagnetic wave propagation and reduce the power loss and heat that are prejudicial to the quality of the image. The whole instrumentation system is controlled by an FPGA based module. The timing of the light pulses and the photocathode gating is precisely adjustable with a step of 9 ps. All the acquisition parameters are configurable via software through an USB plug and the image data are transferred to a PC via an Ethernet link. The compactness of the device makes it a perfect device for bedside clinical applications.

  20. Design of a high repetition rate S-band photocathode gun

    International Nuclear Information System (INIS)

    Han Janghui; Cox, Matthew; Huang, Houcheng; Pande, Shivaji

    2011-01-01

    Photocathode RF guns have been developed in many laboratories for generating high quality electron beams for free-electron lasers based on linear accelerators. Such guns can generate electron beams with an exceptionally high peak current as well as a small transverse emittance. Their applications have been recently expanded for ultrafast electron diffraction, coherent terahertz radiation, and X-ray or γ-ray radiation by Compton scattering. In this paper, we design an S-band normal-conducting gun with capabilities of high quality beam generation and high repetition rate operation. The RF design and thermal analysis of the gun cavity and coupler are introduced. Optimal position of the gun focusing solenoid for low emittance beam generation is found by performing particle tracking simulations. Then, the gun system is designed to be able to afford the optimal solenoid position. The cooling-water channel surrounding the gun cavity and coupler is designed and analyzed numerically. The pressure in the gun is simulated with a vacuum model containing the detailed inner structure of the gun. An injector for a free-electron laser application is designed by using this gun and the beam dynamics simulation is shown. A cold test with a prototype gun for confirmation of the RF design is reported. - Highlights: → We design an S-band gun for low emittance beam generation and high repetition rate operation. → The RF design and thermal analysis of the gun cavity and coupler are studied. → An FEL injector is designed by using this gun and the beam dynamics simulation is shown. → A cold test with a prototype gun for confirmation of the RF design is reported.

  1. Using high sampling rate (10/20 Hz) altimeter data for the observation of coastal surface currents: A case study over the northwestern Mediterranean Sea

    Science.gov (United States)

    Birol, Florence; Delebecque, Caroline

    2014-01-01

    Satellite altimetry, measuring sea surface heights (SSHs), has unique capabilities to provide information about the ocean dynamics. In this paper, the skill of the original full rate (10/20 Hz) measurements, relative to conventional 1-Hz data, is evaluated in the context of coastal studies in the Northwestern Mediterranean Sea. The performance and the question of the measurement noise are quantified through a comparison with different tide gauge sea level time series. By applying a specific processing, closer than 30 km to the land, the number of valid data is higher for the 10/20-Hz than for the 1-Hz observations: + 4.5% for T/P, + 10.3 for Jason-1 and + 13% for Jason-2. By filtering higher sampling rate measurements (using a 30-km cut-off low-pass Lanczos filter), we can obtain the same level of sea level accuracy as we would using the classical 1-Hz altimeter data. The gain in near-shore data results in a better observation of the Liguro-Provençal-Catalan Current. The seasonal evolution of the currents derived from 20-Hz data is globally consistent with patterns derived from the corresponding 1-Hz observations. But the use of higher frequency altimeter measurements allows us to observe the variability of the regional flow closer to the coast (~ 10-15 km from land).

  2. Pulsed laser deposition of SrRuO3 thin-films: The role of the pulse repetition rate

    Directory of Open Access Journals (Sweden)

    H. Schraknepper

    2016-12-01

    Full Text Available SrRuO3 thin-films were deposited with different pulse repetition rates, fdep, epitaxially on vicinal SrTiO3 substrates by means of pulsed laser deposition. The measurement of several physical properties (e.g., composition by means of X-ray photoelectron spectroscopy, the out-of-plane lattice parameter, the electric conductivity, and the Curie temperature consistently reveals that an increase in laser repetition rate results in an increase in ruthenium deficiency in the films. By the same token, it is shown that when using low repetition rates, approaching a nearly stoichiometric cation ratio in SrRuO3 becomes feasible. Based on these results, we propose a mechanism to explain the widely observed Ru deficiency of SrRuO3 thin-films. Our findings demand these theoretical considerations to be based on kinetic rather than widely employed thermodynamic arguments.

  3. Compact and high repetition rate Kerr-lens mode-locked 532 nm Nd:YVO4 laser

    International Nuclear Information System (INIS)

    Li, Zuohan; Peng, Jiying; Yuan, Ruixia; Yao, Jianquan; Zheng, Yi; Wang, Tongtong

    2015-01-01

    A compact and feasible CW Kerr-lens-induced mode-locked 532 nm Nd:YVO 4 laser system was experimentally demonstrated for the first time with theoretical analysis. Kerr-lens mode locking with intracavity second harmonic generation provides a promising method to generate a high-repetition-rate picosecond green laser. With an incident pump power of 6 W, the average output power of mode locking was 258 mW at a high repetition rate of 1.1 GHz. (paper)

  4. Development of a Watt-level gamma-ray source based on high-repetition-rate inverse Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Mihalcea, D.; Murokh, A.; Piot, P.; Ruan, J.

    2017-07-01

    A high-brilliance (~1022 photon s-1 mm-2 mrad-2 /0.1%) gamma-ray source experiment is currently being planned at Fermilab (Eγ≃1.1 MeV). The source implements a high-repetition-rate inverse Compton scattering by colliding electron bunches formed in a ~300-MeV superconducting linac with a high-intensity laser pulse. This paper describes the design rationale along with some of technical challenges associated to producing high-repetition-rate collision. The expected performances of the gamma-ray source are also presented.

  5. Did You Listen to the Beat? Auditory Steady-State Responses in the Human Electroencephalogram at 4 and 7 Hz Modulation Rates Reflect Selective Attention.

    Science.gov (United States)

    Jaeger, Manuela; Bleichner, Martin G; Bauer, Anna-Katharina R; Mirkovic, Bojana; Debener, Stefan

    2018-02-27

    The acoustic envelope of human speech correlates with the syllabic rate (4-8 Hz) and carries important information for intelligibility, which is typically compromised in multi-talker, noisy environments. In order to better understand the dynamics of selective auditory attention to low frequency modulated sound sources, we conducted a two-stream auditory steady-state response (ASSR) selective attention electroencephalogram (EEG) study. The two streams consisted of 4 and 7 Hz amplitude and frequency modulated sounds presented from the left and right side. One of two streams had to be attended while the other had to be ignored. The attended stream always contained a target, allowing for the behavioral confirmation of the attention manipulation. EEG ASSR power analysis revealed a significant increase in 7 Hz power for the attend compared to the ignore conditions. There was no significant difference in 4 Hz power when the 4 Hz stream had to be attended compared to when it had to be ignored. This lack of 4 Hz attention modulation could be explained by a distracting effect of a third frequency at 3 Hz (beat frequency) perceivable when the 4 and 7 Hz streams are presented simultaneously. Taken together our results show that low frequency modulations at syllabic rate are modulated by selective spatial attention. Whether attention effects act as enhancement of the attended stream or suppression of to be ignored stream may depend on how well auditory streams can be segregated.

  6. Direct writing of sub-wavelength ripples on silicon using femtosecond laser at high repetition rate

    International Nuclear Information System (INIS)

    Xie, Changxin; Li, Xiaohong; Liu, Kaijun; Zhu, Min; Qiu, Rong; Zhou, Qiang

    2016-01-01

    Graphical abstract: - Highlights: • The NSRs and DSRs are obtained on silicon surface. • With increasing direct writing speed, the NSRs suddenly changes and becomes the DSRs. • We develop a Sipe–Drude interference theory by considering the thermal excitation. - Abstract: The near sub-wavelength and deep sub-wavelength ripples on monocrystalline silicon were formed in air by using linearly polarized and high repetition rate femtosecond laser pulses (f = 76 MHz, λ = 800 nm, τ = 50 fs). The effects of laser pulse energy, direct writing speed and laser polarization on silicon surface morphology are studied. When the laser pulse energy is 2 nJ/pulse and the direct writing speed varies from 10 to 25 mm/s, the near sub-wavelength ripples (NSRs) with orientation perpendicular to the laser polarization are generated. While the direct writing speed reaches 30 mm/s, the direction of the obtained deep sub-wavelength ripples (DSRs) suddenly changes and becomes parallel to the laser polarization, rarely reported so far for femtosecond laser irradiation of silicon. Meanwhile, we extend the Sipe–Drude interference theory by considering the thermal excitation, and numerically calculate the efficacy factor for silicon irradiated by femtosecond laser pulses. The revised Sipe–Drude interference theoretical results show good agreement with the periods and orientations of sub-wavelength ripples.

  7. A HIGH REPETITION RATE VUV-SOFT X-RAY FEL CONCEPT

    International Nuclear Information System (INIS)

    Corlett, J.; Byrd, J.; Fawley, W.M.; Gullans, M.; Li, D.; Lidia, S.M.; Padmore, H.; Penn, G.; Pogorelov, I.; Qiang, J.; Robin, D.; Sannibale, F.; Staples, J.W.; Steier, C.; Venturini, M.; Virostek, S.; Wan, W.; Wells, R.; Wilcox, R.; Wurtele, J.; Zholents, A.

    2007-01-01

    We report on design studies for a seeded FEL light source that is responsive to the scientific needs of the future. The FEL process increases radiation flux by several orders of magnitude above existing incoherent sources, and offers the additional enhancements attainable by optical manipulations of the electron beam: control of the temporal duration and bandwidth of the coherent output, reduced gain length in the FEL, utilization of harmonics to attain shorter wavelengths, and precise synchronization of the x-ray pulse with seed laser systems. We describe an FEL facility concept based on a high repetition rate RF photocathode gun, that would allow simultaneous operation of multiple independent FEL's, each producing high average brightness, tunable over the VUV-soft x-ray range, and each with individual performance characteristics determined by the configuration of the FEL. SASE, enhanced-SASE (ESASE), seeded, harmonic generation, and other configurations making use of optical manipulations of the electron beam may be employed, providing a wide range of photon beam properties to meet varied user demands

  8. The effect of the pulse repetition rate on the fast ionization wave discharge

    Science.gov (United States)

    Huang, Bang-Dou; Carbone, Emile; Takashima, Keisuke; Zhu, Xi-Ming; Czarnetzki, Uwe; Pu, Yi-Kang

    2018-06-01

    The effect of the pulse repetition rate (PRR) on the generation of high energy electrons in a fast ionization wave (FIW) discharge is investigated by both experiment and modelling. The FIW discharge is driven by nanosecond high voltage pulses and is generated in helium with a pressure of 30 mbar. The axial electric field (E z ), as the driven force of high energy electron generation, is strongly influenced by PRR. Both the measurement and the model show that, during the breakdown, the peak value of E z decreases with the PRR, while after the breakdown, the value of E z increases with the PRR. The electron energy distribution function (EEDF) is calculated with a model similar to Boeuf and Pitchford (1995 Phys. Rev. E 51 1376). It is found that, with a low value of PRR, the EEDF during the breakdown is strongly non-Maxwellian with an elevated high energy tail, while the EEDF after the breakdown is also non-Maxwellian but with a much depleted population of high energy electrons. However, with a high value of PRR, the EEDF is Maxwellian-like without much temporal variation both during and after the breakdown. With the calculated EEDF, the temporal evolution of the population of helium excited species given by the model is in good agreement with the measured optical emission, which also depends critically on the shape of the EEDF.

  9. Direct electron acceleration in plasma waveguides for compact high-repetition-rate x-ray sources

    International Nuclear Information System (INIS)

    Lin, M-W; Jovanovic, I

    2014-01-01

    Numerous applications in fundamental and applied research, security, and industry require robust, compact sources of x-rays, with a particular recent interest in monochromatic, spatially coherent, and ultrafast x-ray pulses in well-collimated beams. Such x-ray sources usually require production of high-quality electron beams from compact accelerators. Guiding a radially polarized laser pulse in a plasma waveguide has been proposed for realizing direct laser acceleration (DLA), where the electrons are accelerated by the axial electric field of a co-propagating laser pulse (Serafim et al 2000 IEEE Trans. Plasma Sci. 28 1190). A moderate laser peak power is required for DLA when compared to laser wakefield acceleration, thus offering the prospect for high repetition rate operation. By using a density-modulated plasma waveguide for DLA, the acceleration distance can be extended with pulse guiding, while the density-modulation with proper axial structure can realize the quasi-phase matching between the laser pulses and electrons for a net gain accumulation (York et al 2008 Phys. Rev. Lett. 100 195001; York et al 2008 J. Opt. Soc. Am. B 25 B137; Palastro et al 2008 Phys. Rev. E 77 036405). We describe the development and application of a test particle model and particle-in-cell model for DLA. Experimental setups designed for fabrication of optically tailored plasma waveguides via the ignitor-heater scheme, and for generation and characterization of radially polarized short pulses used to drive DLA, are presented. (paper)

  10. Choppers to optimise the repetition rate multiplication technique on a direct geometry neutron chopper spectrometer

    International Nuclear Information System (INIS)

    Vickery, A.; Deen, P. P.

    2014-01-01

    In recent years the use of repetition rate multiplication (RRM) on direct geometry neutron spectrometers has been established and is the common mode of operation on a growing number of instruments. However, the chopper configurations are not ideally optimised for RRM with a resultant 100 fold flux difference across a broad wavelength band. This paper presents chopper configurations that will produce a relative constant (RC) energy resolution and a relative variable (RV) energy resolution for optimised use of RRM. The RC configuration provides an almost uniform ΔE/E for all incident wavelengths and enables an efficient use of time as the entire dynamic range is probed with equivalent statistics, ideal for single shot measurements of transient phenomena. The RV energy configuration provides an almost uniform opening time at the sample for all incident wavelengths with three orders of magnitude in time resolution probed for a single European Spallation Source (ESS) period, which is ideal to probe complex relaxational behaviour. These two chopper configurations have been simulated for the Versatile Optimal Resolution direct geometry spectrometer, VOR, that will be built at ESS

  11. Development of high repetition rate nitric oxide planar laser induced fluorescence imaging

    Science.gov (United States)

    Jiang, Naibo

    have obtained, for the first time by any known optical method, Planar Laser Induced Fluorescence (PLIF) image sequences at ultrahigh (≥100kHz) frame rates, in particular NO PLIF image sequences, have been obtained in a Mach 2 jet. We also studied the possibility of utilizing a 250 kHz pulsed Nd:YVO 4 laser as the master oscillator. 10-pulse-10-mus spacing burst sequences with reasonably uniform burst envelope have been obtained. The total energy of the burst sequence is ˜2.5J.

  12. All-fiber interferometer-based repetition-rate stabilization of mode-locked lasers to 10-14-level frequency instability and 1-fs-level jitter over 1  s.

    Science.gov (United States)

    Kwon, Dohyeon; Kim, Jungwon

    2017-12-15

    We report on all-fiber Michelson interferometer-based repetition-rate stabilization of femtosecond mode-locked lasers down to 1.3×10 -14 frequency instability and 1.4 fs integrated jitter in a 1 s time scale. The use of a compactly packaged 10 km long single-mode fiber (SMF)-28 fiber link as a timing reference allows the scaling of phase noise at a 10 GHz carrier down to -80  dBc/Hz at 1 Hz Fourier frequency. We also tested a 500 m long low-thermal-sensitivity fiber as a reference and found that, compared to standard SMF-28 fiber, it can mitigate the phase noise divergence by ∼10  dB/dec in the 0.1-1 Hz Fourier frequency range. These results suggest that the use of a longer low-thermal-sensitivity fiber may achieve sub-femtosecond integrated timing jitter with sub-10 -14 -level frequency instability in repetition rate by a simple and robust all-fiber-photonic method.

  13. Design study of a low-emittance high-repetition rate thermionic rf gun

    Directory of Open Access Journals (Sweden)

    A. Opanasenko

    2017-05-01

    Full Text Available We propose a novel gridless continuous-wave radiofrequency (rf thermionic gun capable of generating nC ns electron bunches with a rms normalized slice emittance close to the thermal level of 0.3 mm mrad. In order to gate the electron emission, an externally heated thermionic cathode is installed into a stripline-loop conductor. Two high-voltage pulses propagating towards each other in the stripline-loop overlap in the cathode region and create a quasielectrostatic field gating the electron emission. The repetition rate of pulses is variable and can reach up to one MHz with modern solid-state pulsers. The stripline attached to a rf gun cavity wall has with the wall a common aperture that allows the electrons to be injected into the rf cavity for further acceleration. Thanks to this innovative gridless design, simulations suggest that the bunch emittance is approximately at the thermal level after the bunch injection into the cavity provided that the geometry of the cathode and aperture are properly designed. Specifically, a concave cathode is adopted to imprint an Ƨ-shaped distribution onto the beam transverse phase-space to compensate for an S-shaped beam distribution created by the spherical aberration of the aperture-cavity region. In order to compensate for the energy spread caused by rf fields of the rf gun cavity, a 3rd harmonic cavity is used. A detailed study of the electrodynamics of the stripline and rf gun cavity as well as the beam optics and bunch dynamics are presented.

  14. Upper arm elevation and repetitive shoulder movements: a general population job exposure matrix based on expert ratings and technical measurements.

    Science.gov (United States)

    Dalbøge, Annett; Hansson, Gert-Åke; Frost, Poul; Andersen, Johan Hviid; Heilskov-Hansen, Thomas; Svendsen, Susanne Wulff

    2016-08-01

    We recently constructed a general population job exposure matrix (JEM), The Shoulder JEM, based on expert ratings. The overall aim of this study was to convert expert-rated job exposures for upper arm elevation and repetitive shoulder movements to measurement scales. The Shoulder JEM covers all Danish occupational titles, divided into 172 job groups. For 36 of these job groups, we obtained technical measurements (inclinometry) of upper arm elevation and repetitive shoulder movements. To validate the expert-rated job exposures against the measured job exposures, we used Spearman rank correlations and the explained variance[Formula: see text] according to linear regression analyses (36 job groups). We used the linear regression equations to convert the expert-rated job exposures for all 172 job groups into predicted measured job exposures. Bland-Altman analyses were used to assess the agreement between the predicted and measured job exposures. The Spearman rank correlations were 0.63 for upper arm elevation and 0.64 for repetitive shoulder movements. The expert-rated job exposures explained 64% and 41% of the variance of the measured job exposures, respectively. The corresponding calibration equations were y=0.5%time+0.16×expert rating and y=27°/s+0.47×expert rating. The mean differences between predicted and measured job exposures were zero due to calibration; the 95% limits of agreement were ±2.9% time for upper arm elevation >90° and ±33°/s for repetitive shoulder movements. The updated Shoulder JEM can be used to present exposure-response relationships on measurement scales. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  15. Tunable dispersion compensator based on uniform fiber Bragg grating and its application to tunable pulse repetition-rate multiplication.

    Science.gov (United States)

    Han, Young-Geun; Lee, Sang

    2005-11-14

    A new technique to control the chromatic dispersion of a uniform fiber Bragg grating based on the symmetrical bending is proposed and experimentally demonstrated. The specially designed two translation stages with gears and a sawtooth wheel can simultaneously induce the tension and compression strain corresponding to the bending direction. The tension and compression strain can effectively control the chirp ratio along the fiber grating attached on a flexible cantilever beam and consequently the dispersion value without the center wavelength shift. We successfully achieve the wide tuning range of chromatic dispersion without the center wavelength shift, which is less than 0.02 nm. We also reduce the group delay ripple as low as ~+/-5 ps. And we also demonstrate the application of the proposed tunable dispersion compensation technique to the tunable pulse repetition-rate multiplication and obtain high-quality pulses at repetition rates of 20 ~ 40 GHz.

  16. Ultrafast, high repetition rate, ultraviolet, fiber-laser-based source: application towards Yb+ fast quantum-logic.

    Science.gov (United States)

    Hussain, Mahmood Irtiza; Petrasiunas, Matthew Joseph; Bentley, Christopher D B; Taylor, Richard L; Carvalho, André R R; Hope, Joseph J; Streed, Erik W; Lobino, Mirko; Kielpinski, David

    2016-07-25

    Trapped ions are one of the most promising approaches for the realization of a universal quantum computer. Faster quantum logic gates could dramatically improve the performance of trapped-ion quantum computers, and require the development of suitable high repetition rate pulsed lasers. Here we report on a robust frequency upconverted fiber laser based source, able to deliver 2.5 ps ultraviolet (UV) pulses at a stabilized repetition rate of 300.00000 MHz with an average power of 190 mW. The laser wavelength is resonant with the strong transition in Ytterbium (Yb+) at 369.53 nm and its repetition rate can be scaled up using high harmonic mode locking. We show that our source can produce arbitrary pulse patterns using a programmable pulse pattern generator and fast modulating components. Finally, simulations demonstrate that our laser is capable of performing resonant, temperature-insensitive, two-qubit quantum logic gates on trapped Yb+ ions faster than the trap period and with fidelity above 99%.

  17. 2KJ/S 1KV, 25HZ PRR capacitor charging power supply with twin phase shifted primary windings to achieve high charge transfer rate and stability

    International Nuclear Information System (INIS)

    Kelkar, Y.; Singh, Y.P.; Thakurta, A.C.

    2013-01-01

    The capacitor charging power supply (CCPS) was developed to charge bank of 150uF energy storage capacitor (15uf , 10 nos in parallel) upto 1kV in 35 ms exhibiting a peak charging power of 2 kJ/s at a repetition rate of 25 pps. A CCPS observes a large change in load variations at the output. Initially the capacitor will act as a short circuit so the topology must be such that it should withstand short circuit condition repetitively. The High Voltage capacitor charging power supply consist of two identical full bridge resonant converters feeding to two primary windings of a transformer with rectified secondary connected to capacitor load. Topology selection is based on the fact that the series resonant converter with switching frequency f s , below 50% of the resonant frequency f r (f s ≤ 0.5 f r ) act as a current source. (author)

  18. Laser-diode pumped self-mode-locked praseodymium visible lasers with multi-gigahertz repetition rate.

    Science.gov (United States)

    Zhang, Yuxia; Yu, Haohai; Zhang, Huaijin; Di Lieto, Alberto; Tonelli, Mauro; Wang, Jiyang

    2016-06-15

    We demonstrate efficient laser-diode pumped multi-gigahertz (GHz) self-mode-locked praseodymium (Pr3+) visible lasers with broadband spectra from green to deep red for the first time to our knowledge. With a Pr3+-doped GdLiF4 crystal, stable self-mode-locked visible pulsed lasers at the wavelengths of 522 nm, 607 nm, 639 nm, and 720 nm have been obtained with the repetition rates of 2.8 GHz, 3.1 GHz, 3.1 GHz, and 3.0 GHz, respectively. The maximum output power was 612 mW with the slope efficiency of 46.9% at 639 nm. The mode-locking mechanism was theoretically analyzed. The stable second-harmonic mode-locking with doubled repetition frequency was also realized based on the Fabry-Perot effect formed in the laser cavity. In addition, we find that the polarization directions were turned with lasing wavelengths. This work may provide a new way for generating efficient ultrafast pulses with high- and changeable-repetition rates in the visible range.

  19. Oral-diadochokinetic rates for Hebrew-speaking school-age children: real words vs. non-words repetition.

    Science.gov (United States)

    Icht, Michal; Ben-David, Boaz M

    2015-02-01

    Oral-diadochokinesis (DDK) tasks are a common tool for evaluating speech disorders. Usually, these tasks involve repetitions of non-words. It has been suggested that repeating real words can be more suitable for preschool children. But, the impact of using real words with elementary school children has not been studied yet. This study evaluated oral-DDK rates for Hebrew-speaking elementary school children using non-words and real words. The participants were 60 children, 9-11 years old, with normal speech and language development, who were asked to repeat "pataka" (non-word) and "bodeket" (Hebrew real word). Data replicate the advantage generally found for real word repetition with preschoolers. Children produced real words faster than non-words for all age groups, and repetition rates were higher for the older children. The findings suggest that adding real words to the standard oral-DDK task with elementary school children may provide a more comprehensive picture of oro-motor function.

  20. Investigation on repetition rate and pulse duration influences on ablation efficiency of metals using a high average power Yb-doped ultrafast laser

    Directory of Open Access Journals (Sweden)

    Lopez J.

    2013-11-01

    Full Text Available Ultrafast lasers provide an outstanding processing quality but their main drawback is the low removal rate per pulse compared to longer pulses. This limitation could be overcome by increasing both average power and repetition rate. In this paper, we report on the influence of high repetition rate and pulse duration on both ablation efficiency and processing quality on metals. All trials have been performed with a single tunable ultrafast laser (350 fs to 10ps.

  1. Versatile high-repetition-rate phase-locked chopper system for fast timing experiments in the vacuum ultraviolet and x-ray spectral region

    Energy Technology Data Exchange (ETDEWEB)

    Plogmaker, Stefan; Johansson, Erik M. J.; Rensmo, Haakan; Feifel, Raimund; Siegbahn, Hans [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Linusson, Per [Department of Physics, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm (Sweden); Eland, John H. D. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ (United Kingdom); Baker, Neville [Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ (United Kingdom)

    2012-01-15

    A novel light chopper system for fast timing experiments in the vacuum-ultraviolet (VUV) and x-ray spectral region has been developed. It can be phase-locked and synchronized with a synchrotron radiation storage ring, accommodating repetition rates in the range of {approx}8 to {approx}120 kHz by choosing different sets of apertures and subharmonics of the ring frequency (MHz range). Also the opening time of the system can be varied from some nanoseconds to several microseconds to meet the needs of a broad range of applications. Adjusting these parameters, the device can be used either for the generation of single light pulses or pulse packages from a microwave driven, continuous He gas discharge lamp or from storage rings which are otherwise often considered as quasi-continuous light sources. This chopper can be utilized for many different kinds of experiments enabling, for example, unambiguous time-of-flight (TOF) multi-electron coincidence studies of atoms and molecules excited by a single light pulse as well as time-resolved visible laser pump x-ray probe electron spectroscopy of condensed matter in the valence and core level region.

  2. Progress in developing repetitive pulse systems utilizing inductive energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Honig, E.M.

    1983-01-01

    High-power, fast-recovery vacuum switches were used in a new repetitive counterpulse and transfer circuit to deliver a 5-kHz pulse train with a peak power of 75 MW (at 8.6 kA) to a 1-..cap omega.. load, resulting in the first demonstration of fully controlled, high-power, high-repetition-rate operation of an inductive energy-storage and transfer system with nondestructive switches. New circuits, analytical and experimental results, and feasibility of 100-kV repetitive pulse generation are discussed. A new switching concept for railgun loads is presented.

  3. 2Kx2K resolution element photon counting MCP sensor with >200 kHz event rate capability

    CERN Document Server

    Vallerga, J V

    2000-01-01

    Siegmund Scientific undertook a NASA Small Business Innovative Research (SBIR) contract to develop a versatile, high-performance photon (or particle) counting detector combining recent technical advances in all aspects of Microchannel Plate (MCP) detector development in a low cost, commercially viable package that can support a variety of applications. The detector concept consists of a set of MCPs whose output electron pulses are read out with a crossed delay line (XDL) anode and associated high-speed event encoding electronics. The delay line anode allows high-resolution photon event centroiding at very high event rates and can be scaled to large formats (>40 mm) while maintaining good linearity and high temporal stability. The optimal sensitivity wavelength range is determined by the choice of opaque photocathodes. Specific achievements included: spatial resolution of 200 000 events s sup - sup 1; local rates of >100 events s sup - sup 1 per resolution element; event timing of <1 ns; and low background ...

  4. Periodic structures on germanium induced by high repetition rate femtosecond laser

    Science.gov (United States)

    Lin, Xiaoming; Li, Xiaohong; Zhang, Yanbin; Xie, Changxin; Liu, Kaijun; Zhou, Qiang

    2018-05-01

    Laser-induced periodic surface structures (LIPSS) are studied on germanium surface in air by the femtosecond pulsed laser with repetition frequency of 76 MHz and wavelength λ of 800 nm. Three types of LIPSS were found and they are low-spatial-frequency LIPSS (LSFL), high-spatial-frequency LIPSS (HSFL), and LSFL superimposed with HSFL. The period ΛLSFL of LSFL shrinks quickly from approximately 650 nm to 400 nm (∼λ/2) when lowering the scanning speed. Comparatively, the period ΛHSFL of HSFL keeps almost constant between 90 and 100 nm (∼λ/8) when the scanning speed and the laser pulse energy vary. LSFL and HSFL coexist when the laser pulse energy is around 3.3 nJ/pulse and the scanning speed ranges between 3 and 8 mm/s. The surface plasmon polariton waves make a contribution to the formation of LIPSS and the fourth harmonic generation (FHG) might be involved in the formation of HSFL.

  5. Tropical cyclone turbulent mixing as observed by autonomous oceanic profilers with the high repetition rate

    International Nuclear Information System (INIS)

    Baranowski, D B; Malinowski, S P; Flatau, P J

    2011-01-01

    Changes in the ocean mixed layer caused by passage of two consecutive typhoons in the Western Pacific are presented. Ocean profiles were measured by a unique Argo float sampling the upper ocean in high repetition cycle with a period of about one day. It is shown that the typhoon passage coincides with cooling of the mixed layer and variations of its salinity. Independent data from satellite measurements of surface winds were used to set-up an and idealized numerical simulation of mixed layer evolution. Results, compared to Argo profiles, confirm known effect that cooling is a result of increased entrainment from the thermocline due to enhancement of turbulence in the upper ocean by the wind stress. Observed pattern of salinity changes in the mixed layer suggest important role of typhoon precipitation. Fast changes of the mixed layer in course of typhoon passage show that fast profiling (at least once a day) is crucial to study response of the upper ocean to tropical cyclone.

  6. Distinction between Neural and Vascular BOLD Oscillations and Intertwined Heart Rate Oscillations at 0.1 Hz in the Resting State and during Movement.

    Directory of Open Access Journals (Sweden)

    Gert Pfurtscheller

    Full Text Available In the resting state, blood oxygen level-dependent (BOLD oscillations with a frequency of about 0.1 Hz are conspicuous. Whether their origin is neural or vascular is not yet fully understood. Furthermore, it is not clear whether these BOLD oscillations interact with slow oscillations in heart rate (HR. To address these two questions, we estimated phase-locking (PL values between precentral gyrus (PCG and insula in 25 scanner-naïve individuals during rest and stimulus-paced finger movements in both hemispheres. PL was quantified in terms of time delay and duration in the frequency band 0.07 to 0.13 Hz. Results revealed both positive and negative time delays. Positive time delays characterize neural BOLD oscillations leading in the PCG, whereas negative time delays represent vascular BOLD oscillations leading in the insula. About 50% of the participants revealed positive time delays distinctive for neural BOLD oscillations, either with short or long unilateral or bilateral phase-locking episodes. An expected preponderance of neural BOLD oscillations was found in the left hemisphere during right-handed movement and unexpectedly in the right hemisphere during rest. Only neural BOLD oscillations were significantly associated with heart rate variability (HRV in the 0.1-Hz range in the first resting state. It is well known that participating in magnetic resonance imaging (MRI studies may be frightening and cause anxiety. In this respect it is important to note that the most significant hemispheric asymmetry (p<0.002 with a right-sided dominance of neural BOLD and a left-sided dominance of vascular BOLD oscillations was found in the first resting session in the scanner-naïve individuals. Whether the enhanced left-sided perfusion (dominance of vascular BOLD or the right-sided dominance of neural BOLD is related to the increased level of anxiety, attention or stress needs further research.

  7. Operation of low-noise single-gap RPC modules exposed to ionisation rates up to 1 kHz/cm$^2$

    CERN Document Server

    Cwiok, M; Dominik, Wojciech; Górski, M; Królikowski, J; 10.1016/j.nima.2004.06.123

    2004-01-01

    Two single gap medium-size RPC modules, made of bakelite plates of very good mechanical quality of the surface and having initial volume resistivity of 1 multiplied by 10**1**0 omegacm, were tested in the Gamma Irradiation Facility at CERN at ionisation rates up to 1 kHz/cm **3. The internal surfaces facing the gas volume of one RPC module were cladded with a thin layer of linseed oil varnish for comparison of oiled and non-oiled RPC operation. The results refer to the gas mixture of C//2H//2F //4/isobutane (97:3) with SF//6 addition below 1%. The single gap modules exhibited full detection efficiency plateau for the high voltage range of about 1 kV at full intensity of gamma rays. Good timing characteristics allowed to reach 95% efficiency at fully opened irradiation source with time window of 20 ns. The intrinsic noise rate for a non-oiled and an oiled RPC gap was, respectively, below 5 and 1 Hz/cm**2 at full efficiency over 1 k V voltage range.

  8. Exposure to extremely low frequency (50 Hz electromagnetic field changes the survival rate and morphometric characteristics of neurosecretory neurons of the earthworm Eisenia foetida (Oligochaeta under illumination stress

    Directory of Open Access Journals (Sweden)

    Banovački Zorana

    2013-01-01

    Full Text Available An in vivo model was set up to establish the behavioral stress response (rate of survival and morphometric characteristics of A1 protocerebral neurosecretory neurons (cell size of Eisenia foetida (Oligochaeta as a result of the synergetic effect of extremely low frequency electromagnetic fields (ELF-EMF - 50 Hz, 50 μT, 17 V/m and 50 Hz, 150 μT, 17 V/m, respectively and constant illumination (420-450 lux. If combined, these two stressors significantly (p<0.05 increased the survival rate of E. foetida in the 150 μT-exposed animals, because of delayed caudal autotomy reflex, an indicator of stress response. In addition, morphometric analysis indicated that there were changes in the protocerebral neurosecretory cells after exposure to the ELF-EMF. The present data support the view that short-term ELF-EMF exposure in “windows” of intensity is likely to stimulate the immune and neuroendocrine response of E. foetida.

  9. Absence of 60-Hz, 0.1-mT magnetic field-induced changes in oncogene transcription rates or levels in CEM-CM3 cells.

    Science.gov (United States)

    Jahreis, G P; Johnson, P G; Zhao, Y L; Hui, S W

    1998-12-22

    Our objective was to assess the reproducibility of the 60-Hz magnetic field-induced, time-dependent transcription changes of c-fos, c-jun and c-myc oncogenes in CEM-CM3 cells reported by Phillips et al. (Biochim. Biophys. Acta, 1132 (1992) 140-144). Cells were exposed to a 60-Hz magnetic field (MF) at 0.1 mT (rms), generated by a pair of Helmholtz coils energized in a reinforcing (MF) mode, or to a null magnetic field when the coils were energized in a bucking (sham) mode. After MF or sham exposure for 15, 30, 60 or 120 min, nuclei and cytoplasmic RNA were extracted. Transcription rates were measured by a nuclear run-on assay, and values were normalized against either their zero-time exposure values, or against those of the c-G3PDH (housekeeping) gene at the same time points. There was no significant difference, at P=0.05, detected between MF and either sham-exposed or control cells at any time point. Transcript levels of the oncogenes were measured by Northern analysis and normalized as above. No significant difference (P=0.05) in transcript levels between MF and either sham-exposed or control cells was detected.

  10. Application of a high-repetition-rate laser diagnostic system for single-cycle-resolved imaging in internal combustion engines.

    Science.gov (United States)

    Hult, Johan; Richter, Mattias; Nygren, Jenny; Aldén, Marcus; Hultqvist, Anders; Christensen, Magnus; Johansson, Bengt

    2002-08-20

    High-repetition-rate laser-induced fluorescence measurements of fuel and OH concentrations in internal combustion engines are demonstrated. Series of as many as eight fluorescence images, with a temporal resolution ranging from 10 micros to 1 ms, are acquired within one engine cycle. A multiple-laser system in combination with a multiple-CCD camera is used for cycle-resolved imaging in spark-ignition, direct-injection stratified-charge, and homogeneous-charge compression-ignition engines. The recorded data reveal unique information on cycle-to-cycle variations in fuel transport and combustion. Moreover, the imaging system in combination with a scanning mirror is used to perform instantaneous three-dimensional fuel-concentration measurements.

  11. Time-gated single-photon detection module with 110 ps transition time and up to 80 MHz repetition rate

    Energy Technology Data Exchange (ETDEWEB)

    Buttafava, Mauro, E-mail: mauro.buttafava@polimi.it; Boso, Gianluca; Ruggeri, Alessandro; Tosi, Alberto [Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Dalla Mora, Alberto [Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy)

    2014-08-15

    We present the design and characterization of a complete single-photon counting module capable of time-gating a silicon single-photon avalanche diode with ON and OFF transition times down to 110 ps, at repetition rates up to 80 MHz. Thanks to this sharp temporal filtering of incoming photons, it is possible to reject undesired strong light pulses preceding (or following) the signal of interest, allowing to increase the dynamic range of optical acquisitions up to 7 decades. A complete experimental characterization of the module highlights its very flat temporal response, with a time resolution of the order of 30 ps. The instrument is fully user-configurable via a PC interface and can be easily integrated in any optical setup, thanks to its small and compact form factor.

  12. Time-gated single-photon detection module with 110 ps transition time and up to 80 MHz repetition rate

    International Nuclear Information System (INIS)

    Buttafava, Mauro; Boso, Gianluca; Ruggeri, Alessandro; Tosi, Alberto; Dalla Mora, Alberto

    2014-01-01

    We present the design and characterization of a complete single-photon counting module capable of time-gating a silicon single-photon avalanche diode with ON and OFF transition times down to 110 ps, at repetition rates up to 80 MHz. Thanks to this sharp temporal filtering of incoming photons, it is possible to reject undesired strong light pulses preceding (or following) the signal of interest, allowing to increase the dynamic range of optical acquisitions up to 7 decades. A complete experimental characterization of the module highlights its very flat temporal response, with a time resolution of the order of 30 ps. The instrument is fully user-configurable via a PC interface and can be easily integrated in any optical setup, thanks to its small and compact form factor

  13. Generation of tunable, high repetition rate frequency combs with equalized spectra using carrier injection based silicon modulators

    Science.gov (United States)

    Nagarjun, K. P.; Selvaraja, Shankar Kumar; Supradeepa, V. R.

    2016-03-01

    High repetition-rate frequency combs with tunable repetition rate and carrier frequency are extensively used in areas like Optical communications, Microwave Photonics and Metrology. A common technique for their generation is strong phase modulation of a CW-laser. This is commonly implemented using Lithium-Niobate based modulators. With phase modulation alone, the combs have poor spectral flatness and significant number of missing lines. To overcome this, a complex cascade of multiple intensity and phase modulators are used. A comb generator on Silicon based on these principles is desirable to enable on-chip integration with other functionalities while reducing power consumption and footprint. In this work, we analyse frequency comb generation in carrier injection based Silicon modulators. We observe an interesting effect in these comb generators. Enhanced absorption accompanying carrier injection, an undesirable effect in data modulators, shapes the amplitude here to enable high quality combs from a single modulator. Thus, along with reduced power consumption to generate a specific number of lines, the complexity has also been significantly reduced. We use a drift-diffusion solver and mode solver (Silvaco TCAD) along with Soref-Bennett relations to calculate the variations in refractive indices and absorption of an optimized Silicon PIN - waveguide modulator driven by an unbiased high frequency (10 Ghz) voltage signal. Our simulations demonstrate that with a device length of 1 cm, a driving voltage of 2V and minor shaping with a passive ring-resonator filter, we obtain 37 lines with a flatness better than 5-dB across the band and power consumption an order of magnitude smaller than Lithium-Niobate modulators.

  14. Real time monitoring of pulsatile change in hemoglobin concentrations of cerebral tissue by a portable tissue oximeter with a 10-Hz sampling rate

    Science.gov (United States)

    Shiga, Toshikazu; Chihara, Eiichi; Tanabe, Kazuhisa; Tanaka, Yoshifumi; Yamamoto, Katsuyuki

    1998-01-01

    A portable CW tissue oximeter of a 10-Hz sampling rate was developed for examination of pulsatile components of the output signals as a mean of checking the signal reliability during long-term monitoring. Feasible studies were performed on a healthy subject. Changes in Hb and HbO2 signals of cerebral tissue were continuously measured by placing a photoprobe on the forehead during 6-hour sleep. Pulsatile changes in Hb and HbO2 were steadily observed over a whole period of the recording. The phase relation of pulsation in Hb and HbO2 was almost inverse. Not only information for reliable monitoring but also physiological parameters with respect to cerebral circulation and metabolism could be obtained by measuring the pulsatile components.

  15. Experimental investigation of different regimes of mode-locking in a high repetition rate passively mode-locked semiconductor quantum-dot laser.

    Science.gov (United States)

    Kéfélian, Fabien; O'Donoghue, Shane; Todaro, Maria Teresa; McInerney, John; Huyet, Guillaume

    2009-04-13

    We report experimental investigations on a two-section 16-GHz repetition rate InAs/GaAs quantum dot passively mode-locked laser. Near the threshold current, pseudo-periodic Q-switching with complex dynamics is exhibited. Mode-locking operation regimes characterized by different repetition rates and timing jitter levels are encountered up to twice the threshold current. Evolution of the RF spectrum and optical spectrum with current is compared. The different mode-locked regimes are shown to be associated with different spectral and temporal shapes, ranging from 1.3 to 6 ps. This point is discussed by introducing the existence of two different supermodes. Repetition rate evolution and timing jitter increase is attributed to the coupling between the dominant and the secondary supermodes.

  16. Induction Accelerator Efficiency at 5 Hz

    International Nuclear Information System (INIS)

    Molvik, A.W.; Faltens, A.

    2000-01-01

    We simulate fusion power plant driver efficiency by pulsing small induction cores at 5 Hz (a typical projected power plant repetition rate), with a resistive load in the secondary winding that is scaled to simulate the beam loading for induction acceleration. Starting from a power plant driver design that is based on other constraints, we obtain the core mass and acceleration efficiency for several energy ranges of the driver accelerator and for three magnetic alloys. The resistor in the secondary is chosen to give the same acceleration efficiency, the ratio of beam energy gain to energy input to the core module (core plus acceleration gap), as was computed for the driver. The pulser consists of a capacitor switched by FETs, Field Effect Transistors, which are gated on for the desired pulse duration. The energy to the resistor is evaluated during the portion of the pulse that is adequately flat. We present data over a range of 0.6 to 5 μs pulse lengths. With 1 μs pulses, the acceleration efficiency at 5 Hz is measured to be 75%, 52%, and 32% for thin-tape-wound cores of nanocrystalline, amorphous, and 3% silicon steel materials respectively, including only core losses. The efficiency increases for shorter pulse durations

  17. A soft X-ray source based on a low divergence, high repetition rate ultraviolet laser

    Science.gov (United States)

    Crawford, E. A.; Hoffman, A. L.; Milroy, R. D.; Quimby, D. C.; Albrecht, G. F.

    The CORK code is utilized to evaluate the applicability of low divergence ultraviolet lasers for efficient production of soft X-rays. The use of the axial hydrodynamic code wih one ozone radial expansion to estimate radial motion and laser energy is examined. The calculation of ionization levels of the plasma and radiation rates by employing the atomic physics and radiation model included in the CORK code is described. Computations using the hydrodynamic code to determine the effect of laser intensity, spot size, and wavelength on plasma electron temperature are provided. The X-ray conversion efficiencies of the lasers are analyzed. It is observed that for a 1 GW laser power the X-ray conversion efficiency is a function of spot size, only weakly dependent on pulse length for time scales exceeding 100 psec, and better conversion efficiencies are obtained at shorter wavelengths. It is concluded that these small lasers focused to 30 micron spot sizes and 10 to the 14th W/sq cm intensities are useful sources of 1-2 keV radiation.

  18. The rate of X-ray-induced DNA double-strand break repair in the embryonic mouse brain is unaffected by exposure to 50 Hz magnetic fields.

    Science.gov (United States)

    Woodbine, Lisa; Haines, Jackie; Coster, Margaret; Barazzuol, Lara; Ainsbury, Elizabeth; Sienkiewicz, Zenon; Jeggo, Penny

    2015-06-01

    Following in utero exposure to low dose radiation (10-200 mGy), we recently observed a linear induction of DNA double-strand breaks (DSB) and activation of apoptosis in the embryonic neuronal stem/progenitor cell compartment. No significant induction of DSB or apoptosis was observed following exposure to magnetic fields (MF). In the present study, we exploited this in vivo system to examine whether exposure to MF before and after exposure to 100 mGy X-rays impacts upon DSB repair rates. 53BP1 foci were quantified following combined exposure to radiation and MF in the embryonic neuronal stem/progenitor cell compartment. Embryos were exposed in utero to 50 Hz MF at 300 μT for 3 h before and up to 9 h after exposure to 100 mGy X-rays. Controls included embryos exposed to MF or X-rays alone plus sham exposures. Exposure to MF before and after 100 mGy X-rays did not impact upon the rate of DSB repair in the embryonic neuronal stem cell compartment compared to repair rates following radiation exposure alone. We conclude that in this sensitive system MF do not exert any significant level of DNA damage and do not impede the repair of X-ray induced damage.

  19. kHz femtosecond laser-plasma hard X-ray and fast ion source

    International Nuclear Information System (INIS)

    Thoss, A.; Korn, G.; Stiel, H.; Voigt, U.; Elsaesser, T.; Richardson, M.C.; Siders, C.W.; Faubel, M.

    2002-01-01

    We describe the first demonstration of a new stable, kHz femtosecond laser-plasma source of hard x-ray continuum and K α emission using a thin liquid metallic jet target. kHz femtosecond x-ray sources will find many applications in time-resolved x-ray diffraction and microscopy studies. As high intensity lasers become more compact and operate at increasingly high repetition-rates, they require a target configuration that is both repeatable from shot-to-shot and is debris-free. We have solved this requirement with the use of a fine (10-30 μm diameter) liquid metal jet target that provides a pristine, unperturbed filament surface at rates >100 kHz. A number of liquid metal targets are considered. We will show hard x-ray spectra recorded from liquid Ga targets that show the generation of the 9.3 keV and 10.3 keV, K α and K β lines superimposed on a multi-keV Bremsstrahlung continuum. This source was generated by a 50fs duration, 1 kHz, 2W, high intensity Ti:Sapphire laser. We will discuss the extension of this source to higher powers and higher repetition rates, providing harder x-ray emission, with the incorporation of pulse-shaping and other techniques to enhance the x-ray conversion efficiency. Using the same liquid target technology, we have also demonstrated the generation of forward-going sub-MeV protons from a 10 μm liquid water target at 1 kHz repetition rates. kHz sources of high energy ions will find many applications in time-resolved particle interaction studies, as well as lead to the efficient generation of short-lived isotopes for use in nuclear medicine and other applications. The protons were detected with CR-39 track detectors both in the forward and backward directions up to energies of ∼500 keV. As the intensity of compact high repetition-rate lasers sources increase, we can expect improvements in the energy, conversion efficiency and directionality to occur. The impact of these developments on a number of fields will be discussed. As compact

  20. 2 ~ 5 times tunable repetition-rate multiplication of a 10 GHz pulse source using a linearly tunable, chirped fiber Bragg grating.

    Science.gov (United States)

    Lee, Ju Han; Chang, You; Han, Young-Geun; Kim, Sang; Lee, Sang

    2004-08-23

    We experimentally demonstrate a simple scheme for the tunable pulse repetition-rate multiplication based on the fractional Talbot effect in a linearly tunable, chirped fiber Bragg grating (FBG). The key component in this scheme is our linearly tunable, chirped FBG with no center wavelength shift, which was fabricated with the S-bending method using a uniform FBG. By simply tuning the group velocity dispersion of the chirped FBG, we readily multiply an original 8.5 ps, 10 GHz soliton pulse train by a factor of 2 ~ 5 to obtain high quality pulses at repetition-rates of 20 ~ 50 GHz without significantly changing the system configuration.

  1. Use of a high repetition rate neutron generator for in vivo body composition measurements via neutron inelastic scattering

    International Nuclear Information System (INIS)

    Kehayias, J.J.; Ellis, K.J.; Cohn, S.H.; Weinlein, J.H.

    1986-01-01

    A small D-T neutron generator with a high pulse rate is used for the in vivo measurement of body carbon, oxygen and hydrogen. The core of the neutron generator is a 13 cm-long Zetatron tube pulsed at a rate of 10 kHz delivering 10 3 to 10 4 neutrons per pulse. A target-current feedback system regulates the source of the accelerator to assure constant neutron output. Carbon is measured by detecting the 4.44 MeV γ-rays from inelastic scattering. The short half-life of the 4.44 MeV state of carbon requires detection of the γ-rays during the 10 μs neutron pulse. Generators with low pulsing rate were found inappropriate for carbon measurements because of their low duty-cycle (high neutron output during the pulse). In vivo measurements were performed with normal volunteers using a scanning bed facility for a dose less than 25 mrem. This technique offers medical as well as general bulk analysis applications. 8 refs., 5 figs

  2. Changes in patellofemoral pain resulting from repetitive impact landings are associated with the magnitude and rate of patellofemoral joint loading.

    Science.gov (United States)

    Atkins, Lee T; James, C Roger; Yang, Hyung Suk; Sizer, Phillip S; Brismée, Jean-Michel; Sawyer, Steven F; Powers, Christopher M

    2018-03-01

    Although a relationship between elevated patellofemoral forces and pain has been proposed, it is unknown which joint loading variable (magnitude, rate) is best associated with pain changes. The purpose of this study was to examine associations among patellofemoral joint loading variables and changes in patellofemoral pain across repeated single limb landings. Thirty-one females (age: 23.5(2.8) year; height: 166.8(5.8) cm; mass: 59.6(8.1) kg) with PFP performed 5 landing trials from 0.25 m. The dependent variable was rate of change in pain obtained from self-reported pain scores following each trial. Independent variables included 5-trial averages of peak, time-integral, and average and maximum development rates of the patellofemoral joint reaction force obtained using a previously described model. Pearson correlation coefficients were calculated to evaluate individual associations between rate of change in pain and each independent variable (α = 0.05). Stepwise linear multiple regression (α enter  = 0.05; α exit  = 0.10) was used to identify the best predictor of rate of change in pain. Subjects reported an average increase of 0.38 pain points with each landing trial. Although, rate of change in pain was positively correlated with peak force (r = 0.44, p = 0.01), and average (r = 0.41, p = 0.02) and maximum force development rates (r = 0.39, p = 0.03), only the peak force entered the predictive model explaining 19% of variance in rate of change in pain (r 2  = 0.19, p = 0.01). Peak patellofemoral joint reaction force was the best predictor of the rate of change in pain following repetitive singe limb landings. The current study supports the theory that patellofemoral joint loading contributes to changes in patellofemoral pain. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Test-Retest Reliability of Rating of Perceived Exertion and Agreement With 1-Repetition Maximum in Adults.

    Science.gov (United States)

    Bove, Allyn M; Lynch, Andrew D; DePaul, Samantha M; Terhorst, Lauren; Irrgang, James J; Fitzgerald, G Kelley

    2016-09-01

    Study Design Clinical measurement. Background It has been suggested that rating of perceived exertion (RPE) may be a useful alternative to 1-repetition maximum (1RM) to determine proper resistance exercise dosage. However, the test-retest reliability of RPE for resistance exercise has not been determined. Additionally, prior research regarding the relationship between 1RM and RPE is conflicting. Objectives The purpose of this study was to (1) determine test-retest reliability of RPE related to resistance exercise and (2) assess agreement between percentages of 1RM and RPE during quadriceps resistance exercise. Methods A sample of participants with and without knee pathology completed a series of knee extension exercises and rated the perceived difficulty of each exercise on a 0-to-10 RPE scale, then repeated the procedure 1 to 2 weeks later for test-retest reliability. To determine agreement between RPE and 1RM, participants completed knee extension exercises at various percentages of their 1RM (10% to 130% of predicted 1RM) and rated the perceived difficulty of each exercise on a 0-to-10 RPE scale. Percent agreement was calculated between the 1RM and RPE at each resistance interval. Results The intraclass correlation coefficient indicated excellent test-retest reliability of RPE for quadriceps resistance exercises (intraclass correlation coefficient = 0.895; 95% confidence interval: 0.866, 0.918). Overall percent agreement between RPE and 1RM was 60%, but agreement was poor within the ranges that would typically be used for training (50% 1RM for muscle endurance, 70% 1RM and greater for strength). Conclusion Test-retest reliability of perceived exertion during quadriceps resistance exercise was excellent. However, agreement between the RPE and 1RM was poor, especially in common training zones for knee extensor strengthening. J Orthop Sports Phys Ther 2016;46(9):768-774. Epub 5 Aug 2016. doi:10.2519/jospt.2016.6498.

  4. An improved ultrafast 2D NMR experiment: Towards atom-resolved real-time studies of protein kinetics at multi-Hz rates

    International Nuclear Information System (INIS)

    Gal, Maayan; Kern, Thomas; Schanda, Paul; Frydman, Lucio; Brutscher, Bernhard

    2009-01-01

    Multidimensional NMR spectroscopy is a well-established technique for the characterization of structure and fast-time-scale dynamics of highly populated ground states of biological macromolecules. The investigation of short-lived excited states that are important for molecular folding, misfolding and function, however, remains a challenge for modern biomolecular NMR techniques. Off-equilibrium real-time kinetic NMR methods allow direct observation of conformational or chemical changes by following peak positions and intensities in a series of spectra recorded during a kinetic event. Because standard multidimensional NMR methods required to yield sufficient atom-resolution are intrinsically time-consuming, many interesting phenomena are excluded from real-time NMR analysis. Recently, spatially encoded ultrafast 2D NMR techniques have been proposed that allow one to acquire a 2D NMR experiment within a single transient. In addition, when combined with the SOFAST technique, such ultrafast experiments can be repeated at high rates. One of the problems detected for such ultrafast protein NMR experiments is related to the heteronuclear decoupling during detection with interferences between the pulses and the oscillatory magnetic field gradients arising in this scheme. Here we present a method for improved ultrafast data acquisition yielding higher signal to noise and sharper lines in single-scan 2D NMR spectra. In combination with a fast-mixing device, the recording of 1 H- 15 N correlation spectra with repetition rates of up to a few Hertz becomes feasible, enabling real-time studies of protein kinetics occurring on time scales down to a few seconds

  5. Measurement of acoustic velocity components in a turbulent flow using LDV and high-repetition rate PIV

    Science.gov (United States)

    Léon, Olivier; Piot, Estelle; Sebbane, Delphine; Simon, Frank

    2017-06-01

    The present study provides theoretical details and experimental validation results to the approach proposed by Minotti et al. (Aerosp Sci Technol 12(5):398-407, 2008) for measuring amplitudes and phases of acoustic velocity components (AVC) that are waveform parameters of each component of velocity induced by an acoustic wave, in fully turbulent duct flows carrying multi-tone acoustic waves. Theoretical results support that the turbulence rejection method proposed, based on the estimation of cross power spectra between velocity measurements and a reference signal such as a wall pressure measurement, provides asymptotically efficient estimators with respect to the number of samples. Furthermore, it is shown that the estimator uncertainties can be simply estimated, accounting for the characteristics of the measured flow turbulence spectra. Two laser-based measurement campaigns were conducted in order to validate the acoustic velocity estimation approach and the uncertainty estimates derived. While in previous studies estimates were obtained using laser Doppler velocimetry (LDV), it is demonstrated that high-repetition rate particle image velocimetry (PIV) can also be successfully employed. The two measurement techniques provide very similar acoustic velocity amplitude and phase estimates for the cases investigated, that are of practical interest for acoustic liner studies. In a broader sense, this approach may be beneficial for non-intrusive sound emission studies in wind tunnel testings.

  6. Determination of trace amounts of plutonium in environmental samples by RIMS using a high repetition rate solid state laser system

    International Nuclear Information System (INIS)

    Gruening, C.; Kratz, J.V.; Trautmann, N.; Waldek, A.; Huber, G.; Passler, G.; Wendt, K.

    2001-01-01

    A reliable and easy to handle high repetition rate solid state laser system has been set up for routine applications of Resonance Ionization Mass Spectrometry (RIMS). It consists of three Titanium-Sapphire (Ti:Sa) lasers pumped by one Nd:YAG laser, providing up to 3 W of tunable laser light each in a wavelength range from 725 nm to 895 nm. The isotope shifts for 238 Pu to 244 Pu have been measured in an efficient ionization scheme with λ 1 =420.76 nm, λ 2 =847.28 nm and λ 3 =767.53 nm. An overall detection efficiency of the RIMS apparatus of ε=1x10 -5 is routinely reached, resulting in a detection limit of 2x10 6 atoms (0.8 fg) of plutonium. The isotopic compositions of synthetic samples and the NIST standard reference material SRM996 were measured. The content of 238 Pu to 242 Pu has been determined in dust samples from the surroundings of a nuclear power plant and 244 Pu was determined in urine samples for the National Radiation Protection Board (NRPB), U.K. Routine operation of plutonium ultratrace detection could thus be established

  7. Accumulation effects in modulation spectroscopy with high-repetition-rate pulses: Recursive solution of optical Bloch equations

    Science.gov (United States)

    Osipov, Vladimir Al.; Pullerits, Tõnu

    2017-10-01

    Application of the phase-modulated pulsed light for advance spectroscopic measurements is the area of growing interest. The phase modulation of the light causes modulation of the signal. Separation of the spectral components of the modulations allows to distinguish the contributions of various interaction pathways. The lasers with high repetition rate used in such experiments can lead to appearance of the accumulation effects, which become especially pronounced in systems with long-living excited states. Recently it was shown that such accumulation effects can be used to evaluate parameters of the dynamical processes in the material. In this work we demonstrate that the accumulation effects are also important in the quantum characteristics measurements provided by modulation spectroscopy. In particular, we consider a model of quantum two-level system driven by a train of phase-modulated light pulses, organized in analogy with the two-dimensional spectroscopy experiments. We evaluate the harmonics' amplitudes in the fluorescent signal and calculate corrections appearing from the accumulation effects. We show that the corrections can be significant and have to be taken into account at analysis of experimental data.

  8. Efficacy Of The Repetitions In Reserve-Based Rating Of Perceived Exertion For The Bench Press In Experienced And Novice Benchers.

    Science.gov (United States)

    Ormsbee, Michael J; Carzoli, Joseph P; Klemp, Alex; Allman, Brittany R; Zourdos, Michael C; Kim, Jeong-Su; Panton, Lynn B

    2017-03-13

    Autoregulation (AR) is the practice of adjusting training variables in response to athlete feedback. One component of AR postulated to enhance resistance training adaptations involves implementing a resistance training-specific rating of perceived exertion (RPE) scale measuring repetitions in reserve (RIR). The purpose of this study was to examine the efficacy of this method using the bench press exercise. Twenty-seven college-aged men were assigned to one of two groups based upon training age: experience benchers (EB) (n=14, training age: 4.7±2.0 yrs) and novice benchers (NB) (n=13, training age: 1.1±0.6 yrs). Subjects performed one-repetition maximum (1RM) followed by single-repetition sets with loads corresponding to 60, 75, and 90% of 1RM and an 8-repetition set at 70% 1RM. Subjects reported a corresponding RPE, based on RIR, for every set. Average velocity was recorded for each single-repetition set along with the first and last repetitions of the 8-repetition set at 70% 1RM. Average velocity at 100% of 1RM in EB was slower (0.14±0.04 m[BULLET OPERATOR]s) compared to NB (0.20±0.05 m[BULLET OPERATOR]s) (pvelocity or RPE at any other intensity. Both EB (r=0.85, pvelocity and RPE at all intensities. Our findings suggest that the RIR-based RPE scale may be an efficacious approach for AR of bench press training load and volume in college-aged men.

  9. Design and implementation of fast charging circuit for repetitive compact torus injector

    International Nuclear Information System (INIS)

    Onchi, T.; McColl, D.; Dreval, M.; Wolfe, S.; Xiao, C.; Hirose, A.

    2014-01-01

    A novel circuit for compact torus (CT) injector operated at high repetition rates has been developed. The core technology adopted in the present work is to charge a large storage capacitor bank and quickly charge the CT capacitor bank through a stack of insulated-gate bipolar transistors (IGBTs). A system consisting of IGBTs and slow banks for the repetitive operation has been developed and installed for each discharge circuit of the University of Saskatchewan Compact Torus Injector (USCTI). A repetition rate up to 1.7 Hz and a burst of 8 CTs have been achieved

  10. Low-timing-jitter, stretched-pulse passively mode-locked fiber laser with tunable repetition rate and high operation stability

    International Nuclear Information System (INIS)

    Liu, Yuanshan; Zhang, Jian-Guo; Chen, Guofu; Zhao, Wei; Bai, Jing

    2010-01-01

    We design a low-timing-jitter, repetition-rate-tunable, stretched-pulse passively mode-locked fiber laser by using a nonlinear amplifying loop mirror (NALM), a semiconductor saturable absorber mirror (SESAM), and a tunable optical delay line in the laser configuration. Low-timing-jitter optical pulses are stably produced when a SESAM and a 0.16 m dispersion compensation fiber are employed in the laser cavity. By inserting a tunable optical delay line between NALM and SESAM, the variable repetition-rate operation of a self-starting, passively mode-locked fiber laser is successfully demonstrated over a range from 49.65 to 50.47 MHz. The experimental results show that the newly designed fiber laser can maintain the mode locking at the pumping power of 160 mW to stably generate periodic optical pulses with width less than 170 fs and timing jitter lower than 75 fs in the 1.55 µm wavelength region, when the fundamental repetition rate of the laser is continuously tuned between 49.65 and 50.47 MHz. Moreover, this fiber laser has a feature of turn-key operation with high repeatability of its fundamental repetition rate in practice

  11. Performance of a high repetition pulse rate laser system for in-gas-jet laser ionization studies with the Leuven laser ion source LISOL

    International Nuclear Information System (INIS)

    Ferrer, R.; Sonnenschein, V.T.; Bastin, B.; Franchoo, S.; Huyse, M.; Kudryavtsev, Yu.; Kron, T.; Lecesne, N.; Moore, I.D.; Osmond, B.; Pauwels, D.; Radulov, D.; Raeder, S.; Rens, L.

    2012-01-01

    The laser ionization efficiency of the Leuven gas cell-based laser ion source was investigated under on- and off-line conditions using two distinctly different laser setups: a low-repetition rate dye laser system and a high-repetition rate Ti:sapphire laser system. A systematic study of the ion signal dependence on repetition rate and laser pulse energy was performed in off-line tests using stable cobalt and copper isotopes. These studies also included in-gas-jet laser spectroscopy measurements on the hyperfine structure of 63 Cu. A final run under on-line conditions in which the radioactive isotope 59 Cu (T 1/2 = 81.5 s) was produced, showed a comparable yield of the two laser systems for in-gas-cell ionization. However, a significantly improved time overlap by using the high-repetition rate laser system for in-gas-jet ionization was demonstrated by an increase of the overall duty cycle, and at the same time, pointed to the need for a better shaped atomic jet to reach higher ionization efficiencies.

  12. Narrow Q-switching pulse width and low mode-locking repetition rate Q-switched mode locking with a new coupled laser cavity

    International Nuclear Information System (INIS)

    Peng, J Y; Zheng, Y; Shen, J P; Shi, Y X

    2013-01-01

    An original diode-pumped Q-switched and mode-locked solid state Nd:GdVO 4 laser is demonstrated. The laser operates with double saturable absorbers and a new coupled laser cavity. The Q-switching envelope width is compressed to be about 15 ns and the mode-locking repetition rate is as low as 90 MHz. (paper)

  13. Short-Pulse-Width Repetitively Q-Switched ~2.7-μm Er:Y2O3 Ceramic Laser

    Directory of Open Access Journals (Sweden)

    Xiaojing Ren

    2017-11-01

    Full Text Available A short-pulse-width repetitively Q-switched 2.7-μm Er:Y2O3 ceramic laser is demonstrated using a specially designed mechanical switch, a metal plate carved with slits of both slit-width and duty-cycle optimized. With a 20% transmission output coupler, stable pulse trains with durations (full-width at half-maximum, FWHM of 27–38 ns were generated with a repetition rate within the range of 0.26–4 kHz. The peak power at a 0.26 kHz repetition rate was ~3 kW.

  14. Experimental study of the inverse diffusion flame using high repetition rate OH/acetone PLIF and PIV

    KAUST Repository

    Elbaz, Ayman M.; Roberts, William L.

    2015-01-01

    Most previous work on inverse diffusion flames (IDFs) has focused on laminar IDF emissions and the soot formation characteristics. Here, we investigate the characteristics and structure of methane IDFs using high speed planar laser-induced fluorescence (PLIF) images of OH, particle image velocimetry (PIV), and acetone PLIF imaging for non-reacting cases. First, the flame appearance was investigated with fixed methane loading (mass flux) but with varying airflow rates, yielding a central air jet Reynolds number (Re) of 1,000 to 6,000 (when blow-off occurs). Next, it was investigated a fixed central air jet Re of 4500, but with varied methane mass flux such that the global equivalence ratio spanned 0.5 to 4. It was observed that at Re smaller than 2000, the inner air jet promotes the establishment of an inverse diffusion flame surrounded by a normal diffusion flame. However, when the Re was increased to 2500, two distinct zones became apparent in the flame, a lower entrainment zone and an upper mixing and combustion zone. 10 kHz OH-PLIF images, and 2D PIV allow the identification of the fate and spatial flame structure. Many flame features were identified and further analyzed using simple but effective image processing methods, where three types of structure in all the flames investigated here: flame holes or breaks; closures; and growing kernels. Insights about the rate of evolution of these features, the dynamics of local extinction, and the sequence of events that lead to re-ignition are reported here. In the lower entrainment zone, the occurrence of the flame break events is counterbalanced by closure events, and the edge propagation appears to control the rate at which the flame holes and closures propagate. The rate of propagation of holes was found to be statistically faster than the rate of closure. As the flames approach blow-off, flame kernels become the main mechanism for flame re-ignition further downstream. The simultaneous OH-PLIF/Stereo PIV

  15. Experimental study of the inverse diffusion flame using high repetition rate OH/acetone PLIF and PIV

    KAUST Repository

    Elbaz, Ayman M.

    2015-10-29

    Most previous work on inverse diffusion flames (IDFs) has focused on laminar IDF emissions and the soot formation characteristics. Here, we investigate the characteristics and structure of methane IDFs using high speed planar laser-induced fluorescence (PLIF) images of OH, particle image velocimetry (PIV), and acetone PLIF imaging for non-reacting cases. First, the flame appearance was investigated with fixed methane loading (mass flux) but with varying airflow rates, yielding a central air jet Reynolds number (Re) of 1,000 to 6,000 (when blow-off occurs). Next, it was investigated a fixed central air jet Re of 4500, but with varied methane mass flux such that the global equivalence ratio spanned 0.5 to 4. It was observed that at Re smaller than 2000, the inner air jet promotes the establishment of an inverse diffusion flame surrounded by a normal diffusion flame. However, when the Re was increased to 2500, two distinct zones became apparent in the flame, a lower entrainment zone and an upper mixing and combustion zone. 10 kHz OH-PLIF images, and 2D PIV allow the identification of the fate and spatial flame structure. Many flame features were identified and further analyzed using simple but effective image processing methods, where three types of structure in all the flames investigated here: flame holes or breaks; closures; and growing kernels. Insights about the rate of evolution of these features, the dynamics of local extinction, and the sequence of events that lead to re-ignition are reported here. In the lower entrainment zone, the occurrence of the flame break events is counterbalanced by closure events, and the edge propagation appears to control the rate at which the flame holes and closures propagate. The rate of propagation of holes was found to be statistically faster than the rate of closure. As the flames approach blow-off, flame kernels become the main mechanism for flame re-ignition further downstream. The simultaneous OH-PLIF/Stereo PIV

  16. High power, repetitive stacked Blumlein pulse generators

    Energy Technology Data Exchange (ETDEWEB)

    Davanloo, F; Borovina, D L; Korioth, J L; Krause, R K; Collins, C B [Univ. of Texas at Dallas, Richardson, TX (United States). Center for Quantum Electronics; Agee, F J [US Air Force Phillips Lab., Kirtland AFB, NM (United States); Kingsley, L E [US Army CECOM, Ft. Monmouth, NJ (United States)

    1997-12-31

    The repetitive stacked Blumlein pulse power generators developed at the University of Texas at Dallas consist of several triaxial Blumleins stacked in series at one end. The lines are charged in parallel and synchronously commuted with a single switch at the other end. In this way, relatively low charging voltages are multiplied to give a high discharge voltage across an arbitrary load. Extensive characterization of these novel pulsers have been performed over the past few years. Results indicate that they are capable of producing high power waveforms with rise times and repetition rates in the range of 0.5-50 ns and 1-300 Hz, respectively, using a conventional thyratron, spark gap, or photoconductive switch. The progress in the development and use of stacked Blumlein pulse generators is reviewed. The technology and the characteristics of these novel pulsers driving flash x-ray diodes are discussed. (author). 4 figs., 5 refs.

  17. LASERS: Parameters of a trigatron-driven low-pulse-repetition-rate TEA CO2 laser preionised by a surface corona discharge

    Science.gov (United States)

    Aram, M.; Behjat, A.; Shabanzadeh, M.; Mansori, F.

    2007-01-01

    The design of a TEA CO2 laser with UV preionisation by a surface corona discharge is described and the dependences of its average output energy on the gas-flow rate, discharge voltage and pulse repetition rate are presented. The scheme of the electric circuit and the geometry of the pre-ionisation system are considered. The electric circuit is designed to produce only impulse voltage difference between the laser electrodes. The triggering system of the trigatron is used to prevent the appearance of the arc. The dependences of the current, voltage and average output energy on the gas-mixture composition and applied voltages at a low pulse repetition rate are presented. The central output wavelength of the laser was measured with an IR spectrometer. Lasing at two adjacent vibrational-rotational transitions of the CO2 molecule was observed, which demonstrates the possibility of simultaneous lasing at several lines.

  18. Parameters of a trigatron-driven low-pulse-repetition-rate TEA CO2 laser preionised by a surface corona discharge

    International Nuclear Information System (INIS)

    Aram, M; Shabanzadeh, M; Mansori, F; Behjat, A

    2007-01-01

    The design of a TEA CO 2 laser with UV preionisation by a surface corona discharge is described and the dependences of its average output energy on the gas-flow rate, discharge voltage and pulse repetition rate are presented. The scheme of the electric circuit and the geometry of the pre-ionisation system are considered. The electric circuit is designed to produce only impulse voltage difference between the laser electrodes. The triggering system of the trigatron is used to prevent the appearance of the arc. The dependences of the current, voltage and average output energy on the gas-mixture composition and applied voltages at a low pulse repetition rate are presented. The central output wavelength of the laser was measured with an IR spectrometer. Lasing at two adjacent vibrational-rotational transitions of the CO 2 molecule was observed, which demonstrates the possibility of simultaneous lasing at several lines. (lasers)

  19. Compact 4-kHz XeF-laser with multisectional discharge gap

    Science.gov (United States)

    Andramanov, A. V.; Kabaev, S. A.; Lazhintsev, Boris V.; Nor-Arevyan, Vladimir A.; Selemir, V. D.

    2005-03-01

    An electric-discharge XeF-laser with a pulse repetition rate up to 4 kHz was developed. The laser electrode unit was made on the basis of plate-like electrodes with inductive-capacity discharge stabilization. The narrow discharge width laser energy was 3 mJ by using He/Xe/NF3 and Ne/Xe/NF3 mixtures at the total pressure of 0.8 atm and 1.2 atm, respectively. The maximum laser efficiency was ~ 0.73% The gas flow was formed with the help of a diametrical fan rotated by the direct-current motor with 80 W power. The gas velocity of 20 m/s in the interelectrode gap was achieved. The laser pulse energy for a pulse repetition rate up to 3.5...4 kHz was virtually equal to the laser pulse energy in the infrequently-repeating-pulse regime. The average output power of 12 W at the pulse repetition rate of 4 kHz was achieved. The relative root-mean-square pulse-to-pulse variation of the output energy σ = 2.5% was reached.

  20. Generation of fast-rise time, repetitive, (sub) nanosecond, high-voltage pulses

    NARCIS (Netherlands)

    Huiskamp, T.; Pemen, A.J.M.

    2017-01-01

    In this contribution we present our fast-rise time nanosecond pulse generator, capable of generating up to 50 kV (positive and negative) rectangular pulses at a repetition rate of up to 1 kHz and with a rise time of less than 200 picoseconds. We focus on the general concepts involved in the design

  1. Efficacy of single versus three sessions of high rate repetitive transcranial magnetic stimulation in chronic migraine and tension-type headache.

    Science.gov (United States)

    Kalita, Jayantee; Laskar, Sanghamitra; Bhoi, Sanjeev Kumar; Misra, Usha Kant

    2016-11-01

    We report the efficacy of three versus single session of 10 Hz repetitive transcranial magnetic stimulation (rTMS) in chronic migraine (CM) and chronic tension-type headache (CTTH). Ninety-eight patients with CM or CTTH were included and their headache frequency, severity, functional disability and number of abortive medications were noted. Fifty-two patients were randomly assigned to group I (three true sessions) and 46 to group II (one true and two sham rTMS sessions) treatment. 10 Hz rTMS comprising 600 pulses was delivered in 412.4 s on the left frontal cortex. Outcomes were noted at 1, 2 and 3 months. The primary outcome was 50 % reduction in headache frequency, and secondary outcomes were improvement in severity, functional disability, abortive drugs and side effects. The baseline headache characteristics were similar between the two groups. Follow up at different time points revealed significant improvement in headache frequency, severity, functional disability and number of abortive drugs compared to baseline in both group I and group II patients, although these parameters were not different between the two groups. In group I, 31 (79.4 %) had reduction of headache frequency and 29 (74.4 %) converted to episodic headache. In group II, these were 24 (64.8 %) and 22 (59.2 %), respectively. In chronic migraine, the severity of headache at 2 months reduced in group I compared to group II (62.5 vs 35.3 %; P = 0.01). Both single and three sessions of 10 Hz rTMS were found to be equally effective in CM and CTTH, and resulted in conversion of chronic to episodic headache in 67.1 % patients.

  2. Single-Mode, High Repetition Rate, Compact Ho:YLF Laser for Space-Borne Lidar Applications

    Science.gov (United States)

    Bai, Yingxin; Yu, Jirong; Wong, Teh-Hwa; Chen, Songsheng; Petros, Mulugeta; Singh, Upendra N.

    2014-01-01

    A single transverse/longitudinal mode, compact Q-switched Ho:YLF laser has been designed and demonstrated for space-borne lidar applications. The pulse energy is between 34-40 mJ for 100-200 Hz operation. The corresponding peak power is >1 MW.

  3. 300-MHz-repetition-rate, all-fiber, femtosecond laser mode-locked by planar lightwave circuit-based saturable absorber.

    Science.gov (United States)

    Kim, Chur; Kim, Dohyun; Cheong, YeonJoon; Kwon, Dohyeon; Choi, Sun Young; Jeong, Hwanseong; Cha, Sang Jun; Lee, Jeong-Woo; Yeom, Dong-Il; Rotermund, Fabian; Kim, Jungwon

    2015-10-05

    We show the implementation of fiber-pigtailed, evanescent-field-interacting, single-walled carbon nanotube (CNT)-based saturable absorbers (SAs) using standard planar lightwave circuit (PLC) fabrication processes. The implemented PLC-CNT-SA device is employed to realize self-starting, high-repetition-rate, all-fiber ring oscillators at telecommunication wavelength. We demonstrate all-fiber Er ring lasers operating at 303-MHz (soliton regime) and 274-MHz (stretched-pulse regime) repetition-rates. The 303-MHz (274-MHz) laser centered at 1555 nm (1550 nm) provides 7.5 nm (19 nm) spectral bandwidth. After extra-cavity amplilfication, the amplified pulse train of the 303-MHz (274-MHz) laser delivers 209 fs (178 fs) pulses. To our knowledge, this corresponds to the highest repetition-rates achieved for femtosecond lasers employing evanescent-field-interacting SAs. The demonstrated SA fabrication method, which is based on well-established PLC processes, also shows a potential way for mass-producible and lower-cost waveguide-type SA devices suitable for all-fiber and waveguide lasers.

  4. Development of LD pumped 10 J x 10 Hz Nd: Glass slab laser system

    International Nuclear Information System (INIS)

    Yamanaka, Masanobu; Kanabe, Tadashi; Matsui, Hideki

    2000-01-01

    As a first step of a driver development for the inertial fusion energy, we are developing a diode-pumped zig-zag Nd: glass slab laser amplifier system which can generate an output of 10 J per pulse at 1053 nm in 10 Hz operation. The water-cooled zig-zag Nd: glass slab is pumped from both sides by 803-nm AlGaAs laser-diode (LD) module; each LD module has an emitting area of 420 mm x 10 mm and two LD modules generated in total 200 kW peak power with 2.5 kW/cm 2 peak intensity at 10 Hz repetition rate. We have obtained in a preliminary experiment a 8.5 J output energy at 0.5 Hz with beam quality of 2 times diffraction limited far-field pattern. (author)

  5. Transient thermal stress wave and vibrational analyses of a thin diamond crystal for X-ray free-electron lasers under high-repetition-rate operation.

    Science.gov (United States)

    Yang, Bo; Wang, Songwei; Wu, Juhao

    2018-01-01

    High-brightness X-ray free-electron lasers (FELs) are perceived as fourth-generation light sources providing unprecedented capabilities for frontier scientific researches in many fields. Thin crystals are important to generate coherent seeds in the self-seeding configuration, provide precise spectral measurements, and split X-ray FEL pulses, etc. In all of these applications a high-intensity X-ray FEL pulse impinges on the thin crystal and deposits a certain amount of heat load, potentially impairing the performance. In the present paper, transient thermal stress wave and vibrational analyses as well as transient thermal analysis are carried out to address the thermomechanical issues for thin diamond crystals, especially under high-repetition-rate operation of an X-ray FEL. The material properties at elevated temperatures are considered. It is shown that, for a typical FEL pulse depositing tens of microjoules energy over a spot of tens of micrometers in radius, the stress wave emission is completed on the tens of nanoseconds scale. The amount of kinetic energy converted from a FEL pulse can reach up to ∼10 nJ depending on the layer thickness. Natural frequencies of a diamond plate are also computed. The potential vibrational amplitude is estimated as a function of frequency. Due to the decreasing heat conductivity with increasing temperature, a runaway temperature rise is predicted for high repetition rates where the temperature rises abruptly after ratcheting up to a point of trivial heat damping rate relative to heat deposition rate.

  6. Laterality of repetitive finger movement performance and clinical features of Parkinson's disease.

    Science.gov (United States)

    Stegemöller, Elizabeth; Zaman, Andrew; MacKinnon, Colum D; Tillman, Mark D; Hass, Chris J; Okun, Michael S

    2016-10-01

    Impairments in acoustically cued repetitive finger movement often emerge at rates near to and above 2Hz in persons with Parkinson's Disease (PD) in which some patients move faster (hastening) and others move slower (bradykinetic). The clinical features impacting this differential performance of repetitive finger movement remain unknown. The purpose of this study was to compare repetitive finger movement performance between the more and less affected side, and the difference in clinical ratings among performance groups. Forty-one participants diagnosed with idiopathic PD completed an acoustically cued repetitive finger movement task while "on" medication. Eighteen participants moved faster, 10 moved slower, and 13 were able to maintain the appropriate rate at rates above 2Hz. Clinical measures of laterality, disease severity, and the UPDRS were obtained. There were no significant differences between the more and less affected sides regardless of performance group. Comparison of disease severity, tremor, and rigidity among performance groups revealed no significant differences. Comparison of posture and postural instability scores revealed that the participants that demonstrated hastening had worse posture and postural instability scores. Consideration of movement rate during the clinical evaluation of repetitive finger movement may provide additional insight into varying disease features in persons with PD. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Repetitive Stress Injuries

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Repetitive Stress Injuries KidsHealth / For Teens / Repetitive Stress Injuries What's ... t had any problems since. What Are Repetitive Stress Injuries? Repetitive stress injuries (RSIs) are injuries that ...

  8. Broadband 2D electronic spectrometer using white light and pulse shaping: noise and signal evaluation at 1 and 100 kHz.

    Science.gov (United States)

    Kearns, Nicholas M; Mehlenbacher, Randy D; Jones, Andrew C; Zanni, Martin T

    2017-04-03

    We have developed a broad bandwidth two-dimensional electronic spectrometer that operates shot-to-shot at repetition rates up to 100 kHz using an acousto-optic pulse shaper. It is called a two-dimensional white-light (2D-WL) spectrometer because the input is white-light supercontinuum. Methods for 100 kHz data collection are studied to understand how laser noise is incorporated into 2D spectra during measurement. At 100 kHz, shot-to-shot scanning of the delays and phases of the pulses in the pulse sequence produces a 2D spectrum 13-times faster and with the same signal-to-noise as using mechanical stages and a chopper. Comparing 100 to 1 kHz repetition rates, data acquisition time is decreased by a factor of 200, which is beyond the improvement expected by the repetition rates alone due to reduction in 1/f noise. These improvements arise because shot-to-shot readout and modulation of the pulse train at 100 kHz enables the electronic coherences to be measured faster than the decay in correlation between laser intensities. Using white light supercontinuum for the pump and probe pulses produces high signal-to-noise spectra on samples with optical densities 200 nm bandwidth.

  9. Interaction of Repetitively Pulsed High Energy Laser Radiation With Matter

    Science.gov (United States)

    Hugenschmidt, Manfred

    1986-10-01

    The paper is concerned with laser target interaction processes involving new methods of improving the overall energy balance. As expected theoretically, this can be achieved with high repetition rate pulsed lasers even for initially highly reflecting materials, such as metals. Experiments were performed by using a pulsed CO2 laser at mean powers up to 2 kW and repetition rates up to 100 Hz. The rates of temperature rise of aluminium for example were thereby increased by lore than a factor of 3 as compared to cw-radiation of comparable power density. Similar improvements were found for the overall absorptivities that were increased by this method by more than an order of magnitude.

  10. A compact, repetitive accelerator for military and industrial applications

    International Nuclear Information System (INIS)

    Zutavern, F.J.; O'Malley, M.W.; Ruebush, M.H.; Rinehart, L.F.; Loubriel, G.M.; Babcock, S.R.; Denison, G.J.

    1998-04-01

    A compact, short pulse, repetitive accelerator has many useful military and commercial applications in biological counter proliferation, materials processing, radiography, and sterilization (medical instruments, waste, and food). The goal of this project was to develop and demonstrate a small, 700 kV accelerator, which can produce 7 kA particle beams with pulse lengths of 10--30 ns at rates up to 50 Hz. At reduced power levels, longer pulses or higher repetition rates (up to 10 kHz) could be achieved. Two switching technologies were tested: (1) spark gaps, which have been used to build low repetition rate accelerators for many years; and (2) high gain photoconductive semiconductor switches (PCSS), a new solid state switching technology. This plan was economical, because it used existing hardware for the accelerator, and the PCSS material and fabrication for one module was relatively inexpensive. It was research oriented, because it provided a test bed to examine the utility of other emerging switching technologies, such as magnetic switches. At full power, the accelerator will produce 700 kV and 7 kA with either the spark gap or PCSS pulser

  11. On the Optimality of Repetition Coding among Rate-1 DC-offset STBCs for MIMO Optical Wireless Communications

    KAUST Repository

    Sapenov, Yerzhan

    2017-07-06

    In this paper, an optical wireless multiple-input multiple-output communication system employing intensity-modulation direct-detection is considered. The performance of direct current offset space-time block codes (DC-STBC) is studied in terms of pairwise error probability (PEP). It is shown that among the class of DC-STBCs, the worst case PEP corresponding to the minimum distance between two codewords is minimized by repetition coding (RC), under both electrical and optical individual power constraints. It follows that among all DC-STBCs, RC is optimal in terms of worst-case PEP for static channels and also for varying channels under any turbulence statistics. This result agrees with previously published numerical results showing the superiority of RC in such systems. It also agrees with previously published analytic results on this topic under log-normal turbulence and further extends it to arbitrary turbulence statistics. This shows the redundancy of the time-dimension of the DC-STBC in this system. This result is further extended to sum power constraints with static and turbulent channels, where it is also shown that the time dimension is redundant, and the optimal DC-STBC has a spatial beamforming structure. Numerical results are provided to demonstrate the difference in performance for systems with different numbers of receiving apertures and different throughput.

  12. Human sensory-evoked responses differ coincident with either "fusion-memory" or "flash-memory", as shown by stimulus repetition-rate effects

    Directory of Open Access Journals (Sweden)

    Baird Bill

    2006-02-01

    Full Text Available Abstract Background: A new method has been used to obtain human sensory evoked-responses whose time-domain waveforms have been undetectable by previous methods. These newly discovered evoked-responses have durations that exceed the time between the stimuli in a continuous stream, thus causing an overlap which, up to now, has prevented their detection. We have named them "A-waves", and added a prefix to show the sensory system from which the responses were obtained (visA-waves, audA-waves, somA-waves. Results: When A-waves were studied as a function of stimulus repetition-rate, it was found that there were systematic differences in waveshape at repetition-rates above and below the psychophysical region in which the sensation of individual stimuli fuse into a continuity. The fusion phenomena is sometimes measured by a "Critical Fusion Frequency", but for this research we can only identify a frequency-region [which we call the STZ (Sensation-Transition Zone]. Thus, the A-waves above the STZ differed from those below the STZ, as did the sensations. Study of the psychophysical differences in auditory and visual stimuli, as shown in this paper, suggest that different stimulus features are detected, and remembered, at stimulation rates above and below STZ. Conclusion: The results motivate us to speculate that: 1 Stimulus repetition-rates above the STZ generate waveforms which underlie "fusion-memory" whereas rates below the STZ show neuronal processing in which "flash-memory" occurs. 2 These two memories differ in both duration and mechanism, though they may occur in the same cell groups. 3 The differences in neuronal processing may be related to "figure" and "ground" differentiation. We conclude that A-waves provide a novel measure of neural processes that can be detected on the human scalp, and speculate that they may extend clinical applications of evoked response recordings. If A-waves also occur in animals, it is likely that A-waves will provide

  13. Human sensory-evoked responses differ coincident with either "fusion-memory" or "flash-memory", as shown by stimulus repetition-rate effects

    Science.gov (United States)

    Jewett, Don L; Hart, Toryalai; Larson-Prior, Linda J; Baird, Bill; Olson, Marram; Trumpis, Michael; Makayed, Katherine; Bavafa, Payam

    2006-01-01

    Background: A new method has been used to obtain human sensory evoked-responses whose time-domain waveforms have been undetectable by previous methods. These newly discovered evoked-responses have durations that exceed the time between the stimuli in a continuous stream, thus causing an overlap which, up to now, has prevented their detection. We have named them "A-waves", and added a prefix to show the sensory system from which the responses were obtained (visA-waves, audA-waves, somA-waves). Results: When A-waves were studied as a function of stimulus repetition-rate, it was found that there were systematic differences in waveshape at repetition-rates above and below the psychophysical region in which the sensation of individual stimuli fuse into a continuity. The fusion phenomena is sometimes measured by a "Critical Fusion Frequency", but for this research we can only identify a frequency-region [which we call the STZ (Sensation-Transition Zone)]. Thus, the A-waves above the STZ differed from those below the STZ, as did the sensations. Study of the psychophysical differences in auditory and visual stimuli, as shown in this paper, suggest that different stimulus features are detected, and remembered, at stimulation rates above and below STZ. Conclusion: The results motivate us to speculate that: 1) Stimulus repetition-rates above the STZ generate waveforms which underlie "fusion-memory" whereas rates below the STZ show neuronal processing in which "flash-memory" occurs. 2) These two memories differ in both duration and mechanism, though they may occur in the same cell groups. 3) The differences in neuronal processing may be related to "figure" and "ground" differentiation. We conclude that A-waves provide a novel measure of neural processes that can be detected on the human scalp, and speculate that they may extend clinical applications of evoked response recordings. If A-waves also occur in animals, it is likely that A-waves will provide new methods for

  14. Stereoscopic Planar Laser-Induced Fluorescence Imaging at 500 kHz

    Science.gov (United States)

    Medford, Taylor L.; Danehy, Paul M.; Jones, Stephen B.; Jiang, N.; Webster, M.; Lempert, Walter; Miller, J.; Meyer, T.

    2011-01-01

    A new measurement technique for obtaining time- and spatially-resolved image sequences in hypersonic flows is developed. Nitric-oxide planar laser-induced fluorescence (NO PLIF) has previously been used to investigate transition from laminar to turbulent flow in hypersonic boundary layers using both planar and volumetric imaging capabilities. Low flow rates of NO were typically seeded into the flow, minimally perturbing the flow. The volumetric imaging was performed at a measurement rate of 10 Hz using a thick planar laser sheet that excited NO fluorescence. The fluorescence was captured by a pair of cameras having slightly different views of the flow. Subsequent stereoscopic reconstruction of these images allowed the three-dimensional flow structures to be viewed. In the current paper, this approach has been extended to 50,000 times higher repetition rates. A laser operating at 500 kHz excites the seeded NO molecules, and a camera, synchronized with the laser and fitted with a beam-splitting assembly, acquires two separate images of the flow. The resulting stereoscopic images provide three-dimensional flow visualizations at 500 kHz for the first time. The 200 ns exposure time in each frame is fast enough to freeze the flow while the 500 kHz repetition rate is fast enough to time-resolve changes in the flow being studied. This method is applied to visualize the evolving hypersonic flow structures that propagate downstream of a discrete protuberance attached to a flat plate. The technique was demonstrated in the NASA Langley Research Center s 31-Inch Mach 10 Air Tunnel facility. Different tunnel Reynolds number conditions, NO flow rates and two different cylindrical protuberance heights were investigated. The location of the onset of flow unsteadiness, an indicator of transition, was observed to move downstream during the tunnel runs, coinciding with an increase in the model temperature.

  15. 120 Hz Gun Review

    Energy Technology Data Exchange (ETDEWEB)

    Colby, E.

    2005-01-31

    The review was held at SLAC on September 11 and 12, 2001. Presentations concerning the thermal analysis, mechanical design, integration with the laser and accelerator, general beam dynamics considerations, a load lock mechanism, and symmetric power feed options comprised the review. Slides from these presentations are available elsewhere. The review committee was charged with evaluating the 120 Hz gun design including proposed load lock and power feed options and recommending improvements. Broader evaluation of the injector as a whole (including focusing and diagnostic systems that do no impact the envelope of the gun itself) is expected to be covered in a future review and will not be commented on here. In general, the long operational experience with four generations of s-band RF guns at numerous labs worldwide has led to considerable experience in design, fabrication, and operation aspects, and provides an excellent base on which to design the higher duty factor LCLS injector. While open questions remain on obtaining the design performance from these injectors, the microwave design of the gun has reached a state of relative maturity.

  16. Dual-Comb Coherent Raman Spectroscopy with Lasers of 1-GHz Pulse Repetition Frequency

    OpenAIRE

    Mohler, Kathrin J.; Bohn, Bernhard J.; Yan, Ming; Hänsch, Theodor W.; Picqué, Nathalie

    2016-01-01

    We extend the technique of multiplex coherent Raman spectroscopy with two femtosecond mode-locked lasers to oscillators of a pulse repetition frequency of 1 GHz. We demonstrate spectra of liquids, which span 1100 cm$^{-1}$ of Raman shifts. At a resolution of 6 cm$^{-1}$, their measurement time may be as short as 5 microseconds for a refresh rate of 2 kHz. The waiting period between acquisitions is improved ten-fold compared to previous experiments with two lasers of 100-MHz repetition frequen...

  17. Dual-comb coherent Raman spectroscopy with lasers of 1-GHz pulse repetition frequency.

    Science.gov (United States)

    Mohler, Kathrin J; Bohn, Bernhard J; Yan, Ming; Mélen, Gwénaëlle; Hänsch, Theodor W; Picqué, Nathalie

    2017-01-15

    We extend the technique of multiplex coherent Raman spectroscopy with two femtosecond mode-locked lasers to oscillators of a pulse repetition frequency of 1 GHz. We demonstrate a spectra of liquids, which span 1100  cm-1 of Raman shifts. At a resolution of 6  cm-1, their measurement time may be as short as 5 μs for a refresh rate of 2 kHz. The waiting period between acquisitions is improved 10-fold compared to previous experiments with two lasers of 100-MHz repetition frequencies.

  18. A Spectroscopic Comparison of Femtosecond Laser Modified Fused Silica using kHz and MHz Laser Systems.

    Energy Technology Data Exchange (ETDEWEB)

    Reichman, W J; Krol, D M; Shah, L; Yoshino, F; Arai, A; Eaton, S M; Herman, P R

    2005-09-29

    Waveguides were written in fused silica using both a femtosecond fiber laser with a 1 MHz pulse repetition rate and a femtosecond amplified Ti:sapphire laser with a 1 kHz repetition rate. Confocal Raman and fluorescence microscopy were used to study structural changes in the waveguides written with both systems. A broad fluorescence band, centered at 650 nm, associated with non-bridging oxygen hole center (NBOHC) defects was observed after waveguide fabrication with the MHz laser. With the kHz laser system these defects were only observed for pulse energies above 1 {mu}J. Far fewer NBOHC defects were formed with the MHz laser than with kHz writing, possibly due to thermal annealing driven by heat accumulation effects at 1 MHz. When the kHz laser was used with pulse energies below 1 {mu}J, the predominant fluorescence was centered at 550 nm, a band assigned to the presence of silicon clusters (E{prime}{sub {delta}}). We also observed an increase in the intensity of the 605 cm{sup -1} Raman peak relative to the total Raman intensity, corresponding to an increase in the concentration of 3-membered rings in the lines fabricated with both laser systems.

  19. Asynchronous recruitment of low-threshold motor units during repetitive, low-current stimulation of the human tibial nerve.

    Science.gov (United States)

    Dean, Jesse C; Clair-Auger, Joanna M; Lagerquist, Olle; Collins, David F

    2014-01-01

    Motoneurons receive a barrage of inputs from descending and reflex pathways. Much of our understanding about how these inputs are transformed into motor output in humans has come from recordings of single motor units during voluntary contractions. This approach, however, is limited because the input is ill-defined. Herein, we quantify the discharge of soleus motor units in response to well-defined trains of afferent input delivered at physiologically-relevant frequencies. Constant frequency stimulation of the tibial nerve (10-100 Hz for 30 s), below threshold for eliciting M-waves or H-reflexes with a single pulse, recruited motor units in 7/9 subjects. All 25 motor units recruited during stimulation were also recruited during weak (recruited more units (n = 3/25 at 10 Hz; n = 25/25 at 100 Hz) at shorter latencies (19.4 ± 9.4 s at 10 Hz; 4.1 ± 4.0 s at 100 Hz) than lower frequencies. When a second unit was recruited, the discharge of the already active unit did not change, suggesting that recruitment was not due to increased synaptic drive. After recruitment, mean discharge rate during stimulation at 20 Hz (7.8 Hz) was lower than during 30 Hz (8.6 Hz) and 40 Hz (8.4 Hz) stimulation. Discharge was largely asynchronous from the stimulus pulses with "time-locked" discharge occurring at an H-reflex latency with only a 24% probability. Motor units continued to discharge after cessation of the stimulation in 89% of trials, although at a lower rate (5.8 Hz) than during the stimulation (7.9 Hz). This work supports the idea that the afferent volley evoked by repetitive stimulation recruits motor units through the integration of synaptic drive and intrinsic properties of motoneurons, resulting in "physiological" recruitment which adheres to Henneman's size principle and results in relatively low discharge rates and asynchronous firing.

  20. Estimation of the dust production rate from the tungsten armour after repetitive ELM-like heat loads

    Science.gov (United States)

    Pestchanyi, S.; Garkusha, I.; Makhlaj, V.; Landman, I.

    2011-12-01

    Experimental simulations for the erosion rate of tungsten targets under ITER edge-localized mode (ELM)-like surface heat loads of 0.75 MJ m-2 causing surface melting and of 0.45 MJ m-2 without melting have been performed in the QSPA-Kh50 plasma accelerator. Analytical considerations allow us to conclude that for both energy deposition values the erosion mechanism is solid dust ejection during surface cracking under the action of thermo-stress. Tungsten influx into the ITER containment of NW~5×1018 W per medium size ELM of 0.75 MJ m-2 and 0.25 ms time duration has been estimated. The radiation cooling power of Prad=150-300 MW due to such influx of tungsten is intolerable: it should cool the ITER core to 1 keV within a few seconds.

  1. Estimation of the dust production rate from the tungsten armour after repetitive ELM-like heat loads

    International Nuclear Information System (INIS)

    Pestchanyi, S; Landman, I; Garkusha, I; Makhlaj, V

    2011-01-01

    Experimental simulations for the erosion rate of tungsten targets under ITER edge-localized mode (ELM)-like surface heat loads of 0.75 MJ m - 2 causing surface melting and of 0.45 MJ m - 2 without melting have been performed in the QSPA-Kh50 plasma accelerator. Analytical considerations allow us to conclude that for both energy deposition values the erosion mechanism is solid dust ejection during surface cracking under the action of thermo-stress. Tungsten influx into the ITER containment of N W ∼5×10 18 W per medium size ELM of 0.75 MJ m - 2 and 0.25 ms time duration has been estimated. The radiation cooling power of P rad =150-300 MW due to such influx of tungsten is intolerable: it should cool the ITER core to 1 keV within a few seconds.

  2. A feasible repetitive transcranial magnetic stimulation clinical protocol in migraine prevention.

    Science.gov (United States)

    Zardouz, Shawn; Shi, Lei; Leung, Albert

    2016-01-01

    This case series was conducted to determine the clinical feasibility of a repetitive transcranial magnetic stimulation protocol for the prevention of migraine (with and without aura). Five patients with migraines underwent five repetitive transcranial magnetic stimulation sessions separated in 1- to 2-week intervals for a period of 2 months at a single tertiary medical center. Repetitive transcranial magnetic stimulation was applied to the left motor cortex with 2000 pulses (20 trains with 1s inter-train interval) delivered per session, at a frequency of 10 Hz and 80% resting motor threshold. Pre- and post-treatment numerical rating pain scales were collected, and percent reductions in intensity, frequency, and duration were generated. An average decrease in 37.8%, 32.1%, and 31.2% were noted in the intensity, frequency, and duration of migraines post-repetitive transcranial magnetic stimulation, respectively. A mean decrease in 1.9±1.0 (numerical rating pain scale ± standard deviation; range: 0.4-2.8) in headache intensity scores was noted after the repetitive transcranial magnetic stimulation sessions. The tested repetitive transcranial magnetic stimulation protocol is a well-tolerated, safe, and effective method for migraine prevention.

  3. Shock-tube study of the decomposition of tetramethylsilane using gas chromatography and high-repetition-rate time-of-flight mass spectrometry.

    Science.gov (United States)

    Sela, P; Peukert, S; Herzler, J; Fikri, M; Schulz, C

    2018-04-25

    The decomposition of tetramethylsilane was studied in shock-tube experiments in a temperature range of 1270-1580 K and pressures ranging from 1.5 to 2.3 bar behind reflected shock waves combining gas chromatography/mass spectrometry (GC/MS) and high-repetition-rate time-of-flight mass spectrometry (HRR-TOF-MS). The main observed products were methane (CH4), ethylene (C2H4), ethane (C2H6), and acetylene (C2H2). In addition, the formation of a solid deposit was observed, which was identified to consist of silicon- and carbon-containing nanoparticles. A kinetics sub-mechanism with 13 silicon species and 20 silicon-containing reactions was developed. It was combined with the USC_MechII mechanism for hydrocarbons, which was able to simulate the experimental observations. The main decomposition channel of TMS is the Si-C bond scission forming methyl (CH3) and trimethylsilyl radicals (Si(CH3)3). The rate constant for TMS decomposition is represented by the Arrhenius expression ktotal[TMS → products] = 5.9 × 1012 exp(-267 kJ mol-1/RT) s-1.

  4. MeV electron acceleration at 1kHz with <10 mJ laser pulses

    Science.gov (United States)

    Salehi, Fatholah; Goers, Andy; Hine, George; Feder, Linus; Kuk, Donghoon; Kim, Ki-Yong; Milchberg, Howard

    2016-10-01

    We demonstrate laser driven acceleration of electrons at 1 kHz repetition rate with pC charge above 1MeV per shot using required for relativistic self-focusing low enough for mJ scale laser pulses to self- focus and drive strong wakefields. Experiments and particle-in-cell simulations show that optimal drive pulse duration and chirp for maximum electron bunch charge and energy depends on the target gas species. High repetition rate, high charge, and short duration electron bunches driven by very modest pulse energies constitutes an ideal portable electron source for applications such as ultrafast electron diffraction experiments and high rep. rate γ-ray production. This work is supported by the US Department of Energy, the National Science Foundation, and the Air Force Office of Scientific Research.

  5. Emotional response to musical repetition.

    Science.gov (United States)

    Livingstone, Steven R; Palmer, Caroline; Schubert, Emery

    2012-06-01

    Two experiments examined the effects of repetition on listeners' emotional response to music. Listeners heard recordings of orchestral music that contained a large section repeated twice. The music had a symmetric phrase structure (same-length phrases) in Experiment 1 and an asymmetric phrase structure (different-length phrases) in Experiment 2, hypothesized to alter the predictability of sensitivity to musical repetition. Continuous measures of arousal and valence were compared across music that contained identical repetition, variation (related), or contrasting (unrelated) structure. Listeners' emotional arousal ratings differed most for contrasting music, moderately for variations, and least for repeating musical segments. A computational model for the detection of repeated musical segments was applied to the listeners' emotional responses. The model detected the locations of phrase boundaries from the emotional responses better than from performed tempo or physical intensity in both experiments. These findings indicate the importance of repetition in listeners' emotional response to music and in the perceptual segmentation of musical structure.

  6. Repetition and the Concept of Repetition

    Directory of Open Access Journals (Sweden)

    Arne Grøn

    2013-11-01

    Full Text Available This paper offers a description of the meaning of the category of repetition. Firstly, it is pointed out that Constantin uses repetition as a concept that means the creation of epochs; the passing from Greece to Modernity is accomplished distinguishing between recollection, a concept that looks back to the past, and repetition, a concept that looks forward to future. Secondly, it is showed that the category of repetition, as a religious category, relates with what Climacus calls “ethic despair” and with what Vigilius calls “second ethics”; it is through repetition that it can be understood that sin finds its place in ethics and these shows the tension between it and dogmatics. And thirdly, it is showed that the descovery of the new category of repetition is a rediscovery of what Kierkegaard calls category of spirit; repetition has for its object the individuality, and coming to be oneself is what Kierkegaard undertands as liberty. At the end of the paper it is questioned if the category of repetition is inconsistent with the book Repetition.

  7. Tunable, high-repetition-rate, dual-signal-wavelength femtosecond optical parametric oscillator based on BiB3O6

    Science.gov (United States)

    Meng, Xianghao; Wang, Zhaohua; Tian, Wenlong; Fang, Shaobo; Wei, Zhiyi

    2018-01-01

    We have demonstrated a high-repetition-rate tunable femtosecond dual-signal-wavelength optical parametric oscillator (OPO) based on BiB3O6 (BiBO) crystal, synchronously pumped by a frequency-doubled mode-locked Yb:KGW laser. The cavity is simple since no dispersion compensators are used in the cavity. The wavelength range of dual-signal is widely tunable from 710 to 1000 nm. Tuning is accomplished by rotating phase-matching angle of BiBO, and optimizing cavity length and output coupler. Using a 3.75 W pump laser, the maximum average dual-signal output power is 760 mW at 707 and 750 nm, leading to a conversion efficiency of 20.3% not taking into account the idler power. Our experimental results show a non-critical phase-matching configuration pumped by a high peak power laser source. The operation of the dual-signal benefits from the balance of phase matching and group velocity mismatching between the two signals.

  8. A vacuum-sealed, gigawatt-class, repetitively pulsed high-power microwave source

    Science.gov (United States)

    Xun, Tao; Fan, Yu-wei; Yang, Han-wu; Zhang, Zi-cheng; Chen, Dong-qun; Zhang, Jian-de

    2017-06-01

    A compact L-band sealed-tube magnetically insulated transmission line oscillator (MILO) has been developed that does not require bulky external vacuum pump for repetitive operations. This device with a ceramic insulated vacuum interface, a carbon fiber array cathode, and non-evaporable getters has a base vacuum pressure in the low 10-6 Pa range. A dynamic 3-D Monte-Carlo model for the molecular flow movement and collision was setup for the MILO chamber. The pulse desorption, gas evolution, and pressure distribution were exactly simulated. In the 5 Hz repetition rate experiments, using a 600 kV diode voltage and 48 kA beam current, the average radiated microwave power for 25 shots is about 3.4 GW in 45 ns pulse duration. The maximum equilibrium pressure is below 4.0 × 10-2 Pa, and no pulse shortening limitations are observed during the repetitive test in the sealed-tube condition.

  9. A 175 Hz / 188 Hz active filter for private power producers; Filtre actif 175 HZ/188 HZ pour producteurs autonomes

    Energy Technology Data Exchange (ETDEWEB)

    Michalak, P.

    1996-12-31

    The connection of certain private electric power producers on the source station bus bars may disturb the 175 Hz or 188 Hz centralized control system signals, which carry tariff messages to the Electricite de France (EDF) grid clients. A new active filter has been developed by EDF and Schlumberger, which raise the tariff signal level at the bus bars by injection of a signal with the same frequency. A prototype has been tested in real conditions

  10. Short-time X-ray diffraction with an efficient-optimized, high repetition-rate laser-plasma X-ray-source

    International Nuclear Information System (INIS)

    Kaehle, Stephan

    2009-01-01

    This thesis deals with the production and application of ultrashort X-ray pulses. In the beginning different possibilities for the production of X-ray pulses with pulse durations of below one picosecond are presented, whereby the main topic lies on the so called laser-plasma X-ray sources with high repetition rate. In this case ultrashort laser pulses are focused on a metal, so that in the focus intensities of above 10 16 W/cm 2 dominate. In the ideal case in such way ultrafast electrons are produced, which are responsible for line radiation. In these experiments titanium K α radiation is produced, thes photons possess an energy of 4.51 keV. For the efficient production of line radiation here the Ti:Sa laser is optimized in view of the laser energy and the pulse shape and the influence of the different parameters on the K α production systematically studied. The influences of laser intensity, system-conditioned pre-pulses and of phase modulation are checked. It turns out that beside the increasement of the K α radiation by a suited laser intensity a reduction of the X-ray background radiation is of deciding importance for the obtaining of clear diffraction images. This background radiation is mainly composed of bremsstrahlung. It can be suppressed by the avoidance of intrinsic pre-pulses and by means of 2nd-order phase modulation. By means of optical excitation and X-ray exploration experiments the production of acoustic waves after ultrashort optical excitation in a 150 nm thick Ge(111) film on Si(111) is studied. These acoustic waves are driven by thermal (in this time scale time-independent) and electronic (time dependent) pressure amounts. As essential results it turns out that the relative amount of the electronic pressure increases with decreasing excitation density [de

  11. Ultra-high-resolution inelastic X-ray scattering at high-repetition-rate self-seeded X-ray free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Chubar, Oleg [Brookhaven National Laboratory, Upton, NY 11973 (United States); Geloni, Gianluca [European X-ray Free-Electron Laser, Albert-Einstein-Ring 19, 22761 Hamburg (Germany); Kocharyan, Vitali [Deutsches Elektronen-Synchrotron, 22761 Hamburg (Germany); Madsen, Anders [European X-ray Free-Electron Laser, Albert-Einstein-Ring 19, 22761 Hamburg (Germany); Saldin, Evgeni; Serkez, Svitozar [Deutsches Elektronen-Synchrotron, 22761 Hamburg (Germany); Shvyd’ko, Yuri, E-mail: shvydko@aps.anl.gov [Argonne National Laboratory, Argonne, IL 60439 (United States); Sutter, John [Diamond Light Source Ltd, Didcot OX11 0DE (United Kingdom)

    2016-02-12

    This article explores novel opportunities for ultra-high-resolution inelastic X-ray scattering (IXS) at high-repetition-rate self-seeded XFELs. These next-generation light sources are promising a more than three orders of magnitude increase in average spectral flux compared with what is possible with storage-ring-based radiation sources. In combination with the advanced IXS spectrometer described here, this may become a real game-changer for ultra-high-resolution X-ray spectroscopies, and hence for the studies of dynamics in condensed matter systems. Inelastic X-ray scattering (IXS) is an important tool for studies of equilibrium dynamics in condensed matter. A new spectrometer recently proposed for ultra-high-resolution IXS (UHRIX) has achieved 0.6 meV and 0.25 nm{sup −1} spectral and momentum-transfer resolutions, respectively. However, further improvements down to 0.1 meV and 0.02 nm{sup −1} are required to close the gap in energy–momentum space between high- and low-frequency probes. It is shown that this goal can be achieved by further optimizing the X-ray optics and by increasing the spectral flux of the incident X-ray pulses. UHRIX performs best at energies from 5 to 10 keV, where a combination of self-seeding and undulator tapering at the SASE-2 beamline of the European XFEL promises up to a 100-fold increase in average spectral flux compared with nominal SASE pulses at saturation, or three orders of magnitude more than what is possible with storage-ring-based radiation sources. Wave-optics calculations show that about 7 × 10{sup 12} photons s{sup −1} in a 90 µeV bandwidth can be achieved on the sample. This will provide unique new possibilities for dynamics studies by IXS.

  12. Development and integration of a 50 Hz pellet injection system for the Experimental Advanced Superconducting Tokamak (EAST)

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Xingjia [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230029 (China); Chen, Yue [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Hu, Jiansheng, E-mail: hujs@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Vinyar, Igor; Lukin, Alexander [PELIN, Saint-Petersburg (Russian Federation); Yuan, Xiaoling; Li, Changzheng; Liu, Haiqing [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2017-01-15

    Highlights: • The design of the pumping system fits the operation requirement well not only theoretically but also experimentally. • The data showed that the averaged pellet injection velocity and propellant gas pressure had a relationship submitting to the power function. • The reliability of the injected pellet was mostly around 90% which is higher than the PI-20 system thanks to the improved pumping system and the new pellet fabrication and acceleration system. - Abstract: A 50 Hz pellet injection system, which is designed for edge-localized mode (ELM) control, has been successfully developed and integrated for the Experimental Advanced Superconducting Tokamak (EAST). Pellet injection is achieved by two separated injection system modules that can be operated independently from 1 to 25 Hz. The nominal injection velocity is 250 m/s with a scatter of ±50 m/s at a repetition rate of 50 Hz. A buffer tank and a two-stage differential pumping system of the pellet injection system was designed to increase hydrogen/deuterium ice quality and eliminate the influence of propellant gas on plasma operation, respectively. The pressure of the buffer tank could be pumped to 1 × 10{sup 2} Pa, and the pressure in the second differential chamber could reach 1 × 10{sup −4} Pa during the experiment. Engineering experiments, which consisted of 50 Hz pellet injection and guiding tube mock-up experiments, were also systematically carried out in a laboratory environment and demonstrated that the pellet injection system can reliably inject pellets at a repetitive frequency of 50 Hz.

  13. Repetitively pulsed power for meat pasteurization

    International Nuclear Information System (INIS)

    Patterson, E.L.; Kaye, R.J.; Neau, E.L.

    1994-01-01

    Electronic pasteurization of meat offers the potential for drastically reducing the incidence of food poisoning caused by biological pathogens accidentally introduced into meat products. Previous work has shown that γ-rays are an effective method of destroying E. coli 0157:H7, Salmonella, C. jejuni, L. monocytogenes, Listeria, and S. aureus bacteria types. The concern with the use of γ-rays is that radioactive material must be used in the pasteurization process that can lead to some market resistance and activist pressure on the meat industry. The use of accelerator generated high average power electron beams, at energies less than 10 MeV, or X-rays, with energies below 5 MeV, have been approved by the FDA for use in pasteurizing foods. Accelerator produced electronic pasteurization has the advantage that no radioactive material inventory is required. Electronic pasteurization has the additional benefit that it removes bacterial pathogens on the meat surface as well as within the volume of the meat product. High average power, repetitively-pulsed, broad-area electron beam sources being developed in the RHEPP program are suitable for large scale meat treatment in packing plant environments. RHEPP-II, which operates at 2.5 MeV and 25 kA at pulse repetition frequencies up to 120 Hz has adequate electron energy to penetrate hamburger patties which comprise about half of the beef consumption in the United States. Ground beef also has the highest potential for contamination since considerable processing is required in its production. A meat pasteurization facility using this size of accelerator source should be capable of treating 10 6 pounds of hamburger patties per hour to a dose of up to 3 kGy (300 kilorads). The RHEPP modular accelerator technology can easily be modified for other production rates and types of products

  14. Grade Repetition in Queensland State Prep Classes

    Science.gov (United States)

    Anderson, Robyn

    2012-01-01

    The current study considers grade repetition rates in the early years of schooling in Queensland state schools with specific focus on the pre-schooling year, Prep. In particular, it provides empirical evidence of grade repetition in Queensland state schools along with groups of students who are more often repeated. At the same time, much of the…

  15. Effects of contralateral noise on the 20-Hz auditory steady state response--magnetoencephalography study.

    Directory of Open Access Journals (Sweden)

    Hajime Usubuchi

    Full Text Available The auditory steady state response (ASSR is an oscillatory brain response, which is phase locked to the rhythm of an auditory stimulus. ASSRs have been recorded in response to a wide frequency range of modulation and/or repetition, but the physiological features of the ASSRs are somewhat different depending on the modulation frequency. Recently, the 20-Hz ASSR has been emphasized in clinical examinations, especially in the area of psychiatry. However, little is known about the physiological properties of the 20-Hz ASSR, compared to those of the 40-Hz and 80-Hz ASSRs. The effects of contralateral noise on the ASSR are known to depend on the modulation frequency to evoke ASSR. However, the effects of contralateral noise on the 20-Hz ASSR are not known. Here we assessed the effects of contralateral white noise at a level of 70 dB SPL on the 20-Hz and 40-Hz ASSRs using a helmet-shaped magnetoencephalography system in 9 healthy volunteers (8 males and 1 female, mean age 31.2 years. The ASSRs were elicited by monaural 1000-Hz 5-s tone bursts amplitude-modulated at 20 and 39 Hz and presented at 80 dB SPL. Contralateral noise caused significant suppression of both the 20-Hz and 40-Hz ASSRs, although suppression was significantly smaller for the 20-Hz ASSRs than the 40-Hz ASSRs. Moreover, the greatest suppression of both 20-Hz and 40-Hz ASSRs occurred in the right hemisphere when stimuli were presented to the right ear with contralateral noise. The present study newly showed that 20-Hz ASSRs are suppressed by contralateral noise, which may be important both for characterization of the 20-Hz ASSR and for interpretation in clinical situations. Physicians must be aware that the 20-Hz ASSR is significantly suppressed by sound (e.g. masking noise or binaural stimulation applied to the contralateral ear.

  16. RS-20 type repetitive generator with planar configuration of plasma opening switch

    Energy Technology Data Exchange (ETDEWEB)

    Agalakov, V P; Barinov, N U; Belenki, G S [Kurchatov Inst., Moscow (Russian Federation); and others

    1997-12-31

    The existing experience with the production of repetitive rate accelerators with a high peak power (in excess of 10{sup 10} W) and an average power above 50 kW makes it possible to resolve a number of physics and technology tasks which are connected with the reliability and life of the accelerator. The design and results on optimization of a simple plasma opening switch (POS) are discussed. The final design of the POS provided voltages of up to 2 MV and had a life of more than 105 pulses including 4 hours of continuous operation under 4 Hz repetition rate and wall plug power 65 kW. This unit was tested at the RS-20 type accelerator both at the Kurchatov Institute and at the Northwest Institute of Nuclear Technology in China. (author). 5 figs., 1 ref.

  17. Roles of repetitive sequences

    Energy Technology Data Exchange (ETDEWEB)

    Bell, G.I.

    1991-12-31

    The DNA of higher eukaryotes contains many repetitive sequences. The study of repetitive sequences is important, not only because many have important biological function, but also because they provide information on genome organization, evolution and dynamics. In this paper, I will first discuss some generic effects that repetitive sequences will have upon genome dynamics and evolution. In particular, it will be shown that repetitive sequences foster recombination among, and turnover of, the elements of a genome. I will then consider some examples of repetitive sequences, notably minisatellite sequences and telomere sequences as examples of tandem repeats, without and with respectively known function, and Alu sequences as an example of interspersed repeats. Some other examples will also be considered in less detail.

  18. A High-Energy, 100 Hz, Picosecond Laser for OPCPA Pumping

    Directory of Open Access Journals (Sweden)

    Hongpeng Su

    2017-09-01

    Full Text Available A high-energy diode-pumped picosecond laser system centered at 1064 nm for optical parametric chirped pulse amplifier (OPCPA pumping was demonstrated. The laser system was based on a master oscillator power amplifier configuration, which contained an Nd:YVO4 mode-locked seed laser, an LD-pumped Nd:YAG regenerative amplifier, and two double-pass amplifiers. A reflecting volume Bragg grating with a 0.1 nm reflective bandwidth was used in the regenerative amplifier for spectrum narrowing and pulse broadening to suit the pulse duration of the optical parametric amplifier (OPA process. Laser pulses with an energy of 316.5 mJ and a pulse duration of 50 ps were obtained at a 100 Hz repetition rate. A top-hat beam distribution and a 0.53% energy stability (RMS were achieved in this system.

  19. Repetitive transcranial magnetic stimulation of the superior frontal gyrus modulates craving for cigarettes.

    Science.gov (United States)

    Rose, Jed E; McClernon, F Joseph; Froeliger, Brett; Behm, Frédérique M; Preud'homme, Xavier; Krystal, Andrew D

    2011-10-15

    Previous functional magnetic resonance imaging studies have shown strong correlations between cue-elicited craving for cigarettes and activation of the superior frontal gyrus (SFG). Repetitive transcranial magnetic stimulation (rTMS) offers a noninvasive means to reversibly affect brain cortical activity, which can be applied to testing hypotheses about the causal role of SFG in modulating craving. Fifteen volunteer smokers were recruited to investigate the effects of rTMS on subjective responses to smoking versus neutral cues and to controlled presentations of cigarette smoke. On different days, participants were exposed to three conditions: 1) high-frequency (10 Hz) rTMS directed at the SFG; 2) low-frequency (1 Hz) rTMS directed at the SFG; and 3) low-frequency (1 Hz) rTMS directed at the motor cortex (control condition). Craving ratings in response to smoking versus neutral cues were differentially affected by the 10-Hz versus 1-Hz SFG condition. Craving after smoking cue presentations was elevated in the 10-Hz SFG condition, whereas craving after neutral cue presentations was reduced. Upon smoking in the 10-Hz SFG condition, ratings of immediate craving reduction as well as the intensity of interoceptive airway sensations were also attenuated. These results support the view that the SFG plays a role in modulating craving reactivity; moreover, the results suggest that the SFG plays a role in both excitatory and inhibitory influences on craving, consistent with prior research demonstrating the role of the prefrontal cortex in the elicitation as well as inhibition of drug-seeking behaviors. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  20. Repetition and Translation Shifts

    Directory of Open Access Journals (Sweden)

    Simon Zupan

    2006-06-01

    Full Text Available Repetition manifests itself in different ways and at different levels of the text. The first basic type of repetition involves complete recurrences; in which a particular textual feature repeats in its entirety. The second type involves partial recurrences; in which the second repetition of the same textual feature includes certain modifications to the first occurrence. In the article; repetitive patterns in Edgar Allan Poe’s short story “The Fall of the House of Usher” and its Slovene translation; “Konec Usherjeve hiše”; are compared. The author examines different kinds of repetitive patterns. Repetitions are compared at both the micro- and macrostructural levels. As detailed analyses have shown; considerable microstructural translation shifts occur in certain types of repetitive patterns. Since these are not only occasional; sporadic phenomena; but are of a relatively high frequency; they reduce the translated text’s potential for achieving some of the gothic effects. The macrostructural textual property particularly affected by these shifts is the narrator’s experience as described by the narrative; which suffers a reduction in intensity.

  1. Laser stand for irradiation of targets by laser pulses from the Iskra-5 facility at a repetition rate of 100 MHz

    International Nuclear Information System (INIS)

    Annenkov, V I; Garanin, Sergey G; Eroshenko, V A; Zhidkov, N V; Zubkov, A V; Kalipanov, S V; Kalmykov, N A; Kovalenko, V P; Krotov, V A; Lapin, S G; Martynenko, S P; Pankratov, V I; Faizullin, V S; Khrustalev, V A; Khudikov, N M; Chebotar, V S

    2009-01-01

    A train of a few tens of high-power subnanosecond laser pulses with a repetition period of 10 ns is generated in the Iskra-5 facility. The laser pulse train has an energy of up to 300 J and contains up to 40 pulses (by the 0.15 intensity level), the single pulse duration in the train being ∼0.5 ns. The results of experiments on conversion of a train of laser pulses to a train of X-ray pulses are presented. Upon irradiation of a tungsten target, a train of X-ray pulses is generated with the shape of an envelope in the spectral band from 0.18 to 0.28 keV similar to that of the envelope of the laser pulse train. The duration of a single X-ray pulse in the train is equal to that of a single laser pulse. (lasers)

  2. Repetitive Questioning Exasperates Caregivers

    Directory of Open Access Journals (Sweden)

    R. C. Hamdy MD

    2018-01-01

    Full Text Available Repetitive questioning is due to an impaired episodic memory and is a frequent, often presenting, problem in patients with Alzheimer’s disease (amnestic type. It is due to the patients’ difficulties learning new information, retaining it, and recalling it, and is often aggravated by a poor attention span and easy distractibility. A number of factors may trigger and maintain repetitive questioning. Caregivers should try to identify and address these triggers. In the case discussion presented, it is due to the patient’s concerns about her and her family’s safety triggered by watching a particularly violent movie aired on TV. What went wrong in the patient/caregiver interaction and how it could have been avoided or averted are explored. Also reviewed are the impact of repetitive questioning, the challenges it raises for caregivers, and some effective intervention strategies that may be useful to diffuse the angst that caregivers experience with repetitive questioning.

  3. Asynchronous recruitment of low-threshold motor units during repetitive, low-current stimulation of the human tibial nerve

    Directory of Open Access Journals (Sweden)

    Jesse eDean

    2014-12-01

    Full Text Available Motoneurons receive a barrage of inputs from descending and reflex pathways. Much of our understanding about how these inputs are transformed into motor output in humans has come from recordings of single motor units during voluntary contractions. This approach, however, is limited because the input is ill-defined. Herein, we quantify the discharge of soleus motor units in response to well-defined trains of afferent input delivered at physiologically-relevant frequencies. Constant frequency stimulation of the tibial nerve (10-100 Hz for 30 s, below threshold for eliciting M-waves or H-reflexes with a single pulse, recruited motor units in 7/9 subjects. All 25 motor units recruited during stimulation were also recruited during weak (<10% MVC voluntary contractions. Higher frequencies recruited more units (n=3/25 at 10 Hz; n=25/25 at 100 Hz at shorter latencies (19.4±9.4 s at 10 Hz; 4.1±4.0 s at 100 Hz than lower frequencies. When a second unit was recruited, the discharge of the already active unit did not change, suggesting that recruitment was not due to increased synaptic drive. After recruitment, mean discharge rate during stimulation at 20 Hz (7.8 Hz was lower than during 30 Hz (8.6 Hz and 40 Hz (8.4 Hz stimulation. Discharge was largely asynchronous from the stimulus pulses with time-locked discharge occurring at an H-reflex latency with only a 24% probability. Motor units discharged after the stimulation ended in 89% of trials, although at a lower rate (5.8 Hz than during the stimulation (7.9 Hz. This work supports the idea that the afferent volley evoked by repetitive stimulation recruits motor units through the integration of synaptic drive and intrinsic properties of motoneurons, resulting in physiological recruitment which adheres to Henneman's size principle and results in relatively low discharge rates and asynchronous firing.

  4. Repetition code of 15 qubits

    Science.gov (United States)

    Wootton, James R.; Loss, Daniel

    2018-05-01

    The repetition code is an important primitive for the techniques of quantum error correction. Here we implement repetition codes of at most 15 qubits on the 16 qubit ibmqx3 device. Each experiment is run for a single round of syndrome measurements, achieved using the standard quantum technique of using ancilla qubits and controlled operations. The size of the final syndrome is small enough to allow for lookup table decoding using experimentally obtained data. The results show strong evidence that the logical error rate decays exponentially with code distance, as is expected and required for the development of fault-tolerant quantum computers. The results also give insight into the nature of noise in the device.

  5. Collection and spectral control of high-order harmonics generated with a 50 W high-repetition rate Ytterbium femtosecond laser system

    International Nuclear Information System (INIS)

    Cabasse, A; Hazera, Ch; Quintard, L; Cormier, E; Petit, S; Constant, E

    2016-01-01

    We generate high-order harmonics with a 50 W, Yb femtosecond fiber laser system operating at 100 kHz in a tight focusing configuration. We achieve a high photon flux even with pulses longer than 500 fs. We collect the diverging extreme ultraviolet (XUV) harmonic beam in a 35 mrad wide solid angle by using a spectrometer designed to handle the high thermal load under vacuum and refocus the XUV beam onto a detector where the beam is characterised or can alternatively be used for experiments. This setup is designed for a 50 eV XUV bandwidth and offers the possibility to perform XUV-IR pump probe experiments with both temporal and spectral resolution. The high-order harmonics were generated and optimized at 100 kHz by using several gas target geometries (a gas jet and a semi-infinite gas cell) and several gases (argon, krypton, xenon) that provide XUV beams with different characteristics. After the spectrometer and for high-order harmonic generation (HHG) in xenon, we detect more than 4 × 10 10 photons per second over four harmonics, that is a useful XUV power on target of 0.1 μW. This corresponds to the emission of more than 1 μW per harmonic at the source and we achieved a similar flux with both the semi-infinite cell and the jet. In addition, we observe a strong spectral selectivity when generating harmonics in a semi-infinite gas cell as few harmonics clearly dominate the neighbouring harmonics. We attribute this spectral selectivity to phase matching effects. (paper)

  6. Repetitive pulse accelerator technology for light ion inertial confinement fusion

    International Nuclear Information System (INIS)

    Buttram, M.T.

    1985-01-01

    Successful ignition of an inertial confinement fusion (ICF) pellet is calculated to require that several megajoules of energy be deposited in the pellet's centimeter-sized shell within 10 ns. This implies a driver power of several hundreds of terawatts and power density around 100 TW/cm 2 . The Sandia ICF approach is to deposit the energy with beams of 30 MV lithium ions. The first accelerator capable of producing these beams (PBFA II, 100 TW) will be used to study beam formation and target physics on a single pulse basis. To utilize this technology for power production, repetitive pulsing at rates that may be as high as 10 Hz will be required. This paper will overview the technologies being studied for a repetitively pulsed ICF accelerator. As presently conceived, power is supplied by rotating machinery providing 16 MJ in 1 ms. The generator output is transformed to 3 MV, then switched into a pulse compression system using laser triggered spark gaps. These must be synchronized to about 1 ns. Pulse compression is performed with saturable inductor switches, the output being 40 ns, 1.5 MV pulses. These are transformed to 30 MV in a self-magnetically insulated cavity adder structure. Space charge limited ion beams are drawn from anode plasmas with electron counter streaming being magnetically inhibited. The ions are ballistically focused into the entrances of guiding discharge channels for transport to the pellet. The status of component development from the prime power to the ion source will be reviewed

  7. New solid state opening switches for repetitive pulsed power technology

    Energy Technology Data Exchange (ETDEWEB)

    Lyubutin, S K; Mesyats, G A; Rukin, S N; Slovikovskii, B G; Turov, A M [Russian Academy of Sciences, Ekaterinburg (Russian Federation). Inst. of Electrophysics

    1997-12-31

    In 1991 the authors discovered a semiconductor opening switch (SOS) effect that occurs in p{sup +}-p-n-n{sup +} silicon structures at a current density of up to 60 kA/cm{sup 2}. This effect was used to develop high-power semiconductor opening switches in intermediate inductive storage circuits. The breaking power of the opening switches was as high as 5 GW, the interrupted current being up to 45 kA, reverse voltage up to 1 MV and the current interruption time between 10 and 60 ns. The opening switches were assembled from quantity-produced Russian-made rectifying diodes type SDL with hard recovery characteristic. On the basis of experimental and theoretical investigations of the SOS effect, new SOS diodes were designed and manufactured by the Electrophysical Institute. The paper gives basic parameters of the SOS diodes. The new diodes offer higher values of interrupted current and shorter times of current interruption together with a considerable increase in the energy switching efficiency. The new SOS diodes were used to develop repetitive all-solid-state pulsed generators with an output voltage of up to 250 kV, pulse repetition rate up to 5 kHz, and pulse duration between 10 and 30 ns. (author). 2 tabs., 3 figs., 4 refs.

  8. Application of repetitive pulsed power technology to chemical processing

    International Nuclear Information System (INIS)

    Kaye, R.J.; Hamil, R.

    1995-01-01

    The numerous sites of soil and water contaminated with organic chemicals present an urgent environmental concern that continues to grow. Electron and x-ray irradiation have been shown to be effective methods to destroy a wide spectrum of organic chemicals, nitrates, nitrites, and cyanide in water by breaking molecules to non-toxic products or entirely mineralizing the by-products to gas, water, and salts. Sandia National Laboratories is developing Repetitive High Energy Pulsed Power (RHEPP) technology capable of producing high average power, broad area electron or x-ray beams. The 300 kW RHEPP-II facility accelerates electrons to 2.5 MeV at 25 kA over 1,000 cm 2 in 60 ns pulses at repetition rates of over 100 Hz. Linking this modular treatment capability with the rapid optical-sensing diagnostics and neutral network characterization software algorithms will provide a Smart Waste Treatment (SWaT) system. Such a system would also be applicable for chemical manufacture and processing of industrial waste for reuse or disposal. This talk describes both the HREPP treatment capability and sensing technologies. Measurements of the propagated RHEPP-II beam and dose profiles are presented. Sensors and rapid detection software are discussed with application toward chemical treatment

  9. Near-kHz 3D tracer-based LIF imaging of a co-flow jet using toluene

    International Nuclear Information System (INIS)

    Miller, V A; Troutman, V A; Hanson, R K

    2014-01-01

    This work demonstrates tracer-based, high-repetition-rate planar (15 kHz) and three-dimensional (940 Hz) laser-induced fluorescence imaging. An off-the-shelf, pulsed, frequency-quadrupled Nd:YAG laser at 266 nm is used as the excitation light source, and a high-frame-rate intensified relay optic with a slow P46 phosphor coupled to a CMOS camera is used to image the fluorescence. Four different tracers are investigated (3-pentanone, acetone, anisole, and toluene) and relative signal levels are measured in the potential core of a laminar co-flow jet. Resulting SNR values range from 6 to 44 for the different tracers, and relative signal levels and SNR for each tracer are provided as an engineering-basis for tracer-based imaging diagnostic design. It was found that signal levels from anisole (relative to toluene) are about ten times less than suggested by other literature, owing to uncertainty in the reported absorption cross sections. Using toluene as a tracer and a custom-made piezo-actuated steering optic to scan the laser sheet, 3D LIF imaging at 940 Hz is demonstrated by visualizing a co-flow jet mixing with ambient air. (paper)

  10. Safety, efficacy, predictability and stability of laser in situ keratomileusis (LASIK) with a 1000-Hz scanning spot excimer laser.

    Science.gov (United States)

    Khoramnia, Ramin; Salgado, Josefina P; Wuellner, Christian; Donitzky, Christof; Lohmann, Chris P; Winkler von Mohrenfels, Christoph

    2012-09-01

    To evaluate the safety, efficacy, predictability and stability of laser in situ keratomileusis (LASIK) with a 1000-Hz scanning spot excimer laser (Concept System 1000; WaveLight GmbH, Erlangen, Germany). LASIK was performed on twenty eyes with myopia or myopic astigmatism (mean spherical equivalent refraction: -3.97±1.72 dioptres (D); mean cylinder: -0.84±0.77 D) using a microkeratome for flap creation and the Concept System 1000 for photoablation. Patients were examined preoperatively as well as 1, 3 and 6 months after the treatment. Manifest sphere and cylinder, uncorrected (UCDVA) and best corrected (BCDVA) distance visual acuity, corneal topography and pachymetry were analysed. We observed no adverse events that might have been associated with the use of a repetition rate of 1000 Hz. All eyes maintained or had improved BCDVA at 6 months after treatment when compared to preoperative values. Six months after LASIK, UCDVA was 20/20 or better in 85% and 20/25 or better in 100% of the eyes. The spherical equivalent refraction was within ±0.50 D in 95% of the eyes at 6 months after surgery. The refraction stayed stable over time; 95% of the eyes changedLASIK with the prototype 1000-Hz excimer laser was safe, efficient and predictable. The postoperative refraction was stable over time. There were no specific clinical side-effects that might be associated with the use of such a high repetition rate. © 2011 The Authors. Acta Ophthalmologica © 2011 Acta Ophthalmologica Scandinavica Foundation.

  11. 20  kHz CH2O and OH PLIF with stereo PIV.

    Science.gov (United States)

    Hammack, Stephen D; Carter, Campbell D; Skiba, Aaron W; Fugger, Christopher A; Felver, Josef J; Miller, Joseph D; Gord, James R; Lee, Tonghun

    2018-03-01

    Planar laser-induced fluorescence (PLIF) of hydroxyl (OH) and formaldehyde (CH 2 O) radicals was performed alongside stereo particle image velocimetry (PIV) at a 20 kHz repetition rate in a highly turbulent Bunsen flame. A dual-pulse burst-mode laser generated envelopes of 532 nm pulse pairs for PIV as well as a pair of 355 nm pulses, the first of which was used for CH 2 O PLIF. A diode-pumped solid-state Nd:YAG/dye laser system produced the excitation beam for the OH PLIF. The combined diagnostics produced simultaneous, temporally resolved two-dimensional fields of OH and CH 2 O and two-dimensional, three-component velocity fields, facilitating the observation of the interaction of fluid dynamics with flame fronts and preheat layers. The high-fidelity data acquired surpass the previous state of the art and demonstrate dual-pulse burst-mode laser technology with the ability to provide pulse pairs at both 532 and 355 nm with sufficient energy for scattering and fluorescence measurement at 20 kHz.

  12. Ozone generation in a kHz-pulsed He-O2 capillary dielectric barrier discharge operated in ambient air

    Science.gov (United States)

    Sands, Brian L.; Ganguly, Biswa N.

    2013-12-01

    The generation of reactive oxygen species using nonequilibrium atmospheric pressure plasma jet devices has been a subject of recent interest due to their ability to generate localized concentrations from a compact source. To date, such studies with plasma jet devices have primarily utilized radio-frequency excitation. In this work, we characterize ozone generation in a kHz-pulsed capillary dielectric barrier discharge configuration comprised of an active discharge plasma jet operating in ambient air that is externally grounded. The plasma jet flow gas was composed of helium with an admixture of up to 5% oxygen. A unipolar voltage pulse train with a 20 ns pulse risetime was used to drive the discharge at repetition rates between 2-25 kHz. Using UVLED absorption spectroscopy centered at 255 nm near the Hartley-band absorption peak, ozone was detected over 1 cm from the capillary axis. We observed roughly linear scaling of ozone production with increasing pulse repetition rate up to a "turnover frequency," beyond which ozone production steadily dropped and discharge current and 777 nm O(5P→5S°) emission sharply increased. The turnover in ozone production occurred at higher pulse frequencies with increasing flow rate and decreasing applied voltage with a common energy density of 55 mJ/cm3 supplied to the discharge. The limiting energy density and peak ozone production both increased with increasing O2 admixture. The power dissipated in the discharge was obtained from circuit current and voltage measurements using a modified parallel plate dielectric barrier discharge circuit model and the volume-averaged ozone concentration was derived from a 2D ozone absorption measurement. From these measurements, the volume-averaged efficiency of ozone production was calculated to be 23 g/kWh at conditions for peak ozone production of 41 mg/h at 11 kV applied voltage, 3% O2, 2 l/min flow rate, and 13 kHz pulse repetition rate, with 1.79 W dissipated in the discharge.

  13. On the Choice of Method to Cancel 60 Hz Disturbances in Beam Position and Energy

    International Nuclear Information System (INIS)

    Akogyeram, R.A.; Longman, R.W.; Hutton, Andrew; Juang, J.-N.

    2001-01-01

    Because the voltage applied to magnets in accelerators is likely to be rectified, there can be 60 Hz related fluctuations in beam position and energy. Correcting such errors as well as other less repeatable errors can be done with combinations of feedback, feedforward, real time repetitive control, and batch update repetitive control. This paper studies how to mix these approaches for optimized performance. It is shown that use of feedback control can be counterproductive because of the waterbed effect operating on errors such as BPM noise. Also, it is seen that iterative repetitive control updates can produce significantly better error levels than pure feedforward control. Making corrections of errors for harmonics of 60 Hz that are above the Nyquist frequency can be accomplished, and this can save the expense and integration effort to produce fast beam sampling

  14. High-repetition-rate setup for pump-probe time-resolved XUV-IR experiments employing ion and electron momentum imaging

    Science.gov (United States)

    Pathak, Shashank; Robatjazi, Seyyed Javad; Wright Lee, Pearson; Raju Pandiri, Kanaka; Rolles, Daniel; Rudenko, Artem

    2017-04-01

    J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan KS, USA We report on the development of a versatile experimental setup for XUV-IR pump-probe experiments using a 10 kHz high-harmonic generation (HHG) source and two different charged-particle momentum imaging spectrometers. The HHG source, based on a commercial KM Labs eXtreme Ultraviolet Ultrafast Source, is capable of delivering XUV radiation of less than 30 fs pulse duration in the photon energy range of 17 eV to 100 eV. It can be coupled either to a conventional velocity map imaging (VMI) setup with an atomic, molecular, or nanoparticle target; or to a novel double-sided VMI spectrometer equipped with two delay-line detectors for coincidence studies. An overview of the setup and results of first pump-probe experiments including studies of two-color double ionization of Xe and time-resolved dynamics of photoionized CO2 molecule will be presented. This project is supported in part by National Science Foundation (NSF-EPSCOR) Award No. IIA-1430493 and in part by the Chemical science, Geosciences, and Bio-Science division, Office of Basic Energy Science, Office of science, U.S. Department of Energy. K.

  15. Ultrafast high-repetition imaging of fuel sprays using picosecond fiber laser.

    Science.gov (United States)

    Purwar, Harsh; Wang, Hongjie; Tang, Mincheng; Idlahcen, Saïd; Rozé, Claude; Blaisot, Jean-Bernard; Godin, Thomas; Hideur, Ammar

    2015-12-28

    Modern diesel injectors operate at very high injection pressures of about 2000 bar resulting in injection velocities as high as 700 m/s near the nozzle outlet. In order to better predict the behavior of the atomization process at such high pressures, high-resolution spray images at high repetition rates must be recorded. However, due to extremely high velocity in the near-nozzle region, high-speed cameras fail to avoid blurring of the structures in the spray images due to their exposure time. Ultrafast imaging featuring ultra-short laser pulses to freeze the motion of the spray appears as an well suited solution to overcome this limitation. However, most commercial high-energy ultrafast sources are limited to a few kHz repetition rates. In the present work, we report the development of a custom-designed picosecond fiber laser generating ∼ 20 ps pulses with an average power of 2.5 W at a repetition rate of 8.2 MHz, suitable for high-speed imaging of high-pressure fuel jets. This fiber source has been proof tested by obtaining backlight images of diesel sprays issued from a single-orifice injector at an injection pressure of 300 bar. We observed a consequent improvement in terms of image resolution compared to standard white-light illumination. In addition, the compactness and stability against perturbations of our fiber laser system makes it particularly suitable for harsh experimental conditions.

  16. ‘Postage-stamp PIV’: small velocity fields at 400 kHz for turbulence spectra measurements

    Science.gov (United States)

    Beresh, Steven J.; Henfling, John F.; Spillers, Russell W.; Spitzer, Seth M.

    2018-03-01

    Time-resolved particle image velocimetry recently has been demonstrated in high-speed flows using a pulse-burst laser at repetition rates reaching 50 kHz. Turbulent behavior can be measured at still higher frequencies if the field of view is greatly reduced and lower laser pulse energy is accepted. Current technology allows image acquisition at 400 kHz for sequences exceeding 4000 frames but for an array of only 128  ×  120 pixels, giving the moniker of ‘postage-stamp PIV’. The technique has been tested far downstream of a supersonic jet exhausting into a transonic crossflow. Two-component measurements appear valid until 120 kHz, at which point a noise floor emerges whose magnitude is dependent on the reduction of peak locking. Stereoscopic measurement offers three-component data for turbulent kinetic energy spectra, but exhibits a reduced signal bandwidth and higher noise in the out-of-plane component due to the oblique camera images. The resulting spectra reveal two regions exhibiting power-law dependence describing the turbulent decay. The frequency response of the present measurement configuration exceeds nearly all previous velocimetry measurements in high speed flow.

  17. Novel porcine repetitive elements

    Directory of Open Access Journals (Sweden)

    Nonneman Dan J

    2006-12-01

    Full Text Available Abstract Background Repetitive elements comprise ~45% of mammalian genomes and are increasingly known to impact genomic function by contributing to the genomic architecture, by direct regulation of gene expression and by affecting genomic size, diversity and evolution. The ubiquity and increasingly understood importance of repetitive elements contribute to the need to identify and annotate them. We set out to identify previously uncharacterized repetitive DNA in the porcine genome. Once found, we characterized the prevalence of these repeats in other mammals. Results We discovered 27 repetitive elements in 220 BACs covering 1% of the porcine genome (Comparative Vertebrate Sequencing Initiative; CVSI. These repeats varied in length from 55 to 1059 nucleotides. To estimate copy numbers, we went to an independent source of data, the BAC-end sequences (Wellcome Trust Sanger Institute, covering approximately 15% of the porcine genome. Copy numbers in BAC-ends were less than one hundred for 6 repeat elements, between 100 and 1000 for 16 and between 1,000 and 10,000 for 5. Several of the repeat elements were found in the bovine genome and we have identified two with orthologous sites, indicating that these elements were present in their common ancestor. None of the repeat elements were found in primate, rodent or dog genomes. We were unable to identify any of the replication machinery common to active transposable elements in these newly identified repeats. Conclusion The presence of both orthologous and non-orthologous sites indicates that some sites existed prior to speciation and some were generated later. The identification of low to moderate copy number repetitive DNA that is specific to artiodactyls will be critical in the assembly of livestock genomes and studies of comparative genomics.

  18. DC-driven plasma gun: self-oscillatory operation mode of atmospheric-pressure helium plasma jet comprised of repetitive streamer breakdowns

    Science.gov (United States)

    Wang, Xingxing; Shashurin, Alexey

    2017-02-01

    This paper presents and studies helium atmospheric pressure plasma jet comprised of a series of repetitive streamer breakdowns, which is driven by pure DC high voltage (self-oscillatory behavior). The repetition frequency of the breakdowns is governed by the geometry of discharge electrodes/surroundings and gas flow rate. Each next streamer is initiated when the electric field on the anode tip recovers after the previous breakdown and reaches the breakdown threshold value of about 2.5 kV cm-1. One type of the helium plasma gun designed using this operational principle is demonstrated. The gun operates on about 3 kV DC high voltage and is comprised of the series of the repetitive streamer breakdowns at a frequency of about 13 kHz.

  19. Preparation of hydrogenated amorphous carbon films using a microsecond-pulsed DC capacitive-coupled plasma chemical vapor deposition system operated at high frequency up to 400 kHz

    Science.gov (United States)

    Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu

    2018-06-01

    Hydrogenated amorphous carbon (a-C:H) films are deposited on silicon (Si) substrates using a high-repetition microsecond-pulsed DC plasma chemical vapor deposition (CVD) system from acetylene (C2H2) at a gas pressure of 15 Pa inside a custom-made vacuum chamber. The plasma discharge characteristics, hydrocarbon species, and the microstructure of the resulting films are examined at various pulse repetition rates from 50 to 400 kHz and a fixed duty cycle of 50%. The optical emission spectra confirmed the increase in electron excitation energy from 1.09 to 1.82 eV and the decrease in the intensity ratio of CH/C2 from 1.04 to 0.75 with increasing pulse frequency, indicating the enhanced electron impact dissociation of C2H2 gas. With increasing pulse frequency, the deposition rate gradually increased, reaching a maximum rate of 60 nm/min at 200 kHz, after which a progressive decrease was noted, whereas the deposition area was almost uniform for all the prepared films. Clear trends of increasing sp3 content (amorphization) and decreasing hydrogen (H) content in the films were observed as the pulse repetition rate increased, while most of the hydrogen atoms bonded to carbon atoms by sp3 hybridization rather than by sp2 hybridization.

  20. Repetitive Questioning II

    Directory of Open Access Journals (Sweden)

    R. C. Hamdy MD

    2018-02-01

    Full Text Available Repetitive questioning is a major problem for caregivers, particularly taxing if they are unable to recognize and understand the reasons why their loved one keeps asking the same question over and over again. Caregivers may be tempted to believe that the patient does not even try to remember the answer given or is just getting obnoxious. This is incorrect. Repetitive questioning is due to the underlying disease: The patient’s short term memory is impaired and he is unable to register, encode, retain and retrieve the answer. If he is concerned about a particular topic, he will keep asking the same question over and over again. To the patient each time she asks the question, it is as if she asked it for the first time. Just answering repetitive questioning by providing repeatedly the same answer is not sufficient. Caregivers should try to identify the underlying cause for this repetitive questioning. In an earlier case study, the patient was concerned about her and her family’s safety and kept asking whether the doors are locked. In this present case study, the patient does not know how to handle the awkward situation he finds himself in. He just does not know what to do. He is not able to adjust to the new unexpected situation. So he repeatedly wants to reassure himself that he is not intruding by asking the same question over and over again. We discuss how the patient’s son-in-law could have avoided this situation and averted the catastrophic ending.

  1. Inter fraction variations in rectum and bladder volumes and dose distributions during high dose rate brachytherapy treatment of the uterine cervix investigated by repetitive CT-examinations

    International Nuclear Information System (INIS)

    Hellebust, Taran Paulsen; Dale, Einar; Skjoensberg, Ane; Olsen, Dag Rune

    2001-01-01

    Purpose: To evaluate variation of dose to organs at risk for patients receiving fractionated high dose rate gynaecological brachytherapy by using CT-based 3D treatment planning and dose-volume histograms (DVH). Materials and methods: Fourteen patients with cancer of the uterine cervix underwent three to six CT examinations (mean 4.9) during their course of high-dose-rate brachytherapy using radiographically compatible applicators. The rectal and bladder walls were delineated and DVHs were calculated. Results: Inter fraction variation of the bladder volume (CV mean =44.1%) was significantly larger than the inter fraction variation of the mean dose (CV mean =19.9%, P=0.005) and the maximum dose (CV mean =17.5%, P=0.003) of the bladder wall. The same trend was seen for rectum, although the figures were not significantly different. Performing CT examinations at four of seven brachytherapy fractions reduced the uncertainty to 4 and 7% for the bladder and rectal doses, respectively. A linear regression analysis showed a significant, negative relationship between time after treatment start and the whole bladder volume (P=0.018), whereas no correlation was found for the rectum. For both rectum and bladder a linear regression analysis revealed a significant, negative relationship between the whole volume and median dose (P<0.05). Conclusion: Preferably a CT examination should be provided at every fraction. However, this is logistically unfeasible in most institutions. To obtain reliable DVHs the patients will in the future undergo 3-4 CT examinations during the course of brachytherapy at our institution. Since this study showed an association between large bladder volumes and dose reductions, the patients will be treated with a standardized bladder volume

  2. Modulation of stimulus-induced 20-Hz activity for the tongue and hard palate during tongue movement in humans.

    Science.gov (United States)

    Maezawa, Hitoshi; Onishi, Kaori; Yagyu, Kazuyori; Shiraishi, Hideaki; Hirai, Yoshiyuki; Funahashi, Makoto

    2016-01-01

    Modulation of 20-Hz activity in the primary sensorimotor cortex (SM1) may be important for oral functions. Here, we show that 20-Hz event-related desynchronization/synchronization (20-Hz ERD/ERS) is modulated by sensory input and motor output in the oral region. Magnetic 20-Hz activity was recorded following right-sided tongue stimulation during rest (Rest) and self-paced repetitive tongue movement (Move). To exclude proprioception effects, 20-Hz activity induced by right-sided hard palate stimulation was also recorded. The 20-Hz activity in the two conditions was compared via temporal spectral evolution analyses. 20-Hz ERD/ERS was detected over bilateral temporoparietal areas in the Rest condition for both regions. Moreover, 20-Hz ERS was significantly suppressed in the Move condition for both regions. Detection of 20-Hz ERD/ERS during the Rest condition for both regions suggests that the SM1 functional state may be modulated by oral stimulation, with or without proprioceptive effects. Moreover, the suppression of 20-Hz ERS for the hard palate during the Move condition suggests that the stimulation-induced functional state of SM1 may have been modulated by the movement, even though the movement and stimulation areas were different. Sensorimotor function of the general oral region may be finely coordinated through 20-Hz cortical oscillation. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Repetition or Reconfiguration

    DEFF Research Database (Denmark)

    Andersen, Kristina Vaarst

    , the cognitive quality of knowledge held by individual professionals is the key microfoundation for project level performance. This paper empirically tests effects of project participants with and without knowledge diversity for project level performance for projects aiming for varying degrees of repetition...... and reconfiguration. The results indicate that project performance benefits form contributions from individuals holding diverse knowledge only when projects aim for high differentiation levels. This positive association is not just moderated, it may even be reversed in the case of professionals participating in low...

  4. MIMICRY, DIFFERENCE AND REPETITION

    Directory of Open Access Journals (Sweden)

    Marcelo Mendes de Souza

    2008-07-01

    Full Text Available This article addresses Homi K. Bhabha’s concept of mimicry in a broader context, other than that of cultural studies and post-colonial studies, bringing together other concepts, such as that of Gilles Deleuze in Difference and repetition, among other texts, and other names, such as Silviano Santiago, Jorge Luís Borges, Franz Kafka and Giorgio Agamben. As a partial conclusion, the article intends to oppose Bhabha’s freudian-marxist view to Five propositions on Psychoanalysis (1973, Gilles Deleuze’s text about Psychoanalysis published right after his book The Anti-Oedipus.

  5. Universal data compression and repetition times

    NARCIS (Netherlands)

    Willems, Frans M J

    1989-01-01

    A new universal data compression algorithm is described. This algorithm encodes L source symbols at a time. For the class of binary stationary sources, its rate does not exceed [formula omitted] [formula omitted] bits per source symbol. In our analysis, a property of repetition times turns out to be

  6. Periodic modulation of repetitively elicited monosynaptic reflexes of the human lumbosacral spinal cord

    Science.gov (United States)

    Danner, Simon M.; Freundl, Brigitta; Binder, Heinrich; Mayr, Winfried; Rattay, Frank; Minassian, Karen

    2015-01-01

    In individuals with motor-complete spinal cord injury, epidural stimulation of the lumbosacral spinal cord at 2 Hz evokes unmodulated reflexes in the lower limbs, while stimulation at 22–60 Hz can generate rhythmic burstlike activity. Here we elaborated on an output pattern emerging at transitional stimulation frequencies with consecutively elicited reflexes alternating between large and small. We analyzed responses concomitantly elicited in thigh and leg muscle groups bilaterally by epidural stimulation in eight motor-complete spinal cord-injured individuals. Periodic amplitude modulation of at least 20 successive responses occurred in 31.4% of all available data sets with stimulation frequency set at 5–26 Hz, with highest prevalence at 16 Hz. It could be evoked in a single muscle group only but was more strongly expressed and consistent when occurring in pairs of antagonists or in the same muscle group bilaterally. Latencies and waveforms of the modulated reflexes corresponded to those of the unmodulated, monosynaptic responses to 2-Hz stimulation. We suggest that the cyclical changes of reflex excitability resulted from the interaction of facilitatory and inhibitory mechanisms emerging after specific delays and with distinct durations, including postactivation depression, recurrent inhibition and facilitation, as well as reafferent feedback activation. The emergence of large responses within the patterns at a rate of 5.5/s or 8/s may further suggest the entrainment of spinal mechanisms as involved in clonus. The study demonstrates that the human lumbosacral spinal cord can organize a simple form of rhythmicity through the repetitive activation of spinal reflex circuits. PMID:25904708

  7. High-speed repetitive pellet injector for plasma fueling of magnetic confinement fusion devices

    International Nuclear Information System (INIS)

    Combs, S.K.; Baylor, L.R.; Foust, C.R.

    1993-01-01

    The projected fueling requirements of future magnetic confinement devices for controlled thermonuclear research [e.g., the International Thermonuclear Experimental Reactor (ITER)] indicate that a flexible plasma fueling capability is required. This includes a mix of traditional gas puffing and low- and high-velocity deuterium-tritium pellets. Conventional pellet injectors (based on light gas guns or centrifugal accelerators) can reliably provide frozen hydrogen pellets (1- to 6-mm-diam sizes tested) up to ∼1.3-km/s velocity at the appropriate pellet fueling rates (1 to 10 Hz or greater). For long-pulse operation in a higher velocity regime (>2 km/s), an experiment in collaboration between Oak Ridge National Laboratory (ORNL) and ENEA Frascati is under way. This activity will be carried out in the framework of a collaborative agreement between the US Department of Energy and European Atomic Energy Community -- ENEA Association. In this experiment, an existing ORNL hydrogen extruder (equipped with a pellet chambering mechanism/gun barrel assembly) and a Frascati two-stage light gas gun driver have been combined on a test facility at ORNL. Initial testing has been carried out with single deuterium pellets accelerated up to 2.05 km/s with the two-stage driver; in addition, some preliminary repetitive testing (to commission the diagnostics) was performed at reduced speeds, including sequences at 0.5 to 1 Hz and 10 to 30 pellets. The primary objective of this study is to demonstrate repetitive operation (up to ∼1 Hz) with speeds in the 2- to 3-km/s range. In addition, the strength of extruded hydrogen ice as opposed to that produced in situ by direct condensation in pipe guns can be investigated. The equipment and initial experimental results are described

  8. Progress toward a microsecond duration, repetitively pulsed, intense- ion beam

    International Nuclear Information System (INIS)

    Davis, H.A.; Olson, J.C.; Reass, W.A.; Coates, D.M.; Hunt, J.W.; Schleinitz, H.M.; Greenly, J.B.

    1996-01-01

    A number of intense ion beams applications are emerging requiring repetitive high-average-power beams. These applications include ablative deposition of thin films, rapid melt and resolidification for surface property enhancement, advanced diagnostic neutral beams for the next generation of Tokamaks, and intense pulsed-neutron sources. We are developing a 200-250 keV, 15 kA, 1 μs duration, 1-30 Hz intense ion beam accelerator to address these applications

  9. High Repetition Rate Thermometry System And Method

    KAUST Repository

    Chrystie, Robin

    2015-05-14

    A system and method for rapid thermometry using intrapulse spectroscopy can include a laser for propagating pulses of electromagnetic radiation to a region. Each of the pulses can be chirped. The pulses from the region can be detected. An intrapulse absorbance spectrum can be determined from the pulses. An instantaneous temperature of the region based on the intrapulse absorbance spectrum can be determined.

  10. High Repetition Rate Thermometry System And Method

    KAUST Repository

    Chrystie, Robin; Farooq, Aamir

    2015-01-01

    A system and method for rapid thermometry using intrapulse spectroscopy can include a laser for propagating pulses of electromagnetic radiation to a region. Each of the pulses can be chirped. The pulses from the region can be detected. An intrapulse absorbance spectrum can be determined from the pulses. An instantaneous temperature of the region based on the intrapulse absorbance spectrum can be determined.

  11. Neural dynamics during repetitive visual stimulation

    Science.gov (United States)

    Tsoneva, Tsvetomira; Garcia-Molina, Gary; Desain, Peter

    2015-12-01

    Objective. Steady-state visual evoked potentials (SSVEPs), the brain responses to repetitive visual stimulation (RVS), are widely utilized in neuroscience. Their high signal-to-noise ratio and ability to entrain oscillatory brain activity are beneficial for their applications in brain-computer interfaces, investigation of neural processes underlying brain rhythmic activity (steady-state topography) and probing the causal role of brain rhythms in cognition and emotion. This paper aims at analyzing the space and time EEG dynamics in response to RVS at the frequency of stimulation and ongoing rhythms in the delta, theta, alpha, beta, and gamma bands. Approach.We used electroencephalography (EEG) to study the oscillatory brain dynamics during RVS at 10 frequencies in the gamma band (40-60 Hz). We collected an extensive EEG data set from 32 participants and analyzed the RVS evoked and induced responses in the time-frequency domain. Main results. Stable SSVEP over parieto-occipital sites was observed at each of the fundamental frequencies and their harmonics and sub-harmonics. Both the strength and the spatial propagation of the SSVEP response seem sensitive to stimulus frequency. The SSVEP was more localized around the parieto-occipital sites for higher frequencies (>54 Hz) and spread to fronto-central locations for lower frequencies. We observed a strong negative correlation between stimulation frequency and relative power change at that frequency, the first harmonic and the sub-harmonic components over occipital sites. Interestingly, over parietal sites for sub-harmonics a positive correlation of relative power change and stimulation frequency was found. A number of distinct patterns in delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz) and beta (15-30 Hz) bands were also observed. The transient response, from 0 to about 300 ms after stimulation onset, was accompanied by increase in delta and theta power over fronto-central and occipital sites, which returned to baseline

  12. Development of a 3 tesla - 10 Hz pulsed magnet-modulator system

    International Nuclear Information System (INIS)

    Krausse, G.J.; Butterfield, K.B.

    1984-01-01

    In order to support the experimental work done at the Los Alamos Meson Physics Facility new instrumentation and data collection systems of advanced design are developed on a regular basis. Within the instrumentation system for an experiment at LAMPF, The Photo-Excitation of the H - Ion Resonances, there exists a need for a pulsed air-core electromagnet and modulator system. The magnet must be capable of producing a field strength of 0 to 3T in a volume of 3.5 cm 3 . In addition it must be radiation resistant, have a uniform field, operate in a high vacuum with little or no outgassing, and the physical layout of the magnet must provide minimal azimuthal obstruction to both the ion and laser beams. The modulator must be capable of producing up to a 15KA pulse with duration of two μs at a maximum repetition rate of 10 Hz. Modulator layout must be extremely reliable so that data collection time is not lost during the experiment. This paper describes in detail the development of the system

  13. Continuous single pulse resolved measurement of beam diameters at 200 kHz using optical transmission filters

    Science.gov (United States)

    Fruechtenicht, Johannes; Letsch, Andreas; Voss, Andreas; Abdou Ahmed, Marwan; Graf, Thomas

    2012-02-01

    We present a novel laser beam measurement setup which allows the determination of the beam diameter for each single pulse of a pulsed laser beam at repetition rates of up to 200 kHz. This is useful for online process-parameter control e.g. in micromachining or for laser source characterization. Basically, the developed instrument combines spatial transmission filters specially designed for instantaneous optical determination of the second order moments of the lateral intensity distribution of the light beam and photodiodes coupled to customized electronics. The acquisition is computer-based, enabling real-time operation for online monitoring or control. It also allows data storage for a later analysis and visualization of the measurement results. The single-pulse resolved beam diameter can be measured and recorded without any interruption for an unlimited number of pulses. It is only limited by the capacity of the data storage means. In our setup a standard PC and hard-disk provided 2 hours uninterrupted operation and recording of varying beam diameters at 200 kHz. This is about three orders of magnitude faster than other systems. To calibrate our device we performed experiments in cw and pulsed regimes and the obtained results were compared to those obtained with a commercial camera based system. Only minor deviations of the beam diameter values between the two instruments were observed, proving the reliability of our approach.

  14. Preliminary design of a 150 kJ repetitive plasma focus for the production of 18-F

    Science.gov (United States)

    Sumini, Marco; Mostacci, Domiziano; Rocchi, Federico; Frignani, Michele; Tartari, Agostino; Angeli, Ergisto; Galaverni, Dario; Coli, Ugo; Ascione, Bernardino; Cucchi, Giorgio

    2006-06-01

    Experiments in the past five years have demonstrated production of short-lived radioisotopes with a Plasma Focus device, using the so-termed Endogenous Mode. So far radioisotope activities of only a few microcuries have been obtained from single discharges in small scale Plasma Focus machines (capacitor bank energies of approximately 7 kJ). It is expected that higher activities could be obtained with larger bank energies, operating at high pulse repetition rates, e.g. 1 Hz. However, many scientific and technological issues must be addressed for a high-energy Plasma Focus device to run at one pulse per second. Aim of this paper is to present preliminary results pertaining to the plasma, electrical, fluid-dynamical, thermal, material and mechanical design of a 150 kJ Plasma Focus, capable of a repetition rate of 1 Hz, that will be operated at 30 kV with a 350 μF capacitor bank and a maximum total current of 1.5 MA. This device will be used to breed 18-F for the synthesis of drugs used in positron-emission medical examinations, such as FDG for PET.

  15. Preliminary design of a 150 kJ repetitive plasma focus for the production of 18-F

    International Nuclear Information System (INIS)

    Sumini, Marco; Mostacci, Domiziano; Rocchi, Federico; Frignani, Michele; Tartari, Agostino; Angeli, Ergisto; Galaverni, Dario; Coli, Ugo; Ascione, Bernardino; Cucchi, Giorgio

    2006-01-01

    Experiments in the past five years have demonstrated production of short-lived radioisotopes with a Plasma Focus device, using the so-termed Endogenous Mode. So far radioisotope activities of only a few microcuries have been obtained from single discharges in small scale Plasma Focus machines (capacitor bank energies of approximately 7 kJ). It is expected that higher activities could be obtained with larger bank energies, operating at high pulse repetition rates, e.g. 1 Hz. However, many scientific and technological issues must be addressed for a high-energy Plasma Focus device to run at one pulse per second. Aim of this paper is to present preliminary results pertaining to the plasma, electrical, fluid-dynamical, thermal, material and mechanical design of a 150 kJ Plasma Focus, capable of a repetition rate of 1 Hz, that will be operated at 30 kV with a 350 μF capacitor bank and a maximum total current of 1.5 MA. This device will be used to breed 18-F for the synthesis of drugs used in positron-emission medical examinations, such as FDG for PET

  16. Active power filter for harmonic compensation using a digital dual-mode-structure repetitive control approach

    DEFF Research Database (Denmark)

    Zou, Zhixiang; Wang, Zheng; Cheng, Ming

    2012-01-01

    This paper presents an digital dual-mode-structure repetitive control approach for the single-phase shunt active power filter (APF), which aims to enhance the tracking ability and eliminate arbitrary order harmonic. The proposed repetitive control scheme blends the characteristics of both odd......-harmonic repetitive control and even-harmonic repetitive control. Moreover, the convergence rate is faster than conventional repetitive controller. Additionally, the parameters have been designed and optimized for the dual-mode structure repetitive control to improve the performance of APF system. Experimental...

  17. Design and development of repetitive capacitor charging power supply based on series-parallel resonant converter topology.

    Science.gov (United States)

    Patel, Ankur; Nagesh, K V; Kolge, Tanmay; Chakravarthy, D P

    2011-04-01

    LCL resonant converter based repetitive capacitor charging power supply (CCPS) is designed and developed in the division. The LCL converter acts as a constant current source when switching frequency is equal to the resonant frequency. When both resonant inductors' values of LCL converter are same, it results in inherent zero current switching (ZCS) in switches. In this paper, ac analysis with fundamental frequency approximation of LCL resonant tank circuit, frequency dependent of current gain converter followed by design, development, simulation, and practical result is described. Effect of change in switching frequency and resonant frequency and change in resonant inductors ratio on CCPS will be discussed. An efficient CCPS of average output power of 1.2 kJ/s, output voltage 3 kV, and 300 Hz repetition rate is developed in the division. The performance of this CCPS has been evaluated in the laboratory by charging several values of load capacitance at various repetition rates. These results indicate that this design is very feasible for use in capacitor-charging applications. © 2011 American Institute of Physics

  18. Introduction of a 20 kHz Nd:YVO4 laser into a hybrid quadrupole time-of-flight mass spectrometer for MALDI-MS imaging.

    Science.gov (United States)

    Trim, Paul J; Djidja, Marie-Claude; Atkinson, Sally J; Oakes, Keith; Cole, Laura M; Anderson, David M G; Hart, Philippa J; Francese, Simona; Clench, Malcolm R

    2010-08-01

    A commercial hybrid quadrupole time-of-flight mass spectrometer has been modified for high-speed matrix-assisted laser desorption ionisation (MALDI) imaging using a short-pulse optical technology Nd:YVO(4) laser. The laser operating in frequency-tripled mode (lambda = 355 nm) is capable of delivering 1.5-ns pulses of energy at up to 8 microJ at 5-10 kHz and 3 microJ at 20 kHz. Experiments to improve beam homogeneity and reduce laser speckle by mechanical vibration of the fibre-optic laser delivery system are reported along with data from trial and tissue imaging experiments using the modified instrument. The laser appeared to yield best results for MALDI-MS imaging experiments when operating at repetition rates 5-10 kHz. Combining this with raster imaging allowed images of rat brain sections to be recorded in 37 min. Similarly, images of the distribution of peptides in "on-tissue" digest experiments from tumour tissues were recorded in 1 h and 30 min rather than the 8-h acquisition time previously used. A brief investigation of targeted protein analysis/imaging by multiple reaction monitoring experiments "on-tissue" is reported. A total of 26 transitions were recorded over a 3-s cycle time and images of abundant proteins were successfully recorded.

  19. 40-Hz square-wave stimulation requires less energy to produce muscle contraction: compared with the TASER® X26 conducted energy weapon.

    Science.gov (United States)

    Comeaux, James A; Jauchem, James R; Cox, D Duane; Crane, Carrie C; D'Andrea, John A

    2013-07-01

    Conducted energy weapons (CEWs) (including the Advanced TASER(®) X26 model produced by TASER International, Inc.) incapacitate individuals by causing muscle contractions. In this study using anesthetized swine, the potential incapacitating effect of primarily monophasic, 19-Hz voltage imposed by the commercial CEW was compared with the effect of voltages imposed by a laboratory device that created 40-Hz square waves. Forces of muscle contraction were measured with the use of strain gauges. Stimulation with 40-Hz square waves required less pulse energy than stimulation with the commercial CEW to produce similar muscle contraction. The square-pulse stimulation, at the higher repetition rate, caused a more complete tetanus at a lower energy. Use of such a simple shape of waveform may be used to make future nonlethal weapon devices more efficient. © 2013 American Academy of Forensic Sciences Published 2013. This article is a U.S. Government work and is in the public domain in the U.S.A.

  20. Development of highly repetitive pulse power system using amorphous metallic cores

    Energy Technology Data Exchange (ETDEWEB)

    Masugata, K; Yatsui, K [Nagaoka Univ. of Technology (Japan). Dept. of Electrical Engineering

    1997-12-31

    A new type of pulse power system has been developed to obtain an efficient highly repetitive pulse-power generation. The system is constructed of a double pulse circuit (1st stage), step-up transformer and Blumlein pulse forming line (BL) and can generate high power pulse of 600 kV, 24 kA, 60 ns. In the system, discharge gap switches are replaced by magnetic switches. In addition, instead of Marx generator, a step-up transformer is utilized to generate high voltage pulse. The system is tested under the double pulse mode where two 1st stage capacitors are connected in parallel and switched with a interval of T{sub d}. The minimum value of T{sub d} is limited by the recovery of 1st stage gap switches and at T{sub d} {>=} 500 {mu}s (equivalent rep-rate of 2 kHz), the system is operated with good reproducibility. To enhance the recovery, magnetic switch is utilized, which enables operation at T{sub d} {>=} 30 {mu}s (equivalent rep-rate of 33 kHz). (author). 7 figs., 7 refs.

  1. 100-Hz Electroacupuncture but not 2-Hz Electroacupuncture is Preemptive Against Postincision Pain in Rats.

    Science.gov (United States)

    Silva, Marcelo Lourenço; Silva, Josie Resende Torres; Prado, Wiliam Alves

    2016-08-01

    Preemptive analgesia involves introducing an analgesic before noxious stimulation. Electroacupuncture (EA) activates descending mechanisms that modulate nociceptive inputs into the spinal dorsal horn. This study evaluated whether preoperative EA is more effective than postoperative EA in reducing incision pain in rats. The nociceptive threshold to mechanical stimulation was utilized to examine the effects of an intraperitoneal injection of saline (0.1 mL/kg) or naloxone (1 mg/kg) on antinociception induced by a 20-minute period of 2-Hz or 100-Hz EA applied to the Zusanli (ST36) and Sanyinjiao (SP6) acupoints before surgical incision, or 10 minutes after or 100 minutes after surgical incision of the hind paw. The extent of mechanical hyperalgesia after the incision was significantly attenuated by the application of 100-Hz EA preoperatively, but not by its application at 10 minutes or 100 minutes postoperatively. By contrast, 2-Hz EA was effective against postoperative hyperalgesia when applied 10 minutes or 100 minutes after surgery but not when it was applied preoperatively. Only the effect of 2-Hz EA applied 10 minutes after surgery was sensitive to naloxone. The present study showed for the first time that 100-Hz EA, but not 2-Hz EA, exerts a nonopioidergic preemptive effect against postincision pain in rats. Copyright © 2016. Published by Elsevier B.V.

  2. Neurovegetative disturbances in workers exposed to 50 Hz electromagnetic fields

    International Nuclear Information System (INIS)

    Bortkiewicz, A.; Gadzicka, E.; Zmyslony, M.; Szymczak, W.

    2006-01-01

    Since the circulatory and nervous systems are composed of of electrically excitable tissues, it is plausible that they can be stimulated by electromagnetic fields (EMF). No clinical studies have as been carried out to explain whether and how occupational exposure to 50 Hz EMF can influence the neurovegetative regulation of the cardiovascular function. The present project was undertaken to assess the the autonomic function in workers occupationally exposed to 50 Hz EMF, by analyzing the heart rate variability. The study group comprised 63 workers of switchyard substations, aged 22-67 years (39.2±10.0 years), and the control group 42 workers of radio link stations, aged 20-68 years (40.7±9.2 years), employed at workposts free from EMF exposure. The age range and employment duration in both groups did not differ significantly. To assess the neurovegetative regulation of the cardiac function, heart rate variability HRV) analysis was made based on 512 normal heart beats recorded at rest. The analysis, performed using fast Fourier transformation, concerned the time - and frequency-domain HRV parameters. Power spectrum in the very low (VLF), low (LF) and high (HF) frequency bands was determined. The relative risk of decreased HRV (STD R-R ) was significantly higher in the study group than in control (65% vs. 47%). It was concluded that occupational exposure to 50 Hz EMF could influence the neurovegetative regulation of the cardiovascular system. (author)

  3. RHIC 10 Hz global orbit feedback system

    International Nuclear Information System (INIS)

    Michnoff, R.; Arnold, L.; Carboni, L.; Cerniglia, P.; Curcio, A.; DeSanto, L.; Folz, C.; Ho, C.; Hoff, L.; Hulsart, R.; Karl, R.; Luo, Y.; Liu, C.; MacKay, W.; Mahler, G.; Meng, W.; Mernick, K.; Minty, M.; Montag, C.; Olsen, R.; Piacentino, J.; Popken, P.; Przybylinski, R.; Ptitsyn, V.; Ritter, J.; Schoenfeld, R.; Thieberger, P.; Tuozzolo, J.; Weston, A.; White, J.; Ziminski, P.; Zimmerman, P.

    2011-01-01

    Vibrations of the cryogenic triplet magnets at the Relativistic Heavy Ion Collider (RHIC) are suspected to be causing the horizontal beam perturbations observed at frequencies around 10 Hz. Several solutions to counteract the effect have been considered in the past, including a local beam feedback system at each of the two experimental areas, reinforcing the magnet base support assembly, and a mechanical servo feedback system. However, the local feedback system was insufficient because perturbation amplitudes outside the experimental areas were still problematic, and the mechanical solutions are very expensive. A global 10 Hz orbit feedback system consisting of 36 beam position monitors (BPMs) and 12 small dedicated dipole corrector magnets in each of the two 3.8 km circumference counter-rotating rings has been developed and commissioned in February 2011. A description of the system architecture and results with beam will be discussed.

  4. Repetitive transcranial magnetic stimulation in cervical dystonia: effect of site and repetition in a randomized pilot trial.

    Directory of Open Access Journals (Sweden)

    Sarah Pirio Richardson

    Full Text Available Dystonia is characterized by abnormal posturing due to sustained muscle contraction, which leads to pain and significant disability. New therapeutic targets are needed in this disorder. The objective of this randomized, sham-controlled, blinded exploratory study is to identify a specific motor system target for non-invasive neuromodulation and to evaluate this target in terms of safety and tolerability in the cervical dystonia (CD population. Eight CD subjects were given 15-minute sessions of low-frequency (0.2 Hz repetitive transcranial magnetic stimulation (rTMS over the primary motor cortex (MC, dorsal premotor cortex (dPM, supplementary motor area (SMA, anterior cingulate cortex (ACC and a sham condition with each session separated by at least two days. The Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS score was rated in a blinded fashion immediately pre- and post-intervention. Secondary outcomes included physiology and tolerability ratings. The mean change in TWSTRS severity score by site was 0.25 ± 1.7 (ACC, -2.9 ± 3.4 (dPM, -3.0 ± 4.8 (MC, -0.5 ± 1.1 (SHAM, and -1.5 ± 3.2 (SMA with negative numbers indicating improvement in symptom control. TWSTRS scores decreased from Session 1 (15.1 ± 5.1 to Session 5 (11.0 ± 7.6. The treatment was tolerable and safe. Physiology data were acquired on 6 of 8 subjects and showed no change over time. These results suggest rTMS can modulate CD symptoms. Both dPM and MC are areas to be targeted in further rTMS studies. The improvement in TWSTRS scores over time with multiple rTMS sessions deserves further evaluation.

  5. Efficacy of bilateral repetitive transcranial magnetic stimulation for negative symptoms of schizophrenia : results of a multicenter double-blind randomized controlled trial

    NARCIS (Netherlands)

    Dlabac-de Lange, J. J.; Bais, L.; van Es, F. D.; Visser, B. G. J.; Reinink, E.; Bakker, B.; van den Heuvel, E. R.; Aleman, A.; Knegtering, H.

    Background. Few studies have investigated the efficacy of repetitive transcranial magnetic stimulation (rTMS) treatment for negative symptoms of schizophrenia, reporting inconsistent results. We aimed to investigate whether 10 Hz stimulation of the bilateral dorsolateral prefrontal cortex during 3

  6. Note: Simple 100 Hz N2 laser with longitudinal discharge tube and high-voltage power supply using neon sign transformer.

    Science.gov (United States)

    Uno, K; Jitsuno, T

    2017-12-01

    We developed a longitudinally excited N 2 laser with a simple driver circuit and a simple power supply. The N 2 laser consisted of a 20 cm-long glass tube with an inner diameter of 2.5 mm, a normal stable resonator formed by flat mirrors, a variable transformer, a neon sign transformer, a spark gap, and a 200 pF capacitance. The N 2 laser produced a laser pulse with an energy of 379 nJ and a pulse width of 7.5 ns at a repetition rate of 100 Hz. The laser beam was circular and had a Gaussian profile with a correlation factor of 0.992 93.

  7. Influence of spatial and temporal spot distribution on the ocular surface quality and maximum ablation depth after photoablation with a 1050 Hz excimer laser system.

    Science.gov (United States)

    Mrochen, Michael; Schelling, Urs; Wuellner, Christian; Donitzky, Christof

    2009-02-01

    To investigate the effect of temporal and spatial distributions of laser spots (scan sequences) on the corneal surface quality after ablation and the maximum ablation of a given refractive correction after photoablation with a high-repetition-rate scanning-spot laser. IROC AG, Zurich, Switzerland, and WaveLight AG, Erlangen, Germany. Bovine corneas and poly(methyl methacrylate) (PMMA) plates were photoablated using a 1050 Hz excimer laser prototype for corneal laser surgery. Four temporal and spatial spot distributions (scan sequences) with different temporal overlapping factors were created for 3 myopic, 3 hyperopic, and 3 phototherapeutic keratectomy ablation profiles. Surface quality and maximum ablation depth were measured using a surface profiling system. The surface quality factor increased (rough surfaces) as the amount of temporal overlapping in the scan sequence and the amount of correction increased. The rise in surface quality factor was less for bovine corneas than for PMMA. The scan sequence might cause systematic substructures at the surface of the ablated material depending on the overlapping factor. The maximum ablation varied within the scan sequence. The temporal and spatial distribution of the laser spots (scan sequence) during a corneal laser procedure affected the surface quality and maximum ablation depth of the ablation profile. Corneal laser surgery could theoretically benefit from smaller spot sizes and higher repetition rates. The temporal and spatial spot distributions are relevant to achieving these aims.

  8. Properties of Repetitive Long-Period Seismicity at Villarrica Volcano, Chile

    Science.gov (United States)

    Richardson, J.; Waite, G. P.; Palma, J.; Johnson, J. B.

    2011-12-01

    Villarrica Volcano, Chile hosts a persistent lava lake and is characterized by degassing and long-period seismicity. In order to better understand the relationship between outgassing and seismicity, we recorded broadband seismic and acoustic data along with high-rate SO2 emission data. We used both a densely-spaced linear array deployed on the northern flank of Villarrica, during the austral summer of 2011, and a wider aperture array of stations distributed around the volcano that was active in the austral summer of 2010. Both deployments consisted of three-component broadband stations and were augmented with broadband infrasound sensors. Of particular interests are repetitive, ~1 Hz seismic and coincident infrasound signals that occurred approximately every 2 minutes. Because these events are typically very low amplitude, we used a matched filter approach to identify them. We windowed several high-amplitude records of these events from broadband seismic stations near the vent. The record section of each event served as a template to compare with the entire dataset by cross-correlation. This approach identified ~20,000 nearly identical events during the ~7 day deployment of the linear array, which were otherwise difficult to identify in the raw records. Assuming that all of the events that we identified have identical source mechanisms and depths, we stack the large suite of events to produce low-noise records and particle motions at receivers farther than 5 km from the vent. We find that the records from stations near the edifice are dominated by tangential particle motion, suggesting the influence of near-field components. Correlation of these data with broadband acoustic data collected at the summit suggest that these repeatable seismic processes are linked to acoustic emissions, probably due to gas bubbles bursting at the magma free surface, as no eruptive products besides gas were being emitted by the volcano during the instrument deployment. The acoustic

  9. Repetition and lag effects in movement recognition.

    Science.gov (United States)

    Hall, C R; Buckolz, E

    1982-03-01

    Whether repetition and lag improve the recognition of movement patterns was investigated. Recognition memory was tested for one repetition, two-repetitions massed, and two-repetitions distributed with movement patterns at lags of 3, 5, 7, and 13. Recognition performance was examined both immediately afterwards and following a 48 hour delay. Both repetition and lag effects failed to be demonstrated, providing some support for the claim that memory is unaffected by repetition at a constant level of processing (Craik & Lockhart, 1972). There was, as expected, a significant decrease in recognition memory following the retention interval, but this appeared unrelated to repetition or lag.

  10. Repetitive low-frequency stimulation reduces epileptiform synchronization in limbic neuronal networks.

    Science.gov (United States)

    D'Arcangelo, G; Panuccio, G; Tancredi, V; Avoli, M

    2005-01-01

    Deep-brain electrical or transcranial magnetic stimulation may represent a therapeutic tool for controlling seizures in patients presenting with epileptic disorders resistant to antiepileptic drugs. In keeping with this clinical evidence, we have reported that repetitive electrical stimuli delivered at approximately 1 Hz in mouse hippocampus-entorhinal cortex (EC) slices depress the EC ability to generate ictal activity induced by the application of 4-aminopyridine (4AP) or Mg(2+)-free medium (Barbarosie, M., Avoli, M., 1997. CA3-driven hippocampal-entorhinal loop controls rather than sustains in vitro limbic seizures. J. Neurosci. 17, 9308-9314.). Here, we confirmed a similar control mechanism in rat brain slices analyzed with field potential recordings during 4AP (50 microM) treatment. In addition, we used intrinsic optical signal (IOS) recordings to quantify the intensity and spatial characteristics of this inhibitory influence. IOSs reflect the changes in light transmittance throughout the entire extent of the slice, and are thus reliable markers of limbic network epileptiform synchronization. First, we found that in the presence of 4AP, the IOS increases, induced by a train of electrical stimuli (10 Hz for 1 s) or by recurrent, single-shock stimulation delivered at 0.05 Hz in the deep EC layers, are reduced in intensity and area size by low-frequency (1 Hz), repetitive stimulation of the subiculum; these effects were observed in all limbic areas contained in the slice. Second, by testing the effects induced by repetitive subicular stimulation at 0.2-10 Hz, we identified maximal efficacy when repetitive stimuli are delivered at 1 Hz. Finally, we discovered that similar, but slightly less pronounced, inhibitory effects occur when repetitive stimuli at 1 Hz are delivered in the EC, suggesting that the reduction of IOSs seen during repetitive stimulation is pathway dependent as well as activity dependent. Thus, the activation of limbic networks at low frequency

  11. Effects of Navigated Repetitive Transcranial Magnetic Stimulation After Stroke.

    Science.gov (United States)

    Chervyakov, Alexander V; Poydasheva, Alexandra G; Lyukmanov, Roman H; Suponeva, Natalia A; Chernikova, Ludmila A; Piradov, Michael A; Ustinova, Ksenia I

    2018-03-01

    The purpose of this study was to test the effects of navigated repetitive transcranial magnetic stimulation, delivered in different modes, on motor impairments and functional limitations after stroke. The study sample included 42 patients (58.5 ± 10.7 years; 26 males) who experienced a single unilateral stroke (1-12 months previously) in the area of the middle cerebral artery. Patients completed a course of conventional rehabilitation, together with 10 sessions of navigated repetitive transcranial magnetic stimulation or sham stimulation. Stimulation was scheduled five times a week over two consecutive weeks in an inpatient clinical setting. Patients were randomly assigned to one of four groups and received sham stimulation (n = 10), low-frequency (1-Hz) stimulation of the nonaffected hemisphere (n = 11), high-frequency (10-Hz) stimulation of the affected hemisphere (n = 13), or sequential combination of low- and high-frequency stimulations (n = 8). Participants were evaluated before and after stimulation with clinical tests, including the arm and hand section of the Fugl-Meyer Assessment Scale, modified Ashworth Scale of Muscle Spasticity, and Barthel Index of Activities of Daily Living. Participants in the three groups receiving navigated repetitive transcranial magnetic stimulation showed improvements in arm and hand functions on the Fugl-Meyer Stroke Assessment Scale. Ashworth Scale of Muscle Spasticity and Barthel Index scores were significantly reduced in groups receiving low- or high-frequency stimulation alone. Including navigated repetitive transcranial magnetic stimulation in a conventional rehabilitation program positively influenced motor and functional recovery in study participants, demonstrating the clinical potential of the method. The results of this study will be used for designing a large-scale clinical trial.

  12. Repetitive Transcranial Magnetic Stimulation in Patients with Hereditary Spastic Paraplegia

    Directory of Open Access Journals (Sweden)

    Mehmet Ağırman

    2011-06-01

    Full Text Available Hereditary spastic paraplegia (HSPP is a heterogeneous genetic disease characterized by progressive spasticity of lower extremities. Spasticity is a major cause of long-term disability in HSPP and significantly affects the functional life of patients. Repetitive transcranial magnetic stimulation (rTMS is widely used in diagnosis and treatment of many neurological and psychiatric diseases. Although the positive impacts of rTMS for spasticity have been reported, no study has been found on HSPP. We present two HSPP patients treated with low frequency rTMS (20 minutes at a frequency of 1 Hz (1200 pulses, for a period of 10 treatment sessions.

  13. Repetitive Transcranial Magnetic Stimulation in Patients with Hereditary Spastic Paraplegia

    Directory of Open Access Journals (Sweden)

    Mehmet Ağırman

    2011-06-01

    Full Text Available Hereditary spastic paraplegia (HSPP is a heterogeneous genetic disease characterized by progressive spasticity of lower extremities. Spasticity is a major cause of long-term disability in HSPP and significantly affects the functional life of patients. Repetitive transcranial magnetic stimulation (rTMS is widely used in diagnosis and treatment of many neurological and psychiatric diseases. Although the positive impacts of rTMS for spasticity have been reported, no study has been found on HSPP. We present two HSPP patients treated with low frequency rTMS (20 minutes at a frequency of 1 Hz (1200 pulses, for a period of 10 treatment sessions

  14. BANSHEE: High-voltage repetitively pulsed electron-beam driver

    International Nuclear Information System (INIS)

    VanHaaften, F.

    1992-01-01

    BANSHEE (Beam Accelerator for a New Source of High-Energy Electrons) this is a high-voltage modulator is used to produce a high-current relativistic electron beam for high-power microwave tube development. The goal of the BANSHEE research is first to achieve a voltage pulse of 700--750 kV with a 1-μs pulse width driving a load of ∼100 Ω, the pulse repetition frequency (PRF) of a few hertz. The ensuing goal is to increase the pulse amplitude to a level approaching 1 MV. We conducted tests using half the modulator with an output load of 200 Ω, up to a level of ∼650 kV at a PRF of 1 Hz and 525 kV at a PRF of 5 Hz. We then conducted additional testing using the complete system driving a load of ∼100 Ω

  15. Repetitive laser fusion experiment and operation using a target injection system

    International Nuclear Information System (INIS)

    Nishimura, Yasuhiko; Komeda, Osamu; Mori, Yoshitaka

    2017-01-01

    Since 2008, a collaborative research project on laser fusion development based on a high-speed ignition method using repetitive laser has been carried out with several collaborative research institutes. This paper reports the current state of operation of high repetition laser fusion experiments, such as target introduction and control based on a target injection system that allows free falling under 1 Hz, using a high repetition laser driver that has been under research and development, as well as the measurement of targets that freely fall. The HAMA laser driver that enabled high repetition fusion experiments is a titanium sapphire laser using a diode-pumped solid-state laser KURE-I of green light output as a driver pump light source. In order to carry out high repetition laser fusion experiments, the target injection device allows free falling of deuterated polystyrene solid sphere targets of 1 mm in diameter under 1 Hz. The authors integrated the developed laser and injection system, and succeeded first in the world in making the nuclear fusion reaction continuously by hitting the target to be injected with laser, which is essential technology for future laser nuclear fusion reactor. In order to realize repetition laser fusion experiments, stable laser, target synchronization control, and target position measurement technologies are indispensable. (A.O.)

  16. Conducted noise analysis and protection of 45 kJ/s, ±50 kV capacitor charging power supply when interfaced with repetitive Marx based pulse power system

    Science.gov (United States)

    Naresh, P.; Patel, Ankur; Sharma, Archana

    2015-09-01

    Pulse power systems with highly dynamic loads like klystron, backward wave oscillator (BWO), and magnetron generate highly dynamic noise. This noise leads to frequent failure of controlled switches in the inverter stage of charging power supply. Designing a reliable and compatible power supply for pulse power applications is always a tricky job when charging rate is in multiples of 10 kJ/s. A ±50 kV and 45 kJ/s capacitor charging power supply based on 4th order LCLC resonant topology has been developed for a 10 Hz repetitive Marx based system. Conditions for load independent constant current and zero current switching (ZCS) are derived mathematically. Noise generated at load end due to dynamic load is tackled effectively and reduction in magnitude noise voltage is achieved by providing shielding between primary and secondary of high voltage high frequency transformer and with LCLC low pass filter. Shielding scales down the ratio between coupling capacitance (Cc) and the collector-emitter capacitance of insulated gate bi-polar transistor switch, which in turn reduces the common mode noise voltage magnitude. The proposed 4th order LCLC resonant network acts as a low pass filter for differential mode noise in the reverse direction (from load to source). Power supply has been tested repeatedly with 5 Hz repetition rate with repetitive Marx based system connected with BWO load working fine without failure of single switch in the inverter stage.

  17. RELIABILITY AND ACCURACY OF 10 HZ GPS DEVICES FOR SHORT-DISTANCE EXERCISE

    Directory of Open Access Journals (Sweden)

    Julen Castellano

    2011-03-01

    Full Text Available The use of GPS technology for training and research purposes requires a study of the reliability, validity and accuracy of the data generated (Petersen et al., 2009. To date, studies have focused on devices with a logging rate of 1 Hz and 5 Hz (Coutts and Duffield, 2010; Duffield et al., 2010; Jennings et al., 2010; MacLeod et al., 2009; Petersen et al., 2009; Portas et al., 2010, although it seems that more frequent sampling can increase the accuracy of the information provided by these devices (Jennings et al., 2010; MacLeod et al., 2009, Portas et al., 2010. However, we are unaware of any study of the reliability and accuracy of GPS devices using a sampling frequency of 10 Hz. Thus, the aim of the present research was to determine the reliability and accuracy of GPS devices operating at a sampling frequency of 10 Hz, in relation here to sprints of 15 m and 30 m and using both video and photoelectric cells.Nine trained male athletes participated in the study. Each participant completed 7 and 6 linear runs of 15 m and 30 m, respectively (n = 117, with only one GPS device being used per participant. Each repetition required them to complete the route as quickly as possible, with 1 min recovery between sets. Distance was monitored through the use of GPS devices (MinimaxX v4.0, Catapult Innovations, Melbourne, Australia operating at the above mentioned sampling frequency of 10 Hz. In addition, all tests were filmed with a video camera operating at a sampling frequency of 25 frames. Data were collected during what were considered to be good GPS conditions in terms of the weather and satellite conditions (number of satellites = 10.0 ± 0.2 and 10.3 ± 0.4 for sprints of 15 m and 30 m, respectively.Distance was measured using a tape measure. Electronic timing gates (TAG- Heuer, CP 520 Training model, Switzerland were used to obtain a criterion sprint time accurate to 0.01 s, with gates being placed at the beginning and end of the route (Petersen et

  18. Short-time X-ray diffraction with an efficient-optimized, high repetition-rate laser-plasma X-ray-source; Kurzzeit-Roentgenbeugung mit Hilfe einer Effizienz-optimierten, hochrepetierenden Laser-Plasma-Roentgenquelle

    Energy Technology Data Exchange (ETDEWEB)

    Kaehle, Stephan

    2009-04-23

    This thesis deals with the production and application of ultrashort X-ray pulses. In the beginning different possibilities for the production of X-ray pulses with pulse durations of below one picosecond are presented, whereby the main topic lies on the so called laser-plasma X-ray sources with high repetition rate. In this case ultrashort laser pulses are focused on a metal, so that in the focus intensities of above 10{sup 16} W/cm{sup 2} dominate. In the ideal case in such way ultrafast electrons are produced, which are responsible for line radiation. In these experiments titanium K{sub {alpha}} radiation is produced, thes photons possess an energy of 4.51 keV. For the efficient production of line radiation here the Ti:Sa laser is optimized in view of the laser energy and the pulse shape and the influence of the different parameters on the K{sub {alpha}} production systematically studied. The influences of laser intensity, system-conditioned pre-pulses and of phase modulation are checked. It turns out that beside the increasement of the K{sub {alpha}} radiation by a suited laser intensity a reduction of the X-ray background radiation is of deciding importance for the obtaining of clear diffraction images. This background radiation is mainly composed of bremsstrahlung. It can be suppressed by the avoidance of intrinsic pre-pulses and by means of 2nd-order phase modulation. By means of optical excitation and X-ray exploration experiments the production of acoustic waves after ultrashort optical excitation in a 150 nm thick Ge(111) film on Si(111) is studied. These acoustic waves are driven by thermal (in this time scale time-independent) and electronic (time dependent) pressure amounts. As essential results it turns out that the relative amount of the electronic pressure increases with decreasing excitation density. [German] Diese Arbeit befasst sich mit der Erzeugung und Anwendung ultrakurzer Roentgenimpulse. Zu Beginn werden verschiedene Moeglichkeiten zur

  19. Discovery of decaHz flaring in SAX J1808.4-3658

    Directory of Open Access Journals (Sweden)

    Bult P.

    2014-01-01

    Full Text Available We report on the discovery of strong decaHz flaring in the early decay of two out of five outbursts of the accreting millisecond X-ray pulsar SAX J1808.4-3658. The decaHz flaring switches on and, after ~3 days, off again, on a time scale of 1-2 hours. When the flaring is present, the total 0.05-10 Hz variability has a fractional rms amplitude of 20 to 30 percent, well in excess of the 8 to 12 percent rms broad-band noise usually seen in power spectra of SAX J1808 in this frequency range. Coherent 401 Hz pulsations are seen throughout the observations in which the decaHz flaring is detected. We find that the absolute amplitude of the pulsations varies with the flux modulation of the decaHz flaring, indicating that the flaring is caused by an accretion rate modulation already present in the accretion flow prior to matter entering the accretion funnel. We suggest that the decaHz flaring is the result of the Spruit-Taam instability [1]. This instability arises when the inner accretion disk approaches co-rotation. The rotation of the stellar magnetosphere then acts as a propeller, suppressing accretion onto the neutron star. A matter reservoir forms in the inner accretion disk, which episodically empties onto the neutron star, causing flares at a decaHz timescale. A similar explanation was proposed earlier for 1 Hz flaring occurring late in three of five outbursts, mutually exclusive with the decaHz flaring. The 1 Hz flaring was observed at luminosities a factor 5 to 10 below where we see the decaHz flaring. That a different branch of the Spruit-Taam instability could also act at the much higher luminosity levels of the decaHz flaring had recently been predicted by D’Angelo & Spruit [2, 3]. We discuss these findings in the context of the parameters of the Spruit-Taam-d’Angelo model of the instability. If confirmed, after millisecond pulsations, 1 Hz and decaHz flaring would be another diagnostic of the presence of a magnetosphere in accreting low

  20. Global Repetition Influences Contextual Cueing

    Science.gov (United States)

    Zang, Xuelian; Zinchenko, Artyom; Jia, Lina; Li, Hong

    2018-01-01

    Our visual system has a striking ability to improve visual search based on the learning of repeated ambient regularities, an effect named contextual cueing. Whereas most of the previous studies investigated contextual cueing effect with the same number of repeated and non-repeated search displays per block, the current study focused on whether a global repetition frequency formed by different presentation ratios between the repeated and non-repeated configurations influence contextual cueing effect. Specifically, the number of repeated and non-repeated displays presented in each block was manipulated: 12:12, 20:4, 4:20, and 4:4 in Experiments 1–4, respectively. The results revealed a significant contextual cueing effect when the global repetition frequency is high (≥1:1 ratio) in Experiments 1, 2, and 4, given that processing of repeated displays was expedited relative to non-repeated displays. Nevertheless, the contextual cueing effect reduced to a non-significant level when the repetition frequency reduced to 4:20 in Experiment 3. These results suggested that the presentation frequency of repeated relative to the non-repeated displays could influence the strength of contextual cueing. In other words, global repetition statistics could be a crucial factor to mediate contextual cueing effect. PMID:29636716

  1. Repetitive elements in parasitic protozoa

    Directory of Open Access Journals (Sweden)

    Clayton Christine

    2010-05-01

    Full Text Available Abstract A recent paper published in BMC Genomics suggests that retrotransposition may be active in the human gut parasite Entamoeba histolytica. This adds to our knowledge of the various types of repetitive elements in parasitic protists and the potential influence of such elements on pathogenicity. See research article http://www.biomedcentral.com/1471-2164/11/321

  2. High repetition ration solid state switched CO2 TEA laser employed in industrial ultrasonic testing of aircraft parts

    Science.gov (United States)

    von Bergmann, Hubertus; Morkel, Francois; Stehmann, Timo

    2015-02-01

    Laser Ultrasonic Testing (UT) is an important technique for the non-destructive inspection of composite parts in the aerospace industry. In laser UT a high power, short pulse probe laser is scanned across the material surface, generating ultrasound waves which can be detected by a second low power laser system and are used to draw a defect map of the part. We report on the design and testing of a transversely excited atmospheric pressure (TEA) CO2 laser system specifically optimised for laser UT. The laser is excited by a novel solid-state switched pulsing system and utilises either spark or corona preionisation. It provides short output pulses of less than 100 ns at repetition rates of up to 1 kHz, optimised for efficient ultrasonic wave generation. The system has been designed for highly reliable operation under industrial conditions and a long term test with total pulse counts in excess of 5 billion laser pulses is reported.

  3. Compact lasing system at 13.5-nm to ground state of LiIII at 2Hz

    Science.gov (United States)

    Goltsov, A. Y.; Korobkin, D.; Nam, C. H.; Suckewer, Szymon

    1997-11-01

    The recent results of the demonstration of the lasing action at 13.5 nm in transition to ground state of LiIII at 2 Hz repetition rate using two lasers is being presented in this paper. A gain length of GL approximately equals 5.5 was measured in the 5 mm long, 0.3 mm diameter, LiF microcapillary using a 50 mJ, 250 fsec UV laser beam. The initial plasma was created in the microcapillary by a low power, relatively long pulse Nd/YAG laser. In order to shed light on observed unusually high efficiency of the ionization of the atoms in microcapillaries, the subpicosecond UV laser beam transmissions through the plasma in microcapillaries were measured. Strong dependence of the beam transmission on the delay time between inial plasma formation with the Nd/YAG laser and the sub-picosecond UV laser was recorded. The final part of the paper discusses some necessary conditions for an extension of the present results towards the shorter wavelength lasers with an emphasis on the presently conducted experiments at Princeton University for the generation gain at 4.8 nm in BV.

  4. Multi-pulse 20 kHz TV Thomson scattering with high spatial resolution on TEXTOR-94

    International Nuclear Information System (INIS)

    Meiden, H.J.V.D.; Barth, C.J.; Oyevaar, T.

    2001-01-01

    This article describes the first high repetition rate TVTS system in the world. It will be implemented on TEXTOR-94, with the aim to study the dynamic behaviour of meso scale plasma phenomena, like MHD modes, filaments, transport barriers and edge phenomena. To reach this, a 20 kHz intracavity laser system is combined with an ultra fast CCD camera. During one discharge of TEXTOR-94 three bursts of 40 pulses can be extracted from the laser system with a time separation of 0.5 s between the bursts. This new equipment will be implemented on the beam line and spectrometer of the present double pulse TVTS system of TEXTOR-94. The new TVTS system will be capable of producing three times 40 electron temperature- and density profiles along a laser chord of 900 mm with a spatial resolution of 7.5 mm for the full plasma diameter and 2 mm for the edge region, respectively. An observational error of 6% on T e and 3% on n e is expected for n e = 3.5x10 19 m -3 , using a laser pulse energy of typical 16 J. (author)

  5. High-energy kHz mid-IR tunable PPSLT-based OPO pumped at 1064 nm

    Energy Technology Data Exchange (ETDEWEB)

    Gaydardzhiev, A; Chuchumishev, D; Draganov, D; Buchvarov, I [Department of Physics, Sofia University, 5 James Bourchier Blvd., BG-1164, Sofia (Bulgaria)

    2012-06-30

    We report a single-frequency sub-nanosecond optical parametric oscillator (OPO) based on periodically poled stoichiometric lithium tantalate (PPSLT), pumped by a 1064-nm amplified microchip laser at a repetition rate of 0.5 kHz. Using a 11-mm-long PPSLT crystal polled with three different domain periods (30.2, 30.3, 30.4 {mu}m) and changing the temperature of the crystal from 20 Degree-Sign C to 265 Degree-Sign C, we have achieved wavelength tuning between 2990 nm and 3500 nm. The high nonlinearity of the used medium and the large aperture (2 mm) ensure the maximum idler output energy of {approx}0.5 mJ in the whole tuning range, corresponding to average {approx}10.5 % idler conversion efficiency and {approx}250 mW of average power. Sub-nanosecond pulse durations have been obtained for the idler at 0.88-ns pulse duration of the pump.

  6. Computer-Related Repetitive Stress Injuries

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Computer-Related Repetitive Stress Injuries KidsHealth / For Parents / Computer-Related Repetitive Stress Injuries What's in this article? ...

  7. Ocean dynamic noise energy flux directivity in the 400 Hz to 700 Hz frequency band

    Institute of Scientific and Technical Information of China (English)

    Vladimir A. Shchurov; Galina F. Ivanova; Marianna V. Kuyanova; Helen S. Tkachenko

    2007-01-01

    Results of field studies of underwater dynamic noise energy flux directivity at two wind speeds, 6 m/s and 12 m/s, in the 400 Hz to 700 Hz frequency band in the deep open ocean are presented. The measurements were made by a freely drifting telemetric combined system at 500 m depth. Statistical characteristics of the horizontal and vertical dynamic noise energy flux directivity are considered as functions of wind speed and direction. Correlation between the horizontal dynamic noise energy flux direction and that of the wind was determined; a mechanism of the horizontal dynamic noise energy flux generation is related to the initial noise field scattering on ocean surface waves.

  8. Sensitivity of the Low Frequency Facility experiment around 10 Hz

    International Nuclear Information System (INIS)

    Di Virgilio, A.; Braccini, S.; Ballardin, G.; Bradaschia, C.; Cella, G.; Cuoco, E.; Dattilo, V.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Giazotto, A.; Gennai, A.; Holloway, L.H.; La Penna, P.; Losurdo, G.; Paoletti, F.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Porzio, A.; Puppo, P.; Raffaelli, F.; Rapagnani, P.; Ricci, F.; Ricciardi, J.; Solimeno, S.; Stanga, R.; Vetrano, F.; Zhang, Z.

    2004-01-01

    The reduction of thermal noise is a fundamental issue for the improvement of future gravitational wave antennas. The main purpose of the Low Frequency Facility (LFF) is to study pendulum thermal noise in the region of 10 Hz. Data at the LFF has been taking since the beginning of 2003 and has been analyzed in order to thoroughly understand the region around 10 Hz. Above 7 Hz, the displacement noise floor is at the level of 10 -14 m/√Hz, decreasing with frequency approximately as 1/ν. Seismic noise contamination is not observed above a few Hz

  9. Sensitivity of the Low Frequency Facility experiment around 10 Hz

    Energy Technology Data Exchange (ETDEWEB)

    Di Virgilio, A.; Braccini, S.; Ballardin, G.; Bradaschia, C.; Cella, G.; Cuoco, E.; Dattilo, V.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Giazotto, A.; Gennai, A.; Holloway, L.H.; La Penna, P.; Losurdo, G.; Paoletti, F.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Porzio, A.; Puppo, P.; Raffaelli, F.; Rapagnani, P.; Ricci, F.; Ricciardi, J.; Solimeno, S.; Stanga, R.; Vetrano, F.; Zhang, Z

    2004-02-23

    The reduction of thermal noise is a fundamental issue for the improvement of future gravitational wave antennas. The main purpose of the Low Frequency Facility (LFF) is to study pendulum thermal noise in the region of 10 Hz. Data at the LFF has been taking since the beginning of 2003 and has been analyzed in order to thoroughly understand the region around 10 Hz. Above 7 Hz, the displacement noise floor is at the level of 10{sup -14} m/{radical}Hz, decreasing with frequency approximately as 1/{nu}. Seismic noise contamination is not observed above a few Hz.

  10. Repetitive, small-bore two-stage light gas gun

    International Nuclear Information System (INIS)

    Combs, S.K.; Foust, C.R.; Fehling, D.T.; Gouge, M.J.; Milora, S.L.

    1991-01-01

    A repetitive two-stage light gas gun for high-speed pellet injection has been developed at Oak Ridge National Laboratory. In general, applications of the two-stage light gas gun have been limited to only single shots, with a finite time (at least minutes) needed for recovery and preparation for the next shot. The new device overcomes problems associated with repetitive operation, including rapidly evacuating the propellant gases, reloading the gun breech with a new projectile, returning the piston to its initial position, and refilling the first- and second-stage gas volumes to the appropriate pressure levels. In addition, some components are subjected to and must survive severe operating conditions, which include rapid cycling to high pressures and temperatures (up to thousands of bars and thousands of kelvins) and significant mechanical shocks. Small plastic projectiles (4-mm nominal size) and helium gas have been used in the prototype device, which was equipped with a 1-m-long pump tube and a 1-m-long gun barrel, to demonstrate repetitive operation (up to 1 Hz) at relatively high pellet velocities (up to 3000 m/s). The equipment is described, and experimental results are presented. 124 refs., 6 figs., 5 tabs

  11. Repetitive learning control of continuous chaotic systems

    International Nuclear Information System (INIS)

    Chen Maoyin; Shang Yun; Zhou Donghua

    2004-01-01

    Combining a shift method and the repetitive learning strategy, a repetitive learning controller is proposed to stabilize unstable periodic orbits (UPOs) within chaotic attractors in the sense of least mean square. If nonlinear parts in chaotic systems satisfy Lipschitz condition, the proposed controller can be simplified into a simple proportional repetitive learning controller

  12. Assessment of Vascular Stent Heating with Repetitive Transcranial Magnetic Stimulation.

    Science.gov (United States)

    Varnerin, Nicole; Mirando, David; Potter-Baker, Kelsey A; Cardenas, Jesus; Cunningham, David A; Sankarasubramanian, Vishwanath; Beall, Erik; Plow, Ela B

    2017-05-01

    A high proportion of patients with stroke do not qualify for repetitive transcranial magnetic stimulation (rTMS) clinical studies due to the presence of metallic stents. The ultimate concern is that any metal could become heated due to eddy currents. However, to date, no clinical safety data are available regarding the risk of metallic stents heating with rTMS. We tested the safety of common rTMS protocols (1 Hz and 10 Hz) with stents used commonly in stroke, nitinol and elgiloy. In our method, stents were tested in gelled saline at 2 different locations: at the center and at the lobe of the coil. In addition, at each location, stent heating was evaluated in 3 different orientations: parallel to the long axis of coil, parallel to the short axis of the coil, and perpendicular to the plane of the coil. We found that stents did not heat to more than 1°C with either 1 Hz rTMS or 10 Hz rTMS in any configuration or orientation. Heating in general was greater at the lobe when the stent was oriented perpendicularly. Our study represents a new method for ex vivo quantification of stent heating. We have found that heating of stents was well below the Food and Drug Administration standards of 2°C. Thus, our study paves the way for in vivo testing of rTMS (≤10 Hz) in the presence of implanted magnetic resonance imaging-compatible stents in animal studies. When planning human safety studies though, geometry, orientation, and location relative to the coil would be important to consider as well. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  13. Nanosecond radar system based on repetitive pulsed relativistic BWO

    International Nuclear Information System (INIS)

    Bunkin, B.V.; Gaponov-Grekhov, A.V.; Eltchaninov, A.S.; Zagulov, F.Ya.; Korovin, S.D.; Mesyats, G.A.; Osipov, M.L.; Otlivantchik, E.A.; Petelin, M.I.; Prokhorov, A.M.

    1993-01-01

    The paper presents the results of studies of a nanosecond radar system based on repetitive pulsed relativistic BWO. A pulsed power repetitive accelerator producing electron beams of electron energy 500-700 keV and current 5 kA in pulses of duraction 10 ns with a repetition rate of 100 pps is described. The results of experiments with a high-voltage gas-filled spark gap and a cold-cathode vacuum diode under the conditions of high repetition rates are given. Also presented are the results of studies of a relativistic BWO operating with a wavelength of 3 cm. It is shown that for a high-current beam electron energy of 500-700 keV, the BWO efficiency can reach 35%, the microwave power being 10 9 W. A superconducting solenoid creating a magnetic field of 30 kOe was used for the formation and transportation of the high-current electron beam. In conclusion, the outcome of tests of a nanosecond radar station based on a pulsed power repetitive accelerator and a relativistic BWO is reported

  14. Safety, efficacy, and predictability of laser in situ keratomileusis to correct myopia or myopic astigmatism with a 750 Hz scanning-spot laser system.

    Science.gov (United States)

    Tomita, Minoru; Watabe, Miyuki; Yukawa, Satoshi; Nakamura, Nobuo; Nakamura, Tadayuki; Magnago, Thomas

    2014-02-01

    To evaluate the clinical outcomes of laser in situ keratomileusis (LASIK) to correct myopia or myopic astigmatism using the Amaris 750S 750 Hz excimer laser. Private LASIK center, Tokyo, Japan. Case series. Patients with myopia or myopic astigmatism (spherical equivalent -0.50 to -11.63 diopters [D]), a corrected distance visual acuity (CDVA) of 20/20 or better, and an estimated residual bed thickness of 300 μm or more had LASIK using the aspheric aberration-free ablation profile of the 750 Hz scanning-spot laser and the Femto LDV Crystal Line femtosecond laser for flap creation. Study parameters included uncorrected distance visual acuity (UDVA), CDVA, manifest refraction, astigmatism, and higher-order aberrations (HOAs). The study included 1280 eyes (685 patients). At 3 months, 96.6% of eyes had a UDVA of 20/20 or better and 99.1% had 20/32 or better; 94.1% of eyes were within ± 0.50 D of the intended correction and 98.9% were within ± 1.00 D; 89.7% of eyes had no residual cylinder and 96.0% had a postoperative astigmatism of less than 0.50 D. All eyes had a postoperative CDVA of 20/20 or better. The HOAs increased postoperatively (PLaser in situ keratomileusis with the 750 Hz scanning-spot laser was safe, effective, and predictable. No specific clinical side effects that might be associated with a high repetition rate occurred. Mr. Magnago is an employee of Schwind eye-tech-solutions GmbH. No other author has a financial or proprietary interest in any material or method mentioned. Copyright © 2013 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  15. Haben repetitive DNA-Sequenzen biologische Funktionen?

    Science.gov (United States)

    John, Maliyakal E.; Knöchel, Walter

    1983-05-01

    By DNA reassociation kinetics it is known that the eucaryotic genome consists of non-repetitive DNA, middle-repetitive DNA and highly repetitive DNA. Whereas the majority of protein-coding genes is located on non-repetitive DNA, repetitive DNA forms a constitutive part of eucaryotic DNA and its amount in most cases equals or even substantially exceeds that of non-repetitive DNA. During the past years a large body of data on repetitive DNA has accumulated and these have prompted speculations ranging from specific roles in the regulation of gene expression to that of a selfish entity with inconsequential functions. The following article summarizes recent findings on structural, transcriptional and evolutionary aspects and, although by no means being proven, some possible biological functions are discussed.

  16. Surveillance of 18 Hz and 60 Hz components of ground motion at the APS site

    International Nuclear Information System (INIS)

    Jendrzejczyk, J.A.; Wambsganss, M.W.; Smith, R.K.

    1990-01-01

    The objectives of this study are to determine the location and source of the 18- and 60-Hz vibration and to eliminate or reduce its amplitude in the APS Facility. To accomplish this it is necessary to know the time of occurrence and then, to utilize triangulation methods to identify the location of the source. It its time sequence is known, it may be possible to correlate it with the operation of some equipment at or near the site. Therefore, a major effort was made to obtain the time sequence and is the basis of this note

  17. Repetitively pulsed material testing facility

    International Nuclear Information System (INIS)

    Zucker, O.; Bostick, W.; Gullickson, R; Long, J.; Luce, J.; Sahlin, H.

    1975-01-01

    A continuously operated, 1 pps, dense-plasma-focus device capable of delivering a minimum of 10 15 neutrons per pulse for material testing purposes is described. Moderate scaling from existing results is sufficient to provide 2 x 10 13 n/cm 2 .s to a suitable target. The average power consumption, which has become a major issue as a result of the energy crisis, is analyzed with respect to other plasma devices and is shown to be highly favorable. A novel approach to the capacitor bank and switch design allowing repetitive operation is discussed. (U.S.)

  18. Repetitively pulsed material testing facility

    International Nuclear Information System (INIS)

    Zucker, O.; Bostick, W.; Gullickson, R.; Long, J.; Luce, J.; Sahlin, H.

    1975-01-01

    A continuously operated, 1 pps, dense-plasma-focus device capable of delivering a minimum of 10 15 neutrons per pulse for material testing purposes is described. Moderate scaling from existing results is sufficient to provide 2 x 10 13 n/cm 2 . s to a suitable target. The average power consumption, which has become a major issue as a result of the energy crisis, is analyzed with respect to other plasma devices and is shown to be highly favorable. A novel approach to the capacitor bank and switch design allowing repetitive operation is discussed

  19. Exact Repetition as Input Enhancement in Second Language Acquisition.

    Science.gov (United States)

    Jensen, Eva Dam; Vinther, Thora

    2003-01-01

    Reports on two studies on input enhancement used to support learners' selection of focus of attention in Spanish second language listening material. Input consisted of video recordings of dialogues between native speakers. Exact repetition and speech rate reduction were examined for effect on comprehension, acquisition of decoding strategies, and…

  20. Repetitive MEGAMP per microsecond di/dt pulsers for driving sub-ohm transmission line neutrino particle detectors

    International Nuclear Information System (INIS)

    Krausse, G.J.

    1980-01-01

    With the advent of low-cost honeycomb extrusions of polypropylene sheets, transmission line flash chambers have become highly attractive candidates for large particle detector arrays. This has brought about the need for repetitive pulse systems that must provide exceptionally high peak currents, low levels of spurious radiation, high reliability, and shot life in excess of 10 7 . Each module of 10 flash chambers requires a peak current of 20 kA with a current di/dt greater than 1 MA/μs. The pulser output must develop approx. = 7 kV across a load of 0.5 Ω with a pulse width of 500 ns. The complete system will require 40 pulsers run in parallel for a combined current output of 1.4 MA peak with a system di/dt of 40 MA/μs. The repetition rate will be up to 2 Hz. This paper describes the development of such a system, its unique voltage and current diagnostics, and the impact of the physical limitations of present component technology on lifetime, reliability, maintainability, and pulse fidelity

  1. Repetitively pulsed UV radiation source based on a run-away electron preionised diffuse discharge in nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Baksht, E Kh; Burachenko, A G; Lomaev, M I; Panchenko, A N; Tarasenko, V F [Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, Tomsk (Russian Federation)

    2015-04-30

    An extended repetitively pulsed source of spontaneous UV radiation is fabricated, which may also be used for producing laser radiation. Voltage pulses with an incident wave amplitude of up to 30 kV, a half-amplitude duration of ∼4 ns and a rise time of ∼2.5 ns are applied to a gap with a nonuniform electric field. For an excitation region length of 35 cm and a nitrogen pressure of 30 – 760 Torr, a diffusive discharge up to a pulse repetition rate of 2 kHz is produced without using an additional system for gap preionisation. An investigation is made of the plasma of the run-away electron preionised diffuse discharge. Using a CCD camera it is found that the dense diffused plasma fills the gap in a time shorter than 1 ns. X-ray radiation is recorded from behind the foil anode throughout the pressure range under study; a supershort avalanche electron beam is recorded by the collector electrode at pressures below 100 Torr. (laser applications and other topics in quantum electronics)

  2. Repetitively pulsed UV radiation source based on a run-away electron preionised diffuse discharge in nitrogen

    Science.gov (United States)

    Baksht, E. Kh; Burachenko, A. G.; Lomaev, M. I.; Panchenko, A. N.; Tarasenko, V. F.

    2015-04-01

    An extended repetitively pulsed source of spontaneous UV radiation is fabricated, which may also be used for producing laser radiation. Voltage pulses with an incident wave amplitude of up to 30 kV, a half-amplitude duration of ~4 ns and a rise time of ~2.5 ns are applied to a gap with a nonuniform electric field. For an excitation region length of 35 cm and a nitrogen pressure of 30 - 760 Torr, a diffusive discharge up to a pulse repetition rate of 2 kHz is produced without using an additional system for gap preionisation. An investigation is made of the plasma of the run-away electron preionised diffuse discharge. Using a CCD camera it is found that the dense diffused plasma fills the gap in a time shorter than 1 ns. X-ray radiation is recorded from behind the foil anode throughout the pressure range under study; a supershort avalanche electron beam is recorded by the collector electrode at pressures below 100 Torr.

  3. Repetitive trauma and nerve compression.

    Science.gov (United States)

    Carragee, E J; Hentz, V R

    1988-01-01

    Repetitive movement of the upper extremity, whether recreational or occupational, may result in various neuropathies, the prototype of which is the median nerve neuropathic in the carpal canal. The pathophysiology of this process is incompletely understood but likely involves both mechanical and ischemic features. Experimentally increased pressures within the carpal canal produced reproducible progressive neuropathy. Changes in vibratory (threshold-type) sensibility appears to be more sensitive than two-point (innervation density-type) sensibility. The specific occupational etiologies of carpal neuropathy are obscured by methodologic and sociological difficulties, but clearly some occupations have high incidences of CTS. History and physical examination are usually sufficient for the diagnosis, but diagnostic assistance when required is available through electrophysiological testing, CT scanning, and possibly MRI. Each of these tests has limitations in both sensitivity and specificity. Treatment by usual conservative means should be combined with rest from possible provocative activities. Surgical release of the carpal canal is helpful in patients failing conservative therapy. Occupational modifications are important in both treatment and prevention of median neuropathy due to repetitive trauma.

  4. The effect of exercise repetition on the frequency characteristics of motor output force: implications for Achilles tendinopathy rehabilitation.

    Science.gov (United States)

    Grigg, Nicole L; Wearing, Scott C; O'Toole, John M; Smeathers, James E

    2014-01-01

    To investigate the frequency characteristics of the ground reaction force (GRF) recorded throughout the eccentric Achilles tendon rehabilitation programme described by Alfredson. Controlled laboratory study, longitudinal. Nine healthy adult males performed six sets (15 repetitions per set) of eccentric ankle exercise. Ground reaction force was recorded throughout the exercise protocol. For each exercise repetition the frequency power spectrum of the resultant ground reaction force was calculated and normalised to total power. The magnitude of peak relative power within the 8-12 Hz bandwidth and the frequency at which this peak occurred was determined. The magnitude of peak relative power within the 8-12 Hz bandwidth increased with each successive exercise set and following the 4th set (60 repetitions) of exercise the frequency at which peak relative power occurred shifted from 9 to 10 Hz. The increase in magnitude and frequency of ground reaction force vibrations with an increasing number of exercise repetitions is likely connected to changes in muscle activation with fatigue and tendon conditioning. This research illustrates the potential for the number of exercise repetitions performed to influence the tendons' mechanical environment, with implications for tendon remodelling and the clinical efficacy of eccentric rehabilitation programmes for Achilles tendinopathy. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  5. Clinical improvement in patients with borderline personality disorder after treatment with repetitive transcranial magnetic stimulation: preliminary results.

    Science.gov (United States)

    Reyes-López, Julian; Ricardo-Garcell, Josefina; Armas-Castañeda, Gabriela; García-Anaya, María; Arango-De Montis, Iván; González-Olvera, Jorge J; Pellicer, Francisco

    2018-01-01

    Current treatment of borderline personality disorder (BPD) consists of psychotherapy and pharmacological interventions. However, the use of repetitive transcranial magnetic stimulation (rTMS) could be beneficial to improve some BPD symptoms. The objective of this study was to evaluate clinical improvement in patients with BPD after application of rTMS over the right or left dorsolateral prefrontal cortex (DLPFC). Twenty-nine patients with BPD from the National Institute of Psychiatry, Mexico, were randomized in two groups to receive 15 sessions of rTMS applied over the right (1 Hz, n=15) or left (5 Hz, n=14) DLPFC. Improvement was measured by the Clinical Global Impression Scale for BPD (CGI-BPD), Borderline Evaluation of Severity Over Time (BEST), Beck Depression Inventory (BDI), Hamilton Anxiety Rating Scale (HAM-A), and Barratt Impulsiveness Scale (BIS). Intragroup comparison showed significant (p < 0.05) reductions in every psychopathologic domain of the CGI-BPD and in the total scores of all scales in both groups. Both protocols produced global improvement in severity and symptoms of BPD, particularly in impulsiveness, affective instability, and anger. Further studies are warranted to explore the therapeutic effect of rTMS in BPD. NCT02273674

  6. 1 kHz 3.3 μm Nd:YAG KTiOAsO₄ optical parametric oscillator system for laser ultrasound excitation of carbon-fiber-reinforced plastics.

    Science.gov (United States)

    Puncken, Oliver; Gandara, David Mendoza; Damjanic, Marcin; Mahnke, Peter; Bergmann, Ralf B; Kalms, Michael; Peuser, Peter; Wessels, Peter; Neumann, Jörg; Schnars, Ulf

    2016-02-20

    We present a new laser prototype for laser ultrasonics excitation. The fundamental wavelength of a Q-switched Nd:YAG laser with a repetition rate of 1 kHz is converted to 3.3 μm with a KTiOAsO4 optical parametric oscillator. The achieved pulse energy at 3.3 μm is 1.7 mJ, and the pulse duration at the fundamental wavelength of 1.06 μm has been measured to be 21 ns. The ultrasonic excitation efficiency is about 3.5 times better compared to the application of state-of-the-art CO2 lasers.

  7. Repetitive fueling pellet injection in large helical device

    International Nuclear Information System (INIS)

    Yamada, H.; Sakamoto, R.; Viniar, I.; Oda, Y.; Kikuchi, K.; Lukin, A.; Skoblikov, S.; Umov, A.; Takaura, K.; Onozuka, M.; Kato, S.; Sudo, S.

    2003-01-01

    A repetitive pellet injector has been developed for investigation of fueling issues towards the steady-state operation in Large Helical Device (LHD). The goal of this approach is achievement of the plasma operation for longer than 1000 s. A principal technical element of the pellet injector is solidification of hydrogen and extrusion of a solid hydrogen rod through a cryogenic screw extruder cooled by Giffard-McMahon (GM) cryo-coolers. Continuous operation of more than 10000 pellet launches at 10 Hz has been demonstrated. The reliability of pellet launch exceeds 99%. The pellet mass and velocity, the consumption of propellant gas and quality of pellets have been successfully tested to fit the experimental requirement in LHD

  8. Repetitive fueling pellet injection in large helical device

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, H. E-mail: hyamada@lhd.nifs.ac.jp; Sakamoto, R.; Viniar, I.; Oda, Y.; Kikuchi, K.; Lukin, A.; Skoblikov, S.; Umov, A.; Takaura, K.; Onozuka, M.; Kato, S.; Sudo, S

    2003-09-01

    A repetitive pellet injector has been developed for investigation of fueling issues towards the steady-state operation in Large Helical Device (LHD). The goal of this approach is achievement of the plasma operation for longer than 1000 s. A principal technical element of the pellet injector is solidification of hydrogen and extrusion of a solid hydrogen rod through a cryogenic screw extruder cooled by Giffard-McMahon (GM) cryo-coolers. Continuous operation of more than 10000 pellet launches at 10 Hz has been demonstrated. The reliability of pellet launch exceeds 99%. The pellet mass and velocity, the consumption of propellant gas and quality of pellets have been successfully tested to fit the experimental requirement in LHD.

  9. Non-invasive mapping of calculation function by repetitive navigated transcranial magnetic stimulation.

    Science.gov (United States)

    Maurer, Stefanie; Tanigawa, Noriko; Sollmann, Nico; Hauck, Theresa; Ille, Sebastian; Boeckh-Behrens, Tobias; Meyer, Bernhard; Krieg, Sandro M

    2016-11-01

    Concerning calculation function, studies have already reported on localizing computational function in patients and volunteers by functional magnetic resonance imaging and transcranial magnetic stimulation. However, the development of accurate repetitive navigated TMS (rTMS) with a considerably higher spatial resolution opens a new field in cognitive neuroscience. This study was therefore designed to evaluate the feasibility of rTMS for locating cortical calculation function in healthy volunteers, and to establish this technique for future scientific applications as well as preoperative mapping in brain tumor patients. Twenty healthy subjects underwent rTMS calculation mapping using 5 Hz/10 pulses. Fifty-two previously determined cortical spots of the whole hemispheres were stimulated on both sides. The subjects were instructed to perform the calculation task composed of 80 simple arithmetic operations while rTMS pulses were applied. The highest error rate (80 %) for all errors of all subjects was observed in the right ventral precentral gyrus. Concerning division task, a 45 % error rate was achieved in the left middle frontal gyrus. The subtraction task showed its highest error rate (40 %) in the right angular gyrus (anG). In the addition task a 35 % error rate was observed in the left anterior superior temporal gyrus. Lastly, the multiplication task induced a maximum error rate of 30 % in the left anG. rTMS seems feasible as a way to locate cortical calculation function. Besides language function, the cortical localizations are well in accordance with the current literature for other modalities or lesion studies.

  10. Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz)

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    This paper is the French translation of an article from the International Commission on Non-Ionizing Radiation Protection (ICNIRP) Guidelines, entitled 'Guidelines for Limiting Exposure to Time-Varying Electric and Magnetic Fields (1 Hz To 100 kHz)'. In This document, guidelines are established for the protection of humans exposed to electric and magnetic fields in the low-frequency range of the electromagnetic spectrum. The general principles for the development of ICNIRP guidelines are published elsewhere (ICNIRP 2002). For the purpose of this document, the low-frequency range extends from 1 Hz to 100 kHz. Above 100 kHz, effects such as heating need to be considered, which are covered by other ICNIRP guidelines. However, in the frequency range from 100 kHz up to approximately 10 MHz protection from both, low frequency effects on the nervous system as well as high frequency effects need to be considered depending on exposure conditions. Therefore, some guidance in this document is extended to 10 MHz to cover the nervous system effects in this frequency range. Guidelines for static magnetic fields have been issued in a separate document (ICNIRP 2009). Guidelines applicable to movement-induced electric fields or time-varying magnetic fields up to 1 Hz will be published separately. This publication replaces the low-frequency part of the 1998 guidelines (ICNIRP 1998). ICNIRP is currently revising the guidelines for the high-frequency portion of the spectrum (above 100 kHz). (authors)

  11. Comparing microbubble cavitation at 500 kHz and 70 kHz related to micellar drug delivery using ultrasound.

    Science.gov (United States)

    Diaz de la Rosa, Mario A; Husseini, Ghaleb A; Pitt, William G

    2013-02-01

    We have previously reported that ultrasonic drug release at 70kHz was found to correlate with the presence of subharmonic emissions. No evidence of drug release or of the subharmonic emissions were detected in experiments at 500kHz. In an attempt to understand the difference in drug release behavior between low- and mid-frequency ultrasound, a mathematical model of a bubble oscillator was developed to explore the difference in the behavior of a single 10-μm bubble under 500- and 70-kHz ultrasound. The dynamics were found to be fundamentally different; the 500-kHz bubble follows a period-doubling route to chaos while a 70-kHz bubble follows an intermittent route to chaos. We propose that this type of "intermittent subharmonic" oscillation behavior is associated with the drug release observed experimentally. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. A Nonword Repetition Task for Speakers with Misarticulations: The Syllable Repetition Task (SRT)

    Science.gov (United States)

    Shriberg, Lawrence D.; Lohmeier, Heather L.; Campbell, Thomas F.; Dollaghan, Christine A.; Green, Jordan R.; Moore, Christopher A.

    2009-01-01

    Purpose: Conceptual and methodological confounds occur when non(sense) word repetition tasks are administered to speakers who do not have the target speech sounds in their phonetic inventories or who habitually misarticulate targeted speech sounds. In this article, the authors (a) describe a nonword repetition task, the Syllable Repetition Task…

  13. Vaccine profile of herpes zoster (HZ/su) subunit vaccine.

    Science.gov (United States)

    Cunningham, Anthony L; Heineman, Thomas

    2017-07-01

    Herpes zoster (HZ) causes an often severe and painful rash in older people and may be complicated by prolonged pain (postherpetic neuralgia; PHN) and by dissemination in immune-compromised patients. HZ results from reactivation of latent varicella-zoster virus (VZV) infection, often associated with age-related or other causes of decreased T cell immunity. A live attenuated vaccine boosts this immunity and provides partial protection against HZ, but this decreases with age and declines over 8 years. Areas covered: A new HZ subunit (HZ/su) vaccine combines a key surface VZV glycoprotein (E) with a T cell-boosting adjuvant system (AS01 B ) and is administered by two intramuscular injections two months apart. Expert commentary: HZ/su showed excellent efficacy of ~90% in immunocompetent adults ≥50 and ≥70 years of age, respectively, in the ZOE-50 and ZOE-70 phase III controlled trials. Efficacy was unaffected by advancing age and persisted for >3 years. Approximately 9.5% of subjects had severe, but transient (1-2 days) injection site pain, swelling or redness. Compliance with both vaccine doses was high (95%). The vaccine will have a major impact on HZ management. Phase I-II trials showed safety and immunogenicity in severely immunocompromised patients. Phase III trial results are expected soon.

  14. THE SPECTRAL-TIMING PROPERTIES OF UPPER AND LOWER kHz QPOs

    Energy Technology Data Exchange (ETDEWEB)

    Peille, Philippe; Barret, Didier [Université de Toulouse, UPS-OMP, IRAP, Toulouse (France); Uttley, Phil, E-mail: philippe.peille@irap.omp.eu [Anton Pannekoek Institute, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands)

    2015-10-01

    Soft lags from the emission of the lower kilohertz quasi-periodic oscillations (kHz QPOs) of neutron star low-mass X-ray binaries have been reported from 4U1608-522 and 4U1636-536. Those lags hold prospects for constraining the origin of the QPO emission. In this paper, we investigate the spectral-timing properties of both the lower and upper kHz QPOs from the neutron star binary 4U1728-34, using the entire Rossi X-Ray Timing Explorer archive on this source. We show that the lag-energy spectra of the two QPOs are systematically different: while the lower kHz QPO shows soft lags, the upper kHz QPO shows either a flat lag-energy spectrum or hard variations lagging softer variations. This suggests two different QPO-generation mechanisms. We also performed the first spectral deconvolution of the covariance spectra of both kHz QPOs. The QPO spectra are consistent with Comptonized blackbody emission, similar to the one found in the time-averaged spectrum, but with a higher seed-photon temperature, suggesting that a more compact inner region of the Comptonization layer (boundary/spreading layer, corona) is responsible for the QPO emission. Considering our results together with other recent findings, this leads us to the hypothesis that the lower kHz QPO signal is generated by coherent oscillations of the compact boundary layer region itself. The upper kHz QPO signal may then be linked to less-coherent accretion-rate variations produced in the inner accretion disk, and is then detected when they reach the boundary layer.

  15. The Developmental Trajectory of Nonword Repetition

    Science.gov (United States)

    Chiat, Shula

    2006-01-01

    In line with the original presentation of nonword repetition as a measure of phonological short-term memory (Gathercole & Baddeley, 1989), the theoretical account Gathercole (2006) puts forward in her Keynote Article focuses on phonological storage as the key capacity common to nonword repetition and vocabulary acquisition. However, evidence that…

  16. Rats selectively bred for low levels of play-induced 50 kHz vocalizations as a model for autism spectrum disorders: a role for NMDA receptors.

    Science.gov (United States)

    Burgdorf, Jeffrey; Moskal, Joseph R; Brudzynski, Stefan M; Panksepp, Jaak

    2013-08-15

    Early childhood autism is characterized by deficits in social approach and play behaviors, socio-emotional relatedness, and communication/speech abnormalities, as well as repetitive behaviors. These core neuropsychological features of autism can be modeled in laboratory rats, and the results may be useful for drug discovery and therapeutic development. We review data that show that rats selectively bred for low rates of play-related pro-social ultrasonic vocalizations (USVs) can be used to model social deficit symptoms of autism. Low-line animals engage in less social contact time with conspecifics, show lower rates of play induced pro-social USVs, and show an increased proportion of non-frequency modulated (i.e. monotonous) ultrasonic vocalizations compared to non-selectively bred random-line animals. Gene expression patterns in the low-line animals show significant enrichment in autism-associated genes, and the NMDA receptor family was identified as a significant hub. Treatment of low-line animals with the NMDAR functional glycine site partial agonist, GLYX-13, rescued the deficits in play-induced pro-social 50-kHz USVs and reduced monotonous USVs. Since the NMDA receptor has been implicated in the genesis of autistic symptoms, it is possible that GLYX-13 may be of therapeutic value in the treatment of autism. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. REPETITIVE STRENGTH AMONG STUDENTS OF AGE 14

    Directory of Open Access Journals (Sweden)

    Besim Halilaj

    2014-06-01

    Full Text Available The study involved 82 male students of the primary school “Qamil Ilazi” in Kaçanik-Kosovo.Four movement tests, which test the repetitive strength, were conducted: 1. Pull-up, 2. Sit-Up, 3. Back extension, 4. Push-up.The main goal of this study was to verify the actual motor status, respectively the component of the repetitive strength among students of age 14 of masculine gender. In addition to verifying the actual motor status, another objective was to verify the relationship between the variables employed.Basic statistical parameters show a distribution which is not significantly different from the normal distribution, yielded highly correlative values among the repetitive strength tests. Space factorization resulted in extracting two latent squares defined as repetitive strength of arms factor, and repetitive strength of body factor.

  18. A randomized controlled comparison of electroconvulsive therapy and repetitive transcranial magnetic stimulation in severe and resistant nonpsychotic major depression.

    Science.gov (United States)

    Grunhaus, Leon; Schreiber, Shaul; Dolberg, Ornah T; Polak, Dana; Dannon, Pinhas N

    2003-02-15

    Studies published over the past few years suggest that transcranial magnetic stimulation (TMS) may have significant antidepressant actions. In a previous report, we compared electroconvulsive therapy (ECT) and repetitive TMS (rTMS) and found ECT to be superior for psychotic major depression (MD); however, ECT and rTMS had similar results in nonpsychotic MD. We now report on a controlled randomized comparison of ECT and rTMS in patients with nonpsychotic MD. Forty patients with nonpsychotic MD referred for ECT were included. Electroconvulsive therapy was performed according to established protocols. Repetitive TMS was performed over the left dorsolateral prefrontal cortex at 90% motor threshold. Patients were treated with 20 sessions (five times per week for 4 weeks) of 10-Hz treatments (1200 pulses per treatment-day) at 90% motor threshold. Response to treatment was defined as a decrease of at least 50% in the Hamilton Rating Scale for Depression (HRSD) score, with a final HRSD equal or less than 10 points and a final Global Assessment of Function Scale rating of 60 or more points. The overall response rate was 58% (23 out of 40 patients responded to treatment). In the ECT group, 12 responded and eight did not; in the rTMS group, 11 responded and nine did not (chi2 =.10, ns). Thus, patients responded as well to either ECT or rTMS. This study adds to the growing literature supporting an antidepressant effect for rTMS. This study is particularly relevant because it suggests that rTMS and ECT reach similar results in nonpsychotic major depressive disorder.

  19. Repetitive transcranial magnetic stimulation for hallucination in schizophrenia spectrum disorders: A meta-analysis.

    Science.gov (United States)

    Zhang, Yingli; Liang, Wei; Yang, Shichang; Dai, Ping; Shen, Lijuan; Wang, Changhong

    2013-10-05

    This study assessed the efficacy and tolerability of repetitive transcranial magnetic stimulation for treatment of auditory hallucination of patients with schizophrenia spectrum disorders. Online literature retrieval was conducted using PubMed, ISI Web of Science, EMBASE, Medline and Cochrane Central Register of Controlled Trials databases from January 1985 to May 2012. Key words were "transcranial magnetic stimulation", "TMS", "repetitive transcranial magnetic stimulation", and "hallucination". Selected studies were randomized controlled trials assessing therapeutic efficacy of repetitive transcranial magnetic stimulation for hallucination in patients with schizophrenia spectrum disorders. Experimental intervention was low-frequency repetitive transcranial magnetic stimulation in left temporoparietal cortex for treatment of auditory hallucination in schizophrenia spectrum disorders. Control groups received sham stimulation. The primary outcome was total scores of Auditory Hallucinations Rating Scale, Auditory Hallucination Subscale of Psychotic Symptom Rating Scale, Positive and Negative Symptom Scale-Auditory Hallucination item, and Hallucination Change Scale. Secondary outcomes included response rate, global mental state, adverse effects and cognitive function. Seventeen studies addressing repetitive transcranial magnetic stimulation for treatment of schizophrenia spectrum disorders were screened, with controls receiving sham stimulation. All data were completely effective, involving 398 patients. Overall mean weighted effect size for repetitive transcranial magnetic stimulation versus sham stimulation was statistically significant (MD = -0.42, 95%CI: -0.64 to -0.20, P = 0.000 2). Patients receiving repetitive transcranial magnetic stimulation responded more frequently than sham stimulation (OR = 2.94, 95%CI: 1.39 to 6.24, P = 0.005). No significant differences were found between active repetitive transcranial magnetic stimulation and sham stimulation for

  20. NICER Discovers mHz Oscillations and Marginally Stable Burning in GS 1826-24

    Science.gov (United States)

    Strohmayer, Tod E.; Gendreau, Keith C.; Keek, Laurens; Bult, Peter; Mahmoodifar, Simin; Chakrabarty, Deepto; Arzoumanian, Zaven; NICER Science Team

    2018-01-01

    To date, marginally stable thermonuclear burning, evidenced as mHz X-ray flux oscillations, has been observed in only five accreting neutron star binaries, 4U 1636-536, 4U 1608-52, Aql X-1, 4U 1323-619 and Terzan 5 X-2. Here we report the discovery with NASA's Neutron Star Interior Composition Explorer (NICER) of such oscillations from the well-known X-ray burster GS 1826-24. NICER observed GS 1826-24 on 9 September, 2017 for a total exposure of about 4 ksec. Timing analysis revealed highly significant oscillations at a frequency of 8.2 mHz in two successive pointings. The oscillations have a fractional modulation amplitude of approximately 3% for photon energies less than 6 keV. The observed frequency is consistent with the range observed in the other mHz QPO systems, and indeed is slightly higher than the frequency measured in 4U 1636-536 below which mHz oscillations ceased and unstable burning (X-ray bursts) resumed. We discuss the mass accretion rate dependence of the oscillations as well as the X-ray spectrum as a function of pulsation phase. We place the observations in the context of the current theory of marginally stable burning and briefly discuss the potential for constraining neutron star properties using mHz oscillations.

  1. Compact 200 kHz HHG source driven by a few-cycle OPCPA

    Science.gov (United States)

    Harth, Anne; Guo, Chen; Cheng, Yu-Chen; Losquin, Arthur; Miranda, Miguel; Mikaelsson, Sara; Heyl, Christoph M.; Prochnow, Oliver; Ahrens, Jan; Morgner, Uwe; L'Huillier, Anne; Arnold, Cord L.

    2018-01-01

    We present efficient high-order harmonic generation (HHG) based on a high-repetition rate, few-cycle, near infrared (NIR), carrier-envelope phase stable, optical parametric chirped pulse amplifier (OPCPA), emitting 6 fs pulses with 9 μJ pulse energy. In krypton, we reach conversion efficiencies from the NIR to the extreme ultraviolet (XUV) radiation pulse energy on the order of ˜10-6 with less than 3 μJ driving pulse energy. This is achieved by optimizing the OPCPA for a spatially and temporally clean pulse and by a specially designed high-pressure gas target. In the future, the high efficiency of the HHG source will be beneficial for high-repetition rate two-colour (NIR-XUV) pump-probe experiments, where the available pulse energy from the laser has to be distributed economically between pump and probe pulses.

  2. Predicting neutron star spins from twin kHz QPOs

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We briefly review the proposed relations between the frequencies of twin kilohertz quasi-periodic oscillations(kHz QPOs) and the spin frequencies in neutron star low-mass X-ray binaries(NSLMXBs).To test the validity of the proposed models,we estimate the spin frequencies under these theoretical relations and compare them with the measured ones.It seems that magnetohydrodynamic(MHD) oscillations are more promising to account for the kHz QPOs.

  3. Electrical and magnetic repetitive transcranial stimulation of the primary motor cortex in healthy subjects.

    Science.gov (United States)

    Gilio, Francesca; Iacovelli, Elisa; Frasca, Vittorio; Gabriele, Maria; Giacomelli, Elena; De Lena, Carlo; Cipriani, Anna Maria; Inghilleri, Maurizio

    2009-05-08

    Repetitive transcranial magnetic stimulation (rTMS) delivered in short trains at 5Hz frequency and suprathreshold intensity over the primary motor cortex (M1) in healthy subjects facilitates the motor-evoked potential (MEP) amplitude by increasing cortical excitability through mechanisms resembling short-term synaptic plasticity. In this study, to investigate whether rTES acts through similar mechanisms we compared the effects of rTMS and repetitive transcranial electrical stimulation (rTES) (10 stimuli-trains, 5Hz frequency, suprathreshold intensity) delivered over the M1 on the MEP amplitude. Four healthy subjects were studied in two separate sessions in a relaxed condition. rTMS and anodal rTES were delivered in trains to the left M1 over the motor area for evoking a MEP in the right first dorsal interosseous muscle. Changes in MEP size and latency during the course of the rTMS and rTES trains were compared. The possible effects of muscle activation on MEP amplitude were evaluated, and the possible effects of cutaneous trigeminal fibre activation on corticospinal excitability were excluded in a control experiment testing the MEP amplitude before and after supraorbital nerve repetitive electrical stimulation. Repeated measures analysis of variance (ANOVA) showed that rTES and rTMS trains elicited similar amplitude first MEPs and a similar magnitude MEP amplitude facilitation during the trains. rTES elicited a first MEP with a shorter latency than rTMS, without significant changes during the course of the train of stimuli. The MEP elicited by single-pulse TES delivered during muscle contraction had a smaller amplitude than the last MEP in the rTES trains. Repetitive supraorbital nerve stimulation left the conditioned MEP unchanged. Our results suggest that 5 Hz-rTES delivered in short trains increases cortical excitability and does so by acting on the excitatory interneurones probably through mechanisms similar to those underlying the rTMS-induced MEP facilitation.

  4. Individual Alpha Peak Frequency Predicts 10 Hz Flicker Effects on Selective Attention.

    Science.gov (United States)

    Gulbinaite, Rasa; van Viegen, Tara; Wieling, Martijn; Cohen, Michael X; VanRullen, Rufin

    2017-10-18

    Rhythmic visual stimulation ("flicker") is primarily used to "tag" processing of low-level visual and high-level cognitive phenomena. However, preliminary evidence suggests that flicker may also entrain endogenous brain oscillations, thereby modulating cognitive processes supported by those brain rhythms. Here we tested the interaction between 10 Hz flicker and endogenous alpha-band (∼10 Hz) oscillations during a selective visuospatial attention task. We recorded EEG from human participants (both genders) while they performed a modified Eriksen flanker task in which distractors and targets flickered within (10 Hz) or outside (7.5 or 15 Hz) the alpha band. By using a combination of EEG source separation, time-frequency, and single-trial linear mixed-effects modeling, we demonstrate that 10 Hz flicker interfered with stimulus processing more on incongruent than congruent trials (high vs low selective attention demands). Crucially, the effect of 10 Hz flicker on task performance was predicted by the distance between 10 Hz and individual alpha peak frequency (estimated during the task). Finally, the flicker effect on task performance was more strongly predicted by EEG flicker responses during stimulus processing than during preparation for the upcoming stimulus, suggesting that 10 Hz flicker interfered more with reactive than proactive selective attention. These findings are consistent with our hypothesis that visual flicker entrained endogenous alpha-band networks, which in turn impaired task performance. Our findings also provide novel evidence for frequency-dependent exogenous modulation of cognition that is determined by the correspondence between the exogenous flicker frequency and the endogenous brain rhythms. SIGNIFICANCE STATEMENT Here we provide novel evidence that the interaction between exogenous rhythmic visual stimulation and endogenous brain rhythms can have frequency-specific behavioral effects. We show that alpha-band (10 Hz) flicker impairs stimulus

  5. Subjective duration distortions mirror neural repetition suppression.

    Science.gov (United States)

    Pariyadath, Vani; Eagleman, David M

    2012-01-01

    Subjective duration is strongly influenced by repetition and novelty, such that an oddball stimulus in a stream of repeated stimuli appears to last longer in duration in comparison. We hypothesize that this duration illusion, called the temporal oddball effect, is a result of the difference in expectation between the oddball and the repeated stimuli. Specifically, we conjecture that the repeated stimuli contract in duration as a result of increased predictability; these duration contractions, we suggest, result from decreased neural response amplitude with repetition, known as repetition suppression. Participants viewed trials consisting of lines presented at a particular orientation (standard stimuli) followed by a line presented at a different orientation (oddball stimulus). We found that the size of the oddball effect correlates with the number of repetitions of the standard stimulus as well as the amount of deviance from the oddball stimulus; both of these results are consistent with a repetition suppression hypothesis. Further, we find that the temporal oddball effect is sensitive to experimental context--that is, the size of the oddball effect for a particular experimental trial is influenced by the range of duration distortions seen in preceding trials. Our data suggest that the repetition-related duration contractions causing the oddball effect are a result of neural repetition suppression. More generally, subjective duration may reflect the prediction error associated with a stimulus and, consequently, the efficiency of encoding that stimulus. Additionally, we emphasize that experimental context effects need to be taken into consideration when designing duration-related tasks.

  6. Moderate high power 1 to 20μs and kHz Ho:YAG thin disk laser pulses for laser lithotripsy

    Science.gov (United States)

    Renz, Günther

    2015-02-01

    An acousto-optically or self-oscillation pulsed thin disk Ho:YAG laser system at 2.1 μm with an average power in the 10 W range will be presented for laser lithotripsy. In the case of cw operation the thin disk Ho:YAG is either pumped with InP diode stacks or with a thulium fiber laser which leads to a laser output power of 20 W at an optical-to-optical efficiency of 30%. For the gain switched mode of operation a modulated Tm-fiber laser is used to produce self-oscillation pulses. A favored pulse lengths for uric acid stone ablation is known to be at a few μs pulse duration which can be delivered by the thin disk laser technology. In the state of the art laser lithotripter, stone material is typically ablated with 250 to 750 μs pulses at 5 to 10 Hz and with pulse energies up to a few Joule. The ablation mechanism is performed in this case by vaporization into stone dust and fragmentation. With the thin disk laser technology, 1 to 20 μs-laser pulses with a repetition rate of a few kHz and with pulse energies in the mJ-range are available. The ablation mechanism is in this case due to a local heating of the stone material with a decomposition of the crystalline structure into calcium carbonate powder which can be handled by the human body. As a joint process to this thermal effect, imploding water vapor bubbles between the fiber end and the stone material produce sporadic shock waves which help clear out the stone dust and biological material.

  7. A clinical repetitive transcranial magnetic stimulation service in Australia: 6 years on.

    Science.gov (United States)

    Galletly, Cherrie A; Clarke, Patrick; Carnell, Benjamin L; Gill, Shane

    2015-11-01

    There is considerable research evidence for the effectiveness of repetitive transcranial magnetic stimulation in the treatment of depression. However, there is little information about its acceptability and outcomes in clinical settings. This naturalistic study reports on a clinical repetitive transcranial magnetic stimulation service that has been running in Adelaide, South Australia (SA), for 6 years. During this time, 214 complete acute courses were provided to patients with treatment-resistant Major Depressive Disorder. Patients received either sequential bilateral or right unilateral repetitive transcranial magnetic stimulation treatment involving either 18 or 20 sessions given over 6 or 4 weeks respectively. Data included patient demographic details, duration of depression, and medication at the beginning of their repetitive transcranial magnetic stimulation course. The Hamilton Depression Rating Scale was used to assess response to repetitive transcranial magnetic stimulation. Of those undergoing a first-time acute treatment course of repetitive transcranial magnetic stimulation (N = 167), 28% achieved remission, while a further 12% met the criteria for a response to treatment. Most patients (N = 123, 77%) had previously been treated with five or more antidepressant medications, and 77 (47%) had previously received electroconvulsive therapy. Referral rates remained high over the 6 years, indicating acceptance of the treatment by referring psychiatrists. There were no significant adverse events, and the treatment was generally well tolerated. In all, 41 patients (25%) had a second course of repetitive transcranial magnetic stimulation and 6 (4%) patients had a third course; 21 patients subsequently received maintenance repetitive transcranial magnetic stimulation. This naturalistic study showed that repetitive transcranial magnetic stimulation was well accepted by both psychiatrists and patients, and has good efficacy and safety. Furthermore

  8. Repetitive nanosecond electron accelerators type URT-1 for radiation technology

    Science.gov (United States)

    Sokovnin, S. Yu.; Balezin, M. E.

    2018-03-01

    The electron accelerator URT-1М-300 for mobile installation was created for radiation disinfecting to correct drawbacks that were found the URT-1M electron accelerator operation (the accelerating voltage up to 1 МV, repetition rate up to 300 pps, electron beam size 400 × 100 mm, the pulse width about 100 ns). Accelerator configuration was changed that allowed to reduce significantly by 20% tank volume with oil where is placed the system of formation high-voltage pulses, thus the average power of the accelerator is increased by 6 times at the expense of increase in pulses repetition rate. Was created the system of the computerized monitoring parameters (output parameters and thermal mode) and remote control of the accelerator (charge voltage, pulse repetition rate), its elements and auxiliary systems (heat of the thyratron, vacuum system), the remote control panel is connected to the installation by the fiber-optical channel, what lightens the work for service personnel. For generating an electron beam up to 400 mm wide there are used metal- ceramic] and metal-dielectric cold cathodes of several emission elements (plates) with a non-uniform distribution of the electron beam current density on the output foil ± 15%. It was found that emission drop of both type of cathodes, during the operation at the high repetition rate (100 pps) is substantial at the beginning of the process, and then proceeds rather slowly that allows for continuous operation up to 40 h. Experiments showed that linear dependence of the voltage and a signal from the pin-diode remains within the range of the charge voltage 45-65 kV. Thus, voltage increases from 690 to 950 kV, and the signal from the pin-diode - from (2,8-4,6)*104 Gy/s. It allows to select electron energy quite precisely with consideration of the radiation technology requirements.

  9. Effects of 10 Hz and 20 Hz Transcranial Alternating Current Stimulation on Automatic Motor Control.

    Science.gov (United States)

    Cappon, Davide; D'Ostilio, Kevin; Garraux, Gaëtan; Rothwell, John; Bisiacchi, Patrizia

    2016-01-01

    In a masked prime choice reaction task, presentation of a compatible prime increases the reaction time to the following imperative stimulus if the interval between mask and prime is around 80-250 ms. This is thought to be due to automatic suppression of the motor plan evoked by the prime, which delays reaction to the imperative stimulus. Oscillatory activity in motor networks around the beta frequency range of 20 Hz is important in suppression of movement. Transcranial alternating current at 20 Hz may be able to drive oscillations in the beta range. To investigate whether transcranial alternating current stimulation (tACS) at 20 Hz would increase automatic inhibition in a masked prime task. As a control we used 10 Hz tACS. Stimulation was delivered at alpha (10 Hz) and beta (20 Hz) frequency over the supplementary motor area and the primary motor cortex (simultaneous tACS of SMA-M1), which are part of the BG-cortical motor loop, during the execution of the subliminal masked prime left/right choice reaction task. We measured the effects on reaction times. Corticospinal excitability was assessed by measuring the amplitude of motor evoked potentials (MEPs) evoked in the first dorsal interosseous muscle by transcranial magnetic stimulation (TMS) over M1. The 10 and 20-Hz tACS over SMA-M1 had different effects on automatic inhibition. The 20 Hz tACS increased the duration of automatic inhibition whereas it was decreased by 10 Hz tACS. Neurophysiologically, 20 Hz tACS reduced the amplitude of MEPs evoked from M1, whereas there was no change after 10 Hz tACS. Automatic mechanisms of motor inhibition can be modulated by tACS over motor areas of cortex. tACS may be a useful additional tool to investigate the causal links between endogenous brain oscillations and specific cognitive processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Differential effects of 10-Hz and 40-Hz transcranial alternating current stimulation (tACS) on endogenous versus exogenous attention.

    Science.gov (United States)

    Hopfinger, Joseph B; Parsons, Jonathan; Fröhlich, Flavio

    2017-04-01

    Previous electrophysiological studies implicate both alpha (8-12 Hz) and gamma (>30 Hz) neural oscillations in the mechanisms of selective attention. Here, participants preformed two separate visual attention tasks, one endogenous and one exogenous, while transcranial alternating current stimulation (tACS), at 10 Hz, 40 Hz, or sham, was applied to the right parietal lobe. Our results provide new evidence for the roles of gamma and alpha oscillations in voluntary versus involuntary shifts of attention. Gamma (40 Hz) stimulation resulted in improved disengagement from invalidly cued targets in the endogenous attention task, whereas alpha stimulation (10 Hz) had no effect on endogenous attention, but increased the exogenous cuing effect. These findings agree with previous studies suggesting that right inferior parietal regions may be especially important for the disengagement of attention, and go further to provide details about the specific type of oscillatory neural activity within that brain region that is differentially involved in endogenous versus exogenous attention. Our results also have potential implications for the plasticity and training of attention systems.

  11. Repetitive Bibliographical Information in Relational Databases.

    Science.gov (United States)

    Brooks, Terrence A.

    1988-01-01

    Proposes a solution to the problem of loading repetitive bibliographic information in a microcomputer-based relational database management system. The alternative design described is based on a representational redundancy design and normalization theory. (12 references) (Author/CLB)

  12. NASA Rat Acoustic Tolerance Test 1994-1995: 8 kHz, 16 kHz, 32 kHz Experiments

    Science.gov (United States)

    Mele, Gary D.; Holley, Daniel C.; Naidu, Sujata

    1996-01-01

    Adult male Sprague-Dawley rats were exposed to chronic applied sound (74 to 79 dB, SPL) with octave band center frequencies of either 8, 16 or 32 kHz for up to 60 days. Control cages had ambient sound levels of about 62 dB (SPL). Groups of rats (test vs. control; N=9 per group) were euthanized after 0. 5. 14, 30, and 60 days. On each euthanasia day, objective evaluation of their physiology and behavior was performed using a Stress Assessment Battery (SAB) of measures. In addition, rat hearing was assessed using the brain stem auditory evoked potential (BAER) method after 60 days of exposure. No statistically significant differences in mean daily food use could be attributed to the presence of the applied test sound. Test rats used 5% more water than control rats. In the 8 kHz and 32 kHz tests this amount was statistically significant(P less than .05). This is a minor difference of questionable physiological significance. However, it may be an indication of a small reaction to the constant applied sound. Across all test frequencies, day 5 test rats had 6% larger spleens than control rats. No other body or organ weight differences were found to be statistically significant with respect to the application of sound. This spleen effect may be a transient adaptive process related to adaptation to the constant applied noise. No significant test effect on differential white blood cell counts could be demonstrated. One group demonstrated a low eosinophil count (16 kHz experiment, day 14 test group). However this was highly suspect. Across all test frequencies studied, day 5 test rats had 17% fewer total leukocytes than day 5 control rats. Sound exposed test rats exhibited 44% lower plasma corticosterone concentrations than did control rats. Note that the plasma corticosterone concentration was lower in the sound exposed test animals than the control animals in every instance (frequency exposure and number of days exposed).

  13. Contribution of fronto-striatal regions to emotional valence and repetition under cognitive conflict.

    Science.gov (United States)

    Chun, Ji-Won; Park, Hae-Jeong; Kim, Dai Jin; Kim, Eosu; Kim, Jae-Jin

    2017-07-01

    Conflict processing mediated by fronto-striatal regions may be influenced by emotional properties of stimuli. This study aimed to examine the effects of emotion repetition on cognitive control in a conflict-provoking situation. Twenty-one healthy subjects were scanned using functional magnetic resonance imaging while performing a sequential cognitive conflict task composed of emotional stimuli. The regional effects were analyzed according to the repetition or non-repetition of cognitive congruency and emotional valence between the preceding and current trials. Post-incongruence interference in error rate and reaction time was significantly smaller than post-congruence interference, particularly under repeated positive and non-repeated positive, respectively, and post-incongruence interference, compared to post-congruence interference, increased activity in the ACC, DLPFC, and striatum. ACC and DLPFC activities were significantly correlated with error rate or reaction time in some conditions, and fronto-striatal connections were related to the conflict processing heightened by negative emotion. These findings suggest that the repetition of emotional stimuli adaptively regulates cognitive control and the fronto-striatal circuit may engage in the conflict adaptation process induced by emotion repetition. Both repetition enhancement and repetition suppression of prefrontal activity may underlie the relationship between emotion and conflict adaptation. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Document retrieval on repetitive string collections.

    Science.gov (United States)

    Gagie, Travis; Hartikainen, Aleksi; Karhu, Kalle; Kärkkäinen, Juha; Navarro, Gonzalo; Puglisi, Simon J; Sirén, Jouni

    2017-01-01

    Most of the fastest-growing string collections today are repetitive, that is, most of the constituent documents are similar to many others. As these collections keep growing, a key approach to handling them is to exploit their repetitiveness, which can reduce their space usage by orders of magnitude. We study the problem of indexing repetitive string collections in order to perform efficient document retrieval operations on them. Document retrieval problems are routinely solved by search engines on large natural language collections, but the techniques are less developed on generic string collections. The case of repetitive string collections is even less understood, and there are very few existing solutions. We develop two novel ideas, interleaved LCPs and precomputed document lists , that yield highly compressed indexes solving the problem of document listing (find all the documents where a string appears), top- k document retrieval (find the k documents where a string appears most often), and document counting (count the number of documents where a string appears). We also show that a classical data structure supporting the latter query becomes highly compressible on repetitive data. Finally, we show how the tools we developed can be combined to solve ranked conjunctive and disjunctive multi-term queries under the simple [Formula: see text] model of relevance. We thoroughly evaluate the resulting techniques in various real-life repetitiveness scenarios, and recommend the best choices for each case.

  15. Repetitive Transcranial Magnetic Stimulation Improves Handwriting in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Bubblepreet K. Randhawa

    2013-01-01

    Full Text Available Background. Parkinson disease (PD is characterized by hypometric movements resulting from loss of dopaminergic neurons in the substantia nigra. PD leads to decreased activation of the supplementary motor area (SMA; the net result of these changes is a poverty of movement. The present study determined the impact of 5 Hz repetitive transcranial magnetic stimulation (rTMS over the SMA on a fine motor movement, handwriting (writing cursive “l”s, and on cortical excitability, in individuals with PD. Methods. In a cross-over design, ten individuals with PD were randomized to receive either 5 Hz or control stimulation over the SMA. Immediately following brain stimulation right handed writing was assessed. Results. 5 Hz stimulation increased vertical size of handwriting and diminished axial pressure. In addition, 5 Hz rTMS significantly decreased the threshold for excitability in the primary motor cortex. Conclusions. These data suggest that in the short term 5 Hz rTMS benefits functional fine motor task performance, perhaps by altering cortical excitability across a network of brain regions. Further, these data may provide the foundation for a larger investigation of the effects of noninvasive brain stimulation over the SMA in individuals with PD.

  16. Analytical and experimental discussion of a circuit-based model for compact fluorescent lamps in a 60Hz power grid

    Directory of Open Access Journals (Sweden)

    Gabriel Alexis Malagon

    2015-06-01

    Full Text Available This article presents an analysis and discussion on the performance of a circuit-based model for Compact Fluorescent Lamps (CFL in a 120V 60Hz power grid. This model is proposed and validated in previous scientific literature for CFLs in 230V 50Hz systems. Nevertheless, the derivation of this model is not straightforward to follow and its performance in 120V 60Hz systems is a matter of research work. In this paper, the analytical derivation of this CFL model is presented in detail and its performance is discussed when predicting the current of a CFL designed to operate in a 120V 60Hz electrical system. The derived model is separately implemented in both MATLAB® and ATP-EMTP® software using two different sets of parameters previously proposed for 230V 50Hz CFLs. These simulation results are compared against laboratory measurements using a programmable AC voltage source. The measurements and simulations considered seven CFLs 110/127V 60Hz with different power ratings supplied by a sinusoidal (not distorted voltage source. The simulations under these conditions do not properly predict the current measurements and therefore the set of parameters and/or the model itself need to be adjusted for 120V 60Hz power grids.

  17. Sustainment of spherical tokamak by means of repetitive injection of compact torus plasma

    International Nuclear Information System (INIS)

    Shimamura, Shin; Matsura, Ken; Takahashi, Tsutomu; Nogi, Yasuyuki

    2000-01-01

    Sustainment of spherical tokamak (S.T.) has been studied. A compact torus (C.T.) plasma was injected into confinement region by magnetized coaxial gun. For start-up and sustainment of large main spherical tokamak, single pulsed injection of small C.T. is not sufficient in many cases. C.T.plasma injection of high repetition rate is required. For this purpose magnetized coaxial gun was driven with high repetition rate current. The first injected C.T. plasma could start-up S.T. without other help. The repetitive C.T. injection grew and sustained the S.T. plasma. A CCD camera with fast gated image intensifier took a cross sectional view of S.T. during the repetitive C.T. injection. (author)

  18. A dispersion-balanced Discrete Fourier Transform of repetitive pulse sequences using temporal Talbot effect

    Science.gov (United States)

    Fernández-Pousa, Carlos R.

    2017-11-01

    We propose a processor based on the concatenation of two fractional temporal Talbot dispersive lines with balanced dispersion to perform the DFT of a repetitive electrical sequence, for its use as a controlled source of optical pulse sequences. The electrical sequence is used to impart the amplitude and phase of a coherent train of optical pulses by use of a modulator placed between the two Talbot lines. The proposal has been built on a representation of the action of fractional Talbot effect on repetitive pulse sequences and a comparison with related results and proposals. It is shown that the proposed system is reconfigurable within a few repetition periods, has the same processing rate as the input optical pulse train, and requires the same technical complexity in terms of dispersion and pulse width as the standard, passive pulse-repetition rate multipliers based on fractional Talbot effect.

  19. Repetitive Transcranial Magnetic Stimulation (rTMS) Therapy in Parkinson Disease: A Meta-Analysis.

    Science.gov (United States)

    Wagle Shukla, Aparna; Shuster, Jonathan J; Chung, Jae Woo; Vaillancourt, David E; Patten, Carolynn; Ostrem, Jill; Okun, Michael S

    2016-04-01

    Several studies have reported repetitive transcranial magnetic stimulation (rTMS) therapy as an effective treatment for the control of motor symptoms in Parkinson disease. The objective of the study is to quantify the overall efficacy of this treatment. Systematic review and meta-analysis. We reviewed the literature on clinical rTMS trials in Parkinson disease since the technique was introduced in 1980. We used the following databases: MEDLINE, Web of Science, Cochrane, and CINAHL. Patients with Parkinson disease who were participating in prospective clinical trials that included an active arm and a control arm and change in motor scores on Unified Parkinson's Disease Rating Scale as the primary outcome. We pooled data from 21 studies that met these criteria. We then analyzed separately the effects of low- and high-frequency rTMS on clinical motor improvements. The overall pooled mean difference between treatment and control groups in the Unified Parkinson's Disease Rating Scale motor score was significant (4.0 points, 95% confidence interval, 1.5, 6.7; P = .005). rTMS therapy was effective when low-frequency stimulation (≤ 1 Hz) was used with a pooled mean difference of 3.3 points (95% confidence interval 1.6, 5.0; P = .005). There was a trend for significance when high-frequency stimulation (≥ 5 Hz) studies were evaluated with a pooled mean difference of 3.9 points (95% confidence interval, -0.7, 8.5; P = .08). rTMS therapy demonstrated benefits at short-term follow-up (immediately after a treatment protocol) with a pooled mean difference of 3.4 points (95% confidence interval, 0.3, 6.6; P = .03) as well as at long-term follow-up (average follow-up 6 weeks) with mean difference of 4.1 points (95% confidence interval, -0.15, 8.4; P = .05). There were insufficient data to statistically analyze the effects of rTMS when we specifically examined bradykinesia, gait, and levodopa-induced dyskinesia using quantitative methods. rTMS therapy in patients with Parkinson

  20. Development of a 1.0 MV 100 Hz compact tesla transformer with PFL

    International Nuclear Information System (INIS)

    Kang Qiang; Chang Anbi; Li Mingjia; Meng Fanbao; Su Youbin

    2006-01-01

    The theory and characteristic of a compact Tesla transformer are introduced, and an unitized configuration design is performed for 1.0 MV, 100 Hz Tesla transformer and 40 Ω, 40 ns pulse forming line (PFL). Two coaxial open cores in Tesla transformer serve as the inner and outer conductors of PFL, and a traditional PFL is combined with the Tesla transformer, then the pulse generator can be smaller, more efficient, and more stable. The designed compact Tesla transformer employed in electron beams accelerator CHP01 can charge PFL of 600 pF for 1.3 MV voltage at a single shot, and keep 1.15 MV at 100 Hz repeated rates. Furthermore, a continuance run in 5 seconds is achieved by Tesla transformer under voltage and frequency ratings. (authors)

  1. Subjective duration distortions mirror neural repetition suppression.

    Directory of Open Access Journals (Sweden)

    Vani Pariyadath

    Full Text Available Subjective duration is strongly influenced by repetition and novelty, such that an oddball stimulus in a stream of repeated stimuli appears to last longer in duration in comparison. We hypothesize that this duration illusion, called the temporal oddball effect, is a result of the difference in expectation between the oddball and the repeated stimuli. Specifically, we conjecture that the repeated stimuli contract in duration as a result of increased predictability; these duration contractions, we suggest, result from decreased neural response amplitude with repetition, known as repetition suppression.Participants viewed trials consisting of lines presented at a particular orientation (standard stimuli followed by a line presented at a different orientation (oddball stimulus. We found that the size of the oddball effect correlates with the number of repetitions of the standard stimulus as well as the amount of deviance from the oddball stimulus; both of these results are consistent with a repetition suppression hypothesis. Further, we find that the temporal oddball effect is sensitive to experimental context--that is, the size of the oddball effect for a particular experimental trial is influenced by the range of duration distortions seen in preceding trials.Our data suggest that the repetition-related duration contractions causing the oddball effect are a result of neural repetition suppression. More generally, subjective duration may reflect the prediction error associated with a stimulus and, consequently, the efficiency of encoding that stimulus. Additionally, we emphasize that experimental context effects need to be taken into consideration when designing duration-related tasks.

  2. What can the 50 Hz market learn from the 60 Hz market to avoid generator and exciter failures and damage?

    Energy Technology Data Exchange (ETDEWEB)

    Weigelt, Klaus [Brush Aftermarket, Ridderkerk (Netherlands). Global Engineering

    2012-07-01

    The economic significance of older turbo-sets lies primarily in their steadily increasing share of the total power generated worldwide. This is reflected by a trend in which plants originally built for base-load operation are increasingly being used for variable load or even continuous start-stop operation. This change occurred in the 60 Hz US market more than 25 years ago. The paper gives an overview about numerous solutions for refurbishment, life extension, retrofits and upgrades developed for generator rotors, stators and exciters. These are no prototype solutions, but solutions which already work reliably for the 60 Hz market for many years and which can be applied and adapted of the same problems of the 50 Hz market. (orig.)

  3. A primary method for the complex calibration of a hydrophone from 1 Hz to 2 kHz

    Science.gov (United States)

    Slater, W. H.; E Crocker, S.; Baker, S. R.

    2018-02-01

    A primary calibration method is demonstrated to obtain the magnitude and phase of the complex sensitivity for a hydrophone at frequencies between 1 Hz and 2 kHz. The measurement is performed in a coupler reciprocity chamber (‘coupler’) a closed test chamber where time harmonic oscillations in pressure can be achieved and the reciprocity conditions required for a primary calibration can be realized. Relevant theory is reviewed and the reciprocity parameter updated for the complex measurement. Systematic errors and corrections for magnitude are reviewed and more added for phase. The combined expanded uncertainties of the magnitude and phase of the complex sensitivity at 1 Hz were 0.1 dB re 1 V μ Pa-1 and  ± 1\\circ , respectively. Complex sensitivity, sensitivity magnitude, and phase measurements are presented on an example primary reference hydrophone.

  4. Assessment of impact noise at 31.5Hz

    NARCIS (Netherlands)

    Lentzen, S.S.K.; Koopman, A.; Salomons, E.M.

    2011-01-01

    Due to the increasing popularity of lightweight building methods, vibrations and low frequency noise have become a greater challenge. This work deals with the assessment of impact noise at the 31.5 Hz octave band. Three possible impact sound sources to determine the sound insulation have been tested

  5. Word Recognition during Reading: The Interaction between Lexical Repetition and Frequency

    Science.gov (United States)

    Lowder, Matthew W.; Choi, Wonil; Gordon, Peter C.

    2013-01-01

    Memory studies utilizing long-term repetition priming have generally demonstrated that priming is greater for low-frequency words than for high-frequency words and that this effect persists if words intervene between the prime and the target. In contrast, word-recognition studies utilizing masked short-term repetition priming typically show that the magnitude of repetition priming does not differ as a function of word frequency and does not persist across intervening words. We conducted an eye-tracking while reading experiment to determine which of these patterns more closely resembles the relationship between frequency and repetition during the natural reading of a text. Frequency was manipulated using proper names that were high-frequency (e.g., Stephen) or low-frequency (e.g., Dominic). The critical name was later repeated in the sentence, or a new name was introduced. First-pass reading times and skipping rates on the critical name revealed robust repetition-by-frequency interactions such that the magnitude of the repetition-priming effect was greater for low-frequency names than for high-frequency names. In contrast, measures of later processing showed effects of repetition that did not depend on lexical frequency. These results are interpreted within a framework that conceptualizes eye-movement control as being influenced in different ways by lexical- and discourse-level factors. PMID:23283808

  6. Electrophysiological signatures of phonological and semantic maintenance in sentence repetition.

    Science.gov (United States)

    Meltzer, Jed A; Kielar, Aneta; Panamsky, Lilia; Links, Kira A; Deschamps, Tiffany; Leigh, Rosie C

    2017-08-01

    Verbal short-term memory comprises resources for phonological rehearsal, which have been characterized anatomically, and for maintenance of semantic information, which are less understood. Sentence repetition tasks tap both processes interactively. To distinguish brain activity involved in phonological vs. semantic maintenance, we recorded magnetoencephalography during a sentence repetition task, incorporating three manipulations emphasizing one mechanism over the other. Participants heard sentences or word lists and attempted to repeat them verbatim after a 5-second delay. After MEG, participants completed a cued recall task testing how much they remembered of each sentence. Greater semantic engagement relative to phonological rehearsal was hypothesized for 1) sentences vs. word lists, 2) concrete vs. abstract sentences, and 3) well recalled vs. poorly recalled sentences. During auditory perception and the memory delay period, we found highly left-lateralized activation in the form of 8-30 Hz event-related desynchronization. Compared to abstract sentences, concrete sentences recruited posterior temporal cortex bilaterally, demonstrating a neural signature for the engagement of visual imagery in sentence maintenance. Maintenance of arbitrary word lists recruited right hemisphere dorsal regions, reflecting increased demands on phonological rehearsal. Sentences that were ultimately poorly recalled in the post-test also elicited extra right hemisphere activation when they were held in short-term memory, suggesting increased demands on phonological resources. Frontal midline theta oscillations also reflected phonological rather than semantic demand, being increased for word lists and poorly recalled sentences. These findings highlight distinct neural resources for phonological and semantic maintenance, with phonological maintenance associated with stronger oscillatory modulations. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. First high-repetition-rate Thomson scattering for fusion plasmas

    International Nuclear Information System (INIS)

    Roehr, H.; Steuer, K.H.; Schramm, G.; Hirsch, K.; Salzmann, H.

    1982-01-01

    Electron temperature and density measurements by Thomson scattering were performed for the first time for the whole duration of a tokamak discharge. A Nd:YAG laser of 60 pulses per second at 1.06μm was used in ASDEX in combination with silicon avalanche photodiode detectors. Density calibration was done by rotational anti-Stokes Raman scattering from hydrogen. The system is used for measurements at electron densities as low as 3x10 12 cm -3 . (author)

  8. Properties of water surface discharge at different pulse repetition rates

    Czech Academy of Sciences Publication Activity Database

    Ruma, R.; Hosseini, S.H.R.; Yoshihara, K.; Akiyama, M.; Sakugawa, T.; Lukeš, Petr; Akiyama, H.

    2014-01-01

    Roč. 116, č. 12 (2014), s. 123304-123304 ISSN 0021-8979 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M100431203 Program:M Institutional support: RVO:61389021 Keywords : plasma in air * water surface discharge * pulse frequency * hydrogen peroxide * organic dye Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.183, year: 2014 http://dx.doi.org/ 10.1063/1.4896266

  9. Preliminary Evidence of the Effects of High-frequency Repetitive Transcranial Magnetic Stimulation (rTMS) on Swallowing Functions in Post-Stroke Individuals with Chronic Dysphagia

    Science.gov (United States)

    Cheng, Ivy K. Y.; Chan, Karen M. K.; Wong, C. S.; Cheung, Raymond T. F.

    2015-01-01

    Background: There is growing evidence of potential benefits of repetitive transcranial magnetic stimulation (rTMS) in the rehabilitation of dysphagia. However, the site and frequency of stimulation for optimal effects are not clear. Aims: The aim of this pilot study is to investigate the short-term effects of high-frequency 5 Hz rTMS applied to…

  10. Intermittent 20-HZ-photic stimulation leads to a uniform reduction of alpha-global field power in healthy volunteers.

    Science.gov (United States)

    Rau, R; Raschka, C; Koch, H J

    2001-01-01

    19-channel-EEGs were recorded from scalp surface of 30 healthy subjects (16m, 14f, mean age: 34 ys, SD: 11.7 ys) at rest and under IPS (Intermittent Photic Stimulation) at rates of 5, 10 and 20 Hertz (Hz). Digitalized data underwent spectral analysis with fast fourier transfomation (FFT) yielding the basis for the computation of global field power (GFP). For quantification GFP values in the frequency ranges of 5, 10 and 20 Hz at rest were divided by the corresponding data gained under IPS. While ratios from PDE data showed no stable parameter due to high interindividual variability, ratios of alpha-power turned out to be uniform in all subjects: IPS at 20 Hz always led to a suppression of alpha-power. Dividing alpha-GFP at rest by alpha-GFP under 20-Hz IPS thus resulted in a ratio paradigma.

  11. Improvement of Polytetrafluoroethylene Surface Energy by Repetitive Pulse Non-Thermal Plasma Treatment in Atmospheric Air

    International Nuclear Information System (INIS)

    Yang Guoqing; Zhang Guanjun; Zhang Wenyuan

    2011-01-01

    Improvement of polytetrafluoroethylene surface energy by non-thermal plasma treatment is presented, using a nanosecond-positive-edge repetitive pulsed dielectric barrier discharge generator in atmospheric air. The electrical parameters including discharging power, peak and density of micro-discharge current were calculated, and the electron energy was estimated. Surface treatment experiments of polytetrafluoroethylene films were conducted for both different applied voltages and different treating durations. Results show that the surface energy of polytetrafluoroethylene film could be improved to 40 mJ/m 2 or more by plasma treatment. Surface roughness measurement and surface X-ray photoelectron spectroscopy analysis indicate that there are chemical etching and implantation of polar oxygen groups in the sample surface treating process, resulting in the improvement of the sample surface energy. Compared with an AC source of 50 Hz, the dielectric barrier discharges generated by a repetitive pulsed source could provide higher peak power, lower mean power, larger micro-discharge current density and higher electron energy. Therefore, with the same applied peak voltage and treating duration, the improvement of polytetrafluoroethylene surface energy using repetitive pulsed plasma is more effective, and the plasma treatment process based on repetitive pulsed dielectric barrier discharges in air is thus feasible and applicable.

  12. Development of repetitive railgun pellet accelerator and steady-state solid hydrogen extruder

    International Nuclear Information System (INIS)

    Oda, Y.; Azuma, K.; Onozuka, M.; Kasai, S.; Hasegawa, K.

    1995-01-01

    Development of a railgun pellet accelerator and a steady-state solid hydrogen extruder has been conducted. A railgun accelerator has been investigated for a high-speed repetitive pellet acceleration. The final objective is to develop a railgun system that can achieve a 5km/s speed-class repetitive (2Hz) pellet injection. Improvement in the acceleration efficiency showed a pellet velocity of more than 2km/s using augment rails and a ceramic insulator applied to a 1m-long railgun. The other investigation focused on the development of a steady-state solid hydrogen extruder for continuous pellet injection. Screw-driven extruding system has been chosen to extrude the solid hydrogen filament continuously. Theoretical considerations suggest that temperature control of the system is important in future research. (orig.)

  13. Development of repetitive railgun pellet accelerator and steady-state solid hydrogen extruder

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Y. [Mitsubishi Heavy Industries Ltd., Kobe (Japan); Azuma, K. [Mitsubishi Heavy Industries Ltd., Kobe (Japan); Onozuka, M. [Mitsubishi Heavy Industries Ltd., Kobe (Japan); Kasai, S. [Japan Atomic Energy Research Inst., Ibaraki (Japan); Hasegawa, K. [Japan Atomic Energy Research Inst., Ibaraki (Japan)

    1995-12-31

    Development of a railgun pellet accelerator and a steady-state solid hydrogen extruder has been conducted. A railgun accelerator has been investigated for a high-speed repetitive pellet acceleration. The final objective is to develop a railgun system that can achieve a 5km/s speed-class repetitive (2Hz) pellet injection. Improvement in the acceleration efficiency showed a pellet velocity of more than 2km/s using augment rails and a ceramic insulator applied to a 1m-long railgun. The other investigation focused on the development of a steady-state solid hydrogen extruder for continuous pellet injection. Screw-driven extruding system has been chosen to extrude the solid hydrogen filament continuously. Theoretical considerations suggest that temperature control of the system is important in future research. (orig.).

  14. Evolution of repetitive explosive instabilities in space and time

    International Nuclear Information System (INIS)

    Wilhelmsson, H.

    1984-01-01

    A nonlinear rate equation describing nonlinear, explosive type interaction of waves in plasmas is studied, assuming that amplitude saturation occurs due to nonlinear frequency shifts. Emphasis is put on the space dependence of the solution caused by the assumption of a given initial amplitude distribution in space. An analysis is given of the problem of repetitive peaks governed by the nonlinear rate equation for the time development of the amplitudes of plasma waves and by a Lorentzian shape distribution of the initial amplitudes. For the one-dimensional case, the peaks developed by explosive instability move in the direction of lower initial amplitude values, and the speed and the repetition rate of the peaks are determined. The possible forms of equilibria for the nonlinear rate equation in the explosive case are also studied, including, in addition to the quadratic nonlinearity, diffusion and linear damping effects. A solution to the nonlinear rate equation including diffusion is also given for the case where the quadratic nonlinearity represents recombination. (Auth.)

  15. Enhanced accuracy in novel mirror drawing after repetitive transcranial magnetic stimulation-induced proprioceptive deafferentation

    DEFF Research Database (Denmark)

    Balslev, Daniela; Christensen, Lars O.D.; Lee, Ji-hang

    2004-01-01

    a performance benefit. In this study, we tested whether deafferentation induced by repetitive transcranial magnetic stimulation (rTMS) can improve mirror tracing skills in normal subjects. Hand trajectory error during novel mirror drawing was compared across two groups of subjects that received either 1 Hz r......TMS over the somatosensory cortex contralateral to the hand or sham stimulation. Mirror tracing was more accurate after rTMS than after sham stimulation. Using a position-matching task, we confirmed that rTMS reduced proprioceptive acuity and that this reduction was largest when the coil was placed...

  16. Progress toward a microsecond duration, repetitively pulsed, intense-ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Davis, H A; Olson, J C; Reass, W A [Los Alamos National Lab., NM (United States); Coates, D M; Hunt, J W; Schleinitz, H M [DuPont Central Research and Development, Wilmington, DE (United States); Lovberg, R H [Univ. of California, San Diego, CA (United States); Greenly, J B [Cornell Univ., Ithaca, NY (United States). Lab. of Plasma Studies

    1997-12-31

    A number of intense ion beams applications are emerging requiring repetitive high-average-power beams. These applications include ablative deposition of thin films, rapid melt and resolidification for surface property enhancement, advanced diagnostic neutral beams for the next generation of Tokamaks, and intense pulsed-neutron sources. A 200-250 keV, 15 kA, 1 {mu}s duration, 1-30 Hz intense ion beam accelerator is being developed to address these applications. (author). 4 figs., 7 refs.

  17. Repetitive Transcranial Magnetic Stimulation for Wernicke-Korsakoff Syndrome: A Case Report.

    Science.gov (United States)

    Chung, So Won; Park, Shin Who; Seo, Young Jae; Kim, Jae-Hyung; Lee, Chan Ho; Lim, Jong Youb

    2017-02-01

    A 57-year-old man who was diagnosed with Wernicke-Korsakoff syndrome showed severe impairment of cognitive function and a craving for alcohol, even after sufficient supplementation with thiamine. After completing 10 sessions of 10 Hz repetitive transcranial magnetic stimulation (rTMS) at 100% of the resting motor threshold over the left dorsolateral prefrontal cortex, dramatic improvement in cognitive function and a reduction in craving for alcohol were noted. This is the first case report of the efficacy of a high-frequency rTMS in the treatment of Wernicke-Korsakoff syndrome.

  18. Focal hand dystonia: individualized intervention with repeated application of repetitive transcranial magnetic stimulation.

    Science.gov (United States)

    Kimberley, Teresa Jacobson; Borich, Michael R; Schmidt, Rebekah L; Carey, James R; Gillick, Bernadette

    2015-04-01

    To examine for individual factors that may predict response to inhibitory repetitive transcranial magnetic stimulation (rTMS) in focal hand dystonia (FHD); to present the method for determining optimal stimulation to increase inhibition in a given patient; and to examine individual responses to prolonged intervention. Single-subject design to determine optimal parameters to increase inhibition for a given subject and to use the selected parameters once per week for 6 weeks, with 1-week follow-up, to determine response. Clinical research laboratory. A volunteer sample of subjects with FHD (N = 2). One participant had transcranial magnetic stimulation responses indicating impaired inhibition, and the other had responses within normative limits. There were 1200 pulses of 1-Hz rTMS delivered using 4 different stimulation sites/intensity combinations: primary motor cortex at 90% or 110% of resting motor threshold (RMT) and dorsal premotor cortex (PMd) at 90% or 110% of RMT. The parameters producing the greatest within-session increase in cortical silent period (CSP) duration were then used as the intervention. Response variables included handwriting pressure and velocity, subjective symptom rating, CSP, and short latency intracortical inhibition and facilitation. The individual with baseline transcranial magnetic stimulation responses indicating impaired inhibition responded favorably to the repeated intervention, with reduced handwriting force, an increase in the CSP, and subjective report of moderate symptom improvement at 1-week follow-up. The individual with normative baseline responses failed to respond to the intervention. In both subjects, 90% of RMT to the PMd produced the greatest lengthening of the CSP and was used as the intervention. An individualized understanding of neurophysiological measures can be an indicator of responsiveness to inhibitory rTMS in focal dystonia, with further work needed to determine likely responders versus nonresponders. Copyright

  19. Dipolar sources of the early scalp somatosensory evoked potentials to upper limb stimulation. Effect of increasing stimulus rates.

    Science.gov (United States)

    Valeriani, M; Restuccia, D; Di Lazzaro, V; Le Pera, D; Barba, C; Tonali, P; Mauguiere, F

    1998-06-01

    Brain electrical source analysis (BESA) of the scalp electroencephalographic activity is well adapted to distinguish neighbouring cerebral generators precisely. Therefore, we performed dipolar source modelling in scalp medium nerve somatosensory evoked potentials (SEPs) recorded at 1.5-Hz stimulation rate, where all the early components should be identifiable. We built a four-dipole model, which was issued from the grand average, and applied it also to recordings from single individuals. Our model included a dipole at the base of the skull and three other perirolandic dipoles. The first of the latter dipoles was tangentially oriented and was active at the same latencies as the N20/P20 potential and, with opposite polarity, the P24/N24 response. The second perirolandic dipole showed an initial peak of activity slightly earlier than that of the N20/P20 dipolar source and, later, it was active at the same latency as the central P22 potential. Lastly, the third perirolandic dipole explaining the fronto-central N30 potential scalp distribution was constantly more posterior than the first one. In order to evaluate the effect of an increasing repetition frequency on the activity of SEP dipolar sources, we applied the model built from 1.5-Hz SEPs to traces recorded at 3-Hz and 10-Hz repetition rates. We found that the 10-Hz stimulus frequency reduced selectively the later of the two activity phases of the first perirolandic dipole. The decrement in strength of this dipolar source can be explained if we assume that: (a) the later activity of the first perirolandic dipole can represent the inhibitory phase of a "primary response"; (b) two different clusters of cells generate the opposite activities of the tangential perirolandic dipole. An additional finding in our model was that two different perirolandic dipoles contribute to the centro-parietal N20 potential generation.

  20. Improved Transient Response Estimations in Predicting 40 Hz Auditory Steady-State Response Using Deconvolution Methods

    Directory of Open Access Journals (Sweden)

    Xiaodan Tan

    2017-12-01

    Full Text Available The auditory steady-state response (ASSR is one of the main approaches in clinic for health screening and frequency-specific hearing assessment. However, its generation mechanism is still of much controversy. In the present study, the linear superposition hypothesis for the generation of ASSRs was investigated by comparing the relationships between the classical 40 Hz ASSR and three synthetic ASSRs obtained from three different templates for transient auditory evoked potential (AEP. These three AEPs are the traditional AEP at 5 Hz and two 40 Hz AEPs derived from two deconvolution algorithms using stimulus sequences, i.e., continuous loop averaging deconvolution (CLAD and multi-rate steady-state average deconvolution (MSAD. CLAD requires irregular inter-stimulus intervals (ISIs in the sequence while MSAD uses the same ISIs but evenly-spaced stimulus sequences which mimics the classical 40 Hz ASSR. It has been reported that these reconstructed templates show similar patterns but significant difference in morphology and distinct frequency characteristics in synthetic ASSRs. The prediction accuracies of ASSR using these templates show significant differences (p < 0.05 in 45.95, 36.28, and 10.84% of total time points within four cycles of ASSR for the traditional, CLAD, and MSAD templates, respectively, as compared with the classical 40 Hz ASSR, and the ASSR synthesized from the MSAD transient AEP suggests the best similarity. And such a similarity is also demonstrated at individuals only in MSAD showing no statistically significant difference (Hotelling's T2 test, T2 = 6.96, F = 0.80, p = 0.592 as compared with the classical 40 Hz ASSR. The present results indicate that both stimulation rate and sequencing factor (ISI variation affect transient AEP reconstructions from steady-state stimulation protocols. Furthermore, both auditory brainstem response (ABR and middle latency response (MLR are observed in contributing to the composition of ASSR but

  1. Laser-induced incandescence measurements in a fired diesel engine at 3 kHz

    Science.gov (United States)

    Boxx, I. G.; Heinold, O.; Geigle, K. P.

    2015-01-01

    Laser-induced incandescence (LII) was performed at 3 kHz in an optically accessible cylinder of a fired diesel engine using a commercially available diode-pumped solid-state laser and an intensified CMOS camera. The resulting images, acquired every 3° of crank angle, enabled the spatiotemporal tracking of soot structures during the expansion/exhaust stroke of the engine cycle. The image sequences demonstrate that soot tends to form in thin sheets that propagate and interact with the in-cylinder flow. These sheets tend to align parallel to the central axis of the cylinder and are frequently wrapped into conical spirals by aerodynamic swirl. Most of the soot is observed well away from the cylinder walls. Quantitative soot measurements were beyond the scope of this study but the results demonstrate the practical utility of using kHz-rate LII to acquire ensemble-averaged statistical data with high crank angle resolution over a complete engine cycle. Based on semi-quantitative measures of soot distribution, it was possible to identify soot dynamics related to incomplete charge exchange. This study shows that long-duration, multi-kHz acquisition rate LII measurements are viable in a fired diesel engine with currently available laser and camera technology, albeit only in the expansion and exhaust phase of the cycle at present. Furthermore, such measurements yield useful insight into soot dynamics and therefore constitute an important new tool for the development and optimization of diesel engine technology.

  2. First demonstration of laser engagement of 1-Hz-injected flying pellets and neutron generation

    Science.gov (United States)

    Komeda, Osamu; Nishimura, Yasuhiko; Mori, Yoshitaka; Hanayama, Ryohei; Ishii, Katsuhiro; Nakayama, Suisei; Kitagawa, Yoneyoshi; Sekine, Takashi; Sato, Nakahiro; Kurita, Takashi; Kawashima, Toshiyuki; Kan, Hirofumi; Nakamura, Naoki; Kondo, Takuya; Fujine, Manabu; Azuma, Hirozumi; Motohiro, Tomoyoshi; Hioki, Tatsumi; Kakeno, Mitsutaka; Sunahara, Atsushi; Sentoku, Yasuhiko; Miura, Eisuke

    2013-01-01

    Pellet injection and repetitive laser illumination are key technologies for realizing inertial fusion energy. Numerous studies have been conducted on target suppliers, injectors, and tracking systems for flying pellet engagement. Here we for the first time demonstrate the pellet injection, counter laser beams' engagement and neutron generation. Deuterated polystyrene (CD) bead pellets, after free-falling for a distance of 18 cm at 1 Hz, are successfully engaged by two counter laser beams from a diode-pumped, ultra-intense laser HAMA. The laser energy, pulse duration, wavelength, and the intensity are 0.63 J per beam, 104 fs, and 811 nm, 4.7 × 1018 W/cm2, respectively. The irradiated pellets produce D(d,n)3He-reacted neutrons with a maximum yield of 9.5 × 104/4π sr/shot. Moreover, the laser is found out to bore a straight channel with 10 μm-diameter through the 1-mm-diameter beads. The results indicate potentially useful technologies and findings for the next step in realizing inertial fusion energy. PMID:24008696

  3. Polypyrrole Actuators Working at 2 to 30 Hz

    DEFF Research Database (Denmark)

    Skaarup, Steen; Bay, Lasse; West, Keld

    2007-01-01

    “Soft actuators” based on the conducting polymer polypyrrole (PPy) may be especially suitable for use in combination with human limbs. A research project under the European Union Quality of Life program (DRIFTS, Dynamically Responsive Intervention for Tremor Suppression, http://www.gerontech.org.......“Soft actuators” based on the conducting polymer polypyrrole (PPy) may be especially suitable for use in combination with human limbs. A research project under the European Union Quality of Life program (DRIFTS, Dynamically Responsive Intervention for Tremor Suppression, http......://www.gerontech.org.il/drifts/) focuses on the development of practical tremor suppression orthoses prototypes [1]. One of the choices of actuation mechanism is to use conducting polymers. The main challenge is to provide significant forces at the frequencies relevant to tremor in upper limbs: 2-16 Hz. Forces in the range of 0.1-1 kg......, and 0.32 mm at 15 Hz for the 1 kg limit. The required mass of the actuator itself at 15 Hz is ~100 mg. The results indicate the feasibility of using PPy actuators for tremor suppression....

  4. Comparative study of ipsilesional and contralesional repetitive transcranial magnetic stimulations for acute infarction.

    Science.gov (United States)

    Watanabe, Kosuke; Kudo, Yosuke; Sugawara, Eriko; Nakamizo, Tomoki; Amari, Kazumitsu; Takahashi, Koji; Tanaka, Osamu; Endo, Miho; Hayakawa, Yuko; Johkura, Ken

    2018-01-15

    Repetitive transcranial magnetic stimulation (rTMS) is reported to improve chronic post-stoke hemiparesis. However, application of rTMS during the acute phase of post-stroke has not fully been investigated. We investigated the safety and the efficacy of intermittent theta-burst stimulation (iTBS) of the affected motor cortex and 1-Hz stimulation of the unaffected hemisphere during the acute phase in patients with hemiparesis due to capsular infarction. Twenty one patients who met the study criteria were randomly assigned to receive, starting within 7days after stroke onset and for a period of 10days, iTBS of the affected motor cortex hand area (n=8), 1-Hz stimulation of the unaffected motor cortex hand area (n=7), or sham stimulation (n=6). Upper limb motor function was evaluated before rTMS and 12weeks after onset of the stroke. Evaluation was based on the Fugl-Meyer Assessment (FMA), Stroke Impairment Assessment Set (SIAS), Modified Ashworth Scale (MAS), grip strength, and motor evoked potential (MEP) amplitude in the first dorsal interosseous (FDI) muscle. Both iTBS applied to the affected motor cortex hand area and 1-Hz stimulation applied to the unaffected motor cortex hand area enhanced motor recovery. In comparison to sham stimulation, iTBS increased the SIAS finger-function test score, and 1-Hz stimulation decreased the MAS wrist and finger score. Ipsilesional iTBS and contralesional 1-Hz stimulation applied during the acute phase of stroke have different effects: ipsilesional iTBS improves movement of the affected limb, whereas contralesional 1-Hz stimulation reduces spasticity of the affected limb. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Upgrading a high-throughput spectrometer for high-frequency (<400 kHz) measurements

    Science.gov (United States)

    Nishizawa, T.; Nornberg, M. D.; Den Hartog, D. J.; Craig, D.

    2016-11-01

    The upgraded spectrometer used for charge exchange recombination spectroscopy on the Madison Symmetric Torus resolves emission fluctuations up to 400 kHz. The transimpedance amplifier's cutoff frequency was increased based upon simulations comparing the change in the measured photon counts for time-dynamic signals. We modeled each signal-processing stage of the diagnostic and scanned the filtering frequency to quantify the uncertainty in the photon counting rate. This modeling showed that uncertainties can be calculated based on assuming each amplification stage is a Poisson process and by calibrating the photon counting rate with a DC light source to address additional variation.

  6. Upgrading a high-throughput spectrometer for high-frequency (<400 kHz) measurements

    International Nuclear Information System (INIS)

    Nishizawa, T.; Nornberg, M. D.; Den Hartog, D. J.; Craig, D.

    2016-01-01

    The upgraded spectrometer used for charge exchange recombination spectroscopy on the Madison Symmetric Torus resolves emission fluctuations up to 400 kHz. The transimpedance amplifier’s cutoff frequency was increased based upon simulations comparing the change in the measured photon counts for time-dynamic signals. We modeled each signal-processing stage of the diagnostic and scanned the filtering frequency to quantify the uncertainty in the photon counting rate. This modeling showed that uncertainties can be calculated based on assuming each amplification stage is a Poisson process and by calibrating the photon counting rate with a DC light source to address additional variation.

  7. Upgrading a high-throughput spectrometer for high-frequency (<400 kHz) measurements

    Energy Technology Data Exchange (ETDEWEB)

    Nishizawa, T., E-mail: nishizawa@wisc.edu; Nornberg, M. D.; Den Hartog, D. J. [University of Wisconsin–Madison, Madison, Wisconsin 53706 (United States); Craig, D. [Wheaton College, Wheaton, Illinois 60187 (United States)

    2016-11-15

    The upgraded spectrometer used for charge exchange recombination spectroscopy on the Madison Symmetric Torus resolves emission fluctuations up to 400 kHz. The transimpedance amplifier’s cutoff frequency was increased based upon simulations comparing the change in the measured photon counts for time-dynamic signals. We modeled each signal-processing stage of the diagnostic and scanned the filtering frequency to quantify the uncertainty in the photon counting rate. This modeling showed that uncertainties can be calculated based on assuming each amplification stage is a Poisson process and by calibrating the photon counting rate with a DC light source to address additional variation.

  8. Combining near-infrared spectroscopy with electroencephalography and repetitive transcranial magnetic stimulation

    Science.gov (United States)

    Näsi, Tiina; Kotilahti, Kalle; Mäki, Hanna; Nissilä, Ilkka; Meriläinen, Pekka

    2009-07-01

    The objective of the study was to assess the usability of a near-infrared spectroscopy (NIRS) device in multimodal measurements. We combined NIRS with electroencephalography (EEG) to record hemodynamic responses and evoked potentials simultaneously, and with transcranial magnetic stimulation (TMS) to investigate hemodynamic responses to repetitive TMS (rTMS). Hemodynamic responses and visual evoked potentials (VEPs) to 3, 6, and 12 s stimuli consisting of pattern-reversing checkerboards were successfully recorded in the NIRS/EEG measurement, and ipsi- and contralateral hemodynamic responses to 0.5, 1, and 2 Hz rTMS in the NIRS/TMS measurement. In the NIRS/EEG measurements, the amplitudes of the hemodynamic responses increased from 3- to 6-s stimulus, but not from 6- to 12-s stimulus, and the VEPs showed peaks N75, P100, and N135. In the NIRS/TMS measurements, the 2-Hz stimulus produced the strongest hemodynamic responses compared to the 0.5- and 1-Hz stimuli. In two subjects oxyhemoglobin concentration decreased and in one increased as a consequence of the 2-Hz rTMS. To locate the origin of the measured NIRS responses, methods have to be developed to investigate TMS-induced scalp muscle contractions. In the future, multimodal measurements may prove useful in monitoring or treating diseases such as stroke or Alzheimer's disease.

  9. Effect of Intermediate-Frequency Repetitive Transcranial Magnetic Stimulation on Recovery following Traumatic Brain Injury in Rats

    Directory of Open Access Journals (Sweden)

    Leticia Verdugo-Diaz

    2017-01-01

    Full Text Available Traumatic brain injury (TBI represents a significant public health concern and has been associated with high rates of morbidity and mortality. Although several research groups have proposed the use of repetitive transcranial magnetic stimulation (rTMS to enhance neuroprotection and recovery in patients with TBI, few studies have obtained sufficient evidence regarding its effects in this population. Therefore, we aimed to analyze the effect of intermediate-frequency rTMS (2 Hz on behavioral and histological recovery following TBI in rats. Male Wistar rats were divided into six groups: three groups without TBI (no manipulation, movement restriction plus sham rTMS, and movement restriction plus rTMS and three groups subjected to TBI (TBI only, TBI plus movement restriction and sham rTMS, and TBI plus movement restriction and rTMS. The movement restriction groups were included so that rTMS could be applied without anesthesia. Our results indicate that the restriction of movement and sham rTMS per se promotes recovery, as measured using a neurobehavioral scale, although rTMS was associated with faster and superior recovery. We also observed that TBI caused alterations in the CA1 and CA3 subregions of the hippocampus, which are partly restored by movement restriction and rTMS. Our findings indicated that movement restriction prevents damage caused by TBI and that intermediate-frequency rTMS promotes behavioral and histologic recovery after TBI.

  10. Impact of Repetitive Transcranial Magnetic Stimulation (rTMS on Brain Functional Marker of Auditory Hallucinations in Schizophrenia Patients

    Directory of Open Access Journals (Sweden)

    Sonia Dollfus

    2013-04-01

    Full Text Available Several cross-sectional functional Magnetic Resonance Imaging (fMRI studies reported a negative correlation between auditory verbal hallucination (AVH severity and amplitude of the activations during language tasks. The present study assessed the time course of this correlation and its possible structural underpinnings by combining structural, functional MRI and repetitive Transcranial Magnetic Stimulation (rTMS. Methods: Nine schizophrenia patients with AVH (evaluated with the Auditory Hallucination Rating scale; AHRS and nine healthy participants underwent two sessions of an fMRI speech listening paradigm. Meanwhile, patients received high frequency (20 Hz rTMS. Results: Before rTMS, activations were negatively correlated with AHRS in a left posterior superior temporal sulcus (pSTS cluster, considered henceforward as a functional region of interest (fROI. After rTMS, activations in this fROI no longer correlated with AHRS. This decoupling was explained by a significant decrease of AHRS scores after rTMS that contrasted with a relative stability of cerebral activations. A voxel-based-morphometry analysis evidenced a cluster of the left pSTS where grey matter volume negatively correlated with AHRS before rTMS and positively correlated with activations in the fROI at both sessions. Conclusion: rTMS decreases the severity of AVH leading to modify the functional correlate of AVH underlain by grey matter abnormalities.

  11. Fusion neutron generation by high-repetitive target injection

    International Nuclear Information System (INIS)

    Kitagawa, Yoneyoshi

    2015-01-01

    Pellet injection and repetitive laser illumination are key technologies for realizing inertial fusion energy. The Graduate School for the Creation of New Photonics Industries, Hamamatsu Photonics K. K. and Toyota Motor Corporation demonstrate the pellet injection, counter laser beams' engagement and neutron generation. Deuterated polystyrene (CD) bead pellets, after free-falling for a distance of 18 cm at 1 Hz, are successfully engaged by two counter laser beams from a diode-pumped, ultra-intense laser HAMA. The laser energy, pulse duration, wavelength and the intensity are 0.63 J per beam, 104 fs, 811 nm and 4.7 x 10 18 W/cm 2 , respectively. The irradiated pellets produce D (D, n) 3 He-reacted neutrons with a maximum yield of 9.5 x 10 4 /4π sr/shot. A straight channel with 10 μm-diameter is found through the beads. The pellet size is 1 mm. The results indicate potentially useful technologies for the next step in realizing inertial fusion energy. The results are reviewed as well as some oversea activities. (author)

  12. Improved discrimination of visual stimuli following repetitive transcranial magnetic stimulation.

    Directory of Open Access Journals (Sweden)

    Michael L Waterston

    Full Text Available BACKGROUND: Repetitive transcranial magnetic stimulation (rTMS at certain frequencies increases thresholds for motor-evoked potentials and phosphenes following stimulation of cortex. Consequently rTMS is often assumed to introduce a "virtual lesion" in stimulated brain regions, with correspondingly diminished behavioral performance. METHODOLOGY/PRINCIPAL FINDINGS: Here we investigated the effects of rTMS to visual cortex on subjects' ability to perform visual psychophysical tasks. Contrary to expectations of a visual deficit, we find that rTMS often improves the discrimination of visual features. For coarse orientation tasks, discrimination of a static stimulus improved consistently following theta-burst stimulation of the occipital lobe. Using a reaction-time task, we found that these improvements occurred throughout the visual field and lasted beyond one hour post-rTMS. Low-frequency (1 Hz stimulation yielded similar improvements. In contrast, we did not find consistent effects of rTMS on performance in a fine orientation discrimination task. CONCLUSIONS/SIGNIFICANCE: Overall our results suggest that rTMS generally improves or has no effect on visual acuity, with the nature of the effect depending on the type of stimulation and the task. We interpret our results in the context of an ideal-observer model of visual perception.

  13. Repetitive transcranial magnetic stimulator with controllable pulse parameters

    Science.gov (United States)

    Peterchev, Angel V.; Murphy, David L.; Lisanby, Sarah H.

    2011-06-01

    The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10-310 µs and positive/negative phase amplitude ratio of 1-56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation up to 82% and 57% and decreases coil heating up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications and could lead to clinical applications with potentially enhanced potency.

  14. Left prefrontal repetitive transcranial magnetic stimulation in schizophrenia.

    Science.gov (United States)

    Holi, Matti M; Eronen, Markku; Toivonen, Kari; Toivonen, Päivi; Marttunen, Mauri; Naukkarinen, Hannu

    2004-01-01

    In a double-blind, controlled study, we examined the therapeutic effects of high-frequency left prefrontal repetitive transcranial magnetic stimulation (rTMS) on schizophrenia symptoms. A total of 22 chronic hospitalized schizophrenia patients were randomly assigned to 2 weeks (10 sessions) of real or sham rTMS. rTMS was given with the following parameters: 20 trains of 5-second 10-Hz stimulation at 100 percent motor threshold, 30 seconds apart. Effects on positive and negative symptoms, self-reported symptoms, rough neuropsychological functioning, and hormones were assessed. Although there was a significant improvement in both groups in most of the symptom measures, no real differences were found between the groups. A decrease of more than 20 percent in the total PANSS score was found in 7 control subjects but only 1 subject from the real rTMS group. There was no change in hormone levels or neuropsychological functioning, measured by the MMSE, in either group. Left prefrontal rTMS (with the used parameters) seems to produce a significant nonspecific effect of the treatment procedure but no therapeutic effect in the most chronic and severely ill schizophrenia patients.

  15. Storytelling and Repetitive Narratives for Design Empathy

    DEFF Research Database (Denmark)

    Fritsch, Jonas; Judice, Andrea; Soini, Katja

    2007-01-01

    study. In this paper, we show how we attained an empathic understanding through storytelling and aroused empathy to others using repetitive narratives in an experimental presentation bringing forth factual, reflective and experiential aspects of the user information. Taking as a starting point our...

  16. Matriculation Research Report: Course Repetition Data & Analysis.

    Science.gov (United States)

    Gerda, Joe

    Due to concerns that its policy on class repetition was not promoting student success, California's College of the Canyons (CoC) undertook a project to analyze student course-taking patterns and make recommendations to modify the policy. Existing college policy did not follow Section 58161 of the State Educational Code that allows colleges to…

  17. Reducing Repetitive Speech: Effects of Strategy Instruction.

    Science.gov (United States)

    Dipipi, Caroline M.; Jitendra, Asha K.; Miller, Judith A.

    2001-01-01

    This article describes an intervention with an 18-year-old young woman with mild mental retardation and a seizure disorder, which focused on her repetitive echolalic verbalizations. The intervention included time delay, differential reinforcement of other behaviors, and self-monitoring. Overall, the intervention was successful in facilitating…

  18. Neurobehavioural Correlates of Abnormal Repetitive Behaviour

    Directory of Open Access Journals (Sweden)

    R. A. Ford

    1991-01-01

    Full Text Available Conditions in which echolalia and echopraxia occur are reviewed, followed by an attempt to elicit possible mechanisms of these phenomena. A brief description of stereotypical and perseverative behaviour and obsessional phenomena is given. It is suggested that abnormal repetitive behaviour may occur partly as a result of central dopaminergic dysfunction.

  19. Verbal Repetitions and Echolalia in Alzheimer's Discourse

    Science.gov (United States)

    Da Cruz, Fernanda Miranda

    2010-01-01

    This article reports on an investigation of echolalic repetition in Alzheimer's disease (AD). A qualitative analysis of data from spontaneous conversations with MHI, a woman with AD, is presented. The data come from the DALI Corpus, a corpus of spontaneous conversations involving subjects with AD. This study argues that echolalic effects can be…

  20. Bystanders' Reactions to Witnessing Repetitive Abuse Experiences

    Science.gov (United States)

    Janson, Gregory R.; Carney, JoLynn V.; Hazler, Richard J.; Oh, Insoo

    2009-01-01

    The Impact of Event Scale-Revised (D. S. Weiss & C. R. Marmar, 1997) was used to obtain self-reported trauma levels from 587 young adults recalling childhood or adolescence experiences as witnesses to common forms of repetitive abuse defined as bullying. Mean participant scores were in a range suggesting potential need for clinical assessment…

  1. High-repetition intra-cavity source of Compton radiation

    International Nuclear Information System (INIS)

    Pogorelsky, I; Polyanskiy, M; Agustsson, R; Campese, T; Murokh, A; Ovodenko, A; Shaftan, T

    2014-01-01

    We report our progress in developing a high-power Compton source for a diversity of applications ranging from university-scale compact x-ray light sources and metrology tools for EUV lithography, to high-brilliance gamma-sources for nuclear analysis. Our conceptual approach lies in multiplying the source’s repetition rate and increasing its average brightness by placing the Compton interaction point inside the optical cavity of an active laser. We discuss considerations in its design, our simulations, and tests of the laser’s cavity that confirm the feasibility of the proposed concept. (paper)

  2. Microwave differential dilatometer measures 10 - 12 m, at 1 Hz

    Science.gov (United States)

    Aschero, G.; Mango, F.; Gizdulich, P.

    1996-12-01

    To check and measure the converse piezoelectric effect in bone samples, we had to detect displacements in the range of 1-100 pm with three kinds of restrictions: (1) the biological nature of the samples imposes severe limits in selecting a suitable device and method; (2) such a method has to take into account some clinical applications to which the experiment is devoted; (3) the piezoelectric behavior of bone samples is particularly interesting at low frequencies, around 1 Hz. For such reasons we modified an existing dilatometer based on a microwave differential spectrometer. A 14 GHz klystron, linearly modulated in frequency by a triangular 50 Hz voltage applied to the repeller, is connected, via magic T, to two identical cavities tunable around 14 GHz and whose resonance curves are recorded by crystal detectors. When one of the two cavities changes its height according to the length variations of the sample, its resonance frequency varies resulting in a shift of the resonant curve with respect to the resonance curve of the other cavity acting as reference. The comparison between the cavities' responses is performed by a pulse technique transforming the frequency shifts into time intervals, that are then converted into dc voltages. The differential character of this measurement avoids the need for the microwave source stabilization. The relative shift in frequency is measured with an accuracy better than 500 Hz. This accuracy allows us to measure displacements smaller than 7 nm in the cavity's height. After 2 h of warmup, thanks to the differential arrangement of the system, thermal or other drifts are not detectable within a lapse of time of 12 h. This feature allows coherent signal averaging over long periods. With a piezoelectric ceramic stack moving 100 pm in square wave fashion at 50 mHz we found that the signal to noise ratio was 20 dB after 1000 cycles of signal averaging, when our bandpass filter was tuned at 1 Hz. In conclusion, this system can detect

  3. Repetitive Solid Spherical Pellet Injection and Irradiation toward the Repetitive-mode Fast-Ignition Fusion miniReactor CANDY

    International Nuclear Information System (INIS)

    HANAYAMA, Ryohei; KOMEDA, Osamu; NISHIMURA, Yasuhiko; MORI, Yoshitaka; ISHII, Katsuhiro; NAKAYAMA, Suisei; OKIHARA, Shinichiro; FUJITA, Kazuhisa; SEKINE, Takashi; SATO, Nakahiro; KAWASHIMA, Toshiyuki; KAN, Hirofumi; KURITA, Takashi; NAKAMURA, Naoki; KONDO, Takuya; FUJINE, Manabu; AZUMA, Hirozumi; HIOKI, Tatsumi; KAKENO, Mitsutaka; MOTOHIRO, Tomoyoshi

    2016-01-01

    Pellet injection and repetitive laser illumination are key technologies for realizing inertial fusion energy [1-4]. Neutron generator using lasers also requires a repeating pellet target supplier. Here we present the first demonstration of target injection and neutron generation[5]. We injected more than 1300 spherical deuterated polystyrene(C 8 D 8 ) bead pellet targets during 23 minutes at 1 Hz(Fig. 1). After the pellet targets fell for a distance of 18 cm, we applied the synchronized laser-diode-pumped ultra-intense laser HAMA. The laser intensity at the focal point is 5 x 10 18 W/cm 2 , which is high enough to generate neutrons. As a result of the irradiation, we produced 2.45-MeV DD neutrons. Figure 2 shows the neutron time-of-flight signals detected by plastic scintillators coupled to photomultipliers. The neutron energy was calculated by the time-of-flight method. The maximum neutron yield was 9.5 x 10 4 /4π sr. The result is a step toward fusion power and also suggests possible industrial neutron sources. (paper)

  4. Relationship to carcinogenesis of repetitive low-dose radiation exposure

    International Nuclear Information System (INIS)

    Ootsuyama, Akira

    2016-01-01

    We studied the carcinogenic effects caused by repetitive irradiation at a low dose, which has received attention in recent years, and examined the experimental methods used to evaluate radiation-induced carcinogenesis. For this experiment, we selected a mouse with as few autochthonous cancers as possible. Skin cancer was selected as the target for analysis, because it is a rare cancer in mice. Beta-rays were selected as the radiation source. The advantage of using beta-rays is weaker penetration power into tissues, thus protecting organs, such as the digestive and hematogenous organs. The benefit of our experimental method is that only skin cancer requires monitoring, and it is possible to perform long-term experiments. The back skin of mice was exposed repetitively to beta-rays three times a week until the occurrence of cancer or death, and the dose per exposure ranged from 0.5 to 11.8 Gy. With the high-dose range (2.5-11.8 Gy), the latency period and carcinogenic rate were almost the same in each experimental group. When the dose was reduced to 1-1.5 Gy, the latency period increased, but the carcinogenic rate remained. When the dose was further reduced to 0.5 Gy, skin cancer never happened, even though we continued irradiation until death of the last mouse in this group. The lifespan of 0.5 Gy group mice was the same as that of the controls. We showed that the 0.5 Gy dose did not cause cancer, even in mice exposed repetitively throughout their life span, and thus refer to 0.5 Gy as the threshold-like dose. (author)

  5. Repetitive transcranial magnetic stimulation for hallucination in schizophrenia spectrum disorders A meta-analysis***

    Institute of Scientific and Technical Information of China (English)

    Yingli Zhang; Wei Liang; Shichang Yang; Ping Dai; Lijuan Shen; Changhong Wang

    2013-01-01

    OBJECTIVE: This study assessed the efficacy and tolerability of repetitive transcranial magnetic stimulation for treatment of auditory hal ucination of patients with schizophrenia spectrum disorders. DATA SOURCES: Online literature retrieval was conducted using PubMed, ISI Web of Science, EMBASE, Medline and Cochrane Central Register of Control ed Trials databases from January 1985 to May 2012. Key words were “transcranial magnetic stimulation”, “TMS”, “repetitive transcranial magnetic stimulation”, and “hal ucination”. STUDY SELECTION: Selected studies were randomized control ed trials assessing therapeutic ef-ficacy of repetitive transcranial magnetic stimulation for hal ucination in patients with schizophrenia spectrum disorders. Experimental intervention was low-frequency repetitive transcranial magnetic stimulation in left temporoparietal cortex for treatment of auditory hal ucination in schizophrenia spectrum disorders. Control groups received sham stimulation. MAIN OUTCOME MEASURES: The primary outcome was total scores of Auditory Hal ucinations Rating Scale, Auditory Hal ucination Subscale of Psychotic Symptom Rating Scale, Positive and Negative Symptom Scale-Auditory Hal ucination item, and Hal ucination Change Scale. Secondary outcomes included response rate, global mental state, adverse effects and cognitive function. RESULTS: Seventeen studies addressing repetitive transcranial magnetic stimulation for treatment of schizophrenia spectrum disorders were screened, with controls receiving sham stimulation. Al data were completely effective, involving 398 patients. Overal mean weighted effect size for repeti-tive transcranial magnetic stimulation versus sham stimulation was statistical y significant (MD =-0.42, 95%CI: -0.64 to -0.20, P = 0.000 2). Patients receiving repetitive transcranial magnetic stimulation responded more frequently than sham stimulation (OR = 2.94, 95%CI: 1.39 to 6.24, P =0.005). No significant differences were found

  6. Prediction of the Maximum Number of Repetitions and Repetitions in Reserve From Barbell Velocity.

    Science.gov (United States)

    García-Ramos, Amador; Torrejón, Alejandro; Feriche, Belén; Morales-Artacho, Antonio J; Pérez-Castilla, Alejandro; Padial, Paulino; Haff, Guy Gregory

    2018-03-01

    To provide 2 general equations to estimate the maximum possible number of repetitions (XRM) from the mean velocity (MV) of the barbell and the MV associated with a given number of repetitions in reserve, as well as to determine the between-sessions reliability of the MV associated with each XRM. After determination of the bench-press 1-repetition maximum (1RM; 1.15 ± 0.21 kg/kg body mass), 21 men (age 23.0 ± 2.7 y, body mass 72.7 ± 8.3 kg, body height 1.77 ± 0.07 m) completed 4 sets of as many repetitions as possible against relative loads of 60%1RM, 70%1RM, 80%1RM, and 90%1RM over 2 separate sessions. The different loads were tested in a randomized order with 10 min of rest between them. All repetitions were performed at the maximum intended velocity. Both the general equation to predict the XRM from the fastest MV of the set (CV = 15.8-18.5%) and the general equation to predict MV associated with a given number of repetitions in reserve (CV = 14.6-28.8%) failed to provide data with acceptable between-subjects variability. However, a strong relationship (median r 2  = .984) and acceptable reliability (CV  .85) were observed between the fastest MV of the set and the XRM when considering individual data. These results indicate that generalized group equations are not acceptable methods for estimating the XRM-MV relationship or the number of repetitions in reserve. When attempting to estimate the XRM-MV relationship, one must use individualized relationships to objectively estimate the exact number of repetitions that can be performed in a training set.

  7. INFLUENCES OF 50HZ ELECTRIC FIELDS ON GROWTH AND MULTIPLICATION OF SOME MICROORGANISMS

    Directory of Open Access Journals (Sweden)

    VOINA A.

    2016-07-01

    Full Text Available By dielectric spectroscopy and specific microbiological techniques have been studied the development (cell multiplication of Saccharomyces cerevisiae and Aspergillus niger growing and multiplication - both on culture media with sucrose and on those with starch. The experimental results have been revealed that the biochemical processes of the studied biomasses have significant changes in certain frequencies in the range 1 - 160Hz, characteristic of the different species/metabolized carbon source, respectively species/ metabolized carbon source/ development phase. It has also been found that in the case of Saccharomyces cerevisiae, the electric field of 50 Hz up to 20V/cm reduces the length of the LAG time and increases the growth rate of intensive increasing phase. Cultures of Aspergillus niger on culture medium with sucrose are stimulated (increasing the spores production by approx. 50% and reducing the maturity time of 50Hz signals up to 15V/cm. Electric fields higher than 30 V/cm in all media and investigated cultures carry on to the growth reduction / multiplication - up to a complete inhibition of growth at approx. 50V/cm

  8. Effects of 60 Hz electric fields on operant and social stress behaviors of nonhuman primates

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, W.R.; Coelho, A.M. Jr.; Easley, S.P.; Lucas, J.H.; Moore, G.T.; Orr, J.L.; Smith, H.D.; Taylor, L.L.; Tuttle, M.L.

    1987-10-24

    The objective of this program is to investigate, using the baboon as a nonhuman primate surrogate for the human, possible behavioral effects associated with exposure to high intensity 60 Hz electric fields. Results from this program, along with information from experiments conducted elsewhere, will be used by the Department of Energy (DOE) to estimate and evaluate the likelihood of deleterious consequences resulting from exposure of humans to the electric fields associated with power transmission over high voltage lines. This research program consists of four major research projects, all of which have been successfully completed. The first project evaluated the potentially aversive character of exposure to 60 Hz electric fields by determining the threshold intensity that produces escape or avoidance responses. The second project estimated the threshold intensity for detection threshold was 12 kV/m; the range of means was 6 to 16 kV/m. The third project assessed, in separate experiments conducted at 30 and 60 kV/m, effects of chronic exposure to electric fields on the performance of two operant conditioning tasks, fixed ratio (FR), and differential reinforcement of low rate (DRL). In the same two experiments, the fourth project investigated, using the systematic quantitative observational sampling methods of primatology, the possible stress-inducing effects of chronic exposure to 60 Hz electric fields on the behavior of baboons living in small social groups. 131 refs., 87 figs., 123 tabs.

  9. Electroacupuncture most effectively elicits depressor and bradycardic responses at 1 Hz in humans.

    Science.gov (United States)

    Nakahara, Hidehiro; Kawada, Toru; Ueda, Shin-ya; Kawai, Eriko; Yamamoto, Hiromi; Sugimachi, Masaru; Miyamoto, Tadayoshi

    2016-02-01

    Acupuncture stimulation is known to act on the autonomic nervous system and elicits depressor and bradycardic effects. However, previous studies on humans did not conduct quantitative analyses on optimal acupuncture conditions such as the stimulation frequency and duration to achieve maximum depressor and bradycardic effects. The aim of the present study was to investigate the effects of varying stimulation frequencies of electroacupuncture on time-dependent changes in blood pressure and heart rate in humans. Twelve healthy volunteers participated in the study. An acupuncture needle was inserted at the Ximen acupoint (PC4 according to WHO nomenclature), located at the anterior aspect of the forearm. An electrical stimulation was delivered through the acupuncture needle at an intensity of 1 V, pulse width of 5 ms, and stimulation frequencies of 0.5, 1, 5, and 10 Hz in a random order. The duration of electroacupuncture was 6 min, during which blood pressure and heart rate responses were monitored. Group-averaged data indicated that 1-Hz electroacupuncture decreased blood pressure and heart rate. Blood pressure was significantly decreased from the prestimulation baseline value of 86.6 ± 2.9 to 81.4 ± 2.3 mmHg during 4-6 min of 1-Hz electroacupuncture (mean ± SE, P < 0.01). Heart rate was also significantly decreased (from 66.2 ± 2.0 to 62.7 ± 1.7 beats/min, P < 0.01). These results provide fundamental evidence that bradycardiac and depressor responses are effectively produced by electrical acupuncture in humans.

  10. Repetitive plasma loads typical for ITER Type-I ELMS; simulation in QSPA Kh-50

    International Nuclear Information System (INIS)

    Tereshin, V.I.; Bandura, A.N.; Byrka, O.V.; Chebotarev, V.V.; Garkusha, I.E.; Makhlaj, V.A.; Solyakov, D.G.; Tsarenko, A.V.; Landman, I.

    2005-01-01

    The power loads on current tokamaks associated with the Type I ELMs generally do not affect the lifetime of divertor elements. However, the ITER ELMs may lead to unacceptable lifetime; their loads are estimated as QELM(1-3) MJ/m 2 at t = 0.1-1 ms and the repetition frequency of an order of 1 Hz (∼ 400 ELMs during each ITER pulse). Such plasma energy loads expected for ITER ELMs are not achieved in existing tokamaks. Therefore powerful plasma accelerators are used at present for study of plasma-target interaction and for numerical models validation. Quasi-steady-state plasma accelerators (QSPA), which characterized by essentially longer duration of plasma stream generation in comparison with pulsed plasma guns, became especially attractive facilities for investigations of plasma-surface interaction in conditions of high heat loads simulating the ITER disruptions and ELMs. The paper presents experimental study of energy characteristics of the plasma streams generated with quasi-steady-state plasma accelerator QSPA Kh-50 and the main features of plasma interaction with material surfaces in dependence on plasma heat loads. The samples of pure sintered tungsten of EU trademark have been exposed to hydrogen plasma streams produced by the accelerator. To estimate the range of tolerable loads the effects of ELMs on the lifetime of plasma facing components have been experimentally simulated for large numbers of impacts with varying energy density. The experiments were performed with up to 450 pulses of the duration of 0.25 ms and the heat loads in the range of 0.5 - 1.2 MJ/m 2 . At this calorimetry (both at plasma stream and at the target surface), piezo-detectors as well as spectroscopy and interferometry measurements were applied to determine the impacting plasma parameters in different regimes of operation. A threshold character of morphological changes on the tungsten surface under the melting in respect to the pulses number is demonstrated. The number of initial

  11. If you negate, you may forget: negated repetitions impair memory compared with affirmative repetitions.

    Science.gov (United States)

    Mayo, Ruth; Schul, Yaacov; Rosenthal, Meytal

    2014-08-01

    One of the most robust laws of memory is that repeated activation improves memory. Our study shows that the nature of repetition matters. Specifically, although both negated repetition and affirmative repetition improve memory compared with no repetition, negated repetition hinders memory compared with affirmative repetition. After showing participants different entities, we asked them about features of these entities, leading to either "yes" or "no" responses. Our findings show that correctly negating an incorrect feature of an entity elicits an active forgetting effect compared with correctly affirming its true features. For example, after seeing someone drink a glass of white wine, answering "no" to "was it red wine?" may lead one to greater memory loss of the individual drinking wine at all compared with answering "yes" to "was it white wine?" We find this negation-induced forgetting effect in 4 experiments that differ in (a) the meaning given for the negation, (b) the type of stimuli (visual or verbal), and (c) the memory measure (recognition or free recall). We discuss possible underlying mechanisms and offer theoretical and applied implications of the negation-induced forgetting effect in relation to other known inhibition effects. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  12. Human exposure to a 60 Hz, 1800 micro tesla magnetic field: a neuro behavioral study

    International Nuclear Information System (INIS)

    Legros, A.; Corbacio, M.; Prato, F.S.; Thomas, A.W.; Beuter, A.; Goulet, D.; Lambrozo, J.; Souques, M.; Plante, M.

    2010-01-01

    The effects of time-varying magnetic fields (MF) on humans have been actively investigated for the past three decades. One important unanswered question that scientists continue to investigate is the potential for MF exposure to have acute effects on human biology. Different strategies have been used to tackle this question using various physiological, neuro-physiological and behavioral indicators. For example, researchers investigating electro-encephalography (EEG) have reported that Extremely Low Frequency (ELF, < 300 Hz) MF can increase the resting occipital alpha rhythm (8-12 Hz) [1, 2]. Interestingly, other studies have demonstrated that human motor behavior can be modulated by ELF MF exposure, reporting that such an exposure can reduce anteroposterior standing balance oscillations [3, 4] or decrease physiological tremor intensity [5]. However, the main limitation in this domain is the difficulty of reproducing the results. A possible reason for this is the large variety of experimental approaches employed. Therefore, the aim of this project is to investigate the effects of a 60 Hz, 1800 μT MF exposure on physiological (i.e. heart rate and peripheral blood perfusion), neuro-physiological (brain electrical activity), and behavioral (postural oscillations, voluntary motor functions, and physiological tremor) aspects in humans using a single experimental procedure.Though the results from this study suggest a subtle reduction of human standing balance as well as a subtle increase of physiological tremor amplitude with MF exposure, no effect appeared on other investigated parameters, suggesting that one hour of 60 Hz, 1800 μT MF exposure may modulate human involuntary motor control without being detected in the electrical activity of the brain. (authors)

  13. Target injection and engagement for neutron generation at 1 Hz

    International Nuclear Information System (INIS)

    Komeda, Osamu; Mori, Yoshitaka; Nishimura, Yasuhiko

    2013-01-01

    Target injection is a key technology to realizing inertial fusion energy. Here we present the first demonstration of target injection and neutron generation. We injected more than 600 spherical deuterated polystyrene (C 8 D 8 ) bead targets during 10 minutes at 1 Hz. After the targets fell for a distance of 18 cm, we applied the synchronized laser-diode-pumped ultra-intense laser HAMA and successfully generated neutrons repeatedly. The result is a step toward fusion power and also suggests possible industrial neutron sources. (author)

  14. 3600 digital phase detector with 100-kHz bandwidth

    International Nuclear Information System (INIS)

    Reid, D.W.; Riggin, D.; Fazio, M.V.; Biddle, R.S.; Patton, R.D.; Jackson, H.A.

    1981-01-01

    The general availability of digital circuit components with propagation delay times of a few nanoseconds makes a digital phase detector with good bandwidth feasible. Such a circuit has a distinct advantage over its analog counterpart because of its linearity over wide range of phase shift. A phase detector that is being built at Los Alamos National Laboratory for the Fusion Materials Irradiation Test (FMIT) project is described. The specifications are 100-kHz bandwidth, linearity of +- 1 0 over +- 180 0 of phase shift, and 0.66 0 resolution. To date, the circuit has achieved the bandwidth and resolution. The linearity is approximately +- 3 0 over +- 180 0 phase shift

  15. Multivariate prediction of spontaneous repetitive responses in ventricular myocardium exposed in vitro to simulated ischemic conditions.

    Science.gov (United States)

    Schiariti, M; Puddu, P E; Rouet, R

    1994-06-01

    Guinea-pig ventricular myocardium was partly exposed to normal Tyrode's superfusion and partly to altered conditions (using modified Tyrode's solution) set to simulate acute myocardial ischemia (PO2 80 +/- 10 mmHg; no glucose; pH 7.00 +/- 0.05; K+ 12 mM). Using a double-chamber tissue bath and standard microelectrode technique, the occurrence of spontaneous repetitive responses was investigated during simulated ischemia (occlusion) and after reperfusing the previously ischemic superfused tissue with normal Tyrode's solution (reperfusion). In 62 experiments (42 animals) the effects of: (1) duration of simulated ischemia (1321 +/- 435 s), (2) stimulation rate (1002 +/- 549 ms) and (3) number of successive simulated ischemic periods (occlusions) (1.58 +/- 0.92) on: (1) resting membrane potential, (2) action potential amplitude, (3) duration of 50 and 90% action potentials and (4) maximal upstroke velocity of action potential were studied. All variables were considered as gradients (delta) between normal and ischemic tissue. Both during occlusion and upon reperfusion, spontaneous repetitive responses were coded as single, couplets, salvos (three to nine and > 10) or total spontaneous repetitive responses (coded present when at least one of the above-mentioned types was seen). The incidence of total spontaneous repetitive responses was 31% (19/62) on occlusion and 85% (53/62) upon reperfusion. Cox's models (forced and stepwise) were used to predict multivariately the occurrence of arrhythmic events considered as both total spontaneous repetitive responses and as separate entities. These models were applicable since continuous monitoring of the experiments enabled exact timing of spontaneous repetitive response onset during both occlusion and reperfusion. In predicting reperfusion spontaneous repetitive responses, total spontaneous repetitive responses and blocks observed during the occlusion period were also considered. Total occlusion spontaneous repetitive responses

  16. A repetitive elements perspective in Polycomb epigenetics.

    Directory of Open Access Journals (Sweden)

    Valentina eCasa

    2012-10-01

    Full Text Available Repetitive elements comprise over two-thirds of the human genome. For a long time, these elements have received little attention since they were considered non functional. On the contrary, recent evidence indicates that they play central roles in genome integrity, gene expression and disease. Indeed, repeats display meiotic instability associated with disease and are located within common fragile sites, which are hotspots of chromosome rearrangements in tumors. Moreover, a variety of diseases have been associated with aberrant transcription of repetitive elements. Overall this indicates that appropriate regulation of repetitive elements’ activity is fundamental.Polycomb group (PcG proteins are epigenetic regulators that are essential for the normal development of multicellular organisms. Mammalian PcG proteins are involved in fundamental processes, such as cellular memory, cell proliferation, genomic imprinting, X-inactivation, and cancer development. PcG proteins can convey their activity through long-distance interactions also on different chromosomes. This indicates that the 3D organization of PcG proteins contributes significantly to their function. However, it is still unclear how these complex mechanisms are orchestrated and which role PcG proteins play in the multi-level organization of gene regulation. Intriguingly, the greatest proportion of Polycomb-mediated chromatin modifications is located in genomic repeats and it has been suggested that they could provide a binding platform for Polycomb proteins.Here, these lines of evidence are woven together to discuss how repetitive elements could contribute to chromatin organization in the 3D nuclear space.

  17. RUNNING THE AGS MMPS AT 5 HZ, 24 GEV

    International Nuclear Information System (INIS)

    MARNERIS, I.; ROSER, T.; RUGGIERO, A.G.; SANDBERG, J.

    2001-01-01

    The Brookhaven Alternating Gradient Synchrotron (AGS) is a strong focusing accelerator which is used to accelerate protons and various heavy ion species to an equivalent proton enera of 29 GeV. At this energy, the maximum intensity achieved is 7 x 10 13 protons per pulse. This corresponds to an average beam power of about 0.2 MW. Future programs in high-energy and neutron physics may require an upgrade of the AGS accelerator to an average beam power of around 4 MW, with proton beams at the energy of 24 GeV. This can be achieved with an increase of the beam intensity to 2 x 10 14 protons per pulse that requires a 1.5-GeV super-conducting linac [1], as a new injector and by upgrading the power supply system to allow cycling at 5 beam pulses per second. This paper describes the present mode of operation of the AGS main magnet power supply, the requirements for operation at 5 Hz and a proposed sorption of all modifications required to upgrade the AGS main magnet power supply to operate at 5 HZ, with proton beams at the energy of 24 GeV

  18. Measurement of 50 Hz magnetic fields in some Norwegian households

    International Nuclear Information System (INIS)

    Karlsen, J.; Johnsson, A.

    1987-01-01

    An examination of 50 Hz magnetic fields has been made in ten different Norwegian dwellings. The aim was to measure the general background level of the 50 Hz magnetic fields. The investigation followed a protocol also used in Swedish measurements, and direct comparisons are therefore possible. A portable, commercial coil instrument was used. In september 1986 and January 1987 the magnetic fields in living rooms, sleeping rooms, and kitchens were measured according to the standardized procedure. Current consumption and temperature at the time of the measurements were also recorded. A clear correlation was noted between the magnetic field values and the current consumption. The mean values of the magnetic fields in the living rooms, sleeping rooms and kitchens, were 12 nT, 11 nT and 160 nT, respectively. The living and sleeping room values can be regarded as very low, and they are much lower than corresponding Swedish values. The kitchen values in the two countries seem, however, to be of the same order of magnitude. The report discusses the need for additional measurements in Norwegian houses

  19. Modeling repetitive motions using structured light.

    Science.gov (United States)

    Xu, Yi; Aliaga, Daniel G

    2010-01-01

    Obtaining models of dynamic 3D objects is an important part of content generation for computer graphics. Numerous methods have been extended from static scenarios to model dynamic scenes. If the states or poses of the dynamic object repeat often during a sequence (but not necessarily periodically), we call such a repetitive motion. There are many objects, such as toys, machines, and humans, undergoing repetitive motions. Our key observation is that when a motion-state repeats, we can sample the scene under the same motion state again but using a different set of parameters; thus, providing more information of each motion state. This enables robustly acquiring dense 3D information difficult for objects with repetitive motions using only simple hardware. After the motion sequence, we group temporally disjoint observations of the same motion state together and produce a smooth space-time reconstruction of the scene. Effectively, the dynamic scene modeling problem is converted to a series of static scene reconstructions, which are easier to tackle. The varying sampling parameters can be, for example, structured-light patterns, illumination directions, and viewpoints resulting in different modeling techniques. Based on this observation, we present an image-based motion-state framework and demonstrate our paradigm using either a synchronized or an unsynchronized structured-light acquisition method.

  20. Repetitive Elements in Mycoplasma hyopneumoniae Transcriptional Regulation.

    Directory of Open Access Journals (Sweden)

    Amanda Malvessi Cattani

    Full Text Available Transcriptional regulation, a multiple-step process, is still poorly understood in the important pig pathogen Mycoplasma hyopneumoniae. Basic motifs like promoters and terminators have already been described, but no other cis-regulatory elements have been found. DNA repeat sequences have been shown to be an interesting potential source of cis-regulatory elements. In this work, a genome-wide search for tandem and palindromic repetitive elements was performed in the intergenic regions of all coding sequences from M. hyopneumoniae strain 7448. Computational analysis demonstrated the presence of 144 tandem repeats and 1,171 palindromic elements. The DNA repeat sequences were distributed within the 5' upstream regions of 86% of transcriptional units of M. hyopneumoniae strain 7448. Comparative analysis between distinct repetitive sequences found in related mycoplasma genomes demonstrated different percentages of conservation among pathogenic and nonpathogenic strains. qPCR assays revealed differential expression among genes showing variable numbers of repetitive elements. In addition, repeats found in 206 genes already described to be differentially regulated under different culture conditions of M. hyopneumoniae strain 232 showed almost 80% conservation in relation to M. hyopneumoniae strain 7448 repeats. Altogether, these findings suggest a potential regulatory role of tandem and palindromic DNA repeats in the M. hyopneumoniae transcriptional profile.

  1. Repetitive Elements in Mycoplasma hyopneumoniae Transcriptional Regulation.

    Science.gov (United States)

    Cattani, Amanda Malvessi; Siqueira, Franciele Maboni; Guedes, Rafael Lucas Muniz; Schrank, Irene Silveira

    2016-01-01

    Transcriptional regulation, a multiple-step process, is still poorly understood in the important pig pathogen Mycoplasma hyopneumoniae. Basic motifs like promoters and terminators have already been described, but no other cis-regulatory elements have been found. DNA repeat sequences have been shown to be an interesting potential source of cis-regulatory elements. In this work, a genome-wide search for tandem and palindromic repetitive elements was performed in the intergenic regions of all coding sequences from M. hyopneumoniae strain 7448. Computational analysis demonstrated the presence of 144 tandem repeats and 1,171 palindromic elements. The DNA repeat sequences were distributed within the 5' upstream regions of 86% of transcriptional units of M. hyopneumoniae strain 7448. Comparative analysis between distinct repetitive sequences found in related mycoplasma genomes demonstrated different percentages of conservation among pathogenic and nonpathogenic strains. qPCR assays revealed differential expression among genes showing variable numbers of repetitive elements. In addition, repeats found in 206 genes already described to be differentially regulated under different culture conditions of M. hyopneumoniae strain 232 showed almost 80% conservation in relation to M. hyopneumoniae strain 7448 repeats. Altogether, these findings suggest a potential regulatory role of tandem and palindromic DNA repeats in the M. hyopneumoniae transcriptional profile.

  2. Discovery of 1-5 Hz flaring at high luminosity in SAX J1808.4-3658

    Energy Technology Data Exchange (ETDEWEB)

    Bult, Peter; Van der Klis, Michiel, E-mail: p.m.bult@uva.nl [Anton Pannekoek Institute, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands)

    2014-07-10

    We report the discovery of a 1-5 Hz X-ray flaring phenomenon observed at >30 mCrab near peak luminosity in the 2008 and 2011 outbursts of the accreting millisecond X-ray pulsar SAX J1808.4-3658 in observations with the Rossi X-ray Timing Explorer. In each of the two outbursts this high luminosity flaring is seen for ∼3 continuous days and switches on and off on a timescale of 1-2 hr. The flaring can be seen directly in the light curve, where it shows sharp spikes of emission at quasi-regular separation. In the power spectrum it produces a broad noise component, which peaks at 1-5 Hz. The total 0.05-10 Hz variability has a fractional rms amplitude of 20%-45%, well in excess of the 8%-12% rms broadband noise usually seen in power spectra of SAX J1808.4-3658. We perform a detailed timing analysis of the flaring and study its relation to the 401 Hz pulsations. We find that the pulse amplitude varies proportionally with source flux through all phases of the flaring, indicating that the flaring is likely due to mass density variations created at or outside the magnetospheric boundary. We suggest that this 1-5 Hz flaring is a high mass accretion rate version of the 0.5-2 Hz flaring which is known to occur at low luminosity (<13 mCrab), late in the tail of outbursts of SAX J1808.4-3658. We propose the dead-disk instability, previously suggested as the mechanism for the 0.5-2 Hz flaring, as a likely mechanism for the high luminosity flaring reported here.

  3. Feature-based motion control for near-repetitive structures

    NARCIS (Netherlands)

    Best, de J.J.T.H.

    2011-01-01

    In many manufacturing processes, production steps are carried out on repetitive structures which consist of identical features placed in a repetitive pattern. In the production of these repetitive structures one or more consecutive steps are carried out on the features to create the final product.

  4. Lingual Kinematics during Rapid Syllable Repetition in Parkinson's Disease

    Science.gov (United States)

    Wong, Min Ney; Murdoch, Bruce E.; Whelan, Brooke-Mai

    2012-01-01

    Background: Rapid syllable repetition tasks are commonly used in the assessment of motor speech disorders. However, little is known about the articulatory kinematics during rapid syllable repetition in individuals with Parkinson's disease (PD). Aims: To investigate and compare lingual kinematics during rapid syllable repetition in dysarthric…

  5. Grade Repetition and Primary School Dropout in Uganda

    Science.gov (United States)

    Kabay, Sarah

    2016-01-01

    Research on education in low-income countries rarely focuses on grade repetition. When addressed, repetition is typically presented along with early school dropout as the "wasting" of educational resources. Simplifying grade repetition in this way often fails to recognize significant methodological concerns and also overlooks the unique…

  6. Design and testing of 45 kV, 50 kHz pulse power supply for dielectric barrier discharges

    Science.gov (United States)

    Sharma, Surender Kumar; Shyam, Anurag

    2016-10-01

    The design, construction, and testing of high frequency, high voltage pulse power supply are reported. The purpose of the power supply is to generate dielectric barrier discharges for industrial applications. The power supply is compact and has the advantage of low cost, over current protection, and convenient control for voltage and frequency selection. The power supply can generate high voltage pulses of up to 45 kV at the repetitive frequency range of 1 kHz-50 kHz with 1.2 kW input power. The output current of the power supply is limited to 500 mA. The pulse rise time and fall time are less than 2 μs and the pulse width is 2 μs. The power supply is short circuit proof and can withstand variable plasma load conditions. The power supply mainly consists of a half bridge series resonant converter to charge an intermediate capacitor, which discharges through a step-up transformer at high frequency to generate high voltage pulses. Semiconductor switches and amorphous cores are used for power modulation at higher frequencies. The power supply is tested with quartz tube dielectric barrier discharge load and worked stably. The design details and the performance of the power supply on no load and dielectric barrier discharge load are presented.

  7. Effects of 60 Hz electric fields on operant and social stress behavior of nonhuman primates. Quarterly technical progress report No. 20, September 28-December 20, 1985

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, W.R.

    1986-01-03

    This research program will evaluate the aversive character of exposure to 60 Hz electric fields by determining the threshold intensity which produces avoidance or escape responses, will estimate the threshold intensity for detection of 60 Hz electric fields, will assess effects of chronic exposure to 60 Hz electric fields on the performance of two operant conditioning tasks, fixed ratio and differential reinforcement of low rate responding, will investigate, using the systematic quantitative observational sampling methods of primatology, the possible stress-inducing effects of chronic exposure to 60 Hz electric fields on the behavior of baboons living in small social groups. In all experiments, the electric fields will be described, characterized, and controlled to account for recognized artifacts associated with high intensity 60 Hz electric fields and the health of all subjects will be described using the methods of primate veterinary medicine.

  8. Stimulus rate dependence of regional cerebral blood flow in human striate cortex, demonstrated by positron emission tomography

    International Nuclear Information System (INIS)

    Fox, P.T.; Raichle, M.E.

    1984-01-01

    The purpose of this investigation was to determine the relationship between the repetition rate of a simple sensory stimulus and regional cerebral blood flow (rCBF) in the human brain. Positron emission tomography (PET), using intravenously administered H 2 ( 15 )O as the diffusible blood-flow tracer, was employed for all CBF measurements. The use of H 2 ( 15 )O with PET allowed eight CBF measurements to be made in rapid sequence under multiple stimulation conditions without removing the subject from the tomograph. Nine normal volunteers each underwent a series of eight H2( 15 )O PET measurements of CBF. Initial and final scans were made during visual deprivation. The six intervening scans were made during visual activation with patterned-flash stimuli given in random order at 1.0-, 3.9-, 7.8-, 15.5-, 33.1-, and 61-Hz repetition rates. The region of greatest rCBF increase was determined. Within this region the rCBF was determined for every test condition and then expressed as the percentage change from the value of the initial unstimulated scan (rCBF% delta). In every subject, striate cortex rCBF% delta varied systematically with stimulus rate. Between 0 and 7.8 Hz, rCBF% delta was a linear function of stimulus repetition rate. The rCBF response peaked at 7.8 Hz and then declined. The rCBF% delta during visual stimulation was significantly greater than that during visual deprivation for every stimulus rate except 1.0 Hz. The anatomical localization of the region of peak rCBF response was determined for every subject to be the mesial occipital lobes along the calcarine fissure, primary visual cortex. Stimulus rate is a significant determinant of rCBF response in the visual cortex. Investigators of brain responses to selective activation procedures should be aware of the potential effects of stimulus rate on rCBF and other measurements of cerebral metabolism

  9. 1-Hz rTMS in the treatment of tinnitus: A sham-controlled, randomized multicenter trial.

    Science.gov (United States)

    Landgrebe, Michael; Hajak, Göran; Wolf, Stefan; Padberg, Frank; Klupp, Philipp; Fallgatter, Andreas J; Polak, Thomas; Höppner, Jacqueline; Haker, Rene; Cordes, Joachim; Klenzner, Thomas; Schönfeldt-Lecuona, Carlos; Kammer, Thomas; Graf, Erika; Koller, Michael; Kleinjung, Tobias; Lehner, Astrid; Schecklmann, Martin; Pöppl, Timm B; Kreuzer, Peter; Frank, Elmar; Langguth, Berthold

    Chronic tinnitus is a frequent, difficult to treat disease with high morbidity. This multicenter randomized, sham-controlled trial investigated the efficacy and safety of 1-Hz repetitive transcranial magnetic stimulation (rTMS) applied to the left temporal cortex in patients with chronic tinnitus. Tinnitus patients were randomized to receive 10 sessions of either real or sham 1-Hz-rTMS (2000 stimuli, 110% motor threshold) to the left temporal cortex. The primary outcome was the change in the sum score of the tinnitus questionnaire (TQ) of Goebel and Hiller from baseline to end of treatment. A total of 163 patients were enrolled in the study (real rTMS: 75; sham rTMS: 78). At day 12, the baseline mean of 43.1 TQ points in 71 patients assigned to real rTMS changed by -0.5 points; it changed by 0.5 points from a baseline of 42.1 in 75 patients randomized to sham rTMS (adjusted mean difference between groups: -1.0; 95.19% confidence interval: -3.2 to 1.2; p = 0.36). All secondary outcome measures including measures of depression and quality of life showed no significant differences either (p > 0.11). The number of participants with side-effects or adverse events did not differ between groups. Real 1-Hz-rTMS over the left temporal cortex was well tolerated but not superior compared with sham rTMS in improving tinnitus severity. These findings are in contrast to results from studies with smaller sample sizes and put the efficacy of this rTMS protocol for treatment of chronic tinnitus into question. Controlled Trials: http://www.isrctn.com/ISRCTN89848288. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. EV drivetrain inverter with V/HZ optimization

    Science.gov (United States)

    Gritter, David J.; O'Neil, Walter K.

    1986-01-01

    An inverter (34) which provides power to an A.C. machine (28) is controlled by a circuit (36) employing PWM control strategy whereby A.C. power is supplied to the machine at a preselectable frequency and preselectable voltage. This is accomplished by the technique of waveform notching in which the shapes of the notches are varied to determine the average energy content of the overall waveform. Through this arrangement, the operational efficiency of the A.C. machine is optimized. The control circuit includes a micro-computer which calculates optimized machine control data signals from various parametric inputs and during steady state load conditions, seeks a best V/HZ ratio to minimize battery current drawn (system losses) from a D.C. power source (32). In the preferred embodiment, the present invention is incorporated within an electric vehicle (10) employing a 144 VDC battery pack and a three-phase induction motor (18).

  11. Time-resolved spectrophotometry of HZ Herculis and DQ Herculis

    Energy Technology Data Exchange (ETDEWEB)

    Chanan, G.A.

    1978-01-01

    The image-tube scanner at the 3 m telescope at Lick Observatory was employed to study the spectral changes which occur during the pulse period in the optical pulsars HZ Herculis (1.2 s period) and DQ Herculis (71 s period). The data acquisition is described and the tools needed for the data analysis developed. Then the results of the observations are presented. In the case of HZ Herculis (Hercules X-1), observations cover the binary phase interval 0.18 to 0.26 and are concerned only with those pulsations that have been shown (Middleditch and Nelson, 1976) to originate at the x-ray heated surface of the Roche lobe filling companion of the neutron star. It is found that these pulsations are distributed throughout the optical continuum. Observations appear to agree at least qualitatively with the numerical results of other investigators. The observations of DQ Herculis cover one full binary cycle, excluding eclipse. Again pulsations are found distributed throughout the continuum with generally weak wavelength dependence. However, in this case the emission line lambda 4686 (He II) is more strongly modulated than the underlying continuum and exhibits an unexpected effect: The pulse phase increases rapidly with increasing wavelength across the line. This effect can be understood in terms of a simple model in which the pulsations arise at the inner edge of the accretion disk, excited by radiation which originates at hot spots on the white dwarf and which sweeps around the disk as the degenerate star rotates. A similar model in which the pulsations arise predominantly from the back half of the surface of the disk appears in several respects to be more promising. The evident relation between the phase shift across the emission line and the so-called 360/sup 0/ phase shift through eclipse, discovered by Warner et al. (1972) is also discussed.

  12. Time-resolved spectrophotometry of HZ Herculis and DQ Herculis

    International Nuclear Information System (INIS)

    Chanan, G.A.

    1978-01-01

    The image-tube scanner at the 3 m telescope at Lick Observatory was employed to study the spectral changes which occur during the pulse period in the optical pulsars HZ Herculis (1.2 s period) and DQ Herculis (71 s period). The data acquisition is described and the tools needed for the data analysis developed. Then the results of the observations are presented. In the case of HZ Herculis (Hercules X-1), observations cover the binary phase interval 0.18 to 0.26 and are concerned only with those pulsations that have been shown (Middleditch and Nelson, 1976) to originate at the x-ray heated surface of the Roche lobe filling companion of the neutron star. It is found that these pulsations are distributed throughout the optical continuum. Observations appear to agree at least qualitatively with the numerical results of other investigators. The observations of DQ Herculis cover one full binary cycle, excluding eclipse. Again pulsations are found distributed throughout the continuum with generally weak wavelength dependence. However, in this case the emission line lambda 4686 (He II) is more strongly modulated than the underlying continuum and exhibits an unexpected effect: The pulse phase increases rapidly with increasing wavelength across the line. This effect can be understood in terms of a simple model in which the pulsations arise at the inner edge of the accretion disk, excited by radiation which originates at hot spots on the white dwarf and which sweeps around the disk as the degenerate star rotates. A similar model in which the pulsations arise predominantly from the back half of the surface of the disk appears in several respects to be more promising. The evident relation between the phase shift across the emission line and the so-called 360 0 phase shift through eclipse, discovered by Warner et al. (1972) is also discussed

  13. Imbalance between abstract and concrete repetitive thinking modes in schizophrenia.

    Science.gov (United States)

    Maurage, Pierre; Philippot, Pierre; Grynberg, Delphine; Leleux, Dominique; Delatte, Benoît; Mangelinckx, Camille; Belge, Jan-Baptist; Constant, Eric

    2017-10-01

    Repetitive thoughts can be divided in two modes: abstract/analytic (decontextualized and dysfunctional) and concrete/experiential (problem-focused and adaptive). They constitute a transdiagnostic process involved in many psychopathological states but have received little attention in schizophrenia, as earlier studies only indexed increased ruminations (related to dysfunctional repetitive thoughts) without jointly exploring both modes. This study explored the two repetitive thinking modes, beyond ruminations, to determine their imbalance in schizophrenia. Thirty stabilized patients with schizophrenia and 30 matched controls completed the Repetitive Response Scale and the Mini Cambridge-Exeter Repetitive Thought Scale, both measuring repetitive thinking modes. Complementary measures related to schizophrenic symptomatology, depression and anxiety were also conducted. Compared to controls, patients with schizophrenia presented an imbalance between repetitive thinking modes, with increased abstract/analytic and reduced concrete/experiential thoughts, even after controlling for comorbidities. Schizophrenia is associated with stronger dysfunctional repetitive thoughts (i.e. abstract thinking) and impaired ability to efficiently use repetitive thinking for current problem-solving (i.e. concrete thinking). This imbalance confirms the double-faced nature of repetitive thinking modes, whose influence on schizophrenia's symptomatology should be further investigated. The present results also claim for evaluating these processes in clinical settings and for rehabilitating the balance between opposite repetitive thinking modes. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Repetitive thinking, executive functioning, and depressive mood in the elderly.

    Science.gov (United States)

    Philippot, Pierre; Agrigoroaei, Stefan

    2017-11-01

    Previous findings and the depressive-executive dysfunction hypothesis suggest that the established association between executive functioning and depression is accounted for by repetitive thinking. Investigating the association between executive functioning, repetitive thinking, and depressive mood, the present study empirically tested this mediational model in a sample of older adults, while focusing on both concrete and abstract repetitive thinking. This latter distinction is important given the potential protective role of concrete repetitive thinking, in contrast to the depletive effect of abstract repetitive thinking. A sample of 43 elderly volunteers, between 75 and 95 years of age, completed tests of executive functioning (the Stroop test, the Trail Making test, and the Fluency test), and questionnaires of repetitive thinking and depression. Positive correlations were observed between abstract repetitive thinking and depressive mood, and between concrete repetitive thinking and executive functioning; a negative correlation was observed between depressive mood and executive functioning. Further, mediational analysis evidenced that the relation between executive functioning and depressive mood was mediated by abstract repetitive thinking. The present data provide, for the first time, empirical support to the depressive-executive dysfunction hypothesis: the lack of executive resources would favor a mode of abstract repetitive thinking, which in turn would deplete mood. It suggests that clinical intervention targeting depression in the elderly should take into consideration repetitive thinking modes and the executive resources needed to disengage from rumination.

  15. Epilepsy provoked by television and video games: safety of 100-Hz screens.

    Science.gov (United States)

    Ricci, S; Vigevano, F; Manfredi, M; Kasteleijn-Nolst Trenité, D G

    1998-03-01

    Television (TV) and video games (VG) can provoke seizures in patients with photosensitive epilepsies. Flicker frequency is the most important factor in screen activation. We tested conventional 50-Hz versus 100-Hz monitors during TV viewing and VG playing in 30 photosensitive subjects, 23 of whom had a history of TV or VG seizures or both. Fifteen subjects' discharges were activated by 50-Hz TV; 17 by 50-Hz VG; and one by a 100-Hz screen. Thus, 100-Hz screens protect against screen activation.

  16. Transcription of repetitive DNA in Neurospora crassa

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, S K; Chaudhuri, R K

    1975-01-01

    Repeated DNA sequences of Neurospora crassa were isolated and characterized. Approximately 10 to 12 percent of N. crassa DNA sequence were repeated, of which 7.3 percent were found to be transcribed in mid-log phase of mycelial growth as measured by DNA:RNA hybridization. It is suggested that part of repetitive DNA transcripts in N. crassa were mitochondrial and part were nuclear DNA. Most of the nuclear repeated DNAs, however, code for rRNA and tRNA in N. crassa. (auth)

  17. rTMS of the dorsomedial prefrontal cortex for major depression: safety, tolerability, effectiveness, and outcome predictors for 10 Hz versus intermittent theta-burst stimulation.

    Science.gov (United States)

    Bakker, Nathan; Shahab, Saba; Giacobbe, Peter; Blumberger, Daniel M; Daskalakis, Zafiris J; Kennedy, Sidney H; Downar, Jonathan

    2015-01-01

    Conventional rTMS protocols for major depression commonly employ stimulation sessions lasting >30 min. However, recent studies have sought to improve costs, capacities, and outcomes by employing briefer protocols such as theta burst stimulation (iTBS). To compare safety, effectiveness, and outcome predictors for DMPFC-rTMS with 10 Hz (30 min) versus iTBS (6 min) protocols, in a large, naturalistic, retrospective case series. A chart review identified 185 patients with a medication-resistant major depressive episode who underwent 20-30 sessions of DMPFC-rTMS (10 Hz, n = 98; iTBS, n = 87) at a single Canadian clinic from 2011 to 2014. Clinical characteristics of 10 Hz and iTBS patients did not differ prior to treatment, aside from significantly higher age in iTBS patients. A total 7912 runs of DMPFC-rTMS (10 Hz, 4274; iTBS, 3638) were administered, without any seizures or other serious adverse events, and no significant differences in rates of premature discontinuation between groups. Dichotomous outcomes did not differ significantly between groups (Response/remission rates: Beck Depression Inventory-II: 10 Hz, 40.6%/29.2%; iTBS, 43.0%/31.0%. 17-item Hamilton Rating Scale for Depression: 10 Hz, 50.6%/38.5%; iTBS, 48.5%/27.9%). On continuous outcomes, there was no significant difference between groups in pre-treatment or post-treatment scores, or percent improvement on either measure. Mixed-effects modeling revealed no significant group-by-time interaction on either measure. Both 10 Hz and iTBS DMPFC-rTMS appear safe and tolerable at 120% resting motor threshold. The effectiveness of 6 min iTBS and 30 min 10 Hz protocols appears comparable. Randomized trials comparing 10 Hz to iTBS may be warranted. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Increased diagnostic contribution of heart rate variability at 0.1Hz paced breathing

    Czech Academy of Sciences Publication Activity Database

    Jurák, Pavel; Halámek, Josef; Somers, V. K.; Nykodým, J.; Leinveber, P.; Fráňa, P.; Eisenberger, M.; Kára, T.

    2005-01-01

    Roč. 4, č. 1 (2005), s. 95 [World Congress on Heart Disease - New Trends in Research, Diagnosis and Treatment /12./. 16.07.2005-19.07.2005, Vancouver] R&D Projects: GA ČR(CZ) GA102/05/0402 Keywords : paced breathing * HRV * ICD Subject RIV: FS - Medical Facilities ; Equipment

  19. Neurocognitive Effects of Repetitive Transcranial Magnetic Stimulation (rTMS in Adolescents with Major Depressive Disorder (MDD

    Directory of Open Access Journals (Sweden)

    Christopher A Wall

    2013-12-01

    Full Text Available Objectives: It is estimated that 30% to 40% of adolescents with major depressive disorder (MDD do not receive full benefit from current antidepressant therapies. Repetitive transcranial magnetic stimulation (rTMS is a novel therapy approved by the US FDA to treat adults with MDD. Research suggests rTMS is not associated with adverse neurocognitive effects in adult populations; however, there is no documentation of its neurocognitive effects in adolescents. This is a secondary post hoc analysis of neurocognitive outcome in adolescents who were treated with open label rTMS in two separate studies. Methods: Eighteen patients (mean age, 16.2 ± 1.1 years; 11 females, 7 males with MDD who failed to adequately respond to at least 1 antidepressant agent were enrolled in the studies. Fourteen patients completed all 30 rTMS treatments (5 days/week, 120% of motor threshold, 10 Hz, 3,000 stimulations per session applied to the left dorsolateral prefrontal cortex (L-DLPFC. Depression was rated using the Children’s Depression Rating Scale-Revised (CDRS-R. Neurocognitive evaluation was performed at baseline and after completion of 30 rTMS treatments with the Children’s Auditory Verbal Learning Test (CAVLT and Delis-Kaplan Executive Function System (DKEFS Trail Making Test. Results: Over the course of 30 rTMS treatments, adolescents showed a substantial decrease in depression severity and a statistically significant improvement in memory and delayed verbal recall. Other learning and memory indices and executive function remained intact. Neither participants nor their family members reported clinically meaningful changes in neurocognitive function. Conclusion: These preliminary findings suggest rTMS does not adversely impact neurocognitive functioning in adolescents and may provide subtle enhancement of verbal memory as measured by the CAVLT. Further controlled investigations are warranted to confirm and extend these findings.

  20. Effects of message repetition and negativity on credibility judgments and political attitudes

    NARCIS (Netherlands)

    Ernst, N.; Kühne, R.; Wirth, W.

    2017-01-01

    Research on the truth effect has demonstrated that statements are rated as more credible when they are repeatedly presented. However, current research indicates that there are limits to the truth effect and that too many repetitions can decrease message credibility. This study investigates whether

  1. Muscle activation strategies during strength training with heavy loading versus repetitions to failure

    DEFF Research Database (Denmark)

    Sundstrup, Emil; Jakobsen, Markus D; Andersen, Christoffer H

    2012-01-01

    . Electromyographic (EMG) amplitude and median power frequency (MPF) of specific shoulder and neck muscles was analysed and the Borg CR10 scale was used to rate perceived loading immediately after each set of exercise. During the failure set normalized EMG was significantly lower during the first repetition...

  2. Effectiveness of theta burst versus high-frequency repetitive transcranial magnetic stimulation in patients with depression (THREE-D): a randomised non-inferiority trial.

    Science.gov (United States)

    Blumberger, Daniel M; Vila-Rodriguez, Fidel; Thorpe, Kevin E; Feffer, Kfir; Noda, Yoshihiro; Giacobbe, Peter; Knyahnytska, Yuliya; Kennedy, Sidney H; Lam, Raymond W; Daskalakis, Zafiris J; Downar, Jonathan

    2018-04-28

    Treatment-resistant major depressive disorder is common; repetitive transcranial magnetic stimulation (rTMS) by use of high-frequency (10 Hz) left-side dorsolateral prefrontal cortex stimulation is an evidence-based treatment for this disorder. Intermittent theta burst stimulation (iTBS) is a newer form of rTMS that can be delivered in 3 min, versus 37·5 min for a standard 10 Hz treatment session. We aimed to establish the clinical effectiveness, safety, and tolerability of iTBS compared with standard 10 Hz rTMS in adults with treatment-resistant depression. In this randomised, multicentre, non-inferiority clinical trial, we recruited patients who were referred to specialty neurostimulation centres based at three Canadian university hospitals (Centre for Addiction and Mental Health and Toronto Western Hospital, Toronto, ON, and University of British Columbia Hospital, Vancouver, BC). Participants were aged 18-65 years, were diagnosed with a current treatment-resistant major depressive episode or could not tolerate at least two antidepressants in the current episode, were receiving stable antidepressant medication doses for at least 4 weeks before baseline, and had an HRSD-17 score of at least 18. Participants were randomly allocated (1:1) to treatment groups (10 Hz rTMS or iTBS) by use of a random permuted block method, with stratification by site and number of adequate trials in which the antidepressants were unsuccessful. Treatment was delivered open-label but investigators and outcome assessors were masked to treatment groups. Participants were treated with 10 Hz rTMS or iTBS to the left dorsolateral prefrontal cortex, administered on 5 days a week for 4-6 weeks. The primary outcome measure was change in 17-item Hamilton Rating Scale for Depression (HRSD-17) score, with a non-inferiority margin of 2·25 points. For the primary outcome measure, we did a per-protocol analysis of all participants who were randomly allocated to groups and who attained the primary

  3. Repetition Enhancement of Amygdala and Visual Cortex Functional Connectivity Reflects Nonconscious Memory for Negative Visual Stimuli.

    Science.gov (United States)

    Kark, Sarah M; Slotnick, Scott D; Kensinger, Elizabeth A

    2016-12-01

    Most studies using a recognition memory paradigm examine the neural processes that support the ability to consciously recognize past events. However, there can also be nonconscious influences from the prior study episode that reflect repetition suppression effects-a reduction in the magnitude of activity for repeated presentations of stimuli-that are revealed by comparing neural activity associated with forgotten items to correctly rejected novel items. The present fMRI study examined the effect of emotional valence (positive vs. negative) on repetition suppression effects. Using a standard recognition memory task, 24 participants viewed line drawings of previously studied negative, positive, and neutral photos intermixed with novel line drawings. For each item, participants made an old-new recognition judgment and a sure-unsure confidence rating. Collapsed across valence, repetition suppression effects were found in ventral occipital-temporal cortex and frontal regions. Activity levels in the majority of these regions were not modulated by valence. However, repetition enhancement of the amygdala and ventral occipital-temporal cortex functional connectivity reflected nonconscious memory for negative items. In this study, valence had little effect on activation patterns but had a larger effect on functional connectivity patterns that were markers of nonconscious memory. Beyond memory and emotion, these findings are relevant to other cognitive and social neuroscientists that utilize fMRI repetition effects to investigate perception, attention, social cognition, and other forms of learning and memory.

  4. Genomic Organization and Physical Mapping of Tandemly Arranged Repetitive DNAs in Sterlet (Acipenser ruthenus).

    Science.gov (United States)

    Biltueva, Larisa S; Prokopov, Dimitry Y; Makunin, Alexey I; Komissarov, Alexey S; Kudryavtseva, Anna V; Lemskaya, Natalya A; Vorobieva, Nadezhda V; Serdyukova, Natalia A; Romanenko, Svetlana A; Gladkikh, Olga L; Graphodatsky, Alexander S; Trifonov, Vladimir A

    2017-01-01

    Acipenseriformes represent a phylogenetically basal clade of ray-finned fish characterized by unusual genomic traits, including paleopolyploid states of extant genomes with high chromosome numbers and slow rates of molecular evolution. Despite a high interest in this fish group, only a limited number of studies have been accomplished on the isolation and characterization of repetitive DNA, karyotype standardization is not yet complete, and sex chromosomes are still to be identified. Here, we applied next-generation sequencing and cluster analysis to characterize major fractions of sterlet (Acipenser ruthenus) repetitive DNA. Using FISH, we mapped 16 tandemly arranged sequences on sterlet chromosomes and found them to be unevenly distributed in the genome with a tendency to cluster in particular regions. Some of the satellite DNAs might be used as specific markers to identify individual chromosomes and their paralogs, resulting in the unequivocal identification of at least 18 chromosome pairs. Our results provide an insight into the characteristic genomic distribution of the most common sterlet repetitive sequences. Biased accumulation of repetitive DNAs in particular chromosomes makes them especially interesting for further search for cryptic sex chromosomes. Future studies of these sequences in other acipenserid species will provide new perspectives regarding the evolution of repetitive DNA within the genomes of this fish order. © 2017 S. Karger AG, Basel.

  5. Test-retest reliability of pure-tone thresholds from 0.5 to 16 kHz using Sennheiser HDA 200 and Etymotic Research ER-2 earphones.

    Science.gov (United States)

    Schmuziger, Nicolas; Probst, Rudolf; Smurzynski, Jacek

    2004-04-01

    The purposes of the study were: (1) To evaluate the intrasession test-retest reliability of pure-tone thresholds measured in the 0.5-16 kHz frequency range for a group of otologically healthy subjects using Sennheiser HDA 200 circumaural and Etymotic Research ER-2 insert earphones and (2) to compare the data with existing criteria of significant threshold shifts related to ototoxicity and noise-induced hearing loss. Auditory thresholds in the frequency range from 0.5 to 6 kHz and in the extended high-frequency range from 8 to 16 kHz were measured in one ear of 138 otologically healthy subjects (77 women, 61 men; mean age, 24.4 yr; range, 12-51 yr) using HDA 200 and ER-2 earphones. For each subject, measurements of thresholds were obtained twice for both transducers during the same test session. For analysis, the extended high-frequency range from 8 to 16 kHz was subdivided into 8 to 12.5 and 14 to 16 kHz ranges. Data for each frequency and frequency range were analyzed separately. There were no significant differences in repeatability for the two transducer types for all frequency ranges. The intrasession variability increased slightly, but significantly, as frequency increased with the greatest amount of variability in the 14 to 16 kHz range. Analyzing each individual frequency, variability was increased particularly at 16 kHz. At each individual frequency and for both transducer types, intrasession test-retest repeatability from 0.5 to 6 kHz and 8 to 16 kHz was within 10 dB for >99% and >94% of measurements, respectively. The results indicated a false-positive rate of HDA 200. Repeatability was similar for both transducer types. Intrasession test-retest repeatability from 0.5 to 12.5 kHz at each individual frequency including the frequency range susceptible to noise-induced hearing loss was excellent for both transducers. Repeatability was slightly, but significantly poorer in the frequency range from 14 to 16 kHz compared with the frequency ranges from 0.5 to 6

  6. Effect of loading on unintentional lifting velocity declines during single sets of repetitions to failure during upper and lower extremity muscle actions.

    Science.gov (United States)

    Izquierdo, M; González-Badillo, J J; Häkkinen, K; Ibáñez, J; Kraemer, W J; Altadill, A; Eslava, J; Gorostiaga, E M

    2006-09-01

    The purpose of this study was to examine the effect of different loads on repetition speed during single sets of repetitions to failure in bench press and parallel squat. Thirty-six physical active men performed 1-repetition maximum in a bench press (1 RM (BP)) and half squat position (1 RM (HS)), and performed maximal power-output continuous repetition sets randomly every 10 days until failure with a submaximal load (60 %, 65 %, 70 %, and 75 % of 1RM, respectively) during bench press and parallel squat. Average velocity of each repetition was recorded by linking a rotary encoder to the end part of the bar. The values of 1 RM (BP) and 1 RM (HS) were 91 +/- 17 and 200 +/- 20 kg, respectively. The number of repetitions performed for a given percentage of 1RM was significantly higher (p bench press performance. Average repetition velocity decreased at a greater rate in bench press than in parallel squat. The significant reductions observed in the average repetition velocity (expressed as a percentage of the average velocity achieved during the initial repetition) were observed at higher percentage of the total number of repetitions performed in parallel squat (48 - 69 %) than in bench press (34 - 40 %) actions. The major finding in this study was that, for a given muscle action (bench press or parallel squat), the pattern of reduction in the relative average velocity achieved during each repetition and the relative number of repetitions performed was the same for all percentages of 1RM tested. However, relative average velocity decreased at a greater rate in bench press than in parallel squat performance. This would indicate that in bench press the significant reductions observed in the average repetition velocity occurred when the number of repetitions was over one third (34 %) of the total number of repetitions performed, whereas in parallel squat it was nearly one half (48 %). Conceptually, this would indicate that for a given exercise (bench press or squat) and

  7. Pull-production in repetitive remanufacturing

    Energy Technology Data Exchange (ETDEWEB)

    McCaskey, D.W. Jr.

    1992-09-01

    In the past, production activity control practices in most repetitive remanufacturing facilities resembled those used in intermittent production operations. These operations were characterized by large amounts of work-in-process (WIP), frequent work stoppages due to part shortages, excessive overtime, low product velocity, informal scheduling between dependent operations, low employee and management moral, and a lot of wasted time, material, labor, and space. Improvement in production activity control (PAC) methods for repetitive remanufactures has been hampered by uncertainty in: supply of incoming assets, configuration of assets, process times to refurbish assets, and yields in reclamation processes. collectively these uncertainties make shop floor operations seem uncontrollable. However, one United States Army depot has taken on the challenge. Through management supported, cross-functional teams, the Tooele Army Depot has designed and implemented pull-production systems for two of its major products, with several others to follow. This article presents a generalized version of Tooele`s pull-production system and highlights design characteristics which are specific to remanufacturing applications.

  8. Pull-production in repetitive remanufacturing

    Energy Technology Data Exchange (ETDEWEB)

    McCaskey, D.W. Jr.

    1992-09-01

    In the past, production activity control practices in most repetitive remanufacturing facilities resembled those used in intermittent production operations. These operations were characterized by large amounts of work-in-process (WIP), frequent work stoppages due to part shortages, excessive overtime, low product velocity, informal scheduling between dependent operations, low employee and management moral, and a lot of wasted time, material, labor, and space. Improvement in production activity control (PAC) methods for repetitive remanufactures has been hampered by uncertainty in: supply of incoming assets, configuration of assets, process times to refurbish assets, and yields in reclamation processes. collectively these uncertainties make shop floor operations seem uncontrollable. However, one United States Army depot has taken on the challenge. Through management supported, cross-functional teams, the Tooele Army Depot has designed and implemented pull-production systems for two of its major products, with several others to follow. This article presents a generalized version of Tooele's pull-production system and highlights design characteristics which are specific to remanufacturing applications.

  9. Prospects for Detecting Gravitational Waves at 5 Hz with Ground-Based Detectors

    Science.gov (United States)

    Yu, Hang; Martynov, Denis; Vitale, Salvatore; Evans, Matthew; Shoemaker, David; Barr, Bryan; Hammond, Giles; Hild, Stefan; Hough, James; Huttner, Sabina; Rowan, Sheila; Sorazu, Borja; Carbone, Ludovico; Freise, Andreas; Mow-Lowry, Conor; Dooley, Katherine L.; Fulda, Paul; Grote, Hartmut; Sigg, Daniel

    2018-04-01

    We propose an upgrade to Advanced LIGO (aLIGO), named LIGO-LF, that focuses on improving the sensitivity in the 5-30 Hz low-frequency band, and we explore the upgrade's astrophysical applications. We present a comprehensive study of the detector's technical noises and show that with technologies currently under development, such as interferometrically sensed seismometers and balanced-homodyne readout, LIGO-LF can reach the fundamental limits set by quantum and thermal noises down to 5 Hz. These technologies are also directly applicable to the future generation of detectors. We go on to consider this upgrade's implications for the astrophysical output of an aLIGO-like detector. A single LIGO-LF can detect mergers of stellar-mass black holes (BHs) out to a redshift of z ≃6 and would be sensitive to intermediate-mass black holes up to 2000 M⊙. The detection rate of merging BHs will increase by a factor of 18 compared to aLIGO. Additionally, for a given source the chirp mass and total mass can be constrained 2 times better than aLIGO and the effective spin 3-5 times better than aLIGO. Furthermore, LIGO-LF enables the localization of coalescing binary neutron stars with an uncertainty solid angle 10 times smaller than that of aLIGO at 30 Hz and 4 times smaller when the entire signal is used. LIGO-LF also significantly enhances the probability of detecting other astrophysical phenomena including the tidal excitation of neutron star r modes and the gravitational memory effects.

  10. Prospects for Detecting Gravitational Waves at 5 Hz with Ground-Based Detectors.

    Science.gov (United States)

    Yu, Hang; Martynov, Denis; Vitale, Salvatore; Evans, Matthew; Shoemaker, David; Barr, Bryan; Hammond, Giles; Hild, Stefan; Hough, James; Huttner, Sabina; Rowan, Sheila; Sorazu, Borja; Carbone, Ludovico; Freise, Andreas; Mow-Lowry, Conor; Dooley, Katherine L; Fulda, Paul; Grote, Hartmut; Sigg, Daniel

    2018-04-06

    We propose an upgrade to Advanced LIGO (aLIGO), named LIGO-LF, that focuses on improving the sensitivity in the 5-30 Hz low-frequency band, and we explore the upgrade's astrophysical applications. We present a comprehensive study of the detector's technical noises and show that with technologies currently under development, such as interferometrically sensed seismometers and balanced-homodyne readout, LIGO-LF can reach the fundamental limits set by quantum and thermal noises down to 5 Hz. These technologies are also directly applicable to the future generation of detectors. We go on to consider this upgrade's implications for the astrophysical output of an aLIGO-like detector. A single LIGO-LF can detect mergers of stellar-mass black holes (BHs) out to a redshift of z≃6 and would be sensitive to intermediate-mass black holes up to 2000  M_{⊙}. The detection rate of merging BHs will increase by a factor of 18 compared to aLIGO. Additionally, for a given source the chirp mass and total mass can be constrained 2 times better than aLIGO and the effective spin 3-5 times better than aLIGO. Furthermore, LIGO-LF enables the localization of coalescing binary neutron stars with an uncertainty solid angle 10 times smaller than that of aLIGO at 30 Hz and 4 times smaller when the entire signal is used. LIGO-LF also significantly enhances the probability of detecting other astrophysical phenomena including the tidal excitation of neutron star r modes and the gravitational memory effects.

  11. Effect of high-frequency repetitive transcranial magnetic stimulation on chronic central pain after mild traumatic brain injury: A pilot study.

    Science.gov (United States)

    Choi, Gyu-Sik; Kwak, Sang Gyu; Lee, Han Do; Chang, Min Cheol

    2018-02-28

    Central pain can occur following traumatic brain injury, leading to poor functional recovery, limitation of activities of daily living, and decreased quality of life. The aim of this study was to determine whether high-frequency (10 Hz) repetitive transcranial magnetic stimulation, applied over the primary motor cortex of the affected hemisphere, can be used to manage chronic central pain after mild traumatic brain injury. Prospective randomized feasibility study. Twelve patients with mild traumatic brain injury and chronic central pain were randomly assigned to transcranial magnetic stimulation (high-frequency stimulation, 10 sessions) or sham groups. Diffuse tensor tractography revealed partially injured spinothalamocortical tracts in all recruited patients. A numerical rating scale (NRS) was used to evaluate pain intensity during pre-treatment and immediately after the 5th transcranial magnetic stimulation session (post1), 10th transcranial magnetic stimulation session (post2), and 1 (post3), 2 (post4), and 4 weeks (post 5) after finishing treatment. Physical and mental health status were evaluated using the Short Form 36 Health Survey (SF-36), including physical and mental component scores (PCS, MCS). The NRS score of the repetitive transcranial magnetic stimulation group was significantly lower than the sham group score at all clinical evaluation time-points during and after transcranial magnetic stimulation sessions. The transcranial magnetic stimulation group's SF-36 PCS score was significantly higher at post2, post3, post4, and post5 compared with the sham group. High-frequency transcranial magnetic stimulation may be used to manage chronic central pain and improve quality of life in patients with mild traumatic brain injury. However, this is a pilot study and further research is needed.

  12. Effect of high-frequency repetitive transcranial magnetic stimulation on chronic central pain after mild traumatic brain injury: A pilot study

    Directory of Open Access Journals (Sweden)

    Gyu-sik Choi

    2018-01-01

    Full Text Available Objective: Central pain can occur following traumatic brain injury, leading to poor functional recovery, limitation of activities of daily living, and decreased quality of life. The aim of this study was to determine whether high-frequency (10 Hz repetitive transcranial magnetic stimulation, applied over the primary motor cortex of the affected hemisphere, can be used to manage chronic central pain after mild traumatic brain injury. Design: Prospective randomized feasibility study. Methods: Twelve patients with mild traumatic brain injury and chronic central pain were randomly assigned to transcranial magnetic stimulation (high-frequency stimulation, 10 sessions or sham groups. Diffuse tensor tractography revealed partially injured spinothalamocortical tracts in all recruited patients. A numerical rating scale (NRS was used to evaluate pain intensity during pre-treatment and immediately after the 5th transcranial magnetic stimulation session (post1, 10th transcranial magnetic stimulation session (post2, and 1 (post3, 2 (post4, and 4 weeks (post 5 after finishing treatment. Physical and mental health status were evaluated using the Short Form 36 Health Survey (SF-36, including physical and mental component scores (PCS, MCS. Results: The NRS score of the repetitive transcranial magnetic stimulation group was significantly lower than the sham group score at all clinical evaluation time-points during and after transcranial magnetic stimulation sessions. The transcranial magnetic stimulation group’s SF-36 PCS score was significantly higher at post2, post3, post4, and post5 compared with the sham group. Conclusion: High-frequency transcranial magnetic stimulation may be used to manage chronic central pain and improve quality of life in patients with mild traumatic brain injury. However, this is a pilot study and further research is needed.

  13. Selective near-UV ablation of subgingival dental calculus: measurement of removal rates

    Science.gov (United States)

    Schoenly, J. E.; Seka, W.; Rechmann, P.

    2010-02-01

    A noncontact profilometer (laser triangulation) was used to measure the removal rates of subgingival dental calculus irradiated with a frequency-doubled Ti:sapphire laser (60-ns pulse duration, 400-nm wavelength, 10-Hz repetition rate, 7-mJ pulse energy). Profilometer traces before and after irradiation were used to create a removal map with 4-μm axial and 15-μm transverse resolution. Twenty-three teeth (15 with calculus and 8 pristine) were irradiated at 90° and 45° under a cooling water spray with a super-Gaussian beam (~300-μm diameter). Subgingival calculus was selectively removed at 5.6 and 4.0 J/cm2 for 90° and 45°, respecetively, within a range of rates, between 2 to 9 μm/pulse. These ablation rates were constant during these exposures. For comparison, pristine cementum irradiated for 10 min at the same peak fluence and pulse repetition rate showed only craters, 15 to 50 μm deep, corresponding to an equivalent removal rate three orders of magnitude smaller than that obtained for calculus. Pristine enamel was not removed under the same irradiation conditions.

  14. Synergy Repetition Training versus Task Repetition Training in Acquiring New Skill.

    Science.gov (United States)

    Patel, Vrajeshri; Craig, Jamie; Schumacher, Michelle; Burns, Martin K; Florescu, Ionut; Vinjamuri, Ramana

    2017-01-01

    Traditionally, repetitive practice of a task is used to learn a new skill, exhibiting as immediately improved performance. Research suggests, however, that a more experience-based rather than exposure-based training protocol may allow for better transference of the skill to related tasks. In synergy-based motor control theory, fundamental motor skills, such as hand grasping, are represented with a synergy subspace that captures essential motor patterns. In this study, we propose that motor-skill learning through synergy-based mechanisms may provide advantages over traditional task repetition learning. A new task was designed to highlight the range of motion and dexterity of the human hand. Two separate training strategies were tested in healthy subjects: task repetition training and synergy training versus a control. All three groups showed improvements when retested on the same task. When tested on a similar, but different set of tasks, only the synergy group showed improvements in accuracy (9.27% increase) compared to the repetition (3.24% decline) and control (3.22% decline) groups. A kinematic analysis revealed that although joint angular peak velocities decreased, timing benefits stemmed from the initial feed-forward portion of the task (reaction time). Accuracy improvements may have derived from general improved coordination among the four involved fingers. These preliminary results warrant further investigation of synergy-based motor training in healthy individuals, as well as in individuals undergoing hand-based rehabilitative therapy.

  15. Relationship between redistribution on exercise thallium-201 scintigraphy and repetitive ventricular premature beats in patients with recent myocardial infarction

    International Nuclear Information System (INIS)

    Tsuji, H.; Iwasaka, T.; Sugiura, T.; Shimada, T.; Nakamori, H.; Kimura, Y.; Inada, M.

    1991-01-01

    The relationship between myocardial ischemia detected by exercise thallium-201 scintigraphy and repetitive ventricular premature beats (VPBs) during ambulatory monitoring was evaluated in 57 patients with recent myocardial infarction. Multivariate analysis was performed to obtain the relatively important factor related to repetitive VPBs with the use of the following variables: age, redistribution, left ventricular ejection fraction, serum potassium and magnesium concentration, QRS score, left ventricular aneurysm, and the number of diseased vessels. Thirty-five patients had redistribution, but only three of them had repetitive VPBs during exercise testing. The average heart rate before 79% of 398 episodes of repetitive VPBs during ambulatory monitoring was in the range of 56 to 70/min. These data indicate that most of repetitive VPBs during ambulatory monitoring were not provoked by exercise-induced acute myocardial ischemia. However, redistribution was found to be an important factor associated with repetitive VPBs. The electrical abnormality relating to a substrate characterized by chronic reversible ischemia may explain the association between redistribution and repetitive VPBs

  16. On the non-Poissonian repetition pattern of FRB121102

    Science.gov (United States)

    Oppermann, Niels; Yu, Hao-Ran; Pen, Ue-Li

    2018-04-01

    The Fast Radio Burst FRB121102 has been observed to repeat in an irregular fashion. Using published timing data of the observed bursts, we show that Poissonian statistics are not a good description of this random process. As an alternative, we suggest to describe the intervals between bursts with a Weibull distribution with a shape parameter smaller than one, which allows for the clustered nature of the bursts. We quantify the amount of clustering using the parameters of the Weibull distribution and discuss the consequences that it has for the detection probabilities of future observations and for the optimization of observing strategies. Allowing for this generalization, we find a mean repetition rate of r=5.7^{+3.0}_{-2.0} per day and index k=0.34^{+0.06}_{-0.05} for a correlation function ξ(t) = (t/t0)k - 1.

  17. Ohmic heating of peaches in the wide range of frequencies (50 Hz to 1 MHz).

    Science.gov (United States)

    Shynkaryk, Mykola V; Ji, Taehyun; Alvarez, Valente B; Sastry, Sudhir K

    2010-09-01

    The ohmic heating (OH) rate of peaches was studied at fixed electric field strength of 60 V.cm⁻¹, square-shaped instant reversal bipolar pulses, and frequencies varying within 50 Hz to 1 MHz. Thermal damage of tissue was evaluated from electrical admittivity. It showed that the time for half disruption (τ(T)) of tissue was required more than 10 h at temperatures below 40 °C. However, cellular thermal disruption occurred almost instantly (τ(T) 90 °C). Electrical conductivity σ(o) and admittivity σ(o)* of tissue at T(o)= 0 °C and their temperature coefficients (m, m*) were calculated. For freeze-thawed tissues, σ and σ* as well as m and m* were nearly indifferent to the frequency. However, for the intact tissue, both σ(o), σ(o)* and m, m* were frequency dependent. For freeze-thawed product, the power factor (P) was approximately equal to 1 and indifferent to the frequency and temperature. On the other hand, strong frequency dependence was observed for intact tissue with the minimum P approximately equal to 0.68 in the range of tens of kHz. The time required to reach a target temperature t(f) was evaluated. The t(f) increased with frequency up to the middle of the range of tens of kHz and thereafter continuously decreased. Samples exposed to the low-frequency electric field demonstrated faster electro-thermal damage rates. The textural relaxation data supported more intense damage kinetics at low-frequency OH. It has been demonstrated that a combination of high-frequency OH with pasteurization at moderate temperature followed by rapid cooling minimizes texture degradation of peach tissue. In this study, we investigated the electric field frequency effect on the rate of OH of peaches. It was shown that the time required for reaching the target temperature is strongly dependent upon the frequency. Samples exposed to low-frequency OH demonstrated higher electro-thermal damage rates. It has been shown that the combination of high-frequency OH with

  18. Effects of low-frequency repetitive transcranial magnetic stimulation on event-related potential P300

    Science.gov (United States)

    Torii, Tetsuya; Sato, Aya; Iwahashi, Masakuni; Iramina, Keiji

    2012-04-01

    The present study analyzed the effects of repetitive transcranial magnetic stimulation (rTMS) on brain activity. P300 latency of event-related potential (ERP) was used to evaluate the effects of low-frequency and short-term rTMS by stimulating the supramarginal gyrus (SMG), which is considered to be the related area of P300 origin. In addition, the prolonged stimulation effects on P300 latency were analyzed after applying rTMS. A figure-eight coil was used to stimulate left-right SMG, and intensity of magnetic stimulation was 80% of motor threshold. A total of 100 magnetic pulses were applied for rTMS. The effects of stimulus frequency at 0.5 or 1 Hz were determined. Following rTMS, an odd-ball task was performed and P300 latency of ERP was measured. The odd-ball task was performed at 5, 10, and 15 min post-rTMS. ERP was measured prior to magnetic stimulation as a control. Electroencephalograph (EEG) was measured at Fz, Cz, and Pz that were indicated by the international 10-20 electrode system. Results demonstrated that different effects on P300 latency occurred between 0.5-1 Hz rTMS. With 1 Hz low-frequency magnetic stimulation to the left SMG, P300 latency decreased. Compared to the control, the latency time difference was approximately 15 ms at Cz. This decrease continued for approximately 10 min post-rTMS. In contrast, 0.5 Hz rTMS resulted in delayed P300 latency. Compared to the control, the latency time difference was approximately 20 ms at Fz, and this delayed effect continued for approximately 15 min post-rTMS. Results demonstrated that P300 latency varied according to rTMS frequency. Furthermore, the duration of the effect was not similar for stimulus frequency of low-frequency rTMS.

  19. The role of short-term memory impairment in nonword repetition, real word repetition, and nonword decoding: A case study.

    Science.gov (United States)

    Peter, Beate

    2018-01-01

    In a companion study, adults with dyslexia and adults with a probable history of childhood apraxia of speech showed evidence of difficulty with processing sequential information during nonword repetition, multisyllabic real word repetition and nonword decoding. Results suggested that some errors arose in visual encoding during nonword reading, all levels of processing but especially short-term memory storage/retrieval during nonword repetition, and motor planning and programming during complex real word repetition. To further investigate the role of short-term memory, a participant with short-term memory impairment (MI) was recruited. MI was confirmed with poor performance during a sentence repetition and three nonword repetition tasks, all of which have a high short-term memory load, whereas typical performance was observed during tests of reading, spelling, and static verbal knowledge, all with low short-term memory loads. Experimental results show error-free performance during multisyllabic real word repetition but high counts of sequence errors, especially migrations and assimilations, during nonword repetition, supporting short-term memory as a locus of sequential processing deficit during nonword repetition. Results are also consistent with the hypothesis that during complex real word repetition, short-term memory is bypassed as the word is recognized and retrieved from long-term memory prior to producing the word.

  20. Phase coherence of 0.1 Hz microvascular tone oscillations during the local heating

    Science.gov (United States)

    Mizeva, I. A.

    2017-06-01

    The origin of the mechanisms of blood flow oscillations at low frequencies is discussed. It is known that even isolated arteriole demonstrates oscillations with the frequency close to 0.1 Hz, which is caused by the synchronous activity of myocyte cells. On the other hand, oscillations with close frequency are found in the heart rate, which are associated with quite different mechanism. The main purpose of this work is to study phase coherence of the blood flow oscillations in the peripheral vessels under basal and perturbed conditions. Local heating which locally influences the microvascular tone, as one of currently elucidated in sufficient detail physiological test, was chosen. During such provocation blood flow though the small vessels significantly increases because of vasodilation induced by the local synthesis of nitric oxide. In the first part of the paper microvascular response to the local test is quantified in healthy and pathological conditions of diabetes mellitus type 1. It is obtained that regardless of the pathology, subjects with high basal perfusion had lower reserve for vasodilation, which can be caused by the low elasticity of microvascular structure. Further synchronization of pulsations of the heated and undisturbed skin was evaluated on the base of wavelet phase coherency analysis. Being highly synchronised in basal conditions 0.1 Hz pulsations became more independent during heating, especially during NO-mediated vasodilation.

  1. Time-resolved studies at PETRA III with a highly repetitive synchronized laser system

    Energy Technology Data Exchange (ETDEWEB)

    Schlie, Mortiz

    2013-09-15

    Atomic and molecular processes can nowadays be directly followed in the time domain. This is a core technique for a better understanding of the involved fundamental physics, thus auguring new applications in the future as well. Usually the so-called pump-probe technique making use of two synchronized ultrashort light pulses is utilized to obtain this time-resolved data. In this work, the development and characterization of a synchronization system enabling such pump-probe studies at the storage ring PETRA III in combination with an external, then synchronized fs-laser system is described. The synchronization is based on an extended PLL approach with three interconnected feedback loops allowing to monitor short-time losses of the lock and thus prevent them. This way, the jitter between the laser PHAROS and the PETRA III reference signal is reduced to {sigma} <5 ps. Thus the system allows to conduct experiments at a repetition rate of 130 kHz with a temporal resolution limited only by the X-ray pulse length. A major emphasis in the fundamental introductory chapters is an intuitive explanation of the basic principles of phase locked loops and the different aspects of phase noise to allow a deeper understanding of the synchronization. Furthermore, first pump-probe experiments conducted at different beamlines at PETRA III are presented, demonstrating the usability of the laser system in a scientific environment as well. In first characterizing experiments the pulse duration of PETRA III X-ray pulses has been measured to be 90 ps FWHM. In particular, there have been time resolved X-ray absorption spectroscopy experiments on Gaq3 and Znq2 conducted at beamline P11. First results show dynamics of the electronic excitation on the timescale of a few hundred pico seconds up to a few nano seconds and provide a basic understanding for further research on those molecules. For Gaq3 this data is analyzed in detail and compared with visible fluorescence measurements suggesting at

  2. Time-resolved studies at PETRA III with a highly repetitive synchronized laser system

    International Nuclear Information System (INIS)

    Schlie, Mortiz

    2013-09-01

    Atomic and molecular processes can nowadays be directly followed in the time domain. This is a core technique for a better understanding of the involved fundamental physics, thus auguring new applications in the future as well. Usually the so-called pump-probe technique making use of two synchronized ultrashort light pulses is utilized to obtain this time-resolved data. In this work, the development and characterization of a synchronization system enabling such pump-probe studies at the storage ring PETRA III in combination with an external, then synchronized fs-laser system is described. The synchronization is based on an extended PLL approach with three interconnected feedback loops allowing to monitor short-time losses of the lock and thus prevent them. This way, the jitter between the laser PHAROS and the PETRA III reference signal is reduced to σ <5 ps. Thus the system allows to conduct experiments at a repetition rate of 130 kHz with a temporal resolution limited only by the X-ray pulse length. A major emphasis in the fundamental introductory chapters is an intuitive explanation of the basic principles of phase locked loops and the different aspects of phase noise to allow a deeper understanding of the synchronization. Furthermore, first pump-probe experiments conducted at different beamlines at PETRA III are presented, demonstrating the usability of the laser system in a scientific environment as well. In first characterizing experiments the pulse duration of PETRA III X-ray pulses has been measured to be 90 ps FWHM. In particular, there have been time resolved X-ray absorption spectroscopy experiments on Gaq3 and Znq2 conducted at beamline P11. First results show dynamics of the electronic excitation on the timescale of a few hundred pico seconds up to a few nano seconds and provide a basic understanding for further research on those molecules. For Gaq3 this data is analyzed in detail and compared with visible fluorescence measurements suggesting at least

  3. A long-pulse repetitive operation magnetically insulated transmission line oscillator

    International Nuclear Information System (INIS)

    Fan, Yu-Wei; Zhong, Hui-Huang; Zhang, Jian-De; Shu, Ting; Liu, Jin Liang

    2014-01-01

    The improved magnetically insulated transmission line oscillator (MILO) is a gigawatt-class L-band high power microwave tube. It has allowed us to generate 3.1 GW pulse of 40 ns duration in the single-pulse operation and 500 MW pulse of 25 ns duration in the repetition rate operation. However, because of the severe impedance mismatch, the power conversion efficiency is only about 4% in the repetition rate operation. In order to eliminate the impedance mismatch and obtain repetitive long-pulse high-power microwave (HPM), a series of experiments are carried out and the recent progress is presented in this paper. In the single-pulse operation, when the diode voltage is 466 kV and current is 41.6 kA, the radiated microwave power is above 2.2 GW, the pulse duration is above 102 ns, the microwave frequency is about 1.74 GHz, and the power conversion efficiency is about 11.5%. In the repetition rate operation, under the condition of the diode voltage about 400 kV, beam current about 38 kA, the radiated microwave power is about 1.0 GW, the pulse duration is about 85 ns. Moreover, the radiated microwave power and the pulse duration decline little by little when the shot numbers increase gradually. The experimental results show that the impedance matching is a vital factor for HPM systems and one of the major technical challenges is to improve the cathode for the repetition rate operation MILO

  4. A long-pulse repetitive operation magnetically insulated transmission line oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Yu-Wei; Zhong, Hui-Huang; Zhang, Jian-De; Shu, Ting; Liu, Jin Liang [College of Optoelectric Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2014-05-15

    The improved magnetically insulated transmission line oscillator (MILO) is a gigawatt-class L-band high power microwave tube. It has allowed us to generate 3.1 GW pulse of 40 ns duration in the single-pulse operation and 500 MW pulse of 25 ns duration in the repetition rate operation. However, because of the severe impedance mismatch, the power conversion efficiency is only about 4% in the repetition rate operation. In order to eliminate the impedance mismatch and obtain repetitive long-pulse high-power microwave (HPM), a series of experiments are carried out and the recent progress is presented in this paper. In the single-pulse operation, when the diode voltage is 466 kV and current is 41.6 kA, the radiated microwave power is above 2.2 GW, the pulse duration is above 102 ns, the microwave frequency is about 1.74 GHz, and the power conversion efficiency is about 11.5%. In the repetition rate operation, under the condition of the diode voltage about 400 kV, beam current about 38 kA, the radiated microwave power is about 1.0 GW, the pulse duration is about 85 ns. Moreover, the radiated microwave power and the pulse duration decline little by little when the shot numbers increase gradually. The experimental results show that the impedance matching is a vital factor for HPM systems and one of the major technical challenges is to improve the cathode for the repetition rate operation MILO.

  5. A long-pulse repetitive operation magnetically insulated transmission line oscillator.

    Science.gov (United States)

    Fan, Yu-Wei; Zhong, Hui-Huang; Zhang, Jian-De; Shu, Ting; Liu, Jin Liang

    2014-05-01

    The improved magnetically insulated transmission line oscillator (MILO) is a gigawatt-class L-band high power microwave tube. It has allowed us to generate 3.1 GW pulse of 40 ns duration in the single-pulse operation and 500 MW pulse of 25 ns duration in the repetition rate operation. However, because of the severe impedance mismatch, the power conversion efficiency is only about 4% in the repetition rate operation. In order to eliminate the impedance mismatch and obtain repetitive long-pulse high-power microwave (HPM), a series of experiments are carried out and the recent progress is presented in this paper. In the single-pulse operation, when the diode voltage is 466 kV and current is 41.6 kA, the radiated microwave power is above 2.2 GW, the pulse duration is above 102 ns, the microwave frequency is about 1.74 GHz, and the power conversion efficiency is about 11.5%. In the repetition rate operation, under the condition of the diode voltage about 400 kV, beam current about 38 kA, the radiated microwave power is about 1.0 GW, the pulse duration is about 85 ns. Moreover, the radiated microwave power and the pulse duration decline little by little when the shot numbers increase gradually. The experimental results show that the impedance matching is a vital factor for HPM systems and one of the major technical challenges is to improve the cathode for the repetition rate operation MILO.

  6. Object color affects identification and repetition priming.

    Science.gov (United States)

    Uttl, Bob; Graf, Peter; Santacruz, Pilar

    2006-10-01

    We investigated the influence of color on the identification of both non-studied and studied objects. Participants studied black and white and color photos of common objects and memory was assessed with an identification test. Consistent with our meta-analysis of prior research, we found that objects were easier to identify from color than from black and white photos. We also found substantial priming in all conditions, and study-to-test changes in an object's color reduced the magnitude of priming. Color-specific priming effects were large for color-complex objects, but minimal for color-simple objects. The pattern and magnitude of priming effects was not influenced either by the extent to which an object always appears in the same color (i.e., whether a color is symptomatic of an object) or by the object's origin (natural versus fabricated). We discuss the implications of our findings for theoretical accounts of object perception and repetition priming.

  7. PROJECT IMPLEMENTATION IN ORGANISATIONS OF REPETITIVE ACTIVITIES

    Directory of Open Access Journals (Sweden)

    Marek WIRKUS

    2015-04-01

    Full Text Available The study presents the implementation of projects in organisations that achieve business objectives through the imple-mentation of repetitive actions. Projects in these organisations are, on the one hand, treated as marginal activities, while the results of these projects have significant impact on the delivery of main processes, e.g. through the introduction of new products. Human capital and solutions in this field bear impact on the success of projects in these organisations, which is not always conducive to smooth implementation of projects. Conflict results from the nature of a project, which is a one-time and temporary process, so organisational solutions are also temporary. It influences on attitudes and com-mitment of the project contractors. The paper identifies and analyses factors which affect the success of the projects.

  8. Low-Intensity Repetitive Exercise Induced Rhabdomyolysis

    Directory of Open Access Journals (Sweden)

    Mina Tran

    2015-01-01

    Full Text Available Rhabdomyolysis is a rare condition caused by the proteins of damaged muscle cells entering the bloodstream and damaging the kidneys. Common symptoms of rhabdomyolysis are muscle pain and fatigue in conjunction with dark urine; kidney damage is a common symptom among these patients. We present a case of a 23-year-old woman who displayed myalgia in the upper extremities caused by low-intensity and high-repetition exercise. She was successfully diagnosed and treated for exertional rhabdomyolysis. This patient had no significant medical history that would induce this condition. We urge the emergency medical community to observe and monitor patients that complain of myalgia to ensure they are not suffering from rhabdomyolysis even in atypical cases.

  9. Parametric Modeling of Nerve Cell under the Sinusoidal Environmental 50 Hz Extremely Low Frequency Magnetic Fields

    Directory of Open Access Journals (Sweden)

    Homayoun Ebrahimian

    2013-06-01

    Full Text Available Background & Objectives: The development of technology has naturally given rise to an increase in environmental low-frequency electromagnetic fields and consequently has attracted scholars' attention. Most of the studies have focused on transmission lines and power system distribution with 50 Hz. This research is an attempt to show the effect of 50 Hz magnetic fields on bioelectric parameters and indicates the possible influence of this change in F1 cells of Helix aspersa .   Methods: The present research used Helix aspersa neuron F1 to identify the location of magnetic fields as well as the rate of effects of environmental magnetic fields on nervous system. Control group was used to study the effect of elapsed time, electrode entering and the cell membrane rupture. Intuition group and environmental group were considered in order to study the potential impact of interfering environmental factors and identify the effectiveness rate of magnetic fields, respectively. For the purpose of producing uniform magnetic field Helmholtz coil was used. Electrophysiological recording was realized under the requirements of current clamp. And, in order to show the impacts from magnetic fields on ion channels Hodgkin-Huxley cell model was applied. All data were analyzed taking the advantage of SPSS 16 software and two-way ANOVA statistical test. P < 0.05 was considered as significance level. And MATLAB software environment and PSO were used in order for applying the algorithm and estimating the parameters.   Result: No statistically significant difference was found between control and sham groups in different time intervals. Once the 45.87 microtesla was applied significant differences were observed 12 minutes after the application. The highest amount of change happened 14 minutes after the application of more fields. With the application of the field, the amplitude of the sodium action potential shows decreasing trend . No significant changes were observed in

  10. Experimental study of the performance of a very small repetitive plasma focus device in different working conditions

    Energy Technology Data Exchange (ETDEWEB)

    Goudarzi, S., E-mail: sgoudarzi@aeoi.org.ir; Babaee, H.; Esmaeli, A.; Nasiri, A. [Atomic Energy Organization of Iran, Plasma and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute (Iran, Islamic Republic of)

    2017-01-15

    SORENA-1 is a very small repetitive Mather-type plasma focus device (20 J) that can operate at frequencies up to 1 Hz. This device has been designed and constructed in the Plasma and Nuclear Fusion Research School of the Nuclear Science and Technology Research Institute of Iran. In this article, the structure of SORENA-1 is described and results of experiments with Ar, Ne, and D{sub 2} working gases at several discharge voltages and initial pressures are presented and analyzed.

  11. FEMA Hazard Mitigation Assistance Severe Repetitive Loss (SRL) Data

    Data.gov (United States)

    Department of Homeland Security — This dataset contains closed and obligated projects funded under the following Hazard Mitigation Assistance (HMA) grant programs: Severe Repetitive Loss (SRL). The...

  12. FEMA Hazard Mitigation Assistance Repetitive Flood Claims (RFC) Data

    Data.gov (United States)

    Department of Homeland Security — This dataset contains closed and obligated projects funded under the following Hazard Mitigation Assistance (HMA) grant programs: Repetitive Flood Claims (RFC). The...

  13. Benzodiazepine temazepam suppresses the transient auditory 40-Hz response amplitude in humans.

    Science.gov (United States)

    Jääskeläinen, I P; Hirvonen, J; Saher, M; Pekkonen, E; Sillanaukee, P; Näätänen, R; Tiitinen, H

    1999-06-18

    To discern the role of the GABA(A) receptors in the generation and attentive modulation of the transient auditory 40-Hz response, the effects of the benzodiazepine temazepam (10 mg) were studied in 10 healthy social drinkers, using a double-blind placebo-controlled design. Three hundred Hertz standard and 330 Hz rare deviant tones were presented to the left, and 1000 Hz standards and 1100 Hz deviants to the right ear of the subjects. Subjects attended to a designated ear and were to detect deviants therein while ignoring tones to the other. Temazepam significantly suppressed the amplitude of the 40-Hz response, the effect being equal for attended and non-attended tone responses. This suggests involvement of GABA(A) receptors in transient auditory 40-Hz response generation, however, not in the attentive modulation of the 40-Hz response.

  14. Electra: Repetitively Pulsed Angularly Multiplexed KrF Laser System Performance

    Science.gov (United States)

    Wolford, Matthew; Myers, Matthew; Giuliani, John; Sethian, John; Burns, Patrick; Hegeler, Frank; Jaynes, Reginald

    2008-11-01

    As in a full size fusion power plant beam line, Electra is a multistage laser amplifier system. The multistage amplifier system consists of a commercial discharge laser and two doubled sided electron beam pumped amplifiers. Angular multiplexing is used in the optical layout to provide pulse length control and to maximize laser extraction from the amplifiers. Two angularly multiplexed beams have extracted 30 J of KrF laser light with an aperture 8 x 10 cm^2, which is sufficient to extract over 500 J from the main amplifier and models agree. The main amplifier of Electra in oscillator mode has demonstrated single shot and rep-rate laser energies exceeding 700 J with 100 ns pulsewidth at 248 nm with an aperture 29 x 29 cm^2. Continuous operation of the KrF electron beam pumped oscillator has lasted for more than 2.5 hours without failure at 1 Hz and 2.5 Hz. The measured intensity and pulse energy for durations greater than thousand shots are consistent at measurable rep-rates of 1 Hz, 2.5 Hz and 5 Hz.

  15. Repeated 6-Hz Corneal Stimulation Progressively Increases FosB/ΔFosB Levels in the Lateral Amygdala and Induces Seizure Generalization to the Hippocampus.

    Directory of Open Access Journals (Sweden)

    Carmela Giordano

    Full Text Available Exposure to repetitive seizures is known to promote convulsions which depend on specific patterns of network activity. We aimed at evaluating the changes in seizure phenotype and neuronal network activation caused by a modified 6-Hz corneal stimulation model of psychomotor seizures. Mice received up to 4 sessions of 6-Hz corneal stimulation with fixed current amplitude of 32 mA and inter-stimulation interval of 72 h. Video-electroencephalography showed that evoked seizures were characterized by a motor component and a non-motor component. Seizures always appeared in frontal cortex, but only at the fourth stimulation they involved the hippocampus, suggesting the establishment of an epileptogenic process. Duration of seizure non-motor component progressively decreased after the second session, whereas convulsive seizures remained unchanged. In addition, a more severe seizure phenotype, consisting of tonic-clonic generalized convulsions, was predominant after the second session. Immunohistochemistry and double immunofluorescence experiments revealed a significant increase in neuronal activity occurring in the lateral amygdala after the fourth session, most likely due to activity of principal cells. These findings indicate a predominant role of amygdala in promoting progressively more severe convulsions as well as the late recruitment of the hippocampus in the seizure spread. We propose that the repeated 6-Hz corneal stimulation model may be used to investigate some mechanisms of epileptogenesis and to test putative antiepileptogenic drugs.

  16. Network-wise cerebral blood flow redistribution after 20 Hz rTMS on left dorso-lateral prefrontal cortex.

    Science.gov (United States)

    Shang, Yuan-Qi; Xie, Jun; Peng, Wei; Zhang, Jian; Chang, Da; Wang, Ze

    2018-04-01

    The repetitive application of transcranial magnetic stimulation (rTMS) on left dorsolateral prefrontal cortex (DLPFC) has been consistently shown to be beneficial for treating various neuropsychiatric or neuropsychological disorders, but its neural mechanisms still remain unclear. The purpose of this study was to measure the effects of high-frequency left DLPFC rTMS using cerebral blood flow (CBF) collected from 40 young healthy subjects before and after applying 20 Hz left DLPFC rTMS or SHAM stimulations. Relative CBF (rCBF) changes before and after 20 Hz rTMS or SHAM were assessed with paired-t test. The results show that 20 Hz DLPFC rTMS induced CBF redistribution in the default mode network, including increased rCBF in left medial temporal cortex (MTC)/hippocampus, but reduced rCBF in precuneus and cerebellum. Meanwhile, SHAM stimulation didn't produce any rCBF changes. After controlling SHAM effects, only the rCBF increase in MTC/hippocampus remained. Those data suggest that the beneficial effects of high-frequency rTMS may be through a within-network rCBF redistribution. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. The Golden Ratio of Gait Harmony: Repetitive Proportions of Repetitive Gait Phases

    Directory of Open Access Journals (Sweden)

    Marco Iosa

    2013-01-01

    Full Text Available In nature, many physical and biological systems have structures showing harmonic properties. Some of them were found related to the irrational number known as the golden ratio that has important symmetric and harmonic properties. In this study, the spatiotemporal gait parameters of 25 healthy subjects were analyzed using a stereophotogrammetric system with 25 retroreflective markers located on their skin. The proportions of gait phases were compared with , the value of which is about 1.6180. The ratio between the entire gait cycle and stance phase resulted in 1.620 ± 0.058, that between stance and the swing phase was 1.629 ± 0.173, and that between swing and the double support phase was 1.684 ± 0.357. All these ratios did not differ significantly from each other (, , repeated measure analysis of variance or from (, resp., t-tests. The repetitive gait phases of physiological walking were found in turn in repetitive proportions with each other, revealing an intrinsic harmonic structure. Harmony could be the key for facilitating the control of repetitive walking. Harmony is a powerful unifying factor between seemingly disparate fields of nature, including human gait.

  18. An Improved Clutter Suppression Method for Weather Radars Using Multiple Pulse Repetition Time Technique

    Directory of Open Access Journals (Sweden)

    Yingjie Yu

    2017-01-01

    Full Text Available This paper describes the implementation of an improved clutter suppression method for the multiple pulse repetition time (PRT technique based on simulated radar data. The suppression method is constructed using maximum likelihood methodology in time domain and is called parametric time domain method (PTDM. The procedure relies on the assumption that precipitation and clutter signal spectra follow a Gaussian functional form. The multiple interleaved pulse repetition frequencies (PRFs that are used in this work are set to four PRFs (952, 833, 667, and 513 Hz. Based on radar simulation, it is shown that the new method can provide accurate retrieval of Doppler velocity even in the case of strong clutter contamination. The obtained velocity is nearly unbiased for all the range of Nyquist velocity interval. Also, the performance of the method is illustrated on simulated radar data for plan position indicator (PPI scan. Compared with staggered 2-PRT transmission schemes with PTDM, the proposed method presents better estimation accuracy under certain clutter situations.

  19. Visual attention to advertising : The impact of motivation and repetition

    NARCIS (Netherlands)

    Pieters, RGM; Rosbergen, E; Hartog, M; Corfman, KP; Lynch, JG

    1996-01-01

    Using eye-tracking data, we examine the impact of motivation and repetition on visual attention to advertisements differing in argument quality. Our analyses indicate that repetition leads to an overall decrease in the amount of attention. However, while at first high motivation subjects attend to

  20. Repetitively pulsed, double discharge TEA CO/sub 2/ laser

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, D C; James, D J; Ramsden, S A

    1975-10-01

    The design and operation of a repetitively pulsed TEA CO/sub 2/ laser is described. Average powers of up to 400 W at a repetition frequency of 200 pulses/s have been obtained. The system has also been used to provide long pulses (over 20 ..mu..s) and tunable single axial mode pulses.

  1. Effects of repetition and temperature on Contingent Electrical Stimulation

    DEFF Research Database (Denmark)

    Castrillon, Eduardo E.; Zhou, Xinwen; Svensson, Peter

    ) activity associated with bruxism. Repetition of the electrical stimulus and skin surface temperature (ST) may affect the perception of CES and possibly also the inhibitory EMG effects.Objectives: To determine the effects of stimulus repetition and skin ST on the perception of CES.  Methods: Healthy...

  2. Repetition Blindness: Out of Sight or Out of Mind?

    Science.gov (United States)

    Morris, Alison L.; Harris, Catherine L.

    2004-01-01

    Does repetition blindness represent a failure of perception or of memory? In Experiment 1, participants viewed rapid serial visual presentation (RSVP) sentences. When critical words (C1 and C2) were orthographically similar, C2 was frequently omitted from serial report; however, repetition priming for C2 on a postsentence lexical decision task was…

  3. Evidence-Based Behavioral Interventions for Repetitive Behaviors in Autism

    Science.gov (United States)

    Boyd, Brian A.; McDonough, Stephen G.; Bodfish, James W.

    2012-01-01

    Restricted and repetitive behaviors (RRBs) are a core symptom of autism spectrum disorders (ASD). There has been an increased research emphasis on repetitive behaviors; however, this research primarily has focused on phenomenology and mechanisms. Thus, the knowledge base on interventions is lagging behind other areas of research. The literature…

  4. Pre-Lexical Disorders in Repetition Conduction Aphasia

    Science.gov (United States)

    Sidiropoulos, Kyriakos; de Bleser, Ria; Ackermann, Hermann; Preilowski, Bruno

    2008-01-01

    At the level of clinical speech/language evaluation, the repetition type of conduction aphasia is characterized by repetition difficulties concomitant with reduced short-term memory capacities, in the presence of fluent spontaneous speech as well as unimpaired naming and reading abilities. It is still unsettled which dysfunctions of the…

  5. Repetitive exposure: Brain and reflex measures of emotion and attention

    Science.gov (United States)

    Ferrari, Vera; Bradley, Margaret M.; Codispoti, Maurizio; Lang, Peter J.

    2010-01-01

    Effects of massed repetition on the modulation of the late positive potential elicited during affective picture viewing were investigated in two experiments. Despite a difference in the number of repetitions across studies (from 5 to 30), results were quite similar: the late positive potential continued to be enhanced when viewing emotional, compared to neutral, pictures. On the other hand, massed repetition did prompt a reduction in the late positive potential that was most pronounced for emotional pictures. Startle probe P3 amplitude generally increased with repetition, suggesting diminished attention allocation to repeated pictures. The blink reflex, however, continued to be modulated by hedonic valence, despite massive massed repetition. Taken together, the data suggest that the amplitude of the late positive potential during picture viewing reflects both motivational significance and attention allocation. PMID:20701711

  6. Repetition and Emotive Communication in Music Versus Speech

    Directory of Open Access Journals (Sweden)

    Elizabeth Hellmuth eMargulis

    2013-04-01

    Full Text Available Music and speech are often placed alongside one another as comparative cases. Their relative overlaps and disassociations have been well explored (e.g. Patel, 2010. But one key attribute distinguishing these two domains has often been overlooked: the greater preponderance of repetition in music in comparison to speech. Recent fMRI studies have shown that familiarity – achieved through repetition – is a critical component of emotional engagement with music (Pereira et al., 2011. If repetition is fundamental to emotional responses to music, and repetition is a key distinguisher between the domains of music and speech, then close examination of the phenomenon of repetition might help clarify the ways that music elicits emotion differently than speech.

  7. Transgenerational effects of environmental enrichment on repetitive motor behavior development.

    Science.gov (United States)

    Bechard, Allison R; Lewis, Mark H

    2016-07-01

    The favorable consequences of environmental enrichment (EE) on brain and behavior development are well documented. Much less is known, however, about transgenerational benefits of EE on non-enriched offspring. We explored whether transgenerational effects of EE might extend to the development of repetitive motor behaviors in deer mice. Repetitive motor behaviors are invariant patterns of movement that, across species, can be reduced by EE. We found that EE not only attenuated the development of repetitive behavior in dams, but also in their non-enriched offspring. Moreover, maternal behavior did not seem to mediate the transgenerational effect we found, although repetitive behavior was affected by reproductive experience. These data support a beneficial transgenerational effect of EE on repetitive behavior development and suggest a novel benefit of reproductive experience. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. The Effect of Task Instructions on Students' Use of Repetition in Argumentative Discourse

    Science.gov (United States)

    Gilabert, Sandra; Garcia-Mila, Merce; Felton, Mark K.

    2013-11-01

    The reasoning belief of argumentum ad nauseam assumes that when someone repeats something often enough, he or she becomes more convincing. The present paper analyses the use of this strategy by seventh-grade students in an argumentation task. Sixty-five students (mean age: 12.2, SD = 0.4) from a public school in a mid-sized urban environment took part in the study. The students were asked to either argue to convince an opposing partner or argue to reach consensus with an opposing partner on three dilemmas that dealt with energy sources. Data were gathered according to a between-groups design that included one independent variable (argumentative goal: to convince vs. to reach consensus) and one dependent variable (the degree of argumentative repetitions). We predicted that in the condition to convince their partner, the students would use the repetition strategy more often in their attempts to be persuasive. Our findings show that the mean number of argumentative repetitions was significantly higher for the persuasion group for both of the most frequent argumentative structures (claim and claim data). The mean percentage of repeated claims for the persuasion condition was 86.2 vs. 69.0 for the consensus condition. For the claim data, the mean percentage for the persuasion group was 35.2 vs. 24.3 for the consensus group. Also, students in the persuasion group tended to repeat one idea many times rather than repeating many ideas a few times within the same argumentative structure. The results of our study support the hypothesis that the goal of the argumentative task mediates argumentative discourse and, more concretely, the rate of repetitions and the conceptual diversity of the statements. These differences in rates of repetition and conceptual diversity are related to the amount of learning produced by the instructional goal. We apply Mercer's idea that not all classroom argumentation tasks promote learning equally.

  9. Repetitive switching for an electromagnetic rail gun

    Science.gov (United States)

    Gruden, J. M.

    1983-12-01

    Previous testing on a repetitive opening switch for inductive energy storage has proved the feasibility of the rotary switch concept. The concept consists of a rotating copper disk (rotor) with a pie-shaped insulator section and brushes which slide along each of the rotor surfaces. While on top of the copper surface, the brushes and rotor conduct current allowing the energy storage inductor to charge. When the brushes slide onto the insulator section, the current cannot pass through the rotor and is diverted into the load. This study investigates two new brush designs and a rotor modification designed to improve the current commutating capabilities of the switch. One brush design (fringe fiber) employs carbon fibers on the leading and trailing edge of the brush to increase the resistive commutating action as the switch opens and closes. The other brush design uses fingers to conduct current to the rotor surface, effectively increasing the number of brush contact points. The rotor modification was the placement of tungsten inserts at the copper-insulator interfaces.

  10. Repetitive Interrogation of 2-Level Quantum Systems

    Science.gov (United States)

    Prestage, John D.; Chung, Sang K.

    2010-01-01

    Trapped ion clocks derive information from a reference atomic transition by repetitive interrogations of the same quantum system, either a single ion or ionized gas of many millions of ions. Atomic beam frequency standards, by contrast, measure reference atomic transitions in a continuously replenished "flow through" configuration where initial ensemble atomic coherence is zero. We will describe some issues and problems that can arise when atomic state selection and preparation of the quantum atomic system is not completed, that is, optical pumping has not fully relaxed the coherence and also not fully transferred atoms to the initial state. We present a simple two-level density matrix analysis showing how frequency shifts during the state-selection process can cause frequency shifts of the measured clock transition. Such considerations are very important when a low intensity lamp light source is used for state selection, where there is relatively weak relaxation and re-pumping of ions to an initial state and much weaker 'environmental' relaxation of the atomic coherence set-up in the atomic sample.

  11. Interspersion of highly repetitive DNA with single copy DNA in the genome of the red crab, Geryon quinquedens

    Energy Technology Data Exchange (ETDEWEB)

    Christie, N.T. (Univ. of Tennessee, Oak Ridge); Skinner, D.M.

    1979-02-01

    Kinetic analysis of the reassociation of 420 nucleotide (NT) long fragments has shown that essentially all of the repetitive sequences of the DNA of the red crab Geryon quinquedens are highly repetitive. There are negligible amounts of low and intermediate repetitive DNAs. Though atypical of most eukaryotes, this pattern has been observed in al other brachyurans (true crabs) studied. The major repetitive component is subdivided into short runs of 300 NT and longer runs of greater than 1200 NT while the minor component has an average sequence length of 400 NT. Both components reassociate at rates commonly observed for satellite DNAs. Unique among eukaryotes the organization of the genome includes single copy DNA contiguous to short runs (300 NT) of both repetitive components. Although patent satellites are not present, subsets of the repetitive DNA have been isolated by either restriction endonuclease digestion or by centrifugation in Ag/sup +/ or Hg/sup 2 +//Cs/sub 2/SO/sub 4/ density gradients.

  12. Effects on atmospherics at 6 kHz and 9 kHz recorded at Tripura during the India-Pakistan Border earthquake

    Directory of Open Access Journals (Sweden)

    S. S. De

    2010-04-01

    Full Text Available The outcome of the results of some analyses of electromagnetic emissions recorded by VLF receivers at 6 kHz and 9 kHz over Agartala, Tripura, the North-Eastern state of India (Lat. 23° N, Long. 91.4° E during the large earthquake at Muzaffarabad (Lat. 34.53° N, Long. 73.58° E at Kashmir under Pakistan have been presented here. Spiky variations in integrated field intensity of atmospherics (IFIA at 6 and 9 kHz have been observed 10 days prior (from midnight of 28 September 2005 to the day of occurrence of the earthquake on 8 October 2005 and the effect continued, decayed gradually and eventually ceased on 16 October 2005. The spikes distinctly superimposed on the ambient level with mutual separation of 2–5 min. Occurrence number of spikes per hour and total duration of their occurrence have been found remarkably high on the day of occurrence of the earthquake. The spike heights are higher at 6 kHz than at 9 kHz. The results have been explained on the basis of generation of electromagnetic radiation associated with fracture of rocks, their subsequent penetration into the Earth's atmosphere and finally their propagation between Earth-ionosphere waveguide. The present observation shows that VLF anomaly is well-confined between 6 and 9 kHz.

  13. Long-lasting repetitive transcranial magnetic stimulation modulates electroencephalography oscillation in patients with disorders of consciousness.

    Science.gov (United States)

    Xia, Xiaoyu; Liu, Yang; Bai, Yang; Liu, Ziyuan; Yang, Yi; Guo, Yongkun; Xu, Ruxiang; Gao, Xiaorong; Li, Xiaoli; He, Jianghong

    2017-10-18

    Repetitive transcranial magnetic stimulation (rTMS) has been applied for the treatment of patients with disorders of consciousness (DOC). Timely and accurate assessments of its modulation effects are very useful. This study evaluated rTMS modulation effects on electroencephalography (EEG) oscillation in patients with chronic DOC. Eighteen patients with a diagnosis of DOC lasting more than 3 months were recruited. All patients received one session of 10-Hz rTMS at the left dorsolateral prefrontal cortex and then 12 of them received consecutive rTMS treatment everyday for 20 consecutive days. Resting-state EEGs were recorded before the experiment (T0) after one session of rTMS (T1) and after the entire treatment (T2). The JFK Coma Recovery Scale-Revised scale scores were also recorded at the time points. Our data showed that application of 10-Hz rTMS to the left dorsolateral prefrontal cortex decreased low-frequency band power and increased high-frequency band power in DOC patients, especially in minimal conscious state patients. Considering the correlation of the EEG spectrum with the consciousness level of patients with DOC, quantitative EEG might be useful for assessment of the effect of rTMS in DOC patients.

  14. Repetitive transcranial magnetic stimulation as a neuropsychiatric tool: present status and future potential.

    Science.gov (United States)

    Post, R M; Kimbrell, T A; McCann, U D; Dunn, R T; Osuch, E A; Speer, A M; Weiss, S R

    1999-03-01

    Repetitive transcranial magnetic stimulation (rTMS) has emerged as a promising therapeutic intervention in the treatment of affective disorders. The differences in the type of electrical stimulation required for therapeutic efficacy by rTMS and electroconvulsive therapy (ECT) are discussed. In contrast to ECT, rTMS would not appear to require the generation of a major motor seizure to achieve therapeutic efficacy. Accordingly, it carries the potentially important clinical advantages of not requiring anesthesia and of avoiding side effects such as transient memory loss. Preclinical studies on long-term potentiation (LTP) and long-term depression (LTD) in hippocampal and amygdala slices, as well as clinical data from neuroimaging studies, have provided encouraging clues for potential frequency-dependent effects of rTMS. Preliminary evidence from position emission tomography (PET) scans suggests that higher frequency (20 Hz) stimulation may increase brain glucose metabolism in a transsynaptic fashion, whereas lower frequency (1 Hz) stimulation may decrease it. Therefore, the ability of rTMS to control the frequency as well as the location of stimulation, in addition to its other advantages, has opened up new possibilities for clinical explorations and treatments of neuropsychiatric conditions.

  15. Poststroke dysphagia rehabilitation by repetitive transcranial magnetic stimulation: a noncontrolled pilot study.

    Science.gov (United States)

    Verin, E; Leroi, A M

    2009-06-01

    Poststroke dysphagia is frequent and significantly increases patient mortality. In two thirds of cases there is a spontaneous improvement in a few weeks, but in the other third, oropharyngeal dysphagia persists. Repetitive transcranial magnetic stimulation (rTMS) is known to excite or inhibit cortical neurons, depending on stimulation frequency. The aim of this noncontrolled pilot study was to assess the feasibility and the effects of 1-Hz rTMS, known to have an inhibitory effect, on poststroke dysphagia. Seven patients (3 females, age = 65 +/- 10 years), with poststroke dysphagia due to hemispheric or subhemispheric stroke more than 6 months earlier (56 +/- 50 months) diagnosed by videofluoroscopy, participated in the study. rTMS at 1 Hz was applied for 20 min per day every day for 5 days to the healthy hemisphere to decrease transcallosal inhibition. The evaluation was performed using the dysphagia handicap index and videofluoroscopy. The dysphagia handicap index demonstrated that the patients had mild oropharyngeal dysphagia. Initially, the score was 43 +/- 9 of a possible 120 which decreased to 30 +/- 7 (p study demonstrated that rTMS is feasible in poststroke dysphagia and improves swallowing coordination. Our results now need to be confirmed by a randomized controlled study with a larger patient population.

  16. Effect of repetitive transcranial magnetic stimulation on rectal function and emotion in humans

    International Nuclear Information System (INIS)

    Aizawa, Yuuichi; Morishita, Joe; Kano, Michiko; Mori, Takayuki; Izumi, Shin-ichi; Kanazawa, Motoyori; Fukudo, Shin; Tsutsui, Kenichiro; Iijima, Toshio

    2011-01-01

    A previous brain imaging study demonstrated activation of the right dorsolateral prefrontal cortex (DLPFC) during visceral nociception, and this activation was associated with anxiety. We hypothesized that functional modulation of the right DLPFC by repetitive transcranial magnetic stimulation (rTMS) can reveal the actual role of right DLPFC in brain-gut interactions in humans. Subjects were 11 healthy males aged 23.5±1.4 (mean±spin echo (SE)) years. Viscerosensory evoked potential (VEP) with sham (0 mA) or actual (30 mA) electrical stimulation (ES) of the rectum was taken after sham, low frequency rTMS at 0.1 Hz, and high frequency rTMS at 10 Hz to the right DLPFC. Rectal tone was measured with a rectal barostat. Visceral perception and emotion were analyzed using an ordinate scale, rectal barostat, and VEP. Low frequency rTMS significantly reduced anxiety evoked by ES at 30 mA (p<0.05). High frequency rTMS-30 mA ES significantly produced more phasic volume events than sham rTMS-30 mA ES (p<0.05). We successfully modulated the gastrointestinal function of healthy individuals through rTMS to the right DLPFC. Thus, rTMS to the DLPFC appears to modulate the affective, but not direct, component of visceral perception and motility of the rectum. (author)

  17. Development of a pellet cutting and loading device for the JT-60 repetitive pellet injector

    International Nuclear Information System (INIS)

    Hiratsuka, Hajime; Ichige, Hisashi; Kizu, Kaname; Iwahashi, Takaaki; Honda, Masao

    2001-03-01

    In JT-60, a pellet injector that repetitively injects deuterium pellets is under development to supply fuel to high temperature plasmas and sustain high-density plasmas. The pellet injector generates cubic pellets and accelerates them with a straight-arm rotor by centrifugal force. In this acceleration method, it is important to supply pellets reliably and stably, to prevent pellet orbits from disordering and to stabilize the launching direction. To achieve higher performance of the injector, a pellet cutting and loading device that cuts a deuterium ice rod into cubic pellets and loads them to the pellet injector successively and stably has been developed. The pellet cutting and loading device can cut a deuterium ice rod produced at low temperature of -8 Pam 3 /s, cutting time of <3 ms, cutting frequency of 1-20 Hz and cutter stroke of 2.5 mm were confirmed in the device test. In the operation test after assembling this device to the centrifugal pellet injector, the operational performance of pellet injection frequency of ∼10 Hz, pellet speed of ∼690 m/s and pellet injection duration time of ∼3.5 s was achieved. Thus, the development of the pellet cutting and loading device contributed to the upgrade of the JT-60 pellet injector. (author)

  18. Simulating satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds

    OpenAIRE

    M. Füllekrug; C. Hanuise; M. Parrot

    2010-01-01

    Relativistic electron beams above thunderclouds emit 100 kHz radio waves which illuminate the Earth's atmosphere and near-Earth space. This contribution aims to clarify the physical processes which are relevant for the spatial spreading of the radio wave energy below and above the ionosphere and thereby enables simulating satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds. The simulation uses the DEMETER satellite which observes 100 kHz ...

  19. High rate tests of the LHCb RICH Upgrade system

    CERN Multimedia

    Blago, Michele Piero

    2016-01-01

    One of the biggest challenges for the upgrade of the LHCb RICH detectors from 2020 is to readout the photon detectors at the full 40 MHz rate of the LHC proton-proton collisions. A test facility has been setup at CERN with the purpose to investigate the behaviour of the Multi Anode PMTs, which have been proposed for the upgrade, and their readout electronics at high trigger rates. The MaPMTs are illuminated with a monochromatic laser that can be triggered independently of the readout electronics. A first series of tests, including threshold scans, is performed at low trigger rates (20 kHz) for both the readout and the laser with the purpose to characterise the behaviour of the system under test. Then the trigger rate is increased in two separate steps. First the MaPMTs are exposed to high illumination by triggering the pulsed laser at a high (20 MHz) repetition rate while the DAQ is readout at the same low rate as before. In this way the performance of the MaPMTs and the attached electronics can be evaluated ...

  20. Alarm pheromone does not modulate 22-kHz calls in male rats.

    Science.gov (United States)

    Muyama, Hiromi; Kiyokawa, Yasushi; Inagaki, Hideaki; Takeuchi, Yukari; Mori, Yuji

    2016-03-15

    Rats are known to emit a series of ultrasonic vocalizations, termed 22-kHz calls, when exposed to distressing stimuli. Pharmacological studies have indicated that anxiety mediates 22-kHz calls in distressed rats. We previously found that exposure to the rat alarm pheromone increases anxiety in rats. Therefore, we hypothesized that the alarm pheromone would increase 22-kHz calls in pheromone-exposed rats. Accordingly, we tested whether exposure to the alarm pheromone induced 22-kHz calls, as well as whether the alarm pheromone increased 22-kHz calls in response to an aversive conditioned stimulus (CS). Rats were first fear-conditioned to an auditory and contextual CS. On the following day, the rats were either exposed to the alarm pheromone or a control odor that was released from the neck region of odor-donor rats. Then, the rats were re-exposed to the aversive CS. The alarm pheromone neither induced 22-kHz calls nor increased 22-kHz calls in response to the aversive CS. In contrast, the control odor unexpectedly reduced the total number and duration of 22-kHz calls elicited by the aversive CS, as well as the duration of freezing. These results suggest that the alarm pheromone does not affect 22-kHz calls in rats. However, we may have found evidence for an appeasing olfactory signal, released from the neck region of odor-donor rats. Copyright © 2016 Elsevier Inc. All rights reserved.