WorldWideScience

Sample records for hypothetical sub-plinian eruption

  1. An Integrative Approach for Defining Plinian and Sub-Plinian Eruptive Scenarios at Andesitic Volcanoes: Event-Lithostratigraphy, Eruptive Parameters and Pyroclast Textural Variations of the Largest Late-Holocene Eruptions of Mt. Taranaki, New Zealand.

    Science.gov (United States)

    Torres-Orozco, R.; Cronin, S. J.; Damaschke, M.; Kosik, S.; Pardo, N.

    2016-12-01

    Three eruptive scenarios were determined based on the event-lithostratigraphic reconstruction of the largest late-Holocene eruptions of the andesitic Mt. Taranaki, New Zealand: a) sustained dome-effusion followed by sudden stepwise collapse and unroofing of gas-rich magma; b) repeated plug and burst events generated by transient open-/closed-vent conditions; and c) open-vent conditions of more mafic magmas erupting from a satellite vent. Pyroclastic density currents (PDCs) are the most frequent outcome in every scenario. They can be produced in any/every eruption phase by formation and either repetitive-partial or total gravity-driven collapse of lava domes in the summit crater (block-and-ash flows), frequently followed by sudden magma decompression and violent, highly unsteady to quasi-steady lateral expansion (blast-like PDCs); by collapse or single-pulse fall-back of unsteady eruption columns (pyroclastic flow- and surge-type currents); or during highly unsteady and explosive hydromagmatic phases (wet surges). Fall deposits are produced during the climatic phase of each eruptive scenario by the emplacement of (i) high, sustained and steady, (ii) sustained and height-oscillating, (iii) quasi-steady and pulsating, or (iv) unsteady and totally collapsing eruption columns. Volumes, column heights and mass- and volume-eruption rates indicate that these scenarios correspond to VEI 4-5 plinian and sub-plinian multi-phase and style-shifting episodes, similar or larger than the most recent 1655 AD activity, and comparable to plinian eruptions of e.g. Apoyeque, Colima, Merapi and Tarawera volcanoes. Whole-rock chemistry, textural reconstructions and density-porosity determinations suggest that the different eruptive scenarios are mainly driven by variations in the density structure of magma in the upper conduit. Assuming a simple single conduit model, the style transitions can be explained by differing proportions of alternating gas-poor/degassed and gas-rich magma.

  2. Somma-Vesuvius Plinian Eruptions fed by mafic magma: insights from bubbles in melt inclusions

    Science.gov (United States)

    Esposito, R.; Redi, D.; Cannatelli, C.; Danyushevsky, L. V.; Lima, A.; Bodnar, R. J.; De Vivo, B.

    2014-12-01

    Mt. Somma-Vesuvius Plinian eruptions were first described by Pliny the younger in 79 AD during the infamous eruption that destroyed Pompeii. Today, such eruptions are still a concern to the nearly 3 million people living in the Naples metropolitan area. Understanding the source for Mt. Somma-Vesuvius magma and the coexisting volatile phase is vital to better constrain the long-term eruptive behavior of this volcano. In the present study, ~ 50 olivine phenocrysts were selected from lavas and pumices produced during mild effusive events referred to as inter-Plinian eruptions, and from highly explosive Plinian eruptions that occurred at Mt. Somma-Vesuvius between 33000 ka and 1631 AD. Selected olivine phenocrysts containing MI were examined petrographically and analyzed for Fo content. Fo varies from 69 to 73 mole% for inter-Plinian olivine crystals and from 84 to 90 mole% with one zoned olivine containing 76-81 mole% Fo, for Plinian olivine crystals. Investigated MI vary from slightly crystallized to highly crystallized. Selected crystallized MI were reheated using the Vernadsky stage, and quenched to a homogeneous glass (Group 1) or glass plus a vapor bubble (Group 2). On one hand, MI of Group 1 are hosted in olivine ranging from Fo72 to Fo76 and were all erupted from the Pompeii eruption (white pumice deposit). On the other hand, MI of Group 2 are trapped in olivine ranging from Fo69 to Fo81 and from Fo84 to Fo90, and the hosts are representative of both Plinian and inter-Plinian events. The only eruption where Group-1 and Group-2 MI coexist is the Pompeii eruption. Group 2 MIs were further analyzed by Raman to test for the presence of volatiles (CO2 or H2O) in the vapor bubbles. CO2 was detected in all MI analyzed. CO2 density was determined using the distance between the two Fermi-diad peaks, and ranges between 0.14 and 0.55 g/cm3. Six MI also showed evidence for H2O in the vapor bubble. In addition, carbonates were detected at the glass-vapor interface of five

  3. Assessing future vent opening locations at the Somma-Vesuvio volcanic complex: 2. Probability maps of the caldera for a future Plinian/sub-Plinian event with uncertainty quantification

    Science.gov (United States)

    Tadini, A.; Bevilacqua, A.; Neri, A.; Cioni, R.; Aspinall, W. P.; Bisson, M.; Isaia, R.; Mazzarini, F.; Valentine, G. A.; Vitale, S.; Baxter, P. J.; Bertagnini, A.; Cerminara, M.; de Michieli Vitturi, M.; Di Roberto, A.; Engwell, S.; Esposti Ongaro, T.; Flandoli, F.; Pistolesi, M.

    2017-06-01

    In this study, we combine reconstructions of volcanological data sets and inputs from a structured expert judgment to produce a first long-term probability map for vent opening location for the next Plinian or sub-Plinian eruption of Somma-Vesuvio. In the past, the volcano has exhibited significant spatial variability in vent location; this can exert a significant control on where hazards materialize (particularly of pyroclastic density currents). The new vent opening probability mapping has been performed through (i) development of spatial probability density maps with Gaussian kernel functions for different data sets and (ii) weighted linear combination of these spatial density maps. The epistemic uncertainties affecting these data sets were quantified explicitly with expert judgments and implemented following a doubly stochastic approach. Various elicitation pooling metrics and subgroupings of experts and target questions were tested to evaluate the robustness of outcomes. Our findings indicate that (a) Somma-Vesuvio vent opening probabilities are distributed inside the whole caldera, with a peak corresponding to the area of the present crater, but with more than 50% probability that the next vent could open elsewhere within the caldera; (b) there is a mean probability of about 30% that the next vent will open west of the present edifice; (c) there is a mean probability of about 9.5% that the next medium-large eruption will enlarge the present Somma-Vesuvio caldera, and (d) there is a nonnegligible probability (mean value of 6-10%) that the next Plinian or sub-Plinian eruption will have its initial vent opening outside the present Somma-Vesuvio caldera.

  4. The plinian eruptions of 1912 at Novarupta, Katmai National Park, Alaska

    Science.gov (United States)

    Fierstein, J.; Hildreth, W.

    1992-01-01

    The three-day eruption at Novarupta in 1912 consisted of three discrete episodes. Episode I began with plinian dispersal of rhyolitic fallout (Layer A) and contemporaneous emplacement of rhyolitic ignimbrites and associated proximal veneers. The plinian column was sustained throughout most of the interval of ash flow generation, in spite of progressive increases in the proportions of dacitic and andesitic ejecta at the expense of rhyolite. Accordingly, plinian Layer B, which fell in unbroken continuity with purely rhyolitic Layer A, is zoned from >99% to ???15% rhyolite and accumulated synchronously with emplacement of the correspondingly zoned ash flow sequence in Mageik Creek and the Valley of Ten Thousand Smokes (VTTS). Only the andesiterichest flow units that cap the flow sequence lack a widespread fallout equivalent, indicating that ignimbrite emplacement barely outlasted the plinian phase. On near-vent ridges, the passing ash flows left proximal ignimbrite veneers that share the compositional zonation of their valley-filling equivalents but exhibit evidence for turbulent deposition and recurrent scour. Episode II began after a break of a few hours and was dominated by plinian dispersal of dacitic Layers C and D, punctuated by minor proximal intraplinian flows and surges. After another break, dacitic Layers F and G resulted from a third plinian episode (III); intercalated with these proximally are thin intraplinian ignimbrites and several andesite-rich fall/flow layers. Both CD and FG were ejected from an inner vent much as 0.4 km3 of rhyolitic glass shards from eruptive Episode I fell with CDE and 1.1 km3 with FGH. Most of the rhyolitic ash in the dacitic fallout layers fell far downwind (SE of the vent); near the rhyolite-dominated ignimbrite, however, nearly all of Layers E and H are dacitic, showing that the downwind rhyolitic ash is of 'co-plinian' rather than co-ignimbrite origin. ?? 1992 Springer-Verlag.

  5. A historical analysis of Plinian unrest and the key promoters of explosive activity.

    Science.gov (United States)

    Winson, A. E. G.; Newhall, C. G.; Costa, F.

    2015-12-01

    Plinian eruptions are the largest historically recorded volcanic phenomena, and have the potential to be widely destructive. Yet when a volcano becomes newly restless we are unable to anticipate whether or not a large eruption is imminent. We present the findings from a multi-parametric study of 42 large explosive eruptions (29 Plinian and 13 Sub-plinian) that form the basis for a new Bayesian Belief network that addresses this question. We combine the eruptive history of the volcanoes that have produced these large eruptions with petrological studies, and reported unrest phenomena to assess the probability of an eruption being plinian. We find that the 'plinian probability' is increased most strongly by the presence of an exsolved volatile phase in the reservoir prior to an eruption. In our survey 60% of the plinian eruptions, had an excess SO2 gas phase of more than double than it is calculated by petrologic studies alone. Probability is also increased by three related and more easily observable parameters: a high plinian Ratio (that is the ratio of VEI≥4 eruptions in a volcanoes history to the number of all VEI≥2 eruptions in the history), a repose time of more than 1000 years, and a Repose Ratio (the ratio of the average return of VEI≥4 eruptions in the volcanic record to the repose time since the last VEI≥4) of greater than 0.7. We looked for unrest signals that potentially are indicative of future plinian activity and report a few observations from case studies but cannot say if these will generally appear. Finally we present a retrospective analysis of the probabilities of eruptions in our study becoming plinian, using our Bayesian belief network. We find that these probabilities are up to about 4 times greater than those calculate from an a priori assessment of the global eruptive catalogue.

  6. The 21,700 yr b.p. Lower Toluca Pumice Plinian Eruption of Nevado de Toluca Volcano (Mexico): Evidences of Magma Mixing Process as Triggering Mechanism.

    Science.gov (United States)

    Capra, L.; Arce, J.; Macias, J.

    2006-05-01

    Approximately 21,700 yr B.P., after a period of quiescence of 4800 yr, Nevado de Toluca volcano erupted, producing the Lower Toluca Pumice deposit. The activity generated a 24-km-high Plinian column that lasted ~11 h and dispersed 2.3 km3 (0.8 km3 dense rock equivalent) of tephra toward the NE, blanketing the Lerma basin, an area occupied today by the city of Toluca, with up to 5 cm of ash. Subsequent eruptive pulses were sub-Plinian in style, accompanied by phreatomagmatic explosions that emplaced surge deposits. Finally, the column collapsed toward the NE with the emplacement of a pumice flow deposit. The high vesicularity of the pumice from the basal Plinian layer, up to 83% by volume, indicates that exsolution was dominantly magmatic, and that pressurization of the magma chamber was probably due to a magma mixing process. Evidence for this includes the compositional range of juvenile products (from 55 to 65 wt% SiO2), as well as the presence of two types of plagioclase, one in equilibrium and the other one with disequilibrium textures and reverse zoning. This suggests input of an andesitic liquid into the dacitic magma chamber. Based on the eruptive record, the most likely future eruptive activity at Nevado de Toluca volcano will be Plinian. Although quiet for more than 3250 yr, Plinian activity could occur after a long period of quiescence, and it could represent a hazard for the entire Toluca basin, where more than one million people live today.

  7. Hazard assessment of long-range tephra dispersal for a Plinian eruptive scenario at Popocatépetl volcano (Mexico). Inplications on civil aviation

    Science.gov (United States)

    Bonasia, R.; Scaini, C.; Capra, L.; Nathenson, M.; Siebe, C.; Arana-Salinas, L.; Folch, A.

    2013-12-01

    Popocatépetl is one of the most active volcanoes in Mexico threatening a densely populated area that includes Mexico City with more than 20 million inhabitants. The destructive potential of this volcano is demonstrated by its Late Pleistocene-Holocene eruptive activity, which has been characterized by recurrent Plinian eruptions of large magnitude. The current volcanic hazards map, reconstructed after the crisis occurred in 1994, considers the potential occurrence of different volcanic phenomena, including pyroclastic density currents and lahars. However, no quantitative assessment of the tephra dispersal hazard, especially related to atmospheric dispersal, has been performed. Given the high number of important airports in the surroundings of Popocatépetl volcano and considering the potential threat posed to civil aviation in Mexico and adjacent regions in case of a Plinian eruption, a hazard assessment for tephra dispersal is strongly required. In this work we present the first probabilistic tephra dispersal hazard assessment for Popocatépetl volcano. We compute probabilistic hazard maps for critical thresholds of airborne ash concentrations at different flight levels. Tephra dispersal modelling is performed using the FALL3D numerical model. Probabilistic hazard maps are built for a Plinian eruptive scenario defined on the basis of geological field data for the 'Ochre Pumice' Plinian eruption (4965 14C yrBP). FALL3D model input eruptive parameters are constrained through an inversion method carried out with the semi-analytical HAZMAP model and are varied sampling them on the base of a Probability Density Function. We analyze the influence of seasonal variations on ash dispersal and estimate the average persistence of critical ash concentrations at relevant locations and airports. This study assesses the impact that a Plinian eruption similar to the Ochre Pumice eruption would have on the main airports of Mexico and adjacent areas. The hazard maps presented here

  8. Toward an integrative spatiotemporal architecture of the magma plumbing system leading to systematic Plinian eruption at Montagne Pelée Martinique (Lesser Antilles)

    Science.gov (United States)

    Boudon, G.; Balcone-Boissard, H.; Lyonnet, E.; Morgan, D. J.

    2017-12-01

    The dynamic of crustal magma reservoir may be at the origin of pressure/temperature variations that may trigger magma ascent and eruption. These changes can be registered during crystal growth and can probably produce at the surface geophysical or/and geochemical signals that could be registered by monitoring network, constituting precursory signals. For volcanoes where the plumbing system is well established in terms of volume and depth for a given cycle, repetitive eruptions of the same order of magnitude and involving similar magma composition may occur. It was the case for Montagne Pelée (Martinique, Lesser Antilles), sadly known for the 1902 lava dome-forming eruption that killed 30 000 inhabitants, and that produce repetitive Plinian eruptions in the last 15 ky. Are the perturbations in the dynamic of the magma storage identical for all these eruptions and is the timescale between these perturbations and the eruptions in the same order of magnitude? In the last decade, intracristalline diffusion modelling has been increasingly used to constrain timescale of magmatic processes. Recently this kind of investigations has been coupled to a petrological model of the magma storage region to better wholly describe its behaviour through a Crystal System Analysis (CSA) approach. Here we aim at constraining the pre-eruptive dynamic of the reservoir giving birth to the Plinian eruptions at Montagne Pelée. Precisely we attempt to identify the processes at the origin of the eruptions and the timescale between this process and the eruption. By studying the last five Plinian eruptions of this volcano the question of the systematic occurrence of one process at the same time prior eruption will be discussed. To achieve this goal we performed a detailed petrological description of the eruptive products of the first Plinian phase of these eruptions to build a CSA tree through EPMA and SEM analyses, coupled to Fe-Mg diffusion modelling in orthopyroxenes to retrieve timescale

  9. Stratigraphic, Granulometric and Geochemical Studies of a Major Plinian Eruption on Dominica, Lesser Antilles

    Science.gov (United States)

    Smith, A. L.; Daly, G.; Killingsworth, N.; Deuerling, K.; Schneider, S.; Fryxell, J. E.

    2008-12-01

    The island of Dominica, located in the center of the Lesser Antilles island arc has witnessed, probably within the last 100,000 years, three large volume Plinian eruptions. One of these, associated with the Morne Diablotins center, forms the Grande Savane pyroclastic flow fan, that extends off shore as a distinctive submarine feature for a distance of at least 14 km. Stratigraphical studies of road cuts and well-exposed sea cliffs indicate the fan is composed of an older unit composed of reworked deposits at the base followed by at least four sequences, based on the presence of paleosols, of block and ash flow deposits. The upper unit of block and ash flows is overlain, with no evidence of an intervening paleosol, by a sequence of ignimbrites and pumiceous surges (representing the Plinian eruption). There is no evidence of an initial Plinian fall deposit, so the lowest bed in the succession is an ignimbrite with a highly irregular base that cuts into the underlying block and ash flow deposits, the upper parts of which are colored red due to thermal effects. This lowest ignimbrite is welded (minimum porosity of 15%) throughout its thickness (maximum thickness of greater than 21 m), although a few outcrops near the margins show a thin (20-30 cm) non-welded but lithified zone beneath the welded zone. The remainder of the sequence is composed of lithified ignimbrite that can be subdivided into three units separated by pumiceous surge layers. The ignimbrite succession is overlain, with no obvious break, by a thin fall deposit containing accretionary lapilli and gas cavities, followed by three pumiceous surge deposits (lower and upper show planar stratification and the middle surge shows massive bedding); towards the north the upper two surge deposits are separated by thin pumiceous lapilli fall and ash fall deposits. This surge sequence extends laterally outside of the main area of ignimbrite deposition. The pumice clasts from the ignimbrites are andesitic in

  10. Reconstructing the plinian and co-ignimbrite sources of large volcanic eruptions: A novel approach for the Campanian Ignimbrite.

    Science.gov (United States)

    Marti, Alejandro; Folch, Arnau; Costa, Antonio; Engwell, Samantha

    2016-02-17

    The 39 ka Campanian Ignimbrite (CI) super-eruption was the largest volcanic eruption of the past 200 ka in Europe. Tephra deposits indicate two distinct plume forming phases, Plinian and co-ignimbrite, characteristic of many caldera-forming eruptions. Previous numerical studies have characterized the eruption as a single-phase event, potentially leading to inaccurate assessment of eruption dynamics. To reconstruct the volume, intensity, and duration of the tephra dispersal, we applied a computational inversion method that explicitly accounts for the Plinian and co-ignimbrite phases and for gravitational spreading of the umbrella cloud. To verify the consistency of our results, we performed an additional single-phase inversion using an independent thickness dataset. Our better-fitting two-phase model suggests a higher mass eruption rate than previous studies, and estimates that 3/4 of the total fallout volume is co-ignimbrite in origin. Gravitational spreading of the umbrella cloud dominates tephra transport only within the first hundred kilometres due to strong stratospheric winds in our best-fit wind model. Finally, tephra fallout impacts would have interrupted the westward migration of modern hominid groups in Europe, possibly supporting the hypothesis of prolonged Neanderthal survival in South-Western Europe during the Middle to Upper Palaeolithic transition.

  11. Total grain-size distribution of four subplinian-Plinian tephras from Hekla volcano, Iceland: Implications for sedimentation dynamics and eruption source parameters

    Science.gov (United States)

    Janebo, Maria H.; Houghton, Bruce F.; Thordarson, Thorvaldur; Bonadonna, Costanza; Carey, Rebecca J.

    2018-05-01

    The size distribution of the population of particles injected into the atmosphere during a volcanic explosive eruption, i.e., the total grain-size distribution (TGSD), can provide important insights into fragmentation efficiency and is a fundamental source parameter for models of tephra dispersal and sedimentation. Recent volcanic crisis (e.g. Eyjafjallajökull 2010, Iceland and Córdon Caulle 2011, Chile) and the ensuing economic losses, highlighted the need for a better constraint of eruption source parameters to be used in real-time forecasting of ash dispersal (e.g., mass eruption rate, plume height, particle features), with a special focus on the scarcity of published TGSD in the scientific literature. Here we present TGSD data associated with Hekla volcano, which has been very active in the last few thousands of years and is located on critical aviation routes. In particular, we have reconstructed the TGSD of the initial subplinian-Plinian phases of four historical eruptions, covering a range of magma composition (andesite to rhyolite), eruption intensity (VEI 4 to 5), and erupted volume (0.2 to 1 km3). All four eruptions have bimodal TGSDs with mass fraction of fine ash (primary fragmentation. Due to differences in plume height, this contrast is not seen in samples from individual sites, especially in the near field, where lapilli have a wider spatial coverage in the Plinian deposits. The distribution of pyroclast sizes in Plinian versus subplinian falls reflects competing influences of more efficient fragmentation (e.g., producing larger amounts of fine ash) versus more efficient particle transport related to higher and more vigorous plumes, displacing relatively coarse lapilli farther down the dispersal axis.

  12. Long-range hazard assessment of volcanic ash dispersal for a Plinian eruptive scenario at Popocatépetl volcano (Mexico): implications for civil aviation safety

    Science.gov (United States)

    Bonasia, Rosanna; Scaini, Chiara; Capra, Lucia; Nathenson, Manuel; Siebe, Claus; Arana-Salinas, Lilia; Folch, Arnau

    2014-01-01

    Popocatépetl is one of Mexico's most active volcanoes threatening a densely populated area that includes Mexico City with more than 20 million inhabitants. The destructive potential of this volcano is demonstrated by its Late Pleistocene-Holocene eruptive activity, which has been characterized by recurrent Plinian eruptions of large magnitude, the last two of which destroyed human settlements in pre-Hispanic times. Popocatépetl's reawakening in 1994 produced a crisis that culminated with the evacuation of two villages on the northeastern flank of the volcano. Shortly after, a monitoring system and a civil protection contingency plan based on a hazard zone map were implemented. The current volcanic hazards map considers the potential occurrence of different volcanic phenomena, including pyroclastic density currents and lahars. However, no quantitative assessment of the tephra hazard, especially related to atmospheric dispersal, has been performed. The presence of airborne volcanic ash at low and jet-cruise atmospheric levels compromises the safety of aircraft operations and forces re-routing of aircraft to prevent encounters with volcanic ash clouds. Given the high number of important airports in the surroundings of Popocatépetl volcano and considering the potential threat posed to civil aviation in Mexico and adjacent regions in case of a Plinian eruption, a hazard assessment for tephra dispersal is required. In this work, we present the first probabilistic tephra dispersal hazard assessment for Popocatépetl volcano. We compute probabilistic hazard maps for critical thresholds of airborne ash concentrations at different flight levels, corresponding to the situation defined in Europe during 2010, and still under discussion. Tephra dispersal mode is performed using the FALL3D numerical model. Probabilistic hazard maps are built for a Plinian eruptive scenario defined on the basis of geological field data for the "Ochre Pumice" Plinian eruption (4965 14C yr BP

  13. Evolution of the magma feeding system during a Plinian eruption: The case of Pomici di Avellino eruption of Somma-Vesuvius, Italy

    Science.gov (United States)

    Massaro, S.; Costa, A.; Sulpizio, R.

    2018-01-01

    The current paradigm for volcanic eruptions is that magma erupts from a deep magma reservoir through a volcanic conduit, typically modelled with fixed rigid geometries such as cylinders. This simplistic view of a volcanic eruption does not account for the complex dynamics that usually characterise a large explosive event. Numerical simulations of magma flow in a conduit combined with volcanological and geological data, allow for the first description of a physics-based model of the feeding system evolution during a sustained phase of an explosive eruption. The method was applied to the Plinian phase of the Pomici di Avellino eruption (PdA, 3945 ±10 cal yr BP) from Somma-Vesuvius (Italy). Information available from volcanology, petrology, and lithology studies was used as input data and as constraints for the model. In particular, Mass Discharge Rates (MDRs) assessed from volcanological methods were used as target values for numerical simulations. The model solutions, which are non-unique, were constrained using geological and volcanological data, such as volume estimates and types of lithic components in the fall deposits. Three stable geometric configurations of the feeding system (described assuming elliptical cross-section of variable dimensions) were assessed for the Eruptive Units 2 and 3 (EU2, EU3), which form the magmatic Plinian phase of PdA eruption. They describe the conduit system geometry at time of deposition of EU2 base, EU2 top, and EU3. A 7-km deep dyke (length 2 a = 200-4 00 m, width 2 b = 10- 12 m), connecting the magma chamber to the surface, characterised the feeding system at the onset of the Plinian phase (EU2 base). The feeding system rapidly evolved into hybrid geometric configuration, with a deeper dyke (length 2 a = 600- 800 m, width 2 b = 50 m) and a shallower cylindrical conduit (diameter D = 50 m, dyke-to-cylinder transition depth ∼2100 m), during the eruption of the EU2 top. The deeper dyke reached the dimensions of 2 a = 2000 m and

  14. The 12.1 ka Middle Toluca Pumice: A dacitic Plinian subplinian eruption of Nevado de Toluca in Central Mexico

    Science.gov (United States)

    Arce, J. L.; Cervantes, K. E.; Macías, J. L.; Mora, J. C.

    2005-10-01

    The Nevado de Toluca volcano erupted explosively approximately 12.1 ka ago, producing a Plinian-subplinian eruption that deposited the Middle Toluca Pumice (MTP). The MTP consists of white and gray juvenile pumice, gray dense juvenile lapilli, and red altered lithic lapilli. The pumice is dacitic (63.54-65.06 wt.% SiO 2) with phenocrysts of plagioclase > orthopyroxene > hornblende ± ilmenite and titanomagnetite, and biotite xenocrysts set in a groundmass of rhyolitic glass (70-71 wt.% SiO 2). The MTP has a dispersal axis to the ESE covering an area of 92 km 2, with a minimum volume of 1.8 km 3 (DRE). Stratigraphic relations, grain size, componentry, and vesicularity analyses suggest that the eruption occurred in five major phases: (1) an opening magmatic phase that generated a 20-km-high Plinian column dispersed to the SE; (2) a hydromagmatic explosion followed with the establishment of a subplinian eruptive column (18-19 km high) dispersed tephra to the SE and gradually waned; (3) hydromagmatic explosions emplaced dilute pyroclastic density currents followed by the formation of an eruptive column of unknown height; (4) immediately after, a new magmatic explosion established another eruptive column; and (5) the collapse of the latter column generated two pumiceous pyroclastic density currents that were fully dilute proximally, but transformed into two granular-fluid pyroclastic currents that traveled 19 km from the source.

  15. Magma storage conditions of historic Plinian eruptions of Volcán de Colima, México

    Science.gov (United States)

    Macias, J.; Arce, J.; Sosa, G.; Gardner, J. E.; Saucedo, R.

    2013-12-01

    Volcán de Colima has a historical record with major explosive eruptions occurring every ~100 years (1606, 1690, 1818, and 1913) followed by intra-Plinian effusive activity. The 1818 and 1913 Plinian eruptions erupted andesitic magmas (Pl > Opx > Cpx >> Hbl + Fe-Ti oxides + Ap and rare resorbed Ol) with homogeneous bulk compositions (1913; 58.3 × 0.5 wt.% SiO2, 1818; 58.9 × 0.2 wt.% SiO2; Saucedo et al., 2010). Instead, intra-Plinian magmas are devoid of hornblende and have compositions of 59-61 wt. % in silica (Savov et al., 2008). Pre-eruptive temperatures of oxide Fe-Ti pairs in 1818 and 1913 products yielded temperatures of 830×20°C colder than intra-Plinian magmas usually >970°C (Luhr et al., 2002) depending on the mineral phase analyzed. Amphibole in 1818 and 1913 products consists of two populations: a) large xenocrysts, with plag-px-Fe-Ti oxide rims with equilibrium pressures and temperatures of 380 MPa and 950 °C (Ridolfi et al., 2010), and b) microphenocryst with equilibrium pressures and temperatures of 190-280 MPa and 870-910 °C, respectively. Some phenocrysts in the 1818 magma have a high pressure core overgrowth by a low pressure rim. In order to understand the storage conditions of Colima explosive magmas we carried out a set of hydrothermal experiments with a 1818 pumice sample. Experiments were water oversaturated and close to the oxygen fugacity of the NNO buffer. Experiments show that amphibole is stable at pressures greater than 75 MPa at 850°C, and greater than 100 MPa at 925°C. For the same range of temperature, plagioclase is stable at pressures below ~210 MPa and 100 MPa, respectively. Experimental plagioclase and experimental glass were analyzed and compared to those from the natural sample, yielding an approximate storage pressure of 210 MPa. This pressure is confirmed by the chemical equilibrium of microphenocrystic amphibole of the natural sample. Given the nearly equivalent composition of the most recent Plinain magmas is

  16. Long-range hazard assessment of volcanic ash dispersal for a Plinian eruptive scenario at Popocatépetl volcano (Mexico): implications for civil aviation safety

    Science.gov (United States)

    Bonasia, Rosanna; Scaini, Chirara; Capra, Lucia; Nathenson, Manuel; Siebe, Claus; Arana-Salinas, Lilia; Folch, Arnau

    2013-01-01

    Popocatépetl is one of Mexico’s most active volcanoes threatening a densely populated area that includes Mexico City with more than 20 million inhabitants. The destructive potential of this volcano is demonstrated by its Late Pleistocene–Holocene eruptive activity, which has been characterized by recurrent Plinian eruptions of large magnitude, the last two of which destroyed human settlements in pre-Hispanic times. Popocatépetl’s reawakening in 1994 produced a crisis that culminated with the evacuation of two villages on the northeastern flank of the volcano. Shortly after, a monitoring system and a civil protection contingency plan based on a hazard zone map were implemented. The current volcanic hazards map considers the potential occurrence of different volcanic phenomena, including pyroclastic density currents and lahars. However, no quantitative assessment of the tephra hazard, especially related to atmospheric dispersal, has been performed. The presence of airborne volcanic ash at low and jet-cruise atmospheric levels compromises the safety of aircraft operations and forces re-routing of aircraft to prevent encounters with volcanic ash clouds. Given the high number of important airports in the surroundings of Popocatépetl volcano and considering the potential threat posed to civil aviation in Mexico and adjacent regions in case of a Plinian eruption, a hazard assessment for tephra dispersal is required. In this work, we present the first probabilistic tephra dispersal hazard assessment for Popocatépetl volcano. We compute probabilistic hazard maps for critical thresholds of airborne ash concentrations at different flight levels, corresponding to the situation defined in Europe during 2010, and still under discussion. Tephra dispersal mode is performed using the FALL3D numerical model. Probabilistic hazard maps are built for a Plinian eruptive scenario defined on the basis of geological field data for the “Ochre Pumice” Plinian eruption (4965 14C

  17. The Tephra Layer From the Plinian Eruption in ™r‘faj”kull 1362, Southeast Iceland

    Science.gov (United States)

    Selbekk, R. S.

    2002-12-01

    Pyroclastic fallout from the 1362 eruption of ™r‘faj”kull forms one of the volcanic marker horizons of the North Atlantic. This contribution reports the mineralogical and geochemical characteristics of the ™r‘faj”kull 1362 fallout and its grain-size distribution. A non-rifting 120 km long volcanic lineament some 50 km east of the Eastern Rift-Zone of Iceland is defined by transitional and alkalic volcanic rocks resting unconformably on late Tertiary strata. ™r‘faj”kull which forms the southern termination of this off-rift liniment is an ice-covered stratovolcano (2200 masl) composed mostly of subglacially formed hyaloclastite ranging from basalts to rhyolites. The two historical (1100 yrs) eruptions of ™r‘faj”kull include a small explosive eruption in 1727 and a large devastating Plinian eruption associated with major lahars and a caldera collapse in 1362. Between 1 and 2 km3 dense rock equivalent or 5-10 km3 of rhyolitic pumice was erupted and the fallout was mainly towards ESE. Tentative modelling of the PT-conditions of the magma formation, based on glass/mineral equilibria, indicates that the source was a near-eutectic melt in equilibrium with fayalite, hedenbergite, oligoclase and hematite at some 0.2 GPa pressure. A profile through the fallout was sampled at elevation of about 1100 masl on the SE flank of the volcano. A deposit of 1.8 m thickness was collected in 14 units for examination of composition, mineralogy and grain-size distribution during the eruption. In the profile the fallout is fine grained vesicular glass (1-3% minerals, 3% lithic fragments) with bubble wall thickness in the low micron range. The high and even vesiculation of the glass indicates fast magma ascent and explains the extreme mechanical fragmentation within the eruptive column, yielding between 50 and 80 wt% of less than 0.25 mm grain size. A reconstruction of the Plinian phase, based on grain-size analysis and abundance of lithic fragments, reveals that the

  18. Tephra Fallout Hazard Assessment for VEI5 Plinian Eruption at Kuju Volcano, Japan, Using TEPHRA2

    Science.gov (United States)

    Tsuji, Tomohiro; Ikeda, Michiharu; Kishimoto, Hiroshi; Fujita, Koji; Nishizaka, Naoki; Onishi, Kozo

    2017-06-01

    Tephra fallout has a potential impact on engineered structures and systems at nuclear power plants. We provide the first report estimating potential accumulations of tephra fallout as big as VEI5 eruption from Kuju Volcano and calculated hazard curves at the Ikata Power Plant, using the TEPHRA2 computer program. We reconstructed the eruptive parameters of Kj-P1 tephra fallout deposit based on geological survey and literature review. A series of parameter studies were carried out to determine the best values of empirical parameters, such as diffusion coefficient and the fall time threshold. Based on such a reconstruction, we represent probabilistic analyses which assess the variation in meteorological condition, using wind profiles extracted from a 22 year long wind dataset. The obtained hazard curves and probability maps of tephra fallout associated to a Plinian eruption were used to discuss the exceeding probability at the site and the implications of such a severe eruption scenario.

  19. Transition from Plinian to unstable eruption conditions recorded in fine-grained proximal ash layers of the Middle Laacher See Tephra (12,900 a BP), East Eifel Volcanic Field, Germany

    DEFF Research Database (Denmark)

    Zernack, Anke Verena

    The 12,900 a BP eruption of Laacher See Volcano is a classic example of a complex, multi-phase Plinian eruption and one of the largest known of the Northern Hemisphere during the Late Quaternary. The wide range of primary and reworked pyroclastic deposits produced record drastically changing...... internal and external conditions during the course of the eruption. Here we focus on the so-called “Hauptbritzbank” (HBB), which marks a significant change in the eruptive style of Laacher See Volcano following the initial Plinian phase. The interval is characterised by a series of thin ash beds...... to assess their eruptive mechanism, transport processes and depositional conditions. Correlation between the Eastern and Southern fan proved difficult with dispersal axes of deposits pointing to two different locations within the Laacher See basin and some not intersecting the basin at all. In addition...

  20. Pre-eruptive conditions of dacitic magma erupted during the 21.7 ka Plinian event at Nevado de Toluca volcano, Central Mexico

    Science.gov (United States)

    Arce, J. L.; Gardner, J. E.; Macías, J. L.

    2013-01-01

    The Nevado de Toluca volcano in Central Mexico has been active over the last ca. 42 ka, during which tens of km3 of pyroclastic material were erupted and two important Plinian-type eruptions occurred at ca. 21.7 ka (Lower Toluca Pumice: LTP) and ca. 10.5 ka (Upper Toluca Pumice: UTP). Samples from both the LTP and UTP contain plagioclase, amphibole, iron-titanium oxides, and minor anhedral biotite, set in a vesicular, rhyolitic, glassy matrix. In addition, UTP dacites contain orthopyroxene. Analysis of melt inclusions in plagioclase phenocrysts yields H2O contents of 2-3.5 wt.% for LTP and 1.3-3.6 wt.% for UTP samples. Ilmenite-ulvospinel geothermometry yields an average temperature of ~ 868 °C for the LTP magma (hotter than the UTP magma, ~ 842 °C; Arce et al., 2006), whereas amphibole-plagioclase geothermometry yields a temperature of 825-859 °C for the LTP magma. Water-saturated experiments using LTP dacite suggest that: (i) amphibole is stable above 100 MPa and below 900 °C; (ii) plagioclase crystallizes below 250-100 MPa at temperatures of 850-900 °C; and (iii) pyroxene is stable only below pressures of 200-100 MPa and temperatures of 825-900 °C. Comparison of natural and experimental data suggests that the LTP dacitic magma was stored at 150-200 MPa (5.8-7.7 km below the volcano summit). No differences in pressure found between 21.7 ka and 10.5 ka suggest that these two magmas were stored at similar depths. Orthopyroxene produced in lower temperature LTP experiments is compositionally different to those found in UTP natural samples, suggesting that they originated in two different magma batches. Whole-rock chemistry, petrographic features, and mineral compositions suggest that magma mixing was responsible for the generation of the dacitic Plinian LTP eruption.

  1. The Upper Toluca Pumice (10.5 kyr): Product of the last major Plinian eruption of Nevado de Toluca volcano, Central Mexico

    Science.gov (United States)

    Arce, J. L.; Macias, J. L.

    2001-12-01

    The last Plinian eruption at Nevado de Toluca volcano occurred 10.5 kyr ago producing the Upper Toluca Pumice (UTP). The UTP consists of four widespread fallout layers, interbedded with pyroclastic flow and surge deposits. The UTP event occurred under open vent conditions starting with hydromagmatic explosions that emplaced a hot pyroclastic flow (F0) on the east and northern flanks of the volcano. This explosion decompressed the magmatic system allowing almost immediately the formation of a 21 km high Plinian column that was dispersed by predominant winds 5o to the NE (PC0), which waned after some time. The eruption recommenced with the establishment of three Plinian columns that were dispersed in a NE-E direction, reaching heights of 39, 42, and 28 km, and deposited fall layers (PC1, PC2, and PC3) respectively. These Plinian columns were interrupted several times by phreatomagmatic and collapse events that emplaced pyroclastic flows (F1, F2, and F3) and surges (S1, and S2), mainly on the eastern and northern flanks of the volcano. The juvenile components of the UTP sequence are white, gray and banded pumice and gray juvenile lithic clasts both of dacitic composition (63-66wt% SiO2), and minor accidental lithics. The fallout deposits (PC1 and PC2) covered a minimum area of 2000 km2 with a total volume of 14 km3 (ca. 6 km3 D.R.E.); a mass eruption rate ranging from 3\\times107 to 5\\times108 kg/s and a total mass of 1.2\\times1013 kg. The UTP emplaced 1.5 m of gravel-sized pumice in the modern City of Toluca region and ca. 20 cm of fine sand in the Mexico City region. A future event of this magnitude might represent a major catastrophe to the 30 million people living in these cities and their surroundings.

  2. Juvenile pumice and pyroclastic obsidian reveal the eruptive conditions necessary for the stability of Plinian eruption of rhyolitic magma

    Science.gov (United States)

    Giachetti, T.; Shea, T.; Gonnermann, H. M.; McCann, K. A.; Hoxsie, E. C.

    2016-12-01

    Significant explosive activity generally precedes or coexists with the large effusion of rhyolitic lava (e.g., Mono Craters; Medicine Lake Volcano; Newberry; Chaitén; Cordón Caulle). Such explosive-to-effusive transitions and, ultimately, cessation of activity are commonly explained by the overall waning magma chamber pressure accompanying magma withdrawal, albeit modulated by magma outgassing. The tephra deposits of such explosive-to-effusive eruptions record the character of the transition - abrupt or gradual - as well as potential changes in eruptive conditions, such as magma composition, volatiles content, mass discharge rate, conduit size, magma outgassing. Results will be presented from a detailed study of both the gas-rich (pumice) and gas-poor (obsidian) juvenile pyroclasts produced during the Plinian phase of the 1060 CE Glass Mountain eruption of Medicine Lake Volcano, California. In the proximal deposits, a multitude of pumice-rich sections separated by layers rich in dense clasts suggests a pulsatory behavior of the explosive phase. Density measurements on 2,600 pumices show that the intermediate, most voluminous deposits have a near constant median porosity of 65%. However, rapid increase in porosity to 75-80% is observed at both the bottom and the top of the fallout deposits, suggestive of rapid variations in magma degassing. In contrast, a water content of pyroclastic obsidians of approximately 0.6 wt% does remain constant throughout the eruption, suggesting that the pyroclastic obsidians degassed up to a constant pressure of a few megapascals. Numerical modeling of eruptive magma ascent and degassing is used to provide constraints on eruption conditions.

  3. The three youngest Plinian eruptions of Mt Pelée, Martinique (P1, P2 and P3): Constraining the eruptive conditions from field and experimental studies.

    Science.gov (United States)

    Kueppers, Ulrich; Uhlig, Joan; Carazzo, Guillaume; Kaminski, Edouard; Perugini, Diego; Tait, Steve; Clouard, Valérie

    2015-04-01

    Mt Pelée on Martinique, French Lesser Indies, is infamous for the last big Pelean (i.e., dome forming) eruption in 1902 AD that destroyed agricultural land and the city of Saint Pierre by pyroclastic density currents. Beside such mostly valley-confined deposits, the geological record shows thick fall deposits of at least three Plinian eruptions during the past 2000 years. In an attempt to describe and understand systematic eruptive behaviours as well as the associated variability of eruptive scenarios of Plinian eruptions in Martinique, we have investigated approx. 50 outcrops belonging to the P1 (1315 AD), P2 (345 AD) and P3 (4 AD) eruptions (Traineau et al., JVGR 1989) and collected bulk samples as well as >100 mm pumiceous clasts. All samples are andesitic, contain plagioclase and pyroxene in a glassy matrix and range in porosity between 55 and 69 vol.% with individual bubbles rarely larger than 1 mm. Our approach was two-fold: 1) Loose bulk samples have been subject to dry mechanical sieving in order to quantively describe the grain-size distribution and the fractal dimension. 2) From large clasts, 60*25 mm cylinders have been drilled for fragmentation experiments following the sudden decompression of gas in the sample's pore space. The used experimental set-up allowed for precisely controllable and repeatable conditions (5, 10 and 15 MPa, 25 °C) and the complete sampling of the generated pyroclasts. These experimentally generated clasts were analysed for their grain-size distribution and fractal dimension. For both natural samples and experimental populations, we find we find that the grain-size distribution follows a power-law, with an exponent between 2,5 and 3,7. Deciphering eruption conditions from deposits alone is challenging because of the complex interplay of dynamic volcanic processes and transport-related sorting. We use the quantified values of fractal dimension for a comparison of the power law exponents among the three eruptions and the

  4. Pyroclast textural variation as an indicator of eruption column steadiness in andesitic Plinian eruptions at Mt. Ruapehu

    Science.gov (United States)

    Pardo, Natalia; Cronin, Shane J.; Wright, Heather M.N.; Schipper, C. Ian; Smith, Ian; Stewart, Bob

    2014-01-01

    Between 27 and 11 cal. ka BP, a transition is observed in Plinian eruptions at Mt. Ruapehu, indicating evolution from non-collapsing (steady and oscillatory) eruption columns to partially collapsing columns (both wet and dry). To determine the causes of these variations over this eruptive interval, we examined lapilli fall deposits from four eruptions representing the climactic phases of each column type. All eruptions involve andesite to basaltic andesite magmas containing plagioclase, clinopyroxene, orthopyroxene and magnetite phenocrysts. Differences occur in the dominant pumice texture, the degree of bulk chemistry and textural variability, the average microcrystallinity and the composition of groundmass glass. In order to investigate the role of ascent and degassing processes on column stability, vesicle textures were quantified by gas volume pycnometry (porosity), X-ray synchrotron and computed microtomography (μ-CT) imagery from representative clasts from each eruption. These data were linked to groundmass crystallinity and glass geochemistry. Pumice textures were classified into six types (foamy, sheared, fibrous, microvesicular, microsheared and dense) according to the vesicle content, size and shape and microlite content. Bulk porosities vary from 19 to 95 % among all textural types. Melt-referenced vesicle number density ranges between 1.8 × 102 and 8.9 × 102 mm−3, except in fibrous textures, where it spans from 0.3 × 102 to 53 × 102 mm−3. Vesicle-free magnetite number density varies within an order of magnitude from 0.4 × 102 to 4.5 × 102 mm−3 in samples with dacitic groundmass glass and between 0.0 and 2.3 × 102 mm−3 in samples with rhyolitic groundmass. The data indicate that columns that collapsed to produce pyroclastic flows contained pumice with the greatest variation in bulk composition (which overlaps with but extends to slightly more silicic compositions than other eruptive products); textures

  5. Late Holocene phases of dome growth and Plinian activity at Guagua Pichincha volcano (Ecuador)

    NARCIS (Netherlands)

    Robin, Claude; Samaniego, Pablo; Le Pennec, Jean-Luc; Mothes, Patricia; van der Plicht, Johannes

    2008-01-01

    Since the eruption which affected Quito in AD 1660, Guagua Pichincha has been considered a hazardous volcano. Based on field studies and twenty C-14 dates, this paper discusses the eruptive activity of this volcano, especially that of the last 2000 years. Three major Plinian eruptions with

  6. The recent pumice eruptions of Mt. Pelée volcano, Martinique. Part I: Depositional sequences, description of pumiceous deposits

    Science.gov (United States)

    Traineau, Hervé; Westercamp, Denis; Bardintzeff, Jacques-Marie; Miskovsky, Jean-Claude

    1989-08-01

    Mount Pelée is one of the most active volcanoes of the Lesser Antilles arc, with more than twenty eruptions over the last 5000 years. Both nuée ardente-type eruptions, which are well known, and pumice eruptions, although little known, are very common in the stratigraphic record. The four younger pumice eruptions, P4 (2440 y.B.P.), P3 (2010 y.B.P.), P2 (1670 y.B.P.) and P1 (650 y.B.P.) can be used to reconstruct the eruption sequences. The various pumiceous deposits can be described as fine lithic ash layer, Plinian fall deposits, pumice and ash flow deposits with associated ash cloud fall deposits, and pumice surge deposits. Three kinds of depositional sequences have been defined. The distinctions between them are based on the occurrence of an initial Plinian phase and the generation of intraflow pyroclastic surges. The pumice eruptions of Mt. Pelée are small in intensity and magnitude, as expressed by the dispersal of their products and by the total mass of erupted material which is estimated to be less than 1 km 3 in each case. The pumice fall deposits have dispersal characteristics of small Plinian eruptions, close to the sub-Plinian type. Nevertheless, the probability of an occurrence of a new pumice eruption at Mt. Pelée is high, and the widespread distribution of pumice deposits around the volcano suggests that such an eruption is a major volcanic risk during the present stage of activity.

  7. The 23,500 y 14C BP White Pumice Plinian eruption and associated debris avalanche and Tochimilco lava flow of Popocatépetl volcano, México

    Science.gov (United States)

    Siebe, Claus; Salinas, Sergio; Arana-Salinas, Lilia; Macías, José Luis; Gardner, James; Bonasia, Rosanna

    2017-03-01

    The White Pumice (WP) is one of the thickest and most voluminous Plinian fallouts produced by Popocatépetl volcano in central Mexico during the Late Pleistocene-Holocene. Its eruption 23,500 14C y BP (27,800 cal BP) was triggered by the catastrophic failure of the SW flank of the volcano. The resulting debris avalanche was highly mobile reaching 72 km from the cone with an apparent coefficient of friction (L/H) of 0.06. The deposit covers an area of 1200 km2, and has a volume of 10.4 km3. This gigantic landslide, characterized by exceptionally large proximal hummocks (> 400 m) provoked the sudden decompression of the hydrothermal and magmatic systems, which produced an initial blast followed by the rise of a Plinian column that reached an altitude of 33 km. The isopach map allows the recognition of a dispersal axis pointing toward the south, where an area of 2490 km2 was covered by > 10 cm of pumice and ash. The total volume of the pumice fallout was estimated at 1.9 km3 DRE (Dense Rock Equivalent). Pumice clasts are dacitic (62-66 wt.% SiO2, anhydrous basis), highly vesicular (55-88 vol.%) and display a seriate texture with phenocrysts of plagioclase + hornblende + augite + hypersthene + oxides (Ti-magnetite and ilmenite) + apatite. As the eruption advanced, discharge rates became more intermittent and the height of the column fluctuated and finally collapsed, generating pumice-and-ash flows that were emplaced around the volcano. This short but intense activity was followed during subsequent years by rain-induced lahars that reached great distances from the volcano. At the same time, more degassed andesitic-dacitic (61-65 wt.% SiO2) magma was erupted effusively (4.4 km3, DRE) in the new horseshoe-shaped 5 km-wide crater from which the Tochimilco lava flow descended toward the SSE, where it inundated an area of 68 km2 and reached as far as 22 km from its source. Since then, multiple eruptions have reconstructed the summit cone, almost completely obliterating the

  8. Spreading of Somma-Vesuvio Volcanic Complex: is the Hazard for Plinian Eruptions being reduced?

    Science.gov (United States)

    Borgia, A.; Tizzani, P.; Solaro, G.; Luongo, G.; Fusi, N.

    2003-12-01

    Contrary to what is the common knowledge, a detailed structural study of active faulting and rifting of the summit area of Somma-Vesuvio volcanic complex, combined with INSAR, levelling data and seismic profiling at sea suggests that the present-day long-term dynamic behaviour of the complex and of its summit caldera is characterized by volcanic spreading. The structural evolution is controlled by a number of asymmetric, intersecting leaf-grabens. The boundary faults of these grabens intersect at different angles the Somma caldera walls generating a set of wedge-horsts. While normal faulting characterizes the Somma caldera walls, the lavas of the past 150 years, infilling the caldera, have been rifted all around the southern, eastern and northern base of Vesuvio's cone, which, in turn, is being displaced seaward. Associated to the subsidence and extension of the summit area, relative uplift occurs along the coast; in addition, deformation of recent sediments 6-18 km offshore also indicate compression and uplift, which appears to be unrelated to regional tectonics. A preliminary evaluation indicates that rifting of the lavas is in the order of 1-2 mm/a with a southwestward average direction of displacement. Based on these data, we suggest that a wide sector of Somma-Vesuvio is spreading on its plastic sedimentary substratum, which have been identified by drilling. Volcanic spreading appears to have controlled the magmatic evolution and the energy decrease of major historic explosive eruptions since 79 AD. If our interpretation is correct, major plinian eruptions should not occur in the near future. On the other hand, rifting around the caldera suggests that volcanic activity could soon be renewed.

  9. Decompression Induced Crystallization of Basaltic Andesite Magma: Constraints on the Eruption of Arenal Volcano, Costa Rica.

    Science.gov (United States)

    Szramek, L. A.; Gardner, J. E.; Larsen, J. F.

    2004-12-01

    Arenal Volcano is a small stratovolcano located 90 km NW of San Jose, Costa Rica. In 1968 current activity began with a Plinian phase, and has continued to erupt lava flows and pyroclastic flows intermittently since. Samples from the Plinian, pyroclastic flow, strombolian, and effusive phases have been studied texturally. Little variation in crystallinity occurs amongst the different phases. Number density of crystals, both 2D and 3D are 50-70 mm-2 and 30,000-50,000 mm-3 in the Plinian sample, compared to the lesser values in other eruptive types. Characteristic crystal size also increases as explosivity decreases. Two samples, both lava flows collected while warm, overlap with the Plinian sample. This suggests that the variations seen may be a result of cooling history. Plagioclase differs between the Plinian sample, in which they are only tabular in shape, and the other eruptive types, which contain both tabular and equant crystals. To link decompression paths of the Arenal magma to possible pre-eruptive conditions, we have carried out hydrothermal experiments. The experiments were preformed in TZM pressure vessels buffered at a fugacity of Ni-NiO and water saturation. Phase equilibria results in conjunction with mineral compositions and temperature estimates by previous workers from active lava flows and two-pyroxene geothermometry, constrain the likely pre-eruptive conditions for the Arenal magma to 950-1040° C with a water pressure of 50-80 MPa. Samples that started from conditions that bracket our estimated pre-eruptive conditions were decompressed in steps of 5-30 MPa and held for various times at each step until 20 MPa was reached, approximating average decompression rates of 0.25, 0.025, 0.0013 MPa/s. Comparison of textures found in the natural samples to the experimentally produced textures suggest that the Plinian eruption likely was fed by magma ascending at 0.05-1 m/s, whereas the less explosive phases were fed by magma ascending at 0.05 m/s or less.

  10. Degassing vs. eruptive styles at Mt. Etna volcano (Sicily, Italy): Volatile stocking, gas fluxing, and the shift from low-energy to highly-explosive basaltic eruptions

    Science.gov (United States)

    Moretti, Roberto; Métrich, Nicole; Di Renzo, Valeria; Aiuppa, Alessandro; Allard, Patrick; Arienzo, Ilenia

    2017-04-01

    Basaltic magmas can transport and release large amounts of volatiles into the atmosphere, especially in subduction zones, where slab-derived fluids enrich the mantle wedge. Depending on magma volatile content, basaltic volcanoes thus display a wide spectrum of eruptive styles, from common Strombolian-type activity to Plinian events. Mt. Etna in Sicily, is a typical basaltic volcano where the volatile control on such a variable activity can be investigated. Based on a melt inclusion study in products from Strombolian or lava-fountain activity to Plinian eruptions, here we show that for the same initial volatile content, different eruptive styles reflect variable degassing paths throughout the composite Etnean plumbing system. The combined influence of i) crystallization, ii) deep degassing and iii) CO2 gas fluxing can explain the evolution of H2O, CO2, S and Cl in products from such a spectrum of activity. Deep crystallization produces the CO2-rich gas fluxing the upward magma portions, which will become buoyant and easily mobilized in small gas-rich batches stored within the plumbing system. When reaching gas dominated conditions (i.e., a gas/melt mass ratio of 0.3 and CO2,gas/H2Ogas molar ratio 5 ), these will erupt effusively or mildly explosively, whilst in case of the 122 BC Plinian eruption, open-system degassing conditions took place within the plumbing system, such that continuous CO2-fluxing determined gas accumulation on top of the magmatic system. The emission of such a cap in the early eruptive phase triggered the arrival of deep H2O-rich whose fast decompression and bubble nucleation lead to the highly explosive character, enhanced by abundant microlite crystallization and consequent increase of magma effective viscosity. This could explain why open system basaltic systems like Etna may experience highly explosive or even Plinian episodes during eruptions that start with effusive to mildly explosive phases. The proposed mechanism also determines a

  11. Correlation and stratigraphic eruption age of the pyroclastic flow deposits and wide spread volcanic ashes intercalated in the Pliocene-Pleistocene strata, central Japan

    International Nuclear Information System (INIS)

    Nagahashi, Yoshitaka; Satoguchi, Yasufumi; Yoshikawa, Shusaku

    2000-01-01

    Three pyroclastic flow deposits in the Takayama and Omine area, central Honshu, are correlated to the distal widespread volcanic ashes intercalated in the Plio-Pleistocene boundary strata in central Japan. The correlation is based on these stratigraphic relationships, facies, magnetostratigraphy, petrographic properties such as mineral assemblage, refractive index and chemical composition of the volcanic glasses and orthopyroxene. As the result of these correlation, the eruption age of the proximal pyroclastic flow deposits have become clear. And precise correlation between proximal eruption units and distal depositional units is now possible. Ho-Kd 39 Tephra erupted at about 1.76 Ma, forming a co-ignimbrite ash, which deposited in the Kanto sedimentary basin. Eb-Fukuda Tephra erupted at about 1.75 Ma, and distal volcaniclastic deposit sedimented in the Kinki, Niigata and Kanto sedimentary basins. The eruptional and depositional phase are divided into the stage 1, stage 2 (early), stage 2 (late) and stage 3. Stage 1 is phreato-plinian type eruption phase, forming distal ash fall deposit. Stage 2 (early) is plinian pumice fall, intra-plinian pyroclastic flow and plinian pumice fall eruption phase, forming distal ash fall. Stage 2 (late) is final eruptional phase of the biggest pyroclastic flow of the Eb-Fukuda Tephra, forming a co-ignimbrite ash fall. Stage 3 is resedimented stage after the end of the explosive eruption. It is notable that resedimented volcaniclastic deposit reached Osaka sedimentary basin 300 km away from the eruption center. Om-SK110 Tephra erupted at about 1.65 Ma, divided into the stage 1, stage 2 and stage 3. Stage 1 is eruption phase of the plinian pumice fall and first pyroclastic flow. Stage 2 is pauses in eruption activity. Stage 3 is second pyroclastic flow phase, it is inferred that the pyroclastic flow of the stage 3 directly entered the Niigata sedimentary basin and simultaneously formed a co-ignimbrite ash. (author)

  12. The Ottaviano eruption of Somma-Vesuvio (8000 y B.P.): a magmatic alternating fall and flow-forming eruption

    Science.gov (United States)

    Rolandi, G.; Maraffi, S.; Petrosino, P.; Lirer, L.

    1993-11-01

    The Ottaviano eruption occurred in the late neolithic (8000 y B.P.). 2.40 km 3 of phonolitic pyroclastic material (0.61 km 3 DRE) were emplaced as pyroclastic flow, surge and fall deposits. The eruption began with a fall phase, with a model column height of 14 km, producing a pumice fall deposit (LA). This phase ended with short-lived weak explosive activity, giving rise to a fine-grained deposit (L1), passing to pumice fall deposits as the result of an increasing column height and mass discharge rate. The subsequent two fall phases (producing LB and LC deposits), had model column heights of 20 and 22 km with eruption rates of 2.5 × 10 7 and 2.81 × 10 7 kg/s, respectively. These phases ended with the deposition of ash layers (L2 and L3), related to a decreasing, pulsing explosive activity. The values of dynamic parameters calculated for the eruption classify it as a sub-plinian event. Each fall phase was characterized by variations in the eruptive intensity, and several pyroclastic flows were emplaced (F1 to F3). Alternating pumice and ash fall beds record the waning of the eruption. Finally, owing to the collapse of a eruptive column of low gas content, the last pyroclastic flow (F4) was emplaced.

  13. Investigating the consequences of urban volcanism using a scenario approach I: Development and application of a hypothetical eruption in the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Deligne, Natalia I.; Fitzgerald, Rebecca H.; Blake, Daniel M.; Davies, Alistair J.; Hayes, Josh L.; Stewart, Carol; Wilson, Grant; Wilson, Thomas M.; Castelino, Renella; Kennedy, Ben M.; Muspratt, Scott; Woods, Richard

    2017-04-01

    What happens when a city has a volcanic eruption within its boundaries? To explore the consequences of this rare but potentially catastrophic combination, we develop a detailed multi-hazard scenario of an Auckland Volcanic Field (AVF) eruption; the AVF underlies New Zealand's largest city, Auckland. We start with an existing AVF unrest scenario sequence and develop it through a month-long hypothetical eruption based on geologic investigations of the AVF and historic similar eruptions from around the world. We devise a credible eruption sequence and include all volcanic hazards that could occur in an AVF eruption. In consultation with Civil Defence and Emergency Management staff, we create a series of evacuation maps for before, during, and after the hypothetical eruption sequence. Our result is a versatile scenario with many possible applications, developed further in companion papers that explore eruption consequences on transportation and water networks. However, here we illustrate one application: evaluating the consequences of an eruption on electricity service provision. In a collaborative approach between scientists and electricity service providers, we evaluate the impact of the hypothetical eruption to electricity generation, transmission, and distribution infrastructure. We then evaluate how the impacted network functions, accounting for network adaptations (e.g., diverting power away from evacuated areas), site access, and restoration factors. We present a series of regional maps showing areas with full service, rolling outages, and no power as a result of the eruption. This illustrative example demonstrates how a detailed scenario can be used to further understand the ramifications of urban volcanism on local and regional populations, and highlights the importance of looking beyond damage to explore the consequences of volcanism.

  14. Evaluation of Kilauea Eruptions By Using Stable Isotope Analysis

    Science.gov (United States)

    Rahimi, K. E.; Bursik, M. I.

    2016-12-01

    Kilauea, on the island of Hawaii, is a large volcanic edifice with numerous named vents scattered across its surface. Halema`uma`u crater sits with Kilauea caldera, above the magma reservoir, which is the main source of lava feeding most vents on Kilauea volcano. Halema`uma`u crater produces basaltic explosive activity ranging from weak emission to sub-Plinian. Changes in the eruption style are thought to be due to the interplay between external water and magma (phreatomagmatic/ phreatic), or to segregation of gas from magma (magmatic) at shallow depths. Since there are three different eruption mechanisms (phreatomagmatic, phreatic, and magmatic), each eruption has its own isotope ratios. The aim of this study is to evaluate the eruption mechanism by using stable isotope analysis. Studying isotope ratios of D/H and δ18O within fluid inclusion and volcanic glass will provide an evidence of what driven the eruption. The results would be determined the source of water that drove an eruption by correlating the values with water sources (groundwater, rainwater, and magmatic water) since each water source has a diagnostic value of D/H and δ18O. These results will provide the roles of volatiles in eruptions. The broader application of this research is that these methods could help volcanologists forecasting and predicting the current volcanic activity by mentoring change in volatiles concentration within deposits.

  15. Textural constraints on the dynamics of the 2000 Miyakejima eruption

    Science.gov (United States)

    Garozzo, Ileana; Romano, Claudia; Giordano, Guido; Geshi, Nobuo; Vona, Alessandro

    2016-04-01

    different nucleation and growth processes. Also the Vesicles Number Densities (VNDs) vary of about one order of magnitude in the different populations (from 107 to 108 cm-3), with values comparable with those commonly related to sub-Plinian and Plinian eruptions. Data from the CSD analysis show perfect agreement with the measured VNDs (crystal population densities increasing with VNDs), suggesting a link between the degassing history and the syn-eruptive crystallization. The results of the textural analysis are used to produce a conduit model for the 2000 Miyakejima eruption. Textural analysis and modeling data are presented to reconstruct the eruptive dynamics leading to this high - energetic eruption.

  16. Bromine release during Plinian eruptions along the Central American Volcanic Arc

    Science.gov (United States)

    Hansteen, T. H.; Kutterolf, S.; Appel, K.; Freundt, A.; Perez-Fernandez, W.; Wehrmann, H.

    2010-12-01

    Volcanoes of the Central American Volcanic Arc (CAVA) have produced at least 72 highly explosive eruptions within the last 200 ka. The eruption columns of all these “Plinian” eruptions reached well into the stratosphere such that their released volatiles may have influenced atmospheric chemistry and climate. While previous research has focussed on the sulfur and chlorine emissions during such large eruptions, we here present measurements of the heavy halogen bromine by means of synchrotron radiation induced micro-XRF microanalysis (SR-XRF) with typical detection limits at 0.3 ppm (in Fe rich standard basalt ML3B glass). Spot analyses of pre-eruptive glass inclusions trapped in minerals formed in magma reservoirs were compared with those in matrix glasses of the tephras, which represent the post-eruptive, degassed concentrations. The concentration difference between inclusions and matrix glasses, multiplied by erupted magma mass determined by extensive field mapping, yields estimates of the degassed mass of bromine. Br is probably hundreds of times more effective in destroying ozone than Cl, and can accumulate in the stratosphere over significant time scales. Melt inclusions representing deposits of 22 large eruptions along the CAVA have Br contents between 0.5 and 13 ppm. Br concentrations in matrix glasses are nearly constant at 0.4 to 1.5 ppm. However, Br concentrations and Cl/Br ratios vary along the CAVA. The highest values of Br contents (>8 ppm) and lowest Cl/Br ratios (170 to 600) in melt inclusions occur across central Nicaragua and southern El Salvador, and correlate with bulk-rock compositions of high Ba/La > 85 as well as low La/Yb discharged 700 kilotons of Br. On average, each of the remaining 21 CAVA eruptions studied have discharged c.100 kilotons of bromine. During the past 200 ka, CAVA volcanoes have emitted a cumulative mass of 3.2 Mt of Br through highly explosive eruptions. There are six periods in the past (c. 2ka, 6ka, 25ka, 40ka, 60ka, 75

  17. Unearthing The Eruptive Personality Of El Salvador's Santa Ana (Ilamatepec) Volcano Though In-depth Stratigraphic Analysis Of Pre-1904 Deposits

    Science.gov (United States)

    Gallant, E.; Martinez-Hackert, B.

    2011-12-01

    The Santa Ana (Ilamatepec) volcano (2384 m) in densely populated El Salvador Central America presents serious volcanic hazard potential. The volcano is a prevalent part of every day life in El Salvador; the sugarcane and coffee belt of the country are to its Southern and Western flanks, recreational areas lies to its East, and second and third largest cities of El Salvador exist within its 25 km radius. Understanding the eruptive characteristics and history is imperative due to the volcano's relative size (the highest in the country) and it's explosive, composite nature. Historical records indicate at least 9 potential VEI 3 eruptions since 1521 AD. The volcano's relative inaccessibility and potential hazards do not promote a vast reservoir of research activity, as can be seen in the scarcity of published papers on topics prior to the 1904 eruption. This research represents the first steps towards creating a comprehensive stratigraphic record of the crater and characterizing its eruptive history, with an eventual goal of recreating the volcanic structure prior to its collapse. Samples of pre-1904 eruptive material were taken from the southern wall of an E-W oriented fluvial gully located within the SSW of the tertiary crater. These were analyzed using thin sections and optical microscopy, grain size distribution techniques, and scanning electron microscopy. The 15-layer sequence indicates an explosive history characterized by intense phreatomagmatic phases, plinian, sub-plinian and basaltic/andesitic composition strombolian activity. Another poster within the session will discuss an older sequence within the walls of the secondary crater. Further detailed studies will be required to gain a better understanding of the characteristics of Santa Ana Volcano.

  18. The 1845 Hekla eruption: Grain-size characteristics of a tephra layer

    Science.gov (United States)

    Gudnason, Jonas; Thordarson, Thor; Houghton, Bruce F.; Larsen, Gudrun

    2018-01-01

    The 1845 eruption is commonly viewed as a typical Hekla eruption. It is a key event in the eruptive history of the volcano, as it is one of the best documented Hekla eruptions, in terms of contemporary accounts and observations. The eruption started on 2 September 1845 with an intense, hour long explosive Plinian phase that passed into effusive activity, ending on the 16 March 1846. The amount of tephra produced in the opening phase was 0.13 km3/7.5 × 1010 kg. The total grain-size distribution of the deposit is bimodal with a dominant coarse mode at - 2.5 φ (5.6 mm) and a broad finer mode at 3 to 4.5 φ (0.125 to 0.045 mm). At individual sites, the grain-size distribution of the tephra from the Plinian opening phase is also commonly (not always) bimodal. Deconvolved grain-size distributions exhibit distinctly different sedimentation patterns of the coarse and fine subpopulations. The lapilli-dominated subpopulation fines rapidly with transport, while the ash-dominated subpopulation shows less changes with distance, indicating premature sedimentation of fines by aggregation from the 1845 volcanic plume. Tephra deposition was to the ESE of the volcano from a 19 km (a.s.l.) high eruption plume. The plume front travelled at speeds of 16-19 m s- 1. Reports of ash deposition onto ships near the Faroe and Shetland Islands, 700 to 1100 km away from Hekla, demonstrate that even moderate-sized Hekla eruptions can affect very large parts of European air-space.

  19. Complex proximal deposition during the Plinian eruptions of 1912 at Novarupta, Alaska

    Science.gov (United States)

    Houghton, Bruce F.; Wilson, C.J.N.; Fierstein, J.; Hildreth, W.

    2004-01-01

    Proximal (Smokes ignimbrite. The proximal products include alternations and mixtures of both locally and regionally dispersed fall ejecta, and numerous thin complex deposits of pyroclastic density currents (PDCs) with no regional analogs. The locally dispersed component of the fall deposits forms sector-confined wedges of material whose thicknesses halve radially from and concentrically about the vent over distances of 100-300 m (cf. several kilometers for the medial-distal fall deposits). This locally dispersed fall material (and many of the associated PDC deposits) is rich in andesitic and banded pumices and richer in shallow-derived wall-rock lithics in comparison with the coeval medial fall units of almost entirely dacitic composition. There are no marked contrasts in grain size in the near-vent deposits, however, between locally and widely dispersed beds, and all samples of the proximal fall deposits plot as a simple continuation of grain size trends for medial-distal samples. Associated PDC deposits form a spectrum of facies from fines-poor, avalanched beds through thin-bedded, landscape-mantling beds to channelized lobes of pumice-block-rich ignimbrite. The origins of the Novarupta near-vent deposits are considered within a spectrum of four transport regimes: (1) sustained buoyant plume, (2) fountaining with co-current flow, (3) fountaining with counter-current flow, and (4) direct lateral ejection. The Novarupta deposits suggest a model where buoyant, stable, regime-1 plumes characterized most of episodes II and III, but were accompanied by transient and variable partitioning of clasts into the other three regimes. Only one short period of vent blockage and cessation of the Plinian plume occurred, separating episodes II and III, which was followed by a single PDC interpreted as an overpressured "blast" involving direct lateral ejection. In contrast, regimes 2 and 3 were reflected by spasmodic sedimentation from the margins of the jet and perhaps lower plume

  20. Eruption and Degassing Processes in a Supervolcanic System: The Volatile Record Preserved in Melt Inclusions from the 3.49Ma Tara Ignimbrite in the Central Andes

    Science.gov (United States)

    Grocke, S.; de Silva, S. L.; Schmitt, A. K.; Wallace, P. J.

    2010-12-01

    Analysis of H2O and CO2 in quartz and sanidine-hosted melt inclusions from one of the youngest supervolcanic eruptions in the Altiplano Puna Volcanic Complex (APVC) in the Central Andes provides information on crystallization depths and eruption and degassing processes. At least 740 km3 of high-K, metaluminous, rhyodacite to rhyolite magma erupted from the Guacha Caldera in southwest Bolivia, producing three phases of the 3.49 Ma Tara Ignimbrite: a Plinian fall-deposit, an extensive ignimbrite, and several post-caldera domes. Infrared spectroscopic analyses of quartz-hosted melt inclusions from Tara Plinian pumice have H2O contents of ~4.5 wt % and variable CO2 contents (110-300 ppm), corresponding to vapor saturation pressures up to 180 MPa. In contrast, sanidine-hosted melt inclusions from the Plinian-fall deposit contain bubbles, lower water contents (1.4-2.2 wt %) and lower CO2 (87-143 ppm). These vesiculated melt inclusions and low volatile contents suggest that the sanidine crystals leaked on their ascent to the surface and therefore do not record accurate pre-eruptive melt volatile contents. In contrast, quartz-hosted melt inclusions from post-caldera dome samples contain lower H2O contents of 2.5-3.5 wt % (average 2.9 wt %) and no detectable CO2, corresponding to vapor saturation pressures of 50-90 MPa. These data indicate that the preeruptive plinian stage Tara magma was vapor saturated at the time of melt inclusion entrapment and stored between 5-6 km, while those from the post-caldera domes were trapped at 2-3 km. Differences in CO2 between Plinian and dome melt inclusions require that the post-caldera dome quartzes represent a different generation of crystals that grew as the magma slowly rose and progressively degassed at 2-3 km. During this shallow crystallization, the magma evolved further and eventually fed the post-caldera domes, one of which is a high-Si rhyolite. Consistent with this interpretation, melt inclusions from post-caldera dome samples

  1. Myth and catastrophic reality: using cosmogonic mythology to identify cosmic impacts and massive plinian eruptions in holocene South America.

    Energy Technology Data Exchange (ETDEWEB)

    Masse, W. B. (William Bruce)

    2004-01-01

    Major natural catastrophes (e.g., 'universal' floods, fire, darkness, and sky falling down) are prominently reflected in traditional South American creation myths, cosmology, religion, and worldview. We are now beginning to recognize that cosmogonic myths represent a rich and largely untapped data set concerning the most dramatic natural events and processes experienced by each cultural group during the past several thousand years. Observational details regarding specific catastrophes are encoded in myth storylines, typically cast in terms of supernatural characters and actions. Not only are the myths amenable to scientific analysis, but also some sets of myths encode multiple catastrophes in meaningful relative chronological order. The present study considers more than 4200 myths, including more than 260 'universal' catastrophe myths from cultural groups throughout South America. These myths are examined in light of available geological, paleoenvironmental, archeological, and documentary evidence. Our analysis reveals three possible ultra-plinian volcanic eruptions, two in Columbia and the other in the Gran Chaco, the latter likely associated with a poorly dated late Holocene eruption of Nuevo Mundo in central Bolivia. Our analysis also identifies a set of traditions likely linked with the well-known Campo del Cielo iron meteorite impact in northern Argentina originally hypothesized to have occurred around 4000 years ago. Intriguingly, these traditions strongly suggest that the Campo del Cielo impact triggered widespread mass fires in the Gran Chaco region and possibly in the Brazilian Highlands. Several other potential cosmic impacts, distinct from Campo del Cielo, are hinted at in the mythology of other locations in South America. The numerous catastrophe myths in the Gran Chaco region exhibit the most coherent chronological sequence of any South American region. The sequence begins with a 'Great Flood,' by far the most widespread

  2. When does eruption run-up begin? Multidisciplinary insight from the 1999 eruption of Shishaldin volcano

    Science.gov (United States)

    Rasmussen, Daniel J.; Plank, Terry A.; Roman, Diana C.; Power, John A.; Bodnar, Robert J.; Hauri, Erik H.

    2018-03-01

    During the run-up to eruption, volcanoes often show geophysically detectable signs of unrest. However, there are long-standing challenges in interpreting the signals and evaluating the likelihood of eruption, especially during the early stages of volcanic unrest. Considerable insight can be gained from combined geochemical and geophysical studies. Here we take such an approach to better understand the beginning of eruption run-up, viewed through the lens of the 1999 sub-Plinian basaltic eruption of Shishaldin volcano, Alaska. The eruption is of interest due to its lack of observed deformation and its apparent long run-up time (9 months), following a deep long-period earthquake swarm. We evaluate the nature and timing of recharge by examining the composition of 138 olivine macrocrysts and 53 olivine-hosted melt inclusions and through shear-wave splitting analysis of regional earthquakes. Magma mixing is recorded in three crystal populations: a dominant population of evolved olivines (Fo60-69) that are mostly reversely zoned, an intermediate population (Fo69-76) with mixed zonation, and a small population of normally zoned more primitive olivines (Fo76-80). Mixing-to-eruption timescales are obtained through modeling of Fe-Mg interdiffusion in 78 olivines. The large number of resultant timescales provides a thorough record of mixing, demonstrating at least three mixing events: a minor event ∼11 months prior to eruption, overlapping within uncertainty with the onset of deep long-period seismicity; a major event ∼50 days before eruption, coincident with a large (M5.2) shallow earthquake; and a final event about a week prior to eruption. Shear-wave splitting analysis shows a change in the orientation of the local stress field about a month after the deep long-period swarm and around the time of the M5.2 event. Earthquake depths and vapor saturation pressures of Raman-reconstructed melt inclusions indicate that the recharge magma originated from depths of at least 20

  3. Characterization of volcanic deposits and geoarchaeological studies from the 1815 eruption of Tambora volcano

    Directory of Open Access Journals (Sweden)

    Igan Supriatman Sutawidjaja

    2014-06-01

    Full Text Available http://dx.doi.org/10.17014/ijog.vol1no1.20066aThe eruption of Tambora volcano on the island of Sumbawa in 1815 is generally considered as the largest and the most violent volcanic event in recorded history. The cataclysmic eruption occurred on 11 April 1815 was initiated by Plinian eruption type on 5 April and killed more than 90,000 people on Sumbawa and nearby Lombok. The type plinian eruptions occurred twice and ejected gray pumice and ash, to form stratified deposits as thick as 40-150 cm on the slopes and mostly distributed over the district west of the volcano. Following this, at about 7 pm, on 11 April the first pyroclastic surge was generated and progressively became greater extending to almost whole direction, mainly to the north, west, and south districts from the eruption center. The deadliest volcanic eruption buried ancient villages by pyroclastic surge and flow deposits in almost intact state, thus preserving important archaeological evidence for the period. High preservation in relatively stable conditions and known date of the eruptions provide approximate dating for the archaeological remains. Archaeological excavations on the site uncovered a variety of remains were relieved by ground penetrating radar (GPR to map structural remains of the ancient villages under the pyroclastic surge and flow deposits. These traverses showed that GPR could define structures as deep as 10 m (velocity 0.090 m/ns and could accurately map the thickness of the stratified volcanic deposits in the Tambora village area.    

  4. A critical evaluation of the evidence for multiple Late Pleistocene eruptions of Laacher See Volcano

    DEFF Research Database (Denmark)

    Zernack, Anke Verena; Hoggard, Christian Steven; Sauer, Florian Rudolf

    The c. 12,900 BP Plinian eruption of Laacher See Volcano is one of the largest known volcanic events of the Late Pleistocene in the Northern Hemisphere. It buried proximal areas under tens of meters of pyroclastic flow, surge and fallout deposits and deposited a widespread tephra layer across much...... of dispersal of the products from varying eruptive stages and some sites even report two distinct Laacher See Tephra layers that have been interpreted as evidence of a precursor eruption. In order to assess the potential for multiple Late Pleistocene eruptions of Laacher See Volcano, we have compiled...

  5. Relationship between eruption plume heights and seismic source amplitudes of eruption tremors and explosion events

    Science.gov (United States)

    Mori, A.; Kumagai, H.

    2016-12-01

    It is crucial to analyze and interpret eruption tremors and explosion events for estimating eruption size and understanding eruption phenomena. Kumagai et al. (EPS, 2015) estimated the seismic source amplitudes (As) and cumulative source amplitudes (Is) for eruption tremors and explosion events at Tungurahua, Ecuador, by the amplitude source location (ASL) method based on the assumption of isotropic S-wave radiation in a high-frequency band (5-10 Hz). They found scaling relations between As and Is for eruption tremors and explosion events. However, the universality of these relations is yet to be verified, and the physical meanings of As and Is are not clear. In this study, we analyzed the relations between As and Is for eruption tremors and explosion events at active volcanoes in Japan, and estimated As and Is by the ASL method. We obtained power-law relations between As and Is, in which the powers were different between eruption tremors and explosion events. These relations were consistent with the scaling relations at Tungurahua volcano. Then, we compared As with maximum eruption plume heights (H) during eruption tremors analyzed in this study, and found that H was proportional to 0.21 power of As. This relation is similar to the plume height model based on the physical process of plume rise, which indicates that H is proportional to 0.25 power of volumetric flow rate for plinian eruptions. This suggests that As may correspond to volumetric flow rate. If we assume a seismic source with volume changes and far-field S-wave, As is proportional to the source volume rate. This proportional relation and the plume height model give rise to the relation that H is proportional to 0.25 power of As. These results suggest that we may be able to estimate plume heights in realtime by estimating As during eruptions from seismic observations.

  6. Petrology and geochemistry of Late Holocene felsic magmas from Rungwe volcano (Tanzania), with implications for trachytic Rungwe Pumice eruption dynamics

    NARCIS (Netherlands)

    Fontijn, K.; Elburg, M.A.; Nikogosian, I.K.; van Bergen, M.J.; Ernst, G.G.J.

    2013-01-01

    Rungwe in southern Tanzania is an active volcanic centre in the East African Rift System, characterised by Plinian-style explosive eruptions of metaluminous to slightly peralkaline trachytic silica-undersaturated magmas during its late Holocene history. Variations in whole-rock major and trace

  7. The effect of wind and eruption source parameter variations on tephra fallout hazard assessment: an example from Vesuvio (Italy)

    Science.gov (United States)

    Macedonio, Giovanni; Costa, Antonio; Scollo, Simona; Neri, Augusto

    2015-04-01

    Uncertainty in the tephra fallout hazard assessment may depend on different meteorological datasets and eruptive source parameters used in the modelling. We present a statistical study to analyze this uncertainty in the case of a sub-Plinian eruption of Vesuvius of VEI = 4, column height of 18 km and total erupted mass of 5 × 1011 kg. The hazard assessment for tephra fallout is performed using the advection-diffusion model Hazmap. Firstly, we analyze statistically different meteorological datasets: i) from the daily atmospheric soundings of the stations located in Brindisi (Italy) between 1962 and 1976 and between 1996 and 2012, and in Pratica di Mare (Rome, Italy) between 1996 and 2012; ii) from numerical weather prediction models of the National Oceanic and Atmospheric Administration and of the European Centre for Medium-Range Weather Forecasts. Furthermore, we modify the total mass, the total grain-size distribution, the eruption column height, and the diffusion coefficient. Then, we quantify the impact that different datasets and model input parameters have on the probability maps. Results shows that the parameter that mostly affects the tephra fallout probability maps, keeping constant the total mass, is the particle terminal settling velocity, which is a function of the total grain-size distribution, particle density and shape. Differently, the evaluation of the hazard assessment weakly depends on the use of different meteorological datasets, column height and diffusion coefficient.

  8. Geochemistry and volatile content of magmas feeding explosive eruptions at Telica volcano (Nicaragua)

    Science.gov (United States)

    Robidoux, P.; Rotolo, S. G.; Aiuppa, A.; Lanzo, G.; Hauri, E. H.

    2017-07-01

    Telica volcano, in north-west Nicaragua, is a young stratovolcano of intermediate magma composition producing frequent Vulcanian to phreatic explosive eruptions. The Telica stratigraphic record also includes examples of (pre)historic sub-Plinian activity. To refine our knowledge of this very active volcano, we analyzed major element composition and volatile content of melt inclusions from some stratigraphically significant Telica tephra deposits. These include: (1) the Scoria Telica Superior (STS) deposit (2000 to 200 years Before Present; Volcanic Explosive Index, VEI, of 2-3) and (2) pyroclasts from the post-1970s eruptive cycle (1982; 2011). Based on measurements with nanoscale secondary ion mass spectrometry, olivine-hosted (forsterite [Fo] > 80) glass inclusions fall into 2 distinct clusters: a group of H2O-rich (1.8-5.2 wt%) inclusions, similar to those of nearby Cerro Negro volcano, and a second group of CO2-rich (360-1700 μg/g CO2) inclusions (Nejapa, Granada). Model calculations show that CO2 dominates the equilibrium magmatic vapor phase in the majority of the primitive inclusions (XCO2 > 0.62-0.95). CO2, sulfur (generally 400 MPa) and early crystallization of magmas. Chlorine exhibits a wide concentration range (400-2300 μg/g) in primitive olivine-entrapped melts (likely suggesting variable source heterogeneity) and is typically enriched in the most differentiated melts (1000-3000 μg/g). Primitive, volatile-rich olivine-hosted melt inclusions (entrapment pressures, 5-15 km depth) are exclusively found in the largest-scale Telica eruptions (exemplified by STS in our study). These eruptions are thus tentatively explained as due to injection of deep CO2-rich mafic magma into the shallow crustal plumbing system. More recent (post-1970), milder (VEI 1-2) eruptions, instead, do only exhibit evidence for low-pressure (P viscosity of resident magma in shallow plumbing system (< 2.4 km), due to crystallization and degassing.

  9. Ascent Rates from Melt Embayments: Insights into the Eruption Dynamics of Arc Volcanoes

    Science.gov (United States)

    Ruprecht, P.; Lloyd, A. S.; Hauri, E.; Rose, W. I.; Gonnermann, H. M.; Plank, T. A.

    2014-12-01

    A significant fraction of the magma that is added from the mantle to the subvolcanic plumbing system ultimately erupts at the surface. The initial volatile content of the magmas as well as the interplay between volatile loss and magma ascent plays a significant role in determining the eruption style (effusive versus explosive) as well as the magnitude of the eruption. The October 17, 1974 sub-Plinian eruption of Volcán de Fuego represents a particularly well-characterized system in terms of volatile content and magma chemistry to investigate the relation between initial water content of the magmas and the ascent rate. By modeling volatile element distribution in melt embayments through diffusion and degassing during ascent we can estimate magma ascent from the storage region in the crust to the surface. The novel aspect is the measurement of concentration gradients multiple volatile elements (in particular CO2, H2O, S) at fine-scale (5-10 μm) using the NanoSIMS. The wide range in diffusivity and solubility of these different volatiles provides multiple constraints on ascent timescales over a range of depths. H2O, CO2, and S all decrease toward the embayment outlet bubble documenting the loss of H2O and CO2 compared to an extensive melt inclusion suite from the same day of the eruption. The data is best described by a two-stage model. At high pressure (>145 MPa) decompression is slow (0.05- 0.3 MPa/s) and CO2 is bled off predominantly. At shallow levels decompression accelerates to 0.3-0.5 MPa/s at the point of H2O exsolution, which strongly affects the buoyancy of the ascending magma. The magma ascent rates presented are among the first for explosive basaltic eruptions and demonstrate the potential of the embayment method for quantifying magmatic timescales associated with eruptions of different vigor. [1] Lloyd et al. (2014) JVGR, http://dx.doi.org/10.1016/j.jvolgeores.2014.06.002

  10. La phase explosive précédant l'extrusion des dômes volcaniques : exemple du dôme rhyodacitique de Dikkartin Dag, Erciyes, Anatolie centrale, TurquieInitial explosive phases during extrusion of volcanic lava domes: example from rhyodacitic dome of Dikkartin Dag, Erciyes stratovolcano, Central Anatolia, Turkey

    Science.gov (United States)

    Sen, Erdal; Aydar, Erkan; Gourgaud, Alain; Kurkcuoglu, Biltan

    2002-01-01

    The Erciyes stratovolcano, in Central Anatolia, exhibits rhyodacitic domes on its flanks that emplaced after important eruptive pyroclastic events. The changes in eruption dynamics are well defined. Measurements of density and porosity of pumices have been carried out. Initial gas content of erupted magma decreased during the first Plinian phase (units 1 to 3) and then the gas content progressively increased in U4 and in pumiceous ash flow. The latter two deposits contain bread crust bombs that become very abundant in following phreatomagmatic products. The Last Plinian phase, rich in vitreous fragments, where porosity is minimum while density is maximal, preceded the dome extrusion. Although mineralogical and chemical compositions, further thermodynamical conditions of erupted magmas did not change during the eruptive sequence, the eruption mode changed. These changes in eruption mode are the results of the degassing of magma and the meteoric water contribution to the eruption. The transition observed is as follows: Plinian, pyroclastic flow, phreatomagmatism, Plinian and extrusion. To cite this article: E. Sen et al., C. R. Geoscience 334 (2002) 27-33

  11. The evolution of hydrous magmas in the Tongariro Volcanic Centre : the 10 ka Pahoka-Mangamate eruptions

    International Nuclear Information System (INIS)

    Auer, A.; Palin, J.M.; White, J.D.L.; Nakagawa, M.; Stirling, C.

    2015-01-01

    The majority of arc-type andesites in the Tongariro Volcanic Centre are highly porphyritic, hornblende-free, two-pyroxene andesites. An exception is tephras from the c. 10,000 ka Pahoka-Mangamate event. Magmas of these Plinian eruptions bypassed the extensive crustal mush columns under the central volcanoes and sequentially derived a series of almost aphyric rocks spanning a compositional range from dacite to basaltic andesite. Mineral composition, trace element and isotopic data suggest that this eruptive series tapped a mid-crustal magma reservoir, resulting in the initial eruption of an hydrous dacitic magma and several following eruptions characterised by less-evolved and less-hydrous compositions at progressively higher temperatures and substantially lower 87 Sr/ 86 Sr ratios. Systematic changes in magma chemistry are also reflected in a sequential change in phenocryst content starting with an early hornblende-plagioclase-dominated assemblage to a late olivine-plagioclase-dominated assemblage. (author).

  12. On the absence of InSAR-detected volcano deformation spanning the 1995-1996 and 1999 eruptions of Shishaldin Volcano, Alaska

    Science.gov (United States)

    Moran, S.C.; Kwoun, O.; Masterlark, Timothy; Lu, Z.

    2006-01-01

    Shishaldin Volcano, a large, frequently active basaltic-andesite volcano located on Unimak Island in the Aleutian Arc of Alaska, had a minor eruption in 1995–1996 and a VEI 3 sub-Plinian basaltic eruption in 1999. We used 21 synthetic aperture radar images acquired by ERS-1, ERS-2, JERS-1, and RADARSAT-1 satellites to construct 12 coherent interferograms that span most of the 1993–2003 time interval. All interferograms lack coherence within ∼5 km of the summit, primarily due to persistent snow and ice cover on the edifice. Remarkably, in the 5–15 km distance range where interferograms are coherent, the InSAR images show no intrusion- or withdrawal-related deformation at Shishaldin during this entire time period. However, several InSAR images do show deformation associated with a shallow ML 5.2 earthquake located ∼14 km west of Shishaldin that occurred 6 weeks before the 1999 eruption. We use a theoretical model to predict deformation magnitudes due to a volumetric expansion source having a volume equivalent to the 1999 erupted volume, and find that deformation magnitudes for sources shallower than 10 km are within the expected detection capabilities for interferograms generated from C-band ERS 1/2 and RADARSAT-1 synthetic aperture radar images. We also find that InSAR images cannot resolve relatively shallow deformation sources (1–2 km below sea level) due to spatial gaps in the InSAR images caused by lost coherence. The lack of any deformation, particularly for the 1999 eruption, leads us to speculate that magma feeding eruptions at the summit moves rapidly (at least 80m/day) from > 10 km depth, and that the intrusion–eruption cycle at Shishaldin does not produce significant permanent deformation at the surface.

  13. Electronic structures of ReS sub 2 , ReSe sub 2 and TcS sub 2 in the real and the hypothetical undistorted structures

    CERN Document Server

    Fang, C M; Haas, C; Groot, R A D

    1997-01-01

    The transition-metal dichalcogenides ReX sub 2 (X = S or Se) and TcS sub 2 with a d sup 3 electron configuration have distorted CdCl sub 2 and Cd(OH) sub 2 structures, respectively, with the Re(Tc) atoms in each layer forming parallelogram-shaped connected clusters (diamond chain). Ab-initio band-structure calculations were performed for ReX sub 2 and TcS sub 2 , and the hypothetical undistorted 1T-TcS sub 2 and 3R-ReX sub 2 structures. The calculations show that ReS sub 2 , ReSe sub 2 and TcS sub 2 are semiconductors with energy gaps of about 1.0 eV, 0.5 eV and 0.7 eV, respectively, while for the undistorted structures the Fermi level is in the partly filled band of d sub x sub sup 2 sub - sub y sub sup 2 and d sub x sub y orbitals of the t sub 2 sub g manifold. X-ray photoemission spectra for the core levels and valence band of ReSe sub 2 and ReS sub 2 are presented. The valence x-ray photoemission spectra showed that ReS sub 2 is a p-type semiconductor with an energy gap of about 1.5 eV, while ReSe sub 2 i...

  14. Social and environmental impact of volcaniclastic flows related to 472 AD eruption at Vesuvius from stratigraphic and geoarcheological data

    Science.gov (United States)

    Di Vito, Mauro A.; de Vita, Sandro; Rucco, Ilaria; Bini, Monica; Zanchetta, Giovanni; Aurino, Paola; Cesarano, Mario; Ebanista, Carlo; Rosi, Mauro; Ricciardi, Giovanni

    2017-04-01

    There is a growing number of evidences in the surrounding plain of Somma-Vesuvius volcano which indicate that along with primary volcanic processes (i.e. fallout, pyroclastic density currents) the syn-eruptive and post-eruptive volcaniclastic remobilization has severely impacted the ancient civilizations, which flourished in the area. This represents an important starting point for understanding the future hazard related to a potential (and not remote) renewal of volcanic activity of the Campaniana volcanoes. We present geoarcheological and stratigraphic data obtained from the analysis of more than 160 sections in the Campanian plain showing the widespread impact of volcaniclastic debris flows and floods originated from the rapid remobilization of the products of the AD 472 eruption of Somma-Vesuvius, both on the environment and on the human landscape. This eruption was one of the two sub-Plinian historical events of Somma Vesuvius. This event largely impacted the northern and eastern territory surrounding the volcano with deposition of a complex sequence of pyroclastic-fallout and -current deposits. These sequences were variably affected by syn- and post-eruptive mobilization both along the Somma-Vesuvius slopes and the Apennine valleys with the emplacement of thick mud- and debris-flows which strongly modified the preexisting paleogeography of the Plain with irretrievable damages to the agricultural and urban landscape. The multidisciplinary approach to the study of the sequences permitted to reconstruct the palaeoenvironment before the eruption and the timing of the emplacement of both pyroclastic and volcanoclastic deposits. The preexisting landscape was characterized by intense human occupation, although showing strong evidences of degradation and abandonment due to the progressive decline of the Roman Empire. The impact of volcaniclastic flows continued for decades after the eruption as highlighted in the studied sequences by stratigraphic and archaeologic

  15. The 2008 Eruption of Chaitén Volcano, Chile and National Volcano-Monitoring Programs in the U.S. and Chile

    Science.gov (United States)

    Ewert, J. W.; Lara, L. E.; Moreno, H.

    2008-12-01

    Chaitén volcano, southern Chile, began erupting on 2 May 2008. The eruption produced 3 Plinian eruption pulses between May 2 and 8. Between Plinian phases the volcano emitted a constant column of ash to approximately 10 km, gradually diminishing to approximately 3 km by the end of June. The eruption of Chaitén was remarkable on several counts--it was the first rhyolite eruption on the planet since Novarupta (Katmai) erupted in 1912, and Chaitén had apparently lain dormant for approximately 9300 years. Though Chaitén is located in a generally sparsely populated region, the eruption had widespread impacts. More than 5000 people had to be quickly evacuated from proximal areas and aviation in southern South America was disrupted for weeks. Within 10 days secondary lahars had overrun much of the town of Chaitén complicating the prospects of the townspeople to return to their homes. Prior to the eruption onset, the nearest real-time seismic station was 300 km distant, and earthquakes were not felt by local citizens until approximately 30 hours before the eruption onset. No other signs of unrest were noted. Owing to the lack of near-field monitoring, and the nighttime eruption onset, there was initial confusion about which volcano was erupting: Chaitén or nearby Michinmahuida. Lack of monitoring systems at Chaitén meant that warning time for the public at risk was extremely short, and owing to the nature of the eruption and the physical geography of the area, it was very difficult to install monitoring instruments to track its progress after the eruption started. The lack of geophysical monitoring also means that an important data set on precursory behavior for silicic systems was not collected. With more than 120 Pleistocene to Holocene-age volcanoes within its continental territory, Chile is one of the more volcanically active countries in the world. The eruption of Chaitén has catalyzed the creation of a new program within the Servicio Nacional de Geología y

  16. The Ongoing 2011 Eruption of Cordón Caulle (Southern Andes) and its Related Hazards

    Science.gov (United States)

    Amigo, A.; Lara, L. E.; Silva, C.; Orozco, G.; Bertin, D.

    2011-12-01

    On June 4, 2011, at 18:45 UTC, Cordón Caulle volcano (Southern Andes, 40.52S, 72.14W) erupted explosively after 51 years of quiescence. The last eruption occurred in 1960 and was triggered by the great Mw 9.5 Chile earthquake. The ongoing eruption started after 2 months of increased shallow seismicity as recorded by OVDAS (the volcano observatory at Sernageomin). This close monitoring effort allowed a timely eruption forecast with at least 3 hours of warning, which facilitated the crisis response. In addition to this successful performance, for the first time in Chile volcanic hazards were assessed in advance supporting the emergency management. In particular, tephra dispersal was daily forecasted using the ASHFALL advection-diffusion model and potential lahars and PDC impact zones were delineated according to numerical approaches. The first eruptive stage lasted 27 hours. It was characterized by ca. 15-km strong Plinian-like column, associated with the emission of 0.2 - 0.4 km3 of magma (DRE). Tephra fallout mostly occurred in Chile and Argentina, although fine particles and aerosols circumnavigated the globe twice, causing disruptions on air navigation across the Southern Hemisphere. The second ongoing eruptive stage has been characterized by persistent weak plumes and lava emission at effusion rates in the range of 20 and 60 m3/s, which total volume is estimated case of successful eruption forecast and hazards assessment but it is also an important case-study of silicic eruptions in an arc segment where mostly mafic magmas have been erupted during the Holocene.

  17. Large eruption-triggered ocean-island landslide at Tenerife

    DEFF Research Database (Denmark)

    Harris, P; Branney, M; Storey, Michael

    2011-01-01

    An extensive debris-avalanche deposit has been discovered on Cañadas volcano, Tenerife (Canary Islands). The onshore component of the 733 ± 3 ka Abona landslide deposit exposes classic block facies and mixed facies across 90 km2. Three lines of evidence together show that the avalanche was trigge......An extensive debris-avalanche deposit has been discovered on Cañadas volcano, Tenerife (Canary Islands). The onshore component of the 733 ± 3 ka Abona landslide deposit exposes classic block facies and mixed facies across 90 km2. Three lines of evidence together show that the avalanche...... was triggered by an ignimbrite-forming explosive eruption: (1) the deposit is enclosed by phonolitic ignimbrites and is draped by a Plinian fallout layer, all within a single eruption unit; (2) it contains prismatic-jointed pumice blocks that were hot during landslide emplacement, indicated by chilled rims...... and breadcrust surfaces; (3) these blocks yield the same 40Ar/39Ar date as the associated ignimbrite and fall deposit. Landslide hummocks dammed surface water, forming ephemeral lakes perched on the volcano flank. Phonolite dome growth destabilized the southeast sector of a mid-Pleistocene Cañadas caldera wall...

  18. Evolving magma storage conditions beneath Mount St. Helens inferred from chemical variations in melt inclusions from the 1980-1986 and current (2004-2006) eruptions: Chapter 33 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    Science.gov (United States)

    Blundy, Jon; Cashman, Katharine V.; Berlo, Kim; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    Major element, trace element, and volatile concentrations in 187 glassy melt inclusions and 25 groundmass glasses from the 1980-86 eruption of Mount St. Helens are presented, together with 103 analyses of touching FE-Ti oxide pairs from the same samples. These data are used to evaluate the temporal evolution of the magmatic plumbing system beneath the volcano during 1980-86 and so provide a framework in which to interpret analyses of melt inclusions from the current (2004-2006) eruption. Major and trace element concentrations of all melt inclusions lie at the high SiO2 end of the data array defined by eruptive products of the late Quaternary age from Mount St. Helens. For several major and trace elements, the glasses define a trend that is oblique to the whole-rock trend, indicating that different mineral assemblages were responsible for the two trends. The whole-rock trend can be ascribed to differentiation of hydrous basaltic parents in a deep-seated magma reservoir, probably at depths great enough to stabilize garnet. In contrast, the glass trends were generated by closed-system crystallization of the phenocryst and microlite mineral assemblages at low pressures. The dissolved H2O content of the melt inclusions from 1980-86, as measured by the ion microprobe, ranges from 0 to 6.7 wt. percent, with the highest values obtained from the plinian phase of May 18, 1980. Water contents decrease with increasing SiO2, consistent with decompression-driven crystallization. Preliminary data for dissolved CO2 in melt inclusions from the May 18 plinian phase from August 7, 1980, indicate that XH2O in a vapor phase was approximately constant at 0.80, irrespective of H2O content, suggestive of closed-system degassing with a high bubble fraction or gas streaming through the subvolcanic system. Temperature and f

  19. Furthering the investigation of eruption styles through quantitative shape analyses of volcanic ash particles

    Science.gov (United States)

    Nurfiani, D.; Bouvet de Maisonneuve, C.

    2018-04-01

    Volcanic ash morphology has been quantitatively investigated for various aims such as studying the settling velocity of ash for modelling purposes and understanding the fragmentation processes at the origin of explosive eruptions. In an attempt to investigate the usefulness of ash morphometry for monitoring purposes, we analyzed the shape of volcanic ash particles through a combination of (1) traditional shape descriptors such as solidity, convexity, axial ratio and form factor and (2) fractal analysis using the Euclidean Distance transform (EDT) method. We compare ash samples from the hydrothermal eruptions of Iwodake (Japan) in 2013, Tangkuban Perahu (Indonesia) in 2013 and Marapi (Sumatra, Indonesia) in 2015, the dome explosions of Merapi (Java, Indonesia) in 2013, the Vulcanian eruptions of Merapi in 2010 and Tavurvur (Rabaul, Papaua New Guinea) in 2014, and the Plinian eruption of Kelud (Indonesia) in 2014. Particle size and shape measurements were acquired from a Particle Size Analyzer with a microscope camera attached to the instrument. Clear differences between dense/blocky particles from hydrothermal or dome explosions and vesicular particles produced by the fragmentation of gas-bearing molten magma are well highlighted by conventional shape descriptors and the fractal method. In addition, subtle differences between dense/blocky particles produced by hydrothermal explosions, dome explosions, or quench granulation during phreatomagmatic eruptions can be evidenced with the fractal method. The combination of shape descriptors and fractal analysis is therefore potentially able to distinguish between juvenile and non-juvenile magma, which is of importance for eruption monitoring.

  20. Magma evolution inside the 1631 Vesuvius magma chamber and eruption triggering

    Directory of Open Access Journals (Sweden)

    Stoppa Francesco

    2017-03-01

    Full Text Available Vesuvius is a high-risk volcano and the 1631 Plinian eruption is a reference event for the next episode of explosive unrest. A complete stratigraphic and petrographic description of 1631 pyroclastics is given in this study. During the 1631 eruption a phonolite was firstly erupted followed by a tephritic phonolite and finally a phonolitic tephrite, indicating a layered magma chamber. We suggest that phonolitic basanite is a good candidate to be the primitive parental-melt of the 1631 eruption. Composition of apatite from the 1631 pyroclastics is different from those of CO2-rich melts indicating negligible CO2 content during magma evolution. Cross checking calculations, using PETROGRAPH and PELE software, accounts for multistage evolution up to phonolite starting from a phonolitic basanite melt similar to the Vesuvius medieval lavas. The model implies crystal settling of clinopyroxene and olivine at 6 kbar and 1220°C, clinopyroxene plus leucite at a pressure ranging from 2.5 to 0.5 kbar and temperature ranging from 1140 to 940°C. Inside the phonolitic magma chamber K-feldspar and leucite would coexist at a temperature ranging from from 940 to 840°C and at a pressure ranging from 2.5 to0.5 kbar. Thus crystal fractionation is certainly a necessary and probably a sufficient condition to evolve the melt from phono tephritic to phonolitic in the 1631 magma chamber. We speculate that phonolitic tephrite magma refilling from deeper levels destabilised the chamber and triggered the eruption, as testified by the seismic precursor phenomena before 1631 unrest.

  1. Magma evolution inside the 1631 Vesuvius magma chamber and eruption triggering

    Science.gov (United States)

    Stoppa, Francesco; Principe, Claudia; Schiazza, Mariangela; Liu, Yu; Giosa, Paola; Crocetti, Sergio

    2017-03-01

    Vesuvius is a high-risk volcano and the 1631 Plinian eruption is a reference event for the next episode of explosive unrest. A complete stratigraphic and petrographic description of 1631 pyroclastics is given in this study. During the 1631 eruption a phonolite was firstly erupted followed by a tephritic phonolite and finally a phonolitic tephrite, indicating a layered magma chamber. We suggest that phonolitic basanite is a good candidate to be the primitive parental-melt of the 1631 eruption. Composition of apatite from the 1631 pyroclastics is different from those of CO2-rich melts indicating negligible CO2 content during magma evolution. Cross checking calculations, using PETROGRAPH and PELE software, accounts for multistage evolution up to phonolite starting from a phonolitic basanite melt similar to the Vesuvius medieval lavas. The model implies crystal settling of clinopyroxene and olivine at 6 kbar and 1220°C, clinopyroxene plus leucite at a pressure ranging from 2.5 to 0.5 kbar and temperature ranging from 1140 to 940°C. Inside the phonolitic magma chamber K-feldspar and leucite would coexist at a temperature ranging from from 940 to 840°C and at a pressure ranging from 2.5 to0.5 kbar. Thus crystal fractionation is certainly a necessary and probably a sufficient condition to evolve the melt from phono tephritic to phonolitic in the 1631 magma chamber. We speculate that phonolitic tephrite magma refilling from deeper levels destabilised the chamber and triggered the eruption, as testified by the seismic precursor phenomena before 1631 unrest.

  2. The pumice raft-forming 2012 Havre submarine eruption was effusive

    Science.gov (United States)

    Manga, Michael; Fauria, Kristen E.; Lin, Christina; Mitchell, Samuel J.; Jones, Meghan; Conway, Chris E.; Degruyter, Wim; Hosseini, Behnaz; Carey, Rebecca; Cahalan, Ryan; Houghton, Bruce F.; White, James D. L.; Jutzeler, Martin; Soule, S. Adam; Tani, Kenichiro

    2018-05-01

    A long-standing conceptual model for deep submarine eruptions is that high hydrostatic pressure hinders degassing and acceleration, and suppresses magma fragmentation. The 2012 submarine rhyolite eruption of Havre volcano in the Kermadec arc provided constraints on critical parameters to quantitatively test these concepts. This eruption produced a >1 km3 raft of floating pumice and a 0.1 km3 field of giant (>1 m) pumice clasts distributed down-current from the vent. We address the mechanism of creating these clasts using a model for magma ascent in a conduit. We use water ingestion experiments to address why some clasts float and others sink. We show that at the eruption depth of 900 m, the melt retained enough dissolved water, and hence had a low enough viscosity, that strain-rates were too low to cause brittle fragmentation in the conduit, despite mass discharge rates similar to Plinian eruptions on land. There was still, however, enough exsolved vapor at the vent depth to make the magma buoyant relative to seawater. Buoyant magma was thus extruded into the ocean where it rose, quenched, and fragmented to produce clasts up to several meters in diameter. We show that these large clasts would have floated to the sea surface within minutes, where air could enter pore space, and the fate of clasts is then controlled by the ability to trap gas within their pore space. We show that clasts from the raft retain enough gas to remain afloat whereas fragments from giant pumice collected from the seafloor ingest more water and sink. The pumice raft and the giant pumice seafloor deposit were thus produced during a clast-generating effusive submarine eruption, where fragmentation occurred above the vent, and the subsequent fate of clasts was controlled by their ability to ingest water.

  3. NanoSIMS results from olivine-hosted melt embayments: Magma ascent rate during explosive basaltic eruptions

    Science.gov (United States)

    Lloyd, Alexander S.; Ruprecht, Philipp; Hauri, Erik H.; Rose, William; Gonnermann, Helge M.; Plank, Terry

    2014-08-01

    The explosivity of volcanic eruptions is governed in part by the rate at which magma ascends and degasses. Because the time scales of eruptive processes can be exceptionally fast relative to standard geochronometers, magma ascent rate remains difficult to quantify. Here we use as a chronometer concentration gradients of volatile species along open melt embayments within olivine crystals. Continuous degassing of the external melt during magma ascent results in diffusion of volatile species from embayment interiors to the bubble located at their outlets. The novel aspect of this study is the measurement of concentration gradients in five volatile elements (CO2, H2O, S, Cl, F) at fine-scale (5-10 μm) using the NanoSIMS. The wide range in diffusivity and solubility of these different volatiles provides multiple constraints on ascent timescales over a range of depths. We focus on four 100-200 μm, olivine-hosted embayments erupted on October 17, 1974 during the sub-Plinian eruption of Volcán de Fuego. H2O, CO2, and S all decrease toward the embayment outlet bubble, while F and Cl increase or remain roughly constant. Compared to an extensive melt inclusion suite from the same day of the eruption, the embayments have lost both H2O and CO2 throughout the entire length of the embayment. We fit the profiles with a 1-D numerical diffusion model that allows varying diffusivities and external melt concentrations as a function of pressure. Assuming a constant decompression rate from the magma storage region at approximately 220 MPa to the surface, H2O, CO2 and S profiles for all embayments can be fit with a relatively narrow range in decompression rates of 0.3-0.5 MPa/s, equivalent to 11-17 m/s ascent velocity and an 8 to 12 minute duration of magma ascent from ~ 10 km depth. A two stage decompression model takes advantage of the different depth ranges over which CO2 and H2O degas, and produces good fits given an initial stage of slow decompression (0.05-0.3 MPa/s) at high

  4. The Variable Climate Impact of Volcanic Eruptions

    Science.gov (United States)

    Graf, H.

    2011-12-01

    The main effect of big volcanic eruptions in the climate system is due to their efficient transport of condensable gases and their precursors into the stratosphere. There the formation of aerosols leads to effects on atmospheric radiation transfer inducing a reduction of incoming solar radiation by reflection (i.e. cooling of the Earth surface) and absorption of near infrared radiation (i.e. heating) in the aerosol laden layers. In the talk processes determining the climate effect of an eruption will be illustrated by examples, mainly from numerical modelling. The amount of gases released from a magma during an eruption and the efficiency of their transport into very high altitudes depends on the geological setting (magma type) and eruption style. While mid-sized eruption plumes of Plinian style quickly can develop buoyancy by entrainment of ambient air, very large eruptions with high magma flux rates often tend to collapsing plumes and co-ignimbrite style. These cover much bigger areas and are less efficient in entraining ambient air. Vertical transport in these plumes is chaotic and less efficient, leading to lower neutral buoyancy height and less gas and particles reaching high stratospheric altitudes. Explosive energy and amount of released condensable gases are not the only determinants for the climatic effect of an eruption. The effect on shortwave radiation is not linear with the amount of aerosols formed since according to the Lambert-Beer Law atmospheric optical depth reaches a saturation limit with increased absorber concentration. In addition, if more condensable gas is available for aerosol growth, particles become larger and this affects their optical properties to less reflection and more absorption. Larger particles settle out faster, thus reducing the life time of the aerosol disturbance. Especially for big tropical eruptions the strong heating of the stratosphere in low latitudes leads to changes in atmospheric wave propagation by strengthened

  5. Probabilistic tephra hazard maps for the Neapolitan area: Quantitative volcanological study of Campi Flegrei eruptions

    Science.gov (United States)

    Mastrolorenzo, G.; Pappalardo, L.; Troise, C.; Panizza, A.; de Natale, G.

    2008-07-01

    Tephra fall is a relevant hazard of Campi Flegrei caldera (Southern Italy), due to the high vulnerability of Naples metropolitan area to such an event. Here, tephra derive from magmatic as well as phreatomagmatic activity. On the basis of both new and literature data on known, past eruptions (Volcanic Explosivity Index (VEI), grain size parameters, velocity at the vent, column heights and erupted mass), and factors controlling tephra dispersion (wind velocity and direction), 2D numerical simulations of fallout dispersion and deposition have been performed for a large number of case events. A bayesian inversion has been applied to retrieve the best values of critical parameters (e.g., vertical mass distribution, diffusion coefficients, velocity at the vent), not directly inferable by volcanological study. Simulations are run in parallel on multiple processors to allow a fully probabilistic analysis, on a very large catalogue preserving the statistical proprieties of past eruptive history. Using simulation results, hazard maps have been computed for different scenarios: upper limit scenario (worst-expected scenario), eruption-range scenario, and whole-eruption scenario. Results indicate that although high hazard characterizes the Campi Flegrei caldera, the territory to the east of the caldera center, including the whole district of Naples, is exposed to high hazard values due to the dominant westerly winds. Consistently with the stratigraphic evidence of nature of past eruptions, our numerical simulations reveal that even in the case of a subplinian eruption (VEI = 3), Naples is exposed to tephra fall thicknesses of some decimeters, thereby exceeding the critical limit for roof collapse. Because of the total number of people living in Campi Flegrei and the city of Naples (ca. two million of inhabitants), the tephra fallout risk related to a plinian eruption of Campi Flegrei largely matches or exceeds the risk related to a similar eruption at Vesuvius.

  6. Eruption dynamics and explosive-effusive transitions during the 1400 cal BP eruption of Opala volcano, Kamchatka, Russia

    Science.gov (United States)

    Andrews, Benjamin J.; Dufek, Josef; Ponomareva, Vera

    2018-05-01

    Deposits and pumice from the 1400 cal BP eruption of Opala volcano record activity that occurred at the explosive-effusive transition, resulting in intermittent, or stop-start, behavior, where explosive activity resumed following a pause. The eruption deposited distinctive, biotite-bearing rhyolite tephra across much of Kamchatka, and its stratigraphy consists of a lithic-rich pumice fall, overlain by pumice falls and pyroclastic density deposits, with the proportion of the latter increasing with height. This sequence repeats such that the middle of the total deposit is marked by a lithic-rich fall with abundant obsidian clasts. Notably, the eruptive pumice are poorly vesiculated, with vesicle textures that record fragmentation of a partially collapsed magmatic foam. The eruption vent, Baranii Amphitheater is filled with obsidian lavas of the same composition as the rhyolite tephra. Based upon the stratigraphic and compositional relations, we divide the eruption into four phases. Phase I initiated with eruption of a lithic-rich pumice fall, followed by eruption of Plinian falls and pyroclastic density currents. During Phase II, the eruption paused for at least 5-6 h; in this time, microlites nucleated and began to grow in the magma. Phase III essentially repeated the Phase I sequence. Obsidian lavas were emplaced during Phase IV. The pumice textures suggest that the magma ascended very near the threshold decompression rate for the transition between explosive (fast) and effusive (slow) behavior. The pause during Phase II likely occurred as decompression slowed enough for the magma to develop sufficient permeability for gas to escape resulting in collapse of the magmatic foam, stopping the eruption and temporarily sealing the conduit. After about 5-6 h, eruption resumed with, once again, magma decompressing very near the explosive-effusive transition. Phase III ended when the decompression rate slowed and lava dome emplacement began. Distributions of pumice and

  7. Assessing future vent opening locations at the Somma-Vesuvio volcanic complex: 1. A new information geodatabase with uncertainty characterizations

    Science.gov (United States)

    Tadini, A.; Bisson, M.; Neri, A.; Cioni, R.; Bevilacqua, A.; Aspinall, W. P.

    2017-06-01

    This study presents new and revised data sets about the spatial distribution of past volcanic vents, eruptive fissures, and regional/local structures of the Somma-Vesuvio volcanic system (Italy). The innovative features of the study are the identification and quantification of important sources of uncertainty affecting interpretations of the data sets. In this regard, the spatial uncertainty of each feature is modeled by an uncertainty area, i.e., a geometric element typically represented by a polygon drawn around points or lines. The new data sets have been assembled as an updatable geodatabase that integrates and complements existing databases for Somma-Vesuvio. The data are organized into 4 data sets and stored as 11 feature classes (points and lines for feature locations and polygons for the associated uncertainty areas), totaling more than 1700 elements. More specifically, volcanic vent and eruptive fissure elements are subdivided into feature classes according to their associated eruptive styles: (i) Plinian and sub-Plinian eruptions (i.e., large- or medium-scale explosive activity); (ii) violent Strombolian and continuous ash emission eruptions (i.e., small-scale explosive activity); and (iii) effusive eruptions (including eruptions from both parasitic vents and eruptive fissures). Regional and local structures (i.e., deep faults) are represented as linear feature classes. To support interpretation of the eruption data, additional data sets are provided for Somma-Vesuvio geological units and caldera morphological features. In the companion paper, the data presented here, and the associated uncertainties, are used to develop a first vent opening probability map for the Somma-Vesuvio caldera, with specific attention focused on large or medium explosive events.

  8. The influence of eruption season on the global aerosol evolution and radiative impact of tropical volcanic eruptions

    Directory of Open Access Journals (Sweden)

    M. Toohey

    2011-12-01

    Full Text Available Simulations of tropical volcanic eruptions using a general circulation model with coupled aerosol microphysics are used to assess the influence of season of eruption on the aerosol evolution and radiative impacts at the Earth's surface. This analysis is presented for eruptions with SO<sub>2sub> injection magnitudes of 17 and 700 Tg, the former consistent with estimates of the 1991 Mt. Pinatubo eruption, the later a near-"super eruption". For each eruption magnitude, simulations are performed with eruptions at 15° N, at four equally spaced times of year. Sensitivity to eruption season of aerosol optical depth (AOD, clear-sky and all-sky shortwave (SW radiative flux is quantified by first integrating each field for four years after the eruption, then calculating for each cumulative field the absolute or percent difference between the maximum and minimum response from the four eruption seasons. Eruption season has a significant influence on AOD and clear-sky SW radiative flux anomalies for both eruption magnitudes. The sensitivity to eruption season for both fields is generally weak in the tropics, but increases in the mid- and high latitudes, reaching maximum values of ~75 %. Global mean AOD and clear-sky SW anomalies show sensitivity to eruption season on the order of 15–20 %, which results from differences in aerosol effective radius for the different eruption seasons. Smallest aerosol size and largest cumulative impact result from a January eruption for Pinatubo-magnitude eruption, and from a July eruption for the near-super eruption. In contrast to AOD and clear-sky SW anomalies, all-sky SW anomalies are found to be insensitive to season of eruption for the Pinatubo-magnitude eruption experiment, due to the reflection of solar radiation by clouds in the mid- to high latitudes. However, differences in all-sky SW anomalies between eruptions in different seasons are significant for the larger eruption magnitude, and the ~15 % sensitivity to

  9. Theory for Deducing Volcanic Activity From Size Distributions in Plinian Pyroclastic Fall Deposits

    Science.gov (United States)

    Iriyama, Yu; Toramaru, Atsushi; Yamamoto, Tetsuo

    2018-03-01

    Stratigraphic variation in the grain size distribution (GSD) of plinian pyroclastic fall deposits reflects volcanic activity. To extract information on volcanic activity from the analyses of deposits, we propose a one-dimensional theory that provides a formula connecting the sediment GSD to the source GSD. As the simplest case, we develop a constant-source model (CS model), in which the source GSD and the source height are constant during the duration of release of particles. We assume power laws of particle radii for the terminal fall velocity and the source GSD. The CS model can describe an overall (i.e., entire vertically variable) feature of the GSD structure of the sediment. It is shown that the GSD structure is characterized by three parameters, that is, the duration of supply of particles to the source scaled by the fall time of the largest particle, ts/tM, and the power indices of the terminal fall velocity p and of the source GSD q. We apply the CS model to samples of the Worzel D ash layer and compare the sediment GSD structure calculated by using the CS model to the observed structure. The results show that the CS model reproduces the overall structure of the observed GSD. We estimate the duration of the eruption and the q value of the source GSD. Furthermore, a careful comparison of the observed and calculated GSDs reveals new interpretation of the original sediment GSD structure of the Worzel D ash layer.

  10. Infrasound and SO2 Observations of the 2011 Explosive Eruption of Nabro Volcano, Eritrea

    Science.gov (United States)

    Fee, D.; Carn, S. A.; Prata, F.

    2011-12-01

    Nabro volcano, Eritrea erupted explosively on 12 June 2011 and produced near continuous emissions and infrasound until mid-July. The eruption disrupted air traffic and severely affected communities in the region. Although the eruption was relatively ash-poor, it produced significant SO2 emissions, including: 1) the highest SO2 column ever retrieved from space (3700 DU), 2) >1.3 Tg SO2 mass on 13 June, and 3) >2 Tg of SO2 for the entire eruption, one of the largest eruptive SO2 masses produced since the 1991 eruption of Mt. Pinatubo. Peak emissions reached well into the stratosphere (~19 km). Although the 12 June eruption was preceded by significant seismicity and clearly detected by satellite sensors, Nabro volcano is an understudied volcano that lies in a remote region with little ground-based monitoring. The Nabro eruption also produced significant infrasound signals that were recorded by two infrasound arrays: I19DJ (Djibouti, 264 km) and I32KE (Kenya, 1708 km). The I19DJ infrasound array detected the eruption with high signal-noise and provides the most detailed eruption chronology available, including eruption onset, duration, changes in intensity, etc. As seen in numerous other studies, sustained low frequency infrasound from Nabro is coincident with high-altitude emissions. Unexpectedly, the eruption also produced hundreds of short-duration, impulsive explosion signals, in addition to the sustained infrasonic jetting signals more typical of subplinian-plinian eruptions. These explosions are variable in amplitude, duration, and often cluster in groups. Here we present: 1) additional analyses, classification, and source estimation of the explosions, 2) infrasound propagation modeling to determine acoustic travel times and propagation paths, 3) detection and characterization of the SO2 emissions using the Ozone Monitoring Instrument (OMI) and Spin Enhanced Visible and Infra-Red Instrument (SEVIRI), and 4) a comparison between the relative infrasound energy and

  11. Pre-eruptive conditions of the ~31 ka rhyolitic magma of Tlaloc volcano, Sierra Nevada Volcanic Range, Central Mexico

    Science.gov (United States)

    Macias, J.; Arce, J.; Rueda, H.; Gardner, J.

    2008-12-01

    Tlaloc volcano is located at the northern tip of the Sierra Nevada Volcanic Range in Central Mexico. This Pleistocene to Recent volcanic range consists from north to south of Tlaloc-Telapón-Teyotl-Iztaccíhuatl-and- Popocatépetl volcanoes. While andesitic to barely dacitic volcanism dominates the southern part of the range (i.e. Popocatépetl and Iztaccíhuatl); dacitic and rare rhyolithic volcanism (i.e. Telapón, Tlaloc) dominates the northern end. The known locus of rhyolitic magmatism took place at Tlaloc volcano with a Plinian-Subplinian eruption that occurred 31 ka ago. The eruption emplaced the so-called multilayered fallout and pumiceous pyroclastic flows (~2 km3 DRE). The deposit consists of 95% vol. of juvenile particles (pumice + crystals) and minor altered lithics 5% vol. The mineral association of the pumice fragments (74-76 % wt. SiO2) consists of quartz + plagioclase + sanidine + biotite and rare oxides set in a glassy groundmass with voids. Melt inclusions in quartz phenocrysts suggest that prior to the eruption the rhyolitic contain ~7% of H2O and Nevado de Toluca volcano (~6 km) some 50 km to the southwest.

  12. Eruptive history of Mount Katmai, Alaska

    Science.gov (United States)

    Hildreth, Edward; Fierstein, Judith

    2012-01-01

    Mount Katmai has long been recognized for its caldera collapse during the great pyroclastic eruption of 1912 (which vented 10 km away at Novarupta in the Valley of Ten Thousand Smokes), but little has previously been reported about the geology of the remote ice-clad stratovolcano itself. Over several seasons, we reconnoitered all parts of the edifice and sampled most of the lava flows exposed on its flanks and caldera rim. The precipitous inner walls of the 1912 caldera remain too unstable for systematic sampling; so we provide instead a photographic and interpretive record of the wall sequences exposed. In contrast to the several andesite-dacite stratovolcanoes nearby, products of Mount Katmai range from basalt to rhyolite. Before collapse in 1912, there were two overlapping cones with separate vent complexes and craters; their products are here divided into eight sequences of lava flows, agglutinates, and phreatomagmatic ejecta. Latest Pleistocene and Holocene eruptive units include rhyodacite and rhyolite lava flows along the south rim; a major 22.8-ka rhyolitic plinian fall and ignimbrite deposit; a dacite-andesite zoned scoria fall; a thick sheet of dacite agglutinate that filled a paleocrater and draped the west side of the edifice; unglaciated leveed dacite lava flows on the southeast slope; and the Horseshoe Island dacite dome that extruded on the caldera floor after collapse. Pre-collapse volume of the glaciated Katmai edifice was ∼30 km3, and eruptive volume is estimated to have been 57±13 km3. The latter figure includes ∼40±6 km3 for the edifice, 5±2 km3 for off-edifice dacite pyroclastic deposits, and 12±5 km3 for the 22.8-ka rhyolitic pyroclastic deposits. To these can be added 13.5 km3 of magma that erupted at Novarupta in 1912, all or much of which is inferred to have been withdrawn from beneath Mount Katmai. The oldest part of the edifice exposed is a basaltic cone, which gave a 40Ar/39Ar plateau age of 89 ± 25 ka.

  13. The eruption of Mount Pagan volcano, Mariana Islands, 15 May 1981

    Science.gov (United States)

    Banks, N.G.; Koyanagi, R.Y.; Sinton, J.M.; Honma, K.T.

    1984-01-01

    A major explosive eruption occurred 15 May 1981 at Mount Pagan Volcano, the larger of two historic eruptive centers on Pagan Island, Mariana Islands. The eruption was preceded by increased numbers of locally felt earthquakes beginning in late March or early April and by new ground cracks, new sublimates, and increased gas emissions. A swarm of felt earthquakes began at 0745h (local time = UCT+10 hours) 15 May, and at 0915 h, closely following a loud sonic boom, a strong plinian column issued from the volcano. The high-altitude ash cloud (at least 13.5 km) travelled south-southeast, but ash and scoria deposits were thickest (> 2 m) in the NW sector of the island because of the prevailing low-altitude southeasterly winds. The early activity of 15 May probably involved magmatic eruption along a fissure system oriented about N10??E. However, the eruption became hydromagmatic, possibly within minutes, and was largely restricted to three long-lived vents. The northernmost of these built a substantial new scoria-ash cinder cone. Flows and air-fall deposits, consisting almost entirely of juvenile material, exceeded 105 ?? 106 m3 in volume (75 ?? 106 m3 of magma) on land and at least 70-100 ?? 606 m3 at sea. An unknown volume was carried away by stratospheric winds. Lithic blocks and juvenile bombs as large as 1 m in diameter were thrown more than 2 km from the summit, and evidence for base-surge was observed in restricted corridors as low as 200 m elevation on the north and south slopes of the volcano. Neither of these events resulted in serious injuries to the 54 residents of the island, nor did the eruption produce serious chemical hazards in their water supply. Weak eruptions occurred during the ensuing month, and some of these were monitored by ground observations, seismic monitoring, and deformation studies. Precursory seismicity and possibly deformation occurred with some of the observed eruptions. More vigorous eruptions were reported by visiting residents in late

  14. The 3550 year BP-1944 A.D.magma-plumbing system of Somma-Vesuvius: constraints on its behaviour and present state through a review of Sr-Nd isotope data

    Directory of Open Access Journals (Sweden)

    G. Mastrolorenzo

    2004-06-01

    Full Text Available Vesuvius, dominating the densely-populated Neapolitan area, is one of the most dangerous volcanoes in the World. Its destructive power derives from energetic subplinian and plinian eruptions, such as the one which occurred in 79 A.D. Generally such large-scale events follow a long period of quiescence; a behaviour interpreted as the gradual build-up of magma volumes between periods of major activity. After the 1631 subplinian eruption until the last 1944 A.D. eruption, it experienced an almost continuous and less energetic explosive/effusive activity. The erupted magmas are characterized by undersaturated potassic to ultrapotassic nature, and compositional and Sr-isotopic variability. Furthermore geobarometric studies indicate two different crystallization depths located at 4 and >11 km, respectively. According to most of the recent literature, the eruptions were triggered by the injection in a shallower magma chamber, of isotopically distinct magma batches derived from heterogeneous mantle source(s and/or contamination processes occurred within the deep reservoir. In our review of petrochemical data, we consider the period between the 3550 years BP plinian eruption and the 472 A.D. sub-plinian eruption, which includes 79 A.D. event, and the most recent period of activity which started in 1631 A.D. and lasted up to the 1944 A.D. eruption, characterized by a near continuous effusive/explosive activity. For both periods we identify a correlation between Sr-isotopical features of magmas and their crystallization depth. In particular, we show that pyroxenes have Sr-isotopic ratios lower than 0.7074 and an equilibrium crystallization depth of 22-11 km. Moreover feldspars have higher 87Sr/86Sr values (0.7075-7 and an equilibrium crystallization depth of about 4 km. Therefore the most radiogenic magmas did not derive from a deeper reservoir but their higher Sr-isotopic ratios have been acquired at a shallower depth likely by crustal contamination

  15. The eruptive chronology of the Ampato-Sabancaya volcanic complex (Southern Peru)

    Science.gov (United States)

    Samaniego, Pablo; Rivera, Marco; Mariño, Jersy; Guillou, Hervé; Liorzou, Céline; Zerathe, Swann; Delgado, Rosmery; Valderrama, Patricio; Scao, Vincent

    2016-09-01

    We have reconstructed the eruptive chronology of the Ampato-Sabancaya volcanic complex (Southern Peru) on the basis of extensive fieldwork, and a large dataset of geochronological (40K-40Ar, 14C and 3He) and geochemical (major and trace element) data. This volcanic complex is composed of two successive edifices that have experienced discontinuous volcanic activity from Middle Pleistocene to Holocene times. The Ampato compound volcano consists of a basal edifice constructed over at least two cone-building stages dated at 450-400 ka and 230-200 ka. After a period of quiescence, the Ampato Upper edifice was constructed firstly during an effusive stage (80-70 ka), and then by the formation of three successive peaks: the Northern, Southern (40-20 ka) and Central cones (20-10 ka). The Southern peak, which is the biggest, experienced large explosive phases, resulting in deposits such as the Corinta plinian fallout. During the Holocene, eruptive activity migrated to the NE and constructed the mostly effusive Sabancaya edifice. This cone comprised many andesitic and dacitic blocky lava flows and a young terminal cone, mostly composed of pyroclastic material. Most samples from the Ampato-Sabancaya define a broad high-K magmatic trend composed of andesites and dacites with a mineral assemblage of plagioclase, amphibole, biotite, ortho- and clino-pyroxene, and Fe-Ti oxides. A secondary trend also exists, corresponding to rare dacitic explosive eruptions (i.e. Corinta fallout and flow deposits). Both magmatic trends are derived by fractional crystallisation involving an amphibole-rich cumulate with variable amounts of upper crustal assimilation. A marked change in the overall eruptive rate has been identified between Ampato ( 0.1 km3/ka) and Sabancaya (0.6-1.7 km3/ka). This abrupt change demonstrates that eruptive rates have not been homogeneous throughout the volcano's history. Based on tephrochronologic studies, the Late Holocene Sabancaya activity is characterised by strong

  16. Chronology and pyroclastic stratigraphy of the May 18, 1980, eruption of Mount St. Helens, Washington

    Science.gov (United States)

    Criswell, C. William

    1987-01-01

    The eruption of Mount St. Helens on May 18, 1980 can be subdivided into six phases: the paroxysmal phase I, the early Plinian phase II, the early ash flow phase III, the climactic phase IV, the late ash flow phase V, and phase VI, the activity of which consisted of a low-energy ash plume. These phases are correlated with stratigraphic subunits of ash-fall tephra and pyroclastic flow deposits. Sustained vertical discharge of phase II produced evolved dacite with high S/Cl ratios. Ash flow activity of phase III is attributed to decreases in gas content, indicated by reduced S/Cl ratios and increased clast density of the less evolved gray pumice. Climactic events are attributed to vent clearing and exhaustion of the evolved dacite.

  17. Explosive Volcanic Eruptions from Linear Vents on Earth, Venus and Mars: Comparisons with Circular Vent Eruptions

    Science.gov (United States)

    Glaze, Lori S.; Baloga, Stephen M.; Wimert, Jesse

    2010-01-01

    Conditions required to support buoyant convective plumes are investigated for explosive volcanic eruptions from circular and linear vents on Earth, Venus, and Mars. Vent geometry (linear versus circular) plays a significant role in the ability of an explosive eruption to sustain a buoyant plume. On Earth, linear and circular vent eruptions are both capable of driving buoyant plumes to equivalent maximum rise heights, however, linear vent plumes are more sensitive to vent size. For analogous mass eruption rates, linear vent plumes surpass circular vent plumes in entrainment efficiency approximately when L(sub o) > 3r(sub o) owing to the larger entrainment area relative to the control volume. Relative to circular vents, linear vents on Venus favor column collapse and the formation of pyroclastic flows because the range of conditions required to establish and sustain buoyancy is narrow. When buoyancy can be sustained, however, maximum plume heights exceed those from circular vents. For current atmospheric conditions on Mars, linear vent eruptions are capable of injecting volcanic material slightly higher than analogous circular vent eruptions. However, both geometries are more likely to produce pyroclastic fountains, as opposed to convective plumes, owing to the low density atmosphere. Due to the atmospheric density profile and water content on Earth, explosive eruptions enjoy favorable conditions for producing sustained buoyant columns, while pyroclastic flows would be relatively more prevalent on Venus and Mars. These results have implications for the injection and dispersal of particulates into the planetary atmosphere and the ability to interpret the geologic record of planetary volcanism.

  18. Correlations of volcanic ash texture with explosion earthquakes from vulcanian eruptions at Sakurajima volcano, Japan

    Science.gov (United States)

    Miwa, T.; Toramaru, A.; Iguchi, M.

    2009-07-01

    .S.J., Carroll, M.R., 2003. The kinetics of degassing-induced crystallization at Soufriere Hills volcano, Montserrat. J. Petrol., 44, 1477-1502.] suggests that a plagioclase microlite texture of volcanic ash from eruptions without BL-Swarms could be generated by a decompression of 100-160 MPa. If the MND is controlled by the water exsolution rate from melt, the positive correlation between the MND and Aeq may suggest that Aeq becomes large when the effective decompression is large and the water exsolution rate is high (from 6.2 × 10 - 5 to 1.9 × 10 - 4 wt.%/s). The estimated magma ascent rate ranges from 0.11 to 0.35 m/s, which is one order of magnitude faster than that of an effusive eruption, and one to three orders slower than those for a (sub-) plinian eruption. This suggests that the ascent rate of magma plays an important role in the occurrence of vulcanian eruptions. We propose a simple model for vulcanian eruptions at Sakurajima volcano that takes into account the correlation between the S-fraction and Aeq.

  19. Late Pleistocene-Holocene cataclysmic eruptions at Nevado de Toluca and Jocotitlan volcanoes, central Mexico

    Science.gov (United States)

    Macias, J.L.; Garcia, P.A.; Arce, J.L.; Siebe, C.; Espindola, J.M.; Komorowski, J.C.; Scott, K.

    1997-01-01

    This field guide describes a five day trip to examine deposits of Late Pleistocene-Holocene cataclysmic eruptions at Nevado de Toluca and Jocotitlan volcanoes in central Mexico. We will discuss the stratigraphy, petrology, and sedimentological characteristics of these deposits which provide insights into the eruptive history, type of volcanic activity, and transport and emplacement mechanisms of pyroclastic materials. These parameters will allow us to discuss the kinds of hazards and the risk that they pose to populations around these volcanoes. The area to be visited is tectonically complex thus we will also discuss the location of the volcanoes with respect to the tectonic environment. The first four days of the field trip will be dedicated to Nevado de Toluca Volcano (19 degrees 09'N; 99 degrees 45'W) located at 23 km. southwest of the City of Toluca, and is the fourth highest peak in the country, reaching an elevation of 4,680 meters above sea level (m.a.s.l.). Nevado de Toluca is an andesitic-dacitic stratovolcano, composed of a central vent excavated upon the remains of older craters destroyed by former events. Bloomfield and Valastro, (1974, 1977) concluded that the last cycle of activity occurred nearly equal 11,600 yr. ago. For this reason Nevado de Toluca has been considered an extinct volcano. Our studies, however, indicate that Nevado de Toluca has had at least two episodes of cone destruction by sector collapse as well as several explosive episodes including plinian eruptions and dome-destruction events. These eruptions occurred during the Pleistocene but a very young eruption characterized by surge and ash flows occurred ca. 3,300 yr. BP. This new knowledge of the volcano's eruptive history makes the evaluation of its present state of activity and the geological hazards necessary. This is important because the area is densely populated and large cities such as Toluca and Mexico are located in its proximity.

  20. RECOVERY FROM GIANT ERUPTIONS IN VERY MASSIVE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Kashi, Amit; Davidson, Kris; Humphreys, Roberta M., E-mail: kashi@astro.umn.edu [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church St. SE. Minneapolis, MN 55455 (United States)

    2016-01-20

    We use a hydro-and-radiative-transfer code to explore the behavior of a very massive star (VMS) after a giant eruption—i.e., following a supernova impostor event. Beginning with reasonable models for evolved VMSs with masses of 80 M{sub ⊙} and 120 M{sub ⊙}, we simulate the change of state caused by a giant eruption via two methods that explicitly conserve total energy. (1) Synthetically removing outer layers of mass of a few M{sub ⊙} while reducing the energy of the inner layers. (2) Synthetically transferring energy from the core to the outer layers, an operation that automatically causes mass ejection. Our focus is on the aftermath, not the poorly understood eruption itself. Then, using a radiation-hydrodynamic code in 1D with realistic opacities and convection, the interior disequilibrium state is followed for about 200 years. Typically the star develops a ∼400 km s{sup −1} wind with a mass loss rate that begins around 0.1 M{sub ⊙} yr{sup −1} and gradually decreases. This outflow is driven by κ-mechanism radial pulsations. The 1D models have regular pulsations but 3D models will probably be more chaotic. In some cases a plateau in the mass-loss rate may persist about 200 years, while other cases are more like η Car which lost >10 M{sub ⊙} and then had an abnormal mass loss rate for more than a century after its eruption. In our model, the post-eruption outflow carried more mass than the initial eruption. These simulations constitute a useful preliminary reconnaissance for 3D models which will be far more difficult.

  1. Atmospheric Despersal and Disposition of Tephra From a Potential Volcanic Eruption at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    G. Keating; W.Statham

    2004-01-01

    The purpose of this model report is to provide documentation of the conceptual and mathematical model (ASHPLUME) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. The ASHPLUME conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The ASHPLUME mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report will improve and clarify the previous documentation of the ASHPLUME mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model

  2. Atmospheric Dispersal and Dispostion of Tephra From a Potential Volcanic Eruption at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    G. Keating; W.Statham

    2004-02-12

    The purpose of this model report is to provide documentation of the conceptual and mathematical model (ASHPLUME) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. The ASHPLUME conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The ASHPLUME mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report will improve and clarify the previous documentation of the ASHPLUME mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model.

  3. Testing QCD with Hypothetical Tau Leptons

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.

    1998-10-21

    We construct new tests of perturbative QCD by considering a hypothetical {tau} lepton of arbitrary mass, which decays hadronically through the electromagnetic current. We can explicitly compute its hadronic width ratio directly as an integral over the e{sup +}e{sup -} annihilation cross section ratio, R{sub e{sup +}e{sup -}}. Furthermore, we can design a set of commensurate scale relations and perturbative QCD tests by varying the weight function away from the form associated with the V-A decay of the physical {tau}. This method allows the wide range of the R{sub e{sup +}e{sup -}} data to be used as a probe of perturbative QCD.

  4. Proximal stratigraphy and event sequence of the c. 5600 cal. yr BP Whakatane rhyolite eruption episode from Haroharo volcano, Okataina Volcanic Centre, New Zealand

    International Nuclear Information System (INIS)

    Kobayashi, T.; Nairn, I.; Smith, V.; Shane, P.

    2005-01-01

    The c. 5600 cal. yr BP Whakatane eruption episode consisted of a sequence of intracaldera rhyolite eruptions from at least five vents spread over 11 km of the Haroharo linear vent zone within Okataina Volcanic Centre. Initial vent-opening eruptions from the Haroharo vent produced coarse lithic clast 'blast beds' and pyroclastic density currents surges). These were immediately followed by eruption of very mobile pumiceous pyroclastic surges from the Makatiti vent 6 km to the southwest. Major plinian eruptions from the Makatiti vent then dispersed Whakatane Tephra pumice fall deposits (bulk volume c. 6 km 3 ) across the northeastern North Island while smaller explosive eruptions produced pyroclastic flows and falls from the Haroharo-Rotokohu vents and at the Pararoa vent on the caldera rim 11 km northeast from Makatiti. The pyroclastic eruptions at all vents were followed by the extrusion of lava flows and domes; extruded lava volumes ranged from 0.03 km 3 for the Pararoa dome to 7.5 km 3 for the Makatiti-Tapahoro lava flows and domes. Minor variations in whole rock and glass chemistry show that the three main vent areas each tapped a slightly different high-silica rhyolite magma. About 10 km 3 of M-type magma was erupted from the Makatiti-Tapahoro vents; c. 1.3 km 3 of H-type magma from the Haroharo-Rotokohu vents, and 0.04 km 3 of P-type magma from the Pararoa vent. There are no significant weathering or erosional breaks within the Whakatane eruptive sequence, which suggests that all Whakatane eruptions occurred within a short time interval. However, extrusion of the Haroharo dome within the Makatiti pyroclastic eruption sequence suggests a duration of c. 2 yr for the main pyroclastic eruption phase. Emplacement of the following voluminous (7.5 km 3 ) lavas from the Makatiti-Tapahoro vents would have occurred over >10 yr at the c. 10-20 m 3 /s inferred extrusion rates. (author). 19 refs., 16 figs., 7 tabs

  5. Volcanic sulfur dioxide index and volcanic explosivity index inferred from eruptive volume of volcanoes in Jeju Island, Korea: application to volcanic hazard mitigation

    Science.gov (United States)

    Ko, Bokyun; Yun, Sung-Hyo

    2016-04-01

    Jeju Island located in the southwestern part of Korea Peninsula is a volcanic island composed of lavaflows, pyroclasts, and around 450 monogenetic volcanoes. The volcanic activity of the island commenced with phreatomagmatic eruptions under subaqueous condition ca. 1.8-2.0 Ma and lasted until ca. 1,000 year BP. For evaluating volcanic activity of the most recently erupted volcanoes with reported age, volcanic explosivity index (VEI) and volcanic sulfur dioxide index (VSI) of three volcanoes (Ilchulbong tuff cone, Songaksan tuff ring, and Biyangdo scoria cone) are inferred from their eruptive volumes. The quantity of eruptive materials such as tuff, lavaflow, scoria, and so on, is calculated using a model developed in Auckland Volcanic Field which has similar volcanic setting to the island. The eruptive volumes of them are 11,911,534 m3, 24,987,557 m3, and 9,652,025 m3, which correspond to VEI of 3, 3, and 2, respectively. According to the correlation between VEI and VSI, the average quantity of SO2 emission during an eruption with VEI of 3 is 2-8 × 103 kiloton considering that the island was formed under intraplate tectonic setting. Jeju Island was regarded as an extinct volcano, however, several studies have recently reported some volcanic eruption ages within 10,000 year BP owing to the development in age dating technique. Thus, the island is a dormant volcano potentially implying high probability to erupt again in the future. The volcanoes might have explosive eruptions (vulcanian to plinian) with the possibility that SO2 emitted by the eruption reaches stratosphere causing climate change due to backscattering incoming solar radiation, increase in cloud reflectivity, etc. Consequently, recommencement of volcanic eruption in the island is able to result in serious volcanic hazard and this study provides fundamental and important data for volcanic hazard mitigation of East Asia as well as the island. ACKNOWLEDGMENTS: This research was supported by a grant [MPSS

  6. THE 2011 ERUPTION OF THE RECURRENT NOVA T PYXIDIS: THE DISCOVERY, THE PRE-ERUPTION RISE, THE PRE-ERUPTION ORBITAL PERIOD, AND THE REASON FOR THE LONG DELAY

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Bradley E.; Landolt, Arlo U. [Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Linnolt, Michael [American Association of Variable Star Observers, 49 Bay State Road, Cambridge, MA 02138 (United States); Stubbings, Rod [Tetoora Observatory, Tetoora Road, Victoria (Australia); Pojmanski, Grzegorz [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Plummer, Alan [Variable Stars South, Linden Observatory, 105 Glossop Road, Linden, NSW (Australia); Kerr, Stephen [American Association of Variable Star Observers, Variable Stars South, Astronomical Association of Queensland, 22 Green Avenue, Glenlee, Queensland (Australia); Nelson, Peter [Ellinbank Observatory, 1105 Hazeldean Road, Ellinbank 3821, Victoria (Australia); Carstens, Rolf [American Association of Variable Star Observers, Variable Stars South, CBA, Geyserland Observatory, 120 Homedale Street, Rotorua 3015 (New Zealand); Streamer, Margaret [Lexy' s Palace Observatory, 3 Lupin Place, Murrumbateman, NSW (Australia); Richards, Tom [Variable Stars South, Pretty Hill Observatory, P.O. Box 323, Kangaroo Ground 3097, Victoria (Australia); Myers, Gordon [Center for Backyard Astrophysics, Columbia University, 538 West 120th Street, New York, NY 10027 (United States); Dillon, William G. [American Association of Variable Star Observers, 4703 Birkenhead Circle, Missouri City, TX 77459 (United States)

    2013-08-10

    We report the discovery by M. Linnolt on JD 2,455,665.7931 (UT 2011 April 14.29) of the sixth eruption of the recurrent nova T Pyxidis. This discovery was made just as the initial fast rise was starting, so with fast notification and response by observers worldwide, the entire initial rise was covered (the first for any nova), and with high time resolution in three filters. The speed of the rise peaked at 9 mag day{sup -1}, while the light curve is well fit over only the first two days by a model with a uniformly expanding sphere. We also report the discovery by R. Stubbings of a pre-eruption rise starting 18 days before the eruption, peaking 1.1 mag brighter than its long-time average, and then fading back toward quiescence 4 days before the eruption. This unique and mysterious behavior is only the fourth known (with V1500 Cyg, V533 Her, and T CrB) anticipatory rise closely spaced before a nova eruption. We present 19 timings of photometric minima from 1986 to 2011 February, where the orbital period is fast increasing with P/ P-dot =+313,000 yr. From 2008 to 2011, T Pyx had a small change in this rate of increase, so that the orbital period at the time of eruption was 0.07622950 {+-} 0.00000008 days. This strong and steady increase of the orbital period can only come from mass transfer, for which we calculate a rate of (1.7-3.5) Multiplication-Sign 10{sup -7} M{sub Sun} yr{sup -1}. We report 6116 magnitudes between 1890 and 2011, for an average B = 15.59 {+-} 0.01 from 1967 to 2011, which allows for an eruption in 2011 if the blue flux is nearly proportional to the accretion rate. The ultraviolet-optical-infrared spectral energy distribution is well fit by a power law with f{sub {nu}}{proportional_to}{nu}{sup 1.0}, although the narrow ultraviolet region has a tilt with a fit of f{sub {nu}}{proportional_to}{nu}{sup 1/3}. We prove that most of the T Pyx light is not coming from a disk, or any superposition of blackbodies, but rather is coming from some nonthermal

  7. Volcanic hazard zonation of the Nevado de Toluca volcano, México

    Science.gov (United States)

    Capra, L.; Norini, G.; Groppelli, G.; Macías, J. L.; Arce, J. L.

    2008-10-01

    The Nevado de Toluca is a quiescent volcano located 20 km southwest of the City of Toluca and 70 km west of Mexico City. It has been quiescent since its last eruptive activity, dated at ˜ 3.3 ka BP. During the Pleistocene and Holocene, it experienced several eruptive phases, including five dome collapses with the emplacement of block-and-ash flows and four Plinian eruptions, including the 10.5 ka BP Plinian eruption that deposited more than 10 cm of sand-sized pumice in the area occupied today by Mexico City. A detailed geological map coupled with computer simulations (FLOW3D, TITAN2D, LAHARZ and HAZMAP softwares) were used to produce the volcanic hazard assessment. Based on the final hazard zonation the northern and eastern sectors of Nevado de Toluca would be affected by a greater number of phenomena in case of reappraisal activity. Block-and-ash flows will affect deep ravines up to a distance of 15 km and associated ash clouds could blanket the Toluca basin, whereas ash falls from Plinian events will have catastrophic effects for populated areas within a radius of 70 km, including the Mexico City Metropolitan area, inhabited by more than 20 million people. Independently of the activity of the volcano, lahars occur every year, affecting small villages settled down flow from main ravines.

  8. The 2011-2012 eruption of Cordón Caulle volcano (Southern Andes): Evolution, crisis management and current hazards

    Science.gov (United States)

    Silva Parejas, C.; Lara, L. E.; Bertin, D.; Amigo, A.; Orozco, G.

    2012-04-01

    A new kind of integrated approach was for first time achieved during the eruptive crisis of Cordón Caulle volcano (Southern Andes, 40.59°S, 72.12°W) in Chile. The monitoring network of SERNAGEOMIN around the volcano detected the increasing precursory seismicity, alerting the imminence of an eruption about 5 hours before its onset, on June 4, 2011. In addition, SERNAGEOMIN generated daily forecasts of tephra dispersal and fall (ASHFALL advection-diffusion model), and prepared simulations of areas affected by the possible occurrence of lahars and pyroclastic flows. Models were improved with observed effects on the field and satellite imagery, resulting in a good correlation. The information was timely supplied to the authorities as well as recommendations in order to better precise the vulnerable areas. Eruption has initially occurred from a couple of overlapped cones located along the eastern fault scarp of the Pleistocene-Holocene extensional graben of Cordón Caulle. Eruptive products have virtually the same bulk composition as those of the historical 1921 and 1960 eruptions, corresponding to phenocryst-poor rhyodacites (67-70 % SiO2). During the first eruptive stage, a ca. 15-km strong Plinian column lasting 27 hours emitted 0.2-0.4 km3 of magma (DRE). Thick tephra deposits have been accumulated in Chile and Argentina, whereas fine particles and aerosols dispersion disrupted air navigation across the Southern Hemisphere. The second ongoing eruptive stage, which started in mid-June, has been characterized by lava emission already covering a total area comparable to the 1960 lava flows with a total estimated volume Argentina until the end of the year. Main current hazards at Cordón Caulle volcano are fine tephra fallout, secondary lahars, minor explosions and lava flow front collapse. Even if this case can be considered successful from the point of view of eruption forecast and hazard assessment, a new protocol of volcanic alerts has been recently signed

  9. Eruptive mechanism at Volcán de Colima: Interpreting transitions between styles

    Science.gov (United States)

    Varley, N.; James, M. R.; Hutchison, W.; Arámbula, R.; Reyes, G.

    2013-05-01

    In January 2013 eruptions resumed at Volcán de Colima, the previous activity having ceased in June 2011. This period represented the quietest the volcano has been since before the previous episode commenced in 1998. The new eruptive episode is showing differences compared to the 1998-2011 period, which are presenting a challenge to interpret. Lower gases fluxes coupled with lower fumaroles temperatures are consistent with the decreasing trend of volatile-contents but the two larger Vulcanian eruptions in January produced pyroclastic density currents with a greater degree of fragmentation than previous events. A dome has been growing within the newly formed crater within the previous dome. The 1998-2011 eruption included five periods of effusive activity, with little variation in composition. Domes grew with effusion rates covering more than 2 orders of magnitude. Both explosive and effusive activity was centred at multiple locations within the summit crater. The SO2 flux showed a general declining trend throughout this period and 2005 included the largest pyroclastic flows witnessed since the last Plinian eruption in 1913. Swarms of small amplitude long period events were detected prior to each larger eruption, these have been again witnessed in 2013. The characteristics of the swarms is being compared, the generation of events being related to brittle fracturing along the conduit margin. The episode terminated in June 2011 with an explosion which removed the upper portion of the most recent and extended period of dome growth, which was at a very slow rate from January 2007. Automated 3D computer vision reconstruction techniques (structure-from-motion and multi-view stereo, SfM-MVS) have permitted the estimation of dome volumes from 1 m resolution digital elevation models. A small decrease in volume (0.4×105 m3) was detected prior to the explosion, which was related to the formation of steps in the dome surface, related to localized zones of weakness. For the

  10. Ash turbidites from Southern Italy help understanding the parent eruptions and contributing to geodynamic evolution cadre of the Tyrrhenian sea

    Science.gov (United States)

    Doronzo, Domenico Maria

    2010-05-01

    Tephra layers intercalated in sedimentary successions are very interesting since they represent some instants of geodynamic evolution in a sedimentation basin. Furthermore, they can constitute deposits of explosive eruptions whose distal behaviour can be useful for studying the volcanoes activity, especially when pyroclastic deposits in proximal areas are absent. In the Craco area (Matera, Italy), thick ash turbidites intercalated in marine clays deposits have been recently recognized, which interest is related to the considerable cropping out thickness (1 to 5 m), freshness of the material and absence of sedimentary component. Petrography, sedimentology and chemistry of the deposits have been characterized with the aim of defining genesis and deposition of the material. The deposits are essentially made up of ashy pyroclasts, dominated by fresh acidic to intermediate glass, mostly in the form of shards, pumice fragments and groundmass fragments with vitrophyric texture. Rare crystals include Pl, Opx, Cpx, Hbl and Bt. 40Ar/39Ar geochronology on the amphibole dated one level to 2.24 ± 0.06 Ma, indicating the Late Pliocene. The grain size (fine ash) and textural features of the deposits are typical of pyroclastic fall deposits related to explosive eruptions with consequent upward projection of the fragmented material through Plinian columms. The columns turned eastward because of stratospheric winds and the material fell in a marine environment. It deposited on the slope of Pliocene basins in the frontal sector of the Southern Apennine chain. Structural features are the following: fining-upward gradation of the deposits with cross- and convolute laminations at the base and fine-grained massive beds at the top. They suggest that the primary pyroclastic fall deposits were mobilized as volcaniclastic turbidity currents towards a deeper environment. Glass and crystal compositions were investigated by SEM/EDS analysis. Petrographycal and chemical compositions of the

  11. New perspectives on the eruption of 1912 in the valley of ten thousand smokes, Katmai National Park, Alaska

    Science.gov (United States)

    Hildreth, W.

    1987-01-01

    New data extend our understanding of the 1912 eruption, its backfilled vent complex at Novarupta, and magma-storage systems beneath adjacent stratovolcanoes. Initial Plinian rhyolite fallout is confined to a narrow downwind sector, and its maximum thickness may occur as far as 13 km from source. In contrast, the partly contemporaneous rhyolite-rich ash flows underwent relatively low-energy emplacement, their generation evidently being decoupled from the high column. Flow veneers 1-13 m thick on near-vent ridge crests exhibit a general rhyolite-to-andesite sequence like that of the much thicker valley-confined ignimbrite into which they merge downslope. Lithics in both the initial Plinian and the ignimbrite are predominantly fragments of the Jurassic Naknek Formation, which extends from the surface to a depth of ca. 1500 m. Absence of lithics from the underlying sedimentary section limits to 100 m thick near source and 10 m thick 3 km away, which dip back into an inner vent <0.5 km wide, nested inside the earlier vent funnel of the ignimbrite. The dacite fallout is poor in Naknek lithics but contains abundant fragments of vitrophyre, most of which was vent-filling, densely welded tuff reejected during later phases of the 3-day eruption. Adjacent to the inner vent, a 225-m-high asymmetrical accumulation of coarse near-vent ejecta is stratigraphically continuous with the regional dacite fallout. Distensional faulting of its crest may reflect spreading related to compaction and welding. Nearby andesite-dacite stratovolcanoes, i.e., Martin, Mageik, Trident, and Katmai, display at least 12 vents that define a linear volcanic front trending N65??E. The 1912 vent and adjacent dacite domes are disposed parallel to the front and ca. 4 km behind it. Mount Griggs, 10 km behind the front, is more potassic than other centers, taps isotopically more depleted source materials, and reflects a wholly independent magmatic plumbing system. Geochemical differences among the

  12. Chemical Evidence for Vertical Transport from Magma Chambers to the Surface During Mid-Ocean Ridge Volcanic Eruptions

    Science.gov (United States)

    Sinton, J. M.; Rubin, K. H.

    2009-12-01

    Many mid-ocean ridge eruptions show significant internal chemical heterogeneity; in general, the amount of chemical heterogeneity within eruptions scales with erupted volume. These variations reflect magmatic processes occurring in magma reservoirs prior to or possibly during eruption. For example, systematic variations in Mg# with along-axis distance in the early 90’s Aldo-Kihi (S. EPR near 17.5°S), 1996 N. Gorda, 1993 Co-Axial (Juan de Fuca Ridge), and 1991-2 and 2005-6 9°50’N EPR eruptions is unlikely to be related to fractionation during emplacement, and rather reflects variations in sub-axial magma reservoirs prior to eruption. Such variations are inconsistent with well-mixed sub-axial reservoirs and, in some cases, require relatively long-lived, systematic variations in reservoir temperatures along axis. Chemical heterogeneity within the Aldo-Kihi eruption preserves spatial variations in mantle-derived isotopic and trace element ratios with implications for the temporal and spatial scales of magma injections to the crust and along-axis mixing within shallow reservoirs. These spatial variations are difficult to reconcile with significant (> ~1 km) along-axis magma transport, as are striking correlations of chemical compositions with surface geological discontinuities or seismically imaged sub-axial magma chamber reflectors in the S. Hump (S. EPR), 9°50’N EPR, N. Gorda and 1975-1984 Krafla (N. Iceland) eruptive units. Rather, spatial correlations between surface lava compositions and sub-axial magma chamber properties or long-lived axial morphology suggest that most of the erupted magma was transported nearly vertically from the underlying reservoirs to the surface during these eruptions. In the case of the Krafla eruption, coincident deformation suggests a component of lateral melt migration at depth, despite chemical evidence for vertical transport of erupted lava from more than one chemical reservoir. In addition, along-ridge movement of earthquake

  13. Rapid ascent of rhyolitic magma at Chaitén volcano, Chile.

    Science.gov (United States)

    Castro, Jonathan M; Dingwell, Donald B

    2009-10-08

    Rhyolite magma has fuelled some of the Earth's largest explosive volcanic eruptions. Our understanding of these events is incomplete, however, owing to the previous lack of directly observed eruptions. Chaitén volcano, in Chile's northern Patagonia, erupted rhyolite magma unexpectedly and explosively on 1 May 2008 (ref. 2). Chaitén residents felt earthquakes about 24 hours before ash fell in their town and the eruption escalated into a Plinian column. Although such brief seismic forewarning of a major explosive basaltic eruption has been documented, it is unprecedented for silicic magmas. As precursory volcanic unrest relates to magma migration from the storage region to the surface, the very short pre-eruptive warning at Chaitén probably reflects very rapid magma ascent through the sub-volcanic system. Here we present petrological and experimental data that indicate that the hydrous rhyolite magma at Chaitén ascended very rapidly, with velocities of the order of one metre per second. Such rapid ascent implies a transit time from storage depths greater than five kilometres to the near surface in about four hours. This result has implications for hazard mitigation because the rapidity of ascending rhyolite means that future eruptions may provide little warning.

  14. Robust satellite techniques for monitoring volcanic eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Pergola, N.; Pietrapertosa, C. [Consiglio Nazionale delle Ricerche, Istituto di Metodologie Avanzate, Tito Scalo, PZ (Italy); Lacava, T.; Tramutoli, V. [Potenza Universita' della Basilicata, Potenza (Italy). Dipt. di Ingegneria e Fisica dell' Ambiente

    2001-04-01

    Through this paper the robust approach to monitoring volcanic aerosols by satellite is applied to an extended set of events affecting Stromboli and Etna volcanoes to assess its performance in automated detection of eruptive clouds and in monitoring pre-eruptive emission activities. Using only NOAA/AVHRR data at hand (without any specific atmospheric model or ancillary ground-based measurements) the proposed method automatically discriminates meteorological from eruptive volcanic clouds and, in several cases, identified pre-eruptive anomalies in the emission rates not identified by traditional methods. The main merit of this approach is its effectiveness in recognising field anomalies also in the presence of a highly variable surface background as well as its intrinsic exportability not only on different geographic areas but also on different satellite instrumental packages. In particular, the possibility to extend the proposed method to the incoming new MSG/SEVIRI satellite package (which is going to fly next year) with its improved spectral (specific bands for SO{sub 2}) and temporal (up to 15 min) resolutions has been evaluated representing the natural continuation of this work.

  15. ECLIPSES DURING THE 2010 ERUPTION OF THE RECURRENT NOVA U SCORPII

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Bradley E.; Pagnotta, Ashley [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); LaCluyze, Aaron P.; Reichart, Daniel E.; Ivarsen, Kevin M.; Haislip, Joshua B.; Nysewander, Melissa C.; Moore, Justin P. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC (United States); Oksanen, Arto [Caisey Harlingten Observatory, Caracoles 166, San Pedro de Atacama (Chile); Worters, Hannah L.; Sefako, Ramotholo R. [South African Astronomical Observatory, P.O. Box 9, Observatory 7935, Cape Town (South Africa); Mentz, Jaco [Unit for Space Physics, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Dvorak, Shawn; Gomez, Tomas; Harris, Barbara G.; Henden, Arne A.; Tan, Thiam Guan; Templeton, Matthew [American Association of Variable Star Observers, 49 Bay State Road, Cambridge, MA 02138 (United States); Allen, W. H. [Center for Backyard Astrophysics, Vintage Lane Observatory, RD 3, Blenheim (New Zealand); Monard, Berto [Center for Backyard Astrophysics, 538 W. 120th St., New York, NY 10027 (United States); and others

    2011-12-01

    The eruption of the recurrent nova U Scorpii on 2010 January 28 is now the all-time best observed nova event. We report 36,776 magnitudes throughout its 67 day eruption, for an average of one measure every 2.6 minutes. This unique and unprecedented coverage is the first time that a nova has had any substantial amount of fast photometry. With this, two new phenomena have been discovered: the fast flares in the early light curve seen from days 9-15 (which have no proposed explanation) and the optical dips seen out of eclipse from days 41-61 (likely caused by raised rims of the accretion disk occulting the bright inner regions of the disk as seen over specific orbital phases). The expanding shell and wind cleared enough from days 12-15 so that the inner binary system became visible, resulting in the sudden onset of eclipses and the turn-on of the supersoft X-ray source. On day 15, a strong asymmetry in the out-of-eclipse light points to the existence of the accretion stream. The normal optical flickering restarts on day 24.5. For days 15-26, eclipse mapping shows that the optical source is spherically symmetric with a radius of 4.1 R{sub Sun }. For days 26-41, the optical light is coming from a rim-bright disk of radius 3.4 R{sub Sun }. For days 41-67, the optical source is a center-bright disk of radius 2.2 R{sub Sun }. Throughout the eruption, the colors remain essentially constant. We present 12 eclipse times during eruption plus five just after the eruption.

  16. The 2008 eruption of the Chaitén Volcano, Chile: a preliminary report La erupción 2008 del volcán Chaitén, Chile: informe preliminar

    Directory of Open Access Journals (Sweden)

    Luis E Lara

    2009-01-01

    Full Text Available On May 2, 2008 a Plinian eruption began on Chaiten volcano. Dome growing stage would have started on May 10-12 and extensive lahars and floods affected Chaiten town (ca. 5,000 inhabitants on May 12. A volume up to ca. 4 km³ (non DRE of rhyolitic magma would be extruded mostly during the explosive phase. Eruptive activity has not completely finished by the end of November. Because of the wide impact of this type of volcanism, this eruption poses a series of questions regarding explosive volcanism that should be addressed in the near future.El 2 de mayo se inició una erupción pliniana en el volcán Chaitén. Entre el 10 y el 12 de mayo, se habría iniciado la construcción de un domo y el día 12 de mayo lahares e inundaciones afectaron la ciudad de Chaitén (ca. 5.000 habitantes. Aproximadamente hasta 4 km³ de magma riolítico (no ERD habría sido evacuado principalmente durante la fase explosiva. Hacia fines de noviembre, la actividad eruptiva no había terminado por completo. Esta erupción plantea una serie de interrogantes científicas que deberían ser enfrentadas en un futuro cercano dado el amplio impacto que este tipo de volcanismo representa.

  17. Electronic properties of new superconductors based on Ca(Al sub x Si sub 1 sub - sub x) sub 2 and Sr(Ga sub x Si sub 1 sub - sub x) sub 2 in crystal and nanotubular states

    CERN Document Server

    Shein, I R; Medvedeva, N I; Ivanovskij, A L

    2002-01-01

    The zone structures of the new Ca(Al sub x Si sub 1 sub - sub x) sub 2 and Sr(Ga sub x Si sub 1 sub - sub x) sub 2 layered superconductors (AlB sub 2 -type) are studied through the LMTO first-principle full-potential method. It is shown that the superconducting properties of the ternary silicides is conditioned by high density of the (Ca, Sr)d-states near the Fermi level, whereas the T sub C growth by the Sr(Ga sub x Si sub 1 sub - sub x) sub 2 -> Ca(Al sub x Si sub 1 sub - sub x) sub 2 transition is related to the increase in the photon frequencies due to the atoms mass decrease. Modeling the electron properties of the hypothetical (11, 11) and (20, 0) CaAlSi and SrGaSi nanotubes is accomplished. The silicide systems by transition from the crystalline to nanotubular state retain the metal-like properties. The template and film convolution methods may become the methods for obtaining the silicide nanotubes

  18. NEAR AND FAR-FIELD EFFECTS OF TSUNAMIS GENERATED BY THE PAROXYSMAL ERUPTIONS, EXPLOSIONS, CALDERA COLLAPSES AND MASSIVE SLOPE FAILURES OF THE KRAKATAU VOLCANO IN INDONESIA ON AUGUST 26-27, 1883

    Directory of Open Access Journals (Sweden)

    George Pararas-Carayannis

    2003-01-01

    Full Text Available The paroxysmal phases of Krakatau's volcanic activity on August 26-27, 1883, included numerous submarine Surtsean (phreatomagmatic eruptions, three sub air Plinian eruptions from the three main craters of Krakatau on Rakata island, followed by a fourth gigantic, sub air, Ultra-Plinian explosion. Landslides, flank failures, subsidences and a multiphase massive caldera collapse of the volcano - beginning near the Perbowetan crater on the northern portion of Rakata and followed by a collapse of the Danan crater - occurred over a period of at least 10 hours. The first of the three violent explosions occurred at 17: 07 Greenwich time (GMT on August 26.The second and third eruptions occurred at 05:30 GMT and at 06:44 GMT on August 27. Each of these events, as well as expanding gases from the submarine phreatomagmatic eruptions, lifted the water surrounding the island into domes or truncated cones that must have been about 100 meters or more in height. The height of the resulting waves attenuated rapidly away from the source because of their short periods and wavelengths. It was the fourth colossal explosion (VEI=6 and the subsequent massive f lank failure and caldera collapse of two thirds of Rakata Island, at 10:02 a.m., on August 27 that generated the most formidable of the destructive tsunami waves. A smaller fifth explosion, which occurred at 10:52 a.m., must have generated another large water cone and sizable waves. The final collapse of a still standing wall of Krakatau - which occurred several hours later at 16:38, generated additional waves.The near field effects of the main tsunami along the Sunda Strait in Western Java and Southern Sumatra, were devastating. Within an hour after the fourth explosion/caldera collapse, waves reaching heights of up to 37 m (120 feet destroyed 295 towns and villages and drowned a total of 36,417 people. Because of their short period and wavelength, the wave heights attenuated rapidly with distance away from the

  19. Violent Explosive Eruptions in the Ararat Valley, Armenia and Associated Volcanic Hazards

    Science.gov (United States)

    Meliksetian, Khachatur; Savov, Ivan; Connor, Charles; Gevorgyan, Hripsime; Connor, Laura; Navasardyan, Gevorg; Manucharyan, Davit; Jrbashyan, Ruben; Ghukasyan, Yura

    2016-04-01

    The Anatolian-Armenian-Iranian volcanically active orogenic plateau is located in the collision zone between the Arabian and Eurasian plates. The majority of regional geodynamic and petrologic models of collision-related magmatism use the model proposed by Keskin (2003), where volcanism is driven by Neo-Tethyan slab break-off, however an updated model by Neill et al. (2015) and Skolbeltsyn et al.(2014) comprise break-off of two slabs. One of the significant (and understudied) features of the regionally extensive collision zone volcanism is the diversity of eruption styles and also the presence of large number of highly explosive (Plinian) eruptions with VEI≥5 during the Middle-Upper Pleistocene. Geological records of the Ararat depression include several generations of thick low aspect ratio Quaternary ignimbrites erupted from Aragats volcano, as well as up to 3 m thick ash and pumice fall deposit from the Holocene-historically active Ararat volcano. The Ararat tephra fall deposit is studied at 12 newly discovered outcrops covering an area ˜1000 km2. It is noteworthy, that the Ararat tephra deposits are loose and unwelded and observed only in cross-sections in small depressions or in areas where they were rapidly covered by younger, colluvium deposits, presumably of Holocene age. Therefore, the spatial extent of the explosive deposits of Ararat is much bigger but not well preserved due to rapid erosion. Whole rock elemental, isotope (Sr, Nd) and mineral chemistry data demonstrate significant difference in the magma sources of the large Aragats and Ararat stratovolcanoes. Lavas and pyroclastic products of Aragats are high K calc-alkaline, and nearly always deprived from H2O rich phases such as amphibole. In contrasts lavas and pyroclastic products from Ararat are medium K calc-alkaline and volatile-rich (>4.6 wt% H2O and amphibole bearing) magmas. Here we shall attempt to reveal possible geochemical triggers of explosive eruptions in these volcanoes and assess

  20. ATMOSPHERIC DISPERSAL AND DEPOSITION OF TEPHRA FROM A POTENTIAL VOLCANIC ERUPTION AT YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    C. Harrington

    2004-01-01

    The purpose of this model report is to provide documentation of the conceptual and mathematical model (Ashplume) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. These aspects of volcanism-related dose calculation are described in the context of the entire igneous disruptive events conceptual model in ''Characterize Framework for Igneous Activity'' (BSC 2004 [DIRS 169989], Section 6.1.1). The Ashplume conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The Ashplume mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report update the previous documentation of the Ashplume mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model. In this report, ''Ashplume'' is used when referring to the atmospheric dispersal model and ''ASHPLUME'' is used when referencing the code of that model. Two analysis and model reports provide direct inputs to this model report, namely ''Characterize Eruptive Processes at Yucca Mountain, Nevada and Number of Waste Packages Hit by Igneous Intrusion''. This model report provides direct inputs to

  1. The 2nd to 4th century explosive activity of Vesuvius: new data on the timing of the upward migration of the post-A.D. 79 magma chamber

    Directory of Open Access Journals (Sweden)

    Raffaello Cioni

    2013-11-01

    Full Text Available We present volcanological data on the deposits of the Santa Maria Member (SMM, the eruption cycle occurred at Vesuvius (Italy in the period between the A.D. 79 plinian and the A.D. 472 subplinan eruptions. Historical accounts report only sporadic, poorly reliable descriptions of the volcanic activity in this period, during which a stratified sequence of ash and lapilli beds, up to 150 cm thick, with a total volume estimated around 0.15 km3, was widely dispersed on the outer slopes of the volcano. Stratigraphic studies and component analyses suggest that activity was characterized by mixed hydromagmatic and magmatic processes. The eruption style has been interpreted as repeated alternations of continuous and prolonged ash emission activity intercalated with short-lived, violent strombolian phases. Analyses of the bulk rock composition reveal that during the entire eruption cycle, magma maintained an homogeneous phonotephritic composition. In addition, the general trends of major and trace elements depicted by the products of the A.D. 79 and A.D. 472 eruptions converge to the SMM composition, suggesting a common mafic end-member for these eruptions. The volatile content measured in pyroxene-hosted melt inclusions indicates two main values of crystallization pressures, around 220 and 70 MPa, roughly corresponding to the previously estimated depth of the magma reservoirs of the A.D. 79 and A.D. 472 eruptions, respectively. The study of SMM eruption cycle may thus contribute to understand the processes governing the volcano reawakening immediately after a plinian event, and the timing and modalities which govern the migration of the magma reservoir.

  2. Sensitivity of a coupled climate-carbon cycle model to large volcanic eruptions during the last millennium

    Energy Technology Data Exchange (ETDEWEB)

    Brovkin, Victor; Lorenz, Stephan J.; Jungclaus, Johann; Raddatz, Thomas; Timmreck, Claudia; Reick, Christian H.; Segschneider, Joachim; Six, Katharina (Max Planck Inst. for Meteorology Hamburg (Germany))

    2010-11-15

    The sensitivity of the climate-biogeochemistry system to volcanic eruptions is investigated using the comprehensive Earth System Model developed at the Max Planck Institute for Meteorology. The model includes an interactive carbon cycle with modules for terrestrial biosphere as well as ocean biogeochemistry. The volcanic forcing is based on a recent reconstruction for the last 1200 yr. An ensemble of five simulations is performed and the averaged response of the system is analysed in particular for the largest eruption of the last millennium in the year 1258. After this eruption, the global annual mean temperature drops by 1 K and recovers slowly during 10 yr. Atmospheric CO{sub 2} concentration declines during 4 yr after the eruption by ca. 2 ppmv to its minimum value and then starts to increase towards the pre-eruption level. This CO{sub 2} decrease is explained mainly by reduced heterotrophic respiration on land in response to the surface cooling, which leads to increased carbon storage in soils, mostly in tropical and subtropical regions. The ocean acts as a weak carbon sink, which is primarily due to temperature-induced solubility. This sink saturates 2 yr after the eruption, earlier than the land uptake.

  3. DomeHaz, a Global Hazards Database: Understanding Cyclic Dome-forming Eruptions, Contributions to Hazard Assessments, and Potential for Future Use and Integration with Existing Cyberinfrastructure

    Science.gov (United States)

    Ogburn, S. E.; Calder, E.; Loughlin, S.

    2013-12-01

    Dome-forming eruptions can extend for significant periods of time and can be dangerous; nearly all dome-forming eruptions have been associated with some level of explosive activity. Large Plinian explosions with a VEI ≥ 4 sometimes occur in association with dome-forming eruptions. Many of the most significant volcanic events of recent history are in this category. The 1902-1905 eruption of Mt. Pelée, Martinique; the 1980-1986 eruption of Mount St. Helens, USA; and the 1991 eruption of Mt. Pinatubo, Philippines all demonstrate the destructive power of VEI ≥ 4 dome-forming eruptions. Global historical analysis is a powerful tool for decision-making as well as for scientific discovery. In the absence of monitoring data or a knowledge of a volcano's eruptive history, global analysis can provide a method of understanding what might be expected based on similar eruptions. This study investigates the relationship between large explosive eruptions and lava dome growth and develops DomeHaz, a global database of dome-forming eruptions from 1000 AD to present. It is currently hosted on VHub (https://vhub.org/groups/domedatabase/), a community cyberinfrastructure for sharing data, collaborating, and modeling. DomeHaz contains information about 367 dome-forming episodes, including duration of dome growth, duration of pauses in extrusion, extrusion rates, and the timing and magnitude of associated explosions. Data sources include the The Smithsonian Institution Global Volcanism Program (GVP), Bulletin of the Global Volcanism Network, and all relevant published review papers, research papers, and reports. This database builds upon previous work (e.g Newhall and Melson, 1983) in light of newly available data for lava dome eruptions. There have been 46 new dome-forming eruptions, 13 eruptions that continued past 1982, 151 new dome-growth episodes, and 8 VEI ≥ 4 events since Newhall and Melson's work in 1983. Analysis using DomeHaz provides useful information regarding the

  4. Satellite-based detection of volcanic sulphur dioxide from recent eruptions in Central and South America

    Directory of Open Access Journals (Sweden)

    D. Loyola

    2008-01-01

    Full Text Available Volcanic eruptions can emit large amounts of rock fragments and fine particles (ash into the atmosphere, as well as several gases, including sulphur dioxide (SO<sub>2sub>. These ejecta and emissions are a major natural hazard, not only to the local population, but also to the infrastructure in the vicinity of volcanoes and to aviation. Here, we describe a methodology to retrieve quantitative information about volcanic SO<sub>2sub> plumes from satellite-borne measurements in the UV/Visible spectral range. The combination of a satellite-based SO<sub>2sub> detection scheme and a state-of-the-art 3D trajectory model enables us to confirm the volcanic origin of trace gas signals and to estimate the plume height and the effective emission height. This is demonstrated by case-studies for four selected volcanic eruptions in South and Central America, using the GOME, SCIAMACHY and GOME-2 instruments.

  5. ORIGIN AND KINEMATICS OF THE ERUPTIVE FLOW FROM XZ TAU REVEALED BY ALMA

    Energy Technology Data Exchange (ETDEWEB)

    Zapata, Luis A.; Galván-Madrid, Roberto; Carrasco-González, Carlos; Palau, Aina; Rodríguez, Luis F.; Kurtz, Stan E.; Tafoya, Daniel; Loinard, Laurent [Centro de Radioastronomía y Astrofísica, UNAM, Apdo. Postal 3-72 (Xangari), 58089 Morelia, Michoacán, México (Mexico); Curiel, Salvador [Instituto de Astronomía, Universidad Nacional Autónoma de México, Ap. 70-264, 04510 DF, México (Mexico)

    2015-09-20

    We present high angular resolution (∼0.″94) {sup 12}CO(1-0) Atacama Large Millimeter/submillimeter Array (ALMA) observations obtained during the 2014 long baseline campaign from the eruptive bipolar flow from the multiple XZ Tau stellar system discovered by the Hubble Space Telescope (HST). These observations reveal, for the first time, the kinematics of the molecular flow. The kinematics of the different ejections close to XZ Tau reveal a rotating and expanding structure with a southeast–northwest velocity gradient. The youngest eruptive bubbles unveiled in the optical HST images are inside of this molecular expanding structure. Additionally, we report a very compact and collimated bipolar outflow emanating from XZ Tau A, which indicates that the eruptive outflow is indeed originating from this object. The mass (3 × 10{sup −7} M{sub ⊙}) and energetics (E{sub kin} = 3 × 10{sup 37} erg) for the collimated outflow are comparable to those found in molecular outflows associated with young brown dwarfs.

  6. Months between rejuvenation and volcanic eruption at Yellowstone caldera, Wyoming

    Science.gov (United States)

    Till, Christy B.; Vazquez, Jorge A.; Boyce, Jeremy W

    2015-01-01

    Rejuvenation of previously intruded silicic magma is an important process leading to effusive rhyolite, which is the most common product of volcanism at calderas with protracted histories of eruption and unrest such as Yellowstone, Long Valley, and Valles, USA. Although orders of magnitude smaller in volume than rare caldera-forming super-eruptions, these relatively frequent effusions of rhyolite are comparable to the largest eruptions of the 20th century and pose a considerable volcanic hazard. However, the physical pathway from rejuvenation to eruption of silicic magma is unclear particularly because the time between reheating of a subvolcanic intrusion and eruption is poorly quantified. This study uses geospeedometry of trace element profiles with nanometer resolution in sanidine crystals to reveal that Yellowstone’s most recent volcanic cycle began when remobilization of a near- or sub-solidus silicic magma occurred less than 10 months prior to eruption, following a 220,000 year period of volcanic repose. Our results reveal a geologically rapid timescale for rejuvenation and effusion of ~3 km3 of high-silica rhyolite lava even after protracted cooling of the subvolcanic system, which is consistent with recent physical modeling that predict a timescale of several years or less. Future renewal of rhyolitic volcanism at Yellowstone is likely to require an energetic intrusion of mafic or silicic magma into the shallow subvolcanic reservoir and could rapidly generate an eruptible rhyolite on timescales similar to those documented here.

  7. ATMOSPHERIC DISPERSAL AND DEPOSITION OF TEPHRA FROM A POTENTIAL VOLCANIC ERUPTION AT YUCCA MOUNTAIN, NEVADA

    Energy Technology Data Exchange (ETDEWEB)

    C. Harrington

    2004-10-25

    The purpose of this model report is to provide documentation of the conceptual and mathematical model (Ashplume) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. These aspects of volcanism-related dose calculation are described in the context of the entire igneous disruptive events conceptual model in ''Characterize Framework for Igneous Activity'' (BSC 2004 [DIRS 169989], Section 6.1.1). The Ashplume conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The Ashplume mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report update the previous documentation of the Ashplume mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model. In this report, ''Ashplume'' is used when referring to the atmospheric dispersal model and ''ASHPLUME'' is used when referencing the code of that model. Two analysis and model reports provide direct inputs to this model report, namely ''Characterize Eruptive Processes at Yucca Mountain, Nevada and Number of Waste Packages Hit

  8. Constraining the Volatile Regime of Primitive Somma-Vesuvius Magmas Based on the Compositions of Phenocrysts and Melt Inclusions

    Science.gov (United States)

    Danyushevsky, L. V.; Esposito, R.; De Vivo, B.; Redi, D.; Lima, A.; Bodnar, R. J.; Gurenko, A.

    2017-12-01

    The volcanic complex of Mt. Somma-Vesuvius is located in the Campanian Plain on east of Naples. We present the results of a mineralogical and melt inclusion studies of primitive volcanic products erupted during the last 2 magmatic cycles of Soma-Vesuvius, aimed at better understanding the volatile fluxes and eruptive behaviour of the volcano. Our results suggest that despite large differences in the compositions of the erupted magmas (from olivine-bearing basaltic lavas to leucite-bearing phonolites) and the eruption style (from plinian to strombolian), there was very little change in the nature of the parental magmas. Melt inclusions in olivine phenocrysts in all volcanic products and styles reveal the highest volatile contents in the most magnesian, early formed crystals (Fo90; H2O 4-5 wt%; CO2 3,000-4,000 ppm), decreasing to near 0 levels of concentrations in olivine Fo70. Major and trace element compositions of the clinopyroxene phenocrysts (Mg#92-70) also suggest a similar parental magma composition and similar liquid lines of decent for all Somma-Vesuvius eruptions. Our results are best explained by a model which relates the eruption style to the intensity of melt supply under the volcano. High intensity plinian eruptions occur after a prolonged repose time, whereas strombolian eruptions occur during periods of more frequent volcanic activity [1]. We will also discuss possible implications for the role of carbonate assimilation during magma evolution of Somma-Vesuvius and for total volatile budget of the SOmma-Vesuvius eruptions. [1] [42] Lima, A., Danyushevsky, L.V., De Vivo, B. and Fedele, L. 2003: A model for the evolution of the Mt. Somma-Vesuvius magmatic system based on fluid and melt inclusion investigations. In: Melt Inclusions in volcanic systems: Methods, applications and Problems (B. De Vivo & R.J. Bodnar, Eds), Series: Developments in Volcanology. No. 5 Elsevier, Amsterdam, 227-251

  9. Contrasting eruption styles of the 147 Kimberlite, Fort à la Corne, Saskatchewan, Canada

    Science.gov (United States)

    Lefebvre, Nathalie; Kurszlaukis, Stephan

    2008-06-01

    and fracturing the overlying volcaniclastic main infill. Finally, blocks of the main infill tilted and possibly slumped into the subsidence structure developed above the emptied explosion chamber of 147. The different volcanic deposits reflect a change in eruption style and fragmentation level from highly explosive to spatter activity with little fragmentation potential. Cap rocks to build up the volatile overpressure necessary to blast the craters were not present at the time of emplacement. No diatremes were observed in the study area. Assuming that the magma properties remained constant over time, the change in eruption style has to be attributed to external factors, such as water access to the rising magma. The volcanic behaviour of the kimberlite magma appears to be comparable to that of other magmatic systems, both in eruptive style and production rate. No evidence was found for a high, possibly Plinian production rate or dispersion.

  10. Mechanism of human tooth eruption

    DEFF Research Database (Denmark)

    Kjær, Inger

    2014-01-01

    Human eruption is a unique developmental process in the organism. The aetiology or the mechanism behind eruption has never been fully understood and the scientific literature in the field is extremely sparse. Human and animal tissues provide different possibilities for eruption analyses, briefly ...... keeps this new theory in mind. Understanding the aetiology of the eruption process is necessary for treating deviant eruption courses....... to insight into the aetiology behind eruption. A new theory on the eruption mechanism is presented. Accordingly, the mechanism of eruption depends on the correlation between space in the eruption course, created by the crown follicle, eruption pressure triggered by innervation in the apical root membrane......, and the ability of the periodontal ligament to adapt to eruptive movements. Animal studies and studies on normal and pathological eruption in humans can support and explain different aspects in the new theory. The eruption mechanism still needs elucidation and the paper recommends that future research on eruption...

  11. Assessing Eruption Column Height in Ancient Flood Basalt Eruptions

    Science.gov (United States)

    Glaze, Lori S.; Self, Stephen; Schmidt, Anja; Hunter, Stephen J.

    2015-01-01

    A buoyant plume model is used to explore the ability of flood basalt eruptions to inject climate-relevant gases into the stratosphere. An example from the 1986 Izu-Oshima basaltic fissure eruption validates the model's ability to reproduce the observed maximum plume heights of 12-16 km above sea level, sustained above fire-fountains. The model predicts maximum plume heights of 13-17 km for source widths of between 4-16 m when 32% (by mass) of the erupted magma is fragmented and involved in the buoyant plume (effective volatile content of 6 wt%). Assuming that the Miocene-age Roza eruption (part of the Columbia River Basalt Group) sustained fire-fountains of similar height to Izu-Oshima (1.6 km above the vent), we show that the Roza eruption could have sustained buoyant ash and gas plumes that extended into the stratosphere at approximately 45 deg N. Assuming 5 km long active fissure segments and 9000 Mt of SO2 released during explosive phases over a 10-15 year duration, the approximately 180 km of known Roza fissure length could have supported approximately 36 explosive events/phases, each with a duration of 3-4 days. Each 5 km fissure segment could have emitted 62 Mt of SO2 per day into the stratosphere while actively fountaining, the equivalent of about three 1991 Mount Pinatubo eruptions per day. Each fissure segment could have had one to several vents, which subsequently produced lava without significant fountaining for a longer period within the decades-long eruption. Sensitivity of plume rise height to ancient atmospheric conditions is explored. Although eruptions in the Deccan Traps (approximately 66 Ma) may have generated buoyant plumes that rose to altitudes in excess of 18 km, they may not have reached the stratosphere because the tropopause was substantially higher in the late Cretaceous. Our results indicate that some flood basalt eruptions, such as Roza, were capable of repeatedly injecting large masses of SO2 into the stratosphere. Thus sustained

  12. TWO-DIMENSIONAL SIMULATIONS OF EXPLOSIVE ERUPTIONS OF KICK-EM JENNY AND OTHER SUBMARINE VOLCANOS

    Directory of Open Access Journals (Sweden)

    Galen Gisler

    2006-01-01

    Full Text Available Kick-em Jenny, in the Eastern Caribbean, is a submerged volcanic cone that has erupted a dozen or more times since its discovery in 1939. The most likely hazard posed by this volcano is to shipping in the immediate vicinity (through volcanic missiles or loss-of-buoyancy, but it is of interest to estimate upper limits on tsunamis that might be produced by a catastrophic explosive eruption. To this end, we have performed two-dimensional simulations of such an event in a geometry resembling that of Kick-em Jenny with our SAGE adaptive mesh Eulerian multifluid compressible hydrocode. We use realistic equations of state for air, water, and basalt, and follow the event from the initial explosive eruption, through the generation of a transient water cavity and the propagation of waves away from the site. We find that even for extremely catastrophic explosive eruptions, tsunamis from Kick-em Jenny are unlikely to pose significant danger to nearby islands. For comparison, we have also performed simulations of explosive eruptions at the much larger shield volcano Vailulu'u in the Samoan chain, where the greater energy available can produce a more impressive wave. In general, however, we conclude that explosive eruptions do not couple well to water waves. The waves that are produced from such events are turbulent and highly dissipative, and don't propagate well. This is consistent with what we have found previously in simulations of asteroid-impact generated tsunamis. Non-explosive events, however, such as landslides or gas hydrate releases, do couple well to waves, and our simulations of tsunamis generated by sub- aerial and sub-aqueous landslides demonstrate this.

  13. A Chronology of Annual-Mean Effective Radii of Stratospheric Aerosols from Volcanic Eruptions During the Twentieth Century as Derived From Ground-based Spectral Extinction Measurements

    Science.gov (United States)

    Strothers, Richard B.; Hansen, James E. (Technical Monitor)

    2001-01-01

    Stratospheric extinction can be derived from ground-based spectral photometric observations of the Sun and other stars (as well as from satellite and aircraft measurements, available since 1979), and is found to increase after large volcanic eruptions. This increased extinction shows a characteristic wavelength dependence that gives information about the chemical composition and the effective (or area weighted mean) radius of the particles responsible for it. Known to be tiny aerosols constituted of sulfuric acid in a water solution, the stratospheric particles at midlatitudes exhibit a remarkable uniformity of their column-averaged effective radii r(sub eff) in the first few months after the eruption. Considering the seven largest eruptions of the twentieth century, r(sub eff) at this phase of peak aerosol abundance is approx. 0.3 micrometers in all cases. A year later, r(sub eff) either has remained about the same size (almost certainly in the case of the Katmai eruption of 1912) or has increased to approx. 0.5 micrometers (definitely so for the Pinatubo eruption of 1991). The reasons for this divergence in aerosol growth are unknown.

  14. Magma storage constrains by compositional zoning of plagioclase from dacites of the caldera forming eruptions of Vetrovoy Isthmus and Lvinaya Past’ Bay (Iturup Island, Kurile Islands)

    Science.gov (United States)

    Maksimovich, I. A.; Smirnov, S. Z.; Kotov, A. A.; Timina, T. Yu; Shevko, A. V.

    2017-12-01

    The Vetrovoy Isthmus and the Lvinaya Past’ Bay on the Iturup island (Kuril island arc) are the results of large Plinian eruptions of compositionally similar dacitic magmas. This study is devoted to a comparative analysis of the storage and crystallization conditions for magma reservoirs, which were a source of large-scale explosive eruptions. The plagioclase is most informative mineral in studying of the melt evolution. The studied plagioclases possess a complex zoning patterns, which are not typical for silicic rocks in island-arc systems. It was shown that increase of Ca in the plagioclase up to unusually high An95 is related to increase of H2O pressure in both volcanic magma chambers. The study revealed that minerals of the Vetrovoy Isthmus and Lvinaya Past’ crystallized from compositionally similar melts. Despite the compositional similarity of the melts, the phenocryst assemblage of the Lvinaya Past’ differs from the Vetrovoy Isthmus by the presence of the amphibole, which indicates that the pressure in the magmatic chamber exceeded 1-2 kbar at a 4-6 wt. % of H2O in the melt. The rocks of the Vetrovoy Isthmus do not contain amphibole phenocrysts, but melt and fluid inclusions assemblages in plagioclase demonstrate that the magma degassed in the course of evolution. This is an indication that the pressure did not exceed significantly 1-2 kbar.

  15. Holocene eruption history in Iceland - Eruption frequency vs. Tephra layer frequency

    Science.gov (United States)

    Oladottir, B. A.; Larsen, G.

    2012-12-01

    Volcanic deposits of all kinds are used to reconstruct eruption history of volcanoes and volcanic zones. In Iceland tephra is the ideal volcanic deposit to study eruption history as two out of every three eruptions taking place there during the last 11 centuries have been explosive, leaving tephra as their only product. If eruptions producing both lava and tephra are included three out of every four eruptions have produced tephra. Tephra dispersal and deposition depends on factors such as eruption magnitude, eruption cloud height, duration of eruption and prevailing wind directions at the time of eruption. Several outcrops around a particular volcano must therefore be measured to obtain optimal information of its eruption history. Vegetation in the area of deposition is also of great importance for its preservation. Tephra deposited on un-vegetated land is rapidly eroded by wind and water, and deposits up to few tens of cm thickness may be lost from the record. Such tephra deposited on grassy or forested land is at least partly sheltered from the wind after deposition. Soon after tephra deposition (how soon depends on tephra thickness) the root system of the vegetation creates an even better shelter for the tephra and when this stage is reached the tephra is preserved in the soil for millennia, given that no soil erosion takes place. Vegetation is often boosted in the first years after tephra deposition which in turn helps tephra preservation. A setback of using soil sections for reconstructing Holocene eruption history is the lack of soil at the beginning of the era but for that time period tephra records in lake and marine sediments can be used. When tephra stratigraphy in soil sections is measured to study eruption history and eruption frequency of a volcano it must be kept in mind that what is seen is in fact the tephra layer frequency. One section only shows tephra layers deposited in that location and more importantly only the layers preserved there. The

  16. Large explosive basaltic eruptions at Katla volcano, Iceland: Fragmentation, grain size and eruption dynamics

    Science.gov (United States)

    Schmith, Johanne; Höskuldsson, Ármann; Holm, Paul Martin; Larsen, Guðrún

    2018-04-01

    Katla volcano in Iceland produces hazardous large explosive basaltic eruptions on a regular basis, but very little quantitative data for future hazard assessments exist. Here details on fragmentation mechanism and eruption dynamics are derived from a study of deposit stratigraphy with detailed granulometry and grain morphology analysis, granulometric modeling, componentry and the new quantitative regularity index model of fragmentation mechanism. We show that magma/water interaction is important in the ash generation process, but to a variable extent. By investigating the large explosive basaltic eruptions from 1755 and 1625, we document that eruptions of similar size and magma geochemistry can have very different fragmentation dynamics. Our models show that fragmentation in the 1755 eruption was a combination of magmatic degassing and magma/water-interaction with the most magma/water-interaction at the beginning of the eruption. The fragmentation of the 1625 eruption was initially also a combination of both magmatic and phreatomagmatic processes, but magma/water-interaction diminished progressively during the later stages of the eruption. However, intense magma/water interaction was reintroduced during the final stages of the eruption dominating the fine fragmentation at the end. This detailed study of fragmentation changes documents that subglacial eruptions have highly variable interaction with the melt water showing that the amount and access to melt water changes significantly during eruptions. While it is often difficult to reconstruct the progression of eruptions that have no quantitative observational record, this study shows that integrating field observations and granulometry with the new regularity index can form a coherent model of eruption evolution.

  17. Locating the depth of magma supply for volcanic eruptions, insights from Mt. Cameroon.

    Science.gov (United States)

    Geiger, Harri; Barker, Abigail K; Troll, Valentin R

    2016-10-07

    Mt. Cameroon is one of the most active volcanoes in Africa and poses a possible threat to about half a million people in the area, yet knowledge of the volcano's underlying magma supply system is sparse. To characterize Mt. Cameroon's magma plumbing system, we employed mineral-melt equilibrium thermobarometry on the products of the volcano's two most recent eruptions of 1999 and 2000. Our results suggest pre-eruptive magma storage between 20 and 39 km beneath Mt. Cameroon, which corresponds to the Moho level and below. Additionally, the 1999 eruption products reveal several shallow magma pockets between 3 and 12 km depth, which are not detected in the 2000 lavas. This implies that small-volume magma batches actively migrate through the plumbing system during repose intervals. Evolving and migrating magma parcels potentially cause temporary unrest and short-lived explosive outbursts, and may be remobilized during major eruptions that are fed from sub-Moho magma reservoirs.

  18. Density functional calculations of hypothetical neutral hollow octahedral molecules with a 48-atom framework: Hydrides and oxides of boron, carbon, nitrogen, aluminum, and silicon

    Energy Technology Data Exchange (ETDEWEB)

    LaViolette, Randall A. [Idaho National Engineering and Environmental Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-2208 (United States); Benson, Michael T. [Idaho National Engineering and Environmental Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-2208 (United States)

    2000-06-01

    We computed via first-principles density functional theory calculations (employing both the local density and generalized gradient approximations) the dimensions, bond lengths and angles, binding energy, and HOMO-LUMO gap of the following hypothetical neutral hollow octahedral molecules: B{sub 48}H{sub 24}, C{sub 48}H{sub 48}, C{sub 96}H{sub 80} (formed by bonding two C{sub 48}H{sub 48} molecules), N{sub 48}H{sub 24}, Al{sub 48}H{sub 24}, and Si{sub 48}H{sub 48}; B{sub 24}O{sub 24}, C{sub 24}O{sub 24}, N{sub 24}O{sub 24}, Al{sub 24}O{sub 24}, and Si{sub 24}O{sub 24}. Each molecule consists of a large hollow framework of six puckered eight-membered rings whose planes are either mutually perpendicular or parallel, so that each molecule possesses only eight- and nine-membered rings. The hydrides have their hydrogen atoms attached only to the two-atom bridging sites on the framework. The oxides have their oxygen atoms occupying exclusively the two-atom bridging sites of the framework alternating with the (B, C, N, Al, Si) atoms exclusively occupying the three-atom bridging sites. We also calculated the infrared spectra of the C{sub 48}H{sub 48} and the C{sub 24}O{sub 24} molecules. For the sake of comparison, we also examined the hypothetical octahedral C{sub 48} fullerene cuboctohedron (possessing four-, six-, and eight-membered rings) studied by Dunlap and Taylor. The molecules based on carbon would be the most stable; those based on nitrogen would be the least stable, if at all. (c) 2000 American Institute of Physics.

  19. Equatorward dispersion of a high-latitude volcanic plume and its relation to the Asian summer monsoon: a case study of the Sarychev eruption in 2009

    Science.gov (United States)

    Wu, Xue; Griessbach, Sabine; Hoffmann, Lars

    2017-11-01

    was surrounded by aerosol-rich air outside. This transport barrier was best indicated using the potential vorticity gradient approach. Long-term MIPAS aerosol detections show that after entering the TTL, aerosol from the Sarychev eruption remained in the tropical stratosphere for about 10 months and ascended slowly. The ascent speed agreed well with the ascent speed of the water vapor tape recorder. Furthermore, a hypothetical MPTRAC simulation for a wintertime eruption was carried out. It is shown that under winter atmospheric circulations, the equatorward transport of the plume would be suppressed by the strong subtropical jet and weak wave breaking events. In this hypothetical scenario, a high-latitude volcanic eruption would not be able to contribute to the tropical stratospheric aerosol layer.

  20. Psychosocial and environmental distress resulting from a volcanic eruption: Study protocol.

    Science.gov (United States)

    Warsini, Sri; Usher, Kim; Buettner, Petra; Mills, Jane; West, Caryn; Methods, Res

    2015-01-01

    To examine the psychosocial and environmental distress resulting from the 2010 eruption of the Merapi volcano and explore the experience of living in an environment damaged by a volcanic eruption. Natural disasters cause psychosocial responses in survivors. While volcanic eruptions are an example of a natural disaster, little is currently known about the psychosocial impact on survivors. Volcanic eruptions also cause degradation of the environment, which is linked to environmental distress. However, little is currently known of this phenomenon. An explanatory mixed method study. The research will be divided into three phases. The first phase will involve instrument modification, translation and testing. The second phase will involve a survey to a larger sample using the modified and tested questionnaire. The third phase will involve the collection of interviews from a sub set of the same participants as the second phase. Quantitative data will be analyzed to determine the extent of psychosocial and environmental distress experienced by the participants. Qualitative data will be analyzed to explain the variation among the participants. The results of the study will be used to develop strategies to support survivors in the future and to help ameliorate distress.

  1. Changes in shear-wave splitting before volcanic eruptions

    Science.gov (United States)

    Liu, Sha; Crampin, Stuart

    2015-04-01

    We have shown that observations of shear-wave splitting (SWS) monitor stress-accumulation and stress-relaxation before earthquakes which allows the time, magnitude, and in some circumstances fault-plane of impending earthquakes to be stress-forecast. (We call this procedure stress-forecasting rather than predicting or forecasting to emphasise the different formalism.) We have stress-forecast these parameters successfully three-days before a 1988 M5 earthquake in SW Iceland, and identified characteristic anomalies retrospectively before ~16 other earthquakes in Iceland and elsewhere. SWS monitors microcrack geometry and shows that microcracks are so closely spaced that they verge on fracturing and earthquakes. Phenomena verging on failure in this way are critical-systems with 'butterfly wings' sensitivity. Such critical-systems are very common. The Earth is an archetypal complex heterogeneous interactive phenomenon and must be expected to be a critical-system. We claim this critical system as a New Geophysics of a critically-microcracked rock mass. Such critical systems impose a range of fundamentally-new properties on conventional sub-critical physics/geophysics, one of which is universality. Consequently it is expected that we observe similar stress-accumulation and stress-relaxation before volcanic eruptions to those before earthquakes. There are three eruptions where appropriate changes in SWS have been observed similar to those observed before earthquakes. These are: the 1996 Gjálp fissure eruption, Vatnajökull, Iceland; a 2001 flank eruption on Mount Etna, Sicily (reported by Francesca Bianco, INGV, Naples); and the 2010 Eyjafjajökull ash-cloud eruption, SW Iceland. These will be presented in the same normalised format as is used before earthquakes. The 1996 Gjálp eruption showed a 2½-month stress-accumulation, and a ~1-year stress-relaxation (attributed to the North Atlantic Ridge adjusting to the magma injection beneath the Vatnajökull Ice Cap). The

  2. Bringing the world to a standstill: an investigation into the effects of a Novarupta scale volcanic eruption on today's aviation industry

    Science.gov (United States)

    Welchman, R. A.

    2010-12-01

    Novarupta erupted in Alaska on 6th June 1912 and was the biggest of the 21st century. It erupted for 60 hours and sent an ash cloud over 32,000m into the air. People were stranded for several days, houses destroyed, villages abandoned and food supplies disrupted for a long period after the eruption. Ash was recorded to have travelled over 9,500km away in Africa, demonstrating potentially global impacts. The eruption occurred when Alaska had very little aviation industry, today however the airspace above Alaska is one of the busiest in the world. The eruption in Iceland in 2010 which disrupted the European airspace for several weeks and closed it completely for five days, brought to light just how disruptive a volcanic eruption can be, even in countries where volcanic activity is not considered a hazard. It was an expensive event for the aviation industry and caused much disruption. Simulations of a Katmai scale eruption were run in the ‘present-day’, using the PUFF ash fall model. Simulations were run for one week from the start the eruption. A ‘worst-case’ scenario is presented based on data from 2005-2009. It is a hypothetical eruption started on 17th January 2005 and it shows that ash is likely to cause havoc in North America, Europe and parts of Asia. At least 43 airports on average would be severely affected each day of the simulation, leading to several of the major air routes being affected. Where financial data is available, an estimated cost of this event is presented. A 500 hr simulation is presented to demonstrate the possible global effects that could occur within three weeks of an eruption. It shows ash being transported across the equator at high altitudes to the southern hemisphere in Asia as well as the whole of the northern hemisphere being engulfed. The complex implications an eruption like this would have on national and international infrastructures is presented. The results could aid further scientific studies, governmental bodies and

  3. Experimental Constraints on Forecasting the Location of Volcanic Eruptions from Pre-eruptive Surface Deformation

    Directory of Open Access Journals (Sweden)

    Frank Guldstrand

    2018-02-01

    Full Text Available Volcanic eruptions pose a threat to lives and property when volcano flanks and surroundings are densely populated. The local impact of an eruption depends firstly on its location, whether it occurs near a volcano summit, or down on the flanks. Then forecasting, with a defined accuracy, the location of a potential, imminent eruption would significantly improve the assessment and mitigation of volcanic hazards. Currently, the conventional volcano monitoring methods based on the analysis of surface deformation assesses whether a volcano may erupt but are not implemented to locate imminent eruptions in real time. Here we show how surface deformation induced by ascending eruptive feeders can be used to forecast the eruption location through a simple geometrical analysis. Our analysis builds on the results of 33 scaled laboratory experiments simulating the emplacement of viscous magma intrusions in a brittle, cohesive Coulomb crust under lithostatic stress conditions. The intrusion-induced surface deformation was systematically monitored at high spatial and temporal resolution. In all the experiments, surface deformation preceding the eruptions resulted in systematic uplift, regardless of the intrusion shape. The analysis of the surface deformation patterns leads to the definition of a vector between the center of the uplifted area and the point of maximum uplift, which systematically acted as a precursor to the eruption's location. The temporal evolution of this vector indicated the direction in which the subsequent eruption would occur and ultimately the location itself, irrespective of the feeder shapes. Our findings represent a new approach on how surface deformation on active volcanoes that are not in active rifts could be analysed and used prior to an eruption with a real potential to improve hazard mitigation.

  4. SYMPATHETIC SOLAR FILAMENT ERUPTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Rui; Liu, Ying D.; Zimovets, Ivan; Hu, Huidong; Yang, Zhongwei [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China); Dai, Xinghua, E-mail: liuxying@spaceweather.ac.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2016-08-10

    The 2015 March 15 coronal mass ejection as one of the two that together drove the largest geomagnetic storm of solar cycle 24 so far was associated with sympathetic filament eruptions. We investigate the relations between the different filaments involved in the eruption. A surge-like small-scale filament motion is confirmed as the trigger that initiated the erupting filament with multi-wavelength observations and using a forced magnetic field extrapolation method. When the erupting filament moved to an open magnetic field region, it experienced an obvious acceleration process and was accompanied by a C-class flare and the rise of another larger filament that eventually failed to erupt. We measure the decay index of the background magnetic field, which presents a critical height of 118 Mm. Combining with a potential field source surface extrapolation method, we analyze the distributions of the large-scale magnetic field, which indicates that the open magnetic field region may provide a favorable condition for F2 rapid acceleration and have some relation with the largest solar storm. The comparison between the successful and failed filament eruptions suggests that the confining magnetic field plays an important role in the preconditions for an eruption.

  5. In Silico screening for functional candidates amongst hypothetical proteins

    Directory of Open Access Journals (Sweden)

    Sanderhoff May

    2009-09-01

    Full Text Available Abstract Background The definition of a hypothetical protein is a protein that is predicted to be expressed from an open reading frame, but for which there is no experimental evidence of translation. Hypothetical proteins constitute a substantial fraction of proteomes of human as well as of other eukaryotes. With the general belief that the majority of hypothetical proteins are the product of pseudogenes, it is essential to have a tool with the ability of pinpointing the minority of hypothetical proteins with a high probability of being expressed. Results Here, we present an in silico selection strategy where eukaryotic hypothetical proteins are sorted according to two criteria that can be reliably identified in silico: the presence of subcellular targeting signals and presence of characterized protein domains. To validate the selection strategy we applied it on a database of human hypothetical proteins dating to 2006 and compared the proteins predicted to be expressed by our selecting strategy, with their status in 2008. For the comparison we focused on mitochondrial proteins, since considerable amounts of research have focused on this field in between 2006 and 2008. Therefore, many proteins, defined as hypothetical in 2006, have later been characterized as mitochondrial. Conclusion Among the total amount of human proteins hypothetical in 2006, 21% have later been experimentally characterized and 6% of those have been shown to have a role in a mitochondrial context. In contrast, among the selected hypothetical proteins from the 2006 dataset, predicted by our strategy to have a mitochondrial role, 53-62% have later been experimentally characterized, and 85% of these have actually been assigned a role in mitochondria by 2008. Therefore our in silico selection strategy can be used to select the most promising candidates for subsequent in vitro and in vivo analyses.

  6. Magma viscosity estimation based on analysis of erupted products. Potential assessment for large-scale pyroclastic eruptions

    International Nuclear Information System (INIS)

    Takeuchi, Shingo

    2010-01-01

    After the formulation of guidelines for volcanic hazards in site evaluation for nuclear installations (e.g. JEAG4625-2009), it is required to establish appropriate methods to assess potential of large-scale pyroclastic eruptions at long-dormant volcanoes, which is one of the most hazardous volcanic phenomena on the safety of the installations. In considering the volcanic dormancy, magma eruptability is an important concept. The magma eruptability is dominantly controlled by magma viscosity, which can be estimated from petrological analysis of erupted materials. Therefore, viscosity estimation of magmas erupted in past eruptions should provide important information to assess future activities at hazardous volcanoes. In order to show the importance of magma viscosity in the concept of magma eruptability, this report overviews dike propagation processes from a magma chamber and nature of magma viscosity. Magma viscosity at pre-eruptive conditions of magma chambers were compiled based on previous petrological studies on past eruptions in Japan. There are only 16 examples of eruptions at 9 volcanoes satisfying data requirement for magma viscosity estimation. Estimated magma viscosities range from 10 2 to 10 7 Pa·s for basaltic to rhyolitic magmas. Most of examples fall below dike propagation limit of magma viscosity (ca. 10 6 Pa·s) estimated based on a dike propagation model. Highly viscous magmas (ca. 10 7 Pa·s) than the dike propagation limit are considered to lose eruptability which is the ability to form dikes and initiate eruptions. However, in some cases, small precursory eruptions of less viscous magmas commonly occurred just before climactic eruptions of the highly viscous magmas, suggesting that the precursory dike propagation by the less viscous magmas induced the following eruptions of highly viscous magmas (ca. 10 7 Pa·s). (author)

  7. Electronic and elastic properties of new semiconducting oP{sub 12}-type RuB{sub 2} and OsB{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Hao Xianfeng; Xu Yuanhui; Gao Faming, E-mail: xfhao1980@yahoo.com.cn [Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004 (China)

    2011-03-30

    Using first-principles total energy calculations we investigate the structural, elastic and electronic properties of new hypothetical oP{sub 12}-type phase RuB{sub 2} and OsB{sub 2}. The calculations indicate that the oP{sub 12}-type phase RuB{sub 2} and OsB{sub 2} are thermodynamically and mechanically stable. Remarkably, the new phases RuB{sub 2} and OsB{sub 2} are predicted to be semiconductors, and the appearance of band gaps is ascribed to the enhanced B-B covalent hybridization. Compared to metallic oP{sub 6}-type RuB{sub 2} and OsB{sub 2} phases, the new phases possess similar mechanical properties and hardness. The combination of the probability of tunable electronic properties, strong stiffness and high hardness make RuB{sub 2} and OsB{sub 2} attractive and interesting for advanced applications.

  8. Experimental constraints on forecasting the location of volcanic eruptions from pre-eruptive surface deformation

    Science.gov (United States)

    Guldstrand, Frank; Galland, Olivier; Hallot, Erwan; Burchardt, Steffi

    2018-02-01

    Volcanic eruptions pose a threat to lives and property when volcano flanks and surroundings are densely populated. The local impact of an eruption depends firstly on its location, whether it occurs near a volcano summit, or down on the flanks. Then forecasting, with a defined accuracy, the location of a potential, imminent eruption would significantly improve the assessment and mitigation of volcanic hazards. Currently, the conventional volcano monitoring methods based on the analysis of surface deformation assesses whether a volcano may erupt but are not implemented to locate imminent eruptions in real time. Here we show how surface deformation induced by ascending eruptive feeders can be used to forecast the eruption location through a simple geometrical analysis. Our analysis builds on the results of 33 scaled laboratory experiments simulating magma intrusions in a brittle crust, during which the intrusion-induced surface deformation was systematically monitored at high spatial and temporal resolution. In all the experiments, surface deformation preceding the eruptions resulted in systematic uplift, regardless of the intrusion shape. The analysis of the surface deformation patterns leads to the definition of a vector between the centre of the uplifted zone and the point of maximum uplift, which systematically acted as a precursor to the eruption’s location. The temporal evolution of this vector indicated the direction in which the subsequent eruption would occur and ultimately the location itself, irrespective of the feeder shapes. Our findings represent a new approach on how surface deformation on active volcanoes could be analysed and used prior to an eruption with a real potential to improve hazard mitigation.

  9. Influence of H{sub 2}O{sub 2} on LPG fuel performance evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Muhammad Saad, E-mail: iqbalmouj@gmail.com; Ahmed, Iqbal, E-mail: iqbalmouj@gmail.com; Mutalib, Mohammad Ibrahim bin Abdul, E-mail: iqbalmouj@gmail.com; Nadeem, Saad, E-mail: iqbalmouj@gmail.com; Ali, Shahid, E-mail: iqbalmouj@gmail.com [Department of Chemical Engineering, Faculty of Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2014-10-24

    The objective of this mode of combustion is to insertion of hydrogen peroxide (H{sub 2}O{sub 2}) to the Liquefied Petroleum Gas (LPG) combustion on spark plug ignition engines. The addition of hydrogen peroxide may probably decrease the formation of NO{sub x}, CO{sub x} and unburned hydrocarbons. Hypothetically, Studies have shown that addition of hydrogen peroxide to examine the performance of LPG/H{sub 2}O{sub 2} mixture in numerous volumetric compositions starting from lean LPG until obtaining a better composition can reduce the LPG fuel consumption. The theory behind this idea is that, the addition of H{sub 2}O{sub 2} can cover the lean operation limit, increase the lean burn ability, diminution the burn duration along with controlling the exhaust emission by significantly reducing the greenhouse gaseous.

  10. Eruption and degassing dynamics of the major August 2015 Piton de la Fournaise eruption

    Science.gov (United States)

    Di Muro, Andrea; Arellano, Santiago; Aiuppa, Alessandro; Bachelery, Patrick; Boudoire, Guillaume; Coppola, Diego; Ferrazzini, Valerie; Galle, Bo; Giudice, Gaetano; Gurioli, Lucia; Harris, Andy; Liuzzo, Marco; Metrich, Nicole; Moune, Severine; Peltier, Aline; Villeneuve, Nicolas; Vlastelic, Ivan

    2016-04-01

    Piton de la Fournaise (PdF) shield volcano is one of the most active basaltic volcanoes in the World with one eruption every nine months, on average. This frequent volcanic activity is broadly bimodal, with frequent small volume, short lived eruptions (de la Fournaise volcanological observatory (DOAS, MultiGaS, diffuse CO2 soil emissions). Regular lava and tephra sampling was also performed for geochemical and petrological analysis. The eruption was preceded by a significant increase in CO2 soil emissions at distal soil stations (ca. 15 km from the summit), with CO2 enrichment also being recorded at summit low temperature fumaroles. Eruptive products were spectacularly zoned, with plagioclase and pyroxene being abundant in the early erupted products and olivine being the main phase in the late-erupted lavas. Total gas emissions at the eruptive vent underwent a decrease during the first half of the eruption and then an increase, mirroring the time evolution of magma discharge rate (from 5-10 m3/s in September to 15-30 m3/s in late-October) and the progressive change in magma composition. In spite of significant evolution in magma and gas output, CO2/SO2 ratios in high temperature gases remained quite low (< 0.3) and with little temporal change. Geochemical data indicated that this relatively long-lived eruption corresponded to the progressive drainage of most of the shallow part of PdF plumbing system, triggered by a new pulse of deep magma. While erupted magma and high temperature gases were mostly provided by the shallow part of the system, distal sites and summit low temperature fumaroles recorded a deeper triggering mechanism.

  11. A comparison study of a solar active-region eruptive filament and a neighboring non-eruptive filament

    Science.gov (United States)

    Jiang, Chao-Wei; Wu, Shi-Tsan; Feng, Xue-Shang; Hu, Qiang

    2016-01-01

    Solar active region (AR) 11283 is a very magnetically complex region and it has produced many eruptions. However, there exists a non-eruptive filament in the plage region just next to an eruptive one in the AR, which gives us an opportunity to perform a comparison analysis of these two filaments. The coronal magnetic field extrapolated using our CESE-MHD-NLFFF code reveals that two magnetic flux ropes (MFRs) exist in the same extrapolation box supporting these two filaments, respectively. Analysis of the magnetic field shows that the eruptive MFR contains a bald-patch separatrix surface (BPSS) cospatial very well with a pre-eruptive EUV sigmoid, which is consistent with the BPSS model for coronal sigmoids. The magnetic dips of the non-eruptive MFRs match Hα observation of the non-eruptive filament strikingly well, which strongly supports the MFR-dip model for filaments. Compared with the non-eruptive MFR/filament (with a length of about 200 Mm), the eruptive MFR/filament is much smaller (with a length of about 20 Mm), but it contains most of the magnetic free energy in the extrapolation box and holds a much higher free energy density than the non-eruptive one. Both the MFRs are weakly twisted and cannot trigger kink instability. The AR eruptive MFR is unstable because its axis reaches above a critical height for torus instability, at which the overlying closed arcades can no longer confine the MFR stably. On the contrary, the quiescent MFR is very firmly held by its overlying field, as its axis apex is far below the torus-instability threshold height. Overall, this comparison investigation supports that an MFR can exist prior to eruption and the ideal MHD instability can trigger an MFR eruption.

  12. A comparison study of a solar active-region eruptive filament and a neighboring non-eruptive filament

    International Nuclear Information System (INIS)

    Jiang, Chao-Wei; Feng, Xue-Shang; Wu, Shi-Tsan; Hu, Qiang

    2016-01-01

    Solar active region (AR) 11283 is a very magnetically complex region and it has produced many eruptions. However, there exists a non-eruptive filament in the plage region just next to an eruptive one in the AR, which gives us an opportunity to perform a comparison analysis of these two filaments. The coronal magnetic field extrapolated using our CESE–MHD–NLFFF code reveals that two magnetic flux ropes (MFRs) exist in the same extrapolation box supporting these two filaments, respectively. Analysis of the magnetic field shows that the eruptive MFR contains a bald-patch separatrix surface (BPSS) cospatial very well with a pre-eruptive EUV sigmoid, which is consistent with the BPSS model for coronal sigmoids. The magnetic dips of the non-eruptive MFRs match Hα observation of the non-eruptive filament strikingly well, which strongly supports the MFR-dip model for filaments. Compared with the non-eruptive MFR/filament (with a length of about 200 Mm), the eruptive MFR/filament is much smaller (with a length of about 20 Mm), but it contains most of the magnetic free energy in the extrapolation box and holds a much higher free energy density than the non-eruptive one. Both the MFRs are weakly twisted and cannot trigger kink instability. The AR eruptive MFR is unstable because its axis reaches above a critical height for torus instability, at which the overlying closed arcades can no longer confine the MFR stably. On the contrary, the quiescent MFR is very firmly held by its overlying field, as its axis apex is far below the torus-instability threshold height. Overall, this comparison investigation supports that an MFR can exist prior to eruption and the ideal MHD instability can trigger an MFR eruption. (paper)

  13. Guided tooth eruption: Comparison of open and closed eruption techniques in labially impacted maxillary canines

    Directory of Open Access Journals (Sweden)

    S M londhe

    2014-01-01

    Full Text Available Background: After third molars, the maxillary canines are the most commonly impacted permanent teeth and one-third of these are labial impactions. Impacted canines often require orthodontic guidance in the eruption. This study was conducted to assess the posttreatment results of surgically exposed and orthodontically aligned labially impacted maxillary canines comparing two different surgical techniques. Materials and Methods: The study was conducted in two phases, a surgical phase and an orthodontic phase. In surgical phase, events during surgical exposure and recovery of 31 patients with labially impacted maxillary canine were recorded. Patients were managed with open and closed eruption technique. The assessment included comparison of two techniques of surgical exposure, postoperative pain, mobility, vitality, periodontal health, level of impaction, and duration of orthodontic treatment. Results: The postoperative recovery was longer after open eruption than close eruption technique (P = 0.000. Postoperative pain experienced by patients was similar, but regression of pain was faster in closed eruption technique. The mean surgical time for open eruption technique was lesser when compared with closed eruption technique (P = 0.000. The total duration of orthodontic treatment was directly dependent upon the level of impaction, with deeper level of impaction having longer duration of orthodontic treatment. The mobility and vitality of guided canine was similar in both techniques. Conclusion: The closed eruption technique was a longer surgical procedure, but the postoperative pain regression was faster. The duration of orthodontic treatment was longer with deeper level of impaction. The closed eruption surgical techniques provide better periodontal tissues around the guided erupted teeth.

  14. On numerical simulation of the global distribution of sulfate aerosol produced by a large volcanic eruption

    Energy Technology Data Exchange (ETDEWEB)

    Pudykiewicz, J.A.; Dastoor, A.P. [Atmospheric Environment Service, Quebec (Canada)

    1994-12-31

    Volcanic eruptions play an important role in the global sulfur cycle of the Earth`s atmosphere and can significantly perturb the global atmospheric chemistry. The large amount of sulfate aerosol produced by the oxidation of SO{sub 2} injected into the atmosphere during volcanic eruptions also has a relatively big influence on the radiative equilibrium of the Earth`s climatic system. The submicron particles of the sulfate aerosol reflect solar radiation more effectively than they trap radiation in the infrared range. The effect of this is observed as cooling of the Earth`s surface. The modification of the global radiation budget following volcanic eruption can subsequently cause significant fluctuations of atmospheric variables on a subclimatic scale. The resulting perturbation of weather patterns has been observed and well documented since the eruptions of Mt. Krakatau and Mt. Tambora. The impact of the sulfate aerosol from volcanic eruptions on the radiative equilibrium of the Earth`s atmosphere was also confirmed by the studies done with Global Circulation Models designed to simulate climate. The objective of the present paper is to present a simple and effective method to estimate the global distribution of the sulfate aerosol produced as a consequence of volcanic eruptions. In this study we will present results of the simulation of global distribution of sulfate aerosol from the eruption of Mt Pinatubo.

  15. Co-eruptive subsidence and post-eruptive uplift associated with the 2011-2012 eruption of Puyehue-Cordón Caulle, Chile, revealed by DInSAR

    Science.gov (United States)

    Euillades, Pablo Andrés; Euillades, Leonardo Daniel; Blanco, Mauro Hugo; Velez, María Laura; Grosse, Pablo; Sosa, Gustavo Javier

    2017-09-01

    The 2011-2012 eruption of the Puyehue-Cordón Caulle volcanic complex, southern Andes (Chile), was associated with complex surface deformation affecting an area of roughly 50 by 50 km. We report here differential SAR interferometry (DInSAR) results of pre-, co- and post-eruptive deformation from ENVISAT ASAR, COSMO-Skymed, and ALOS-2/PALSAR scenes acquired between early 2011 and early 2017. No clear pre-eruptive deformation is observed during five months before the eruption, although some patterns could be interpreted as showing inflation occurring between April and May 2011. Co-eruptive interferograms show a complex deformation pattern consisting in a major deflation lobe (120 cm LOS lengthening) centered 10 km NW of the eruption vent accompanied by smaller uplift and subsidence regions in the vicinity of the vent. Re-inflation began immediately after the end of the eruption. A first pulse lasted 3 years between 2012 and 2015, accumulating 70 cm uplift. We detect here a second pulse, beginning in June 2016 and still ongoing in February 2017, reaching 12 cm in half a year. Inverse modeling with spherical cavity and spheroidal sources locates re-inflation sources at a depth ranging between 8 and 11 km under the surface. It suggests re-filling of the reservoir occurring after the draining of a shallow magma chamber during the 2011-2012 eruption.

  16. Pyroclastic sulphur eruption at Poas Volcano, Costa Rica

    Energy Technology Data Exchange (ETDEWEB)

    Francis, P.W.; Thorpe, R.S.; Brown, G.C.; Glasscock, J.

    1980-01-01

    The recent Voyager missions to Jupiter have highlighted the role of sulphur in volcanic processes on io. Although fumarolic sulphur and SO/sub 2/ gas are almost universal in terrestrial active volcanoes, and rare instances of sulphur lava flows have been reported, sulphur in a pyroclastic form has only been described from Poas Volcano, Costa Rica. Here we amplify the original descriptions by Bennett and Raccichini and describe a recent eruption of pyroclastic sulphur scoria and ejected blocks that are characterised by miniature sulphur stalactites and stalagmites.

  17. Premature dental eruption: report of case.

    LENUS (Irish Health Repository)

    McNamara, C M

    2011-08-05

    This case report reviews the variability of dental eruption and the possible sequelae. Dental eruption of the permanent teeth in cleft palate children may be variable, with delayed eruption the most common phenomenon. A case of premature dental eruption of a maxillary left first premolar is demonstrated, however, in a five-year-old male. This localized premature dental eruption anomaly was attributed to early extraction of the primary dentition, due to caries.

  18. Premature eruption of the premolars.

    Science.gov (United States)

    Camm, J H; Schuler, J L

    1990-01-01

    This paper presents a variety of cases in which very early loss of abscessed primary molars caused early eruption of the permanent successors. Clinical sequelae including ectopic eruption, alteration of eruption sequence, arch-length inadequacy and tooth impaction are illustrated by five case reports.

  19. Preparation and characterization of PbO{sub 2} electrode and its application in electro-catalytic degradation of o-aminophenol in aqueous solution assisted by CuO–Ce{sub 2}O{sub 3}/γ-Al{sub 2}O{sub 3} catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fengtao, E-mail: cft0923@163.com; Yu, Sanchuan; Dong, Xiaoping; Zhang, Ling; Wu, Qiangfang

    2013-09-15

    Highlights: • A detailed preparation technology of PbO{sub 2} electrode was elucidated. • Fluorescence technique was employed to examine the hydroxyl radicals generated. • o-Aminophenol wastewater was degraded efficiently by electro-catalysis process. • The hypothetical mechanism of electro-catalytic degradation was proposed. -- Abstract: The electrochemical degradation of o-aminophenol (OAP) in aqueous solution was investigated by galvanostatic electrolysis using PbO{sub 2} electrode as anode. The Ti/SnO{sub 2}–Sb{sub 2}O{sub 3}/PbO{sub 2} anode was prepared by thermal decomposition and electro-deposition method, and was characterized by X-ray diffraction (XRD). The hydroxyl radicals electro-generated on anode were detected by fluorescence spectroscopy. The effects of initial pH and current density on the efficiency of the electrochemical degradation process were also studied. UV spectroscopy and chemical oxygen demand (COD) measurements were conducted to evaluate the removal effects of organic pollutants. The experimental results showed that the refractory organics in wastewater can be removed by pure electrochemical process, COD removal efficiency of 91.6% was obtained in 70 min at initial pH 11.0 and current density was equal to 50 mA cm{sup −2}. In order to improve the efficiency of degradation and accelerate the reaction rate, a novel catalyst, γ-Al{sub 2}O{sub 3} supported Ce-doped CuO, was synthesized by impregnating process and was characterized by X-ray photoelectron spectroscopy (XPS). The catalyst exhibited excellent catalytic activity in the electro-catalytic degradation of OAP wastewater and the COD removal efficiency of 91.7% was obtained in 20 min under mild conditions. Finally, a hypothetical mechanism of electro-catalytic degradation was proposed.

  20. Influences on the variability of eruption sequences and style transitions in the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Kereszturi, Gábor; Németh, Károly; Cronin, Shane J.; Procter, Jonathan; Agustín-Flores, Javier

    2014-10-01

    Monogenetic basaltic volcanism is characterised by a complex array of eruptive behaviours, reflecting spatial and temporal variability of the magmatic properties (e.g. composition, eruptive volume, magma flux) as well as environmental factors at the vent site (e.g. availability of water, country rock geology, faulting). These combine to produce changes in eruption style over brief periods (minutes to days) in many eruption episodes. Monogenetic eruptions in some volcanic fields often start with a phreatomagmatic vent-opening phase that later transforms into "dry" magmatic explosive or effusive activity, with a strong variation in the duration and importance of this first phase. Such an eruption sequence pattern occurred in 83% of the known eruption in the 0.25 My-old Auckland Volcanic Field (AVF), New Zealand. In this investigation, the eruptive volumes were compared with the sequences of eruption styles preserved in the pyroclastic record at each volcano of the AVF, as well as environmental influencing factors, such as distribution and thickness of water-saturated semi- to unconsolidated sediments, topographic position, distances from known fault lines. The AVF showed that there is no correlation between ejecta ring volumes and environmental influencing factors that is valid for the entire AVF. In contrary, using a set of comparisons of single volcanoes with well-known and documented sequences, resultant eruption sequences could be explained by predominant patterns of the environment in which these volcanoes were erupted. Based on the spatial variability of these environmental factors, a first-order susceptibility hazard map was constructed for the AVF that forecasts areas of largest likelihood for phreatomagmatic eruptions by overlaying topographical and shallow geological information. Combining detailed phase-by-phase breakdowns of eruptive volumes and the event sequences of the AVF, along with the new susceptibility map, more realistic eruption scenarios can be

  1. Prediction of Solar Eruptions Using Filament Metadata

    Science.gov (United States)

    Aggarwal, Ashna; Schanche, Nicole; Reeves, Katharine K.; Kempton, Dustin; Angryk, Rafal

    2018-05-01

    We perform a statistical analysis of erupting and non-erupting solar filaments to determine the properties related to the eruption potential. In order to perform this study, we correlate filament eruptions documented in the Heliophysics Event Knowledgebase (HEK) with HEK filaments that have been grouped together using a spatiotemporal tracking algorithm. The HEK provides metadata about each filament instance, including values for length, area, tilt, and chirality. We add additional metadata properties such as the distance from the nearest active region and the magnetic field decay index. We compare trends in the metadata from erupting and non-erupting filament tracks to discover which properties present signs of an eruption. We find that a change in filament length over time is the most important factor in discriminating between erupting and non-erupting filament tracks, with erupting tracks being more likely to have decreasing length. We attempt to find an ensemble of predictive filament metadata using a Random Forest Classifier approach, but find the probability of correctly predicting an eruption with the current metadata is only slightly better than chance.

  2. Triggering of the Largest Deccan Eruptions by the Chicxulub Impact

    Science.gov (United States)

    Richards, M. A.; Alvarez, W.; Self, S.; Karlstrom, L.; Renne, P. R.; Manga, M.; Sprain, C. J.; Smit, J.; Vanderkluysen, L.; Gibson, S. A.

    2015-12-01

    Modern constraints on the timing of the Cretaceous-Paleogene (K-Pg) mass extinction and the Chicxulub impact, together with a particularly voluminous and apparently brief eruptive pulse toward the end of the "main-stage" eruptions of the Deccan continental flood basalt province, suggest that these three events may have occurred within less than about a hundred thousand years of each other. Partial melting induced by the Chicxulub event does not provide an energetically plausible explanation for this remarkable coincidence, and both geochronologic and magnetic-polarity data show that Deccan volcanism was underway well before Chicxulub/K-Pg time. However, historical data show that in some cases eruptions from existing volcanic systems are triggered by earthquakes. Seismic modeling of the ground motion due to the Chicxulub impact suggests that the resulting Mw~11 earthquake could have generated seismic energy densities of at least 0.1-1.0 J/m3 throughout the upper ~200 km of the Earth's mantle, sufficient to trigger volcanic eruptions worldwide based upon comparison with historical examples. Triggering may have been caused by a transient increase in the effective permeability of the existing deep magmatic system beneath the Deccan province, or mantle plume "head." We suggest that the Chicxulub impact triggered the enormous Poladpur, Ambenali, and Mahabaleshwar (Wai sub-group) lava flows that may account for >70% of the Deccan Traps main-stage eruptions. This hypothesis is consistent with independent stratigraphic, geochronologic, geochemical, and tectonic constraints, which combine to indicate that at approximately Chicxulub/K-Pg time a huge pulse of mantle plume-derived magma passed through the crust with little interaction, and erupted to form the most extensive and voluminous lava flows known on Earth. This impact-induced pulse of volcanism may have enhanced the K-Pg extinction event, and/or suppressed post-extinction biotic recovery. High-precision radioisotopic

  3. Reducing hypothetical bias in choice experiments

    DEFF Research Database (Denmark)

    Ladenburg, Jacob; Olsen, Søren Bøye; Nielsen, Rasmus Christian Fejer

    eliminate some of the hypothetical bias. The present paper tests an addition to Cheap Talk, an Opt-Out Reminder. The Opt-Out Reminder is an objective short script presented prior to the choice sets, prompting the respondent to choose the opt-out alternative, if he/she finds the proposed policy generated...... alternatives in a choice set too expensive. The results suggest that adding an Opt-Out Reminder to Cheap Talk can in fact reduce hypothetical bias even further and reduces some of the ineffectiveness of CT in relation to the survey bid range and experienced respondents....

  4. Study of an hypothetical reactor meltdown accident for a 50 MW sub(th) fast reactor

    International Nuclear Information System (INIS)

    Azevedo, E.M. de.

    1983-01-01

    A melhodology for determining the energy released in hypothetical reactor meltdown accidents is presented. A numerical code was developed based upon the Nicholson method for a uniform and homogeneous reactor with spherical geometry. A comparative study with other know programs in the literature which use better approximations for small energy released, shows that the methodology used were compatible with those under comparison. Besides the influence of some parameters on the energy released, such as the initial power level and the prompt neutron lifetime was studied under this metodology and its result exhibitted. The Doppler effect was also analyzed and its influence on the energy released has been emphasized. (Author) [pt

  5. Volcaniclastic dykes tell on fracturing, explosive eruption and lateral collapse at Stromboli volcano (Italy)

    Science.gov (United States)

    Vezzoli, Luigina; Corazzato, Claudia

    2016-05-01

    In the upper part of the Stromboli volcano, in the Le Croci and Bastimento areas, two dyke-like bodies of volcanic breccia up to two-metre thick crosscut and intrude the products of Vancori and Neostromboli volcanoes. We describe the lithofacies association of these unusual volcaniclastic dykes, interpret the setting of dyke-forming fractures and the emplacement mechanism of internal deposits, and discuss their probable relationships with the explosive eruption and major lateral collapse events that occurred at the end of the Neostromboli period. The dyke volcaniclastic deposits contain juvenile magmatic fragments (pyroclasts) suggesting a primary volcanic origin. Their petrographic characteristics are coincident with the Neostromboli products. The architecture of the infilling deposits comprises symmetrically-nested volcaniclastic units, separated by sub-vertical boundaries, which are parallel to the dyke margins. The volcanic units are composed of distinctive lithofacies. The more external facies is composed of fine and coarse ash showing sub-vertical laminations, parallel to the contact wall. The central facies comprises stratified, lithic-rich breccia and lapilli-tuff, whose stratification is sub-horizontal and convolute, discordant to the dyke margins. Only at Le Croci dyke, the final unit shows a massive tuff-breccia facies. The volcaniclastic dykes experienced a polyphasic geological evolution comprising three stages. The first phase consisted in fracturing, explosive intrusion related to magma rising and upward injection of magmatic fluids and pyroclasts. The second phase recorded the dilation of fractures and their role as pyroclastic conduits in an explosive eruption possibly coeval with the lateral collapse of the Neostromboli lava cone. Finally, in the third phase, the immediately post-eruption mass-flow remobilization of pyroclastic deposits took place on the volcano slopes.

  6. Serreta 1998-2001 submarine volcanic eruption, offshore Terceira (Azores): Characterization of the vent and inferences about the eruptive dynamics

    Science.gov (United States)

    Casas, David; Pimentel, Adriano; Pacheco, José; Martorelli, Eleonora; Sposato, Andrea; Ercilla, Gemma; Alonso, Belen; Chiocci, Francesco

    2018-05-01

    High-resolution bathymetric data and seafloor sampling were used to characterize the most recent volcanic eruption in the Azores region, the 1998-2001 Serreta submarine eruption. The vent of the eruption is proposed to be an asymmetric topographic high, composed of two coalescing volcanic cones, underlying the location where lava balloons had been observed at the sea surface during the eruption. The volcanic products related to the 1998-2001 eruption are constrained to an area of 0.5 km2 around the proposed vent position. A submarine Strombolian-style eruption producing basaltic lava balloons, ash and coarse scoriaceous materials with limited lateral dispersion led to the buildup of the cones. The 1998-2001 Serreta eruption shares many similarities with other intermediate-depth lava balloon-forming eruptions (e.g., the 1891 eruption offshore Pantelleria and the 2011-2012 eruption south of El Hierro), revealing the particular conditions needed for the production of this unusual and scarcely documented volcanic product.

  7. Io - One of at Least Four Simultaneous Erupting Volcanic Eruptions

    Science.gov (United States)

    1979-01-01

    This photo of an active volcanic eruption on Jupiter's satellite Io was taken 1 hour, 52 minutes after the accompanying picture, late in the evening of March 4, 1979, Pacific time. On the limb of the satellite can be seen one of at least four simultaneous volcanic eruptions -- the first such activity ever observed on another celestial body. Seen against the limb are plume-like structures rising more than 60 miles (100 kilometers) above the surface. Several eruptions have been identified with volcanic structures on the surface of Io, which have also been identified by Voyager 1's infrared instrument as being abnormally hot -- several hundred degrees warmer than surrounding terrain. The fact that several eruptions appear to be occurring at the same time suggests that Io has the most active surface in the solar system and that volcanism is going on there essentially continuously. Another characteristic of the observed volcanism is that it appears to be extremely explosive, with velocities more than 2,000 miles an hour (at least 1 kilometer per second). That is more violent than terrestrial volcanoes like Etna, Vesuvius or Krakatoa.

  8. Thermomechanical controls on magma supply and volcanic deformation: application to Aira caldera, Japan

    Science.gov (United States)

    Hickey, James; Gottsmann, Joachim; Nakamichi, Haruhisa; Iguchi, Masato

    2016-01-01

    Ground deformation often precedes volcanic eruptions, and results from complex interactions between source processes and the thermomechanical behaviour of surrounding rocks. Previous models aiming to constrain source processes were unable to include realistic mechanical and thermal rock properties, and the role of thermomechanical heterogeneity in magma accumulation was unclear. Here we show how spatio-temporal deformation and magma reservoir evolution are fundamentally controlled by three-dimensional thermomechanical heterogeneity. Using the example of continued inflation at Aira caldera, Japan, we demonstrate that magma is accumulating faster than it can be erupted, and the current uplift is approaching the level inferred prior to the violent 1914 Plinian eruption. Magma storage conditions coincide with estimates for the caldera-forming reservoir ~29,000 years ago, and the inferred magma supply rate indicates a ~130-year timeframe to amass enough magma to feed a future 1914-sized eruption. These new inferences are important for eruption forecasting and risk mitigation, and have significant implications for the interpretations of volcanic deformation worldwide. PMID:27619897

  9. Thermomechanical controls on magma supply and volcanic deformation: application to Aira caldera, Japan.

    Science.gov (United States)

    Hickey, James; Gottsmann, Joachim; Nakamichi, Haruhisa; Iguchi, Masato

    2016-09-13

    Ground deformation often precedes volcanic eruptions, and results from complex interactions between source processes and the thermomechanical behaviour of surrounding rocks. Previous models aiming to constrain source processes were unable to include realistic mechanical and thermal rock properties, and the role of thermomechanical heterogeneity in magma accumulation was unclear. Here we show how spatio-temporal deformation and magma reservoir evolution are fundamentally controlled by three-dimensional thermomechanical heterogeneity. Using the example of continued inflation at Aira caldera, Japan, we demonstrate that magma is accumulating faster than it can be erupted, and the current uplift is approaching the level inferred prior to the violent 1914 Plinian eruption. Magma storage conditions coincide with estimates for the caldera-forming reservoir ~29,000 years ago, and the inferred magma supply rate indicates a ~130-year timeframe to amass enough magma to feed a future 1914-sized eruption. These new inferences are important for eruption forecasting and risk mitigation, and have significant implications for the interpretations of volcanic deformation worldwide.

  10. Volcanology and hazards of phreatomagmatic basaltic eruptions

    DEFF Research Database (Denmark)

    Schmith, Johanne

    Iceland is one of the most active terrestrial volcanic regions on Earth with an average of more than 20 eruptions per century. Around 80% of all events are tephra generating explosive eruptions, but less than 10 % of all known tephra layers have been mapped. Recent hazard assessment models show...... that the two key parameters for hazard assessment modeling are total grain size distribution (TGSD) and eruptive style. These two parameters have been determined for even fewer eruptive events in Iceland. One of the most hazardous volcanoes in Iceland is Katla and no data set of TGSD or other eruptive...... parameters exist. Katla has not erupted for 99 years, but at least 2 of the 20 eruptions since the settlement of Iceland in 871 have reached Northern Europe as visible tephra fall. These eruptions occurred in 1755 and 1625 and remain enigmatic both in terms of actual size and eruption dynamics. This work...

  11. Possible Triggering of the Largest Deccan Traps Eruptions By the Chicxulub Impact

    Science.gov (United States)

    Richards, M. A.; Alvarez, W.; Self, S.; Karlstrom, L.; Renne, P. R.; Manga, M.; Sprain, C. J.; Smit, J.; Vanderkluysen, L.; Gibson, S. A.

    2014-12-01

    New constraints on the timing of the Cretaceous-Paleogene (K-Pg) mass extinction and the Chicxulub impact, together with a particularly voluminous and apparently brief eruptive pulse toward the end of the "main-stage" eruptions of the Deccan continental flood basalt province, suggest that these three events may have occurred within less than about a hundred thousand years of each other. Partial melting induced by the Chicxulub event does not provide an energetically-plausible explanation for this coincidence, and both geochronologic and magnetic-polarity data show that Deccan volcanism was underway well before Chicxulub/K-Pg time. However, historical data document that eruptions from existing volcanic systems can be triggered by earthquakes. Seismic modeling of the ground motion due to the Chicxulub impact suggests that the impact could have generated seismic energy densities of order 0.1-1.0 J/m3 throughout the upper ~200 km of the Earth's mantle, sufficient to trigger volcanic eruptions worldwide based upon comparison with historical examples. Triggering may have been caused by a transient increase in the effective permeability of the existing deep magmatic system beneath the Deccan province, or mantle plume "head." It is therefore reasonable to hypothesize that the Chicxulub impact might have triggered the enormous Poladpur, Ambenali, and Mahabaleshwar (Wai sub-group) lava flows that account for >70% of the Deccan Traps main-stage eruptions. This hypothesis is consistent with independent stratigraphic, geochronologic, geochemical, and tectonic constraints, which combine to indicate that at approximately Chicxulub/K-Pg time a huge pulse of mantle plume-derived magma passed through the crust with little interaction, and erupted to form the most extensive and voluminous lava flows known on Earth. High-precision radioisotopic dating of the main-phase Deccan flood basalt formations may be able either to confirm or reject this hypothesis, which in turn might help

  12. Eruption products of the 1883 eruption of Krakatau and their final settlement

    Directory of Open Access Journals (Sweden)

    Izumi Yokoyama

    2015-06-01

    Full Text Available Firstly the volume of pyroclastic ejecta during the 1883 eruption of Krakatau is re-examined. To revise the volume of flow deposits, the author basically follows Verbeek’s observation while to estimate the fall deposits, as the last resort, the author assumes that volume ratios fall / flow are common to similar caldera eruptions, and the ratios determined by the caldera- forming eruptions of Novarupta and Pinatubo are applied to the Krakatau eruption. Verbeek’s estimation of the total volume of ejecta, 12 km3 is revised to 19 km3. This is significantly different from the volume of disrupted volcano edifice, 8 km3. Such a result does not support the predecessors’ hypothesis that calderas are formed by collapses of volcano edifices into magma reservoirs in replacement of the total ejecta. Through the discussion on the volume estimation of volcanic ejecta on and around Krakatau, the author recognizes that such estimation should be originally very difficult to attain enough accuracy. Much importance of “caldera deposits” to post-eruption settlements of the ejecta is emphasized. In relation to caldera formation, mechanical stability of a cavity in the crust is discussed. Lastly, upon the basis of subsurface structure, especially caldera deposits, a structural image of Krakatau caldera is presented.

  13. Short-period volcanic gas precursors to phreatic eruptions: Insights from Poás Volcano, Costa Rica

    Science.gov (United States)

    de Moor, Maarten; Aiuppa, Alessandro; Pacheco, Javier; Avard, Geoffroy; Kern, Christoph; Liuzzo, Marco; Martinez, Maria; Giudice, Gaetano; Fischer, Tobias P.

    2016-01-01

    Volcanic eruptions involving interaction with water are amongst the most violent and unpredictable geologic phenomena on Earth. Phreatic eruptions are exceptionally difficult to forecast by traditional geophysical techniques. Here we report on short-term precursory variations in gas emissions related to phreatic blasts at Poás volcano, Costa Rica, as measured with an in situ multiple gas analyzer that was deployed at the edge of the erupting lake. Gas emitted from this hyper-acid crater lake approaches magmatic values of SO2/CO2 1–6 days prior to eruption. The SO2 flux derived from magmatic degassing through the lake is measureable by differential optical absorption spectrometry (sporadic campaign measurements), which allows us to constrain lake gas output and input for the major gas species during eruptive and non-eruptive periods. We can further calculate power supply to the hydrothermal system using volatile mass balance and thermodynamics, which indicates that the magmatic heat flux into the shallow hydrothermal system increases from ∼27 MW during quiescence to ∼59 MW during periods of phreatic events. These transient pulses of gas and heat from the deeper magmatic system generate both phreatic eruptions and the observed short-term changes in gas composition, because at high gas flux scrubbing of sulfur by the hydrothermal system is both kinetically and thermodynamically inhibited whereas CO2gas is always essentially inert in hyperacid conditions. Thus, the SO2/CO2 of lake emissions approaches magmatic values as gas and power supply to the sub-limnic hydrothermal system increase, vaporizing fluids and priming the hydrothermal system for eruption. Our results suggest that high-frequency real-time gas monitoring could provide useful short-term eruptive precursors at volcanoes prone to phreatic explosions.

  14. Volcanic eruptions on Io

    Science.gov (United States)

    Strom, R. G.; Schneider, N. M.; Terrile, R. J.; Hansen, C.; Cook, A. F.

    1981-01-01

    Nine eruption plumes which were observed during the Voyager 1 encounter with Io are discussed. During the Voyager 2 encounter, four months later, eight of the eruptions were still active although the largest became inactive sometime between the two encounters. Plumes range in height from 60 to over 300 km with corresponding ejection velocities of 0.5 to 1.0 km/s and plume sources are located on several plains and consist of fissures or calderas. The shape and brightness distribution together with the pattern of the surface deposition on a plume 3 is simulated by a ballistic model with a constant ejection velocity of 0.5 km/s and ejection angles which vary from 0-55 deg. The distribution of active and recent eruptions is concentrated in the equatorial regions and indicates that volcanic activity is more frequent and intense in the equatorial regions than in the polar regions. Due to the geologic setting of certain plume sources and large reservoirs of volatiles required for the active eruptions, it is concluded that sulfur volcanism rather than silicate volcanism is the most likely driving mechanism for the eruption plumes.

  15. BOLD responses in reward regions to hypothetical and imaginary monetary rewards.

    Science.gov (United States)

    Miyapuram, Krishna P; Tobler, Philippe N; Gregorios-Pippas, Lucy; Schultz, Wolfram

    2012-01-16

    Monetary rewards are uniquely human. Because money is easy to quantify and present visually, it is the reward of choice for most fMRI studies, even though it cannot be handed over to participants inside the scanner. A typical fMRI study requires hundreds of trials and thus small amounts of monetary rewards per trial (e.g. 5p) if all trials are to be treated equally. However, small payoffs can have detrimental effects on performance due to their limited buying power. Hypothetical monetary rewards can overcome the limitations of smaller monetary rewards but it is less well known whether predictors of hypothetical rewards activate reward regions. In two experiments, visual stimuli were associated with hypothetical monetary rewards. In Experiment 1, we used stimuli predicting either visually presented or imagined hypothetical monetary rewards, together with non-rewarding control pictures. Activations to reward predictive stimuli occurred in reward regions, namely the medial orbitofrontal cortex and midbrain. In Experiment 2, we parametrically varied the amount of visually presented hypothetical monetary reward keeping constant the amount of actually received reward. Graded activation in midbrain was observed to stimuli predicting increasing hypothetical rewards. The results demonstrate the efficacy of using hypothetical monetary rewards in fMRI studies. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. SOLAR ERUPTION AND LOCAL MAGNETIC PARAMETERS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeongwoo; Chae, Jongchul [Department of Physics and Astronomy, Seoul National University, Seoul 08826 (Korea, Republic of); Liu, Chang; Jing, Ju [Space Weather Research Laboratory, New Jersey Institute of Technology, Newark, NJ 07102 (United States)

    2016-11-10

    It is now a common practice to use local magnetic parameters such as magnetic decay index for explaining solar eruptions from active regions, but there can be an alternative view that the global properties of the source region should be counted as a more important factor. We discuss this issue based on Solar Dynamics Observatory observations of the three successive eruptions within 1.5 hr from the NOAA active region 11444 and the magnetic parameters calculated using the nonlinear force-free field model. Two violent eruptions occurred in the regions with relatively high magnetic twist number (0.5–1.5) and high decay index (0.9–1.1) at the nominal height of the filament (12″) and otherwise a mild eruption occurred, which supports the local-parameter paradigm. Our main point is that the time sequence of the eruptions did not go with these parameters. It is argued that an additional factor, in the form of stabilizing force, should operate to determine the onset of the first eruption and temporal behaviors of subsequent eruptions. As supporting evidence, we report that the heating and fast plasma flow continuing for a timescale of an hour was the direct cause for the first eruption and that the unidirectional propagation of the disturbance determined the timing of subsequent eruptions. Both of these factors are associated with the overall magnetic structure rather than local magnetic properties of the active region.

  17. Volcanic Eruptions and Climate: Outstanding Research Issues

    Science.gov (United States)

    Robock, Alan

    2016-04-01

    Large volcanic eruptions inject sulfur gases into the stratosphere, which convert to sulfate aerosols with an e-folding residence time of about one year. The radiative and chemical effects of this aerosol cloud produce responses in the climate system. Based on observations after major eruptions of the past and experiments with numerical models of the climate system, we understand much about their climatic impact, but there are also a number of unanswered questions. Volcanic eruptions produce global cooling, and are an important natural cause of interannual, interdecadal, and even centennial-scale climate change. One of the most interesting volcanic effects is the "winter warming" of Northern Hemisphere continents following major tropical eruptions. During the winter in the Northern Hemisphere following every large tropical eruption of the past century, surface air temperatures over North America, Europe, and East Asia were warmer than normal, while they were colder over Greenland and the Middle East. This pattern and the coincident atmospheric circulation correspond to the positive phase of the Arctic Oscillation. While this response is observed after recent major eruptions, most state-of-the-art climate models have trouble simulating winter warming. Why? High latitude eruptions in the Northern Hemisphere, while also producing global cooling, do not have the same impact on atmospheric dynamics. Both tropical and high latitude eruptions can weaken the Indian and African summer monsoon, and the effects can be seen in past records of flow in the Nile and Niger Rivers. Since the Mt. Pinatubo eruption in the Philippines in 1991, there have been no large eruptions that affected climate, but the cumulative effects of small eruptions over the past decade have had a small effect on global temperature trends. Some important outstanding research questions include: How much seasonal, annual, and decadal predictability is possible following a large volcanic eruption? Do

  18. Modelling of melting and solidification transport phenomena during hypothetical NPP severe accidents

    International Nuclear Information System (INIS)

    Sarler, B.

    1992-01-01

    A physical and mathematical framework to deal with the transport phenomena occuring during melting and solidification of the hypothetical NPP severe accidents is presented. It concentrates on the transient temperature, velocity, and species concentration distributions during such events. The framework is based on the Mixture Continuum Formulation of the components and phases, cast in the boundary-domain integral shape structured by the fundamental solution of the Laplace equation. The formulation could cope with various solid-liquid sub-systems through the inclusion of the specific closure relations. The deduced system of boundary-domain integral equations for conservation of mass, energy, momentum, and species could be solved by the boundary element discrete approximative method. (author) [sl

  19. Glacier melting during lava dome growth at Nevado de Toluca volcano (Mexico): Evidences of a major threat before main eruptive phases at ice-caped volcanoes

    Science.gov (United States)

    Capra, L.; Roverato, M.; Groppelli, G.; Caballero, L.; Sulpizio, R.; Norini, G.

    2015-03-01

    Nevado de Toluca volcano is one of the largest stratovolcanoes in the Trans-Mexican Volcanic Belt. During Late Pleistocene its activity was characterized by large dome growth and subsequent collapse emplacing large block and ash flow deposits, intercalated by Plinian eruptions. Morphological and paleoclimate studies at Nevado de Toluca and the surrounding area evidenced that the volcano was affected by extensive glaciation during Late Pleistocene and Holocene. During the older recognized glacial period (27-60 ka, MIS 3), the glacier was disturbed by the intense magmatic and hydrothermal activity related to two dome extrusion episodes (at 37 ka and 28 ka). Glacier reconstruction indicates maximum ice thickness of 90 m along main valleys, as at the Cano ravines, the major glacial valley on the northern slope of the volcano. Along this ravine, both 37 and 28 ka block-and-ash deposits are exposed, and they directly overlay a fluviatile sequence, up to 40 m-thick, which 14C ages clearly indicate that their emplacement occurred just before the dome collapsed. These evidences point to a clear interaction between the growing dome and its hydrothermal system with the glacier. During dome growth, a large amount of melting water was released along major glacial valleys forming thick fluvioglacial sequences that were subsequently covered by the block-and-ash flow deposits generated by the collapse of the growing dome. Even though this scenario is no longer possible at the Nevado de Toluca volcano, the data presented here indicate that special attention should be paid to the possible inundation areas from fluviatile/lahar activity prior to the main magmatic eruption at ice-capped volcanoes.

  20. In Silico screening for functional candidates amongst hypothetical proteins

    DEFF Research Database (Denmark)

    Desler, Claus; Suravajhala, Prashanth; Sanderhoff, May

    2009-01-01

    eukaryotes. With the general belief that the majority of hypothetical proteins are the product of pseudogenes, it is essential to have a tool with the ability of pinpointing the minority of hypothetical proteins with a high probability of being expressed. RESULTS: Here, we present an in silico selection...

  1. Theoretical and hypothetical framework for research on political socialization process in the family

    Directory of Open Access Journals (Sweden)

    Čičkarić Lilijana

    2005-01-01

    Full Text Available The aim of the article is to sum up theoretical and hypothetical framework for empirical research of political socialization process in the family in Serbian society nowadays. The investigation focuses on two theoretical concepts, political socialization and generation as a sociological paradigm. Two methodological approaches are applied. First is interactive model of political socialization, based on analysis of relations between individual who is socialized, agents of political socialization, dominant political system and peripheral social sub-systems. The second one tests interactive relation of generation, lifecycle and effects of epoch. It is suitable for definition of certain historical periods with active role of political.

  2. Submarine silicic volcanism: Processes and products

    Digital Repository Service at National Institute of Oceanography (India)

    Kalangutkar, N.G.; Iyer, S.D.

    hawaiite, mugearite, benmorite and trachyte to rhyolite (Prestvik et al., 2001). A plinian eruption produced rhyolitic ash and pumice while an initial phreatomagmatic explosion gave rise to lithic fragments characterised by bomb-like pumice blocks... blocks and bombs Selbekk and Tronnes (2007) Granophyres, rhyolites obsidian O’nions and Gronvold (1973) Rhyolite Sigvaldason (1974) Ascension and the Azores Quartz saturated residue Clague (1987) 14 Azores and the Canaries Silica oversaturated...

  3. CME Eruption Onset Observations from EIT and SXT

    Science.gov (United States)

    Sterling, A. C.

    2004-01-01

    Why CMEs erupt is a major outstanding puzzle of solar physics. Signatures observable at the earliest stages of eruption onset may hold precious clues about the onset mechanism. We present observations in EUV from SOHO/EIT and in soft X-rays from Yohkoh/SXT of the re-eruption and eruption phases of CME expulsion, along with the eruption's magnetic setting found from SOHO/MDI magnetograms. Most of our events involve clearly-observable filament eruptions and multiple neutral lines, and we use the magnetic settings and motions of the filaments to help infer the geometry and behavior of the associated erupting magnetic fields. Pre-eruption and early-eruption signatures include a relatively slow filament rise prior to eruption, and intensity "dimmings" and brightenings, both in the immediate neighborhood of the "core" (location of greatest magnetic shear) of the erupting fields and at locations remote from the core. These signatures and their relative timings place observational constraints on eruption mechanisms; our recent work has focused on implications for the so-called "tether cutting" and "breakout" models, but the same observational constraints are applicable to any model.

  4. Common processes at unique volcanoes – a volcanological conundrum

    Directory of Open Access Journals (Sweden)

    Katharine eCashman

    2014-11-01

    Full Text Available An emerging challenge in modern volcanology is the apparent contradiction between the perception that every volcano is unique, and classification systems based on commonalities among volcano morphology and eruptive style. On the one hand, detailed studies of individual volcanoes show that a single volcano often exhibits similar patterns of behaviour over multiple eruptive episodes; this observation has led to the idea that each volcano has its own distinctive pattern of behaviour (or personality. In contrast, volcano classification schemes define eruption styles referenced to type volcanoes (e.g. Plinian, Strombolian, Vulcanian; this approach implicitly assumes that common processes underpin volcanic activity and can be used to predict the nature, extent and ensuing hazards of individual volcanoes. Actual volcanic eruptions, however, often include multiple styles, and type volcanoes may experience atypical eruptions (e.g., violent explosive eruptions of Kilauea, Hawaii1. The volcanological community is thus left with a fundamental conundrum that pits the uniqueness of individual volcanic systems against generalization of common processes. Addressing this challenge represents a major challenge to volcano research.

  5. Ozone depletion following future volcanic eruptions

    Science.gov (United States)

    Eric Klobas, J.; Wilmouth, David M.; Weisenstein, Debra K.; Anderson, James G.; Salawitch, Ross J.

    2017-07-01

    While explosive volcanic eruptions cause ozone loss in the current atmosphere due to an enhancement in the availability of reactive chlorine following the stratospheric injection of sulfur, future eruptions are expected to increase total column ozone as halogen loading approaches preindustrial levels. The timing of this shift in the impact of major volcanic eruptions on the thickness of the ozone layer is poorly known. Modeling four possible climate futures, we show that scenarios with the smallest increase in greenhouse gas concentrations lead to the greatest risk to ozone from heterogeneous chemical processing following future eruptions. We also show that the presence in the stratosphere of bromine from natural, very short-lived biogenic compounds is critically important for determining whether future eruptions will lead to ozone depletion. If volcanic eruptions inject hydrogen halides into the stratosphere, an effect not considered in current ozone assessments, potentially profound reductions in column ozone would result.

  6. Volcanic Ash and Aviation - the 2014 Eruptions of Kelut and Sangeang Api, Indonesia

    Science.gov (United States)

    Tupper, A. C.; Jansons, E.

    2014-12-01

    Two significant eruptions in Indonesia during the first part of 2014 have highlighted the continuing challenges of safe air traffic management around volcanic ash clouds. The stratospheric eruption of Kelut (also known as Kelud) in Java late on 13 February 2014 resulted in widespread aviation disruption over Indonesia and at least one serious volcanic ash encounter from an international airline. An upper-tropospheric eruption of Sangeang Api in the Lesser Sunda Islands on 30 May 2014 did not result in any known aircraft encounters, but did result in many delays and flight cancellations between Indonesia and Australia. In both cases, the eruption and resultant ash clouds were relatively well observed, if subject to the usual issues in characterising such clouds. For example, as tropical eruptions frequently reach 15 km amsl and above due to the height of the tropical tropopause, it is frequently very difficult to provide an accurate estimation of conditions at the cruising levels of aircraft, at 10-11 km (or lower for shorter domestic routes). More critically, the challenge of linking operational results from two scientific professions (volcanology and meteorology) with real-time aviation users remains strongly evident. Situational awareness of domestic and international airlines, ground-based monitoring and communications prior to and during the eruption, receiving and sharing pilot reports of volcanic ash, and appropriate flight responses all remain inadequate even in relatively fine conditions, with an unacceptable ongoing risk of serious aviation encounters should improvements not be made. Despite the extensive efforts of the International Civil Aviation Organization, World Meteorological Organization, and all partners in the International Airways Volcano Watch, and despite the acceleration of work on the issue since 2010, volcanic ash management remains sub-optimal.

  7. Flux Cancellation Leading to CME Filament Eruptions

    Science.gov (United States)

    Popescu, Roxana M.; Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.

    2016-01-01

    Solar filaments are strands of relatively cool, dense plasma magnetically suspended in the lower density hotter solar corona. They trace magnetic polarity inversion lines (PILs) in the photosphere below, and are supported against gravity at heights of up to approx.100 Mm above the chromosphere by the magnetic field in and around them. This field erupts when it is rendered unstable, often by magnetic flux cancellation or emergence at or near the PIL. We have studied the evolution of photospheric magnetic flux leading to ten observed filament eruptions. Specifically, we look for gradual magnetic changes in the neighborhood of the PIL prior to and during eruption. We use Extreme Ultraviolet (EUV) images from the Atmospheric Imaging Assembly (AIA), and magnetograms from the Helioseismic and Magnetic Imager (HMI), both on board the Solar Dynamics Observatory (SDO), to study filament eruptions and their photospheric magnetic fields. We examine whether flux cancellation or/and emergence leads to filament eruptions. We find that continuous flux cancellation was present at the PIL for many hours prior to each eruption. We present two CME-producing eruptions in detail and find the following: (a) the pre-eruption filament-holding core field is highly sheared and appears in the shape of a sigmoid above the PIL; (b) at the start of the eruption the opposite arms of the sigmoid reconnect in the middle above the site of (tether-cutting) flux cancellation at the PIL; (c) the filaments first show a slow-rise, followed by a fast-rise as they erupt. We conclude that these two filament eruptions result from flux cancellation in the middle of the sheared field, and thereafter evolve in agreement with the standard model for a CME/flare filament eruption from a closed bipolar magnetic field [flux cancellation (van Ballegooijen and Martens 1989 and Moore and Roumelrotis 1992) and runaway tether-cutting (Moore et. al 2001)].

  8. A MULTI-SPACECRAFT VIEW OF A GIANT FILAMENT ERUPTION DURING 2009 SEPTEMBER 26/27

    Energy Technology Data Exchange (ETDEWEB)

    Gosain, Sanjay [National Solar Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States); Schmieder, Brigitte [LESIA, Observatoire de Paris, CNRS, UPMC, Universite Paris Diderot, 5 Place Jules Janssen, F-92190 Meudon (France); Artzner, Guy [CNRS UMR 8617, Institut d' astrophysique Spatiale (IAS), F-91405 Orsay Cedex (France); Bogachev, Sergei [Lebedev Physical Institute of Russian Academy of Science, Leninskij prospekt 53, Moscow 119991 (Russian Federation); Toeroek, Tibor [Predictive Science, Inc., 9990 Mesa Rim Rd., Suite 170, San Diego, CA 92121 (United States)

    2012-12-10

    We analyze multi-spacecraft observations of a giant filament eruption that occurred during 2009 September 26 and 27. The filament eruption was associated with a relatively slow coronal mass ejection. The filament consisted of a large and a small part, and both parts erupted nearly simultaneously. Here we focus on the eruption associated with the larger part of the filament. The STEREO satellites were separated by about 117 Degree-Sign during this event, so we additionally used SoHO/EIT and CORONAS/TESIS observations as a third eye (Earth view) to aid our measurements. We measure the plane-of-sky trajectory of the filament as seen from STEREO-A and TESIS viewpoints. Using a simple trigonometric relation, we then use these measurements to estimate the true direction of propagation of the filament which allows us to derive the true R/R{sub Sun }-time profile of the filament apex. Furthermore, we develop a new tomographic method that can potentially provide a more robust three-dimensional (3D) reconstruction by exploiting multiple simultaneous views. We apply this method also to investigate the 3D evolution of the top part of filament. We expect this method to be useful when SDO and STEREO observations are combined. We then analyze the kinematics of the eruptive filament during its rapid acceleration phase by fitting different functional forms to the height-time data derived from the two methods. We find that for both methods an exponential function fits the rise profile of the filament slightly better than parabolic or cubic functions. Finally, we confront these results with the predictions of theoretical eruption models.

  9. From field data to numerical models: application of the Box-Model to infer the dynamics of PDC generated during the AD 79 eruption of Somma-Vesuvio

    Science.gov (United States)

    Tadini, Alessandro; Neri, Augusto; Cioni, Raffaello; Bevilacqua, Andrea; Esposti Ongaro, Tomaso; Gurioli, Lucia

    2017-04-01

    order estimates of the main variables characterizing the flow source and emplacement; among the two eruptive units chosen for model validation, the EU4 provided better results with only a minor empirical calibration of few parameters (i.e. settling velocity and initial volume fraction of solid particles), indicating that the Box Model can be suited to represent the kinematics of large (volume > 108 m^3, runout > 15 km) PDC at Somma-Vesuvio. Dade W. B., Huppert H. E. (1995) A box model for non-entraining, suspension-driven gravity surges on horizontal surfaces. Sedimentology 42 (3):453-470 Cioni R., Marianelli P., Santacroce R., Sbrana A. (2000). Plinian and subplinian eruptions. Encyclopedia of volcanoes. Academic, San Diego, 2000, 477-494.

  10. Inherited retarded eruption in the permanent dentition.

    Science.gov (United States)

    Rasmussen, P; Kotsaki, A

    1997-01-01

    The term retarded eruption, may be used in cases where eruption is inhibited, causing an interruption in the coordination of tooth formation and tooth eruption. The phenomenon may be local or general, and several etiological factors for retarded eruption have been listed, comprising a lack of space, ankylosis, cysts, supernumerary teeth, hormone and vitamin deficiencies and several developmental disturbances and syndromes. The present paper describes several cases of retarded eruption where no factors other than inheritance have been evident. So far 14 cases have been evaluated, 9 boys and 5 girls. In addition several cases have been registered among parents and grandparents of the probands. Typical features are: retarded eruption, defined as more than 3 SD beyond mean eruption figures, comprises all teeth in the permanent dentition, and in 5 cases also second primary molars. The chronology of tooth formation are within normal limits. Consequently the teeth finish development still laying deeply buried in the jaws, often in aberrant positions and with curves or hooks on the roots. When the teeth finally get the "signal" for eruption, 5-15 years beyond normal eruption time, they move rather quickly into right positions, despite the long eruption paths and the hooked roots. Permanent teeth without, as well as with predecessors, are affected. Extraction of predecessors does not seem to provoke eruption. The main features in management are to take care of the primary teeth, to improve-esthetics, and offer surgery and orthodontics when needed. Analyses of pedigrees indicates that the genetic transmittance may be autosomal dominant as both sexes are affected, about half of the siblings show the trait, and the trait shows continuity through generations.

  11. 33 CFR Appendix B to Part 277 - Hypothetical Example of Cost Apportionment

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Hypothetical Example of Cost... APPORTIONMENT OF BRIDGE ALTERATIONS Pt. 277, App. B Appendix B to Part 277—Hypothetical Example of Cost... bridge was completed in 1908 and the superstructure completed in 1909. For this hypothetical example it...

  12. Reduced cooling following future volcanic eruptions

    Science.gov (United States)

    Hopcroft, Peter O.; Kandlbauer, Jessy; Valdes, Paul J.; Sparks, R. Stephen J.

    2017-11-01

    Volcanic eruptions are an important influence on decadal to centennial climate variability. Large eruptions lead to the formation of a stratospheric sulphate aerosol layer which can cause short-term global cooling. This response is modulated by feedback processes in the earth system, but the influence from future warming has not been assessed before. Using earth system model simulations we find that the eruption-induced cooling is significantly weaker in the future state. This is predominantly due to an increase in planetary albedo caused by increased tropospheric aerosol loading with a contribution from associated changes in cloud properties. The increased albedo of the troposphere reduces the effective volcanic aerosol radiative forcing. Reduced sea-ice coverage and hence feedbacks also contribute over high-latitudes, and an enhanced winter warming signal emerges in the future eruption ensemble. These findings show that the eruption response is a complex function of the environmental conditions, which has implications for the role of eruptions in climate variability in the future and potentially in the past.

  13. Computational structural and functional analysis of hypothetical proteins of Staphylococcus aureus

    OpenAIRE

    Mohan, Ramadevi; Venugopal, Subhashree

    2012-01-01

    Genome sequencing projects has led to an explosion of large amount of gene products in which many are of hypothetical proteins with unknown function. Analyzing and annotating the functions of hypothetical proteins is important in Staphylococcus aureus which is a pathogenic bacterium that cause multiple types of diseases by infecting various sites in humans and animals. In this study, ten hypothetical proteins of Staphylococcus aureus were retrieved from NCBI and analyzed for their structural ...

  14. Temporal changes in stress preceding the 2004-2008 eruption of Mount St. Helens, Washington

    Science.gov (United States)

    Lehto, H.L.; Roman, D.C.; Moran, S.C.

    2010-01-01

    The 2004-2008 eruption of Mount St. Helens (MSH), Washington, was preceded by a swarm of shallow volcano-tectonic earthquakes (VTs) that began on September 23, 2004. We calculated locations and fault-plane solutions (FPS) for shallow VTs recorded during a background period (January 1999 to July 2004) and during the early vent-clearing phase (September 23 to 29, 2004) of the 2004-2008 eruption. FPS show normal and strike-slip faulting during the background period and on September 23; strike-slip and reverse faulting on September 24; and a mixture of strike-slip, reverse, and normal faulting on September 25-29. The orientation of ??1 beneath MSH, as estimated from stress tensor inversions, was found to be sub-horizontal for all periods and oriented NE-SW during the background period, NW-SE on September 24, and NE-SW on September 25-29. We suggest that the ephemeral ~90?? change in ??1 orientation was due to intrusion and inflation of a NE-SW-oriented dike in the shallow crust prior to the eruption onset. ?? 2010 Elsevier B.V.

  15. The 2014 eruptions of Pavlof Volcano, Alaska

    Science.gov (United States)

    Waythomas, Christopher F.; Haney, Matthew M.; Wallace, Kristi; Cameron, Cheryl E.; Schneider, David J.

    2017-12-22

    Pavlof Volcano is one of the most frequently active volcanoes in the Aleutian Island arc, having erupted more than 40 times since observations were first recorded in the early 1800s . The volcano is located on the Alaska Peninsula (lat 55.4173° N, long 161.8937° W), near Izembek National Wildlife Refuge. The towns and villages closest to the volcano are Cold Bay, Nelson Lagoon, Sand Point, and King Cove, which are all within 90 kilometers (km) of the volcano (fig. 1). Pavlof is a symmetrically shaped stratocone that is 2,518 meters (m) high, and has about 2,300 m of relief. The volcano supports a cover of glacial ice and perennial snow roughly 2 to 4 cubic kilometers (km3) in volume, which is mantled by variable amounts of tephra fall, rockfall debris, and pyroclastic-flow deposits produced during historical eruptions. Typical Pavlof eruptions are characterized by moderate amounts of ash emission, lava fountaining, spatter-fed lava flows, explosions, and the accumulation of unstable mounds of spatter on the upper flanks of the volcano. The accumulation and subsequent collapse of spatter piles on the upper flanks of the volcano creates hot granular avalanches, which erode and melt snow and ice, and thereby generate watery debris-flow and hyperconcentrated-flow lahars. Seismic instruments were first installed on Pavlof Volcano in the early 1970s, and since then eruptive episodes have been better characterized and specific processes have been documented with greater certainty. The application of remote sensing techniques, including the use of infrasound data, has also aided the study of more recent eruptions. Although Pavlof Volcano is located in a remote part of Alaska, it is visible from Cold Bay, Sand Point, and Nelson Lagoon, making distal observations of eruptive activity possible, weather permitting. A busy air-travel corridor that is utilized by a numerous transcontinental and regional air carriers passes near Pavlof Volcano. The frequency of air travel

  16. Complicated lichenoid drug eruption.

    Science.gov (United States)

    Armour, Katherine; Lowe, Patricia

    2005-02-01

    We report a case of severe lichenoid drug eruption with multiple possible causative agents. A hepatitis C-positive male presented with a short history of painful erosions of the vermilion, lichenoid lesions on the buccal mucosa and glans penis, and erosions and lichenification of the scrotum. In addition, he had a pruritic polymorphic eruption over the scalp, trunk and limbs, comprising psoriasiform and eczematous lesions. He had received combination therapy of pegylated interferon-alpha-2a and ribavirin, along with granulocyte colony-stimulating factor for interferon-induced leucopenia, and propranolol for portal hypertension. The former three agents were ceased 3 weeks prior to presentation, but he remained on propranolol at the initial dermatology consultation. The polymorphous clinical picture was consistent with lichenoid drug eruption, which was confirmed on histology. The papulosquamous eruption responded quickly to 2 weeks of oral prednisone 25 mg daily, which was tapered to 1 mg over 3 months and then ceased. The mucosal lesions were slow to improve and required the addition of tacrolimus 0.03% solution t.d.s. for complete resolution.

  17. Sunspot splitting triggering an eruptive flare

    Science.gov (United States)

    Louis, Rohan E.; Puschmann, Klaus G.; Kliem, Bernhard; Balthasar, Horst; Denker, Carsten

    2014-02-01

    Aims: We investigate how the splitting of the leading sunspot and associated flux emergence and cancellation in active region NOAA 11515 caused an eruptive M5.6 flare on 2012 July 2. Methods: Continuum intensity, line-of-sight magnetogram, and dopplergram data of the Helioseismic and Magnetic Imager were employed to analyse the photospheric evolution. Filtergrams in Hα and He I 10830 Å of the Chromospheric Telescope at the Observatorio del Teide, Tenerife, track the evolution of the flare. The corresponding coronal conditions were derived from 171 Å and 304 Å images of the Atmospheric Imaging Assembly. Local correlation tracking was utilized to determine shear flows. Results: Emerging flux formed a neutral line ahead of the leading sunspot and new satellite spots. The sunspot splitting caused a long-lasting flow towards this neutral line, where a filament formed. Further flux emergence, partly of mixed polarity, as well as episodes of flux cancellation occurred repeatedly at the neutral line. Following a nearby C-class precursor flare with signs of interaction with the filament, the filament erupted nearly simultaneously with the onset of the M5.6 flare and evolved into a coronal mass ejection. The sunspot stretched without forming a light bridge, splitting unusually fast (within about a day, complete ≈6 h after the eruption) in two nearly equal parts. The front part separated strongly from the active region to approach the neighbouring active region where all its coronal magnetic connections were rooted. It also rotated rapidly (by 4.9° h-1) and caused significant shear flows at its edge. Conclusions: The eruption resulted from a complex sequence of processes in the (sub-)photosphere and corona. The persistent flows towards the neutral line likely caused the formation of a flux rope that held the filament. These flows, their associated flux cancellation, the emerging flux, and the precursor flare all contributed to the destabilization of the flux rope. We

  18. 47 CFR 69.608 - Carrier Common Line hypothetical net balance.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Carrier Common Line hypothetical net balance. 69.608 Section 69.608 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER... net balance. The hypothetical net balance shall be equal to a Carrier Common Line revenue requirement...

  19. Erupted Compound Odontomas: A Case Report

    Directory of Open Access Journals (Sweden)

    Avinash Tejasvi M.L.

    2011-03-01

    Full Text Available The tumors in which odontogenic differentiation is fully expressed are the odontomas. Odontomas are considered as hamartomas rather than a true neoplasm. These tumors are composed of enamel, dentine, cementum and pulp tissue. It is most commonly associated with the eruption of the teeth. They are usually discovered on routine radiographic examination. In exceptional cases, the odontoma erupts in to the mouth. Nine cases of erupted compound odontomas are reported in the English literature, and the present paper reports another case of an erupted compound odontoma in a 22-year-old female patient.

  20. Sulphur-rich volcanic eruptions and stratospheric aerosols

    Science.gov (United States)

    Rampino, M. R.; Self, S.

    1984-01-01

    Data from direct measurements of stratospheric optical depth, Greenland ice-core acidity, and volcanological studies are compared, and it is shown that relatively small but sulfur-rich volcanic eruptions can have atmospheric effects equal to or even greater than much larger sulfur-poor eruptions. These small eruptions are probably the most frequent cause of increased stratospheric aerosols. The possible sources of the excess sulfur released in these eruptions are discussed.

  1. Characterization of pyroclastic deposits and pre-eruptive soils following the 2008 eruption of Kasatochi Island Volcano, Alaska

    Science.gov (United States)

    Wang, B.; Michaelson, G.; Ping, C.-L.; Plumlee, G.; Hageman, P.

    2010-01-01

    The 78 August 2008 eruption of Kasatochi Island volcano blanketed the island in newly generated pyroclastic deposits and deposited ash into the ocean and onto nearby islands. Concentrations of water soluble Fe, Cu, and Zn determined from a 1:20 deionized water leachate of the ash were sufficient to provide short-term fertilization of the surface ocean. The 2008 pyroclastic deposits were thicker in concavities at bases of steeper slopes and thinner on steep slopes and ridge crests. By summer 2009, secondary erosion had exposed the pre-eruption soils along gulley walls and in gully bottoms on the southern and eastern slopes, respectively. Topographic and microtopographic position altered the depositional patterns of the pyroclastic flows and resulted in pre-eruption soils being buried by as little as 1 m of ash. The different erosion patterns gave rise to three surfaces on which future ecosystems will likely develop: largely pre-eruptive soils; fresh pyroclastic deposits influenced by shallowly buried, pre-eruptive soil; and thick (>1 m) pyroclastic deposits. As expected, the chemical composition differed between the pyroclastic deposits and the pre-eruptive soils. Pre-eruptive soils hold stocks of C and N important for establishing biota that are lacking in the fresh pyroclastic deposits. The pyroclastic deposits are a source for P and K but have negligible nutrient holding capacity, making these elements vulnerable to leaching loss. Consequently, the pre-eruption soils may also represent an important long-term P and K source. ?? 2010 Regents of the University of Colorado.

  2. NEW CANDIDATE ERUPTIVE YOUNG STARS IN LYNDS 1340

    Energy Technology Data Exchange (ETDEWEB)

    Kun, M.; Moór, A.; Szegedi-Elek, E. [Konkoly Observatory, H-1121 Budapest, Konkoly Thege út 15-17 (Hungary); Apai, D. [Department of Astronomy and Department of Planetary Sciences, The University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); O' Linger-Luscusk, J. [California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125 (United States); Stecklum, B. [Thüringer Landessternwarte Tautenburg, Sternwarte 5, D-07778 Tautenburg (Germany); Wolf-Chase, G., E-mail: kun@konkoly.hu [Astronomy Department, Adler Planetarium, 1300 South Lake Shore Drive, Chicago, IL 60605 (United States)

    2014-11-10

    We report on the discovery of three candidate eruptive young stars, found during our comprehensive multi-wavelength study of the young stellar population of the dark cloud L1340. These stars are as follows. (1) IRAS 02224+7227 (2MASS 02270555+7241167, HH 487S) exhibited FUor-like spectrum in our low-resolution optical spectra. The available photometric data restrict its luminosity to 23 L {sub ☉} < L {sub bol} < 59 L {sub ☉}. (2) 2MASS 02263797+7304575, identified as a classical T Tauri star during our Hα survey, exhibited an EXor-type brightening in 2005 November at the time of the Sloan Digital Sky Survey observations of the region. (3) 2MASS 02325605+7246055, a low-mass embedded young star, associated with a fan-shaped infrared nebula, underwent an outburst between the DSS 1 and DSS 2 surveys, leading to the appearance of a faint optical nebula. Our [S II] and Hα images, as well as the Spitzer Infrared Array Camera 4.5 μm images, revealed Herbig-Haro objects associated with this star. Our results suggest that amplitudes and timescales of outbursts do not necessarily correlate with the evolutionary stage of the stars.

  3. Characterization of juvenile pyroclasts from the Kos Plateau Tuff (Aegean Arc): insights into the eruptive dynamics of a large rhyolitic eruption

    Science.gov (United States)

    Bouvet de Maisonneuve, Caroline; Bachmann, Olivier; Burgisser, Alain

    2009-08-01

    Silicic pumices formed during explosive volcanic eruptions are faithful recorders of the state of the magma in the conduit, close to or at the fragmentation level. We have characterized four types of pumices from the non-welded rhyolitic Kos Plateau Tuff, which erupted 161,000 years ago in the East Aegean Arc, Greece. The dominant type of pumice (>90 vol.%) shows highly elongated tubular vesicles. These tube pumices occur throughout the eruption. Less common pumice types include: (1) “frothy” pumice (highly porous with large, sub-rounded vesicles), which form 5-10 vol.% of the coarsest pyroclastic flow deposits, (2) dominantly “microvesicular” and systematically crystal-poor pumices, which are found in early erupted, fine-grained pyroclastic flow units, and are characterized by many small (<50 μm in diameter) vesicles and few mm-sized, irregular voids, (3) grey or banded pumices, indicating the interaction between the rhyolite and a more mafic magma, which are found throughout the eruption sequence and display highly irregular bubble shapes. Except for the grey-banded pumices, all three other types are compositionally identical and were generated synchronously as they are found in the same pyroclastic units. They, therefore, record different conditions in the volcanic conduit leading to variable bubble nucleation, growth and coalescence. A total of 74 pumice samples have been characterized using thin section observation, SEM imagery, porosimetry, and permeametry. We show that the four pumice types have distinct total and connected porosity, tortuosity and permeability. Grey-banded pumices show large variations in petrophysical characteristics as a response to mingling of two different magmas. The microvesicular, crystal-poor, pumices have a bimodal bubble size distribution, interpreted as reflecting an early heterogeneous bubble nucleation event followed by homogeneous bubble nucleation close to fragmentation. Finally, the significant differences in

  4. Rapid laccolith intrusion driven by explosive volcanic eruption.

    Science.gov (United States)

    Castro, Jonathan M; Cordonnier, Benoit; Schipper, C Ian; Tuffen, Hugh; Baumann, Tobias S; Feisel, Yves

    2016-11-23

    Magmatic intrusions and volcanic eruptions are intimately related phenomena. Shallow magma intrusion builds subsurface reservoirs that are drained by volcanic eruptions. Thus, the long-held view is that intrusions must precede and feed eruptions. Here we show that explosive eruptions can also cause magma intrusion. We provide an account of a rapidly emplaced laccolith during the 2011 rhyolite eruption of Cordón Caulle, Chile. Remote sensing indicates that an intrusion began after eruption onset and caused severe (>200 m) uplift over 1 month. Digital terrain models resolve a laccolith-shaped body ∼0.8 km 3 . Deformation and conduit flow models indicate laccolith depths of only ∼20-200 m and overpressures (∼1-10 MPa) that likely stemmed from conduit blockage. Our results show that explosive eruptions may rapidly force significant quantities of magma in the crust to build laccoliths. These iconic intrusions can thus be interpreted as eruptive features that pose unique and previously unrecognized volcanic hazards.

  5. The Novarupta-Katmai eruption of 1912 - largest eruption of the twentieth century; centennial perspectives

    Science.gov (United States)

    Hildreth, Wes; Fierstein, Judy

    2012-01-01

    The explosive outburst at Novarupta (Alaska) in June 1912 was the 20th century's most voluminous volcanic eruption. Marking its centennial, we illustrate and document the complex eruptive sequence, which was long misattributed to nearby Mount Katmai, and how its deposits have provided key insights about volcanic and magmatic processes. It was one of the few historical eruptions to produce a collapsed caldera, voluminous high-silica rhyolite, wide compositional zonation (51-78 percent SiO2), banded pumice, welded tuff, and an aerosol/dust veil that depressed global temperature measurably. It emplaced a series of ash flows that filled what became the Valley of Ten Thousand Smokes, sustaining high-temperature metal-transporting fumaroles for a decade. Three explosive episodes spanned ~60 hours, depositing ~17 km3 of fallout and 11±2 km3 of ignimbrite, together representing ~13.5 km3 of zoned magma. No observers were nearby and no aircraft were in Alaska, and so the eruption narrative was assembled from scattered villages and ship reports. Because volcanology was in its infancy and the early investigations (1915-23) were conducted under arduous expeditionary conditions, many provocative misapprehensions attended reports based on those studies. Fieldwork at Katmai was not resumed until 1953, but, since then, global advances in physical volcanology and chemical petrology have gone hand in hand with studies of the 1912 deposits, clarifying the sequence of events and processes and turning the eruption into one of the best studied in the world. To provide perspective on this century-long evolution, we describe the geologic and geographic setting of the eruption - in a remote, sparsely inhabited wilderness; we review the cultural and scientific contexts at the time of the eruption and early expeditions; and we compile a chronology of the many Katmai investigations since 1912. Products of the eruption are described in detail, including eight layers of regionwide fallout

  6. Estimating rates of decompression from textures of erupted ash particles produced by 1999-2006 eruptions of Tungurahua volcano, Ecuador

    Science.gov (United States)

    Wright, Heather M.N.; Cashman, Katharine V.; Mothes, Patricia A.; Hall, Minard L.; Ruiz, Andrés Gorki; Le Pennec, Jean-Luc

    2012-01-01

    Persistent low- to moderate-level eruptive activity of andesitic volcanoes is difficult to monitor because small changes in magma supply rates may cause abrupt transitions in eruptive style. As direct measurement of magma supply is not possible, robust techniques for indirect measurements must be developed. Here we demonstrate that crystal textures of ash particles from 1999 to 2006 Vulcanian and Strombolian eruptions of Tungurahua volcano, Ecuador, provide quantitative information about the dynamics of magma ascent and eruption that is difficult to obtain from other monitoring approaches. We show that the crystallinity of erupted ash particles is controlled by the magma supply rate (MSR); ash erupted during periods of high magma supply is substantially less crystalline than during periods of low magma supply. This correlation is most easily explained by efficient degassing at very low pressures (<<50 MPa) and degassing-driven crystallization controlled by the time available prior to eruption. Our data also suggest that the observed transition from intermittent Vulcanian explosions at low MSR to more continuous periods of Strombolian eruptions and lava fountains at high MSR can be explained by the rise of bubbles through (Strombolian) or trapping of bubbles beneath (Vulcanian) vent-capping, variably viscous (and crystalline) magma.

  7. Winter warming from large volcanic eruptions

    Science.gov (United States)

    Robock, Alan; Mao, Jianping

    1992-01-01

    An examination of the Northern Hemisphere winter surface temperature patterns after the 12 largest volcanic eruptions from 1883-1992 shows warming over Eurasia and North America and cooling over the Middle East which are significant at the 95-percent level. This pattern is found in the first winter after tropical eruptions, in the first or second winter after midlatitude eruptions, and in the second winter after high latitude eruptions. The effects are independent of the hemisphere of the volcanoes. An enhanced zonal wind driven by heating of the tropical stratosphere by the volcanic aerosols is responsible for the regions of warming, while the cooling is caused by blocking of incoming sunlight.

  8. Naples between two fires: eruptive scenarios for the next eruptions by an integrated volcanological-probabilistic approach.

    Science.gov (United States)

    Mastrolorenzo, G.; Pappalardo, L.; de Natale, G.; Troise, C.; Rossano, S.; Panizza, A.

    2009-04-01

    Probabilistic approaches based on available volcanological data from real eruptions of Campi Flegrei and Somma-Vesuvius, are assembled in a comprehensive assessment of volcanic hazards at the Neapolitan area. This allows to compare the volcanic hazards related to the different types of events, which can be used for evaluating the conditional probability of flows and falls hazard in case of a volcanic crisis. Hazard maps are presented, based on a rather complete set of numerical simulations, produced using field and laboratory data as input parameters relative to a large range (VEI 1 to 5) of fallout and pyroclastic-flow events and their relative occurrence. The results allow us to quantitatively evaluate and compare the hazard related to pyroclastic fallout and density currents (PDCs) at the Neapolitan volcanoes and their surroundings, including the city of Naples. Due to its position between the two volcanic areas, the city of Naples is particularly exposed to volcanic risk from VEI>2 eruptions, as recorded in the local volcanic succession. Because dominant wind directions, the area of Naples is particularly prone to fallout hazard from Campi Flegrei caldera eruptions in the VEI range 2-5. The hazard from PDCs decreases roughly radially with distance from the eruptive vents and is strongly controlled by the topographic heights. Campi Flegrei eruptions are particularly hazardous for Naples, although the Camaldoli and Posillipo hills produce an effective barrier to propagation to the very central part of Naples. PDCs from Vesuvius eruptions with VEI>4 can cover the city of Naples, whereas even VEI>3 eruptions have a moderate fallout hazard there.

  9. CARNSORE: Hypothetical reactor accident study

    International Nuclear Information System (INIS)

    Walmod-Larsen, O.; Jensen, N.O.; Kristensen, L.; Meide, A.; Nedergaard, K.L.; Nielsen, F.; Lundtang Petersen, E.; Petersen, T.; Thykier-Nielsen, S.

    1984-06-01

    Two types of design-basis accident and a series of hypothetical core-melt accidents to a 600 MWe reactor are described and their consequences assessed. The PLUCON 2 model was used to calculate the consequences which are presented in terms of individual and collective doses, as well as early and late health consequences. The site proposed for the nucelar power station is Carnsore Point, County Wexford, south-east Ireland. The release fractions for the accidents described are those given in WASH-1400. The analyses are based on the resident population as given in the 1979 census and on 20 years of data from the meteorological stations at Rosslare Harbour, 8.5 km north of the site. The consequences of one of the hypothetical core-melt accidents are described in detail in a meteorological parametric study. Likewise the consequences of the worst conceivable combination of situations are described. Finally, the release fraction in one accident is varied and the consequences of a proposed, more probable ''Class 9 accident'' are presented. (author)

  10. Eruption probabilities for the Lassen Volcanic Center and regional volcanism, northern California, and probabilities for large explosive eruptions in the Cascade Range

    Science.gov (United States)

    Nathenson, Manuel; Clynne, Michael A.; Muffler, L.J. Patrick

    2012-01-01

    Chronologies for eruptive activity of the Lassen Volcanic Center and for eruptions from the regional mafic vents in the surrounding area of the Lassen segment of the Cascade Range are here used to estimate probabilities of future eruptions. For the regional mafic volcanism, the ages of many vents are known only within broad ranges, and two models are developed that should bracket the actual eruptive ages. These chronologies are used with exponential, Weibull, and mixed-exponential probability distributions to match the data for time intervals between eruptions. For the Lassen Volcanic Center, the probability of an eruption in the next year is 1.4x10-4 for the exponential distribution and 2.3x10-4 for the mixed exponential distribution. For the regional mafic vents, the exponential distribution gives a probability of an eruption in the next year of 6.5x10-4, but the mixed exponential distribution indicates that the current probability, 12,000 years after the last event, could be significantly lower. For the exponential distribution, the highest probability is for an eruption from a regional mafic vent. Data on areas and volumes of lava flows and domes of the Lassen Volcanic Center and of eruptions from the regional mafic vents provide constraints on the probable sizes of future eruptions. Probabilities of lava-flow coverage are similar for the Lassen Volcanic Center and for regional mafic vents, whereas the probable eruptive volumes for the mafic vents are generally smaller. Data have been compiled for large explosive eruptions (>≈ 5 km3 in deposit volume) in the Cascade Range during the past 1.2 m.y. in order to estimate probabilities of eruption. For erupted volumes >≈5 km3, the rate of occurrence since 13.6 ka is much higher than for the entire period, and we use these data to calculate the annual probability of a large eruption at 4.6x10-4. For erupted volumes ≥10 km3, the rate of occurrence has been reasonably constant from 630 ka to the present, giving

  11. Volcanic Eruptions and Climate

    Science.gov (United States)

    LeGrande, Allegra N.; Anchukaitis, Kevin J.

    2015-01-01

    Volcanic eruptions represent some of the most climatically important and societally disruptive short-term events in human history. Large eruptions inject ash, dust, sulfurous gases (e.g. SO2, H2S), halogens (e.g. Hcl and Hbr), and water vapor into the Earth's atmosphere. Sulfurous emissions principally interact with the climate by converting into sulfate aerosols that reduce incoming solar radiation, warming the stratosphere and altering ozone creation, reducing global mean surface temperature, and suppressing the hydrological cycle. In this issue, we focus on the history, processes, and consequences of these large eruptions that inject enough material into the stratosphere to significantly affect the climate system. In terms of the changes wrought on the energy balance of the Earth System, these transient events can temporarily have a radiative forcing magnitude larger than the range of solar, greenhouse gas, and land use variability over the last millennium. In simulations as well as modern and paleoclimate observations, volcanic eruptions cause large inter-annual to decadal-scale changes in climate. Active debates persist concerning their role in longer-term (multi-decadal to centennial) modification of the Earth System, however.

  12. LATERAL OFFSET OF THE CORONAL MASS EJECTIONS FROM THE X-FLARE OF 2006 DECEMBER 13 AND ITS TWO PRECURSOR ERUPTIONS

    International Nuclear Information System (INIS)

    Sterling, Alphonse C.; Moore, Ronald L.; Harra, Louise K.

    2011-01-01

    Two GOES sub-C-class precursor eruptions occurred within ∼10 hr prior to and from the same active region as the 2006 December 13 X4.3-class flare. Each eruption generated a coronal mass ejection (CME) with center laterally far offset (∼> 45°) from the co-produced bright flare. Explaining such CME-to-flare lateral offsets in terms of the standard model for solar eruptions has been controversial. Using Hinode/X-Ray Telescope (XRT) and EUV Imaging Spectrometer (EIS) data, and Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronagraph (LASCO) and Michelson Doppler Imager (MDI) data, we find or infer the following. (1) The first precursor was a 'magnetic-arch-blowout' event, where an initial standard-model eruption of the active region's core field blew out a lobe on one side of the active region's field. (2) The second precursor began similarly, but the core-field eruption stalled in the side-lobe field, with the side-lobe field erupting ∼1 hr later to make the CME either by finally being blown out or by destabilizing and undergoing a standard-model eruption. (3) The third eruption, the X-flare event, blew out side lobes on both sides of the active region and clearly displayed characteristics of the standard model. (4) The two precursors were offset due in part to the CME originating from a side-lobe coronal arcade that was offset from the active region's core. The main eruption (and to some extent probably the precursor eruptions) was offset primarily because it pushed against the field of the large sunspot as it escaped outward. (5) All three CMEs were plausibly produced by a suitable version of the standard model.

  13. What factors control the size of an eruption?

    Science.gov (United States)

    Gudmundsson, Agust

    2017-04-01

    For human society, eruption sizes (eruptive volumes or masses) are of the greatest concern. In particular, the largest eruptions, producing volumes of the order of hundreds or thousands of cubic kilometres, provide, together with meteoritic impacts, the greatest natural threats to mankind. Eruptive volumes tend to follow power laws so that most eruptions are comparatively small whereas a few are very large. It follows that a while during most ruptures of the source chambers a small fraction of the magma leaves the chamber, in some ruptures a very large fraction of the magma leaves the chamber. Most explosive eruptions larger than about 25 km3 are associated with caldera collapse. In the standard 'underpressure' ('lack of magmatic support') model, however, the collapse is the consequence, not the cause, of the large eruption. For poroelastic models, typically less than 4% of the magma in a felsic chamber and less than 0.1% of the magma in a mafic chamber leaves the chamber during rupture (and eventual eruption). In some caldera models, however, 20-70% of the magma is supposed to leave the chamber before the ring-fault forms and the caldera block begins to subside. In these models any amount of magma can flow out of the chamber following its rupture and there is apparently no way to forecast either the volume of magma injected from the chamber (hence the potential size of an eventual eruption) or the conditions for caldera collapse. An alternative model is proposed here. In this model normal (small) eruptions are controlled by standard poroelastity behaviour of the chamber, whereas large eruptions are controlled by chamber-volume reduction or shrinkage primarily through caldera/graben block subsidence into the chamber. Volcanotectonic stresses are then a major cause of ring-fault/graben boundary-fault formation. When large slips occur on these faults, the subsiding crustal block reduces the volume of the underlying chamber/reservoir, thereby maintaining its excess

  14. Characteristics of EIT Dimmings in Solar Eruptions

    Science.gov (United States)

    Adams, Mitzi; Sterling, A. C.

    2006-01-01

    Intensity "dimmings" in coronal images are a key feature of solar eruptions. Such dimmings are likely the source locations for much of the material expelled in coronal mass ejections (CMEs). Characteristics such as the timing of the dimmings with respect to the onset of other eruption signatures, and the location of the dimmings in the context of the magnetic field environment of the erupting region, are indicative of the mechanism leading to the eruption. We examine dimmings of six eruptions in images from the EUV Imaging Telescope (EIT) on SOHO, along with supplementary soft X-ray (SXR) data from GOES and the SXR Telescope (SXT) on Yohkoh. We examine the timing of the dimming onset and compare with the time of EUV and SXR brightening and determine the timescale for the recovery from dimming for each event. With line-of-sight photospheric magnetograms from the MDI instrument on SOHO, we determine the magnetic structure of the erupting regions and the locations of the dimmings in those regions. From our analysis we consider which mechanism likely triggered each eruption: internal tether cutting, external tether cutting ("breakout"), loss of equilibrium, or some other mechanism.

  15. Plasma Evolution within an Erupting Coronal Cavity

    Science.gov (United States)

    Long, David M.; Harra, Louise K.; Matthews, Sarah A.; Warren, Harry P.; Lee, Kyoung-Sun; Doschek, George A.; Hara, Hirohisa; Jenkins, Jack M.

    2018-03-01

    Coronal cavities have previously been observed to be associated with long-lived quiescent filaments and are thought to correspond to the associated magnetic flux rope. Although the standard flare model predicts a coronal cavity corresponding to the erupting flux rope, these have only been observed using broadband imaging data, restricting an analysis to the plane-of-sky. We present a unique set of spectroscopic observations of an active region filament seen erupting at the solar limb in the extreme ultraviolet. The cavity erupted and expanded rapidly, with the change in rise phase contemporaneous with an increase in nonthermal electron energy flux of the associated flare. Hot and cool filamentary material was observed to rise with the erupting flux rope, disappearing suddenly as the cavity appeared. Although strongly blueshifted plasma continued to be observed flowing from the apex of the erupting flux rope, this outflow soon ceased. These results indicate that the sudden injection of energy from the flare beneath forced the rapid eruption and expansion of the flux rope, driving strong plasma flows, which resulted in the eruption of an under-dense filamentary flux rope.

  16. Reducing air pollution from electricity-generating large combustion plants in the European Union. An assessment of potential emission reductions of NO{sub X}, SO{sub 2} and dust

    Energy Technology Data Exchange (ETDEWEB)

    Lodewijks, P.; Pieper, H.; Van Wortswinkel, L. [ETC partner Flemish Institute for Technological Research (VITO) (Belgium); Boyce, B.; Adams, M.; Goossens, E. [EEA, Copenhagen (Denmark)

    2013-06-15

    An assessment of potential emission reductions of NO{sub X}, SO{sub 2} and dust - This report presents an assessment of the hypothetical emission reduction potential of NO{sub x}, SO{sub 2} and dust from more than 1 500 of Europe's large combustion plants that operated in 2009. Emissions of these air pollutants could be significantly lower if all plants were to meet the emission limit values as set out in European Union legislation. (Author)

  17. Pattern of drug eruptions in a tertiary care hospital

    International Nuclear Information System (INIS)

    Tahir, Z.; Nadeem, N.; Aman, S.; Kazmi, A.H.

    2013-01-01

    Background: An adverse drug reaction is unintentional which occurs at doses used for prophylaxis, diagnosis or treatment. Objectives: To determine the frequency of various cutaneous drug eruptions that occur in patients in a tertiary care hospital setting. Patients and Methods: All patients with cutaneous drug eruptions seen at the Dermatology Department of Mayo Hospital, Lahore, over 6 months were enrolled and the pattern of drug eruptions like urticaria, angioedema, fixed drug eruption, maculopapular rash, erythema multiforme, Stevens-Johnson syndrome and toxic epidermal necrolysis etc. were recorded, along with drugs that caused it. Results:A total of 160 patients (86 males, 74 females) were included in the study. Mean age of patients was 30.7+-15.4 years. Major eruptions were fixed drug eruption (21.3%) followed by urticaria without angioedema (10%), maculopapular rash (9.3%), lichenoid drug eruption (8.7%), acneiform drug eruption (7.5%), Stevens-Johnson syndrome (6.9%), vesiculobullous eruption (5.6%), erythema multiforme and eczematous eruption (5% each). Common drugs causing eruptions were sulfonamides (16.3%), followed by NSAIDs (14.4%), herbal and homeopathic medications (12.5%), penicillins (9.3%), tetracyclines (8.7%), antituberculous drugs, cephalosporins and antiepileptics (6.3% each). Conclusion: Fixed drug eruption and urticaria without angioedema were commonest eruptions while, sulfonamides and NSAIDs were the major causative drugs. Policy message: Reporting of adverse drug reactions is not done in Pakistan and needs to be done in each hospital. (author)

  18. Investigating the Magnetic Imprints of Major Solar Eruptions with SDO /HMI High-cadence Vector Magnetograms

    Energy Technology Data Exchange (ETDEWEB)

    Sun Xudong; Hoeksema, J. Todd; Liu Yang; Chen Ruizhu [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Kazachenko, Maria, E-mail: xudong@Sun.stanford.edu [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States)

    2017-04-10

    The solar active region photospheric magnetic field evolves rapidly during major eruptive events, suggesting appreciable feedback from the corona. Previous studies of these “magnetic imprints” are mostly based on line of sight only or lower-cadence vector observations; a temporally resolved depiction of the vector field evolution is hitherto lacking. Here, we introduce the high-cadence (90 s or 135 s) vector magnetogram data set from the Helioseismic and Magnetic Imager, which is well suited for investigating the phenomenon. These observations allow quantitative characterization of the permanent, step-like changes that are most pronounced in the horizontal field component (B {sub h}). A highly structured pattern emerges from analysis of an archetypical event, SOL2011-02-15T01:56, where B {sub h} near the main polarity inversion line increases significantly during the earlier phase of the associated flare with a timescale of several minutes, while B {sub h} in the periphery decreases at later times with smaller magnitudes and a slightly longer timescale. The data set also allows effective identification of the “magnetic transient” artifact, where enhanced flare emission alters the Stokes profiles and the inferred magnetic field becomes unreliable. Our results provide insights on the momentum processes in solar eruptions. The data set may also be useful to the study of sunquakes and data-driven modeling of the corona.

  19. Seasonal variations of volcanic eruption frequencies

    Science.gov (United States)

    Stothers, Richard B.

    1989-01-01

    Do volcanic eruptions have a tendency to occur more frequently in the months of May and June? Some past evidence suggests that they do. The present study, based on the new eruption catalog of Simkin et al.(1981), investigates the monthly statistics of the largest eruptions, grouped according to explosive magnitude, geographical latitude, and year. At the 2-delta level, no month-to-month variations in eruption frequency are found to be statistically significant. Examination of previously published month-to-month variations suggests that they, too, are not statistically significant. It is concluded that volcanism, at least averaged over large portions of the globe, is probably not periodic on a seasonal or annual time scale.

  20. The chemically zoned 1949 eruption on La Palma (Canary Islands): Petrologic evolution and magma supply dynamics of a rift zone eruption

    OpenAIRE

    Klügel, Andreas; Hoernle, Kaj A.; Schmincke, Hans-Ulrich; White, James D. L.

    2000-01-01

    The 1949 rift zone eruption along the Cumbre Vieja ridge on La Palma involved three eruptive centers, 3 km spaced apart, and was chemically and mineralogically zoned. Duraznero crater erupted tephrite for 14 days and shut down upon the opening of Llano del Banco, a fissure that issued first tephrite and, after 3 days, basanite. Hoyo Negro crater opened 4 days later and erupted basanite, tephrite, and phonotephrite, while Llano del Banco continued to issue basanite. The eruption ended with Dur...

  1. Setting of the Father's Day Eruption at Kilauea

    Science.gov (United States)

    Swanson, D. A.

    2007-12-01

    The Father's Day eruption and associated intrusion took place within a 10-km segment of Kilauea's east rift zone between Hi`iaka and Napau Craters--a segment that has had more numerous eruptions and intrusions than any other of comparable length during the past 200, probably the past 1000, years. Fifteen known eruptions started in this area in the past 200 years: 1840, 1922, 1923, 1962, August and October 1963, March and December 1965, August and October 1968, February and May 1969, May and November 1973, and March 1980 (only 3 cubic meters!). Three others, not previously designated as distinct eruptions despite having all the appropriate characteristics, took place during on-going eruptions: two in `Alo`i Crater in 1970 and 1972, and one in Napau Crater in 1997. Two of the largest shields on the east rift zone formed during long-lasting eruptions within this area--Kane Nui o Hamo at an unknown date, perhaps the 11-12th century, and Mauna Ulu (1969-1974). In addition, many small intrusions without eruptions are known. Seven short eruptions punctuated a prolonged eruption: four within the segment during the Mauna Ulu eruption, two at the summit and southwest rift zone during that same eruption, and one in Napau Crater in 1997 during the Pu`u `O`o eruption. Thus the Father's Day eruption is not unique by virtue of taking place during an ongoing eruption elsewhere along the rift zone. The increased frequency of activity in the segment during the 20th century is obvious, particularly after 1962. For most of the past 1,000 years, eruptions were centered at Kilauea's summit, with significant but lesser activity along the rift zones. A large summit deflation in 1924 ended the nearly continuous lava lake in Halemaumau, eventually leading to the past 5 decades of dominantly east rift zone activity. This segment of the rift zone contains most of the pit craters on Kilauea and gradually changes from a SE trend near the caldera to an ENE trend that characterizes the rest of

  2. SOLAR MULTIPLE ERUPTIONS FROM A CONFINED MAGNETIC STRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeongwoo; Chae, Jongchul [Department of Physics and Astronomy, Seoul National University, Seoul 08826 (Korea, Republic of); Liu, Chang; Jing, Ju [Space Weather Research Laboratory, New Jersey Institute of Technology, Newark, NJ 07102 (United States)

    2016-09-20

    How eruption can recur from a confined magnetic structure is discussed based on the Solar Dynamics Observatory observations of the NOAA active region 11444, which produced three eruptions within 1.5 hr on 2012 March 27. The active region (AR) had the positive-polarity magnetic fields in the center surrounded by the negative-polarity fields around. Since such a distribution of magnetic polarity tends to form a dome-like magnetic fan structure confined over the AR, the multiple eruptions were puzzling. Our investigation reveals that this event exhibits several properties distinct from other eruptions associated with magnetic fan structures: (i) a long filament encircling the AR was present before the eruptions; (ii) expansion of the open–closed boundary (OCB) of the field lines after each eruption was suggestive of the growing fan-dome structure, and (iii) the ribbons inside the closed magnetic polarity inversion line evolved in response to the expanding OCB. It thus appears that in spite of multiple eruptions the fan-dome structure remained undamaged, and the closing back field lines after each eruption rather reinforced the fan-dome structure. We argue that the multiple eruptions could occur in this AR in spite of its confined magnetic structure because the filament encircling the AR was adequate for slipping through the magnetic separatrix to minimize the damage to its overlying fan-dome structure. The result of this study provides a new insight into the productivity of eruptions from a confined magnetic structure.

  3. SOLAR MULTIPLE ERUPTIONS FROM A CONFINED MAGNETIC STRUCTURE

    International Nuclear Information System (INIS)

    Lee, Jeongwoo; Chae, Jongchul; Liu, Chang; Jing, Ju

    2016-01-01

    How eruption can recur from a confined magnetic structure is discussed based on the Solar Dynamics Observatory observations of the NOAA active region 11444, which produced three eruptions within 1.5 hr on 2012 March 27. The active region (AR) had the positive-polarity magnetic fields in the center surrounded by the negative-polarity fields around. Since such a distribution of magnetic polarity tends to form a dome-like magnetic fan structure confined over the AR, the multiple eruptions were puzzling. Our investigation reveals that this event exhibits several properties distinct from other eruptions associated with magnetic fan structures: (i) a long filament encircling the AR was present before the eruptions; (ii) expansion of the open–closed boundary (OCB) of the field lines after each eruption was suggestive of the growing fan-dome structure, and (iii) the ribbons inside the closed magnetic polarity inversion line evolved in response to the expanding OCB. It thus appears that in spite of multiple eruptions the fan-dome structure remained undamaged, and the closing back field lines after each eruption rather reinforced the fan-dome structure. We argue that the multiple eruptions could occur in this AR in spite of its confined magnetic structure because the filament encircling the AR was adequate for slipping through the magnetic separatrix to minimize the damage to its overlying fan-dome structure. The result of this study provides a new insight into the productivity of eruptions from a confined magnetic structure.

  4. Eruption Cyst in the Neonate.

    Science.gov (United States)

    de Oliveira, Alline J; Silveira, Maria Lg; Duarte, Danilo A; Diniz, Michele B

    2018-01-01

    The pediatric dental approach to the oral cavity of newborns requires special attention, as many aspects are unique and peculiar to this period of life. It is important that pediatricians and pediatric dentists be aware of the characteristics within normal newborn patterns and prepared to make a correct diagnosis of abnormalities at early stages. Congenital eruption cysts (ECs) are rarely observed in newborns, as at this stage of a child's life, tooth eruption is unusual. This study reports a case of EC treated successfully by monitoring of the lesion, without any surgical procedure. In the 4th month, the lesion had completely regressed, and the deciduous central incisors had erupted without problems. The clinical and radiographic monitoring of ECs in newborns seems to be a satisfactory management procedure, similar to what is recommended for older children. How to cite this article: de Oliveira AJ, Silveira MLG, Duarte DA, Diniz MB. Eruption Cyst in the Neonate. Int J Clin Pediatr Dent 2018;11(1):58-60.

  5. Stress field control during large caldera-forming eruptions

    Directory of Open Access Journals (Sweden)

    Antonio Costa

    2016-10-01

    Full Text Available Crustal stress field can have a significant influence on the way magma is channelled through the crust and erupted explosively at the surface. Large Caldera Forming Eruptions (LCFEs can erupt hundreds to thousands of cubic kilometres of magma in a relatively short time along fissures under the control of a far-field extensional stress. The associated eruption intensities are estimated in the range 109 - 1011 kg/s. We analyse syn-eruptive dynamics of LCFEs, by simulating numerically explosive flow of magma through a shallow dyke conduit connected to a magma chamber that in turn is fed by a deeper magma reservoir, both under the action of an extensional far-field stress. Results indicate that huge amounts of high viscosity silicic magma can be erupted over timescales of a few to several hours. Our study provides answers to outstanding questions relating to the intensity and duration of catastrophic volcanic eruptions in the past. In addition, it presents far-reaching implications for the understanding of dynamics and intensity of large-magnitude volcanic eruptions on Earth and to highlight the necessity of a future research to advance our knowledge of these rare catastrophic events.

  6. Volcanic eruptions are cooling the earth

    International Nuclear Information System (INIS)

    Groenaas, Sigbjoern

    2005-01-01

    The article discusses how volcanic eruptions may influence the climate. The environmental impacts both on the earth surface and the atmosphere are surveyed. Some major eruptions in modern times are mentioned

  7. The 2003 phreatomagmatic eruptions of Anatahan volcano - Textural and petrologic features of deposits at an emergent island volcano

    Science.gov (United States)

    Pallister, J.S.; Trusdell, F.A.; Brownfield, I.K.; Siems, D.F.; Budahn, J.R.; Sutley, S.F.

    2005-01-01

    Stratigraphic and field data are used in conjunction with textural and chemical evidence (including data from scanning electron microscope, electron microprobe, X-ray fluorescence, X-ray diffraction, and instrumental neutron activation analysis) to establish that the 2003 eruption of Anatahan volcano was mainly phreatomagmatic, dominated by explosive interaction of homogeneous composition low-viscosity crystal-poor andesite magma with water. The hydromagmatic mode of eruption contributed to the significant height of initial eruptive columns and to the excavation and eruption of altered rock debris from the sub-volcanic hydrothermal system. Volatile contents of glass inclusions in equilibrium phenocrysts less abundances of these constituents in matrix glass times the estimated mass of juvenile magma indicate minimum emissions of 19 kt SO2 and 13 kt Cl. This petrologic estimate of SO2 emission is an order-of-magnitude less than an estimate from TOMS. Similarly, inferred magma volumes from the petrologic data are an order of magnitude greater than those modeled from deformation data. Both discrepancies indicate additional sources of volatiles, likely derived from a separate fluid phase in the magma. The paucity of near-source volcanic-tectonic earthquakes preceding the eruption, and the dominance of sustained long-period tremor are attributed to the ease of ascent of the hot low-viscosity andesite, followed by a shallow phreatomagmatic mode of eruption. Phreatomagmatic eruptions are probably more common at emergent tropical island volcanoes, where shallow fresh-water lenses occur at near-sea-level vents. These relations suggest that phreatomagmatic explosions contributed to the formation of many of the near-sea-level craters and possibly even to the small calderas at the other Mariana islands.

  8. Understanding the eruption mechanisms of the explosive Bellecombe Eruptions on Piton de la Fournaise, La Réunion

    Science.gov (United States)

    Morgan, K.; Ort, M. H.; Di Muro, A.; Parnell, R. A.; Huff, W. D.

    2017-12-01

    Piton de la Fournaise (PdF) is an active basaltic volcano on La Réunion island. The Bellecombe Tephra was deposited from at least three unusually explosive eruptions between 3000-5000 ka. The Bellecombe eruptions were interpreted recently to have been due to rapid depressurization of the hydrothermal system when a deep fracture opened after lateral, seaward-directed sliding of the eastern flank, late in a large effusive eruption. This project tests this hypothesis by physically, mineralogically, and chemically characterizing the Bellecombe Tephra to look for evidence of the involvement of the PdF hydrothermal system in the eruptions and understand where the eruptions initiated. The Bellecombe tephra consists of three units separated by incipient soils. Both the Upper and Lower Bellecombe deposits are mostly medium to very fine ash. Lower Bellecombe deposits, from the first two eruptions, are mostly beds of glassy ash containing minor lithic grains and olivine crystals. Hydrothermal minerals, mostly smectite, are present in a few Lower Bellecombe beds. Since these minerals are only present in some beds, the smectite formed before deposition rather than as a product of surficial alteration. The Upper Bellecombe deposits record a third eruption and vary between clast-supported crystal- and lithic-rich lapilli beds and ash beds with abundant ash pellets. The crystals are mostly olivine, with lesser pyroxene and plagioclase and sparse hydrothermal quartz. Gabbro and oceanite clasts are abundant and trachytic pumice rare in these deposits. Hydrothermal minerals are common in most Upper Bellecombe beds. The presence of smectite in some of the Lower Bellecombe beds suggests these deposits came from a system below 200 ºC. Clays in the Upper Bellecombe beds - smectite and mixed layer R0 illite/smectite - imply a system at 40-140 ºC. The hydrothermal system was involved, but might not have been the primary impetus for these eruptions, since hydrothermal minerals are not

  9. The June 2014 eruption at Piton de la Fournaise: Robust methods developed for monitoring challenging eruptive processes

    Science.gov (United States)

    Villeneuve, N.; Ferrazzini, V.; Di Muro, A.; Peltier, A.; Beauducel, F.; Roult, G. C.; Lecocq, T.; Brenguier, F.; Vlastelic, I.; Gurioli, L.; Guyard, S.; Catry, T.; Froger, J. L.; Coppola, D.; Harris, A. J. L.; Favalli, M.; Aiuppa, A.; Liuzzo, M.; Giudice, G.; Boissier, P.; Brunet, C.; Catherine, P.; Fontaine, F. J.; Henriette, L.; Lauret, F.; Riviere, A.; Kowalski, P.

    2014-12-01

    After almost 3.5 years of quiescence, Piton de la Fournaise (PdF) produced a small summit eruption on 20 June 2014 at 21:35 (GMT). The eruption lasted 20 hours and was preceded by: i) onset of deep eccentric seismicity (15-20 km bsl; 9 km NW of the volcano summit) in March and April 2014; ii) enhanced CO2 soil flux along the NW rift zone; iii) increase in the number and energy of shallow (shallow location, was not characteristic of an eruptive crisis. However, at 20:06 on 20/06 their character changed. This was 74 minutes before the onset of tremor. Deformations then began at 20:20. Since 2007, PdF has emitted small magma volumes (processing of seismic data, borehole tiltmeters and permanent monitoring of summit gas emissions, plus CO2 soil flux, were used to track precursory activity. JERK, based on an analysis of the acceleration slope of a broad-band seismometer data, allowed advanced notice of the new eruption by 50 minutes. MSNoise, based on seismic velocity determination, showed a significant decrease 7 days before the eruption. These signals were coupled with change in summit fumarole composition. Remote sensing allowed the following syn-eruptive observations: - INSAR confirmed measurements made by the OVPF geodetic network, showing that deformation was localized around the eruptive fissures; - A SPOT5 image acquired at 05:41 on 21/06 allowed definition of the flow field area (194 500 m2); - A MODIS image acquired at 06:35 on 21/06 gave a lava discharge rate of 6.9±2.8 m3 s-1, giving an erupted volume of 0.3 and 0.4 Mm3. - This rate was used with the DOWNFLOW and FLOWGO models, calibrated with the textural data from Piton's 2010 lava, to run lava flow projections; showing that the event was volume limited. Preliminary sample analyses suggest that the olivine rich lavas have a differentiated character (melt MgO: 5.8 - 6.2 wt.%); proof of chamber residence. However, some aphyric tephra are more primitive (MgO: 8.2 wt.%). This suggests eruption due to

  10. The frequency of explosive volcanic eruptions in Southeast Asia.

    Science.gov (United States)

    Whelley, Patrick L; Newhall, Christopher G; Bradley, Kyle E

    There are ~750 active and potentially active volcanoes in Southeast Asia. Ash from eruptions of volcanic explosivity index 3 (VEI 3) and smaller pose mostly local hazards while eruptions of VEI ≥ 4 could disrupt trade, travel, and daily life in large parts of the region. We classify Southeast Asian volcanoes into five groups, using their morphology and, where known, their eruptive history and degassing style. Because the eruptive histories of most volcanoes in Southeast Asia are poorly constrained, we assume that volcanoes with similar morphologies have had similar eruption histories. Eruption histories of well-studied examples of each morphologic class serve as proxy histories for understudied volcanoes in the class. From known and proxy eruptive histories, we estimate that decadal probabilities of VEI 4-8 eruptions in Southeast Asia are nearly 1.0, ~0.6, ~0.15, ~0.012, and ~0.001, respectively.

  11. Impacts of a Pinatubo-size volcanic eruption on ENSO

    KAUST Repository

    Predybaylo, Evgeniya

    2017-01-16

    Observations and model simulations of the climate responses to strong explosive low-latitude volcanic eruptions suggest a significant increase in the likelihood of El Niño during the eruption and posteruption years, though model results have been inconclusive and have varied in magnitude and even sign. In this study, we test how this spread of responses depends on the initial phase of El Niño-Southern Oscillation (ENSO) in the eruption year and on the eruption\\'s seasonal timing. We employ the Geophysical Fluid Dynamics Laboratory CM2.1 global coupled general circulation model to investigate the impact of the Pinatubo 1991 eruption, assuming that in 1991 ENSO would otherwise be in central or eastern Pacific El Niño, La Niña, or neutral phases. We obtain statistically significant El Niño responses in a year after the eruption for all cases except La Niña, which shows no response in the eastern equatorial Pacific. The eruption has a weaker impact on eastern Pacific El Niños than on central Pacific El Niños. We find that the ocean dynamical thermostat and (to a lesser extent) wind changes due to land-ocean temperature gradients are the main feedbacks affecting El Niño development after the eruption. The El Niño responses to eruptions occurring in summer are more pronounced than for winter and spring eruptions. That the climate response depends on eruption season and initial ENSO phase may help to reconcile apparent inconsistencies among previous studies.

  12. Geomorphic consequences of volcanic eruptions in Alaska: A review

    Science.gov (United States)

    Waythomas, Christopher F.

    2015-01-01

    Eruptions of Alaska volcanoes have significant and sometimes profound geomorphic consequences on surrounding landscapes and ecosystems. The effects of eruptions on the landscape can range from complete burial of surface vegetation and preexisting topography to subtle, short-term perturbations of geomorphic and ecological systems. In some cases, an eruption will allow for new landscapes to form in response to the accumulation and erosion of recently deposited volcaniclastic material. In other cases, the geomorphic response to a major eruptive event may set in motion a series of landscape changes that could take centuries to millennia to be realized. The effects of volcanic eruptions on the landscape and how these effects influence surface processes has not been a specific focus of most studies concerned with the physical volcanology of Alaska volcanoes. Thus, what is needed is a review of eruptive activity in Alaska in the context of how this activity influences the geomorphology of affected areas. To illustrate the relationship between geomorphology and volcanic activity in Alaska, several eruptions and their geomorphic impacts will be reviewed. These eruptions include the 1912 Novarupta–Katmai eruption, the 1989–1990 and 2009 eruptions of Redoubt volcano, the 2008 eruption of Kasatochi volcano, and the recent historical eruptions of Pavlof volcano. The geomorphic consequences of eruptive activity associated with these eruptions are described, and where possible, information about surface processes, rates of landscape change, and the temporal and spatial scale of impacts are discussed.A common feature of volcanoes in Alaska is their extensive cover of glacier ice, seasonal snow, or both. As a result, the generation of meltwater and a variety of sediment–water mass flows, including debris-flow lahars, hyperconcentrated-flow lahars, and sediment-laden water floods, are typical outcomes of most types of eruptive activity. Occasionally, such flows can be quite

  13. Accelerated tooth eruption in children with diabetes mellitus.

    Science.gov (United States)

    Lal, Shantanu; Cheng, Bin; Kaplan, Selma; Softness, Barney; Greenberg, Ellen; Goland, Robin S; Lalla, Evanthia; Lamster, Ira B

    2008-05-01

    The objective of this study was to evaluate tooth eruption in 6- to 14-year-old children with diabetes mellitus. Tooth eruption status was assessed for 270 children with diabetes and 320 control children without diabetes. Data on important diabetes-related variables were collected. Analyses were performed using logistic regression models. Children with diabetes exhibited accelerated tooth eruption in the late mixed dentition period (10-14 years of age) compared to healthy children. For both case patients and control subjects the odds of a tooth being in an advanced eruptive stage were significantly higher among girls than boys. There was also a trend associating gingival inflammation with expedited tooth eruption in both groups. No association was found between the odds of a tooth being in an advanced stage of eruption and hemoglobin A(1c) or duration of diabetes. Patients with higher body mass index percentile demonstrated statistically higher odds for accelerated tooth eruption, but the association was not clinically significant. Children with diabetes exhibit accelerated tooth eruption. Future studies need to ascertain the role of such aberrations in dental development and complications such as malocclusion, impaired oral hygiene, and periodontal disease. The standards of care for children with diabetes should include screening and referral programs aimed at oral health promotion and disease prevention.

  14. An Unusual Case Report of Erupted Odontoma

    Directory of Open Access Journals (Sweden)

    Dhaval Mehta

    2013-01-01

    Full Text Available Odontomas are the most common of the odontogenic tumors of the jaws, which are benign, slow growing, and nonaggressive. They are usually asymptomatic and found in routine dental radiographic examination. Odontomas are usually associated with tooth eruption disturbances. Eruption of odontoma in oral cavity is rare entity. Here we report a case of an unusual erupted compound odontoma.

  15. Failed magmatic eruptions: Late-stage cessation of magma ascent

    Science.gov (United States)

    Moran, S.C.; Newhall, C.; Roman, D.C.

    2011-01-01

    When a volcano becomes restless, a primary question is whether the unrest will lead to an eruption. Here we recognize four possible outcomes of a magmatic intrusion: "deep intrusion", "shallow intrusion", "sluggish/viscous magmatic eruption", and "rapid, often explosive magmatic eruption". We define "failed eruptions" as instances in which magma reaches but does not pass the "shallow intrusion" stage, i. e., when magma gets close to, but does not reach, the surface. Competing factors act to promote or hinder the eventual eruption of a magma intrusion. Fresh intrusion from depth, high magma gas content, rapid ascent rates that leave little time for enroute degassing, opening of pathways, and sudden decompression near the surface all act to promote eruption, whereas decreased magma supply from depth, slow ascent, significant enroute degassing and associated increases in viscosity, and impingement on structural barriers all act to hinder eruption. All of these factors interact in complex ways with variable results, but often cause magma to stall at some depth before reaching the surface. Although certain precursory phenomena, such as rapidly escalating seismic swarms or rates of degassing or deformation, are good indicators that an eruption is likely, such phenomena have also been observed in association with intrusions that have ultimately failed to erupt. A perpetual difficulty with quantifying the probability of eruption is a lack of data, particularly on instances of failed eruptions. This difficulty is being addressed in part through the WOVOdat database. Papers in this volume will be an additional resource for scientists grappling with the issue of whether or not an episode of unrest will lead to a magmatic eruption.

  16. A Late Holocene explosive mafic eruption of Villarrica volcano, Southern Andes: The Chaimilla deposit

    Science.gov (United States)

    Costantini, L.; Pioli, L.; Bonadonna, C.; Clavero, J.; Longchamp, C.

    2011-03-01

    Villarrica (Chile) is one of the most active volcanoes in South America having erupted about 60 times in the last 460 years. Although its historical eruptive activity has been mainly effusive and weakly explosive, it had strong explosive behaviour in postglacial times. Chaimilla (activity. The deposit is dispersed over an area of 250 km 2 and consists of 8 units (A-H) which were grouped into four sequences. Stratigraphic data suggest that the eruption had a relatively short duration and evolved from i) an Opening phase, dispersing ash, lapilli clasts, accretionary lapilli, blocks and bombs, to ii) a Pulsatory phase, originating a series of magmatic explosions, to iii) a Collapsing phase, characterised by unstable plumes which emplaced a series of pyroclastic density currents intercalated with thin fallout layers and finally to iv) a Climactic phase forming a more sustained plume which eventually collapsed generating the final pyroclastic density currents. The deposit (fall and flow) has a minimum cumulative volume of 0.6 km 3, with the main sustained phase being associated with a VEI 4 and the flow units having a minimum estimated total volume of 0.04 km 3. The erupted material has a homogenous chemical composition but displays a remarkable variability in both textural and physical properties. The density distribution of juvenile products shows a clear bimodality characterised by two main populations: P1 and P2. Population P1 consists of highly vesicular clasts (modal density around 1000 kg m - 3 ) with mostly sub-spherical bubbles and moderately crystallised groundmass with large-sized microlites. Clasts from population P2 are poorly vesicular (modal density around 1600 kg m - 3 ) with irregular to collapsed bubbles and numerous smaller microlites. The variability of both vesicularity and microlite characteristics suggests the involvement of two magma batches with distinct pre-eruptive degassing and rising histories. Our eruption conceptual model implies the

  17. High-resolution Observations of Sympathetic Filament Eruptions by NVST

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shangwei; Su, Yingna; Zhou, Tuanhui; Ji, Haisheng [Key Laboratory for Dark Matter and Space Science, Purple Mountain Observatory, CAS, Nanjing 210008 (China); Van Ballegooijen, Adriaan [5001 Riverwood Avenue, Sarasota, FL 34231 (United States); Sun, Xudong, E-mail: ynsu@pmo.ac.cn [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2017-07-20

    We investigate two sympathetic filament eruptions observed by the New Vacuum Solar Telescope on 2015 October 15. The full picture of the eruptions is obtained from the corresponding Solar Dynamics Observatory ( SDO )/Atmospheric Imaging Assembly (AIA) observations. The two filaments start from active region NOAA 12434 in the north and end in one large quiescent filament channel in the south. The left filament erupts first, followed by the right filament eruption about 10 minutes later. Clear twist structure and rotating motion are observed in both filaments during the eruption. Both eruptions failed, since the filaments first rise up, then flow toward the south and merge into the southern large quiescent filament. We also observe repeated activations of mini filaments below the right filament after its eruption. Using magnetic field models constructed based on SDO /HMI magnetograms via the flux rope insertion method, we find that the left filament eruption is likely to be triggered by kink instability, while the weakening of overlying magnetic fields due to magnetic reconnection at an X-point between the two filament systems might play an important role in the onset of the right filament eruption.

  18. Ice nucleation properties of fine ash particles from the Eyjafjallajökull eruption in April 2010

    Directory of Open Access Journals (Sweden)

    I. Steinke

    2011-12-01

    Full Text Available During the eruption of the Eyjafjallajökull volcano in the south of Iceland in April/May 2010, about 40 Tg of ash mass were emitted into the atmosphere. It was unclear whether volcanic ash particles with d < 10 μm facilitate the glaciation of clouds. Thus, ice nucleation properties of volcanic ash particles were investigated in AIDA (Aerosol Interaction and Dynamics in the Atmosphere cloud chamber experiments simulating atmospherically relevant conditions. The ash sample that was used for our experiments had been collected at a distance of 58 km from the Eyjafjallajökull during the eruption period in April 2010. The temperature range covered by our ice nucleation experiments extended from 219 to 264 K, and both ice nucleation via immersion freezing and deposition nucleation could be observed. Immersion freezing was first observed at 252 K, whereas the deposition nucleation onset lay at 242 K and RH<sub>ice> =126%. About 0.1% of the volcanic ash particles were active as immersion freezing nuclei at a temperature of 249 K. For deposition nucleation, an ice fraction of 0.1% was observed at around 233 K and RH<sub>ice> =116%. Taking ice-active surface site densities as a measure for the ice nucleation efficiency, volcanic ash particles are similarly efficient ice nuclei in immersion freezing mode (n<sub>s,imm> ~ 109 m−2 at 247 K compared to certain mineral dusts. For deposition nucleation, the observed ice-active surface site densities n<sub>s,dep> were found to be 1011 m−2 at 224 K and RH<sub>ice> =116%. Thus, volcanic ash particles initiate deposition nucleation more efficiently than Asian and Saharan dust but appear to be poorer ice nuclei than ATD particles. Based on the experimental data, we have derived ice-active surface site densities as a function of temperature for immersion freezing and of relative humidity over ice and temperature for

  19. Reactions to Hypothetical, Jealousy Producing Events.

    Science.gov (United States)

    Hansen, Gary L.

    1982-01-01

    Asked subjects (N=220) how they would feel about their mates' behavior in eight hypothetical situations designed to measure jealousy. Responses indicated that jealousy is likely to be a major issue. Sex role orientation is most consistently related to jealousy with sex role traditional subjects being the most jealous. (Author)

  20. Eruptions at Lone Star Geyser, Yellowstone National Park, USA, part 1: energetics and eruption dynamics

    Science.gov (United States)

    Karlstrom, Leif; Hurwitz, Shaul; Sohn, Robert; Vandemeulebrouck, Jean; Murphy, Fred; Rudolph, Maxwell L.; Johnston, Malcolm J.S.; Manga, Michael; McCleskey, R. Blaine

    2013-01-01

    Geysers provide a natural laboratory to study multiphase eruptive processes. We present results from a four–day experiment at Lone Star Geyser in Yellowstone National Park, USA. We simultaneously measured water discharge, acoustic emissions, infraredintensity, and visible and infrared video to quantify the energetics and dynamics of eruptions, occurring approximately every three hours. We define four phases in the eruption cycle: 1) a 28 ± 3 minute phase with liquid and steam fountaining, with maximum jet velocities of 16–28 m s− 1, steam mass fraction of less than ∼ 0.01. Intermittently choked flow and flow oscillations with periods increasing from 20 to 40 s are coincident with a decrease in jet velocity and an increase of steam fraction; 2) a 26 ± 8 minute post–eruption relaxation phase with no discharge from the vent, infrared (IR) and acoustic power oscillations gliding between 30 and 40 s; 3) a 59 ± 13 minute recharge period during which the geyser is quiescent and progressively refills, and 4) a 69 ± 14 minute pre–play period characterized by a series of 5–10 minute–long pulses of steam, small volumes of liquid water discharge and 50–70 s flow oscillations. The erupted waters ascend froma 160 − 170° C reservoir and the volume discharged during the entire eruptive cycle is 20.8 ± 4.1 m3. Assuming isentropic expansion, we calculate a heat output from the geyser of 1.4–1.5 MW, which is < 0.1% of the total heat output from Yellowstone Caldera.

  1. Elastic energy release in great earthquakes and eruptions

    Directory of Open Access Journals (Sweden)

    Agust eGudmundsson

    2014-05-01

    Full Text Available The sizes of earthquakes are measured using well-defined, measurable quantities such as seismic moment and released (transformed elastic energy. No similar measures exist for the sizes of volcanic eruptions, making it difficult to compare the energies released in earthquakes and eruptions. Here I provide a new measure of the elastic energy (the potential mechanical energy associated with magma chamber rupture and contraction (shrinkage during an eruption. For earthquakes and eruptions, elastic energy derives from two sources: (1 the strain energy stored in the volcano/fault zone before rupture, and (2 the external applied load (force, pressure, stress, displacement on the volcano/fault zone. From thermodynamic considerations it follows that the elastic energy released or transformed (dU during an eruption is directly proportional to the excess pressure (pe in the magma chamber at the time of rupture multiplied by the volume decrease (-dVc of the chamber, so that . This formula can be used as a basis for a new eruption magnitude scale, based on elastic energy released, which can be related to the moment-magnitude scale for earthquakes. For very large eruptions (>100 km3, the volume of the feeder-dike is negligible, so that the decrease in chamber volume during an eruption corresponds roughly to the associated volume of erupted materials , so that the elastic energy is . Using a typical excess pressures of 5 MPa, it is shown that the largest known eruptions on Earth, such as the explosive La Garita Caldera eruption (27-28 million years ago and largest single (effusive Colombia River basalt lava flows (15-16 million years ago, both of which have estimated volumes of about 5000 km3, released elastic energy of the order of 10EJ. For comparison, the seismic moment of the largest earthquake ever recorded, the M9.5 1960 Chile earthquake, is estimated at 100 ZJ and the associated elastic energy release at 10EJ.

  2. Adolescents' explicit and implicit evaluations of hypothetical and actual peers with different bullying participant roles.

    Science.gov (United States)

    Pouwels, J Loes; Lansu, Tessa A M; Cillessen, Antonius H N

    2017-07-01

    This study examined how adolescents evaluate bullying at three levels of specificity: (a) the general concept of bullying, (b) hypothetical peers in different bullying participant roles, and (c) actual peers in different bullying participant roles. Participants were 163 predominantly ethnic majority adolescents in The Netherlands (58% girls; M age =16.34years, SD=0.79). For the hypothetical peers, we examined adolescents' explicit evaluations as well as their implicit evaluations. Adolescents evaluated the general concept of bullying negatively. Adolescents' explicit evaluations of hypothetical and actual peers in the bullying roles depended on their own role, but adolescents' implicit evaluations of hypothetical peers did not. Adolescents' explicit evaluations of hypothetical peers and actual peers were different. Hypothetical bullies were evaluated negatively by all classmates, whereas hypothetical victims were evaluated relatively positively compared with the other roles. However, when adolescents evaluated their actual classmates, the differences between bullies and the other roles were smaller, whereas victims were evaluated the most negatively of all roles. Further research should take into account that adolescents' evaluations of hypothetical peers differ from their evaluations of actual peers. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Cloning, purification and preliminary crystallographic analysis of a conserved hypothetical protein, SA0961 (YlaN), from Staphylococcus aureus

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ling; Sedelnikova, Svetlana E.; Baker, Patrick J.; Rice, David W., E-mail: d.rice@sheffield.ac.uk [Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN (United Kingdom)

    2006-08-01

    SA0961 is an unknown hypothetical protein from Staphylococcus aureus that can be identified in the Firmicutes division of Gram-positive bacteria. SA0961 was cloned and the protein was overexpressed in Escherichia coli, purified and subsequently crystallized. SA0961 is an unknown hypothetical protein from Staphylococcus aureus that can be identified in the Firmicutes division of Gram-positive bacteria. The gene for the homologue of SA0961 in Bacillus subtilis, ylaN, has been shown to be essential for cell survival, thus identifying the protein encoded by this gene as a potential target for the development of novel antibiotics. SA0961 was cloned and the protein was overexpressed in Escherichia coli, purified and subsequently crystallized. Crystals of selenomethionine-labelled SA0961 diffract to beyond 2.4 Å resolution and belong to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 31.5, b = 42.7, c = 62.7 Å, β = 92.4° and two molecules in the asymmetric unit. A full structure determination is under way to provide insights into the function of this protein.

  4. Phreatomagmatic eruptive and depositional processes during the 1949 eruption on La Palma (Canary Islands)

    Science.gov (United States)

    White, James D. L.; Schmincke, Hans-Ulrich

    1999-12-01

    In 1949, a 5-week-long magmatic and phreatomagmatic eruption took place along the active volcanic ridge of La Palma (Canary Islands). Two vents, Duraznero and Hoyo Negro, produced significant pyroclastic deposits. The eruption began from Duraznero vent, which produced a series of deposits with an upward decrease in accidental fragments and increase in fluidal ash and spatter, together inferred to indicate decreasing phreatomagmatic interaction. Hoyo Negro erupted over a 2-week period, producing a variety of pyroclastic density currents and ballistic blocks and bombs. Hoyo Negro erupted within and modified an older crater having high walls on the northern to southeastern edges. Southwestern to western margins of the crater lay 50 to 100 m lower. Strongly contrasting deposits in the different sectors (N-SE vs. SW-W) were formed as a result of interaction between topography, weak eruptive columns and stratified pyroclastic density currents. Tephra ring deposits are thicker and coarser-grained than upper rim deposits formed along the higher edges of the crater, and beyond the crater margin, valley-confined deposits are thicker than more thinly bedded mantling deposits on higher topography. These differences indicate that the impact zone for the bulk of the collapsing, tephra-laden column lay within the crater and that the high crater walls inhibited escape of pyroclastic density currents to the north and east. The impact zone lay outside the low SW-W rims, however, thus allowing stratified pyroclastic density currents to move freely away from the crater in those directions, depositing thin sections (<30 cm) of well-bedded ash (mantling deposits) on ridges and thicker sections (1-3 m) of structureless ash beds in valleys and small basins. Such segregation of dense pyroclastic currents from more dilute ones at the crater wall is likely to be common for small eruptions from pre-existing craters and is an important factor to be taken into account in volcanic hazards

  5. Tocuila Mammoths, Basin of Mexico: Late Pleistocene-Early Holocene stratigraphy and the geological context of the bone accumulation

    Science.gov (United States)

    Gonzalez, Silvia; Huddart, David; Israde-Alcántara, Isabel; Dominguez-Vazquez, Gabriela; Bischoff, James

    2014-07-01

    We report new stratigraphic, tephrochronology and dating results from the Tocuila Mammoth site in the Basin of Mexico. At the site there is evidence for a thin meteorite airburst layer dated between 10,878 and 10,707 cal BC at the onset of the Younger Dryas (YD) cool period. The Upper Toluca Pumice (UTP) tephra marker, caused by a Plinian eruption of the Nevado de Toluca volcano, dated from 10,666 to 10,612 cal BC, is above that layer. The eruption must have caused widespread environmental disruption in the region with evidence of extensive reworking and channelling by the Lake Texcoco shoreline and contributed to the widespread death and/or extinction of megafaunal populations, as suggested by earlier authors, but the new work reinforces the view that both catastrophic events must have caused large environmental disruption in a short time period of around two hundred years. There is no evidence for megafauna (mammoths, sabre toothed cats, camels, bison, glyptodonts) after the UTP volcanic event and subsequent lahars in the Basin of Mexico. At Tocuila, although there are some in situ tephra markers in nearshore lake sediments, such as the Great Basaltic Ash (GBA) and the UTP Ash, there is evidence of much reworking of several tephra populations in various combinations. The mammoth bone accumulation is reworked in a lahar sequence (volcanic mudflow) derived from several source sediments but associated with the major UTP Plinian eruption. Paleoindian populations were also present in the Basin of Mexico during the YD period, where several Paleoindian skeletons were found associated with the UTP ash deposits, e.g. Metro Man, Chimalhuacan Man and Tlapacoya Man.

  6. Monitoring Io's Volcanic Activity in the Visible and Infrared from JUICE - It's All About (Eruption) Style

    Science.gov (United States)

    Davies, A. G.; Matson, D.; McEwen, A. S.; Keszthelyi, L. P.

    2012-12-01

    The European Space Agency's Jupiter Icy Moons Explorer (JUICE) will provide many opportunities for long-range monitoring of Io's extraordinary silicate, high-temperature volcanic activity [1, 2]. A considerable amount of valuable work can be performed even with relatively low-spatial-resolution observations [2]. Techniques developed from the examination and analysis of Galileo Near Infrared Mapping Spectrometer (NIMS) data, as well as observations of terrestrial silicate volcanic activity, allows the identification of likely eruption style [2] at many locations where the entire eruption is sub-pixel. Good temporal coverage, especially for episodic eruptions (including high-energy "outburst" eruptions), is important for modelling purposes. With opportunities to observe Io on a regular basis (hours-days) during cruise/orbital reduction phases, a visible-to-near-infrared mapping spectrometer (covering ~0.4-5.5 μm) is the best instrument to chart the magnitude and variability of Io's volcanic activity, allowing comparison with an existing and constantly expanding set of Io observations [e.g. 1, 3]. The eruption temperature of Io's dominant silicate lava, a constraint on interior composition and conditions, is a major unanswered question in the wake of the Galileo mission [1]. A careful approach to instrument design is needed to ensure that observations by both imager and IR spectrometer on JUICE are capable of determining lava eruption temperature [e.g., 4] in low spatial resolution data. With an ideal thermal target (e.g., an outburst eruption, or the proposed lava lake at Pele) the imager should obtain multi-spectral data in a rapid sequence to allow stability of the thermal source to be quantified. Observations by imager and spectrometer have to be contemporaneous and unsaturated. References: [1] Davies, A. (2007) "Volcanism on Io", Cam. Univ. Press. [2] Davies, A. et al. (2010) JVGR, 194, 75-99. [3] Veeder, G. et al. (2012) Icarus, 219, 701-722. [4] Davies, A. et

  7. Diverse Eruptive Activity Revealed by Acoustic and Electromagnetic Observations of the 14 July 2013 Intense Vulcanian Eruption of Tungurahua Volcano, Ecuador

    Science.gov (United States)

    Anderson, J. F.; Johnson, J. B.; Steele, A. L.; Ruiz, M. C.; Brand, B. D.

    2018-04-01

    During the powerful July 2013 eruption of Tungurahua volcano, Ecuador, we recorded exceptionally high amplitude, long-period infrasound (1,600-Pa peak-to-peak amplitude, 5.5-s period) on sensors within 2 km of the vent alongside electromagnetic signals from volcanic lightning serendipitously captured as interference. This explosion was one of Tungurahua's most powerful vulcanian eruptions since recent activity began in 1999, and its acoustic wave is among the most powerful volcanic infrasound ever recorded anywhere. We use these data to quantify erupted volume from the main explosion and to classify postexplosive degassing into distinct emission styles. Additionally, we demonstrate a highly effective method of recording lightning-related electromagnetic signals alongside infrasound. Detailed chronologies of powerful vulcanian eruptions are rare; this study demonstrates that diverse eruptive processes can occur in such eruptions and that near-vent infrasound and electromagnetic data can elucidate them.

  8. Pre-eruptive volatile and erupted gas phase characterization of the 2014 basalt of Bárðarbunga volcanic system, Iceland.

    Science.gov (United States)

    Haddadi, Baptiste; Moune, Séverine; Sigmarsson, Olgeir; Gauthier, Pierre-Jean; Gouhier, Mathieu

    2015-04-01

    The 2014 Holuhraun eruption on the Bárðarbunga Volcanic System is the largest fissure eruption in Iceland since the 1783 Laki eruption. The eruption started end of August 2014 and has been characterized by large emission of SO2 into the atmosphere. It provides a rare opportunity to study in details magmatic and degassing processes during a large-volume fissure eruption. In order to characterize the pre-eruptive magmatic composition and to assess the plume chemistry at the eruption site, lava and tephra were sampled together with the eruption plume. The basalt composition is olivine tholeiite with MgO close to 7 wt%. It is phenocryst-poor with plagioclase as the dominant mineral phase but olivine and clinopyroxene are also present together with sulphide globules composed principally of pyrite and chalcopyrite. The volatile (S, Cl and F) and major element concentrations were measured by the electron microprobe in melt inclusions (MIs) trapped in plagioclase and clinopyroxene and groundmass glass. The MIs composition ranges from fairly primitive basaltic compositions (MgO: 9.03 wt%) down to evolved qz-tholeiites (MgO: 5.57 wt%), with estimated pre-eruptive S concentrations of 1500 ppm. Tephra groundmass glass contains 400 ppm S, whereas Cl and F concentrations are respectively slightly lower and indistinguishable from those in the MIs. This implies limited exsolution of halogens but 75% of the initial sulphur content. Relatively to their total iron content, MIs are sulphur saturated, and their oxygen fugacity close to the FMQ buffer. The difference between the estimated initial volatile concentrations measured in the MIs and in the tephra groundmass (i.e. the so-called petrological method) yields 7.2 Mt SO2, limited HCl and no HF atmospheric mass loading from the Holuhraun 2014 eruption. The SO2/HCl molar ratio of the gas phase, calculated from the MIs, is 13 and 14, respectively, using average and estimated pre-eruptive S and Cl concentrations in the MIs. Filter

  9. Stratospheric sulfate from the Gareloi eruption, 1980: Contribution to the ''ambient'' aerosol by a poorly documented volcanic eruption

    International Nuclear Information System (INIS)

    Sedlacek, W.A.; Mroz, E.J.; Heiken, G.

    1981-01-01

    While sampling stratospheric aerosols during July--August 1980 a plume of ''fresh'' volcanic debris was observed in the Northern hemisphere. The origin of this material seems to be a poorly documented explosive eruption of Gareloi valcano in the Aleutian Islands. The debris was sampled at an altitude of 19.2 km: almost twice the height of observed eruption clouds. Such remote, unobserved or poorly documented eruptions may be a source that helps maintain the ''ambient'' stratospheric aerosol background

  10. A Comparative Study of the Eruptive and Non-eruptive Flares Produced by the Largest Active Region of Solar Cycle 24

    Science.gov (United States)

    Sarkar, Ranadeep; Srivastava, Nandita

    2018-02-01

    We investigate the morphological and magnetic characteristics of solar active region (AR) NOAA 12192. AR 12192 was the largest region of Solar Cycle 24; it underwent noticeable growth and produced 6 X-class flares, 22 M-class flares, and 53 C-class flares in the course of its disc passage. However, the most peculiar fact of this AR is that it was associated with only one CME in spite of producing several X-class flares. In this work, we carry out a comparative study between the eruptive and non-eruptive flares produced by AR 12192. We find that the magnitude of abrupt and permanent changes in the horizontal magnetic field and Lorentz force are significantly smaller in the case of the confined flares compared to the eruptive one. We present the areal evolution of AR 12192 during its disc passage. We find the flare-related morphological changes to be weaker during the confined flares, whereas the eruptive flare exhibits a rapid and permanent disappearance of penumbral area away from the magnetic neutral line after the flare. Furthermore, from the extrapolated non-linear force-free magnetic field, we examine the overlying coronal magnetic environment over the eruptive and non-eruptive zones of the AR. We find that the critical decay index for the onset of torus instability was achieved at a lower height over the eruptive flaring region, than for the non-eruptive core area. These results suggest that the decay rate of the gradient of overlying magnetic-field strength may play a decisive role to determine the CME productivity of the AR. In addition, the magnitude of changes in the flare-related magnetic characteristics are found to be well correlated with the nature of solar eruptions.

  11. Global time-size distribution of volcanic eruptions on Earth.

    Science.gov (United States)

    Papale, Paolo

    2018-05-01

    Volcanic eruptions differ enormously in their size and impacts, ranging from quiet lava flow effusions along the volcano flanks to colossal events with the potential to affect our entire civilization. Knowledge of the time and size distribution of volcanic eruptions is of obvious relevance for understanding the dynamics and behavior of the Earth system, as well as for defining global volcanic risk. From the analysis of recent global databases of volcanic eruptions extending back to more than 2 million years, I show here that the return times of eruptions with similar magnitude follow an exponential distribution. The associated relative frequency of eruptions with different magnitude displays a power law, scale-invariant distribution over at least six orders of magnitude. These results suggest that similar mechanisms subtend to explosive eruptions from small to colossal, raising concerns on the theoretical possibility to predict the magnitude and impact of impending volcanic eruptions.

  12. Application of third molar development and eruption models in estimating dental age in Malay sub-adults.

    Science.gov (United States)

    Mohd Yusof, Mohd Yusmiaidil Putera; Cauwels, Rita; Deschepper, Ellen; Martens, Luc

    2015-08-01

    The third molar development (TMD) has been widely utilized as one of the radiographic method for dental age estimation. By using the same radiograph of the same individual, third molar eruption (TME) information can be incorporated to the TMD regression model. This study aims to evaluate the performance of dental age estimation in individual method models and the combined model (TMD and TME) based on the classic regressions of multiple linear and principal component analysis. A sample of 705 digital panoramic radiographs of Malay sub-adults aged between 14.1 and 23.8 years was collected. The techniques described by Gleiser and Hunt (modified by Kohler) and Olze were employed to stage the TMD and TME, respectively. The data was divided to develop three respective models based on the two regressions of multiple linear and principal component analysis. The trained models were then validated on the test sample and the accuracy of age prediction was compared between each model. The coefficient of determination (R²) and root mean square error (RMSE) were calculated. In both genders, adjusted R² yielded an increment in the linear regressions of combined model as compared to the individual models. The overall decrease in RMSE was detected in combined model as compared to TMD (0.03-0.06) and TME (0.2-0.8). In principal component regression, low value of adjusted R(2) and high RMSE except in male were exhibited in combined model. Dental age estimation is better predicted using combined model in multiple linear regression models. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  13. Severe hypertriglyceridemia presenting as eruptive xanthomatosis

    Directory of Open Access Journals (Sweden)

    Sameera S Vangara

    2018-01-01

    Full Text Available Eruptive xanthomatosis is described as the sudden eruption of erythematous yellow papules in the presence of hypertriglyceridemia, often associated with serum triglyceride levels above 2000 mg/dl. Severe hypertriglyceridemia can be caused by primary genetic mutations, secondary chronic diseases, or a combination of both. Uncontrolled diabetes mellitus is a known risk factor. It is imperative for physicians to be aware of eruptive xanthomatosis as a warning sign for severe hypertriglyceridemia due to the underlying risk for the potentially fatal complication of acute pancreatitis. Herein, we discuss a case of a 52-year-old man with uncontrolled diabetes mellitus who presented with eruptive xanthomata and a triglyceride level of 7157 mg/dl, the highest recorded value in the absence of acute pancreatitis, with a remarkable response to drug therapy. A review of the literature is included to discuss the clinical relevance and appropriate treatment of this disease entity.

  14. Automobile technology in a CO{sub 2}-constrained world

    Energy Technology Data Exchange (ETDEWEB)

    Kypreos, S; Barreto Gomez, L; Dietrich, Ph [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Schafer, A; Jacoby, H D [MIT, Cambridge (United States)

    1999-08-01

    This study identifies the environmental conditions under which less CO{sub 2}-emitting and more expensive automobile technology might enter the North American transportation sector. For that purpose, different exogenous CO{sub 2}-reduction targets are imposed and the resulting market shares of hypothetical future automobile technologies calculated. The criteria for the selection of different types of automobiles/fuels is the minimisation of discounted, cumulative transport sector costs over the scenario time horizon. (author) 1 tab., 6 refs.

  15. Characterization of a volcanic ash episode in southern Finland caused by the Grimsvötn eruption in Iceland in May 2011

    Directory of Open Access Journals (Sweden)

    V.-M. Kerminen

    2011-12-01

    Full Text Available The volcanic eruption of Grimsvötn in Iceland in May 2011 affected surface-layer air quality at several locations in Northern Europe. In Helsinki, Finland, the main pollution episode lasted for more than 8 h around the noon of 25 May. We characterized this episode by relying on detailed physical, chemical and optical aerosol measurements. The analysis was aided by air mass trajectory calculations, satellite measurements, and dispersion model simulations. During the episode, volcanic ash particles were present at sizes from less than 0.5 μm up to sizes >10 μm. The mass mean diameter of ash particles was a few μm in the Helsinki area, and the ash enhanced PM<sub>10sub> mass concentrations up to several tens of μg m−3. Individual particle analysis showed that some ash particles appeared almost non-reacted during the atmospheric transportation, while most of them were mixed with sea salt or other type of particulate matter. Also sulfate of volcanic origin appeared to have been transported to our measurement site, but its contribution to the aerosol mass was minor due the separation of ash-particle and sulfur dioxide plumes shortly after the eruption. The volcanic material had very little effect on PM<sub>1sub> mass concentrations or sub-micron particle number size distributions in the Helsinki area. The aerosol scattering coefficient was increased and visibility was slightly decreased during the episode, but in general changes in aerosol optical properties due to volcanic aerosols seem to be difficult to be distinguished from those induced by other pollutants present in a continental boundary layer. The case investigated here demonstrates clearly the power of combining surface aerosol measurements, dispersion model simulations and satellite measurements in analyzing surface air pollution episodes caused by volcanic eruptions. None of these three approaches alone would be sufficient to forecast, or even to unambiguously identify

  16. Differences in Behavior and Brain Activity during Hypothetical and Real Choices.

    Science.gov (United States)

    Camerer, Colin; Mobbs, Dean

    2017-01-01

    Real behaviors are binding consequential commitments to a course of action, such as harming another person, buying an Apple watch, or fleeing from danger. Cognitive scientists are generally interested in the psychological and neural processes that cause such real behavior. However, for practical reasons, many scientific studies measure behavior using only hypothetical or imagined stimuli. Generalizing from such studies to real behavior implicitly assumes that the processes underlying the two types of behavior are similar. We review evidence of similarity and differences in hypothetical and real mental processes. In many cases, hypothetical choice tasks give an incomplete picture of brain circuitry that is active during real choice. Copyright © 2016. Published by Elsevier Ltd.

  17. The Eruption Forecasting Information System (EFIS) database project

    Science.gov (United States)

    Ogburn, Sarah; Harpel, Chris; Pesicek, Jeremy; Wellik, Jay; Pallister, John; Wright, Heather

    2016-04-01

    The Eruption Forecasting Information System (EFIS) project is a new initiative of the U.S. Geological Survey-USAID Volcano Disaster Assistance Program (VDAP) with the goal of enhancing VDAP's ability to forecast the outcome of volcanic unrest. The EFIS project seeks to: (1) Move away from relying on the collective memory to probability estimation using databases (2) Create databases useful for pattern recognition and for answering common VDAP questions; e.g. how commonly does unrest lead to eruption? how commonly do phreatic eruptions portend magmatic eruptions and what is the range of antecedence times? (3) Create generic probabilistic event trees using global data for different volcano 'types' (4) Create background, volcano-specific, probabilistic event trees for frequently active or particularly hazardous volcanoes in advance of a crisis (5) Quantify and communicate uncertainty in probabilities A major component of the project is the global EFIS relational database, which contains multiple modules designed to aid in the construction of probabilistic event trees and to answer common questions that arise during volcanic crises. The primary module contains chronologies of volcanic unrest, including the timing of phreatic eruptions, column heights, eruptive products, etc. and will be initially populated using chronicles of eruptive activity from Alaskan volcanic eruptions in the GeoDIVA database (Cameron et al. 2013). This database module allows us to query across other global databases such as the WOVOdat database of monitoring data and the Smithsonian Institution's Global Volcanism Program (GVP) database of eruptive histories and volcano information. The EFIS database is in the early stages of development and population; thus, this contribution also serves as a request for feedback from the community.

  18. Small-scale eruptive filaments on the quiet sun

    International Nuclear Information System (INIS)

    Hermans, L.M.; Martin, S.F.

    1986-01-01

    A study of a little known class of eruptive events on the quiet sun was conducted. All of 61 small-scale eruptive filamentary structures were identified in a systematic survey of 32 days of H alpha time-lapse films of the quiet sun acquired at Big Bear Solar Observatory. When fully developed, these structures have an average length of 15 arc seconds before eruption. They appear to be the small-scale analog of large-scale eruptive filaments observed against the disk. At the observed rate of 1.9 small-scale eruptive features per field of view per average 7.0 hour day, the rate of occurence of these events on the sun were estimated to be greater than 600 per 24 hour day.. The average duration of the eruptive phase was 26 minutes while the average lifetime from formation through eruption was 70 minutes. A majority of the small-scale filamentary sturctures were spatially related to cancelling magnetic features in line-of-sight photospheric magnetograms. Similar to large-scale filaments, the small-scale filamentary structures sometimes divided opposite polarity cancelling fragments but often had one or both ends terminating at a cancellation site. Their high numbers appear to reflect the much greater flux on the quiet sun. From their characteristics, evolution, and relationship to photospheric magnetic flux, it was concluded that the structures described are small-scale eruptive filaments and are a subset of all filaments

  19. Permanent molars: Delayed development and eruption

    Directory of Open Access Journals (Sweden)

    Arathi R

    2006-05-01

    Full Text Available Delayed development and eruption of all the permanent molars is a rare phenomenon, which can cause disturbance in the developing occlusion. The eruption of permanent first and second molars is very important for the coordination of facial growth and for providing sufficient occlusal support for undisturbed mastication. In the case described, the first permanent molars were delayed in their development and were seen erupting at the age of nine and a half years. Severe disparity between the left and the right side of the dentition with respect to the rate of development of molars were also present.

  20. The chemically zoned 1949 eruption on La Palma (Canary Islands): Petrologic evolution and magma supply dynamics of a rift zone eruption

    Science.gov (United States)

    Klügel, Andreas; Hoernle, Kaj A.; Schmincke, Hans-Ulrich; White, James D. L.

    2000-03-01

    The 1949 rift zone eruption along the Cumbre Vieja ridge on La Palma involved three eruptive centers, 3 km spaced apart, and was chemically and mineralogically zoned. Duraznero crater erupted tephrite for 14 days and shut down upon the opening of Llano del Banco, a fissure that issued first tephrite and, after 3 days, basanite. Hoyo Negro crater opened 4 days later and erupted basanite, tephrite, and phonotephrite, while Llano del Banco continued to issue basanite. The eruption ended with Duraznero erupting basanite with abundant crustal and mantle xenoliths. The tephrites and basanites from Duraznero and Llano del Banco show narrow compositional ranges and define a bimodal suite. Each batch ascended and evolved separately without significant intermixing, as did the Hoyo Negro basanite, which formed at lower degrees of melting. The magmas fractionated clinopyroxene +olivine±kaersutite±Ti-magnetite at 600-800 MPa and possibly 800-1100 MPa. Abundant reversely zoned phenocrysts reflect mixing with evolved melts at mantle depths. Probably as early as 1936, Hoyo Negro basanite entered the deep rift system at 200-350 MPa. Some shallower pockets of this basanite evolved to phonotephrite through differentiation and assimilation of wall rock. A few months prior to eruption, a mixing event in the mantle may have triggered the final ascent of the magmas. Most of the erupted tephrite and basanite ascended from mantle depths within hours to days without prolonged storage in crustal reservoirs. The Cumbre Vieja rift zone differs from the rift zones of Kilauea volcano (Hawaii) in lacking a summit caldera or a summit reservoir feeding the rift system and in being smaller and less active with most of the rift magma solidifying between eruptions.

  1. Solar filament material oscillations and drainage before eruption

    International Nuclear Information System (INIS)

    Bi, Yi; Jiang, Yunchun; Yang, Jiayan; Hong, Junchao; Li, Haidong; Yang, Dan; Yang, Bo

    2014-01-01

    Both large-amplitude longitudinal (LAL) oscillations and material drainage in a solar filament are associated with the flow of material along the filament axis, often followed by an eruption. However, the relationship between these two motions and a subsequent eruption event is poorly understood. We analyze a filament eruption using EUV imaging data captured by the Atmospheric Imaging Array on board the Solar Dynamics Observatory and the Hα images from the Global Oscillation Network Group. Hours before the eruption, the filament was activated, with one of its legs undergoing a slow rising motion. The asymmetric activation inclined the filament relative to the solar surface. After the active phase, LAL oscillations were observed in the inclined filament. The oscillation period increased slightly over time, which may suggest that the magnetic fields supporting the filament evolve to be flatter during the slow rising phase. After the oscillations, a significant amount of filament material was drained toward one filament endpoint, followed immediately by the violent eruption of the filament. The material drainage may further support the change in magnetic topology prior to the eruption. Moreover, we suggest that the filament material drainage could play a role in the transition from a slow to a fast rise of the erupting filament.

  2. Can rain cause volcanic eruptions?

    Science.gov (United States)

    Mastin, Larry G.

    1993-01-01

    Volcanic eruptions are renowned for their violence and destructive power. This power comes ultimately from the heat and pressure of molten rock and its contained gases. Therefore we rarely consider the possibility that meteoric phenomena, like rainfall, could promote or inhibit their occurrence. Yet from time to time observers have suggested that weather may affect volcanic activity. In the late 1800's, for example, one of the first geologists to visit the island of Hawaii, J.D. Dana, speculated that rainfall influenced the occurrence of eruptions there. In the early 1900's, volcanologists suggested that some eruptions from Mount Lassen, Calif., were caused by the infiltration of snowmelt into the volcano's hot summit. Most such associations have not been provable because of lack of information; others have been dismissed after careful evaluation of the evidence.

  3. A time series of filament eruptions observed by three eyes from space: from failed to successful eruptions

    International Nuclear Information System (INIS)

    Shen Yuandeng; Liu Yu; Liu Rui

    2011-01-01

    We present stereoscopic observations of six sequential eruptions of a filament in the active region NOAA 11045 on 2010 Feb 8, with the advantage of the STEREO twin viewpoints in combination with Earth's viewpoint from SOHO instruments and ground-based telescopes. The last one of the six eruptions is a coronal mass ejection, but the others are not. The flare in this successful one is more intense than in the others. Moreover, the velocity of filament material in the successful one is also the largest among them. Interestingly, all the filament velocities are found to be proportional to the power of their flares. We calculate magnetic field intensity at low altitude, the decay indexes of the external field above the filament, and the asymmetry properties of the overlying fields before and after the failed eruptions and find little difference between them, indicating the same coronal confinement exists for both the failed and successful eruptions. The results suggest that, besides the confinement of the coronal magnetic field, the energy released in the low corona should be another crucial element affecting a failed or successful filament eruption. That is, a coronal mass ejection can only be launched if the energy released exceeds some critical value, given the same initial coronal conditions.

  4. The compositionally zoned eruption of 1912 in the Valley of Ten Thousand Smokes, Katmai National Park, Alaska

    Science.gov (United States)

    Hildreth, W.

    1983-01-01

    On June 6-8, 1912, ??? 15 km3 of magma erupted from the Novarupta caldera at the head of the Valley of Ten Thousand Smokes (VTTS), producing ??? 20 km3 of air-fall tephra and 11-15 km3 of ash-flow tuff within ??? 60 hours. Three discrete periods of ash-fall at Kodiak correlate, respectively, with Plinian tephra layers designated A, CD, and FG by Curtis (1968) in the VTTS. The ash-flow sequence overlapped with but outlasted pumice fall A, terminating within 20 hours of the initial outbreak and prior to pumice fall C. Layers E and H consist mostly of vitric dust that settled during lulls, and Layer B is the feather edge of the ash flow. The fall units filled and obscured the caldera, but arcuate and radial fissures outline a 6-km2 depression. The Novarupta lava dome and its ejecta ring were emplaced later within the depression. At Mt. Katmai, 10 km east of the 1912 vent, a 600-m-deep caldera of similar area also collapsed at about this time, probably owing to hydraulic connection with the venting magma system; but all known ejecta are thought to have erupted at Novarupta. Mingling of three distinctive magmas during the eruption produced an abundance of banded pumice, and mechanical mixing of chilled ejecta resulted in deposits with a wide range of bulk composition. Pumice in the initial fall unit (A) is 100% rhyolite, but fall units atop the ash flow are > 98% dacite; black andesitic scoria is common only in the ash flows and in near-vent air-fall tephra. Pumice counts show the first half of the ash-flow deposit to be 91-98% rhyolite, but progressive increases of dacite and andesite eventually reduced the rhyolitic component to 20 km to the lowermost VTTS, and deposited 1-8 m of debris there. Rhyolitic ejecta contain only 1-2% phenocrysts but andesite and dacite have 30-45%. Quartz is present and augite absent only in the rhyolite, but all ejecta contain plagioclase, orthopyroxene, titanomagnetite, ilmenite, apatite, and pyrrhotite; rare olivine occurs in the

  5. Evaluation of hypothetical (153)Gd source for use in brachytherapy.

    Science.gov (United States)

    Ghorbani, Mahdi; Behmadi, Marziyeh

    2016-01-01

    The purpose of this work is to evaluate the dosimetric parameters of a hypothetical (153)Gd source for use in brachytherapy and comparison of the dosimetric parameters with those of (192)Ir and (125)I sources. Dose rate constant, the radial dose function and the two dimensional (2D) anisotropy function data for the hypothetical (153)Gd source were obtained by simulation of the source using MCNPX code and then were compared with the corresponding data reported by Enger et al. A comprehensive comparison between this hypothetical source and a (192)Ir source with similar geometry and a (125)I source was performed as well. Excellent agreement was shown between the results of the two studies. Dose rate constant values for the hypothetical (153)Gd, (192)Ir, (125)I sources are 1.173 cGyh(-1) U(-1), 1.044 cGyh(-1) U(-1), 0.925 cGyh(-1) U(-1), respectively. Radial dose function for the hypothetical (153)Gd source has an increasing trend, while (192)Ir has more uniform and (125)I has more rapidly falling off radial dose functions. 2D anisotropy functions for these three sources indicate that, except at 0.5 cm distance, (192)Ir and (125)I have more isotropic trends as compared to the (153)Gd source. A more uniform radial dose function, and 2D anisotropy functions with more isotropy, a much higher specific activity are advantages of (192)Ir source over (153)Gd. However, a longer half-life of (153)Gd source compared to the other two sources, and lower energy of the source with respect to (192)Ir are advantages of using (153)Gd in brachytherapy versus (192)Ir source.

  6. Seismo-acoustic evidence for an avalanche driven phreatic eruption through a beheaded hydrothermal system: An example from the 2012 Tongariro eruption

    Science.gov (United States)

    Jolly, A.D.; Jousset, P.; Lyons, J.J.; Carniel, R.; Fournier, R.; Fry, B.; Miller, C.

    2016-01-01

    The 6 August 2012 Te Maari eruption comprises a complex eruption sequence including multiple eruption pulses, a debris avalanche that propagated ~ 2 km from the vent, and the formation of a 500 m long, arcuate chasm, located ~ 300 m from the main eruption vent. The eruption included 6 distinct impulses that were coherent across a local infrasound network marking the eruption onset at 11:52:18 (all times UTC). An eruption energy release of ~ 3 × 1012 J was calculated using a body wave equation for radiated seismic energy. A similar calculation based on the infrasound record, shows that ~ 90% of the acoustic energy was released from three impulses at onset times 11:52:20 (~ 20% of total eruption energy), 11:52:27 (~ 50%), and 11:52:31 (~ 20%). These energy impulses may coincide with eyewitness accounts describing an initial eastward directed blast, followed by a westward directed blast, and a final vertical blast. Pre-eruption seismic activity includes numerous small unlocatable micro-earthquakes that began at 11:46:50. Two larger high frequency earthquakes were recorded at 11:49:06 and 11:49:21 followed directly by a third earthquake at 11:50:17. The first event was located within the scarp based on an arrival time location from good first P arrival times and probably represents the onset of the debris avalanche. The third event was a tornillo, characterised by a 0.8 Hz single frequency resonance, and has a resonator attenuation factor of Q ~ 40, consistent with a bubbly fluid filled resonator. This contrasts with a similar tornillo event occurring 2.5 weeks earlier having Q ~ 250–1000, consistent with a dusty gas charged resonator. We surmise from pre-eruption seismicity, and the observed attenuation change, that the debris avalanche resulted from the influx of fluids into the hydrothermal system, causing destabilisation and failure. The beheaded hydrothermal system may have then caused depressurisation frothing of the remaining gas charged system leading to the

  7. Global Significant Volcanic Eruptions Database, 4360 BC to present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Significant Volcanic Eruptions Database is a global listing of over 600 eruptions from 4360 BC to the present. A significant eruption is classified as one that...

  8. Assessing Hypothetical Gravity Control Propulsion

    OpenAIRE

    Millis, Marc G.

    2006-01-01

    Gauging the benefits of hypothetical gravity control propulsion is difficult, but addressable. The major challenge is that such breakthroughs are still only notional concepts rather than being specific methods from which performance can be rigorously quantified. A recent assessment by Tajmar and Bertolami used the rocket equation to correct naive misconceptions, but a more fundamental analysis requires the use of energy as the basis for comparison. The energy of a rocket is compared to an ide...

  9. Tranexamic acid-induced fixed drug eruption

    Directory of Open Access Journals (Sweden)

    Natsuko Matsumura

    2015-01-01

    Full Text Available A 33-year-old male showed multiple pigmented patches on his trunk and extremities after he took tranexamic acid for common cold. He stated that similar eruptions appeared when he was treated with tranexamic acid for influenza 10 months before. Patch test showed positive results at 48 h and 72 h by 1% and 10% tranexamic acid at the lesional skin only. To our knowledge, nine cases of fixed drug eruption induced by tranexamic acid have been reported in Japan. Tranexamic acid is a safe drug and frequently used because of its anti-fibrinolytic and anti-inflammatory effects, but caution of inducing fixed drug eruption should be necessary.

  10. Magmatic Ascent and Eruption Processes on Mercury

    Science.gov (United States)

    Head, J. W.; Wilson, L.

    2018-05-01

    MESSENGER volcanic landform data and information on crustal composition allow us to model the generation, ascent, and eruption of magma; Mercury explosive and effusive eruption processes differ significantly from other terrestrial planetary bodies.

  11. Unambiguous Evidence of Filament Splitting-induced Partial Eruptions

    Science.gov (United States)

    Cheng, X.; Kliem, B.; Ding, M. D.

    2018-03-01

    Coronal mass ejections are often considered to result from the full eruption of a magnetic flux rope (MFR). However, it is recognized that, in some events, the MFR may release only part of its flux, with the details of the implied splitting not completely established due to limitations in observations. Here, we investigate two partial eruption events including a confined and a successful one. Both partial eruptions are a consequence of the vertical splitting of a filament-hosting MFR involving internal reconnection. A loss of equilibrium in the rising part of the magnetic flux is suggested by the impulsive onset of both events and by the delayed onset of reconnection in the confined event. The remaining part of the flux might be line-tied to the photosphere in a bald patch (BP) separatrix surface, and we confirm the existence of extended BP sections for the successful eruption. The internal reconnection is signified by brightenings in the body of one filament and between the rising and remaining parts of both filaments. It evolves quickly into the standard current sheet reconnection in the wake of the eruption. As a result, regardless of being confined or successful, both eruptions produce hard X-ray sources and flare loops below the erupting but above the surviving flux, as well as a pair of flare ribbons enclosing the latter.

  12. Eruptive viscosity and volcano morphology

    International Nuclear Information System (INIS)

    Posin, S.B.; Greeley, R.

    1988-01-01

    Terrestrial central volcanoes formed predominantly from lava flows were classified as shields, stratovolcanoes, and domes. Shield volcanoes tend to be large in areal extent, have convex slopes, and are characterized by their resemblance to inverted hellenic war shields. Stratovolcanoes have concave slopes, whereas domes are smaller and have gentle convex slopes near the vent that increase near the perimeter. In addition to these differences in morphology, several other variations were observed. The most important is composition: shield volcanoes tend to be basaltic, stratovolcanoes tend to be andesitic, and domes tend to be dacitic. However, important exceptions include Fuji, Pico, Mayon, Izalco, and Fuego which have stratovolcano morphologies but are composed of basaltic lavas. Similarly, Ribkwo is a Kenyan shield volcano composed of trachyte and Suswa and Kilombe are shields composed of phonolite. These exceptions indicate that eruptive conditions, rather than composition, may be the primary factors that determine volcano morphology. The objective of this study is to determine the relationships, if any, between eruptive conditions (viscosity, erupted volume, and effusion rate) and effusive volcano morphology. Moreover, it is the goal of this study to incorporate these relationships into a model to predict the eruptive conditions of extraterrestrial (Martian) volcanoes based on their morphology

  13. Towards forecasting volcanic eruptions on a global scale

    Science.gov (United States)

    Hooper, A. J.; Heimisson, E. R.; Gaddes, M.; Bagnardi, M.; Sigmundsson, F.; Spaans, K.; Parks, M.; Gudmundsson, M. T.; Ebmeier, S. K.; Holohan, E. P.; Wright, T. J.; Jonsdottir, K.; Hreinsdottir, S.; Dumont, S.; Ofeigsson, B.; Vogfjord, K. S.

    2016-12-01

    Volcanic eruptions can cause loss of life, damage health, and have huge economic impacts, providing strong societal motivation for predicting eruptive behavior prior to and during eruptions. I will present here recent progress we have made in mechanical modelling with a predictive capacity, and how we are expanding volcano monitoring to a global scale. The eruption of Bardarbunga volcano, Iceland, in 2014-2015 was the largest eruption there for more than 200 years, producing 1.6 km3of lava. Prior to eruption, magma propagated almost 50 km beneath the surface, over a period of two weeks. Key questions to answer in advance of such eruptions are: will it erupt, where, how much and for how long? We developed a model based on magma taking a path that maximizes energy release, which aligns well with the actual direction taken. Our model also predicts eruption in a topographic low, as actually occurred. As magma was withdrawn, the volcano surface sagged downwards. A coupled model of magma flow and piston-like collapse predicts a declining magma flow rate and ground subsidence rate, in accordance with that observed. With such a model, observations can be used to predict the timescale and rates of eruption, even before one starts. The primary data needed to constrain these predictive models are measurements of surface deformation. In Iceland, this is achieved using high accuracy GPS, however, most volcanoes have no ground instrumentation. A recent ESA mission, Sentinel-1, can potentially image deformation at almost all subaerial volcanoes every 6 days, using a technique called interferometric synthetic aperture radar (InSAR). This will allow us to detect early stages of magma migration at any volcano, then task other satellites to acquire data at a higher rate. We are working on a system to process all Sentinel-1 data in near-real time, which is a big data challenge. We have also developed new algorithms that maximize signal extraction from each new acquisition and

  14. Geologic simulation model for a hypothetical site in the Columbia Plateau

    International Nuclear Information System (INIS)

    Petrie, G.M.; Zellmer, J.T.; Lindberg, J.W.; Foley, M.G.

    1981-04-01

    This report describes the structure and operation of the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Geologic Simulation Model, a computer simulation model of the geology and hydrology of an area of the Columbia Plateau, Washington. The model is used to study the long-term suitability of the Columbia Plateau Basalts for the storage of nuclear waste in a mined repository. It is also a starting point for analyses of such repositories in other geologic settings. The Geologic Simulation Model will aid in formulating design disruptive sequences (i.e. those to be used for more detailed hydrologic, transport, and dose analyses) from the spectrum of hypothetical geological and hydrological developments that could result in transport of radionuclides out of a repository. Quantitative and auditable execution of this task, however, is impossible without computer simulation. The computer simulation model aids the geoscientist by generating the wide spectrum of possible future evolutionary paths of the areal geology and hydrology, identifying those that may affect the repository integrity. This allows the geoscientist to focus on potentially disruptive processes, or series of events. Eleven separate submodels are used in the simulation portion of the model: Climate, Continental Glaciation, Deformation, Geomorphic Events, Hydrology, Magmatic Events, Meteorite Impact, Sea-Level Fluctuations, Shaft-Seal Failure, Sub-Basalt Basement Faulting, and Undetected Features. Because of the modular construction of the model, each submodel can easily be replaced with an updated or modified version as new information or developments in the state of the art become available. The model simulates the geologic and hydrologic systems of a hypothetical repository site and region for a million years following repository decommissioning. The Geologic Simulation Model operates in both single-run and Monte Carlo modes

  15. Hypothetical Scenario Generator for Fault-Tolerant Diagnosis

    Science.gov (United States)

    James, Mark

    2007-01-01

    The Hypothetical Scenario Generator for Fault-tolerant Diagnostics (HSG) is an algorithm being developed in conjunction with other components of artificial- intelligence systems for automated diagnosis and prognosis of faults in spacecraft, aircraft, and other complex engineering systems. By incorporating prognostic capabilities along with advanced diagnostic capabilities, these developments hold promise to increase the safety and affordability of the affected engineering systems by making it possible to obtain timely and accurate information on the statuses of the systems and predicting impending failures well in advance. The HSG is a specific instance of a hypothetical- scenario generator that implements an innovative approach for performing diagnostic reasoning when data are missing. The special purpose served by the HSG is to (1) look for all possible ways in which the present state of the engineering system can be mapped with respect to a given model and (2) generate a prioritized set of future possible states and the scenarios of which they are parts.

  16. Drawing the Curtain on Enceladus' South-Polar Eruptions

    Science.gov (United States)

    Spitale, Joseph N.; Hurford, Terry A.; Rhoden, Alyssa R.; Berkson, Emily E.; Platts, Symeon S.

    2015-11-01

    For a comprehensive description of Enceladus' south-polar eruptions observed at high resolution, they must be represented as broad curtains rather than discrete jets. Meanders in the fractures from which the curtains of material erupt give rise to optical illusions that look like discrete jets, even along fractures with no local variations in eruptive activity, implying that many features previously identified as "jets" are in fact phantoms. By comparing Cassini images with model curtain eruptions, we are able to obtain maps of eruptive activity that are not biased by the presence of those phantom jets. The average of our activity maps over all times agrees well with thermal maps produced by Cassini CIRS. We can best explain the observed curtains by assuming spreading angles with altitude of up to 14° and zenith angles of up to 8°, for curtains observed in geometries that are sensitive to those quantities.

  17. A FLUX ROPE ERUPTION TRIGGERED BY JETS

    International Nuclear Information System (INIS)

    Guo Juan; Zhang Hongqi; Deng Yuanyong; Lin Jiaben; Su Jiangtao; Liu Yu

    2010-01-01

    We present an observation of a filament eruption caused by recurrent chromospheric plasma injections (surges/jets) on 2006 July 6. The filament eruption was associated with an M2.5 two-ribbon flare and a coronal mass ejection (CME). There was a light bridge in the umbra of the main sunspot of NOAA 10898; one end of the filament was terminated at the region close to the light bridge, and recurrent surges were observed to be ejected from the light bridge. The surges occurred intermittently for about 8 hr before the filament eruption, and finally a clear jet was found at the light bridge to trigger the filament eruption. We analyzed the evolutions of the relative darkness of the filament and the loaded mass by the continuous surges quantitatively. It was found that as the occurrence of the surges, the relative darkness of the filament body continued growing for about 3-4 hr, reached its maximum, and kept stable for more than 2 hr until it erupted. If suppose 50% of the ejected mass by the surges could be trapped by the filament channel, then the total loaded mass into the filament channelwill be about 0.57x10 16 g with a momentum of 0.57x10 22 g cm s -1 by 08:08 UT, which is a non-negligible effect on the stability of the filament. Based on the observations, we present a model showing the important role that recurrent chromospheric mass injection play in the evolution and eruption of a flux rope. Our study confirms that the surge activities can efficiently supply the necessary material for some filament formation. Furthermore, our study indicates that the continuous mass with momentum loaded by the surge activities to the filament channel could make the filament unstable and cause it to erupt.

  18. Characterize Eruptive Processes at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Valentine, G.

    2001-01-01

    This Analysis/Model Report (AMR), ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', presents information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a potential repository at Yucca Mountain. Many aspects of this work are aimed at resolution of the Igneous Activity Key Technical Issue (KTI) as identified by the Nuclear Regulatory Commission (NRC 1998, p. 3), Subissues 1 and 2, which address the probability and consequence of igneous activity at the proposed repository site, respectively. Within the framework of the Disruptive Events Process Model Report (PMR), this AMR provides information for the calculations in two other AMRs ; parameters described herein are directly used in calculations in these reports and will be used in Total System Performance Assessment (TSPA). Compilation of this AMR was conducted as defined in the Development Plan, except as noted. The report begins with considerations of the geometry of volcanic feeder systems, which are of primary importance in predicting how much of a potential repository would be affected by an eruption. This discussion is followed by one of the physical and chemical properties of the magmas, which influences both eruptive styles and mechanisms for interaction with radioactive waste packages. Eruptive processes including the ascent velocity of magma at depth, the onset of bubble nucleation and growth in the rising magmas, magma fragmentation, and velocity of the resulting gas-particle mixture are then discussed. The duration of eruptions, their power output, and mass discharge rates are also described. The next section summarizes geologic constraints regarding the interaction between magma and waste packages. Finally, they discuss bulk grain size produced by relevant explosive eruptions and grain shapes

  19. Characterize Eruptive Processes at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    G. Valentine

    2001-12-20

    This Analysis/Model Report (AMR), ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', presents information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a potential repository at Yucca Mountain. Many aspects of this work are aimed at resolution of the Igneous Activity Key Technical Issue (KTI) as identified by the Nuclear Regulatory Commission (NRC 1998, p. 3), Subissues 1 and 2, which address the probability and consequence of igneous activity at the proposed repository site, respectively. Within the framework of the Disruptive Events Process Model Report (PMR), this AMR provides information for the calculations in two other AMRs ; parameters described herein are directly used in calculations in these reports and will be used in Total System Performance Assessment (TSPA). Compilation of this AMR was conducted as defined in the Development Plan, except as noted. The report begins with considerations of the geometry of volcanic feeder systems, which are of primary importance in predicting how much of a potential repository would be affected by an eruption. This discussion is followed by one of the physical and chemical properties of the magmas, which influences both eruptive styles and mechanisms for interaction with radioactive waste packages. Eruptive processes including the ascent velocity of magma at depth, the onset of bubble nucleation and growth in the rising magmas, magma fragmentation, and velocity of the resulting gas-particle mixture are then discussed. The duration of eruptions, their power output, and mass discharge rates are also described. The next section summarizes geologic constraints regarding the interaction between magma and waste packages. Finally, they discuss bulk grain size produced by relevant explosive eruptions and grain

  20. Beyond eruptive scenarios: assessing tephra fallout hazard from Neapolitan volcanoes.

    Science.gov (United States)

    Sandri, Laura; Costa, Antonio; Selva, Jacopo; Tonini, Roberto; Macedonio, Giovanni; Folch, Arnau; Sulpizio, Roberto

    2016-04-12

    Assessment of volcanic hazards is necessary for risk mitigation. Typically, hazard assessment is based on one or a few, subjectively chosen representative eruptive scenarios, which use a specific combination of eruptive sizes and intensities to represent a particular size class of eruption. While such eruptive scenarios use a range of representative members to capture a range of eruptive sizes and intensities in order to reflect a wider size class, a scenario approach neglects to account for the intrinsic variability of volcanic eruptions, and implicitly assumes that inter-class size variability (i.e. size difference between different eruptive size classes) dominates over intra-class size variability (i.e. size difference within an eruptive size class), the latter of which is treated as negligible. So far, no quantitative study has been undertaken to verify such an assumption. Here, we adopt a novel Probabilistic Volcanic Hazard Analysis (PVHA) strategy, which accounts for intrinsic eruptive variabilities, to quantify the tephra fallout hazard in the Campania area. We compare the results of the new probabilistic approach with the classical scenario approach. The results allow for determining whether a simplified scenario approach can be considered valid, and for quantifying the bias which arises when full variability is not accounted for.

  1. Curtain eruptions from Enceladus' south-polar terrain

    Science.gov (United States)

    Spitale, Joseph N.; Hurford, Terry A.; Rhoden, Alyssa R.; Berkson, Emily E.; Platts, Symeon S.

    2015-05-01

    Observations of the south pole of the Saturnian moon Enceladus revealed large rifts in the south-polar terrain, informally called `tiger stripes', named Alexandria, Baghdad, Cairo and Damascus Sulci. These fractures have been shown to be the sources of the observed jets of water vapour and icy particles and to exhibit higher temperatures than the surrounding terrain. Subsequent observations have focused on obtaining close-up imaging of this region to better characterize these emissions. Recent work examined those newer data sets and used triangulation of discrete jets to produce maps of jetting activity at various times. Here we show that much of the eruptive activity can be explained by broad, curtain-like eruptions. Optical illusions in the curtain eruptions resulting from a combination of viewing direction and local fracture geometry produce image features that were probably misinterpreted previously as discrete jets. We present maps of the total emission along the fractures, rather than just the jet-like component, for five times during an approximately one-year period in 2009 and 2010. An accurate picture of the style, timing and spatial distribution of the south-polar eruptions is crucial to evaluating theories for the mechanism controlling the eruptions.

  2. 1984 Mauna Loa eruption and planetary geolgoy

    International Nuclear Information System (INIS)

    Moore, H.J.

    1987-01-01

    In planetary geology, lava flows on the Moon and Mars are commonly treated as relatively simple systems. Some of the complexities of actual lava flows are illustrated using the main flow system of the 1984 Mauna Loa eruption. The outline, brief narrative, and results given are based on a number of sources. The implications of the results to planetary geology are clear. Volume flow rates during an eruption depend, in part, on the volatile content of the lava. These differ from the volume flow rates calculated from post eruption flow dimensions and the duration of the eruption and from those using models that assume a constant density. Mass flow rates might be more appropriate because the masses of volatiles in lavas are usually small, but variable and sometimes unknown densities impose severe restrictions on mass estimates

  3. Episode 49 of the Pu'u 'Ō'ō-Kūpaianaha eruption of Kilauea volcano-breakdown of a steady-state eruptive era

    Science.gov (United States)

    Mangan, M.T.; Heliker, C.C.; Mattox, T.N.; Kauahikaua, J.P.; Helz, R.T.

    1995-01-01

    The Pu'u 'O'o-Kupaianaha eruption (1983-present) is the longest lived rift eruption of either Kilauea or neighboring Mauna Loa in recorded history. The initial fissure opening in January 1983 was followed by three years of episodic fire fountaining at the Pu'u 'O'o vent on Kilauea's east rift zone ∼19km from the summit (episodes 4–47). These spectacular events gave way in July 1986 to five and a half years of near-continuous, low-level effusion from the Kupaianaha vent, ∼ 3km to the cast (episode 48). A 49th episode began in November 1991 with the opening of a new fissure between Pu'u 'O'o and Kupaianaha. This three week long outburst heralded an era of more erratic eruptive behavior characterized by the shut down of Kupaianaha in February 1992 and subsequent intermittent eruption from vents on the west flank of Pu'u 'O'o (episodes 50 and 51). The events occurring over this period are due to progressive shrinkage of the rift-zone reservoir beneath the eruption site, and had limited impact on eruption temperatures and lava composition.

  4. The association between childhood obesity and tooth eruption.

    Science.gov (United States)

    Must, Aviva; Phillips, Sarah M; Tybor, David J; Lividini, Keith; Hayes, Catherine

    2012-10-01

    Obesity is a growth-promoting process as evidenced by its effect on the timing of puberty. Although studies are limited, obesity has been shown to affect the timing of tooth eruption. Both the timing and sequence of tooth eruption are important to overall oral health. The purpose of this study was to examine the association between obesity and tooth eruption. Data were combined from three consecutive cycles (2001-2006) of the National Health and Nutrition Examination Survey (NHANES) and analyzed to examine associations between the number of teeth erupted (NET) and obesity status (BMI z-score >95th percentile BMI relative to the Centers for Disease Control and Prevention (CDC) growth reference) among children 5 up to 14 years of age, controlling for potential confounding by age, gender, race, and socioeconomic status (SES). Obesity is significantly associated with having a higher average NET during the mixed dentition period. On average, teeth of obese children erupted earlier than nonobese children with obese children having on average 1.44 more teeth erupted than nonobese children, after adjusting for age, gender, and race/ethnicity (P erupted than nonobese children after adjusting for gender, age, and race. These findings may have clinical importance in the area of dental and orthodontic medicine both in terms of risk for dental caries due to extended length of time exposed in the oral cavity and sequencing which may increase the likelihood of malocclusions.

  5. The May 2005 eruption of Fernandina volcano, Galápagos: The first circumferential dike intrusion observed by GPS and InSAR

    Science.gov (United States)

    Chadwick, W.W.; Jonsson, Sigurjon; Geist, Dennis J.; Poland, M.; Johnson, Daniel J.; Batt, S.; Harpp, Karen S.; Ruiz, A.

    2011-01-01

    The May 2005 eruption of Fernandina volcano, Galápagos, occurred along circumferential fissures parallel to the caldera rim and fed lava flows down the steep southwestern slope of the volcano for several weeks. This was the first circumferential dike intrusion ever observed by both InSAR and GPS measurements and thus provides an opportunity to determine the subsurface geometry of these enigmatic structures that are common on Galápagos volcanoes but are rare elsewhere. Pre- and post- eruption ground deformation between 2002 and 2006 can be modeled by the inflation of two separate magma reservoirs beneath the caldera: a shallow sill at ~1 km depth and a deeper point-source at ~5 km depth, and we infer that this system also existed at the time of the 2005 eruption. The co-eruption deformation is dominated by uplift near the 2005 eruptive fissures, superimposed on a broad subsidence centered on the caldera. Modeling of the co-eruption deformation was performed by including various combinations of planar dislocations to simulate the 2005 circumferential dike intrusion. We found that a single planar dike could not match both the InSAR and GPS data. Our best-fit model includes three planar dikes connected along hinge lines to simulate a curved concave shell that is steeply dipping (~45–60°) toward the caldera at the surface and more gently dipping (~12–14°) at depth where it connects to the horizontal sub-caldera sill. The shallow sill is underlain by the deep point source. The geometry of this modeled magmatic system is consistent with the petrology of Fernandina lavas, which suggest that circumferential eruptions tap the shallowest parts of the system, whereas radial eruptions are fed from deeper levels. The recent history of eruptions at Fernandina is also consistent with the idea that circumferential and radial intrusions are sometimes in a stress-feedback relationship and alternate in time with one another.

  6. The May 2005 eruption of Fernandina volcano, Galápagos: The first circumferential dike intrusion observed by GPS and InSAR

    KAUST Repository

    Chadwick, William W Jr; Jonsson, Sigurjon; Geist, Dennis J.; Poland, Michael P.; Johnson, Daniel J.; Batt, Spencer; Harpp, Karen S.; Ruiz, André s Gorki

    2010-01-01

    The May 2005 eruption of Fernandina volcano, Galápagos, occurred along circumferential fissures parallel to the caldera rim and fed lava flows down the steep southwestern slope of the volcano for several weeks. This was the first circumferential dike intrusion ever observed by both InSAR and GPS measurements and thus provides an opportunity to determine the subsurface geometry of these enigmatic structures that are common on Galápagos volcanoes but are rare elsewhere. Pre- and post- eruption ground deformation between 2002 and 2006 can be modeled by the inflation of two separate magma reservoirs beneath the caldera: a shallow sill at ~1 km depth and a deeper point-source at ~5 km depth, and we infer that this system also existed at the time of the 2005 eruption. The co-eruption deformation is dominated by uplift near the 2005 eruptive fissures, superimposed on a broad subsidence centered on the caldera. Modeling of the co-eruption deformation was performed by including various combinations of planar dislocations to simulate the 2005 circumferential dike intrusion. We found that a single planar dike could not match both the InSAR and GPS data. Our best-fit model includes three planar dikes connected along hinge lines to simulate a curved concave shell that is steeply dipping (~45-60°) toward the caldera at the surface and more gently dipping (~12-14°) at depth where it connects to the horizontal sub-caldera sill. The shallow sill is underlain by the deep point source. The geometry of this modeled magmatic system is consistent with the petrology of Fernandina lavas, which suggest that circumferential eruptions tap the shallowest parts of the system, whereas radial eruptions are fed from deeper levels. The recent history of eruptions at Fernandina is also consistent with the idea that circumferential and radial intrusions are sometimes in a stress-feedback relationship and alternate in time with one another. © 2010 Springer-Verlag.

  7. The May 2005 eruption of Fernandina volcano, Galápagos: The first circumferential dike intrusion observed by GPS and InSAR

    KAUST Repository

    Chadwick, William W Jr

    2010-12-15

    The May 2005 eruption of Fernandina volcano, Galápagos, occurred along circumferential fissures parallel to the caldera rim and fed lava flows down the steep southwestern slope of the volcano for several weeks. This was the first circumferential dike intrusion ever observed by both InSAR and GPS measurements and thus provides an opportunity to determine the subsurface geometry of these enigmatic structures that are common on Galápagos volcanoes but are rare elsewhere. Pre- and post- eruption ground deformation between 2002 and 2006 can be modeled by the inflation of two separate magma reservoirs beneath the caldera: a shallow sill at ~1 km depth and a deeper point-source at ~5 km depth, and we infer that this system also existed at the time of the 2005 eruption. The co-eruption deformation is dominated by uplift near the 2005 eruptive fissures, superimposed on a broad subsidence centered on the caldera. Modeling of the co-eruption deformation was performed by including various combinations of planar dislocations to simulate the 2005 circumferential dike intrusion. We found that a single planar dike could not match both the InSAR and GPS data. Our best-fit model includes three planar dikes connected along hinge lines to simulate a curved concave shell that is steeply dipping (~45-60°) toward the caldera at the surface and more gently dipping (~12-14°) at depth where it connects to the horizontal sub-caldera sill. The shallow sill is underlain by the deep point source. The geometry of this modeled magmatic system is consistent with the petrology of Fernandina lavas, which suggest that circumferential eruptions tap the shallowest parts of the system, whereas radial eruptions are fed from deeper levels. The recent history of eruptions at Fernandina is also consistent with the idea that circumferential and radial intrusions are sometimes in a stress-feedback relationship and alternate in time with one another. © 2010 Springer-Verlag.

  8. Volcanic eruption plumes on Io

    International Nuclear Information System (INIS)

    Strom, R.G.; Terrile, R.J.; Masursky, H.; Hansen, C.

    1979-01-01

    The detection of an umbrella-shaped plume extending about 280 km above the bright limb of Io was one of the most important discoveries made during the Voyager 1 encounter with the jovian system. This discovery proves that Io is volcanically active at present, and the number and magnitude of these eruptions indicate that Io is the most volcanically active body so far discovered in the Solar System. Preliminary analyses of these eruptive plumes are presented. (U.K.)

  9. Uranium metalla-allenes with carbene imido R{sub 2}C=U{sup IV}=NR' units (R=Ph{sub 2}PNSiMe{sub 3}; R'=CPh{sub 3}): alkali-metal-mediated push-pull effects with an amido auxiliary

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Erli; Tuna, Floriana; Kaltsoyannis, Nikolas; Liddle, Stephen T. [School of Chemistry, The University of Manchester (United Kingdom); Lewis, William [School of Chemistry, The University of Nottingham (United Kingdom)

    2016-08-08

    We report uranium(IV)-carbene-imido-amide metalla-allene complexes [U(BIPM{sup TMS})(NCPh{sub 3})(NHCPh{sub 3})(M)] (BIPM{sup TMS}=C(PPh{sub 2}NSiMe{sub 3}){sub 2}; M=Li or K) that can be described as R{sub 2}C=U=NR' push-pull metalla-allene units, as organometallic counterparts of the well-known push-pull organic allenes. The solid-state structures reveal that the R{sub 2}C=U=NR' units adopt highly unusual cis-arrangements, which are also reproduced by gas-phase theoretical studies conducted without the alkali metals to remove their potential structure-directing roles. Computational studies confirm the double-bond nature of the U=NR' and U=CR{sub 2} interactions, the latter increasingly attenuated by potassium then lithium when compared to the hypothetical alkali-metal-free anion. Combined experimental and theoretical data show that the push-pull effect induced by the alkali metal cations and amide auxiliary gives a fundamental and tunable structural influence over the C=U{sup IV}=N units. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Russian eruption warning systems for aviation

    Science.gov (United States)

    Neal, C.; Girina, O.; Senyukov, S.; Rybin, A.; Osiensky, J.; Izbekov, P.; Ferguson, G.

    2009-01-01

    More than 65 potentially active volcanoes on the Kamchatka Peninsula and the Kurile Islands pose a substantial threat to aircraft on the Northern Pacific (NOPAC), Russian Trans-East (RTE), and Pacific Organized Track System (PACOTS) air routes. The Kamchatka Volcanic Eruption Response Team (KVERT) monitors and reports on volcanic hazards to aviation for Kamchatka and the north Kuriles. KVERT scientists utilize real-time seismic data, daily satellite views of the region, real-time video, and pilot and field reports of activity to track and alert the aviation industry of hazardous activity. Most Kurile Island volcanoes are monitored by the Sakhalin Volcanic Eruption Response Team (SVERT) based in Yuzhno-Sakhalinsk. SVERT uses daily moderate resolution imaging spectroradiometer (MODIS) satellite images to look for volcanic activity along this 1,250-km chain of islands. Neither operation is staffed 24 h per day. In addition, the vast majority of Russian volcanoes are not monitored seismically in real-time. Other challenges include multiple time-zones and language differences that hamper communication among volcanologists and meteorologists in the US, Japan, and Russia who share the responsibility to issue official warnings. Rapid, consistent verification of explosive eruptions and determination of cloud heights remain significant technical challenges. Despite these difficulties, in more than a decade of frequent eruptive activity in Kamchatka and the northern Kuriles, no damaging encounters with volcanic ash from Russian eruptions have been recorded. ?? Springer Science+Business Media B.V. 2009.

  11. Opportunities for Monitoring Io's Volcanic Activity in the Visible and Infrared From JUICE - It's All About (Eruption) Style

    Science.gov (United States)

    Davies, Ashley; Matson, D.; McEwen, A. S.; Keszthelyi, L.

    2012-10-01

    The ESA Jupiter Icy Moons Explorer (JUICE) provides many opportunities for long-range monitoring of Io’s extraordinary silicate volcanic activity [1, 2]. A considerable amount of valuable work can be performed even with relatively low-spatial-resolution observations [2]. Techniques developed from the study of Galileo NIMS data and observations of terrestrial silicate volcanism allow the identification of likely eruption style [2] at many locations where the entire eruption is sub-pixel. Good temporal coverage, especially for episodic eruptions (including high-energy “outburst” eruptions), is important for modelling purposes. With opportunities to observe Io on a regular basis (hours-days) during cruise/orbital reduction phases, a visible-to-near-infrared mapping spectrometer (covering 0.4-5.5 µm) is the best instrument to chart the magnitude and variability of Io’s volcanic activity, allowing comparison with an existing and constantly expanding set of Io observations [e.g. 1, 3]. The eruption temperature of Io’s dominant silicate lava, a constraint on interior composition and conditions, is a major unanswered question in the wake of the Galileo mission [1]. A careful approach to instrument design is needed to ensure that observations by both imager and IR spectrometer on JUICE are capable of determining lava eruption temperature [e.g., 4] in low spatial resolution data. With an ideal thermal target (e.g., outburst eruption; the proposed lava lake at Pele) the imager should obtain multi-spectral data in a rapid sequence to allow stability of the thermal source to be quantified. Observations by imager and spectrometer have to be contemporaneous and unsaturated. References: [1] Davies, A. (2007) “Volcanism on Io”, Cam. Univ. Press. [2] Davies et al. (2010) JVGR, 194, 75-99. [3] Veeder et al. (2012) Icarus, 219, 701-722. [4] Davies et al. (2011) GRL, 38, L21308. This work was performed at the Jet Propulsion Laboratory-California Institute of Technology

  12. CONTRACTING AND ERUPTING COMPONENTS OF SIGMOIDAL ACTIVE REGIONS

    International Nuclear Information System (INIS)

    Liu Rui; Wang Yuming; Liu Chang; Wang Haimin; Török, Tibor

    2012-01-01

    It has recently been noted that solar eruptions can be associated with the contraction of coronal loops that are not involved in magnetic reconnection processes. In this paper, we investigate five coronal eruptions originating from four sigmoidal active regions, using high-cadence, high-resolution narrowband EUV images obtained by the Solar Dynamic Observatory (SDO). The magnitudes of the flares associated with the eruptions range from GOES class B to class X. Owing to the high-sensitivity and broad temperature coverage of the Atmospheric Imaging Assembly (AIA) on board SDO, we are able to identify both the contracting and erupting components of the eruptions: the former is observed in cold AIA channels as the contracting coronal loops overlying the elbows of the sigmoid, and the latter is preferentially observed in warm/hot AIA channels as an expanding bubble originating from the center of the sigmoid. The initiation of eruption always precedes the contraction, and in the energetically mild events (B- and C-flares), it also precedes the increase in GOES soft X-ray fluxes. In the more energetic events, the eruption is simultaneous with the impulsive phase of the nonthermal hard X-ray emission. These observations confirm that loop contraction is an integrated process in eruptions with partially opened arcades. The consequence of contraction is a new equilibrium with reduced magnetic energy, as the contracting loops never regain their original positions. The contracting process is a direct consequence of flare energy release, as evidenced by the strong correlation of the maximal contracting speed, and strong anti-correlation of the time delay of contraction relative to expansion, with the peak soft X-ray flux. This is also implied by the relationship between contraction and expansion, i.e., their timing and speed.

  13. Strain effects on electronic structure of Fe{sub 0.75}Ru{sub 0.25}Te

    Energy Technology Data Exchange (ETDEWEB)

    Winiarski, M.J., E-mail: M.Winiarski@int.pan.wroc.pl [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422, Wrocław (Poland); Samsel-Czekała, M. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422, Wrocław (Poland); Ciechan, A. [Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668, Warsaw (Poland)

    2017-01-15

    Structural and electronic properties of a hypothetical Fe{sub 0.75}Ru{sub 0.25}Te alloy and the parent FeTe compound have been investigated from first principles within the density functional theory (DFT). For both systems the double-stripe antiferromagnetic ground state is predicted at ambient pressure. The incorporation of Ru atoms into FeTe in the nonmagnetic phase leads to a deep valley of density of states in the vicinity of the Fermi level and the DOS at the Fermi level is significantly diminished in the considered solid solution. The single-stripe antiferromagnetic phase in Fe{sub 0.75}Ru{sub 0.25}Te may be induced by tensile strain. These findings suggest that strained thin films of Fe{sub 1−x}Ru{sub x}Te are good candidates for new superconducting Fe-based materials. - Highlights: • Ru-doped FeTe systems are investigated by density-functional theory methods. • Structural and electronic properties of Fe{sub 0.75}Ru{sub 0.25}Te and parent FeTe are studied. • The double-stripe antiferromagnetic ground state is predicted for both systems. • The single-stripe antiferromagnetic phase may be induced by tensile strain. • Tensile strained Fe{sub 0.75}Ru{sub 0.25}Te is a candidate for a new Fe-based superconductor.

  14. Introduction to the 2012-2013 Tolbachik eruption special issue

    Science.gov (United States)

    Edwards, Benjamin R.; Belousov, Alexander; Belousova, Marina; Volynets, Anna

    2015-12-01

    The Tolbachik volcanic complex in central Kamchatka holds a special place in global volcanological studies. It is one of 4 areas of extensive historic volcanic activity in the northern part of the Central Kamchatka Depression (the others being Klyuchevskoy, Bezymianny, Shiveluch), and is part of the Klyuchevskoy volcanic group, which is one of the most active areas of volcanism on Earth. Tolbachik is especially well-known due largely to the massive 1975-1976 eruption that became known as the Great Tolbachik Fissure eruption (GTFE; Fedotov, 1983; Fedotov et al., 1984). This was one of the first eruptions in Russia to be predicted based on precursory seismic activity, based on M5 earthquakes approximately one week before the eruption started, and was intensively studied during its course by a large number of Russian scientists. A summary of those studies was published, first in Russian and then in English, and it became widely read for many reasons. One in particular is that the eruption was somewhat unusual for a subduction zone setting; although many subduction zone stratovolcanoes have associated basaltic tephra cone-lava fields, this was the first such Hawaiian-style eruption to be widely observed. After the end of the eruption in 1976, the complex showed no signs of activity until 27 November 2012, when increased seismic activity was registered by the Kamchatka Branch of the Russian Geophysical Survey and a red glow from the eruption site was first noticed through the snowstorm haze. This prompted them, and then the Kamchatka Volcanic Emergency Response Team (KVERT) to issue an alert that activity was coming from the south flank of Plosky Tolbachik volcano, the younger of two volcanic edifices (the older is Ostry Tolbachik) that together make up the bulk of the complex along with tephra cone-lava fields that lie along a NE-SW fissure zone that transects Plosky Tolbachik. The new eruption lasted for more than 250 days and, like the 1975-1976 eruption, was

  15. SYMPATHETIC FILAMENT ERUPTIONS FROM A BIPOLAR HELMET STREAMER IN THE SUN

    International Nuclear Information System (INIS)

    Yang Jiayan; Jiang Yunchun; Zheng Ruisheng; Bi Yi; Hong Junchao; Yang Bo

    2012-01-01

    On 2005 August 5, two solar filaments erupted successively from different confined arcades underlying a common overarching multiple-arcade bipolar helmet streamer. We present detailed observations of these two events and identify them as sympathetic filament eruptions. The first (F1) is a small active-region filament located near the outskirts of the streamer arcade. It underwent a nonradial eruption, initially moving in the interior of the streamer arcade and resulting in an over-and-out coronal mass ejection. The second filament (F2), a larger quiescent one far away from F1, was clearly disturbed during the F1 eruption. It then underwent a very slow eruption and finally disappeared completely and permanently. Because two belt-shaped diffuse dimmings formed along the footprints of the streamer arcade in the first eruption and persisted throughout the complete disappearance of F2, the eruption series are interpreted as sympathetic: the simple expansion of the common streamer arcade forced by the F1 eruption weakened magnetic flux overlying F2 and thus led to its slow eruption, with the dimming formation indicating their physical connection. Our observations suggest that multiple-arcade bipolar helmet-streamer configurations are appropriate to producing sympathetic eruptions. Combined with the recent observations of unipolar-streamer sympathetic events, it appears that a multiple-arcade unipolar or bipolar helmet streamer can serve as a common magnetic configuration for sympathetic eruptions.

  16. Using respondent uncertainty to mitigate hypothetical bias in a stated choice experiment

    Science.gov (United States)

    Richard C. Ready; Patricia A. Champ; Jennifer L. Lawton

    2010-01-01

    In a choice experiment study, willingness to pay for a public good estimated from hypothetical choices was three times as large as willingness to pay estimated from choices requiring actual payment. This hypothetical bias was related to the stated level of certainty of respondents. We develop protocols to measure respondent certainty in the context of a choice...

  17. Functional engineering of perovskite nanosheets. Impact of lead substitution on exfoliation in the solid solution RbCa{sub 2-x}Pb{sub x}Nb{sub 3}O{sub 10}

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, Christian; Lotsch, Bettina V. [Max Planck Institute for Solid State Research, Stuttgart (Germany); Department of Chemistry, University of Munich (LMU), Munich (Germany); Nanosystems Initiative Munich (NIM) and Center for Nanoscience (CeNS), Munich (Germany); Dennenwaldt, Teresa [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany); Ecole Polytechnique Federale de Lausanne (Switzerland); Weber, Daniel; Duppel, Viola; Kamella, Claudia; Tuffy, Brian; Moudrakovski, Igor [Max Planck Institute for Solid State Research, Stuttgart (Germany); Podjaski, Filip [Max Planck Institute for Solid State Research, Stuttgart (Germany); Ecole Polytechnique Federale de Lausanne (Switzerland); Scheu, Christina [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany)

    2017-11-17

    Tuning the chemical composition and structure for targeted functionality in two-dimensional (2D) nanosheets has become a major objective in the rapidly growing area of 2D materials. In the context of photocatalysis, both miniaturization and extending the light absorption of UV active photocatalysts are major assets. Here, we investigate the solid solution between two photocatalytic systems known from literature to evolve H{sub 2} from water/methanol under UV - RbCa{sub 2}Nb{sub 3}O{sub 10} (E{sub g} = 3.7 eV) - and visible light irradiation - RbPb{sub 2}Nb{sub 3}O{sub 10} (E{sub g} = 3.0 eV) - by synthesizing hypothetical RbCa{sub 2-x}Pb{sub x}Nb{sub 3}O{sub 10}. While the calcium niobate can easily be exfoliated into individual nanosheets via cation-proton exchange and subsequent treatment with tetra-n-butylammonium hydroxide (TBAOH), the lead niobate barely yields nanosheets. Spectroscopic and microscopic analysis suggest that this is caused by volatilization of Pb during synthesis, leading to a local 3D linkage of RbPb{sub 2}Nb{sub 3}O{sub 10} perovskite units with Pb deficient units. On the one hand, this linkage progressively prevents exfoliation along with an increasing Pb content. On the other hand, introducing Pb into the perovskite blocks successively leads to bandgap narrowing, thus gradually enhancing the light harvesting capability of the solid solution. Finding a compromise between this narrowing of the bandgap and the possibility of exfoliation, visible light sensitized nanosheets can be engineered in good yield for an initial molar ratio of Ca:Pb ≥ 1:1. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. [Localized eruptive juvenile xanthogranuloma].

    Science.gov (United States)

    Vanotti, S; Chiaverini, C; Rostain, G; Cardot-Leccia, N; Lacour, J-P

    2014-03-01

    Juvenile xanthogranuloma (JXG) is a non-Langerhans histiocytosis of young children characterized by solitary or multiple yellowish cutaneous nodules. Atypical skin lesions such as lichenoid eruptions, and pedunculated, maculopapular, plaque-like or linear lesions have been described. We report a case of eruptive XGJ en plaque in the left leg in an infant. A 13-month-old child presented asymptomatic eruptive, yellowish papules of the leg measuring 5 to 10mm since the age of 2months. There was no cutaneous infiltration between the lesions. Darier's sign was negative. Histological examination confirmed the diagnosis of JXG. The course of the disease comprised a gradual decrease in the number of active lesions with slight residual pigmentation. Our case was suggestive of JXG en plaque. Only 7 cases have been reported in the literature, all appearing before the age of 5months. The lesions corresponded mostly to an asymptomatic erythematous plaque studded with small yellowish/red nodules of variable localisation. Spontaneous involvement was noted in all cases. No systemic involvement was found. Herein we present a unique case of localised multiple JXG without evident clinical infiltrating plaque progressing with self-resolving flares. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  19. Depth of origin of magma in eruptions.

    Science.gov (United States)

    Becerril, Laura; Galindo, Ines; Gudmundsson, Agust; Morales, Jose Maria

    2013-09-26

    Many volcanic hazard factors--such as the likelihood and duration of an eruption, the eruption style, and the probability of its triggering large landslides or caldera collapses--relate to the depth of the magma source. Yet, the magma source depths are commonly poorly known, even in frequently erupting volcanoes such as Hekla in Iceland and Etna in Italy. Here we show how the length-thickness ratios of feeder dykes can be used to estimate the depth to the source magma chamber. Using this method, accurately measured volcanic fissures/feeder-dykes in El Hierro (Canary Islands) indicate a source depth of 11-15 km, which coincides with the main cloud of earthquake foci surrounding the magma chamber associated with the 2011-2012 eruption of El Hierro. The method can be used on widely available GPS and InSAR data to calculate the depths to the source magma chambers of active volcanoes worldwide.

  20. Studying the Formation and Evolution of Eruptive Solar Magnetic Flux Ropes

    Science.gov (United States)

    Linton, M.

    2017-12-01

    Solar magnetic eruptions are dramatic sources of solar activity, and dangerous sources of space weather hazards. Many of these eruptions take the form of magnetic flux ropes, i.e., magnetic fieldlines wrapping around a core magnetic flux tube. Investigating the processes which form these flux ropes both prior to and during eruption, and investigating their evolution after eruption, can give us a critical window into understanding the sources of and processes involved in these eruptions. This presentation will discuss modeling and observational investigations into these various phases of flux rope formation, eruption, and evolution, and will discuss how these different explorations can be used to develop a more complete picture of erupting flux rope dynamics. This work is funded by the NASA Living with a Star program.

  1. Creeping eruption of the hand in an Iranian patient: Cutaneous larva migrans

    Directory of Open Access Journals (Sweden)

    Zabihollah Shahmoradi

    2014-01-01

    Full Text Available Cutaneous larva migrans (CLM, a serpiginous cutaneous eruption is the most commonly acquired tropical dermatosis. It is caused by infection with hookworm larvae in tropical and sub-tropical areas, and people who have a history of travel in these countries. The most frequent location of CLM is the distal lower extremities or buttocks. We describe a case of 57-year-old Iranian female patient with CLM of hand (unusual site without traveling to endemic countries that was successfully treated with oral albendazole. To the best of our knowledge, this is the first report of CLM in Iran.

  2. Magmatic densities control erupted volumes in Icelandic volcanic systems

    Science.gov (United States)

    Hartley, Margaret; Maclennan, John

    2018-04-01

    Magmatic density and viscosity exert fundamental controls on the eruptibility of magmas. In this study, we investigate the extent to which magmatic physical properties control the eruptibility of magmas from Iceland's Northern Volcanic Zone (NVZ). By studying subaerial flows of known age and volume, we are able to directly relate erupted volumes to magmatic physical properties, a task that has been near-impossible when dealing with submarine samples dredged from mid-ocean ridges. We find a strong correlation between magmatic density and observed erupted volumes on the NVZ. Over 85% of the total volume of erupted material lies close to a density and viscosity minimum that corresponds to the composition of basalts at the arrival of plagioclase on the liquidus. These magmas are buoyant with respect to the Icelandic upper crust. However, a number of small-volume eruptions with densities greater than typical Icelandic upper crust are also found in Iceland's neovolcanic zones. We use a simple numerical model to demonstrate that the eruption of magmas with higher densities and viscosities is facilitated by the generation of overpressure in magma chambers in the lower crust and uppermost mantle. This conclusion is in agreement with petrological constraints on the depths of crystallisation under Iceland.

  3. Magmatic Densities Control Erupted Volumes in Icelandic Volcanic Systems

    Directory of Open Access Journals (Sweden)

    Margaret Hartley

    2018-04-01

    Full Text Available Magmatic density and viscosity exert fundamental controls on the eruptibility of magmas. In this study, we investigate the extent to which magmatic physical properties control the eruptibility of magmas from Iceland's Northern Volcanic Zone (NVZ. By studying subaerial flows of known age and volume, we are able to directly relate erupted volumes to magmatic physical properties, a task that has been near-impossible when dealing with submarine samples dredged from mid-ocean ridges. We find a strong correlation between magmatic density and observed erupted volumes on the NVZ. Over 85% of the total volume of erupted material lies close to a density and viscosity minimum that corresponds to the composition of basalts at the arrival of plagioclase on the liquidus. These magmas are buoyant with respect to the Icelandic upper crust. However, a number of small-volume eruptions with densities greater than typical Icelandic upper crust are also found in Iceland's neovolcanic zones. We use a simple numerical model to demonstrate that the eruption of magmas with higher densities and viscosities is facilitated by the generation of overpressure in magma chambers in the lower crust and uppermost mantle. This conclusion is in agreement with petrological constraints on the depths of crystallization under Iceland.

  4. Can a Repeated Opt-Out Reminder remove hypothetical bias in discrete choice experiments?

    DEFF Research Database (Denmark)

    Alemu, Mohammed Hussen; Olsen, Søren Bøye

    hypothetical bias in stated DCE. The data originates from a field experiment concerning consumer preferences for a novel food product made from cricket flour. Utilizing a between-subject design with three treatments, we find significantly higher marginal willingness to pay values in hypothetical than...

  5. Topographic and Structural Effects on Dike Propagation and Eruption

    Energy Technology Data Exchange (ETDEWEB)

    E. Gaffney

    2006-04-13

    We have modeled magma flow in a dike rising in a crack whose strike runs from a highland or ridge to an adjacent lowland to determine the effect of topography on the flow, using a 3D hydromechanical code, FLAC3D (http://www.itascacg.com). The aperture, a, is calculated as a variable in a sheet of zones of fixed width d during the simulation as a function of model deformation. The permeability tensor of each zone is adjusted at each time step in response to the pressure in the cell according to the relationship k{sub ij} = {delta}{sub ij} {alpha}{sup 3}/12{mu}d, which is obtained by equating the flow through the layer of permeable zones from Darcy's law with Poiseuille's law under the same gradient. The fluid viscosity is {mu}, and the crack width is a We found a distinct tendency for the flow to be diverted away from the highland end of the strike toward the lowland. For the 4-km long strike length we modeled, eruption was offset between 500 and 1250 m toward the lowland from the center of the strike length. Separation of the geometric effect of the topography from the topographic overburden effect on lateral confining stresses at the crack indicates that both contribute to the effect. Although this analysis explains a tendency for volcanic eruptions to occur in low lands, it does not preclude eruptions on highlands. If the strike on the dike is parallel to the length of a ridge, the effect described here will not operate. Another possibility is that the strike length of a dike may be so short that its strike does not extend far beyond the edge of the ridge. A separate simulation used a 2D discrete element code, UDEC (http://www.itascacg.com) to investigate the interaction of magma in a vertical dike with normal faults and stratigraphy. We found that steeper faults are more easily intruded and that, as the magma rises to within a few hundred meters of the surface, sills are intruded into stratigraphic discontinuities in the hanging wall but not into the

  6. THE 2011 ERUPTION OF THE RECURRENT NOVA T PYXIDIS: THE DISCOVERY, THE PRE-ERUPTION RISE, THE PRE-ERUPTION ORBITAL PERIOD, AND THE REASON FOR THE LONG DELAY

    International Nuclear Information System (INIS)

    Schaefer, Bradley E.; Landolt, Arlo U.; Linnolt, Michael; Stubbings, Rod; Pojmanski, Grzegorz; Plummer, Alan; Kerr, Stephen; Nelson, Peter; Carstens, Rolf; Streamer, Margaret; Richards, Tom; Myers, Gordon; Dillon, William G.

    2013-01-01

    We report the discovery by M. Linnolt on JD 2,455,665.7931 (UT 2011 April 14.29) of the sixth eruption of the recurrent nova T Pyxidis. This discovery was made just as the initial fast rise was starting, so with fast notification and response by observers worldwide, the entire initial rise was covered (the first for any nova), and with high time resolution in three filters. The speed of the rise peaked at 9 mag day –1 , while the light curve is well fit over only the first two days by a model with a uniformly expanding sphere. We also report the discovery by R. Stubbings of a pre-eruption rise starting 18 days before the eruption, peaking 1.1 mag brighter than its long-time average, and then fading back toward quiescence 4 days before the eruption. This unique and mysterious behavior is only the fourth known (with V1500 Cyg, V533 Her, and T CrB) anticipatory rise closely spaced before a nova eruption. We present 19 timings of photometric minima from 1986 to 2011 February, where the orbital period is fast increasing with P/ P-dot =+313,000 yr. From 2008 to 2011, T Pyx had a small change in this rate of increase, so that the orbital period at the time of eruption was 0.07622950 ± 0.00000008 days. This strong and steady increase of the orbital period can only come from mass transfer, for which we calculate a rate of (1.7-3.5) × 10 –7 M ☉ yr –1 . We report 6116 magnitudes between 1890 and 2011, for an average B = 15.59 ± 0.01 from 1967 to 2011, which allows for an eruption in 2011 if the blue flux is nearly proportional to the accretion rate. The ultraviolet-optical-infrared spectral energy distribution is well fit by a power law with f ν ∝ν 1.0 , although the narrow ultraviolet region has a tilt with a fit of f ν ∝ν 1/3 . We prove that most of the T Pyx light is not coming from a disk, or any superposition of blackbodies, but rather is coming from some nonthermal source. We confirm the extinction measure from IUE with E(B – V) = 0.25 ± 0.02 mag

  7. The 2011 Eruption of the Recurrent Nova T Pyxidis: The Discovery, the Pre-eruption Rise, the Pre-eruption Orbital Period, and the Reason for the Long Delay

    Science.gov (United States)

    Schaefer, Bradley E.; Landolt, Arlo U.; Linnolt, Michael; Stubbings, Rod; Pojmanski, Grzegorz; Plummer, Alan; Kerr, Stephen; Nelson, Peter; Carstens, Rolf; Streamer, Margaret; Richards, Tom; Myers, Gordon; Dillon, William G.

    2013-08-01

    We report the discovery by M. Linnolt on JD 2,455,665.7931 (UT 2011 April 14.29) of the sixth eruption of the recurrent nova T Pyxidis. This discovery was made just as the initial fast rise was starting, so with fast notification and response by observers worldwide, the entire initial rise was covered (the first for any nova), and with high time resolution in three filters. The speed of the rise peaked at 9 mag day-1, while the light curve is well fit over only the first two days by a model with a uniformly expanding sphere. We also report the discovery by R. Stubbings of a pre-eruption rise starting 18 days before the eruption, peaking 1.1 mag brighter than its long-time average, and then fading back toward quiescence 4 days before the eruption. This unique and mysterious behavior is only the fourth known (with V1500 Cyg, V533 Her, and T CrB) anticipatory rise closely spaced before a nova eruption. We present 19 timings of photometric minima from 1986 to 2011 February, where the orbital period is fast increasing with P/\\dot{P}=+313{,000} yr. From 2008 to 2011, T Pyx had a small change in this rate of increase, so that the orbital period at the time of eruption was 0.07622950 ± 0.00000008 days. This strong and steady increase of the orbital period can only come from mass transfer, for which we calculate a rate of (1.7-3.5) × 10-7 M ⊙ yr-1. We report 6116 magnitudes between 1890 and 2011, for an average B = 15.59 ± 0.01 from 1967 to 2011, which allows for an eruption in 2011 if the blue flux is nearly proportional to the accretion rate. The ultraviolet-optical-infrared spectral energy distribution is well fit by a power law with f νvpropν1.0, although the narrow ultraviolet region has a tilt with a fit of f νvpropν1/3. We prove that most of the T Pyx light is not coming from a disk, or any superposition of blackbodies, but rather is coming from some nonthermal source. We confirm the extinction measure from IUE with E(B - V) = 0.25 ± 0.02 mag.

  8. Reconstruction of the eruptive activity on the NE sector of Stromboli volcano: timing of flank eruptions since 15 ka

    NARCIS (Netherlands)

    Calvari, S.; Branca, S.; Corsaro, R.A.; De Beni, E.; Miraglia, L.; Norini, G.; Wijbrans, J.R.; Boschi, E.

    2011-01-01

    A multidisciplinary geological and compositional investigation allowed us to reconstruct the occurrence of flank eruptions on the lower NE flank of Stromboli volcano since 15 ka. The oldest flank eruption recognised is Roisa, which occurred at ~15 ka during the Vancori period, and has transitional

  9. Impacts of high-latitude volcanic eruptions on ENSO and AMOC.

    Science.gov (United States)

    Pausata, Francesco S R; Chafik, Leon; Caballero, Rodrigo; Battisti, David S

    2015-11-10

    Large volcanic eruptions can have major impacts on global climate, affecting both atmospheric and ocean circulation through changes in atmospheric chemical composition and optical properties. The residence time of volcanic aerosol from strong eruptions is roughly 2-3 y. Attention has consequently focused on their short-term impacts, whereas the long-term, ocean-mediated response has not been well studied. Most studies have focused on tropical eruptions; high-latitude eruptions have drawn less attention because their impacts are thought to be merely hemispheric rather than global. No study to date has investigated the long-term effects of high-latitude eruptions. Here, we use a climate model to show that large summer high-latitude eruptions in the Northern Hemisphere cause strong hemispheric cooling, which could induce an El Niño-like anomaly, in the equatorial Pacific during the first 8-9 mo after the start of the eruption. The hemispherically asymmetric cooling shifts the Intertropical Convergence Zone southward, triggering a weakening of the trade winds over the western and central equatorial Pacific that favors the development of an El Niño-like anomaly. In the model used here, the specified high-latitude eruption also leads to a strengthening of the Atlantic Meridional Overturning Circulation (AMOC) in the first 25 y after the eruption, followed by a weakening lasting at least 35 y. The long-lived changes in the AMOC strength also alter the variability of the El Niño-Southern Oscillation (ENSO).

  10. Prediction of half-metallic properties in TlCrS{sub 2} and TlCrSe{sub 2} based on density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Hashimzade, F.M.; Huseinova, D.A. [Institute of Physics, National Academy of Sciences of Azerbaijan, AZ 1143 Baku (Azerbaijan); Jahangirli, Z.A. [Institute of Physics, National Academy of Sciences of Azerbaijan, AZ 1143 Baku (Azerbaijan); Institute of Radiation Problems, National Academy of Sciences of Azerbaijan, AZ 1143 Baku (Azerbaijan); Mehdiyev, B.H., E-mail: bachschi@yahoo.de [Institute of Physics, National Academy of Sciences of Azerbaijan, AZ 1143 Baku (Azerbaijan)

    2017-08-01

    Highlights: • Half-metallic properties of TlCrS2, TlCrSe2 and hypothetical TlCrSSe have been investigated by first-principles all-electron full-potential linearized augmented plane wave plus local orbital (FP-LAPW+lo) method based on density functional theory (DFT). • Total magnetic moment keeps its integer value on a relatively wide range of changes in volume (−10% ÷ 10%) for TlCrS2 and TlCrSSe, while total magnetic moment TlCrSe2 decreases with increasing volume, approaching to integer value 3 μB. • The states at the Fermi level in the case of spin-up channel consist of a hybridization of p-states of the atom S(Se) with d-states of Cr. - Abstract: Half-metallic properties of TlCrS{sub 2}, TlCrSe{sub 2} and hypothetical TlCrSSe have been investigated by first-principles all-electron full-potential linearized augmented plane wave plus local orbital (FP-LAPW+lo) method based on density functional theory (DFT). The results of calculations show that TlCrS{sub 2} and TlCrSSe are half-metals with energy gap (E{sub g}) ∼0.12 eV for spin-down channel. Strong hybridization of p-state of chalchogen and d-state of Cr leads to bonding and antibonding states and subsequently to the appearance of a gap in spin-down channel of TlCrS{sub 2} and TlCrSSe. In the case of TlCrSe{sub 2}, there is a partial hybridization and p-state is partially present in the DOS at Fermi level making this compound nearly half-metallic. The present calculations revealed that total magnetic moment keeps its integer value on a relatively wide range of changes in volume (−10% ÷ 10%) for TlCrS{sub 2} and TlCrSSe, while total magnetic moment of TlCrSe{sub 2} decreases with increasing volume approaching to integer value 3 μB.

  11. Requirement of alveolar bone formation for eruption of rat molars

    Science.gov (United States)

    Wise, Gary E.; He, Hongzhi; Gutierrez, Dina L.; Ring, Sherry; Yao, Shaomian

    2011-01-01

    Tooth eruption is a localized event that requires a dental follicle (DF) to regulate the resorption of alveolar bone to form an eruption pathway. During the intra-osseous phase of eruption, the tooth moves through this pathway. The mechanism or motive force that propels the tooth through this pathway is controversial but many studies have shown that alveolar bone growth at the base of the crypt occurs during eruption. To determine if this bone growth (osteogenesis) was causal, experiments were designed in which the expression of an osteogenic gene in the DF, bone morphogenetic protein-6 (BMP6), was inhibited by injection of the 1st mandibular molar of the rat with an siRNA targeted against BMP6. The injection was followed by electroporation to promote uptake of the siRNA. In 45 first molars injected, eruption either was delayed or completely inhibited (7 molars). In the impacted molars, an eruption pathway formed but bone growth at the base of the crypt was greatly reduced as compared to the erupted first molar controls. These studies show that alveolar bone growth at the base of the crypt is required for tooth eruption and that BMP6 may be an essential gene for promoting this growth. PMID:21896048

  12. Modeling Volcanic Eruption Parameters by Near-Source Internal Gravity Waves.

    Science.gov (United States)

    Ripepe, M; Barfucci, G; De Angelis, S; Delle Donne, D; Lacanna, G; Marchetti, E

    2016-11-10

    Volcanic explosions release large amounts of hot gas and ash into the atmosphere to form plumes rising several kilometers above eruptive vents, which can pose serious risk on human health and aviation also at several thousands of kilometers from the volcanic source. However the most sophisticate atmospheric models and eruptive plume dynamics require input parameters such as duration of the ejection phase and total mass erupted to constrain the quantity of ash dispersed in the atmosphere and to efficiently evaluate the related hazard. The sudden ejection of this large quantity of ash can perturb the equilibrium of the whole atmosphere triggering oscillations well below the frequencies of acoustic waves, down to much longer periods typical of gravity waves. We show that atmospheric gravity oscillations induced by volcanic eruptions and recorded by pressure sensors can be modeled as a compact source representing the rate of erupted volcanic mass. We demonstrate the feasibility of using gravity waves to derive eruption source parameters such as duration of the injection and total erupted mass with direct application in constraining plume and ash dispersal models.

  13. Plasma Brightenings in a Failed Solar Filament Eruption

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Ding, M. D., E-mail: yingli@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China)

    2017-03-20

    Failed filament eruptions are solar eruptions that are not associated with coronal mass ejections. In a failed filament eruption, the filament materials usually show some ascending and falling motions as well as generating bright EUV emissions. Here we report a failed filament eruption (SOL2016-07-22) that occurred in a quiet-Sun region observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory . In this event, the filament spreads out but gets confined by the surrounding magnetic field. When interacting with the ambient magnetic field, the filament material brightens up and flows along the magnetic field lines through the corona to the chromosphere. We find that some materials slide down along the lifting magnetic structure containing the filament and impact the chromosphere, and through kinetic energy dissipation, cause two ribbon-like brightenings in a wide temperature range. There is evidence suggesting that magnetic reconnection occurs between the filament magnetic structure and the surrounding magnetic fields where filament plasma is heated to coronal temperatures. In addition, thread-like brightenings show up on top of the erupting magnetic fields at low temperatures, which might be produced by an energy imbalance from a fast drop of radiative cooling due to plasma rarefaction. Thus, this single event of a failed filament eruption shows the existence of a variety of plasma brightenings that may be caused by completely different heating mechanisms.

  14. Effects of climate-induced changes in isoprene emissions after the eruption of Mount Pinatubo

    Directory of Open Access Journals (Sweden)

    P. J. Telford

    2010-08-01

    Full Text Available In the 1990s the rates of increase of greenhouse gas concentrations, most notably of methane, were observed to change, for reasons that have yet to be fully determined. This period included the eruption of Mt. Pinatubo and an El Niño warm event, both of which affect biogeochemical processes, by changes in temperature, precipitation and radiation. We examine the impact of these changes in climate on global isoprene emissions and the effect these climate dependent emissions have on the hydroxy radical, OH, the dominant sink for methane. We model a reduction of isoprene emissions in the early 1990s, with a maximum decrease of 40 Tg(C/yr in late 1992 and early 1993, a change of 9%. This reduction is caused by the cooler, drier conditions following the eruption of Mt. Pinatubo. Isoprene emissions are reduced both directly, by changes in temperature and a soil moisture dependent suppression factor, and indirectly, through reductions in the total biomass. The reduction in isoprene emissions causes increases of tropospheric OH which lead to an increased sink for methane of up to 5 Tg(CH<sub>4sub>/year, comparable to estimated source changes over the time period studied. There remain many uncertainties in the emission and oxidation of isoprene which may affect the exact size of this effect, but its magnitude is large enough that it should remain important.

  15. Effects of Volcanic Eruptions on Stratospheric Ozone Recovery

    Science.gov (United States)

    Rosenfield, Joan E.

    2002-01-01

    The effects of the stratospheric sulfate aerosol layer associated with the Mt. Pinatubo volcano and future volcanic eruptions on the recovery of the ozone layer is studied with an interactive two-dimensional photochemical model. The time varying chlorine loading and the stratospheric cooling due to increasing carbon dioxide have been taken into account. The computed ozone and temperature changes associated with the Mt. Pinatubo eruption in 1991 agree well with observations. Long model runs out to the year 2050 have been carried out, in which volcanoes having the characteristics of the Mount Pinatubo volcano were erupted in the model at 10-year intervals starting in the year 2010. Compared to a non-volcanic run using background aerosol loading, transient reductions of globally averaged column ozone of 2-3 percent were computed as a result of each of these eruptions, with the ozone recovering to that computed for the non-volcanic case in about 5 years after the eruption. Computed springtime Arctic column ozone losses of from 10 to 18 percent also recovered to the non-volcanic case within 5 years. These results suggest that the long-term recovery of ozone would not be strongly affected by infrequent volcanic eruptions with a sulfur loading approximating Mt. Pinatubo. Sensitivity studies in which the Arctic lower stratosphere was forced to be 4 K and 10 K colder resulted in transient ozone losses of which also recovered to the non-volcanic case in 5 years. A case in which a volcano five times Mt. Pinatubo was erupted in the year 2010 led to maximum springtime column ozone losses of 45 percent which took 10 years to recover to the background case. Finally, in order to simulate a situation in which frequent smaller volcanic eruptions result in increasing the background sulfate loading, a simulation was made in which the background aerosol was increased by 10 percent per year. This resulted in a delay of the recovery of column ozone to 1980 values of more than 10 years.

  16. Terbinafine-induced lichenoid drug eruption.

    Science.gov (United States)

    Zheng, Yue; Zhang, Jie; Chen, Haiyan; Lai, Wei; Maibach, Howard I

    2017-03-01

    Drug-induced lichen planus has been induced by antibiotics, anticonvulsants, antidiabetics, antimalarials, antitubercular drugs, antihypertensives, psychiatric drugs, chemotherapeutic agents, diuretic, heavy metals, NSAIDs, etc. Terbinafine, an antifungal agent, is widely used for dermatophyte infections and onychomycosis. Cutaneous adverse effects of terbinafine are rarely reported. Here, we report a case of terbinafine-induced lichenoid drug eruption in a 22-year-old who presented with generalized lichenoid eruption 2 weeks after terbinafine initiation of. The body and lip cleared completely after 8 weeks of drug withdrawal; nail change cleared after 12 weeks.

  17. The first permanent molar: spontaneous eruption after a five-year failure.

    Science.gov (United States)

    Mistry, Vinay N; Barker, Christopher S; James Spencer, R

    2017-09-01

    It is rare for a first permanent molar (FPM) to temporarily exhibit clinical features of failure of eruption, followed by regeneration of full eruptive capacity 5 years later. Indeterminate failure of eruption (IFE) is a diagnosis of exclusion where the distinction between primary failure of eruption (PFE) and mechanical failure of eruption (MFE) is unclear, including patients too young to specify. An 11-year-old girl attended the orthodontic clinic at Mid Yorkshire Hospitals NHS Trust regarding an unerupted lower right FPM. Her medical and dental trauma history was unremarkable. She presented with a Class II division 2 malocclusion in the mixed dentition, with all other FPMs fully erupted. This report documents that an unerupted FPM in an 11-year-old patient may still have the eruptive potential to become functional within the dentition. The period spent monitoring the FPM's outcome prior to surgical intervention has avoided an operation under general anaesthetic and potentially unnecessary orthodontic treatment, as the tooth subsequently erupted without treatment. © 2017 BSPD, IAPD and John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Emotional Eruptions, Volcanic Activity and Global Mobilities

    DEFF Research Database (Denmark)

    Jensen, Ole B.

    2011-01-01

    The eruption of Iceland’s Eyjafjallajökull volcano in April 2010 set off a number of environmental, economic and cultural effects obstructing thousands of people in the midst of their global mobility flows. It halted, as well, the exchange of goods and commodities and exposed the vulnerability...... of the global aeromobility system. In this paper an account is given of how the event was experienced by a European academic attending a number of North American conferences at precisely the time of the eruption. The paper is an attempt to describe how people reacted emotionally as well as rationally......, attempting to find strategies for coping with the consequences of the eruption....

  19. Expression profiling of hypothetical genes in Desulfovibrio vulgaris leads to improved functional annotation

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Dwayne A.; Mukhopadhyay, Aindrila; Joachimiak, Marcin P.; Drury, Elliott C.; Redding, Alyssa M.; Yen, Huei-Che B.; Fields, Matthew W.; Hazen, Terry C.; Arkin, Adam P.; Keasling, Jay D.; Wall, Judy D.

    2008-10-27

    Hypothetical and conserved hypothetical genes account for>30percent of sequenced bacterial genomes. For the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough, 347 of the 3634 genes were annotated as conserved hypothetical (9.5percent) along with 887 hypothetical genes (24.4percent). Given the large fraction of the genome, it is plausible that some of these genes serve critical cellular roles. The study goals were to determine which genes were expressed and provide a more functionally based annotation. To accomplish this, expression profiles of 1234 hypothetical and conserved genes were used from transcriptomic datasets of 11 environmental stresses, complemented with shotgun LC-MS/MS and AMT tag proteomic data. Genes were divided into putatively polycistronic operons and those predicted to be monocistronic, then classified by basal expression levels and grouped according to changes in expression for one or multiple stresses. 1212 of these genes were transcribed with 786 producing detectable proteins. There was no evidence for expression of 17 predicted genes. Except for the latter, monocistronic gene annotation was expanded using the above criteria along with matching Clusters of Orthologous Groups. Polycistronic genes were annotated in the same manner with inferences from their proximity to more confidently annotated genes. Two targeted deletion mutants were used as test cases to determine the relevance of the inferred functional annotations.

  20. [Effects of volcanic eruptions on human health in Iceland. Review].

    Science.gov (United States)

    Gudmundsson, Gunnar; Larsen, Guðrun

    2016-01-01

    Volcanic eruptions are common in Iceland and have caused health problems ever since the settlement of Iceland. Here we describe volcanic activity and the effects of volcanic gases and ash on human health in Iceland. Volcanic gases expelled during eruptions can be highly toxic for humans if their concentrations are high, irritating the mucus membranes of the eyes and upper respiratory tract at lower concentrations. They can also be very irritating to the skin. Volcanic ash is also irritating for the mucus membranes of the eyes and upper respiratory tract. The smalles particles of volcanic ash can reach the alveoli of the lungs. Described are four examples of volcanic eruptions that have affected the health of Icelanders. The eruption of Laki volcanic fissure in 1783-1784 is the volcanic eruption that has caused the highest mortality and had the greatest effects on the well-being of Icelanders. Despite multiple volcanic eruptions during the last decades in Iceland mortality has been low and effects on human health have been limited, although studies on longterm effects are lacking. Studies on the effects of the Eyjafjallajökul eruption in 2010 on human health showed increased physical and mental symptoms, especially in those having respiratory disorders. The Directorate of Health in Iceland and other services have responded promptly to recurrent volcanic eruptions over the last few years and given detailed instructions on how to minimize the effects on the public health. Key words: volcanic eruptions, Iceland, volcanic ash, volcanic gases, health effects, mortality. Correspondence: Gunnar Guðmundsson, ggudmund@landspitali.is.

  1. MeMoVolc report on classification and dynamics of volcanic explosive eruptions

    Science.gov (United States)

    Bonadonna, C.; Cioni, R.; Costa, A.; Druitt, T.; Phillips, J.; Pioli, L.; Andronico, D.; Harris, A.; Scollo, S.; Bachmann, O.; Bagheri, G.; Biass, S.; Brogi, F.; Cashman, K.; Dominguez, L.; Dürig, T.; Galland, O.; Giordano, G.; Gudmundsson, M.; Hort, M.; Höskuldsson, A.; Houghton, B.; Komorowski, J. C.; Küppers, U.; Lacanna, G.; Le Pennec, J. L.; Macedonio, G.; Manga, M.; Manzella, I.; Vitturi, M. de'Michieli; Neri, A.; Pistolesi, M.; Polacci, M.; Ripepe, M.; Rossi, E.; Scheu, B.; Sulpizio, R.; Tripoli, B.; Valade, S.; Valentine, G.; Vidal, C.; Wallenstein, N.

    2016-11-01

    Classifications of volcanic eruptions were first introduced in the early twentieth century mostly based on qualitative observations of eruptive activity, and over time, they have gradually been developed to incorporate more quantitative descriptions of the eruptive products from both deposits and observations of active volcanoes. Progress in physical volcanology, and increased capability in monitoring, measuring and modelling of explosive eruptions, has highlighted shortcomings in the way we classify eruptions and triggered a debate around the need for eruption classification and the advantages and disadvantages of existing classification schemes. Here, we (i) review and assess existing classification schemes, focussing on subaerial eruptions; (ii) summarize the fundamental processes that drive and parameters that characterize explosive volcanism; (iii) identify and prioritize the main research that will improve the understanding, characterization and classification of volcanic eruptions and (iv) provide a roadmap for producing a rational and comprehensive classification scheme. In particular, classification schemes need to be objective-driven and simple enough to permit scientific exchange and promote transfer of knowledge beyond the scientific community. Schemes should be comprehensive and encompass a variety of products, eruptive styles and processes, including for example, lava flows, pyroclastic density currents, gas emissions and cinder cone or caldera formation. Open questions, processes and parameters that need to be addressed and better characterized in order to develop more comprehensive classification schemes and to advance our understanding of volcanic eruptions include conduit processes and dynamics, abrupt transitions in eruption regime, unsteadiness, eruption energy and energy balance.

  2. On a Possible Unified Scaling Law for Volcanic Eruption Durations.

    Science.gov (United States)

    Cannavò, Flavio; Nunnari, Giuseppe

    2016-03-01

    Volcanoes constitute dissipative systems with many degrees of freedom. Their eruptions are the result of complex processes that involve interacting chemical-physical systems. At present, due to the complexity of involved phenomena and to the lack of precise measurements, both analytical and numerical models are unable to simultaneously include the main processes involved in eruptions thus making forecasts of volcanic dynamics rather unreliable. On the other hand, accurate forecasts of some eruption parameters, such as the duration, could be a key factor in natural hazard estimation and mitigation. Analyzing a large database with most of all the known volcanic eruptions, we have determined that the duration of eruptions seems to be described by a universal distribution which characterizes eruption duration dynamics. In particular, this paper presents a plausible global power-law distribution of durations of volcanic eruptions that holds worldwide for different volcanic environments. We also introduce a new, simple and realistic pipe model that can follow the same found empirical distribution. Since the proposed model belongs to the family of the self-organized systems it may support the hypothesis that simple mechanisms can lead naturally to the emergent complexity in volcanic behaviour.

  3. Geostationary satellite observations of the april 1979 soufriere eruptions.

    Science.gov (United States)

    Krueger, A F

    1982-06-04

    Infrared images from the geostationary satellite SMS-1 were used to study the growth of the eight major eruptions of Soufriere, St. Vincent, during April 1979. These eruptions differed considerably in growth and intensity, the most intense being that of 17 April which formed an ash cloud of 96,000 square kilometers in 4 hours. The weakest eruption formed a cloud of only 16,000 square kilometers.

  4. Pre-eruptive conditions of the phonolitic magma from the El Abrigo caldera-forming eruption (Las Canadas caldera, Tenerife, Canary Islands)

    International Nuclear Information System (INIS)

    Marti, J; Andujar, J; Costa, F; Wolff, J A; Carroll, M R

    2008-01-01

    We have performed phase equilibrium experiments to determine the pre-eruptive conditions of the largest phonolitic caldera-forming eruption (∼20 km3 of DRE) that occurred on Tenerife (Canary Islands). The Abrigo ignimbrite was erupted during the last caldera-forming episode (ca. 190 ka), from the Canadas caldera. Comparison of the natural and experimental phase proportions and compositions indicates that the phonolite at the roof of the Abrigo magma reservoir was at 130 ± 50 MPa (corresponding to ca. 4 - 5 km below the surface), 825 ± 25 oC, with 3 ± 1 wt% dissolved H2O and fO2 at the Ni-NiO buffer ? 1 log unit. This shows that the magma that produced the largest ignimbrite on Tenerife was stored at relatively shallow depths but was water-undersaturated, and its eruption was probably triggered by input of fresh mafic magma.

  5. Pre-eruptive conditions of the phonolitic magma from the El Abrigo caldera-forming eruption (Las Canadas caldera, Tenerife, Canary Islands)

    Energy Technology Data Exchange (ETDEWEB)

    Marti, J; Andujar, J; Costa, F [Institute of Earth Sciences ' Jaume Almera' , CSIC, C/ Lluis Sole I Sabaris, s/n Barcelona, 08028 Spain (Spain); Wolff, J A [School of Earth and Environmental Sciences, Washington State University, Pullman, WA 99164-2812 (United States); Carroll, M R [Dipartimento di Scienze della Terra, Via Gentile III da Varano, Universita di Camerino, 62032 MC (Italy)], E-mail: jawolff@mail.wsu.edu, E-mail: Michael.carroll@unicam.it

    2008-10-01

    We have performed phase equilibrium experiments to determine the pre-eruptive conditions of the largest phonolitic caldera-forming eruption ({approx}20 km3 of DRE) that occurred on Tenerife (Canary Islands). The Abrigo ignimbrite was erupted during the last caldera-forming episode (ca. 190 ka), from the Canadas caldera. Comparison of the natural and experimental phase proportions and compositions indicates that the phonolite at the roof of the Abrigo magma reservoir was at 130 {+-} 50 MPa (corresponding to ca. 4 - 5 km below the surface), 825 {+-} 25 oC, with 3 {+-} 1 wt% dissolved H2O and fO2 at the Ni-NiO buffer ? 1 log unit. This shows that the magma that produced the largest ignimbrite on Tenerife was stored at relatively shallow depths but was water-undersaturated, and its eruption was probably triggered by input of fresh mafic magma.

  6. Processing counterfactual and hypothetical conditionals: an fMRI investigation.

    Science.gov (United States)

    Kulakova, Eugenia; Aichhorn, Markus; Schurz, Matthias; Kronbichler, Martin; Perner, Josef

    2013-05-15

    Counterfactual thinking is ubiquitous in everyday life and an important aspect of cognition and emotion. Although counterfactual thought has been argued to differ from processing factual or hypothetical information, imaging data which elucidate these differences on a neural level are still scarce. We investigated the neural correlates of processing counterfactual sentences under visual and aural presentation. We compared conditionals in subjunctive mood which explicitly contradicted previously presented facts (i.e. counterfactuals) to conditionals framed in indicative mood which did not contradict factual world knowledge and thus conveyed a hypothetical supposition. Our results show activation in right occipital cortex (cuneus) and right basal ganglia (caudate nucleus) during counterfactual sentence processing. Importantly the occipital activation is not only present under visual presentation but also with purely auditory stimulus presentation, precluding a visual processing artifact. Thus our results can be interpreted as reflecting the fact that counterfactual conditionals pragmatically imply the relevance of keeping in mind both factual and supposed information whereas the hypothetical conditionals imply that real world information is irrelevant for processing the conditional and can be omitted. The need to sustain representations of factual and suppositional events during counterfactual sentence processing requires increased mental imagery and integration efforts. Our findings are compatible with predictions based on mental model theory. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Global monsoon precipitation responses to large volcanic eruptions.

    Science.gov (United States)

    Liu, Fei; Chai, Jing; Wang, Bin; Liu, Jian; Zhang, Xiao; Wang, Zhiyuan

    2016-04-11

    Climate variation of global monsoon (GM) precipitation involves both internal feedback and external forcing. Here, we focus on strong volcanic forcing since large eruptions are known to be a dominant mechanism in natural climate change. It is not known whether large volcanoes erupted at different latitudes have distinctive effects on the monsoon in the Northern Hemisphere (NH) and the Southern Hemisphere (SH). We address this issue using a 1500-year volcanic sensitivity simulation by the Community Earth System Model version 1.0 (CESM1). Volcanoes are classified into three types based on their meridional aerosol distributions: NH volcanoes, SH volcanoes and equatorial volcanoes. Using the model simulation, we discover that the GM precipitation in one hemisphere is enhanced significantly by the remote volcanic forcing occurring in the other hemisphere. This remote volcanic forcing-induced intensification is mainly through circulation change rather than moisture content change. In addition, the NH volcanic eruptions are more efficient in reducing the NH monsoon precipitation than the equatorial ones, and so do the SH eruptions in weakening the SH monsoon, because the equatorial eruptions, despite reducing moisture content, have weaker effects in weakening the off-equatorial monsoon circulation than the subtropical-extratropical volcanoes do.

  8. Eruption of soufriere volcano on st. Vincent island, 1971-1972.

    Science.gov (United States)

    Aspinall, W P; Sigurdsson, H; Shepherd, J B

    1973-07-13

    The Soufrière volcano in St. Vincent erupted from October 1971 to March 1972, as 80 x 10(6) m(3) of basaltic andesite lava was quietly extruded inside the mile-wide crater. The eruption was largely subaqueous, taking place in the 180-m-deep crater lake, and resulted in the emergence of a steep-sided island. The mild character of the eruption and the absence of seismic activity stand in direct contrast to the highly explosive character of the eruption of 1902 to 1903.

  9. Identification of the conserved hypothetical protein BPSL0317 in Burkholderia pseudomallei K96243

    Science.gov (United States)

    Yusoff, Nur Syamimi; Damiri, Nadzirah; Firdaus-Raih, Mohd

    2014-09-01

    Burkholderia pseudomallei K96243 is the causative agent of melioidosis, a disease which is endemic in Northern Australia and Southeastern Asia. The genome encodes several essential proteins including those currently annotated as hypothetical proteins. We studied the conservation and the essentiality of expressed hypothetical proteins in normal and different stress conditions. Based on the comparative genomics, we identified a hypothetical protein, BPSL0317, a potential essential gene that is being expressed in all normal and stress conditions. BPSL0317 is also phylogenetically conserved in the Burkholderiales order suggesting that this protein is crucial for survival among the order's members. BPSL0317 therefore has a potential to be a candidate antimicrobial drug target for this group of bacteria.

  10. Spontaneous Eruption of Premolar Associated with a Dentigerous Cyst

    Directory of Open Access Journals (Sweden)

    Irla Karlinne Ferreira de Carvalho

    2016-01-01

    Full Text Available Dentigerous cyst (DC is the second most common odontogenic cyst with greater incidence in young patients. It presents as a unilocular, asymptomatic radiolucency involving the crown of an impacted tooth, commonly noticed in X-rays to investigate absence, wrong tooth position, or delay in the chronology of eruption. Decompression/marsupialization (D/M is the most implemented treatment, especially when preserving the tooth involved is advised. The aim of this study is to discuss the DC characteristics that contribute to spontaneous eruption of premolars, by reporting the case of a conservative treatment of DC. This eruption depends on factors such as age, angulation of inclusion, rate of root formation, depth of inclusion, and eruption space. This paper reports the case of a 10-year-old patient with a radiolucent lesion diagnosed as DC involving element 35, which erupted as a result of treatment. The patient was observed during 1 year and 6 months.

  11. Spontaneous Eruption of Premolar Associated with a Dentigerous Cyst.

    Science.gov (United States)

    de Carvalho, Irla Karlinne Ferreira; Luna, Anibal Henrique Barbosa

    2016-01-01

    Dentigerous cyst (DC) is the second most common odontogenic cyst with greater incidence in young patients. It presents as a unilocular, asymptomatic radiolucency involving the crown of an impacted tooth, commonly noticed in X-rays to investigate absence, wrong tooth position, or delay in the chronology of eruption. Decompression/marsupialization (D/M) is the most implemented treatment, especially when preserving the tooth involved is advised. The aim of this study is to discuss the DC characteristics that contribute to spontaneous eruption of premolars, by reporting the case of a conservative treatment of DC. This eruption depends on factors such as age, angulation of inclusion, rate of root formation, depth of inclusion, and eruption space. This paper reports the case of a 10-year-old patient with a radiolucent lesion diagnosed as DC involving element 35, which erupted as a result of treatment. The patient was observed during 1 year and 6 months.

  12. Eruption of Mt. Pinatubo and climate of Syowa Station

    Directory of Open Access Journals (Sweden)

    Susumu Kaneto

    1997-03-01

    Full Text Available During the last year of the Antarctic Climate Research (ACR period, two large volcanos erupted. In June 1991,the volcano Pinatubo in the Philippines Islands (15°N, 120°E erupted and injected a large volcanic cloud in to the lower and middle stratosphere. In August 1991,Mt. Hudson in southern Chile (46°S, 73°W erupted; its volcanic cloud reached to 18km. From NOAA/AVHRR data, within 1991,the volcanic aerosol of Pinatubo dispersed mainly in tropical latitudes and that of Hudson spread in the area south of 40°S. The eruption effects are investigated here by comparing meteorological observation results at Syowa Station (69°S, 39°E with global analyses. The optical observations which measure direct effects of eruption materials, show a large effect from late 1991. Abnormal deviations were detected in surface temperature and total ozone amount but the occurrence is retarded relative to global average occurrence. Effects on stratospheric temperature were not detected.

  13. Erupted complex composite odontoma: Report of two atypical cases

    Directory of Open Access Journals (Sweden)

    Preeti Tomar Bhattacharya

    2015-01-01

    Full Text Available Odontomas are nonaggressive, hamartomatous developmental malformations of odontogenic origin. They are considered one of the most common odontogenic lesions composed by diverse dental tissues. They may interfere with the eruption of an associated tooth and are more prevalent in the posterior mandible. The eruption of a complex odontoma into the oral cavity is rare. Here, we report such two rare cases of gigantic erupted complex composite odontomas.

  14. Nuclear collapse observed during the eruption of Mt. Usu

    International Nuclear Information System (INIS)

    Matsumoto, Taka-aki

    2002-01-01

    Mt. Usu which was located about 70 km southwest from Sapporo in Hokkaido (the north island of Japan) began to erupt on March 31 in 2000. A nuclear emulsion was placed on a foot of Mt. Usu to catch small atomic clusters which were expected to be emitted during the eruption. Curious atomic clusters and their reaction products were successfully observed on surfaces of the nuclear emulsion. By comparing them with similar products which were obtained in previous experiments of discharge and electrolysis, it was concluded that micro Ball Lightning was really emitted during the eruption of Mt. Usu and that explosive reactions by nuclear collapse could have been involved to contribute to energy of the eruption. (author)

  15. Osmium isotope variations accompanying the eruption of a single lava flow field in the Columbia River Flood Basalt Province

    Science.gov (United States)

    Vye-Brown, C.; Gannoun, A.; Barry, T. L.; Self, S.; Burton, K. W.

    2013-04-01

    Geochemical interpretations of continental flood basalts usually assume that individual lava flows represent compositionally homogenous and rapidly erupted products of large well-mixed magma reservoirs. However, inflated pāhoehoe lavas may develop over considerable periods of time and preserve chemical variations that can be temporally linked through flow formation to eruption sequence thus providing an understanding of magma evolution over the timescale of a single eruption. This study presents comprehensive major, trace element and Re-Os isotope data for a single eruption that formed the 2660 km3 Sand Hollow flow field in the Columbia River Basalt Province, USA. Major and trace element variations accompanying flow emplacement (e.g. MgO 3.09-4.55 wt%, Ni 17.5-25.6 ppm) are consistent with fractional crystallisation, but other petrogenetic processes or variable sources cannot be distinguished. However, there is a systematic shift in the initial 187Os/188Os isotope composition of the magma (age corrected to 15.27 Ma), from 0.174 (lava core) to 1.444 (lava crust) within a single 35 m thick sheet lobe. Lava crust values are more radiogenic than any known mantle source, consistent with previous data indicating that neither an enriched reservoir nor the sub-continental lithospheric mantle are likely to have sourced these basalts. Rather, these data indicate that lavas emplaced during the earliest stages of eruption have higher degrees of crustal contamination. These results highlight the limitations of applying chemostratigraphic correlation across continental flood basalt provinces, the use of single data points to define melt sources and magmatic processes, and the dangers of using conventional isochron techniques in such basalt sequences for absolute chronology.

  16. Temporal variations in volumetric magma eruption rates of Quaternary volcanoes in Japan

    Science.gov (United States)

    Yamamoto, Takahiro; Kudo, Takashi; Isizuka, Osamu

    2018-04-01

    Long-term evaluations of hazard and risk related to volcanoes rely on extrapolations from volcano histories, including the uniformity of their eruption rates. We calculated volumetric magma eruption rates, compiled from quantitative eruption histories of 29 Japanese Quaternary volcanoes, and analyzed them with respect to durations spanning 101-105 years. Calculated eruption rates vary greatly (101-10-4 km3 dense-rock equivalent/1000 years) between individual volcanoes. Although large basaltic stratovolcanoes tend to have high eruption rates and relatively constant repose intervals, these cases are not representative of the various types of volcanoes in Japan. At many Japanese volcanoes, eruption rates are not constant through time, but increase, decrease, or fluctuate. Therefore, it is important to predict whether eruption rates will increase or decrease for long-term risk assessment. Several temporal co-variations of eruption rate and magmatic evolution suggest that there are connections between them. In some cases, magma supply rates increased in response to changing magma-generation processes. On the other hand, stable plumbing systems without marked changes in magma composition show decreasing eruption rates through time.[Figure not available: see fulltext.

  17. Historic hydrovolcanism at Deception Island (Antarctica): implications for eruption hazards

    Science.gov (United States)

    Pedrazzi, Dario; Németh, Károly; Geyer, Adelina; Álvarez-Valero, Antonio M.; Aguirre-Díaz, Gerardo; Bartolini, Stefania

    2018-01-01

    Deception Island (Antarctica) is the southernmost island of the South Shetland Archipelago in the South Atlantic. Volcanic activity since the eighteenth century, along with the latest volcanic unrest episodes in the twentieth and twenty-first centuries, demonstrates that the volcanic system is still active and that future eruptions are likely. Despite its remote location, the South Shetland Islands are an important touristic destination during the austral summer. In addition, they host several research stations and three summer field camps. Deception Island is characterised by a Quaternary caldera system with a post-caldera succession and is considered to be part of an active, dispersed (monogenetic), volcanic field. Historical post-caldera volcanism on Deception Island involves monogenetic small-volume (VEI 2-3) eruptions such forming cones and various types of hydrovolcanic edifices. The scientific stations on the island were destroyed, or severely damaged, during the eruptions in 1967, 1969, and 1970 mainly due to explosive activity triggered by the interaction of rising (or erupting) magma with surface water, shallow groundwater, and ice. We conducted a detailed revision (field petrology and geochemistry) of the historical hydrovolcanic post-caldera eruptions of Deception Island with the aim to understand the dynamics of magma-water interaction, as well as characterise the most likely eruptive scenarios from future eruptions. We specifically focused on the Crimson Hill (estimated age between 1825 and 1829), and Kroner Lake (estimated age between 1829 and 1912) eruptions and 1967, 1969, and 1970 events by describing the eruption mechanisms related to the island's hydrovolcanic activity. Data suggest that the main hazards posed by volcanism on the island are due to fallout, ballistic blocks and bombs, and subordinate, dilute PDCs. In addition, Deception Island can be divided into five areas of expected activity due to magma-water interaction, providing additional

  18. Volcanic eruptions on Io: Heat flow, resurfacing, and lava composition

    Science.gov (United States)

    Blaney, Diana L.; Johnson, Torrence V.; Matson, Dennis L.; Veeder, Glenn J.

    1995-01-01

    We model an infrared outburst on Io as being due to a large, erupting lava flow which increased its area at a rate of 1.5 x 10(exp 5)/sq m and cooled from 1225 to 555 K over the 2.583-hr period of observation. The inferred effusion rate of 3 x 10(exp 5) cu m/sec for this eruption is very high, but is not unprece- dented on the Earth and is similar to the high eruption rates suggested for early lunar volcanism. Eruptions occur approxi- mately 6% of the time on Io. These eruptions provide ample resurfacing to explain Io's lack of impact craters. We suggest that the large total radiometric heat flow, 10(exp 14) W, and the size and temperature distribution of the thermal anomalies (McEwen et al. 1992; Veeder et al. 1994) can be accounted for by a series of silicate lava flows in various stages of cooling. We propose that the whole suite of Io's currently observed thermal anomalies was produced by multiple, high-eruptive-rate silicate flows within the past century.

  19. ERUPTION PATTERN OF PERMANENT TEETH -IN TANZANIA ...

    African Journals Online (AJOL)

    was visible in the oral vacity. Generally permanent teeth erupted earlier in girls than in boys. The differences were 0.1 - 0.2 years for incisors and first molars, 0.2 - 0.4 years for canines and premolars and 0.3 - 0.5 years for second molars. Except for the second premolars, mandibular teeth erupted earlier than the maxillary in ...

  20. Management of Large Erupting Complex Odontoma in Maxilla

    Directory of Open Access Journals (Sweden)

    Colm Murphy

    2014-01-01

    Full Text Available We present the unusual case of a large complex odontoma erupting in the maxilla. Odontomas are benign developmental tumours of odontogenic origin. They are characterized by slow growth and nonaggressive behaviour. Complex odontomas, which erupt, are rare. They are usually asymptomatic and are identified on routine radiograph but may present with erosion into the oral cavity with subsequent cellulitis and facial asymmetry. This present paper describes the presentation and management of an erupting complex odontoma, occupying the maxillary sinus with extension to the infraorbital rim. We also discuss various surgical approaches used to access this anatomic area.

  1. Global monsoon precipitation responses to large volcanic eruptions

    Science.gov (United States)

    Liu, Fei; Chai, Jing; Wang, Bin; Liu, Jian; Zhang, Xiao; Wang, Zhiyuan

    2016-01-01

    Climate variation of global monsoon (GM) precipitation involves both internal feedback and external forcing. Here, we focus on strong volcanic forcing since large eruptions are known to be a dominant mechanism in natural climate change. It is not known whether large volcanoes erupted at different latitudes have distinctive effects on the monsoon in the Northern Hemisphere (NH) and the Southern Hemisphere (SH). We address this issue using a 1500-year volcanic sensitivity simulation by the Community Earth System Model version 1.0 (CESM1). Volcanoes are classified into three types based on their meridional aerosol distributions: NH volcanoes, SH volcanoes and equatorial volcanoes. Using the model simulation, we discover that the GM precipitation in one hemisphere is enhanced significantly by the remote volcanic forcing occurring in the other hemisphere. This remote volcanic forcing-induced intensification is mainly through circulation change rather than moisture content change. In addition, the NH volcanic eruptions are more efficient in reducing the NH monsoon precipitation than the equatorial ones, and so do the SH eruptions in weakening the SH monsoon, because the equatorial eruptions, despite reducing moisture content, have weaker effects in weakening the off-equatorial monsoon circulation than the subtropical-extratropical volcanoes do. PMID:27063141

  2. Large erupted complex odontoma

    Directory of Open Access Journals (Sweden)

    Vijeev Vasudevan

    2009-01-01

    Full Text Available Odontomas are a heterogeneous group of jaw bone lesions, classified as odontogenic tumors which usually include well-diversified dental tissues. Odontoma is a term introduced to the literature by Broca in 1867. Trauma, infection and hereditary factors are the possible causes of forming this kind of lesions. Among odontogenic tumors, they constitute about 2/3 of cases. These lesions usually develop slowly and asymptomatically, and in most cases they do not cross the bone borders. Two types of odontoma are recognized: compound and complex. Complex odontomas are less common than the compound variety in the ratio 1:2.3. Eruption of an odontoma in the oral cavity is rare. We present a case of complex odontoma, in which apparent eruption has occurred in the area of the right maxillary second molar region.

  3. Reconstructing the paleo-topography and paleo-environmental features of the Sarno River plain (Italy) before the AD 79 eruption of Somma-Vesuvius volcanic complex

    Science.gov (United States)

    Vogel, Sebastian; Märker, Michael

    2010-05-01

    SSP1.4 Understanding mixed siliciclastic-volcaniclastic depositional systems and their relationships with geodynamics or GD2.3/CL4.14/GM5.8/MPRG22/SSP3.5 Reconstruction of ancient continents: Dating and characterization of paleosurfaces Reconstructing the paleo-topography and paleo-environmental features of the Sarno River plain (Italy) before the AD 79 eruption of Somma-Vesuvius volcanic complex Sebastian Vogel[1] & Michael Märker[1] [1] Heidelberg Academy of Sciences and Humanities c/o University of Tübingen, Rümelinstraße 19-23, D-72070 Tübingen, Germany. Within the geoarchaeological research project "Reconstruction of the Ancient Cultural Landscape of the Sarno River Plain" undertaken by the German Archaeological Institute in cooperation with the Heidelberg Academy of Sciences and Humanities/University of Tübingen a methodology was developed to model the spatial dispersion of volcanic deposits of Somma-Vesuvius volcanic complex since its Plinian eruption AD 79. Eventually, this was done to reconstruct the paleo-topography and paleo-environment of the Sarno River plain before the eruption AD 79. We collected, localized and digitized more than 1,800 core drillings to gain a representative network of stratigraphical information covering the entire plain. Besides other stratigraphical data including the characteristics of the pre-AD 79 stratum, the depth to the pre-AD 79 paleo-surface was identified from the available drilling documentation. Instead of applying a simple interpolation of the drilling data, we reconstructed the pre-AD 79 paleo-surface with a sophisticated geostatistical methodology using a machine based learning approach based on classification and regression trees. We hypothesize that the present-day topography reflects the ancient topography, because the eruption of AD 79 coated the ancient topography, leaving ancient physiographic elements of the Sarno River plain still recognizable in the present-day topography. Therefore, a high resolution

  4. Do volcanic eruptions affect climate? Sulfur gases may cause cooling

    Science.gov (United States)

    Self, Stephen; Rampino, Michael R.

    1988-01-01

    The relationship between volcanic eruptions on earth and the observed climatic changes is investigated. The results of the comparison and analyses of volcanologic and climatologic data sets for the years between 1880 and 1980 indicate that changes in temperature caused by even of the largest eruptions recorded during this time were about the same as normal variations in temperature. However, when temperature records for several months or years preceding and following a given eruption were analyzed, a statistically significant temperature decrease of 0.2-0.5 C was found for the periods of one to two years immediately following some of the 19th and 20th century explosive events that prodiced large aerosol clouds (e.g., Krakatau and Agung eruptions). It is suggested that the content of sulfur in the erupted magma determines the size of aerosol cloud producing the cooling effect.

  5. Structural and Functional Annotation of Hypothetical Proteins of O139

    Directory of Open Access Journals (Sweden)

    Md. Saiful Islam

    2015-06-01

    Full Text Available In developing countries threat of cholera is a significant health concern whenever water purification and sewage disposal systems are inadequate. Vibrio cholerae is one of the responsible bacteria involved in cholera disease. The complete genome sequence of V. cholerae deciphers the presence of various genes and hypothetical proteins whose function are not yet understood. Hence analyzing and annotating the structure and function of hypothetical proteins is important for understanding the V. cholerae. V. cholerae O139 is the most common and pathogenic bacterial strain among various V. cholerae strains. In this study sequence of six hypothetical proteins of V. cholerae O139 has been annotated from NCBI. Various computational tools and databases have been used to determine domain family, protein-protein interaction, solubility of protein, ligand binding sites etc. The three dimensional structure of two proteins were modeled and their ligand binding sites were identified. We have found domains and families of only one protein. The analysis revealed that these proteins might have antibiotic resistance activity, DNA breaking-rejoining activity, integrase enzyme activity, restriction endonuclease, etc. Structural prediction of these proteins and detection of binding sites from this study would indicate a potential target aiding docking studies for therapeutic designing against cholera.

  6. Natural radioactivity in volcanic ash from Mt. Pinatubo eruption

    International Nuclear Information System (INIS)

    Duran, E.B.; De Vera, C.M.; Garcia, T.Y.; Dela Cruz, F.M.; Esguerra, L.V.; Castaneda, S.S.

    1992-01-01

    Last June 15, 1991, a major pyroclastic eruption occurred from Mt. Pinatubo volcano located in Zambales, Central Luzon. The radiological impact of this eruption was assessed based on the concentrations of the principal naturally occurring radionuclides observed in volcanic ash. The volcanic ash samples were collected from locations which are within 50-km radius of Mt. Pinatubo at various times after the eruption. The mean activity concentrations in Bq/kg wet weight of the natural radionuclides in volcanic ash were as follows: 12.6 for 238 U, 14.0 for 232 Th and 330 for 40 K. These values are significantly higher than the mean activity concentrations of these radionuclides observed in topsoil in the same provinces before the eruption. This suggests that with the deposition of large quantities of volcanic ash and lahar in Central Luzon and concomitant topographic changes, the distribution and quantities of radionuclides which gave rise to terrestrial radiation may have also changed. Outdoor radon concentrations measured three days and later after the eruption were within normal background values. (auth.). 4 refs.; 5 tabs.; 1 fig

  7. Tooth eruption and browridge formation.

    Science.gov (United States)

    Russell, M D

    1982-05-01

    One of the most reasonable hypotheses regarding the functional significance of the browridge is that the supraorbital torus forms in response to masticatory stress during development. Oyen, Walker, and Rice (1979) have recently proposed a model that tests this hypothesis: if browridges are functionally related to masticatory stresses on the cranial vault, then changes in the biomechanics of the masticatory system ought to be reflected by changes in the browridge. To test their model they attempted to relate biomechanical discontinuities resulting from tooth eruption to episodes of bone deposition on the supraorbital tori of a developmental series of dry Papio crania. This paper reports on a parallel test of the model on a cross-sectional sample of Australian Aboriginal juvenile crania. This sample showed no relation between tooth eruption and the supraorbital surface morphology thought to be indicative of active bone deposition. It is also demonstrated that no significant relationship between tooth eruption and episodes of bone deposition is shown by the Papio sample. It is concluded that the use of small cross-sectional samples of dry crania does not provide a valid test of the model.

  8. Statistical eruption forecast for the Chilean Southern Volcanic Zone: typical probabilities of volcanic eruptions as baseline for possibly enhanced activity following the large 2010 Concepción earthquake

    Directory of Open Access Journals (Sweden)

    Y. Dzierma

    2010-10-01

    Full Text Available A probabilistic eruption forecast is provided for ten volcanoes of the Chilean Southern Volcanic Zone (SVZ. Since 70% of the Chilean population lives in this area, the estimation of future eruption likelihood is an important part of hazard assessment. After investigating the completeness and stationarity of the historical eruption time series, the exponential, Weibull, and log-logistic distribution functions are fit to the repose time distributions for the individual volcanoes and the models are evaluated. This procedure has been implemented in two different ways to methodologically compare details in the fitting process. With regard to the probability of at least one VEI ≥ 2 eruption in the next decade, Llaima, Villarrica and Nevados de Chillán are most likely to erupt, while Osorno shows the lowest eruption probability among the volcanoes analysed. In addition to giving a compilation of the statistical eruption forecasts along the historically most active volcanoes of the SVZ, this paper aims to give "typical" eruption probabilities, which may in the future permit to distinguish possibly enhanced activity in the aftermath of the large 2010 Concepción earthquake.

  9. Concurrent eruptions at Etna, Stromboli, and Vulcano: casualty or causality?

    Directory of Open Access Journals (Sweden)

    R. Funiciello

    2008-06-01

    Full Text Available Anecdotes of concurrent eruptions at Etna, Stromboli, and Vulcano (Southern Italy have persisted for more than 2000 years and volcanologists in recent and past times have hypothesized a causal link among these volcanoes. Here this hypothesis is tested. To introduce the problem and provide examples of the type of expected volcanic phenomena, narratives of the most notable examples of concurrent eruptions are provided. Then the frequency of eruptions at each individual volcano is analysed for about the last 300 years and the expected probability of concurrent eruptions is calculated to compare it to the observed probability. Results show that the occurrence of concurrent eruptions is often more frequent than a random probability, particularly for the Stromboli-Vulcano pair. These results are integrated with a statistical analysis of the earthquake catalogue to find evidence of linked seismicity in the Etnean and Aeolian areas. Results suggest a moderate incidence of non-random concurrent eruptions, but available data are temporally limited and do not allow an unequivocal identification of plausible triggers; our results, however, are the first attempt to quantify a more-than-2000-years-old curious observation and constitute a starting point for more sophisticated analyses of new data in the future. We look forward to our prediction of a moderate incidence of concurrent eruptions being confirmed or refuted with the passage of time and occurrence of new events.

  10. Drug eruptions from phenylbutazone in Jamu.

    Science.gov (United States)

    Giam, Y C; Tham, S N; Tan, T; Lim, A

    1986-01-01

    Drug eruptions from indeginous medicine is often difficult to diagnosis and confirm. It is known that a number of these now supplied by bomohs and Chinese sinsehs contain known drugs and are dispensed as tablets and capsules. We report 3 cases of adverse drug eruption to "Jamu", a Malay herb. A particular brand, "Jamu Indonesia, Toko Air Pancur", from Johor Bahru, Malaysia, is especially recommended for "sakit pinggang" or backache. The cases occurred between January and February 1985, and all had taken brown kidney shaped tablets. The adverse reactions were moderately severe. Two had erythroderma with hepatitis, and one, Steven Johnson Syndrome. Analysis of this jamu for analgesics led to the discovery of adulteration with phenylbutazone and diazepam. Records from local cases from 1974-1984 showed that 8 other patients, all Chinese had adverse cutaneous eruptions from phenylbutazone, oxybutazone and propyphenazone. The skin manifestations were erythroderma (2 cases), vasculitis (2 cases) and toxic epidermal necrolysis (4 cases). Those with toxic epidermal necrolysis had 100% mortality.

  11. Further evidence of close correspondence for alcohol demand decision making for hypothetical and incentivized rewards.

    Science.gov (United States)

    Amlung, Michael; MacKillop, James

    2015-04-01

    Alcohol purchase tasks (APTs) are increasingly being used to assess behavioral economic demand for alcohol. Prior studies utilizing APTs have typically assessed demand for hypothetical outcomes, making the extent to which these hypothetical measures reflect preferences when actual rewards are at stake an important empirical question. This study examined alcohol demand across hypothetical and incentivized APTs. Nineteen male heavy drinkers completed two APTs - one for hypothetical alcohol and another in which one randomly-selected outcome was provided. Participants were given an opportunity to consume the alcohol associated with their choice on the incentivized APT during a self-administration period in a simulated bar environment. Results indicated generally close correspondence between APT versions, though participants were more sensitive to increases in price and tended to consume more at low prices on the incentivized version. Estimated consumption on the incentivized APT was highly correlated with the amount of alcohol consumed in the laboratory (r=.87, pdecision-making when rewards are hypothetical vs. actually available. Implications for behavioral economic approaches to addictive behavior and directions for future research are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Compound composite odontome erupting into the oral cavity: A rare entity

    Directory of Open Access Journals (Sweden)

    Sunira Chandra

    2010-01-01

    Full Text Available Odontomas are the most common odontogenic tumors. They are usually asymptomatic and are often discovered during routine radiography. Eruption of an odontome into the oral cavity is rare. Odontomas are the most common odontogenic tumors. They are usually asymptomatic and are often discovered during routine radiography. Eruption of an odontome into the oral cavity is rare. We report an unusual case of erupting compound composite odontoma. we report an unusual case of erupting compound composite odontoma.

  13. Selective environmental stress from sulphur emitted by continental flood basalt eruptions

    Science.gov (United States)

    Schmidt, Anja; Skeffington, Richard; Thordarson, Thorvaldur; Self, Stephen; Forster, Piers; Rap, Alexandru; Ridgwell, Andy; Fowler, David; Wilson, Marjorie; Mann, Graham; Wignall, Paul; Carslaw, Ken

    2016-04-01

    Several biotic crises during the past 300 million years have been linked to episodes of continental flood basalt volcanism, and in particular to the release of massive quantities of magmatic sulphur gas species. Flood basalt provinces were typically formed by numerous individual eruptions, each lasting years to decades. However, the environmental impact of these eruptions may have been limited by the occurrence of quiescent periods that lasted hundreds to thousands of years. Here we use a global aerosol model to quantify the sulphur-induced environmental effects of individual, decade-long flood basalt eruptions representative of the Columbia River Basalt Group, 16.5-14.5 million years ago, and the Deccan Traps, 65 million years ago. For a decade-long eruption of Deccan scale, we calculate a decadal-mean reduction in global surface temperature of 4.5 K, which would recover within 50 years after an eruption ceased unless climate feedbacks were very different in deep-time climates. Acid mists and fogs could have caused immediate damage to vegetation in some regions, but acid-sensitive land and marine ecosystems were well-buffered against volcanic sulphur deposition effects even during century-long eruptions. We conclude that magmatic sulphur from flood basalt eruptions would have caused a biotic crisis only if eruption frequencies and lava discharge rates had been high and sustained for several centuries at a time.

  14. Effects of megascale eruptions on Earth and Mars

    Science.gov (United States)

    Thordarson, T.; Rampino, M.; Keszthelyi, L.P.; Self, S.

    2009-01-01

    Volcanic features are common on geologically active earthlike planets. Megascale or "super" eruptions involving >1000 Gt of magma have occurred on both Earth and Mars in the geologically recent past, introducing prodigious volumes of ash and volcanic gases into the atmosphere. Here we discuss felsic (explosive) and mafi c (flood lava) supereruptions and their potential atmospheric and environmental effects on both planets. On Earth, felsic supereruptions recur on average about every 100-200,000 years and our present knowledge of the 73.5 ka Toba eruption implies that such events can have the potential to be catastrophic to human civilization. A future eruption of this type may require an unprecedented response from humankind to assure the continuation of civilization as we know it. Mafi c supereruptions have resulted in atmospheric injection of volcanic gases (especially SO2) and may have played a part in punctuating the history of life on Earth. The contrast between the more sustained effects of flood basalt eruptions (decades to centuries) and the near-instantaneous effects of large impacts (months to years) is worthy of more detailed study than has been completed to date. Products of mafi c supereruptions, signifi cantly larger than known from the geologic record on Earth, are well preserved on Mars. The volatile emissions from these eruptions most likely had global dispersal, but the effects may not have been outside what Mars endures even in the absence of volcanic eruptions. This is testament to the extreme variability of the current Martian atmosphere: situations that would be considered catastrophic on Earth are the norm on Mars. ?? 2009 The Geological Society of America.

  15. Search for heavy neutrino in K{sup +} → μ{sup +}ν{sub H} decay

    Energy Technology Data Exchange (ETDEWEB)

    Sadovsky, A.S.; Kurshetsov, V.F.; Filin, A.P.; Akimenko, S.A.; Artamonov, A.V.; Blik, A.M.; Brekhovskikh, V.V.; Burtovoy, V.S.; Donskov, S.V.; Gorin, A.M.; Inyakin, A.V.; Khaustov, G.V.; Kholodenko, S.A.; Kolosov, V.N.; Konstantinov, A.S.; Leontiev, V.M.; Lishin, V.A.; Medynsky, M.V.; Mikhailov, Yu.V.; Obraztsov, V.F.; Polyakov, V.A.; Popov, A.V.; Romanovsky, V.I.; Rykalin, V.I.; Samoilenko, V.D.; Semenov, V.K.; Stenyakin, O.V.; Tchikilev, O.G.; Uvarov, V.A.; Yushchenko, O.P. [NRC ' ' Kurchatov Institute' ' -IHEP, Protvino (Russian Federation); Bychkov, V.N.; Kekelidze, G.D.; Lysan, V.M.; Zalikhanov, B.Zh. [Joint Institute of Nuclear Research, Dubna (Russian Federation); Duk, V.A.; Filippov, S.N.; Gushchin, E.N.; Khudyakov, A.A.; Kravtsov, V.I.; Kudenko, Yu.G.; Polyarush, A.Yu. [Institute for Nuclear Research, Russian Academy of Sciences, Moscow (Russian Federation)

    2018-02-15

    A high statistics data sample of the K{sup +} → μ{sup +}ν{sub μ} decay was accumulated by the OKA experiment in 2012. The missing mass analysis was performed to search for the decay channel K{sup +} → μ{sup +}ν{sub H} with a hypothetic stable heavy neutrino in the final state. The obtained missing mass spectrum does not show peaks that could be attributed to existence of stable heavy neutrinos in the mass range (270 < m{sub ν{sub H}} < 375) MeV/c{sup 2}. As a result, upper limits on the branching ratio and on the value of the mixing element vertical stroke U{sub μH} vertical stroke {sup 2} are obtained. (orig.)

  16. Shallow conduit processes of the 1991 Hekla eruption, Iceland

    Science.gov (United States)

    Gudnason, J.; Thordarson, T.; Houghton, B. F.

    2013-12-01

    On January 17, 1991 at 17:00 hrs, the 17th eruption of Hekla since 1104AD began. Lasting for almost two months, it produced 0.02 km3 of icelandite tephra and ~0.15km3 of icelandite lava. This eruption was the third of four eruptions since 1980 with a recurrence period of approximately 10 years, as opposed to a recurrence interval of c. 55 years for the eruptions in the period 1104AD to 1947AD. [1] The last four Hekla eruptions are typified by a 0.5-2 hour-long initial phase of subplinian intensity and discharge ranging from 2900-6700 m3/s [2]. In all 4 events the inital phase was followed by a sustained and relatively low-discharge(sorted tephra fall covering >20,000 km2. Here we examine the first phase of the Hekla 1991 eruption with focus on vesiculation and fragmentation processes in the shallow conduit and ash production. Samples of the tephra fall were collected on snow immediately after the initial phase at multiple sites providing a representative spatial coverage within the 0.1mm isopach [3]. This set was augmented by samples collected in 2012 to provide tighter coverage of near vent region. Grain size of all samples has been measured down to 1 micron. Density measurements have been conducted on 4 near-vent pumice samples (100 clasts each) and the pumice vesicle size distribution has been determined in a selected subset of clasts. The reconstructed whole deposit grain size distribution exhibits a unimodal, log-normal distribution peaking at -3 phi, typical of dry, magmatic fragmentation. Pumice densities range from 520-880 kg/m3 and exhibit a tight unimodal and log-normal distribution indicating a mean vesicularity of 77% to 79% for the magma erupted during the initial phase. Along with preliminary results for bubble number density and vesicle size distribution this implies a single late-stage homogeneous bubble nucleation and very uniform conditions of magma fragmentation during this short-lived initial phase of the Hekla 1991 eruption. 1. Gudmundsson, A

  17. Interdisciplinary Studies of Eruption at Chaitén Volcano, Chile

    Science.gov (United States)

    Pallister, John S.; Major, Jon J.; Pierson, Thomas C.; Hoblitt, Richard P.; Lowenstern, Jacob B.; Eichelberger, John C.; Lara, Luis; Moreno, Hugo; Muñoz, Jorge; Castro, Jonathan M.; Iroumé, Andrés; Andreoli, Andrea; Jones, Julia; Swanson, Fred; Crisafulli, Charlie

    2010-10-01

    High-silica rhyolite magma fuels Earth's largest and most explosive eruptions. Recurrence intervals for such highly explosive eruptions are in the 100- to 100,000­year time range, and there have been few direct observations of such eruptions and their immediate impacts. Consequently, there was keen interest within the volcanology community when the first large eruption of high-silica rhyolite since that of Alaska's Novarupta volcano in 1912 began on 1 May 2008 at Chaitén volcano, southern Chile, a 3-kilometer­diameter caldera volcano with a prehistoric record of rhyolite eruptions [Naranjo and Stern, 2004; Servicio Nacional de Geología y Minería (SERNAGEOMIN), 2008; Carn et al., 2009; Castro and Dingwell, 2009; Lara, 2009; Muñoz et al., 2009]. Vigorous explosions occurred through 8 May 2008, after which explosive activity waned and a new lava dome was extruded.

  18. Post-eruptive flooding of Santorini caldera and implications for tsunami generation

    Science.gov (United States)

    Nomikou, P.; Druitt, T. H.; Hübscher, C.; Mather, T. A.; Paulatto, M.; Kalnins, L. M.; Kelfoun, K.; Papanikolaou, D.; Bejelou, K.; Lampridou, D.; Pyle, D. M.; Carey, S.; Watts, A. B.; Weiß, B.; Parks, M. M.

    2016-01-01

    Caldera-forming eruptions of island volcanoes generate tsunamis by the interaction of different eruptive phenomena with the sea. Such tsunamis are a major hazard, but forward models of their impacts are limited by poor understanding of source mechanisms. The caldera-forming eruption of Santorini in the Late Bronze Age is known to have been tsunamigenic, and caldera collapse has been proposed as a mechanism. Here, we present bathymetric and seismic evidence showing that the caldera was not open to the sea during the main phase of the eruption, but was flooded once the eruption had finished. Inflow of water and associated landsliding cut a deep, 2.0–2.5 km3, submarine channel, thus filling the caldera in less than a couple of days. If, as at most such volcanoes, caldera collapse occurred syn-eruptively, then it cannot have generated tsunamis. Entry of pyroclastic flows into the sea, combined with slumping of submarine pyroclastic accumulations, were the main mechanisms of tsunami production. PMID:27824353

  19. The spatial and temporal `cost' of volcanic eruptions: assessing economic impact, business inoperability, and spatial distribution of risk in the Auckland region, New Zealand

    Science.gov (United States)

    McDonald, Garry W.; Smith, Nicola J.; Kim, Joon-hwan; Cronin, Shane J.; Proctor, Jon N.

    2017-07-01

    Volcanic risk assessment has historically concentrated on quantifying the frequency, magnitude, and potential diversity of physical processes of eruptions and their consequent impacts on life and property. A realistic socio-economic assessment of volcanic impact must however take into account dynamic properties of businesses and extend beyond only measuring direct infrastructure/property loss. The inoperability input-output model, heralded as one of the 10 most important accomplishments in risk analysis over the last 30 years (Kujawaski Syst Eng. 9:281-295, 2006), has become prominent over the last decade in the economic impact assessment of business disruptions. We develop a dynamic inoperability input-output model to assess the economic impacts of a hypothetical volcanic event occurring at each of 7270 unique spatial locations throughout the Auckland Volcanic Field, New Zealand. This field of at least 53 volcanoes underlies the country's largest urban area, the Auckland region, which is home to 1.4 million people and responsible for 35.3% (NZ201481.2 billion) of the nation's GDP (Statistics New Zealand 2015). We apply volcanic event characteristics for a small-medium-scale volcanic eruption scenario and assess the economic impacts of an `average' eruption in the Auckland region. Economic losses are quantified both with, and without, business mitigation and intervention responses in place. We combine this information with a recent spatial hazard probability map (Bebbington and Cronin Bull Volcanol. 73(1):55-72, 2011) to produce novel spatial economic activity `at risk' maps. Our approach demonstrates how business inoperability losses sit alongside potential life and property damage assessment in enhancing our understanding of volcanic risk mitigation.

  20. Special issue “The phreatic eruption of Mt. Ontake volcano in 2014”

    Science.gov (United States)

    Yamaoka, Koshun; Geshi, Nobuo; Hashimoto, Tasheki; Ingebritsen, Steven E.; Oikawa, Teruki

    2016-01-01

    Mt. Ontake volcano erupted at 11:52 on September 27, 2014, claiming the lives of at least 58 hikers. This eruption was the worst volcanic disaster in Japan since the 1926 phreatic eruption of Mt. Tokachidake claimed 144 lives (Table 1). The timing of the eruption contributed greatly to the heavy death toll: near midday, when many hikers were near the summit, and during a weekend of clear weather conditions following several rainy weekends. The importance of this timing is reflected by the fact that a somewhat larger eruption of Mt. Ontake in 1979 resulted in injuries but no deaths. In 2014, immediate precursors were detected with seismometers and tiltmeters about 10 min before the eruption, but the eruption started before a warning was issued.

  1. Monitoring a restless volcano: The 2004 eruption of Mount St. Helens

    Science.gov (United States)

    Gardner, C.

    2005-01-01

    Although the precise course of volcanic activity is difficult to predict, volcanologists are pretty adept at interpreting volcanic signals from well-monitored volcanoes in order to make short-term forecasts. Various monitoring tools record effects to give us warning before eruptions, changes in eruptive behavior during eruptions, or signals that an eruption is ending. Foremost among these tools is seismic monitoring. The character, size, depth and rate of earthquakes are all important to the interpretation of what is happening belowground. The first inkling of renewed activity at Mount St. Helens began in the early hours of Sept. 23, when a seismic swarm - tens to hundreds of earthquakes over days to a week - began beneath the volcano. This article details the obervations made during the eruptive sequence.

  2. Water-magma interaction and plume processes in the 2008 Okmok eruption, Alaska

    Science.gov (United States)

    Unema, Joel; Ort, Michael H.; Larsen, Jessica D; Neal, Christina; Schaefer, Janet R.

    2016-01-01

    Eruptions of similar explosivity can have divergent effects on the surroundings due to differences in the behavior of the tephra in the eruption column and atmosphere. Okmok volcano, located on Umnak Island in the eastern Aleutian Islands, erupted explosively between 12 July and 19 August 2008. The basaltic andesitic eruption ejected ∼0.24 km3dense rock equivalent (DRE) of tephra, primarily directed to the northeast of the vent area. The first 4 h of the eruption produced dominantly coarse-grained tephra, but the following 5 wk of the eruption deposited almost exclusively ash, much of it very fine and deposited as ash pellets and ashy rain and mist. Meteorological storms combined with abundant plume water to efficiently scrub ash from the eruption column, with a rapid decrease in deposit thickness with distance from the vent. Grain-size analysis shows that the modes (although not their relative proportions) are very constant throughout the deposit, implying that the fragmentation mechanisms did not vary much. Grain-shape features consistent with molten fuel-coolant interaction are common. Surface and groundwater drainage into the vents provided the water for phreatomagmatic fragmentation. The available water (water that could reach the vent area during the eruption) was ∼2.8 × 1010 kg, and the erupted magma totaled ∼7 × 1011 kg, which yield an overall water:magma mass ratio of ∼0.04, but much of the water was not interactive. Although magma flux dropped from 1 × 107 kg/s during the initial 4 h to 1.8 × 105 kg/s for the remainder of the eruption, most of the erupted material was ejected during the lower-mass-flux period due to its much greater length, and this tephra was dominantly deposited within 10 km downwind of the vent. This highlights the importance of ash scrubbing in the evaluation of hazards from explosive eruptions.

  3. Eruptions and superhumps in dwarf novae

    International Nuclear Information System (INIS)

    Patterson, J.

    1979-01-01

    The existence of two distinct eruption types in dwarf novae is considered. A small subclass of dwarf novae, the SU Ursae Majoris stars, show occasional very bright and long eruptions (''supermaxima''), and during supermaxima, large-amplitude photometric variations (''superhumps'') at a period related to the orbital period are seen. Two new stars showing these effects, AY Lyrae and YZ Cancri, are reported. A third star, WZ Sagittae, is probably also a member of the class. Models for the superhumps are reviewed and found to be unsatisfactory. Observational constraints on a successful model are discussed

  4. May 2011 eruption of Telica Volcano, Nicaragua: Multidisciplinary observations

    Science.gov (United States)

    Witter, M. R.; Geirsson, H.; La Femina, P. C.; Roman, D. C.; Rodgers, M.; Muñoz, A.; Morales, A.; Tenorio, V.; Chavarria, D.; Feineman, M. D.; Furman, T.; Longley, A.

    2011-12-01

    Telica volcano, an andesitic stratovolcano in north-western Nicaragua, erupted in May 2011. The eruption, produced ash but no lava and required the evacuation of over 500 people; no injuries were reported. We present the first detailed report of the eruption, using information from the TElica Seismic ANd Deformation (TESAND) network, that provides real-time data, along with visual observations, ash leachate analysis, and fumarole temperature measurements. Telica is located in the Maribios mountain range. It is one of the most active volcanoes in Nicaragua and has frequent small explosions and rare large (VEI 4) eruptions, with the most recent sizable eruptions (VEI 2) occurring in 1946 and 1999. The 2011 eruption is the most explosive since 1999. The eruption consisted of a series of ash explosions, with the first observations from May 8, 2011 when local residents reported ash fall NE of the active crater. Popping sounds could be heard coming from the crater on May 10. On May 13, the activity intensified and continued with some explosions every day for about 2 weeks. The well-defined plumes originated from the northern part of the crater. Ash fall was reported 4 km north of the active crater on May 14. The largest explosion at 2:54 pm (local time) on May 21 threw rocks from the crater and generated a column 2 km in height. Fresh ash samples were collected on May 16, 18, and 21 and preliminary inspection shows that the majority of the material is fragmented rock and crystalline material, i.e. not juvenile. Ash leachates (ash:water = 1:25) contain a few ppb As, Se, and Cd; tens of ppb Co and Ni; and up to a few hundred ppb Cu and Zn. Telica typically has hundreds of small seismic events every day, even when the volcano is not erupting. The TESAND network detected an increase in the rate and magnitude of seismic activity, with a maximum magnitude of 3.3. Elevated fumarole temperatures at locations near the active vent were also observed throughout the May 2011

  5. The mechanisms of fine particle generation and electrification during Mount St. Helens volcanic eruption

    Science.gov (United States)

    Cheng, R. J.

    1982-01-01

    Microscopical investigation of volcanic ash collected from ground stations during Mount St. Helens eruptions reveal a distinctive bimodel size distribution with high concentrations of particle ranges at (1) 200-100 microns and (2) 20-0.1 microns. Close examination of individual particles shows that most larger ones are solidified magma particles of porous pumice with numerous gas bubbles in the interior and the smaller ones are all glassy fragments without any detectable gas bubbles. Elemental analysis demonstrates that the fine fragments all have a composition similar to that of the larger pumice particles. Laboratory experiments suggest that the formation of the fine fragments is by bursting of glassy bubbles from a partially solidified surface of a crystallizing molten magma particle. The production of gas bubbles is due to the release of absorbed gases in molten magma particles when solubility decreases during phase transition. Diffusion cloud chamber experiments strongly indicate that sub-micron volcanic fragments are highly hygroscopic and extremely active as cloud condensation nuclei. Ice crystals also are evidently formed on those fragments in a supercooled (-20 C) cloud chamber. It has been reported that charge generation from ocean volcanic eruptions is due to contact of molten lava with sea water. This seems to be insufficient to explain the observed rapid and intense lightning activities over Mount St. Helens eruptions. Therefore, a hypothesis is presented here that highly electrically charged fine solid fragments are ejected by bursting of gas bubbles from the surface of a crystallizing molten magma particles.

  6. Volcanic precursors in light of eruption mechanisms at Vesuvius

    Directory of Open Access Journals (Sweden)

    Roberto Scandone

    2013-11-01

    Full Text Available Vesuvius entered a quiescent stage after the eruption of March-April 1944. The eruption was not much different or larger than other before, like for example the one of 1906, but it occurred at the end of a long period during which it was observed a decreasing trend of explosivity of eruptions [Scandone et al. 2008]. The parallel increase in the frequency of slow effusive eruptions, with respect to violent strombolian eruptions, point out to a process of average slower rate of magma ascent possibly due to a progressive sealing of the ascent path of magma to the surface. The small caldera collapse following the 1944 explosive phase effectively sealed the upper conduit, and since then the volcano entered a quiescence stage that was unusual with respect to the pattern of activity of the previous 300 years when the maximum repose time had been of 7 years (after the eruption of 1906. Most of the uncertainty on the duration of the present stage and character of a future renewal of activity derives by the basic questions regarding the nature of the current repose: due to a diminished supply of magma, related with structural condition or a sealing of the upper ascent path to the surface? Possibly the variation of structural conditions caused average slower ascent rates of magma favoring its cooling in the upper part of the crust, and effectively sealing the ascent path.

  7. Combining aptamers and in silico interaction studies to decipher the function of hypothetical proteins

    DEFF Research Database (Denmark)

    Suravajhala, Prashanth; Burri, Harsha Vardhan Reddy; Heiskanen, Arto

    2014-01-01

    We present the potential role of aptamers in elucidating the function of hypothetical proteins, as well as the possibilities provided by bioinformatics for establishing a benchmark for aptamer-protein prediction methods. With these future perspectives, the role of hypothetical proteins as target ...... molecules for diagnostics and therapies could prove to be very useful in development of medical technology....

  8. Calcium substitution in rare-earth metal germanides with the hexagonal Mn{sub 5}Si{sub 3} structure type. structural characterization of the extended series RE{sub 5–x}Ca{sub x}Ge{sub 3} (RE=Rare-earth metal)

    Energy Technology Data Exchange (ETDEWEB)

    Suen, Nian-Tzu; Broda, Matthew; Bobev, Svilen, E-mail: bobev@udel.edu

    2014-09-15

    Reported are the synthesis and the structural characterization of an extended family of rare-earth metal–germanides with a general formula RE{sub 5–x}Ca{sub x}Ge{sub 3} (RE=Y, Ce–Nd, Sm, Gd–Tm and Lu; x<2). All twelve phases are isotypic, crystallizing with the Mn{sub 5}Si{sub 3} structure type (Pearson index hP16, hexagonal space group P6{sub 3}/mcm); they are the Ca-substituted variants of the corresponding RE{sub 5}Ge{sub 3} binaries. Across the series, despite some small variations in the Ca-uptake, the unit cell volumes decrease monotonically, following the lanthanide contraction. Temperature dependent DC magnetization measurements reveal paramagnetic behavior in the high temperature range, and the obtained effective moments are consistent with free-ion RE{sup 3+} ground state, as expected from prior studies of the binary RE{sub 5}Ge{sub 3} phases. The onset of magnetic ordering is observed in the low temperature range, and complex magnetic interactions (ferromagnetic/ferrimagnetic) can be inferred, different from the binary phases RE{sub 5}Ge{sub 3}, which are known as antiferromagnetic. In order to understand the role of Ca in the bonding, the electronic structures of the La{sub 5}Ge{sub 3} and the hypothetical compounds La{sub 2}Ca{sub 3}Ge{sub 3} and La{sub 3}Ca{sub 2}Ge{sub 3} with ordered metal atoms are compared and discussed. - Graphical abstract: The family of rare-earth metal–calcium–germanides with the general formula RE{sub 5–x}Ca{sub x}Ge{sub 3} (RE=Y, Ce–Nd, Sm, Gd–Tm and Lu) crystallize in the hexagonal space group P6{sub 3}/mcm (No. 193, Pearson symbol hP16) with a structure that is a variant of the Mn{sub 5}Si{sub 3} structure type. - Highlights: • The newly synthesized RE{sub 5–x}Ca{sub x}Ge{sub 3} (RE=Y, Ce–Nd, Sm, Gd–Tm and Lu) constitute an extended family. • The structure is a substitution variant of the hexagonal Mn{sub 5}Si{sub 3} structure type. • Ca-uptake is the highest in the early members, and

  9. Impacts of a Pinatubo-size volcanic eruption on ENSO

    KAUST Repository

    Predybaylo, Evgeniya; Stenchikov, Georgiy L.; Wittenberg, Andrew T.; Zeng, Fanrong

    2017-01-01

    Observations and model simulations of the climate responses to strong explosive low-latitude volcanic eruptions suggest a significant increase in the likelihood of El Niño during the eruption and posteruption years, though model results have been

  10. Eruption of a boundary layer induced by a 2D vortex patch

    International Nuclear Information System (INIS)

    Kudela, H; Malecha, Z M

    2009-01-01

    The boundary-layer eruption phenomenon caused by a 2D patch of vorticity above a wall was investigated. It is shown that the eruption phenomenon depends on the viscosity (or Reynolds number, Re) of the fluid. There exists a threshold value of Re above which the eruption takes place. The initiation of the eruption goes through the creation of a small recirculation zone near the solid wall, the appearance of the saddle point on streamlines inside it and the tearing off process of the recirculation zone. Further increase of the Reynolds number causes a more complex flow. One can observe that eruption is regenerative and that the vortex patch can produce a cascade of secondary vortices. The vortex-in-cell method was employed to investigate the eruption phenomenon.

  11. Immune sensitization against epidermal antigens in polymorphous light eruption

    International Nuclear Information System (INIS)

    Gonzalez-Amaro, R.; Baranda, L.; Salazar-Gonzalez, J.F.; Abud-Mendoza, C.; Moncada, B.

    1991-01-01

    To get further insight into the pathogenesis of polymorphous light eruption, we studied nine patients with polymorphous light eruption and six healthy persons. Two skin biopsy specimens were obtained from each person, one from previously ultraviolet light-irradiated skin and another one from unirradiated skin. An epidermal cell suspension, skin homogenate, or both were prepared from each specimen. Autologous cultures were made with peripheral blood mononuclear cells combined with irradiated or unirradiated skin homogenate and peripheral blood mononuclear cells combined with irradiated or unirradiated epidermal cell suspension. Cell proliferation was assessed by 3H-thymidine incorporation assay. The response of peripheral blood mononuclear cells to unirradiated epidermal cells or unirradiated skin homogenate was similar in both patients and controls. However, peripheral blood mononuclear cells from patients with polymorphous light eruption showed a significantly increased proliferative response to both irradiated epidermal cells and irradiated skin homogenate. Our results indicate that ultraviolet light increases the stimulatory capability of polymorphous light eruption epidermal cells in a unidirectional mixed culture with autologous peripheral blood mononuclear cells. This suggests that an immune sensitization against autologous ultraviolet light-modified skin antigens occurs in polymorphous light eruption

  12. Fixed drug eruption resulting from fluconazole use: a case report

    Directory of Open Access Journals (Sweden)

    Tavallaee Mahkam

    2009-07-01

    Full Text Available Abstract Introduction Fluconazole is a widely used antifungal agent with a possible side effect of fixed drug eruption. However, this adverse drug effect is absent from the reported list of possible side effects of fluconazole. We are presenting a rare case in our report. Case presentation A 25-year-old Iranian woman developed fixed drug eruptions on different sites of her body after taking five doses of fluconazole to treat vaginal candidiasis. A positive patch test, positive oral challenge test and skin biopsy were all found to be consistent with fixed drug eruption. Conclusion Fluconazole is a widely prescribed drug, used mainly to treat candidiasis. Fixed drug eruption as a possible side effect of Fluconazole is not well known and thus, the lesions may be misdiagnosed and mistreated. Based on our findings, which are consistent with a number of other practitioners, we recommend adding fixed drug eruption to the list of possible side effects of fluconazole.

  13. Demand curves for hypothetical cocaine in cocaine-dependent individuals.

    Science.gov (United States)

    Bruner, Natalie R; Johnson, Matthew W

    2014-03-01

    Drug purchasing tasks have been successfully used to examine demand for hypothetical consumption of abused drugs including heroin, nicotine, and alcohol. In these tasks, drug users make hypothetical choices whether to buy drugs, and if so, at what quantity, at various potential prices. These tasks allow for behavioral economic assessment of that drug's intensity of demand (preferred level of consumption at extremely low prices) and demand elasticity (sensitivity of consumption to price), among other metrics. However, a purchasing task for cocaine in cocaine-dependent individuals has not been investigated. This study examined a novel Cocaine Purchasing Task and the relation between resulting demand metrics and self-reported cocaine use data. Participants completed a questionnaire assessing hypothetical purchases of cocaine units at prices ranging from $0.01 to $1,000. Demand curves were generated from responses on the Cocaine Purchasing Task. Correlations compared metrics from the demand curve to measures of real-world cocaine use. Group and individual data were well modeled by a demand curve function. The validity of the Cocaine Purchasing Task was supported by a significant correlation between the demand curve metrics of demand intensity and O max (determined from Cocaine Purchasing Task data) and self-reported measures of cocaine use. Partial correlations revealed that after controlling for demand intensity, demand elasticity and the related measure, P max, were significantly correlated with real-world cocaine use. Results indicate that the Cocaine Purchasing Task produces orderly demand curve data, and that these data relate to real-world measures of cocaine use.

  14. Volcanic eruptions and solar activity

    Science.gov (United States)

    Stothers, Richard B.

    1989-01-01

    The historical record of large volcanic eruptions from 1500 to 1980 is subjected to detailed time series analysis. In two weak but probably statistically significant periodicities of about 11 and 80 yr, the frequency of volcanic eruptions increases (decreases) slightly around the times of solar minimum (maximum). Time series analysis of the volcanogenic acidities in a deep ice core from Greenland reveals several very long periods ranging from about 80 to about 350 yr which are similar to the very slow solar cycles previously detected in auroral and C-14 records. Solar flares may cause changes in atmospheric circulation patterns that abruptly alter the earth's spin. The resulting jolt probably triggers small earthquakes which affect volcanism.

  15. Smelters as Analogs for a Volcanic Eruption at Yucca Mountain

    International Nuclear Information System (INIS)

    Ross, Benjamin

    2004-01-01

    The distribution of trace radionuclides in secondary metal smelters provides an analog for spent fuel released from packages during a volcanic eruption. The fraction of the inventory of a radionuclide that would be released into the air in a volcanic eruption is called the dust partitioning factor. In consequence analyses of a volcanic eruption at Yucca Mountain, a value of one has been used for this parameter for all elements. This value is too high for the refractory elements. Reducing the dust partitioning factor for refractory elements to a value equal to the fraction of the magma that becomes ash would still yield conservative estimates of how much radioactivity would be released in an eruption

  16. Volcanic Ash Impacts on Air Traffic from the 2009 Mt. Redoubt Eruption

    Science.gov (United States)

    Murray, J. J.; Matus, A. V.; Hudnall, L. A.; Krueger, A. J.; Haynes, J. A.; Pippin, M. R.

    2009-12-01

    The dispersion of volcanic ash during the March 2009 eruption of Mt. Redoubt created the potential for major problems for aviation. Mt. Redoubt is located 110 km west-southwest of Alaska Airlines hub in Anchorage. It last erupted in 1990 and caused an estimated $101 million cost to the aviation industry (Waythomas, 1998). This study was conducted to assist in improving warning systems, policy and procedures for addressing the impact of volcanic ash on aviation. The study had two primary components. First, the altitude and extent of SO2 dispersion was determined through analysis of synoptic meteorological conditions and satellite imagery. Second, impacts on aviation from the volcanic ash dispersion were investigated. OMI SO2 column measurements were employed to assess the altitude and extent of SO2 dispersion of volcanic ash. To accomplish this, OMI data were assimilated with CALIPSO backscatter profiles, geopotential height plots, and HYSPLIT forward model trajectories. Volcanic Ash Advisories were compared to airport and pilot reports to assess aviation impacts. The eruption produced a complex dispersion of volcanic ash. Volcanic ash altitudes estimated for 23 March 2009 indicate that the majority of the plume remained at approximately 8 km, although reports indicate that the initial plume may have reached as high as18 km (60,000 ft). A low pressure system which passed over the eruption area appears to have entrained most of the ash at approximately 8 km, however the CALIPSO satellite indicates that dispersion also extended to 10 km and 16 km. Atmospheric patterns suggest dispersion at approximately 3 km near Hudson Bay. Analysis of 25 March 2009 indicates that much of the ash plume was dispersed at higher altitudes, where CALIPSO data locates the stratospheric ash plume at approximately 14 km above mean sea level. By the time the eruptions had subsided in April, Alaska Airlines had cancelled 295 flights and disrupted the flights of over 20,000 passengers. This

  17. Fertility of the early post-eruptive surfaces of Kasatochi Island volcano

    Science.gov (United States)

    Michaelson, G. J.; Wang, Bronwen; Ping, C. L.

    2016-01-01

    In the four years after the 2008 eruption and burial of Kasatochi Island volcano, erosion and the return of bird activity have resulted in new and altered land surfaces and initiation of ecosystem recovery. We examined fertility characteristics of the recently deposited pyroclastic surfaces, patches of legacy pre-eruptive surface soil (LS), and a post-eruptive surface with recent bird roosting activity. Pyroclastic materials were found lacking in N, but P, K, and other macronutrients were in sufficient supply for plants. Erosion and leaching are moving mobile P and Fe downslope to deposition fan areas. Legacy soil patches that currently support plants have available-N at levels (10–22 mg N kg-1) similar to those added by birds in a recent bird roosting area. Roosting increased surface available N from fertile pre-eruptive soils and erosion-mixing of pre-eruptive soils with newly erupted materials, along with inputs of nutrients from bird activities, each will exert significant influences on the surface fertility and recovery pattern of the new post-eruptive Kasatochi volcano. For this environment, these influences could help to speed recovery of a more diverse plant community by providing N (LS and bird inputs) as alternatives to relying most heavily on N-fixing plants to build soil fertility.

  18. Historical evidence for a connection between volcanic eruptions and climate change

    Science.gov (United States)

    Rampino, Michael R.

    1991-01-01

    The times of historical volcanic aerosol clouds were compared with changes in atmospheric temperatures on regional, hemispheric, and global scales. These involve either a direct comparison of individual significant eruption years with temperature records, or a comparison of eruption years with composited temperature records for several years before and after chosen sets of eruptions. Some studies have challenged the connection between individual eruptions and climate change. Mass and Portman (1989) recently suggested that the volcanic signal was present, but smaller than previously thought. In a study designed to test the idea that eruptions could cause small changes in climate, Hansen and other (1978) chose one of the best monitored eruptions at the time, the 1963 eruption of Agung volcano on the island of Bali. Using a simple radiation-balance model, in which an aerosol cloud in the tropics was simulated, this basic pattern of temperature change in the tropics and subtropics was reproduced. There may be natural limits to the atmospheric effects of any volcanic eruption. Self-limiting physical and chemical effects in eruption clouds were proposed. Model results suggest that aerosol microphysical processes of condensation and coagulation produce larger aerosols as the SO2 injection rate is increased. The key to discovering the greatest effects of volcanoes on short-term climate may be to concentrate on regional temperatures where the effects of volcanic aerosol clouds can be amplified by perturbed atmospheric circulation patterns, especially changes in mid-latitudes where meridional circulation patterns may develop. Such climatic perturbations can be detected in proxy evidence such as decreases in tree-ring widths and frost damage rings in climatically sensitive parts of the world, changes in treelines, weather anomalies such as unusually cold summers, severity of sea-ice in polar and subpolar regions, and poor grain yields and crop failures.

  19. Interdisciplinary studies of eruption at Chaiten Volcano, Chile

    Science.gov (United States)

    John S. Pallister; Jon J. Major; Thomas C. Pierson; Richard P. Hoblitt; Jacob B. Lowenstern; John C. Eichelberger; Lara. Luis; Hugo Moreno; Jorge Munoz; Jonathan M. Castro; Andres Iroume; Andrea Andreoli; Julia Jones; Fred Swanson; Charlie Crisafulli

    2010-01-01

    There was keen interest within the volcanology community when the first large eruption of high-silica rhyolite since that of Alaska's Novarupta volcano in 1912 began on 1 May 2008 at Chaiten volcano, southern Chile, a 3-kilometer-diameter caldera volcano with a prehistoric record of rhyolite eruptions. Vigorous explosions occurred through 8 May 2008, after which...

  20. Erupting complex odontoma: Report of a rare case

    Directory of Open Access Journals (Sweden)

    Pinakapani Ramakrishna

    2014-01-01

    Full Text Available Odontomas are the most frequent hamartomatous lesions involving the oral cavity. The complex variant is an agglomerate of all dental tissues characterized by abnormal morphodifferentiation despite normal histodifferentiation. These are usually asymptomatic and are frequently associated with eruption disturbances. We report an unusual case of erupting complex odontoma associated with an impacted maxillary second molar.

  1. Assessment of the atmospheric impact of volcanic eruptions

    Science.gov (United States)

    Sigurdsson, H.

    1988-01-01

    The dominant global impact of volcanic activity is likely to be related to the effects of volcanic gases on the Earth's atmosphere. Volcanic gas emissions from individual volcanic arc eruptions are likely to cause increases in the stratospheric optical depth that result in surface landmass temperature decline of 2 to 3 K for less than a decade. Trachytic and intermediate magmas are much more effective in this regard than high-silica magmas, and may also lead to extensive ozone depletion due to effect of halogens and magmatic water. Given the assumed relationship between arc volcanism and subduction rate, and the relatively small variation in global spreading rates in the geologic record, it is unlikely that the rates of arc volcanism have varied greatly during the Cenozoic. Hotspot related basaltic fissure eruptions in the subaerial environment have a higher mass yield of sulfur, but lofting of the valcanic aerosol to levels above the tropopause is required for a climate impact. High-latitude events, such as the Laki 1783 eruption can easily penetrate the tropopause and enter the stratosphere, but formation of a stratospheric volcanic aerosol form low-latitude effusive basaltic eruptions is problematical, due to the elevated low-latitude tropopause. Due to the high sulfur content of hotspot-derived basaltic magmas, their very high mass eruption rates and the episodic behavior, hotspots must be regarded as potentially major modifiers of Earth's climate through the action of their volcanic volatiles on the chemistry and physics of the atmosphere.

  2. Eruption and emplacement timescales of ignimbrite super-eruptions from thermo-kinetics of glass shards

    Directory of Open Access Journals (Sweden)

    Yan eLavallée

    2015-02-01

    Full Text Available Super-eruptions generating hundreds of cubic kilometres of pyroclastic density currents are commonly recorded by thick, welded and lava-like ignimbrites. Despite the huge environmental impact inferred for this type of eruption, little is yet known about the timescales of deposition and post-depositional flow. Without these timescales, the critical question of the duration of any environmental impact, and the ensuing gravity of its effects for the Earth system, eludes us. The eruption and welding of ignimbrites requires three transects of the glass transition. Magma needs to: 1 fragment during ascent, 2 liquefy and relax during deposition, agglutination and welding (sintering, and 3 quench by cooling into the glassy state. Here we show that welding is a rapid, syn-depositional process and that the welded ignimbrite sheet may flow for up to a few hours before passing through the glass transition a final time. Geospeedometry reveals that the basal vitrophyre of the Grey’s Landing ignimbrite underwent the glass transition at a rate of ~0.1 °C.min^-1 at 870 °C; that is, 30-180 °C below pre-eruptive geothermometric estimates. Application of a 1-D cooling model constrains the timescale of deposition, agglutination, and welding of the basal vitrophyre to less than 1 hour, and possibly even tens of minutes. Thermo-mechanical iteration of the sintering process indicates an optimal temperature solution for the emplacement of the vitrophyres at 966 °C. The vitrophyres reveal a Newtonian rheology up to 46 MPa, which suggests that the ash particles annealed entirely during welding and that viscous energy dissipation is unlikely from loading conditions alone, unless shear stresses imposed by the overlying ash flow were excessively high and sustained over long distances. The findings underline the value of the term 'lava-like' flow to describe the end rheology of Snake River-type ignimbrites, fully consistent with the typical lithofacies observed.

  3. Historical Significant Volcanic Eruption Locations

    Data.gov (United States)

    Department of Homeland Security — A significant eruption is classified as one that meets at least one of the following criteriacaused fatalities, caused moderate damage (approximately $1 million or...

  4. Scaling properties of planetary calderas and terrestrial volcanic eruptions

    Directory of Open Access Journals (Sweden)

    L. Sanchez

    2012-11-01

    Full Text Available Volcanism plays an important role in transporting internal heat of planetary bodies to their surface. Therefore, volcanoes are a manifestation of the planet's past and present internal dynamics. Volcanic eruptions as well as caldera forming processes are the direct manifestation of complex interactions between the rising magma and the surrounding host rock in the crust of terrestrial planetary bodies. Attempts have been made to compare volcanic landforms throughout the solar system. Different stochastic models have been proposed to describe the temporal sequences of eruptions on individual or groups of volcanoes. However, comprehensive understanding of the physical mechanisms responsible for volcano formation and eruption and more specifically caldera formation remains elusive. In this work, we propose a scaling law to quantify the distribution of caldera sizes on Earth, Mars, Venus, and Io, as well as the distribution of calderas on Earth depending on their surrounding crustal properties. We also apply the same scaling analysis to the distribution of interevent times between eruptions for volcanoes that have the largest eruptive history as well as groups of volcanoes on Earth. We find that when rescaled with their respective sample averages, the distributions considered show a similar functional form. This result implies that similar processes are responsible for caldera formation throughout the solar system and for different crustal settings on Earth. This result emphasizes the importance of comparative planetology to understand planetary volcanism. Similarly, the processes responsible for volcanic eruptions are independent of the type of volcanism or geographical location.

  5. The 26.5 ka Oruanui eruption, New Zealand : a review of the roles of volcanism and climate in the post-eruptive sedimentary response

    International Nuclear Information System (INIS)

    Manville, V.R.; Wilson, C.J.N.

    2004-01-01

    The landscape response to large explosive pyroclastic volcanic eruptions is one of the most dramatic processes in sedimentology and geomorphology. Processes of post-eruptive erosion and resedimentation are maximised by large erupted volumes, abundant unconsolidated ash-sized material, destruction of the vegetation cover (particularly by burial by ignimbrite), and inhibition of vegetation regrowth (e.g., by harsh climatic conditions). The 26.5 ka Oruanui eruption from Taupo volcano in the central North Island of New Zealand created optimal conditions for a large-scale sedimentary response that was influenced and prolonged by the succeeding climatic nadir of the Last Glacial Maximum. About 530 km 3 of rhyolitic magma was erupted as 420 km 3 of fall deposits, 320 km 3 of pyroclastic density current deposits (mostly non-welded ignimbrite), and 430 km 3 of primary intracaldera fill. The eruption, and formation of the Oruanui caldera, destroyed one major lake but created the forerunner to modern Lake Taupo. This lake initially stably overflowed to the northwest before breaking out in a catastrophic flood during establishment of a northeasterly outlet along the line of the modern Waikato River. Suppression of revegetation by the contemporaneous harsh periglacial climate contributed to intense erosion and remobilisation of Oruanui pyroclastic units, triggering massive downstream fluvial aggradation in impacted catchments. In particular, aggradation caused the lower 180 km of the Waikato River to avulse from its long-established route via the Hauraki Plains into the Hamilton Basin where it was subsequently trapped. Aeolian reworking created localised dune fields, while generation of tephric loess formed deposits over much of the central North Island. The initial perturbation to fluvial sedimentary systems created by the eruption was generally sustained by climatic conditions until c. 17 ka. Climatic amelioration eventually stabilised primary sediment sources through the re

  6. Soil radon pulses related to the initial phase of volcanic eruptions

    International Nuclear Information System (INIS)

    Segovia, N.; Mena, M.

    1999-01-01

    Soil radon behaviour related to the initial phase of volcanic eruptions is analysed from reported values related to the explosivity of four American stratovolcaneos: El Chicon (1982) and Popocatepetl (1994) in Mexico, Poas (1987-1990) in Costa Rica and Cerro Negro (1982) in Nicaragua. The measurements in the field were performed with solid-state nuclear track detectors and electrets. The ratio between the magnitudes of the radon in soil peaks generated when the eruptive period started and the average radon values corresponding to quiescence periods indicate a dependence on the volcanic eruptive index for each one of the eruptive periods

  7. New Aspects of a Lid-Removal Mechanism in the Onset of a SEP-Producing Eruption Sequence

    Science.gov (United States)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David; Knox, Javon M

    2014-06-01

    We examine a sequence of two ejective eruptions from a single active region on 2012 January 23, using magnetograms and EUV images from SDO/HMI and SDO/AIA, and EUV images from STEREO. Cheng et al. (2013) showed that the first eruption's (``Eruption 1'') flux rope was apparent only in ``hotter'' AIA channels, and that it removed overlying field that allowed the second eruption (``Eruption 2'') to begin via ideal MHD instability; here we say Eruption 2 began via a ``lid removal'' mechanism. We show that during Eruption-1's onset, its flux rope underwent ``tether weakening'' (TW) reconnection with the field of an adjacent active region. Standard flare loops from Eruption 1 developed over Eruption-2's flux rope and enclosed filament, but these overarching new loops were unable to confine that flux rope/filament. Eruption-1's flare loops, from both TW reconnection and standard-flare-model internal reconnection, were much cooler than Eruption-2's flare loops (GOES thermal temperatures of ~9 MK compared to ~14 MK). This eruption sequence produced a strong solar energetic particle (SEP) event (10 MeV protons, >10^3 pfu for 43 hrs), apparently starting when Eruption-2's CME blasted through Eruption-1's CME at 5---10 R_s. This occurred because the two CMEs originated in close proximity and in close time sequence: Eruption-1's fast rise started soon after the TW reconnection; the lid removal by Eruption-1's ejection triggered the slow onset of Eruption 2; and Eruption-2's CME, which started ~1 hr later, was three times faster than Eruption-1's CME.

  8. Will Teide erupt again?

    Science.gov (United States)

    Marti, Joan; Geyer, Adelina

    2016-04-01

    The quantification of hazard in volcanic systems characterised by long repose period is difficult because the lack of knowledge of the past volcanic history and also because in many cases volcanism is not perceived as a potential problem, being only regarded as an attraction for tourism or a source of economic benefit, thus hiding the need to conduct hazard assessment. Teide, in the island of Tenerife (Canary Islands), is not an exception to this general rule and, despite being one of the largest composite volcanoes in the World, it is generally considered as a non-active volcano by population, visitors and even by some scientists. However, geological and geophysical evidence, including a large diversity of monitoring signals recorded during last decades, as well as a simple comparison with similar volcanoes that have erupted in recent times after hundreds or even thousands of years of quiescence, recommend to consider Teide as an active volcano and to take the necessary precaution in an island with nearly one million of permanent inhabitants and nearly 5 millions of visitors per year. What is the potential of Teide to erupt again? is the question that relies behind the fact of considering it as active, and that needs to be answered first. Based on the current volcanological, petrological and geophysical knowledge We propose a conceptual model on the magma recharge mechanisms, structure of the plumbing system, and eruption triggers and dynamics of Teide volcano that helps to understand its behaviour and to anticipate future activity. Ramón y Cajal contract (RYC-2012-11024)

  9. Ectopic eruption of maxillary central incisor through abnormally thickened labial frenum: An unusual presentation

    Directory of Open Access Journals (Sweden)

    Neeraj Gugnani

    2017-01-01

    Full Text Available Ectopic eruption is a deviation from the normal eruption pattern, making the tooth erupt out of its normal position, and possibly causing resorption of adjacent primary teeth. A wide range of etiological factors may be responsible for ectopic eruption of the teeth, so their management depends on the correction of the established etiological factor. The present case report describes an unusual case of ectopically erupted central incisor encased within an abnormally thickened labial frenum, which was treated by orthodontic repositioning of the ectopically erupting tooth after frenectomy.

  10. Tephra from the 1979 soufriere explosive eruption.

    Science.gov (United States)

    Sigurdsson, H

    1982-06-04

    The explosive phase of the 1979 Soufriere eruption produced 37.5 x 10(6) cubic meters (dense-rock equivalent) of tephra, consisting of about 40 percent juvenile basaltic andesite and 60 percent of a nonjuvenile component derived from the fragmentation of the 1971-1972 lava island during phreatomagmatic explosions. The unusually fine grain size, poor sorting, and bimodality of the land deposit are attributed to particle aggregation and the formation of accretionary lapilli in a wet eruption column.

  11. Asymptomatic Petechial Eruption on the Lower Legs

    OpenAIRE

    Mendese, Gary; Grande, Donald

    2013-01-01

    The authors report an unusual case of Rocky Mountain spotted fever that presented as an asymptomatic petechial eruption on the lower legs. Rocky Mountain spotted fever is rare in New England and, as such, is typically not on the differential diagnosis when presented with such patients. What began as an asymptomatic eruption progressed to more classic signs of the disease, including a positive Rocky Mountain spotted fever titer. The patient was successfully treated with doxycydine and within a...

  12. Volcanic hazards from Bezymianny- and Bandai-type eruptions

    Science.gov (United States)

    Siebert, L.; Glicken, H.; Ui, T.

    1987-01-01

    Major slope failures are a significant degradational process at volcanoes. Slope failures and associated explosive eruptions have resulted in more than 20 000 fatalities in the past 400 years; the historic record provides evidence for at least six of these events in the past century. Several historic debris avalanches exceed 1 km3 in volume. Holocene avalanches an order of magnitude larger have traveled 50-100 km from the source volcano and affected areas of 500-1500 km2. Historic eruptions associated with major slope failures include those with a magmatic component (Bezymianny type) and those solely phreatic (Bandai type). The associated gravitational failures remove major segments of the volcanoes, creating massive horseshoe-shaped depressions commonly of caldera size. The paroxysmal phase of a Bezymianny-type eruption may include powerful lateral explosions and pumiceous pyroclastic flows; it is often followed by construction of lava dome or pyroclastic cone in the new crater. Bandai-type eruptions begin and end with the paroxysmal phase, during which slope failure removes a portion of the edifice. Massive volcanic landslides can also occur without related explosive eruptions, as at the Unzen volcano in 1792. The main potential hazards from these events derive from lateral blasts, the debris avalanche itself, and avalanche-induced tsunamis. Lateral blasts produced by sudden decompression of hydrothermal and/or magmatic systems can devastate areas in excess of 500km2 at velocities exceeding 100 m s-1. The ratio of area covered to distance traveled for the Mount St. Helens and Bezymianny lateral blasts exceeds that of many pyroclastic flows or surges of comparable volume. The potential for large-scale lateral blasts is likely related to the location of magma at the time of slope failure and appears highest when magma has intruded into the upper edifice, as at Mount St. Helens and Bezymianny. Debris avalanches can move faster than 100 ms-1 and travel tens of

  13. Seismic constraints on caldera dynamics from the 2015 Axial Seamount eruption.

    Science.gov (United States)

    Wilcock, William S D; Tolstoy, Maya; Waldhauser, Felix; Garcia, Charles; Tan, Yen Joe; Bohnenstiehl, DelWayne R; Caplan-Auerbach, Jacqueline; Dziak, Robert P; Arnulf, Adrien F; Mann, M Everett

    2016-12-16

    Seismic observations in volcanically active calderas are challenging. A new cabled observatory atop Axial Seamount on the Juan de Fuca ridge allows unprecedented real-time monitoring of a submarine caldera. Beginning on 24 April 2015, the seismic network captured an eruption that culminated in explosive acoustic signals where lava erupted on the seafloor. Extensive seismic activity preceding the eruption shows that inflation is accommodated by the reactivation of an outward-dipping caldera ring fault, with strong tidal triggering indicating a critically stressed system. The ring fault accommodated deflation during the eruption and provided a pathway for a dike that propagated south and north beneath the caldera's east wall. Once north of the caldera, the eruption stepped westward, and a dike propagated along the extensional north rift. Copyright © 2016, American Association for the Advancement of Science.

  14. The largest deep-ocean silicic volcanic eruption of the past century.

    Science.gov (United States)

    Carey, Rebecca; Soule, S Adam; Manga, Michael; White, James; McPhie, Jocelyn; Wysoczanski, Richard; Jutzeler, Martin; Tani, Kenichiro; Yoerger, Dana; Fornari, Daniel; Caratori-Tontini, Fabio; Houghton, Bruce; Mitchell, Samuel; Ikegami, Fumihiko; Conway, Chris; Murch, Arran; Fauria, Kristen; Jones, Meghan; Cahalan, Ryan; McKenzie, Warren

    2018-01-01

    The 2012 submarine eruption of Havre volcano in the Kermadec arc, New Zealand, is the largest deep-ocean eruption in history and one of very few recorded submarine eruptions involving rhyolite magma. It was recognized from a gigantic 400-km 2 pumice raft seen in satellite imagery, but the complexity of this event was concealed beneath the sea surface. Mapping, observations, and sampling by submersibles have provided an exceptionally high fidelity record of the seafloor products, which included lava sourced from 14 vents at water depths of 900 to 1220 m, and fragmental deposits including giant pumice clasts up to 9 m in diameter. Most (>75%) of the total erupted volume was partitioned into the pumice raft and transported far from the volcano. The geological record on submarine volcanic edifices in volcanic arcs does not faithfully archive eruption size or magma production.

  15. Global science: the eruption of Krakatau.

    Science.gov (United States)

    Dörries, Matthias

    2003-01-01

    The eruption of the volcano Krakatau in the Netherlands East Indies (Indonesia) in 1883 had worldwide impact. This was perceived in the three quite different types of global propagation that occurred after the eruption: a rapid pressure wave, noticeable only to measuring instruments, followed a few hours later by the spread of the news of the event, succeeded by a slowly expanding optical phenomenon that lasted for a couple of years. Krakatau was the first natural catastrophe of global magnitude that was almost immediately recognized as such throughout the world, largely thanks to the recently installed worldwide telegraphic network.

  16. Eruption of Pele

    Science.gov (United States)

    1995-01-01

    The eruption of Pele on Jupiter's moon Io. The volcanic plume rises 300 kilometers above the surface in an umbrella-like shape. The plume fallout covers an area the size of Alaska. The vent is a dark spot just north of the triangular-shaped plateau (right center). To the left, the surface is covered by colorful lava flows rich in sulfur.

  17. Settlement Relocation Modeling: Reacting to Merapi’s Eruption Incident

    Science.gov (United States)

    Pramitasari, A.; Buchori, I.

    2018-02-01

    Merapi eruption has made severe damages in Central Java Province. Klaten was one of the most affected area, specifically in Balerante Village. This research is made to comprehend GIS model on finding alternative locations for impacted settlement in hazardous zones of eruption. The principal objective of the research study is to identify and analyze physical condition, community characteristics, and local government regulation related to settlements relocation plan for impacted area of eruption. The output is location map which classified into four categories, i.e. not available, available with low accessibility, available with medium accessibility, and available with high accessibility.

  18. Source mechanisms of persistent shallow earthquakes during eruptive and non-eruptive periods between 1981 and 2011 at Mount St. Helens, Washington

    Science.gov (United States)

    Lehto, Heather L.; Roman, Diana C.; Moran, Seth C.

    2013-01-01

    Shallow seismicity between 0 and 3-km depth has persisted at Mount St. Helens, Washington (MSH) during both eruptive and non-eruptive periods for at least the past thirty years. In this study we investigate the source mechanisms of shallow volcano-tectonic (VT) earthquakes at MSH by calculating high-quality hypocenter locations and fault plane solutions (FPS) for all VT events recorded during two eruptive periods (1981–1986 and 2004–2008) and two non-eruptive periods (1987–2004 and 2008–2011). FPS show a mixture of normal, reverse, and strike-slip faulting during all periods, with a sharp increase in strike-slip faulting observed in 1987–1997 and an increase in normal faulting in 1998–2004. FPS P-axis orientations show a ~ 90° rotation with respect to regional σ1 (N23°E) during 1981–1986 and 2004–2008, bimodal orientations (~ N-S and ~ E-W) during 1987–2004, and bimodal orientations at ~ N-E and ~ S-W from 2008–2011. We interpret these orientations to likely be due to pressurization accompanying the shallow intrusion and subsequent eruption of magma as domes during 1981–1986 and 2004–2008 and the buildup of pore pressure beneath a seismogenic volume (located at 0–1 km) with a smaller component due to the buildup of tectonic forces during 1987–2004 and 2008–2011.

  19. Probabilistic eruption forecasting at short and long time scales

    Science.gov (United States)

    Marzocchi, Warner; Bebbington, Mark S.

    2012-10-01

    Any effective volcanic risk mitigation strategy requires a scientific assessment of the future evolution of a volcanic system and its eruptive behavior. Some consider the onus should be on volcanologists to provide simple but emphatic deterministic forecasts. This traditional way of thinking, however, does not deal with the implications of inherent uncertainties, both aleatoric and epistemic, that are inevitably present in observations, monitoring data, and interpretation of any natural system. In contrast to deterministic predictions, probabilistic eruption forecasting attempts to quantify these inherent uncertainties utilizing all available information to the extent that it can be relied upon and is informative. As with many other natural hazards, probabilistic eruption forecasting is becoming established as the primary scientific basis for planning rational risk mitigation actions: at short-term (hours to weeks or months), it allows decision-makers to prioritize actions in a crisis; and at long-term (years to decades), it is the basic component for land use and emergency planning. Probabilistic eruption forecasting consists of estimating the probability of an eruption event and where it sits in a complex multidimensional time-space-magnitude framework. In this review, we discuss the key developments and features of models that have been used to address the problem.

  20. Explosive processes during the 2015 eruption of Axial Seamount, as recorded by seafloor hydrophones

    Science.gov (United States)

    Caplan-Auerbach, J.; Dziak, R. P.; Haxel, J.; Bohnenstiehl, D. R.; Garcia, C.

    2017-04-01

    Following the installation of the Ocean Observatories Initiative cabled array, the 2015 eruption of Axial Seamount, Juan de Fuca ridge, became the first submarine eruption to be captured in real time by seafloor seismic and acoustic instruments. This eruption also marked the first instance where the entire eruption cycle of a submarine volcano, from the previous eruption in 2011 to the end of the month-long 2015 event, was monitored continuously using autonomous ocean bottom hydrophones. Impulsive sounds associated with explosive lava-water interactions are identified within hydrophone records during both eruptions. Explosions within the caldera are acoustically distinguishable from those occurring in association with north rift lava flows erupting in 2015. Acoustic data also record a series of broadband diffuse events, occurring in the waning phase of the eruption, and are interpreted as submarine Hawaiian explosions. This transition from gas-poor to gas-rich eruptive activity coincides with an increase in water temperature within the caldera and with a decrease in the rate of deflation. The last recorded diffuse events coincide with the end of the eruption, represented by the onset of inflation. All the observed explosion signals couple strongly into the water column, and only weakly into the solid Earth, demonstrating the importance of hydroacoustic observations as a complement to seismic and geodetic studies of submarine eruptions.

  1. Magnetic Braids in Eruptions of a Spiral Structure in the Solar Atmosphere

    Science.gov (United States)

    Huang, Zhenghua; Xia, Lidong; Nelson, Chris J.; Liu, Jiajia; Wiegelmann, Thomas; Tian, Hui; Klimchuk, James A.; Chen, Yao; Li, Bo

    2018-02-01

    We report on high-resolution imaging and spectral observations of eruptions of a spiral structure in the transition region, which were taken with the Interface Region Imaging Spectrograph, and the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). The eruption coincided with the appearance of two series of jets, with velocities comparable to the Alfvén speeds in their footpoints. Several pieces of evidence of magnetic braiding in the eruption are revealed, including localized bright knots, multiple well-separated jet threads, transition region explosive events, and the fact that all three of these are falling into the same locations within the eruptive structures. Through analysis of the extrapolated 3D magnetic field in the region, we found that the eruptive spiral structure corresponded well to locations of twisted magnetic flux tubes with varying curl values along their lengths. The eruption occurred where strong parallel currents, high squashing factors, and large twist numbers were obtained. The electron number density of the eruptive structure is found to be ∼3 × 1012 cm‑3, indicating that a significant amount of mass could be pumped into the corona by the jets. Following the eruption, the extrapolations revealed a set of seemingly relaxed loops, which were visible in the AIA 94 Å channel, indicating temperatures of around 6.3 MK. With these observations, we suggest that magnetic braiding could be part of the mechanisms explaining the formation of solar eruption and the mass and energy supplement to the corona.

  2. Magma fluxes and recurreance rate of eruptions at Nevado de Toluca volcano (Mexico)

    Science.gov (United States)

    Weber, Gregor; Probst, Line; Arce, José L.; Caricchi, Luca

    2017-04-01

    Forecasting the frequency and size of volcanic eruptions is a long-term goal for hazard mitigation. The frequency at which a given crustal magmatic system is driven towards a critical state and the magnitude of the resulting volcanic events are linked to the supply rate of fresh magma, crustal properties, and tectonic setting. Our ability to forecast the recurrence rate of eruptions is hampered by the lack of data on key variables such as the average magma flux locally and globally. The aim of this project is to identify the average magma supply rate and injection frequency for eruptions of different magnitude and eruptive style. We centred our study at Nevado de Toluca in Mexico, a subduction-related volcano with an eruptive history spanning about 1.5 million years of comparatively well documented effusive and explosive eruptions dominantly of dacitic composition. We carry out in-situ high precision zircon geochronology for a sequence of eruptions of different magnitude to obtain a distribution of crystal ages from which average crustal magma fluxes can be calculated. Eruptive fluxes will be constrained by extracting lava flow volumes from a digital elevation model. A combination of whole rock and mineral chemistry will provide quantitative insights on petrogenetic processes and on the frequency at which intensive parameters changed within the magma reservoir before the eruptions. Our results will be integrated in a global database including other volcanic systems and literature data to attempt to identify similarities and differences between magmatic reservoirs feeding volcanic eruptions of different magnitude. The final target of this project is to identify the physical factors controlling the recurrence rate of volcanic eruptions at regional and global scale.

  3. Small volcanic eruptions and the stratospheric sulfate aerosol burden

    Science.gov (United States)

    Pyle, David M.

    2012-09-01

    Understanding of volcanic activity and its impacts on the atmosphere has evolved in discrete steps, associated with defining eruptions. The eruption of Krakatau, Indonesia, in August 1883 was the first whose global reach was recorded through observations of atmospheric phenomena around the world (Symons 1888). The rapid equatorial spread of Krakatau's ash cloud revealed new details of atmospheric circulation, while the vivid twilights and other optical phenomena were soon causally linked to the effects of particles and gases released from the volcano (e.g. Stothers 1996, Schroder 1999, Hamilton 2012). Later, eruptions of Agung, Bali (1963), El Chichón, Mexico (1982) and Pinatubo, Philippines (1991) led to a fuller understanding of how volcanic SO2 is transformed to a long-lived stratospheric sulfate aerosol, and its consequences (e.g. Meinel and Meinel 1967, Rampino and Self 1982, Hoffman and Rosen 1983, Bekki and Pyle 1994, McCormick et al 1995). While our ability to track the dispersal of volcanic emissions has been transformed since Pinatubo, with the launch of fleets of Earth-observing satellites (e.g. NASA's A-Train; ESA's MetOp) and burgeoning networks of ground-based remote-sensing instruments (e.g. lidar and sun-photometers; infrasound and lightning detection systems), there have been relatively few significant eruptions. Thus, there have been limited opportunities to test emerging hypotheses including, for example, the vexed question of the role of 'smaller' explosive eruptions in perturbations of the atmosphere—those that may just be large enough to reach the stratosphere (of size 'VEI 3', Newhall and Self 1982, Pyle 2000). Geological evidence, from ice-cores and historical eruptions, suggests that small explosive volcanic eruptions with the potential to transport material into the stratosphere should be frequent (5-10 per decade), and responsible for a significant proportion of the long-term time-averaged flux of volcanic sulfur into the stratosphere

  4. A Challenging Solar Eruptive Event of 18 November 2003 and the Causes of the 20 November Geomagnetic Superstorm. I. Unusual History of an Eruptive Filament

    Science.gov (United States)

    Grechnev, V. V.; Uralov, A. M.; Slemzin, V. A.; Chertok, I. M.; Filippov, B. P.; Rudenko, G. V.; Temmer, M.

    2014-01-01

    This is the first of four companion papers, which comprehensively analyze a complex eruptive event of 18 November 2003 in active region (AR) 10501 and the causes of the largest Solar Cycle 23 geomagnetic storm on 20 November 2003. Analysis of a complete data set, not considered before, reveals a chain of eruptions to which hard X-ray and microwave bursts responded. A filament in AR 10501 was not a passive part of a larger flux rope, as usually considered. The filament erupted and gave origin to a coronal mass ejection (CME). The chain of events was as follows: i) a presumable eruption at 07:29 UT accompanied by a not reported M1.2 class flare probably associated with the onset of a first southeastern CME (CME1), which most likely is not responsible for the superstorm; ii) a confined eruption (without a CME) at 07:41 UT (M3.2 flare) that destabilized the large filament; iii) the filament acceleration around 07:56 UT; iv) the bifurcation of the eruptive filament that transformed into a large "cloud"; v) an M3.9 flare in AR 10501 associated to this transformation. The transformation of the filament could be due to the interaction of the eruptive filament with the magnetic field in the neighborhood of a null point, located at a height of about 100 Mm above the complex formed by ARs 10501, 10503, and their environment. The CORONAS-F/SPIRIT telescope observed the cloud in 304 Å as a large Y-shaped darkening, which moved from the bifurcation region across the solar disk to the limb. The masses and kinematics of the cloud and the filament were similar. Remnants of the filament were not clearly observed in the second southwestern CME (CME2), previously regarded as a source of the 20 November geomagnetic storm. These facts do not support a simple scenario, in which the interplanetary magnetic cloud is considered as a flux rope formed from a structure initially associated with the pre-eruption filament in AR 10501. Observations suggest a possible additional eruption above

  5. Eruption of the maxillary canines in relation to skeletal maturity.

    Science.gov (United States)

    Baccetti, Tiziano; Franchi, Lorenzo; De Lisa, Simona; Giuntini, Veronica

    2008-05-01

    Our aim in this study was to assess the relationship between the eruption of the permanent maxillary canines and skeletal maturity in subjects with different skeletal relationships in the sagittal and vertical planes. A sample of 152 subjects (63 boys, 89 girls) with erupting permanent maxillary canines was analyzed. On the lateral cephalograms, the stage of cervical vertebral maturation was assessed. Then the subjects were divided into prepeak (before the pubertal growth spurt, cervical stage [CS]1 and CS2), peak (during the pubertal growth spurt, CS3 and CS4), and postpeak (after the pubertal growth spurt, CS5 and CS6) groups. Skeletal relationships in the sagittal and vertical planes were evaluated, and relationships to timing of canine eruption were tested statistically. The prepeak group comprised 86 subjects, the peak group 66 subjects, and the postpeak group 0 subjects. The differences in prevalence rates between either the prepeak or peak groups and the postpeak group were statistically significant (P < 0.001). The prevalence rate for hyperdivergent subjects showing eruption of the permanent maxillary canine in the prepeak group (37.2%) was significantly higher than in the reference orthodontic population (21%). The eruption of the permanent maxillary canine can occur at any stage in skeletal maturation before the end the pubertal growth spurt (CS1-CS4), with hyperdivergent subjects more frequently having prepubertal canine eruption.

  6. Explaining the discrepancy between intentions and actions: the case of hypothetical bias in contingent valuation

    Science.gov (United States)

    Icek Ajzen; Thomas C. Brown; Franklin Carvajal

    2004-01-01

    An experiment was designed to account for intention-behavior discrepancies by applying the theory of planned behavior to contingent valuation. College students (N = 160) voted in hypothetical and real payment referenda to contribute $8 to a scholarship fund. Overestimates of willingness to pay in the hypothetical referendum could not be attributed to moderately...

  7. An Unusual Erupted Complex Composite Odontoma: A Rare Case

    Directory of Open Access Journals (Sweden)

    Dawasaz Ali Azhar

    2013-01-01

    Full Text Available Odontomas are malformations of the dental tissues and may interfere with the eruption of the associated tooth. Complex composite odontoma (CO was described as a distinct entity for the first time by Broca in 1866. This lesion takes place due to the developmental disturbances where the dental components are laid down in a disorganized manner, due to failure of normal morphodifferentiation. Very few cases of erupted complex composite odontomas have been reported in the literature. The case reported here is of an odontoma found in the left mandibular body, associated with an impacted second molar of a 17-year-old Saudi male. Under local anesthesia the odontoma was surgically removed. Histopathological examination confirmed the diagnosis of CO. The impacted second molar which was left in the mandibular body erupted clinically after 6 months. Erupted CO is rarely seen in the mandibular left body. The early diagnosis, followed by a proper treatment at the right time, will result in a favorable prognosis.

  8. Formation and dynamics of a solar eruptive flux tube

    Science.gov (United States)

    Inoue, Satoshi; Kusano, Kanya; Büchner, Jörg; Skála, Jan

    2018-01-01

    Solar eruptions are well-known drivers of extreme space weather, which can greatly disturb the Earth's magnetosphere and ionosphere. The triggering process and initial dynamics of these eruptions are still an area of intense study. Here we perform a magnetohydrodynamic simulation taking into account the observed photospheric magnetic field to reveal the dynamics of a solar eruption in a real magnetic environment. In our simulation, we confirmed that tether-cutting reconnection occurring locally above the polarity inversion line creates a twisted flux tube, which is lifted into a toroidal unstable area where it loses equilibrium, destroying the force-free state, and driving the eruption. Consequently, a more highly twisted flux tube is built up during this initial phase, which can be further accelerated even when it returns to a stable area. We suggest that a nonlinear positive feedback process between the flux tube evolution and reconnection is the key to ensure this extra acceleration.

  9. PARTIAL ERUPTION OF A FILAMENT WITH TWISTING NON-UNIFORM FIELDS

    International Nuclear Information System (INIS)

    Bi, Yi; Jiang, Yunchun; Yang, Jiayan; Xiang, Yongyuan; Cai, Yunfang; Liu, Weiwei

    2015-01-01

    The eruption of a filament in a kinklike fashion is often regarded as a signature of kink instability. However, the kink instability threshold for the filament’s magnetic structure is not widely understood. Using Hα observations from the New Vacuum Solar Telescope, we present a partial eruptive filament. During the eruption, the filament thread appeared to split from its middle and to break out in a kinklike fashion. In this period, the remaining filament material stayed below and erupted without the kinking motion later on. The coronal magnetic field lines associated with the filament are obtained from nonlinear force-free field extrapolations using the twelve-minute-cadence vector magnetograms of the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamic Observatory. We studied the extrapolated field lines passing through the magnetic dips which are in good agreement with the observed filament. The field lines are non-uniformly twisted and appear to be composed of two twisted flux ropes winding around each other. One of them has a higher twist than the other, and the flux rope with the higher twist has its dips aligned with the kinking eruptive thread at the beginning of its eruption. Before the eruption, moreover, the flux rope with the higher twist was found to expand with an approximately constant field twist. In addition, the helicity flux maps deduced from the HMI magnetograms show that some helicity is injected into the overlying magnetic arcade, but no significant helicity is injected into the flux ropes. Accordingly, we suggest that the highly twisted flux rope became kink unstable when the instability threshold declined with the expansion of the flux rope

  10. MINIFILAMENT ERUPTIONS THAT DRIVE CORONAL JETS IN A SOLAR ACTIVE REGION

    International Nuclear Information System (INIS)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.; Panesar, Navdeep K.; Akiyama, Sachiko; Yashiro, Seiji; Gopalswamy, Nat

    2016-01-01

    We present observations of eruptive events in an active region adjacent to an on-disk coronal hole on 2012 June 30, primarily using data from the Solar Dynamics Observatory ( SDO )/Atmospheric Imaging Assembly (AIA), SDO /Helioseismic and Magnetic Imager (HMI), and STEREO - B . One eruption is of a large-scale (∼100″) filament that is typical of other eruptions, showing slow-rise onset followed by a faster-rise motion starting as flare emissions begin. It also shows an “EUV crinkle” emission pattern, resulting from magnetic reconnections between the exploding filament-carrying field and surrounding field. Many EUV jets, some of which are surges, sprays and/or X-ray jets, also occur in localized areas of the active region. We examine in detail two relatively energetic ones, accompanied by GOES M1 and C1 flares, and a weaker one without a GOES signature. All three jets resulted from small-scale (∼20″) filament eruptions consistent with a slow rise followed by a fast rise occurring with flare-like jet-bright-point brightenings. The two more-energetic jets showed crinkle patters, but the third jet did not, perhaps due to its weakness. Thus all three jets were consistent with formation via erupting minifilaments, analogous to large-scale filament eruptions and to X-ray jets in polar coronal holes. Several other energetic jets occurred in a nearby portion of the active region; while their behavior was also consistent with their source being minifilament eruptions, we could not confirm this because their onsets were hidden from our view. Magnetic flux cancelation and emergence are candidates for having triggered the minifilament eruptions.

  11. Case study of the effects of hypothetical nuclear power plant accident to the northern food chain of lichen-reindeer-man

    Energy Technology Data Exchange (ETDEWEB)

    Leppaenen, A.P.; Solatie, D. [Radiation and Nuclear Safety Authority - STUK (Finland); Paatero, J. [Finnish Meteorological Institute (Finland)

    2014-07-01

    There are plans to open a new nuclear power plant in Northern Finland at Pyhaejoki. The currently planned reactor type is AES 2006 built by Rosenergoatom. The power output of the AES 2006 is 1200 MWe. In a hypothetical reactor accident at Pyhaejoki large amounts of radioactivity would be released to the environment in Northern Europe. With suitable wind conditions the contaminants would contaminate large areas in the Euro-Arctic region in Northern Scandinavia and in Kola Peninsula. Northern parts of Scandinavia belongs to the sub-arctic region where reindeer herding is an important livelihood for the local and for the indigenous Sami people. As a results of the CEEPRA-project ('Collaboration Network on Environmental Radiation Protection and Research') funded by the EU's Kolarctic ENPI CBC program estimated a possible fallout to Finnish Lapland from a hypothetical nuclear power plant accident occurring at the planned site. Lichen-reindeer-man food chain is an important food chain to the people living in Lapland from traditional and from economical point of views. The food chain is known to enrich radioactive contaminants efficiently. In case of nuclear fallout this food chain would be one of the primary sources of {sup 137}Cs into the inhabitants in Northern regions. The food chain has been well-studied where studies began in the 1960's and was intensified after the Chernobyl accident. This study concentrates on the effects caused by the hypothetical accident, occurring at the planned Pyhaejoki power plant, to the lichen-reindeer-man food chain. The transfer of {sup 137}Cs and {sup 134}Cs to the reindeer meat and possible doses to the man will be estimated. Document available in abstract form only. (authors)

  12. Eruption time of permanent first molars and incisors among female primary school children of riyadh

    International Nuclear Information System (INIS)

    Chohan, A.N.

    2007-01-01

    To determine the mean eruption time of permanent first molars, central and lateral incisors and to compare the relationship of mean eruption time with body mass index (BMI) in Saudi female primary school children from Riyadh, Saudi Arabia. The mean age of children was 89.3 (SD 9.6) months ranging from 71 months to 109 months. The maxillary right first molar had the lowest mean eruption time of 77.4 (SD 3.9) months and the maxillary right lateral incisor was the last tooth to erupt with eruption time of 98.4 (SD 6.5) months. Furthermore, the mandibular incisors erupted significantly earlier than maxillary incisors. By the age of 100 months, 97% of the girls had all their first permanent molars erupted. There was no significant correlation observed between eruption times with BMI of the studied teeth except the maxillary right lateral incisor. However, an inverse relationship may exist between the eruption times and BMI. The Saudi female primary school children showed later eruption time of permanent first molars, central and lateral incisors when compared with the reported results of other national studies. Key words: Eruption time, permanent teeth, Saudi Arabia, female children. (author)

  13. Genome-wide screens for expressed hypothetical proteins

    DEFF Research Database (Denmark)

    Madsen, Claus Desler; Durhuus, Jon Ambæk; Rasmussen, Lene Juel

    2012-01-01

    A hypothetical protein (HP) is defined as a protein that is predicted to be expressed from an open reading frame, but for which there is no experimental evidence of translation. HPs constitute a substantial fraction of proteomes of human as well as of other organisms. With the general belief that...... that the majority of HPs are the product of pseudogenes, it is essential to have a tool with the ability of pinpointing the minority of HPs with a high probability of being expressed....

  14. Forecasting deflation, intrusion and eruption at inflating volcanoes

    Science.gov (United States)

    Blake, Stephen; Cortés, Joaquín A.

    2018-01-01

    A principal goal of volcanology is to successfully forecast the start of volcanic eruptions. This paper introduces a general forecasting method, which relies on a stream of monitoring data and a statistical description of a given threshold criterion for an eruption to start. Specifically we investigate the timing of intrusive and eruptive events at inflating volcanoes. The gradual inflation of the ground surface is a well-known phenomenon at many volcanoes and is attributable to pressurised magma accumulating within a shallow chamber. Inflation usually culminates in a rapid deflation event caused by magma escaping from the chamber to produce a shallow intrusion and, in some cases, a volcanic eruption. We show that the ground elevation during 15 inflation periods at Krafla volcano, Iceland, increased with time towards a limiting value by following a decaying exponential with characteristic timescale τ. The available data for Krafla, Kilauea and Mauna Loa volcanoes show that the duration of inflation (t*) is approximately equal to τ. The distribution of t* / τ values follows a log-logistic distribution in which the central 60% of the data lie between 0.99 deflation event starting during a specified time interval to be estimated. The time window in which there is a specified probability of deflation starting can also be forecast, and forecasts can be updated after each new deformation measurement. The method provides stronger forecasts than one based on the distribution of repose times alone and is transferable to other types of monitoring data and/or other patterns of pre-eruptive unrest.

  15. Volcano-tectonic earthquakes: A new tool for estimating intrusive volumes and forecasting eruptions

    Science.gov (United States)

    White, Randall A.; McCausland, Wendy

    2016-01-01

    We present data on 136 high-frequency earthquakes and swarms, termed volcano-tectonic (VT) seismicity, which preceded 111 eruptions at 83 volcanoes, plus data on VT swarms that preceded intrusions at 21 other volcanoes. We find that VT seismicity is usually the earliest reported seismic precursor for eruptions at volcanoes that have been dormant for decades or more, and precedes eruptions of all magma types from basaltic to rhyolitic and all explosivities from VEI 0 to ultraplinian VEI 6 at such previously long-dormant volcanoes. Because large eruptions occur most commonly during resumption of activity at long-dormant volcanoes, VT seismicity is an important precursor for the Earth's most dangerous eruptions. VT seismicity precedes all explosive eruptions of VEI ≥ 5 and most if not all VEI 4 eruptions in our data set. Surprisingly we find that the VT seismicity originates at distal locations on tectonic fault structures at distances of one or two to tens of kilometers laterally from the site of the eventual eruption, and rarely if ever starts beneath the eruption site itself. The distal VT swarms generally occur at depths almost equal to the horizontal distance of the swarm from the summit out to about 15 km distance, beyond which hypocenter depths level out. We summarize several important characteristics of this distal VT seismicity including: swarm-like nature, onset days to years prior to the beginning of magmatic eruptions, peaking of activity at the time of the initial eruption whether phreatic or magmatic, and large non-double couple component to focal mechanisms. Most importantly we show that the intruded magma volume can be simply estimated from the cumulative seismic moment of the VT seismicity from:

  16. The Run-up to Volcanic Eruption Unveiled by Forensic Petrology and Geophysical Observations

    Science.gov (United States)

    Rasmussen, D. J.; Plank, T. A.; Roman, D. C.

    2017-12-01

    Volcanoes often warn of impending eruptions. However, one of the greatest challenges in volcano research is translating precursory geophysical signals into physical magmatic processes. Petrology offers powerful tools to study eruption run-up that benefit from direct response to magmatic forcings. Developing these tools, and tying them to geophysical observations, will help us identify eruption triggers (e.g., magmatic recharge, gas build-up, tectonic events) and understand the significance of monitored signals of unrest. We present an overview of petrologic tools used for studying eruption run-up, highlighting results from our study of the 1999 eruption of Shishaldin volcano. Olivine crystals contain chemical gradients, the consequence of diffusion following magma mixing events, which is modeled to determine mixing timescales. Modeled timescales provide strong evidence for at least three mixing events, which were triggered by magmatic recharge. Petrologic barometers indicate these events occurred at very shallow depths (within the volcanic edifice). The first mixing event occurred nine months before eruption, which was signaled by a swarm of deep-long period earthquake. Minor recharge events followed over two months, which are indicated by a second deep-long period earthquake swarm and a change in the local stress orientation measured by shear-wave splitting. Following these events, the system was relatively quiet until a large mixing event occurred 45 days prior to eruption, which was heralded by a large earthquake (M5.2). Following this event, geophysical signals of unrest intensified and became continuous. The final mixing event, beginning roughly a week before eruption, represents the final perturbation to the system before eruption. Our findings point to a relatively long run-up, which was subtle at first and intensified several weeks before eruption. This study highlights the strong link between geophysical signals of volcanic unrest and magmatic events, and

  17. Analysis of hypothetical LMFBR whole-core accidents in the USA

    International Nuclear Information System (INIS)

    Ferguson, D.R.; Deitrich, L.W.; Brown, N.W.; Waltar, A.E.

    1978-01-01

    Methods used for analysis of material behaviour, accident phenomenology and integrated accident calculations are reviewed. Applications of these methods to hypothetical LOF and TOP accidents are discussed. Recent results obtained from applications to FFTF and CRBRP are presented. (author)

  18. The 2011 submarine volcanic eruption of El Hierro Island (Canary Islands, Spain)

    Science.gov (United States)

    López, C.; Blanco, M. J.

    2012-04-01

    On 10 October 2011 a submarine volcanic eruption began 2 km SW of La Restinga village in the South coast of El Hierro Island (Spain). It became the first submarine eruption reported in 500 years of historical record in the Canary Islands. The eruption took place after three months of intensive seismic activity and ground deformation. The first signal evidencing the eruption was a harmonic tremor signal, located somewhere in the South sector of El Hierro Island and registered in every seismic station on the island. On the following day, the tremoŕs amplitude increased up enough to be felt by the residents of La Restinga. The first visual evidence of the eruption was observed during the afternoon of 12 October, a large light-green coloured area on the sea surface, 2 km to the SW of La Restinga. Three days later, steaming lava fragments were observed floating on the sea, in the area where the vent was supposed to be located. These fragments had a bomb-like shape and their sizes ranged between 10 and 40 cm long. They were bicoloured, a black outer part with a basaltic composition, and a white inner part, highly vesiculated and rich in silica content (>60%). This type of fragments was only observed during the first days of the eruption. Within the next two months further emission episodes have been observed with turbulent water, foam rings and large bubbles on the sea surface. On the 27th of November new lava fragments were observed while floating and degassing on the sea surface. Most of them were "lava balloons" or hollow fragments of lavas, with sizes between 30 and 200 cm, and highly vesiculated outer crust of basaltic-basanitic and sideromelane composition. The emission of these products continues intermitently up to date (January 2012) During the eruption, the GPS monitoring network detected episodes of inflation-deflation and a maximum vertical deformation of 4 cm. The horizontal deformation, which had reached up to 5 cm before the eruption, remains stable. The

  19. Multispacecraft observations of a prominence eruption

    Directory of Open Access Journals (Sweden)

    A. Bemporad

    2009-10-01

    Full Text Available On 9 May 2007 a prominence eruption occurred at the West limb. Remarkably, the event was observed by the STEREO/EUVI telescopes and by the HINODE/EIS and SOHO/UVCS spectrometers. We present results from all these instruments. High-cadence (~37 s data from STEREO/EUVI A and B in the He II λ304 line were used to study the 3-D shape and expansion of the prominence. The high spatial resolution EUVI images (~1.5"/pixel have been used to infer via triangulation the 3-D shape and orientation of the prominence 12 min after the eruption onset. At this time the prominence has mainly the shape of a "hook" highly inclined southward, has an average thickness of 0.068 R⊙, a length of 0.43 R⊙ and lies, in first approximation, on a plane. Hence, the prominence is mainly a 2-D structure and there is no evidence for a twisted flux rope configuration. HINODE/EIS was scanning with the 2" slit the region where the filament erupted. The EIS spectra show during the eruption remarkable non-thermal broadening (up to ~100 km s−1 in the region crossed by the filament in spectral lines emitted at different temperatures, possibly with differences among lines from higher Fe ionization stages. The CME was also observed by the SOHO/UVCS instrument: the spectrograph slit was centered at 1.7 R⊙, at a latitude of 5° SW and recorded a sudden increase in the O VI λλ1032–1037 and Si XII λ520 spectral line intensities, representative of the CME front transit.

  20. The Atmospheric Impact of the 1991 Mount Pinatubo Eruption

    Science.gov (United States)

    Self, Stephen; Zhao, Jing-Xia; Holasek, Rick E.; Torres, Ronnie C.; King, Alan J.

    1993-01-01

    The 1991 eruption of Pinatubo produced about 5 cubic kilometers of dacitic magma and may be the second largest volcanic eruption of the century. Eruption columns reached 40 kilometers in altitude and emplaced a giant umbrella cloud in the middle to lower stratosphere that injected about 17 megatons of SO2, slightly more than twice the largest yielded by the 1982 eruption of El Chichon, Mexico. The SO2 formed sulfate aerosols that produced the largest perturbation to the stratospheric aerosol layer since the eruption of Krakatau in 1883. The aerosol cloud spread rapidly around the Earth in about 3 weeks and attained global coverage by about 1 year after the eruption. Peak local midvisible optical depths of up to 0.4 were measured in late 1992, and globally averaged values were about 0.1 to 0.15 for 2 years. The large aerosol cloud caused dramatic decreases in the amount of net radiation reaching the Earth's surface, producing a climate forcing that was two times stronger than the aerosols of El Chichon. Effects on climate were an observed surface cooling in the northern hemisphere of up to 0.5 to 0.6 C, equivalent to a hemispheric-wide reduction in net radiation of 4 watts per square meter and a cooling of perhaps as large as -0.4 C over large parts of the earth in 1992-93. Climate models seem to have predicted the cooling with a reasonable degree of accuracy. The Pinatubo climate forcing was stronger than the opposite warming of either the El Nino event or anthropogenic greenhouse gases in the period 1991-93. As a result of the presence of the aerosol particles, midlatitude ozone concentrations reached their lowest levels on record during 1992-93, the southern hemisphere 'ozone hole' increased in 1992 to an unprecedented size and ozone depletion rates were observed to be faster than ever before recorded. The atmospheric impact of the Pinatubo eruption has been profound, and it has sparked a lively interest in the role that volcanic aerosols play in climate change

  1. Volcanic Eruptions in the Southern Red Sea During 2007–2013

    KAUST Repository

    Jonsson, Sigurjon; Xu, Wenbin

    2015-01-01

    The first volcanic eruption known to occur in the southern Red Sea in over a century started on Jebel at Tair Island in September 2007. The early phase of the eruption was energetic, with lava reaching the shore of the small island within hours, destroying a Yemeni military outpost and causing a few casualties. The eruption lasted several months, producing a new summit cone and lava covering an area of 5.9 km2, which is about half the area of the island. The Jebel at Tair activity was followed by two more eruptions within the Zubair archipelago, about 50 km to the southeast, in 2011–2012 and 2013, both of which started on the seafloor and resulted in the formation of new islands. The first of these eruptions started in December 2011 in the northern part of the archipelago and lasted for about one month, generating a small (0.25 km2) oval-shaped island. Coastal erosion during the first two years following the end of the eruption has reduced the size of the island to 0.19 km2. The second event occurred in the central part of the Zubair Islands and lasted roughly two months (September–November, 2013), forming a larger (0.68 km2) island. The recent volcanic eruptions in the southern Red Sea are a part of increased activity seen in the entire southern Red Sea region following the onset of a rifting episode in Afar (Ethiopia) in 2005.

  2. Volcanic Eruptions in the Southern Red Sea During 2007–2013

    KAUST Repository

    Jonsson, Sigurjon

    2015-04-03

    The first volcanic eruption known to occur in the southern Red Sea in over a century started on Jebel at Tair Island in September 2007. The early phase of the eruption was energetic, with lava reaching the shore of the small island within hours, destroying a Yemeni military outpost and causing a few casualties. The eruption lasted several months, producing a new summit cone and lava covering an area of 5.9 km2, which is about half the area of the island. The Jebel at Tair activity was followed by two more eruptions within the Zubair archipelago, about 50 km to the southeast, in 2011–2012 and 2013, both of which started on the seafloor and resulted in the formation of new islands. The first of these eruptions started in December 2011 in the northern part of the archipelago and lasted for about one month, generating a small (0.25 km2) oval-shaped island. Coastal erosion during the first two years following the end of the eruption has reduced the size of the island to 0.19 km2. The second event occurred in the central part of the Zubair Islands and lasted roughly two months (September–November, 2013), forming a larger (0.68 km2) island. The recent volcanic eruptions in the southern Red Sea are a part of increased activity seen in the entire southern Red Sea region following the onset of a rifting episode in Afar (Ethiopia) in 2005.

  3. Long-Term Volumetric Eruption Rates and Magma Budgets

    Energy Technology Data Exchange (ETDEWEB)

    Scott M. White Dept. Geological Sciences University of South Carolina Columbia, SC 29208; Joy A. Crisp Jet Propulsion Laboratory, California Institute of Technology Pasadena, CA 91109; Frank J. Spera Dept. Earth Science University of California, Santa Barbara Santa Barbara, CA 93106

    2005-01-01

    A global compilation of 170 time-averaged volumetric volcanic output rates (Qe) is evaluated in terms of composition and petrotectonic setting to advance the understanding of long-term rates of magma generation and eruption on Earth. Repose periods between successive eruptions at a given site and intrusive:extrusive ratios were compiled for selected volcanic centers where long-term (>104 years) data were available. More silicic compositions, rhyolites and andesites, have a more limited range of eruption rates than basalts. Even when high Qe values contributed by flood basalts (9 ± 2 Å~ 10-1 km3/yr) are removed, there is a trend in decreasing average Qe with lava composition from basaltic eruptions (2.6 ± 1.0 Å~ 10-2 km3/yr) to andesites (2.3 ± 0.8 Å~ 10-3 km3/yr) and rhyolites (4.0 ± 1.4 Å~ 10-3 km3/yr). This trend is also seen in the difference between oceanic and continental settings, as eruptions on oceanic crust tend to be predominately basaltic. All of the volcanoes occurring in oceanic settings fail to have statistically different mean Qe and have an overall average of 2.8 ± 0.4 Å~ 10-2 km3/yr, excluding flood basalts. Likewise, all of the volcanoes on continental crust also fail to have statistically different mean Qe and have an overall average of 4.4 ± 0.8 Å~ 10-3 km3/yr. Flood basalts also form a distinctive class with an average Qe nearly two orders of magnitude higher than any other class. However, we have found no systematic evidence linking increased intrusive:extrusive ratios with lower volcanic rates. A simple heat balance analysis suggests that the preponderance of volcanic systems must be open magmatic systems with respect to heat and matter transport in order to maintain eruptible magma at shallow depth throughout the observed lifetime of the volcano. The empirical upper limit of Å`10-2 km3/yr for magma eruption rate in systems with relatively high intrusive:extrusive ratios may be a consequence of the fundamental parameters

  4. Airborne thermal infrared imaging of the 2004-2005 eruption of Mount St. Helens

    Science.gov (United States)

    Schneider, D. J.; Vallance, J. W.; Logan, M.; Wessels, R.; Ramsey, M.

    2005-12-01

    A helicopter-mounted forward-looking infrared imaging radiometer (FLIR) documented the explosive and effusive activity at Mount St. Helens during the 2004-2005 eruption. A gyrostabilzed gimbal controlled by a crew member houses the FLIR radiometer and an optical video camera attached at the lower front of the helicopter. Since October 1, 2004 the system has provided an unprecedented data set of thermal and video dome-growth observations. Flights were conducted as frequently as twice daily during the initial month of the eruption (when changes in the crater and dome occurred rapidly), and have been continued on a tri-weekly basis during the period of sustained dome growth. As with any new technology, the routine use of FLIR images to aid in volcano monitoring has been a learning experience in terms of observation strategy and data interpretation. Some of the unique information that has been derived from these data to date include: 1) Rapid identification of the phreatic nature of the early explosive phase; 2) Observation of faulting and associated heat flow during times of large scale deformation; 3) Venting of hot gas through a short lived crater lake, indicative of a shallow magma source; 4) Increased heat flow of the crater floor prior to the initial dome extrusion; 5) Confirmation of new magma reaching the surface; 6) Identification of the source of active lava extrusion, dome collapse, and block and ash flows. Temperatures vary from ambient, in areas insulated by fault gouge and talus produced during extrusion, to as high as 500-740 degrees C in regions of active extrusion, collapse, and fracturing. This temperature variation needs to be accounted for in the retrieval of eruption parameters using satellite-based techniques as such features are sub-pixel size in satellite images.

  5. Long term storage of explosively erupted magma at Nevado de Toluca volcano, Mexico

    Science.gov (United States)

    Arce, J. L.; Gardner, J.; Macias, J. L.

    2007-12-01

    Dacitic magmas production is common in subduction-related volcanoes, occurring in those with a long period of activity as a result of the magmatic evolution. However, in this evolution many factors (i.e. crystal fractionation, assimilation, magma mixing) can interact to produce dacites. Nevado de Toluca volcano (4,680 masl; 19°09'N; 99°45'W) Central Mexico has recorded a long period of time producing dacites explosively, at least during 42 ka of activity, involving several km3 of magma, with two important Plinian-type eruptions occurred at ~21.7 ka (Lower Toluca Pumice) and ~10.5 ka (Upper Toluca Pumice). Questions like, what was the mechanism responsible to produce voluminous dacitic magma and how the volatiles and pressure changed in the Nevado de Toluca system, remain without answers. Dacites from the Lower Toluca Pumice (LTP) contain plagioclase, amphibole, iron-titanium oxides, and minor resorbed biotite, set in a glassy-vesicular matrix and the Upper Toluca Pumice (UTP) dacites contain the same mineral phases plus orthopyroxene. Ilmenite- ulvospinel geothermometry yielded a temperature of ~860°C for the LTP dacite, a little hotter than the UTP (~ 840°C). Based on hydrothermal experiments data, amphibole is stable above 100 MPa under 900°C, while plagioclase crystallizes up to 250-100 MPa at temperatures of 850-900°C. Pyroxene occurs only at pressures of 200-100 MPa with its respective temperatures of 825-900°C. Water contents in the LTP magma (2-3.5 wt %) are similar to that calculated for the UTP magma (1.3-3.6 wt %). So, there are only small changes in temperature and pressure from ~21.7 ka to 10.5 ka. It is noteworthy that orthopyroxene is absent in the LTP, however reaction-rimmed biotite (probably xenocrystic) is commonly observed in all dacites. Hence, almost all dacitic magmas seem to be stored at relatively similar pressures, water contents, and temperatures. All of these data could suggest repetitive basic magma injections producing the

  6. Asymptomatic petechial eruption on the lower legs.

    Science.gov (United States)

    Mendese, Gary; Grande, Donald

    2013-09-01

    The authors report an unusual case of Rocky Mountain spotted fever that presented as an asymptomatic petechial eruption on the lower legs. Rocky Mountain spotted fever is rare in New England and, as such, is typically not on the differential diagnosis when presented with such patients. What began as an asymptomatic eruption progressed to more classic signs of the disease, including a positive Rocky Mountain spotted fever titer. The patient was successfully treated with doxycydine and within a short period of time, was completely back at baseline.

  7. Preliminary impact assessment of effusive eruptions at Etna volcano

    Science.gov (United States)

    Cappello, Annalisa; Michaud-Dubuy, Audrey; Branca, Stefano; De Beni, Emanuela; Del Negro, Ciro

    2016-04-01

    Lava flows are a recurring and widespread form of volcanic activity that threaten people and property around the world. The growing demographic congestion around volcanic structures increases the potential risks and costs that lava flows represent, and leads to a pressing need for faster and more accurate assessment of lava flow impact. To fully evaluate potential effects and losses that an effusive eruption may cause to society, property and environment, it is necessary to consider the hazard, the distribution of the exposed elements at stake and the associated vulnerability. Lava flow hazard assessment is at an advanced state, whereas comprehensive vulnerability assessment is lacking. Cataloguing and analyzing volcanic impacts provide insight on likely societal and physical vulnerabilities during future eruptions. Here we quantify the lava flow impact of two past main effusive eruptions of Etna volcano: the 1669, which is the biggest and destructive flank eruption to have occurred on Etna in historical time, and the 1981, lasting only 6 days, but characterized by an intense eruptive dynamics. Different elements at stake are considered, including population, hospitals, critical facilities, buildings of historic value, industrial infrastructures, gas and electricity networks, railways, roads, footways and finally land use. All these elements were combined with the 1669 and 1981 lava flow fields to quantify the social damage and economic loss.

  8. Why S, Not X, Marks the Spot for CME/Flare Eruptions

    Science.gov (United States)

    Moore, Ronald L.; Sterling, Alphonse; Gary, Allen; Cirtain, Jonathan; Falconer, David

    2010-01-01

    For any major CME/flare eruption: I. The field that erupts is an arcade in which the interior is greatly sheared and twisted. Most of the free magnetic energy to be released: a) Is in the shear and twist of the interior field. b) Is Not due to a big current sheet. The eruption is unleashed by reconnection at a growing current sheet. The current sheet is still little when the reconnection turns on. The unleashed eruption then makes the current sheet much bigger by building it up faster than the reconnection can tear it down. II. Most X-ray jets work the opposite way: a) Tapped free energy is in the field of a pre-jet current sheet. b) Current sheet built by small arcade emerging into ambient field. c) Current sheet still much smaller than the arcade when reconnection turns on and tears it down, producing a jet. III. These rules reflect the low-beta condition in the eruptive magnetic field

  9. MAGNETIC FIELD IN ATYPICAL PROMINENCE STRUCTURES: BUBBLE, TORNADO, AND ERUPTION

    Energy Technology Data Exchange (ETDEWEB)

    Levens, P. J.; Labrosse, N. [SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Schmieder, B. [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, F-92195 Meudon (France); López Ariste, A. [IRAP—CNRS UMR 5277, 14, Av. E. Belin, F-31400 Toulouse (France); Dalmasse, K. [CISL/HAO, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States); Gelly, B., E-mail: p.levens.1@research.gla.ac.uk, E-mail: brigitte.schmieder@obspm.fr [CNRS UMR 3718 THEMIS, La Laguna, Tenerife (Spain)

    2016-08-01

    Spectropolarimetric observations of prominences have been obtained with the THEMIS telescope during four years of coordinated campaigns. Our aim is now to understand the conditions of the cool plasma and magnetism in “atypical” prominences, namely when the measured inclination of the magnetic field departs, to some extent, from the predominantly horizontal field found in “typical” prominences. What is the role of the magnetic field in these prominence types? Are plasma dynamics more important in these cases than the magnetic support? We focus our study on three types of “atypical” prominences (tornadoes, bubbles, and jet-like prominence eruptions) that have all been observed by THEMIS in the He i D{sub 3} line, from which the Stokes parameters can be derived. The magnetic field strength, inclination, and azimuth in each pixel are obtained by using the inversion method of principal component analysis on a model of single scattering in the presence of the Hanle effect. The magnetic field in tornadoes is found to be more or less horizontal, whereas for the eruptive prominence it is mostly vertical. We estimate a tendency toward higher values of magnetic field strength inside the bubbles than outside in the surrounding prominence. In all of the models in our database, only one magnetic field orientation is considered for each pixel. While sufficient for most of the main prominence body, this assumption appears to be oversimplified in atypical prominence structures. We should consider these observations as the result of superposition of multiple magnetic fields, possibly even with a turbulent field component.

  10. Formation and Eruption Process of a Filament in Active Region NOAA 12241

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jincheng; Yan, Xiaoli; Qu, ZhongQuan; Xue, Zhike; Yang, Liheng [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China)

    2017-04-20

    In order to better understand active-region filaments, we present an intensive study on the formation and eruption of a filament in active region NOAA 12241 during the period from 2014 December 18 to 19. Using observations from the Helioseismic and Magnetic Imager (HMI) vector magnetograms, we investigate the helicity injection rate, Lorentz force, and vertical electric current in the entire region associated with the filament. The helicity injection rate before eruption is found to be larger than that after eruption, while the vertical electric current undergoes an increase at first and then a gradual decrease, similar to what the magnetic flux undergoes. Meanwhile, we find that the right part of the filament is formed by magnetic reconnection between two bundles of magnetic field lines while the left part originated from shearing motion. The interaction of the two parts causes the eruption of this filament. The mean horizontal magnetic fields in the vicinity of the magnetic polarity inversion line (PIL) enhance rapidly during the eruption. Another striking phenomenon, where the vertical electric currents close to the magnetic PIL suddenly expand toward two sides during the eruption, is found. We propose that this fascinating feature is associated with the release of energy during the eruption.

  11. The Relationship Between Personality and Schadenfreude in Hypothetical Versus Live Situations.

    Science.gov (United States)

    Greenier, Keegan D

    2018-06-01

    This study sought to investigate how individual differences are related to schadenfreude (pleasure derived from another's misfortune) by replicating past findings and extending them to additional personality traits. Because most past research on schadenfreude has relied heavily on the use of reactions to hypothetical scenarios, an attempt was made to demonstrate external validity by also including a reaction to a live event (confederate misfortune). For the scenarios, schadenfreude was positively correlated with the Dark Triad and just world beliefs; negatively correlated with empathy and agreeableness; and uncorrelated with dispositional envy, self-esteem, or the remaining Big Five traits. For the live event, no personality traits were correlated with schadenfreude, suggesting responses to hypothetical situations may not be representative of real-life schadenfreude events.

  12. Restricted Predicates for Hypothetical Datalog

    Directory of Open Access Journals (Sweden)

    Fernando Sáenz-Pérez

    2015-12-01

    Full Text Available Hypothetical Datalog is based on an intuitionistic semantics rather than on a classical logic semantics, and embedded implications are allowed in rule bodies. While the usual implication (i.e., the neck of a Horn clause stands for inferring facts, an embedded implication plays the role of assuming its premise for deriving its consequence. A former work introduced both a formal framework and a goal-oriented tabled implementation, allowing negation in rule bodies. While in that work positive assumptions for both facts and rules can occur in the premise, negative assumptions are not allowed. In this work, we cover this subject by introducing a new concept: a restricted predicate, which allows negative assumptions by pruning the usual semantics of a predicate. This new setting has been implemented in the deductive system DES.

  13. Salt shell fallout during the ash eruption at the Nakadake crater, Aso volcano, Japan: evidence of an underground hydrothermal system surrounding the erupting vent

    Science.gov (United States)

    Shinohara, Hiroshi; Geshi, Nobuo; Yokoo, Akihiko; Ohkura, Takahiro; Terada, Akihiko

    2018-03-01

    A hot and acid crater lake is located in the Nakadake crater, Aso volcano, Japan. The volume of water in the lake decreases with increasing activity, drying out prior to the magmatic eruptions. Salt-rich materials of various shapes were observed, falling from the volcanic plume during the active periods. In May 2011, salt flakes fell from the gas plume emitted from an intense fumarole when the acid crater lake was almost dry. The chemical composition of these salt flakes was similar to those of the salts formed by the drying of the crater lake waters, suggesting that they originated from the crater lake water. The salt flakes are likely formed by the drying up of the crater lake water droplets sprayed into the plume by the fumarolic gas jet. In late 2014, the crater lake dried completely, followed by the magmatic eruptions with continuous ash eruptions and intermittent Strombolian explosions. Spherical hollow salt shells were observed on several occasions during and shortly after the weak ash eruptions. The chemical composition of the salt shells was similar to the salts formed by the drying of the crater lake water. The hollow structure of the shells suggests that they were formed by the heating of hydrothermal solution droplets suspended by a mixed stream of gas and ash in the plume. The salt shells suggest the existence of a hydrothermal system beneath the crater floor, even during the course of magmatic eruptions. Instability of the magmatic-hydrothermal interface can cause phreatomagmatic explosions, which often occur at the end of the eruptive phase of this volcano.

  14. The Tala Tuff, La Primavera caldera Mexico. Pre-eruptive conditions and magma processes before eruption

    Science.gov (United States)

    Sosa-Ceballos, G.

    2015-12-01

    La Primavera caldera, Jalisco Mexico, is a Pleistocenic volcanic structure formed by dome complexes and multiple pyroclastic flows and fall deposits. It is located at the intersection of the Chapala, Colima, and Tepic grabens in western Mexico. The first volcanic activity associated to La Primavera started ~0.1 Ma with the emission of pre-caldera lavas. The caldera collapse occurred 95 ka and is associated to the eruption of ~20 km3of pumice flows known as the Tala tuff (Mahood 1980). The border of the caldera was replaced by a series of domes dated in 75-30 ky, which partially filled the inner depression of the caldera with pyroclastic flows and falls. For more than a decade the Federal Commission of Electricity in Mexico (CFE) has prospected and evaluated the geothermal potential of the Cerritos Colorados project at La Primavera caldera. In order to better understand the plumbing system that tapped the Tala tuff and to investigate its relation with the potential geothermal field at La Primavera we performed a series of hydrothermal experiments and studied melt inclusions hosted in quartz phenocrysts by Fourier Infra red stectroscopy (FTIR). Although some post caldera products at La Primavera contain fayalite and quartz (suggesting QFM conditions) the Tala tuff does not contain fayalite and we ran experiments under NNO conditions. The absence of titanomagnetite does not allowed us to calculate pre-eruptive temperature. However, the stability of quartz and plagioclase, which are natural phases, suggest that temperature should be less than 750 °C at a pressure of 200 MPa. The analyses of H2O and CO2 dissolved in melt inclusions yielded concentrations of 2-5 wt.% and 50-100 ppm respectively. This data confirm that the pre-eruptive pressure of the Tala tuff is ~200 MPa and in addition to major elements compositions suggest that the Tala tuff is either, compositionally zoned or mixed with other magma just prior to eruption.

  15. Experimental estimates of the energy budget of hydrothermal eruptions; application to 2012 Upper Te Maari eruption, New Zealand

    Science.gov (United States)

    Montanaro, Cristian; Scheu, Bettina; Cronin, Shane J.; Breard, Eric C. P.; Lube, Gert; Dingwell, Donald B.

    2016-10-01

    Sudden hydrothermal eruptions occur in many volcanic settings and may include high-energy explosive phases. Ballistics launched by such events, together with ash plumes and pyroclastic density currents, generate deadly proximal hazards. The violence of hydrothermal eruptions (or explosive power) depends on the energy available within the driving-fluids (gas or liquid), which also influences the explosive mechanisms, volumes, durations, and products of these eruptions. Experimental studies in addition to analytical modeling were used here to elucidate the fragmentation mechanism and aspects of energy balance within hydrothermal eruptions. We present results from a detailed study of recent event that occurred on the 6th of August 2012 at Upper Te Maari within the Tongariro volcanic complex (New Zealand). The eruption was triggered by a landslide from this area, which set off a rapid stepwise decompression of the hydrothermal system. Explosive blasts were directed both westward and eastward of the collapsed area, with a vertical ash plume sourced from an adjacent existing crater. All explosions ejected blocks on ballistic trajectories, hundreds of which impacted New Zealand's most popular hiking trail and a mountain lodge, 1.4 km from the explosion locus. We have employed rocks representative of the eruption source area to perform rapid decompression experiments under controlled laboratory conditions that mimic hydrothermal explosions under controlled laboratory conditions. An experimental apparatus for 34 by 70 mm cylindrical samples was built to reduce the influence of large lithic enclaves (up to 30 mm in diameter) within the rock. The experiments were conducted in a temperature range of 250 °C-300 °C and applied pressure between 4 MPa and 6.5 MPa, which span the range of expected conditions below the Te Maari crater. Within this range we tested rapid decompression of pre-saturated samples from both liquid-dominated conditions and the vapor-dominated field

  16. Volcanic geology and eruption frequency, lower east rift zone of Kilauea volcano, Hawaii

    Science.gov (United States)

    Moore, Richard B.

    1992-08-01

    Detailed geologic mapping and radiocarbon dating of tholeiitic basalts covering about 275 km2 on the lower east rift zone (LERZ) and adjoining flanks of Kilauea volcano, Hawaii, show that at least 112 separate eruptions have occurred during the past 2360 years. Eruptive products include spatter ramparts and cones, a shield, two extensive lithic-rich tuff deposits, aa and pahoehoe flows, and three littoral cones. Areal coverage, number of eruptions and average dormant interval estimates in years for the five age groups assigned are: (I) historic, i.e. A D 1790 and younger: 25%, 5, 42.75; (II) 200 400 years old: 50%, 15, 14.3: (III) 400 750 years old: 20%, 54, 6.6; (IV) 750 1500 years old: 5%, 37, 20.8; (V) 1500 3000 years old: LERZ during the past 1500 years. Estimated volumes of the exposed products of individual eruptions range from a few tens of cubic meters for older units in small kipukas to as much as 0.4 km3 for the heiheiahulu shield. The average dormant interval has been about 13.6 years during the past 1500 years. The most recent eruption occurred in 1961, and the area may be overdue for its next eruption. However, eruptive activity will not resume on the LERZ until either the dike feeding the current eruption on the middle east rift zone extends farther down rift, or a new dike, unrelated to the current eruption, extends into the LERZ.

  17. The global magnitude-frequency relationship for large explosive volcanic eruptions

    Science.gov (United States)

    Rougier, Jonathan; Sparks, R. Stephen J.; Cashman, Katharine V.; Brown, Sarah K.

    2018-01-01

    For volcanoes, as for other natural hazards, the frequency of large events diminishes with their magnitude, as captured by the magnitude-frequency relationship. Assessing this relationship is valuable both for the insights it provides about volcanism, and for the practical challenge of risk management. We derive a global magnitude-frequency relationship for explosive volcanic eruptions of at least 300Mt of erupted mass (or M4.5). Our approach is essentially empirical, based on the eruptions recorded in the LaMEVE database. It differs from previous approaches mainly in our conservative treatment of magnitude-rounding and under-recording. Our estimate for the return period of 'super-eruptions' (1000Gt, or M8) is 17ka (95% CI: 5.2ka, 48ka), which is substantially shorter than previous estimates, indicating that volcanoes pose a larger risk to human civilisation than previously thought.

  18. Tsunamis generated by eruptions from mount st. Augustine volcano, alaska.

    Science.gov (United States)

    Kienle, J; Kowalik, Z; Murty, T S

    1987-06-12

    During an eruption of the Alaskan volcano Mount St. Augustine in the spring of 1986, there was concern about the possibility that a tsunami might be generated by the collapse of a portion of the volcano into the shallow water of Cook Inlet. A similar edifice collapse of the volcano and ensuing sea wave occurred during an eruption in 1883. Other sea waves resulting in great loss of life and property have been generated by the eruption of coastal volcanos around the world. Although Mount St. Augustine remained intact during this eruptive cycle, a possible recurrence of the 1883 events spurred a numerical simulation of the 1883 sea wave. This simulation, which yielded a forecast of potential wave heights and travel times, was based on a method that could be applied generally to other coastal volcanos.

  19. [Early deciduous tooth loss--the mature or immature eruption of their permanent successors].

    Science.gov (United States)

    Czecholinski, J A; Kahl, B; Schwarze, C W

    1994-04-01

    On the basis of 147 panoramic radiographs of 49 patients, this study investigated the influence of the premature loss of deciduous teeth on the formation of their permanent successors at the time of their eruption. Furthermore the study investigated the eruptive movement of the successor teeth at the time of eruption. In addition to detecting the accelerated emergence of still immature successor premolars, the study also determined that the extraction ot the deciduous molars before the age of eight years delayed the eruption of the permanent successors given the absence of an infected deciduous tooth with abscess formation. In relation to the eruptive movement of the permanent molars due to the premature loss of the second deciduous molar, the study ascertained a mesial movement of the first permanent molars and an accelerated eruption of the second permanent molars.

  20. Magma transfer at Campi Flegrei caldera (Italy) before the 1538 AD eruption

    Science.gov (United States)

    Di Vito, Mauro A.; Acocella, Valerio; Aiello, Giuseppe; Barra, Diana; Battaglia, Maurizio; Carandente, Antonio; Del Gaudio, Carlo; de Vita, Sandro; Ricciardi, Giovanni; Rico, Ciro; Scandone, Roberto; Terrasi, Filippo

    2017-04-01

    Defining and understanding the shallow transfer of magma at volcanoes is crucial to forecast eruptions, possibly the ultimate goal of volcanology. This is particularly challenging at felsic calderas experiencing unrest, which typically includes significant changes in seismicity, deformation and degassing rates. Caldera unrest is particularly frequent, affects wide areas and often does not culminate in an eruption. Moreover its evidence is usually complicated by the presence of a hydrothermal system. As a result, forecasting any eruption and vent-opening sites within a caldera is very difficult. The Campi Flegrei caldera (CFc), in the densely inhabited area of Naples (Italy), is commonly considered one of the most dangerous active volcanic systems. CFc is a 12 km wide depression hosting two nested calderas formed during the eruptions of the Campanian Ignimbrite ( 39 ka) and the Neapolitan Yellow Tuff ( 15 ka). In the last 5 ka, resurgence, with uplift >60 m close to the central part of the caldera, was accompanied by volcanism between 4.8 and 3.8 ka. After 3 ka of quiescence, increasing seismicity and uplift preceded the last eruption at Monte Nuovo in 1538 for several decades. The most recent activity culminated in four unrest episodes between 1950-1952, 1969-1972, 1982-1984 and 2005-Present, with a cumulative uplift at Pozzuoli of 4.5 m; the present unrest episode has been interpreted as being magma-driven. These unrest episodes are considered the most evident expression of a longer-term (centuries or more) restless activity. The post-1980 deformation largely results from a magmatic oblate or sill-like source at 4 km depth below Pozzuoli. Despite the restless activity of CFc, the recent unrest episodes did not culminate in eruption, so that any possibility to define the pre-eruptive shallow transfer of magma remains elusive. Indeed, this definition is a crucial step in order to identify and understand pre-eruptive processes, and thus to make any forecast. To fill

  1. Magma migration and resupply during the 1974 summit eruptions of Kilauea Volcano, Hawaii

    Science.gov (United States)

    Lockwood, John P.; Tilling, Robert I.; Holcomb, Robin T.; Klein, Fred W.; Okamura, Arnold T.; Peterson, Donald W.

    1999-01-01

    The purpose of this paper is to present a complete account of contrasting yet related eruptions, thus filling a gap in the published narratives of recent activity of Kilauea; and to examine their significance within a broader context of regional magmatic and eruptive dynamics. We have gained a historical perspective and can view these three eruptions within a multidecade context of the eruptive behavior of not only Kilauea, but also of the adjacent Mauna Loa.

  2. UK Hazard Assessment for a Laki-type Volcanic Eruption

    Science.gov (United States)

    Witham, Claire; Felton, Chris; Daud, Sophie; Aspinall, Willy; Braban, Christine; Loughlin, Sue; Hort, Matthew; Schmidt, Anja; Vieno, Massimo

    2014-05-01

    Following the impacts of the Eyjafjallajokull eruption in 2010, two types of volcanic eruption have been added to the UK Government's National Risk Register for Civil Emergencies. One of these, a large gas-rich volcanic eruption, was identified as a high impact natural hazard, one of the three highest priority natural hazards faced by the UK. This eruption scenario is typified by the Laki eruption in Iceland in 1783-1784. The Civil Contingency Secretariat (CCS) of the UK's Cabinet Office, responsible for Civil Protection in the UK, has since been working on quantifying the risk and better understanding its potential impacts. This involves cross-cutting work across UK Government departments and the wider scientific community in order to identify the capabilities needed to respond to an effusive eruption, to exercise the response and develop increased resilience where possible. As part of its current work, CCS has been working closely with the UK Met Office and other UK agencies and academics (represented by the co-authors and others) to generate and assess the impacts of a 'reasonable worst case scenario', which can be used for decision making and preparation in advance of an eruption. Information from the literature and the findings of an expert elicitation have been synthesised to determine appropriate eruption source term parameters and associated uncertainties. This scenario is then being used to create a limited ensemble of model simulations of the dispersion and chemical conversion of the emissions of volcanic gases during such an eruption. The UK Met Office's NAME Lagrangian dispersion model and the Centre for Ecology and Hydrology's EMEP4UK Eulerian model are both being used. Modelling outputs will address the likelihood of near-surface concentrations of sulphur and halogen species being above specified health thresholds. Concentrations at aviation relevant altitudes will also be evaluated, as well as the effects of acid deposition of volcanic species on

  3. Reconstructing the eruption magnitude and energy budgets for the pre-historic eruption of the monogenetic ˜5 ka Mt. Gambier Volcanic Complex, south-eastern Australia

    Science.gov (United States)

    van Otterloo, Jozua; Cas, Raymond A. F.

    2013-12-01

    Understanding explosive volcanic eruptions, especially phreatomagmatic eruptions, their intensities and energy budgets is of major importance when it comes to risk and hazard studies. With only a few historic occurrences of phreatomagmatic activity, a large amount of our understanding comes from the study of pre-historic volcanic centres, which causes issues when it comes to preservation and vegetation. In this research, we show that using 3D geometrical modelling it is possible to obtain volume estimates for different deposits of a pre-historic, complex, monogenetic centre, the Mt. Gambier Volcanic Complex, south-eastern Australia. Using these volumes, we further explore the energy budgets and the magnitude of this eruption (VEI 4), including dispersal patterns (eruption columns varying between 5 and 10 km, dispersed towards north-east to south), to further our understanding of intraplate, monogenetic eruptions involving phreatomagmatic activity. We also compare which thermodynamic model fits best in the creation of the maar crater of Mt. Gambier: the major-explosion-dominated model or the incremental growth model. In this case, the formation of most of the craters can best be explained by the latter model.

  4. The source and longevity of sulfur in an Icelandic flood basalt eruption plume

    Science.gov (United States)

    Ilyinskaya, Evgenia; Edmonds, Marie; Mather, Tamsin; Schmidt, Anja; Hartley, Margaret; Oppenheimer, Clive; Pope, Francis; Donovan, Amy; Sigmarsson, Olgeir; Maclennan, John; Shorttle, Oliver; Francis, Peter; Bergsson, Baldur; Barsotti, Sara; Thordarson, Thorvaldur; Bali, Eniko; Keller, Nicole; Stefansson, Andri

    2015-04-01

    The Holuhraun fissure eruption (Bárðarbunga volcanic system, central Iceland) has been ongoing since 31 August 2014 and is now the largest in Europe since the 1783-84 Laki event. For the first time in the modern age we have the opportunity to study at first hand the environmental impact of a flood basalt fissure eruption (>1 km3 lava). Flood basalt eruptions are one of the most hazardous volcanic scenarios in Iceland and have had enormous societal and economic consequences across the northern hemisphere in the past. The Laki eruption caused the deaths of >20% of the Icelandic population by environmental pollution and famine and potentially also increased European levels of mortality through air pollution by sulphur-bearing gas and aerosol. A flood basalt eruption was included in the UK National Risk Register in 2012 as one of the highest priority risks. The gas emissions from Holuhraun have been sustained since its beginning, repeatedly causing severe air pollution in populated areas in Iceland. During 18-22 September, SO2 fluxes reached 45 kt/day, a rate of outgassing rarely observed during sustained eruptions, suggesting that the sulfur loading per kg of erupted magma exceeds both that of other recent eruptions in Iceland and perhaps also other historic basaltic eruptions globally. This raises key questions regarding the origin of these prodigious quantities of sulphur. A lack of understanding of the source of this sulfur, the conversion rates of SO2 gas into aerosol, the residence times of aerosol in the plume and the dependence of these on meteorological factors is limiting our confidence in the ability of atmospheric models to forecast gas and aerosol concentrations in the near- and far-field from Icelandic flood basalt eruptions. In 2015 our group is undertaking a project funded by UK NERC urgency scheme to investigate several aspects of the sulfur budget at Holuhraun using a novel and powerful approach involving simultaneous tracking of sulfur and

  5. RECOVERY FROM GIANT ERUPTIONS IN VERY MASSIVE STARS

    International Nuclear Information System (INIS)

    Kashi, Amit; Davidson, Kris; Humphreys, Roberta M.

    2016-01-01

    We use a hydro-and-radiative-transfer code to explore the behavior of a very massive star (VMS) after a giant eruption—i.e., following a supernova impostor event. Beginning with reasonable models for evolved VMSs with masses of 80 M ⊙ and 120 M ⊙ , we simulate the change of state caused by a giant eruption via two methods that explicitly conserve total energy. (1) Synthetically removing outer layers of mass of a few M ⊙ while reducing the energy of the inner layers. (2) Synthetically transferring energy from the core to the outer layers, an operation that automatically causes mass ejection. Our focus is on the aftermath, not the poorly understood eruption itself. Then, using a radiation-hydrodynamic code in 1D with realistic opacities and convection, the interior disequilibrium state is followed for about 200 years. Typically the star develops a ∼400 km s −1 wind with a mass loss rate that begins around 0.1 M ⊙  yr −1 and gradually decreases. This outflow is driven by κ-mechanism radial pulsations. The 1D models have regular pulsations but 3D models will probably be more chaotic. In some cases a plateau in the mass-loss rate may persist about 200 years, while other cases are more like η Car which lost >10 M ⊙ and then had an abnormal mass loss rate for more than a century after its eruption. In our model, the post-eruption outflow carried more mass than the initial eruption. These simulations constitute a useful preliminary reconnaissance for 3D models which will be far more difficult

  6. MHD Simulations of the Eruption of Coronal Flux Ropes under Coronal Streamers

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Yuhong, E-mail: yfan@ucar.edu [High Altitude Observatory, National Center for Atmospheric Research, 3080 Center Green Drive, Boulder, CO 80301 (United States)

    2017-07-20

    Using three-dimensional magnetohydrodynamic (MHD) simulations, we investigate the eruption of coronal flux ropes underlying coronal streamers and the development of a prominence eruption. We initialize a quasi-steady solution of a coronal helmet streamer, into which we impose at the lower boundary the slow emergence of a part of a twisted magnetic torus. As a result, a quasi-equilibrium flux rope is built up under the streamer. With varying streamer sizes and different lengths and total twists of the flux rope that emerges, we found different scenarios for the evolution from quasi-equilibrium to eruption. In the cases with a broad streamer, the flux rope remains well confined until there is sufficient twist such that it first develops the kink instability and evolves through a sequence of kinked, confined states with increasing height until it eventually develops a “hernia-like” ejective eruption. For significantly twisted flux ropes, prominence condensations form in the dips of the twisted field lines due to runaway radiative cooling. Once formed, the prominence-carrying field becomes significantly non-force-free due to the weight of the prominence, despite having low plasma β . As the flux rope erupts, the prominence erupts, showing substantial draining along the legs of the erupting flux rope. The prominence may not show a kinked morphology even though the flux rope becomes kinked. On the other hand, in the case with a narrow streamer, the flux rope with less than one wind of twist can erupt via the onset of the torus instability.

  7. Indirect Climatic Effects of Major Volcanic Eruptions

    Science.gov (United States)

    Hofmann, D. J.

    2007-05-01

    The direct effects on climate, related to atmospheric emissions to the atmosphere following major volcanic eruptions, are well-known although the sparseness of such eruptions make detailed study on the range of such variations difficult. In general terms, infrared absorption by volcanic emissions to the stratosphere result in local heating early in the event when gaseous sulfur compounds exist. This early period is followed by gas to particle conversion, on a time scale of 1-2 months, promoting the formation of sulfuric acid-water droplets. Coagulation and droplet growth result in the "volcanic stratospheric aerosol layer" which is related to the predominant direct climatic effect of large eruptions, the cooling of the troposphere by backscattering of solar visible radiation to space with a recovery time scale of 1-2 years. In this paper we will discuss some of the less-known "indirect" effects of the volcanic stratospheric aerosol on climate. We label them indirect as they act on climate through intermediary atmospheric constituents. The intermediaries in the volcanic indirect climatic effect are generally atmospheric greenhouse gases or other atmospheric gases and conditions which affect greenhouse gases. For example, cooling of the troposphere following major eruptions reduces the growth rate of atmospheric carbon dioxide related to respiration by the terrestrial biosphere. In addition, redirection of part of the direct solar beam into diffuse radiation by the volcanic stratospheric aerosol stimulates plant photosynthesis, further reducing the carbon dioxide growth rate. The growth rate of the second-most important atmospheric greenhouse gas, methane, is also affected by volcanic emissions. Volcanic stratospheric aerosol particles provide surface area which catalyzes heterogeneous chemical reactions thus stimulating removal of stratospheric ozone, also a greenhouse gas. Although major droughts usually related to ENSO events have opposite effects on carbon

  8. Using Spectroscopy to Infer the Eruption Style and Volatile History of Volcanic Tephras

    Science.gov (United States)

    McBride, M. J.; Horgan, B. H. N.; Rowe, M. C.; Wall, K. T.; Oxley, B. M.

    2017-12-01

    The interaction between volatiles and magma strongly influences volcanic eruption styles, and results in an increase in the glass component of volcanic tephra. On Earth, both phreatomagmatic and magmatic explosive eruptions create glassy tephras. Phreatomagmatic eruptions form abundant glass by quickly quenching lava through interaction with meteoric water while magmatic eruptions create less glass through slower cooling within larger pyroclasts or eruption columns. Wall et al. (2014) used X-ray diffraction (XRD) of diverse tephra samples to show that glass content correlates with eruption style, as magmatic samples contain less glass than phreatomagmatic samples. While use of XRD is limited to Earth and the Curiosity rover on Mars, orbital spectroscopy is much a more common technique in the exploration of terrestrial bodies. In this study, we evaluate whether or not spectroscopy can be used to infer eruption style and thus volatile history. Visible/near-infrared (VNIR) and thermal-infrared (TIR) spectra were collected of the Wall et al. (2014) tephra samples, and were analyzed for trends related to glass content and thus eruption style. VNIR spectra can detect glass at high abundances as well as hydrothermal alteration minerals produced during interactions with meteoric water. Using TIR, glass abundances can be derived by deconvolving the spectra with a standard spectral library; however, due to the non-unique spectral shape of glass, intermediate to high glass abundances in tephras are difficult to differentiate using TIR alone. Synthetic mixtures of glass and crystalline minerals verify these results. Therefore, the most effective method for determining glass abundance and thus eruption style from volcanic deposits is a combination of VNIR and TIR spectral analysis. Using standard planetary remote sensing instrumentation to infer eruption styles will provide a new window into the volcanic and volatile histories of terrestrial bodies.

  9. A compositional tipping point governing the mobilization and eruption style of rhyolitic magma.

    Science.gov (United States)

    Di Genova, D; Kolzenburg, S; Wiesmaier, S; Dallanave, E; Neuville, D R; Hess, K U; Dingwell, D B

    2017-12-13

    The most viscous volcanic melts and the largest explosive eruptions on our planet consist of calcalkaline rhyolites. These eruptions have the potential to influence global climate. The eruptive products are commonly very crystal-poor and highly degassed, yet the magma is mostly stored as crystal mushes containing small amounts of interstitial melt with elevated water content. It is unclear how magma mushes are mobilized to create large batches of eruptible crystal-free magma. Further, rhyolitic eruptions can switch repeatedly between effusive and explosive eruption styles and this transition is difficult to attribute to the rheological effects of water content or crystallinity. Here we measure the viscosity of a series of melts spanning the compositional range of the Yellowstone volcanic system and find that in a narrow compositional zone, melt viscosity increases by up to two orders of magnitude. These viscosity variations are not predicted by current viscosity models and result from melt structure reorganization, as confirmed by Raman spectroscopy. We identify a critical compositional tipping point, independently documented in the global geochemical record of rhyolites, at which rhyolitic melts fluidize or stiffen and that clearly separates effusive from explosive deposits worldwide. This correlation between melt structure, viscosity and eruptive behaviour holds despite the variable water content and other parameters, such as temperature, that are inherent in natural eruptions. Thermodynamic modelling demonstrates how the observed subtle compositional changes that result in fluidization or stiffening of the melt can be induced by crystal growth from the melt or variation in oxygen fugacity. However, the rheological effects of water and crystal content alone cannot explain the correlation between composition and eruptive style. We conclude that the composition of calcalkaline rhyolites is decisive in determining the mobilization and eruption dynamics of Earth

  10. A compositional tipping point governing the mobilization and eruption style of rhyolitic magma

    Science.gov (United States)

    di Genova, D.; Kolzenburg, S.; Wiesmaier, S.; Dallanave, E.; Neuville, D. R.; Hess, K. U.; Dingwell, D. B.

    2017-12-01

    The most viscous volcanic melts and the largest explosive eruptions on our planet consist of calcalkaline rhyolites. These eruptions have the potential to influence global climate. The eruptive products are commonly very crystal-poor and highly degassed, yet the magma is mostly stored as crystal mushes containing small amounts of interstitial melt with elevated water content. It is unclear how magma mushes are mobilized to create large batches of eruptible crystal-free magma. Further, rhyolitic eruptions can switch repeatedly between effusive and explosive eruption styles and this transition is difficult to attribute to the rheological effects of water content or crystallinity. Here we measure the viscosity of a series of melts spanning the compositional range of the Yellowstone volcanic system and find that in a narrow compositional zone, melt viscosity increases by up to two orders of magnitude. These viscosity variations are not predicted by current viscosity models and result from melt structure reorganization, as confirmed by Raman spectroscopy. We identify a critical compositional tipping point, independently documented in the global geochemical record of rhyolites, at which rhyolitic melts fluidize or stiffen and that clearly separates effusive from explosive deposits worldwide. This correlation between melt structure, viscosity and eruptive behaviour holds despite the variable water content and other parameters, such as temperature, that are inherent in natural eruptions. Thermodynamic modelling demonstrates how the observed subtle compositional changes that result in fluidization or stiffening of the melt can be induced by crystal growth from the melt or variation in oxygen fugacity. However, the rheological effects of water and crystal content alone cannot explain the correlation between composition and eruptive style. We conclude that the composition of calcalkaline rhyolites is decisive in determining the mobilization and eruption dynamics of Earth

  11. Mount St. Helens: Still erupting lessons 31 years later

    Science.gov (United States)

    Rhonda Mazza; Charlie Crisafulli; Fred Swanson

    2011-01-01

    The massive volcanic eruption of Mount St. Helens 31 years ago provided the perfect backdrop for studying the earliest stages of forest development. Immediately after the eruption, some areas of the blast area were devoid of life. On other parts of the volcanic landscape, many species survived, although their numbers were greatly reduced. Reassembly began at many...

  12. Animal Health and Productivity Status of Cattle After The Eruption of Mount Merapi

    Directory of Open Access Journals (Sweden)

    Yulvian Sani

    2011-12-01

    Full Text Available The eruption of Merapi from October 26th to November 6th, 2010 has affected social life and environment around the Merapi. The eruption has caused destruction of land and water resources, plants, death of animals and human casualities. The lava, dust and stones released from the eruption of Merapi had caused residential destruction, casualities, agricultural land and plants destruction, and contamination of water. The eruption has directly affected 4 districts including Sleman (Yogyakarta, Magelang, Boyolali and Klaten (Central Java categorized as Disaster Risk Area (DRA. The purpose of this assessment is to analyse the impacts of Merapi eruption in animal health and productivity in particular for dairy and beef cattle. A total of 2.828 heads of cattle was reported died during the eruption of Merapi, and 1.962 heads died at the time of eruption and 36 heads at the arrival on evacuation areas. Animal that found died including 423 heads of beef cattle (0.13% and 2.405 heads of dairy cattle (3.2%. Clinical sains noted after the eruption were reduction of milk production, loss of appetite, diarrhoea, respiratory disturbances, mastitis and collapse. The main problems for livestock were reduction of milk production, collapse of dairy milk corporation activities and contamination of water resources. Other than dairy cattle mortality, the reduction of milk production may be caused by subclinical mastitis and environmental distress due to temperature and noise of eruption for few days. The subclinical mastitis should be further investigated to establish rehabilitation programme for dairy milk agribussiness activity in particular around the DRA of Merapi.

  13. Classifying the Sizes of Explosive Eruptions using Tephra Deposits: The Advantages of a Numerical Inversion Approach

    Science.gov (United States)

    Connor, C.; Connor, L.; White, J.

    2015-12-01

    Explosive volcanic eruptions are often classified by deposit mass and eruption column height. How well are these eruption parameters determined in older deposits, and how well can we reduce uncertainty using robust numerical and statistical methods? We describe an efficient and effective inversion and uncertainty quantification approach for estimating eruption parameters given a dataset of tephra deposit thickness and granulometry. The inversion and uncertainty quantification is implemented using the open-source PEST++ code. Inversion with PEST++ can be used with a variety of forward models and here is applied using Tephra2, a code that simulates advective and dispersive tephra transport and deposition. The Levenburg-Marquardt algorithm is combined with formal Tikhonov and subspace regularization to invert eruption parameters; a linear equation for conditional uncertainty propagation is used to estimate posterior parameter uncertainty. Both the inversion and uncertainty analysis support simultaneous analysis of the full eruption and wind-field parameterization. The combined inversion/uncertainty-quantification approach is applied to the 1992 eruption of Cerro Negro (Nicaragua), the 2011 Kirishima-Shinmoedake (Japan), and the 1913 Colima (Mexico) eruptions. These examples show that although eruption mass uncertainty is reduced by inversion against tephra isomass data, considerable uncertainty remains for many eruption and wind-field parameters, such as eruption column height. Supplementing the inversion dataset with tephra granulometry data is shown to further reduce the uncertainty of most eruption and wind-field parameters. We think the use of such robust models provides a better understanding of uncertainty in eruption parameters, and hence eruption classification, than is possible with more qualitative methods that are widely used.

  14. Reducing therapeutic misconception: A randomized intervention trial in hypothetical clinical trials.

    Directory of Open Access Journals (Sweden)

    Paul P Christopher

    Full Text Available Participants in clinical trials frequently fail to appreciate key differences between research and clinical care. This phenomenon, known as therapeutic misconception, undermines informed consent to clinical research, but to date there have been no effective interventions to reduce it and concerns have been expressed that to do so might impede recruitment. We determined whether a scientific reframing intervention reduces therapeutic misconception without significantly reducing willingness to participate in hypothetical clinical trials.This prospective randomized trial was conducted from 2015 to 2016 to test the efficacy of an informed consent intervention based on scientific reframing compared to a traditional informed consent procedure (control in reducing therapeutic misconception among patients considering enrollment in hypothetical clinical trials modeled on real-world studies for one of five disease categories. Patients with diabetes mellitus, hypertension, coronary artery disease, head/neck cancer, breast cancer, and major depression were recruited from medical clinics and a clinical research volunteer database. The primary outcomes were therapeutic misconception, as measured by a validated, ten-item Therapeutic Misconception Scale (range = 10-50, and willingness to participate in the clinical trial.154 participants completed the study (age range, 23-87 years; 92.3% white, 56.5% female; 74 (48.1% had been randomized to receive the experimental intervention. Therapeutic misconception was significantly lower (p = 0.004 in the scientific reframing group (26.4, 95% CI [23.7 to 29.1] compared to the control group (30.9, 95% CI [28.4 to 33.5], and remained so after controlling for education (p = 0.017. Willingness to participate in the hypothetical trial was not significantly different (p = 0.603 between intervention (52.1%, 95% CI [40.2% to 62.4%] and control (56.3%, 95% CI [45.3% to 66.6%] groups.An enhanced educational intervention augmenting

  15. Magma transfer at Campi Flegrei caldera (Italy) before the 1538 AD eruption.

    Science.gov (United States)

    Di Vito, Mauro A; Acocella, Valerio; Aiello, Giuseppe; Barra, Diana; Battaglia, Maurizio; Carandente, Antonio; Del Gaudio, Carlo; de Vita, Sandro; Ricciardi, Giovanni P; Ricco, Ciro; Scandone, Roberto; Terrasi, Filippo

    2016-08-25

    Calderas are collapse structures related to the emptying of magmatic reservoirs, often associated with large eruptions from long-lived magmatic systems. Understanding how magma is transferred from a magma reservoir to the surface before eruptions is a major challenge. Here we exploit the historical, archaeological and geological record of Campi Flegrei caldera to estimate the surface deformation preceding the Monte Nuovo eruption and investigate the shallow magma transfer. Our data suggest a progressive magma accumulation from ~1251 to 1536 in a 4.6 ± 0.9 km deep source below the caldera centre, and its transfer, between 1536 and 1538, to a 3.8 ± 0.6 km deep magmatic source ~4 km NW of the caldera centre, below Monte Nuovo; this peripheral source fed the eruption through a shallower source, 0.4 ± 0.3 km deep. This is the first reconstruction of pre-eruptive magma transfer at Campi Flegrei and corroborates the existence of a stationary oblate source, below the caldera centre, that has been feeding lateral eruptions for the last ~5 ka. Our results suggest: 1) repeated emplacement of magma through intrusions below the caldera centre; 2) occasional lateral transfer of magma feeding non-central eruptions within the caldera. Comparison with historical unrest at calderas worldwide suggests that this behavior is common.

  16. ARCADE IMPLOSION CAUSED BY A FILAMENT ERUPTION IN A FLARE

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Juntao; Simões, P. J. A.; Fletcher, L.; Hannah, I. G. [SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Thalmann, J. K. [Institute of Physics/IGAM, University of Graz, Universitätsplatz 5, A-8010 Graz (Austria); Hudson, H. S., E-mail: j.wang.4@research.gla.ac.uk [SSL/UC, Berkeley, CA (United States)

    2016-12-20

    Coronal implosions—the convergence motion of plasmas and entrained magnetic field in the corona due to a reduction in magnetic pressure—can help to locate and track sites of magnetic energy release or redistribution during solar flares and eruptions. We report here on the analysis of a well-observed implosion in the form of an arcade contraction associated with a filament eruption, during the C3.5 flare SOL2013-06-19T07:29. A sequence of events including the magnetic flux-rope instability and distortion, followed by a filament eruption and arcade implosion, lead us to conclude that the implosion arises from the transfer of magnetic energy from beneath the arcade as part of the global magnetic instability, rather than due to local magnetic energy dissipation in the flare. The observed net contraction of the imploding loops, which is found also in nonlinear force-free field extrapolations, reflects a permanent reduction of magnetic energy underneath the arcade. This event shows that, in addition to resulting in the expansion or eruption of an overlying field, flux-rope instability can also simultaneously implode an unopened field due to magnetic energy transfer. It demonstrates the “partial opening of the field” scenario, which is one of the ways in 3D to produce a magnetic eruption without violating the Aly–Sturrock hypothesis. In the framework of this observation, we also propose a unification of three main concepts for active region magnetic evolution, namely the metastable eruption model, the implosion conjecture, and the standard “CSHKP” flare model.

  17. Occurrence of Somma-Vesuvio fine ashes in the tephrostratigraphic record of Panarea, Aeolian Islands

    Science.gov (United States)

    Donatella, De Rita; Daniela, Dolfi; Corrado, Cimarelli

    2008-10-01

    Ash-rich tephra layers interbedded in the pyroclastic successions of Panarea island (Aeolian archipelago, Southern Italy) have been analyzed and related to their original volcanic sources. One of these tephra layers is particularly important as it can be correlated by its chemical and morphoscopic characteristics to the explosive activity of Somma-Vesuvio. Correlation with the Pomici di Base eruption, that is considered one of the largest explosive events causing the demolition of the Somma stratovolcano, seems the most probable. The occurrence on Panarea island of fine ashes related to this eruption is of great importance for several reasons: 1) it allows to better constrain the time stratigraphy of the Panarea volcano; 2) it provides a useful tool for tephrochronological studies in southern Italy and finally 3) it allows to improve our knowledge on the distribution of the products of the Pomici di Base eruption giving new insights on the dispersion trajectories of fine ashes from plinian plumes. Other exotic tephra layers interbedded in the Panarea pyroclastic successions have also been found. Chemical and sedimentological characteristics of these layers allow their correlation with local vents from the Aeolian Islands thus constraining the late explosive activity of Panarea dome.

  18. Analyses of hypothetical FCI's in a fast reactor

    International Nuclear Information System (INIS)

    Padilla, A. Jr.; Martin, F.J.; Niccoli, L.G.

    1981-01-01

    Parametric analyses using the SIMMER code were performed to evaluate the potential for a severe recriticality from a pressure-driven recompaction caused by an energetic FCI during the transition phase of a hypothetical accident in a fast reactor. For realistic and reasonable estimates for the assumed accident conditions, a severe recriticality was not predicted. The conditions under which a severe recriticality would be obtained or averted were identified. 10 figures, 2 tables

  19. Magma decompression rates during explosive eruptions of Kīlauea volcano, Hawaii, recorded by melt embayments

    Science.gov (United States)

    Ferguson, David J.; Gonnermann, Helge M.; Ruprecht, Philipp; Plank, Terry; Hauri, Erik H.; Houghton, Bruce F.; Swanson, Donald A.

    2016-01-01

    The decompression rate of magma as it ascends during volcanic eruptions is an important but poorly constrained parameter that controls many of the processes that influence eruptive behavior. In this study, we quantify decompression rates for basaltic magmas using volatile diffusion in olivine-hosted melt tubes (embayments) for three contrasting eruptions of Kīlauea volcano, Hawaii. Incomplete exsolution of H2O, CO2, and S from the embayment melts during eruptive ascent creates diffusion profiles that can be measured using microanalytical techniques, and then modeled to infer the average decompression rate. We obtain average rates of ~0.05–0.45 MPa s−1 for eruptions ranging from Hawaiian style fountains to basaltic subplinian, with the more intense eruptions having higher rates. The ascent timescales for these magmas vary from around ~5 to ~36 min from depths of ~2 to ~4 km, respectively. Decompression-exsolution models based on the embayment data also allow for an estimate of the mass fraction of pre-existing exsolved volatiles within the magma body. In the eruptions studied, this varies from 0.1 to 3.2 wt% but does not appear to be the key control on eruptive intensity. Our results do not support a direct link between the concentration of pre-eruptive volatiles and eruptive intensity; rather, they suggest that for these eruptions, decompression rates are proportional to independent estimates of mass discharge rate. Although the intensity of eruptions is defined by the discharge rate, based on the currently available dataset of embayment analyses, it does not appear to scale linearly with average decompression rate. This study demonstrates the utility of the embayment method for providing quantitative constraints on magma ascent during explosive basaltic eruptions.

  20. Magma decompression rates during explosive eruptions of Kīlauea volcano, Hawaii, recorded by melt embayments

    Science.gov (United States)

    Ferguson, David J.; Gonnermann, Helge M.; Ruprecht, Philipp; Plank, Terry; Hauri, Erik H.; Houghton, Bruce F.; Swanson, Donald A.

    2016-10-01

    The decompression rate of magma as it ascends during volcanic eruptions is an important but poorly constrained parameter that controls many of the processes that influence eruptive behavior. In this study, we quantify decompression rates for basaltic magmas using volatile diffusion in olivine-hosted melt tubes (embayments) for three contrasting eruptions of Kīlauea volcano, Hawaii. Incomplete exsolution of H2O, CO2, and S from the embayment melts during eruptive ascent creates diffusion profiles that can be measured using microanalytical techniques, and then modeled to infer the average decompression rate. We obtain average rates of ~0.05-0.45 MPa s-1 for eruptions ranging from Hawaiian style fountains to basaltic subplinian, with the more intense eruptions having higher rates. The ascent timescales for these magmas vary from around ~5 to ~36 min from depths of ~2 to ~4 km, respectively. Decompression-exsolution models based on the embayment data also allow for an estimate of the mass fraction of pre-existing exsolved volatiles within the magma body. In the eruptions studied, this varies from 0.1 to 3.2 wt% but does not appear to be the key control on eruptive intensity. Our results do not support a direct link between the concentration of pre-eruptive volatiles and eruptive intensity; rather, they suggest that for these eruptions, decompression rates are proportional to independent estimates of mass discharge rate. Although the intensity of eruptions is defined by the discharge rate, based on the currently available dataset of embayment analyses, it does not appear to scale linearly with average decompression rate. This study demonstrates the utility of the embayment method for providing quantitative constraints on magma ascent during explosive basaltic eruptions.

  1. Triggering of the largest Deccan eruptions by the Chicxulub impact

    NARCIS (Netherlands)

    Richards, M.A.; Alvarez, W.; Self, S.; Karlstrom, L.; Renne, P.R.; Manga, M.; Sprain, C.J.; Smit, J.; Vanderkluysen, L.; Gibson, S.A.

    2015-01-01

    New constraints on the timing of the Cretaceous- Paleogene mass extinction and the Chicxulub impact, together with a particularly voluminous and apparently brief eruptive pulse toward the end of the "main-stage" eruptions of the Deccan continental flood basalt province suggest that these three

  2. Active Eruptions in the NE Lau Basin

    Science.gov (United States)

    Resing, J. A.; Embley, R. W.

    2009-12-01

    NE Lau Response Team: K Rubin, E Baker, J Lupton, M Lilley, T Shank, S Merle, R Dziak, T Collasius (Jason 2 Expedition Leader), N Buck, T Baumberger, D Butterfield, D Clague, D Conlin, J Cowen, R Davis, L Evans, J Huber, M Keith, N Keller, P Michael, E Podowski, A-L Reysenbach, K Roe, H Thomas, S Walker. During a May 2009 cruise to W Mata volcano in the NE Lau Basin, we made the first observations of an active eruption on the deep-sea floor. The cruise was organized after volcanic activity was detected at two sites (W Mata volcano and NE Lau Spreading Center, NELSC) during a Nov. 2008 NOAA-PMEL expedition. At that time, both sites had elevated H2 concentrations and volcaniclastic shards in the hydrothermal plumes. Moored hydrophone data since Jan 2009 indicate that the activity at W Mata has been continuous between these expeditions. Results of our cruise and other work suggest that the NE Lau Basin hosts an unusually high level of magmatic activity, making it an ideal location to study the effects of magmatic processes on hydrothermal activity and associated ecosystems. W Mata was visited with 5 ROV Jason 2 dives and 2 dives with the MBARI autonomous mapping vehicle in May 2009. It was actively erupting at the 1200 m deep summit during each, so a hydrophone was deployed locally to collect acoustic data. Ship and shore-based analysis of HD video, molten lava, rocks, sediments, hot spring waters, and micro- and macro biological specimens collected by Jason 2 have provided a wealth of data. The eruption itself was characterized by extrusion of red, molten lava, extensive degassing, formation of large magma bubbles, explosive pyroclast ejection, and the active extrusion of pillow lavas. The erupting magmas are boninite, a relatively rare magma type found only at convergent margins. The hydrothermal fluids are generally acidic and all diffuse fluids collected were microbially active, even those at pH 20 yrs the PMEL-Vents and NSF RIDGE programs have sought to observe

  3. Systematic change in global patterns of streamflow following volcanic eruptions.

    Science.gov (United States)

    Iles, Carley E; Hegerl, Gabriele C

    2015-11-01

    Following large explosive volcanic eruptions precipitation decreases over much of the globe1-6, particularly in climatologically wet regions4,5. Stratospheric volcanic aerosols reflect sunlight, which reduces evaporation, whilst surface cooling stabilises the atmosphere and reduces its water-holding capacity7. Circulation changes modulate this global precipitation reduction on regional scales1,8-10. Despite the importance of rivers to people, it has been unclear whether volcanism causes detectable changes in streamflow given large natural variability. Here we analyse observational records of streamflow volume for fifty large rivers from around the world which cover between two and 6 major volcanic eruptions in the 20 th and late 19 th century. We find statistically significant reductions in flow following eruptions for the Amazon, Congo, Nile, Orange, Ob, Yenisey and Kolyma amongst others. When data from neighbouring rivers are combined - based on the areas where climate models simulate either an increase or a decrease in precipitation following eruptions - a significant (peruptions is detected in northern South American, central African and high-latitude Asian rivers, and on average across wet tropical and subtropical regions. We also detect a significant increase in southern South American and SW North American rivers. This suggests that future volcanic eruptions could substantially affect global water availability.

  4. Imaging Observations of Magnetic Reconnection in a Solar Eruptive Flare

    International Nuclear Information System (INIS)

    Li, Y.; Ding, M. D.; Sun, X.; Qiu, J.; Priest, E. R.

    2017-01-01

    Solar flares are among the most energetic events in the solar atmosphere. It is widely accepted that flares are powered by magnetic reconnection in the corona. An eruptive flare is usually accompanied by a coronal mass ejection, both of which are probably driven by the eruption of a magnetic flux rope (MFR). Here we report an eruptive flare on 2016 March 23 observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory . The extreme-ultraviolet imaging observations exhibit the clear rise and eruption of an MFR. In particular, the observations reveal solid evidence of magnetic reconnection from both the corona and chromosphere during the flare. Moreover, weak reconnection is observed before the start of the flare. We find that the preflare weak reconnection is of tether-cutting type and helps the MFR to rise slowly. Induced by a further rise of the MFR, strong reconnection occurs in the rise phases of the flare, which is temporally related to the MFR eruption. We also find that the magnetic reconnection is more of 3D-type in the early phase, as manifested in a strong-to-weak shear transition in flare loops, and becomes more 2D-like in the later phase, as shown by the apparent rising motion of an arcade of flare loops.

  5. Imaging Observations of Magnetic Reconnection in a Solar Eruptive Flare

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Ding, M. D. [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China); Sun, X. [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Qiu, J. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Priest, E. R., E-mail: yingli@nju.edu.cn [School of Mathematics and Statistics, University of St Andrews, Fife KY16 9SS, Scotland (United Kingdom)

    2017-02-01

    Solar flares are among the most energetic events in the solar atmosphere. It is widely accepted that flares are powered by magnetic reconnection in the corona. An eruptive flare is usually accompanied by a coronal mass ejection, both of which are probably driven by the eruption of a magnetic flux rope (MFR). Here we report an eruptive flare on 2016 March 23 observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory . The extreme-ultraviolet imaging observations exhibit the clear rise and eruption of an MFR. In particular, the observations reveal solid evidence of magnetic reconnection from both the corona and chromosphere during the flare. Moreover, weak reconnection is observed before the start of the flare. We find that the preflare weak reconnection is of tether-cutting type and helps the MFR to rise slowly. Induced by a further rise of the MFR, strong reconnection occurs in the rise phases of the flare, which is temporally related to the MFR eruption. We also find that the magnetic reconnection is more of 3D-type in the early phase, as manifested in a strong-to-weak shear transition in flare loops, and becomes more 2D-like in the later phase, as shown by the apparent rising motion of an arcade of flare loops.

  6. Volcano-tectonic earthquakes: A new tool for estimating intrusive volumes and forecasting eruptions

    Science.gov (United States)

    White, Randall; McCausland, Wendy

    2016-01-01

    We present data on 136 high-frequency earthquakes and swarms, termed volcano-tectonic (VT) seismicity, which preceded 111 eruptions at 83 volcanoes, plus data on VT swarms that preceded intrusions at 21 other volcanoes. We find that VT seismicity is usually the earliest reported seismic precursor for eruptions at volcanoes that have been dormant for decades or more, and precedes eruptions of all magma types from basaltic to rhyolitic and all explosivities from VEI 0 to ultraplinian VEI 6 at such previously long-dormant volcanoes. Because large eruptions occur most commonly during resumption of activity at long-dormant volcanoes, VT seismicity is an important precursor for the Earth's most dangerous eruptions. VT seismicity precedes all explosive eruptions of VEI ≥ 5 and most if not all VEI 4 eruptions in our data set. Surprisingly we find that the VT seismicity originates at distal locations on tectonic fault structures at distances of one or two to tens of kilometers laterally from the site of the eventual eruption, and rarely if ever starts beneath the eruption site itself. The distal VT swarms generally occur at depths almost equal to the horizontal distance of the swarm from the summit out to about 15 km distance, beyond which hypocenter depths level out. We summarize several important characteristics of this distal VT seismicity including: swarm-like nature, onset days to years prior to the beginning of magmatic eruptions, peaking of activity at the time of the initial eruption whether phreatic or magmatic, and large non-double couple component to focal mechanisms. Most importantly we show that the intruded magma volume can be simply estimated from the cumulative seismic moment of the VT seismicity from: Log10 V = 0.77 Log ΣMoment - 5.32, with volume, V, in cubic meters and seismic moment in Newton meters. Because the cumulative seismic moment can be approximated from the size of just the few largest events, and is quite insensitive to precise locations

  7. Palifermin-associated papular eruption.

    Science.gov (United States)

    King, Brett; Knopp, Eleanor; Galan, Anjela; Nuovo, Gerard; Tigelaar, Robert; McNiff, Jennifer

    2009-02-01

    Palifermin is a recombinant human keratinocyte growth factor that is used to reduce the duration and severity of oral mucositis in patients undergoing hematopoietic stem cell transplantation after myelotoxic therapy. Cutaneous adverse reactions associated with keratinocyte growth factor are reported to be rash, pruritus, and erythema. After receiving palifermin following autologous hematopoietic stem cell transplantation and treatment with melphalan, a patient developed erythema and lichenoid papules that were distributed primarily in intertriginous areas. A biopsy specimen of the papules showed a striking resemblance to verrucae, but in situ hybridization studies were negative for human papillomavirus. Immunohistochemical staining with antibodies to Ki-67 and cytokeratin 5/6 showed increased keratinocyte proliferation in lesional skin. After treatment with palifermin, a papular eruption clinically resembling lichen planus or plane warts, with histologic features of verruca plana, and intertriginous erythema may occur. In this case, neither eruption required treatment, and spontaneous resolution was observed over days to weeks. Histopathologic staining patterns of Ki-67 and cytokeratin 5/6 may be useful in identifying adverse reactions to palifermin therapy.

  8. High-speed imaging of explosive eruptions: applications and perspectives

    Science.gov (United States)

    Taddeucci, Jacopo; Scarlato, Piergiorgio; Gaudin, Damien; Capponi, Antonio; Alatorre-Ibarguengoitia, Miguel-Angel; Moroni, Monica

    2013-04-01

    Explosive eruptions, being by definition highly dynamic over short time scales, necessarily call for observational systems capable of relatively high sampling rates. "Traditional" tools, like as seismic and acoustic networks, have recently been joined by Doppler radar and electric sensors. Recent developments in high-speed camera systems now allow direct visual information of eruptions to be obtained with a spatial and temporal resolution suitable for the analysis of several key eruption processes. Here we summarize the methods employed to gather and process high-speed videos of explosive eruptions, and provide an overview of the several applications of these new type of data in understanding different aspects of explosive volcanism. Our most recent set up for high-speed imaging of explosive eruptions (FAMoUS - FAst, MUltiparametric Set-up,) includes: 1) a monochrome high speed camera, capable of 500 frames per second (fps) at high-definition (1280x1024 pixel) resolution and up to 200000 fps at reduced resolution; 2) a thermal camera capable of 50-200 fps at 480-120x640 pixel resolution; and 3) two acoustic to infrasonic sensors. All instruments are time-synchronized via a data logging system, a hand- or software-operated trigger, and via GPS, allowing signals from other instruments or networks to be directly recorded by the same logging unit or to be readily synchronized for comparison. FAMoUS weights less than 20 kg, easily fits into four, hand-luggage-sized backpacks, and can be deployed in less than 20' (and removed in less than 2', if needed). So far, explosive eruptions have been recorded in high-speed at several active volcanoes, including Fuego and Santiaguito (Guatemala), Stromboli (Italy), Yasur (Vanuatu), and Eyjafiallajokull (Iceland). Image processing and analysis from these eruptions helped illuminate several eruptive processes, including: 1) Pyroclasts ejection. High-speed videos reveal multiple, discrete ejection pulses within a single Strombolian

  9. Steady subsidence of a repeatedly erupting caldera through InSAR observations: Aso, Japan

    KAUST Repository

    Nobile, Adriano

    2017-04-05

    The relation between unrest and eruption at calderas is still poorly understood. Aso caldera, Japan, shows minor episodic phreatomagmatic eruptions associated with steady subsidence. We analyse the deformation of Aso using SAR images from 1993 to 2011 and compare it with the eruptive activity. Although the dataset suffers from limitations (e.g. atmospheric effects, coherence loss, low signal-to-noise ratio), we observe a steady subsidence signal from 1996 to 1998, which suggests an overall contraction of a magmatic source below the caldera centre, from 4 to 5 km depth. We propose that the observed contraction may have been induced by the release of the magmatic fluids feeding the eruptions. If confirmed by further data, this hypothesis suggests that degassing processes play a crucial role in triggering minor eruptions within open conduit calderas, such as at Aso. Our study underlines the importance of defining any eruptive potential also from deflating magmatic systems with open conduit.

  10. The First Historic Eruption of Nabro, Eritrea: Insights from Thermal and UV Satellite Data

    Science.gov (United States)

    Sealing, C. R.; Carn, S. A.; Harris, A. J. L.

    2015-12-01

    In June 2011, the first recorded eruption of Nabro volcano, took place at the border of Eritrea and Ethiopia. This eruption was the largest in what could be considered an ongoing sequence of eruptions in the Afar-Red Sea region since 2005. It halted air travel in northern Africa, contaminated food and water sources, and displaced thousands from their homes. Geographic isolation, previous quiescence, and regional civil unrest meant that this volcano was effectively unmonitored at the time of eruption, and opportunities for field study were limited. The purpose of this study is to explore the quantity of erupted products and the timing and mechanisms of their emplacement using predominantly free, publicly available satellite data. We use MODIS and OMI data to examine rates of lava effusion and SO2 emission, and quantify the amount of erupted products. We also examine published images from other satellites, such as ALI and SEVIRI in order to understand the temporal evolution of the eruption. Synthesizing these data, we then attempt to infer the mechanisms through which the eruption progressed. Examination of satellite data reveals a bimodal eruption, beginning with explosive activity marked by high SO2 emission totalling 1824 - 2299 KT, and extensive ash fall of 270 - 440 km2. This was followed by a period of rapid effusion, producing a ~17 km long lava flow, and a volume of ~22.1 x 106 m3. Mass balance between the SO2 and lava flows reveals no sulfur 'excess', suggesting that nearly all of the degassed magma was extruded. This eruption of Nabro continued for nearly 6 weeks, and may be considered the second largest historic eruption in Africa. This type of work highlights the effectiveness and importance of accessible satellite remote sensing data for the study of active volcanoes, particularly those in remote regions that may be otherwise inaccessible.

  11. Multi-stage volcanic island flank collapses with coeval explosive caldera-forming eruptions.

    Science.gov (United States)

    Hunt, James E; Cassidy, Michael; Talling, Peter J

    2018-01-18

    Volcanic flank collapses and explosive eruptions are among the largest and most destructive processes on Earth. Events at Mount St. Helens in May 1980 demonstrated how a relatively small (300 km 3 ), but can also occur in complex multiple stages. Here, we show that multistage retrogressive landslides on Tenerife triggered explosive caldera-forming eruptions, including the Diego Hernandez, Guajara and Ucanca caldera eruptions. Geochemical analyses were performed on volcanic glasses recovered from marine sedimentary deposits, called turbidites, associated with each individual stage of each multistage landslide. These analyses indicate only the lattermost stages of subaerial flank failure contain materials originating from respective coeval explosive eruption, suggesting that initial more voluminous submarine stages of multi-stage flank collapse induce these aforementioned explosive eruption. Furthermore, there are extended time lags identified between the individual stages of multi-stage collapse, and thus an extended time lag between the initial submarine stages of failure and the onset of subsequent explosive eruption. This time lag succeeding landslide-generated static decompression has implications for the response of magmatic systems to un-roofing and poses a significant implication for ocean island volcanism and civil emergency planning.

  12. Fertility of the early post-eruptive surfaces of Kasatochi Island volcano

    Science.gov (United States)

    Michaelson, G. J.; Wang, Bronwen; Ping, C. L.

    2016-01-01

    In the four years after the 2008 eruption and burial of Kasatochi Island volcano, erosion and the return of bird activity have resulted in new and altered land surfaces and initiation of ecosystem recovery. We examined fertility characteristics of the recently deposited pyroclastic surfaces, patches of legacy pre-eruptive surface soil (LS), and a post-eruptive surface with recent bird roosting activity. Pyroclastic materials were found lacking in N, but P, K, and other macronutrients were in sufficient supply for plants. Erosion and leaching are moving mobile P and Fe downslope to deposition fan areas. Legacy soil patches that currently support plants have available-N at levels (10–22 mg N kg-1) similar to those added by birds in a recent bird roosting area. Roosting increased surface available N from 40% that of the LS surface. Laboratory plant growth trials using Lupinus nootkatensis and Leymus mollis indicated that the influence of eroded and redeposited LS in amounts as little as 10% by volume mixed with new pyroclastic materials could aid plant recovery by supplying vital N and soil biota to plants as propagules are introduced to the new surface. Erosion-exposure of fertile pre-eruptive soils and erosion-mixing of pre-eruptive soils with newly erupted materials, along with inputs of nutrients from bird activities, each will exert significant influences on the surface fertility and recovery pattern of the new post-eruptive Kasatochi volcano. For this environment, these influences could help to speed recovery of a more diverse plant community by providing N (LS and bird inputs) as alternatives to relying most heavily on N-fixing plants to build soil fertility.

  13. Cellular and molecular basis of tooth eruption

    Science.gov (United States)

    Wise, GE

    2009-01-01

    Objectives Tooth eruption requires the presence of a dental follicle (DF), alveolar bone resorption for an eruption pathway, and alveolar bone formation at the base of the bony crypt. The objectives of our investigations have been to determine how the DF regulates both the osteoclastogenesis and osteogenesis needed for eruption. Material & Methods Multiple experimental methods have been employed. Results The DF regulates osteoclastogenesis and osteogenesis by regulating the expression of critical genes in both a chronological and spatial fashion. In the rat 1st mandibular molar there is a major burst of osteoclastogenesis at day 3 postnatally and a minor burst at day 10. At day 3, the DF maximally expresses colony-stimulating factor-1 (CSF-1) to down-regulate the expression of osteoprotegerin such that osteoclastogenesis can occur. At day 10, the minor burst of osteoclastogenesis is promoted by upregulation of VEGF and RANKL in the DF. Spatially, the bone resorption is in the coronal portion of the bony crypt and genes such as RANKL are expressed more in the coronal region of the DF than in its basal one-half. For osteogenesis, bone formation begins at day 3 at the base of the bony crypt and maximal growth is at days 9–14. Osteo-inductive genes such as BMP-2 appear to promote this and are expressed more in the basal half of the DF than in the coronal. Conclusion The osteoclastogenesis and osteogenesis needed for eruption are regulated by differential gene expression in the DF both chronologically and spatially. PMID:19419449

  14. Band structure of superconducting MgB sub 2 and simulation of triple systems on its base

    CERN Document Server

    Medvedeva, N I; Zubkov, V G; Medvedeva, Y E; Freeman, A J

    2001-01-01

    The zone structure of the new superconductor - magnesium boride is studied through the FP-LMTO self-consistent method. The peculiarities of the MgB sub 2 electron properties are determined by the metal-like 2p-states of the boron atoms in the plane nets, forming the states density distribution near the Fermi level. The analysis of changes in the MgB sub 2 zone structure by: doping the boron sublattice (through the Be, C, N, O replacement admixtures), the magnesium sublattice (through the Be, Ca, Li, Na replacement admixtures) and availability of structural vacancies (nonstoichiometry by boron) is carried out. The MgB sub 2 electron and CaB sub 2 hypothetic structure is studied, depending on pressure

  15. Initiation of Solar Eruptions: Recent Observations and Implications for Theories

    Science.gov (United States)

    Sterling, A. C.

    2006-01-01

    Solar eruptions involve the violent disruption of a system of magnetic field. Just how the field is destabilized and explodes to produce flares and coronal mass ejections (CMEs) is still being debated in the solar community. Here I discuss recent observational work into these questions by ourselves (me and my colleagues) and others. Our work has concentrated mainly on eruptions that include filaments. We use the filament motion early in the event as a tracer of the motion of the general erupting coronal field in and around the filament, since that field itself is hard to distinguish otherwise. Our main data sources are EUV images from SOHO/EIT and TRACE, soft Xray images from Yohkoh, and magnetograms from SOHO/MDI, supplemented with coronagraph images from SOHO/LASCO, hard X-ray data, and ground-based observations. We consider the observational findings in terms of three proposed eruption-initiation mechanisms: (i) runaway internal tether-cutting reconnection, (ii) slow external tether-cutting reconnection ("breakout"), and (iii) ideal MHD instability.

  16. Possible effects of volcanic eruptions on stratospheric minor constituent chemistry

    Science.gov (United States)

    Stolarski, R. S.; Butler, D. M.

    1979-01-01

    Although stratosphere penetrating volcanic eruptions have been infrequent during the last half century, periods have existed in the last several hundred years when such eruptions were significantly more frequent. Several mechanisms exist for these injections to affect stratospheric minor constituent chemistry, both on the long-term average and for short-term perturbations. These mechanisms are reviewed and, because of the sensitivity of current models of stratospheric ozone to chlorine perturbations, quantitative estimates are made of chlorine injection rates. It is found that, if chlorine makes up as much as 0.5 to 1% of the gases released and if the total gases released are about the same magnitude as the fine ash, then a major stratosphere penetrating eruption could deplete the ozone column by several percent. The estimate for the Agung eruption of 1963 is just under 1% an amount not excluded by the ozone record but complicated by the peak in atmospheric nuclear explosions at about the same time.

  17. Orientation of the eruption fissures controlled by a shallow magma chamber in Miyakejima

    Directory of Open Access Journals (Sweden)

    Nobuo Geshi

    2016-11-01

    Full Text Available Orientation of the eruption fissures and composition of the lavas of the Miyakejima volcano indicate tectonic influence of a shallow magma chamber on the distribution of eruption fissures. We examined the distributions and magmatic compositions of 23 fissures that formed within the last 2800 years, based on a field survey and a new dataset of 14C ages. The dominant orientation of the eruption fissures in the central portion of the volcano was found to be NE-SW, which is perpendicular to the direction of regional maximum horizontal compressive stress (σHmax. Magmas that show evidences of magma mixing between basaltic and andesitic magmas erupted mainly from the eruption fissures with a higher offset angle from the regional σHmax direction. The presence of a shallow dike-shaped magma chamber controls the distribution of the eruption fissures. The injection of basaltic magma into the shallow andesitic magma chamber caused the temporal rise of internal magmatic pressure in the shallow magma chamber. Dikes extending from the andesitic magma chamber intrude along the local compressive stress field which is generated by the internal excess pressure of the andesitic magma chamber. As the result, the eruption fissures trend parallel to the elongation direction of the shallow magma chamber. Injection of basaltic magma into the shallow andesitic magma chamber caused the magma mixing. Some basaltic dikes from the deep-seated magma chamber reach the ground surface without intersection with the andesitic magma chamber. The patterns of the eruption fissures can be modified in the future as was observed in the case of the destruction of the shallow magma chamber during the 2000 AD eruption.

  18. Insights into the Toba Super-Eruption using SEM Analysis of Ash Deposits

    Science.gov (United States)

    Gatti, E.; Achyuthan, H.; Durant, A. J.; Gibbard, P.; Mokhtar, S.; Oppenheimer, C.; Raj, R.; Shridar, A.

    2010-12-01

    The ~74 ka Youngest Toba Tuff (YTT) super-eruption of Toba volcano, Northern Sumatra, was the largest eruption of the Quaternary (magnitude M= 8.8) and injected massive quantities of volcanic gases and ash into the stratosphere. YTT deposits covered at least 40,000,000 km2 of Southeast Asia and are preserved in river valleys across peninsular India and Malaysia, and in deep-sea tephra layers in the Indian Ocean, Bay of Bengal and South China Sea. Initial studies hypothesized the eruption caused immediate and substantial global cooling during the ~ 1 kyr between Dansgaard-Oeschger events 19 and 20 which devastated ecosystems and hominid populations. A more recent review argues against severe post-YTT climatic deterioration and cannot find clear evidence for considerable impacts on ecosystems or bio-diversity. The determination of the eruptive parameters is crucial in this issue to document the eruption and understand the potential impacts from future super-volcanic eruptions. Volcanic ash deposits can offer dramatic insights into key eruptive parameters, including magnitude, duration and plume height. The composition and shape of volcanic ashes can be used to interpret physical properties of an erupting magma and tephra transport, while textural characteristics such as grain roughness and surface vescicularity can provide insights into degassing history, volatile content and explosive activity of the volcano. We present a stratigraphic and sedimentological analysis of YTT deposits in stratified contexts at three localities in India, at two sites in Peninsular Malaysia, and at several localities around Lake Toba and on Samosir Island, Sumatra. These sites offer excellent constraints on the spatial distribution of YTT deposits which can be used to infer dispersal directions of the cloud, and provide insights into environmental controls on preservation of tephra beds. The research aims at a systematic interpretation of the Toba tephra to understand the volcanic

  19. Postglacial eruptive history and geochemistry of Semisopochnoi volcano, western Aleutian Islands, Alaska

    Science.gov (United States)

    Coombs, Michelle L.; Larsen, Jessica F.; Neal, Christina A.

    2018-02-14

    Semisopochnoi Island, located in the Rat Islands group of the western Aleutian Islands and Aleutian volcanic arc, is a roughly circular island composed of scattered volcanic vents, the prominent caldera of Semisopochnoi volcano, and older, ancestral volcanic rocks. The oldest rocks on the island are gently radially dipping lavas that are the remnants of a shield volcano and of Ragged Top, which is an eroded stratocone southeast of the current caldera. None of these oldest rocks have been dated, but they all are likely Pleistocene in age. Anvil Peak, to the caldera’s north, has the morphology of a young stratocone and is latest Pleistocene to early Holocene in age. The oldest recognized Holocene deposits are those of the caldera-forming eruption, which produced the 7- by 6-km caldera in the center of the island, left nonwelded ignimbrite in valleys below the edifice, and left welded ignimbrite high on its flanks. The caldera-forming eruption produced rocks showing a range of intermediate whole-rock compositions throughout the eruption sequence, although a majority of clasts analyzed form a fairly tight cluster on SiO2-variation diagrams at 62.9 to 63.4 weight percent SiO2. This clustering of compositions at about 63 weight percent SiO2 includes black, dense, obsidian-like clasts, as well as tan, variably oxidized, highly inflated pumice clasts. The best estimate for the timing of the eruption is from a soil dated at 6,920±60 14C years before present underlying a thin facies of the ignimbrite deposit on the island’s north coast. Shortly after the caldera-forming eruption, two scoria cones on the northwest flank of the volcano outside the caldera, Ringworm crater and Threequarter Cone, simultaneously erupted small volumes of andesite.The oldest intracaldera lavas, on the floor of the caldera, are andesitic to dacitic, but are mostly covered by younger lavas and tephras. These intracaldera lavas include the basaltic andesites of small Windy cone, as well as the

  20. Modelling of melting and solidification transport phenomena during hypothetical NPP severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Sarler, B [Inst. Jozef Stefan, Ljubljana (Slovenia)

    1992-07-01

    A physical and mathematical framework to deal with the transport phenomena occuring during melting and solidification of the hypothetical NPP severe accidents is presented. It concentrates on the transient temperature, velocity, and species concentration distributions during such events. The framework is based on the Mixture Continuum Formulation of the components and phases, cast in the boundary-domain integral shape structured by the fundamental solution of the Laplace equation. The formulation could cope with various solid-liquid sub-systems through the inclusion of the specific closure relations. The deduced system of boundary-domain integral equations for conservation of mass, energy, momentum, and species could be solved by the boundary element discrete approximative method. (author) [Slovenian] Predstavljeno je fizikalno in matematicno ogrodje za obravnavo prenosnih pojavov taljenja in strjevanja med hipoteticnimi tezkimi nezgodami v jedrskih elektrarnah. Osredotoceno je na popis neustaljene porazdelitve temperatur, hitrosti in koncentracij sestavin med taksnimi dogodki. Ogrodje temelji na formulaciji kontinuuma mesanice komponent in faz, v obliki robno obmocnih integralskih enacb, ki so sestavljena na podlagi fundamentalne resitve Laplace-ove enacbe. Formulacija lahko popisuje stevilne trdno-tekoce pod-sisteme na podlagi specificnih sklopitvenih relacij. Izpeljan sistem robno-obmocnih integralskih enacb za popis ohranitve mase, energije, gibalne kolicine in sestavin lahko resimo na podlagi diskretne aproksimativne metode robnih elementov. (author)

  1. Origin of d{sup 0} half-metallic characteristic in DO{sub 3}-type XO{sub 3} (X=Li, Na, K and Rb) compounds

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaotian [School of Material Sciences and Engineering, Hebei University of Technology, Tianjin 300130 (China); Institute for Superconducting and Electronic Materials (ISEM), University of Wollongong, Wollongong 2500 (Australia); Cheng, Zhenxiang, E-mail: cheng@uow.edu.au [Institute for Superconducting and Electronic Materials (ISEM), University of Wollongong, Wollongong 2500 (Australia); Wang, Jianli [Institute for Superconducting and Electronic Materials (ISEM), University of Wollongong, Wollongong 2500 (Australia); Rozale, Habib [Condensed Matter and Sustainable Development Laboratory, Physics Department, University of Sidi-Bel-Abbès, 22000 Sidi-Bel-Abbès (Algeria); Yang, Juntao [School of Science, Hubei University of Automotive Technology, Shiyan Hubei 442002 (China); Yu, Zheyin [Institute for Superconducting and Electronic Materials (ISEM), University of Wollongong, Wollongong 2500 (Australia); Liu, Guodong, E-mail: gdliu1978@126.com [School of Material Sciences and Engineering, Hebei University of Technology, Tianjin 300130 (China)

    2016-08-15

    Plane-wave pseudo-potential methods based on density functional theory are employed to investigate the electronic structures, magnetic properties of newly designed DO{sub 3}-type XO{sub 3} (X=Li, Na, K and Rb) compounds. Result shows they are d{sup 0} HM ferromagnets with total magnetic moment of 5.00 μ{sub B}. Importantly, the d{sup 0} HM characteristic is originated from the polarization of the p-orbitals of O atoms in these hypothetical compounds. The structure stability in the aspects of cohesion energy and formation energy of these four compounds have been tested. The spin-flip gaps of the four XO{sub 3} compounds are quite large (>1.00 eV). Furthermore, the d{sup 0} HM behavior can be maintained in a wide range of lattice constants. - Highlights: • In an attempt to combine the properties of DO{sub 3}-type and d{sup 0} HMFs, XO{sub 3} have been designed. • The electronic structures and magnetism of the XO{sub 3} have been studied. • The effect of uniform strain on the spin polarization ratio have been tested. • The origin of the d{sup 0} HM character have been explained. • Total energy calculation and structure stability have been performed.

  2. Neutron diffraction and thermal studies of amorphous CS{sub 2} realised by low-temperature vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yamamuro, O.; Matsuo, T. [Osaka Univ., Dept. of Chemistry, Graduate School of Sciences (Japan); Onoda-Yamamuro, N. [Tokyo Denki Univ., College of Sciences and Technology (Japan); Takeda, K. [Naruto Univ., Dept. of Chemistry, Tokushima (Japan); Munemura, H.; Tanaka, S.; Misawa, M. [Niigata Univ. (Japan). Faculty of Science

    2003-08-01

    We have succeeded in preparing amorphous carbon disulphide (CS{sub 2}) by depositing its vapour on a cold substrate at 10 K. Complete formation of the amorphous state has been confirmed by neutron diffraction and differential thermal analysis (DTA). The amorphous sample crystallized at ca. 70 K, which is lower than the hypothetical glass transition temperature (92 K) estimated from the DTA data of the (CS{sub 2}){sub x}(S{sub 2}Cl{sub 2}){sub 1-x} binary mixture. CS{sub 2}, a symmetric linear tri-atomic molecule, is the simplest of the amorphized molecular substances whose structural and thermal information has been reported so far. Comparison of the static structure factors S(Q) has shown that the orientational correlation of CS{sub 2} molecules may be much stronger in the amorphous state than in the liquid state at higher temperature. (authors)

  3. Most Powerful Eruption in the Universe Discovered

    Science.gov (United States)

    2005-01-01

    Astronomers have found the most powerful eruption seen in the Universe using NASA's Chandra X-ray Observatory. A supermassive black hole generated this eruption by growing at a remarkable rate. This discovery shows the enormous appetite of large black holes, and the profound impact they have on their surroundings. The huge eruption is seen in a Chandra image of the hot, X-ray emitting gas of a galaxy cluster called MS 0735.6+7421. Two vast cavities extend away from the supermassive black hole in the cluster's central galaxy. The eruption - which has lasted for 100 million years and is still going - has generated the energy equivalent to hundreds of millions of gamma-ray bursts. Animation of Eruption from Supermassive Black Hole Animation of Eruption from Supermassive Black Hole This event was caused by gravitational energy release as enormous amounts of matter fell toward a black hole. Most of the matter was swallowed, but some of it was violently ejected before being captured by the black hole. "I was stunned to find that a mass of about 300 million Suns was swallowed," said Brian McNamara of Ohio University in Athens, lead author of the study that appears in the January 6, 2005 issue of Nature. "This is almost as massive as the supermassive black hole that swallowed it." Astronomers are not sure where such large amounts of matter came from. One theory is that gas from the host galaxy catastrophically cooled and was then swallowed by the black hole. Illustration of MS 0735.6+742 Illustration of MS 0735.6+742 The energy released shows that the black hole in MS 0735 has grown very dramatically during this eruption. Previous studies suggest that other large black holes have grown very little in the recent past, and that only smaller black holes are still growing quickly. "This new result is as surprising as it is exciting", said co-author Paul Nulsen of the Harvard-Smithsonian Center of Astrophysics. "This black hole is feasting when it should be fasting." Radio

  4. Pigeonholing pyroclasts: Insights from the 19 March 2008 explosive eruption of Kīlauea volcano

    Science.gov (United States)

    Houghton, Bruce F.; Swanson, D.A.; Carey, R.J.; Rausch, J.; Sutton, A.J.

    2011-01-01

    We think, conventionally, of volcanic explosive eruptions as being triggered in one of two ways: by release and expansion of volatiles dissolved in the ejected magma (magmatic explosions) or by transfer of heat from magma into an external source of water (phreatic or phreatomagmatic explosions). We document here an event where neither magma nor an external water source was involved in explosive activity at K??lauea. Instead, the eruption was powered by the expansion of decoupled magmatic volatiles released from deeper magma, which was not ejected by the eruption, and the trigger was a collapse of near-surface wall rocks that then momentarily blocked that volatile flux. Mapping of the advected fall deposit a day after this eruption has highlighted the difficulty of constraining deposit edges from unobserved or prehistoric eruptions of all magnitudes. Our results suggest that the dispersal area of advected fall deposits could be miscalculated by up to 30% of the total, raising issues for accurate hazard zoning and assessment. Eruptions of this type challenge existing classification schemes for pyroclastic deposits and explosive eruptions and, in the past, have probably been interpreted as phreatic explosions, where the eruptive mechanism has been assumed to involve flashing of groundwater to steam. ?? 2011 Geological Society of America.

  5. Himawari-8 infrared observations of the June-August 2015 Mt Raung eruption, Indonesia

    Science.gov (United States)

    Kaneko, Takayuki; Takasaki, Kenji; Maeno, Fukashi; Wooster, Martin J.; Yasuda, Atsushi

    2018-05-01

    Volcanic activity involves processes that can change over short periods of time, which are sometimes closely related to the eruptive mode or the timing of its transitions. Eruptions bring high-temperature magma or gas to the surface; thermal observations of these eruptions can be used to determine the timeline of eruptive sequences or eruptive processes. In 2014, a new-generation meteorological satellite, Himawari-8, which carried a new sensor, the Advanced Himawari Imager (AHI), was launched. The AHI makes high-frequency infrared observations at a spatial resolution of 2 km during 10-min observation cycles. We analyzed an effusive eruption that occurred in 2015 at Mt Raung in Indonesia using these AHI images, which was the first attempt applying them to volcanological study. Based on the detailed analysis of the time-series variations in its thermal anomalies, this eruptive sequence was segmented into a Precursory Stage, Pulse 1, Pulse 2 and a Terminal Stage. Pulses 1 and 2 are effusive stages that exhibited a consecutive two-pulse pattern in their variations, reflecting changes in the lava effusion rate; the other stages are non-effusive. We were also able to determine the exact times of the onset and reactivation of lava flow effusion, as well as the precursory signals that preceded these events.

  6. Applying Fractal Dimensions and Energy-Budget Analysis to Characterize Fracturing Processes During Magma Migration and Eruption: 2011-2012 El Hierro (Canary Islands) Submarine Eruption

    Science.gov (United States)

    López, Carmen; Martí, Joan; Abella, Rafael; Tarraga, Marta

    2014-07-01

    The impossibility of observing magma migration inside the crust obliges us to rely on geophysical data and mathematical modelling to interpret precursors and to forecast volcanic eruptions. Of the geophysical signals that may be recorded before and during an eruption, deformation and seismicity are two of the most relevant as they are directly related to its dynamic. The final phase of the unrest episode that preceded the 2011-2012 eruption on El Hierro (Canary Islands) was characterized by local and accelerated deformation and seismic energy release indicating an increasing fracturing and a migration of the magma. Application of time varying fractal analysis to the seismic data and the characterization of the seismicity pattern and the strain and the stress rates allow us to identify different stages in the source mechanism and to infer the geometry of the path used by the magma and associated fluids to reach the Earth's surface. The results obtained illustrate the relevance of such studies to understanding volcanic unrest and the causes that govern the initiation of volcanic eruptions.

  7. Eruptive history of Mammoth Mountain and its mafic periphery, California

    Science.gov (United States)

    Hildreth, Wes; Fierstein, Judy

    2016-07-13

    This report and accompanying geologic map portray the eruptive history of Mammoth Mountain and a surrounding array of contemporaneous volcanic units that erupted in its near periphery. The moderately alkaline Mammoth eruptive suite, basaltic to rhyodacitic, represents a discrete new magmatic system, less than 250,000 years old, that followed decline of the subalkaline rhyolitic system active beneath adjacent Long Valley Caldera since 2.2 Ma (Hildreth, 2004). The scattered vent array of the Mammoth system, 10 by 20 km wide, is unrelated to the rangefront fault zone, and its broad nonlinear footprint ignores both Long Valley Caldera and the younger Mono-Inyo rangefront vent alignment.

  8. Trial of risk assessment of a hypothetical nuclear facility

    International Nuclear Information System (INIS)

    Terao, Norichika; Suzuki, Mitsutoshi

    2013-01-01

    An equation for risk assessment in physical protection is shown by a probability of an adversary attack during a period time, P A , a probability of system effectiveness, P E , and consequence value, C. In addition, P E is shown as the multiplication of a probability of interruption of the facility, P I , by a probability of neutralization by response force, P N . In this study, it is assumed that an adversary assaults a hypothetical nuclear facility. The new quantification method about P A and P I in risk evaluation formula is devised, and risk assessment is attempted. In case of P A , the possibility of assaults against a nuclear facility is discussed by using terrorism data written in the open source database of terrorism, Global Terrorism Database (GTD), summarized by University of Maryland. In addition, it is discussed about P I by using the way of thinking of a risk assessment tool, EASI, developed by the Sandia National Laboratories (SNL). In the hypothetical nuclear facility, the performance of response force, sensors, and communication is expressed quantitatively by probability distribution based on some assumptions. (author)

  9. What we say and what we do: the relationship between real and hypothetical moral choices.

    Science.gov (United States)

    FeldmanHall, Oriel; Mobbs, Dean; Evans, Davy; Hiscox, Lucy; Navrady, Lauren; Dalgleish, Tim

    2012-06-01

    Moral ideals are strongly ingrained within society and individuals alike, but actual moral choices are profoundly influenced by tangible rewards and consequences. Across two studies we show that real moral decisions can dramatically contradict moral choices made in hypothetical scenarios (Study 1). However, by systematically enhancing the contextual information available to subjects when addressing a hypothetical moral problem-thereby reducing the opportunity for mental simulation-we were able to incrementally bring subjects' responses in line with their moral behaviour in real situations (Study 2). These results imply that previous work relying mainly on decontextualized hypothetical scenarios may not accurately reflect moral decisions in everyday life. The findings also shed light on contextual factors that can alter how moral decisions are made, such as the salience of a personal gain. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Ghost Remains After Black Hole Eruption

    Science.gov (United States)

    2009-05-01

    NASA's Chandra X-ray Observatory has found a cosmic "ghost" lurking around a distant supermassive black hole. This is the first detection of such a high-energy apparition, and scientists think it is evidence of a huge eruption produced by the black hole. This discovery presents astronomers with a valuable opportunity to observe phenomena that occurred when the Universe was very young. The X-ray ghost, so-called because a diffuse X-ray source has remained after other radiation from the outburst has died away, is in the Chandra Deep Field-North, one of the deepest X-ray images ever taken. The source, a.k.a. HDF 130, is over 10 billion light years away and existed at a time 3 billion years after the Big Bang, when galaxies and black holes were forming at a high rate. "We'd seen this fuzzy object a few years ago, but didn't realize until now that we were seeing a ghost", said Andy Fabian of the Cambridge University in the United Kingdom. "It's not out there to haunt us, rather it's telling us something - in this case what was happening in this galaxy billions of year ago." Fabian and colleagues think the X-ray glow from HDF 130 is evidence for a powerful outburst from its central black hole in the form of jets of energetic particles traveling at almost the speed of light. When the eruption was ongoing, it produced prodigious amounts of radio and X-radiation, but after several million years, the radio signal faded from view as the electrons radiated away their energy. HDF 130 Chandra X-ray Image of HDF 130 However, less energetic electrons can still produce X-rays by interacting with the pervasive sea of photons remaining from the Big Bang - the cosmic background radiation. Collisions between these electrons and the background photons can impart enough energy to the photons to boost them into the X-ray energy band. This process produces an extended X-ray source that lasts for another 30 million years or so. "This ghost tells us about the black hole's eruption long after

  11. Management of impacted incisors following surgery to remove obstacles to eruption: a prospective clinical trial.

    Science.gov (United States)

    Pavoni, Chiara; Franchi, Lorenzo; Laganà, Giuseppina; Baccetti, Tiziano; Cozza, Paola

    2013-01-01

    The purpose of this study was to assess the effectiveness of rapid maxillary expansion (RME) vs simply monitoring the eruption of permanent maxillary incisors following the surgical removal of obstacles to their eruption (supernumerary teeth, odontomas). Following surgical removal of the obstacles to incisor eruption (T1), 62 patients were randomly assigned to either the group to undergo RME (34 subjects; mean age 8 years, 11 months ± 11 months) or the group that was monitored without further treatment (28 subjects; mean age=9 years, 1 month ± 1 year). At T2 (1 year after T1), the prevalence rate of erupted incisors was recorded. Also, the time of eruption of the incisors and the amount of space loss were analyzed. At T2, eruption of impacted incisors occurred in approximately 82 percent of the RME group cases vs approximately 39 percent of the monitored group cases (chi-square=10.43, P<.001). Time of eruption was significantly faster in the RME group, and anterior space loss significantly smaller. Rapid maxillary expansion treatment following surgical removal of the obstacles to the eruption of permanent maxillary incisors appears to be an efficient interceptive approach leading to eruption of the incisors in four out of five cases within seven months.

  12. Shallow magma diversions during explosive diatreme-forming eruptions.

    Science.gov (United States)

    Le Corvec, Nicolas; Muirhead, James D; White, James D L

    2018-04-13

    The diversion of magma is an important mechanism that may lead to the relocation of a volcanic vent. Magma diversion is known to occur during explosive volcanic eruptions generating subterranean excavation and remobilization of country and volcanic rocks. However, feedbacks between explosive crater formation and intrusion processes have not been considered previously, despite their importance for understanding evolving hazards during volcanic eruptions. Here, we apply numerical modeling to test the impacts of excavation and subsequent infilling of diatreme structures on stress states and intrusion geometries during the formation of maar-diatreme complexes. Explosive excavation and infilling of diatremes affects local stress states which inhibits magma ascent and drives lateral diversion at various depths, which are expected to promote intra-diatreme explosions, host rock mixing, and vent migration. Our models demonstrate novel mechanisms explaining the generation of saucer-shaped sills, linked with magma diversion and enhanced intra-diatreme explosive fragmentation during maar-diatreme volcanism. Similar mechanisms will occur at other volcanic vents producing crater-forming eruptions.

  13. Phreatic eruptions and deformation of Ioto Island (Iwo-jima), Japan, triggered by deep magma injection

    Science.gov (United States)

    Ueda, Hideki; Nagai, Masashi; Tanada, Toshikazu

    2018-03-01

    On Ioto Island (Iwo-jima), 44 phreatic eruptions have been recorded since 1889, when people began to settle there. Four of these eruptions, after the beginning of continuous observation by seismometers in 1976, were accompanied by intense seismic activity and rapid crustal deformation beforehand. Other eruptions on Ioto were without obvious crustal activities. In this paper, we discuss the mechanisms of phreatic eruptions on Ioto. Regular geodetic surveys and continuous GNSS observations show that Ioto intermittently uplifts at an abnormally high rate. All of the four eruptions accompanied by the precursors took place during intermittent uplifts. The crustal deformation before and after one of these eruptions revealed that a sill-like deformation source in the shallow part of Motoyama rapidly inflated before and deflated after the beginning of the eruption. From the results of a seismic array and a borehole survey, it is estimated that there is a layer of lava at a depth of about 100-200 m, and there is a tuff layer about 200-500 m beneath it. The eruptions accompanied by the precursors probably occurred due to abrupt boiling of hot water in hydrothermal reservoirs in the tuff layer, sealed by the lava layer and triggered by intermittent uplift. For the eruptions without precursors, the hydrothermal systems are weakly sealed by clay or probably occurred on the same principle as a geyser because phreatic eruptions had occurred beforehand and hydrostatic pressure is applied to the hydrothermal reservoirs.

  14. Seeking a paleontological signature for mass extinctions caused by flood basalt eruptions

    Science.gov (United States)

    Payne, J.; Bush, A. M.; Chang, E. T.; Heim, N. A.; Knope, M. L.; Pruss, S. B.

    2016-12-01

    Flood basalt eruptions coincide with numerous extinction events in the fossil record. Increasingly precise absolute age determinations for both the timing of eruption and of species extinctions have strengthened the case for flood basalt eruptions as the single most important trigger for major mass extinction events in the fossil record. However, the extent to which flood basalt eruptions cause a pattern of biotic loss distinctive from extinctions triggered by other geological or biological processes remains an open question. In the absence of diagnostic mapping between geological triggers and biological losses, establishing the identities of causal agents for mass extinctions will continue to depend primarily on evidence for temporal coincidence. Here we use a synoptic database of marine animal genera spanning the Phanerozoic, including times of first and last occurrence, body size, motility, life position, feeding mode, and respiratory physiology to assess whether extinction events temporally associated with flood basalt eruptions exhibit a diagnostic pattern of extinction selectivity. We further ask whether any events not associated with known large igneous provinces nevertheless display extinction patterns suggestive of such a cause. Finally, we ask whether extinction events associated with other primary causes, such as glaciation or bolide impact, are distinguishable from events apparently triggered by flood basalt eruptions on the basis of extinction selectivity patterns

  15. Human responses to the 1906 eruption of Vesuvius, southern Italy

    Science.gov (United States)

    Chester, David; Duncan, Angus; Kilburn, Christopher; Sangster, Heather; Solana, Carmen

    2015-04-01

    Cultural and political contexts are important in determining the ways in which communities respond to volcanic eruptions. Understanding the manner in which communities and the State apparatus have coped with historic eruptions can provide insights into how responses have influenced vulnerability and resilience. The 1906 eruption of Vesuvius is well suited for such a study as it was one of the first major eruptions in which there was a significant element of State control, and this worked alongside more traditional pre-industrial responses. This eruption was extensively reported in the regional, national and international press and in archives which include still photography. One feature is the rich archive of material published in English language newspapers of record which are analysed fully in the paper for the first time. Many of these data sources are now accessible on-line. The eruption started on April 4th with mild explosive activity and the eruption of lava from 5th to 7th April. On the night of the 7th/8th, activity intensified when a vigorous lava fountain inclined obliquely to the north east, deposited a thick layer of tephra on the towns of Ottaviano and San Giuseppe. This led to roof collapse and a large number of fatalities. There was increased lava emission and a flow progressed south through the outskirts of Boscotrecase cutting the Circumvesuviana railway line and almost reaching Torre Annunziata. Following April 8th the eruption declined and ended on April 21st. In the initial responses to the eruption pre-industrial features were prominent, with the local communities showing social cohesion, self-reliance and little panic. A more negative aspect was the traditional religious response that involved the use of liturgies of divine appeasement and which included the use of saintly relics and images. There is interesting evidence, however, that this coping strategy was driven by the populace rather than by the clergy. The inhabitants of San Giuseppe

  16. Modeling the Energization and Eruption of Flux Ropes and Sheared Arcades

    Science.gov (United States)

    Linton, Mark G.

    2016-10-01

    Solar magnetic eruptions are dramatic sources of solar activity, and dangerous sources of space weather hazards. Observations of the solar photosphere and overlying atmosphere by the Solar Dynamics Observatory have given us new views, measurements, and modeling constraints for understanding these eruptions. This presentation will review the current state of the art in modeling the energization and eruption of sheared magnetic arcades and of magnetic flux ropes in the corona, and will review the critical role that observations play in the motivation, development, and application of these models.

  17. Aspects and clinical procedures of eruptive changes of permanent upper canines

    Directory of Open Access Journals (Sweden)

    Sheila Marcia Francisco

    2012-04-01

    Full Text Available INTRODUCTION: Even though the upper canine is the tooth that presents most eruption anomalies, after the third molars, canine retention prevalence in the population is quite low. Local, physiologic and pathologic factors can provide difficulties for the tooth eruptive process. The correct diagnosis in trying to prevent upper canine retention with ectopic eruption is fundamental to choose the ideal treatment, which can be performed by various methods. OBJECTIVE: The present paper has the purpose of approaching aspects related to impacted upper permanent canines by a literature review, including localization and treatment conducts.

  18. Eruptive dynamics during magma decompression: a laboratory approach

    Science.gov (United States)

    Spina, L.; Cimarelli, C.; Scheu, B.; Wadsworth, F.; Dingwell, D. B.

    2013-12-01

    A variety of eruptive styles characterizes the activity of a given volcano. Indeed, eruptive styles can range from effusive phenomena to explosive eruptions, with related implications for hazard management. Rapid changes in eruptive style can occur during an ongoing eruption. These changes are, amongst other, related to variations in the magma ascent rate, a key parameter affecting the eruptive style. Ascent rate is in turn dependent on several factors such as the pressure in the magma chamber, the physical properties of the magma and the rate at which these properties change. According to the high number of involved parameters, laboratory decompression experiments are the best way to achieve quantitative information on the interplay of each of those factors and the related impact on the eruption style, i.e. by analyzing the flow and deformation behavior of the transparent volatile-bearing analogue fluid. We carried out decompression experiments following different decompression paths and using silicone oil as an analogue for the melt, with which we can simulate a range of melt viscosity values. For a set of experiments we added rigid particles to simulate the presence of crystals in the magma. The pure liquid or suspension was mounted into a transparent autoclave and pressurized to different final pressures. Then the sample was saturated with argon for a fixed amount of time. The decompression path consists of a slow decompression from the initial pressure to the atmospheric condition. Alternatively, samples were decompressed almost instantaneously, after established steps of slow decompression. The decompression path was monitored with pressure transducers and a high-speed video camera. Image analysis of the videos gives quantitative information on the bubble distribution with respect to depth in the liquid, pressure and time of nucleation and on their characteristics and behavior during the ongoing magma ascent. Furthermore, we also monitored the evolution of

  19. Radiological consequences of a hypothetical ''roof breakdown'' accident of the Chernobyl sarcophagus

    International Nuclear Information System (INIS)

    Pretzsch, G.

    1997-01-01

    On behalf of the German Federal Ministry for Environment, Nature Conservation and Nuclear Safety GRS performed investigations with the aim to improve the safety of the Chernobyl Unit 4 shelter in close connection with the Ministry for Environment and Nuclear Safety of the Ukraina from 1992 to 1995. One of the tasks of the working programme was concerned with the analysis of hypothetical accidents of the present shelter, which comprises the newly built Sarcophagus and the remaining ruins of Unit 4. In close collaboration with Ukrainian and Russian experts the maximum hypothetical accident was defined to be the breakdown of the roof of the Sarcophagus and subsequent release of the radioactive dust which is mainly located in the destroyed reactor hall and the neighboring rooms

  20. Divergent responses of tropical cyclone genesis factors to strong volcanic eruptions at different latitudes

    Science.gov (United States)

    Yan, Qing; Zhang, Zhongshi; Wang, Huijun

    2018-03-01

    To understand the behaviors of tropical cyclones (TCs), it is very important to explore how TCs respond to anthropogenic greenhouse gases and natural forcings. Volcanic eruptions are a major natural forcing mechanism because they inject sulphate aerosols into the stratosphere, which modulate the global climate by absorbing and scattering solar radiation. The number of Atlantic hurricanes is thought to be reduced following strong tropical eruptions, but whether the response of TCs varies with the locations of the volcanoes and the different ocean basins remains unknown. Here, we use the Community Earth System Model-Last Millennium Ensemble to investigate the response of the large-scale environmental factors that spawn TCs to strong volcanic eruptions at different latitudes. A composite analysis indicates that tropical and northern hemisphere volcanic eruptions lead to significantly unfavorable conditions for TC genesis over the whole Pacific basin and the North Atlantic during the 3 years post-eruption, relative to the preceding 3 years. Southern hemisphere volcanic eruptions result in obviously unfavorable conditions for TC formation over the southwestern Pacific, but more favorable conditions over the North Atlantic. The mean response over the Indian Ocean is generally muted and insignificant. It should be noted that volcanic eruptions impact on environmental conditions through both the direct effect (i.e. on radiative forcing) and the indirect effect (i.e. on El Niño-Southern Oscillation), which is not differentiated in this study. In addition, the spread of the TC genesis response is considerably large for each category of eruptions over each ocean basin, which is also seen in the observational/proxy-based records. This large spread is attributed to the differences in stratospheric aerosol distributions, initial states and eruption intensities, and makes the short-term forecast of TC activity following the next large eruption challenging.

  1. Characterize Eruptive Processes at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    D. Krier

    2004-01-01

    The purpose of this scientific analysis report, ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', is to present information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a repository at Yucca Mountain. This scientific analysis report provides information to four other reports: ''Number of Waste Packages Hit by Igneous Intrusion'', (BSC 2004 [DIRS 170001]); ''Atmospheric Dispersal and Deposition of Tephra from Potential Volcanic Eruption at Yucca Mountain, Nevada'' (BSC 2004 [DIRS 170026]); ''Dike/Drift Interactions'' (BSC 2004 [DIRS 170028]); ''Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV'' (BSC 2004 [DIRS 170027], Section 6.5). This report is organized into seven major sections. This section addresses the purpose of this document. Section 2 addresses quality assurance, Section 3 the use of software, Section 4 identifies the requirements that constrain this work, and Section 5 lists assumptions and their rationale. Section 6 presents the details of the scientific analysis and Section 7 summarizes the conclusions reached

  2. Evidence for Mixed Helicity in Erupting Filaments

    Science.gov (United States)

    Muglach, K.; Wang, Y.-M.; Kliem, B.

    2009-09-01

    Erupting filaments are sometimes observed to undergo a rotation about the vertical direction as they rise. This rotation of the filament axis is generally interpreted as a conversion of twist into writhe in a kink-unstable magnetic flux rope. Consistent with this interpretation, the rotation is usually found to be clockwise (as viewed from above) if the post-eruption arcade has right-handed helicity, but counterclockwise if it has left-handed helicity. Here, we describe two non-active-region filament events recorded with the Extreme-Ultraviolet Imaging Telescope on the Solar and Heliospheric Observatory in which the sense of rotation appears to be opposite to that expected from the helicity of the post-event arcade. Based on these observations, we suggest that the rotation of the filament axis is, in general, determined by the net helicity of the erupting system, and that the axially aligned core of the filament can have the opposite helicity sign to the surrounding field. In most cases, the surrounding field provides the main contribution to the net helicity. In the events reported here, however, the helicity associated with the filament "barbs" is opposite in sign to and dominates that of the overlying arcade.

  3. Heating of an Erupting Prominence Associated with a Solar Coronal Mass Ejection on 2012 January 27

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin-Yi; Moon, Yong-Jae; Kim, Kap-Sung [Department of Astronomy and Space Science, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104 (Korea, Republic of); Raymond, John C.; Reeves, Katharine K. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2017-07-20

    We investigate the heating of an erupting prominence and loops associated with a coronal mass ejection and X-class flare. The prominence is seen as absorption in EUV at the beginning of its eruption. Later, the prominence changes to emission, which indicates heating of the erupting plasma. We find the densities of the erupting prominence using the absorption properties of hydrogen and helium in different passbands. We estimate the temperatures and densities of the erupting prominence and loops seen as emission features using the differential emission measure method, which uses both EUV and X-ray observations from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory and the X-ray Telescope on board Hinode . We consider synthetic spectra using both photospheric and coronal abundances in these calculations. We verify the methods for the estimation of temperatures and densities for the erupting plasmas. Then, we estimate the thermal, kinetic, radiative loss, thermal conduction, and heating energies of the erupting prominence and loops. We find that the heating of the erupting prominence and loop occurs strongly at early times in the eruption. This event shows a writhing motion of the erupting prominence, which may indicate a hot flux rope heated by thermal energy release during magnetic reconnection.

  4. Generation, ascent and eruption of magma on the Moon: New insights into source depths, magma supply, intrusions and effusive/explosive eruptions (Part 2: Predicted emplacement processes and observations)

    Science.gov (United States)

    Head, James W.; Wilson, Lionel

    2017-02-01

    We utilize a theoretical analysis of the generation, ascent, intrusion and eruption of basaltic magma on the Moon to develop new insights into magma source depths, supply processes, transport and emplacement mechanisms via dike intrusions, and effusive and explosive eruptions. We make predictions about the intrusion and eruption processes and compare these with the range of observed styles of mare volcanism, and related features and deposits. Density contrasts between the bulk mantle and regions with a greater abundance of heat sources will cause larger heated regions to rise as buoyant melt-rich diapirs that generate partial melts that can undergo collection into magma source regions; diapirs rise to the base of the anorthositic crustal density trap (when the crust is thicker than the elastic lithosphere) or, later in history, to the base of the lithospheric rheological trap (when the thickening lithosphere exceeds the thickness of the crust). Residual diapiric buoyancy, and continued production and arrival of diapiric material, enhances melt volume and overpressurizes the source regions, producing sufficient stress to cause brittle deformation of the elastic part of the overlying lithosphere; a magma-filled crack initiates and propagates toward the surface as a convex upward, blade-shaped dike. The volume of magma released in a single event is likely to lie in the range 102 km3 to 103 km3, corresponding to dikes with widths of 40-100 m and both vertical and horizontal extents of 60-100 km, favoring eruption on the lunar nearside. Shallower magma sources produce dikes that are continuous from the source region to the surface, but deeper sources will propagate dikes that detach from the source region and ascend as discrete penny-shaped structures. As the Moon cools with time, the lithosphere thickens, source regions become less abundant, and rheological traps become increasingly deep; the state of stress in the lithosphere becomes increasingly contractional

  5. Perils in distinguishing phreatic from phreatomagmatic ash; insights into the eruption mechanisms of the 6 August 2012 Mt. Tongariro eruption, New Zealand

    Science.gov (United States)

    Pardo, Natalia; Cronin, Shane J.; Németh, Károly; Brenna, Marco; Schipper, C. Ian; Breard, Eric; White, James D. L.; Procter, Jonathan; Stewart, Bob; Agustín-Flores, Javier; Moebis, Anja; Zernack, Anke; Kereszturi, Gábor; Lube, Gert; Auer, Andreas; Neall, Vince; Wallace, Clel

    2014-10-01

    The weak geophysical precursors of the 6 August 2012 Te Maari eruption of Mt. Tongariro and a lack of obvious juvenile components in its proximal ballistic deposits imply that the eruption was caused by the sudden decompression of a sealed, hot hydrothermal system. Strong magmatic signals in pre- and post-eruption gas emissions indicate that fresh magma had intruded to shallow levels shortly before this eruption. Here we examine the volcanic ash produced during the August eruption with the aim of determining whether juvenile magma was erupted or not. The widely applied criteria for identifying fresh juvenile pyroclasts provided inconclusive results. The Te Maari ash sorting and trend towards a unimodal grain-size distribution increase with distance along the dispersal axis. Proximal to intermediate sites showing polymodal grain-size distributions can be related to the re-fragmentation of different pre-existing lithologies, overlapped erupted pulses and transport mechanisms, and to particle aggregation. Between 69 and 100 vol.% of particles coarser than 3 ϕ and 45-75 vol.% of grains finer than 3 ϕ were sourced from the pre-existing, commonly hydrothermally altered, vent-area lavas and pyroclasts. Free crystals (pyroxene > plagioclase > magnetite > pyrite) make up 0-23 vol.% of particles coarser than 3 ϕ, and 22-41 vol.% of grains finer than 3 ϕ. Brown to black fragments of fresh glass are a small (1-15 vol.%), but notable, component. Under SEM, these blocky, glassy particles are poorly vesicular, and irregularly shaped, some with fluidal or bubble-wall surfaces, and others with fragmented stepped surfaces and fine adhering ash. In thin section, they contain variable amounts of microlites within an isotropic groundmass. The range in silica content of the microprobe-analysed glass is very wide (56-77 wt.%) and cannot be correlated to any specific particle textural type. These chemically and texturally diverse glassy fragments are identical to mechanically broken

  6. Volcanic eruption of the mid-ocean ridge along the East Pacific Rise crest at 9°45-52'N: direct submersible observations of seafloor phenomena associated with an eruption event in April, 1991

    Science.gov (United States)

    Haymon, R.M.; Fornari, D.J.; Von Damm, Karen L.; Lilley, M.D.; Perfit, M.R.; Edmond, J.M.; Shanks, Wayne C.; Lutz, R.A.; Grebmeier, J.M.; Carbotte, S.; Wright, D.; McLaughlin, E.; Smith, M.; Beedle, N.; Olson, E.

    1993-01-01

    In April, 1991, we witnessed from the submersible Alvin a suite of previously undocumented seafloor phenomena accompanying an in-progress eruption of the mid-ocean ridge on the East Pacific Rise crest at 9°45′N–52′N. The volume of the eruption could not be precisely determined, although comparison of pre- and post-eruption SeaBeam bathymetry indicate that any changes in ridge crest morphology resulting from the eruption were < 10 m high.

  7. Fine particles in the Soufriere eruption plume

    Science.gov (United States)

    Woods, D. C.; Chuan, R. L.

    1982-01-01

    The size distributions of fine particles measured at tropospheric altitudes in the periphery of the eruption plume formed during the April 17, 1979 eruption of Soufriere Volcano and in the low-level effluents on May 15, 1979 were found to be bimodal, having peak concentrations at geometric mean diameters of 1.1 and 0.23 micrometers. Scanning electron microscopy and energy-dispersive X-ray analysis of the samples revealed an abundance of aluminum and silicon and traces of sodium, magnesium, chlorine, potassium, calcium, and iron in the large-particle mode. The submicrometer-sized particles were covered with liquid containing sulfur, assumed to be in the form of liquid sulfuric acid.

  8. Magnetohydrodynamic modeling of the solar eruption on 2010 April 8

    International Nuclear Information System (INIS)

    Kliem, B.; Su, Y. N.; Van Ballegooijen, A. A.; DeLuca, E. E.

    2013-01-01

    The structure of the coronal magnetic field prior to eruptive processes and the conditions for the onset of eruption are important issues that can be addressed through studying the magnetohydrodynamic (MHD) stability and evolution of nonlinear force-free field (NLFFF) models. This paper uses data-constrained NLFFF models of a solar active region (AR) that erupted on 2010 April 8 as initial conditions in MHD simulations. These models, constructed with the techniques of flux rope insertion and magnetofrictional relaxation (MFR), include a stable, an approximately marginally stable, and an unstable configuration. The simulations confirm previous related results of MFR runs, particularly that stable flux rope equilibria represent key features of the observed pre-eruption coronal structure very well, and that there is a limiting value of the axial flux in the rope for the existence of stable NLFFF equilibria. The specific limiting value is located within a tighter range, due to the sharper discrimination between stability and instability by the MHD description. The MHD treatment of the eruptive configuration yields a very good agreement with a number of observed features, like the strongly inclined initial rise path and the close temporal association between the coronal mass ejection and the onset of flare reconnection. Minor differences occur in the velocity of flare ribbon expansion and in the further evolution of the inclination; these can be eliminated through refined simulations. We suggest that the slingshot effect of horizontally bent flux in the source region of eruptions can contribute significantly to the inclination of the rise direction. Finally, we demonstrate that the onset criterion, formulated in terms of a threshold value for the axial flux in the rope, corresponds very well to the threshold of the torus instability in the considered AR.

  9. The effects and consequences of very large explosive volcanic eruptions.

    Science.gov (United States)

    Self, S

    2006-08-15

    Every now and again Earth experiences tremendous explosive volcanic eruptions, considerably bigger than the largest witnessed in historic times. Those yielding more than 450km3 of magma have been called super-eruptions. The record of such eruptions is incomplete; the most recent known example occurred 26000 years ago. It is more likely that the Earth will next experience a super-eruption than an impact from a large meteorite greater than 1km in diameter. Depending on where the volcano is located, the effects will be felt globally or at least by a whole hemisphere. Large areas will be devastated by pyroclastic flow deposits, and the more widely dispersed ash falls will be laid down over continent-sized areas. The most widespread effects will be derived from volcanic gases, sulphur gases being particularly important. This gas is converted into sulphuric acid aerosols in the stratosphere and layers of aerosol can cover the global atmosphere within a few weeks to months. These remain for several years and affect atmospheric circulation causing surface temperature to fall in many regions. Effects include temporary reductions in light levels and severe and unseasonable weather (including cool summers and colder-than-normal winters). Some aspects of the understanding and prediction of super-eruptions are problematic because they are well outside modern experience. Our global society is now very different to that affected by past, modest-sized volcanic activity and is highly vulnerable to catastrophic damage of infrastructure by natural disasters. Major disruption of services that society depends upon can be expected for periods of months to, perhaps, years after the next very large explosive eruption and the cost to global financial markets will be high and sustained.

  10. Dwarf Star Erupts in Giant Flare

    Science.gov (United States)

    2005-01-01

    This movie taken by NASA'S Galaxy Evolution Explorer shows one of the largest flares, or star eruptions, ever recorded at ultraviolet wavelengths. The star, called GJ 3685A, just happened to be in the Galaxy Evolution Explorer's field of view while the telescope was busy observing galaxies. As the movie demonstrates, the seemingly serene star suddenly exploded once, then even more intensely a second time, pouring out in total about one million times more energy than a typical flare from our Sun. The second blast of light constituted an increase in brightness by a factor of at least 10,000. Flares are huge explosions of energy stemming from a single location on a star's surface. They are caused by the brief destruction of a star's magnetic fields. Many types of stars experience them, though old, small, rapidly rotating 'red dwarfs' like GJ 3685A tend to flare more frequently and dramatically. These stars, called flare stars, can experience powerful eruptions as often as every few hours. Younger stars, in general, also erupt more often. One of the reasons astronomers study flare stars is to gain a better picture and history of flare events taking place on the Sun. A preliminary analysis of the GJ 3685A flare shows that the mechanisms underlying stellar eruptions may be more complex than previously believed. Evidence for the two most popular flare theories was found. Though this movie has been sped up (the actual flare lasted about 20 minutes), time-resolved data exist for each one-hundredth of a second. These observations were taken at 2 p.m. Pacific time, April 24, 2004. In the still image, the time sequence starts in the upper left panel, continues in the upper right, then moves to the lower left and ends in the lower right. The circular and linear features that appear below and to the right of GJ 3685A during the flare event are detector artifacts caused by the extreme brightness of the flare.

  11. The timing of tooth eruption and root development of permanent canine and premolars in Korean children

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Chang Shin; Jung, Yun Hoa; Cho, Bong Hae [Department of Oral and Maxillofacial Radiology, School of Dentistry, Pusan National University, Pusan (Korea, Republic of)

    2010-09-15

    The aim of this study was to investigate the timing and sequence of eruption of permanent canine and premolars, and to evaluate tooth calcification stage on emergence in Korean children. The sample was comprised of 1,266 children (male 720, female 546) aged from 7-13 years. Tooth eruption and calcification stages were determined through oral and panoramic radiographic examination, respectively. Probit analysis was used to calculate the timing of tooth eruption and tooth calcification stage from these cross-sectional data. In both males and females, eruption occurred around the time when one third of tooth root or more was formed. The sequence was as follows: first premolar, canine, and second premolar in maxilla, and canine, first premolar and second premolar in mandible. Tooth eruption occurred earlier in girls compared with boys, averaging 0.63 years. Eruption sequence is identical in males and females with a trend for females to erupt earlier than males. Tooth eruption becomes earlier over the past decades in Korean children.

  12. The timing of tooth eruption and root development of permanent canine and premolars in Korean children

    International Nuclear Information System (INIS)

    Cheong, Chang Shin; Jung, Yun Hoa; Cho, Bong Hae

    2010-01-01

    The aim of this study was to investigate the timing and sequence of eruption of permanent canine and premolars, and to evaluate tooth calcification stage on emergence in Korean children. The sample was comprised of 1,266 children (male 720, female 546) aged from 7-13 years. Tooth eruption and calcification stages were determined through oral and panoramic radiographic examination, respectively. Probit analysis was used to calculate the timing of tooth eruption and tooth calcification stage from these cross-sectional data. In both males and females, eruption occurred around the time when one third of tooth root or more was formed. The sequence was as follows: first premolar, canine, and second premolar in maxilla, and canine, first premolar and second premolar in mandible. Tooth eruption occurred earlier in girls compared with boys, averaging 0.63 years. Eruption sequence is identical in males and females with a trend for females to erupt earlier than males. Tooth eruption becomes earlier over the past decades in Korean children.

  13. Precursory activity of the 161 ka Kos Plateau Tuff eruption, Aegean Sea (Greece)

    Science.gov (United States)

    Piper, David J. W.; Pe-Piper, Georgia; Lefort, Darren

    2010-08-01

    The Kos Plateau Tuff (KPT) eruption of 161 ka was the largest explosive Quaternary eruption in the eastern Mediterranean. We have discovered an uplifted beach deposit of abraded pumice cobbles, directly overlain by the KPT. The pumice cobbles resemble pumice from the KPT in petrography and composition and differ from Plio-Pleistocene rhyolites on the nearby Kefalos Peninsula. The pumice contains enclaves of basaltic andesite showing chilled lobate margins, suggesting co-existence of two magmas. The deposit provides evidence that the precursory phase of the KPT eruption produced pumice rafts, and defines the paleoshoreline for the KPT, which elsewhere was deposited on land. The beach deposit has been uplifted about 120 m since the KPT eruption, whereas the present marine area south of Kos has subsided several hundred metres, as a result of regional neotectonics. The basaltic andesite is more primitive than other mafic rocks known from the Kos-Nisyros volcanic centre and contains phenocrysts of Fo89 olivine, bytownite, enstatite and diopside. Groundmass amphibole suggests availability of water in the final stages of magma evolution. Geochemical and mineralogical variation in the mafic products of the KPT eruption indicate that fractionation of basaltic magma in a base-of-crust magma chamber was followed by mixing with rhyolitic magma during eruption. Low eruption rates during the precursory activity may have minimised the extent of mixing and preserved the end-member magma types.

  14. The Te Rere and Okareka eruptive episodes : Okataina Volcanic Centre, Taupo Volcanic Zone, New Zealand

    International Nuclear Information System (INIS)

    Nairn, I.A.

    1992-01-01

    The Te Rere and Okareka eruptive episodes occurred within the Okataina Volcanic Centre at c. 21 000 and 18 000 yr B.P., respectively. The widespread rhyolitic pumice fall deposits of Te Rere Ash (volume 5 km 3 ) and Okareka Ash (6 km 3 ) are only rarely exposed in near-source areas, and locations of their vent areas have been uncertain. New exposures and petrographic and chemical analyses show that the Te Rere episode eruptions occurred from multiple vents, up to 20 km apart, on the Haroharo linear vent zone. The Okareka episode eruptions occurred from vents since buried beneath the Tarawera volcanic massif. Eruption of the rhyolitic Okareka pumice fall was immediately preceded by a small basaltic scoria eruption, apparently from vents close to those for the following rhyolite eruptions. Dacitic mixed pumices scattered within the rhyolite pumice layers immediately overlying the scoria were formed by mixing of the basalt and rhyolite magmas. The Te Rere and Okareka pyroclastic eruptions were both followed by extrusion of voluminous rhyolite lavas. These eruptive episodes mark the commencement of growth of the present-day Haroharo and Tarawera volcanic complexes. (author). 27 refs., 14 figs., 6 tabs

  15. Magmatic controls on eruption dynamics of the 1950 yr B.P. eruption of San Antonio Volcano, Tacaná Volcanic Complex, Mexico-Guatemala

    Science.gov (United States)

    Mora, Juan Carlos; Gardner, James Edward; Macías, José Luis; Meriggi, Lorenzo; Santo, Alba Patrizia

    2013-07-01

    San Antonio Volcano, in the Tacaná Volcanic Complex, erupted ~ 1950 yr. B.P., with a Pelean type eruption that produced andesitic pyroclastic surges and block-and-ash flows destroying part of the volcano summit and producing a horse-shoe shaped crater open to the SW. Between 1950 and 800 yr B.P. the eruption continued with effusive andesites followed by a dacite lava flow and a summit dome, all from a single magma batch. All products consist of phenocrysts and microphenocrysts of zoned plagioclase, amphibole, pyroxene, magnetite ± ilmenite, set in partially crystallized groundmass of glass and microlites of the same mineral phases, except for the lack of amphibole. Included in the andesitic blocks of the block-and-ash flow deposit are basaltic andesite enclaves with elongated and ellipsoidal forms and chilled margins. The enclaves have intersertal textures with brown glass between microphenocrysts of plagioclase, hornblende, pyroxene, and olivine, and minor proportions of phenocrysts of plagioclase, hornblende, and pyroxene. A compositional range obtained of blocks and enclaves resulted from mixing between andesite (866 °C ± 22) and basaltic andesite (enclaves, 932 °C ± 22), which may have triggered the explosive Pelean eruption. Vestiges of that mixing are preserved as complex compositional zones in plagioclase and clinopyroxene-rich reaction rims in amphibole in the andesite. Whole-rock chemistry, geothermometry, experimental petrology and modeling results suggest that after the mixing event the eruption tapped hybrid andesitic magma (≤ 900 °C) and ended with effusive dacitic magma (~ 825 °C), all of which were stored at ~ 200 MPa water pressure. A complex open-system evolution that involved crustal end-members best explains the generation of effusive dacite from the hybrid andesite. Amphibole in the dacite is rimmed by reaction products of plagioclase, orthopyroxene, and Fe-Ti oxides produced by decompression during ascent. Amphibole in the andesite

  16. Lava Eruption and Emplacement: Using Clues from Hawaii and Iceland to Probe the Lunar Past

    Science.gov (United States)

    Needham, Debra Hurwitz; Hamilton, C. W.; Bleacher, J. E.; Whelley, P. L.; Young, K. E.; Scheidt, S. P.; Richardson, J. A.; Sutton, S. S.

    2017-01-01

    Investigating recent eruptions on Earth is crucial to improving understanding of relationships between eruption dynamics and final lava flow morphologies. In this study, we investigated eruptions in Holuhraun, Iceland, and Kilauea, Hawaii to gain insight into the lava dynamics near the source vent, the initiation of lava channels, and the origin of down-channel features. Insights are applied to Rima Bode on the lunar nearside to deduce the sequence of events that formed this lunar sinuous rille system. These insights are crucial to correctly interpreting whether the volcanic features associated with Rima Bode directly relate to eruption conditions at the vent and, thus, can help us understand those eruption dynamics, or, alternatively, whether the features formed as a result of more localized influences on lava flow dynamics. For example, if the lava channel developed early in the eruption and was linked to pulses in vent activity, its morphology can be analyzed to interpret the flux and duration of the eruption. Conversely, if the lava channel initiated late in the eruption as the result of a catastrophic breaching of lava that had previously pooled within the vent [e.g., 1], then the final channel morphology will not indicate eruption dynamics but rather local dynamics associated with that breach event. Distinguishing between these two scenarios is crucial for correctly interpreting the intensity and duration of volcanic history on the Moon.

  17. Progressive approach to eruption at Campi Flegrei caldera in southern Italy.

    Science.gov (United States)

    Kilburn, Christopher R J; De Natale, Giuseppe; Carlino, Stefano

    2017-05-15

    Unrest at large calderas rarely ends in eruption, encouraging vulnerable communities to perceive emergency warnings of volcanic activity as false alarms. A classic example is the Campi Flegrei caldera in southern Italy, where three episodes of major uplift since 1950 have raised its central district by about 3 m without an eruption. Individual episodes have conventionally been treated as independent events, so that only data from an ongoing episode are considered pertinent to evaluating eruptive potential. An implicit assumption is that the crust relaxes accumulated stress after each episode. Here we apply a new model of elastic-brittle failure to test the alternative view that successive episodes promote a long-term accumulation of stress in the crust. The results provide the first quantitative evidence that Campi Flegrei is evolving towards conditions more favourable to eruption and identify field tests for predictions on how the caldera will behave during future unrest.

  18. Volcanic Eruption Forecasts From Accelerating Rates of Drumbeat Long-Period Earthquakes

    Science.gov (United States)

    Bell, Andrew F.; Naylor, Mark; Hernandez, Stephen; Main, Ian G.; Gaunt, H. Elizabeth; Mothes, Patricia; Ruiz, Mario

    2018-02-01

    Accelerating rates of quasiperiodic "drumbeat" long-period earthquakes (LPs) are commonly reported before eruptions at andesite and dacite volcanoes, and promise insights into the nature of fundamental preeruptive processes and improved eruption forecasts. Here we apply a new Bayesian Markov chain Monte Carlo gamma point process methodology to investigate an exceptionally well-developed sequence of drumbeat LPs preceding a recent large vulcanian explosion at Tungurahua volcano, Ecuador. For more than 24 hr, LP rates increased according to the inverse power law trend predicted by material failure theory, and with a retrospectively forecast failure time that agrees with the eruption onset within error. LPs resulted from repeated activation of a single characteristic source driven by accelerating loading, rather than a distributed failure process, showing that similar precursory trends can emerge from quite different underlying physics. Nevertheless, such sequences have clear potential for improving forecasts of eruptions at Tungurahua and analogous volcanoes.

  19. Onset of a Large Ejective Solar Eruption from a Typical Coronal-jet-base Field Configuration

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Navin Chandra; Magara, Tetsuya; Moon, Yong-Jae [School of Space Research, Kyung Hee University, Yongin, Gyeonggi-Do, 446-701 (Korea, Republic of); Sterling, Alphonse C.; Moore, Ronald L., E-mail: navin@khu.ac.kr, E-mail: njoshi98@gmail.com [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States)

    2017-08-10

    Utilizing multiwavelength observations and magnetic field data from the Solar Dynamics Observatory ( SDO )/Atmospheric Imaging Assembly (AIA), SDO /Helioseismic and Magnetic Imager (HMI), the Geostationary Operational Environmental Satellite ( GOES ), and RHESSI , we investigate a large-scale ejective solar eruption of 2014 December 18 from active region NOAA 12241. This event produced a distinctive “three-ribbon” flare, having two parallel ribbons corresponding to the ribbons of a standard two-ribbon flare, and a larger-scale third quasi-circular ribbon offset from the other two. There are two components to this eruptive event. First, a flux rope forms above a strong-field polarity inversion line and erupts and grows as the parallel ribbons turn on, grow, and spread apart from that polarity inversion line; this evolution is consistent with the mechanism of tether-cutting reconnection for eruptions. Second, the eruption of the arcade that has the erupting flux rope in its core undergoes magnetic reconnection at the null point of a fan dome that envelops the erupting arcade, resulting in formation of the quasi-circular ribbon; this is consistent with the breakout reconnection mechanism for eruptions. We find that the parallel ribbons begin well before (∼12 minutes) the onset of the circular ribbon, indicating that tether-cutting reconnection (or a non-ideal MHD instability) initiated this event, rather than breakout reconnection. The overall setup for this large-scale eruption (diameter of the circular ribbon ∼10{sup 5} km) is analogous to that of coronal jets (base size ∼10{sup 4} km), many of which, according to recent findings, result from eruptions of small-scale “minifilaments.” Thus these findings confirm that eruptions of sheared-core magnetic arcades seated in fan–spine null-point magnetic topology happen on a wide range of size scales on the Sun.

  20. The 1723 A.D. violent strombolian and phreatomagmatic eruption at Volcan Irazu, Costa Rica

    International Nuclear Information System (INIS)

    Alvarado, Guillermo E.; Schminke, Hans-Ulrich

    2013-01-01

    The deposits exposed at the top of the Volcan Irazu are analyzed and compared with the account of the Spanish governor Don Diego de la Haya, about the Volcan Irazu eruption from February 16 to December 11, 1723. The research has incurred chemical analyzes, obtained by x-ray fluorescence, analysis of pellets, measured by spectrometers, and the use of the Oxiquant analysis program with calibration of standards and international certificates. The eruption has started with the increase of a small magmatic batch of basaltic andesite, which has led to a rapid initial contact and a final eruption due to the contrasting density and temperature of the two magmas. The deposits are interpreted as the strombolian type. The composition of the magma is observed without alteration during the eruption. The eruption is accompanied by tectonic volcano tremors that have facilitated the interaction of magma gas and water. A new eruption projected at this intensity could cause great losses in agriculture, industry, infrastructure and airplanes [es