WorldWideScience

Sample records for hypothermic culture conditions

  1. Primary exploration of conditions for hypothermic preservation of rat hepatocyte spheroids

    Directory of Open Access Journals (Sweden)

    Hong-ling LIU

    2015-01-01

    Full Text Available Objective To optimize conditions for hypothermic preservation of rat hepatocyte spheroids without freezing in order to facilitate the application of biological artificial liver. Methods Rat hepatic cells were isolated by a two-step perfusion method, and hepatocyte spheroids formed after 48 hours of rocking culture in serum free medium (SFM. Spheroids were then maintained in rocking culture at 37℃ (control condition, or cold stored at 4℃ for 24 or 48 hours in four different cold storage solutions: SFM alone; SFM+1mmol/L deferoxamine (Def ; SFM+1μmol/L cyclosporin A (CsA; and SFM+1mmol/L Def+1μmol/L CsA. After culturing for another 4 or 5 days, survival rate, changes in ultrastructure, and the production of albumin and urea were observed. Results Cold-induced injury could be reduced significantly by the addition of the iron chelators Def and CsA. The function and structure of hepatocyte spheroids stored in SFM+Def+CsA or SFM+Def for 24 hours were similar to those in control conditions. But the function was significantly reduced after hypothermic preservation in SFM alone. After cold storage for 48 hours, the ultrastructure of hepatocyte spheroids obviously changed and the number of dead cells increased. The survival rate of hepatocyte spheroids stored in SFM+Def+CsA or SFM+Def was significantly higher than that stored in SFM or SFM+CsA(P0.05. Conclusions Hepatocyte spheroids tolerate 24 hours of cold storage with stable viability and function. Hypothermic preservation increases the availability of cell-based therapy for liver diseases. DOI: 10.11855/j.issn.0577-7402.2014.12.02

  2. Endothelial cell preservation at hypothermic to normothermic conditions using clinical and experimental organ preservation solutions.

    Science.gov (United States)

    Post, Ivo C J H; de Boon, Wadim M I; Heger, Michal; van Wijk, Albert C W A; Kroon, Jeffrey; van Buul, Jaap D; van Gulik, Thomas M

    2013-10-15

    Endothelial barrier function is pivotal for the outcome of organ transplantation. Since hypothermic preservation (gold standard) is associated with cold-induced endothelial damage, endothelial barrier function may benefit from organ preservation at warmer temperatures. We therefore assessed endothelial barrier integrity and viability as function of preservation temperature and perfusion solution, and hypothesized that endothelial cell preservation at subnormothermic conditions using metabolism-supporting solutions constitute optimal preservation conditions. Human umbilical vein endothelial cells (HUVEC) were preserved at 4-37°C for up to 20 h using Ringer's lactate, histidine-tryptophan-ketoglutarate solution, University of Wisconsin (UW) solution, Polysol, or endothelial cell growth medium (ECGM). Following preservation, the monolayer integrity, metabolic capacity, and ATP content were determined as positive parameters of endothelial cell viability. As negative parameters, apoptosis, necrosis, and cell activation were assayed. A viability index was devised on the basis of these parameters. HUVEC viability and barrier integrity was compromised at 4°C regardless of the preservation solution. At temperatures above 20°C, the cells' metabolic demands outweighed the preservation solutions' supporting capacity. Only UW maintained HUVEC viability up to 20°C. Despite high intracellular ATP content, none of the solutions were capable of sufficiently preserving HUVEC above 20°C except for ECGM. Optimal HUVEC preservation is achieved with UW up to 20°C. Only ECGM maintains HUVEC viability at temperatures above 20°C. © 2013 Elsevier Inc. All rights reserved.

  3. [Hypothermic storage under aerobic conditions--the effect of different flushing solutions on kidney functional recovery].

    Science.gov (United States)

    Fischer, J H; Miyata, M; Isselhard, W; Casser, H R

    1979-01-01

    Canine kidneys (n = 17) were flushed with COLLINS (C2), SACKS II, LAMBOTTE (KMgS), ROSS (hypertonic citrate), or RINGER glucose-mannitol solution following a 30-min period of normothermic ischemia. After 24 h hypothermic preservation with retrograde oxygen persufflation (ROP) and autotransplantation, the immediate functional recovery was determined using inulin and PAH clearance methods and compared with the normal contralateral kidney. While a good functional recovery was found in the COLLINS group, significantly exceeding results from hypothermic ischemic storage preservation, in experiments using other flush solutions ROP preservation resulted in only a small immediate function. Thus the experiments indicate that COLLINS solution C2 is the optimal flush solution for ROP preservation.

  4. Spontaneous Packaging and Hypothermic Storage of Mammalian Cells with a Cell-Membrane-Mimetic Polymer Hydrogel in a Microchip.

    Science.gov (United States)

    Xu, Yan; Mawatari, Kazuma; Konno, Tomohiro; Kitamori, Takehiko; Ishihara, Kazuhiko

    2015-10-21

    Currently, continuous culture/passage and cryopreservation are two major, well-established methods to provide cultivated mammalian cells for experiments in laboratories. Due to the lack of flexibility, however, both laboratory-oriented methods are unable to meet the need for rapidly growing cell-based applications, which require cell supply in a variety of occasions outside of laboratories. Herein, we report spontaneous packaging and hypothermic storage of mammalian cells under refrigerated (4 °C) and ambient conditions (25 °C) using a cell-membrane-mimetic methacryloyloxyethyl phosphorylcholine (MPC) polymer hydrogel incorporated within a glass microchip. Its capability for hypothermic storage of cells was comparatively evaluated over 16 days. The results reveal that the cytocompatible MPC polymer hydrogel, in combination with the microchip structure, enabled hypothermic storage of cells with quite high viability, high intracellular esterase activity, maintained cell membrane integrity, and small morphological change for more than 1 week at 4 °C and at least 4 days at 25 °C. Furthermore, the stored cells could be released from the hydrogel and exhibited the ability to adhere to a surface and achieve confluence under standard cell culture conditions. Both hypothermic storage conditions are ordinary flexible conditions which can be easily established in places outside of laboratories. Therefore, cell packaging and storage using the hydrogel incorporated within the microchip would be a promising miniature and portable solution for flexible supply and delivery of small amounts of cells from bench to bedside.

  5. Culturing conditions determine neuronal and glial excitability.

    Science.gov (United States)

    Stoppelkamp, Sandra; Riedel, Gernot; Platt, Bettina

    2010-12-15

    The cultivation of pure neuronal cultures is considered advantageous for the investigation of cell-type specific responses (such as transmitter release and also pharmacological agents), however, divergent results are a likely consequence of media modifications and culture composition. Using Fura-2 based imaging techniques, we here set out to compare calcium responses of rat hippocampal neurones and glia to excitatory stimulation with l-glutamate in different culture types and media. Neurones in neurone-enriched cultures had increased responses to 10 μM and 100 μM l-glutamate (+43 and 45%, respectively; p's< 0.001) and a slower recovery compared to mixed cultures, indicating heightened excitability. In matured (15-20 days in vitro) mixed cultures, neuronal responder rates were suppressed in a neurone-supportive medium (Neurobasal-A, NB: 65%) compared to a general-purpose medium (supplemented minimal essential medium, MEM: 96%). Glial response size in contrast did not differ greatly in isolated or mixed cultures maintained in MEM, but responder rates were suppressed in both culture types in NB (e.g. 10 μM l-glutamate responders in mixed cultures: 29% in NB, 71% in MEM). This indicates that medium composition is more important for glial excitability than the presence of neurones, whereas the presence of glia has an important impact on neuronal excitability. Therefore, careful consideration of culturing conditions is crucial for interpretation and comparison of experimental results. Especially for investigations of toxicity and neuroprotection mixed cultures may be more physiologically relevant over isolated cultures as they comprise aspects of mutual influences between glia and neurones.

  6. Chitosan-based nanocoatings for hypothermic storage of living cells.

    Science.gov (United States)

    Bulwan, Maria; Antosiak-Iwańska, Magdalena; Godlewska, Ewa; Granicka, Ludomira; Zapotoczny, Szczepan; Nowakowska, Maria

    2013-11-01

    The formation of ultrathin chitosan-based nanocoating on HL-60 model cells and their protective function in hypothermic storage are presented. HL-60 cells are encapsulated in ultrathin shells by adsorbing cationic and anionic chitosan derivatives in a stepwise, layer-by-layer, procedure carried out in an aqueous medium under mild conditions. The chitosan-based films are also deposited on model lipid bilayer and the interactions are studied using ellipsometry and atomic force microscopy. The cells covered with the chitosan-based films and stored at 4 °C for 24 h express viability comparable to that of the control sample incubated at 37 °C, while the unprotected cells stored under the same conditions do not show viability. It is shown that the chitosan-based shell protects HL-60 cells against damaging effect of hypothermic storage. Such nanocoatings provide protection, mechanical stability, and support the cell membrane, while ensuring penetration of small molecules such as nutrients/gases what is essential for cell viability.

  7. Medical chilling device designed for hypothermic hydration graft storage system: Design, thermohydrodynamic modeling, and preliminary testing

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jung Hwan [Hongik University, Seoul (Korea, Republic of)

    2015-02-15

    Hypothermic hydration graft storage is essential to reduce the metabolic demand of cells in vitro. The alleviated metabolic demands reduce the emergence rate of anaerobic metabolism generating adenosine triphosphate (ATP) energy that creates free radicals. The cessive free radicals can damage cells and tissues due to their highly oxidative power with molecules. Current cooling systems such as a conventional air cooling system and an ice pack system are inappropriate for chilling cell tissues in vitro because of inconvenience in use and inconsistent temperature sustainability caused by large size and progressive melting, respectively. Here, we develop a medical chilling device (MCD) for hypothermic hydration graft storage based on thermo-hydrodynamic modeling and thermal electric cooling technology. Our analysis of obtained hydrodynamic thermal behavior of the MCD revealed that the hypothermic condition of 4 .deg. C was continuously maintained, which increased the survival rates of cells in vitro test by reduced free radicals. The validated performance of the MCD promises future development of an optimal hypothermic hydration graft storage system designed for clinical use.

  8. Protective effects of calmodulin antagonists (trifluoperazine and W-7 on hypothermic ischemic rat hearts.

    Directory of Open Access Journals (Sweden)

    Sugawara,Eiji

    1991-06-01

    Full Text Available The cardioprotective effect of calmodulin antagonists, trifluoperazine (TFP and N-(6-aminohexyl-5-chloro-1-naphthalene sulfonamide (W-7 was examined on the isolated rat heart exposed to hypothermic and ischemic conditions by measuring distribution of lysosomal enzymes in myocardial cells, and leakage of creatine kinase (CK during reperfusion and postischemic recovery in myocardial systolic function. Experimental hearts were infused with 20 degrees C Krebs-Henseleit bicarbonate buffer (KHB or KHB containing TFP or W-7 for 2min every 30min during hypothermic ischemia. After ischemia for 120min at 20 degrees C, rat hearts were reperfused at 37 degrees C for 30min. TFP and W-7 improved functional recovery and prevented CK release. In TFP treated hearts, leakage of lysosomal enzymes was reduced significantly, whereas stabilization of lysosomes by W-7 did not occur. These results suggest that calcium-calmodulin dependent enzymes may play an important role in the development of cellular damage of the myocardium during hypothermic ischemia, although levels of leakage of lysosomal enzymes may be unreliable predictors of functional recovery after hypothermic ischemia.

  9. Optimization of Fermentation Condition of Yeast Culture

    Institute of Scientific and Technical Information of China (English)

    WANG Qiuju; XU Li; CUI Yizhe

    2008-01-01

    Culture condition of every phase for fermentation of yeast culture was studied, and its solid and liquid conditions of elaboration were optimized to improve the total counts of living cells.Results showed that microzyme grew best at 30℃ when solid fermented,and the count of the living cells reached the tiptop with pH 5.5.The count of Candida tropicalis could reach 137.96×109 cfu·g-1,the count of Saccharomyces cerevisia could reach 134.62×109 cfu·g-1;the best liquid fermentation condition for cell-wall broken was 50℃ for 28 h,the rate of cell-wall broken could reach 80% at least;the rate of vitamin loss in yeast could be the minimun, the loss rate of vitamin B1 in Candida tropicalis and Saccharomyces cerevisiae was 8.71% and 19.54% respectively, the loss rate of vitamin B2 was 19.39% and 13.18%,respectively,and the loss rate of vitamin B6 was 6.3% and 3.04%,respectively.

  10. Deep hypothermic circulatory arrest for hemiarch replacement in a pediatric patient with moyamoya disease.

    Science.gov (United States)

    Kuwajima, Ken; Yoshitani, Kenji; Kato, Shinya; Miyazaki, Atsushi; Kamei, Masataka; Ohnishi, Yoshihiko

    2014-08-01

    Moyamoya disease is a chronic cerebrovascular occlusive disease, occurring predominantly in young populations, that causes cerebral ischemia and hemorrhage. Patients with moyamoya disease are at high risk of neurological complications during cardiac surgery because of perioperative hemodynamic changes. However, there is no established evidence on temperature management during cardiopulmonary bypass. Previous reports described normothermia or mild to moderate hypothermia during cardiopulmonary bypass in patients with moyamoya disease; however, surgical conditions, such as not having enough space to clamp the aorta or a clean surgical field, sometimes force us to use deep hypothermic circuratory arrest. We report a successful case of a pediatric patient with moyamoya disease who underwent deep hypothermic circulatory arrest (18 °C) for hemiarch replacement without neurological complications. Deep hypothermia may be an alternative technique for achieving cerebral protection in the context of moyamoya disease.

  11. Conditioning Factors of an Organizational Learning Culture

    Science.gov (United States)

    Rebelo, Teresa Manuela; Gomes, Adelino Duarte

    2011-01-01

    Purpose: The aim of this study is to assess the relationship between some variables (organizational structure, organizational dimension and age, human resource characteristics, the external environment, strategy and quality) and organizational learning culture and evaluate the way they interact with this kind of culture.…

  12. Hypothermic Preconditioning Reverses Tau Ontogenesis in Human Cortical Neurons and is Mimicked by Protein Phosphatase 2A Inhibition

    Directory of Open Access Journals (Sweden)

    Nina M. Rzechorzek

    2016-01-01

    Full Text Available Hypothermia is potently neuroprotective, but the molecular basis of this effect remains obscure. Changes in neuronal tau protein are of interest, since tau becomes hyperphosphorylated in injury-resistant, hypothermic brains. Noting inter-species differences in tau isoforms, we have used functional cortical neurons differentiated from human pluripotent stem cells (hCNs to interrogate tau modulation during hypothermic preconditioning at clinically-relevant temperatures. Key tau developmental transitions (phosphorylation status and splicing shift are recapitulated during hCN differentiation and subsequently reversed by mild (32 °C to moderate (28 °C cooling — conditions which reduce oxidative and excitotoxic stress-mediated injury in hCNs. Blocking a major tau kinase decreases hCN tau phosphorylation and abrogates hypothermic neuroprotection, whilst inhibition of protein phosphatase 2A mimics cooling-induced tau hyperphosphorylation and protects normothermic hCNs from oxidative stress. These findings indicate a possible role for phospho-tau in hypothermic preconditioning, and suggest that cooling drives human tau towards an earlier ontogenic phenotype whilst increasing neuronal resilience to common neurotoxic insults. This work provides a critical step forward in understanding how we might exploit the neuroprotective benefits of cooling without cooling patients.

  13. Current perspectives in transplant medicine: hypothermic oxygenated perfusion

    Directory of Open Access Journals (Sweden)

    Michel SG

    2016-11-01

    Full Text Available Sebastian G Michel,1 Joren C Madsen2,3 1Department of Cardiac Surgery, Ludwig-Maximilians-University, Munich, Germany; 2Department of Surgery, Center for Transplantation Sciences, 3Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA Abstract: The purpose of this review was to provide an update on hypothermic oxygenated perfusion as a preservation technique for whole organ allografts. Clinical and experimental data in heart, lung, liver, kidney, and pancreas/islet transplantation are summarized with a special emphasis on marginal donors and donation after circulatory death. The rationale behind hypothermic machine perfusion as well as its advantages and disadvantages compared to conventional cold storage and the competing technique, normothermic machine perfusion, are reviewed. Keywords: organ transplantation, organ preservation, hypothermic perfusion

  14. Effects of culture conditions on acetic acid production by bacteria ...

    African Journals Online (AJOL)

    SARAH

    2015-11-30

    Nov 30, 2015 ... Keywords: Acetic acid bacteria, acetic acid production, Cocoa fermentation, culture conditions. INTRODUCTION ... assessed by acid forming colony characterized by a ... production capacity to ethanol, lactic acid, acetic acid.

  15. Technology Change And Working Conditions – A Cultural Perspective

    DEFF Research Database (Denmark)

    Sørensen, Ole Henning

    2004-01-01

    When technology change improves working conditions, the success is often attributed to skilful change agents. When it is not, the blame is on “resistance to change” and “resilient cultures”. How can these failures be understood differently? A cultural perspective on technology change might be a way...... to facilitate technology change processes that lead to improved working conditions. The research based project described here has developed a special homepage that explains how this might be achieved. The homepage is targeted at working life professionals. The homepage presents theoretical explanations...... of the concept of organizational culture, a model for analysis and several practical case stories. This paper explains how the project tries to reach a broad spectrum of professionals in order to facilitate their use of a cultural perspective. It also discusses the ethical consequences of the cultural...

  16. Technology Change And Working Conditions – A Cultural Perspective

    DEFF Research Database (Denmark)

    Sørensen, Ole Henning

    2004-01-01

    When technology change improves working conditions, the success is often attributed to skilful change agents. When it is not, the blame is on “resistance to change” and “resilient cultures”. How can these failures be understood differently? A cultural perspective on technology change might be a way...

  17. Hypothermic stunning of green sea turtles in a western Gulf of Mexico foraging habitat

    Science.gov (United States)

    Tissot, Philippe E.; Streich, Mary M.; Walker, Jennifer Shelby; Rubio, Cynthia; Amos, Anthony F.; George, Jeffrey A.; Pasawicz, Michelle R.

    2017-01-01

    Texas waters provide one of the most important developmental and foraging habitats for juvenile green turtles (Chelonia mydas) in the western Gulf of Mexico, but hypothermic stunning is a significant threat and was the largest cause of green turtle strandings in Texas from 1980 through 2015; of the 8,107 green turtles found stranded, 4,529 (55.9%) were victims of hypothermic stunning. Additionally, during this time, 203 hypothermic stunned green turtles were found incidentally captured due to power plant water intake entrapment. Overall, 63.9% of 4,529 hypothermic stunned turtles were found alive, and 92.0% of those survived rehabilitation and were released. Numbers of green turtles recorded as stranded and as affected by hypothermic stunning increased over time, and were most numerous from 2007 through 2015. Large hypothermic stunning events (with more than 450 turtles documented) occurred during the winters of 2009–2010, 2010–2011, 2013–2014, and 2014–2015. Hypothermic stunning was documented between November and March, but peaked at various times depending on passage of severe weather systems. Hypothermic stunning occurred state-wide, but was most prevalent in South Texas, particularly the Laguna Madre. In the Laguna Madre, hypothermic stunning was associated with an abrupt drop in water temperatures strong northerly winds, and a threshold mean water temperature of 8.0°C predicted large turtle hypothermic stunning events. Knowledge of environmental parameters contributing to hypothermic stunning and the temporal and spatial distribution of turtles affected in the past, can aid with formulation of proactive, targeted search and rescue efforts that can ultimately save the lives of many affected individuals, and aid with recovery efforts for this bi-national stock. Such rescue efforts are required under the U.S. Endangered Species Act and respond to humanitarian concerns of the public. PMID:28306747

  18. Hypothermic stunning of green sea turtles in a western Gulf of Mexico foraging habitat.

    Science.gov (United States)

    Shaver, Donna J; Tissot, Philippe E; Streich, Mary M; Walker, Jennifer Shelby; Rubio, Cynthia; Amos, Anthony F; George, Jeffrey A; Pasawicz, Michelle R

    2017-01-01

    Texas waters provide one of the most important developmental and foraging habitats for juvenile green turtles (Chelonia mydas) in the western Gulf of Mexico, but hypothermic stunning is a significant threat and was the largest cause of green turtle strandings in Texas from 1980 through 2015; of the 8,107 green turtles found stranded, 4,529 (55.9%) were victims of hypothermic stunning. Additionally, during this time, 203 hypothermic stunned green turtles were found incidentally captured due to power plant water intake entrapment. Overall, 63.9% of 4,529 hypothermic stunned turtles were found alive, and 92.0% of those survived rehabilitation and were released. Numbers of green turtles recorded as stranded and as affected by hypothermic stunning increased over time, and were most numerous from 2007 through 2015. Large hypothermic stunning events (with more than 450 turtles documented) occurred during the winters of 2009-2010, 2010-2011, 2013-2014, and 2014-2015. Hypothermic stunning was documented between November and March, but peaked at various times depending on passage of severe weather systems. Hypothermic stunning occurred state-wide, but was most prevalent in South Texas, particularly the Laguna Madre. In the Laguna Madre, hypothermic stunning was associated with an abrupt drop in water temperatures strong northerly winds, and a threshold mean water temperature of 8.0°C predicted large turtle hypothermic stunning events. Knowledge of environmental parameters contributing to hypothermic stunning and the temporal and spatial distribution of turtles affected in the past, can aid with formulation of proactive, targeted search and rescue efforts that can ultimately save the lives of many affected individuals, and aid with recovery efforts for this bi-national stock. Such rescue efforts are required under the U.S. Endangered Species Act and respond to humanitarian concerns of the public.

  19. Peculiarities of Corporate Culture Development under Conditions of Remote Working

    Directory of Open Access Journals (Sweden)

    Shchetinina Ludmila V

    2015-03-01

    Full Text Available The paper analyzes the significance and peculiarities of corporate culture formation for remote employees. Particular attention is paid to instruments that allow creating a team in the absence of the usual office environment. There have been defined the signs of trust manifestation that distinguish the corporate culture in a team with experience of teamwork and without such experience — a level of weakness manifestation and recognition of mistakes, presence of critics from colleagues, asking for recourse, interest in colleagues’ experience and skills. According to the signs the necessary management practices for the development and creation of the corporate culture has been offered. It is noted that the team with the experience of teamwork at the early stages acts quite consistently adhering to the declared standards, rules and basic values. However, even under these conditions, the corporate culture is growing weaker in time. And here it would be helpful to use the management practices that do not replace personal contact but are maximally close to it. All management practices are classified in accordance with the directions of the corporate culture development, namely, creation of effective social intranet, establishment of quality communication, transparent motivation and clear description of the control sequences, description and establishment of clear guidelines, development of personal effectiveness of employees, simplification of the project communication process, creation of “virtual coolers”, the philosophy of “getting into the body” of a remote employee, monitoring professional burnout, etc.

  20. Culture Conditions Affect Expression of DUX4 in FSHD Myoblasts

    Directory of Open Access Journals (Sweden)

    Sachchida Nand Pandey

    2015-05-01

    Full Text Available Facioscapulohumeral muscular dystrophy (FSHD is believed to be caused by aberrant expression of double homeobox 4 (DUX4 due to epigenetic changes of the D4Z4 region at chromosome 4q35. Detecting DUX4 is challenging due to its stochastic expression pattern and low transcription level. In this study, we examined different cDNA synthesis strategies and the sensitivity for DUX4 detection. In addition, we investigated the effects of dexamethasone and knockout serum replacement (KOSR on DUX4 expression in culture. Our data showed that DUX4 was consistently detected in cDNA samples synthesized using Superscript III. The sensitivity of DUX4 detection was higher in the samples synthesized using oligo(dT primers compared to random hexamers. Adding dexamethasone to the culture media significantly suppressed DUX4 expression in immortalized (1.3 fold, p < 0.01 and primary (4.7 fold, p < 0.01 FSHD myoblasts, respectively. Culture medium with KOSR increased DUX4 expression and the response is concentration dependent. The findings suggest that detection strategies and culture conditions should be carefully considered when studying DUX4 in cultured cells.

  1. Preliminary observations on Cichlasoma beani in culture conditions

    Directory of Open Access Journals (Sweden)

    Leonardo Martinez-Cardenas

    2014-07-01

    Full Text Available The Mexican cichlid, Cichlasoma beani has potential to be a candidate for the aquarium trade and the food industry. However, currently there are no studies regarding the effect of environmental factors on the species in culture conditions. The aim of this study was to assess the potential of C. beani to be maintained in cultured conditions. Additionally, the fish were exposed to different temperatures to examine the effect of temperature on growth, condition and survival of cultured juveniles in 26, 28 and 30°C, for six weeks in recirculation systems. Fish were fed 2.4 mm pellets (40% protein, 15% fat at a ration rate of 5% body weight per day (dry weight food: wet weight fish. An aggressive behavior in all treatments led to lowered survival, making it impossible to conclude that temperature had an effect on the recorded variables. However the results showed a tendency that indicated the final weight and specific growth rate at 30°C was greater than in 26 and 28°C, perhaps due to a better metabolism and nutrient assimilation.

  2. Carotenoid Production by Halophilic Archaea Under Different Culture Conditions.

    Science.gov (United States)

    Calegari-Santos, Rossana; Diogo, Ricardo Alexandre; Fontana, José Domingos; Bonfim, Tania Maria Bordin

    2016-05-01

    Carotenoids are pigments that may be used as colorants and antioxidants in food, pharmaceutical, and cosmetic industries. Since they also benefit human health, great efforts have been undertaken to search for natural sources of carotenoids, including microbial ones. The optimization of culture conditions to increase carotenoid yield is one of the strategies used to minimize the high cost of carotenoid production by microorganisms. Halophilic archaea are capable of producing carotenoids according to culture conditions. Their main carotenoid is bacterioruberin with 50 carbon atoms. In fact, the carotenoid has important biological functions since it acts as cell membrane reinforcement and it protects the microorganism against DNA damaging agents. Moreover, carotenoid extracts from halophilic archaea have shown high antioxidant capacity. Therefore, current review summarizes the effect of different culture conditions such as salt and carbon source concentrations in the medium, light incidence, and oxygen tension on carotenoid production by halophilic archaea and the strategies such as optimization methodology and two-stage cultivation already used to increase the carotenoid yield of these microorganisms.

  3. Microsurgical clipping of a giant vertebrobasilar junction aneurysm under hypothermic circulatory arrest.

    Science.gov (United States)

    Cıkla, Ulas; Uluç, Kutluay; Baskaya, Mustafa K

    2015-07-01

    Giant posterior circulation aneurysms pose a significant challenge to neurovascular surgeons. Among various treatment methods that have been applied individually or in combination, clipping under hypothermic circulatory arrest (HCA) is rarely used. We present a 62-year-old man who initially underwent coil occlusion of the right vertebral artery (VA) for a 2.5 cm giant vertebrobasilar junction (VBJ) aneurysm. His neurological condition had declined gradually and the aneurysm grew to 4 cm in size. The patient underwent clip reconstruction of giant VBJ aneurysm under HCA. His postoperative course was prolonged due to his preexisting neurological deficits. His preoperative Modified Rankin Score was 5, and improved postoperatively to 3 at three and six months, and to 2 at one year. The video can be found here: http://youtu.be/L53SiLV8eJY.

  4. Hypothermic death: Possibility of diagnosis by post-mortem computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kawasumi, Yusuke, E-mail: ssu@rad.med.tohoku.ac.jp [Tohoku University Graduate School of Medicine, Department of Clinical Imaging, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575 (Japan); Onozuka, Naoki; Kakizaki, Ayana [Tohoku University Graduate School of Medicine, Department of Clinical Imaging, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575 (Japan); Usui, Akihito, E-mail: t7402r0506@med.tohoku.ac.jp [Tohoku University Graduate School of Medicine, Department of Diagnostic Image Analysis, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575 (Japan); Hosokai, Yoshiyuki, E-mail: hosokai@med.tohoku.ac.jp [Tohoku University Graduate School of Medicine, Department of Diagnostic Image Analysis, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575 (Japan); Sato, Miho, E-mail: meifan58@m.tains.tohoku.ac.jp [Tohoku University Graduate School of Medicine, Department of Clinical Imaging, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575 (Japan); Saito, Haruo, E-mail: hsaito@med.tohoku.ac.jp [Tohoku University Graduate School of Medicine, Department of Diagnostic Image Analysis, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575 (Japan); Ishibashi, Tadashi, E-mail: tisibasi@med.tohoku.ac.jp [Tohoku University Graduate School of Medicine, Department of Clinical Imaging, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575 (Japan); Hayashizaki, Yoshie, E-mail: yoshie@forensic.med.tohoku.ac.jp [Tohoku University Graduate School of Medicine, Department of Forensic Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575 (Japan); Funayama, Masato, E-mail: funayama@forensic.med.tohoku.ac.jp [Tohoku University Graduate School of Medicine, Department of Forensic Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575 (Japan)

    2013-02-15

    Referring to our experience with post-mortem computed tomography (CT), many hypothermic death cases presented a lack of increase in lung-field concentration, blood clotting in the heart, thoracic aorta or pulmonary artery, and urine retention in the bladder. Thus we evaluated the diagnostic performance of post-mortem CT on hypothermic death based on the above-mentioned three findings. Twenty-four hypothermic death subjects and 53 non-hypothermic death subjects were examined. Two radiologists assessed the presence or lack of an increase in lung-field concentration, blood clotting in the heart, thoracic aorta or pulmonary artery, and measured urine volume in the bladder. Pearson's chi-square test and Mann–Whitney U-test were used to assess the relationship between the three findings and hypothermic death. The sensitivity, specificity, accuracy, positive predictive value (PPV) and negative predictive value (NPV) of the diagnosis were also calculated. Lack of an increase in lung-field concentration and blood clotting in the heart, thoracic aorta or pulmonary artery were significantly associated with hypothermic death (p = 0.0007, p < 0.0001, respectively). The hypothermic death cases had significantly more urine in the bladder than the non-hypothermic death cases (p = 0.0011). Regarding the diagnostic performance with all three findings, the sensitivity was 29.2% but the specificity was 100%. These three findings were more common in hypothermic death cases. Although the sensitivity was low, these findings will assist forensic physicians in diagnosing hypothermic death since the specificity was high.

  5. Growth Culture Conditions and Nutrient Signaling Modulating Yeast Chronological Longevity

    Directory of Open Access Journals (Sweden)

    Júlia Santos

    2012-01-01

    Full Text Available The manipulation of nutrient-signaling pathways in yeast has uncovered the impact of environmental growth conditions in longevity. Studies using calorie restriction show that reducing glucose concentration of the culture media is sufficient to increase replicative and chronological lifespan (CLS. Other components of the culture media and factors such as the products of fermentation have also been implicated in the regulation of CLS. Acidification of the culture media mainly due to acetic acid and other organic acids production negatively impacts CLS. Ethanol is another fermentative metabolite capable of inducing CLS reduction in aged cells by yet unknown mechanisms. Recently, ammonium was reported to induce cell death associated with shortening of CLS. This effect is correlated to the concentration of NH4+ added to the culture medium and is particularly evident in cells starved for auxotrophy-complementing amino acids. Studies on the nutrient-signaling pathways regulating yeast aging had a significant impact on aging-related research, providing key insights into mechanisms that modulate aging and establishing the yeast as a powerful system to extend knowledge on longevity regulation in multicellular organisms.

  6. Hypothermic response produced by manassantin A, a novel neuroleptic agent.

    Science.gov (United States)

    Rao, K V; Puri, V N

    1988-01-01

    Manassantin A (MNS-A), a novel neolignoid, neutral compound shown to possess neuroleptic properties, causes hypothermic response in male and female mice of CD-1 strain when administered by the intra-cerebroventricular (icv), (0.1, 1.0, 3.2, 10 micrograms/mouse), intraperitoneal (ip), (0.1, 0.32, 1.0, 3.2 mg/kg) and oral (0.5, 1.6, 5.0, 16 mg/kg) routes. The hypothermia was found to be dose and time dependent, the maximum decrease of temperature being observed by the icv route (P less than 0.001) after 2 hours. However, ip and oral administration of lower and middle order doses were not very effective but higher doses caused significant (P less than 0.001) reduction of body temperature. The centrally-induced hypothermic response by MNS-A may give future leads as a screening model for antidepressant drugs and can be a useful tool for manipulating physiological and pharmacological processes to understand the central thermoregulatory functions.

  7. Linking non-culturable (qPCR) and culturable enterococci densities with hydrometeorological conditions

    Science.gov (United States)

    Byappanahalli, Muruleedhara N.; Whitman, Richard L.; Shively, Dawn A.; Nevers, Meredith B.

    2010-01-01

    Quantitative polymerase chain reaction (qPCR) measurement of enterococci has been proposed as a rapid technique for assessment of beach water quality, but the response of qPCR results to environmental conditions has not been fully explored. Culture-based E. coli and enterococci have been used in empirical predictive models to characterize their responses to environmental conditions and to increase monitoring frequency and efficiency. This approach has been attempted with qPCR results only in few studies. During the summer of 2006, water samples were collected from two southern Lake Michigan beaches and the nearby river outfall (Burns Ditch) and were analyzed for enterococci by culture-based and non-culture-based (i.e., qPCR) methods, as well as culture-based E. coli. Culturable enterococci densities (log CFU/100 ml) for the beaches were significantly correlated with enterococci qPCR cell equivalents (CE) (R = 0.650, P N = 32). Enterococci CE and CFU densities were highest in Burns Ditch relative to the beach sites; however, only CFUs were significantly higher (P R = 0.565, P N = 32). Culturable E. coli and enterococci densities were significantly correlated (R = 0.682, P N = 32). Regression analyses suggested that enterococci CFU could be predicted by lake turbidity, Burns Ditch discharge, and wind direction (adjusted R2 = 0.608); enterococci CE was best predicted by Burns Ditch discharge and log-transformed lake turbidity × wave height (adjusted R2 = 0.40). In summary, our results show that analytically, the qPCR method compares well to the non-culture-based method for measuring enterococci densities in beach water and that both these approaches can be predicted by hydrometeorological conditions. Selected predictors and model results highlight the differences between the environmental responses of the two method endpoints and the potentially high variance in qPCR results

  8. The culture of Tilapia species in tropical and subtropical conditions

    Directory of Open Access Journals (Sweden)

    De Maeseneer, J.

    1984-01-01

    Full Text Available Although since long known by African fishermen it is only in the last 40 years that Tilapia has been recognized as one of the most promising groups of fish species for culture. The initial successes for culture in Central Africa were followed by several failures mainly because of excessive breeding and early sexual maturity in shallow waterbodies as ponds. From the present knowledge it appears that tilapia has a great future for increasing the productivity in unmanaged environments as man-made lakes and reservoirs primarily destined for the production of hydro-electricity. Careful stocking of paddies and irrigation canals can solve a number of biological problems associated with them and provide an additional though valuable high-protein food source. Great future offers also the culture of tilapia in traditional pond culture especially in polyculture with members of the carp family, mullets and waterfowl in areas of the tropical and subtropical belt. In coastal ponds T, mossambica is a valuable species for sanitary reasons. The culture of tilapia in small farm ponds often meets with failure owing to excessive breeding and stunting unless the all-male technique can be applied through government input and encouragement. As a rule this type of production will be the least attractive. Although Tilapia spp. do not achieve the largest individu al growth their tolerance towards adverse conditions and their acceptance of a wide variety of foodstuffs, primarily waste products from agriculture, their resistance to diseases and (at least in some species their tolerance of crowded environments make them suitable subject for cultures in raceways, circular tanks and cages. Through heavy inputs of water and pelletized feeds nearly incredible annual yields as 2 000 tonnes per ha of water surface (1 and more were realized. This means that this type of production surpasses by far any other known form of animal husbandry but it needs high technological input (thus

  9. Normothermic Versus Hypothermic Heart Surgery: Evaluation of Post-Operative Complications

    Directory of Open Access Journals (Sweden)

    H Akhlagh

    2012-04-01

    Full Text Available Introduction: The recently introduced technique of warm heart surgery may be a very effective method of myocardial protection. Although the systemic effects of hypothermic cardiopulmonary bypass are well known, the effects of warm heart surgery are not. Methods: In a prospective trial, 60 patients undergoing an elective coronary artery bypass grafting were randomly allocated to normothermic(30 patients and hypothermic(30 patients group and assessments regarding renal, respiratory and neurologic complications and bleeding volume was done. Resulst: Eighty percent of hypothermic group and 86% of normothermic group were males (p=0/36. Mean age was 56.4 and 56.1 years in hypothermic and normothermic groups, respectively. Groups had similar central temperature, shivering, nipride usage, intake and output, bleeding volume, neurologic complications and ICU staying(p>0/05 but inotrop usage and incidence of phrenic nerve palsy were higher in hypothermic group(p<0/05. Conclusion: Hypothermic procedure leads to a lower rate of respiratory complications, therefore we recommend replacing hypothermic procedure by normothermic one.

  10. Deep hypothermic circulatory arrest: real-life suspended animation.

    Science.gov (United States)

    Chau, Katherine H; Ziganshin, Bulat A; Elefteriades, John A

    2013-01-01

    Deep hypothermic circulatory arrest (DHCA) is a cerebral protection technique that was developed in the 1950s and popularized in the 1970s. It has become one of the three most common cerebral protection techniques currently used in aortic arch surgeries, with the other two being antegrade cerebral perfusion (ACP) and retrograde cerebral perfusion (RCP). At our institution, DHCA has been the cerebral protection technique of choice for over a quarter century. Our clinical experience with DHCA has been very positive, and our clinical studies have shown DHCA to have outcomes equal to (and sometimes better than) those of ACP and RCP, and DHCA to be very effective at preserving neurocognitive function. Other institutions, however, prefer ACP or RCP to DHCA. Each technique has its own set of pros and cons, and the question regarding which technique is the superior method for cerebral protection is hotly debated.

  11. S100B modulates IL-6 release and cytotoxicity from hypothermic brain cells and inhibits hypothermia-induced axonal outgrowth.

    Science.gov (United States)

    Schmitt, Katharina R L; Kern, Claudia; Lange, Peter E; Berger, Felix; Abdul-Khaliq, Hashim; Hendrix, Sven

    2007-09-01

    Brain protection is essential during neonatal and pediatric cardiac surgery. Deep hypothermia is still the most important method for achieving neuroprotection during cardiopulmonary bypass. Previously, we could demonstrate that deep hypothermia induces substantial cytotoxicity in brain cells as well as increased release of the pro-inflammatory cytokine interleukin-6 (IL-6), which plays an important role in neuroprotection and neuroregeneration. Deep hypothermia is also associated with increased levels of the astrocytic protein S100B in the serum and cerebrospinal fluid of patients. Since S100B may modulate pro-inflammatory cytokines and may stimulate neurite outgrowth, we have tested the hypothesis that nanomolar concentrations of S100B may increase IL-6 release from brain cells and support axonal outgrowth from organotypic brain slices under hypothermic conditions. S100B administration substantially reduced neuronal and glial cytotoxicity under hypothermic conditions. In the presence of S100B hypothermia-induced IL-6 release in primary astrocytes was significantly increased but reduced in BV-2 microglial cells and primary neurons. Surprisingly, deep hypothermia increased axonal outgrowth from brain slices and--in contrast to our hypothesis--this hypothermia-induced neurite outgrowth was inhibited by S100B. These data suggest that S100B differentially influences cytokine release and cytotoxicity from distinct brain cells and may inhibit neuroregeneration by suppressing hypothermia-induced axonal outgrowth.

  12. Hypothermic perfusion with retrograde outflow during right hepatectomy is safe and feasible.

    Science.gov (United States)

    Reiniers, Megan J; Olthof, Pim B; van Golen, Rowan F; Heger, Michal; van Beek, Adriaan A; Meijer, Ben; Leen, René; van Kuilenburg, André B P; Mearadji, Banafsche; Bennink, Roelof J; Verheij, Joanne; van Gulik, Thomas M

    2017-07-01

    In situ hypothermic perfusion during liver resection performed under vascular inflow occlusion decreases hepatic ischemia-reperfusion injury, but technical limitations have restricted its widespread use. In situ hypothermic perfusion with retrograde outflow circumvents these impediments and thus could extend the applicability of in situ hypothermic perfusion. The safety and feasibility of in situ hypothermic perfusion with retrograde outflow were analyzed in selected patients undergoing right (extended) hepatectomy and compared to intermittent vascular inflow occlusion, the gold standard method, in this randomized pilot study. Patients were first screened for parenchymal liver disease (exclusion criteria: steatosis ≥30%, cirrhosis, or cholestasis). Study participants were randomized intraoperatively to undergo in situ hypothermic perfusion with retrograde outflow (n = 9) or intermittent vascular inflow occlusion (n = 9). The target liver core temperature during in situ hypothermic perfusion with retrograde outflow was 28°C. The primary end point was ischemia-reperfusion injury (expressed by peak postoperative transaminase levels). Secondary outcomes included functional liver regeneration (assessed by hepatobiliary scintigraphy) and clinical outcomes. Peak transaminase levels, total bilirubin, and the international normalized ratio were similar between both groups, although a trend toward more rapid normalization of bilirubin levels was noted for the in situ hypothermic perfusion with retrograde outflow group. Functional liver regeneration as evaluated by hepatobiliary scintigraphy was improved on postoperative day 3 fafter in situ hypothermic perfusion with retrograde outflow but not after intermittent vascular inflow occlusion. Furthermore, in situ hypothermic perfusion with retrograde outflow (requiring continuous ischemia) was comparable to intermittent vascular inflow occlusion for all clinical outcomes, including postoperative complications and hospital

  13. Modulation of nuclear factor-kappaB activation and decreased markers of neurological injury associated with hypothermic therapy in experimental bacterial meningitis.

    Science.gov (United States)

    Irazuzta, Jose E; Pretzlaff, Robert K; Zingarelli, Basilia; Xue, Vivian; Zemlan, Frank

    2002-11-01

    This study was designed to evaluate the use of moderate hypothermia in a model of meningitis-induced brain injury and its effect on the activation of nuclear factor-kappaB, biological markers of neuronal injury, and neurobehavioral performance. Randomized, prospective animal study. University research laboratory. Male Wistar rats. Animals underwent a basilar cistern tap receiving either sterile saline as a placebo or an equivalent volume of a group B streptococcal suspension. Sixteen hours after inoculation, animals were stratified by their clinical severity score, were randomized to either hypothermic (32-34 degrees C) or normothermic (37-39 degrees C) conditions, and received antibiotics. Hypothermic animals were kept under these temperature conditions for 6 hrs before rewarming. Two protocols were used. For the first protocol, changes in nuclear factor-kappaB activation and heat shock protein induction at 24 hrs and 48 hrs after inoculation were evaluated. In the second protocol, serum C-tau concentrations at 5 days and neurobehavioral performances at 3 wks were assessed. Meningitis triggered a >50% increase in cerebral nuclear factor-kappaB activation. The addition of a 6-hr period of hypothermia reduced nuclear factor-kappaB activation by 32% when measured at the end of the hypothermic period. At 48 hrs, this decrease in nuclear factor-kappaB activation was no longer apparent, but there was a significant decrease in the heat shock response. Serum C-tau concentrations at 5 days postinjury, a biomarker of brain injury, were reduced by 69% in hypothermic treated animals. Furthermore, hypothermia reduced the brain water content of infected animals. However, hypothermia did not improve the animals' neurobehavioral performance. The findings from this study suggest that hypothermia produces a transitory attenuation of nuclear factor-kappaB activation in meningitic brain injury and improvement in some biomarkers of neuronal injury. The consequence of intermittent

  14. Normothermal or Hypothermal Extracorporeal Circulation Regimens in Patients with Acquired Heart Disease

    Directory of Open Access Journals (Sweden)

    V. V. Lomivorotov

    2013-01-01

    Full Text Available Background. Hypothermal extracorporeal circulation has been used in cardiosurgery over 50 years. However, recent trials have not shown its predominant effect on the protection of the brain, lung, and myocardium in patients during surgery. We have presumed that when normothermal extracorporeal circulation used in patients with acquired heart disease, its pathophysiological effect on the body is comparable with that of hypothermal extracorporeal circulation. Subjects and methods. One hundred and forty patients who were to undergo acquired heart disease correction were randomized into two equal groups: that using hypothermal or normothermal extracorporeal circulation. Perioperative troponin I and NT-proBNP concentrations, postoperative clinical course, and hospital morbidity and mortality rates were estimated. Results. There were no significant differences in the concentrations of troponin I and NT-proBNP at the study stages. In the normothermal extracorporeal circulation group patients with isolated aortic stenosis, the concentration of troponin I was higher than that in the hypothermal extracorporeal circulation group. Analyzing the postoperative course indicated that the duration of mechanical ventilation was significantly lower in the hypothermal extracorporeal circulation group than in the normothermal extracorporeal circulation group. There were no differences in hospital complications and mortality rates. Conclusion. Hypothermal versus normothermal extracorporeal circulation in the correction of acquired heart diseases has no predominant effect on tro-ponin I and NT-proBNP concentrations, postoperative clinical course, and hospital complications and mortality rates. Key words: extracorporeal circulation, hypothermia, acquired heart disease, troponin I, NT-proBNP.

  15. Cross-culture Communications in Tourism under Conditions of Globalisation

    OpenAIRE

    Aldoshyna Mariia V.; Brusilseva Anna N.

    2014-01-01

    The article is devoted to the study of cross-cultural specific features of interaction within social and business communication in the international tourism. The goal of the article is analysis of the cross-cultural environment of Ukraine in the context of the world globalisation for efficient interaction in the sphere of international management and marketing. The article shows a necessity of a study of influence of national cultural features upon business activity of tourist enterprises wit...

  16. Hypothermic circulatory arrest in octogenarians: risk of stroke and mortality.

    Science.gov (United States)

    Liddicoat, J R; Redmond, J M; Vassileva, C M; Baumgartner, W A; Cameron, D E

    2000-04-01

    The proportion of patients in their ninth decade of life undergoing complex cardiovascular procedures has increased over the past decade. The purpose of this study is to quantify the potential for stroke and mortality associated with deep hypothermic circulatory arrest (DHCA) in this age group. At our institution, 251 adult patients had cardiovascular procedures that required DHCA since 1989. This included 20 patients 80 years of age or older (group I) and 231 patients less than 80 years (group II). Additionally, we analyzed 632 patients 80 years of age or older who underwent a variety of cardiovascular procedures since 1989 that required cardiopulmonary bypass but not DHCA (group III). Neurologic outcomes have been maintained in our database prospectively since 1991. The 30-day mortality in group I was 5%, in group II 15.2%, and in group III 8.2%. The stroke rate was 20% in group I, 8.8% in group II, and 6.5% in group III. DHCA can be performed with acceptable early mortality in patients in their ninth decade of life, but they are at an increased risk of stroke. Follow-up shows satisfactory late survival.

  17. Combined blockade of ADP receptors and PI3-kinase p110β fully prevents platelet and leukocyte activation during hypothermic extracorporeal circulation.

    Directory of Open Access Journals (Sweden)

    Stefanie Krajewski

    Full Text Available Extracorporeal circulation (ECC and hypothermia are used to maintain stable circulatory parameters and improve the ischemia tolerance of patients in cardiac surgery. However, ECC and hypothermia induce activation mechanisms in platelets and leukocytes, which are mediated by the platelet agonist ADP and the phosphoinositide-3-kinase (PI3K p110β. Under clinical conditions these processes are associated with life-threatening complications including thromboembolism and inflammation. This study analyzes effects of ADP receptor P(2Y(12 and P(2Y(1 blockade and PI3K p110β inhibition on platelets and granulocytes during hypothermic ECC. Human blood was treated with the P(2Y(12 antagonist 2-MeSAMP, the P(2Y(1 antagonist MRS2179, the PI3K p110β inhibitor TGX-221, combinations thereof, or PBS and propylene glycol (controls. Under static in vitro conditions a concentration-dependent effect regarding the inhibition of ADP-induced platelet activation was found using 2-MeSAMP or TGX-221. Further inhibition of ADP-mediated effects was achieved with MRS2179. Next, blood was circulated in an ex vivo ECC model at 28°C for 30 minutes and various platelet and granulocyte markers were investigated using flow cytometry, ELISA and platelet count analysis. GPIIb/IIIa activation induced by hypothermic ECC was inhibited using TGX-221 alone or in combination with P(2Y blockers (p<0.05, while no effect of hypothermic ECC or antiplatelet agents on GPIIb/IIIa and GPIbα expression and von Willebrand factor binding was observed. Sole P(2Y and PI3K blockade or a combination thereof inhibited P-selectin expression on platelets and platelet-derived microparticles during hypothermic ECC (p<0.05. P(2Y blockade alone or combined with TGX-221 prevented ECC-induced platelet-granulocyte aggregate formation (p<0.05. Platelet adhesion to the ECC surface, platelet loss and Mac-1 expression on granulocytes were inhibited by combined P(2Y and PI3K blockade (p<0.05. Combined blockade of P

  18. Cross-culture Communications in Tourism under Conditions of Globalisation

    Directory of Open Access Journals (Sweden)

    Aldoshyna Mariia V.

    2014-03-01

    Full Text Available The article is devoted to the study of cross-cultural specific features of interaction within social and business communication in the international tourism. The goal of the article is analysis of the cross-cultural environment of Ukraine in the context of the world globalisation for efficient interaction in the sphere of international management and marketing. The article shows a necessity of a study of influence of national cultural features upon business activity of tourist enterprises with consideration of their international and cross-cultural nature of activity. The article identifies functions of culture and presents basic classifications of the world cultures by Geert Hofstede, Fons Trompenaars and Edward Twitchell Hall Jr. It considers specific features of activity of tourist enterprises in the spheres of cross-cultural management and marketing, formulates problems of manifestation of cultural differences in these spheres. It offers main advertising strategies in the international communication policy, which help enterprises to promote their tourist products to international markets more efficiently.

  19. ERK5 knock down aggravates detrimental effects of hypothermal stimulation on cardiomyocytes via Bim upregulation.

    Science.gov (United States)

    Wang, Yao-Sheng; Zhou, Jing; Liang, Chun; Hong, Kui; Cheng, Xiao-Shu; Wu, Zong-Gui

    2013-09-01

    Mechanism of cold induced myocardial injury remained unclear. Our study investigated the role of ERK5/Bim pathway in hypothermal stimulation-induced apoptosis or damage of cardiomyocytes (CMs). Results showed that in CMs which under hypothermal stimulation, ERK5 siRNA promoted expression of Bim protein. Bim siRNA did not influence ERK5 expression but attenuated production of p-ERK5. ERK5 siRNA induced higher apoptosis rate; intracellular Ca(2+) overload; ROS activity; ΔΨm damage in hypothermia stimulated CMs, when compared with hypothermal stimulation solely treated group, while Bim siRNA effected oppositely and canceled pro-apoptotic effect of ERK5 siRNA. In conclusion, ERK5 knock down releases inhibition to Bim expression, induces aggravated apoptosis in CMs under hypothermal stimulation, which related to higher intracellular Ca(2+) overload, ROS activity, and more severe ΔΨm damage. Results revealed regulative role of ERK5/Bim pathway in hypothermal stimulation-induced injure or apoptosis of cardiomyocytes.

  20. Protective effect of exogenous adenosine triphosphate on hypothermically preserved rat liver

    Institute of Scientific and Technical Information of China (English)

    Xiao-Dong Tan; Hiroshi Egami; Feng-Shan Wang; Michio Ogawa

    2004-01-01

    AIM: To clarify the protective effect of exogenous adenosine triphosphate (ATP) on hypothermically preserved rat livers.METHODS: Establishment of continuous hypothermicmachine perfusion model, detection of nucleotides inhepatocytes with HPLC, measurement of activities of LDHand AST in the perfusate, observation of histopathologicalchanges in different experiment groups, and autoradiographywere carried out to reveal the underlying mechanism of theprotective effect of ATP.RESULTS: The intracellular levels of ATP and EC decreasedrapidly after hypothermic preservation in control group, whilea higher ATP and EC level, and a slower decreasing ratewere observed when ATP-MgCl2 was added to the perfusate(P<0.01). As compared with the control group, the activitiesof LDH and AST in the ATP-MgCl2 group were lower (P<0.05).Furthermore, more severe hepatocyte damage and neutrophil infiltration were observed in the control group. Radioactive [α-32P] ATP entered the hypothermically preserved rat hepatocytes.CONCLUSION: Exogenous ATP has a protective effect on rat livers during hypothermical preservation. However, Mg2+ is indispensable, addition of ATP alone produces no protective effect. The underlying mechanism may be that exogenous ATP enters the hypothermically preserved rat liver cells.

  1. Is extracorporeal rewarming indicated in avalanche victims with unwitnessed hypothermic cardiorespiratory arrest?

    Science.gov (United States)

    Mair, Peter; Brugger, Hermann; Mair, Birgit; Moroder, Luca; Ruttmann, Elfriede

    2014-12-01

    International guidelines recommend using extracorporeal rewarming in all hypothermic avalanche victims with prolonged cardiac arrest if they have patent airways and a plasma potassium level≤12 mmol/L. The aim of this study was to evaluate outcome data to determine if available experience with extracorporeal rewarming of avalanche victims supports this recommendation. At Innsbruck Medical University Hospital, 28 patients with hypothermic cardiac arrest following an avalanche accident were resuscitated using extracorporeal circulation. Of these patients, 25 were extricated from the snow masses with no vital signs and did not survive to hospital discharge. Three patients had witnessed cardiac arrest after extrication and a core temperature of 21.7°C, 22°C, and 24.0°C, two of whom survived long-term with full neurological recovery. A search of the literature revealed only one asystolic avalanche victim with unwitnessed hypothermic cardiac arrest (core temperature 19°C) surviving long-term. All other avalanche victims in the medical literature surviving prolonged hypothermic cardiac arrest suffered witnessed arrest after extrication with a core temperature below 24°C. Our results suggest that prognosis of hypothermic avalanche victims with unwitnessed asystolic cardiac arrest and a core temperature>24°C is extremely poor. Available outcome data do not support the use of extracorporeal rewarming in these patients.

  2. Optimizing of Culture Condition in Horizontal Rotating Bioreactor

    Institute of Scientific and Technical Information of China (English)

    Yan-Fang ZHANG; Huai-Qing CHEN; Hua HUANG

    2005-01-01

    @@ 1 Introduction Bioreactor is the most important equipment in tissue engineering. It can mimic the micro-environment of cell growth in vitro. At present, horizontal rotating bioreactor is the most advanced equipment for cell culture in the world.

  3. Dopamine improves hypothermic machine preservation of the liver.

    Science.gov (United States)

    Minor, Thomas; Lüer, Bastian; Efferz, Patrik

    2011-10-01

    Hypothermic machine preservation (HMP) is currently reconsidered as alternative to standard cold storage of organs from non-heart-beating donors. The present study was aimed at investigating the possible synergistic effect of HMP and the addition of dopamine to the circulating perfusate during preservation. Cardiac arrest was induced in male Wistar rats (250-300 g) by phrenotomy. Thirty minutes later livers were flushed via the portal vein and subjected to 20 h of HMP at 5ml/min at 4°C. During HMP the preservation solution was equilibrated with 100% oxygen and dopamine was added at 0, 10, 50 or 100 μM (D0, D10, D50, D100; n=6 resp.). Graft viability was assessed thereafter upon warm reperfusion in vitro for 2h. During HMP, D50 and D100 significantly reduced hepatic release of ALT to about 50%. No influence of dopamine was found on vascular resistance, oxygen uptake or lactate production at any concentration. D50 significantly reduced enzyme release during reperfusion (∼50%), enhanced bile flow and oxygen consumption. D10 was less effective while D100 even rose enzyme release compared with D0. Enhanced oxygen free radical mediated lipid peroxidation (LPO), found in the tissue of D0 livers was significantly reduced by D50; D50 significantly abrogated molecular upregulation of vWillebrand factor upon reperfusion suggesting vascular protection of the endothelial cell. Efficiency of HMP might be increased by stimulating livers with dopamine during ex vivo preservation, limiting vascular side effects and improving functional recovery upon early reperfusion. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. The Hypothermic Influence on CHOP and Ero1-α in an Endoplasmic Reticulum Stress Model of Cerebral Ischemia

    DEFF Research Database (Denmark)

    Poone, Gagandip K.; Hasseldam, Henrik; Munkholm, Nina

    2015-01-01

    of ischemic stroke, we investigated whether hypothermia regulates the unfolded protein response of CHOP and Endoplas micreticulum oxidoreductin-α (Ero1-α), because Ero1-α is suggested to be a downstream CHOP target. The gene expression of CHOP and Ero1-α was measured using Quantitative-PCR (Q-PCR) in rat...... hippocampi following global cerebral ischemia, and inhypoxic pheochromocytoma cells during normothermic (37 °C) and hypothermic (31 °C)conditions. As a result of ischemia, a significant increase in expression of CHOP andEro1-α was observed after three, six and twelve hours of reperfusion following...... globalischemia. A stable increase in CHOP expression was observed throughout the time course (p Ero1-α expression peaked at three to six hours (p

  5. Danish Political Culture: Fair Conditions for Inclusion of Immigrants?

    DEFF Research Database (Denmark)

    Olsen, Tore Vincents

    2011-01-01

    In the age of migration, the inclusion of immigrants in national politics is crucial for democratic reasons, and because it increases the coordination and cooperation ability of society. The informal norms, values and beliefs of the political culture are one aspect of the institutional and discur...

  6. Changes In Growth Culture FDA Activity Under Changing Growth Conditions

    DEFF Research Database (Denmark)

    Jørgensen, Per Elberg; Eriksen, Thomas Juul; Jensen, Bjørn K.

    1992-01-01

    of the bacteria. The FDA activity/ATP ratio was calculated for different concentrations of autoclaved sludge. A faster decay rate of ATP relative to FDA hydrolysis activity was observed, thus causing changes in the ratio. Furthermore, comparison between values obtained from pure cultures and different soils...

  7. Efficiency of neural network-based combinatorial model predicting optimal culture conditions for maximum biomass yields in hairy root cultures.

    Science.gov (United States)

    Mehrotra, Shakti; Prakash, O; Khan, Feroz; Kukreja, A K

    2013-02-01

    KEY MESSAGE : ANN-based combinatorial model is proposed and its efficiency is assessed for the prediction of optimal culture conditions to achieve maximum productivity in a bioprocess in terms of high biomass. A neural network approach is utilized in combination with Hidden Markov concept to assess the optimal values of different environmental factors that result in maximum biomass productivity of cultured tissues after definite culture duration. Five hidden Markov models (HMMs) were derived for five test culture conditions, i.e. pH of liquid growth medium, volume of medium per culture vessel, sucrose concentration (%w/v) in growth medium, nitrate concentration (g/l) in the medium and finally the density of initial inoculum (g fresh weight) per culture vessel and their corresponding fresh weight biomass. The artificial neural network (ANN) model was represented as the function of these five Markov models, and the overall simulation of fresh weight biomass was done with this combinatorial ANN-HMM. The empirical results of Rauwolfia serpentina hairy roots were taken as model and compared with simulated results obtained from pure ANN and ANN-HMMs. The stochastic testing and Cronbach's α-value of pure and combinatorial model revealed more internal consistency and skewed character (0.4635) in histogram of ANN-HMM compared to pure ANN (0.3804). The simulated results for optimal conditions of maximum fresh weight production obtained from ANN-HMM and ANN model closely resemble the experimentally optimized culture conditions based on which highest fresh weight was obtained. However, only 2.99 % deviation from the experimental values could be observed in the values obtained from combinatorial model when compared to the pure ANN model (5.44 %). This comparison showed 45 % better potential of combinatorial model for the prediction of optimal culture conditions for the best growth of hairy root cultures.

  8. Protocorm development of Epidendrum fulgens (Orchidaceae in response to different saline formulations and culture conditions

    Directory of Open Access Journals (Sweden)

    Joana Gerent Voges

    2014-08-01

    Full Text Available The asymbiotic technique of orchid seeds germination is an important method of mass production of seedlings. Studies on the best culture conditions for each species are important to obtain seedlings in less time and at lower costs. Current analysis evaluates different consistencies of culture medium, saline formulations and culture conditions on the germination rate and further development of protocorms of Epidendrum fulgens. After 45 days in culture the protocorms were classified into three categories of development. The liquid saline formulation of Murashige and Skoog (1962 (MS provided the highest germination rate (83.5%, and the Knudson formulation (1946 the lowest (10.9%. The different consistencies or conditions or culture conditions did not affect the germination rate percentage, except the Knudson medium, which resulted in the highest rate in response to the gelled consistency. Protocorms cultured in liquid MS medium with or without agitation showed the fastest development.

  9. Systematic hydrogeological study of a hypothermal spring (S. Cesarea Terme, Apulia), Italy

    Science.gov (United States)

    Calò, Giuseppe Cesario; Tinelli, Roccaldo

    1995-02-01

    A long series of thermo-saline logging has been carried out in wells drilled through the Mesozoic carbonate aquifer from which the sulfur hypothermal springs of S. Cesarea Terme issue. The logging conducted at various timings (i.e. periodically, rapidly sequenced, synchronized with tides and sea conditions), over about 10 years, provides valuable data on the thermal and hydrological regimen of the area. In particular for the inshore zone, both isotherm and thermal gradient trends could be determined, and a close identification of preferential levels through which groundwater discharge takes place was possible. In fact, flow velocity measurements, made by the point diluition method, showed a mostly impervious aquifer except for evident fissured levels through which low-velocity discharge (5-22 cm day -1) takes place. When the sea is low and calm, all levels are influenced by sulfur waters except for the uppermost unconfined zone. When the sea is rough, also owing to the low permeability of the aquifer, a barrier effect against groundwater flow is triggered. Since groundwater is prevented from discharging, it tends to reach deeper permeable levels, thus markedly altering the hydrological and thermal regimen of the deeper sulfur waters. The lithological character of aquifers and their low permeability are confirmed by 222Rn contents (normally 10-15 pCi l -1), groundwater reaching 200 pCi l -1), only at levels where water starts becoming hot. This phenomenon, as supported by all investigations including those on sulfides, occurs only at temperatures exceeding 23°C. Therefore, according to the above investigation, the S. Cesarea springs represent a unique hydraulic model, matching real hydrodynamic situations occurring when surrounding conditions change.

  10. Modifying culture conditions in chemical library screening identifies alternative inhibitors of mycobacteria.

    Science.gov (United States)

    Miller, Christopher H; Nisa, Shahista; Dempsey, Sandi; Jack, Cameron; O'Toole, Ronan

    2009-12-01

    In this study, application of a dual absorbance/fluorescence assay to a chemical library screen identified several previously unknown inhibitors of mycobacteria. In addition, growth conditions had a significant effect on the activity profile of the library. Some inhibitors such as Se-methylselenocysteine were detected only when screening was performed under nutrient-limited culture conditions as opposed to nutrient-rich culture conditions. We propose that multiple culture condition library screening is required for complete inhibitory profiling and for maximal antimycobacterial compound detection.

  11. Metabolite profiling of microfluidic cell culture conditions for droplet based screening

    DEFF Research Database (Denmark)

    2015-01-01

    We investigate the impact of droplet culture conditions on cell metabolic state by determining key metabolite concentrations in S. cerevisiae cultures in different microfluidic droplet culture formats. Control of culture conditions is critical for single cell/clone screening in droplets....... Metabolite profiling provides a more nuanced estimate of cell state compared to proliferation studies alone. We show that the choice of droplet incubation format impacts cell proliferation and metabolite production. The standard syringe incubation of droplets exhibited metabolite profiles similar to oxygen...... limited cultures, whereas the metabolite profiles of cells cultured in the alternative wide tube droplet incubation format resemble those from aerobic culture. Furthermore, we demonstrate retained droplet stability and size in the new better oxygenated droplet incubation format....

  12. The Groningen hypothermic liver perfusion pump : Functional evaluation of a new machine perfusion system

    NARCIS (Netherlands)

    van der Plaats, A.; Maathuis, M. H. J.; Hart, N. A. 't; Bellekom, A. A.; Hofker, H. S.; van der Houwen, E. B.; Verkerke, G. J.; Leuvenink, H. G. D.; Verdonck, P.; Ploeg, R. J.; Rakhorst, G.

    2006-01-01

    To improve preservation of donor livers, we have developed a portable hypothermic machine perfusion (HMP) system as an alternative for static cold storage. A prototype of the system was built and evaluated on functionality. Evaluation criteria included 24 h of adequate pressure controlled perfusion,

  13. Effects of hypothermic cardiopulmonary bypass on the pharmacodynamics and pharmacokinetics of rocuronium

    NARCIS (Netherlands)

    Smeulers, NJ; Wierda, MKH; vandenBroek, L; Huet, RCGG; Hennis, PJ

    1995-01-01

    Objective: To study the influence of hypothermic cardiopulmonary bypass (CPB) on the pharmacodynamics and pharmacokinetics of rocuronium. Design: Prospective, descriptive study. Setting: Operating room at a university hospital. Participants: Ten ASA class III end IV patients, ranging in age from 35

  14. Cost-Effectiveness of Hypothermic Machine Preservation Versus Static Cold Storage in Renal Transplantation

    NARCIS (Netherlands)

    Groen, H.; Moers, C.; Smits, J. M.; Treckmann, J.; Monbaliu, D.; Rahmel, A.; Paul, A.; Pirenne, J.; Ploeg, R. J.; Buskens, E.

    2012-01-01

    Static cold storage (CS) is the most widely used organ preservation method for deceased donor kidney grafts but there is increasing evidence that hypothermic machine perfusion (MP) may result in better outcome after transplantation. We performed an economic evaluation of MP versus CS alongside a mul

  15. [Resuscitation of severely hypothermic and multitraumatised female following long-term cardiac arrest

    DEFF Research Database (Denmark)

    Runitz, K.; Thornberg, K.; Wanscher, M.

    2009-01-01

    We describe the case of a patient who was severely hypothermic after 45 minutes of submersion. The patient received about 90 minutes of basic and advanced life support before being connected to extra corporal heart lung assistance (ECHLA). The core temperature was 28.9 degrees C, plasma potassium...

  16. Performance of mesophilic biohydrogen-producing cultures at thermophilic conditions.

    Science.gov (United States)

    Gupta, Medhavi; Gomez-Flores, Maritza; Nasr, Noha; Elbeshbishy, Elsayed; Hafez, Hisham; Hesham El Naggar, M; Nakhla, George

    2015-09-01

    In this study, batch tests were conducted to investigate the performance of mesophilic anaerobic digester sludge (ADS) at thermophilic conditions and estimate kinetic parameters for co-substrate fermentation. Starch and cellulose were used as mono-substrate and in combination as co-substrates (1:1 mass ratio) to conduct a comparative assessment between mesophilic (37 °C) and thermophilic (60 °C) biohydrogen production. Unacclimatized mesophilic ADS responded well to the temperature change. The highest hydrogen yield of 1.13 mol H2/mol hexose was observed in starch-only batches at thermophilic conditions. The thermophilic cellulose-only yield (0.42 mol H2/mol hexose) was three times the mesophilic yield (0.13 mol H2/mol hexose). Interestingly, co-fermentation of starch-cellulose at mesophilic conditions enhanced the hydrogen yield by 26% with respect to estimated mono-substrate yields, while under thermophilic conditions no enhancement in the overall yield was observed. Interestingly, the estimated overall Monod kinetic parameters showed higher rates at mesophilic than thermophilic conditions.

  17. [Preliminary Study of Lonicera hypoglauca on Germination Conditions of Sand Culture Seeds and Sterilization Method of Sand Culture Seedling Sterilization].

    Science.gov (United States)

    Tan, Mu-xiu; Zeng, Wen-wen; Wei, Peng-xiao; Mo, Qiao-cheng; Pu, Zu-ning; Cen, Xiu-fen; Shi, Feng-hua

    2015-05-01

    To explore the germination conditions of Lonicera hypoglauca sand culture seeds and the effects of sand culture seedlings sterilization. 0.1% HgCl2 with different sterilization time, different illumination time and temperature culture condition were adopted to study the germination conditions of sand culture seeds. Different sterilization treatments and different hardening-seedling days were used to test the sterilization effect of sand culture seedlings. The sterilization effect of the combination of 75% ethanol 30 s + 0.1% HgCl2 5 min on Lonicera hypoglauca seeds was the optimum,with the average pollution rate of 15.56%, and the average germination rate reached 51.11%. The combination of varied temperature-room temperature under light for 12 h/d was the best, with the average germination rate peaked at 75.49%, and the average germination potential reached 68.36%. The treatment of detergent liquor scrub-tap water wash on the part above the hypocotyl, which was sand cultured under the opening condition and had no root, showed the best sterilization effect, with the average pollution rate was zero, and the average survival rate peaked at 100.00%. The sterilization effect of sand culture seedlings, which was disinfected after cleaning by detergent liquor scrub-tap water wash after hardening-seeding for 30 days, was the best, with the average pollution rate of 50.00%, and the average survival rate of 100.00%. The best sterilization effect is the combination of 75% ethanol 30 s + 0.1% HgCl2 5 min; Lighting for 12 h/d of varied temperature-room temperature is regarded as the optimum culture condition. The treatment of detergent liquor scrub-tap water wash treatment on the part above the hypocotyl,which is sand cultured under the opening condition and had no root, shows the best sterilization effect. For the sand culture seedlings, before inoculated in subculture medium, should be hardening-seedling for some days and sterilized after detergent liquor scrub-tap water wash.

  18. Evaluation of cell culture flasks designed for experiment under altered gravity-vector conditions.

    Science.gov (United States)

    Gyotoku, Jun-Ichiro; Nagase, Mutsumu; Ando, Noboru; Tanigaki, Fumiaki; Takaoki, Muneo

    2003-10-01

    Cell culture flasks applicable for altered gravity conditions, such as centrifugation, clino-rotation or microgravity in space, were manufactured for trial. The flask has flat polystyrene surface for monolayer culture and gas-permeable film window on the opposite face. The space in-between consists the culture chamber to be filled with liquid medium. To reduce the water loss and bubble formation in the culture fluid, another gas permeable window was placed on top to form a space where distilled water may be filled. The double-decker culture flask can be used for both space and ground-based experiments in common.

  19. Forensic Strategies Against the Traumatic Condition of Culture

    DEFF Research Database (Denmark)

    Schøllhammer, Karl Erik

    2015-01-01

    images of victims of social violence have made subversive revelation of the political repressive violence of torture and assassination systematically concealed by the authorities. In works of the visual artist Rosângela Rennó, the exposed body carries a tension between a generalized traumatic ‘wound...... culture’ and what will be defined as a forensic paradigm of images of memory and death. The ambiguity between images that touch the spectator and images that hurt him is explored in works that establish a critical distance from the traumatic condition, avoiding shortcuts to its aesthetic effects of shock...

  20. Transformation of Corporate Culture in Conditions of Transition to Knowledge Economics

    Science.gov (United States)

    Korsakova, Tatiana V.; Chelnokova, Elena A.; Kaznacheeva, Svetlana N.; Bicheva, Irena B.; Lazutina, Antonina L.; Perova, Tatyana V.

    2016-01-01

    This article is devoted to the problem of corporate culture transformations which are conditioned by changes in social-economic situation. The modern paradigm of knowledge management is assumed to become the main value for forming a new vision of corporate culture. The starting point for transformations can be found in the actual corporate culture…

  1. The Stimulatory Effect of Notochordal Cell-Conditioned Medium in a Nucleus Pulposus Explant Culture

    NARCIS (Netherlands)

    de Vries, Stefan A H; van Doeselaar, Marina; Meij, Björn P; Tryfonidou, Marianna A; Ito, K

    2016-01-01

    Objectives: Notochordal cell-conditioned medium (NCCM) has previously shown to have a stimulatory effect on nucleus pulposus cells (NPCs) and bone marrow stromal cells (BMSCs) in alginate and pellet cultures. These culture methods provide a different environment than the nucleus pulposus (NP) tissue

  2. The Stimulatory Effect of Notochordal-Cell Conditioned Medium in a Nucleus Pulposus Explant Culture

    NARCIS (Netherlands)

    de Vries, Stefan; Doeselaar, Marina van; Meij, Björn; Tryfonidou, M; Ito, Keita

    2015-01-01

    OBJECTIVES: Notochordal cell-conditioned medium (NCCM) has previously shown to have a stimulatory effect on nucleus pulposus cells (NPCs) and bone marrow stromal cells (BMSCs) in alginate and pellet cultures. These culture methods provide a different environment than the nucleus pulposus (NP) tissue

  3. Solid State Culture Conditions for Composting Sewage Sludge

    Directory of Open Access Journals (Sweden)

    N.A. Kabbashi

    2012-10-01

    Full Text Available Composting is applied to treat sewage sludge from treatment plants to enhance its quality and suitability for agricultural use. In this work the optimal conditions for composting sewage sludge from domestic wastewater treatment plants in a horizontal drum bioreactor (HDB were investigated. This study investigated the physico-chemical conditions affecting the use of filamentous fungi in composting. The average number of faecal coliforms was 2.3  107 bacteria/g waste dry weight at the beginning of the composting process, and decreased considerably to 8.2  103, 8.1  103, 8.5  103, 8.0  103,and 8.4  103 bacteria/g, respectively for experiments T1 to T5. This decrease was presumably the result of raising temperature. The phase of hygienisation was marked by a very significant decrease in the number of E. coli cells (1.8  107, to 3.7  103, 3.8  103, 3.3  103, 3.2  103, and 3.6  103 bacteria/g for T1 to T5 experiments, respectively: A second aspect was the investigation of a possible reduction of hazardous pollutants.  The highest concentration was for Fe and the lowest for Pb, showing that Fe is the most loosely bound to the sewage sludge organic matrix and Pb the most strongly bound, the Cd reduction by composting was more than 50%.Keywords: Sewage sludge, compost, horizontal drum bioreactor, hazardous.

  4. Comprehensive model of microalgae photosynthesis rate as a function of culture conditions in photobioreactors.

    Science.gov (United States)

    Costache, T A; Acién Fernández, F Gabriel; Morales, M M; Fernández-Sevilla, J M; Stamatin, I; Molina, E

    2013-09-01

    In this paper, the influence of culture conditions (irradiance, temperature, pH, and dissolved oxygen) on the photosynthesis rate of Scenedesmus almeriensis cultures is analyzed. Short-run experiments were performed to study cell response to variations in culture conditions, which take place in changing environments such as outdoor photobioreactors. Experiments were performed by subjecting diluted samples of cells to different levels of irradiance, temperature, pH, and dissolved oxygen concentration. Results demonstrate the existence of photoinhibition phenomena at irradiances higher than 1,000 μE/m(2) s; in addition to reduced photosynthesis rates at inadequate temperatures or pH-the optimal values being 35 °C and 8, respectively. Moreover, photosynthesis rate reduction at dissolved oxygen concentrations above 20 mg/l is demonstrated. Data have been used to develop an integrated model based on considering the simultaneous influence of irradiance, temperature, pH, and dissolved oxygen. The model fits the experimental results in the range of culture conditions tested, and it was validated using data obtained by the simultaneous variation of two of the modified variables. Furthermore, the model fits experimental results obtained from an outdoor culture of S. almeriensis performed in an open raceway reactor. Results demonstrate that photosynthetic efficiency is modified as a function of culture conditions, and can be used to determine the proximity of culture conditions to optimal values. Optimal conditions found (T = 35 °C, pH = 8, dissolved oxygen concentration <20 mg/l) allows to maximize the use of light by the cells. The developed model is a powerful tool for the optimal design and management of microalgae-based processes, especially outdoors, where the cultures are subject to daily culture condition variations.

  5. The cultural complexity of international collaboration: Conditions for sustainable curriculum development in Ghana

    NARCIS (Netherlands)

    Gervedink Nijhuis, C.J.; Voogt, J.M.; Pieters, J.M.

    2012-01-01

    International cooperation initiatives often focus on the development of curricula to increase the quality of education in developing countries. Through the adoption of a culturally sensitive approach, effective conditions for curriculum development can be created. Nevertheless, aid organizations and

  6. Optimization of culture conditions for the expansion of umbilical cord-derived mesenchymal stem or stromal cell-like cells using xeno-free culture conditions.

    Science.gov (United States)

    Hatlapatka, Tim; Moretti, Pierre; Lavrentieva, Antonina; Hass, Ralf; Marquardt, Nicole; Jacobs, Roland; Kasper, Cornelia

    2011-04-01

    First isolated from bone marrow, mesenchymal stem or stromal cells (MSC) were shown to be present in several postnatal and extraembryonic tissues as well as in a large variety of fetal tissues (e.g., fatty tissue, dental pulp, placenta, umbilical cord blood, and tissue). In this study, an optimized protocol for the expansion of MSC-like cells from whole umbilical cord tissue under xeno-free culture conditions is proposed. Different fetal calf sera and human serum (HS) were compared with regard to cell proliferation and MSC marker stability in long-term expansion experiments, and HS was shown to support optimal growth conditions. Additionally, the optimal concentration of HS during the cultivation was determined. With regard to cell proliferative potential, apoptosis, colony-forming unit fibroblast frequency, and cell senescence, our findings suggest that an efficient expansion of the cells is carried out best in media supplemented with 10% HS. Under our given xeno-free culture conditions, MSC-like cells were found to display in vitro immunoprivileged and immunomodulatory properties, which were assessed by co-culture and transwell culture experiments with carboxyfluorescein diacetate succinimidyl ester-labeled peripheral blood mononuclear cells. These findings may be of great value for the establishment of biotechnological protocols for the delivery of sufficient cell numbers of high quality for regenerative medicine purposes.

  7. Organizational culture: essence and basic characteristics in the conditions of the globalizatio

    Directory of Open Access Journals (Sweden)

    E. B. Bannikova

    2015-09-01

    Full Text Available The article presents an analysis of the concept of «organizational culture» through the prism of a phenomenon of culture and different approaches to organizational culture are crystallizes. Culture is defined as historically certain level of society development and man, that expressed in the types and forms of human life organization, and material and spiritual values, which created by them. It is shown that one of the classifications of culture divided it into three types: monoactive (or linearly arranged, poliactive and reactive. Each of these types is characterized by a particular style of the information collection that defines the possibility of decisions making management when using this classification in organizations. The features of the interpretation of the concept of «organizational culture» are defined. The essence of the organizational culture is a set of values, which are the guidelines of behavior of employees, management decision-making guidelines, as well as a system of symbols and rituals that serve as a set of rules approved behavior of employees in an organization. Marked constituent elements of organizational culture: system of values, leadership style, the characters of organization, ceremonies and rituals, cultural organization’s network. The main characteristics of organizational culture are: universality, informality, stability. It is shown that the components of organizational culture changing in the conditions of globalization, which calls for new forms and methods of work with personnel in modern organizations.

  8. Conversion of primordial germ cells to pluripotent stem cells: methods for cell tracking and culture conditions.

    Science.gov (United States)

    Nagamatsu, Go; Suda, Toshio

    2013-01-01

    Primordial germ cells (PGCs) are unipotent cells committed to germ lineage: PGCs can only differentiate into gametes in vivo. However, upon fertilization, germ cells acquire the capacity to differentiate into all cell types in the body, including germ cells. Therefore, germ cells are thought to have the potential for pluripotency. PGCs can convert to pluripotent stem cells in vitro when cultured under specific conditions that include bFGF, LIF, and the membrane-bound form of SCF (mSCF). Here, the culture conditions which efficiently convert PGCs to pluripotent embryonic germ (EG) cells are described, as well as methods used for identifying pluripotent candidate cells during culture.

  9. Microfluidically supported biochip design for culture of endothelial cell layers with improved perfusion conditions.

    Science.gov (United States)

    Raasch, Martin; Rennert, Knut; Jahn, Tobias; Peters, Sven; Henkel, Thomas; Huber, Otmar; Schulz, Ingo; Becker, Holger; Lorkowski, Stefan; Funke, Harald; Mosig, Alexander

    2015-01-01

    Hemodynamic forces generated by the blood flow are of central importance for the function of endothelial cells (ECs), which form a biologically active cellular monolayer in blood vessels and serve as a selective barrier for macromolecular permeability. Mechanical stimulation of the endothelial monolayer induces morphological remodeling in its cytoskeleton. For in vitro studies on EC biology culture devices are desirable that simulate conditions of flow in blood vessels and allow flow-based adhesion/permeability assays under optimal perfusion conditions. With this aim we designed a biochip comprising a perfusable membrane that serves as cell culture platform multi-organ-tissue-flow (MOTiF biochip). This biochip allows an effective supply with nutrition medium, discharge of catabolic cell metabolites and defined application of shear stress to ECs under laminar flow conditions. To characterize EC layers cultured in the MOTiF biochip we investigated cell viability, expression of EC marker proteins and cell adhesion molecules of ECs dynamically cultured under low and high shear stress, and compared them with an endothelial culture in established two-dimensionally perfused flow chambers and under static conditions. We show that ECs cultured in the MOTiF biochip form a tight EC monolayer with increased cellular density, enhanced cell layer thickness, presumably as the result of a rapid and effective adaption to shear stress by remodeling of the cytoskeleton. Moreover, endothelial layers in the MOTiF biochip express higher amounts of EC marker proteins von-Willebrand-factor and PECAM-1. EC layers were highly responsive to stimulation with TNFα as detected at the level of ICAM-1, VCAM-1 and E-selectin expression and modulation of endothelial permeability in response to TNFα/IFNγ treatment under flow conditions. Compared to static and two-dimensionally perfused cell culture condition we consider MOTiF biochips as a valuable tool for studying EC biology in vitro under

  10. Embryonic Stem Cell Culture Conditions Support Distinct States Associated with Different Developmental Stages and Potency

    DEFF Research Database (Denmark)

    Martin Gonzalez, Javier; Morgani, Sophie M; Bone, Robert A;

    2016-01-01

    Embryonic stem cells (ESCs) are cell lines derived from the mammalian pre-implantation embryo. Here we assess the impact of derivation and culture conditions on both functional potency and ESC transcriptional identity. Individual ESCs cultured in either two small-molecule inhibitors (2i....... Conversely, the transcriptome of serum-cultured ESCs correlated with later stages of development (E4.5), at which point embryonic cells are more restricted in their developmental potential. Thus, ESC culture systems are not equivalent, but support cell types that resemble distinct developmental stages. Cells......) or with knockout serum replacement (KOSR), but not serum, can generate high-level chimeras regardless of how these cells were derived. ESCs cultured in these conditions showed a transcriptional correlation with early pre-implantation embryos (E1.5-E3.5) and contributed to development from the 2-cell stage...

  11. Embryonic Stem Cell Culture Conditions Support Distinct States Associated with Different Developmental Stages and Potency

    DEFF Research Database (Denmark)

    Martin Gonzalez, Javier; Morgani, Sophie M; Bone, Robert A

    2016-01-01

    Embryonic stem cells (ESCs) are cell lines derived from the mammalian pre-implantation embryo. Here we assess the impact of derivation and culture conditions on both functional potency and ESC transcriptional identity. Individual ESCs cultured in either two small-molecule inhibitors (2i....... Conversely, the transcriptome of serum-cultured ESCs correlated with later stages of development (E4.5), at which point embryonic cells are more restricted in their developmental potential. Thus, ESC culture systems are not equivalent, but support cell types that resemble distinct developmental stages. Cells......) or with knockout serum replacement (KOSR), but not serum, can generate high-level chimeras regardless of how these cells were derived. ESCs cultured in these conditions showed a transcriptional correlation with early pre-implantation embryos (E1.5-E3.5) and contributed to development from the 2-cell stage...

  12. Maintenance of human embryonic stem cells in animal serum- and feeder layer-free culture conditions.

    Science.gov (United States)

    Amit, Michal; Itskovitz-Eldor, Joseph

    2006-01-01

    The availability of human embryonic stem cells (hESCs) reflects their outstanding potential for research areas such as human developmental biology, teratology, and cell-based therapies. To allow their continuous growth as undifferentiated cells, isolation and culturing were traditionally conducted on mouse embryonic fibroblast feeder layers, using medium supplemented with fetal bovine serum. However, these conditions allow possible exposure of the cells to animal pathogens. Because both research and future clinical application require an animal-free and well-defined culture system for hESCs, these conventional conditions would prevent the use of hESCs in human therapy. This chapter describes optional culture conditions based on either animal-free or feeder-free culture methods for hESCs.

  13. Properties of Dental Pulp-derived Mesenchymal Stem Cells and the Effects of Culture Conditions.

    Science.gov (United States)

    Kawashima, Nobuyuki; Noda, Sonoko; Yamamoto, Mioko; Okiji, Takashi

    2017-09-01

    Dental pulp mesenchymal stem cells (DPMSCs) highly express mesenchymal stem cell markers and possess the potential to differentiate into neural cells, osteoblasts, adipocytes, and chondrocytes. Thus, DPMSCs are considered suitable for tissue regeneration. The colony isolation method has commonly been used to collect relatively large amounts of heterogeneous DPMSCs. Homogenous DPMSCs can be isolated by fluorescence-activated cell sorting using antibodies against mesenchymal stem cell markers, although this method yields a limited number of cells. Both quality and quantity of DPMSCs are critical to regenerative therapy, and cell culture methods need to be improved. We thus investigated the properties of DPMSCs cultured with different methods. DPMSCs in a three-dimensional spheroid culture system, which is similar to the hanging drop culture for differentiation of embryonic stem cells, showed upregulation of odonto-/osteoblastic markers and mineralized nodule formation. This suggests that this three-dimensional spheroid culturing system for DPMSCs may be suitable for inducing hard tissues. We further examined the effect of cell culture density on the properties of DPMSCs because the properties of stem cells can be altered depending on the cell density. DPMSCs cultured under the confluent cell density condition showed slight downregulation of some mesenchymal stem cell markers compared with those under the sparse condition. The ability of DPMSCs to differentiate into hard tissue-forming cells was found to be enhanced in the confluent condition, suggesting that the confluent culture condition may not be suitable for maintaining the stemness of DPMSCs. When DPMSCs are to be used for hard tissue regeneration, dense followed by sparse cell culture conditions may be a better alternative strategy. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Activity and stability of recombinant human superoxide dismutase in buffer solutions and hypothermic perfusates.

    Directory of Open Access Journals (Sweden)

    Senoo,Yoshimasa

    1988-06-01

    Full Text Available The stability of recombinant human superoxide dismutase (r-hSOD in buffer solutions was studied in solutions at various pH and temperatures. Additionally, we studied the effects of incubation with proteases, serum and two types of hypothermic perfusates. R-hSOD was stable in the pH range of 6-11 and at temperatures up to 80 degrees C for 30 min. R-hSOD activity was not affected by incubation with trypsin, aminopeptidase M or serum for 2 h. R-hSOD activity determined at various temperatures (4-37 degrees C did not vary remarkably. R-hSOD in hypothermic perfusates was stable at 4-37 degrees C for 24 h.

  15. Hypothermic protection in rat focal ischemia models: strain differences and relevance to "reperfusion injury".

    Science.gov (United States)

    Ren, Yubo; Hashimoto, Megumi; Pulsinelli, William A; Nowak, Thaddeus S

    2004-01-01

    Hypothermic protection was compared in Long-Evans and spontaneously hypertensive rat (SHR) strains using transient focal ischemia, and in Wistar and SHR strains using permanent focal ischemia. Focal ischemia was produced by distal surgical occlusion of the middle cerebral artery and tandem occlusion of the ipsilateral common carotid artery (MCA/CCAO). Moderate hypothermia of 2 hours' duration was produced by systemic cooling to 32 degrees C, with further cooling of the brain achieved by reducing to 30 degrees C the temperature of the saline drip superfusing the exposed occlusion site. Infarct volume was determined from serial hematoxylin and eosin-stained frozen sections obtained routinely at 24 hours, or in some cases after 3 days' survival. In the SHR, moderate hypothermia was only effective when initiated before recirculation after a 90-minute occlusion period. In contrast, the same intervention was strikingly effective in the Long-Evans rat even when initiated after as long as 30-minute reperfusion after a 3-hour occlusion. This magnitude and duration of cooling was not protective in permanent MCA/CCAO in the SHR, but such transient hypothermia did effectively reduce infarct volume after permanent occlusions in Wistar rats. These results show striking differences in the temporal window for hypothermic protection among rat focal ischemia models. As expected, "reperfusion injury" in the Long-Evans strain is particularly responsive to delayed cooling. The finding that the SHR can be protected by hypothermia initiated immediately before recirculation suggests a rapidly evolving component of injury occurs subsequent to reperfusion in this model as well. Hypothermic protection after permanent occlusion in Wistar rats identifies a transient, temperature-sensitive phase of infarct evolution that is not evident in the unreperfused SHR. These observations confirm that distinct mechanisms can underlie the temporal progression of injury in rat stroke models, and emphasize

  16. Agmatine and a cannabinoid agonist, WIN 55212-2, interact to produce a hypothermic synergy.

    Science.gov (United States)

    Rawls, Scott M; Tallarida, Ronald J; Zisk, Jacob

    2006-12-28

    Agmatine blocks morphine withdrawal symptoms and enhances morphine analgesia in rats. Yet, the role of agmatine in the pharmacological effects of other abused drugs has not been investigated. The present study investigates the effect of agmatine administration on the hypothermic response to cannabinoids. Hypothermia is an effective endpoint because cannabinoid agonists produce a rapid, reproducible, and significant decrease in body temperature that is abolished by cannabinoid CB(1) receptor antagonists. WIN 55212-2, a cannabinoid agonist, was administered to rats by itself and with agmatine. WIN 55212-2 (1, 2.5, 5 and 10 mg/kg, i.m.) caused a significant hypothermia. Agmatine (10, 25 and 50 mg/kg, i.p.) was ineffective. For combined administration, agmatine (50 mg/kg, i.p.) enhanced the hypothermic effect of WIN 55212-2 (1, 2.5, 5 and 10 mg/kg, i.m.). The enhancement was strongly synergistic, indicated by a 2.7-fold increase in the relative potency of WIN 55212-2. The central administration of agmatine (25 and 50 mug/rat, i.c.v.) significantly increased the hypothermic effect of WIN 55212-2 (2.5 mg/kg, i.m.). This indicates that agmatine acts through a central mechanism to augment cannabinoid-evoked hypothermia. Idazoxan (2 mg/kg, i.p.), an imidazoline antagonist, blocked the enhancement by agmatine, thus suggesting that imidazoline receptor activation is required for agmatine to enhance cannabinoid-evoked hypothermia. The present data reveal that agmatine and a cannabinoid agonist interact to produce a hypothermic synergy in rats. These results show that agmatine acts in the brain and via imidazoline receptors to enhance cannabinoid-evoked hypothermia.

  17. Occlusive ascending aorta and arch atheroma treated with deep hypothermic circulatory arrest and thromboendarterectomy.

    LENUS (Irish Health Repository)

    O' Sullivan, Katie E

    2013-12-01

    We describe an uncommon presentation of severely advanced aortic atherosclerosis in a 48-year old man with a history of hypertension and heavy smoking. Initial presentation with upper limb ischaemia led to the diagnosis of an aortic arch atheroma occluding 90% of the aortic lumen, managed with deep hypothermic circulatory arrest and aortic thromboendarterectomy. To our knowledge, this is the first reported case of atherosclerotic plaque resulting in aortic occlusion and requiring emergent operative intervention.

  18. Experimental Study of Rat Beta Islet Cells Cultured under Simulated Microgravity Conditions

    Institute of Scientific and Technical Information of China (English)

    ChunSONG; Xiu-QingDUAN; XiLI; Li-OuHAN; PingXU; Chun-FangSONG:; Lian-HongJIN

    2004-01-01

    To observe the effects of simulated microgravity on beta islet cell culture, we have compared the survival rates and the insulin levels of the isolated rat islet cells cultured at micro- and normal gravity conditions. The survival rates of the cells cultured were determined by acridine orange-propidium iodide double-staining on day 3,7 and 14. The morphology of the cells was observed by electron microscopy.Insulin levels were measured by radio immuno assays. Our results show that the cell number cultured underthe microgravity condition is significantly higher than that under the routine condition (P<0.01). Some tubular structure shown by transmission electron microscopy, possibly for the transport of nutrients, were formed intercellularly in the microgravity cultured group on day 7. There were also abundant secretion particles and mitochondria in the cytoplasm of the cells. Scanning electron microscopy showed that there were holes formed between each islet, possibly connecting with the nutrient transport tubules. The microgravity cultured group also has higher insulin levels in the media as compared with the control group (P<0.01). Our results indicate that microgravity cultivation of islet cells has advantages over the routine culture methods.

  19. Experimental Study of Rat Beta Islet Cells Cultured under Simulated Microgravity Conditions

    Institute of Scientific and Technical Information of China (English)

    Chun SONG; Xiu-Qing DUAN; Xi LI; Li-Ou HAN; Ping XU; Chun-Fang SONG; Lian-Hong JIN

    2004-01-01

    To observe the effects of simulated microgravity on beta islet cell culture, we have compared the survival rates and the insulin levels of the isolated rat islet cells cultured at micro- and normal gravity conditions. The survival rates of the cells cultured were determined by acridine orange-propidium iodide double-staining on day 3, 7 and 14. The morphology of the cells was observed by electron microscopy.Insulin levels were measured by radio immuno assays. Our results show that the cell number cultured under the microgravity condition is significantly higher than that under the routine condition (P<0.01). Some tubular structure shown by transmission electron microscopy, possibly for the transport of nutrients, were formed intercellularly in the microgravity cultured group on day 7. There were also abundant secretion particles and mitochondria in the cytoplasm of the cells. Scanning electron microscopy showed that there were holes formed between each islet, possibly connecting with the nutrient transport tubules. The microgravity cultured group also has higher insulin levels in the media as compared with the control group(P<0.01). Our results indicate that microgravity cultivation of islet cells has advantages over the routine culture methods.

  20. Optimization of Large-Scale Culture Conditions for the Production of Cordycepin with Cordyceps militaris by Liquid Static Culture

    Directory of Open Access Journals (Sweden)

    Chao Kang

    2014-01-01

    Full Text Available Cordycepin is one of the most important bioactive compounds produced by species of Cordyceps sensu lato, but it is hard to produce large amounts of this substance in industrial production. In this work, single factor design, Plackett-Burman design, and central composite design were employed to establish the key factors and identify optimal culture conditions which improved cordycepin production. Using these culture conditions, a maximum production of cordycepin was 2008.48 mg/L for 700 mL working volume in the 1000 mL glass jars and total content of cordycepin reached 1405.94 mg/bottle. This method provides an effective way for increasing the cordycepin production at a large scale. The strategies used in this study could have a wide application in other fermentation processes.

  1. Optimization of Large-Scale Culture Conditions for the Production of Cordycepin with Cordyceps militaris by Liquid Static Culture

    Science.gov (United States)

    Kang, Chao; Wen, Ting-Chi; Kang, Ji-Chuan; Meng, Ze-Bing; Li, Guang-Rong; Hyde, Kevin D.

    2014-01-01

    Cordycepin is one of the most important bioactive compounds produced by species of Cordyceps sensu lato, but it is hard to produce large amounts of this substance in industrial production. In this work, single factor design, Plackett-Burman design, and central composite design were employed to establish the key factors and identify optimal culture conditions which improved cordycepin production. Using these culture conditions, a maximum production of cordycepin was 2008.48 mg/L for 700 mL working volume in the 1000 mL glass jars and total content of cordycepin reached 1405.94 mg/bottle. This method provides an effective way for increasing the cordycepin production at a large scale. The strategies used in this study could have a wide application in other fermentation processes. PMID:25054182

  2. Optimizing culture conditions for establishment of hairy root culture of Semecarpus anacardium L.

    Science.gov (United States)

    Panda, Bhuban Mohan; Mehta, Urmil J; Hazra, Sulekha

    2017-05-01

    Semecarpus anacardium L. is a tree species which produces secondary metabolites of medicinal importance. Roots of the plant have been traditionally used in folk medicines. Different strains of Agrobacterium rhizogenes (A4, ATCC15834 and LBA 9402) were used for induction of hairy roots in in vitro grown tissues of the plant. Hairy root initiation was observed after 25-30 days of infection. Optimum transformation frequency of 61% was achieved on leaf explants with ATCC15834 strain. Infection time of 30 min resulted in greater transformation frequency compared to 10 and 20 min, respectively. The hairy roots cultured in growth regulator-free semi-solid woody plant medium differentiated into callus. Whole shoots infected with ATCC 15834 were found to produce more transformants upon co-cultivation for 4 (65%) and 5 (67%) days. Induction of hairy roots in stem explants infected with ATCC 15834 was lower (52%) compared to leaves (62%) after 4 days of co-cultivation. In A4 and LBA9402 strains transformation efficiency was 49 ± 2.8% and 36 ± 5.7% in shoots after 4 days of co-cultivation. Transformation frequency was higher in ATCC15834 strain, irrespective of explants. The hairy roots of S. anacardium elongated slowly upon transfer to half-strength liquid medium. After 3-4 passages in liquid medium slender hairy roots started differentiating which were separated from the original explants. Visible growth of the roots was observed in hormone-free liquid medium after 2-3 months of culturing. Polymerase chain reaction with gene-specific primers from rol A, B and C genes confirms the positive transformation events.

  3. Conditional intrinsic voltage oscillations in mature vertebrate neurons undergo specific changes in culture

    DEFF Research Database (Denmark)

    Guertin, Pierre A; Hounsgaard, Jørn

    2006-01-01

    Although intrinsic neuronal properties in invertebrates are well known to undergo specific adaptive changes in culture, long-term adaptation of similar properties in mature vertebrate neurons remain poorly understood. To investigate this, we used an organotypic slice preparation from the spinal...... cord of adult turtles maintainable for several weeks in culture conditions. N-methyl-D-aspartate (NMDA)-induced-tetrodotoxin (TTX)-resistant voltage oscillations in motoneurons were approximately 10 times faster in culture than in acute preparations. Oscillations in culture were abolished by NMDA...... receptor antagonists or by high extracellular Mg2+ concentrations. However, in contrast with results from motoneurons in the acute slice, NMDA-induced oscillations in culture did not depend on CaV1.3 channel activation as they still remained after nifedipine application. Other CaV1.3 channel...

  4. Culture Conditions of Psychrotrophic Fungus, Penicillium chrysogenum and Its Lipase Characteristics

    OpenAIRE

    Bsncerz, Renata; Ginalska, Grazyna; Leonowicz, Andrzej; Oga, Shoji

    2007-01-01

    Among 97 fungal strains from the soil collected from the high mountain areas in the Jeju Island, Korea, Penicillium chrysogenum 9 was found to be the best lipase producer. Its lipase productivity reached 42 U/ml in the culture medium. Factors affecting lipase production by Penicillium chrysogenum 9 were studied using fermentation media of different chemical compositions. Under optimal conditions we noted a 1.6-fold increase of lipase activity. The maximum lipase activity was 68 U/ml of cultur...

  5. Neurosphere and adherent culture conditions are equivalent for malignant glioma stem cell lines.

    Science.gov (United States)

    Rahman, Maryam; Reyner, Karina; Deleyrolle, Loic; Millette, Sebastien; Azari, Hassan; Day, Bryan W; Stringer, Brett W; Boyd, Andrew W; Johns, Terrance G; Blot, Vincent; Duggal, Rohit; Reynolds, Brent A

    2015-03-01

    Certain limitations of the neurosphere assay (NSA) have resulted in a search for alternative culture techniques for brain tumor-initiating cells (TICs). Recently, reports have described growing glioblastoma (GBM) TICs as a monolayer using laminin. We performed a side-by-side analysis of the NSA and laminin (adherent) culture conditions to compare the growth and expansion of GBM TICs. GBM cells were grown using the NSA and adherent culture conditions. Comparisons were made using growth in culture, apoptosis assays, protein expression, limiting dilution clonal frequency assay, genetic affymetrix analysis, and tumorigenicity in vivo. In vitro expansion curves for the NSA and adherent culture conditions were virtually identical (P=0.24) and the clonogenic frequencies (5.2% for NSA vs. 5.0% for laminin, P=0.9) were similar as well. Likewise, markers of differentiation (glial fibrillary acidic protein and beta tubulin III) and proliferation (Ki67 and MCM2) revealed no statistical difference between the sphere and attachment methods. Several different methods were used to determine the numbers of dead or dying cells (trypan blue, DiIC, caspase-3, and annexin V) with none of the assays noting a meaningful variance between the two methods. In addition, genetic expression analysis with microarrays revealed no significant differences between the two groups. Finally, glioma cells derived from both methods of expansion formed large invasive tumors exhibiting GBM features when implanted in immune-compromised animals. A detailed functional, protein and genetic characterization of human GBM cells cultured in serum-free defined conditions demonstrated no statistically meaningful differences when grown using sphere (NSA) or adherent conditions. Hence, both methods are functionally equivalent and remain suitable options for expanding primary high-grade gliomas in tissue culture.

  6. Effects of hypoxic culture conditions on umbilical cord-derived human mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Hass Ralf

    2010-07-01

    Full Text Available Abstract Following cultivation of distinct mesenchymal stem cell (MSC populations derived from human umbilical cord under hypoxic conditions (between 1.5% to 5% oxygen (O2 revealed a 2- to 3-fold reduced oxygen consumption rate as compared to the same cultures at normoxic oxygen levels (21% O2. A simultaneous measurement of dissolved oxygen within the culture media from 4 different MSC donors ranged from 15 μmol/L at 1.5% O2 to 196 μmol/L at normoxic 21% O2. The proliferative capacity of the different hypoxic MSC populations was elevated as compared to the normoxic culture. This effect was paralleled by a significantly reduced cell damage or cell death under hypoxic conditions as evaluated by the cellular release of LDH whereby the measurement of caspase3/7 activity revealed little if any differences in apoptotic cell death between the various cultures. The MSC culture under hypoxic conditions was associated with the induction of hypoxia-inducing factor-alpha (HIF-1α and an elevated expression of energy metabolism-associated genes including GLUT-1, LDH and PDK1. Concomitantly, a significantly enhanced glucose consumption and a corresponding lactate production could be observed in the hypoxic MSC cultures suggesting an altered metabolism of these human stem cells within the hypoxic environment.

  7. Effects of culture conditions on ligninolytic enzymes and protease production by Phanerochaete chrysosporium in air

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The production of ligninolytic enzymes and protease by Phanerochaete chrysosporium was investigated under different culture conditions. Different amounts of medium were employed in free and immobilized culture, together with two kinds of medium with different C/N ratios. Little lignin peroxidase (LiP) (< 2 U/L) was detected in free culture with nitrogen-limited medium (C/N ratio: 56/2.2 mmol/L), while manganese peroxidase (MnP) maximum activity was 231 and 240 U/L in 50 and 100 ml medium culture, respectively. Immobilized culture with 50 ml nitrogen-limited medium gave the highest MnP and LiP production with the maximum values of 410 and 721 U/L separately on day 5; however, flasks containing 100 ml nitrogen-limited medium only produced less MnP with a peak value of 290 U/L. Comparatively, carbon-limited medium (C/N ratio: 28/44 mmol/L) was adopted in culture but produced little MnP and LiP. Medium type had the greatest impact on protease production. Large amount of protease was produced due to glucose limitation. Culture type and medium volume influence protease activity corporately by affecting oxygen supply. The results implied shallow immobilized culture was a possible way to gain high production of ligninolytic enzymes.

  8. Irradiation Response of Adipose-derived Stem Cells under Three-dimensional Culture Condition

    Institute of Scientific and Technical Information of China (English)

    DU Ya Rong; PAN Dong; CHEN Ya Xiong; XUE Gang; REN Zhen Xin; LI Xiao Man; ZHANG Shi Chuan; HU Bu Rong

    2015-01-01

    Objective Adipose tissue distributes widely in human body. The irradiation response of the adipose cells in vivo remains to be investigated. In this study we investigated irradiation response of adipose-derived stem cells (ASCs) under three-dimensional culture condition. Methods ASCs were isolated and cultured in low attachment dishes to form three-dimensional (3D) spheres in vitro. The neuronal differentiation potential and stem-liked characteristics was monitored by using immunofluoresence staining and flow cytometry in monolayer and 3D culture. To investigate the irradiation sensitivity of 3D sphere culture, the fraction of colony survival and micronucleus were detected in monolayer and 3D culture. Soft agar assays were performed for measuring malignant transformation for the irradiated monolayer and 3D culture. Results The 3D cultured ASCs had higher differentiation potential and an higher stem-like cell percentage. The 3D cultures were more radioresistant after either high linear energy transfer (LET) carbon ion beam or low LET X-ray irradiation compared with the monolayer cell. The ASCs’ potential of cellular transformation was lower after irradiation by soft agar assay. Conclusion These findings suggest that adipose tissue cell are relatively genomic stable and resistant to genotoxic stress.

  9. Effects of culture conditions and biofilm formation on the iodine susceptibility of Legionella pneumophila

    Science.gov (United States)

    Cargill, K. L.; Pyle, B. H.; Sauer, R. L.; McFeters, G. A.

    1992-01-01

    The susceptibility of Legionella pneumophila to iodination was studied with cultures grown in well water, on rich agar media, and attached to stainless-steel surfaces. Legionella pneumophila grown in water cultures in association with other microorganisms were less sensitive to disinfection by chlorine and iodine than were agar-passaged cultures. Differences in sensitivity to disinfection between water-cultured and agar-grown legionellae were determined by comparing C x T values (concentration in milligrams per litre multiplied by time in minutes to achieve 99% decrease in viability) and CM x T values (concentration in molarity). Iodine (1500x) gave a greater difference in CM x T values than did chlorine (68x). Iodine was 50 times more effective than chlorine when used with agar-grown cultures but was only twice as effective when tested against water-grown Legionella cultures. C x T x S values (C x T multiplied by percent survivors), which take into consideration the percent surviving bacteria, were used to compare sensitivities in very resistant populations, such as those in biofilms. Water cultures of legionellae associated with stainless-steel surfaces were 135 times more resistant to iodination than were unattached legionellae, and they were 210,000 times more resistant than were agar-grown cultures. These results indicate that the conditions under which legionellae are grown can dramatically affect their susceptibility to some disinfectants and must be considered when evaluating the efficacy of a disinfecting agent.

  10. Culture of proliferating and differentiating fat-storing cells in 3T3-conditioned medium.

    Science.gov (United States)

    Mendoza-Figueroa, T; Argüello, C; Kuri-Harcuch, W

    1988-01-01

    There is growing evidence suggesting that hepatic fat-storing cells (FSC) or Ito cells have an important function in vitamin A storage and metabolism and in the synthesis of connective tissue components in normal liver and during fibrogenesis. The purified FSC acquire a fibroblastic morphology and their vitamin A content decreases in culture. We cultivated cells under in vitro conditions that allowed the expression of FSC morphological and functional characteristics for 3-4 weeks of primary culture. Cells were isolated from rat liver by the collagenase-perfusion method without further purification and cultured with 3T3-conditioned medium, which seemed to stimulate the selective proliferation of the FSC. After 8-10 days, round and stellate cells grew actively from a few precursor cells in the primary culture and were not subcultivated; the stellate cells had the ability to become round and vice versa and were highly motile. The cells had intracytoplasmic lipid droplets, a well developed rough endoplasmic reticulum, Golgi complex, numerous vesicles filled with electron-dense material, and extracellular matrix (ECM) components on their surface. Both stellate and round cells showed the presence of desmin by immunofluorescence and vitamin A autofluorescence, but lacked peroxidase activity. The culture conditions we describe allowed the selective proliferation of cells with morphological and functional characteristics of the FSC in the normal liver, raising the possibility of studying FSC proliferation and differentiation.

  11. Optimization of culture conditions of Fusarium solani for the production of neoN-methylsansalvamide.

    Science.gov (United States)

    Lee, Hee-Seok; Phat, Chanvorleak; Nam, Woo-Seon; Lee, Chan

    2014-01-01

    The aim of this study was to optimize the culture conditions of Fusarium solani KCCM90040 on cereal grain for the production of neoN-methylsansalvamide, a novel low-molecular-weight cyclic pentadepsipeptide exhibiting cytotoxic and multidrug resistance reversal effects. From the analysis of variance results using response surface methodology, temperature, initial moisture content, and growth time were shown to be important parameters for the production of neoN-methylsansalvamide on cereal grain. A model was established in the present study to describe the relationship between environmental conditions and the production of neoN-methylsansalvamide on rice, the selected cereal grain. The optimal culture conditions were determined at 25.79 °C with the initial moisture content of 40.79%, and 16.19 days of growth time. This report will give important information concerning the optimization of environmental conditions using statistic methodology for the production of a new cyclic pentadepsipeptide from fungi.

  12. Shaping the Organizational Culture in Conditions of Increasing the Competitiveness of Enterprises

    Directory of Open Access Journals (Sweden)

    Joanna Rębisz

    2010-10-01

    Full Text Available The organizational culture is one of key factors which can influence the organizational success in building the long-lasting domination of an enterprise. The article is an attempt to introduce and at the same time to present the understanding of the culture in terms of expected bearings which can explain why organizational individuals (or entire organizations promote only the behaviors which are in accordance with the value and the mission of the enterprises. The author draws attention to the level of expectations and behavior, which is usually the result of team work. A lot of attention has also been paid to the phenomenon of crossing of two relations: organizational culture with the function of leadership. The author has also discussed the role of a manager as a means of shaping and supporting an organization culture in conditions of increasing competition.

  13. Feeder-free culture of human embryonic stem cells in conditioned medium for efficient genetic modification.

    Science.gov (United States)

    Braam, Stefan R; Denning, Chris; Matsa, Elena; Young, Lorraine E; Passier, Robert; Mummery, Christine L

    2008-01-01

    Realizing the potential of human embryonic stem cells (hESCs) in research and commercial applications requires generic protocols for culture, expansion and genetic modification that function between multiple lines. Here we describe a feeder-free hESC culture protocol that was tested in 13 independent hESC lines derived in five different laboratories. The procedure is based on Matrigel adaptation in mouse embryonic fibroblast conditioned medium (CM) followed by monolayer culture of hESC. When combined, these techniques provide a robust hESC culture platform, suitable for high-efficiency genetic modification via plasmid transfection (using lipofection or electroporation), siRNA knockdown and viral transduction. In contrast to other available protocols, it does not require optimization for individual lines. hESC transiently expressing ectopic genes are obtained within 9 d and stable transgenic lines within 3 weeks.

  14. Cholera toxin expression by El Tor Vibrio cholerae in shallow culture growth conditions.

    Science.gov (United States)

    Cobaxin, Mayra; Martínez, Haydee; Ayala, Guadalupe; Holmgren, Jan; Sjöling, Asa; Sánchez, Joaquín

    2014-01-01

    Vibrio cholerae O1 classical, El Tor and O139 are the primary biotypes that cause epidemic cholera, and they also express cholera toxin (CT). Although classical V. cholerae produces CT in various settings, the El Tor and O139 strains require specific growth conditions for CT induction, such as the so-called AKI conditions, which consist of growth in static conditions followed by growth under aerobic shaking conditions. However, our group has demonstrated that CT production may also take place in shallow static cultures. How these type of cultures induce CT production has been unclear, but we now report that in shallow culture growth conditions, there is virtual depletion of dissolved oxygen after 2.5 h of growth. Concurrently, during the first three to 4 h, endogenous CO2 accumulates in the media and the pH decreases. These findings may explain CT expression at the molecular level because CT production relies on a regulatory cascade, in which the key regulator AphB may be activated by anaerobiosis and by low pH. AphB activation stimulates TcpP synthesis, which induces ToxT production, and ToxT directly stimulates ctxAB expression, which encodes CT. Importantly, ToxT activity is enhanced by bicarbonate. Therefore, we suggest that in shallow cultures, AphB is activated by initial decreases in oxygen and pH, and subsequently, ToxT is activated by intracellular bicarbonate that has been generated from endogenous CO2. This working model would explain CT production in shallow cultures and, possibly, also in other growth conditions.

  15. Effects of culture conditions on ligninolytic enzymes and protease production by Phanerochaete chrysosporium in air.

    Science.gov (United States)

    Xiong, Xiaoping; Wen, Xianghua; Bai, Yanan; Qian, Yi

    2008-01-01

    The production of ligninolytic enzymes and protease by Phanerochaete chrysosporium was investigated under different culture conditions. Different amounts of medium were employed in free and immobilized culture, together with two kinds of medium with different C/N ratios. Little lignin peroxidase (LiP) (nitrogen-limited medium (C/N ratio: 56/2.2, in mmol/L), while manganese peroxidase (MnP) maximum activity was 231 and 240 U/L in 50 and 100 ml medium culture, respectively. Immobilized culture with 50 ml nitrogen-limited medium gave the highest MnP and LiP production with the maximum values of 410 and 721 U/L separately on the day 5; however, flasks containing 100 ml nitrogen-limited medium only produced less MnP with a peak value of 290 U/L. Comparatively, carbon-limited medium (C/N ratio: 28/44, in mmol/L) was adopted in culture but produced little MnP and LiP. Medium type had the greatest impact on protease production. Large amount of protease was produced due to glucose limitation. Culture type and medium volume influence protease activity corporately by affecting oxygen supply. The results implied shallow immobilized culture was a possible way to gain high production of ligninolytic enzymes.

  16. [Genetic regulation of T-lymphocyte responsiveness to PHA is independent of culture conditions (author's transl)].

    Science.gov (United States)

    Stiffel, C; Liacopoulos-Briot, M; Decreusefond, C; Lambert, F

    1979-01-01

    A maximal interline separation has been obtained after 10 consecutive generations of selective breeding for the character "quantitative in vitro response of lymph node lymphocytes to the mitogenic effect of phytohaemagglutinin". At the selection limit the difference between high and low responder lines was about 20-fold. A similar interline separation has been demonstrated for the T-mitogen effect of concanavalin A. The identical response to PPD (purified protein derivative of tuberculin), a B mitogen, proved that the genetic selection has only modified the potentialities of T lymphocytes. During the selective breeding, responsiveness to PHA stimulation has been always measured under identical culture conditions. To demonstrate that the interline difference in responsiveness was due essentially to genetic factors independent of environmental effects, a systematic study of various culture conditions has been undertaken. The optimal stimulation was found after two days of culture for high line cells and after three days for low line cells. The difference between maximal responses was only slightly lower than that obtained after a two-day culture as used for the selection test. Increase in cell concentrations produced higher thymidine incorporation. In the two lines, a linear correlation was established between the cell concentration and the response produced. The maximal response given by the highest number of low line lymphocytes was equivalent to that given by a number, 11-fold smaller, of high line cells. Within certain limits, changes in the amount of tritiated thymidine added to the culture did not affect the interline separation. With a thymidine of high specific activity, a sub-evaluation of uptake by high line cells decreased the interline difference. Results in mixed culture of lymph node cells from high and low lines indicated that the low response was not due to the release of inhibiting factors or to the presence of suppressive cells in low responder mice

  17. Impact of culture conditions on β-carotene encapsulation using Yarrowia lipolytica cells

    Science.gov (United States)

    Dang, Tran Hai; Minh, Ho Thi Thu; Van Nhi, Tran Nguyen; Ngoc, Ta Thi Minh

    2017-09-01

    Yeast cell was reported as an effective natural preformed material for use in encapsulation of hydrophobic compounds. The encapsulation process was normally considered as passive transfer through cellular wall and cellular membrane. Beside solubility of hydrophobic compound in phospholipid membrane or plasmolysis, membrane characteristics of yeast cell which are differed between strains and influenced by culture conditions are main factors involving the accumulation of hydrophobic compound into yeast cell. In this study, the oleaginous yeast Yarrowia lipolytica was used as micro-container shell to encapsulate a high hydrophobic compound - β-carotene. Yeast cell was cultured under different conditions and wet yeast biomass was incubated with β-carotene which was dissolved in soybean oil overnight. β-carotene accumulation was then extracted and evaluated by UV-VIS spectrometry. Optimization of culture condition was investigated using the Box-Behnken model. β-carotene encapsulation efficiency in Y. lipolytica was showed to be affected by both pH of medium and agitation conditions. The highest β-carotene encapsulation efficiency was optimized at 42.8 μg/g with Y. lipolytica cultured at pH 4.5, medium volume equal to 115 ml and agitation speed at 211 rpm.

  18. Adjusting policy to institutional, cultural and biophysical context conditions: The case of conservation banking in California

    Science.gov (United States)

    Carsten Mann; James D. Absher

    2013-01-01

    This paper examines the political construction of a policy instrument for matching particular institutional, biophysical and cultural context conditions in a social–ecological system, using the case of conservation banking in California as an example. The guiding research question is: How is policy design negotiated between various actors on its way from early...

  19. Photophysiological variability of microphytobenthic diatoms after growth in different types of culture conditions

    NARCIS (Netherlands)

    Forster, R.M.; Martin-Jézéquel, V.R.

    2005-01-01

    Microphytobenthic diatoms have great ecological importance in estuarine and coastal marine ecosystenis, yet many aspects of their physiology have not been investigated under controlled conditions. This work describes patterns in growth rates and photosynthesis in different types of culture for sever

  20. A Transporter of Ibuprofen is Upregulated in MDCK I Cells under Hyperosmotic Culture Conditions

    DEFF Research Database (Denmark)

    Nielsen, Carsten Uhd; Rasmussen, Rune N; Mo, Junying

    2016-01-01

    Ibuprofen is a widely used drug. It has been identified as an inhibitor of several transporters, but it is not clear if ibuprofen is a substrate of any transporter itself. In the present work, we have characterized a transporter of ibuprofen, which is upregulated by hyperosmotic culture condition...

  1. Human Airway Primary Epithelial Cells Show Distinct Architectures on Membrane Supports Under Different Culture Conditions.

    Science.gov (United States)

    Min, Kyoung Ah; Rosania, Gus R; Shin, Meong Cheol

    2016-06-01

    To facilitate drug development for lung delivery, it is highly demanding to establish appropriate airway epithelial cell models as transport barriers to evaluate pharmacokinetic profiles of drug molecules. Besides the cancer-derived cell lines, as the primary cell model, normal human bronchial epithelial (NHBE) cells have been used for drug screenings because of physiological relevance to in vivo. Therefore, to accurately interpret drug transport data in NHBE measured by different laboratories, it is important to know biophysical characteristics of NHBE grown on membranes in different culture conditions. In this study, NHBE was grown on the polyester membrane in a different medium and its transport barrier properties as well as cell architectures were fully characterized by functional assays and confocal imaging throughout the days of cultures. Moreover, NHBE cells on inserts in a different medium were subject to either of air-interfaced culture (AIC) or liquid-covered culture (LCC) condition. Cells in the AIC condition were cultivated on the membrane with medium in the basolateral side only, whereas cells with medium in apical and basolateral sides under the LCC condition. Quantitative microscopic imaging with biophysical examination revealed distinct multilayered architectures of differentiated NHBE cells, suggesting NHBE as functional cell barriers for the lung-targeting drug transport.

  2. Statistical approach for the culture conditions optimization of magnetotactic bacteria for magnetic cells production

    Institute of Scientific and Technical Information of China (English)

    Li Wenbing; Yu Longjiang; Zhou Pengpeng

    2006-01-01

    The culture of Magnetospirillum magneticum WM-1 depends on several control factors that have great effect on the magnetic cells concentration. Investigation into the optimal culture conditions needs a large number of experiments. So it is desirable to minimize the number of experiments and maximize the information gained from them. The orthogonal design of experiments and mathematical statistical method are considered as effective methods to optimize the culture condition of magnetotactic bacteria WM-1 for high magnetic cells concentration. The effects of the four factors, such as pH value of medium, oxygen concentration of gas phase in the serum bottle, C:C (mtartaric acid: msuccinic acid) ratio and NaNO3 concentration, are simultaneously investigated by only sixteen experiments through the orthogonal design L16(44) method. The optimal culture condition is obtained. At the optimal culture condition ( pH 7.0, an oxygen concentration 4.0%, C: C (mtartaric acid:msuccinic acid) ratio 1:2 and NaNO3 100 mg l-1), the magnetic cells concentration is promoted to 6.5×107 cells ml-1, approximately 8.3% higher than that under the initial conditions. The pH value of medium is a very important factor for magnetic cells concentration. It can be proved that the orthogonal design of experiment is of 90% confidence. Ferric iron uptake follows Michaelis-Menten kinetics with a Km of 2.5 μM and a Vmax of 0.83 min-1.

  3. Optimization of Conditions for In Vitro Culture of the Microphallid Digenean Gynaecotyla adunca.

    Science.gov (United States)

    West, Jenna; Mitchell, Alexandra; Pung, Oscar J

    2014-01-01

    In vitro cultivation of digeneans would aid the development of effective treatments and studies of the biology of the parasites. The goal of this study was to optimize culture conditions for the trematode, Gynaecotyla adunca. Metacercariae of the parasite from fiddler crabs, Uca pugnax, excysted in trypsin, were incubated overnight to permit fertilization, and were cultured in different conditions to find those that resulted in maximum worm longevity and egg production. When cultured in media lacking serum, worms lived longer in Hanks balanced salt solution and Dulbecco's Modified Eagle medium/F-12 (DME/F-12) than in RPMI-1640 but produced the most eggs in DME/F-12. Worm longevity and egg production increased when worms were grown in DME/F-12 supplemented with 20% chicken, horse, or newborn calf serum but the greatest number of eggs was deposited in cultures containing horse or chicken serum. Horse serum was chosen over chicken serum due to the formation of a precipitate in chicken serum. The optimal concentration of horse serum with respect to egg production ranged from 5 to 20%. Infectivity of eggs deposited by worms in culture was tested by feeding eggs to mud snails, Ilyanassa obsoleta. None of these snails produced G. adunca cercariae.

  4. Optimization of Conditions for In Vitro Culture of the Microphallid Digenean Gynaecotyla adunca

    Directory of Open Access Journals (Sweden)

    Jenna West

    2014-01-01

    Full Text Available In vitro cultivation of digeneans would aid the development of effective treatments and studies of the biology of the parasites. The goal of this study was to optimize culture conditions for the trematode, Gynaecotyla adunca. Metacercariae of the parasite from fiddler crabs, Uca pugnax, excysted in trypsin, were incubated overnight to permit fertilization, and were cultured in different conditions to find those that resulted in maximum worm longevity and egg production. When cultured in media lacking serum, worms lived longer in Hanks balanced salt solution and Dulbecco’s Modified Eagle medium/F-12 (DME/F-12 than in RPMI-1640 but produced the most eggs in DME/F-12. Worm longevity and egg production increased when worms were grown in DME/F-12 supplemented with 20% chicken, horse, or newborn calf serum but the greatest number of eggs was deposited in cultures containing horse or chicken serum. Horse serum was chosen over chicken serum due to the formation of a precipitate in chicken serum. The optimal concentration of horse serum with respect to egg production ranged from 5 to 20%. Infectivity of eggs deposited by worms in culture was tested by feeding eggs to mud snails, Ilyanassa obsoleta. None of these snails produced G. adunca cercariae.

  5. Capsaicin and nitric oxide synthase inhibitor interact to evoke a hypothermic synergy.

    Science.gov (United States)

    Ding, Zhe; Cowan, Alan; Tallarida, Ronald; Rawls, Scott M

    2006-11-27

    The present study investigated the effect of a drug combination of capsaicin and L-NAME on hypothermia in rats. Capsaicin administration (0.1, 0.25, 0.5, 1 and 2mg/kg, i.m.) caused a significant hypothermia. L-NAME (50mg/kg, i.p.), a nonspecific nitric oxide synthase (NOS) inhibitor, was ineffective. For combined administration, progressively increasing doses of capsaicin (0.1, 0.25, 0.5, 1 and 2mg/kg, i.p.) were given with a non-hypothermic dose of L-NAME (50mg/kg, i.p.). Experiments revealed that L-NAME (50mg/kg, i.p.) enhanced the hypothermic response to capsaicin (0.25, 0.5, 1, and 2mg/kg, i.m.). Comparison of the graded dose-effect curves for capsaicin alone and capsaicin plus L-NAME revealed a significant difference (P<0.05), thus indicating synergy for the drug interaction. To determine if L-NAME acted centrally, a fixed dose of L-NAME (1mg/rat, i.c.v.) was given with graded doses of capsaicin (0.25, 0.5, 1, and 2mg/kg, i.m.). L-NAME (1mg/rat, i.c.v.) only enhanced the hypothermia at a single dose of capsaicin (0.5mg/kg, i.m.). The super-additive hypothermia produced by the concurrent administration of capsaicin and L-NAME (50mg/kg, i.p.) is the first evidence of synergy for a drug combination of capsaicin and a NOS inhibitor. The synergy is apparent only when L-NAME is given systemically, thus indicating that the inhibition of peripheral NO production enhances the hypothermic response to capsaicin.

  6. Serotonergic System Does Not Contribute to the Hypothermic Action of Acetaminophen.

    Science.gov (United States)

    Fukushima, Akihiro; Sekiguchi, Wakana; Mamada, Kizuku; Tohma, Yumi; Ono, Hideki

    2017-02-01

    Acetaminophen (AcAP), a widely-used antipyretic and analgesic drug, has been considered to exert its effects via central mechanisms, and many studies have demonstrated that the analgesic action of AcAP involves activation of the serotonergic system. Although the serotonergic system also plays an important role in thermoregulation, the contribution of serotonergic activity to the hypothermic effect of AcAP has remained unclear. In the present study, we examined whether the serotonergic system is involved in AcAP-induced hypothermia. In normal mice, AcAP (300 mg/kg, intraperitoneally (i.p.)) induced marked hypothermia (ca. -4°C). The same dose of AcAP reduced pain response behavior in the formalin test. Pretreatment with the serotonin synthesis inhibitor DL-p-chlorophenylalanine (PCPA, 300 mg/kg/d, i.p., 5 consecutive days) substantially decreased serotonin in the brain by 70% and significantly inhibited the analgesic, but not the hypothermic action of AcAP. The same PCPA treatment significantly inhibited the hypothermia induced by the selective serotonin reuptake inhibitor fluoxetine hydrochloride (20 mg/kg, i.p.) and the serotonin 5-HT2 receptor antagonist cyproheptadine hydrochloride (3 mg/kg, i.p.). The lower doses of fluoxetine hydrochloride (3 mg/kg, i.p.) and cyproheptadine hydrochloride (0.3 mg/kg, i.p.) did not affect the AcAP-induced hypothermia. These results suggest that, in comparison with its analgesic effect, the hypothermic effect of AcAP is not mediated by the serotonergic system.

  7. Biological characteristics of marine bacterium S - 9801 strain and its culture conditions of pigment production

    Institute of Scientific and Technical Information of China (English)

    田黎; 何培青; 武洪庆; 温占波; 刘晨临; 李光友

    2002-01-01

    Strain of Flavobacterium sp. (S- 9801), was screened from 207 strains of marine bacteria isolated from the Bohai Sea continental shelf and the Zhujiang Estuary, for its red pigment production. The biological characteristics of strain S- 9801 and culture conditions of pigment production have been checked out in this study. The color of the bacterial colony on 2216E medium was from coccineus to rose bengal. Optimum culture conditions were sodium chloride concentration(g/dm3), 10~30; pH,3~8; temperature, 25~28℃; tryptone and yeast extract as nitrogen sources and gluccse as carbon source. Under optimum conditions, pigment accumulation started after 12 h, reaching a maximum rate of synthesis at 36 h.

  8. Continuous cultures of spirulina platensis under photoautotrophic conditions with change in light intensity

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, S. [Osaka Univ., Suita (Japan)532600; Taya, M.; Tone, S. [Kawasaki Heavy Industries Ltd., Kobe (Japan)

    1998-08-01

    In continuous cultures of Spirulina platensis under photoautotrophic conditions, the operation mode to maintain constant cell concentration is examined using culture apparatuses with light path lengths of 0.02 and 0.156 m. The values of dilution rates in the continuous cultures are determined by employing specific growth rates of the cells corresponding to light intensity distribution in liquid medium. When incident light intensity is fixed at 25, 50 or 400 W m{sup minus2}, it is found that the cell concentration in the continuous culture is kept almost constant, and agrees fairly well with the prescribed value of the cell concentration in the range of 0.09 to 2.43 kg m{sup minus3}. It is also demonstrated that the operation mode is valid to obtain stable cell concentrations in the continuous cultures associated with the change in incident light intensity ranging from 25 to 400 W m{sup minus2} during the cultures. 7 refs., 3 figs., 1 tabs.

  9. An integrated system for synchronous culture of animal cells under controlled conditions.

    Science.gov (United States)

    Mendoza-Pérez, Elena; Hernández, Vanessa; Palomares, Laura A; Serrato, José A

    2016-01-01

    The cell cycle has fundamental effects on cell cultures and their products. Tools to synchronize cultured cells allow the study of cellular physiology and metabolism at particular cell cycle phases. However, cells are most often arrested by methods that alter their homeostasis and are then cultivated in poorly controlled environments. Cell behavior could then be affected by the synchronization method and culture conditions used, and not just by the particular cell cycle phase under study. Moreover, only a few viable cells are recovered. Here, we designed an integrated system where a large number of cells from a controlled bioreactor culture is separated by centrifugal elutriation at high viabilities. In contrast to current elutriation methods, cells are injected directly from a bioreactor into an injection loop, allowing the introduction of a large number of cells into the separation chamber without stressful centrifugation. A low pulsation peristaltic pump increases the stability of the elutriation chamber. Using this approach, a large number of healthy cells at each cell cycle phase were obtained, allowing their direct inoculation into fully instrumented bioreactors. Hybridoma cells synchronized and cultured in this system behaved as expected for a synchronous culture.

  10. Impact of culture conditions on the chlorophyll content of microalgae for biotechnological applications.

    Science.gov (United States)

    da Silva Ferreira, Veronica; Sant'Anna, Celso

    2017-01-01

    Chlorophyll is a commercially important natural green pigment responsible for the absorption of light energy and its conversion into chemical energy via photosynthesis in plants and algae. This bioactive compound is widely used in the food, cosmetic, and pharmaceutical industries. Chlorophyll has been consumed for health benefits as a nutraceutical agent with antioxidant, anti-inflammatory, antimutagenic, and antimicrobial properties. Microalgae are photosynthesizing microorganisms which can be extracted for several high-value bioproducts in the biotechnology industry. These microorganisms are highly efficient at adapting to physicochemical variations in the local environment. This allows optimization of culture conditions for inducing microalgal growth and biomass production as well as for changing their biochemical composition. The modulation of microalgal culture under controlled conditions has been proposed to maximize chlorophyll accumulation. Strategies reported in the literature to promote the chlorophyll content in microalgae include variation in light intensity, culture agitation, and changes in temperature and nutrient availability. These factors affect chlorophyll concentration in a species-specific manner; therefore, optimization of culture conditions has become an essential requirement. This paper provides an overview of the current knowledge on the effects of key environmental factors on microalgal chlorophyll accumulation, focusing on small-scale laboratory experiments.

  11. Extracorporeal Membrane Oxygenation (ECMO) for Hypothermic Cardiac Deterioration: A Case Series.

    Science.gov (United States)

    Niehaus, Matthew T; Pechulis, Rita M; Wu, James K; Frei, Steven; Hong, John J; Sandhu, Rovinder S; Greenberg, Marna Rayl

    2016-10-01

    Accidental hypothermia can lead to untoward cardiac manifestations and arrest. This report presents a case series of severe accidental hypothermia with cardiac complications in three emergency patients who were treated with extracorporeal membrane oxygenation (ECMO) and survived after re-warming. The aim of this discussion was to encourage more clinicians to consider ECMO as a re-warming therapy for severe hypothermia with circulatory collapse and to prompt discussion about decreasing the barriers to its use. Niehaus MT , Pechulis RM , Wu JK , Frei S , Hong JJ , Sandhu RS , Greenberg MR . Extracorporeal membrane oxygenation (ECMO) for hypothermic cardiac deterioration: a case series. Prehosp Disaster Med. 2016;31(5):570-571.

  12. Optimal in vitro culture conditions for murine predominant immature CD8a+ dendritic cells

    Institute of Scientific and Technical Information of China (English)

    NA Ning; XU Lin; CAO Kai-yuan; LUO Yun; YUAN Guang-qing; XIANG Peng; HONG Liang-qing; LI Shu-nong

    2009-01-01

    Background The prospects of using immature CD8a+ dendritic cells (DC2) to establish transplant immunologic tolerance and treatments for autoimmune diseases in the future are promising. However, the methods for inducing DC2 are still being explored. The present study was aimed to investigate the optimal in vitro conditions for preparing large numbers f predominant DC2 from murine bone marrow cells.Methods Three groups of bone marrow cells cultured under different conditions were examined, namely a cytokine-induced experimental group (cytokine group), a control group with a low concentration of granulocyte-macrophage colony stimulating factor (GM-CSF, low GM-CSF group) and a control group without ndogenous cytokines. The cytokine group was cultured with 5 ng/ml GM-CSF, 25 ng/ml Fit3 ligand (Flt3L), 20 ng/ml interleukin 4 (IL-4) and 100 ng/ml stem cell factor (SCF). The low GM-CSF control group was cultured with 0.4 ng/ml GM-CSF, 25 ng/ml FIt3L and 100 ng/ml SCF, without IL-4. The control group without exogenous cytokines was cultured without dditional cytokines. All cells were cultured at 37℃ under 5% CO2. On days 3, 7 and 16, 4-color flow cytometry was carried out to analyze the cell phenotypes, and the total cell numbers were counted to analyze the cell yields. Phase-contrast microscopy was used to observe the cell morphologies.Results The cytokine group exhibited higher proportions f typical immature CD8a+ DC, especially on day 3, but the total cell number and DC2 proportion decreased during prolonged culture. The low GM-CSF control group showed the same tendencies as the cytokine group on days 16 and 22, but produced higher total cell numbers (P <0.05) with lower DC2 proportions and cell numbers. The control group without exogenous cytokines spontaneously generated a certain proportion of DC2, but with low total cell and DC2 numbers that decreased rapidly, especially during prolonged culture (days 7 and 16, P <0.05).Conclusions Culture in the presence of 5 ng

  13. Modern education of future teacher of physical culture in the conditions of informatization of educational space

    Directory of Open Access Journals (Sweden)

    Dragnev Y.V.

    2012-03-01

    Full Text Available The informatization of the educational space is determined by the organizational, scientific-technical, educational processes, which update the creation of the unified information and educational space for the comprehensive use of information technologies in educational process of a future teacher of physical culture at the higher school. Stated that the integration and expansion of the educational space of the orients the higher school not only in the preparation of the literate student on the issues of information culture, but also to help the younger generation in the mastery of basic social abilities and skills in conditions of informatization of the educational space.

  14. In Vivo-Like Culture Conditions in a Bioreactor Facilitate Improved Tissue Quality in Corneal Storage.

    Science.gov (United States)

    Schmid, Richard; Tarau, Ioana-Sandra; Rossi, Angela; Leonhardt, Stefan; Schwarz, Thomas; Schuerlein, Sebastian; Lotz, Christian; Hansmann, Jan

    2017-09-05

    The cornea is the most-transplanted tissue worldwide. However, the availability and quality of grafts are limited due to the current methods of corneal storage. In this study, a dynamic bioreactor system is employed to enable the control of intraocular pressure and the culture at the air-liquid interface. Thereby, in vivo-like storage conditions are achieved. Different media combinations for endothelium and epithelium are tested in standard and dynamic conditions to enhance the viability of the tissue. In contrast to culture conditions used in eye banks, the combination of the bioreactor and biochrom medium 1 allows to preserve the corneal endothelium and the epithelium. Assessment of transparency, swelling, and the trans-epithelial-electrical-resistance (TEER) strengthens the impact of the in vivo-like tissue culture. For example, compared to corneas stored under static conditions, significantly lower optical densities and significantly higher TEER values were measured (p-value quality of corneal grafts and the storage time in the eye banks to increase availability and reduce re-grafting. © 2017 The Authors. Biotechnology Journal Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  15. Regeneration efficiency based on genotype, culture condition and growth regulators of eggplant (Solanum melongena L.

    Directory of Open Access Journals (Sweden)

    Md Abdul Muktadir

    2016-01-01

    Full Text Available Several experiments were carried out to establish an efficient regenerating protocol for cultivated eggplant varieties. Among the five varieties cultured on Murashige and Skoog (MS medium with free plant growth regulator (PGR, Nayantara performed better considering the number of shoots/explant (2.48. Considering explant types and culture conditions, better performance was observed (3.68 shoots/explant when seed germination in the dark was proceeded by bottom hypocotyl segments cultured under dark conditions. A higher rate of shoot regeneration was observed in Nayantara when cultured in Zeatin Riboside (ZR and Thidizuron (TDZ supplemented MS medium. The highest number of shoots per explant was produced on MS medium supplemented with 2.0 mg/L ZR and 0.1 mg/L indole acetic acid (6.65 shoots/explant. Proliferation and elongation of the regenerated shoots were obtained in the MS medium with free PGR. The best rooting performance was observed in MS medium supplemented with 2.0 mg/L indole butyric acid. Plantlets with well developed roots and shoots were successfully transferred to soil.

  16. Cellular Adaptation: Culture conditions of R. opacus and bioflotation of apatite and quartz

    Directory of Open Access Journals (Sweden)

    Antonio Gutiérrez Merma

    Full Text Available Abstract It is well known that the culture conditions of microorganisms may affect their surface properties, zeta potential and hydrophobicity via the modification of the cell wall functional groups or metabolic products. The R. opacus bacteria strain was separately adapted to the presence of apatite and quartz, after which a cellular adaptation procedure was developed by repeated sub-culturing with a successive increase in the mineral content. Zeta potential, surface tension, FTIR and microflotation studies were used to evaluate the behavior of the cells that were developed under defined culture conditions. The cellular adaptation induced a modification of the bacterial surface charge. The FTIR results showed a modification of its functional groups. The surface tension results suggested that longer growing time promoted a higher production of metabolites. The use of mineral-adapted cells promoted an improvement in the flotability of both minerals, but it was more significant for apatite flotation. Additionally, the mineral flotability remained unchanged when the cells developed under a longer culture time. Nevertheless, there was a reduction in the surface tension.

  17. Optimized “In Vitro” Culture Conditions for Human Rheumatoid Arthritis Synovial Fibroblasts

    Directory of Open Access Journals (Sweden)

    Claudia Casnici

    2014-01-01

    Full Text Available The composition of synovial fluid in rheumatoid arthritis (RA is complex and strongly influences the microenvironment of joints and it is an inseparable element of the disease. Currently, “in vitro” studies are performed on RA cells cultured in the presence of either recombinant proinflammatory cytokines-conditioned medium or medium alone. In this study, we evaluated the use of synovial fluid, derived from RA patients, as optimal culture condition to perform “in vitro” studies on RA synovial fibroblasts. We observed that synovial fluid is more effective in inducing cell proliferation with respect to TNF-alpha or culture medium alone. Spontaneous apoptosis in fibroblasts was also decreased in response to synovial fluid. The expression of proinflammatory cytokines in the presence of synovial fluid was significantly elevated with respect to cells cultured with TNF-alpha or medium, and the overall morphology of cells was also modified. In addition, modulation of intracellular calcium dynamics elicited in response to synovial fluid or TNF-alpha exposure is different and suggests a role for the purinergic signalling in the modulation of the effects. These results emphasize the importance of using RA synovial fluid in “in vitro” studies involving RA cells, in order to reproduce faithfully the physiopathological environmental characteristic of RA joints.

  18. Metabolic analysis of antibody producing Chinese hamster ovary cell culture under different stresses conditions.

    Science.gov (United States)

    Badsha, Md Bahadur; Kurata, Hiroyuki; Onitsuka, Masayoshi; Oga, Takushi; Omasa, Takeshi

    2016-07-01

    Chinese hamster ovary (CHO) cells are commonly used as the host cell lines concerning their ability to produce therapeutic proteins with complex post-translational modifications. In this study, we have investigated the time course extra- and intracellular metabolome data of the CHO-K1 cell line, under a control and stress conditions. The addition of NaCl and trehalose greatly suppressed cell growth, where the maximum viable cell density of NaCl and trehalose cultures were 2.2-fold and 2.8-fold less than that of a control culture. Contrariwise, the antibody production of both the NaCl and trehalose cultures was sustained for a longer time to surpass that of the control culture. The NaCl and trehalose cultures showed relatively similar dynamics of cell growth, antibody production, and substrate/product concentrations, while they indicated different dynamics from the control culture. The principal component analysis of extra- and intracellular metabolome dynamics indicated that their dynamic behaviors were consistent with biological functions. The qualitative pattern matching classification and hierarchical clustering analyses for the intracellular metabolome identified the metabolite clusters whose dynamic behaviors depend on NaCl and trehalose. The volcano plot revealed several reporter metabolites whose dynamics greatly change between in the NaCl and trehalose cultures. The elastic net identified some critical, intracellular metabolites that are distinct between the NaCl and trehalose. While a relatively small number of intracellular metabolites related to the cell growth, glucose, glutamine, lactate and ammonium ion concentrations, the mechanism of antibody production was suggested to be very complicated or not to be explained by elastic net regression analysis. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Optimizing culture conditions for free-living stages of the nematode parasite Strongyloides ratti.

    Science.gov (United States)

    Dulovic, Alex; Puller, Vadim; Streit, Adrian

    2016-09-01

    The rat parasitic nematode Strongyloides ratti (S. ratti) has recently emerged as a model system for various aspects of parasite biology and evolution. In addition to parasitic parthenogenetic females, this species can also form facultative free-living generations of sexually reproducing adults. These free-living worms are bacteriovorous and grow very well when cultured in the feces of their host. However, in fecal cultures the worms are rather difficult to find for observation and experimental manipulation. Therefore, it has also been attempted to raise S. ratti on Nematode Growth Media (NGM) plates with Escherichia coli OP50 as food, exactly as described for the model nematode Caenorhabditis elegans. Whilst worms did grow on these plates, their longevity and reproductive output compared to fecal cultures were dramatically reduced. In order to improve the culture success we tested other plates occasionally used for C. elegans and, starting from the best performing one, systematically varied the plate composition, the temperature and the food in order to further optimize the conditions. Here we present a plate culturing protocol for free-living stages of S. ratti with strongly improved reproductive success and longevity.

  20. Germ-cell culture conditions facilitate the production of mouse embryonic stem cells.

    Science.gov (United States)

    Ramos-Ibeas, Priscila; Pericuesta, Eva; Fernández-González, Raúl; Gutiérrez-Adán, Alfonso; Ramírez, Miguel Ángel

    2014-09-01

    The derivation of embryonic stem-cell (ESC) lines from blastocysts is a very inefficient process. Murine ESCs are thought to arise from epiblast cells that are already predisposed to a primordial-germ-cell fate. During the process of ESC derivation from B6D2 F1 hybrid mice, if we first culture the embryo from the two-cell stage in medium supplemented with LIF, we improve the quality of the blastocyst. When the blastocyst is then cultured in a germ-line stem-cell culture medium (GSCm), we are able to more efficiently (28.3%) obtain quality ESC lines that have a normal karyotype, proper degree of chimerism, and exhibit germ-line transmission when microinjected into blastocysts. Although germ-cell-specific genes were expressed in all culture medium conditions, GSCm did not shift the transcriptome towards germ-cell specification. A correlation was further observed between ESC derivation efficiency and the expression of some imprinted genes and retrotransposable elements. In conclusion, the combination of LIF supplementation followed by culture in GSCm establishes a higher efficiency method for ESC derivation.

  1. Nonlinear Dielectric Properties of Yeast Cells Cultured in Different Environmental Conditions

    Science.gov (United States)

    Kawanishi, Gomon; Fukuda, Naoki; Muraji, Masafumi

    The harmonics of the electric current through yeast suspensions, the nonlinear dielectric properties of yeast cells, have particular patterns according to the biological activity of the cells and the measurement of these patterns is a technique for determining the activity of living cells. The concentration of glucose and oxygen in yeast culture medium influences the manifestation of fermentation or respiration of yeast cells. Measurements were made with yeast cells (Saccharomyces cerevisiae) cultured aerobically and anaerobically in sufficient glucose concentration, aerobic fermentation and anaerobic fermentation, and aerobically in limited glucose concentration, respiration. The results showed that the harmonics were barely apparent for yeast cells in aerobic fermentation and respiratory; however, cells in the anaerobic fermentation displayed substantial third and fifth harmonics. We can say that environmental condition affects the yeast cells' nonlinear properties, from another viewpoint, the measurements of the nonlinear properties are available to determine the activity of yeast cells adjusted to the conditions of their cultivation.

  2. Comparison of different culture conditions for human mesenchymal stromal cells for clinical stem cell therapy

    DEFF Research Database (Denmark)

    Haack-Sorensen, M.; Friis, T.; Bindslev, L.

    2008-01-01

    OBJECTIVE: Mesenchymal stromal cells (MSCs) from adult bone marrow (BM) are considered potential candidates for therapeutic neovascularization in cardiovascular disease. When implementing results from animal trials in clinical treatment, it is essential to isolate and expand the MSCs under...... used for MSC cultivation in animal studies simulating clinical stem cell therapy. MATERIAL AND METHODS: Human mononuclear cells (MNCs) were isolated from BM aspirates by density gradient centrifugation and cultivated in a GMP-accepted medium (EMEA medium) or in one of four other media. RESULTS: FACS...... conditions following good manufacturing practice (GMP). The aims of the study were first to establish culture conditions following GMP quality demands for human MSC expansion and differentiation for use in clinical trials, and second to compare these MSCs with MSCs derived from culture in four media commonly...

  3. Increase of informative culture of students in the conditions of informatization of education

    Directory of Open Access Journals (Sweden)

    Apshay N.I.

    2010-05-01

    Full Text Available The aspects of informative culture are examined in the conditions of the use of informative electronic resources. It is rotined that student plagiarism is investigation of absence of skills of treatment and processing of electronic information, domain technologies of creation of own educational texts on-line. It is thus necessary to take into account the norms of copyright. The methods of overcoming of negative displays of conduct are offered in an electronic educational environment.

  4. [Culture-filtrate producing condition and biological activity of Fusarium solani].

    Science.gov (United States)

    Ding, Wenjiao; Li, Jinhua; Chai, Zhaoxiang

    2009-10-01

    To study the culture-filtrate producing condition of Fusarium Solani isolated from Astragalus root and explore the mechanism Astragalus root rot disease caused by, in order to find theoretical support for screening resistant germ plasma via mycotoxin. The method of germinating seeds in petri dish with filter paper and inhibition method for embryo growth were used to study the biological activity and the specialty of cultural filtrate of 10 F. solani isolates. The toxin produced by F. solani had strong inhibition effect in the different nutrient media, at different temperatures and under different light conditions. With extension of culturing time, embryo inhibition rate went up gradually with the strongest inhibition at the 12th day and the inhibition ratio between 92.0% -52.0%. The toxin produced at 5 degrees C to 35 degrees C inhibited embryo germination of Astragalus differently with the strongest at 25 degrees C, and next to it at 20,30 degrees C. The impact of light on bioactive substances of the toxin was not statistically distinctive, but the 24-hour darkness was benefit to toxin production. PSC had a stronger inhibition rate than the other nutrient media, next to it was PDB. After autoclaving, the toxin still kept toxic to embryo of Astragalus, which indicated that the toxin was tolerant to high temperatures. The toxin produced by F. solani at different growing condition had strong biological activity, was tolerant to high temperature. The best condition for F. solani to produce toxin was that it was cultured in PSC liquid medium, in dark, at 25 degrees C for 12 d. The toxin produced by isolate HQM40 was non-host specific toxin.

  5. Psychological, cultural and communicative conditioning for sexual education of bilingual deaf pupils

    Directory of Open Access Journals (Sweden)

    García, Mirna Maura

    2010-01-01

    Full Text Available The psychological, cultural and communicative conditions are prerequisite for organizing the educative process of sexuality of deaf pupils with a bilingual approach. En Cuba such a process is developed in a bilingual environment which takes the relation of its components as starting point. Those components include psychic process, personality configurations, bilingual communication and bicultural character of deaf people. This paper is aimed at analyzing the role of each of the component in the process of education. The coordinating relations established between the components create the necessary conditions to achieve the educative goal.

  6. In Vitro Culture Conditions for Maintaining a Complex Population of Human Gastrointestinal Tract Microbiota

    Directory of Open Access Journals (Sweden)

    Bong-Soo Kim

    2011-01-01

    Full Text Available A stable intestinal microbiota is important in maintaining human physiology and health. Although there have been a number of studies using in vitro and in vivo approaches to determine the impact of diet and xenobiotics on intestinal microbiota, there is no consensus for the best in vitro culture conditions for growth of the human gastrointestinal microbiota. To investigate the dynamics and activities of intestinal microbiota, it is important for the culture conditions to support the growth of a wide range of intestinal bacteria and maintain a complex microbial community representative of the human gastrointestinal tract. Here, we compared the bacterial community in three culture media: brain heart infusion broth and high- and low-carbohydrate medium with different growth supplements. The bacterial community was analyzed using denaturing gradient gel electrophoresis (DGGE, pyrosequencing and real-time PCR. Based on the molecular analysis, this study indicated that the 3% fecal inoculum in low-concentration carbohydrate medium with 1% autoclaved fecal supernatant provided enhanced growth conditions to conduct in vitro studies representative of the human intestinal microbiota.

  7. Influence of culture conditions for clinically isolated non-albicans Candida biofilm formation.

    Science.gov (United States)

    Tan, Yulong; Leonhard, Matthias; Ma, Su; Schneider-Stickler, Berit

    2016-11-01

    Non-albicans Candida species have been isolated in increasing numbers in patients. Moreover, they are adept at forming biofilms. This study analyzed biofilm formation of clinically isolated non-albicans Candida, including Candida tropicalis, Candida krusei and Candida parapsilosis under the influence of different growth media (RPMI 1640, YPD and BHI) and several culture variables (inoculum concentration, incubation period and feeding conditions). The results showed that culture conditions strongly influenced non-albicans Candida species biofilm formation. YPD and BHI resulted in larger amount of biofilm formation with higher metabolic activity of biofilms. Furthermore, the growth media seems to have varying effects on adhesion and biofilm development. Growth conditions may also influence biofilm formation, which was enhanced when starting the culture with a larger inoculum, longer incubation period and using a fed-batch system. Therefore, the potential influences of external environmental factors should be considered when studying the non-albicans Candida biofilms in vitro. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Effect of Cultural Conditions on Chitinase Production from Biocontrol Bacterium Against Aflatoxin

    Institute of Scientific and Technical Information of China (English)

    Kai Wang; Peisheng Yan; and Lixin Cao

    2015-01-01

    Chitinase is one of the most important mycolytic enzymes with industrial significance. Statistical methods are employed to optimize cultural conditions with the increased production of chitinase for the selected Serratia marcescens JPP1, which are obtained from peanut hulls in Jiangsu Province, China and exhibit antagonistic activity against aflatoxins. Using single⁃factor experiments the effects of cultural conditions ( broth content, inoculum size and rotation speed) on chitinase production from S. marcescens JPP1 are evaluated. Central composite design of Response Surface Methodology is used to optimize the levels of factors for the best yield of enzymes production. The optimized cultural conditions for obtaining the highest level of chitinase production are 23�2 mL broth content, 116 r/min rotation speed and 4�3% inoculum size. A quadratic regression model of chitinase production is built ( R2 = 0�970 9) and the verification experiments confirm its validity. The maximum chitinase production obtained after the optimization is 29�58 U/mL for a 1�4⁃fold increase.

  9. In vitro culture of individual mouse preimplantation embryos: the role of embryo density, microwells, oxygen, timing and conditioned media.

    Science.gov (United States)

    Kelley, Rebecca L; Gardner, David K

    2017-02-15

    Single embryo culture is suboptimal compared with group culture, but necessary for embryo monitoring, and culture systems should be improved for single embryos. Pronucleate mouse embryos were used to assess the effect of culture conditions on single embryo development. Single culture either before or after compaction reduced cell numbers (112.2 ± 3.1; 110.2 ± 3.5) compared with group culture throughout (127.0 ± 3.4; P media volume from 20 µl to 2 µl increased blastocyst cell numbers in single embryos cultured in 5% oxygen (84.4 ± 3.2 versus 97.8 ± 2.8; P media to single embryos increased hatching rate and blastocyst cell number (91.5 ± 4.7 versus 113.1 ± 4.4; P media volume and microwells influence single embryo development; and embryo-conditioned media may substitute for group culture.

  10. Ebselen Preserves Tissue-Engineered Cell Sheets and their Stem Cells in Hypothermic Conditions

    Science.gov (United States)

    Katori, Ryosuke; Hayashi, Ryuhei; Kobayashi, Yuki; Kobayashi, Eiji; Nishida, Kohji

    2016-01-01

    Clinical trials have been performed using autologous tissue-engineered epithelial cell sheets for corneal regenerative medicine. To improve stem cell-based therapy for convenient clinical practice, new techniques are required for preserving reconstructed tissues and their stem/progenitor cells until they are ready for use. In the present study, we screened potential preservative agents and developed a novel medium for preserving the cell sheets and their stem/progenitor cells; the effects were evaluated with a luciferase-based viability assay. Nrf2 activators, specifically ebselen, could maintain high ATP levels during preservation. Ebselen also showed a strong influence on maintenance of the viability, morphology, and stem cell function of the cell sheets preserved under hypothermia by protecting them from reactive oxygen species-induced damage. Furthermore, ebselen drastically improved the preservation performance of human cornea tissues and their stem cells. Therefore, ebselen shows good potential as a useful preservation agent in regenerative medicine as well as in cornea transplantation. PMID:27966584

  11. Ligninolytic enzyme production in selected sub-tropical white rot fungi under different culture conditions.

    Science.gov (United States)

    Tekere, M; Zvauya, R; Read, J S

    2001-01-01

    Lignin peroxidase (LiP), manganese peroxidase (MnP) and laccase activities in selected sub-tropical white rot fungal species from Zimbabwe were determined. The enzyme activities were assayed at varying concentrations of C, N and Mn2+. Manganese peroxidase and laccase activities were the only expressed activities in the fungi under the culture conditions tested. Trametes species, T. cingulata, T. elegans and T. pocas produced the highest manganese peroxidase activities in a medium containing high carbon and low nitrogen conditions. High nitrogen conditions favoured high manganese peroxidase activity in DSPM95, L. velutinus and Irpex spp. High manganese peroxidase activity was notable for T. versicolor when both carbon and nitrogen in the medium were present at high levels. Laccase production by the isolates was highest under conditions of high nitrogen and those conditions with both nitrogen and carbon at high concentration. Mn2+ concentrations between 11-25 ppm gave the highest manganese peroxidase activity compared to a concentration of 40 ppm or when there was no Mn2+ added. Laccase activity was less influenced by Mn2+ levels. While some laccase activity was produced in the absence of Mn2+, the enzyme levels were higher when Mn2+ was added to the culture medium.

  12. A New Efficient Synthetic Method for 3-1odothyronamine and Its Potent Hypothermic Efficacy%A New Efficient Synthetic Method for 3-1odothyronamine and Its Potent Hypothermic Efficacy

    Institute of Scientific and Technical Information of China (English)

    Kim, Joong-Gon; Song, Young-Kyu; Jeon, Su-Yeon; Lim, Ye-Ji; Ju, Hyunwo; Choi, Inho; Chung, Chan-Moon

    2011-01-01

    We developed a new efficient synthetic method for a 3-iodothyronamine (TjAM) that has advantages of less synthetic steps and much higher overall yield compared to those in the conventional method. Our animal study showed that TTAM synthesized by the method exerted a potent hypothermic effect in non-hibernator mice.

  13. Statistical analysis of optimal culture conditions for Gluconacetobacter hansenii cellulose production.

    Science.gov (United States)

    Hutchens, S A; León, R V; O'neill, H M; Evans, B R

    2007-02-01

    The purpose of this study was to analyse the effects of different culture parameters on Gluconacetobacter hansenii (ATCC 10821) to determine which conditions provided optimum cellulose growth. Five culture factors were investigated: carbon source, addition of ethanol, inoculation ratio, pH and temperature. jmp Software (SAS, Cary, NC, USA) was used to design this experiment using a fractional factorial design. After 22 days of static culture, the cellulose produced by the bacteria was harvested, purified and dried to compare the cellulose yields. The results were analysed by fitting the data to a first-order model with two-factor interactions. The study confirmed that carbon source, addition of ethanol, and temperature were significant factors in the production of cellulose of this G. hansenii strain. While pH alone does not significantly affect average cellulose production, cellulose yields are affected by pH interaction with the carbon source. Culturing the bacteria on glucose at pH 6.5 produces more cellulose than at pH 5.5, while using mannitol at pH 5.5 produces more cellulose than at pH 6.5. The bacteria produced the most cellulose when cultured on mannitol, at pH 5.5, without ethanol, at 20 degrees C. Inoculation ratio was not found to be a significant factor or involved in any significant two-factor interaction. These findings give insight into the conditions necessary to maximize cellulose production from this G. hansenii strain. In addition, this work demonstrates how the fractional factorial design can be used to test a large number of factors using an abbreviated set of experiments. Fitting a statistical model determined the significant factors as well as the significant two-factor interactions.

  14. Comparative study on the stem cell phenotypes of C6 cells under different culture conditions

    Institute of Scientific and Technical Information of China (English)

    ZHANG Suo-jun; YE Fei; XIE Rui-fan; HU Feng; WANG Bao-feng; WAN Feng; GUO Dong-sheng; LEI Ting

    2011-01-01

    Background Glioma stem cell (GSC) hypothesis posits that a subpopulation of cells within gliomas have true clonogenic and tumorigenic potential. Significantly, a more controversial correlate to GSC is that cells in different culture conditions might display distinct stem cell properties. Considering these possibilities, we applied an approach comparing stem cell characteristics of C6 glioma cells under different culture conditions.Methods C6 cells were cultured under three different growth conditions, i.e., adherent growth in conventional 10% serum medium, non-adherent spheres growth in serum-free medium, as well as adherent growth on laminin-coated flask in serum-free medium. Growth characteristics were detected contrastively through neurosphere formation assay and cell cycle analysis. Markers were determined by immunofluorescence, relative-quantitative reverse transcription (RT)-PCR,Western blotting and flow cytometry. Side population cells were analyzed via flow cytometry. Tumor models were detected by magnetic resonance imaging and hematoxylin & eosin staining. Data analyses were performed with SPSS software (17.0).Results C6 cells (C6-Adh, C6-SC-Sph and C6-SC-Adh) showed distinctive growth patterns and proliferation capacity.Compared to suspending C6-SC-Sph, adherent C6-Adh and C6-SC-Adh displayed higher growth ratio. C6-SC-Sph and C6-SC-Adh showed enhanced capability of neurosphere formation and self-renewal. High side population ratio was detected in C6-SC-Sph and C6-SC-Adh. CD133 was not detected in all three kinds of cells. Conversely, Nestin and β-Ⅲ-tubulin were demonstrated positive, nonetheless with no statistical significance (P >0.05). Interestingly, lower expression of glial fibrillary acidic protein was demonstrated in C6-SC-Sph and C6-SC-Adh. C6-Adh, C6-SC-Sph and C6-SC-Adh were all displayed in situ oncogenicity, while statistical difference of survival time was not confirmed.Conclusions C6 glioma cell line is endowed with some GSC

  15. Comparative study on the stem cell phenotypes of C6 cells under different culture conditions.

    Science.gov (United States)

    Zhang, Suo-Jun; Ye, Fei; Xie, Rui-Fan; Hu, Feng; Wang, Bao-Feng; Wan, Feng; Guo, Dong-Sheng; Lei, Ting

    2011-10-01

    Glioma stem cell (GSC) hypothesis posits that a subpopulation of cells within gliomas have true clonogenic and tumorigenic potential. Significantly, a more controversial correlate to GSC is that cells in different culture conditions might display distinct stem cell properties. Considering these possibilities, we applied an approach comparing stem cell characteristics of C6 glioma cells under different culture conditions. C6 cells were cultured under three different growth conditions, i.e., adherent growth in conventional 10% serum medium, non-adherent spheres growth in serum-free medium, as well as adherent growth on laminin-coated flask in serum-free medium. Growth characteristics were detected contrastively through neurosphere formation assay and cell cycle analysis. Markers were determined by immunofluorescence, relative-quantitative reverse transcription (RT)-PCR, Western blotting and flow cytometry. Side population cells were analyzed via flow cytometry. Tumor models were detected by magnetic resonance imaging and hematoxylin & eosin staining. Data analyses were performed with SPSS software (17.0). C6 cells (C6-Adh, C6-SC-Sph and C6-SC-Adh) showed distinctive growth patterns and proliferation capacity. Compared to suspending C6-SC-Sph, adherent C6-Adh and C6-SC-Adh displayed higher growth ratio. C6-SC-Sph and C6-SC-Adh showed enhanced capability of neurosphere formation and self-renewal. High side population ratio was detected in C6-SC-Sph and C6-SC-Adh. CD133 was not detected in all three kinds of cells. Conversely, Nestin and β-III-tubulin were demonstrated positive, nonetheless with no statistical significance (P > 0.05). Interestingly, lower expression of glial fibrillary acidic protein was demonstrated in C6-SC-Sph and C6-SC-Adh. C6-Adh, C6-SC-Sph and C6-SC-Adh were all displayed in situ oncogenicity, while statistical difference of survival time was not confirmed. C6 glioma cell line is endowed with some GSC phenotypes that can be moderately enriched in

  16. Determination of an adequate perfusion pressure for continuous dual vessel hypothermic machine perfusion of the rat liver

    NARCIS (Netherlands)

    't Hart, Nils A.; der van Plaats, Arjan; Leuvenink, Henri G. D.; van Goor, Harry; Wiersema-Buist, Janneke; Verkerke, Gijsbertus J.; Rakhorst, Gerhard; Ploeg, Rutger J.

    Hypothermic machine perfusion (HMP) provides better protection against ischemic damage of the kidney compared to cold-storage. The required perfusion pressures needed for optimal HMP of the liver are, however, unknown. Rat livers were preserved in University of Wisconsin organ preservation solution

  17. Energy charge restoration, mitochondrial protection and reversal of preservation induced liver injury by hypothermic oxygenation prior to reperfusion.

    Science.gov (United States)

    Stegemann, Judith; Minor, Thomas

    2009-06-01

    We investigated the benefit of two different techniques for resuscitating marginally preserved liver grafts, unexpectedly subjected to long storage times. Rat livers were cold-stored for 22h (CS22). Some grafts were subsequently subjected to 90min of hypothermic reconditioning by venous systemic oxygen persufflation (VSOP) or oxygenated hypothermic machine perfusion (HMP). Livers stored for only 6h (CS6) served as reference. Viability of the livers was assessed thereafter by warm reperfusion in vitro. VSOP and HMP significantly increased endischemic tissue energy charge, and abrogated cellular enzyme loss upon reperfusion even significantly below control values. Ammonia clearance and bile production were more than 3-fold improved to similar values as CS6. Hypothermic reconditioning by both techniques induced mitochondrial chaperone expression (HSP70 family) and significantly improved early resumption of oxygen utilisation upon reperfusion. Viability of long preserved liver grafts can be augmented by transient hypothermic reconditioning using either machine perfusion or gaseous oxygen persufflation, both preventing initial mitochondrial dysfunction and subsequent tissue injury.

  18. The 6-chromanol derivate SUL-109 enables prolonged hypothermic storage of adipose tissue-derived stem cells

    NARCIS (Netherlands)

    Hajmousa, Ghazaleh; Vogelaar, Pieter; Brouwer, Linda A; van der Graaf, Adrianus C; Henning, Robert H; Krenning, Guido

    2017-01-01

    Encouraging advances in cell therapy research with adipose derived stem cells (ASC) require an effective short-term preservation method that provides time for quality control and transport of cells from their manufacturing facility to their clinical destination. Hypothermic storage of cells in their

  19. The 6-chromanol derivate SUL-109 enables prolonged hypothermic storage of adipose tissue-derived stem cells

    NARCIS (Netherlands)

    Hajmousa, Ghazaleh; Vogelaar, Pieter; Brouwer, Linda A.; Graaf, Adrianus Cornelis van der; Henning, Robert H.; Krenning, Guido

    Encouraging advances in cell therapy research with adipose derived stem cells (ASC) require an effective short-term preservation method that provides time for quality control and transport of cells from their manufacturing facility to their clinical destination. Hypothermic storage of cells in their

  20. Popular culture and the "new human condition": Catastrophe narratives and climate change

    Science.gov (United States)

    Bulfin, Ailise

    2017-09-01

    Striking popular culture images of burnt landscapes, tidal waves and ice-bound cities have the potential to dramatically and emotively convey the dangers of climate change. Given that a significant number of people derive a substantial proportion of their information on the threat of climate change, or the "new human condition", from popular culture works such as catastrophe movies, it is important that an investigation into the nature of the representations produced be embedded in the attempt to address the issue. What climate change-related messages may be encoded in popular films, television and novels, how are they being received, and what effects may they have? This article adopts the cultural studies perspective that popular culture gives us an important means by which to access the "structures of feeling" that characterise a society at a particular historic juncture: the views held and emotional states experienced by significant amounts of people as evident in disparate forms of cultural production. It further adopts the related viewpoint that popular culture has an effect upon the society in which it is consumed, as well as reflecting that society's desires and concerns - although the nature of the effect may be difficult to quantify. From this position, the article puts forward a theory on the role of ecological catastrophe narratives in current popular culture, before going on to review existing critical work on ecologically-charged popular films and novels which attempts to assess their effects on their audiences. It also suggests areas for future research, such as the prevalent but little studied theme of natural and environmental disaster in late-Victorian science fiction writing. This latter area is of interest because it reveals the emergence of an ecological awareness or structure of feeling as early as the late-nineteenth century, and allows the relationship of this development to environmental policy making to be investigated because of the

  1. Nonmicrobial aerobic methane emission from poplar shoot cultures under low-light conditions.

    Science.gov (United States)

    Brüggemann, Nicolas; Meier, Rudolf; Steigner, Dominik; Zimmer, Ina; Louis, Sandrine; Schnitzler, Jörg-Peter

    2009-06-01

    The aerobic formation of methane in plants has been reported previously, but has been questioned by a number of researchers. Recently, isotopic evidence demonstrated that ultraviolet irradiation and heating lead to photochemical or thermal aerobic methane formation mainly from plant pectin in the absence of microbial methane production. However, the origin of aerobic methane formation from plant material observed under low temperature and low-light/dark conditions is still unclear. Here we show that Grey poplar (Populus × canescens, syn. Populus tremula × Populus alba) plants derived from cell cultures under sterile conditions released 13C-labeled methane under low-light conditions after feeding the plants with 13CO2. Molecular biological analysis proved the absence of any microbial contamination with known methanogenic microorganisms and ruled out the possibility that methane emission from our poplar shoot cultures under aerobic low-light/dark and ambient temperature conditions could be of microbial origin. The CH4 release rates in our experiment were in the range of 0.16-0.7 ng g-1 DW h-1, adding evidence to the growing opinion that the quantitative role of aerobic methane emissions from plants in the global methane budget, at least from cold temperate or boreal regions, is only of minor importance.

  2. Native biofilm cultured under controllable condition and used in mediated method for BOD measurement.

    Science.gov (United States)

    Liu, Ling; Deng, Liu; Yong, Daming; Dong, Shaojun

    2011-05-15

    In this article, we developed a native biofilm (NBF) bioreactor used for biochemical oxygen demand mediated method (BOD(Med)). There were two innovations differed from previous BOD(Med) assay. Firstly, the immobilization of microorganisms was adopted in BOD(Med). Secondly, the NBF was introduced for BOD measurement. The NBF bioreactor has been characterized by optical microscopy. A culture condition of NBF with 24h, 35°C and pH 7 was optimized. Furthermore, a measuring condition with 35°C, pH 7 and 55 mM ferricyanide in 1h incubation were optimized. Based on the optimized condition, the real wastewater samples from local sewage treatment plant had been measured. Performances of the NBFs proposed at different culture conditions were recorded for 110 d, and the results indicated that long-term storage stability was obtained. With the proposed method, an uncontaminated native microbial source solution can be obtained from a wastewater treatment plant. In this way, we can ensure that the microbial species of all in the NBF are same as that in the target to be measured.

  3. Defining conditions for the co-culture of Caco-2 and HT29-MTX cells using Taguchi design.

    Science.gov (United States)

    Chen, Xiu-Min; Elisia, Ingrid; Kitts, David D

    2010-01-01

    The co-culture of Caco-2 and HT29 cells for testing intestinal drug and nutrient transport and metabolism provides the presence of both absorptive and goblet cells, both of which have different culture requirements for optimal growth and function. The research on the co-culture of Caco-2 and HT29 cells is very limited in respect to refining specific conditions that reduce intra- and inter-laboratory variations. In the present study we reported conditions that enable reproducible results to be obtained for drug permeability using in vitro co-culture of Caco-2 and HT29-MTX based on Taguchi experimental design. The selection of four factors that specified cell culture conditions, namely culture medium, seeding time, seeding density, and Caco-2:HT29-MTX ratio on TEER value and individual permeability coefficients of propranolol, ketoprofen and furosemide was established. Based on the selected conditions for co-culture, we also confirmed the functionality of the final chosen culture condition using nitric oxide as an indicator of intestinal inflammation. Choice of cell culture time and culture medium represented two of the most important factors that affected TEER values and the permeability coefficients of the model drugs. On the other hand, the seeding density and the Caco-2:HT29-MTX ratio exerted no significant influence on TEER values and the drug permeability coefficients. No absolute optimal cell culture condition could be obtained for all drugs; however subsequent confirmation experiments concluded that excellent precision for TEER values and drug permeability coefficients was obtained from the two operators using the following combination of conditions, namely an initial seeding density of 1 x 10(5) Caco-2 and HT29-MTX cells/cm(2) at a ratio of 9:1, followed by a 21day culture time in MEM medium. Finally, functionality of the co-culture model system using the above selected in vitro conditions resulted in comparable nitric oxide synthesis to that of a Caco-2

  4. Establishment of trophoblast stem cells under defined culture conditions in mice.

    Directory of Open Access Journals (Sweden)

    Yasuhide Ohinata

    Full Text Available The inner cell mass (ICM and trophoblast cell lineages duet early embryonic development in mammals. After implantation, the ICM forms the embryo proper as well as some extraembryonic tissues, whereas the trophoectoderm (TE exclusively forms the fetal portion of the placenta and the trophoblast giant cells. Although embryonic stem (ES cells can be derived from ICM in cultures of mouse blastocysts in the presence of LIF and/or combinations of small-molecule chemical compounds, and the undifferentiated pluripotent state can be stably maintained without use of serum and feeder cells, defined culture conditions for derivation and maintenance of undifferentiated trophoblast stem (TS cells have not been established. Here, we report that addition of FGF2, activin A, XAV939, and Y27632 are necessary and sufficient for derivation of TS cells from both of E3.5 blastocysts and E6.5 early postimplantation extraembryonic ectoderm. Moreover, the undifferentiated TS cell state can be stably maintained in chemically defined culture conditions. Cells derived in this manner expressed TS cell marker genes, including Eomes, Elf5, Cdx2, Klf5, Cdh1, Esrrb, Sox2, and Tcfap2c; differentiated into all trophoblast subtypes (trophoblast giant cells, spongiotrophoblast, and labyrinthine trophoblast in vitro; and exclusively contributed to trophoblast lineages in chimeric animals. This delineation of minimal requirements for derivation and self-renewal provides a defined platform for precise description and dissection of the molecular state of TS cells.

  5. Growth of Geobacter sulfurreducens under nutrient-limiting conditions in continuous culture.

    Science.gov (United States)

    Esteve-Núñez, Abraham; Rothermich, Mary; Sharma, Manju; Lovley, Derek

    2005-05-01

    A system for growing Geobacter sulfurreducens under anaerobic conditions in chemostats was developed in order to study the physiology of this organism under conditions that might more closely approximate those found in the subsurface than batch cultures. Geobacter sulfurreducens could be cultured under acetate-limiting conditions with fumarate or Fe(III)-citrate as the electron acceptor at growth rates between 0.04 and 0.09 h(-1). The molar growth yield was threefold higher with fumarate as the electron acceptor than with Fe(III), despite the lower mid-point potential of the fumarate/succinate redox couple. When growth was limited by availability of fumarate, high steady-state concentrations were detected, suggesting that fumarate is unlikely to be an important electron acceptor in sedimentary environments. The half-saturation constant, Ks, for acetate in Fe(III)-grown cultures (10 microM) suggested that the growth of Geobacter species is likely to be acetate limited in most subsurface sediments, but that when millimolar quantities of acetate are added to the subsurface in order to promote the growth of Geobacter for bioremediation applications, this should be enough to overcome any acetate limitations. When the availability of electron acceptors, rather than acetate, limited growth, G. sulfurreducens was less efficient in incorporating acetate into biomass but had higher respiration rates, a desirable physiological characteristic when adding acetate to stimulate the activity of Geobacter species during in situ uranium bioremediation. These results demonstrate that the ability to study the growth of G. sulfurreducens under steady-state conditions can provide insights into its physiological characteristics that have relevance for its activity in a diversity of sedimentary environments.

  6. Synergism of diabetic and inflammatory culture conditions on reactivity of isolated small arteries

    DEFF Research Database (Denmark)

    Blædel, Martin Mads; Boonen, Harrie C.M.; Sams Nielsen, Anette

    . Arteries that had been incubated in the presence of either D-glucose, insulin, or TNFa alone, displayed unchanged sensitivity and max. responses to NA as compared to control conditions (21 hour incubation in EBM-2 only). However, when arteries were incubated in combinations of glucose, insulin or TNF......-a, the NA-induced max. responses and sensitivity significantly increased. Conclusion: These results suggest that the continuous presence of inflammatory cytokines may significantly enhance hyperglycaemia and hyperinsulinaemia-induced changes in vascular reactivity of cultured small arteries. An increased...... by wire myography as a response to cumulatively increasing concentrations of noradrenaline (NA). Results: 21 hour culture of isolated mesenteric arteries significantly reduced the arteries maximal high potassium-induced contractile reactivity and increased the contractility to noradrenaline slightly...

  7. Development of tissue culture techniques and hardware to study mineralization under microgravity conditions

    Science.gov (United States)

    van Loon, J. J. W. A.; Veldhuijzen, J. P.; Windgassen, E. J.; Brouwer, T.; Wattel, K.; van Vilsteren, M.; Maas, P.

    1994-08-01

    To study the effects of weightlessness on mouse fetal long bone rudiment growth and mineralization we have developed a tissue culture system for the Biorack facility of Spacelab. The technique uses standard liquid tissue culture medium, supplemented with Na-β-glycerophosphate, confined in gas permeable polyethylene bags mounted inside ESA Biorack Type I experiment containers. The containers can be flushed with an air/5% CO2 gas mixture necessary for the physiological bicarbonate buffer used. Small amounts of fluid can be introduced at the beginning (e.g. radioactive labels for incorporation studies) or at the end of the experiment (fixatives). A certain form of mechanical stimulation (continuous compression) can be used to counteract the, possibly, adverse effect of μ-gravity. Using 16 day old metatarsals the in vitro calcification process under μ-gravity conditions can be studied for a 4 day period.

  8. The Hypothermic Influence on CHOP and Ero1-α in an Endoplasmic Reticulum Stress Model of Cerebral Ischemia

    Directory of Open Access Journals (Sweden)

    Gagandip K. Poone

    2015-05-01

    Full Text Available Hypoxia induced endoplasmic reticulum stress causes accumulation of unfolded proteins in the endoplasmic reticulum and activates the unfolded protein response, resulting in apoptosis through CCAAT-enhancer-binding protein homologous protein (CHOP activation. In an in vitro and in vivo model of ischemic stroke, we investigated whether hypothermia regulates the unfolded protein response of CHOP and Endoplasmic reticulum oxidoreductin-α (Ero1-α, because Ero1-α is suggested to be a downstream CHOP target. The gene expression of CHOP and Ero1-α was measured using Quantitative-PCR (Q-PCR in rat hippocampi following global cerebral ischemia, and in hypoxic pheochromocytoma cells during normothermic (37 °C and hypothermic (31 °C conditions. As a result of ischemia, a significant increase in expression of CHOP and Ero1-α was observed after three, six and twelve hours of reperfusion following global ischemia. A stable increase in CHOP expression was observed throughout the time course (p < 0.01, p < 0.0001, whereas Ero1-α expression peaked at three to six hours (p < 0.0001. Induced hypothermia in hypoxia stressed PC12 cells resulted in a decreased expression of CHOP after three, six and twelve hours (p < 0.0001. On the contrary, the gene expression of Ero1-α increased as a result of hypothermia and peaked at twelve hours (p < 0.0001. Hypothermia attenuated the expression of CHOP, supporting that hypothermia suppress endoplasmic reticulum stress induced apoptosis in stroke. As hypothermia further induced up-regulation of Ero1-α, and since CHOP and Ero1-α showed differential regulation as a consequence of both disease (hypoxia and treatment (hypothermia, we conclude that they are regulated independently.

  9. Effect of culture conditions on the growth of biomass Yarrowia lipolytica - producing protein feed

    Directory of Open Access Journals (Sweden)

    O. S. Korneeva

    2016-01-01

    Full Text Available Fodder yeast is highly valuable protein-vitamin products. Protein digestibility by yeast and amino acid content, superior proteins of animal origin. Fodder yeast protein digested in animals by 95 %. The biological value of yeast protein is determined by the presence of a significant amount of essential amino acids. Moreover, yeast cells contain many vitamins microelement and a significant amount of fat, in which the predominant unsaturated fatty acid. Currently, fodder yeast successfully used in livestock and poultry, so the demand for them is increasing every year. For the production of fodder yeast using a yeast having the necessary technological properties: the ability of rapid growth in aerobic conditions to form protein, amino acids and vitamins, resistant crop production, the development of resistance to foreign microorganisms. Intensive education yeast biomass contributes to a number of conditions, including pH, temperature and aeration of the culture occupy an important place. The main criterion for comparison and selection of a culture medium for this is the speed of its growth and ability to assimilate all of the nutrients with high economic factor. It depends on the performance of the enterprise, energy consumption and other technical - economic performance. The effect of pH of the medium on the biomass accumulation of yeast Yarrowia lipolytica. Found that at pH 5,2 - 5,5 observed maximum growth rate of the yeast cells. The effect of temperature on the accumulation of yeast biomass. The temperature of the culture medium determines the intensity of metabolism in cells. It was found that the optimal growth temperature of the culture Yarrowia lipolytica is 33 0C. The effect of aeration on the growth rate of yeast cells. Tro-established that the maximum increase of biomass was obtained with the aeration of 70 cm3 /cm3hrs.

  10. Glycolysis-Optimized Conditions Enhance Maintenance of Regenerative Integrity in Mouse Spermatogonial Stem Cells during Long-Term Culture

    Directory of Open Access Journals (Sweden)

    Aileen R. Helsel

    2017-05-01

    Full Text Available The application of spermatogonial stem cell (SSC transplantation for regenerating male fertility requires amplification of SSC number in vitro during which the integrity to re-establish spermatogenesis must be preserved. Conventional conditions supporting proliferation of SSCs from mouse pups have been the basis for developing methodology with adult human cells but are unrefined. We found that the integrity to regenerate spermatogenesis after transplantation declines with advancing time in primary cultures of pup SSCs and that the efficacy of deriving cultures from adult SSCs is limited with conventional conditions. To address these deficiencies, we optimized the culture environment to favor glycolysis as the primary bioenergetics process. In these conditions, regenerative integrity of pup and adult SSCs was significantly improved and the efficiency of establishing primary cultures was 100%. Collectively, these findings suggest that SSCs are primed for conditions favoring glycolytic activity, and matching culture environments to their bioenergetics is critical for maintaining functional integrity.

  11. A novel MCF-10A line allowing conditional oncogene expression in 3D culture

    Directory of Open Access Journals (Sweden)

    Danke Christina

    2011-07-01

    Full Text Available Introduction Non-transformed mammary epithelial cell lines such as MCF-10A recapitulate epithelial morphogenesis in three-dimensional (3D tissue culture by forming acinar structures. They represent an important tool to characterize the biological properties of oncogenes and to model early carcinogenic events. So far, however, these approaches were restricted to cells with constitutive oncogene expression prior to the set-up of 3D cultures. Although very informative, this experimental setting has precluded the analysis of effects caused by sudden oncoprotein expression or withdrawal in established epithelial cultures. Here, we report the establishment and use of a stable MCF-10A cell line (MCF-10Atet fitted with a novel and improved doxycycline (dox-regulated expression system allowing the conditional expression of any transgene. Methods MCF-10Atet cells were generated by stable transfection with pWHE644, a vector expressing a second generation tetracycline-regulated transactivator and a novel transcriptional silencer. In order to test the properties of this new repressor/activator switch, MCF-10Atet cells were transfected with a second plasmid, pTET-HABRAF-IRES-GFP, which responds to dox treatment with the production of a bi-cistronic transcript encoding hemagglutinin-tagged B-Raf and green fluorescent protein (GFP. This improved conditional expression system was then characterized in detail in terms of its response to various dox concentrations and exposure times. The plasticity of the phenotype provoked by oncogenic B-RafV600E in MCF-10Atet cells was analyzed in 3D cultures by dox exposure and subsequent wash-out. Results MCF-10Atet cells represent a tightly controlled, conditional gene expression system. Using B-RafV600E as a model oncoprotein, we show that its sudden expression in established 3D cultures results in the loss of acinar organization, the induction of an invasive phenotype and hallmarks of epithelial-to-mesenchymal transition

  12. [Developmental conditions of medicine and spiritual culture at the time of grand Prince Stefan Nemanja].

    Science.gov (United States)

    Ilić-Tasić, Slobodanka; Ravinić, Dragan; Pantović, Mihailo; Bojanić, Vladmila; Pavlović, Budimir

    2012-01-01

    Medieval medicine and pharmacy were the subjects of numerous researches. The enviable level of health culture and social care of the diseased and debilitated people of the Serbian medieval state was far advanced for the time. However, there are scarce written records of the conditions. The purpose of this paper is to point out the conditions which enabled the foundation of the first Serbian hospitals, development of scientific medicine and spiritual culture in medieval Serbian lands. Favourable conditions for the development of medieval medicine are linked with the arrival of the Nemanjić dynasty to the throne of the Serbian medieval state, i.e. Stefan Nemanja, and later with the life and work of his son Prince Rastko Nemanjić - Saint Sava. The wide field of activity of the Grand Prince Stefan Nemanja included the creation of stable and independent state ("the unifier of all Serbian lands") with a significant and shrewd political activity (vassal to Byzantine Emperor Manuel Comnenus, participation in great alliances against Byzantium), building of churches, defender of the Orthodox Christianity, foundation of the first Serbian hospital outside of borders of Serbian state in Hilandar monastery, social care about people and cultivating literary activity.

  13. Different Effects of Therapeutic Ultrasound Parameters and Culture Conditions on Gene Transfection Efficiency

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhi-yi; XIE Ming-xing; WANG Xin-fang; LU Qing

    2008-01-01

    Objective:To investigate the effect of different therapeutic ultrasound(TUS)parameters and culture conditions on the cell viability and transfection efficiency of human cervical cancer cells(HeLa). Methods:HeLa cells were cultured using two different protocols(in suspension or in monolayer).Subsequently,cells were exposed to different TUS intensity(0.4 W/cm2,1.0 W/cm2,1.6 W/cm2,2.2 W/cm2),duty cycle(DC)(10%,20%,50%),exposure time(1 min or 3 min).Cell viability was analyzed by flow cytometry.Gene transfection of red fluorescent protein(DsRED)was detected. Results:TUS intensity and duty cycle had a great impact on the overall results(P<0.01).Cell injury were found to increase progressively with intensity (1.6 W/cm2,2.2 W/cm2)and duty cycle(50%)and cell detachment was accompanied by ultrasound exposure in adherent cells.Results of factorial design showed that the fashion of cell culture and the TUS parameters had interaction(P<0.0 1).The ideal conditions that cell viability above 80% producing maximum efficiency were noted to be at 1.0 W/cm2 irradiated 3 min with a duty cycle of 20% in cell suspension. Conclusion:TUS parameters and transfection conditions have a great impact on the gene transfection and cell viability.Optimal parameters could enhance cell membrane permeability,which facilitate to delivering the macromolecules into cells.

  14. A 3D-psoriatic skin model for dermatological testing: The impact of culture conditions

    Directory of Open Access Journals (Sweden)

    Alexandra Duque-Fernandez

    2016-12-01

    Full Text Available Inadequate representation of the human tissue environment during a preclinical screen can result in inaccurate predictions of compound effects. Consequently, pharmaceutical investigators are searching for preclinical models that closely resemble original tissue for predicting clinical outcomes.The current research aims to compare the impact of using serum-free medium instead of complete culture medium during the last step of psoriatic skin substitute reconstruction. Skin substitutes were produced according to the self-assembly approach.Serum-free conditions have no negative impact on the reconstruction of healthy or psoriatic skin substitutes presented in this study regarding their macroscopic or histological appearances. ATR-FTIR results showed no significant differences in the CH2 bands between psoriatic substitutes cultured with or without serum, thus suggesting that serum deprivation did not have a negative impact on the lipid organization of their stratum corneum. Serum deprivation could even lead to a better organization of healthy skin substitute lipids. Percutaneous analyses demonstrated that psoriatic substitutes cultured in serum-free conditions showed a higher permeability to hydrocortisone compared to controls, while no significant differences in benzoic acid and caffeine penetration profiles were observed.Results obtained with this 3D-psoriatic skin substitute demonstrate the potential and versatility of the model. It could offer good prediction of drug related toxicities at preclinical stages performed in order to avoid unexpected and costly findings in the clinic.Together, these findings offer a new approach for one of the most important challenges of the 21st century, namely, prediction of drug toxicity.•Impact of serum-free conditions during psoriatic skin substitutes reconstruction.•Lipids disorganization of healthy and psoriatic skin substitutes.•Permeation profiles of healthy skin substitutes.•Permeation profiles of

  15. Optimal isolation and xeno-free culture conditions for limbal stem cell function.

    Science.gov (United States)

    Stasi, Kalliopi; Goings, DaVida; Huang, Jiayan; Herman, Lindsay; Pinto, Filipa; Addis, Russell C; Klein, Dahlia; Massaro-Giordano, Giacomina; Gearhart, John D

    2014-01-20

    To preserve limbal stem cell (LSC) function in vitro with xenobiotic-free culture conditions. Limbal epithelial cells were isolated from 139 donors using 15 variations of three dissociation solutions. All culture conditions were compared to the baseline condition of murine 3T3-J3 feeders with xenobiotic (Xeno) keratinocyte growth medium at 20% O2. Five Xeno and Xeno-free media with increasing concentrations of calcium and epidermal growth factor (EGF) were evaluated at 5%, 14%, and 20% O2. Human MRC-5, dermal (fetal, neonatal, or adult), and limbal stromal fibroblasts were compared. Statistical analysis was performed on the number of maximum serial weekly passages, percentage of aborted colonies, colony-forming efficiency (CFE), p63α(bright) cells, and RT-PCR ratio of p63α/K12. Immunocytochemistry and RT-PCR for p63α, ABCG2, Bmi1, C/EBPδ , K12, and MUC1 were performed to evaluate phenotype. Dispase/TrypLE was the isolation method that consistently showed the best yield, viability, and CFE. On 3T3-J2 feeders, Xeno-free medium with calcium 0.1 mM and EGF 10 ng/mL at 20% O2 supported more passages with equivalent percentage of aborted colonies, p63α(bright) cells, and p63α/K12 RT-PCR ratio compared to baseline Xeno-media. With this Xeno-free medium, MRC-5 feeders showed the best performance, followed by fetal, neonatal, adult HDF, and limbal fibroblasts. MRC-5 feeders supported serial passages with sustained high expression of progenitor cell markers at levels as robust as the baseline condition without significant difference between 20% and 5% O2. The LSC function can be maintained in vitro under appropriate Xeno-free conditions.

  16. Phytoplasma detection in tissue culture of Gladiolus plants grown under various conditions

    Directory of Open Access Journals (Sweden)

    Maria Kamińska

    2014-01-01

    Full Text Available To test whether phytoplasmas are sensitive to temperature, phytoplasma affected micropropagated gladiolus plants were grown under varying conditions of media content and temperature, in the presence or absence of light. PCR analysis indicated that phytoplasma detection was more successful in plants grown at low temperatures. Plants kept from one to three months at reduced temperature tended to have higher titre of phytoplasma than the plants maintained in stable 20oC high temperature. The best detection was in plants grown on medium containing kinetin+NAA and in the presence of light. In those plants phytoplasmas were detected in direct PCR after one month of culture.

  17. In vitro storage of cedar shoot cultures under minimal growth conditions.

    Science.gov (United States)

    Renau-Morata, Begoña; Arrillaga, Isabel; Segura, Juan

    2006-07-01

    We developed procedures for slow-growth storage of Cedrus atlantica and Cedrus libani microcuttings of juvenile and adult origin, noting factors favouring the extension of subculture intervals. Microcuttings could be stored effectively up to 6 months at 4 degrees C and reduced light intensity, provided that they were grown on a diluted modified MS medium. The addition of 6% mannitol to the storage media affected negatively survival and multiplication capacity of the cultures. The slow-growth storage conditions used in our experiments did not induce remarkable effects on both RAPD variability and average DNA methylation in the species.

  18. Pharmacology of the hypothermic response to 5-HT1A receptor activation in humans.

    Science.gov (United States)

    Lesch, K P; Poten, B; Söhnle, K; Schulte, H M

    1990-01-01

    The selective 5-HT1A receptor ligand ipsapirone (IPS) caused dose-related hypothermia in humans. The response was attenuated by the nonselective 5-HT1/2 receptor antagonist metergoline and was completely antagonized by the nonselective beta-adrenoceptor antagonist pindolol, which interacts stereoselectively with the 5-HT1A receptor. The selective beta 1-adrenergic antagonist betaxolol had no effect. The findings indicate that IPS-induced hypothermia specifically involves activation of (presynaptic) 5-HT1A receptors. Therefore, the hypothermic response to IPS may provide a convenient in vivo paradigma to assess the function of the presynaptic 5-HT receptor in affective disorders and its involvement in the effects of psychotropic drugs.

  19. Effect of culture conditions on microRNA expression in primary adult control and COPD lung fibroblasts in vitro.

    Science.gov (United States)

    Ikari, Jun; Smith, Lynette M; Nelson, Amy J; Iwasawa, Shunichiro; Gunji, Yoko; Farid, Maha; Wang, Xingqi; Basma, Hesham; Feghali-Bostwick, Carol; Liu, Xiangde; DeMeo, Dawn L; Rennard, Stephen I

    2015-04-01

    In vitro cell cultures, including lung fibroblasts, have been used to identify microRNAs (miRNAs) associated with chronic obstructive pulmonary disease (COPD) pathogenesis. However, culture conditions may affect miRNA expression. We examined whether miRNA expression in primary adult lung fibroblasts varies with cell density or passage in vitro and whether culture conditions confound the identification of altered miRNA expression in COPD lung fibroblasts. Primary adult control and COPD lung fibroblasts were cultured until passage 3 or 8, after which cells were further cultured for 3 or 7 d (low vs. high density). Then, cells at low density were cultured with serum-free media, and those at high density were cultured with serum-free media in the absence or presence of interleukin-1β (IL-1β) and tumor necrosis factor alpha (TNF-α) for 24 h. RNA was extracted to perform miRNA microarray from which 1.25-fold differential expression and 10% false discovery rate were applied to identify "invariant" and "variant" miRNA for the various culture conditions. Of the 2226 miRNAs evaluated, 39.0% for cell density, 40.7% for cell passage, and 29.4% for both conditions were identified as "invariant" miRNAs. Furthermore, 38.1% of the evaluated miRNAs were "invariant" for cell passage with IL-1β and TNF-α. Differentially expressed miRNAs between control and COPD lung fibroblasts were identified with and without IL-1β and TNF-α, and of these, 32 out of the 34 top-ranked miRNAs exceeded the differences due to culture conditions. Thus, culture conditions may affect miRNA expression of adult human lung fibroblasts. Nevertheless, in vitro cultures can be used to assess differential miRNA expression in COPD lung fibroblasts.

  20. A novel rat model of cardiopulmonary bypass for deep hypothermic circulatory arrest without blood priming

    Institute of Scientific and Technical Information of China (English)

    Zhang Weihua; Zhang Yanbo; Liu Donghai; Zhu Yaobin; Qiao Chenhui; Wang Jiaxiang; Xu Yulin

    2014-01-01

    Background Large animal cardiopulmonary bypass (CPB) models are expensive,and prevent assessment of neurocognitive function,and difficulties with long-term recovery.The purpose of this study was to establish a novel rat model of cardiopulmonary bypass for deep hypothermic circulatory arrest without blood priming.Methods Twenty adult male Sprague-Dawley rats weighing 450-560 g were randomized to CPB with deep hypothermic circulatory arrest (DHCA) and control groups,with 10 rats each.The experimental protocols,including blood and crystalloid fluid administration,anesthesia,orotracheal intubation,ventilation,cannulation,and heparinization were identical in both groups.After inducing cardiac arrest,the circuit was turned off and rats were left in a DHCA state for 15 minutes.Rats were rewarmed to 34℃ to 35℃ over a period of 36 to 42 minutes using CPB-assisted rewarming,a heating blanket,and a heating lamp along with administration of 0.1 mEq of sodium bicarbonate and 0.14 mEq of calcium chloride.The remaining priming volume was reinfused and animals were weaned from CPB.Results All CPB with DHCA processes were successfully achieved.Blood gas analysis and hemodynamic parameters were in the normal range.The vital signs of all rats were stable.Conclusions Our CPB circuit has several novel features,including a small priming volume,active cooling/rewarming processes,vacuum-assisted venous drainage,peripheral cannulation without thoracotomy or stemotomy,and an accurate means of monitoring peripheral tissue oxygenation.

  1. Effect of continuous hypothermic machine perfusion transport system (AirdriveTM) on canine kidney preservation

    Institute of Scientific and Technical Information of China (English)

    Hu Xiaopeng; Xue Wenrui; Zhang Qiang; Wang Wei; Zhang Jiqing; Zhang Xiaodong

    2014-01-01

    Background Organ preservation keeps the quality of the organs under prolonged ischemia.Continuous machine perfusions are gaining an important position in clinical research and practice.The aim of this study was to evaluate the protective effect of continuous hypothermic machine perfusion transport system (AirdriveTM) on cold ischemic injury of canine kidney.Methods Ten kidneys of five healthy preserving canines were taken out after general anesthesia.Five kidneys were stored using common cold preservation (CCP group) by immersing it in the organ preservation solution,mixed with water and ice,and kept in a cold room at 4℃.The other five kidneys were stored using continuous machine perfusion preservation (CMP group) and were placed into the AirdriveTM continuous machine perfusion device at room temperature.The renal tissues were examined by histopathology,electron microscopy,and mitochondrial activity check at different time points.Results Histologic sections showed that the structures of the ten renal tissues were similar during the first 24 hours.After 48 hours,the CCP group showed more pronounced changes,as the renal tubular epithelial cells were more obvious than those in the glomeruli.Oxygen consumption rate of state Ⅲ and Ⅳ respiration in the CCP group decreased after 12-48 hours and increased at 48 hours,respectively,when compared to the CMP group (P <0.05).Cortex respiratory control ratio and phosphorus oxygen ratio were significantly higher in the CMP group at 48 hours.Conclusion With prolonged storage time,the effect of continuous hypothermic machine perfusion transport system is better than that of common cold preservation on canine kidney.

  2. In vivo ectopic bone formation by devitalized mineralized stem cell carriers produced under mineralizing culture condition.

    Science.gov (United States)

    Chai, Yoke Chin; Geris, Liesbet; Bolander, Johanna; Pyka, Grzegorz; Van Bael, Simon; Luyten, Frank P; Schrooten, Jan

    2014-12-01

    Functionalization of tissue engineering scaffolds with in vitro-generated bone-like extracellular matrix (ECM) represents an effective biomimetic approach to promote osteogenic differentiation of stem cells in vitro. However, the bone-forming capacity of these constructs (seeded with or without cells) is so far not apparent. In this study, we aimed at developing a mineralizing culture condition to biofunctionalize three-dimensional (3D) porous scaffolds with highly mineralized ECM in order to produce devitalized, osteoinductive mineralized carriers for human periosteal-derived progenitors (hPDCs). For this, three medium formulations [i.e., growth medium only (BM1), with ascorbic acid (BM2), and with ascorbic acid and dexamethasone (BM3)] supplemented with calcium (Ca(2+)) and phosphate (PO4 (3-)) ions simultaneously as mineralizing source were investigated. The results showed that, besides the significant impacts on enhancing cell proliferation (the highest in BM3 condition), the formulated mineralizing media differentially regulated the osteochondro-related gene markers in a medium-dependent manner (e.g., significant upregulation of BMP2, bone sialoprotein, osteocalcin, and Wnt5a in BM2 condition). This has resulted in distinguished cell populations that were identifiable by specific gene signatures as demonstrated by the principle component analysis. Through devitalization, mineralized carriers with apatite crystal structures unique to each medium condition (by X-ray diffraction and SEM analysis) were obtained. Quantitatively, BM3 condition produced carriers with the highest mineral and collagen contents as well as human-specific VEGF proteins, followed by BM2 and BM1 conditions. Encouragingly, all mineralized carriers (after reseeded with hPDCs) induced bone formation after 8 weeks of subcutaneous implantation in nude mice models, with BM2-carriers inducing the highest bone volume, and the lowest in the BM3 condition (as quantitated by nano-computed tomography

  3. Influence of rat substrain and growth conditions on the characteristics of primary cultures of adult rat spinal cord astrocytes.

    Science.gov (United States)

    Codeluppi, Simone; Gregory, Ebba Norsted; Kjell, Jacob; Wigerblad, Gustaf; Olson, Lars; Svensson, Camilla I

    2011-04-15

    Primary astrocyte cell cultures have become a valuable tool for studies of signaling pathways that regulate astrocyte physiology, reactivity, and function; however, differences in culture preparation affect data reproducibility. The aim of this work was to define optimal conditions for obtaining primary astrocytes from adult rat spinal cord with an expression profile most similar to adult human spinal cord astrocytes. Hence, we examined whether different Sprague-Dawley substrains and culture conditions affect astrocyte culture quality. Medium supplemented with fetal bovine serum from three sources (Sigma, Gibco, Hyclone) or a medium with defined composition (AM medium) was used to culture astrocytes isolated from spinal cords of adult Harlan and Charles River Spraque-Dawley rats. Purity was significantly different between cultures established in media with different sera. No microglia were detected in AM or Hyclone cultures. Gene expression was also affected, with AM cultures expressing the highest level of glutamine synthetase, connexin-43, and glutamate transporter-1. Interestingly, cell response to starvation was substrain dependent. Charles River-derived cultures responded the least, while astrocytes derived from Harlan rats showed a greater decrease in Gfap and glutamine synthetase, suggesting a more quiescent phenotype. Human and Harlan astrocytes cultured in AM media responded similarly to starvation. Taken together, this study shows that rat substrain and growth medium composition affect purity, expression profile and response to starvation of primary astrocytes suggesting that cultures of Harlan rats in AM media have optimal astrocyte characteristics, purity, and similarity to human astrocytes.

  4. Humanity and all-humanistic values in conditions and prospect of globalization of cultural and historical process

    Directory of Open Access Journals (Sweden)

    Suhina I. G.

    2016-01-01

    Full Text Available For studying the phenomenon of a humanity as the universal cultural tradition that sublimates culture-creation qualities of the human person and verifies optimum anthropological structure of culture, the axiological approach directed to allocation, accentuation and analysis of valuable and semantic contents and meaning of humanity in conditions and prospects of modern process of globalization is used. Globalization is considered in the context of formation of the world cultural space - oykumena connected with modern cultural and historical process in the conditions of scientific and technical progress and positioning in it universal values or valuable universals of common to all mankind meta-cultures. As an axiological strategy of globalization cultural and historical process, the doctrine of new humanity, which is put forward and propagandized by the international public organization the Roman club, proved as the universal cultural and anthropological project adequate to formation of universal meta-culture and its humanistic values is analyzed. The biofilic axiological doctrine of new humanity, which is based on the backbone valuable principle of love to life and optimism and assuming an affirmation of unconditional value of life as cultural humanistic value at the level of a global outlook of modern era, is offered. European (Faustian humanism is analyzed in the context of identification of valuable and anthropological sources of globalization and global problems of the present that connected with the western culture, civilization, and westernization process. The comparative analysis of valuable and world outlook dominants of the European and new or global humanity is performed.

  5. Optimization of culture conditions to obtain maximal growth of penicillin-resistant Streptococcus pneumoniae

    Directory of Open Access Journals (Sweden)

    Rodriguez Carlos A

    2005-06-01

    Full Text Available Abstract Background Streptococcus pneumoniae, particularly penicillin-resistant strains (PRSP, constitute one of the most important causes of serious infections worldwide. It is a fastidious microorganism with exquisite nutritional and environmental requirements to grow, a characteristic that prevents the development of useful animal models to study the biology of the microorganism. This study was designed to determine optimal conditions for culture and growth of PRSP. Results We developed a simple and reproducible method for culture of diverse strains of PRSP representing several invasive serotypes of clinical and epidemiological importance in Colombia. Application of this 3-step culture protocol consistently produced more than 9 log10 CFU/ml of viable cells in the middle part of the logarithmic phase of their growth curve. Conclusion A controlled inoculum size grown in 3 successive steps in supplemented agar and broth under 5% CO2 atmosphere, with pH adjustment and specific incubation times, allowed production of great numbers of PRSP without untimely activation of autolysis mechanisms.

  6. Feline Neural Progenitor Cells I: Long-Term Expansion under Defined Culture Conditions

    Directory of Open Access Journals (Sweden)

    Jing Yang

    2012-01-01

    Full Text Available Neural progenitor cells (NPCs of feline origin (cNPCs have demonstrated utility in transplantation experiments, yet are difficult to grow in culture beyond the 1 month time frame. Here we use an enriched, serum-free base medium (Ultraculture and report the successful long-term propagation of these cells. Primary cultures were derived from fetal brain tissue and passaged in DMEM/F12-based or Ultraculture-based proliferation media, both in the presence of EGF + bFGF. Cells in standard DMEM/F12-based medium ceased to proliferate by 1-month, whereas the cells in the Ultraculture-based medium continued to grow for at least 5 months (end of study with no evidence of senescence. The Ultraculture-based cultures expressed lower levels of progenitor and lineage-associated markers under proliferation conditions but retained multipotency as evidenced by the ability to differentiate into neurons and glia following growth factor removal in the presence of FBS. Importantly, later passage cNPCs did not develop chromosomal aberrations.

  7. Control of CO₂ input conditions during outdoor culture of Chlorella vulgaris in bubble column photobioreactors.

    Science.gov (United States)

    Guo, Zhi; Phooi, Wei Boon Alfred; Lim, Zi Jian; Tong, Yen Wah

    2015-06-01

    A study on the optimization of CO2 usage during outdoor microalgae cultivation in order to further maximize the CO2 to biomass conversion efficiency is presented. A constant supply of CO2 was found to be non-essential for culturing microalgae outdoors in 80 L (8 L×10 sets) bubble columns. Among the different CO2 input conditions that were studied, 2% CO2 with intermittent supply and 2%+4% CO2 alternation did not affect the algal growth as compared to having a constant supply of 2% CO2. However, during both input conditions, the CO2 to biomass conversion efficiency was doubled while the amount of CO2 used was reduced by 50%. The algal biomass obtained was found to have a higher carbohydrate yield but a lower protein yield as compared to previously published studies. The findings from this study could be applied for large-scale microalgae production so as to minimize cultivation and energy costs.

  8. Studies on culture condition and extracellular hydrolase of psychrophilic bacteria from Arctic sea ice

    Institute of Scientific and Technical Information of China (English)

    Li Xiaohui; Yu Yong; Li Huirong; Zhang Lin; Jiang Xinyin; Ren Daming

    2008-01-01

    Arctic sea ice in the polar region provides a cold habitat for microbial community.Arctic sea ice microorganisms are revealed to be of considerable importance in basic research and potential in biotechnological application.This paper investigated the culture condition and extracellular hydrolase of 14 strains of different Arctic sea ice bacteria.The results showed that optimal growth temperature of strains is 15 ℃ or 20 ℃.The optimal pH is about 8.0.They hardly grow at acid condition.3% NaCl is necessary for better growth.These strains have different abilities in producing amylase,protease,cellulase and lipase.Pseudoalteronomas sp.Bsi429 and Pseudoalteronomas sp.Bsi539 produced both cellulose,protease and lipase.These results provide a basis for further developing and exploiting the cold adapted marine enzyme resources.

  9. Bridging Mediterranean cultures in the IYS: A documentary exhibition on irrigation techniques in water scarcity conditions

    Science.gov (United States)

    Barontini, Stefano; Louki, Amina; Ben Slima, Zied; Ezzahra Ghaouch, Fatima; Labaran, Raisa; Raffelli, Giulia; Peli, Marco; Vitale, Nicola

    2015-04-01

    Brescia, an industrial city in Northern Italy, is now experiencing a crucial change in its traditional structure. In recent years in fact it has been elected as living and working seat by many foreigners and it is now one of the cities with the greatest percentage of migrants in the Country. This is an important challenge for the city and an opportunity to merge, compare and integrate different cultures to build its future. In this context some students of different Courses (engineering and medicine), belonging both to the Arabian and local community, met together and with researchers in the study team 'Al-B¯i r¯u n¯i , for culture, science and society'. The team aims at organising cultural events in which, starting from the figure of the Persian scientist Ab¯u Raih. ¯a n Al-B¯i r¯u n¯i (about 973, 1051), the contribution of the Arabian and Islamic culture to the development of the European one in the middle ages is investigated. Moving from the initial idea of the study team Al-B¯i r¯u n¯i and from the suggestions of the World Soil Day 2014 and of the International Year of Soils 2015, we built a documentary exhibition entitled 'Irrigation techniques in water scarcity conditions'. The exhibition, which stresses the importance of the irrigation techniques for the soil conservation, is focused on the idea of disseminating two main concepts, i.e. (1) the technological continuity of some water supply systems in countries, around the Mediterranean Sea, affected by similar conditions of water availability, and (2) the possibility of building environments where, due to severe or extreme climatic conditions, the sustainability is reached when the man lives in equilibrium with the nature. The exhibition, which is written in Italian and will move around in the city during all 2015, consists of about twenty posters organized into three main chapters, corresponding to three main classes of water supply systems which are common in most of the countries surrounding

  10. Hydrogen isotope fractionation by Methanothermobacter thermoautotrophicus in coculture and pure culture conditions

    Science.gov (United States)

    Yoshioka, Hideyoshi; Sakata, Susumu; Kamagata, Yoichi

    2008-06-01

    We grew a hydrogen-utilizing methanogen, Methanothermobacter thermoautotrophicus strain ΔH, in coculture and pure culture conditions to evaluate the hydrogen isotope fractionation associated with carbonate reduction under low (6 mM; pure culture) concentrations of H 2 in the headspace. In the cocultures, which were grown at 55 °C with a thermophilic butyrate-oxidizing syntroph, the hydrogen isotopic relationship between methane and water was well represented by the following equation: δD=0.725(±0.003)·δDO-275(±3), in which the hydrogen isotope fractionation factor ( αH) was 0.725 ± 0.003. The relationship was consistent with the isotopic data on methane and water from terrestrial fields (a peat bog in Washington State, USA, and a sandy aquifer in Denmark), where carbonate reduction was reported to be the dominant pathway of methanogenesis. In the pure cultures, grown at 55 and 65 °C, the αH values were 0.755 ± 0.014 and 0.749 ± 0.014, respectively. Dependence of αH on growth temperature was not observed. The αH value at 55 °C in the pure culture was slightly higher than that in the coculture, a finding that disagrees with a hypothesis proposed by Burke [Burke, Jr. R. A. (1993) Possible influence of hydrogen concentration on microbial methane stable hydrogen isotopic composition. Chemosphere26, 55-67] that hydrogen isotope fractionation between methane and water increases (and αH decreases) with increasing H 2 concentration.

  11. Cross-cultural adaptation and clinical validation of the Neonatal Skin Condition Score to Brazilian Portuguese

    Directory of Open Access Journals (Sweden)

    Juliana Machado Schardosim

    2014-10-01

    Full Text Available OBJECTIVE: to describe the process of cross-cultural adaptation and clinical validation of the Neonatal Skin Condition Score.METHODS: this methodological cross-cultural adaptation study included five steps: initial translation, synthesis of the initial translation, back translation, review by an Committee of Specialists and testing of the pre-final version, and an observational cross-sectional study with analysis of the psychometric properties using the Adjusted Kappa, Intraclass Correlation Coefficient, and Bland-Altman Method statistical tests. A total of 38 professionals were randomly recruited to review the clarity of the adapted instrument, and 47 newborns hospitalized in the Neonatology Unit of the Clinical Hospital of Porto Alegre were selected by convenience for the clinical validation of the instrument.RESULTS: the adapted scale showed approximately 85% clarity. The statistical tests showed moderate to strong intra and interobserver item to item reliability and from strong to very strong in the total score, with a variation of less than 2 points among the scores assigned by the nurses to the patients.CONCLUSIONS: the scale was adapted and validated to Brazilian Portuguese. The psychometric properties of the Brazilian version of the Neonatal Skin Condition Score instrument were similar to the validation results of the original scale.

  12. Fatty acid profiles of four filamentous green algae under varying culture conditions.

    Science.gov (United States)

    Liu, Junzhuo; Vanormelingen, Pieter; Vyverman, Wim

    2016-01-01

    Although benthic filamentous algae are interesting targets for wastewater treatment and biotechnology, relatively little is known about their biochemical composition and variation in response to growth conditions. Fatty acid composition of four benthic filamentous green algae was determined in different culture conditions. Although the response was partly species-dependent, increasing culture age, nitrogen deprivation and dark exposure of stationary phase greatly increased both total fatty acid content (TFA) from 12-35 to 40-173mgg(-1) dry weight (DW) and the relative proportion of polyunsaturated fatty acids (PUFAs) from 21-58% to 55-87% of TFA, with dark exposure having the greatest effect. However, the main variation in fatty acid composition was between species, with Uronema being rich in C16:0 (2.3% of DW), Klebsormidium in C18:2ω6 (5.4% of DW) and Stigeoclonium in C18:3ω3 (11.1% of DW). This indicates the potential of the latter two species as potential sources of these PUFAs.

  13. Formation of Carbonate Nanoglobules by a Mixed Natural Culture under Hypersaline Conditions

    Directory of Open Access Journals (Sweden)

    Nurgul Balci

    2016-11-01

    Full Text Available The present study demonstrated formation of Ca and P rich nanoglobules by a mixed natural halophilic population enriched from hypersaline lake sediments in laboratory culture experiments. Nanoglobules consisting of complex mixture of Ca, P, O, and C with minor amount of Mg occurred in the external envelop of bacterial cell in the first week of incubation at various Mg+2/Ca+2 ratios and salinity at 30 °C. Unlike the control experiments (e.g., non-viable cells and without cells, later aggregation and transformation of nanoglobules caused the precipitation of calcium and/or magnesium carbonates in variable amount depending on the Mg+2/Ca+2 ratios of the medium after 37 days of incubation. By showing the nucleation of carbonates on bacterial nanoglobules closely associated with the cell surfaces of mixed natural population this study emphasis that formation of nanoglobules may not be specific to a microbial strain or to activity of a particular microbial group. Formation of carbonate nanoglobules under various conditions (e.g., Mg+2/Ca+2 ratios, salinity with the same halophilic culture suggest that the although metabolic activity of bacteria have an influence on formation of nanoglobules the mineralogy of nanoglobules may be controlled by the physicochemical conditions of the precipitation solution and the rate of mineral precipitation.

  14. Enhancing inulinase yield by irradiation mutation associated with optimization of culture conditions

    Directory of Open Access Journals (Sweden)

    Yafeng Gou

    2015-09-01

    Full Text Available A new inulinase-producing strain was isolated from rhizosphere soils of Jerusalem artichoke collected from Shihezi (Xinjiang, China using Jerusalem artichoke power (JAP as sole carbon source. It was identified as an Aspergillus niger strain by analysis of 16S rRNA. To improve inulinase production, this fungus was subjected to mutagenesis induced by 60Co γ-irradiation. A genetically stable mutant (designated E12 was obtained and it showed 2.7-fold higher inulinase activity (128 U/mL than the parental strain in the supernatant of a submerged culture. Sequential methodology was used to optimize the inulinase production of stain E12. A screening trial was first performed using Plackett-Burman design and variables with statistically significant effects on inulinase bio-production were identified. These significant factors were further optimized by central composite design experiments and response surface methodology. Finally, it was found that the maximum inulinase production (185 U/mL could be achieved under the optimized conditions namely pH 7.0, yeast extract concentration of 5.0 g/L, JAP concentration of 66.5 g/L, peptone concentration of 29.1 g/L, solution volume of 49.4 mL in 250-mL shake flasks, agitation speed of 180 rpm, and fermentation time of 60 h. The yield of inulinase under optimized culture conditions was approximately 1.4-fold of that obtained by using basal culture medium. These findings are of significance for the potential industrial application of the mutant E12.

  15. Biomass and nutrient productivities of Tetraselmis chuii under mixotrophic culture conditions with various C:N ratios

    Science.gov (United States)

    Lu, Lin; Wang, Jun; Yang, Guanpin; Zhu, Baohua; Pan, Kehou

    2017-03-01

    Mass microalgal culture plays an irreplaceable role in aquaculture, but microalgal productivity is restricted by traditional autotrophic culture conditions. In the present study, a Tetraselmis chuii strain belonging to the phylum Chlorophyta was isolated from south Yellow Sea. The growth rate and biomass productivity of this strain was higher under mixotrophic conditions with different carbon:nitrogen (C:N) ratios than those under autotrophic conditions. When the C:N ratio was 16, the optical density and biomass productivity were 3.7- and 5-fold higher than their corresponding values under autotrophic culture conditions, respectively. Moreover, T. chuii synthesized more polysaccharides and total lipids under mixotrophic conditions. In addition, T. chuii cultured under mixotrophic conditions synthesized more types of fatty acids than autotrophic culture conditions. At a C:N ratio of 16, the percentage of C16:0 and C18:1 reached 30.08% and 24.65% of the total fatty acid (TFA) content, respectively. These findings may provide a basis for large-scale mixotrophic culture of T. chuii, as a potential bait-microalga.

  16. Biomass and nutrient productivities of Tetraselmis chuii under mixotrophic culture conditions with various C:N ratios

    Science.gov (United States)

    Lu, Lin; Wang, Jun; Yang, Guanpin; Zhu, Baohua; Pan, Kehou

    2016-05-01

    Mass microalgal culture plays an irreplaceable role in aquaculture, but microalgal productivity is restricted by traditional autotrophic culture conditions. In the present study, a Tetraselmis chuii strain belonging to the phylum Chlorophyta was isolated from south Yellow Sea. The growth rate and biomass productivity of this strain was higher under mixotrophic conditions with different carbon:nitrogen (C:N) ratios than those under autotrophic conditions. When the C:N ratio was 16, the optical density and biomass productivity were 3.7- and 5-fold higher than their corresponding values under autotrophic culture conditions, respectively. Moreover, T. chuii synthesized more polysaccharides and total lipids under mixotrophic conditions. In addition, T. chuii cultured under mixotrophic conditions synthesized more types of fatty acids than autotrophic culture conditions. At a C:N ratio of 16, the percentage of C16:0 and C18:1 reached 30.08% and 24.65% of the total fatty acid (TFA) content, respectively. These findings may provide a basis for largescale mixotrophic culture of T. chuii, as a potential bait-microalga.

  17. Anoxic biodegradation of dimethyl phthalate (DMP) by activated sludge cultures under nitrate-reducing conditions

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Worldwide extensive use of plasticized plastics has resulted in phthalates pollution in different environment. Nitrates from industry and agriculture are also widely disseminated in the soils, natural waters and wastewaters. Dimethyl phthalate (DMP) biodegradation by activated sludge cultures under nitrate-reducing conditions was investigated. Under one optimized condition, DMP was biodegraded from 102.20 mg/L to undetectable level in 56 h under anoxic conditions and its reaction fitted well with the first-order kinetics. Using the high-performance liquid chromatography (HPLC) and liquid chromatography mass spectrometry (LC-MS) analysis, mono-methyl phthalate (MMP) and phthalic acid (PA) were detected as the major intermediates of DMP biodegradation. When combined with the determination of chemical oxygen demand (CODCr) removal capacity and pH, DMP was found to be mineralized completely under anoxic conditions. The biodegradation pathway was proposed as DMP → MMP → PA → … → CO2 + H2O.The molar ratio of DMP to nitrate consumed was found to be 9.0:1, which agrees well with the theoretical stoichiometric values of DMP biodegradation by nitrate-reducing bacteria. The results of the non-linear simulation showed that the optimum pH and temperature for the degradation were 7.56 and 31.4℃, respectively.

  18. Anoxic biodegradation of dimethyl phthalate (DMP) by activated sludge cultures under nitrate-reducing conditions.

    Science.gov (United States)

    Wu, Dong-lei; Hu, Bao-lan; Zheng, Ping; Qaisar, Mahmood

    2007-01-01

    Worldwide extensive use of plasticized plastics has resulted in phthalates pollution in different environment. Nitrates from industry and agriculture are also widely disseminated in the soils, natural waters and wastewaters. Dimethyl phthalate (DMP) biodegradation by activated sludge cultures under nitrate-reducing conditions was investigated. Under one optimized condition, DMP was biodegraded from 102.20 mg/L to undetectable level in 56 h under anoxic conditions and its reaction fitted well with the first-order kinetics. Using the high-performance liquid chromatography (HPLC) and liquid chromatography mass spectrometry (LC-MS) analysis, mono-methyl phthalate (MMP) and phthalic acid (PA) were detected as the major intermediates of DMP biodegradation. When combined with the determination of chemical oxygen demand (COD(Cr)) removal capacity and pH, DMP was found to be mineralized completely under anoxic conditions. The biodegradation pathway was proposed as DMP -->MMP-->PA-->...-->CO2 + H2O. The molar ratio ofDMP to nitrate consumed was found to be 9.0:1, which agrees well with the theoretical stoichiometric values of DMP biodegradation by nitrate-reducing bacteria. The results of the non-linear simulation showed that the optimum pH and temperature for the degradation were 7.56 and 31.4 degrees C, respectively.

  19. The Investigation of Culture Conditions of Agaricus campester (L.)Fr. on Synthetic Compost With Wheat Straw

    OpenAIRE

    ÖZTÜRK, Celaleddin; KAŞIK, Gıyasettin

    2000-01-01

    In this study, the culture conditions of Agaricus campester on synthetic compost with wheat straw were investigated. The culture-medium was prepared with fermentation and cemical disinfection methods. After the yield period of 5 weeks, 228.6 kilos of mushroom were obtained from the prepared compost using 1 ton of wheat straw.

  20. Mesenchymal stem cell-conditioned medium triggers neuroinflammation and reactive species generation in organotypic cultures of rat hippocampus.

    Science.gov (United States)

    Horn, Ana Paula; Bernardi, Andressa; Luiz Frozza, Rudimar; Grudzinski, Patrícia Bencke; Hoppe, Juliana Bender; de Souza, Luiz Fernando; Chagastelles, Pedro; de Souza Wyse, Angela Terezinha; Bernard, Elena Aida; Battastini, Ana Maria Oliveira; Campos, Maria Martha; Lenz, Guido; Nardi, Nance Beyer; Salbego, Christianne

    2011-07-01

    Cell therapy using bone marrow-derived mesenchymal stem cells (MSCs) seems to be a new alternative for the treatment of neurodegenerative diseases. Despite several promising results with their use, possible side effects are still unknown. In a previous work, we have shown that MSC-conditioned medium is toxic to hippocampal slice cultures and aggravates cell death induced by oxygen and glucose deprivation. In this work, we investigated whether the inflammatory response and/or reactive species formation could be involved in that toxicity. Rat organotypic hippocampal cultures were exposed for 24 h to conditioned medium from MSCs isolated from rat bone marrow. A marked glial activation was observed after exposure of cultures to MSC-conditioned medium, as evidenced by glial fibrillary acid protein (GFAP) and isolectin B(4) increase. Tumor necrosis factor-α and interleukin-6 levels were increased in the culture medium, and 2,7-dihydrodichlorofluorescein diacetate oxidation (indicating reactive species generation) and inducible nitric oxide synthase (iNOS) immunocontent were also higher after exposure of cultures to MSC-conditioned medium. Antioxidants (ascorbic acid and TROLOX(®)), N(ω)-nitro-l-arginine methyl ester hydrochloride, and anti-inflammatory drugs (indomethacin and dexamethasone) reduced cell death in hippocampal organotypic cultures after their exposure to MSC-conditioned medium. The results obtained here suggest that MSC-secreted factors trigger reactive species generation and neuroinflammation in organotypic cultures of hippocampus, introducing a note of caution in the use of these cells for neurological application.

  1. Trace element proxies for surface ocean conditions: A synthesis of culture calibrations with planktic foraminifera

    Science.gov (United States)

    Allen, Katherine A.; Hönisch, Bärbel; Eggins, Stephen M.; Haynes, Laura L.; Rosenthal, Yair; Yu, Jimin

    2016-11-01

    The trace element composition of planktic foraminiferal calcite provides a useful means of determining past surface ocean conditions. We have assembled the results of culture experiments for three species of symbiont-bearing planktic foraminifera, Globigerinoides ruber, Globigerinoides sacculifer, and Orbulina universa, and one symbiont-barren species, Globigerina bulloides, to evaluate their responses to temperature, salinity, pH, carbonate ion, and dissolved inorganic carbon (DIC) growth conditions. Trace element ratios (Li/Ca, B/Ca, Mg/Ca, Sr/Ca, Mn/Ca, Cd/Ca, Ba/Ca, Na/Ca, and U/Ca) were measured simultaneously on samples grown with the same culture techniques, which provides robust, relatable calibrations that may be used together in multi-proxy paleoceanographic studies. Our data confirm that temperature is the dominant control on foraminiferal Mg/Ca under the ranges of conditions studied and that the potential effects of salinity and CO32- on Mg/Ca of these tropical species across late Pleistocene glacial cycles are relatively small. Carbonate system experiments suggest that Sr/Ca may be useful for reconstructing large DIC changes. Na/Ca increases with salinity in G. ruber (pink), but not in G. sacculifer. As these emerging proxy relationships become more firmly established, the synthesis of multiple trace element ratios may help paleoceanographers isolate the effects of different environmental parameters in paleo records. Calcification rates (μg/day) vary among species and do not respond consistently to any experimental parameter. Comparison of our calcification rates with those observed in inorganic calcite precipitation experiments suggest that foraminifera calcify ∼100× more slowly than inorganic calcites grown in similar solutions. We suggest that calcification rate does not typically exert a dominant control on trace element partitioning in planktic foraminiferal calcite, though it may play a role for some elements under certain circumstances

  2. Optimisation of batch culture conditions for cyclodextrin glucanotransferase production from Bacillus circulans DF 9R

    Directory of Open Access Journals (Sweden)

    Krymkiewicz Norberto

    2002-09-01

    Full Text Available Abstract Background The extracellular enzyme cyclodextrin glucanotransferase (CGTase synthesizes cyclic malto-oligosaccharides called cyclodextrins (CDs from starch and related α-1,4-glucans. CGTases are produced by a variety of bacteria, mainly Bacillus species, by submerged culture in complex medium. CGTases differ in the amount and types of CDs produced. In addition, CGTase production is highly dependent on the strain, medium composition and culture conditions. Therefore we undertook this study with a newly isolated strain of Bacillus circulans. Results CGTase activity produced from Bacillus circulans DF 9R was optimised in shake flasks using a combination of conventional sequential techniques and statistical experimental design. Effects of nutrients, including several carbon, nitrogen and mineral sources, were assayed. The selected minimal medium consisted of 1.5 % cassava starch, 0.4 % ammonium sulphate, 0.1 M phosphate buffer, 0.002 % MgSO4 and 0.002 % FeSO4. The optimal concentrations of carbon and nitrogen sources were determined using a central composite design. Maximum CGTase activity obtained in supernatants was 5.8 U/mL in 48 h of incubation. Optimal conditions for enzyme production also included an initial pH of 8.3 and 37°C as the incubation temperature. Cell growth and CGTase production profile were not linked to each other, suggesting that enzyme production/secretion is not growth–associated but mainly a late-log phase event. Conclusion We have screened conditions for optimal CGTase production. The selected minimal medium contained starch, ammonium, Mg2+ and Fe2+ as essential nutrients. As an additional advantage, this medium does not require complex nitrogen sources with varying and unknown composition.

  3. Optimization of culture conditions of Arnica montana L.: effects of mycorrhizal fungi and competing plants.

    Science.gov (United States)

    Jurkiewicz, Anna; Ryszka, Przemyslaw; Anielska, Teresa; Waligórski, Piotr; Białońska, Dobroslawa; Góralska, Katarzyna; Tsimilli-Michael, Merope; Turnau, Katarzyna

    2010-06-01

    Arnica montana is a rare plant that needs special protection because of its intensive harvesting for medicinal purposes. The present work was aimed at finding optimal culture conditions for Arnica plants in order to enable their successful reintroduction into their natural stands. Plants were cultivated under controlled greenhouse conditions on substrata with different nitrogen (N) concentration. As Arnica is always colonized by arbuscular mycorrhizal fungi (AMF) in nature, a fact that has been overlooked in other similar projects, we, here, applied and tested different inocula. We found that they differed in their effectiveness, both in establishing symbiosis, assessed by the colonization parameters, and in improving the performance of Arnica, evaluated by the photosynthetic parameters derived from the fluorescence transients (JIP-test), with the inocula containing G. intraradices or composed of several Glomus strains being the most effective. The comparison was possible only on substrata with medium N, since high N did not permit the formation of mycorrhiza, while at low N, few nonmycorrhizal plants survived until the measurements and mycorrhizal plants, which were well growing, exhibited a high heterogeneity. Analysis of secondary metabolites showed clearly that mycorrhization was associated with increased concentrations of phenolic acids in roots. For some of the inocula used, a tendency for increase of the level of phenolic acids in shoots and of sesquiterpene lactones, both in roots and in shoots, was also observed. We also studied the interactions between A. montana and Dactylis glomerata, known to compete with Arnica under field conditions. When specimens from both species were cultured together, there was no effect on D. glomerata, but Arnica could retain a photosynthetic performance that permitted survivability only in the presence of AMF; without AMF, the photosynthetic performance was lower, and the plants were eventually totally outcompeted.

  4. Steroid-regulated growth of DDT1MF-2 cells is profoundly influenced by culture conditions.

    Science.gov (United States)

    Lamb, D J; Ray, M

    1995-12-01

    DDT1MF-2 cells provide an ideal model for studying tumor-growth-stimulation by steroids. These cells progress to a rapidly proliferating, androgen-independent state after prolonged culture without androgen. After brief culture in different lots of fetal bovine serum (FBS), some lots induced a permanent state of hormone-independence in cells that had been androgen-responsive. To test the hypothesis that factors influenced androgen-responsive growth even after removal of serum, hormone-responsive DDT1MF-2 cells (7000 cells/well) were plated in medium Dulbecco's Modified Eagle Medium/F-12 Nutrition Mixture (1:1)/1% ITS with (a) 0.1% FBS, (b) 0.1% NuSerum (c) 0.1% Hyclone, or (d) MCDB-110/0.1% ITS with 5 ng/ml bFGF. On Days 2-8, medium was replaced with D-MEM/F12/ITS with 10 nM testosterone (T), 10 nM triamcinolone acetonide (TA), or ethanol (control) and the cells counted. While testosterone induced a 1.4-fold increase in cell growth after exposure to FBS or NuSerum, maximal testosterone effect (3-6-fold increase) was observed after Hyclone. Hydroxyflutamide antagonized the fivefold increase in growth observed with testosterone, with a slight decrease of growth with cAMP for cells plated in Hyclone. Androgen-independent cells were unaffected by testosterone, hydroxyflutamide, or 8Br-cAMP [medium (a)]. Maximal inhibition by triamcinolone acetonide (0.25 of control) was observed with medium (d). The effect of testosterone and triamcinolone acetonide on secretion of mitogenic activity into conditioned medium was also evaluated. Although conditioned media from control and testosterone-treated cells were mitogenic in a dose-dependent manner, the media from cells treated with triamcinolone acetonide and testosterone+TA conditioned medium was not mitogenic--but, of note, it was not growth inhibitory.

  5. Informative culture of future teacher of physical culture in the process of professional development in the conditions of informatively-educational space

    Directory of Open Access Journals (Sweden)

    Dragnev Y.V.

    2011-07-01

    Full Text Available In the article the informative culture of future teacher of physical culture is examined in the process of professional development in the conditions of informatively-educational space. The role of creation of informatively-educational space which liquidates a spatial factor between all of subjects of innovative activity opens up. It is marked that realities of настоящего testify to distribution of information technologies (IT in all of industries of production, spheres of service, sciences, educations, and also specified, that on forming of informative culture achievement in industry of informatics, cybernetics, influence et cetera

  6. Method for Producing Non-Neoplastic, Three Dimensional, Mammalian Tissue and Cell Aggregates Under Microgravity Culture Conditions and the Products Produced Therefrom

    Science.gov (United States)

    Goodwin, Thomas J. (Inventor); Wolf, David A. (Inventor); Spaulding, Glenn F. (Inventor); Prewett, Tracey L. (Inventor)

    1996-01-01

    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural, and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  7. Electrical conditioning of adipose-derived stem cells in a multi-chamber culture platform.

    Science.gov (United States)

    Pavesi, A; Soncini, M; Zamperone, A; Pietronave, S; Medico, E; Redaelli, A; Prat, M; Fiore, G B

    2014-07-01

    In tissue engineering, several factors play key roles in providing adequate stimuli for cells differentiation, in particular biochemical and physical stimuli, which try to mimic the physiological microenvironments. Since electrical stimuli are important in the developing heart, we have developed an easy-to-use, cost-effective cell culture platform, able to provide controlled electrical stimulation aimed at investigating the influence of the electric field in the stem cell differentiation process. This bioreactor consists of an electrical stimulator and 12 independent, petri-like culture chambers and a 3-D computational model was used to characterize the distribution and the intensity of the electric field generated in the cell culture volume. We explored the effects of monophasic and biphasic square wave pulse stimulation on a mouse adipose-derived stem cell line (m17.ASC) comparing cell viability, proliferation, protein, and gene expression. Both monophasic (8 V, 2 ms, 1 Hz) and biphasic (+4 V, 1 ms and -4 V, 1 ms; 1 Hz) stimulation were compatible with cell survival and proliferation. Biphasic stimulation induced the expression of Connexin 43, which was found to localize also at the cell membrane, which is its recognized functional mediating intercellular electrical coupling. Electrically stimulated cells showed an induced transcriptional profile more closely related to that of neonatal cadiomyocytes, particularly for biphasic stimulation. The developed platform thus allowed to set-up precise conditions to drive adult stem cells toward a myocardial phenotype solely by physical stimuli, in the absence of exogenously added expensive bioactive molecules, and can thus represent a valuable tool for translational applications for heart tissue engineering and regeneration.

  8. Atrazine degradation by fungal co-culture enzyme extracts under different soil conditions.

    Science.gov (United States)

    Chan-Cupul, Wilberth; Heredia-Abarca, Gabriela; Rodríguez-Vázquez, Refugio

    2016-01-01

    This investigation was undertaken to determine the atrazine degradation by fungal enzyme extracts (FEEs) in a clay-loam soil microcosm contaminated at field application rate (5 μg g(-1)) and to study the influence of different soil microcosm conditions, including the effect of soil sterilization, water holding capacity, soil pH and type of FEEs used in atrazine degradation through a 2(4) factorial experimental design. The Trametes maxima-Paecilomyces carneus co-culture extract contained more laccase activity and hydrogen peroxide (H2O2) content (laccase = 18956.0 U mg protein(-1), H2O2 = 6.2 mg L(-1)) than the T. maxima monoculture extract (laccase = 12866.7 U mg protein(-1), H2O2 = 4.0 mg L(-1)). Both extracts were able to degrade atrazine at 100%; however, the T. maxima monoculture extract (0.32 h) achieved a lower half-degradation time than its co-culture with P. carneus (1.2 h). The FEE type (p = 0.03) and soil pH (p = 0.01) significantly affected atrazine degradation. The best degradation rate was achieved by the T. maxima monoculture extract in an acid soil (pH = 4.86). This study demonstrated that both the monoculture extracts of the native strain T. maxima and its co-culture with P. carneus can efficiently and quickly degrade atrazine in clay-loam soils.

  9. Maintenance of undifferentiated mouse embryonic stem cells in suspension by the serum- and feeder-free defined culture condition

    Science.gov (United States)

    Tsuji, Yukiiko; Yoshimura, Naoko; Aoki, Hitomi; Sharov, Alexei A.; Ko, Minoru S.H.; Motohashi, Tsutomu; Kunisada, Takahiro

    2008-01-01

    The proven pluripotency of ES cells is expected to allow their therapeutic use for regenerative medicine. We present here a novel suspension culture method that facilitates the proliferation of pluripotent ES cells without feeder cells. The culture medium contains polyvinyl alcohol (PVA), free of either animal-derived or synthetic serum, and contains very low amounts of peptidic or proteinaceous materials, which are favorable for therapeutic use. ES cells showed sustained proliferation in the suspension culture, and their undifferentiated state and pluripotency were experimentally verified. DNA microarray analyses showed a close relationship between the elevated expression of genes related to cell adhesions. We suggest that this suspension culture condition provides a better alternative to the conventional attached cell culture condition, especially for possible therapeutic use, by limiting the exposure of ES cells to feeder cells and animal products. PMID:18624284

  10. The effect of culture conditions on the mycelial growth and luminescence of naturally bioluminescent fungi.

    Science.gov (United States)

    Weitz, H J; Ballard, A L; Campbell, C D; Killham, K

    2001-08-21

    The effects of temperature, light and pH on mycelial growth and luminescence of four naturally bioluminescent fungi were investigated. Cultures of Armillaria mellea, Mycena citricolor, Omphalotus olearius and Panellus stipticus were grown at 5 degrees C, 15 degrees C, 22 degrees C and 30 degrees C, under 24 h light, 12 h light/12 h dark and 24 h dark, and at a pH ranging from 3.5 to 7 in three separate experiments. Temperature and pH had a significant effect on mycelial growth and bioluminescence, however light did not. Bioluminescence and mycelial growth were optimum at 22 degrees C and pH 3-3.5, the exception being M. citricolor for which bioluminescence and growth were optimum at pH 5-6 and pH 4, respectively. With the exception of M. citricolor, bioluminescence and mycelial growth were greater under 24 h darkness. An understanding of the effect of culture conditions on mycelial growth and luminescence is necessary for the future application of bioluminescent fungi as biosensors.

  11. Effects of Culture Conditions on Growth and Docosahexaenoic Acid Production from Schizochytrium limacinum

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The effects of temperature, initial pH, salinity of culture medium, and carbon and nitrogen sources on growth and docosahexaenoic acid (C22: 6 n-3, DHA) production from Schizochytrium limacinum OUC88 were investigated in the present study. The results revealed that the optimal temperature, initial pH and salinity level of the medium for DHA production were 23 ℃, 7.0 and 18,respectively. Glucose was proved the best carbon source for the growth and DHA production from S. limacinum. Among the nitrogen sources tested, soybean cake hydrolysate, a cheap by-product, was found to be effective for the accumulation of DHA in S. limacinum cells. In addition, increasing the concentration of carbon sources in the medium caused a significant increase in cell biomass;however, accumulation of DHA in cells was mainly stimulated by the ratio of C/N in the medium. Under the optimal culture conditions, the maximum DHA yield achieved in flasks was 4.08 g L-1 after 5 d of cultivation.

  12. [Is it possible to "cancel" aging process of cell cultures under optimal conditions for cultivation?].

    Science.gov (United States)

    Bozhkov, A I; Kovaleva, M K; Menzianova, N G

    2011-01-01

    The characteristics of the cells epigenotypes Dunaliella viridis Teod. in the process of chronological and replicative aging were investigated. By 40th day of accumulative cultivation (which coincided with the stationary growth phase) DNA content in the cells of Dunaliella viridis increased 2 times, triacylglycerides 3 times, beta-carotene and carbonyl proteins 2 times, RNA content decreased in comparison with cells in exponential growth phase, i. e., the 40th day of growth of culture forms the age-related epigenotype. 4 received subcultures were being transplanted during 2 years in mid-logarithmic growth phase (subculture-10), early stationary phase of growth (subculture-20), in the mid-stationary growth phase (subculture-30), and late stationary growth phase (subculture-40). It is shown that epigenotype of subculture-10 remained unchanged over 2 years of cultivation, i. e., it does not manifest replicative aging. At the same time, the subculture-20, although long enough (at least 40 passages), maintained epigenotype characteristic of young cultures, and showed age-related changes. Pronounced age-dependent changes of epigenotype in the course of cultivation were identified for subculture-30, and subculture-40 was characterized by unstable epigenotype. Thus, cultivation conditions determine the intensity of replicative aging in Dunaliella viridis.

  13. Production of functional killer protein in batch cultures upon a shift from aerobic to anaerobic conditions

    Directory of Open Access Journals (Sweden)

    Gildo Almeida da Silva

    2011-06-01

    Full Text Available The aim of this work was to study the production of functional protein in yeast culture. The cells of Saccharomyces cerevisiae Embrapa 1B (K+R+ killed a strain of Saccharomyces cerevisiae Embrapa 26B (K-R-in grape must and YEPD media. The lethal effect of toxin-containing supernatant and the effect of aeration upon functional killer production and the correlation between the products of anaerobic metabolism and the functional toxin formation were evaluated. The results showed that at low sugar concentration, the toxin of the killer strain of Sacch. cerevisiae was only produced under anaerobic conditions . The system of killer protein production showed to be regulated by Pasteur and Crabtree effects. As soon as the ethanol was formed, the functional killer toxin was produced. The synthesis of the active killer toxin seemed to be somewhat associated with the switch to fermentation process and with concomitant alcohol dehydrogenase (ADH activity.

  14. Cultural conditions on the production of extracellular enzymes by Trichoderma isolates from tobacco rhizosphere.

    Science.gov (United States)

    Mallikharjuna Rao, K L N; Siva Raju, K; Ravisankar, H

    2016-01-01

    Twelve isolates of Trichoderma spp. isolated from tobacco rhizosphere were evaluated for their ability to produce chitinase and β-1,3-glucanase extracellular hydrolytic enzymes. Isolates ThJt1 and TvHt2, out of 12 isolates, produced maximum activities of chitinase and β-1,3-glucanase, respectively. In vitro production of chitinase and β-1,3-glucanase by isolates ThJt1 and TvHt2 was tested under different cultural conditions. The enzyme activities were significantly influenced by acidic pH and the optimum temperature was 30°C. The chitin and cell walls of Sclerotium rolfsii, as carbon sources, supported the maximum and significantly higher chitinase activity by both isolates. The chitinase activity of isolate ThJt1 was suppressed significantly by fructose (80.28%), followed by glucose (77.42%), whereas the β-1,3-glucanase activity of ThJt1 and both enzymes of isolate TvHt2 were significantly suppressed by fructose, followed by sucrose. Ammonium nitrate as nitrogen source supported the maximum activity of chitinase in both isolates, whereas urea was a poor nitrogen source. Production of both enzymes by the isolates was significantly influenced by the cultural conditions. Thus, the isolates ThJt1 and TvHt2 showed higher levels of chitinase and β-1,3-glucanase activities and were capable of hydrolyzing the mycelium of S. rolfsii infecting tobacco. These organisms can be used therefore for assessment of their synergism in biomass production and biocontrol efficacy and for their field biocontrol ability against S. rolfsii and Pythium aphanidermatum infecting tobacco.

  15. Gallium chloride effects on neonatal rat heart cells in culture, in standard and oxidative conditions.

    Science.gov (United States)

    Leperre, A; Millart, H; Prévost, A; Kantelip, J P; Lamiable, D; Collery, P

    1994-01-01

    The effects of gallium chloride (GaCl3) at 7.17, 28.68 and 114.7 microns (0.5, 2 and 8 mg/l of Ga3+) were checked in cardiac cells derived from 2-4 day-old newborn rats, cultured for 72 h in Eagle's minimum essential medium (MEM), enriched with 10% foetal calf serum (v/v) and 2 mM of glutamine at 37 degrees C, with 95% air plus 5% CO2. After 3 hours of standard culture conditions (MEM with glucose 5 mM), Ga treatment induced an increase of glycogen stores without any influence on ATP, ADP, and AMP concentrations. A slight and transient decrease in the beat rate was noted after 15 min of exposure to GaCl3 at all concentrations, whereas there was no difference in the beat rate nor in the cell contraction amplitude after 3 hours of exposure. After 1.5 h in conditions of oxidation (Tyrode solution without glucose, FeCl2 20 microM, ascorbic acid 0.2 mM), GaCl3 at 8 mg/l decreased the malondialdehyde (MDA) production as assessed by the decrease of intracellular concentrations and the decrease of its release in the supernatant. The decreased MDA production following oxidative stress, the increase in glycogen stores in normal oxygen concentrations, as well as the maintenance of ATP concentrations and the lack of any chronotropic effect induced by GaCl3 suggests a protective rather than a deleterious cardiac effect.

  16. Twelve-Hour Hypothermic Machine Perfusion for Donor Heart Preservation Leads to Improved Ultrastructural Characteristics Compared to Conventional Cold Storage.

    Science.gov (United States)

    Michel, Sebastian G; La Muraglia, Glenn M; Madariaga, Maria Lucia L; Titus, James S; Selig, Martin K; Farkash, Evan A; Allan, James S; Anderson, Lisa M; Madsen, Joren C

    2015-01-01

    BACKGROUND Hypothermic machine perfusion of donor hearts has the theoretical advantage of continuous aerobic metabolism and washes out toxic metabolic byproducts. Here, we studied the effect of hypothermic machine perfusion on cardiac myocyte integrity when hearts are preserved for longer ischemic times (12 hours). MATERIAL AND METHODS Pig hearts were harvested and stored in Celsior® solution for 12 hours using either conventional cold storage on ice (12 h CS, n=3) or pulsatile perfusion with the Paragonix Sherpa Perfusion™ Cardiac Transport System at different flow rates (12 h PP, n=3 or 12 h PP low flow, n=2). After cold preservation, hearts were reperfused using an LV isovolumic Langendorff system. Controls (n=3) were reperfused immediately after organ harvest. Biopsies were taken from the apex of the left ventricle before storage, after storage and after reperfusion to measure ATP and endothelin-1 content in the tissue. TUNEL staining for signs of apoptosis and electron microscopy of the donor hearts were performed. RESULTS 12 h PP hearts showed significantly more weight gain than 12 h CS and controls after preservation. Pulsatile perfused hearts showed less ATP depletion, lower endothelin-1 levels and less apoptosis after preservation compared to CS. Electron microscopy showed damaged muscle fibers, endothelial cell rupture, and injury of mitochondria in the 12 h CS group, while machine perfusion could preserve the cell structures. CONCLUSIONS Hypothermic machine perfusion of donor hearts can preserve the cell structures better than conventional cold storage in prolonged ischemic times. Hypothermic pulsatile perfusion may therefore enable longer preservation times of donor hearts. Whether this method is able to avoid primary graft failure after orthotopic heart transplantation remains to be evaluated in further studies.

  17. Effects of culture conditions on monosaccharide composition of Ganoderma lucidum exopolysaccharide and on activities of related enzymes.

    Science.gov (United States)

    Peng, Lin; Qiao, Shuangkui; Xu, Zhenghong; Guan, Feng; Ding, Zhongyang; Gu, Zhenghua; Zhang, Liang; Shi, Guiyang

    2015-11-20

    We investigated the relationship between monosaccharide composition of Ganoderma lucidum exopolysaccharide (EPS) and activities of EPS synthesis enzymes under various culture temperatures and initial pH values. The mole percentages of three major EPS monosaccharides, glucose, galactose and mannose, varied depending on culture conditions and the resulting EPS displayed differing anti-tumor activities. In nine tested enzymes, higher enzyme activities were correlated with higher temperature and lower initial pH. Altered mole percentages of galactose and mannose under various culture conditions were associated with activities of α-phosphoglucomutase (PGM) and phosphoglucose isomerase (PGI), respectively, and that of mannose was also associated with phosphomannose isomerase (PMI) activity only under various pH. Our findings suggest that mole percentages of G. lucidum EPS monosaccharides can be manipulated by changes of culture conditions that affect enzyme activities, and that novel fermentation strategies based on this approach may enhance production and biological activity of EPS.

  18. Influence of Ginkgo Biloba extract on beta-secretase in rat hippocampal neuronal cultures following chronic hypoxic and hypoglycemic conditions

    Institute of Scientific and Technical Information of China (English)

    Xueneng Guan; Fuling Yan

    2008-01-01

    BACKGROUND: Preparation of Ginkgo leaf has been widely used to improve cognitive deficits and dementia, in particular in Alzheimer's disease patients. However, the precise mechanism of action of Ginkgo leaf remains unclear.OBJECTIVE: To explore the effect of Ginkgo Biloba extract (Egb761), Ginaton, on β-secretase expression in rat hippocampal neuronal cultures following chronic hypoxic and hypoglycemic conditions.DESIGN, TIME AND SETTNG: Completely by randomized, grouping study. The experiment was performed at the Laboratory of Molecular Imaging, Southeast University between August 2006 and August 2007.MATERIALS: A total of 128 Wistar rats aged 24 hours were selected, and hippocampal neurons were harvested for primary cultures.METHODS: On day 7, primary hippocampal neuronal cultures were treated with Egb761 (0, 25, 50, 100, 150, and 200 μ g/mL) under hypoxic/hypoglycemic or hypoglycemic culture conditions for 12, 24, and 36 hours, respectively. Hippocampal neurons cultured in primary culture medium served as control.MAIN OUTCOME MEASURES: Cell viability was assayed using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT); fluorescence detection of β-secretase activity was performed; Western Blot was used to measure β -secretase expression.RESULTS: Cell viability under hypoxic/hypoglycemic or hypoglycemic culture conditions was significantly less than control cells (P 25 μ g/mL Egb761 induced greater cell viability (P 0.05). Α -secretase activity was increased after 12 hours in hypoxic/hypoglycemic culture (P 0.05). Β -secretase activity was greater after 12, 24, and 36 hours in hypoxic/hypoglycemic culture conditions, compared with control conditions (P < 0.05). Β-secretase activity was significantly decreased in neurons treated with Egb761 for 12, 24, or 36 hours, compared with the hypoxic/hypoglycemic group (P < 0.05).β-secretase protein expression was significantly up-regulated in neurons cultured in hypoxic/hypoglycemic conditions for

  19. Comparison of red microalgae (Porphyridium cruentum) culture conditions for bioethanol production.

    Science.gov (United States)

    Kim, Ho Myeong; Oh, Chi Hoon; Bae, Hyeun-Jong

    2017-02-12

    Microalgae biomass are useful resources in biofuel production. The objective of this study was to evaluate bioethanol production in response to Porphyridium cruemtum culture conditions. Enzymatic hydrolysis of seawater P. cruemtum (SPC) and freshwater P. cruemtum (FPC, 1% substrate loading, w/v) resulted in glucose conversion yields of 89.8 and 85.3%, respectively, without any pretreatment. However, FPC hydrolysate was more efficiently converted to ethanol about 7.1% than SPC hydrolysate. The comparison of separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) showed that SSF processing is a superior method for bioethanol production from both SPC and FPC. Though SSF processing (5% substrate loading, w/v) in a 500-mL twin-neck round bottom flask, we achieved ethanol conversion yields of 65.4 and 70.3% from SPC and FPC, respectively, after 9h. These findings indicate that P. cruemtum can grow in freshwater conditions and is an efficient candidate for bioethanol production.

  20. Optimized culture condition for enhancing lytic performance of waste activated sludge by Geobacillus sp. G1.

    Science.gov (United States)

    Yang, Chunxue; Zhou, Aijuan; Hou, Yanan; Zhang, Xu; Guo, Zechong; Wang, Aijie; Liu, Wenzong

    2014-01-01

    Hydrolysis is known as the rate-limiting step during waste activated sludge (WAS) digestion. The optimization of the culture conditions of Geobacillus sp. G1 for enhancing WAS hydrolysis was conducted in this study with uniform design and response surface methodology. Taking the lysis rate of Escherichia coli as the response, the Plackett-Burman design was used to screen the most important variables. Experimental results showed that the maximum predicted lysis rate of E. coli was 50.9% for 4 h treatment time with concentrations of skim milk, NaCl and NH4SO4 at 10.78, 4.36 and 11.28 g/L, respectively. The optimized dosage ratio of Geobacillus sp. G1 to WAS was 35%:65% (VG1:VWAS). Under this condition, soluble protein was increased to 695 mg chemical oxygen demand (COD)/L, which was 5.0 times higher than that obtained in the control (140 mg COD/L). The corresponding protease activity reached 1.1 Eu/mL. Scanning electron microscopy showed that abundant cells were apparently lysed with treatment of Geobacillus sp. G1.

  1. [Optimization of culture conditions for in vitro rooting of argan (Argania spinosa L.)].

    Science.gov (United States)

    Bousselmame, F; Kenny, L; Chlyah, H

    2001-11-01

    The root system produced of in vitro organ plantlets is of poor quality and not efficient for the transfer to out-door conditions. To overcome such problems, experimentation was undertaken where the effects of growth regulators, nitrogen, sugar, activated charcoal and coconut fiber were tested on root induction and elongation. Modified Murashige and Skoog with half strength salt was used as a basal medium. Root induction (85%) with a mean of 16 roots per explant was obtained when shoots were grown, under dark conditions for 14 days, with a combination of two auxins (IBA and NNA), added at equal concentrations (5 mg.L-1). Secondary roots, 10 cm long, were initiated in 12% of the cultures in presence of 5 g.L-1 activated charcoal. Further improvements in the growth of the primary and secondary roots were obtained when semi-solid medium was substituted with a substrate composed of coconut fibers (80 g) mixed with semi-solid medium (35 mL) and agar (2.5 g.L-1).

  2. Systematic microcarrier screening and agitated culture conditions improves human mesenchymal stem cell yield in bioreactors.

    Science.gov (United States)

    Rafiq, Qasim A; Coopman, Karen; Nienow, Alvin W; Hewitt, Christopher J

    2016-03-01

    Production of human mesenchymal stem cells for allogeneic cell therapies requires scalable, cost-effective manufacturing processes. Microcarriers enable the culture of anchorage-dependent cells in stirred-tank bioreactors. However, no robust, transferable methodology for microcarrier selection exists, with studies providing little or no reason explaining why a microcarrier was employed. We systematically evaluated 13 microcarriers for human bone marrow-derived MSC (hBM-MSCs) expansion from three donors to establish a reproducible and transferable methodology for microcarrier selection. Monolayer studies demonstrated input cell line variability with respect to growth kinetics and metabolite flux. HBM-MSC1 underwent more cumulative population doublings over three passages in comparison to hBM-MSC2 and hBM-MSC3. In 100 mL spinner flasks, agitated conditions were significantly better than static conditions, irrespective of donor, and relative microcarrier performance was identical where the same microcarriers outperformed others with respect to growth kinetics and metabolite flux. Relative growth kinetics between donor cells on the microcarriers were the same as the monolayer study. Plastic microcarriers were selected as the optimal microcarrier for hBM-MSC expansion. HBM-MSCs were successfully harvested and characterised, demonstrating hBM-MSC immunophenotype and differentiation capacity. This approach provides a systematic method for microcarrier selection, and the findings identify potentially significant bioprocessing implications for microcarrier-based allogeneic cell therapy manufacture.

  3. Quantitative proteome and transcriptome analysis of the archaeon Thermoplasma acidophilum cultured under aerobic and anaerobic conditions.

    Science.gov (United States)

    Sun, Na; Pan, Cuiping; Nickell, Stephan; Mann, Matthias; Baumeister, Wolfgang; Nagy, István

    2010-09-03

    A comparative proteome and transcriptome analysis of Thermoplasma acidophilum cultured under aerobic and anaerobic conditions has been performed. One-thousand twenty-five proteins were identified covering 88% of the cytosolic proteome. Using a label-free quantitation method, we found that approximately one-quarter of the identified proteome (263 proteins) were significantly induced (>2 fold) under anaerobic conditions. Thirty-nine macromolecular complexes were identified, of which 28 were quantified and 15 were regulated under anaerobiosis. In parallel, a whole genome cDNA microarray analysis was performed showing that the expression levels of 445 genes were influenced by the absence of oxygen. Interestingly, more than 40% of the membrane protein-encoding genes (145 out of 335 ORFs) were up- or down-regulated at the mRNA level. Many of these proteins are functionally associated with extracellular protein or peptide degradation or ion and amino acid transport. Comparison of the transcriptome and proteome showed only a weak positive correlation between mRNA and protein expression changes, which is indicative of extensive post-transcriptional regulatory mechanisms in T. acidophilum. Integration of transcriptomics and proteomics data generated hypotheses for physiological adaptations of the cells to anaerobiosis, and the quantitative proteomics data together with quantitative analysis of protein complexes provide a platform for correlation of MS-based proteomics studies with cryo-electron tomography-based visual proteomics approaches.

  4. Brain tumor stem cells maintain overall phenotype and tumorigenicity after in vitro culturing in serum-free conditions

    Science.gov (United States)

    Vik-Mo, Einar Osland; Sandberg, Cecilie; Olstorn, Havard; Varghese, Mercy; Brandal, Petter; Ramm-Pettersen, Jon; Murrell, Wayne; Langmoen, Iver Arne

    2010-01-01

    Traditional in vitro culturing of tumor cells has been shown to induce changes so that cultures no longer represent the tumor of origin. Serum-free culturing conditions are used in a variety of cancers to propagate stem-like cells in vitro. Limited reports, however, exist on the effects of such propagation. We have compared cells from brain tumor biopsies cultivated under serum-free conditions at passages 2 and 10 to describe the effects of in vitro culturing. We were able to establish cell lines from 7 of 10 biopsies from patients with glioblastoma. The cell lines adapted to conditions and had 2.2 times increased population doubling rate at later passages. Karyotyping and comparative genomic hybridization analysis revealed that all examined cell lines had cytogenetic aberrations commonly found in glioblastomas, and there were only minor differences between tumor and early and late passages in the same culture. Whole-transcriptome analysis shows that tumors had interindividual differences. Changes in the overall expression patterns through passaging were modest, with a significant change in only 14 genes; the variation among cultures was, however, reduced through passages. The ability to differentiate differed among tumors but was maintained throughout passaging. The cells initiated tumors upon transplantation to immunodeficient mice with differing phenotypes, but a given cell culture maintained tumor phenotype after serial cultivation. The cultures established maintained individual characteristics specific to culture identity. Thus, each cell culture reflects an image of the tumor—or a personalized model—from which it was derived and remains representative after moderate expansion. PMID:20843775

  5. Dynamics and cultural specifics of information needs under conditions of long-term space flight

    Science.gov (United States)

    Feichtinger, Elena; Shved, Dmitry; Gushin, Vadim

    Life in conditions of space flight or chamber study with prolonged isolation is associated with lack of familiar stimuli (sensory deprivation), monotony, significant limitation of communication, and deficit of information and media content (Myasnikov V.I., Stepanova S.I. et al., 2000). Fulfillment of a simulation experiment or flight schedule implies necessity of performance of sophisticated tasks and decision making with limited means of external support. On the other hand, the “stream” of information from the Mission Control (MC) and PI’s (reminders about different procedures to be performed, requests of reports, etc.) is often inadequate to communication needs of crewmembers. According to the theory of “information stress” (Khananashvili M.M., 1984), a distress condition could be formed if: a) it’s necessary to process large amounts of information and make decisions under time pressure; b) there is a prolonged deficit of necessary (e.g. for decision making) information. Thus, we suppose that one of the important goals of psychological support of space or space simulation crews should be forming of favorable conditions of information environment. For that purpose, means of crew-MC information exchange (quantitative characteristics and, if possible, content of radiograms, text and video messages, etc.) should be studied, as well as peculiarities of the crewmembers’ needs in different information and media content, and their reactions to incoming information. In the space simulation experiment with 520-day isolation, communication of international crew with external parties had been studied. Dynamics of quantitative and content characteristics of the crew’s messages was related to the experiment’s stage, presence of “key” events in the schedule (periods of high autonomy, simulated “planetary landing”, etc.), as well as to events not related to the experiment (holidays, news, etc.). It was shown that characteristics of information exchange

  6. Condition and biochemical profile of blue mussels (Mytilus edulis L.) cultured at different depths in a cold water coastal environment

    Science.gov (United States)

    Gallardi, Daria; Mills, Terry; Donnet, Sebastien; Parrish, Christopher C.; Murray, Harry M.

    2017-08-01

    The growth and health of cultured blue mussels (Mytilus edulis) are affected by environmental conditions. Typically, culture sites are situated in sheltered areas near shore (i.e., impact in coastal areas are concerns and interest in developing deep water (> 20 m depth) mussel culture has been growing. This study evaluated the effect of culture depth on blue mussels in a cold water coastal environment (Newfoundland, Canada). Culture depth was examined over two years from September 2012 to September 2014; mussels from three shallow water (5 m) and three deep water (15 m) sites were compared for growth and biochemical composition; culture depths were compared for temperature and chlorophyll a. Differences between the two years examined were noted, possibly due to harsh winter conditions in the second year of the experiment. In both years shallow and deep water mussels presented similar condition; in year 2 deep water mussels had a significantly better biochemical profile. Lipid and glycogen analyses showed seasonal variations, but no significant differences between shallow and deep water were noted. Fatty acid profiles showed a significantly higher content of omega-3 s (20:5ω3; EPA) and lower content of bacterial fatty acids in deep water sites in year 2. Everything considered, deep water appeared to provide a more favorable environment for mussel growth than shallow water under harsher weather conditions.

  7. In vitro zygotic embryo culture of Pinus peuce Gris.: Optimization of culture conditions affecting germination and early seedling growth

    Directory of Open Access Journals (Sweden)

    Stojičić Dragana

    2012-01-01

    Full Text Available This study reports a protocol for the germination and early seedling growth of Pinus peuce Gris. using zygotic embryo culture. In order to overcome seed dormancy and optimize organogenesis, the effect of nutritional, plant growth regulatory and physical factors on in vitro germination and growth of isolated mature zygotic embryos of P. peuce were investigated.

  8. Optimization of culture conditions for maintaining porcine induced pluripotent stem cells.

    Science.gov (United States)

    Gao, Yi; Guo, Yanjie; Duan, Anqin; Cheng, De; Zhang, Shiqiang; Wang, Huayan

    2014-01-01

    Ground state porcine induced pluripotent stem cells (piPSCs), which retain the potential to generate chimeric animal and germline transmission, are difficult to produce. This study investigated morphological and biological progression at the early stage of porcine somatic cell reprogramming, and explored suitable conditions to increase the induction efficiency of piPSCs. A cocktail of defined transcription factors was used to generate piPSCs. The amphotropic retrovirus, which carried human OCT4 (O), SOX2 (S), KLF4 (K), C-MYC (M), TERT (T), and GFP, were used to infect porcine embryonic fibroblasts (PEFs). The number of clones derived from OSKM (4F) and OSKMT (4F+T) was significantly higher than that from SKM (3F) and SKMT (3F+T), suggesting that OCT4 played a critical role in regulating porcine cell reprogramming. The number of alkaline phosphatase-positive clones from a medium with leukemia inhibitory factor (LIF) and basic fibroblast growth factor (bFGF) (M1 medium) was significantly higher than that with insulin and 2i PD0325901/CHIR99021 (M2 medium), indicating that insulin and 2i could not effectively maintain piPSC propagation. In the M1 medium, piPSC lines could not maintain the typical self-renewal morphology on gelatin-coated and Matrigel-coated plates. Without the mouse embryonic fibroblast (MEF) feeder, piPSCs started to simultaneously differentiate. Based on the potential for self-renewal and activation of pluripotent markers, we found that the culture condition of 4F+T plus LIF and bFGF plus MEF feeder promoted PEF reprogramming more efficiently than the other conditions tested here. Two piPSC lines (IB-1 and IB-2) were derived and maintained for up to 20 passages in vitro.

  9. Diazepam neuroprotection in excitotoxic and oxidative stress involves a mitochondrial mechanism additional to the GABAAR and hypothermic effects.

    Science.gov (United States)

    Sarnowska, Anna; Beresewicz, Małgorzata; Zabłocka, Barbara; Domańska-Janik, Krystyna

    2009-01-01

    The aim of the present investigation was to analyze the molecular mechanism(s) of diazepam neuroprotection in two models of selective neuronal death in CA1 sector of hippocampus: in vivo following transient gerbil brain ischemia and in vitro in rat hippocampal brain slices subjected to glutamatergic (100 microM NMDA) or oxidative (30 microM tertbutyl-hydroksyperoxide (TBH)) stress. In the in vivo model the diazepam treatment (two doses of 10mg/kg i.p. 30 and 90 min after the insult) resulted in more than 60% of CA1 hippocampal neurons surviving the insult comparing with 15% in untreated animals. To test whether the protective effect of diazepam was due to the postulated drug-induced hypothermia we followed the fluxes of body temperature during postischemic reperfusion: diazepam reduced temperature from 36.6+/-1 degrees C to 33.4+/-2 degrees C. Equivalent hypothermia induced and maintained in animals after ischemia did not prevent neuronal cell loss to the same extent as diazepam did (42.8+/-9.2% and 72.4+/-14.5% of live neurons, respectively). In vitro, under constant temperature conditions, diazepam exerted neuroprotective effects following a "U-shaped" dose-response curve, with concentration efficacy window of 0.5-10 microM. Five micro-molar diazepam showed significant protection by reducing over 50% the number of (dead) propidium iodide labeled cells even in the presence of GABA(A) receptor antagonist bicuculline. Next, we have shown that diazepam reduced the efflux of cytochrome c out of mitochondria both in compromised CA1 neurons in vitro and in isolated mitochondria treated with 30 microM THB. Our results suggest that the neuroprotective action of diazepam relies on additional mechanism(s) and not solely on its hypothermic effect. We suggest that diazepam evokes neuroprotection through its central receptors located on the GABA(A) receptor complex and, possibly, through its peripheral receptor, the translocator protein TSPO (previously called the peripheral

  10. Screening and characterization of Isochrysis strains and optimization of culture conditions for docosahexaenoic acid production.

    Science.gov (United States)

    Liu, Jin; Sommerfeld, Milton; Hu, Qiang

    2013-06-01

    Isochrysis is a genus of marine unicellular microalgae that produces docosahexaenoic acid (DHA, C22:6), a very long chain polyunsaturated fatty acid (PUFA) of significant health and nutritional value. Mass cultivation of Isochrysis for DHA production for human consumption has not been established due to disappointing low DHA productivity obtained from commonly used Isochrysis strains. In this study, 19 natural Isochrysis strains were screened for DHA yields and the results showed that the cellular DHA content ranged from 6.8 to 17.0 % of total fatty acids with the highest DHA content occurring in the exponential growth phase. Isochrysis galbana #153180 exhibited the greatest DHA production potential and was selected for further investigation. The effects of different light intensities, forms, and concentrations of nitrogen, phosphorus, and salinity on growth and DHA production of I. galbana #153180 were studied in a bubble column photobioreactor (PBR). Under favorable culture conditions, I. galbana #153180 contained DHA up to 17.5 % of total fatty acids or 1.7 % of cell dry weight. I. galbana #153180 was further tested in outdoor flat-plate PBRs varying in light path length, starting cell density (SCD), and culture mode (batch versus semicontinuous). When optimized, record high biomass and DHA productivity of I. galbana #153180 of 0.72 g L(-1) day(-1) and 13.6 mg L(-1) day(-1), or 26.4 g m(-2) day(-1) and 547.7 mg m(-2) day(-1), respectively, were obtained, suggesting that I. galbana #153180 may be a desirable strain for commercial production of DHA.

  11. Cultural repertoires and food-related household technology within colonia households under conditions of material hardship

    Directory of Open Access Journals (Sweden)

    Dean Wesley R

    2012-05-01

    Full Text Available Abstract Introduction Mexican-origin women in the U.S. living in colonias (new-destination Mexican-immigrant communities along the Texas-Mexico border suffer from a high incidence of food insecurity and diet-related chronic disease. Understanding environmental factors that influence food-related behaviors among this population will be important to improving the well-being of colonia households. This article focuses on cultural repertoires that enable food choice and the everyday uses of technology in food-related practice by Mexican-immigrant women in colonia households under conditions of material hardship. Findings are presented within a conceptual framework informed by concepts drawn from sociological accounts of technology, food choice, culture, and material hardship. Methods Field notes were provided by teams of promotora-researchers (indigenous community health workers and public-health professionals trained as participant observers. They conducted observations on three separate occasions (two half-days during the week and one weekend day within eight family residences located in colonias near the towns of Alton and San Carlos, Texas. English observations were coded inductively and early observations stressed the importance of technology and material hardship in food-related behavior. These observations were further explored and coded using the qualitative data package Atlas.ti. Results Technology included kitchen implements used in standard and adapted configurations and household infrastructure. Residents employed tools across a range of food-related activities identified as forms of food acquisition, storage, preparation, serving, feeding and eating, cleaning, and waste processing. Material hardships included the quality, quantity, acceptability, and uncertainty dimensions of food insecurity, and insufficient consumption of housing, clothing and medical care. Cultural repertoires for coping with material hardship included reliance on

  12. A Novel Cooling Method and Comparison of Active Rewarming of Mildly Hypothermic Subjects.

    Science.gov (United States)

    Christensen, Mark L; Lipman, Grant S; Grahn, Dennis A; Shea, Kate M; Einhorn, Joseph; Heller, H Craig

    2017-06-01

    To compare the effectiveness of arteriovenous anastomosis (AVA) vs heated intravenous fluid (IVF) rewarming in hypothermic subjects. Additionally, we sought to develop a novel method of hypothermia induction. Eight subjects underwent 3 cooling trials each to a core temperature of 34.8±0.6 (32.7 to 36.3°C [mean±SD with range]) by 14°C water immersion for 30 minutes, followed by walking on a treadmill for 5 minutes. Core temperatures (Δtes) and rates of cooling (°C/h) were measured. Participants were then rewarmed by 1) control: shivering only in a sleeping bag; 2) IVF: shivering in sleeping bag and infusion of 2 L normal saline warmed to 42°C at 77 mL/min; and 3) AVA: shivering in sleeping bag and circulation of 45°C warmed fluid through neoprene pads affixed to the palms and soles of the feet. Cold water immersion resulted in a decrease of 0.5±0.5°C Δtes and 1±0.3°C with exercise (P benefit in either of the 2 active rewarming methods, AVA rewarming showed a nonsignificant trend toward greater shivering inhibition, which may be optimized by an improved interface. Copyright © 2017 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  13. Hypothermic machine preservation reduces molecular markers of ischemia/reperfusion injury in human liver transplantation.

    Science.gov (United States)

    Henry, S D; Nachber, E; Tulipan, J; Stone, J; Bae, C; Reznik, L; Kato, T; Samstein, B; Emond, J C; Guarrera, J V

    2012-09-01

    Hypothermic machine perfusion (HMP) is in its infancy in clinical liver transplantation. Potential benefits include diminished preservation injury (PI) and improved graft function. Molecular data to date has been limited to extrapolation of animal studies. We analyzed liver tissue and serum collected during our Phase 1 trial of liver HMP. Grafts preserved with HMP were compared to static cold stored (SCS) transplant controls. Reverse transcription polymerase chain reaction (RT-PCR), immunohistochemistry and transmission electron microscopy (TEM) were performed on liver biopsies. Expression of inflammatory cytokines, adhesion molecules and chemokines, oxidation markers, apoptosis and acute phase proteins and the levels of CD68 positive macrophages in tissue sections were evaluated. RT-PCR of reperfusion biopsy samples in the SCS group showed high expression of inflammatory cytokines, adhesion molecules and chemokines, oxidative markers and acute phase proteins. This upregulation was significantly attenuated in livers that were preserved by HMP. Immunofluorescence showed larger numbers of CD68 positive macrophages in the SCS group when compared to the HMP group. TEM samples also revealed ultrastructural damage in the SCS group that was not seen in the HMP group. HMP significantly reduced proinflammatory cytokine expression, relieving the downstream activation of adhesion molecules and migration of leukocytes, including neutrophils and macrophages when compared to SCS controls.

  14. Severity and Duration of Metabolic Acidosis After Deep Hypothermic Circulatory Arrest for Thoracic Aortic Surgery.

    Science.gov (United States)

    Ghadimi, Kamrouz; Gutsche, Jacob T; Setegne, Samuel L; Jackson, Kirk R; Augoustides, John G T; Ochroch, E Andrew; Bavaria, Joseph E; Cheung, Albert T

    2015-12-01

    To determine the severity, duration, and contributing factors for metabolic acidosis after deep hypothermic circulatory arrest (DHCA). Retrospective observational study. University hospital. Eighty-seven consecutive patients undergoing elective thoracic aortic surgery with DHCA. Regression analysis was used to test for relationships between the severity of metabolic acidosis and clinical and laboratory variables. Minimum pH averaged 7.27±0.06, with 76 (87%) having a pHacidosis was 7.9±5.0 hours (range: 0.0 - 26.8), and time to minimum pH after DHCA was 4.3±2.0 hours (1.0 - 10.0 hours). Hyperchloremia contributed to metabolic acidosis in 89% of patients. The severity of metabolic acidosis correlated with maximum lactate (pacidosis. This retrospective analysis involved short-term clinical outcomes related to pH severity and duration, which indirectly may have included the impact of sodium bicarbonate administration. Metabolic acidosis was common and severe after DHCA and was attributed to both lactic and hyperchloremic acidosis. DHCA duration and temperature had little impact on the severity of metabolic acidosis. The severity of metabolic acidosis was best predicted by the BMI and had minimal effects on short-term outcomes. Preventing hyperchloremic acidosis has the potential to decrease the severity of metabolic acidosis after DHCA. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Quantitative transient GUS expression in J-104 rice calli through manipulation of in vitro culture conditions.

    Directory of Open Access Journals (Sweden)

    Maylin Pérez Bernal

    2009-10-01

    This paper purposes suitable conditions for callus induction and co-cultivation with Agrobacterium tumefaciens of J-104 rice cultivar. It was evaluated the effect of different concentrations of 2.4-D and agar, and the inclusion of L-proline and L-glutamine in callus culture medium. The use of 2.5 mg/L 2.4-D and 0.8% agar allowed the highest percentage of embryogenic calli. Callus formation was improved considerably with 500 mg/L of L-proline and L-glutamine in the culture medium. Different factors were studied throughout co-cultivation of calli with A. tumefaciens: inoculation time, co-cultivation temperature, concentration of acetosyringone and co-cultivation period. Transient GUS expression was quantified by fluorometry in all co-cultivated calli. The best results were obtained with the following conditions: 10 min as inoculation time, 100µM acetosyringone in co-cultivation medium, temperature of 20ºC, and 3 days as co-cultivation period. Key words: Agar; callus; co-cultivation; fluorometric GUS activity. Resumen Se describen las condiciones óptimas para la callogénesis y cocultivo de callos con Agrobacterium tume-faciens de la variedad de arroz J-104. Se determinó el efecto de diferentes concentraciones de 2.4-D, agar y de L-prolina y L-glutamina en el medio de cultivo de callos. El uso de 2,5 mg/L de 2.4-D y 0,8% de agar permitió lograr el porcentaje más alto de callos embriogénicos. La formación de callos fue mejorada considerablemente con la adición de 500 mg/L de L-prolina e igual concentración de L-glutamina en el medio de cultivo. Se estudiaron diferentes factores en el cocultivo de los callos con A. tumefaciens: tiempo de inoculación, concentración de acetosiringona, temperatura y tiempo de cocultivo. Para comparar el efecto de cada factor sobre la expresión GUS se cuantificó la actividad transitoria mediante fluorimetría. Los valores más altos de actividad fluorimétrica fueron obtenidos con las siguientes condiciones: 10 min de

  16. Influence of culture conditions on Vero cell propagation on non-porous microcarriers

    Directory of Open Access Journals (Sweden)

    Marta Cristina de Oliveira Souza

    2005-06-01

    Full Text Available Animal cell cultures are widely employed for the production of viral vaccines and for recombinant protein expression. The cell line Vero is a continuous, adherent cell line, which has been recommended by the World Health Organization for the production of human vaccines. For the large-scale production of vaccines, microcarriers, which are microspheres that serve as support for the cells, are being increasingly used. The use of microcarriers in stirred bioreactors allows high cell densities and, consequently, high virus titres to be achieved. With the aim of selecting appropriate culture conditions for the cultivation of Vero cells at high cell densities, in this work the influence of several variables (agitation rate, ratio of inoculated cells to microcarrier mass and fetal bovine serum concentration on cell growth on Cytodex 1 microcarriers was studied. Under the best conditions determined, a comparison with Vero cell cultivation on Cytodex 3 microcarriers was carried out.Cultivos de células animais são amplamente utilizados para a produção de vacinas virais e para a expressão de proteínas recombinantes. A linhagem celular Vero é uma linhagem contínua, dependente de ancoragem, recomendada pela Organização Mundial de Saúde para a produção de vacinas de uso humano. Para a produção de vacinas virais em larga escala, vêm sendo cada vez mais empregados microcarregadores, que são microesferas que servem de suporte para as células. O emprego de microcarregadores em biorreatores agitados permite a obtenção de altas densidades celulares e, conseqüentemente, de altos títulos de antígenos virais. Com o objetivo de selecionar condições de cultivo adequadas, estudou-se, neste trabalho, o efeito das variáveis agitação, razão de células inoculadas por microcarregador e concentração de soro fetal bovino sobre o crescimento de células Vero em microcarregadores Cytodex 1. Nas melhores condições selecionadas, o desempenho dos

  17. Organizational culture and human resources management in multinational companies under the conditions of intercultural environment

    Directory of Open Access Journals (Sweden)

    Vetráková Milota

    2015-12-01

    Full Text Available The aim of this paper is to present the opinion and experiences of professionals on specifics of human resources management and organizational culture forming in multinational companies. The theoretical knowledge is in confrontation with the results of sociological questioning in the form of structured interviews with managers of multinational companies branches in Slovakia. The starting point of the research was hypothesis about respecting national culture specifics in culture of multinational company culture. We can proof this hypothesis by research; the majority of companies apply transnational and polycentric approach to create local branch culture.

  18. Identification of a New Marine Bacterial Strain SD8 and Optimization of Its Culture Conditions for Producing Alkaline Protease.

    Science.gov (United States)

    Cui, Hongxia; Yang, Muyang; Wang, Liping; Xian, Cory J

    2015-01-01

    While much attention has been given to marine microorganisms for production of enzymes, which in general are relatively more stable and active compared to those from plants and animals, studies on alkaline protease production from marine microorganisms have been very limited. In the present study, the alkaline protease producing marine bacterial strain SD8 isolated from sea muds in the Geziwo Qinhuangdao sea area of China was characterized and its optimal culture conditions were investigated. Strain SD8 was initially classified to belong to genus Pseudomonas by morphological, physiological and biochemical characterizations, and then through 16S rDNA sequence it was identified to be likely Pseudomonas hibiscicola. In addition, the culture mediums, carbon sources and culture conditions of strain SD8 were optimized for maximum production of alkaline protease. Optimum enzyme production (236U/mL when cultured bacteria being at 0.75 mg dry weight/mL fermentation broth) was obtained when the isolate at a 3% inoculum size was grown in LB medium at 20 mL medium/100mL Erlenmeyer flask for 48h culture at 30°C with an initial of pH 7.5. This was the first report of strain Pseudomonas hibiscicola secreting alkaline protease, and the data for its optimal cultural conditions for alkaline protease production has laid a foundation for future exploration for the potential use of SD8 strain for alkaline protease production.

  19. Primary Human Uterine Leiomyoma Cell Culture Quality Control: Some Properties of Myometrial Cells Cultured under Serum Deprivation Conditions in the Presence of Ovarian Steroids.

    Science.gov (United States)

    Bonazza, Camila; Andrade, Sheila Siqueira; Sumikawa, Joana Tomomi; Batista, Fabrício Pereira; Paredes-Gamero, Edgar J; Girão, Manoel J B C; Oliva, Maria Luiza V; Castro, Rodrigo Aquino

    2016-01-01

    Cell culture is considered the standard media used in research to emulate the in vivo cell environment. Crucial in vivo experiments cannot be conducted in humans and depend on in vitro methodologies such as cell culture systems. However, some procedures involving the quality control of cells in culture have been gradually neglected by failing to acknowledge that primary cells and cell lines change over time in culture. Thus, we report methods based on our experience for monitoring primary cell culture of human myometrial cells derived from uterine leiomyoma. We standardized the best procedure of tissue dissociation required for the study of multiple genetic marker systems that include species-specific antigens, expression of myofibroblast or myoblast markers, growth curve, serum deprivation, starvation by cell cycle synchronization, culture on collagen coated plates, and 17 β-estradiol (E2) and progesterone (P4) effects. The results showed that primary myometrial cells from patients with uterine leiomyoma displayed myoblast phenotypes before and after in vitro cultivation, and leiomyoma cells differentiated into mature myocyte cells under the appropriate differentiation-inducing conditions (serum deprivation). These cells grew well on collagen coated plates and responded to E2 and P4, which may drive myometrial and leiomyoma cells to proliferate and adhere into a focal adhesion complex involvement in a paracrine manner. The establishment of these techniques as routine procedures will improve the understanding of the myometrial physiology and pathogenesis of myometrium-derived diseases such as leiomyoma. Mimicking the in vivo environment of fibrotic conditions can prevent false results and enhance results that are based on cell culture integrity.

  20. Induction of a photomixotrophic plant cell culture of Helianthus annuus and optimization of culture conditions for improved α-tocopherol production.

    Science.gov (United States)

    Geipel, Katja; Song, Xue; Socher, Maria Lisa; Kümmritz, Sibylle; Püschel, Joachim; Bley, Thomas; Ludwig-Müller, Jutta; Steingroewer, Juliane

    2014-03-01

    Tocopherols, collectively known as vitamin E, are lipophilic antioxidants, which are synthesized only by photosynthetic organisms. Due to their enormous potential to protect cells from oxidative damage, tocopherols are used, e.g., as nutraceuticals and additives in pharmaceuticals. The most biologically active form of vitamin E is α-tocopherol. Most tocopherols are currently produced via chemical synthesis. Nevertheless, this always results in a racemic mixture of different and less effective stereoisomers because the natural isomer has the highest biological activity. Therefore, tocopherols synthesized in natural sources are preferred for medical purposes. The annual sunflower (Helianthus annuus L.) is a well-known source for α-tocopherol. Within the presented work, sunflower callus and suspension cultures were established growing under photomixotrophic conditions to enhance α-tocopherol yield. The most efficient callus induction was achieved with sunflower stems cultivated on solid Murashige and Skoog medium supplemented with 30 g l(-1) sucrose, 0.5 mg l(-1) of the auxin 1-naphthalene acetic acid, and 0.5 mg l(-1) of the cytokinin 6-benzylaminopurine. Photomixotrophic sunflower suspension cultures were induced by transferring previously established callus into liquid medium. The effects of light intensity, sugar concentration, and culture age on growth rate and α-tocopherol synthesis rate were characterized. A considerable increase (max. 230%) of α-tocopherol production in the cells was obtained within the photomixotrophic cell culture compared to a heterotrophic cell culture. These results will be useful for improving α-tocopherol yields of plant in vitro cultures.

  1. Optimization to the Culture Conditions for Phellinus Production with Regression Analysis and Gene-Set Based Genetic Algorithm.

    Science.gov (United States)

    Li, Zhongwei; Xin, Yuezhen; Wang, Xun; Sun, Beibei; Xia, Shengyu; Li, Hui; Zhu, Hu

    2016-01-01

    Phellinus is a kind of fungus and is known as one of the elemental components in drugs to avoid cancers. With the purpose of finding optimized culture conditions for Phellinus production in the laboratory, plenty of experiments focusing on single factor were operated and large scale of experimental data were generated. In this work, we use the data collected from experiments for regression analysis, and then a mathematical model of predicting Phellinus production is achieved. Subsequently, a gene-set based genetic algorithm is developed to optimize the values of parameters involved in culture conditions, including inoculum size, PH value, initial liquid volume, temperature, seed age, fermentation time, and rotation speed. These optimized values of the parameters have accordance with biological experimental results, which indicate that our method has a good predictability for culture conditions optimization.

  2. [Study on the growth characteristics and root exudates of three wetlands plants at different culture conditions].

    Science.gov (United States)

    Lu, Song-Liu; Hu, Hong-Ying; Sun, Ying-Xue; Yang, Jia

    2009-07-15

    Wetland plants are the important component of constructed wetlands and their root exudates provide the interior hydrocarbon for denitrification. In this study, the growth characteristics and root exudates of Canna indica, Zizania caduciflora and Lythrum salicari in different culture conditions were researched. The results showed that the average biomass initial/biomass in 120 days growth of Canna indica, Zizania caduciflora and Lythrum salicari were 9.1, 3.7, and 4.7, respectively. There was a positive correlation between the root exudates and the biomass of plants, but the release rate of root exudates decreased with the biomass increase. The root exudates release rates of unit biomass were 0.92, 0.47, 0.43 mg x (g x d)(-1) for Lythrum salicari, Canna indica and Zizania caduciflora, respectively. And the root exudates of those three plants are mainly organic acids and arylprotein based on the three-dimensional fluorescence spectrum analysis. The results ofthis study also indicate that Canna indiea and Lythrum salicari are befitting wetlands plants.

  3. Identifying the shared metabolic objectives of glycerol bioconversion in Klebsiella pneumoniae under different culture conditions.

    Science.gov (United States)

    Xu, Gongxian; Li, Caixia

    2017-03-18

    This paper addresses the problem of identifying the shared metabolic objectives of glycerol bioconversion in Klebsiella pneumoniae for production of 1,3-propanediol (1,3-PD) under different culture conditions. To achieve this goal, we propose a multi-level programming model. This model includes three optimization problems, where the constraint region of the first level problem is implicitly determined by the other two optimization problems. The optimized objectives of the first and second level problems are to minimize the set of fluxes that are of major importance to glycerol metabolism and the difference between the observed fluxes and those computed by the model, respectively. The third level problem in the proposed multi-level programming simultaneously solves a set of flux balance analysis (FBA) models. A method is proposed to solve efficiently the presented multi-level programming problem. In this method, we first transform the proposed multi-level problem into a bi-level problem by applying the dual theory of linear programming to the FBA models of the third level. Next, the optimal solution of the above bi-level problem is obtained by iteratively solving a sequence of mixed integer programming problems. Optimization results reveal that the proposed method can identify the shared metabolic objectives of glycerol bioconversion in Klebsiella pneumoniae under three groups of experimental data.

  4. Comparison of proliferative activity of Wharton jelly mesenchymal stem cells in cultures under various gas conditions

    Directory of Open Access Journals (Sweden)

    Shuvalova N. S.

    2015-06-01

    Full Text Available Aim. To optimize the cultivation of Wharton jelly-derived mesenchyma stem cells (WJ-MSCs using physiological oxygen concentrations, and to compare the effect of “hypoxic” gas mixtures, based on nitrogen and argon, on their proliferative activity. Methods. From the first passage, WJ-MSCs were cultivated during five passages in the nitrogen-based gas mixture (3 % oxygen, 4 % carbon dioxide, 93 % nitrogen and argon-based gas mixture (3 % oxygen, 4 % carbon dioxide, 93 % argon, 7 days before replating. At each passage the final cell number was estimated and the number of population doublings was calculated. Results. The proliferation level of WJ-MSCs, cultured in both gas mixtures with 3 % of O2, was significantly higher compared to that under the regular CO2-incubator conditions. In argon-based mixture, the WJ-MSCs proliferation was higher than in the control but lower than in nitrogen-based mixture. Conclusion. Cultivation of human WJ-MSCs under 3 % O2 had a stimulating effect on the cell proliferation potential. The highest intensity of the cell multiplication was observed in the nitrogen-based mixtures.

  5. Winter Growth of Carps under Different Semi-Intensive Culture Conditions

    Directory of Open Access Journals (Sweden)

    Nadia Nazish* and Abdul Mateen

    2011-04-01

    Full Text Available The experiment was planned to observe the influence of different semi intensive culture conditions i.e. organic and inorganic fertilizer with rice polish on the growth of carps during winter season. Two earthen ponds were selected and each pond was stocked with Silver carp (Hypophthalmichthys molitrix, Rohu (Labeo rohita and Mori (Cirrhinus mrigala at the ratio of 1:2:1 respectively with a total number of 44 fishes. Pond 1 was treated with poultry dropping and urea while pond 2 was treated with poultry dropping, urea and rice polish. The ponds were treated with at the rate of 0.2 g N/100g of wet body weight of fish. Fertilizers were added on weekly basis while rice polish was added daily. Total net fish production of pond 1 and pond 2 was remained 797.3 and 1033.0 kg/ha/year. The pond treated with fertilizer and artificial feed (rice polish showed 3.6% more fish production than the pond treated only with fertilizer. The physico-chemical parameters were measured on weekly basis. Temperature, light penetration, pH and planktonic biomass showed non-significant difference in both ponds. Pond 2 which was treated with poultry dropping, urea and rice polish showed 1.26 times greater fish growth than pond 1 which was treated with poultry dropping and urea.

  6. Zonation related function and ubiquitination regulation in human hepatocellular carcinoma cells in dynamic vs. static culture conditions

    Directory of Open Access Journals (Sweden)

    Cheng Shu

    2012-02-01

    Full Text Available Abstract Background Understanding hepatic zonation is important both for liver physiology and pathology. There is currently no effective systemic chemotherapy for human hepatocellular carcinoma (HCC and its pathogenesis is of special interest. Genomic and proteomic data of HCC cells in different culture models, coupled to pathway-based analysis, can help identify HCC-related gene and pathway dysfunctions. Results We identified zonation-related expression profiles contributing to selective phenotypes of HCC, by integrating relevant experimental observations through gene set enrichment analysis (GSEA. Analysis was based on gene and protein expression data measured on a human HCC cell line (HepG2/C3A in two culture conditions: dynamic microfluidic biochips and static Petri dishes. Metabolic activity (HCC-related cytochromes P450 and genetic information processing were dominant in the dynamic cultures, in contrast to kinase signaling and cancer-specific profiles in static cultures. That, together with analysis of the published literature, leads us to propose that biochips culture conditions induce a periportal-like hepatocyte phenotype while standard plates cultures are more representative of a perivenous-like phenotype. Both proteomic data and GSEA results further reveal distinct ubiquitin-mediated protein regulation in the two culture conditions. Conclusions Pathways analysis, using gene and protein expression data from two cell culture models, confirmed specific human HCC phenotypes with regard to CYPs and kinases, and revealed a zonation-related pattern of expression. Ubiquitin-mediated regulation mechanism gives plausible explanations of our findings. Altogether, our results suggest that strategies aimed at inhibiting activated kinases and signaling pathways may lead to enhanced metabolism-mediated drug resistance of treated tumors. If that were the case, mitigating inhibition or targeting inactive forms of kinases would be an alternative.

  7. Present Conditions and Strategies of Intangible Cultural Heritage Protection in Sichuan Ethnic Autonomous Areas

    Institute of Scientific and Technical Information of China (English)

    CHEN Yunxia

    2013-01-01

    The intangible cultural heritage of ethnic minorities is the most typical cultural re-source with ethnic characteristics . Its scientific protection and effective usage can not only help to transmit and develop the intangible cultural herit-age of ethnic minorities , but also can transform the ethnic minorities ’ cultural resources into advanta-geous resources , thus, promoting economic devel-opment in ethnic minority autonomous areas .For a long time, the ethnic minority autonomous areas have paid considerable attention to the protection of ethnic intangible cultural heritage ; explored vari-ous effective protective measures; and built up an effective model for protecting ethnic intangible cul-tural heritage guaranteed by the ethnic autonomous law.

  8. Using phenotype microarrays to determine culture conditions that induce or repress toxin production by Clostridium difficile and other microorganisms.

    Directory of Open Access Journals (Sweden)

    Xiang-He Lei

    Full Text Available Toxin production is a central issue in the pathogenesis of Clostridium difficile and many other pathogenic microorganisms. Toxin synthesis is influenced by a variety of known and unknown factors of genetics, physiology, and environment. To facilitate the study of toxin production by C. difficile, we have developed a new, reliable, quantitative, and robust cell-based cytotoxicity assay. Then we combined this new assay with Phenotype MicroArrays (PM technology which provides high throughput testing of culture conditions. This allowed us to quantitatively measure toxin production by C. difficile type strain ATCC 9689 under 768 culture conditions. The culture conditions include different carbon, nitrogen, phosphorus, and sulfur sources. Among these, 89 conditions produced strong toxin induction and 31 produced strong toxin repression. Strong toxin inducers included adenine, guanosine, arginine dipeptides, γ-D-Glu-Gly, methylamine, and others. Some leucine dipeptides and the triple-leucine tripeptide were among the strongest toxin repressors. While some results are consistent with previous observations, others are new observations that provide insights into toxin regulation and pathogenesis of C. difficile. Additionally, we have demonstrated that this combined assay technology can be applied broadly to a wide range of toxin producing microorganisms. This study is the first demonstration of simultaneous assessment of a large number of culture conditions influencing bacterial toxin production. The new functional cytotoxin quantitation method developed provides a valuable tool for studying toxigenic microorganisms and may also find applications in clinical and epidemiological research.

  9. Controlling the rheology of gellan gum hydrogels in cell culture conditions

    OpenAIRE

    Moxon, Samuel R.; Smith, Alan M.

    2016-01-01

    Successful culturing of tissues within polysaccharide hydrogels is reliant upon specific mechanical properties. Namely, the stiffness and elasticity of the gel have been shown to have a profound effect on cell behaviour in 3D cell cultures and correctly tuning these mechanical properties is critical to the success of culture. The usual way of tuning mechanical properties of a hydrogel to suit tissue engineering applications is to change the concentration of polymer or its cross-linking agents...

  10. Visually guided whole cell patch clamp of mouse supraoptic nucleus neurons in cultured and acute conditions.

    Science.gov (United States)

    Stachniak, Tevye J E; Bourque, Charles W

    2006-07-01

    Recent advances in neuronal culturing techniques have supplied a new set of tools for studying neural tissue, providing effective means to study molecular aspects of regulatory elements in the supraoptic nucleus of the hypothalamus (SON). To combine molecular biology techniques with electrophysiological recording, we modified an organotypic culture protocol to permit transfection and whole cell patch-clamp recordings from SON cells. Neonatal mouse brain coronal sections containing the SON were dissected out, placed on a filter insert in culture medium, and incubated for at least 4 days to allow attachment to the insert. The SON was identifiable using gross anatomical landmarks, which remained intact throughout the culturing period. Immunohistochemical staining identified both vasopressinergic and oxytocinergic cells present in the cultures, typically appearing in well-defined clusters. Whole cell recordings from these cultures demonstrated that certain properties of the neonatal mouse SON were comparable to adult mouse magnocellular neurons. SON neurons in both neonatal cultures and acute adult slices showed similar sustained outward rectification above -60 mV and action potential broadening during evoked activity. Membrane potential, input resistance, and rapidly inactivating potassium current density (IA) were reduced in the cultures, whereas whole cell capacitance and spontaneous synaptic excitation were increased, perhaps reflecting developmental changes in cell physiology that warrant further study. The use of the outlined organotypic culturing procedures will allow the study of such electrophysiological properties of mouse SON using whole cell patch-clamp, in addition to various molecular, techniques that require longer incubation times.

  11. Developments in techniques for the isolation, enrichment, main culture conditions and identification of spermatogonial stem cells.

    Science.gov (United States)

    He, Yanan; Chen, Xiaoli; Zhu, Huabin; Wang, Dong

    2015-12-01

    The in vitro culture system of spermatogonial stem cells (SSCs) provides a basis for studies on spermatogenesis, and also contributes to the development of new methods for the preservation of livestock and animal genetic modification. In vitro culture systems have mainly been established for mouse SSCs, but are lacking for farm animals. We reviewed and analyzed the current progress in SSC techniques such as isolation, purification, cultivation and identification. Based on the published studies, we concluded that two-step enzyme digestion and magnetic-activated cell sorting are fast becoming the main methods for isolation and enrichment of SSCs. With regard to the culture systems, serum and feeders were earlier thought to play an important role in the self-renewal and proliferation of SSCs, but serum- and feeder-free culture systems as a means of overcoming the limitations of SSC differentiation in long-term SSC culture are being explored. However, there is still a need to establish more efficient and ideal culture systems that can also be used for SSC culture in larger mammals. Although the lack of SSC-specific surface markers has seriously affected the efficiency of purification and identification, the transgenic study is helpful for our identification of SSCs. Therefore, future studies on SSC techniques should focus on improving serum- and feeder-free culture techniques, and discovering and identifying specific surface markers of SSCs, which will provide new ideas for the optimization of SSC culture systems for mice and promote related studies in farm animals.

  12. Serum-free culture conditions for serial subculture of undifferentiated PC12 cells.

    Science.gov (United States)

    Ohnuma, Kiyoshi; Hayashi, Yohei; Furue, Miho; Kaneko, Kunihiko; Asashima, Makoto

    2006-03-15

    PC12 cells, a widely used model neuronal cell line, are usually cultured in serum-supplemented medium. This report describes a serum-free medium for the culture of PC12 cells. PC12 cells grown in the two media types had similar growth rates and released dopamine in response to high potassium-induced calcium elevation. However, the levels of dopamine and of dopamine release in cells cultured in the serum-free medium were less than 10% of that in cells cultured in serum-supplemented medium. Dopamine levels recovered within 10 days if cells were returned to serum-supplemented medium, but dopamine release could not be recovered. Nerve growth factor (NGF) induced similar responses in PC12 cells cultured in both media, including phosphorylation of extracellular signal-regulated protein kinases and neurite extension. Transferrin was necessary for survival of neurite-bearing PC12 cells subcultured in serum-free medium and insulin promoted the cells proliferation. Ten days culture with NGF produced a similar increase in neurofilament expression and acetylcholinesterase activity in both media. These results suggest that PC12 in the hormonally defined serum-free media are qualitatively the same as those cultured in serum-supplemented media, and therefore this new culture protocol should enable more precise studies of PC12 cells culture in the absence of confounding unknown factors.

  13. In vitro studies to evaluate the effect of varying culture conditions and IPL fluencies on tenocyte activities.

    Science.gov (United States)

    Alzyoud, Jihad A M; Khan, Ilyas M; Rees, Sarah G

    2017-08-03

    Tendons are dense, fibrous connective tissues which carry out the essential physiological role of transmitting mechanical forces from skeletal muscle to bone. From a clinical perspective, tendinopathy is very common, both within the sporting arena and amongst the sedentary population. Studies have shown that light therapy may stimulate tendon healing, and more recently, intense pulsed light (IPL) has attracted attention as a potential treatment modality for tendinopathy; however, its mechanism of action and effect on the tendon cells (tenocytes) is poorly understood. The present study therefore investigates the influence of IPL on an in vitro bovine tendon model. Tenocytes were irradiated with IPL at different devise settings and under variable culture conditions (e.g. utilising cell culture media with or without the pH indicator dye phenol red), and changes in tenocyte viability and migration were subsequently investigated using Alamar blue and scratch assays, respectively. Our data demonstrated that IPL fluencies of up to 15.9 J/cm(2) proved harmless to the tenocyte cultures (this was the case using culture media with or without phenol red) and resulted in a significant increase in cell viability under certain culture conditions. Furthermore, IPL treatment of tenocytes did not affect the rate of cell migration. This study demonstrates that irradiation with IPL is not detrimental to the tenocytes and may increase their viability under certain conditions, thus validating our in vitro model. Further studies are required to elucidate the effects of IPL application in the clinical situation.

  14. Tissue-culture light sheet fluorescence microscopy (TC-LSFM) allows long-term imaging of three-dimensional cell cultures under controlled conditions.

    Science.gov (United States)

    Pampaloni, Francesco; Berge, Ulrich; Marmaras, Anastasios; Horvath, Peter; Kroschewski, Ruth; Stelzer, Ernst H K

    2014-10-01

    Fluorescence long-term imaging of cellular processes in three-dimensional cultures requires the control of media supply, temperature, and pH, as well as minimal photodamage. We describe a system based on a light sheet fluorescence microscope (LSFM), which is optimized for long-term, multi-position imaging of three-dimensional in-gel cell cultures. The system integrates a stable culture condition control system in the optical path of the light-sheet microscope. A further essential element is a biocompatible agarose container suitable for the LSFM, in which any cell type can be cultured in different gel matrices. The TC-LSFM allows studying any in vitro cultured cell type reacting to, dividing in, or migrating through a three-dimensional extracellular matrix (ECM) gel. For this reason we called it "tissue culture-LSFM" (TC-LSFM). The TC-LSFM system allows fast imaging at multiple locations within a millimeter-sized ECM gel. This increases the number of analyzed events and allows testing population effects. As an example, we show the maturation of a cyst of MDCK (canine kidney epithelial) cells over a period of three days. Moreover, we imaged, tracked, and analyzed MDCK cells during the first five days of cell aggregate formation and discovered a remarkable heterogeneity in cell cycle lengths and an interesting cell death pattern. Thus, TC-LSFM allows performing new long-term assays assessing cellular behavior in three-dimensional ECM-gel cultures. For example migration, invasion or differentiation in epithelial cell systems, stem cells, as well as cancer cells can be investigated.

  15. Fermentation and growth response of a primary poultry isolate of Salmonella typhimurium grown under strict anaerobic conditions in continuous culture and amino acid-limited batch culture.

    Science.gov (United States)

    Maciorowski, K G; Nisbet, D J; Ha, S D; Corrier, D E; DeLoach, J R; Ricke, S C

    1997-01-01

    Salmonella typhimurium is a significant hazard to consumer health that is carried asymptomatically in poultry gastrointestinal tracts. Nurmi cultures may prevent Salmonella colonization in young chicks, but the mechanism of competitive exclusion is unclear. Modeling Salmonella's metabolism in pure culture may allow for greater definition in choosing strains for Nurmi cultures. The growth rates and affinity constants of S. typhimurium growing in amino acid-limited conditions were determined in batch culture and compared to primary poultry isolates of cecal strains. Serine and NH4Cl were the best N sources for growth of all organisms tested in this study. The fermentation response of S. typhimurium was also monitored in continuous culture at a slow dilution rate of 0.021 h-1. S. typhimurium was found to adapt to VL media, with trends in protein disappearance, Yglucose, and Yprotein. This may show that amino acid or protein concentrations may be an integral component of the initial establishment of S. typhimurium in the cecum.

  16. GENETIC VARIABILITY OF CULTURED PLANT TISSUES UNDER NORMAL CONDITIONS AND UNDER STRESS

    Directory of Open Access Journals (Sweden)

    Dolgikh Yu.I.

    2012-08-01

    Full Text Available The genetic variability induced by in vitro conditions known as somaclonal variation is of practical interest due to its potential uses in plant breeding but, on the other hand, if clonal propagation or transformation is main goal, it becomes an unwelcome phenomenon. Thus, it is important to know frequency, the genomic distribution, the mechanisms and factors influencing somaclonal variation. We studied variability of PCR-based DNA markers of cultured tissues and regenerated plants of maize and bread wheat. The original A188 line of maize and the somaclones obtained were tested using 38 RAPD and 10 ISSR primers. None of the A188 plants showed variation in the RAPD and ISSR spectra for any of the primers used. However, the PCR spectra obtained from the somaclones demonstrated some variations, i.e., 22 RAPD primers and 6 ISSR primers differentiated at least one somaclonal variant from the progenitor line. Six SCAR markers were developed based on several RAPD and ISSR fragments. The inheritance of these SCAR markers was verified in the selfing progeny of each somaclone in the R1–R4 generations and in the hybrids, with A188 as the parental line in the F1 and F2 generations. These markers were sequenced and bioinformatic searches were performed to understand the molecular events that may underlie the variability observed in the somaclones. All changes were found in noncoding sequences and were induced by different molecular events, such as the insertion of long terminal repeat transposon, precise miniature inverted repeat transposable element (MITE excision, microdeletion, recombination, and a change in the pool of mitochondrial DNA. In two groups of independently produced somaclones, the same features (morphological, molecular were variable, which confirms the theory of ‘hot spots’ occurring in the genome. The presence of the same molecular markers in the somaclones and in different non-somaclonal maize variants suggests that in some cases

  17. ART culture conditions change the probability of mouse embryo gestation through defined cellular and molecular responses

    NARCIS (Netherlands)

    Schwarzer, Caroline; Esteves, Telma Cristina; Arau´zo-Bravo, Marcos J.; Le Gac, Séverine; Nordhoff, Verena; Schlatt, Stefan; Boiani, Michele

    2012-01-01

    Do different human ART culture protocols prepare embryos differently for post-implantation development? ... Our data promote awareness that human ART culture media affect embryo development. Effects reported here in the mouse may apply also in human, because no ART medium presently available on the

  18. Pedagogical Conditions for the Development of Students' Intellect within the Framework of the Research Culture

    Science.gov (United States)

    Mizimbayeva, Almira; Ashirbayeva, Nazilya; Oralkenuly, Danabek; Sabyt, Taulanov

    2016-01-01

    The article presents different opinions for the concept of "research culture," gives the characteristics of this phenomenon from the point of view of the pedagogical science including the functions, components of this phenomenon; the article studies the complex of research skills as the basis of the research culture. Special attention is…

  19. Nature conditionings of the cultural landscape in the area between the Ropa and Wisłok rivers

    Science.gov (United States)

    Soszyński, Dawid

    2011-01-01

    The principal aim of the dissertation was to analyze the influence of natural environment components on main elements of the cultural landscape. The characteristics of each component were presented separately for the three main types of physiographic regions: mountains, foothills and depressions. Additionally, in selected cases, the analyses of cultural landscape evolution during the last centuries were presented. The research area is located between the Ropa and the Wisłok rivers in Beskid Niski and Doły Jasielsko-Sanockie - two regions in SE part of Poland. Besides, three small drainage basins were chosen for detailed investigation. The main method applied in dissertation, especially in spatial landscape structure research, was a cartographic analysis in GIS system. The elements of the cultural landscape described in this paper were: main communication routes, settlement patterns and dwellings (including spatial settlement distribution, country buildings, sacral landscape, industrial buildings) as well as land use. According to the research carried out in this work, the component of the natural environment which has had the most significant influence on the cultural landscape is land relief, especially land slopes. The impact of this factor is leading on all elements of the cultural landscape. The other factors (surface and ground waters, climate, soils, natural resources) have had a significant influence only on some of the analyzed elements. The elements of the cultural landscape which are most dependent on natural factors are spatial settlement distribution and the pattern of land use. In case of other cultural landscape elements, natural factors play less important but still significant role. The research proved that natural conditionings of the cultural landscape are less clear in the depression area and most clear within foothills and mountain areas, depending on analyzed cultural elements. A decrease of correlation intensity between natural and cultural

  20. Modern requirements to professional training of future teacher of physical culture in the conditions of informatization of teaching.

    Directory of Open Access Journals (Sweden)

    Naumenko O.I.

    2012-06-01

    Full Text Available Modern requirements to professional training of future teacher of physical culture in the conditions of informatization of teaching are examined. It is exposed, that in the conditions of introduction of the modern newest information technologies in teaching new requirements are put to training of future teacher of physical culture. Abilities which must characterize the modern teacher of physical culture are indicated. It is marked that application of information technologies in industry of physical education optimizes an educational process. However there are contradictions between growth of their role in studies and direct application of these technologies in the field of knowledges. It is certain that a future specialist must adhere to the certain requirements of information technologies. It is marked that to the basic measures on implementation of the program providing of high-quality level of preparation of future teachers belongs to professional activity.

  1. Sphingosine-1-phosphate promotes the differentiation of human umbilical cord mesenchymal stem cells into cardiomyocytes under the designated culturing conditions

    Directory of Open Access Journals (Sweden)

    Zhang Henggui

    2011-06-01

    Full Text Available Abstract Background It is of growing interest to develop novel approaches to initiate differentiation of mesenchymal stem cells (MSCs into cardiomyocytes. The purpose of this investigation was to determine if Sphingosine-1-phosphate (S1P, a native circulating bioactive lipid metabolite, plays a role in differentiation of human umbilical cord mesenchymal stem cells (HUMSCs into cardiomyocytes. We also developed an engineered cell sheet from these HUMSCs derived cardiomyocytes by using a temperature-responsive polymer, poly(N-isopropylacrylamide (PIPAAm cell sheet technology. Methods Cardiomyogenic differentiation of HUMSCs was performed by culturing these cells with either designated cardiomyocytes conditioned medium (CMCM alone, or with 1 μM S1P; or DMEM with 10% FBS + 1 μM S1P. Cardiomyogenic differentiation was determined by immunocytochemical analysis of expression of cardiomyocyte markers and patch clamping recording of the action potential. Results A cardiomyocyte-like morphology and the expression of α-actinin and myosin heavy chain (MHC proteins can be observed in both CMCM culturing or CMCM+S1P culturing groups after 5 days' culturing, however, only the cells in CMCM+S1P culture condition present cardiomyocyte-like action potential and voltage gated currents. A new approach was used to form PIPAAm based temperature-responsive culture surfaces and this successfully produced cell sheets from HUMSCs derived cardiomyocytes. Conclusions This study for the first time demonstrates that S1P potentiates differentiation of HUMSCs towards functional cardiomyocytes under the designated culture conditions. Our engineered cell sheets may provide a potential for clinically applicable myocardial tissues should promote cardiac tissue engineering research.

  2. Influence of discrete and continuous culture conditions on human mesenchymal stem cell lineage choice in RGD concentration gradient hydrogels.

    Science.gov (United States)

    Smith Callahan, Laura A; Policastro, Gina M; Bernard, Sharon L; Childers, Erin P; Boettcher, Ronna; Becker, Matthew L

    2013-09-09

    Stem cells have shown lineage-specific differentiation when cultured on substrates possessing signaling groups derived from the native tissue. A distinct determinant in this process is the concentration of the signaling motif. While several groups have been working actively to determine the specific factors, concentrations, and mechanisms governing the differentiation process, many have been turning to combinatorial and gradient approaches in attempts to optimize the multiple chemical and physical parameters needed for the next advance. However, there has not been a direct comparison between the cellular behavior and differentiation of human mesenchymal stem cells cultured in gradient and discrete substrates, which quantitates the effect of differences caused by cell-produced, soluble factors due to design differences between the culture systems. In this study, the differentiation of human mesenchymal stem cells in continuous and discrete polyethylene glycol dimethacrylate (PEGDM) hydrogels containing an RGD concentration gradient from 0 to 14 mM were examined to study the effects of the different culture conditions on stem-cell behavior. Culture condition was found to affect every osteogenic (alkaline phosphatase, Runx 2, type 1 collagen, bone sailoprotein, and calcium content) and adipogenic marker (oil red and peroxisome proliferator-activated receptor gamma) examined regardless of RGD concentration. Only in the continuous gradient culture did RGD concentration affect human mesenchymal stem-cell lineage commitment with low RGD concentrations expressing higher osteogenic differentiation than high RGD concentrations. Conversely, high RGD concentrations expressed higher adipogenic differentiation than low RGD concentrations. Cytoskeletal actin organization was only affected by culture condition at low RGD concentrations, indicating that it played a limited role in the differences in lineage commitment observed. Therefore, the role of discrete versus gradient

  3. Increased risk of genetic and epigenetic instability in human embryonic stem cells associated with specific culture conditions.

    Directory of Open Access Journals (Sweden)

    Ibon Garitaonandia

    Full Text Available The self-renewal and differentiation capacities of human pluripotent stem cells (hPSCs make them a promising source of material for cell transplantation therapy, drug development, and studies of cellular differentiation and development. However, the large numbers of cells necessary for many of these applications require extensive expansion of hPSC cultures, a process that has been associated with genetic and epigenetic alterations. We have performed a combinatorial study on both hESCs and hiPSCs to compare the effects of enzymatic vs. mechanical passaging, and feeder-free vs. mouse embryonic fibroblast feeder substrate, on the genetic and epigenetic stability and the phenotypic characteristics of hPSCs. In extensive experiments involving over 100 continuous passages, we observed that both enzymatic passaging and feeder-free culture were associated with genetic instability, higher rates of cell proliferation, and persistence of OCT4/POU5F1-positive cells in teratomas, with enzymatic passaging having the stronger effect. In all combinations of culture conditions except for mechanical passaging on feeder layers, we noted recurrent deletions in the genomic region containing the tumor suppressor gene TP53, which was associated with decreased mRNA expression of TP53, as well as alterations in the expression of several downstream genes consistent with a decrease in the activity of the TP53 pathway. Among the hESC cultures, we also observed culture-associated variations in global gene expression and DNA methylation. The effects of enzymatic passaging and feeder-free conditions were also observed in hiPSC cultures. Our results highlight the need for careful assessment of the effects of culture conditions on cells intended for clinical therapies.

  4. The rewarming benefit of anterior torso heat pad application in mildly hypothermic conscious adult trauma patients remains inconclusive

    Directory of Open Access Journals (Sweden)

    Ting Joseph

    2012-03-01

    Full Text Available Abstract The rewarming benefit of anterior torso heat pad application in mildly hypothermic conscious adult trauma patients remains inconclusive in this randomized comparative clinical trial. There was no between-group rewarming gain in ear canal temperature when an anterior torso chemical heat pad was compared with blankets. Patient awareness, and favorable perception of, being administered the active intervention (heat pad could explain the significant improvement in patient-rated cold discomfort discerned with the heat pad. In the context of marginal demonstrated benefit, it would have been informative to ascertain adverse effects related to the heat pad, including burn injury to the chest wall.

  5. Forming of communicative competence as condition of professional preparation of future teachers of physical culture

    Directory of Open Access Journals (Sweden)

    Samsutina NM.

    2010-02-01

    Full Text Available The modern state and necessity of realization of forming communicative competence of future teachers of physical culture is found out in the process of professional preparation. 294 students took part in an experiment. Rotined expedience of realization of forming of communicative competence of future teachers of physical culture. The questionnaire of students of higher educational establishments is conducted. The level of formed of communicative competence for students remains at low level. It needs strengthening of attention to perfection of process of professional preparation of future teachers of physical culture.

  6. Environmental conditions of some paddy cum prawn culture fields of Cochin backwaters, southwest coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, K.K.C.; Sankaranarayanan, V.N.; Gopalakrishnan, T.C.; Balasubramanian, T.; Devi, C.B.L.; Aravindakshan, P.N.; Kutty, M.K.

    Temperature, salinity, pH, dissolved oxygen, inorganic phosphate, ammonia, nitrate and nitrite of seasonal and perennial prawn culture fields from 3 areas of Cochin backwaters are studied. Area 1 is a region least affected ecologically...

  7. Developments in techniques for the isolation, enrichment, main culture conditions and identification of spermatogonial stem cells

    OpenAIRE

    He, Yanan; Chen, Xiaoli; Zhu, Huabin; Wang, Dong

    2015-01-01

    The in vitro culture system of spermatogonial stem cells (SSCs) provides a basis for studies on spermatogenesis, and also contributes to the development of new methods for the preservation of livestock and animal genetic modification. In vitro culture systems have mainly been established for mouse SSCs, but are lacking for farm animals. We reviewed and analyzed the current progress in SSC techniques such as isolation, purification, cultivation and identification. Based on the published studie...

  8. Biological studies of Chlorella pyrenoidosa (strain LARG-1) cultures grown under space flight conditions.

    Science.gov (United States)

    Kordyum, V A; Shepelev, E Y; Meleshko, G I; Setlik, I; Kordyum, E L; Sytnik, K M; Mashinsky, A L; Popova, A F; Dubinin, N P; Vaulina, E N; Polivoda, L V

    1980-01-01

    This paper reports data from an electron microscopic analysis of Chlorella pyrenoidosa (LARG-1) cultures after five days of growth in the dark on a semiliquid mineral/glucose medium in the IFS-2 device on board the Soyuz 27-Salyut 6-Soyuz 28 orbital research complex (Soviet-Czechoslovak experiment "Chlorella-1"). For space flight of five days duration the ultrastructural cellular organization of the flight and control cultures were similar. This testifies to normal cell function.

  9. Optimization of primary culture condition for mesenchymal stem cells derived from umbilical cord blood with factorial design.

    Science.gov (United States)

    Fan, Xiubo; Liu, Tianqing; Liu, Yang; Ma, Xuehu; Cui, Zhanfeng

    2009-01-01

    Mesenchymal stem cells (MSCs) can not only support the expansion of hematopoietic stem cells in vitro, but also alleviate complications and accelerate recovery of hematopoiesis during hematopoietic stem cell transplantation. However, it proved challenging to culture MSCs from umbilical cord blood (UCB) with a success rate of 20-30%. Many cell culture parameters contribute to this outcome and hence optimization of culture conditions is critical to increase the probability of success. In this work, fractional factorial design was applied to study the effect of cell inoculated density, combination and dose of cytokines, and presence of serum and stromal cells. The cultured UCB-MSC-like cells were characterized by flow cytometry and their multilineage differentiation potentials were tested. The optimal protocol was identified achieving above 90% successful outcome: 2 x 10(6) cells/mL mononuclear cells inoculated in Iscove's modified Dulbecco's medium supplied with 10% FBS, 15 ng/mL IL-3, and 5 ng/mL Granulocyte-macrophage colony-stimulating factor (GM-CSF). Moreover, the UCB-MSC-like cells expressed MSC surface markers of CD13, CD29, CD105, CD166, and CD44 positively, and CD34, CD45, and human leukocyte antigens-DR (HLA-DR) negatively. Meanwhile, these cells could differentiate into osteoblasts, chondrocytes, and adipocytes similarly to MSCs derived from bone marrow. In conclusion, we have developed an efficient protocol for the primary culture of UCB-MSCs by adding suitable cytokines into the culture system.

  10. Cultural Conditions in Diversity Management: The Case Study of the Corporation Operating in the Transportation and Logistics Industry

    Directory of Open Access Journals (Sweden)

    Barbara Czerniachowicz

    2017-06-01

    Full Text Available The aim of this paper is to present selected aspects of organi­sational culture and human capital management, and indicate the deter­minants of cultural conditions in diversity management based on the corporation A. A modern enterprise, in order to remain competitive, poses challenges to its employees to encourage their need for learning, explora­tion of knowledge and the change along with the changing environment. In order to achieve the aim of the paper, the following operational objec­tives have been formulated: (1 to discuss the concepts of organisational culture and cultural factors of changes in the organisation on the example of the corporation operating in the transportation and logistics industry; (2 to identify mutual correlations between organisational culture and diversity management; (3 to assess the impact of cultural factors related to the base of diversity management in the corporation A. The analysis is based on the findings from questionnaire surveys, detailed interviews with the top management and source materials collected from the corporation.

  11. A rare Phaeodactylum tricornutum cruciform morphotype: culture conditions, transformation and unique fatty acid characteristics.

    Science.gov (United States)

    He, Liyan; Han, Xiaotian; Yu, Zhiming

    2014-01-01

    A rare Phaeodactylum tricornutum cruciform morphotype was obtained and stabilized with a proportion of more than 31.3% in L1 medium and is reported for the first time. Long-term culture and observation showed that the cruciform morphotype was capable of transforming to the oval form following the degeneration of arms by two processes. After three months of culture, four morphotypes existed in a relatively stable proportion in culture for six months (10.5% for oval, 11.3% for fusiform, 37.2% for triradiate and 41.0% for cruciform). Low temperature was particularly beneficial for cruciform cell formation. As the culture temperature decreased from 25°C to 10°C, the percentage of the cruciform morphotype increased from 39.1% to 55.3% approximately. The abundant cruciform cells endowed this strain with unique fatty acid characteristics. The strain cultured at 15°C showed both maximum content of neutral lipid in a single cell and total yield. The maximum content of fatty acid methyl esters was C16:1 for Phaeodactylum tricornutum cultured at four temperatures (43.82% to 50.82%), followed by C16:0 (20.47% to 22.65%). Unique fatty acid composition endowed this strain with excellent quality for biodiesel production.

  12. A rare Phaeodactylum tricornutum cruciform morphotype: culture conditions, transformation and unique fatty acid characteristics.

    Directory of Open Access Journals (Sweden)

    Liyan He

    Full Text Available A rare Phaeodactylum tricornutum cruciform morphotype was obtained and stabilized with a proportion of more than 31.3% in L1 medium and is reported for the first time. Long-term culture and observation showed that the cruciform morphotype was capable of transforming to the oval form following the degeneration of arms by two processes. After three months of culture, four morphotypes existed in a relatively stable proportion in culture for six months (10.5% for oval, 11.3% for fusiform, 37.2% for triradiate and 41.0% for cruciform. Low temperature was particularly beneficial for cruciform cell formation. As the culture temperature decreased from 25°C to 10°C, the percentage of the cruciform morphotype increased from 39.1% to 55.3% approximately. The abundant cruciform cells endowed this strain with unique fatty acid characteristics. The strain cultured at 15°C showed both maximum content of neutral lipid in a single cell and total yield. The maximum content of fatty acid methyl esters was C16:1 for Phaeodactylum tricornutum cultured at four temperatures (43.82% to 50.82%, followed by C16:0 (20.47% to 22.65%. Unique fatty acid composition endowed this strain with excellent quality for biodiesel production.

  13. Quality evaluation of green tea leaf cultured under artificial light condition using gas chromatography/mass spectrometry.

    Science.gov (United States)

    Miyauchi, Shunsuke; Yonetani, Tsutomu; Yuki, Takayuki; Tomio, Ayako; Bamba, Takeshi; Fukusaki, Eiichiro

    2017-02-01

    For an experimental model to elucidate the relationship between light quality during plant culture conditions and plant quality of crops or vegetables, we cultured tea plants (Camellia sinensis) and analyzed their leaves as tea material. First, metabolic profiling of teas from a tea contest in Japan was performed with gas chromatography/mass spectrometry (GC/MS), and then a ranking predictive model was made which predicted tea rankings from their metabolite profile. Additionally, the importance of some compounds (glutamine, glutamic acid, oxalic acid, epigallocatechin, phosphoric acid, and inositol) was elucidated for measurement of the quality of tea leaf. Subsequently, tea plants were cultured in artificial conditions to control these compounds. From the result of prediction by the ranking predictive model, the tea sample supplemented with ultraviolet-A (315-399 nm) showed the highest ranking. The improvement in quality was thought to come from the high amino-acid and decreased epigallocatechin content in tea leaves. The current study shows the use and value of metabolic profiling in the field of high-quality crops and vegetables production that has been conventionally evaluated by human sensory analysis. Metabolic profiling enables us to form hypothesis to understand and develop high quality plant cultured under artificial condition. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. A distinct role for interleukin-6 as a major mediator of cellular adjustment to an altered culture condition.

    Science.gov (United States)

    Son, Hwa-Kyung; Park, Iha; Kim, Jue Young; Kim, Do Kyeong; Illeperuma, Rasika P; Bae, Jung Yoon; Lee, Doo Young; Oh, Eun-Sang; Jung, Da-Woon; Williams, Darren R; Kim, Jin

    2015-11-01

    Tissue microenvironment adjusts biological properties of different cells by modulating signaling pathways and cell to cell interactions. This study showed that epithelial-mesenchymal transition (EMT)/ mesenchymal-epithelial transition (MET) can be modulated by altering culture conditions. HPV E6/E7-transfected immortalized oral keratinocytes (IHOK) cultured in different media displayed reversible EMT/MET accompanied by changes in cell phenotype, proliferation, gene expression at transcriptional, and translational level, and migratory and invasive activities. Cholera toxin, a major supplement to culture medium, was responsible for inducing the morphological and biological changes of IHOK. Cholera toxin per se induced EMT by triggering the secretion of interleukin 6 (IL-6) from IHOK. We found IL-6 to be a central molecule that modulates the reversibility of EMT based not only on the mRNA level but also on the level of secretion. Taken together, our results demonstrate that IL-6, a cytokine whose transcription is activated by alterations in culture conditions, is a key molecule for regulating reversible EMT/MET. This study will contribute to understand one way of cellular adjustment for surviving in unfamiliar conditions.

  15. Definition of culture conditions for Arxula adeninivorans, a rational basis for studying heterologous gene expression in this dimorphic yeast.

    Science.gov (United States)

    Stöckmann, Christoph; Palmen, Thomas G; Schroer, Kirsten; Kunze, Gotthard; Gellissen, Gerd; Büchs, Jochen

    2014-06-01

    The yeast Arxula adeninivorans is considered to be a promising producer of recombinant proteins. However, growth characteristics are poorly investigated and no industrial process has been established yet. Though of vital interest for strain screening and production processes, rationally defined culture conditions remain to be developed. A cultivation system was evolved based on targeted sampling and mathematical analysis of rationally designed small-scale cultivations in shake flasks. The oxygen and carbon dioxide transfer rates were analyzed as conclusive online parameters. Oxygen limitation extended cultivation and led to ethanol formation in cultures supplied with glucose. Cultures were inhibited at pH-values below 2.8. The phosphorus demand was determined as 1.55 g phosphorus per 100 g cell dry weight. Synthetic SYN6 medium with 20 g glucose l(-1) was optimized for cultivation in shake flasks by buffering at pH 6.4 with 140 mmol MES l(-1). Optimized SYN6 medium and operating conditions provided non-limited cultivations without by-product formation. A maximal specific growth rate of 0.32 h(-1) and short fermentations of 15 h were achieved. A pH optimum curve was derived from the oxygen transfer rates of differently buffered cultures, showing maximal growth between pH 2.8 and 6.5. Furthermore, it was shown that the applied medium and cultivation conditions were also suitable for non-limiting growth and product formation of a genetically modified A. adeninivorans strain expressing a heterologous phytase.

  16. Optimization of Cell Adhesion on Mg Based Implant Materials by Pre-Incubation under Cell Culture Conditions

    Directory of Open Access Journals (Sweden)

    Regine Willumeit

    2014-05-01

    Full Text Available Magnesium based implants could revolutionize applications where orthopedic implants such as nails, screws or bone plates are used because they are load bearing and degrade over time. This prevents a second surgery to remove conventional implants. To improve the biocompatibility we studied here if and for how long a pre-incubation of the material under cell culture conditions is favorable for cell attachment and proliferation. For two materials, Mg and Mg10Gd1Nd, we could show that 6 h pre-incubation are already enough to form a natural protective layer suitable for cell culture.

  17. Paradoxical adverse culture conditions do not hamper the growth of human multipotent vascular wall-mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Carmen eCiavarella

    2015-06-01

    Full Text Available Background: Mesenchymal stem cells (MSCs with multilineage potential and anti-inflammatory property can be isolated from different human tissues, representing promising candidates in regenerative medicine. Despite the common criteria of characterization, many factors contribute to MSC heterogeneity (i.e. tissue origin, coexistence of cell subsets at different stage of differentiation, epigenetic and no standard methods have been approved to characterize MSCs in cell culture.Aim: The present study aimed to test whether MSCs resist adverse chemical and physical culture conditions, surviving MSC subpopulations are endowed with the stemness abilities; to characterize MMP expression in AAA-MSCs under the adverse experimental conditions. Methods and results: MSCs enzymatically isolated from human abdominal aortic aneurysm (AAA-MSCs were exposed to media acidification, hypoxia, starving, drying and hypothermia through the following strategies: 1 low-density seeding in closed flasks; 2 exposure to a chemical hypoxia inducer, cobalt chloride; 3 exposure to a dry environment with growing medium deprivation and culture at 4°C. None of these conditions affected MSC viability and stemness profile, as evidenced by NANOG, OCT-4 and Sox-2 mRNA expression in surviving cells. A significant MMP-9 decrease, especially when AAA-MSCs were exposed to hypothermia, was associated with stress resistant stem cells.Conclusions: AAA-MSCs survive to extremely adverse culture conditions, keeping their morphology and stemness features. Besides MMP-9 role in pathological tissue remodeling, this protease may be related to MSC survival. Future studies on MSCs derived from other tissues will be necessary to refine our culture protocol, which can represent an empirical method to demonstrate MSC stemness,, with potential implications for their clinical use.

  18. Impact of environmental factors on the culturability and viability of Listeria monocytogenes under conditions encountered in food processing plants.

    Science.gov (United States)

    Overney, Anaïs; Jacques-André-Coquin, Joséphine; Ng, Patricia; Carpentier, Brigitte; Guillier, Laurent; Firmesse, Olivier

    2017-03-06

    The ability of Listeria monocytogenes to adhere to and persist on surfaces for months or even years may be responsible for its transmission from contaminated surfaces to food products. Hence the necessity to find effective means to prevent the establishment of L. monocytogenes in food processing environments. The aim of this study was to assess, through a fractional experimental design, the environmental factors that could affect the survival of L. monocytogenes cells on surfaces to thereby prevent the persistence of this pathogen in conditions mimicking those encountered in food processing plants: culture with smoked salmon juice or meat exudate, use of two materials with different hygiene status, biofilm of L. monocytogenes in pure-culture or dual-culture with a Pseudomonas fluorescens strain, application of a drying step after cleaning and disinfection (C&D) and comparison of two strains of L. monocytogenes. Bacterial survival was assessed by culture, qPCR to quantify total cells, and propidium monoazide coupled with qPCR to quantify viable cells and highlight viable but non-culturable (VBNC) cells. Our results showed that failure to apply C&D causes cell persistence on surfaces. Moreover, the sanitation procedure leads only to a loss of culturability and appearance of VBNC populations. However, an additional daily drying step after C&D optimises the effectiveness of these procedures to reduce culturable populations. Our results reinforce the importance to use molecular tools to monitor viable pathogens in food processing plants to avoid underestimating the amounts of cells using only methods based on cell culture. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions.

    Science.gov (United States)

    Saha, Krishanu; Mei, Ying; Reisterer, Colin M; Pyzocha, Neena Kenton; Yang, Jing; Muffat, Julien; Davies, Martyn C; Alexander, Morgan R; Langer, Robert; Anderson, Daniel G; Jaenisch, Rudolf

    2011-11-15

    The current gold standard for the culture of human pluripotent stem cells requires the use of a feeder layer of cells. Here, we develop a spatially defined culture system based on UV/ozone radiation modification of typical cell culture plastics to define a favorable surface environment for human pluripotent stem cell culture. Chemical and geometrical optimization of the surfaces enables control of early cell aggregation from fully dissociated cells, as predicted from a numerical model of cell migration, and results in significant increases in cell growth of undifferentiated cells. These chemically defined xeno-free substrates generate more than three times the number of cells than feeder-containing substrates per surface area. Further, reprogramming and typical gene-targeting protocols can be readily performed on these engineered surfaces. These substrates provide an attractive cell culture platform for the production of clinically relevant factor-free reprogrammed cells from patient tissue samples and facilitate the definition of standardized scale-up friendly methods for disease modeling and cell therapeutic applications.

  20. The effects of aprotinin on blood product transfusion associated with thoracic aortic surgery requiring deep hypothermic circulatory arrest.

    LENUS (Irish Health Repository)

    Seigne, P W

    2012-02-03

    OBJECTIVE: To compare the effects of aprotinin on blood product use and postoperative complications in patients undergoing thoracic aortic surgery requiring deep hypothermic circulatory arrest. DESIGN: A retrospective study. SETTING: A university hospital. PARTICIPANTS: Nineteen patients who underwent elective or urgent thoracic aortic surgery. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: The total number of units of packed red blood cells, fresh frozen plasma, and platelets was significantly less in the group that received aprotinin (p = 0.01, 0.04, and 0.01). The intraoperative transfusion of packed red blood cells and platelets, collection and retransfusion of cell saver, and postoperative transfusion of fresh frozen plasma were also significantly less in the aprotinin group (p = 0.01, 0.02, 0.01, and 0.05). No patient in either group sustained renal dysfunction or a myocardial infarction. Two patients who had not received aprotinin suffered from chronic postoperative seizures, and one patient who had received aprotinin sustained a perioperative stroke. CONCLUSIONS: Low-dose aprotinin administration significantly decreases blood product transfusion requirements in the setting of thoracic aortic surgery requiring deep hypothermic circulatory arrest, and it does not appear to be associated with renal or myocardial dysfunction.

  1. Nursery Culture Performance of Litopenaeus vannamei with Probiotics Addition and Different C/N Ratio Under Laboratory Condition

    Directory of Open Access Journals (Sweden)

    WIDANARNI

    2010-09-01

    Full Text Available Application of bioflocs technology and probiotics has improved water quality and production of Pacific white shrimp (Litopenaeus vannamei culture. This experiment was to verify the effect of probiotic bacteria addition and different carbon:nitrogen (C:N ratio on water quality and performance of Pacific white shrimp nursery culture. Nursery culture was carried out for 25 days in an aquarium under laboratory condition with stock density of one Post-Larvae (PL (poslarval per liter (24 PL/aquarium of PL16 shrimp. Different C:N ratio resulted a significant difference on shrimp production performance. Treatment of 10 C:N ratio demonstrated the best shrimp growth (20.37 + 0.48% per day in weight and 6.05 + 0.41% per day in length, harvesting yield (1180 + 62 g/m3 and feed efficiency (121 + 6%. There was however no significant difference observed between treatments in water quality.

  2. Development of the moss Pogonatum urnigerum (Hedw. P. Beauv. under in vitro culture conditions

    Directory of Open Access Journals (Sweden)

    Cvetić Tijana

    2007-01-01

    Full Text Available Pogonatum urnigerum (Polytrichaceae in vitro culture was established from spores collected in nature. Both protonema and gametophore stages of gametophyte development were obtained. Also, a stable callus culture was established using hormone-free nutrient medium. The best nutrient medium for development was half-strength Murashige- Skoog medium supplemented with 1.5% sucrose. Auxin treatment enabled some gametophores to develop, but prolonged treatment induced early senescence. Tissues grown on cytokinin did not produce any gametophytes and did not survive prolonged treatment.

  3. Heterogeneous conditions in dissolved oxygen affect N-glycosylation but not productivity of a monoclonal antibody in hybridoma cultures.

    Science.gov (United States)

    Serrato, J Antonio; Palomares, Laura A; Meneses-Acosta, Angélica; Ramírez, Octavio T

    2004-10-20

    It is known that heterogeneous conditions exist in large-scale animal cell cultures. However, little is known about how heterogeneities affect cells, productivities, and product quality. To study the effect of non-constant dissolved oxygen tension (DOT), hybridomas were subjected to sinusoidal DOT oscillations in a one-compartment scale-down simulator. Oscillations were forced by manipulating the inlet oxygen partial pressure through a feedback control algorithm in a 220-mL bioreactor maintained at a constant agitation. Such temporal DOT oscillations simulate spatial DOT gradients that can occur in large scales. Different oscillation periods, in the range of 800 to 12,800 s (axis of 7% (air saturation) and amplitude of 7%), were tested and compared to constant DOT (10%) control cultures. Oscillating DOT decreased maximum cell concentrations, cell growth rates, and viability indexes. Cultures at oscillating DOT had an increased glycolytic metabolism that was evidenced by a decrease in yield of cells on glucose and an increase in lactate yield. DOT gradients, even several orders of magnitude higher than those expected under practical large-scale conditions, did not significantly affect the maximum concentration of an IgG(1) monoclonal antibody (MAb). The glycosylation profile of the MAb produced at a constant DOT of 10% was similar to that reported in the literature. However, MAb produced under oscillating culture conditions had a higher amount of triantennary and sialylated glycans, which can interfere with effector functions of the antibody. It was shown that transient excursions of hybridomas to limiting DOT, as occurs in deficiently mixed large-scale bioreactors, is important to culture performance as the oscillation period, and thus the time cells spent at low DOT, affected cell growth, metabolism, and the glycosylation pattern of MAb. Such results underline the importance of monitoring protein characteristics for the development of large-scale processes.

  4. An ideal oocyte activation protocol and embryo culture conditions for somatic cell nuclear transfer using sheep oocytes.

    Science.gov (United States)

    Patel, Hiren; Chougule, Shruti; Chohan, Parul; Shah, Naval; Bhartiya, Deepa

    2014-10-01

    Pluripotent stem cells are possibly the best candidates for regenerative medicine, and somatic cell nuclear transfer (SCNT) is one of the viable options to make patient-specific embryonic stem cells. Till date efficacy of SCNT embryos is very low and requires further improvement like ideal oocyte activation and in vitro culture system. The aim of the present study was to evaluate ideal oocyte activation using different stimulation protocols and to study the effect of cumulus co-culture conditions on embryo development. Results demonstrate that between electric stimulation and chemical stimulation using calcium ionomycin and ionophore, best oocyte activation was obtained using calcium ionomycin (5 microM for 5 min) which resulted in 83% cleavage followed by 7% of early blastocyst which further increased to 15% when a cumulus bed was also introduced during embryo culture. Sequential modified Charles Rosenkrans 2 (mCR2) medium was used for embryo culture in which glucose levels were increased from 1 mM to 5 mM from Day 3 onwards. SCNT using cumulus cells as donor somatic cell, calcium ionomycin to activate the reconstructed oocyte and embryo culture on a cumulus bed in sequential mCR2 medium, resulted in the development of 6% embryos to early blastocyst stage. Such technological advances will make SCNT a viable option to make patient-specific pluripotent stem cell lines in near future.

  5. Optimizing in vitro culture conditions leads to a significantly shorter production time of human dermo-epidermal skin substitutes.

    Science.gov (United States)

    Pontiggia, Luca; Klar, Agnieszka; Böttcher-Haberzeth, Sophie; Biedermann, Thomas; Meuli, Martin; Reichmann, Ernst

    2013-03-01

    Autologous dermo-epidermal skin substitutes (DESS) generated in vitro represent a promising therapeutic means to treat full-thickness skin defects in clinical practice. A serious drawback with regard to acute patients is the relatively long production time of 3-4 weeks. With this experimental study we aimed to decrease the production time of DESS without compromising their quality. Two in vitro steps of DESS construction were varied: the pre-cultivation time of fibroblasts in hydrogels (1, 3, and 6 days), and the culture time of keratinocytes (3, 6, and 12 days) before transplantation of DESS on nude rats. Additionally, the impact of the air-liquid interface culture during 3 days before transplantation was investigated. 3 weeks after transplantation, the macroscopic appearance was evaluated and histological sections were produced to analyze structure and thickness of epidermis and dermis, the stratification of the epidermis, and the presence of a basal lamina. Optimal DESS formation was obtained with a fibroblast pre-cultivation time of 6 days. The minimal culture time of keratinocytes on hydrogels was also 6 days. The air-liquid interface culture did not improve graft quality. By optimizing our in vitro culture conditions, it was possible to very substantially reduce the production time for DESS from 21 to 12 days. However, pre-cultivation of fibroblasts in the dermal equivalent and proliferation of keratinocytes before transplantation remain crucial for an equilibrated maturation of the epidermis and cannot be completely skipped.

  6. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells.

    Science.gov (United States)

    Martin, G R

    1981-12-01

    This report describes the establishment directly from normal preimplantation mouse embryos of a cell line that forms teratocarcinomas when injected into mice. The pluripotency of these embryonic stem cells was demonstrated conclusively by the observation that subclonal cultures, derived from isolated single cells, can differentiate into a wide variety of cell types. Such embryonic stem cells were isolated from inner cell masses of late blastocysts cultured in medium conditioned by an established teratocarcinoma stem cell line. This suggests that such conditioned medium might contain a growth factor that stimulates the proliferation or inhibits the differentiation of normal pluripotent embryonic cells, or both. This method of obtaining embryonic stem cells makes feasible the isolation of pluripotent cells lines from various types of noninbred embryo, including those carrying mutant genes. The availability of such cell lines should made possible new approaches to the study of early mammalian development.

  7. Targeted Protein Degradation by Salmonella under Phagosome-Mimicking Culture Conditions Investigated Using Comparative Peptidomics

    Energy Technology Data Exchange (ETDEWEB)

    Manes, Nathan P.; Gustin, Jean K.; Rue, Joanne; Mottaz, Heather M.; Purvine, Samuel O.; Norbeck, Angela D.; Monroe, Matthew E.; Zimmer, Jennifer S.; Metz, Thomas O.; Adkins, Joshua N.; Smith, Richard D.; Heffron, Fred

    2007-04-01

    The pathogen Salmonella enterica is known to cause both food poisoning and typhoid fever. Due to the emergence of antibiotic-resistant isolates and the threat of bioterrorism (e.g., contamination of the food supply), there is a growing need to study this bacterium. In this investigation, comparative peptidomics was used to study Salmonella enterica serovar Typhimurium cultured in either a rich medium or in an acidic, low magnesium, and minimal nutrient medium designed to roughly mimic the macrophage phagosomal compartment (within which Salmonella are known to survive). Native peptides from cleared cell lysates were enriched by using isopropanol extraction and analyzed by using both LC-MS/MS and LC-FTICR-MS. We identified 5,163 distinct peptides originating from 682 proteins and the data clearly indicated that compared to cells cultured in the rich medium, Salmonella cultured in the phagosome-mimicking medium had dramatically higher abundances of a wide variety of protein degradation products, especially from ribosomal proteins. Salmonella from the same cultures were also analyzed by using bottom-up proteomics, and when the peptidomic and proteomic data were analyzed together, two clusters of proteins targeted for proteolysis were tentatively identified. Possible roles of targeted proteolysis by phagocytosed Salmonella are discussed.

  8. Person-Organization (Culture) Fit and Employee Commitment under Conditions of Organizational Change: A Longitudinal Study

    Science.gov (United States)

    Meyer, John P.; Hecht, Tracy D.; Gill, Harjinder; Toplonytsky, Laryssa

    2010-01-01

    This longitudinal study examines how person-organization fit, operationalized as congruence between perceived and preferred organizational culture, relates to employees' affective commitment and intention to stay with an organization during the early stages of a strategic organizational change. Employees in a large energy company completed surveys…

  9. Person-Organization (Culture) Fit and Employee Commitment under Conditions of Organizational Change: A Longitudinal Study

    Science.gov (United States)

    Meyer, John P.; Hecht, Tracy D.; Gill, Harjinder; Toplonytsky, Laryssa

    2010-01-01

    This longitudinal study examines how person-organization fit, operationalized as congruence between perceived and preferred organizational culture, relates to employees' affective commitment and intention to stay with an organization during the early stages of a strategic organizational change. Employees in a large energy company completed surveys…

  10. Thinking Globally, Teaching Locally: The "Nervous Conditions" of Cross-Cultural Literacy

    Science.gov (United States)

    Eck, Lisa

    2008-01-01

    Teaching postcolonial literature to American college students involves taking them through a dialectical process of thinking about identification. In the first stage, students are encouraged to note similarities between their own lives and those of the work's characters. With the second step, students examine how the work's cultural and historical…

  11. Assessment of 'one-step' versus 'sequential' embryo culture conditions through embryonic genome methylation and hydroxymethylation changes.

    Science.gov (United States)

    Salvaing, J; Peynot, N; Bedhane, M N; Veniel, S; Pellier, E; Boulesteix, C; Beaujean, N; Daniel, N; Duranthon, V

    2016-11-01

    In comparison to in vivo development, how do different conditions of in vitro culture ('one step' versus 'sequential medium') impact DNA methylation and hydroxymethylation in preimplantation embryos? Using rabbit as a model, we show that DNA methylation and hydroxymethylation are both affected by in vitro culture of preimplantation embryos and the effect observed depends on the culture medium used. Correct regulation of DNA methylation is essential for embryonic development and DNA hydroxymethylation appears more and more to be a key player. Modifications of the environment of early embryos are known to have long term effects on adult phenotypes and health; these probably rely on epigenetic alterations. The study design we used is both cross sectional (control versus treatment) and longitudinal (time-course). Each individual in vivo experiment used embryos flushed from the donor at the 2-, 4-, 8-, 16- or morula stage. Each stage was analyzed in at least two independent experiments. Each individual in vitro experiment used embryos flushed from donors at the 1-cell stage (19 h post-coïtum) which were then cultured in parallel in the two tested media until the 2-, 4-, 8- 16-cell or morula stages. Each stage was analyzed in at least three independent experiments. In both the in vivo and in vitro experiments, 4-cell stage embryos were always included as an internal reference. Immunofluorescence with antibodies specific for 5-methylcytosine (5meC) and 5-hydroxymethylcytosine (5hmeC) was used to quantify DNA methylation and hydroxymethylation levels in preimplantation embryos. We assessed the expression of DNA methyltransferases (DNMT), of ten eleven translocation (TET) dioxigenases and of two endogenous retroviral sequences (ERV) using RT-qPCR, since the expression of endogenous retroviral sequences is known to be regulated by DNA methylation. Three repeats were first done for all stages; then three additional repetitions were performed for those stages showing

  12. Growth and metabolism of Saccharomyces cerevisiae in chemostat cultures under carbon-, nitrogen-, or carbon- and nitrogen-limiting conditions.

    OpenAIRE

    Larsson, C; von Stockar, U.; Marison, I; Gustafsson, L.

    1993-01-01

    Aerobic chemostat cultures of Saccharomyces cerevisiae were performed under carbon-, nitrogen-, and dual carbon- and nitrogen-limiting conditions. The glucose concentration was kept constant, whereas the ammonium concentration was varied among different experiments and different dilution rates. It was found that both glucose and ammonium were consumed at the maximal possible rate, i.e., the feed rate, over a range of medium C/N ratios and dilution rates. To a small extent, this was due to a c...

  13. Calcification in human osteoblasts cultured in medium conditioned by the prostatic cancer cell line PC-3 and prostatic acid phosphatase.

    Science.gov (United States)

    Kimura, G; Sugisaki, Y; Masugi, Y; Nakazawa, N

    1992-01-01

    A medium that had been conditioned by PC-3 cells stimulated the calcification of a human osteoblastic cell line, Tak-10, in a nonmitogenic culture. The calcification of the osteoblasts was stimulated maximally at a 25% concentration of the conditioned medium. Calcification activity was markedly enhanced by the addition of both prostatic acid phosphatase (PAP) and its substrate, alpha-glycerophosphate, to the medium; however, PAP added alone did not enhance this activity. These results suggest that human prostatic carcinoma cells produce a factor that stimulates the calcification of the human osteoblasts. Results have also suggested that PAP is a requisite for osteogenesis provided that its substrates are abundant in the medium.

  14. Production of Trametes pubescens laccase under submerged and semi-solid culture conditions on agro-industrial wastes.

    Science.gov (United States)

    Gonzalez, Juan C; Medina, Sandra C; Rodriguez, Alexander; Osma, Johann F; Alméciga-Díaz, Carlos J; Sánchez, Oscar F

    2013-01-01

    Laccases are copper-containing enzymes involved in the degradation of lignocellulosic materials and used in the treatment of phenol-containing wastewater. In this study we investigated the effect of culture conditions, i.e. submerged or semi-solid, and copper supplementation on laccase production by Trametespubescens grown on coffee husk, soybean pod husk, or cedar sawdust. The highest specific laccase activity was achieved when the culture was conducted under submerged conditions supplemented with copper (5 mM), and using coffee husk as substrate. The crude extracts presented two laccase isoforms with molecular mass of 120 (Lac1) and 60 kDa (Lac2). Regardless of the substrate, enzymatic crude extract and purified fractions behaved similarly at different temperatures and pHs, most of them presented the maximum activity at 55 °C and a pH range between 2 and 3. In addition, they showed similar stability and electro-chemical properties. At optimal culture conditions laccase activity was 7.69 ± 0.28 U mg(-1) of protein for the crude extract, and 0.08 ± 0.001 and 2.86 ± 0.05 U mg(-1) of protein for Lac1 and Lac2, respectively. In summary, these results show the potential of coffee husk as an important and economical growth medium to produce laccase, offering a new alternative use for this common agro-industrial byproduct.

  15. Potential effect of matrix stiffness on the enrichment of tumor initiating cells under three-dimensional culture conditions.

    Science.gov (United States)

    Liu, Chang; Liu, Yang; Xu, Xiao-xi; Wu, Hao; Xie, Hong-guo; Chen, Li; Lu, Ting; Yang, Li; Guo, Xin; Sun, Guang-wei; Wang, Wei; Ma, Xiao-jun; He, Xin

    2015-01-01

    Cancer stem cell (CSC) or tumor initiating cell (TIC) plays an important role in tumor progression and metastasis. Biophysical forces in tumor microenvironment have an important effect on tumor formation and development. In this study, the potential effect of matrix stiffness on the biological characteristics of human head and neck squamous cell carcinoma (HNSCC) TICs, especially the enrichment of HNSCC TICs, was investigated under three-dimensional (3D) culture conditions by means of alginate gel (ALG) beads with different matrix stiffnesses. ALG beads with soft (21 kPa), moderate (70 kPa) and hard (105 kPa) stiffness were generated by changing alginate concentration. It was found that significant HNSCC TIC enrichment was achieved in the ALG beads with moderate matrix stiffness (70 kPa). The gene expression of stemness markers Oct3/4 and Nanog, TIC markers CD44 and ABCG2 was enhanced in cells under this moderate (70 kPa) stiffness. HNSCC TIC proportion was also highly enriched under moderate matrix stiffness, accompanying with higher tumorigenicity, metastatic ability and drug resistance. And it was also found that the possible molecular mechanism underlying the regulated TIC properties by matrix stiffness under 3D culture conditions was significantly different from 2D culture condition. Therefore, the results achieved in this study indicated that 3D biophysical microenvironment had an important effect on TIC characteristics and alginate-based biomimetic scaffolds could be utilized as a proper platform to investigate the interaction between tumor cells and 3D microenvironment.

  16. Production of Trametes pubescens Laccase under Submerged and Semi-Solid Culture Conditions on Agro-Industrial Wastes

    Science.gov (United States)

    Rodriguez, Alexander; Osma, Johann F.; Alméciga-Díaz, Carlos J.; Sánchez, Oscar F.

    2013-01-01

    Laccases are copper-containing enzymes involved in the degradation of lignocellulosic materials and used in the treatment of phenol-containing wastewater. In this study we investigated the effect of culture conditions, i.e. submerged or semi-solid, and copper supplementation on laccase production by Trametespubescens grown on coffee husk, soybean pod husk, or cedar sawdust. The highest specific laccase activity was achieved when the culture was conducted under submerged conditions supplemented with copper (5 mM), and using coffee husk as substrate. The crude extracts presented two laccase isoforms with molecular mass of 120 (Lac1) and 60 kDa (Lac2). Regardless of the substrate, enzymatic crude extract and purified fractions behaved similarly at different temperatures and pHs, most of them presented the maximum activity at 55 °C and a pH range between 2 and 3. In addition, they showed similar stability and electro-chemical properties. At optimal culture conditions laccase activity was 7.69±0.28 U mg-1 of protein for the crude extract, and 0.08±0.001 and 2.86±0.05 U mg-1 of protein for Lac1 and Lac2, respectively. In summary, these results show the potential of coffee husk as an important and economical growth medium to produce laccase, offering a new alternative use for this common agro-industrial byproduct. PMID:24019936

  17. Production of Trametes pubescens laccase under submerged and semi-solid culture conditions on agro-industrial wastes.

    Directory of Open Access Journals (Sweden)

    Juan C Gonzalez

    Full Text Available Laccases are copper-containing enzymes involved in the degradation of lignocellulosic materials and used in the treatment of phenol-containing wastewater. In this study we investigated the effect of culture conditions, i.e. submerged or semi-solid, and copper supplementation on laccase production by Trametespubescens grown on coffee husk, soybean pod husk, or cedar sawdust. The highest specific laccase activity was achieved when the culture was conducted under submerged conditions supplemented with copper (5 mM, and using coffee husk as substrate. The crude extracts presented two laccase isoforms with molecular mass of 120 (Lac1 and 60 kDa (Lac2. Regardless of the substrate, enzymatic crude extract and purified fractions behaved similarly at different temperatures and pHs, most of them presented the maximum activity at 55 °C and a pH range between 2 and 3. In addition, they showed similar stability and electro-chemical properties. At optimal culture conditions laccase activity was 7.69 ± 0.28 U mg(-1 of protein for the crude extract, and 0.08 ± 0.001 and 2.86 ± 0.05 U mg(-1 of protein for Lac1 and Lac2, respectively. In summary, these results show the potential of coffee husk as an important and economical growth medium to produce laccase, offering a new alternative use for this common agro-industrial byproduct.

  18. Ante situm liver resection with inferior vena cava replacement under hypothermic cardiopolmunary bypass for hepatoblastoma: Report of a case and review of the literature

    Directory of Open Access Journals (Sweden)

    Roberta Angelico

    2017-01-01

    Conclusions: We report for the first time a case of ante situ liver resection and inferior-vena-cava replacement associated with hypothermic cardiopulmonary bypass in a child with hepatoblastoma. Herein, we extensively review the literature for hepatoblastoma with thumoral thrombi and we describe the technical aspects of ante situm approach, which is a realistic option in otherwise unresectable hepatoblastoma.

  19. Red blood cell engineering in stroma and serum/plasma-free conditions and long term storage.

    Science.gov (United States)

    Kim, Hyun Ok; Baek, Eun Jung

    2012-01-01

    In vitro generation of artificial red blood cells (RBCs) is very important to overcome insufficient and unsafe blood supply. Despite recent progresses in RBCs engineering from several stem cell sources, none of them could succeed in generation of functional RBCs in the absence of serum/plasma and feeder cells. Without the elimination of serum and plasma, human RBC engineering in a large scale is impossible, especially for the future bioreactor system. Using an appropriate combination of cost-effective and safe reagents, the present study demonstrated the terminal maturation of hematopoietic stem cells into enucleated RBCs, which were functional comparable to donated human RBCs. Surprisingly, the viability of erythroid cells was higher in our serum- and feeder-free culture condition than in the previous serum-added condition. This was possible by supplementation with vitamin C in media and hypothermic conditions. Also, our report firstly presents the storability of artificial RBCs, which possibility is essential for clinical application. In summary, our report demonstrates engineering of human applicable RBCs with a dramatically enhanced viability and shelf-life in both serum- and stroma-free conditions. This innovative culture technology could contribute to the realization of the large-scale pharming of human RBCs using bioreactor systems.

  20. Peptidergic neurons of the crab, Cardisoma carnifex, in defined culture maintain characteristic morphologies under a variety of conditions.

    Science.gov (United States)

    Grau, S M; Cooke, I M

    1992-11-01

    Peptidergic neurons dissociated from the neurosecretory cell group, the X-organ, of adult crabs (Cardisoma carnifex) show immediate outgrowth on unconditioned plastic dishes in defined medium. Most of the neurons can be categorized as small cells, branchers or veilers. A fourth type, "superlarge," found occasionally, has a soma diameter greater than 40 microns and multipolar outgrowth. We report here the effects on morphology that follow alterations of the standard defined culturing conditions. The three common types of neurons are present when cells are grown in crab saline or saline with L-glutamine and glucose (saline medium). Changes of pH between 7.0 to 7.9 have no effect. Osmolarity changes cause transient varicosities in small cells. In some veilers, pits rapidly appear in the veil and then disappear within 35 min. In cultures at 26 degrees C instead of 22 degrees C, veilers extend processes from the initial veil in a pattern similar to branchers, and the processes of adjacent veilers sometimes form appositions. Culturing in higher [K+]o medium ([K+]o = 15-110 mM; standard = 11 mM) has no long-term effect, but growth is arrested by [K+]o greater than 30 mM. Cultures were also grown in media in which [Ca2+]o ranged from 0.1 microM to 26 mM (standard = 13 mM). Outgrowth occurred from all neuronal types in all [Ca2+]o tested. Thus, the expression of different outgrowth morphologies occurs under a wide variety of culturing conditions.

  1. Cultural repertoires and food-related household technology within colonia households under conditions of material hardship

    OpenAIRE

    Dean Wesley R; Sharkey Joseph R; Johnson Cassandra M; John Julie

    2012-01-01

    Abstract Introduction Mexican-origin women in the U.S. living in colonias (new-destination Mexican-immigrant communities) along the Texas-Mexico border suffer from a high incidence of food insecurity and diet-related chronic disease. Understanding environmental factors that influence food-related behaviors among this population will be important to improving the well-being of colonia households. This article focuses on cultural repertoires that enable food choice and the everyday uses of tech...

  2. Controlling the rheology of gellan gum hydrogels in cell culture conditions.

    Science.gov (United States)

    Moxon, Samuel R; Smith, Alan M

    2016-03-01

    Successful culturing of tissues within polysaccharide hydrogels is reliant upon specific mechanical properties. Namely, the stiffness and elasticity of the gel have been shown to have a profound effect on cell behaviour in 3D cell cultures and correctly tuning these mechanical properties is critical to the success of culture. The usual way of tuning mechanical properties of a hydrogel to suit tissue engineering applications is to change the concentration of polymer or its cross-linking agents. In this study sonication applied at various amplitudes was used to control mechanical properties of gellan gum solutions and gels. This method enables the stiffness and elasticity of gellan gum hydrogels cross-linked with DMEM to be controlled without changing either polymer concentration or cross-linker concentration. Controlling the mechanical behaviour of gellan hydrogels impacted upon the activity of alkaline phosphatase (ALP) in encapsulated MC3T3 pre-osteoblasts. This shows the potential of applying a simple technique to generate hydrogels where tissue-specific mechanical properties can be produced that subsequently influence cell behaviour.

  3. Effect of osteoblastic culture conditions on the structure of poly(DL-lactic-co-glycolic acid) foam scaffolds

    Science.gov (United States)

    Goldstein, A. S.; Zhu, G.; Morris, G. E.; Meszlenyi, R. K.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    1999-01-01

    Poly(DL-lactic-co-glycolic acid) (PLGA) foams are an osteoconductive support that holds promise for the development of bone tissue in vitro and implantation into orthopedic defects. Because it is desirable that foams maintain their shape and size, we examined a variety of foams cultured in vitro with osteoblastic cells. Foams were prepared with different porosities and pore sizes by the method of solvent casting/porogen leaching using 80, 85, and 90 wt% NaCl sieved with particle sizes of 150-300 and 300-500 microm and characterized by mercury intrusion porosimetry. Foams seeded with cells were found to have volumes after 7 days in static culture that decreased with increasing porosity: the least porous exhibited no change in volume while the most porous foams decreased by 39 +/- 10%. In addition, a correlation was observed between decreasing foam volume after 7 days in culture and decreasing internal surface area of the foams prior to seeding. Furthermore, foams prepared with the 300-500 microm porogen had lower porosities, greater mean wall thicknesses between adjacent pores, and larger volumes after 7 days in culture than those prepared with the smaller porogen. Two culture conditions for maintaining cells, static and agitated (in a rotary vessel), were found to have similar influences on foam size, cell density, and osteoblastic function for 7 and 14 days in culture. Finally, we examined unseeded foams in aqueous solutions of pH 3.0, 5.0, and 7.4 and found no significant decrease in foam size with degradation. This study demonstrates that adherent osteoblastic cells may collapse very porous PLGA foams prepared by solvent casting/particulate leaching: a potentially undesirable property for repair of orthopedic defects.

  4. Norepinephrine stimulates progesterone production in highly estrogenic bovine granulosa cells cultured under serum-free, chemically defined conditions

    Directory of Open Access Journals (Sweden)

    Piccinato Carla A

    2012-11-01

    Full Text Available Abstract Background Since noradrenergic innervation was described in the ovarian follicle, the actions of the intraovarian catecholaminergic system have been the focus of a variety of studies. We aimed to determine the gonadotropin-independent effects of the catecholamine norepinephrine (NE in the steroid hormone profile of a serum-free granulosa cell (GC culture system in the context of follicular development and dominance. Methods Primary bovine GCs were cultivated in a serum-free, chemically defined culture system supplemented with 0.1% polyvinyl alcohol. The culture features were assessed by hormone measurements and ultrastructural characteristics of GCs. Results GCs produced increasing amounts of estradiol and pregnenolone for 144h and maintained ultrastructural features of healthy steroidogenic cells. Progesterone production was also detected, although it significantly increased only after 96h of culture. There was a highly significant positive correlation between estradiol and pregnenolone production in high E2-producing cultures. The effects of NE were further evaluated in a dose–response study. The highest tested concentration of NE (10 (−7 M resulted in a significant increase in progesterone production, but not in estradiol or pregnenolone production. The specificity of NE effects on progesterone productio n was further investigated by incubating GCs with propranolol (10 (−8 M, a non-selective beta-adrenergic antagonist. Conclusions The present culture system represents a robust model to study the impact of intrafollicular factors, such as catecholamines, in ovarian steroidogenesis and follicular development. The results of noradrenergic effects in the steroidogenesis of GC have implications on physiological follicular fate and on certain pathological ovarian conditions such as cyst formation and anovulation.

  5. Effect of osteoblastic culture conditions on the structure of poly(DL-lactic-co-glycolic acid) foam scaffolds

    Science.gov (United States)

    Goldstein, A. S.; Zhu, G.; Morris, G. E.; Meszlenyi, R. K.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    1999-01-01

    Poly(DL-lactic-co-glycolic acid) (PLGA) foams are an osteoconductive support that holds promise for the development of bone tissue in vitro and implantation into orthopedic defects. Because it is desirable that foams maintain their shape and size, we examined a variety of foams cultured in vitro with osteoblastic cells. Foams were prepared with different porosities and pore sizes by the method of solvent casting/porogen leaching using 80, 85, and 90 wt% NaCl sieved with particle sizes of 150-300 and 300-500 microm and characterized by mercury intrusion porosimetry. Foams seeded with cells were found to have volumes after 7 days in static culture that decreased with increasing porosity: the least porous exhibited no change in volume while the most porous foams decreased by 39 +/- 10%. In addition, a correlation was observed between decreasing foam volume after 7 days in culture and decreasing internal surface area of the foams prior to seeding. Furthermore, foams prepared with the 300-500 microm porogen had lower porosities, greater mean wall thicknesses between adjacent pores, and larger volumes after 7 days in culture than those prepared with the smaller porogen. Two culture conditions for maintaining cells, static and agitated (in a rotary vessel), were found to have similar influences on foam size, cell density, and osteoblastic function for 7 and 14 days in culture. Finally, we examined unseeded foams in aqueous solutions of pH 3.0, 5.0, and 7.4 and found no significant decrease in foam size with degradation. This study demonstrates that adherent osteoblastic cells may collapse very porous PLGA foams prepared by solvent casting/particulate leaching: a potentially undesirable property for repair of orthopedic defects.

  6. Lasting effect of preceding culture conditions on the susceptibility of C6 cells to peroxide-induced oxidative stress.

    Science.gov (United States)

    Brenner, Sibylle; Gülden, Michael; Maser, Edmund; Seibert, Hasso

    2010-12-01

    The aim of the present study was to investigate the influence of the maintenance culture conditions on the competence of C6 rat glioma cells to cope with peroxide-induced oxidative stress. C6 cells were maintained either in Ham's nutrient mixture F-10 supplemented with 15% horse serum and 2.5% foetal bovine serum (FBS) or in Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 5% FBS. The differently cultured cells were exposed under identical conditions to hydrogen peroxide (H₂O₂) and cumene hydroperoxide (CHP) in serum-free DMEM. The cells maintained in high serum Ham's F-10 medium (1) were less sensitive towards the cytotoxic action of both peroxides (EC₅₀-values: H₂O₂: 193 ± 23 μM; CHP: 94 ± 16 μM) than the cells maintained in low serum DMEM (EC₅₀-values: H₂O₂: 51 ± 10 μM; CHP: 27 ± 11 μM), (2) eliminated the peroxides (initial concentration: 100 μM) with higher rates (H₂O₂: 56 ± 5.5 vs. 32 ± 2.7, CHP: 32 ± 6 vs. 3.4 ± 0.6 nmol/min mg protein), (3) contained more glutathione (30 ± 2.5 vs. 14 ± 1.1 nmol/mg protein) and (4) owned a higher glutathione peroxidase activity (28 ± 3.4 vs. 9.5 ± 0.8 mU/mg protein). Glutathione reductase and catalase activities were not affected. These results demonstrate that the preceding culture conditions have a lasting effect on the susceptibility of cultured cells to oxidative stressors like peroxides. As cause for these differences a dissimilar supply of the cells with serum born antioxidants like selenium and α-tocopherol is discussed.

  7. A novel method to optimize culture conditions for biomass and sporulation of the entomopathogenic fungus Beauveria Bassiana IBC1201

    Directory of Open Access Journals (Sweden)

    Li Gao

    2011-12-01

    Full Text Available Biomass yields and sporulation of Beauveria bassiana was concerned on culture conditions, environmental factors and cultivation method. We optimized the best culture conditions for biomass yields of B. bassiana IBC1201 with the novel "two-stage" cultivation method as well as orthogonal matrix method. Firstly, we cultured spore suspension on the basal medium (sucrose 19.00 g, soy peptone 4.06 g, K2HPO4 1.00 g, KCl 0.50 g, MgSO4 0.50 g, FeSO4 0.10 g and 17.00 g Bactor for the first stage culture of 4 days under room condition. Then, we transferred them to another defined medium (Cellobiose 9.52 g, urea 1.70 g, ZnSO4•7H2O 0.05 g/L, MnSO4•H2O 0.005 g/L, CaCl2 1.00 g/L, CuSO4•5H2O 0.05 g/L and 17.00 g Bactor for more 4 days cultivation with the environmental factors combination of water potential -1.2 MPa /pH 3 /12 h light cycle/ 23 ℃ for biomass yields, and with the environmental factors combination of water potential -0.8 MPa /pH 3 /24 h light cycle/ 23 ℃ for spore yields. These results provided important information for mass production (including biomass and spore yields of this great potential biocontrol fungus.

  8. A novel method to optimize culture conditions for biomass and sporulation of the entomopathogenic fungus Beauveria bassiana IBC1201.

    Science.gov (United States)

    Gao, Li

    2011-10-01

    Biomass yields and sporulation of Beauveria bassiana was concerned on culture conditions, environmental factors and cultivation method. We optimized the best culture conditions for biomass yields of B. bassiana IBC1201 with the novel "two-stage" cultivation method as well as orthogonal matrix method. Firstly, we cultured spore suspension on the basal medium (sucrose 19.00 g, soy peptone 4.06 g, K2HPO4 1.00 g, KCl 0.50 g, MgSO4 0.50 g, FeSO4 0.10 g and 17.00 g Bactor) for the first stage culture of 4 days under room condition. Then, we transferred them to another defined medium (Cellobiose 9.52 g, urea 1.70 g, ZnSO4•7H2O 0.05 g/L, MnSO4•H2O 0.005 g/L, CaCl2 1.00 g/L, CuSO4•5H2O 0.05 g/L and 17.00 g Bactor) for more 4 days cultivation with the environmental factors combination of water potential -1.2 MPa /pH 3 /12 h light cycle/23 ℃ for biomass yields, and with the environmental factors combination of water potential -0.8 MPa /pH 3 /24 h light cycle/23 ℃ for spore yields. These results provided important information for mass production (including biomass and spore yields) of this great potential biocontrol fungus.

  9. [Optimization of induction and culture conditions for hairy roots of Salvia miltiorrhiza].

    Science.gov (United States)

    Tan, Rong-Hui; Zhang, Jin-Jia; Zhao, Shu-Juan

    2014-08-01

    To establish induction and liquid culture system for hairy roots of Danshen (Salvia miltiorrhiza), Agrobacterium rhizogenes A4, LBA9402, 15834 as test bacterium were used to infect aseptic leaves of Danshen. The hairy roots were induced and positive transgenic hairy roots were selected with PCR using rolB and rolC as the target gene. Then hairy roots of S. miltiorrhiza were harvested and salvianolic acids were extracted with 70% methanol containing 1% formic acid. The content of salvianolic acid B (SalB) and rosmarinic acid (RA) were determined by HPLC. According to the above research results, the Danshen hairy roots induced by A. rhizogenes LBA9402 were inoculated into the following group of culture media: MSOH, MS, B5, and 6,7-V liquid media. Then the same methods of extraction and determination for the content of Danshen hairy roots were adopted. Last, the hairy roots of S. miltiorrhiza induced by A. rhizogenes LBA9402 were inoculated into the MSOH liquid media with different pH values. The content of salvianolic acid were extracted with 70% methanol containing 1% formic acid and determined by HPLC. As a result, three kinds of A. rhizogenes A4, LBA9402, 15834 could induce hairy roots and Ri plasmids were integrated into the genome of S. miltiorrhiza by PCR. Danshen hairy roots induced by A. rhizogenes LBA9402 and A4 produced much more salvianolic acid, which were (3.27 ± 0.37)% [including (1.04 ±0.36)% of RA and (2.22 ± 0.29)% of SalB] and (3.17 ± 0.20)% [including (0.92 ± 0.31)% of RA and (2.25 ± 0.26)% of SalB], respectively. Hairy roots induced by A. rhizogenes LBA9402 when they were cultured in MSOH liquid media produced much more salvianolic acid, which was (4.56 ± 0.36)%, including (1.12 ± 0.26)% of RA and (3.44 ± 0.23)% of SalB. Hairy roots induced by A. rhizogenes LBA9402 produced the most salvianolic acid when they were cultured in MSOH liquid media with the pH value 4.81, which was 4.85%, including 1.16% of RA and 3.69% of SalB. So Danshen

  10. Culture as Conquest: Nature and Condition in the Definition of Human Identity

    Directory of Open Access Journals (Sweden)

    Díaz Viana, Luis

    2009-06-01

    Full Text Available In the past few years, the old debate about nature and culture, a debate which is —ultimately— one on the definition of the ‘human’, has acquired the form of a controversy (both philosophical and everyday between “animalists” and “hyper-humanists”; between those who would claim a certain “animalisation of humankind” —humanising animals on issues such as rights— and those who, on the contrary, make attempts at widening the division between humans and animals to justify practices of mistreatment and sacrifice of the latter in the name of tradition and culture. This paper mantains that reductionist abuses of “vulgar sociobiology”, now at times presented as innovative, were adequately questioned by anthropologists in the past; and proposes, both against these views and as opposed to what has been called “mysticist hyperhumanism” by some authors, a reivindication of culture as a conquest of our species leading us to humanity, retrieving in this way the program of that anthropology which, coming from the acknowledgement of cultural diversity, promoted a positive “humanization” of the world.

    En los últimos tiempos, el viejo debate en torno a naturaleza y cultura, que es una discusión —finalmente— sobre la definición de lo humano, ha adquirido las formas extremas de una pugna (tanto filosófica como a pie de calle entre “animalistas” e “hiperhumanistas”; entre quienes pretenderían —humanizando a los animales en materias como las de sus derechos— propiciar, según sus opositores, una cierta “animalización del hombre” y quienes, desde las perspectivas contrarias, estarían agrandando la brecha entre los humanos y los animales para justificar —así— el maltrato y sacrificio de estos últimos en nombre de la tradición y la cultura. Este trabajo viene a recordar que los abusos reduccionistas del “sociobiologismo vulgar”, que ahora se presentan a veces como novedosos, ya fueron

  11. Role of perfusion medium, oxygen and rheology for endoplasmic reticulum stress-induced cell death after hypothermic machine preservation of the liver.

    Science.gov (United States)

    Manekeller, Steffen; Schuppius, Andrea; Stegemann, Judith; Hirner, Andreas; Minor, Thomas

    2008-02-01

    Recently, the endoplasmic reticulum (ER) has been disclosed as subcellular target reactive to ischaemia/reperfusion and possibly influenced by hypothermic machine preservation. Here, the respective role of perfusate, perfusion itself, and the effect of continuous oxygenation to trigger ER-stress in the graft should be investigated. Livers were retrieved 30 min after cardiac arrest of male Wistar rats and preserved by cold storage (CS) in histidine-tryptophan-ketoglutarate (HTK) for 18 h at 4 degrees C. Other organs were subjected to aerobic conditions either by oxygenated machine perfusion with HTK (MP-HTK) or Belzer solution (MP-Belzer) at 4 degrees C or by venous insufflation of gaseous oxygen during cold storage (VSOP). Viability of livers was evaluated upon reperfusion in vitro according to previously validated techniques for 120 min at 37 degrees C. Oxygenation during preservation (MP-HTK, MP-Belzer or VSOP) concordantly improved functional recovery (bile flow, ammonia clearance), reduced parenchymal enzyme leakage and histological signs of necrosis and significantly attenuated mitochondrial induction of apoptosis (cleavage of caspase 9) compared to CS. However, MP with either medium produced about 500% elevated protein expression of CHOP/GADD153, suggesting pro-apoptotic ER-stress responses, paralleled by a significant elevation of caspase-12 enzyme activity compared to CS or VSOP. Although MP also promoted a slight (20%) induction of the cytoprotective ER-protein Bax inhibitor protein (BI-1), prevailing of proapoptotic reactions was seen by increased cleavage of caspase-3 and poly (ADP-Ribase)-polymerase (PARP) in both MP-groups. Endoplasmic stress activation is conjectured a specific side effect of long-term machine preservation irrespective of the medium, actually promoting cellular apoptosis via activation of caspase-12. The simple insufflation of gaseous O2 may be considered a feasible alternative, apparently indifferent to the endoplasmic reticulum.

  12. PROINFLAMMATORY CYTOKINES IN PATIENTS UNDERGOING HYPOTHERMIC CARDIOPULMONARY BYPASS%心内直视手术围术期血浆细胞因子的变化

    Institute of Scientific and Technical Information of China (English)

    石践; 邵展社; 李学文; 高宏; 马良龙

    2001-01-01

    目的:观察低温体外循环心内直视手术中细胞因子的变化,探讨体外循环对其影响。方法:应用ELISA法测定IL-8、TNF-α、IL-10在心脏直视手术围术期的血浆浓度。结果:IL-8、IL-10在体外循环结束后明显高于体外循环前(P<0.05),TNF-α无明显变化。结论:IL-8、IL-10作为重要心炎性介质,参与了缺血再灌注损伤的过程。%Objective:Proinflammatory cytokines,such as tumor-necrosis-factor alpha,interleukin-8,and anti-inflammatory cytokine interleukin-10,may play an important role in patient responses to cardiopulmonary bypass.We sought to define the variety of these cytokines under conditions of hypothermic cardiopulmonary bypass.Methods:Twenty patients were monitored with an arterial catherter.Plasma levels of tumor-necrosis-factor alpha,interleukin-8,and interleukin-10 were measured in peripheral arterial blood before anaesthesia,aortic cannulation,at 5 minutes of CPB,at 10 minutes after aortic declamping,and 4 hours after aortic declamping.Results:Levels of interleukin-8 and interleukin-10 were significantly higher arterial blood after aortic declamping.Tumor necrosis factor-a was not increased markedly.Conclusions:Our data suggest that CPB do caused increase of interleukin-8 and 10,but not tumornecrrosis-factor alpha.

  13. Hypothermal effects on survival, energy homeostasis and expression of energy-related genes of swimming crabs Portunus trituberculatus during air exposure.

    Science.gov (United States)

    Lu, Yunliang; Zhang, Dan; Wang, Fang; Dong, Shuanglin

    2016-08-01

    Previously, dry or semi-dry approach under the hypothermal condition is proved to be an alternative method in transport of live swimming crabs Portunus trituberculatus. However, we wondered whether this method can improve crab survival when temperature is kept as cool as possible. In this study, we hypothesized that there is a thermal threshold below which dry or semi-dry approach (air exposure) could cause crab physiological disruption and therefore aggravate their mortality. To test the above hypothesis, crabs (23°C) were exposed to air at temperatures ranging from 4 to 16°C. Results showed that crabs had a worse survival and vigor at temperatures below 12°C. Then we tested crab energy metabolism to explore the possible reason. It was shown that total adenine nucleotide and adenylate energy charge in gills were remarkably reduced by air exposure of below 12°C. This increased the need for crabs to re-balance energy metabolism, which was indicated by the upregulation of AMPKα and HIF-1α. Meanwhile, there was a significant increase of the expression of Na(+)/K(+)-ATPase, V-type ATPase and HSP90 at temperatures below 12°C, while all treatments shared a similar level of hemocyanin, urate and lactate in hemolymph and expression of cytochrome c oxidase and NADH-ubiquinone reductase in gills. These results implied that dry or semi-dry approach below 12°C could exert detrimental effects on P. trituberculatus, and perturbation of energy homeostasis, which is more related with changes of energy-demanding physiological pathways, is a possible reason of crab death and poor vigor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Effects of Culture Conditions, Carbon Source and Regulators on Saffron Callus Growth and Crocin Accumulation in the Callus

    Institute of Scientific and Technical Information of China (English)

    刘雪; 郭志刚; 刘瑞芝

    2002-01-01

    There are many factors influencing the growth and secondary metabolites of callus and saffron callus. In this paper, the effects of culture conditions, including culture temperatures, light levels, the carbon source and its concentration, and the preserve of regulators (mainly hormones), are studied for callus cultures. All the experiments used Murashige and Skoog (MS) solid medium as the basic medium with 10 g/L agar, pH 5.75.8. Saffron callus was cultured at 20℃ in the dark, with a sucrose concentration of 45 g/L (or starchy hydrolysate concentration of 40 g/L), but 30 g/L sucrose was best for the synthesis of crocin (for starchy hydrolysate the concentration can range from 20 to 40 g/L). To promote callus growth, the best auxin was α-naphthaleneacetic acid (NAA) and the optimum ratio of NAA (mg/L) to benzylaminopurine (BA) (mg/L) was and uniconazole (S-07) (1.25 mg/L) increased the crocin content remarkably as analyzed by high performance liquid chromatography (HPLC). NAA (2 mg/L) promoted the growth of saffron callus but had no benefit and may inhibit crocin synthesis while S-07 (1.25 mg/L) had the opposite effect. GA3 promoted both growth and synthesis.

  15. THE BECOMING OF INFORMATION CULTURE IN THE CONDITIONS OF THE FEDERAL STATE EDUCATIONAL STANDARD OF VOCATIONAL EDUCATION’S IMPLEMENTATION

    Directory of Open Access Journals (Sweden)

    Lapina Svetlana Nikolaevna

    2013-05-01

    Full Text Available This article examines the approaches to the definition of “information culture”, its components, the system of personal values needed to succeed in the information and professional activities, the problem of students’ information culture formation in the modern information society. The analysis of the implementation of the Federal state educational standard of vocational education in "teaching in primary schools" is held. The variable part cycles of the basic professional educational programs is distributed on the base of the local professional community’s research and additional competencies. Such subjects as “Russian language and Speech”, “The cultural world of students”, “Ethics in business communication” are introduced through the variable part of the educational standard. The general amount of hours for such subject as «Computer science, information and communication technology in the professional activity" is increased. The results of the special study reveal the level of information culture of the future primary school teachers. According to the results it can be concluded that insufficient level of information culture’s development is impossible for a successful career and self-fulfillment in the present conditions. The article proposes the directions for the formation of future primary school teachers’ information culture in the implementation of the federal state educational standard of vocational education. According to the results of this research it is possible to tell about the effectiveness of these directions’ implementation.

  16. THE BECOMING OF INFORMATION CULTURE IN THE CONDITIONS OF THE FEDERAL STATE EDUCATIONAL STANDARD OF VOCATIONAL EDUCATION’S IMPLEMENTATION

    Directory of Open Access Journals (Sweden)

    Светлана Николаевна Лапина

    2013-07-01

    Full Text Available This article examines the approaches to the definition of “information culture”, its components, the system of personal values needed to succeed in the information and professional activities, the problem of students’ information culture formation in the modern information society. The analysis of the implementation of the Federal state educational standard of vocational education in "teaching in primary schools" is held. The variable part cycles of the basic professional educational programs is distributed on the base of the local professional community’s research and additional competencies. Such subjects as “Russian language and Speech”, “The cultural world of students”, “Ethics in business communication” are introduced through the variable part of the educational standard. The general amount of hours for such subject as «Computer science, information and communication technology in the professional activity" is increased. The results of the special study reveal the level of information culture of the future primary school teachers. According to the results it can be concluded that insufficient level of information culture’s development is impossible for a successful career and self-fulfillment in the present conditions. The article proposes the directions for the formation of future primary school teachers’ information culture in the implementation of the federal state educational standard of vocational education. According to the results of this research it is possible to tell about the effectiveness of these directions’ implementation.DOI: http://dx.doi.org/10.12731/2218-7405-2013-5-31

  17. Grape Cultivar and Sap Culture Conditions Affect the Development of Xylella fastidiosa Phenotypes Associated with Pierce's Disease

    Science.gov (United States)

    Hoch, Harvey C.; Burr, Thomas J.; Mowery, Patricia

    2016-01-01

    Xylella fastidiosa is a xylem-limited bacterium in plant hosts and causes Pierce’s disease (PD) of grapevines, which differ in susceptibility according to the Vitis species (spp.). In this work we compared X. fastidiosa biofilm formation and population dynamics when cultured in xylem saps from PD-susceptible and -resistant Vitis spp. under different conditions. Behaviors in a closed-culture system were compared to those in different sap-renewal cultures that would more closely mimic the physicochemical environment encountered in planta. Significant differences in biofilm formation and growth in saps from PD-susceptible and -resistant spp. were only observed using sap renewal culture. Compared to saps from susceptible V. vinifera, those from PD-resistant V. aestivalis supported lower titers of X. fastidiosa and less biofilm and V. champinii suppressed both growth and biofilm formation, behaviors which are correlated with disease susceptibility. Furthermore, in microfluidic chambers X. fastidiosa formed thick mature biofilm with three-dimensional (3-D) structures, such as pillars and mounds, in saps from all susceptible spp. In contrast, only small aggregates of various shapes were formed in saps from four out of five of the resistant spp.; sap from the resistant spp. V. mustangensis was an exception in that it also supported thick lawns of biofilm but not the above described 3-D structures typically seen in a mature biofilm from the susceptible saps. Our findings provide not only critical technical information for future bioassays, but also suggest further understanding of PD susceptibility. PMID:27508296

  18. cultural

    Directory of Open Access Journals (Sweden)

    Irene Kreutz

    2006-01-01

    Full Text Available Es un estudio cualitativo que adoptó como referencial teorico-motodológico la antropología y la etnografía. Presenta las experiencias vivenciadas por mujeres de una comunidad en el proceso salud-enfermedad, con el objetivo de comprender los determinantes sócio-culturales e históricos de las prácticas de prevención y tratamiento adoptados por el grupo cultural por medio de la entrevista semi-estructurada. Los temas que emergieron fueron: la relación entre la alimentación y lo proceso salud-enfermedad, las relaciones con el sistema de salud oficial y el proceso salud-enfermedad y lo sobrenatural. Los dados revelaron que los moradores de la comunidad investigada tienen un modo particular de explicar sus procedimientos terapéuticos. Consideramos que es papel de los profesionales de la salud en sus prácticas, la adopción de abordajes o enfoques que consideren al individuo en su dimensión sócio-cultural e histórica, considerando la enorme diversidad cultural en nuestro país.

  19. Effects of different culture conditions on biological potential and metabolites production in three Penicillium isolates.

    Science.gov (United States)

    Reis, Filipa S; Ćirić, Ana; Stojković, Dejan; Barros, Lillian; Ljaljević-Grbić, Milica; Soković, Marina; Ferreira, Isabel C F R

    2015-02-01

    The genus Penicillium is well known for its importance in drug and food production. Certain species are produced on an industrial scale for the production of antibiotics (e.g. penicillin) or for insertion in food (e.g. cheese). In the present work, three Penicillium species, part of the natural mycobiota growing on various food products were selected - P. ochrochloron, P. funiculosum and P. verrucosum var. cyclopium. The objective of our study was to value these species from the point of view of production of bioactive metabolites. The species were obtained after inoculation and growth in Czapek and Malt media. Both mycelia and culture media were analyzed to monitor the production of different metabolites by each fungus and their release to the culture medium. The concentrations of sugars, organic acids, phenolic acids and tocopherols were determined. Antioxidant activity of the phenolic extracts was evaluated, as also the antimicrobial activity of phenolic acids, organic acids and tocopherols extracts. Rhamnose, xylose, fructose and trehalose were found in all the mycelia and culture media; the prevailing organic acids were oxalic and fumaric acids, and protocatechuic and p-hydroxybenzoic acids were the most common phenolic acids; γ-tocopherol was the most abundant vitamin E isoform. Generally, the phenolic extracts corresponding to the mycelia samples revealed higher antioxidant activity. Concerning the antimicrobial activity there were some fluctuations, however all the studied species revealed activity against the tested strains. Therefore, the in-vitro bioprocesses can be an alternative for the production of bioactive metabolites that can be used by pharmaceutical industry.

  20. conditions

    Directory of Open Access Journals (Sweden)

    M. Venkatesulu

    1996-01-01

    Full Text Available Solutions of initial value problems associated with a pair of ordinary differential systems (L1,L2 defined on two adjacent intervals I1 and I2 and satisfying certain interface-spatial conditions at the common end (interface point are studied.

  1. Cultures, Conditions, and Cognitive Closure: Breaking Intelligence Studies’ Dependence on Security Studies

    Directory of Open Access Journals (Sweden)

    Matthew Crosston

    2015-09-01

    Full Text Available This paper is about how the conceptualization of ‘culture’ in intelligence studies has taken on too powerful a role, one that has become too restrictive in its impact on thinking about other intelligence communities, especially non-Western ones. This restriction brings about unintentional cognitive closure that damages intelligence analysis. The argument leans heavily in many ways on the fine work of Desch and Johnston in the discipline of Security Studies, who cogently brought to light over fifteen years ago how ultra-popular cultural theories were best utilized as supplements to traditional realist approaches, but were not in fact capable of supplanting or replacing realist explanations entirely. The discipline of Intelligence Studies today needs a similar ‘intellectual intervention’ as it has almost unknowingly advanced in the post-Cold War era on the coattails of Security Studies but has largely failed to apply the same corrective measures. This effort may be best accomplished by going back to Snyder in the 1970s who warned that culture should be used as the explanation of last resort for Security Studies.

  2. Stability of dietary polyphenols under the cell culture conditions: avoiding erroneous conclusions.

    Science.gov (United States)

    Xiao, Jianbo; Högger, Petra

    2015-02-11

    Most data of bioactivity from dietary polyphenols have been derived from in vitro cell culture experiments. In this context, little attention is paid to potential artifacts due to chemical instability of these natural antioxidants. An early degradation time ((C)T10) and half-degradation time ((C)T50) were defined to characterize the stability of 53 natural antioxidants incubated in Dulbecco's modified Eagle's medium (DMEM) at 37 °C. The degree of hydroxylation of flavones and flavonols significantly influenced the stability in order resorcinol-type > catechol-type > pyrogallol-type, with the pyrogallol-type being least stable. In contrast, any glycosylation of polyphenols obviously enhanced their stability. However, the glycosylation was less important compared to the substitution pattern of the nucleus rings. Methoxylation of flavonoids with more than three hydroxyl groups typically improved their stability as did the hydrogenation of the C2═C3 double bond of flavonoids to corresponding flavanoids. There was no significant correlation between the antioxidant potential of polyphenols and their stability. Notably, the polyphenols were clearly more stable in human plasma than in DMEM, which may be caused by polyphenol-protein interactions. It is strongly suggested to carry out stability tests in parallel with cell culture experiments for dietary antioxidants with catechol or pyrogallol structures and pyrogallol-type glycosides in order to avoid artifacts.

  3. Totipotent Embryonic Stem Cells Arise in Ground-State Culture Conditions

    Science.gov (United States)

    Morgani, Sophie M.; Canham, Maurice A.; Nichols, Jennifer; Sharov, Alexei A.; Migueles, Rosa Portero; Ko, Minoru S.H.; Brickman, Joshua M.

    2013-01-01

    Summary Embryonic stem cells (ESCs) are derived from mammalian embryos during the transition from totipotency, when individual blastomeres can make all lineages, to pluripotency, when they are competent to make only embryonic lineages. ESCs maintained with inhibitors of MEK and GSK3 (2i) are thought to represent an embryonically restricted ground state. However, we observed heterogeneous expression of the extraembryonic endoderm marker Hex in 2i-cultured embryos, suggesting that 2i blocked development prior to epiblast commitment. Similarly, 2i ESC cultures were heterogeneous and contained a Hex-positive fraction primed to differentiate into trophoblast and extraembryonic endoderm. Single Hex-positive ESCs coexpressed epiblast and extraembryonic genes and contributed to all lineages in chimeras. The cytokine LIF, necessary for ESC self-renewal, supported the expansion of this population but did not directly support Nanog-positive epiblast-like ESCs. Thus, 2i and LIF support a totipotent state comparable to early embryonic cells that coexpress embryonic and extraembryonic determinants. PMID:23746443

  4. Totipotent Embryonic Stem Cells Arise in Ground-State Culture Conditions

    Directory of Open Access Journals (Sweden)

    Sophie M. Morgani

    2013-06-01

    Full Text Available Embryonic stem cells (ESCs are derived from mammalian embryos during the transition from totipotency, when individual blastomeres can make all lineages, to pluripotency, when they are competent to make only embryonic lineages. ESCs maintained with inhibitors of MEK and GSK3 (2i are thought to represent an embryonically restricted ground state. However, we observed heterogeneous expression of the extraembryonic endoderm marker Hex in 2i-cultured embryos, suggesting that 2i blocked development prior to epiblast commitment. Similarly, 2i ESC cultures were heterogeneous and contained a Hex-positive fraction primed to differentiate into trophoblast and extraembryonic endoderm. Single Hex-positive ESCs coexpressed epiblast and extraembryonic genes and contributed to all lineages in chimeras. The cytokine LIF, necessary for ESC self-renewal, supported the expansion of this population but did not directly support Nanog-positive epiblast-like ESCs. Thus, 2i and LIF support a totipotent state comparable to early embryonic cells that coexpress embryonic and extraembryonic determinants.

  5. Antagonism of Trichoderma harzianum ETS 323 on Botrytis cinerea mycelium in culture conditions.

    Science.gov (United States)

    Cheng, Chi-Hua; Yang, Chia-Ann; Peng, Kou-Cheng

    2012-11-01

    ABSTRACT Previous studies have shown that the extracellular proteins of Trichoderma harzianum ETS 323 grown in the presence of deactivated Botrytis cinerea in culture include a putative l-amino acid oxidase and have suggested the involvement of this enzyme in the antagonistic mechanism. Here, we hypothesized that the mycoparasitic process of Trichoderma spp. against B. cinerea involves two steps; that is, an initial hyphal coiling stage and a subsequent hyphal coiling stage, with different coiling rates. The two-step antagonism of T. harzianum ETS 323 against B. cinerea during the mycoparasitic process in culture was evaluated using a biexponential equation. In addition, an l-amino acid oxidase (Th-l-AAO) was identified from T. harzianum ETS 323. The secretion of Th-l-AAO was increased when T. harzianum ETS 323 was grown with deactivated hyphae of B. cinerea. Moreover, in vitro assays indicated that Th-l-AAO effectively inhibited B. cinerea hyphal growth, caused cytosolic vacuolization in the hyphae, and led to hyphal lysis. Th-l-AAO also showed disease control against the development of B. cinerea on postharvest apple fruit and tobacco leaves. Furthermore, an apoptosis-like response, including the generation of reactive oxygen species, was observed in B. cinerea after treatment with Th-l-AAO, suggesting that Th-l-AAO triggers programmed cell death in B. cinerea. This may be associated with the two-step antagonism of T. harzianum ETS 323 against B. cinerea.

  6. Efficiency of some soil bacteria for chemical oxygen demand reduction of synthetic chlorsulfuron solutions under agiated culture conditions.

    Science.gov (United States)

    Erguven, G O; Yildirim, N

    2016-05-30

    This study searches the efficiency of certain soil bacteria on chemical oxygen demand (COD) reduction of synthetic chlorsulfuron solutions under agitated culture conditions. It also aims to determine the turbidity of liquid culture medium with chlorsulfuron during bacterial incubation for 120 hours. As a result the highest and lowest COD removal efficiency of bacteria was determined for Bacillus simplex as 94% and for Micrococcus luteus as 70%, respectively at the end of the 96th hour. It was found that COD removal efficiency showed certain differences depend on the bacterial species. It was also observed that B. simplex had the highest COD removal efficiency and it was a suitable bacterium species for bioremediation of a chlorsulfuron contaminated soils.

  7. Cox2 and β-Catenin/T-cell Factor Signaling Intestinalize Human Esophageal Keratinocytes When Cultured under Organotypic Conditions

    Directory of Open Access Journals (Sweden)

    Jianping Kong

    2011-09-01

    Full Text Available The incidence of esophageal adenocarcinoma (EAC is rising in the United States. An important risk factor for EAC is the presence of Barrett esophagus (BE. BE is the replacement of normal squamous esophageal epithelium with a specialized columnar epithelium in response to chronic acid and bile reflux. However, the emergence of BE from squamous keratinocytes has not yet been demonstrated. Our research has focused on this. Wnt and cyclooxygenase 2 (Cox2 are two pathways whose activation has been associated with BE and progression to EAC, but their role has not been tested experimentally. To explore their contribution, we engineered a human esophageal keratinocyte cell line to express either a dominant-active Wnt effector CatCLef or a Cox2 complementary DNA. In a two-dimensional culture environment, Cox2 expression increases cell proliferation and migration, but neither transgene induces known BE markers. In contrast, when these cells were placed into three-dimensional organotypic culture conditions, we observed more profound effects. CatCLef-expressing cells were more proliferative, developed a thicker epithelium, and upregulated Notch signaling and several BE markers including NHE2. Cox2 expression also increased cell proliferation and induced a thicker epithelium. More importantly, we observed cysts form within the epithelium, filled with intestinal mucins including Muc5B and Muc17. This suggests that Cox2 expression in a three-dimensional culture environment induces a lineage of mucin-secreting cells and supports an important causal role for Cox2 in BE pathogenesis. We conclude that in vitro modeling of BE pathogenesis can be improved by enhancing Wnt signaling and Cox2 activity and using three-dimensional organotypic culture conditions.

  8. Effects of deep hypothermic circulatory arrest on the blood brain barrier in a cardiopulmonary bypass model--a pilot study.

    Science.gov (United States)

    Bartels, Karsten; Ma, Qing; Venkatraman, Talaignair N; Campos, Christopher R; Smith, Lindsay; Cannon, Ronald E; Podgoreanu, Mihai V; Lascola, Christopher D; Miller, David S; Mathew, Joseph P

    2014-10-01

    Neurologic injury is common after cardiac surgery and disruption of the blood brain barrier (BBB) has been proposed as a contributing factor. We sought to study BBB characteristics in a rodent model of cardiopulmonary bypass (CPB) and deep hypothermic circulatory arrest (DHCA). Adult rats were subjected to CPB/DHCA or to sham surgery. Analysis included Western blotting of relevant BBB proteins in addition to in vivo brain magnetic resonance imaging (MRI) with a clinically used low-molecular contrast agent. While quantitative analysis of BBB proteins revealed similar expression levels, MRI showed evidence of BBB disruption after CPB/DHCA compared to sham surgery. Combining molecular BBB analysis and MRI technology in a rodent model is a highly translatable approach to study adverse neurologic outcomes following CPB/DHCA. Copyright © 2014 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). All rights reserved.

  9. Effects of Deep Hypothermic Circulatory Arrest on the Blood Brain Barrier in a Cardiopulmonary Bypass Model – A Pilot Study

    Science.gov (United States)

    Bartels, Karsten; Ma, Qing; Venkatraman, Talaignair N.; Campos, Christopher R.; Smith, Lindsay; Cannon, Ronald E.; Podgoreanu, Mihai V.; Lascola, Christopher D.; Miller, David S.; Mathew, Joseph P.

    2014-01-01

    Background Neurologic injury is common after cardiac surgery and disruption of the blood brain barrier (BBB) has been proposed as a contributing factor. We sought to study BBB characteristics in a rodent model of cardiopulmonary bypass (CPB) and deep hypothermic circulatory arrest (DHCA). Methods Adult rats were subjected to CPB/DHCA or to sham surgery. Analysis included Western blotting of relevant BBB proteins in addition to in vivo brain magnetic resonance imaging (MRI) using a clinically used low-molecular contrast agent. Results While quantitative analysis of BBB proteins revealed similar expression levels, MRI showed evidence of BBB disruption after CPB/DHCA compared to sham surgery. Conclusions Combining molecular BBB analysis and MRI technology in a rodent model is a highly translatable approach to study adverse neurologic outcomes following CPB/DHCA. PMID:24931068

  10. [Operation of acute dissecting aortic aneurysm in the 25th week of pregnancy using hypothermic extracorporeal circulation].

    Science.gov (United States)

    Thaler, C J; Korell, M; Klinner, U; Reichart, B; Hepp, H

    1992-09-01

    We report on a 24 + 2 weeks pregnant woman with Marfan's syndrome, who acutely developed a dissecting aortic aneurysm with aortic valve insufficiency. Emergency surgery was performed by using hypothermic extracorporeal circulation, whilst the aortic valve and ascending aorta were replaced by a synthetic graft. Foetal heart rates, continuously monitored by using Doppler ultrasound, were shown to be closely correlated with perfusion pressures. By applying perfusion pressures of 90-100 mmHg, we were able to maintain foetal heart rates of approximately 100/min. During the first postoperative day, the CTG was normal for gestational age and no contractions were noted. During the second postoperative night, the patient prematurely delivered a dead 820 g infant (Apgar score 0/0/0/0). In view of this case report, opportunities and problems associated with an application of extracorporeal circulation during pregnancy are discussed.

  11. Purified human pancreatic duct cell culture conditions defined by serum-free high-content growth factor screening.

    Directory of Open Access Journals (Sweden)

    Corinne A Hoesli

    Full Text Available The proliferation of pancreatic duct-like CK19+ cells has implications for multiple disease states including pancreatic cancer and diabetes mellitus. The in vitro study of this important cell type has been hampered by their limited expansion compared to fibroblast-like vimentin+ cells that overgrow primary cultures. We aimed to develop a screening platform for duct cell mitogens after depletion of the vimentin+ population. The CD90 cell surface marker was used to remove the vimentin+ cells from islet-depleted human pancreas cell cultures by magnetic-activated cell sorting. Cell sorting decreased CD90+ cell contamination of the cultures from 34±20% to 1.3±0.6%, yielding purified CK19+ cultures with epithelial morphology. A full-factorial experimental design was then applied to test the mitogenic effects of bFGF, EGF, HGF, KGF and VEGF. After 6 days in test conditions, the cells were labelled with BrdU, stained and analyzed by high-throughput imaging. This screening assay confirmed the expected mitogenic effects of bFGF, EGF, HGF and KGF on CK19+ cells and additionally revealed interactions between these factors and VEGF. A serum-free medium containing bFGF, EGF, HGF and KGF led to CK19+ cell expansion comparable to the addition of 10% serum. The methods developed in this work should advance pancreatic cancer and diabetes research by providing effective cell culture and high-throughput screening platforms to study purified primary pancreatic CK19+ cells.

  12. Differentiation of mouse iPS cells into ameloblast-like cells in cultures using medium conditioned by epithelial cell rests of Malassez and gelatin-coated dishes.

    Science.gov (United States)

    Yoshida, Koki; Sato, Jun; Takai, Rie; Uehara, Osamu; Kurashige, Yoshihito; Nishimura, Michiko; Chiba, Itsuo; Saitoh, Masato; Abiko, Yoshihiro

    2015-09-01

    Induced pluripotent stem (iPS) cells are generated from adult cells and are potentially of great value in regenerative medicine. Recently, it was shown that iPS cells can differentiate into ameloblast-like cells in cultures using feeder cells. In the present study, we sought to induce differentiation of ameloblast-like cells from iPS cells under feeder-free conditions using medium conditioned by cultured epithelial cell rests of Malassez (ERM) cells and gelatin-coated dishes. Two culture conditions were compared: co-cultures of iPS cells and ERM cells; and, culture of iPS cells in ERM cell-conditioned medium. Differentiation of ameloblast-like cells in the cultures was assessed using real-time RT-PCR assays of expression of the marker genes keratin 14, amelogenin, and ameloblastin and by immunocytochemical staining for amelogenin. We found greater evidence of ameloblast-like cell differentiation in the cultures using the conditioned medium. In the latter, the level of amelogenin expression increased daily and was significantly higher than controls on the 7th, 10th, and 14th days. Expression of ameloblastin also increased daily and was significantly higher than controls on the 14th day. The present study demonstrates that mouse iPS cells can be induced to differentiate into ameloblast-like cells in feeder-free cell cultures using ERM cell-conditioned medium and gelatin-coated dishes.

  13. Hypothermic Cooling Measured by Thermal Magnetic Resonance Imaging; Feasibility and Implications for Virtual Imaging in the Urogenital Pelvis.

    Science.gov (United States)

    Skarecky, Douglas; Yu, Hon; Linehan, Jennifer; Morales, Blanca; Su, Min-Ying; Fwu, Peter; Ahlering, Thomas

    2017-10-01

    To study the combination of thermal magnetic resonance imaging (MRI) and novel hypothermic cooling, via an endorectal cooling balloon (ECB), to assess the effective dispersion and temperature drop in pelvic tissue to potentially reduce inflammatory cascade in surgical applications. Three male subjects, before undergoing robot-assisted radical prostatectomy, were cooled via an ECB, rendered MRI compatible for patient safety before ECB hypothermia. MRI studies were performed using a 3T scanner and included T2-weighted anatomic scan for the pelvic structures, followed by a temperature mapping scan. The sequence was performed repeatedly during the cooling experiment, whereas the phase data were collected using an integrated MR-high-intensity focused ultrasound workstation in real time. Pelvic cooling was instituted with a cooling console located outside the MRI magnet room. The feasibility of pelvic cooling measured a temperature drop of the ECB of 20-25 degrees in real time was achieved after an initial time delay of 10-15 seconds for the ECB to cool. The thermal MRI anatomic images of the prostate and neurovascular bundle demonstrate cooling at this interface to be 10-15 degrees, and also that cooling extends into the prostate itself ~5 degrees, and disperses into the pelvic region as well. An MRI-compatible ECB coupled with thermal MRI is a feasible method to assess effective hypothermic diffusion and saturation to pelvic structures. By inference, hypothermia-induced rectal cooling could potentially reduce inflammation, scarring, and fistula in radical prostatectomy, as well as other urologic tissue procedures of high-intensity focused ultrasound, external beam radiation therapy, radioactive seed implants, transurethral microwave therapy, and transurethral resection of the prostate. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Volume regulation in rat pheochromocytoma cultured cells submitted to hypoosmotic conditions.

    Science.gov (United States)

    Delpire, E; Cornet, M; Gilles, R

    1991-02-01

    The mechanisms at work in cell volume regulation have been studied in PC12 cultured cells. Results show, for the first time to our knowledge, that the volume readjustment process occurring after application of a hypoosmotic saline is sensitive to amiloride, IBMX and forskoline. The process is also inhibited by quinine hydrochloride and trifluoperazine. Volume readjustment is concomtant with a decrease in K+ and Cl- intracellular levels. The decrease in K+ level can be related to an assymetrical change in the fluxes in and out of the ion as shown by flux kinetics studies using Rb86. These results are interpreted considering that the control of the activity of the ion channel pathways associated with volume readjustment in PC12 cells may implicate the Ca(2+)-calmodulin - cAMP system.

  15. Occurrence and Distribution of Phytochemicals in the Leaves of 17 In vitro Cultured Hypericum spp. Adapted to Outdoor Conditions

    Science.gov (United States)

    Kucharíková, Andrea; Kusari, Souvik; Sezgin, Selahaddin; Spiteller, Michael; Čellárová, Eva

    2016-01-01

    A plethora of plants belonging to the genus Hypericum have been investigated so far owing to the biological efficacies of pharmacologically important secondary metabolites produced by several Hypericum species. However, there is currently a dearth of information about the localization (accumulation) of these compounds in the plants in situ. In particular, the biosynthetic and ecological consequence of acclimatization of in vitro cultured Hypericum spp. to outdoor conditions is not fully known. Herein, we report an application of matrix-assisted laser desorption/ionization high-resolution mass spectrometry (MALDI-HRMS) to reveal the distribution of major naphthodianthrones hypericin, pseudohypericin, protohypericin, and their proposed precursor emodin as well as emodin anthrone, along with the phloroglucinol derivative hyperforin, the flavonoids quercetin, quercitrin, rutin and hyperoside (and/or isoquercitrin), and chlorogenic acid in Hypericum leaves. Plants encompassing seventeen Hypericum species classified into eleven sections, which were first cultured in vitro and later acclimatized to outdoor conditions, were studied. We focused both on the secretory (dark and translucent glands, other types of glands, and glandular-like structures) as well as the non-secretory leaf tissues. We comparatively analyzed and interpreted the occurrence and accumulation of our target compounds in different leaf tissues of the seventeen species to get an intra-sectional as well as inter-sectional perspective. The naphthodianthrones, along with emodin, were present in all species containing the dark glands. In selected species, hypericin and pseudohypericin accumulated not only in the dark glands, but also in translucent glands and non-secretory leaf tissues. Although hyperforin was localized mainly in translucent glands, it was present sporadically in the dark glands in selected species. The flavonoids quercetin, quercitrin, and hyperoside (and/or isoquercitrin) were distributed

  16. Interactions entre les bacteries et les algues dans une culture continue de phytoplancton naturel soumise aux conditions exterieures

    OpenAIRE

    Gauthier, M; Martin, Y; Lelong, P; Breittmayer, V

    1984-01-01

    Au cours d'une expérience de culture continue de phytoplancton marin en grand volume soumise aux conditions extérieures, des tests microbiologiques et biochimiques ont été effectués pour mettre en évidence la production de substances antibactériennes et antialgales par les algues unicellulaires. De nombreux paramètres ont été mesurés pour caractériser la croissance de ces algues (qualitativement et quantitativement) et des bassin expérimental et dans la biomasse à différents stades de la cult...

  17. Culture conditions for production of 2-1-β-D-Fructan-fructanohydrolase in solid culturing on chicory (Cichorium intybus roots

    Directory of Open Access Journals (Sweden)

    Ashok Pandey

    1998-01-01

    Full Text Available Investigations were carried out to optimize the culture conditions for the production of b-D-fructan-fructanohydrolase by an indigenously isolated bacterial culture of Staphylococcus sp. RRL8. Experiments were carried out in solid culturing using chicory roots (powdered as the source of carbon, which was supplemented, with corn steep liquor and potassium dihydrogen phosphate. A number of process parameters, like period of cultivation, initial moisture content in the substrate and temperature of incubation were optimized. Maximum extra-cellular enzyme was produced when fermentation was carried out at 30ºC for 24 h using chicory roots with 60% initial moisture. Supplementation of the substrate with additional carbon source (except with sucrose resulted decreased enzyme titres, which indicated that the strain was partially depressive. Addition of external nitrogen sources (in addition to corn steep liquor also failed to stimulate enzyme formation; rather exerted harmful impact on bacterial culture of Staphylococcus sp. RRL8.Estudos foram realizados com o objetivo de otimizar as condições de cultura para a produção de b-D-fructan-fructanohydrolase (inulinase com uma cepa selvagem de Estafilococos sp. RRL8. Os experimento foram realizados em meio sólido utilizando raiz de chicória moída como única fonte de carbono e suplementada com licor de milho e KH2P0(4 p. Uma certo número de parâmetros, tais como tempo de cultivo, umidade inicial e temperatura de incubação foram otimizadas. A produção máxima de enzima extra-celular foi obtida quando a fermentação foi realizada à temperatura de 30ºC por um período de 24 horas e um teor umidade de 60%. A suplementação do substrato com uma fonte de carbono adicional (exceto com sacarose resultou no decréscimo da produção de enzima, o que indica que a cepa foi parcialmente depressiva. A adição de uma fonte de nitrogênio externa também não resultou em maior de produção da enzima, ao

  18. Adaptation of Cholesterol Requiring NS0 Cells to Serum Free Culture Conditions

    Directory of Open Access Journals (Sweden)

    Junaid Muneer Raja

    2011-12-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE Colorectal cancer is the third most common form of cancer and the second leading cause of cancer-related death in the Western world. The answers to such life threatening diseases and cancers are monoclonal antibodies (MAb's which are widely used as therapeutic agents. World demand for currently approved MAb's is on the order of a few kilograms per year. However, new therapeutic MAb's are under development and require doses of several hundred milligrams to a gram over the course of therapy. Very often to cater for the special requirements for the growth of mammalian cells, serum is added to the cell culture medium. However, removal of serum from the cell culture medium is often carried out, especially if the end product is to be used for human consumption, in order to eliminate various disadvantages such as high physiological variability, high batch to batch variability, risk of contamination and high cost, and challenges posed in the downstream processing of the product. In this paper, the adaptation of cholesterol requiring NS0 cells to commercially available serum free media is presented. ABSTRAK: Kanser kolorektum merupakan kanser ketiga paling umum dan kini berada di tempat kedua penyebab kematian berkaitan kanser di negara Barat. Jawapan kepada penyakit yang mengancam nyawa dan penyakit kanser adalah antibodi monoklon (monoclonal antibodies ((MAb's yang digunakan sebagai agen terapeutik. Permintaan dunia terhadap MAb's yang diluluskan adalah dalam bilangan beberapa kilogram setahun. Namun, terapeutik MAb's yang baru adalah di bawah penyelidikan dan memerlukan beberapa ratus dos milligram hingga satu gram dalam satu peringkat terapi. Sering kali untuk memenuhi permintaan terhadap tumbesaran sel mamalia, serum dicampurkan dengan sel kultur perantara. Walaupun begitu, pemindahan serum dari sel kultur perantara sering dilakukan, terutamanya jika produk akhir digunakan untuk kegunaan manusia; untuk

  19. Optimization of cultural conditions for biosurfactant production by Pleurotus djamor in solid state fermentation.

    Science.gov (United States)

    Velioglu, Zulfiye; Ozturk Urek, Raziye

    2015-11-01

    Being eco-friendly, less toxic, more biodegradable and biocompatible, biological surfactants have higher activity and stability compared to synthetic ones. In spite of the fact that there are abundant benefits of biosurfactants over the synthetic congeners, the problem related with the economical and large scale production proceeds. The utilization of several industrial wastes in the production media as substrates reduces the production cost. This current study aims optimization of biosurfactant production conditions by Pleurotus djamor, grown on sunflower seed shell, grape wastes or potato peels as renewable cheap substrates in solid state fermentation. After determination of the best substrate for biosurfactant production, we indicate optimum size and amount of solid substrate, volume of medium, temperature, pH and Fe(2+) concentrations on biosurfactant production. In optimum conditions, by reducing water surface tension to 28.82 ± 0.3 mN/m and having oil displacement diameter of 3.9 ± 0.3 cm, 10.205 ± 0.5 g/l biosurfactant was produced. Moreover, chemical composition of biosurfactant produced in optimum condition was determined by FTIR. Lastly, laboratory's large-scale production was carried out in optimum conditions in a tray bioreactor designed by us and 8.9 ± 0.5 g/l biosurfactant was produced with a significant surface activity (37.74 ± 0.3 mN/m). With its economical suggestions and applicability of laboratory's large-scale production, this work indicates the possibility of using low cost agro-industrial wastes as renewable substrates for biosurfactant production. Therefore, using economically produced biosurfactant will reduce cost in several applications such as bioremediation, oil recovery and biodegradation of toxic chemicals.

  20. VERSHINA – A POLISH VILLAGE IN SIBERIA. FACTORS INFLUENCING LANGUAGE MAINTENANCE UNDER CHANGING SOCIAL, CULTURAL, ECONOMIC AND POLITICAL CONDITIONS

    Directory of Open Access Journals (Sweden)

    Michał Głuszkowski

    2011-01-01

    Full Text Available The article discusses factors influencing language maintenance under changing social, cultural, economic and political conditions of Polish minority in Siberia. The village of Vershina was founded in 1910 by Polish voluntary settlers from Little Poland.During its first three decades Vershina preserved Polish language,traditions, farming methods and machines and also the Roman Catholic religion. The changes came to a village in taiga in the1930s. Vershina lost its ethnocultural homogeneity because of Russian and Buryat workers in the local kolkhoz. Nowadays the inhabitants of Vershina regained their minority rights: religious, educational and cultural. However, during the years of sovietization and ateization, their culture and customs became much more similar to other Siberian villages. Polish language in Vershina is under strong influence of Russian, which is the language of education,administration, and surrounding villages. Children from Polish-Russian families become monolingual and use Polish very rare, only asa school subject and in contacts with grandparents. The process of abandoning mother tongue in Vershina is growing rapidly. However,there are some factors which may hinder the actual changes:the activity of local Polish organisations and Roman Catholic parish as well as folk group “Jazhumbek”.

  1. Radiation sensitivity of poliovirus, a model for norovirus, inoculated in oyster (Crassostrea gigas) and culture broth under different conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Pil-Mun [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Park, Jae Seok [Korea Food and Drug Administration, Seoul 122-704 (Korea, Republic of); Park, Jin-Gyu; Park, Jae-Nam; Han, In-Jun; Song, Beom-Seok; Choi, Jong-il; Kim, Jae-Hun; Byun, Myung-Woo [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Baek, Min [Atomic Energy Policy Division, Ministry of Education, Science and Technology, Gwacheon 427-715 (Korea, Republic of); Chung, Young-Jin [Department of Food and Nutrition, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Lee, Ju-Woon [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of)], E-mail: sjwlee@kaeri.re.kr

    2009-07-15

    Poliovirus is a recognized surrogate for norovirus, pathogen in water and food, due to the structural and genetic similarity. Although radiation sensitivity of poliovirus in water or media had been reported, there has been no research in food model such as shellfish. In this study, oyster (Crassostrea gigas) was incubated in artificial seawater contaminated with poliovirus, and thus radiation sensitivity of poliovirus was determined in inoculated oyster. The effects of ionizing radiation on the sensitivity of poliovirus were also evaluated under different conditions such as pH (4-7) and salt concentration (1-15%) in culture broth, and temperature during irradiation. The D{sub 10} value of poliovirus in PBS buffer, virus culture broth and oyster was determined to 0.46, 2.84 and 2.94 kGy, respectively. The initial plaque forming unit (PFU) of poliovirus in culture broth was slightly decreased as the decrease of pH and the increase of salt concentration, but radiation sensitivity was not affected by pH and salt contents. However, radiation resistance of poliovirus was increased at frozen state. These results provide the basic information for the inactivation of pathogenic virus in foods by using irradiation.

  2. [Accumulation of α-tocopherol and β-carotene in Euglena gracilis Cells under Autotrophic and Mixotrophic Culture Conditions].

    Science.gov (United States)

    Mokrosnop, V M; Polishchuk, A V; Zolotareva, E K

    2016-01-01

    The aim of the work was to find the mode of cultivation of unicellular flagellate Euglena gracilis, favorable for the simultaneous accumulation of α-tocopherol and β-carotene. Cells were grown either in photoautotrophic or photoheterotrophic conditions in the presence of 100 mM ethanol (variant Et) or 40 mM glutamate (variant Gt), or their combination (variant EtGt). The exogenous substrates significantly stimulated light-dependent growth of E. gracilis. The largest increase of biomass was recorded on the 20th day in the variant EtGt and exceeded the autotrophic control by 7 times. The content of β-carotene and chlorophyll (Chl) per cell in mixotrophic cultures exceeded the control by 2-3 and 1.6-2 times, respectively. At the same time, α-tocopherol accumulation in autotrophic cells was greater than in the cells of mixotrophic cultures by 2-7 times. Total yield of tocopherol per unit volume of culture medium, which depended not only on its intracellular content, but also on the amount of accumulated biomass was highest in EtGt variant. A correlation between the accumulation of the antioxidants and the equilibrium concentration of oxygen in the growth medium, which depended on the intensities of photosynthesis and respiration has been analyzed.

  3. Radiation sensitivity of poliovirus, a model for norovirus, inoculated in oyster ( Crassostrea gigas) and culture broth under different conditions

    Science.gov (United States)

    Jung, Pil-Mun; Park, Jae Seok; Park, Jin-Gyu; Park, Jae-Nam; Han, In-Jun; Song, Beom-Seok; Choi, Jong-il; Kim, Jae-Hun; Byun, Myung-Woo; Baek, Min; Chung, Young-Jin; Lee, Ju-Woon

    2009-07-01

    Poliovirus is a recognized surrogate for norovirus, pathogen in water and food, due to the structural and genetic similarity. Although radiation sensitivity of poliovirus in water or media had been reported, there has been no research in food model such as shellfish. In this study, oyster ( Crassostrea gigas) was incubated in artificial seawater contaminated with poliovirus, and thus radiation sensitivity of poliovirus was determined in inoculated oyster. The effects of ionizing radiation on the sensitivity of poliovirus were also evaluated under different conditions such as pH (4-7) and salt concentration (1-15%) in culture broth, and temperature during irradiation. The D10 value of poliovirus in PBS buffer, virus culture broth and oyster was determined to 0.46, 2.84 and 2.94 kGy, respectively. The initial plaque forming unit (PFU) of poliovirus in culture broth was slightly decreased as the decrease of pH and the increase of salt concentration, but radiation sensitivity was not affected by pH and salt contents. However, radiation resistance of poliovirus was increased at frozen state. These results provide the basic information for the inactivation of pathogenic virus in foods by using irradiation.

  4. Effects of Culture Media and Light Intensity on in vitro Growth of Oncidium under CO2 Enrichment Condition

    Institute of Scientific and Technical Information of China (English)

    He Songlin; Pan Huitang; Yang Qiusheng; Kong Dezheng; Zhang Qixiang; Michio Tanaka

    2003-01-01

    The effects of culture media and light intensity on in vitro growth of Oncidium 'Aloha Iwanga' were investigated under CO2 enrichment condition. Height, fresh and dry weight of the Oncidium seedlings were measured, and the leaf number per plant, shoot number per plant, leaf width and leaf chlorophyll content were also investigated. The results were as follows: 1) The seedling height, fresh and dry weight, leaf number per plant, leaf width and leaf chlorophyll content of the shoots growing on MS complete culture medium were higher than those on 1/2MS, VW and 1/2VW media. The root number per plant and ratio of dry matter of the seedlings cultured on 1/2MS and 1/2VW media were higher than those on MS and VW; 2) The seedling height, fresh weight, dry weight, dry matter ratio and leaf chlorophyll content, leaf length, leaf width, root length, leaf number per plant, root number per plant of seedlings of Oncidium growing under 4 500 lx and 1 700 lx were higher than those under 750 lx. However, there was no significant difference in those growth parameters mentioned above while dealing with 4 500 lx and 1 700 lx except for the seedling height. Nevertheless, the leaf color of plants under 4 500 lx was lighter and the leaves of the lower parts became yellowish in comparison with those growing under 1 700 lx.

  5. Evaluation of Culture Conditions to Obtain Fatty Acids from Saline Microalgae Species: Dunaliella salina, Sinecosyfis sp., and Chroomonas sp.

    Science.gov (United States)

    Castilla Casadiego, D. A.; Albis Arrieta, A. R.; Angulo Mercado, E. R.; Cervera Cahuana, S. J.; Baquero Noriega, K. S.; Suárez Escobar, A. F.; Morales Avendaño, E. D.

    2016-01-01

    The use of the saline microalgae, Dunaliella salina, Sinecosyfis sp., and Chroomonas sp., was explored as an alternative source for the production of fatty acids using fertilizer and glycerol as culture media. The nutrient medium used contained “Nutrifoliar,” a commercial fertilizer, and/or glycerol, in natural sea water. The microalgae were placed in cultures with different conditions. The parameters that favored the largest production of fatty acids were 24 hours of agitation and illumination, 1620 L/day of air supply, 2.25 L of air/min, and a temperature of 32°C using “Nutrifoliar” as the culture media. Results indicated that, from 3 g of microalgae in wet base of Chroomonas sp., 54.43 mg of oil was produced. The chromatographic characterization of oil obtained revealed the presence of essential fatty acids such as 9,12,15-octadecatrienoic acid (omega-3) and 4,7,10-hexadecatrienoic acid (omega-6) from the species Dunaliella salina. On the other hand, 9,12-octadecadienoic acid (omega-6) and cis-11-eicosenoic acid (omega-9) were identified from the species Chroomonas sp. The temperature variations played an important role in the velocity of growth or the production of the algae biomass, the amount of oil, and the ability to produce fatty acids. PMID:27376085

  6. Evaluation of Culture Conditions to Obtain Fatty Acids from Saline Microalgae Species: Dunaliella salina, Sinecosyfis sp., and Chroomonas sp.

    Directory of Open Access Journals (Sweden)

    D. A. Castilla Casadiego

    2016-01-01

    Full Text Available The use of the saline microalgae, Dunaliella salina, Sinecosyfis sp., and Chroomonas sp., was explored as an alternative source for the production of fatty acids using fertilizer and glycerol as culture media. The nutrient medium used contained “Nutrifoliar,” a commercial fertilizer, and/or glycerol, in natural sea water. The microalgae were placed in cultures with different conditions. The parameters that favored the largest production of fatty acids were 24 hours of agitation and illumination, 1620 L/day of air supply, 2.25 L of air/min, and a temperature of 32°C using “Nutrifoliar” as the culture media. Results indicated that, from 3 g of microalgae in wet base of Chroomonas sp., 54.43 mg of oil was produced. The chromatographic characterization of oil obtained revealed the presence of essential fatty acids such as 9,12,15-octadecatrienoic acid (omega-3 and 4,7,10-hexadecatrienoic acid (omega-6 from the species Dunaliella salina. On the other hand, 9,12-octadecadienoic acid (omega-6 and cis-11-eicosenoic acid (omega-9 were identified from the species Chroomonas sp. The temperature variations played an important role in the velocity of growth or the production of the algae biomass, the amount of oil, and the ability to produce fatty acids.

  7. Molecular mechanisms and pathways involved in bovine embryonic genome activation and their regulation by alternative in vivo and in vitro culture conditions.

    Science.gov (United States)

    Gad, Ahmed; Hoelker, Michael; Besenfelder, Urban; Havlicek, Vitezslav; Cinar, Ulas; Rings, Franca; Held, Eva; Dufort, Isabelle; Sirard, Marc-André; Schellander, Karl; Tesfaye, Dawit

    2012-10-01

    Understanding gene expression patterns in response to altered environmental conditions at different time points of the preimplantation period would improve our knowledge on regulation of embryonic development. Here we aimed to examine the effect of alternative in vivo and in vitro culture conditions at the time of major embryonic genome activation (EGA) on the development and transcriptome profile of bovine blastocysts. Four different blastocyst groups were produced under alternative in vivo and in vitro culture conditions before or after major EGA. Completely in vitro- and in vivo-produced blastocysts were used as controls. We compared gene expression patterns between each blastocyst group and in vivo blastocyst control group using EmbryoGENE's bovine microarray. The data showed that changing culture conditions from in vivo to in vitro or vice versa, either before or after the time of major EGA, had no effect on the developmental rates; however, in vitro conditions during that time critically influenced the transcriptome of the blastocysts produced. The source of oocyte had a critical effect on developmental rates and the ability of the embryo to react to changing culture conditions. Ontological classification highlighted a marked contrast in expression patterns for lipid metabolism and oxidative stress response between blastocysts generated in vivo versus in vitro, with opposite trends. Molecular mechanisms and pathways that are influenced by altered culture conditions during EGA were defined. These results will help in the development of new strategies to modify culture conditions at this critical stage to enhance the development of competent blastocysts.

  8. Effect of endophytic fungi Pirifomospora indica on some physiologic traits of strawberry under hydroponic culture conditions

    Directory of Open Access Journals (Sweden)

    H. R. Rahmani

    2016-09-01

    Full Text Available Microbial endophytes, which are considered as the most important soil microorganisms, increase the yield of their host plants by creating changes in their genetic, physiological and ecological traits. Pirifomospora indica fungus is a member of Sebacinales order, which increases plant biomass and resistance to living and non-living stresses. In this study, effect of different concentrations [0 (control, 80, 160, 250 and 330 spores/ml of endophytic fungus P. indica on plant height, chlorophyll indicator and branching of strawberry, under hydroponic culture, was examined in a completely randomized design with 28 replications. P. indica was inoculated by injecting around roots of strawberry plants. Two months after fungal inoculation, plant height and chlorophyll content was measured by using coulisse and SPAD, respectively. Results showed that maximum chlorophyll content, branching and plant height belongs to 330 spores/ml treatment with 15%, 30% and 24.5% increase as compared to control, respectively. Also, there was no significant difference among 80, 160 and 250 spores/ml treatments, while 330 spores/ml treatment was significantly different from other treatments (P≤ 0.01. Therefore, it can be concluded that high concentrations of fungus P. indica can affect the abovementioned traits and thus could have a positive effect on strawberry plant's growth and yield.

  9. Hydrophobic nature and effects of culture conditions on biofilm formation by the cellulolytic actinomycete Thermobifida fusca

    Directory of Open Access Journals (Sweden)

    Almaris N. Alonso

    2015-09-01

    Full Text Available Thermobifida fusca produces a firmly attached biofilm on nutritive and non-nutritive surfaces, such as cellulose, glass, plastic, metal and Teflon®. The ability to bind to surfaces has been suggested as a competitive advantage for microbes in soil environments. Results of previous investigations indicated that a Gram-positive cellulolytic soil bacteria, Cellulomonas uda, a facultative aerobe, specifically adhered to nutritive surfaces forming biofilms, but cells did not colonize non-nutritive surfaces. Cell surface hydrophobicity has been implicated in the interactions between bacteria and the adhesion to surfaces. It was recently described that the cellulolytic actinomycete T. fusca cells hydrophobicity was measured and compared to the cellulolytic soil bacteria C. uda. Also, T. fusca biofilm formation on non-nutritive surface, such as polyvinyl chloride, was examined by testing various culture ingredients to determine a possible trigger mechanism for biofilm formation. Experimental results showed that partitioning of bacterial cells to various hydrocarbons was higher in T. fusca cells than in C. uda. The results of this study suggest that the attachment to multiple surfaces by T. fusca could depend on nutrient availability, pH, salt concentrations, and the higher hydrophobic nature of bacterial cells. Possibly, these characteristics may confer T. fusca a selective advantage to compete and survive among the many environments it thrives.

  10. Submerged culture conditions for the production of alternative natural colorants by a new isolated Penicillium purpurogenum DPUA 1275.

    Science.gov (United States)

    Santos-Ebinuma, Valéria Carvalho; Teixeira, Maria Francisca Simas; Pessoa, Adalberto

    2013-06-28

    This work aims at investigating the production of yellow, orange, and red natural colorants in a submerged culture of Penicillium purpurogenum DPUA 1275. For this purpose, different experimental conditions evaluating the effect of incubation time, type and size of inoculum, and different carbon and nitrogen sources were performed. Furthermore, the growth kinetics were obtained in the conditions of 10(8) spores/ml and 5 mycelia agar discs during 360 h. These experiments showed that 5 mycelia agar discs and 336 h promoted the highest yellow (3.08 UA400nm), orange (1.44 UA470nm), and red (2.27 UA490nm) colorants production. Moreover, sucrose and yeast extract were the most suitable carbon and nitrogen sources for natural colorants production. Thus, the present study shows a new source of natural colorants, which can be used as an alternative to others available in the market after toxicological studies.

  11. STUDIES ON ARTIFICIAL CULTURE CONDITIONS OF CORDYCEPS MILITARIS%蛹虫草人工培养条件的研究

    Institute of Scientific and Technical Information of China (English)

    谢春芹; 赵桂华; 冯大俊; 杨鹤同; 史俊; 宋子明; 孙小慧; 韩荣梅

    2011-01-01

    本实验通过对不同培养条件下蛹虫草的出草率及品质的对比,结果表明,菌丝长满料面后温度18℃,湿度90%,光照33%(Ⅲ)条件下出草快且产量高,品质好.%This experiment under different culture conditions and quality of Cordyceps militaris in a hasty comparison, the results show that the material surface covered with mycelium after the transfer temperature 18℃, humidity 90%, light 33% (III) fast under the conditions of the grass high yield and good quality.

  12. Screening of phenylpyruvic acid producers and optimization of culture conditions in bench scale bioreactors.

    Science.gov (United States)

    Coban, Hasan B; Demirci, Ali; Patterson, Paul H; Elias, Ryan J

    2014-11-01

    Alpha keto acids are deaminated forms of amino acids that have received significant attention as feed and food additives in the agriculture and medical industries. To date, their production has been commonly performed at shake-flask scale with low product concentrations. In this study, production of phenylpyruvic acid (PPA), which is the alpha keto acid of phenylalanine was investigated. First, various microorganisms were screened to select the most efficient producer. Thereafter, growth parameters (temperature, pH, and aeration) were optimized in bench scale bioreactors to maximize both PPA and biomass concentration in bench scale bioreactors, using response surface methodology. Among the four different microorganisms evaluated, Proteus vulgaris was the most productive strain for PPA production. Optimum temperature, pH, and aeration conditions were determined as 34.5 °C, 5.12, and 0.5 vvm for PPA production, whereas 36.9 °C, pH 6.87, and 0.96 vvm for the biomass production. Under these optimum conditions, PPA concentration was enhanced to 1,054 mg/L, which was almost three times higher than shake-flask fermentation concentrations. Moreover, P. vulgaris biomass was produced at 3.25 g/L under optimum conditions. Overall, this study demonstrated that optimization of growth parameters improved PPA production in 1-L working volume bench-scale bioreactors compared to previous studies in the literature and was a first step to scale up the production to industrial production.

  13. In vitro gynogenesis in red beet (Beta vulgaris L.: effects of ovule culture conditions

    Directory of Open Access Journals (Sweden)

    Rafał Barański

    2014-01-01

    Full Text Available In this paper the influence of factors affecting gynogenic response of red beet ovules is discussed. The ovule response frequencies were the highest in the following conditions: N6 (Chu 1975 mineral salts, 0.5 mg/l IAA, 0.2 mg/l BA, 27 or 32oC. The influence of genotype of donor plants was confirmed and it was found that the ovules excised from cultivar plants have a greater gynogenic ability than the ovules of hybrids or inbred lines.

  14. 2D digital imaging for cracks mapping of Cultural Heritage in emergency condition

    Directory of Open Access Journals (Sweden)

    Michele Russo

    2013-10-01

    Full Text Available The digital photography represents not only an immediate medium for data communication, but also an effective instrument for surveying and monitoring the architectural buildings. In this context, 2D images allow to acquire multi-scale geometrical and material data in a few time. This peculiarity makes this technique very suitable for the survey of cracks distribution in emergency condition, for example immediately after an earthquake. Referring to this specific application, the article suggests a process of 2D images acquisition, data management and representation for surveying crack distribution inside an historical building in Ferrara, Palazzo Renata di Francia, seriously damaged by the seismic events happened in May 2012.

  15. Derivation of transgene-free human induced pluripotent stem cells from human peripheral T cells in defined culture conditions.

    Science.gov (United States)

    Kishino, Yoshikazu; Seki, Tomohisa; Fujita, Jun; Yuasa, Shinsuke; Tohyama, Shugo; Kunitomi, Akira; Tabei, Ryota; Nakajima, Kazuaki; Okada, Marina; Hirano, Akinori; Kanazawa, Hideaki; Fukuda, Keiichi

    2014-01-01

    Recently, induced pluripotent stem cells (iPSCs) were established as promising cell sources for revolutionary regenerative therapies. The initial culture system used for iPSC generation needed fetal calf serum in the culture medium and mouse embryonic fibroblast as a feeder layer, both of which could possibly transfer unknown exogenous antigens and pathogens into the iPSC population. Therefore, the development of culture systems designed to minimize such potential risks has become increasingly vital for future applications of iPSCs for clinical use. On another front, although donor cell types for generating iPSCs are wide-ranging, T cells have attracted attention as unique cell sources for iPSCs generation because T cell-derived iPSCs (TiPSCs) have a unique monoclonal T cell receptor genomic rearrangement that enables their differentiation into antigen-specific T cells, which can be applied to novel immunotherapies. In the present study, we generated transgene-free human TiPSCs using a combination of activated human T cells and Sendai virus under defined culture conditions. These TiPSCs expressed pluripotent markers by quantitative PCR and immunostaining, had a normal karyotype, and were capable of differentiating into cells from all three germ layers. This method of TiPSCs generation is more suitable for the therapeutic application of iPSC technology because it lowers the risks associated with the presence of undefined, animal-derived feeder cells and serum. Therefore this work will lead to establishment of safer iPSCs and extended clinical application.

  16. Optimization of culturing condition and medium composition for the production of alginate lyase by a marine Vibrio sp. YKW-34

    Science.gov (United States)

    Fu, Xiaoting; Lin, Hong; Kim, Sang Moo

    2008-02-01

    Carbohydrases secreted by marine Vibrio sp. YKW-34 with strong Laminaria cell wall degrading ability were screened, and among them alginate lyase was found to be dominant. The effects of medium composition and culturing condition on the production of alginate lyase by marine Vibrio sp. YKW-34 in flask were investigated in this study. In the culture medium of marine broth, no alginate lyase was produced. The activity of the alginate lyase, after being induced, reached 5 UmL-1. The best inoculum volume and inoculum age were 10% and 12 h, respectively. The optimal temperature for alginate lyase production was 25°C. The fermentation medium was composed of 0.5% of Laminaria powder and 0.2% of KNO3 with an initial acidity of pH 8.0. Alginate could induce alginate lyase production but not as efficiently as Laminaria powder did. The addition of fucoidan, cellulose and glucose had negative effect on the alginate lyase production. Other kinds of nitrogen sources, such as yeast extract, beef extract and peptone, had positive effect on the growth of the microorganism and negative effect on alginate lyase production. In addition, the time course of alginate lyase production under the optimized condition was described. The optimal harvest time was 48 h.

  17. Optimization of Culturing Condition and Medium Composition for the Production of Alginate Lyase by a Marine Vibrio sp. YKW-34

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Carbohydrases secreted by marine Vibrio sp. YKW-34 with strong Laminaria cell wall degrading ability were screened,and among them alginate lyase was found to be dominant. The effects of medium composition and culturing condition on the production of alginate lyase by marine Vibrio sp. YKW-34 in flask were investigated in this study. In the culture medium of marine broth, no alginate lyase was produced. The activity of the alginate lyase, after being induced, reached 5 UmL-1. The best inoculum volume and inoculum age were 10% and 12 h, respectively. The optimal temperature for alginate lyase production was 25℃. The fermentation medium was composed of 0.5% of Laminaria powder and 0.2% of KNO3 with an initial acidity of pH 8.0. Alginate could induce alginate lyase production but not as efficiently as Laminaria powder did. The addition of fucoidan, cellulose and glucose had negative effect on the alginate lyase production. Other kinds of nitrogen sources, such as yeast extract, beef extract and peptone, had positive effect on the growth of the microorganism and negative effect on alginate lyase production. In addition, the time course of alginate lyase production under the optimized condition was described. The optimal harvest time was 48 h.

  18. Combined use of GAP and AOX1 promoters and optimization of culture conditions to enhance expression of Rhizomucor miehei lipase.

    Science.gov (United States)

    He, Dong; Luo, Wen; Wang, Zhiyuan; Lv, Pengmei; Yuan, Zhenhong

    2015-08-01

    Rhizo mucor miehei lipase (RML) is an industrially important enzyme, but its application is limited due to its high cost. In this study, a series of measures such as codon optimization, propeptide addition, combined use of GAP and AOX1 promoters, and optimization of culture conditions were employed to increase the expression of RML. Three transformants of the constitutive-inducible combined Pichia pastoris strains were generated by transforming the pGAPZαA-rml vector into the pPIC9K-rml/GS115 strain, which resulted in high-expression yields of RML. Using the shake flask method, highest enzyme activity corresponding to 140 U/mL was observed in the strain 3-17, which was about sixfold higher than that of pPIC9K-rml/GS115 or pGAPZαA-rml/GS115. After optimization of culture conditions by response surface methodology, the lipolytic activity of strain 3-17 reached 175 U/mL in shake flasks. An increase in the copy number simultaneously with the synergistic effect provided by two promoters led to enhanced degree of protein expression.

  19. Biosorption of Strontium from Simulated Nuclear Wastewater by Scenedesmus spinosus under Culture Conditions: Adsorption and Bioaccumulation Processes and Models

    Directory of Open Access Journals (Sweden)

    Mingxue Liu

    2014-06-01

    Full Text Available Algae biosorption is an ideal wastewater treatment method when coupled with algae growth and biosorption. The adsorption and bioaccumulation of strontium from simulated nuclear wastewater by Scenedesmus spinosus were investigated in this research. One hundred mL of cultured S. spinosus cells with a dry weight of 1.0 mg in simulated nuclear wastewater were used to analyze the effects on S. spinosus cell growth as well as the adsorption and bioaccumulation characters under conditions of 25 ± 1 °C with approximately 3,000 lux illumination. The results showed that S. spinosus had a highly selective biosorption capacity for strontium, with a maximum bioremoval ratio of 76%. The adsorbed strontium ion on cell walls was approximately 90% of the total adsorbed amount; the bioaccumulation in the cytoplasm varied by approximately10%. The adsorption quantity could be described with an equilibrium isotherm. The pseudo-second-order kinetic model suggested that adsorption was the rate-limiting step of the biosorption process. A new bioaccumulation model with three parameters was proposed and could give a good fit with the experiment data. The results suggested that S. spinosus may be a potential biosorbent for the treatment of nuclear wastewater in culture conditions.

  20. Biosorption of Strontium from Simulated Nuclear Wastewater by Scenedesmus spinosus under Culture Conditions: Adsorption and Bioaccumulation Processes and Models

    Science.gov (United States)

    Liu, Mingxue; Dong, Faqin; Kang, Wu; Sun, Shiyong; Wei, Hongfu; Zhang, Wei; Nie, Xiaoqin; Guo, Yuting; Huang, Ting; Liu, Yuanyuan

    2014-01-01

    Algae biosorption is an ideal wastewater treatment method when coupled with algae growth and biosorption. The adsorption and bioaccumulation of strontium from simulated nuclear wastewater by Scenedesmus spinosus were investigated in this research. One hundred mL of cultured S. spinosus cells with a dry weight of 1.0 mg in simulated nuclear wastewater were used to analyze the effects on S. spinosus cell growth as well as the adsorption and bioaccumulation characters under conditions of 25 ± 1 °C with approximately 3,000 lux illumination. The results showed that S. spinosus had a highly selective biosorption capacity for strontium, with a maximum bioremoval ratio of 76%. The adsorbed strontium ion on cell walls was approximately 90% of the total adsorbed amount; the bioaccumulation in the cytoplasm varied by approximately10%. The adsorption quantity could be described with an equilibrium isotherm. The pseudo-second-order kinetic model suggested that adsorption was the rate-limiting step of the biosorption process. A new bioaccumulation model with three parameters was proposed and could give a good fit with the experiment data. The results suggested that S. spinosus may be a potential biosorbent for the treatment of nuclear wastewater in culture conditions. PMID:24919131

  1. Effect of in vitro culture conditions on somaclonal variation in cowpea (Vigna unguiculata Walp.) using RAPD markers.

    Science.gov (United States)

    Sivakumar, P; Rajesh, S; Gnanam, R; Manickam, A

    2011-03-01

    We report a high frequency regeneration protocol in cowpea (Vigna unguiculata Walp. var. C 152) via somatic embryogenesis from 10-d-old primary leaf explants. A study was conducted to examine the effect of somaclonal variations in in vitro derived cowpea plants under field conditions. The regenerated plantlets were successfully transferred to field after hardening in vitro and grown for collecting R0, R1 and R2 seeds. The seeds of R1 and R2 generations were subsequently, grown under field conditions and their various biometrical traits were compared and evaluated with non-tissue cultured cowpea plants as check. There was no detectable somaclonal variation induced in R0-R2 in any of the biometrical traits. The results indicate that the inclusion of different plant growth promoters at specified concentrations and duration in our earlier tissue culture work did not induce any detectable mutation. The RAPD analysis also shows that there is no genetic variation among R2 cowpea plants. The somatic embryogenesis protocol we report could thus be safely applied for high frequency true-to-type regeneration and transformations protocols without any somaclonal variation.

  2. Optimization of Cultural Conditions for Production of Antibacterial Metabolites from Streptomyces coelicoflavus BC 01

    Directory of Open Access Journals (Sweden)

    Kothagorla Venkata RAGHAVA RAO

    2015-06-01

    Full Text Available The aim of the present study was to optimize various cultural conditions for the production of antibacterial metabolites by Streptomyces coelicoflavus BC 01 isolated from mangrove soil, Visakhapatnam, Andhra Pradesh, India. The effect of various factors such as carbon and nitrogen sources, different concentrations of NaCl and K2HPO4, different temperature, pH, incubation time and agitation on antibacterial metabolites production were studied. The production of antibacterial metabolites by the isolate Streptomyces coelicoflavus BC 01 was greatly influenced by the cultural conditions. Glucose (1.2% and soya bean meal (1% seemed to be the best carbon and nitrogen source respectively, followed by NaCl (1% and K2HPO4 (0.25%. Maximum production of antibacterial metabolites was observed at a temperature of 30 °C, with pH 7.2, at 160 rpm for 96 hrs. These optimized parameters can be further useful to design a fermentation medium to achieve maximum yield of antibacterial metabolites from Streptomyces coelicoflavus BC 01.

  3. Metallothionein-3 regulates lysosomal function in cultured astrocytes under both normal and oxidative conditions.

    Science.gov (United States)

    Lee, Sook-Jeong; Park, Mi-Ha; Kim, Hyun-Jae; Koh, Jae-Young

    2010-08-01

    Cellular zinc plays a key role in lysosomal change and cell death in neurons and astrocytes under oxidative stress. Here, using astrocytes lacking metallothionein-3 (MT3), a potential source of labile zinc in the brain, we studied the role of MT3 in oxidative stress responses. H(2)O(2) induced a large increase in labile zinc in wild-type (WT) astrocytes, but stimulated only a modest rise in MT3-null astrocytes. In addition, H(2)O(2)-induced lysosomal membrane permeabilization (LMP) and cell death were comparably attenuated in MT3-null astrocytes. Expression and glycosylation of Lamp1 (lysosome-associated membrane protein 1) and Lamp2 were increased in MT3-null astrocytes, and the activities of several lysosomal enzymes were significantly reduced, indicating an effect of MT3 on lysosomal components. Consistent with lysosomal dysfunction in MT3-null cells, the level of LC3-II (microtubule-associated protein 1 light chain 3), a marker of early autophagy, was increased by oxidative stress in WT astrocytes, but not in MT3-null cells. Similar changes in Lamp1, LC3, and cathepsin-D were induced by the lysosomal inhibitors bafilomycin A1, chloroquine, and monensin, indicating that lysosomal dysfunction may lie upstream of changes observed in MT3-null astrocytes. Consistent with this idea, lysosomal accumulation of cholesterol and lipofuscin were augmented in MT3-null astrocytes. Similar to the results seen in MT3-null cells, MT3 knockdown by siRNA inhibited oxidative stress-induced increases in zinc and LMP. These results indicate that MT3 may play a key role in normal lysosomal function in cultured astrocytes.

  4. Interphase Chromosome Conformation and Chromatin-Chromatin Interactions in Human Epithelial Cells Cultured Under Different Gravity Conditions

    Science.gov (United States)

    Zhang, Ye; Wong, Michael; Hada, Megumi; Wu, Honglu

    2015-01-01

    Microgravity has been shown to alter global gene expression patterns and protein levels both in cultured cells and animal models. It has been suggested that the packaging of chromatin fibers in the interphase nucleus is closely related to genome function, and the changes in transcriptional activity are tightly correlated with changes in chromatin folding. This study explores the changes of chromatin conformation and chromatin-chromatin interactions in the simulated microgravity environment, and investigates their correlation to the expression of genes located at different regions of the chromosome. To investigate the folding of chromatin in interphase under various culture conditions, human epithelial cells, fibroblasts, and lymphocytes were fixed in the G1 phase. Interphase chromosomes were hybridized with a multicolor banding in situ hybridization (mBAND) probe for chromosome 3 which distinguishes six regions of the chromosome as separate colors. After images were captured with a laser scanning confocal microscope, the 3-dimensional structure of interphase chromosome 3 was reconstructed at multi-mega base pair scale. In order to determine the effects of microgravity on chromosome conformation and orientation, measures such as distance between homologous pairs, relative orientation of chromosome arms about a shared midpoint, and orientation of arms within individual chromosomes were all considered as potentially impacted by simulated microgravity conditions. The studies revealed non-random folding of chromatin in interphase, and suggested an association of interphase chromatin folding with radiation-induced chromosome aberration hotspots. Interestingly, the distributions of genes with expression changes over chromosome 3 in cells cultured under microgravity environment are apparently clustered on specific loci and chromosomes. This data provides important insights into how mammalian cells respond to microgravity at molecular level.

  5. Quantitative Characterization of the Growth of Deinococcus geothermalis DSM-11302: Effect of Inoculum Size, Growth Medium and Culture Conditions.

    Science.gov (United States)

    Bornot, Julie; Molina-Jouve, Carole; Uribelarrea, Jean-Louis; Gorret, Nathalie

    2015-08-20

    Due to their remarkable resistance to extreme conditions, Deinococcaceae strains are of great interest to biotechnological prospects. However, the physiology of the extremophile strain Deinococcus geothermalis has scarcely been studied and is not well understood. The physiological behaviour was then studied in well-controlled conditions in flask and bioreactor cultures. The growth of D. geothermalis type strains was compared. Among the strains tested, the strain from the German Collection of Microorganisms (Deutsche Sammlung von Mikroorganismen DSM) DSM-11302 was found to give the highest biomass concentration and growth rate: in a complex medium with glucose, the growth rate reached 0.75 h(-1) at 45 °C. Yeast extract concentration in the medium had significant constitutive and catalytic effects. Furthermore, the results showed that the physiological descriptors were not affected by the inoculum preparation steps. A batch culture of D. geothermalis DSM-11302 on defined medium was carried out: cells grew exponentially with a maximal growth rate of 0.28 h(-1) and D. geothermalis DSM-11302 biomass reached 1.4 g·L(-1) in 20 h. Then, 1.4 gDryCellWeight of biomass (X) was obtained from 5.6 g glucose (Glc) consumed as carbon source, corresponding to a yield of 0.3 CmolX·CmolGlc(-1); cell specific oxygen uptake and carbon dioxide production rates reached 216 and 226 mmol.CmolX(-1)·h(-1), respectively, and the respiratory quotient (QR) value varied from 1.1 to 1.7. This is the first time that kinetic parameters and yields are reported for D. geothermalis DSM-11302 grown on a mineral medium in well-controlled batch culture.

  6. [Spheres isolated from Colo205 cell line possess cancer stem-like cells under serum-free culture condition].

    Science.gov (United States)

    Li, Ying-fei; Xiao, Bing; Lai, Zhuo-sheng; Tu, San-fang; Wang, Yuan-yuan; Zhang, Xiao-lan

    2008-02-01

    Isolation and expansion tumor spheres from colorectal cancer cell line Colo205 cultured in serum-free medium(SFM) supplemented with human recombinant EGF and bFGF. Colo205 cells were cultivated in SFM,while cells cultivated in serum-supplemented medium(SSM) served as the control. Cells morphology were observed by optical microscope, and expression of intestinal stem cells marker Musashi-1 was detected by immunocytochemical. To induce cell differentiation, tumour spheres were cultivated without EGF and bFGF in the presence of 10% serum. Then we analysed expressions of stem cell surface markers CD133 and CD44 among undifferentiated cell, post-differentiated cells and routine Colo205 cells under serum-supplemented culture condition by flow cytometry. At last we compared cell cycle and spectral karyotype between two groups. In SFM consisting of EGF and bFGF, a minority of Colo205 cells could survive, proliferate and form the suspended tumor spheres. We detected high Musashi-1 expression in these cells. Compared with the SSM group and the post-differentiation SFM group, the expressions of CD133 and CD44 were significantly increased in the undifferentiated SFM group (Pstatistical difference in the expression of CD133 and CD44 between the post-differentiation SFM group and the SSM group (P>0.05). Cell cycle analysis indicated that tumor spheres were of a high proliferation state.We could not find any noticeable difference in the number of chromatosomes between the SFM group and the SSM group. Tumor spheres in which enriched cancer stem cells can be generated under serum-free culture condition with EGF and bFGF.

  7. Developing a scalable model of recombinant protein yield from Pichia pastoris: the influence of culture conditions, biomass and induction regime

    Directory of Open Access Journals (Sweden)

    Wilks Martin DB

    2009-07-01

    Full Text Available Abstract Background The optimisation and scale-up of process conditions leading to high yields of recombinant proteins is an enduring bottleneck in the post-genomic sciences. Typical experiments rely on varying selected parameters through repeated rounds of trial-and-error optimisation. To rationalise this, several groups have recently adopted the 'design of experiments' (DoE approach frequently used in industry. Studies have focused on parameters such as medium composition, nutrient feed rates and induction of expression in shake flasks or bioreactors, as well as oxygen transfer rates in micro-well plates. In this study we wanted to generate a predictive model that described small-scale screens and to test its scalability to bioreactors. Results Here we demonstrate how the use of a DoE approach in a multi-well mini-bioreactor permitted the rapid establishment of high yielding production phase conditions that could be transferred to a 7 L bioreactor. Using green fluorescent protein secreted from Pichia pastoris, we derived a predictive model of protein yield as a function of the three most commonly-varied process parameters: temperature, pH and the percentage of dissolved oxygen in the culture medium. Importantly, when yield was normalised to culture volume and density, the model was scalable from mL to L working volumes. By increasing pre-induction biomass accumulation, model-predicted yields were further improved. Yield improvement was most significant, however, on varying the fed-batch induction regime to minimise methanol accumulation so that the productivity of the culture increased throughout the whole induction period. These findings suggest the importance of matching the rate of protein production with the host metabolism. Conclusion We demonstrate how a rational, stepwise approach to recombinant protein production screens can reduce process development time.

  8. Assessment of ‘one-step’ versus ‘sequential’ embryo culture conditions through embryonic genome methylation and hydroxymethylation changes

    Science.gov (United States)

    Salvaing, J.; Peynot, N.; Bedhane, M. N.; Veniel, S.; Pellier, E.; Boulesteix, C.; Beaujean, N.; Daniel, N.; Duranthon, V.

    2016-01-01

    STUDY QUESTION In comparison to in vivo development, how do different conditions of in vitro culture (‘one step’ versus ‘sequential medium’) impact DNA methylation and hydroxymethylation in preimplantation embryos? SUMMARY ANSWER Using rabbit as a model, we show that DNA methylation and hydroxymethylation are both affected by in vitro culture of preimplantation embryos and the effect observed depends on the culture medium used. WHAT IS KNOWN ALREADY Correct regulation of DNA methylation is essential for embryonic development and DNA hydroxymethylation appears more and more to be a key player. Modifications of the environment of early embryos are known to have long term effects on adult phenotypes and health; these probably rely on epigenetic alterations. STUDY DESIGN SIZE, DURATION The study design we used is both cross sectional (control versus treatment) and longitudinal (time-course). Each individual in vivo experiment used embryos flushed from the donor at the 2-, 4-, 8-, 16- or morula stage. Each stage was analyzed in at least two independent experiments. Each individual in vitro experiment used embryos flushed from donors at the 1-cell stage (19 h post-coïtum) which were then cultured in parallel in the two tested media until the 2-, 4-, 8- 16-cell or morula stages. Each stage was analyzed in at least three independent experiments. In both the in vivo and in vitro experiments, 4-cell stage embryos were always included as an internal reference. PARTICIPANTS/MATERIALS, SETTING, METHODS Immunofluorescence with antibodies specific for 5-methylcytosine (5meC) and 5-hydroxymethylcytosine (5hmeC) was used to quantify DNA methylation and hydroxymethylation levels in preimplantation embryos. We assessed the expression of DNA methyltransferases (DNMT), of ten eleven translocation (TET) dioxigenases and of two endogenous retroviral sequences (ERV) using RT-qPCR, since the expression of endogenous retroviral sequences is known to be regulated by DNA methylation

  9. Bioethanol production from Scenedesmus obliquus sugars: the influence of photobioreactors and culture conditions on biomass production.

    Science.gov (United States)

    Miranda, J R; Passarinho, P C; Gouveia, L

    2012-10-01

    A closed-loop vertical tubular photobioreactor (PBR), specially designed to operate under conditions of scarce flat land availability and irregular solar irradiance conditions, was used to study the potential of Scenedesmus obliquus biomass/sugar production. The results obtained were compared to those from an open-raceway pond and a closed-bubble column. The influence of the type of light source and the regime (natural vs artificial and continuous vs light/dark cycles) on the growth of the microalga and the extent of the sugar accumulation was studied in both PBRs. The best type of reactor studied was a closed-loop PBR illuminated with natural light/dark cycles. In all the cases, the relationship between the nitrate depletion and the sugar accumulation was observed. The microalga Scenedesmus was cultivated for 53 days in a raceway pond (4,500 L) and accumulated a maximum sugar content of 29 % g/g. It was pre-treated for carrying out ethanol fermentation assays, and the highest ethanol concentration obtained in the hydrolysate fermented by Kluyveromyces marxianus was 11.7 g/L.

  10. Influence of Culturing Conditions on Bioprospecting and the Antimicrobial Potential of Endophytic Fungi from Schinus terebinthifolius.

    Science.gov (United States)

    Tonial, Fabiana; Maia, Beatriz H L N S; Gomes-Figueiredo, Josiane A; Sobottka, Andrea M; Bertol, Charise D; Nepel, Angelita; Savi, Daiani C; Vicente, Vânia A; Gomes, Renata R; Glienke, Chirlei

    2016-02-01

    In this study, we analyzed the antimicrobial activity of extracts harvested from 17 endophytic fungi isolated from the medicinal plant Schinus terebinthifolius. Morphological and molecular analyses indicated that these fungal species belonged to the genera Alternaria, Bjerkandera, Colletotrichum, Diaporthe, Penicillium, and Xylaria. Of the endophytes analyzed, 64.7 % produced antimicrobial compounds under at least one of the fermentation conditions tested. Nine isolates produced compounds that inhibited growth of Staphylococcus aureus, four produced compounds that inhibited Candida albicans, and two that inhibited Pseudomonas aeruginosa. The fermentation conditions of the following endophytes were optimized: Alternaria sp. Sect. Alternata-LGMF626, Xylaria sp.-LGMF673, and Bjerkandera sp.-LGMF713. Specifically, the carbon and nitrogen sources, initial pH, temperature, and length of incubation were varied. In general, production of antimicrobial compounds was greatest when galactose was used as a carbon source, and acidification of the growth medium enhanced the production of compounds that inhibited C. albicans. Upon large-scale fermentation, Alternaria sp. Sect. Alternata-LGMF626 produced an extract containing two fractions that were active against methicillin-resistant S. aureus. One of the extracts exhibited high activity (minimum inhibitory concentration of 18.52 µg/mL), and the other exhibited moderate activity (minimum inhibitory concentration of 55.55 µg/mL). The compounds E-2-hexyl-cinnamaldehyde and two compounds of the pyrrolopyrazine alkaloids class were identified in the active fractions by gas chromatography-mass spectrometry.

  11. Bioethanol production from Scenedesmus obliquus sugars. The influence of photobioreactors and culture conditions on biomass production

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, J.R.; Passarinho, P.C.; Gouveia, L. [Laboratorio Nacional de Energia e Geologia (LNEG), Lisbon (Portugal). Unidade de Bioenergia

    2012-10-15

    A closed-loop vertical tubular photobioreactor (PBR), specially designed to operate under conditions of scarce flat land availability and irregular solar irradiance conditions, was used to study the potential of Scenedesmus obliquus biomass/sugar production. The results obtained were compared to those from an open-raceway pond and a closed-bubble column. The influence of the type of light source and the regime (natural vs artificial and continuous vs light/dark cycles) on the growth of the microalga and the extent of the sugar accumulation was studied in both PBRs. The best type of reactor studied was a closed-loop PBR illuminated with natural light/dark cycles. In all the cases, the relationship between the nitrate depletion and the sugar accumulation was observed. The microalga Scenedesmus was cultivated for 53 days in a raceway pond (4,500 L) and accumulated a maximum sugar content of 29 % g/g. It was pre-treated for carrying out ethanol fermentation assays, and the highest ethanol concentration obtained in the hydrolysate fermented by Kluyveromyces marxianus was 11.7 g/L. (orig.)

  12. Effect of fermentation conditions on biohydrogen production from cassava starch by anaerobic mixed cultures

    Science.gov (United States)

    Tien, Hai M.; Le, Kien A.; Tran, An T.; Le, Phung K.

    2016-06-01

    In this work, a series of batch tests were conducted to investigate the effect of pH, temperature, fermentation time, and inoculums ratio to hydrogen production using cassava starch as a substrate. The statistical analysis of the experiment indicated that the significant effects for the fermentation yield were the main effect of temperature, pH and inoculums ratio. It was fouund that the suitable fermentation conditions of biohydrogen production should be at temperature 40 ° C; pH 6.5, inoculums to medium ratio 10 % and COD operation at 4800 g/mL. The maximum value of hydrogen volume produced was 76.22 mL. These affected has been evaluated and the result can be used as an reference for the pilot or industrial biohydrogen production.

  13. Ultrastructural alteration of the cell surface of Staphylococcus aureus cultured in a different salt condition

    Directory of Open Access Journals (Sweden)

    Kanemasa,Yasuhiro

    1974-10-01

    Full Text Available Staphylococcus aureus growing in a normal NaGI medium has a specific NaGI tolerance property to grow in the medium contain. ing NaGl in as high a concentration as over 10%. In our comparative study of the cells proliferating in the normal NaGI medium and 10% NaGl medium, we have observed the following differences aside from the changes of lipid composition in the cytoplasmic membrane previously reported. 1. S. aureus grown in high NaGl medium undergoes changes as to increase its size and reduce its surface area. 2. The thickness and weight of cell wall are increased to about 1. 7 times and 1. 32 times, respectively. 3. The protoplast prepared from S. aureus growing in the high NaGI medium shows a weaker resistance to hypotonic condition than that from normal cell.

  14. Enhancement of Lutein Production in Chlorella sorokiniana (Chorophyta by Improvement of Culture Conditions and Random Mutagenesis

    Directory of Open Access Journals (Sweden)

    Maria Angeles Vargas

    2011-09-01

    Full Text Available Chlorella sorokiniana has been selected for lutein production, after a screening of thirteen species of microalgae, since it showed both a high content in this carotenoid and a high growth rate. The effects of several nutritional and environmental factors on cell growth and lutein accumulation have been studied. Maximal specific growth rate and lutein content were attained at 690 µmol photons m−2 s−1, 28 °C, 2 mM NaCl, 40 mM nitrate and under mixotrophic conditions. In general, optimal conditions for the growth of this strain also lead to maximal lutein productivity. High lutein yielding mutants of C. sorokiniana have been obtained by random mutagenesis, using N-methyl-N′-nitro-nitrosoguanidine (MNNG as a mutagen and selecting mutants by their resistance to the inhibitors of the carotenogenic pathway nicotine and norflurazon. Among the mutants resistant to the herbicides, those exhibiting both high content in lutein and high growth rate were chosen. Several mutants exhibited higher contents in this carotenoid than the wild type, showing, in addition, either a similar or higher growth rate than the latter strain. The mutant MR-16 exhibited a 2.0-fold higher volumetric lutein content than that of the wild type, attaining values of 42.0 mg L−1 and mutants DMR-5 and DMR-8 attained a lutein cellular content of 7.0 mg g−1 dry weight. The high lutein yield exhibited by C. sorokiniana makes this microalga an excellent candidate for the production of this commercially interesting pigment.

  15. Cultural Conditions for Mycelial Growth and Molecular Phylogenetic Relationship in Different Wild Strains of Schizophyllum commune.

    Science.gov (United States)

    Alam, Nuhu; Cha, Youn Jeong; Shim, Mi Ja; Lee, Tae Soo; Lee, U Youn

    2010-03-01

    The common split-gilled mushroom, Schizophyllum commune is found throughout the world on woody plants. This study was initiated to evaluate conditions for favorable vegetative growth and to determine molecular phylogenetic relationship in twelve different strains of S. commune. A suitable temperature for mycelial growth was obtained at 30℃. This mushroom grew well in acidic conditions and pH 5 was the most favorable. Hamada, glucose peptone, Hennerberg, potato dextrose agar and yeast malt extract were favorable media for growing mycelia, while Lilly and glucose tryptone were unfavorable. Dextrin was the best and lactose was the less effective carbon source. The most suitable nitrogen sources were calcium nitrate, glycine, and potassium nitrate, whereas ammonium phosphate and histidine were the least effective for the mycelial growth of S. commune. The genetic diversity of each strain was investigated in order to identify them. The internal transcribed spacer (ITS) regions of rDNA were amplified using PCR. The size of the ITS1 and ITS2 regions of rDNA from the different strains varied from 129 to 143 bp and 241 to 243 bp, respectively. The sequence of ITS1 was more variable than that of ITS2, while the 5.8S sequences were identical. A phylogenetic tree of the ITS region sequences indicated that the selected strains were classified into three clusters. The reciprocal homologies of the ITS region sequences ranged from 99 to 100%. The strains were also analyzed by random amplification of polymorphic DNA (RAPD) with 20 arbitrary primers. Twelve primers efficiently amplified the genomic DNA. The number of amplified bands varied depending on the primers used or the strains tested. The average number of polymorphic bands observed per primer was 4.5. The size of polymorphic fragments was obtained in the range of 0.2 to 2.3 kb. These results indicate that the RAPD technique is well suited for detecting the genetic diversity in the S. commune strains tested.

  16. Comparison of angiogenesis-related factor expression in primary tumor cultures under normal and hypoxic growth conditions

    Directory of Open Access Journals (Sweden)

    Brower Stacey L

    2008-07-01

    Full Text Available Abstract Background A localized hypoxic environment occurs during tumor growth necessitating an angiogenic response or tumor necrosis results. Novel cancer treatment strategies take advantage of tumor-induced vascularisation by combining standard chemotherapeutic agents with angiogenesis-inhibiting agents. This has extended the progression-free interval and prolonged survival in patients with various types of cancer. We postulated that the expression levels of angiogenesis-related proteins from various primary tumor cultures would be greater under hypoxic conditions than under normoxia. Methods Fifty cell sources, including both immortalized cell lines and primary carcinoma cells, were incubated under normoxic conditions for 48 hours. Then, cells were either transferred to a hypoxic environment (1% O2 or maintained at normoxic conditions for an additional 48 hours. Cell culture media from both conditions was collected and analyzed via an ELISA-based assay to determine expression levels of 11 angiogenesis-related factors: VEGF, PDGF-AA, PDGF-AA/BB, IL-8, bFGF/FGF-2, EGF, IP-10/CXCL10, Flt-3 ligand, TGF-β1, TGF-β2, and TGF-β3. Results A linear correlation between normoxic and hypoxic growth conditions exists for expression levels of eight of eleven angiogenesis-related proteins tested including: VEGF, IL-8, PDGF-AA, PDGF-AA/BB, TGF-β1, TGF-β2, EGF, and IP-10. For VEGF, the target of current therapies, this correlation between hypoxia and higher cytokine levels was greater in primary breast and lung carcinoma cells than in ovarian carcinoma cells or tumor cell lines. Of interest, patient cell isolates differed in the precise pattern of elevated cytokines. Conclusion As linear correlations exist between expression levels of angiogenic factors under normoxic and hypoxic conditions in vitro, we propose that explanted primary cells may be used to probe the in vivo hypoxic environment. Furthermore, differential expression levels for each sample

  17. Optimization of flask culture medium and conditions for hyaluronic acid production by a streptococcus equisimilis mutant nc2168

    Directory of Open Access Journals (Sweden)

    Yong-Hao Chen

    2012-12-01

    Full Text Available A mutant designated NC2168, which was selected from wild-type Streptococcus equisimilis CVCC55116by ultraviolet ray combined with60Co-γ ray treatment and does not produce streptolysin, was employed to produce hyaluronic acid (HA. In order to increase the output of HA in a flask, the culture medium and conditions for NC2168 were optimized in this study. The influence of culture medium ingredients including carbon sources, nitrogen sources and metal ions on HA production was evaluated using factional factorial design. The mathematical model, which represented the effect of each medium component and their interaction on the yield of HA, was established by the quadratic rotary combination design and response surface method. The model estimated that, a maximal yield of HA could be obtained when the concentrations of yeast extract, peptone, glucose, and MgSO4 were set at 3 g/100 mL, 2 g/100 mL, 0.5 g/100 mL and 0.15 g/100 mL, respectively. Compared with the values obtained by other runs in the experimental design, the optimized medium resulted in a remarkable increase in the output of HA and the maximum of the predicted HA production was 174.76 mg/L. The model developed was accurate and reliable for predicting the production of HA by NC2168.Cultivation conditions were optimized by an orthogonal experimental design and the optimal conditions were as follows: temperature 33ºC, pH 7.8, agitation speed 200 rpm, medium volume 20 mL.

  18. Population dynamics of mixed cultures of yeast and lactic acid bacteria in cider conditions

    Directory of Open Access Journals (Sweden)

    Leila Roseli Dierings

    2013-10-01

    Full Text Available The objective of this work was to study the malolactic bioconversion in low acidity cider, according Brazilian conditions. The apple must was inoculated with Saccharomyces cerevisiae or S. cerevisiae with Oenococcus oeni. The control contained the indigenous microorganisms. Fermentation assays were carried out with clarified apple must from the Gala variety. At the beginning of fermentation, there was a fast growth of the non-Saccharomyces yeast population. Competitive inhibition occurred in all the assays, either with inoculated or indigenous populations of the yeast. The lactic acid bacteria count was ca. 1.41·10²CFU/mL at the beginning and 10(6CFU/mL after yeast cells autolysis. The lactic bacteria O. oeni reached the highest population (10(7CFU/mL when added to the apple must after the decline of the yeast. The malic acid was totally consumed during the alcoholic fermentation period (80.0 to 95.5 % and lactic acid was still synthesized during the 35 days of malolactic fermentation. These results could be important in order to achieve a high quality brut, or sec cider obtained from the dessert apple must.

  19. Effect of Different Cultural Condition on the Growth of Fusarium moniliforme Causing Bakanae Disease

    Directory of Open Access Journals (Sweden)

    Ramesh Singh Yadav

    2014-06-01

    Full Text Available n this study, Fusarium moniliforme causal organism of Bakanae disease has been isolated from infected rice seeds variety Pusa Basmati-1121 by using blotter technique. The effects of temperature, pH and carbon source on radial growth rate were assessed on potato dextrose broth medium. Precise characterisation of the growth conditions for such a fungal pathogen has an evident interest to understand and to prevent spoilage of rice crops. Study was carried out to check the effect of temperature (15–50 °C, pH (2-10, and different carbon sources (glucose, dextrose, sucrose, rice husk and sugarcane bagasse on the growth Fusarium moliniforme. Optimum temperature and pH for growth was 20 °C and 5.0 with maximum dry mycelium weight and sporulation i.e. 2.168 gm 1.806 million spores / 100ml respectively. Maximum growth was observed when rice husk was used as sole carbon source (2.432 gm and 1.68 million spore/ 100 ml however maximum sporulation (0.984 million spore/ 100 ml was achieved when sugarcane bagasse was used as sole carbon source.

  20. Optimization of culture conditions for hydrogen production by Ethanoligenens harbinense B49 using response surface methodology.

    Science.gov (United States)

    Guo, Wan-Qian; Ren, Nan-Qi; Wang, Xiang-Jing; Xiang, Wen-Sheng; Ding, Jie; You, Yang; Liu, Bing-Feng

    2009-02-01

    The design of an optimum and cost-efficient medium for high-level production of hydrogen by Ethanoligenens harbinense B49 was attempted by using response surface methodology (RSM). Based on the Plackett-Burman design, Fe(2+) and Mg(2+) were selected as the most critical nutrient salts. Subsequently, the optimum combination of the selected factors and the sole carbon source glucose were investigated by the Box-Behnken design. Results showed that the maximum hydrogen yield of 2.21 mol/mol glucose was predicted when the concentrations of glucose, Fe(2+) and Mg(2+) were 14.57 g/L, 177.28 mg/L and 691.98 mg/L, respectively. The results were further verified by triplicate experiments. The batch reactors were operated under an optimized condition of the respective glucose, Fe(2+) and Mg(2+) concentration of 14.5 g/L, 180 mg/L and 690 mg/L, the initial pH of 6.0 and experimental temperature of 35+/-1(o)C. Without further pH adjustment, the maximum hydrogen yield of 2.20 mol/mol glucose was obtained based on the optimized medium with further verified the practicability of this optimum strategy.

  1. An Interdisciplinary Conservation Module for Condition Survey on Cultural Heritages with a 3d Information System

    Science.gov (United States)

    Pedelì, C.

    2013-07-01

    In order to make the most of the digital outsourced documents, based on new technologies (e.g.: 3D LASER scanners, photogrammetry, etc.), a new approach was followed and a new ad hoc information system was implemented. The obtained product allow to the final user to reuse and manage the digital documents providing graphic tools and an integrated specific database to manage the entire documentation and conservation process, starting from the condition assessment until the conservation / restoration work. The system is organised on two main modules: Archaeology and Conservation. This paper focus on the features and the advantages of the second one. In particular it is emphasized its logical organisation, the possibility to easily mapping by using a very precise 3D metric platform, to benefit of the integrated relational database which allows to well organise, compare, keep and manage different kind of information at different level. Conservation module can manage along the time the conservation process of a site, monuments, object or excavation and conservation work in progress. An alternative approach called OVO by the author of this paper, force the surveyor to observe and describe the entity decomposing it on functional components, materials and construction techniques. Some integrated tools as the "ICOMOS-ISCS Illustrated glossary … " help the user to describe pathologies with a unified approach and terminology. Also the conservation project phase is strongly supported to envision future intervention and cost. A final section is devoted to record the conservation/restoration work already done or in progress. All information areas of the conservation module are interconnected to each other to allows to the system a complete interchange of graphic and alphanumeric data. The conservation module it self is connected to the archaeological one to create an interdisciplinary daily tool.

  2. EFFECT OF CULTURE CONDITIONS ON REPRODUCTIVE TRAITS OF BROWN TROUT SALMO TRUTTA L.

    Directory of Open Access Journals (Sweden)

    RANDÁK T.

    2006-07-01

    Full Text Available Progeny from artificial propagation of wild brown trout (Salmo trutta L. of the Blanice river, Czech Republic, were farmed to maturity and spawned at ages three, four and five during 2002-2004. Reproductive parameters and biological quality of eggs in this farmed population were compared to those of the original wild population. ANCOVA showed no differences between wild and farmed fish in weight of eggs per female, total fecundity, or relative fecundity in any year. Significantly higher egg diameter (4.57 mm, P = 0.001 and weight (69.3 mg, P = 0.0375 were found in the wild population in 2002 and conversely in 2004, the mean egg weight was higher in the farmed population (94.7 mg, P = 0.0021. Differences in egg diameter in this year (4.64 ± 0.06 and 4.82 ± 0.06 in wild and farmed trout, respectively were close to the level of significance (P = 0.079. Mutual correlations between length or weight and studied reproductive traits were similar in both populations. Fertilization rate, duration of incubation period, egg losses during incubation and mortality of starving hatched fry were monitored in embryos and larvae of farmed population only (FxF, crosses between farmed females and wild males (FxW and wild population only (WxW. Altogether 6.3%, 5.8% and 5.4% of eggs died during incubation period in FxF, FxW and WxW, respectively. There were also no significant differences in duration of incubation period and mortality of starving fry. It can be concluded that farming conditions did not significantly affect the reproductive parameters and quality of eggs in the first generation of farmed broodstock.

  3. Egg production of tench (Tinca tinca L. kept in semi-intensive culture conditions

    Directory of Open Access Journals (Sweden)

    Rodríguez R.

    2008-09-01

    Full Text Available With the aim to evaluate the effect of different intervals of degrees-days on egg production of tench (Tinca tinca L., 480 breeders were kept in 15 x 10 x 1 m bare concrete tanks from February until July and fed on commercial feed. Males and females were held together under natural photoperiod and temperature conditions. Ovulation was hormonally inducted (LH-RHa in three groups at different degrees-days (group I: 1090, group II: 1175 and group III: 1536. In the groups I and II, a mean of 88% of females was injected, obtaining a 98% of positive response, without significant differences in the egg production between both groups (10.7% body weight, b.w.. With 1536 degrees-days, percentages of injected and stripped females were significantly lower. First stripping yielded a total of 9332 g of eggs (8.3% b.w.. A second hormonal induction was evaluated in each group at 1900, 2047 and 2111 degrees-days respectively. A mean of 85% of the initial females of the three groups received a second hormonal treatment, obtaining a 92% of positive response, without significant differences in egg production among the groups. The second stripping yielded an egg production (598 g, 5.9% b.w. significantly lower than the first one. Relating to males, semen was obtained without hormonal induction throughout 50 days and the positive response was around 90%. With the exception of eggs obtained in the first induction of group III (1536 degrees-days, where overripening process was detected, further mean fertilization (over 80% and hatching rates (around 35% support the good quality of eggs and sperm. This study showed that the advantages of the broodstock’s maintenance in small concrete tanks are not only easiness of handling and possibilities of yield prediction, but also a good egg production at higher densities than in big earthen ponds.

  4. Egg production of tench (Tinca tinca L. kept in semi-intensive culture conditions

    Directory of Open Access Journals (Sweden)

    R. Rodríguez

    2008-09-01

    Full Text Available With the aim to evaluate the effect of different intervals of degrees-days on egg production of tench (Tinca tinca L., 480 breeders were kept in 15 x 10 x 1 m bare concrete tanks from February until July and fed on commercial feed. Males and females were held together under natural photoperiod and temperature conditions. Ovulation was hormonally inducted (LH-RHa in three groups at different degrees-days (group I: 1090, group II: 1175 and group III: 1536. In the groups I and II, a mean of 88% of females was injected, obtaining a 98% of positive response, without significant differences in the egg production between both groups (10.7% body weight, b.w.. With 1536 degrees-days, percentages of injected and stripped females were significantly lower. First stripping yielded a total of 9332 g of eggs (8.3% b.w.. A second hormonal induction was evaluated in each group at 1900, 2047 and 2111 degrees-days respectively. A mean of 85% of the initial females of the three groups received a second hormonal treatment, obtaining a 92% of positive response, without significant differences in egg production among the groups. The second stripping yielded an egg production (598 g, 5.9% b.w. significantly lower than the first one. Relating to males, semen was obtained without hormonal induction throughout 50 days and the positive response was around 90%. With the exception of eggs obtained in the first induction of group III (1536 degrees-days, where overripening process was detected, further mean fertilization (over 80% and hatching rates (around 35% support the good quality of eggs and sperm. This study showed that the advantages of the broodstock’s maintenance in small concrete tanks are not only easiness of handling and possibilities of yield prediction, but also a good egg production at higher densities than in big earthen ponds.

  5. Pseudomonads Isolated from Pristine Background Groundwater Proliferate More Effectively in Co-culture than in Monoculture Under Denitrifying Conditions

    Science.gov (United States)

    Aaring, A. B.; Lancaster, A.; Novichkov, P.; Adams, M. W. W.; Deutschbauer, A. M.; Chakraborty, R.

    2016-12-01

    As part of the Ecosystems and Networks Integrated with Genes and Molecular Assemblies (ENIGMA) consortium, we study the microbial community at the U.S. Department of Energy's Field Research Center (FRC) in Oak Ridge. The groundwater at this site contains plumes of nitrate with concentrations up to 14,000mg/L among other contaminants, though molybdenum concentrations are low. Because molybdenum is essential to nitrate reduction, this can be inhibitory to growth. Several strains of Pseudomonas were isolated from the same background groundwater sample. These isolates utilized diverse carbon sources ranging from acetate to glucose while growing under denitrifying conditions. The strains were also screened for nitrate tolerance and a couple of them were shown to be tolerant to 300-400 mM nitrate under anaerobic conditions. In the field site the bacteria live in consortia rather than in isolation, therefore we hypothesized that growth of these strains will be more robust in co-culture, as the denitrification pathway was segmented between the species. Three of the isolates (Pseudomonas fluorescens strains N1B4, N2E2, N2E3) were selected for in-depth analysis based on growth in pairwise co-cultures relative to monocultures, and the availability of the relevant genetic tools, such as transposon mutant libraries. Full genome sequencing showed that strain N2E3 has a truncated dentrification pathway: it lacks nitrous oxide reductase. Our results show strain N2E2 grow to maximum cell density an average of 45 hours more quickly when grown with strain N2E3 than in monoculture. Utilizing RB-TnSeq libraries of our strains, it was also found that some genes involved in nitrate reduction, sulfate permeability, molybdenum utilization, and anaerobic reduction are important for growth under these conditions. In addition, a few unexpected genes were also shown to be positively correlated to growth, such as genes homologous to genes for DNA proofreading or antibiotic production. These

  6. Tolerance to the antinociceptive and hypothermic effects of morphine is mediated by multiple isoforms of c-Jun N-terminal kinase.

    Science.gov (United States)

    Yuill, Matthew B; Zee, Michael L; Marcus, David; Morgan, Daniel J

    2016-04-13

    The abuse and overdose of opioid drugs are growing public health problems worldwide. Although progress has been made toward understanding the mechanisms governing tolerance to opioids, the exact cellular machinery involved remains unclear. However, there is growing evidence to suggest that c-Jun N-terminal kinases (JNKs) play a major role in mu-opioid receptor regulation and morphine tolerance. In this study, we aimed to determine the potential roles of different JNK isoforms in the development of tolerance to the antinociceptive and hypothermic effects of morphine. We used the hot-plate and tail-flick tests for thermal pain to measure tolerance to the antinociceptive effects of once-daily subcutaneous injections with 10 mg/kg morphine. Body temperature was also measured to determine tolerance to the hypothermic effects of morphine. Tolerance to morphine was assessed in wild-type mice and compared with single knockout mice each lacking the JNK isoforms (JNK1, JNK2, or JNK3). We found that loss of each individual JNK isoform causes impairment in tolerance for the antinociceptive and hypothermic effects of daily morphine. However, disruption of JNK2 seems to have the most profound effect on morphine tolerance. These results indicate a clear role for JNK signaling pathways in morphine tolerance. This complements previous studies suggesting that the JNK2 isoform is required for morphine tolerance, but additionally presents novel data suggesting that additional JNK isoforms also contribute toward this process.

  7. Effectiveness of oxytetracycline in reducing the bacterial load in rohu fish (Labeo rohita, Hamilton) under laboratory culture condition

    Institute of Scientific and Technical Information of China (English)

    Syed Ariful Haque; Md Shaheed Reza; Md Rajib Sharker; Md Mokhlasur Rahman; Md Ariful Islam

    2014-01-01

    Objective: To observe the effectiveness of most widely used antibiotic, oxytetracycline (OTC) in reducing the bacterial load in rohu fish under artificial culture condition in the laboratory.Methods:University, Mymensingh-2202. The fish were reared in 8 aquaria where fish in 5 aquaria were used for replication of the treatment (experimental group) and fish in remaining 3 aquaria were considered as a control (Control group). OTC was fed to the fish in the experimental aquarium at the rate of 2 g/kg through diet twice daily whereas fish reared under control condition was given feed without antibiotic for 20 d and bacterial content in the aquarium water, gills, skin and intestine of fish were estimated at every alternative day after onset of the experiment. The experiment was conducted in the Faculty Fisheries, Bangladesh Agricultural Results: Rearing the fish with OTC treated feed resulted in gradual decrease of bacterial load in the aquarium water, gills, intestine and skin of the fish whereas the content remain unchanged or little increased in the control group. Water quality parameters such as dissolved oxygen, pH and total hardness were within the suitable range in the experimental aquarium but not in control aquaria throughout the experimental period.Conclusions:bacterial load in fish and can be used commercially for maintaining the fish health in aquarium conditions. These results suggest that OTC could be a potential antibiotic to reduce the

  8. Growth response and toxin concentration of cultured Pyrodinium bahamense var. compressum to varying salinity and temperature conditions.

    Science.gov (United States)

    Gedaria, Alice Ilaya; Luckas, Bernd; Reinhardt, Katrin; Azanza, Rhodora V

    2007-09-15

    The growth and toxin production of a Philippine Pyrodinium bahamense isolate in nutrient replete batch cultures were investigated under conditions affected by varying salinity, temperature and combined effects of salinity and temperature. Early exponential growth stage was reached after 7 days with a cell division rate of 0.26 div day(-1). The toxin content reached a peak of 298 fmol cell-1 at mid exponential phase and rapidly declined to 54 fmol cell-1 as it approached the death phase. Only three sets of toxins composed of STX, dcSTX and B1 were detected in which STX made up to 85-98 mol%toxincell-1. P. bahamense was able to grow in salinities and temperatures ranging from 26 per thousand to 36 per thousand and 23 to 36 degrees C, respectively. The optimum growth under varying salinity and temperature conditions was observed at 36 per thousand and 25 degrees C. Toxin content reached a peak of 376 fmol cell-1 at 25 degrees C and was lower (80-116 fmol cell-1) at higher temperatures (32-35 degrees C). Combined effects of salinity and temperature showed that P. bahamense was not able to grow at low salinity and temperature (i.e. below 26 per thousand-28 degrees C). Optimum growth was observed in higher salinities at all temperature conditions.

  9. Cultivating conditions effects on kefiran production by the mixed culture of lactic acid bacteria imbedded within kefir grains.

    Science.gov (United States)

    Zajšek, Katja; Goršek, Andreja; Kolar, Mitja

    2013-08-15

    The influence of fermentation temperature, agitation rate, and additions of carbon sources, nitrogen sources, vitamins and minerals on production of kefiran by kefir grains lactic acid bacteria was studied in a series of experiments. The main aim of the work was to increase the exopolysaccharide (EPS) production where customised milk was used as fermentation medium. It was proved that the controlling of culturing conditions and the modifying of fermentation medium conditions (i.e., carbon, nitrogen, mineral sources and vitamins) can dramatically enhance the production of the EPS. The temperature and agitation rate were critical for kefiran production during the 24 h cultivation of grains; our optimised conditions being 25°C and 80 rpm, respectively. In addition, when optimising the effects of additional nutrition, it was found that 5% (w/v) lactose, 0.1% (w/v) thiamine, and 0.1% (w/v) FeCl3 led to the maximal production of EPS. The results indicate that nutrients can be utilised to improve the production of EPS and that good kefir grains growth does not appear to be a determining factor for a high production yield of EPS.

  10. Adjusted nutrition of tomato with potassium and zinc in drought stress conditions induced by polyethylene glycol 6000 in hydroponic culture

    Directory of Open Access Journals (Sweden)

    F. S. Sadoogh

    2014-07-01

    Full Text Available In drought stress conditions, besides the inhibition of water uptake, the plant nutrients availability and uptake are also limited. Proper nutrition is known as a management procedure for plant production under different environmental-stress conditions. Generally, the combined effects of drought and deficiency of potassium and zinc on plant water content and some physiological parameters reduce yield quantity and quality. This investigation was conducted to assess the interactive effect of different levels of potassium as KNO3 (0.6, 3 and 6 mM and zinc as ZnSO4 (0, 1 and 2 μM, under drought stress conditions induced with PEG 6000 (0, 55 and 110 g/L PEG 6000 on some water status indices and physiological parameters of tomato in hydroponic culture. The results showed that interaction of drought, potassium and zinc on shoot and root dry weight, leaf chlorophyll and proline content and percentage of root ion leakage was significant. Both potassium and zinc improved water status of the plants; however the effect of zinc on leaf water potential was not significant. Drought stress increased the chlorophyll content and decreased the sulfhydryl groups. Application of a high level of potassium in the nutrient solution increased root ion leakage.

  11. Changes in the metabolic footprint of placental explant-conditioned medium cultured in different oxygen tensions from placentas of small for gestational age and normal pregnancies.

    LENUS (Irish Health Repository)

    Horgan, R P

    2012-01-31

    Being born small for gestational age (SGA) confers significantly increased risks of perinatal morbidity and mortality. Accumulating evidence suggests that an SGA fetus results from a poorly perfused and abnormally developed placenta. Some of the placental features seen in SGA, such as abnormal cell turnover and impaired nutrient transport, can be reproduced by culture of placental explants in hypoxic conditions. Metabolic footprinting offers a hypothesis-generating strategy to investigate factors absorbed by and released from this tissue in vitro. Previously, metabolic footprinting of the conditioned culture media has identified differences in placental explants cultured under normoxic and hypoxic conditions and between normal pregnancies and those complicated by pre-eclampsia. In this study we aimed to examine the differences in the metabolic footprint of placental villous explants cultured at different oxygen (O(2)) tensions between women who deliver an SGA baby (n = 9) and those from normal controls (n = 8). Placental villous explants from cases and controls were cultured for 96 h in 1% (hypoxic), 6% (normoxic) and 20% (hyperoxic) O(2). Metabolic footprints were analysed by Ultra Performance Liquid Chromatography coupled to an electrospray hybrid LTQ-Orbitrap Mass Spectrometry (UPLC-MS). 574 metabolite features showed significant difference between SGA and normal at one or more of the oxygen tensions. SGA explant media cultured under hypoxic conditions was observed, on a univariate level, to exhibit the same metabolic signature as controls cultured under normoxic conditions in 49% of the metabolites of interest, suggesting that SGA tissue is acclimatised to hypoxic conditions in vivo. No such behaviour was observed under hyperoxic culture conditions. Glycerophospholipid and tryptophan metabolism were highlighted as areas of particular interest.

  12. Lack of detection of ampicillin resistance gene transfer from Bt176 transgenic corn to culturable bacteria under field conditions.

    Science.gov (United States)

    Badosa, Esther; Moreno, Carmen; Montesinos, Emilio

    2004-05-01

    Population levels of total and ampicillin-resistant culturable bacteria and the putative horizontal bla gene acquirement from Bt-corn were studied in commercial fields of transgenic corn in Spain during the years 2000-2003. Commercial fields consisting of conventional corn (Dracma) and Bt176 transgenic corn (Compa CB) were located in three climatic regions. The effect of corn type, plant material, field location, stage of sampling and year of study were studied on total and ampicillin resistant bacterial population levels, on median effective dose and on the slope of the dose-response curve to ampicillin. None of the parameters measured were significantly different (Ptransgenic and non-transgenic cornfields under the diverse conditions studied. However, in population levels of ampicillin resistant bacteria, the minimum difference between sample means to be significant with a likelihood of 80% was 8.9%. Specific detection of putative bacteria harbouring bla TEM-1 ampicillin resistance genes acquired from Bt176 corn was performed with a method based on the extraction of DNA from the culturable bacterial fraction and with PCR. Primers for PCR were targeted to the bla gene and the corresponding flanking regions present in the pUC18 cloning vector or the Bt176 construct. The culturable bacterial fraction of 144 field samples (up to 864 analysis, including ampicillin enrichments) was analysed by PCR. The estimated total number of bacteria analysed was 10(8). The level of detection of a transfer event according to the sensitivity of the methods used was 10(-6). Four samples of transgenic and five of non-transgenic corn gave positive signals. However, the amplification products did not correspond to the ones expected from Bt176 or pUC18. The limitations of the sampling design and of the methods used are discussed.

  13. A novel Fe(III) dependent bioflocculant from Klebsiella oxytoca GS-4-08: culture conditions optimization and flocculation mechanism

    Science.gov (United States)

    Yu, Lei; Tang, Qing-wen; Zhang, Yu-jia; Chen, Rong-ping; Liu, Xin; Qiao, Wei-chuan; Li, Wen-wei; Ruan, Hong-hua; Song, Xin

    2016-01-01

    In this work, the effect of cultivation factors on the flocculation efficiency (FE) of bioflocculant P-GS408 from Klebsiella oxytoca was optimized by the response surface methodology. The most significant factor, i.e. culture time, was determined by gray relational analysis. A total of 240 mg of purified P-GS408 was prepared from 1 liter of culture solution under the optimal conditions. GC-MS analysis results indicated that the polysaccharide of P-GS408 mainly contains Rhamnose and Galactose, and the existence of abundant hydroxyl, carboxyl and amino groups was evidenced by FTIR and XPS analyses. With the aid of Fe3+, the FE of kaolin solution by P-GS408 could achieve 99.48% in ten minutes. Functional groups of polysaccharide were involved in the first adsorption step and the zeta potential of kaolin solution changed from −39.0 mV to 43.4 mV in the presence of Fe3+ and P-GS408. Three-dimensional excitation-emission (EEM) fluorescence spectra demonstrates that the trivalent Fe3+ and Al3+ can bind efficiently with P-GS408, while those univalent and divalent cations cannot. With the help of SEM images, FTIR, zeta potential and EEM spectra, we proposed the P-GS408 flocculation mechanism, which consists of coordination bond combination, charge neutrality, adsorption and bridging, and net catching. PMID:27713559

  14. Use of secondary sewage water as a culture medium for Chaetoceros gracilis and Thalassiosira Sp (Chrysophyceae in laboratory conditions

    Directory of Open Access Journals (Sweden)

    Rauquírio André Albuquerque Marinho da Costa

    1999-01-01

    Full Text Available Experiments were carried out in order to test the efficiency of additions of secondary sewage as a culture medium for Chaetoceros gracilis and Thalassiosira sp (Chrysophyceae under laboratory conditions. These algae were cultivated in sea water with concentrations of 10%, 20%, 30% and 40% of wastewater. The results were compared with those obtained by the nutritive medium f2 of Guillard (1975. The best results in terms of cellular densities were observed at 40% additions. There were significant differences (significance levels of 5% between the nutritive medium f2 and the 40% additions for both the species. Maximum cellular densities observed for all additions tested were, 4,125.00 x 10³ cells/ml for Chaetoceros gracilis on the ninth day and 834.00 x 10³ cells/ml for Thalassiosira sp on the fifth day. Biomass was higher in the nutritive medium f2 than in the other treatments, reaching average values of 2,363μg/ml for Chaetoceros gracilis. At all experimental units, the best results were registered at 40% addition for Chaetoceros gracilis, where average values of 0.768μg/ml were observed on the fifth day, and at 30% additions for Thalassiosira sp where 0.883μg/ml were observed on the thirteenth day. It was concluded that secondary sewage could be used as a culture medium for the species tested here, after large scale tests.

  15. Submerged culture of Magne-tospirillum gryphiswaldense under N2-fixing condition and regulation of activity of nitrogen fixation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A submerged culture technique for Magnetospirillum gryphiswaldense under the nitrogen-fixing condition (microaerobic and N-limited) was set up. In N-limited medium with Na-lactate as a sole carbon source, the optical density (A600 nm) and activity of nitrogen fixation of cells were 1.3 and 217 nmol of ethylene produced per hour per A600nm respectively within 21 h by three times of feeds. The pH and temperature were controlled at 7.2 and 30℃ respectively, and the oxygen concentration was controlled by sparging with N2 containing 0.4%-0.8% of O2. The activity of nitrogen fixation of cells was obviously inhibited by oxygen and ammonium. It indicated that the posttranslational regulation of nitrogenase existed in M. gryphiswaldense.

  16. Molecular characterization of forest soil based Paenibacillus elgii and optimization of various culture conditions for its improved antimicrobial activity

    Directory of Open Access Journals (Sweden)

    Dileep eKumar BS

    2015-10-01

    Full Text Available Microorganisms have provided a bounty of bioactive secondary metabolites with very exciting biological activities such as antibacterial, antifungal antiviral, and anticancer, etc. The present study aims at the optimization of culture conditions for improved antimicrobial production of Paenibacillus elgii obtained from Wayanad forest of Western Ghats region of Kerala, India. A bacterial strain isolated from the Western Ghats forest soil of Wayanad, Kerala, India was identified as P. elgii by 16S rRNA gene sequencing. P. elgii recorded significant board spectrum activity against all human and plant pathogenic microorganism tested except Candida albicans. It has been well known that even minor variations in the fermentation medium may impact not only the quantity of desired bioactive metabolites but also the general metabolic profile of the producing microorganisms. Thus, further studies were carried out to assess the impact of medium components on the antimicrobial production of P. elgii and to optimize an ideal fermentation medium to maximize its antimicrobial production. Out of three media [nutrient broth (NA, Luria broth (LB and Trypticase soy broth (TSB] used for fermentation, TSB medium recorded significant activity. Glucose and meat peptone were identified as the best carbon and nitrogen sources, which significantly affected the antibiotic production when supplemented with TSB medium. Next the effect of various fermentation conditions such as temperature, pH and incubation time on the production of antimicrobial compounds was studied on TSB+glucose+meat peptone and an initial pH of 7 and a temperature of 30ºC for 3 days were found to be optimum for maximum antimicrobial production. The results indicate that medium composition in the fermentation media along with cultural parameters plays a vital role in the enhanced production of antimicrobial substances.

  17. HPLC analysis of midodrine and desglymidodrine in culture medium: evaluation of static and shaken conditions on the biotransformation by fungi.

    Science.gov (United States)

    Barth, Thiago; Aleu, Josefina; Pupo, Mônica Tallarico; Bonato, Pierina Sueli; Collado, Isidro G

    2013-01-01

    A high-performance liquid chromatography (HPLC) method is presented for the simultaneous determination of midodrine and desglymidodrine (DMAE) in Czapek-Dox culture medium, to be used in biotransformation studies by fungi. The HPLC analysis was conducted using a Lichrospher 100 RP18 column, acetonitrile-40 mmol/L formic acid solution (60:40, v/v) as mobile phase, and ultraviolet detection at 290 nm. The sample preparation was conducted by liquid-liquid extraction using ethyl acetate as extractor solvent. The method was linear over the concentration range of 0.4-40.0 µg/mL for midodrine (r ≥ 0.9997) and DMAE (r ≥ 0.9998). Within-day and between-day precision and accuracy were evaluated by relative standard deviations (≤ 8.2%) and relative errors (-7.3 to 7.4%), respectively. The validated method was used to assess midodrine biotransformation by the fungi Papulaspora immersa Hotson SS13, Botrytis cinerea UCA 992 and Botrytis cinerea 2100 under static and shaken conditions. Under shaken conditions, the biotransformation of midodrine to DMAE was more efficient for all studied fungi, especially for the fungus Botrytis cinerea 2100, which converted 42.2% of midodrine to DMAE.

  18. Differential gene expression of human chondrocytes cultured under short-term altered gravity conditions during parabolic flight maneuvers.

    Science.gov (United States)

    Wehland, Markus; Aleshcheva, Ganna; Schulz, Herbert; Saar, Katrin; Hübner, Norbert; Hemmersbach, Ruth; Braun, Markus; Ma, Xiao; Frett, Timo; Warnke, Elisabeth; Riwaldt, Stefan; Pietsch, Jessica; Corydon, Thomas Juhl; Infanger, Manfred; Grimm, Daniela

    2015-03-20

    Chondrocytes are the main cellular component of articular cartilage. In healthy tissue, they are embedded in a strong but elastic extracelluar matrix providing resistance against mechanical forces and friction for the joints. Osteoarthritic cartilage, however, disrupted by heavy strain, has only very limited potential to heal. One future possibility to replace damaged cartilage might be the scaffold-free growth of chondrocytes in microgravity to form 3D aggregates. To prepare for this, we have conducted experiments during the 20th DLR parabolic flight campaign, where we fixed the cells after the first (1P) and the 31st parabola (31P). Furthermore, we subjected chondrocytes to isolated vibration and hypergravity conditions. Microarray and quantitative real time PCR analyses revealed that hypergravity regulated genes connected to cartilage integrity (BMP4, MMP3, MMP10, EDN1, WNT5A, BIRC3). Vibration was clearly detrimental to cartilage (upregulated inflammatory IL6 and IL8, downregulated growth factors EGF, VEGF, FGF17). The viability of the cells was not affected by the parabolic flight, but showed a significantly increased expression of anti-apoptotic genes after 31 parabolas. The IL-6 release of chondrocytes cultured under conditions of vibration was not changed, but hypergravity (1.8 g) induced a clear elevation of IL-6 protein in the supernatant compared with corresponding control samples. Taken together, this study provided new insights into the growth behavior of chondrocytes under short-term microgravity.

  19. Interactions between mesenchymal stem cells, adipocytes, and osteoblasts in a 3D tri-culture model of hyperglycemic conditions in the bone marrow microenvironment.

    Science.gov (United States)

    Rinker, Torri E; Hammoudi, Taymour M; Kemp, Melissa L; Lu, Hang; Temenoff, Johnna S

    2014-03-01

    Recent studies have found that uncontrolled diabetes and consequential hyperglycemic conditions can lead to an increased incidence of osteoporosis. Osteoblasts, adipocytes, and mesenchymal stem cells (MSCs) are all components of the bone marrow microenvironment and thus may have an effect on diabetes-related osteoporosis. However, few studies have investigated the influence of these three cell types on each other, especially in the context of hyperglycemia. Thus, we developed a hydrogel-based 3D culture platform engineered to allow live-cell retrieval in order to investigate the interactions between MSCs, osteoblasts, and adipocytes in mono-, co-, and tri-culture configurations under hyperglycemic conditions for 7 days of culture. Gene expression, histochemical analysis of differentiation markers, and cell viability were measured for all cell types, and MSC-laden hydrogels were degraded to retrieve cells to assess their colony-forming capacity. Multivariate models of gene expression data indicated that primary discrimination was dependent on the neighboring cell type, validating the need for co-culture configurations to study conditions modeling this disease state. MSC viability and clonogenicity were reduced when mono- and co-cultured with osteoblasts at high glucose levels. In contrast, MSCs showed no reduction of viability or clonogenicity when cultured with adipocytes under high glucose conditions, and the adipogenic gene expression indicates that cross-talk between MSCs and adipocytes may occur. Thus, our unique culture platform combined with post-culture multivariate analysis provided a novel insight into cellular interactions within the MSC microenvironment and highlights the necessity of multi-cellular culture systems for further investigation of complex pathologies such as diabetes and osteoporosis.

  20. Use of the new preservation solution Custodiol-N supplemented with dextran for hypothermic machine perfusion of the kidney.

    Science.gov (United States)

    Gallinat, Anja; Lüer, Bastian; Swoboda, Sandra; Rauen, Ursula; Paul, Andreas; Minor, Thomas

    2013-04-01

    Custodiol-N is a new preservation solution specifically designed to prevent free radical-induced tissue alterations and to protect vascular integrity of the graft. Thus, Custodiol-N appears particularly suitable as base solution for oxygenated machine preservation and its putative benefit for renal preservation by hypothermic machine perfusion (HMP) was investigated using a porcine in vitro model. Kidneys were retrieved from German Landrace pigs and preserved for 20 h by pulsatile oxygenated HMP on a Lifeport kidney transporter (syst. pressure 30 mmHg, 30cycles/min). Each graft was randomly assigned to the use of one of the following preservation solutions: Custodiol-N solution supplemented with 50 g/l dextran 40 (CND) or kidney perfusion solution 1 (KPS-1). Renal viability was evaluated upon reperfusion in vitro with diluted autologous blood from the donor for 120 min at 37°C. After 2h of postischemic reperfusion CND-preserved kidneys exhibited significantly higher renal blood flow and urine production. Oxygen consumption was also higher in the CND group than in KPS-1 kidneys. Clearance of creatinine increased during reperfusion of CND kidneys but declined in KPS-1 grafts ending in significantly higher values in CND kidneys. No differences between the groups were seen for enzyme release or fractional excretion of sodium. In conclusion the data presented provide first experimental evidence for adequate organ protective potential of CND in HMP as compared to the gold standard KPS-KPS-11.

  1. A Preliminary Observation on the Development of Mouse Embryos Co-cultured with Human Oviductal Tissue or Conditioned Medium in Vitro

    Institute of Scientific and Technical Information of China (English)

    钟瑜; 张春雪; 潘善培

    1994-01-01

    The Present investigation has been carried out to examine the effect of human oviductal tissue co-culture system on the development of mouse embryos in vitro.Two-cell embryos collected from superovulated mouse were co-cultured with human oviductal tissue suspended in Ham'd F10+10%Fetal Calf Serum(F10 FCS),or in oviductal tissue conditioned medium and F10FCS as control.The results showed that the proportion developed into blastocyst,proportion of hatched and the velocity of cmbryo development were higher in both tissue co-culture and conditioned medium as compared with F10 FCS control.Furthermore,the velocity and percentage of embryomic devetopmem were higher in co-culture with ampullary tissue or its conditioned medium than that of isthmus,the effects of co-culture and conditioned medium on embryo development had no significant difference.All the embryos obtained from two co-culture systems could cleave normally,This experimental observation indicated that human oviductal epithelium might secrete some factors to promote the embryonic development in vitro.

  2. Effect of Culture Condition Variables on Human Endostatin Gene Expression in Escherichia coli Using Response Surface Methodology

    Science.gov (United States)

    Mohajeri, Abbas; Pilehvar-Soltanahmadi, Yones; Abdolalizadeh, Jalal; Karimi, Pouran; Zarghami, Nosratollah

    2016-01-01

    Background Recombinant human endostatin (rhES) is an angiogenesis inhibitor used as a specific drug for the treatment of non-small-cell lung cancer. As mRNA concentration affects the recombinant protein expression level, any factor affecting mRNA concentration can alter the protein expression level. Response surface methodology (RSM) based on the Box-Behnken design (BBD) is a statistical tool for experimental design and for optimizing biotechnological processes. Objectives This investigation aimed to predict and develop the optimal culture conditions for mRNA expression of the synthetic human endostatin (hES) gene in Escherichia coli BL21 (DE3). Materials and Methods The hES gene was amplified, cloned, and expressed in the E. coli expression system. Three factors, including isopropyl β-D-1-thiogalactopyranoside (IPTG) concentration, post-induction time, and cell density before induction, were selected as important factors. The mRNA expression level was determined using real-time PCR. The expression levels of hES mRNA under the different growth conditions were analyzed. SDS-PAGE and western blot analyses were carried out for further confirmation of interest-gene expression. Results A maximum rhES mRNA level of 376.16% was obtained under the following conditions: 0.6 mM IPTG, 7 hours post-induction time, and 0.9 cell density before induction. The level of rhES mRNA was significantly correlated with post-induction time, IPTG concentration, and cell density before induction (P coli.

  3. Cultural Conditions in Diversity Management: The Case Study of the Corporation Operating in the Transportation and Logistics Industry

    National Research Council Canada - National Science Library

    Barbara Czerniachowicz

    2017-01-01

    ... objec­tives have been formulated: (1) to discuss the concepts of organisational culture and cultural factors of changes in the organisation on the example of the corporation operating in the transportation...

  4. Optimization of Culture Conditions and Medium Composition for the Marine Algicidal Bacterium Alteromonas sp.DH46 by Uniform Design

    Institute of Scientific and Technical Information of China (English)

    LIN Jing; ZHENG Wei; TIAN Yun; WANG Guizhong; ZHENG Tianling

    2013-01-01

    Harmful algal blooms (HABs) have led to extensive ecological and environmental issues and huge economic losses.Various HAB control techniques have been developed,and biological methods have been paid more attention.Algicidal bacteria is a general designation for bacteria which inhibit algal growth in a direct or indirect manner,and kill or damage the algal cells.A metabolite which is strongly toxic to the dinoflagellate Alexandrium tamarense was produced by strain DH46 of the alga-lysing bacterium Alteromonas sp.The culture conditions were optimized using a single-factor test method.Factors including carbon source,nitrogen source,temperature,initial pH value,rotational speed and salinity were studied.The results showed that the cultivation of the bacteria at 28℃ and 180r min-1 with initial pH 7 and 30 salt contcentration favored both the cell growth and the lysing effect of strain DH46.The optimal medium composition for strain DH46 was determined by means of uniform design experimentation,and the most important components influencing the cell density were tryptone,yeast extract,soluble starch,NaNO3 and MgSO4.When the following culture medium was used (tryptone 14.0g,yeast extract 1.63g,soluble starch 5.0g,NaNO3 1.6g,MgSO4 2.3 g in 1L),the largest bacterial dry weight (7.36gL-1) was obtained,which was an enhancement of 107% compared to the initial medium; and the algal lysis rate was as high as 98.4% which increased nearly 10% after optimization.

  5. Optimization of culture conditions and medium composition for the marine algicidal bacterium Alteromonas sp. DH46 by uniform design

    Science.gov (United States)

    Lin, Jing; Zheng, Wei; Tian, Yun; Wang, Guizhong; Zheng, Tianling

    2013-09-01

    Harmful algal blooms (HABs) have led to extensive ecological and environmental issues and huge economic losses. Various HAB control techniques have been developed, and biological methods have been paid more attention. Algicidal bacteria is a general designation for bacteria which inhibit algal growth in a direct or indirect manner, and kill or damage the algal cells. A metabolite which is strongly toxic to the dinoflagellate Alexandrium tamarense was produced by strain DH46 of the alga-lysing bacterium Alteromonas sp. The culture conditions were optimized using a single-factor test method. Factors including carbon source, nitrogen source, temperature, initial pH value, rotational speed and salinity were studied. The results showed that the cultivation of the bacteria at 28°C and 180 r min-1 with initial pH 7 and 30 salt contcentration favored both the cell growth and the lysing effect of strain DH46. The optimal medium composition for strain DH46 was determined by means of uniform design experimentation, and the most important components influencing the cell density were tryptone, yeast extract, soluble starch, NaNO3 and MgSO4. When the following culture medium was used (tryptone 14.0g, yeast extract 1.63g, soluble starch 5.0 g, NaNO3 1.6 g, MgSO4 2.3 g in 1L), the largest bacterial dry weight (7.36 g L-1) was obtained, which was an enhancement of 107% compared to the initial medium; and the algal lysis rate was as high as 98.4% which increased nearly 10% after optimization.

  6. Effects of culture conditions on estrogen-mediated hepatic in vitro gene expression and correlation to in vivo responses.

    Science.gov (United States)

    Fong, C J; Burgoon, L D; Zacharewski, T R

    2006-08-15

    Refinement of in vitro systems for predictive toxicology is important in order to develop high-throughput early toxicity screening assays and to minimize animal testing studies. This study assesses the ability of mouse Hepa-1c1c7 hepatoma cell model under differing culture conditions to predict in vivo estrogen-induced hepatic gene expression changes. Custom mouse cDNA microarrays were used to compare Hepa-1c1c7 temporal gene expression profiles treated with 10 nM 17beta-estradiol (E2) in serum-free and charcoal-stripped serum supplemented media at 1, 2, 4, 8, 12, and 24 h. Stripped serum supplemented media increased the number gene expression changes and overall responsiveness likely due to the presence of serum factors supporting proliferation and mitochondrial activity. Data from both experiments were compared to a gene expression time course study examining the hepatic effects of 100 microg/kg 17alpha-ethynyl estradiol (EE) in C57BL/6 mice at 2, 4, 8, 12, 18, and 24 h. Only 18 genes overlapped between the serum-free and in vivo studies, whereas 238 genes were in common between Hepa-1c1c7 cells in stripped serum data and C57BL/6 liver samples. Stripped serum cultured cells exhibited E2-elicited gene expression changes associated with proliferation, cytoskeletal re-organization, cholesterol uptake and synthesis, increased fatty acid beta-oxidation, and oxidative stress, which correlated with in vivo hepatic responses. These results demonstrate that E2 treatment of Hepa-1c1c7 cells in serum supplemented media modulate responses in selected pathways which appropriately model estrogen-elicited in vivo hepatic responses.

  7. Cell culture condition-dependent impact of AGE-rich food extracts on kinase activation and cell survival on human fibroblasts.

    Science.gov (United States)

    Nass, Norbert; Weissenberg, Kristian; Somoza, Veronika; Ruhs, Stefanie; Silber, Rolf-Edgar; Simm, Andreas

    2014-03-01

    Advanced glycation end products (AGEs) are stable end products of the Maillard reaction. Effects of food extracts are often initially analysed in cellular test systems and it is not clear how different cell culture conditions might influence the results. Therefore, we compared the effects of two models for AGE-rich food, bread crust and coffee extract (CE) on WI-38 human lung fibroblasts under different cell culture conditions (sub-confluent versus confluent cells, with and without serum). WI-38 cells responded to coffee and bread crust extract (BCE) with a rapid phosphorylation of PKB (AKT), p42/44 MAPK (ERK 1/2) and p38 MAPK, strongly depending on culture conditions. BCE resulted in increased cell numbers, whereas CE appeared to be cytotoxic. When cell numbers under all culture conditions and treatments were correlated with kinase phosphorylation, the relation between phospho-p38 MAPK and phospho-AKT represented a good, cell culture condition-independent predictor of cell survival.

  8. 人黑素细胞体外培养条件的研究进展%Conditions of human melanocytes in vitro culture

    Institute of Scientific and Technical Information of China (English)

    周梅华; 鲁严

    2011-01-01

    This article summarys safe and effective cultured conditions of human melanocytes in vitro from the basic culture medium, additives, UV and co-culture system.Besides, it sum up the cultured conditions of the hair follicle amelanotic melanocytes and immortalized melanocytes.It is of great significance to the basis research and clinical treatment of the pigment diseases.%从培养人黑素细胞的基本培养液、添加剂、紫外线以及共培养系统等方面综述安全、有效的黑素细胞体外培养条件的研究进展;同时总结了人毛囊无色素性黑素细胞、永生化黑素细胞的培养条件,对色素疾病的基础研究及临床治疗有重要意义.

  9. Umbilical cord tissue-derived mesenchymal stem cells grow best under GMP-compliant culture conditions and maintain their phenotypic and functional properties.

    Science.gov (United States)

    Hartmann, Isabel; Hollweck, Trixi; Haffner, Silvia; Krebs, Michaela; Meiser, Bruno; Reichart, Bruno; Eissner, Günther

    2010-12-15

    Mesenchymal stem cells (MSCs) are fibroblast-like multipotent stem cells that can differentiate into cell types of mesenchymal origin. Because of their immune properties and differentiation, potential MSCs are discussed for the use in tissue regeneration and tolerance induction in transplant medicine. This cell type can easily be obtained from the umbilical cord tissue (UCMSC) without medical intervention. Standard culture conditions include fetal bovine serum (FBS) which may not be approved for clinical settings. Here, we analyzed the phenotypic and functional properties of UCMSC under xeno-free (XF, containing GMP-certified human serum) and serum-free (SF) culture conditions in comparison with standard UCMSC cultures. Phenotypically, UCMSC showed no differences in the expression of mesenchymal markers or differentiation capacity. Functionally, XF and SF-cultured UCMSC have comparable adipogenic, osteogenic, and endothelial differentiation potential. Interestingly, the UCMSC-mediated suppression of T cell proliferation in an allogeneic mixed lymphocyte reaction (MLR) is more effective in XF and SF media than in standard FBS-containing cultures. Regarding the mechanism of action of MLR suppression, transwell experiments revealed that in neither UCMSC culture a direct cell-cell contact is necessary for inhibiting T cell proliferation, and that the major effector molecule is prostaglandin E₂ (PGE₂). Taken together, GMP-compliant growth media qualify for long-term cultures of UCMSC which is important for a future clinical study design in regenerative and transplant medicine. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Development of an economical, autonomous pHstat system for culturing phytoplankton under steady state or dynamic conditions.

    Science.gov (United States)

    Golda, Rachel L; Golda, Mark D; Hayes, Jacqueline A; Peterson, Tawnya D; Needoba, Joseph A

    2017-05-01

    Laboratory investigations of physiological processes in phytoplankton require precise control of experimental conditions. Chemostats customized to control and maintain stable pH levels (pHstats) are ideally suited for investigations of the effects of pH on phytoplankton physiology, for example in context of ocean acidification. Here we designed and constructed a simple, flexible pHstat system and demonstrated its operational capabilities under laboratory culture conditions. In particular, the system is useful for simulating natural cyclic pH variability within aquatic ecosystems, such as diel fluctuations that result from metabolic activity or tidal mixing in estuaries. The pHstat system operates in two modes: (1) static/set point pH, which maintains pH at a constant level, or (2) dynamic pH, which generates regular, sinusoidal pH fluctuations by systematically varying pH according to user-defined parameters. The pHstat is self-regulating through the use of interchangeable electronically controlled reagent or gas-mediated pH-modification manifolds, both of which feature flow regulation by solenoid valves. Although effective pH control was achieved using both liquid reagent additions and gas-mediated methods, the liquid manifold exhibited tighter control (±0.03pH units) of the desired pH than the gas manifold (±0.10pH units). The precise control provided by this pHstat system, as well as its operational flexibility will facilitate studies that examine responses by marine microbiota to fluctuations in pH in aquatic ecosystems.

  11. Laminin-adherent versus suspension-non-adherent cell culture conditions for the isolation of cancer stem cells in the DAOY medulloblastoma cell line.

    Science.gov (United States)

    de la Rosa, Javier; Sáenz Antoñanzas, Ander; Shahi, Mehdi H; Meléndez, Bárbara; Rey, Juan A; Castresana, Javier S

    2016-09-01

    Medulloblastoma (MB) is a highly malignant tumor of childhood. MB seems to be initiated and maintained by a small group of cells, known as cancer stem cells (CSCs). The CSC hypothesis suggests that a subset of tumor cells is able to proliferate, sustain the tumor, and develop chemoresistance, all of which make of CSC an interesting target for new anticancer therapies. The MB cell line DAOY was cultured in suspension by a medullosphere traditional culturing method and in adherent conditions by laminin-pre-coated flasks and serum-free medium enriched with specific growth factors. An increase in the stem features was shown when cells were successively cultured in hypoxia conditions. By contrast, a reduction in these properties was appreciated when cells were exposed to differentiation conditions. In addition, the CD133+ and CD133- subpopulations were isolated from cells grown in laminin-pre-coated flasks, and in vitro experiments showed that the CD133+ fraction represented the stem population and it could have CSC with a higher probability than the CD133- fraction. We can conclude that the laminin culture method in adherent conditions and the medullosphere traditional culturing method in suspension are similarly good for obtaining stem-like cells in the DAOY cell line.

  12. Influence of the Artificial Substrates on the Attachment Behavior of Litopenaeus vannamei in the Intensive Culture Condition

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2011-02-01

    Full Text Available This study evaluated the influence of artificial substrates on the attachment behavior of Litopenaeus vannamei reared in the intensive culture condition. L. vannamei were grown from PL60 (60-day-old postlarvae for 8 weeks at high density (500 shrimp per m2 in 12 independent aquaria (1.0×1.0×1.5 m, water surface area 1 m-2, water volume 1000 l. The experimental design consisted of four treatments: Group A (GA, artificial substrates were immersed in water all the time; Group B (GB, artificial substrates immersed in water were taken out of water weekly and returned immediately; Group C (GC, artificial substrates were exchanged weekly by new one, and Group D (GD without artificial substrates. With a longer rearing time, the increase of the percentage of shrimp attachment on artificial substrates demonstrated continuous in GA but discontinuous in GB and GC. Meanwhile, based on the mean of weeks, the percentage of shrimp attachment on artificial substrates in GA was significantly higher than those in GB and BC from the second week. The final weight, survival rate and final biomass of the shrimp reared in the treatment with artificial substrates were significantly higher than those in other treatment without artificial substrates. However, there was not significant difference in Food Conversion Rate (FCR among different experimental treatments. So, we suggested that the differences of shrimp growth parameters were affected mainly by the living space added with the addition of artificial substrates.

  13. Effect of culturing conditions on the expression of key enzymes in the proteolytic system of Lactobacillus bulgaricus.

    Science.gov (United States)

    Hou, Jun-cai; Liu, Fei; Ren, Da-xi; Han, Wei-wei; Du, Yue-ou

    2015-04-01

    The proteolytic system of Lactobacillus bulgaricus breaks down milk proteins into peptides and amino acids, which are essential for the growth of the bacteria. The aim of this study was to determine the expressions of seven key genes in the proteolytic system under different culturing conditions (different phases, initial pH values, temperatures, and nitrogen sources) using real-time polymerase chain reaction (RT-PCR). The transcriptions of the seven genes were reduced by 30-fold on average in the stationary phase compared with the exponential growth phase. The transcriptions of the seven genes were reduced by 62.5-, 15.0-, and 59.0-fold in the strains KLDS 08006, KLDS 08007, and KLDS 08012, respectively, indicating that the expressions of the seven genes were significantly different among strains. In addition, the expressions of the seven genes were repressed in the MRS medium containing casein peptone. The effect of peptone supply on PepX transcription was the weakest compared with the other six genes, and the impact on OppD transcription was the strongest. Moreover, the expressions of the seven genes were significantly different among different strains (PLactobacillus bulgaricus at the transcription level.

  14. Optimization of Culture Conditions for Some Identified Fungal Species and Stability Profile of α-Galactosidase Produced.

    Science.gov (United States)

    Chauhan, A S; Srivastava, N; Kehri, H K; Sharma, B

    2013-01-01

    Microbial α-galactosidase preparations have implications in medicine and in the modification of various agricultural products as well. In this paper, four isolated fungal strains such as AL-3, WF-3, WP-4 and CL-4 from rhizospheric soil identified as Penicillium glabrum (AL-3), Trichoderma evansii (WF-3), Lasiodiplodia theobromae (WP-4) and Penicillium flavus (CL-4) based on their morphology and microscopic examinations, are screened for their potential towards α-galactosidases production. The culture conditions have been optimized and supplemented with specific carbon substrates (1%, w/v) by using galactose-containing polysaccharides like guar gum (GG), soya casein (SC) and wheat straw (WS). All strains significantly released galactose from GG, showing maximum production of enzyme at 7th day of incubation in rotary shaker (120 rpm) that is 190.3, 174.5, 93.9 and 28.8 U/mL, respectively, followed by SC and WS. The enzyme activity was stable up to 7days at -20°C, then after it declines. This investigation reveals that AL-3 show optimum enzyme activity in guar gum media, whereas WF-3 exhibited greater enzyme stability. Results indicated that the secretion of proteins, enzyme and the stability of enzyme activity varied not only from one strain to another but also differed in their preferences of utilization of different substrates.

  15. Optimization of Culture Conditions for Some Identified Fungal Species and Stability Profile of α-Galactosidase Produced

    Directory of Open Access Journals (Sweden)

    A. S. Chauhan

    2013-01-01

    Full Text Available Microbial α-galactosidase preparations have implications in medicine and in the modification of various agricultural products as well. In this paper, four isolated fungal strains such as AL-3, WF-3, WP-4 and CL-4 from rhizospheric soil identified as Penicillium glabrum (AL-3, Trichoderma evansii (WF-3, Lasiodiplodia theobromae (WP-4 and Penicillium flavus (CL-4 based on their morphology and microscopic examinations, are screened for their potential towards α-galactosidases production. The culture conditions have been optimized and supplemented with specific carbon substrates (1%, w/v by using galactose-containing polysaccharides like guar gum (GG, soya casein (SC and wheat straw (WS. All strains significantly released galactose from GG, showing maximum production of enzyme at 7th day of incubation in rotary shaker (120 rpm that is 190.3, 174.5, 93.9 and 28.8 U/mL, respectively, followed by SC and WS. The enzyme activity was stable up to 7days at −20°C, then after it declines. This investigation reveals that AL-3 show optimum enzyme activity in guar gum media, whereas WF-3 exhibited greater enzyme stability. Results indicated that the secretion of proteins, enzyme and the stability of enzyme activity varied not only from one strain to another but also differed in their preferences of utilization of different substrates.

  16. Expression of myostatin in the spotted rose snapper Lutjanus guttatus during larval and juvenile development under cultured conditions.

    Science.gov (United States)

    Torres-Velarde, J; Ibarra-Castro, L; Rodríguez-Ibarra, E; Sifuentes-Romero, I; Hernández-Cornejo, R; García-Gasca, A

    2015-11-01

    In this study, the developmental expression pattern of myostatin (mstn) in the spotted rose snapper Lutjanus guttatus under culture conditions is presented. The full coding sequence of mstn from L. guttatus was isolated from muscle tissue, obtaining 1134 nucleotides which encode a peptide of 377 amino acids. The phylogenetic analysis indicated that this sequence corresponds to mstn-1. mstn expression was detected in embryonic stages, and maintained at low levels until 28 days post-hatch, when it showed a significant increase, coinciding with the onset of metamorphosis. After that, expression was fluctuating, coinciding probably with periods of rapid and slow muscle growth or individual growth rates. mstn expression was also analysed by body mass with higher levels detected in smaller animals, irrespective of age. mstn was also expressed in other tissues from L. guttatus, presenting higher levels in brain, eye and gill. In brain for instance, two variants of mstn were isolated, both coding sequences were identical to muscle, except that one of them contained a 75 nucleotide deletion in exon 1, maintaining the reading frame but deleting two conserved cysteine residues. Phylogenetic analysis indicated that this brain variant was also mstn-1. The function of this variant is not clear and needs further investigation. These results indicate that mstn-1 participates in different physiological processes other than muscle growth in fishes.

  17. Influence of culture conditions and extracellular matrix alignment on human mesenchymal stem cells invasion into decellularized engineered tissues.

    Science.gov (United States)

    Weidenhamer, Nathan K; Moore, Dusty L; Lobo, Fluvio L; Klair, Nathaniel T; Tranquillo, Robert T

    2015-05-01

    The variables that influence the in vitro recellularization potential of decellularized engineered tissues, such as cell culture conditions and scaffold alignment, have yet to be explored. The goal of this work was to explore the influence of insulin and ascorbic acid and extracellular matrix (ECM) alignment on the recellularization of decellularized engineered tissue by human mesenchymal stem cells (hMSCs). Aligned and non-aligned tissues were created by specifying the geometry and associated mechanical constraints to fibroblast-mediated fibrin gel contraction and remodelling using circular and C-shaped moulds. Decellularized tissues (matrices) of the same alignment were created by decellularization with detergents. Ascorbic acid promoted the invasion of hMSCs into the matrices due to a stimulated increase in motility and proliferation. Invasion correlated with hyaluronic acid secretion, α-smooth muscle actin expression and decreased matrix thickness. Furthermore, hMSCs invasion into aligned and non-aligned matrices was not different, although there was a difference in cell orientation. Finally, we show that hMSCs on the matrix surface appear to differentiate toward a smooth muscle cell or myofibroblast phenotype with ascorbic acid treatment. These results inform the strategy of recellularizing decellularized engineered tissue with hMSCs.

  18. A novel liquid medium for the efficient growth of the salmonid pathogen Piscirickettsia salmonis and optimization of culture conditions.

    Science.gov (United States)

    Henríquez, Mirtha; González, Ernesto; Marshall, Sergio H; Henríquez, Vitalia; Gómez, Fernando A; Martínez, Irene; Altamirano, Claudia

    2013-01-01

    Piscirickettsia salmonis is the bacterium that causes Piscirickettsiosis, a systemic disease of salmonid fish responsible for significant economic losses within the aquaculture industry worldwide. The growth of the bacterium for vaccine formulation has been traditionally accomplished by infecting eukaryotic cell lines, a process that involves high production costs and is time-consuming. Recent research has demonstrated that it is possible to culture pure P. salmonis in a blood containing (cell-free) medium. In the present work we demonstrate the growth of P. salmonis in a liquid medium free from blood and serum components, thus establishing a novel and simplified bacteriological medium. Additionally, the new media reported provides improved growth conditions for P. salmonis, where biomass concentrations of approximately 800 mg cell dry weight L(-1) were obtained, about eight times higher than those reported for the blood containing medium. A 2- level full factorial design was employed to evaluate the significance of the main medium components on cell growth and an optimal temperature range of 23-27°C was determined for the microorganism to grow in the novel liquid media. Therefore, these results represent a breakthrough regarding P. salmonis research in order to optimize pure P. salmonis growth in liquid blood and serum free medium.

  19. A novel liquid medium for the efficient growth of the salmonid pathogen Piscirickettsia salmonis and optimization of culture conditions.

    Directory of Open Access Journals (Sweden)

    Mirtha Henríquez

    Full Text Available Piscirickettsia salmonis is the bacterium that causes Piscirickettsiosis, a systemic disease of salmonid fish responsible for significant economic losses within the aquaculture industry worldwide. The growth of the bacterium for vaccine formulation has been traditionally accomplished by infecting eukaryotic cell lines, a process that involves high production costs and is time-consuming. Recent research has demonstrated that it is possible to culture pure P. salmonis in a blood containing (cell-free medium. In the present work we demonstrate the growth of P. salmonis in a liquid medium free from blood and serum components, thus establishing a novel and simplified bacteriological medium. Additionally, the new media reported provides improved growth conditions for P. salmonis, where biomass concentrations of approximately 800 mg cell dry weight L(-1 were obtained, about eight times higher than those reported for the blood containing medium. A 2- level full factorial design was employed to evaluate the significance of the main medium components on cell growth and an optimal temperature range of 23-27°C was determined for the microorganism to grow in the novel liquid media. Therefore, these results represent a breakthrough regarding P. salmonis research in order to optimize pure P. salmonis growth in liquid blood and serum free medium.

  20. Probiotic Bacillus: Fate during sausage processing and storage and influence of different culturing conditions on recovery of their spores.

    Science.gov (United States)

    Jafari, Mojtaba; Mortazavian, Amir M; Hosseini, Hedayat; Safaei, Fahimeh; Mousavi Khaneghah, Amin; Sant'Ana, Anderson S

    2017-05-01

    The current study was designed to assess the fate of probiotic strains of Bacillus coagulans ATCC 31284 and Bacillus subtilis var. Natto ATCC 15245 (as spores) during processing and refrigerated storage of cooked sausage as well as the influence of culturing conditions on the recovery of spores. The highest recovery of B. coagulans ATCC 31284 and B. subtilis var. Natto ATCC 15245 spores were obtained on trypticase soy agar (TSA) (15.22 and 15.12logCFU/mL, respectively) which was carried out under conducted heat shock (68°C, 20min) (15.61 and 15.24logCFU/mL, respectively). According to result; a 3-4 log reduction in the counts of the spores inoculated in the raw batter of sausage after the cooking step was observed. The findings revealed that the counts of the spores were significantly changed after heat shock (80°C/10min) (P≤0.05). Data indicated that the count during sausage processing and the entire cold storage was >10(6)CFU/g. The ability of the probiotic sporeforming bacteria for sustaining within the cooking process, storage stage; traits that cannot be ensured with vegetative probiotic bacteria, which proposed their capacity for usage, especially in functional cooked food products was demonstrated by the results of the current study. Copyright © 2017. Published by Elsevier Ltd.

  1. An operational concept for long-term cinemicrography of cells in mono- and co-culture under highly controlled conditions--the SlideObserver.

    Science.gov (United States)

    Billecke, Nils; Raschzok, Nathanael; Rohn, Susanne; Morgul, Mehmet H; Schwartlander, Ruth; Mogl, Martina; Wollersheim, Sonja; Schmitt, Katharina R; Sauer, Igor M

    2012-05-31

    Cell morphology, proliferation and motility, as well as mono- and heterotypic cell-to-cell interactions, are of increasing interest for in vitro experiments. However, tightly controlling culture conditions whilst simultaneously monitoring the same set of cells is complicated. Moreover, video-microscopy of distinct cells or areas of cells over a prolonged period of time represents a technical challenge. The SlideObserver was designed for cinemicrography of cells in co-and monoculture. The core elements of the system are the SlideReactors, miniaturised hollow fibre-based bioreactors operated in closed perfusion loops. Within the SlideReactors, cells can be cultured under adaptable conditions as well as in direct- and indirect co-culture. The independent perfusion loops enable controlled variation of parameters such as medium, pH, and oxygenation. A combined automated microscope stage and camera set-up allows for micrograph acquisition of multiple user-defined regions of interest within the bioreactor units. For proof of concept, primary cells (HUVEC, human hepatocytes) and cell lines (HuH7, THP-1) were cultured under stable and varying culture conditions, as well as in mono- and co-culture. The operational system enabled non-stop imaging and automated control of process parameters as well as elective manipulation of either reactor. As opposed to non-perfused culture systems or comparable devices for cinemicrographic analysis, the SlideObserver allows simultaneous morphological monitoring of an entire culture of cells in multiple bioreactors. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Mechanical properties evolution of a PLGA-PLCL composite scaffold for ligament tissue engineering under static and cyclic traction-torsion in vitro culture conditions.

    Science.gov (United States)

    Kahn, Cyril J F; Ziani, Kahina; Zhang, Ye Min; Liu, Jian; Tran, Nguyen; Babin, Jérôme; de Isla, Natalia; Six, Jean-Luc; Wang, Xiong

    2013-01-01

    This study aims to investigate the in vitro degradation of a poly(L-lactic-co-glycolic acid)-poly(L-lactic-co-ϵ-caprolactone) (PLGA-PLCL) composite scaffold's mechanical properties under static culture condition and 2 h period per day of traction-torsion cyclic culture conditions of simultaneous 10% uniaxial strain and 90° of torsion cycles at 0.33 Hz. Scaffolds were cultured in static conditions, during 28 days, with or without cell seeded or under dynamic conditions during 14 days in a bioreactor. Scaffolds' biocompatibility and proliferation were investigated with Alamar Blue tests and cell nuclei staining. Scaffolds' mechanical properties were tested during degradation by uniaxial traction test. The PLGA-PLCL composite scaffold showed a good cytocompatibility and a high degree of colonization in static conditions. Mechanical tests showed a competition between two process of degradation which have been associated to hydrolytic and enzymatic degradation for the reinforce yarn in poly(L-lactic-co-glycolic acid) (PLGA). The enzymatic degradation led to a decrease effect on mechanical properties of cell-seeded scaffolds during the 21st days, but the hydrolytic degradation was preponderant at day 28. In conclusion, the structure of this scaffold is adapted to culture in terms of biocompatibility and cell orientation (microfiber) but must be improved by delaying the degradation of it reinforce structure in PLGA.

  3. Using Phenotype MicroArrays to Determine Culture Conditions That Induce or Repress Toxin Production by Clostridium difficile and Other Microorganisms

    Science.gov (United States)

    Lei, Xiang-He; Bochner, Barry R.

    2013-01-01

    Toxin production is a central issue in the pathogenesis of Clostridium difficile and many other pathogenic microorganisms. Toxin synthesis is influenced by a variety of known and unknown factors of genetics, physiology, and environment. To facilitate the study of toxin production by C. difficile, we have developed a new, reliable, quantitative, and robust cell-based cytotoxicity assay. Then we combined this new assay with Phenotype MicroArrays (PM) technology which provides high throughput testing of culture conditions. This allowed us to quantitatively measure toxin production by C. difficile type strain ATCC 9689 under 768 culture conditions. The culture conditions include different carbon, nitrogen, phosphorus, and sulfur sources. Among these, 89 conditions produced strong toxin induction and 31 produced strong toxin repression. Strong toxin inducers included adenine, guanosine, arginine dipeptides, γ-D-Glu-Gly, methylamine, and others. Some leucine dipeptides and the triple-leucine tripeptide were among the strongest toxin repressors. While some results are consistent with previous observations, others are new observations that provide insights into toxin regulation and pathogenesis of C. difficile. Additionally, we have demonstrated that this combined assay technology can be applied broadly to a wide range of toxin producing microorganisms. This study is the first demonstration of simultaneous assessment of a large number of culture conditions influencing bacterial toxin production. The new functional cytotoxin quantitation method developed provides a valuable tool for studying toxigenic microorganisms and may also find applications in clinical and epidemiological research. PMID:23437164

  4. Impact of functional mix and starter cultures on the sensory properties of permanent sausages produced in industrial conditions

    OpenAIRE

    Kuzelov, Aco; Naseva, Dijana; Taskov, Nako; Saneva, Dusica; Spasova, Dragica; Andronikov, Darko

    2013-01-01

    The aim of their search is the impact little bit of functional mixed (composed of glukono delta lactate, ascorbic acid and vitamin C) and starter culture (commercial preparation F - SC111 Bactoferm product company Chr Hansen DK). This product contains a mixed culture composed of Lactobacilus sakei and Staphyococus Camosus frozen in dry form. In three varieties of tea and sausage: I - added a simple sugar sucrose which serve as a control sample, II - with the addition of starter culture, III -...

  5. Hypothermic oxygenated machine perfusion prevents arteriolonecrosis of the peribiliary plexus in pig livers donated after circulatory death.

    Directory of Open Access Journals (Sweden)

    Sanna Op den Dries

    Full Text Available BACKGROUND: Livers derived from donation after circulatory death (DCD are increasingly accepted for transplantation. However, DCD livers suffer additional donor warm ischemia, leading to biliary injury and more biliary complications after transplantation. It is unknown whether oxygenated machine perfusion results in better preservation of biliary epithelium and the peribiliary vasculature. We compared oxygenated hypothermic machine perfusion (HMP with static cold storage (SCS in a porcine DCD model. METHODS: After 30 min of cardiac arrest, livers were perfused in situ with HTK solution (4°C and preserved for 4 h by either SCS (n = 9 or oxygenated HMP (10°C; n = 9, using pressure-controlled arterial and portal venous perfusion. To simulate transplantation, livers were reperfused ex vivo at 37°C with oxygenated autologous blood. Bile duct injury and function were determined by biochemical and molecular markers, and a systematic histological scoring system. RESULTS: After reperfusion, arterial flow was higher in the HMP group, compared to SCS (251±28 vs 166±28 mL/min, respectively, after 1 hour of reperfusion; p = 0.003. Release of hepatocellular enzymes was significantly higher in the SCS group. Markers of biliary epithelial injury (biliary LDH, gamma-GT and function (biliary pH and bicarbonate, and biliary transporter expression were similar in the two groups. However, histology of bile ducts revealed significantly less arteriolonecrosis of the peribiliary vascular plexus in HMP preserved livers (>50% arteriolonecrosis was observed in 7 bile ducts of the SCS preserved livers versus only 1 bile duct of the HMP preserved livers; p = 0.024. CONCLUSIONS: Oxygenated HMP prevents arteriolonecrosis of the peribiliary vascular plexus of the bile ducts of DCD pig livers and results in higher arterial flow after reperfusion. Together this may contribute to better perfusion of the bile ducts, providing a potential advantage in the post

  6. The hypothermic response to bacterial lipopolysaccharide critically depends on brain CB1, but not CB2 or TRPV1, receptors.

    Science.gov (United States)

    Steiner, Alexandre A; Molchanova, Alla Y; Dogan, M Devrim; Patel, Shreya; Pétervári, Erika; Balaskó, Márta; Wanner, Samuel P; Eales, Justin; Oliveira, Daniela L; Gavva, Narender R; Almeida, M Camila; Székely, Miklós; Romanovsky, Andrej A

    2011-05-01

    Hypothermia occurs in the most severe cases of systemic inflammation, but the mechanisms involved are poorly understood. This study evaluated whether the hypothermic response to bacterial lipopolysaccharide (LPS) is modulated by the endocannabinoid anandamide(AEA) and its receptors: cannabinoid-1 (CB1), cannabinoid-2 (CB2) and transient receptor potential vanilloid-1 (TRPV1). In rats exposed to an ambient temperature of 22◦C, a moderate dose of LPS (25 - 100 μg kg−1 I.V.) induced a fall in body temperature with a nadir at ∼100 minpostinjection. This response was not affected by desensitization of intra-abdominal TRPV1 receptors with resiniferatoxin (20 μg kg - 1 I.P.), by systemic TRPV1 antagonism with capsazepine(40mg kg−1 I.P.), or by systemic CB2 receptor antagonism with SR144528 (1.4 mg kg−1 I.P.).However, CB1 receptor antagonism by rimonabant (4.6mg kg−1 I.P.) or SLV319 (15mg kg−1 I.P.)blocked LPS hypothermia. The effect of rimonabant was further studied. Rimonabant blocked LPS hypothermia when administered I.C.V. at a dose (4.6 μg) that was too low to produce systemic effects. The blockade of LPS hypothermia by I.C.V. rimonabant was associated with suppression of the circulating level of tumour necrosis factor-α. In contrast to rimonabant,the I.C.V. administration of AEA (50 μg) enhanced LPS hypothermia. Importantly, I.C.V. AEAdid not evoke hypothermia in rats not treated with LPS, thus indicating that AEA modulates LPS-activated pathways in the brain rather than thermo effector pathways. In conclusion, the present study reveals a novel, critical role of brain CB1 receptors in LPS hypothermia. Brain CB1 receptors may constitute a new therapeutic target in systemic inflammation and sepsis.

  7. The neuroprotective effect of post ischemic brief mild hypothermic treatment correlates with apoptosis, but not with gliosis in endothelin-1 treated rats

    Directory of Open Access Journals (Sweden)

    Zgavc Tine

    2012-08-01

    Full Text Available Abstract Background Stroke remains one of the most common diseases with a serious impact on quality of life but few effective treatments exist. Mild hypothermia (33°C is a promising neuroprotective therapy in stroke management. This study investigated whether a delayed short mild hypothermic treatment is still beneficial as neuroprotective strategy in the endothelin-1 (Et-1 rat model for a transient focal cerebral ischemia. Two hours of mild hypothermia (33°C was induced 20, 60 or 120 minutes after Et-1 infusion. During the experiment the cerebral blood flow (CBF was measured via Laser Doppler Flowmetry in the striatum, which represents the core of the infarct. Functional outcome and infarct volume were assessed 24 hours after the insult. In this sub-acute phase following stroke induction, the effects of the hypothermic treatment on apoptosis, phagocytosis and astrogliosis were assessed as well. Apoptosis was determined using caspase-3 immunohistochemistry, phagocytic cells were visualized by CD-68 expression and astrogliosis was studied by glial fibrillary acidic protein (GFAP staining. Results Cooling could be postponed up to 1 hour after the onset of the insult without losing its positive effects on neurological deficit and infarct volume. These results correlated with the caspase-3 staining. In contrast, the increased CD-68 expression post-stroke was reduced in the core of the insult with all treatment protocols. Hypothermia also reduced the increased levels of GFAP staining, even when it was delayed up to 2 hours after the insult. The study confirmed that the induction of the hypothermia treatment in the Et-1 model does not affect the CBF. Conclusions These data indicate that in the Et-1 rat model, a short mild hypothermic treatment delayed for 1 hour is still neuroprotective and correlates with apoptosis. At the same time, hypothermia also establishes a lasting inhibitory effect on the activation of astrogliosis.

  8. Assessment of reactive oxygen species production in cultured equine skeletal myoblasts in response to conditions of anoxia followed by reoxygenation with or without exposure to peroxidases.

    Science.gov (United States)

    Ceusters, Justine D; Mouithys-Mickalad, Ange A; de la Rebière de Pouyade, Geoffroy; Franck, Thierry J; Votion, Dominique M; Deby-Dupont, Ginette P; Serteyn, Didier A

    2012-03-01

    To culture equine myoblasts from muscle microbiopsy specimens, examine myoblast production of reactive oxygen species (ROS) in conditions of anoxia followed by reoxygenation, and assess the effects of horseradish peroxidase (HRP) and myeloperoxidase (MPO) on ROS production. 5 healthy horses (5 to 15 years old). Equine skeletal myoblast cultures were derived from 1 or 2 microbiopsy specimens obtained from a triceps brachii muscle of each horse. Cultured myoblasts were exposed to conditions of anoxia followed by reoxygenation or to conditions of normoxia (control cells). Cell production of ROS in the presence or absence of HRP or MPO was assessed by use of a gas chromatography method, after which cells were treated with a 3,3'-diaminobenzidine chromogen solution to detect peroxidase binding. Equine skeletal myoblasts were successfully cultured from microbiopsy specimens. In response to anoxia and reoxygenation, ROS production of myoblasts increased by 71%, compared with that of control cells. When experiments were performed in the presence of HRP or MPO, ROS production in myoblasts exposed to anoxia and reoxygenation was increased by 228% and 183%, respectively, compared with findings for control cells. Chromogen reaction revealed a close adherence of peroxidases to cells, even after several washes. Results indicated that equine skeletal myoblast cultures can be generated from muscle microbiopsy specimens. Anoxia-reoxygenation-treated myoblasts produced ROS, and production was enhanced in the presence of peroxidases. This experimental model could be used to study the damaging effect of exercise on muscles in athletic horses.

  9. Instability of anthocyanin composition under different subculture conditions during long-term suspension cultures of Vitis vinifera L. var. Gamay Fréaux.

    Science.gov (United States)

    Qu, Junge; Zhang, Wei; Yu, Xingju

    2011-11-01

    The instability of secondary metabolite production is a ubiquitous problem in plant cell culture. In order to understand the instability in plant cell culture, we investigated anthocyanin accumulation in suspension cultures of Vitis vinifera, as a model system, in our laboratory. Not only the anthocyanin contents but also its composition exhibited instability along with the long-term subculture. New methods were developed to indicate the instability of plant cell culture. Both the definition of instability coefficient (delta) and the application of factor scores were the first time in this field. To examine the effects of culture conditions on instability of anthocyanin biosynthesis, different subculture cycles and inoculum sizes had been investigated. Subculture cycle and inoculum size were both environmental cues driving the instability. Compared with subculture cycle, inoculum size was more effective in working on the instability of anthocyanin accumulation. Among all the conditions investigated in our study, (6.5 d, 2.00 g), (7 d, 2.00 g), (7.5 d, 2.00 g), (7 d, 1.60 g) and (7 d, 2.40 g), the condition of 7 d-subculture cycle together with 1.60 g-inoculum size was the best one to keep the stable production of anthocyanins.

  10. Conditioned medium from mesenchymal stem cells induces cell death in organotypic cultures of rat hippocampus and aggravates lesion in a model of oxygen and glucose deprivation.

    Science.gov (United States)

    Horn, Ana Paula; Frozza, Rudimar Luiz; Grudzinski, Patrícia Benke; Gerhardt, Daniéli; Hoppe, Juliana Bender; Bruno, Alessandra Nejar; Chagastelles, Pedro; Nardi, Nance Beyer; Lenz, Guido; Salbego, Christianne

    2009-01-01

    Cell therapy using bone marrow-derived mesenchymal stem cells (MSC) seems to be a new alternative for the treatment of neurological diseases, including stroke. In order to investigate the response of hippocampal tissue to factors secreted by MSC and if these factors are neuroprotective in a model of oxygen and glucose deprivation (OGD), we used organotypic hippocampal cultures exposed to conditioned medium from bone marrow-derived MSC. Our results suggest that the conditioned medium obtained from these cells aggravates lesion caused by OGD. In addition, the presence of the conditioned medium alone was toxic mainly to cells in the CA1, CA2 and CA3 areas of the hippocampal organotypic culture even in basal conditions. GABA stimulation and NMDA and AMPA receptors antagonists were able to reduce propidium iodide staining, suggesting that the cell death induced by the toxic factors secreted by MSC could involve these receptors.

  11. Application of three-dimensional culture conditions to human embryonic stem cell-derived definitive endoderm cells enhances hepatocyte differentiation and functionality.

    Science.gov (United States)

    Ramasamy, Thamil Selvee; Yu, Jason S L; Selden, Clare; Hodgson, Humphery; Cui, Wei

    2013-02-01

    Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) provide an unlimited source for the generation of human hepatocytes, owing to their indefinite self-renewal and pluripotent properties. Both hESC-/iPSC-derived hepatocytes hold great promise in treating liver diseases as potential candidates for cell replacement therapies or as an in vitro platform to conduct new drug trials. It has been previously demonstrated that the initiation of hESC differentiation in monolayer cultures increases the generation of definitive endoderm (DE) and subsequently of hepatocyte differentiation. However, monolayer culture may hinder the maturation of hESC-derived hepatocytes, since such two-dimensional (2D) conditions do not accurately reflect the complex nature of three-dimensional (3D) hepatocyte specification in vivo. Here, we report the sequential application of 2D and 3D culture systems to differentiate hESCs to hepatocytes. Human ESCs were initially differentiated in a monolayer culture to DE cells, which were then inoculated into Algimatrix scaffolds. Treatments of hESC-DE cells with a ROCK inhibitor before and after inoculation dramatically enhanced their survival and the formation of spheroids, which are distinct from HepG2 carcinoma cells. In comparison with monolayer culture alone, sequential 2D and 3D cultures significantly improved hepatocyte differentiation and function. Our results demonstrate that hESC-DE cells can be incorporated into Algimatrix 3D culture systems to enhance hepatocyte differentiation and function.

  12. Comparison of Lipase Production by Enterococcus faecium MTCC 5695 and Pediococcus acidilactici MTCC 11361 Using Fish Waste as Substrate: Optimization of Culture Conditions by Response Surface Methodology.

    Science.gov (United States)

    Ramakrishnan, Vrinda; Goveas, Louella Concepta; Narayan, Bhaskar; Halami, Prakash M

    2013-01-01

    A medium using fish waste as substrate was designed for production of lipase by Enterococcus faecium MTCC 5695 and Pediococcus acidilactici MTCC 11361. Medium components and culture conditions (fish waste protein hydrolysate (FWPH) concentration, fish waste oil (FWO) concentration, pH, temperature, and fermentation time) which affect lipase production were screened using factorial (5 factors ∗ 2 levels) design of which FWPH concentration, FWO concentration, and fermentation time showed significance (P lipase production, respectively, as compared to unoptimized conditions.

  13. Established preblastocyst- and blastocyst-derived ES cell lines have highly similar gene expression profiles, despite their differing requirements for derivation culture conditions.

    Science.gov (United States)

    Kim, Chul; Park, Joonghoon; Amano, Tomokazu; Xu, Ren-He; Lin, Ge; Carter, Mark G; Tian, Xiuchun Cindy

    2012-02-01

    The efficiency of embryonic stem (ES) cell derivation relies on an optimized culture medium and techniques for treating preimplantation stage embryos. Recently, ES cell derivation from the preblastocyst developmental stage was reported by removing the zona pellucida from embryos of the most efficient strain for ES cell derivation (129Sv) during early preimplantation. Here, we showed that ES cells can be efficiently derived and maintained in a modified medium (MEMα), from preblastocysts of a low-efficiency mouse strain (a hybrid consisting of 50% B6, 25% CBA, and 25% DBA). Preblastocyst-derived ES cell lines were normal in terms of pluripotency-related protein expression, and chromosome number. Also, preblastocyst-derived ES cell lines from various culture conditions showed pluripotency in vivo through teratoma analysis. Interestingly, ES cell lines produced from preblastocysts and blastocysts, regardless of the derivation culture conditions, are nearly indistinguishable by their global gene expression profiles.

  14. Use of Response Surface Methodology to Optimize Culture Conditions for Hydrogen Production by an Anaerobic Bacterial Strain from Soluble Starch

    Science.gov (United States)

    Kieu, Hoa Thi Quynh; Nguyen, Yen Thi; Dang, Yen Thi; Nguyen, Binh Thanh

    2016-05-01

    Biohydrogen is a clean source of energy that produces no harmful byproducts during combustion, being a potential sustainable energy carrier for the future. Therefore, biohydrogen produced by anaerobic bacteria via dark fermentation has attracted attention worldwide as a renewable energy source. However, the hydrogen production capability of these bacteria depends on major factors such as substrate, iron-containing hydrogenase, reduction agent, pH, and temperature. In this study, the response surface methodology (RSM) with central composite design (CCD) was employed to improve the hydrogen production by an anaerobic bacterial strain isolated from animal waste in Phu Linh, Soc Son, Vietnam (PL strain). The hydrogen production process was investigated as a function of three critical factors: soluble starch concentration (8 g L-1 to 12 g L-1), ferrous iron concentration (100 mg L-1 to 200 mg L-1), and l-cysteine concentration (300 mg L-1 to 500 mg L-1). RSM analysis showed that all three factors significantly influenced hydrogen production. Among them, the ferrous iron concentration presented the greatest influence. The optimum hydrogen concentration of 1030 mL L-1 medium was obtained with 10 g L-1 soluble starch, 150 mg L-1 ferrous iron, and 400 mg L-1 l-cysteine after 48 h of anaerobic fermentation. The hydrogen concentration produced by the PL strain was doubled after using RSM. The obtained results indicate that RSM with CCD can be used as a technique to optimize culture conditions for enhancement of hydrogen production by the selected anaerobic bacterial strain. Hydrogen production from low-cost organic substrates such as soluble starch using anaerobic fermentation methods may be one of the most promising approaches.

  15. Increased extracellular matrix density decreases MCF10A breast cell acinus formation in 3D culture conditions.

    Science.gov (United States)

    Lance, Amanda; Yang, Chih-Chao; Swamydas, Muthulekha; Dean, Delphine; Deitch, Sandy; Burg, Karen J L; Dréau, Didier

    2016-01-01

    The extracellular matrix (ECM) contributes to the generation and dynamic of normal breast tissue, in particular to the generation of polarized acinar and ductal structures. In vitro 3D culture conditions, including variations in the composition of the ECM, have been shown to directly influence the formation and organization of acinus-like and duct-like structures. Furthermore, the density of the ECM appears to also play a role in the normal mammary tissue and tumour formation. Here we show that the density of the ECM directly influences the number, organization and function of breast acini. Briefly, non-malignant human breast MCF10A cells were incubated in increasing densities of a Matrigel®-collagen I matrix. Elastic moduli near and distant to the acinus structures were measured by atomic force microscopy, and the number of acinus structures was determined. Immunochemistry was used to investigate the expression levels of E-cadherin, laminin, matrix metalloproteinase-14 and ß-casein in MCF10A cells. The modulus of the ECM was significantly increased near the acinus structures and the number of acinus structures decreased with the increase in Matrigel-collagen I density. As evaluated by the expression of laminin, the organization of the acinus structures present was altered as the density of the ECM increased. Increases in both E-cadherin and MMP14 expression by MCF10A cells as ECM density increased were also observed. In contrast, MCF10A cells expressed lower ß-casein levels as the ECM density increased. Taken together, these observations highlight the key role of ECM density in modulating the number, organization and function of breast acini.

  16. Individualism and collectivism: cultural orientation in locus of control and moral attribution under conditions of social change.

    Science.gov (United States)

    Santiago, Jose H; Tarantino, Santo J

    2002-12-01

    This study examined the validity of the view that the constructs of individualism and collectivism are coherent cultural manifestations necessarily reflected in an individual's attribution patterns. It was hypothesized that the attribution patterns of locus of control and moral accountability would show divergent individualistic and collectivistic influences in a culture during change from a collectivist culture to an individualist culture. 98 university students from the United States and Puerto Rico were administered the Singelis Individualism-Collectivism Scale, Rotter's Locus of Control Scale, and Miller and Luthar's justice-related moral accountability vignettes. Contrary to expectation, the Puerto Rican sample scored less external in locus of control than the United States sample. No cultural differences in moral accountability were found. No strong correlations were found among the variables at the individual level of analysis. Accounting for these results included the lack of representativeness of the samples, the independence of relation between variables at different levels of analysis, and social change.

  17. Influence of culture conditions and preconditioning on survival of Lactobacillus delbrueckii subspecies bulgaricus ND02 during lyophilization.

    Science.gov (United States)

    Shao, Yuyu; Gao, Shuran; Guo, Huiling; Zhang, Heping

    2014-03-01

    The cryotolerance of Lactobacillus delbrueckii ssp. bulgaricus is weak during vacuum freeze-drying. Many factors affect cryoresistance of these bacteria, such as cryoprotectant composition, the lyophilization technology used, and the intrinsic characteristics of the bacteria. In this research, we explored the fermentation technology and other preconditioning treatments of cells in improving the cryoresistance of Lactobacillus delbrueckii ssp. bulgaricus strains during lyophilization. The addition of yeast extract in the propagation medium exerted a negative effect on the cryotolerance of these bacteria and decreased survival during lyophilization. The count of the freeze-dried cells from medium containing a high level (4%) of yeast extract was only 4.1 × 10(9) cfu/g, indicating a death rate as high as 88%, compared with the culture medium without yeast extract, with a lower death rate of 44.7%. When Lactobacillus delbrueckii ssp. bulgaricus ND02 was propagated in yeast extract-free de Man, Rogosa, and Sharpe broth at a set pH value of 5.1, the cells showed unexpectedly higher survival after freeze-drying. Viable counts of the lyophilized cell of strain ND02 cultivated at pH 5.1 could reach 1.05 × 10(11)cfu/g and survival of the freeze-drying process was 68.3%, whereas at pH 5.7, survival was only 51.2%. We also examined the effects of pretreatment of cells on survival of the bacteria after vacuum freeze-drying. By analyzing the effect of pretreatment conditions on the expression of cold- and heat-shock genes, we established 2 pretreatments that improved survival of cells after lyophilization. Optimal fermentation conditions and pretreatment of the cell-cryoprotectant mixture at 10°C for 2h or 37°C for 30 min improved the cryoresistance of 4 strains of Lactobacillus delbrueckii ssp. bulgaricus to varying degrees. Cells of IMAU20269 and IMAU20291 that were pretreated showed enhanced survival of 16.06 and 16.82%, respectively, after lyophilization. Expression of

  18. Osteoinduction and survival of osteoblasts and bone-marrow stromal cells in 3D biphasic calcium phosphate scaffolds under static and dynamic culture conditions.

    Science.gov (United States)

    Rath, Subha N; Strobel, Leonie A; Arkudas, Andreas; Beier, Justus P; Maier, Anne-Kathrin; Greil, Peter; Horch, Raymund E; Kneser, Ulrich

    2012-10-01

    In many tissue engineering approaches, the basic difference between in vitro and in vivo conditions for cells within three-dimensional (3D) constructs is the nutrition flow dynamics. To achieve comparable results in vitro, bioreactors are advised for improved cell survival, as they are able to provide a controlled flow through the scaffold. We hypothesize that a bioreactor would enhance long-term differentiation conditions of osteogenic cells in 3D scaffolds. To achieve this either primary rat osteoblasts or bone marrow stromal cells (BMSC) were implanted on uniform-sized biphasic calcium phosphate (BCP) scaffolds produced by a 3D printing method. Three types of culture conditions were applied: static culture without osteoinduction (Group A); static culture with osteoinduction (Group B); dynamic culture with osteoinduction (Group C). After 3 and 6 weeks, the scaffolds were analysed by alkaline phosphatase (ALP), dsDNA amount, SEM, fluorescent labelled live-dead assay, and real-time RT-PCR in addition to weekly alamarBlue assays. With osteoinduction, increased ALP values and calcium deposition are observed; however, under static conditions, a significant decrease in the cell number on the biomaterial is observed. Interestingly, the bioreactor system not only reversed the decreased cell numbers but also increased their differentiation potential. We conclude from this study that a continuous flow bioreactor not only preserves the number of osteogenic cells but also keeps their differentiation ability in balance providing a suitable cell-seeded scaffold product for applications in regenerative medicine.

  19. Oxygen Partial Pressure Is a Rate-Limiting Parameter for Cell Proliferation in 3D Spheroids Grown in Physioxic Culture Condition.

    Science.gov (United States)

    Gomes, Aurélie; Guillaume, Ludivine; Grimes, David Robert; Fehrenbach, Jérôme; Lobjois, Valérie; Ducommun, Bernard

    2016-01-01

    The in situ oxygen partial pressure in normal and tumor tissues is in the range of a few percent. Therefore, when studying cell growth in 3D culture systems, it is essential to consider how the physiological oxygen concentration, rather than the one in the ambient air, influences the proliferation parameters. Here, we investigated the effect of reducing oxygen partial pressure from 21% to 5% on cell proliferation rate and regionalization in a 3D tumor spheroid model. We found that 5% oxygen concentration strongly inhibited spheroid growth, changed the proliferation gradient and reduced the 50% In Depth Proliferation index (IDP50), compared with culture at 21% oxygen. We then modeled the oxygen partial pressure profiles using the experimental data generated by culturing spheroids in physioxic and normoxic conditions. Although hypoxia occurred at similar depth in spheroids grown in the two conditions, oxygen partial pressure was a major rate-limiting factor with a critical effect on cell proliferation rate and regionalization only in spheroids grown in physioxic condition and not in spheroids grown at atmospheric normoxia. Our findings strengthen the need to consider conducting experiment in physioxic conditions (i.e., tissue normoxia) for proper understanding of cancer cell biology and the evaluation of anticancer drugs in 3D culture systems.

  20. Brain stem slice conditioned medium contains endogenous BDNF and GDNF that affect neural crest boundary cap cells in co-culture.

    Science.gov (United States)

    Kaiser, Andreas; Kale, Ajay; Novozhilova, Ekaterina; Siratirakun, Piyaporn; Aquino, Jorge B; Thonabulsombat, Charoensri; Ernfors, Patrik; Olivius, Petri

    2014-05-30

    Conditioned medium (CM), made by collecting medium after a few days in cell culture and then re-using it to further stimulate other cells, is a known experimental concept since the 1950s. Our group has explored this technique to stimulate the performance of cells in culture in general, and to evaluate stem- and progenitor cell aptitude for auditory nerve repair enhancement in particular. As compared to other mediums, all primary endpoints in our published experimental settings have weighed in favor of conditioned culture medium, where we have shown that conditioned culture medium has a stimulatory effect on cell survival. In order to explore the reasons for this improved survival we set out to analyze the conditioned culture medium. We utilized ELISA kits to investigate whether brain stem (BS) slice CM contains any significant amounts of brain-derived neurotrophic factor (BDNF) and glial cell derived neurotrophic factor (GDNF). We further looked for a donor cell with progenitor characteristics that would be receptive to BDNF and GDNF. We chose the well-documented boundary cap (BC) progenitor cells to be tested in our in vitro co-culture setting together with cochlear nucleus (CN) of the BS. The results show that BS CM contains BDNF and GDNF and that survival of BC cells, as well as BC cell differentiation into neurons, were enhanced when BS CM were used. Altogether, we conclude that BC cells transplanted into a BDNF and GDNF rich environment could be suitable for treatment of a traumatized or degenerated auditory nerve. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. A study of brain protection during total arch replacement comparing antegrade cerebral perfusion versus hypothermic circulatory arrest, with or without retrograde cerebral perfusion: analysis based on the Japan Adult Cardiovascular Surgery Database.

    Science.gov (United States)

    Okita, Yutaka; Miyata, Hiroaki; Motomura, Noboru; Takamoto, Shinichi

    2015-02-01

    Antegrade cerebral perfusion and hypothermic circulatory arrest, with or without retrograde cerebral perfusion, are 2 major types of brain protection that are used during aortic arch surgery. We conducted a comparative study of these methods in patients undergoing total arch replacement to evaluate the clinical outcomes in Japan, based on the Japan Adult Cardiovascular Surgery Database. A total of 16,218 patients underwent total arch replacement between 2009 and 2012. Patients with acute aortic dissection or ruptured aneurysm, or who underwent emergency surgery were excluded, leaving 8169 patients for analysis. For the brain protection method, 7038 patients had antegrade cerebral perfusion and 1141 patients had hypothermic circulatory arrest/retrograde cerebral perfusion. A nonmatched comparison was made between the 2 groups, and propensity score analysis was performed among 1141 patients. The matched paired analysis showed that the minimum rectal temperature was lower in the hypothermic circulatory arrest/retrograde cerebral perfusion group (21.2°C ± 3.7°C vs 24.2°C ± 3.2°C) and that the duration of cardiopulmonary bypass and cardiac ischemia was longer in the antegrade cerebral perfusion group. There were no significant differences between the antegrade cerebral perfusion and hypothermic circulatory arrest/retrograde cerebral perfusion groups with regard to 30-day mortality (3.2% vs 4.0%), hospital mortality (6.0% vs 7.1%), incidence of stroke (6.7% vs 8.6%), or transient neurologic disorder (4.1% vs 4.4%). There was no difference in a composite outcome of hospital death, bleeding, prolonged ventilation, need for dialysis, stroke, and infection (antegrade cerebral perfusion 28.4% vs hypothermic circulatory arrest 30.1%). However, hypothermic circulatory arrest/retrograde cerebral perfusion resulted in a significantly higher rate of prolonged stay in the intensive care unit (>8 days: 24.2% vs 15.6%). Hypothermic circulatory arrest/retrograde cerebral

  2. Culturing Protozoa.

    Science.gov (United States)

    Stevenson, Paul

    1980-01-01

    Compares various nutrient media, growth conditions, and stock solutions used in culturing protozoa. A hay infusion in Chalkey's solution maintained at a stable temperature is recommended for producing the most dense and diverse cultures. (WB)

  3. Culturing Protozoa.

    Science.gov (United States)

    Stevenson, Paul

    1980-01-01

    Compares various nutrient media, growth conditions, and stock solutions used in culturing protozoa. A hay infusion in Chalkey's solution maintained at a stable temperature is recommended for producing the most dense and diverse cultures. (WB)

  4. Organotypic brain slice cultures of adult transgenic P301S mice--a model for tauopathy studies.

    Directory of Open Access Journals (Sweden)

    Agneta Mewes

    Full Text Available BACKGROUND: Organotypic brain slice cultures represent an excellent compromise between single cell cultures and complete animal studies, in this way replacing and reducing the number of animal experiments. Organotypic brain slices are widely applied to model neuronal development and regeneration as well as neuronal pathology concerning stroke, epilepsy and Alzheimer's disease (AD. AD is characterized by two protein alterations, namely tau hyperphosphorylation and excessive amyloid β deposition, both causing microglia and astrocyte activation. Deposits of hyperphosphorylated tau, called neurofibrillary tangles (NFTs, surrounded by activated glia are modeled in transgenic mice, e.g. the tauopathy model P301S. METHODOLOGY/PRINCIPAL FINDINGS: In this study we explore the benefits and limitations of organotypic brain slice cultures made of mature adult transgenic mice as a potential model system for the multifactorial phenotype of AD. First, neonatal (P1 and adult organotypic brain slice cultures from 7- to 10-month-old transgenic P301S mice have been compared with regard to vitality, which was monitored with the lactate dehydrogenase (LDH- and the MTT (3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assays over 15 days. Neonatal slices displayed a constant high vitality level, while the vitality of adult slice cultures decreased significantly upon cultivation. Various preparation and cultivation conditions were tested to augment the vitality of adult slices and improvements were achieved with a reduced slice thickness, a mild hypothermic cultivation temperature and a cultivation CO(2 concentration of 5%. Furthermore, we present a substantial immunohistochemical characterization analyzing the morphology of neurons, astrocytes and microglia in comparison to neonatal tissue. CONCLUSION/SIGNIFICANCE: Until now only adolescent animals with a maximum age of two months have been used to prepare organotypic brain slices. The current study

  5. Artificial neural network-based model for the prediction of optimal growth and culture conditions for maximum biomass accumulation in multiple shoot cultures of Centella asiatica.

    Science.gov (United States)

    Prasad, Archana; Prakash, Om; Mehrotra, Shakti; Khan, Feroz; Mathur, Ajay Kumar; Mathur, Archana

    2017-01-01

    An artificial neural network (ANN)-based modelling approach is used to determine the synergistic effect of five major components of growth medium (Mg, Cu, Zn, nitrate and sucrose) on improved in vitro biomass yield in multiple shoot cultures of Centella asiatica. The back propagation neural network (BPNN) was employed to predict optimal biomass accumulation in terms of growth index over a defined culture duration of 35 days. The four variable concentrations of five media components, i.e. MgSO4 (0, 0.75, 1.5, 3.0 mM), ZnSO4 (0, 15, 30, 60 μM), CuSO4 (0, 0.05, 0.1, 0.2 μM), NO3 (20, 30, 40, 60 mM) and sucrose (1, 3, 5, 7 %, w/v) were taken as inputs for the ANN model. The designed model was evaluated by performing three different sets of validation experiments that indicated a greater similarity between the target and predicted dataset. The results of the modelling experiment suggested that 1.5 mM Mg, 30 μM Zn, 0.1 μM Cu, 40 mM NO3 and 6 % (w/v) sucrose were the respective optimal concentrations of the tested medium components for achieving maximum growth index of 1654.46 with high centelloside yield (62.37 mg DW/culture) in the cultured multiple shoots. This study can facilitate the generation of higher biomass of uniform, clean, good quality C. asiatica herb that can efficiently be utilized by pharmaceutical industries.

  6. Genus-specific kinetoplast-DNA PCR and parasite culture for the diagnosis of localised cutaneous leishmaniasis: applications for clinical trials under field conditions in Brazil

    Directory of Open Access Journals (Sweden)

    Julia Ampuero

    2009-11-01

    Full Text Available The positivities of two methods for the diagnosis of localised cutaneous leishmaniasis (CL were estimated in 280 patients enrolled in a clinical trial. The trial was conducted in an endemic area of Leishmania (Viannia braziliensis and trial participants were patients with skin ulcers and positive leishmanin skin tests. Patients underwent aspirative skin punctures of the ulcerated lesions and lymph nodes for in vitro cultures, which were processed under field conditions at the local health centre. Skin lesion biopsies were tested at a reference laboratory using kinetoplastid DNA (kDNA-PCR to detect DNA. The median time required to obtain a positive culture from the skin samples was seven days and the contamination rate of the samples was 1.8%. The positivities of the cultures from skin lesions, kDNA-PCR and the combination of the two methods were 78.2% (95% CI: 73-82.6%, 89.3% (95% CI: 85.1-92.4% and 97.1% (95% CI: 94.5-98.5%. We conclude that parasite culture is a feasible method for the detection of Leishmania in field conditions and that the combination of culture and PCR has a potential role for the diagnosis of CL in candidates for clinical trials.

  7. Genus-specific kinetoplast-DNA PCR and parasite culture for the diagnosis of localised cutaneous leishmaniasis: applications for clinical trials under field conditions in Brazil.

    Science.gov (United States)

    Ampuero, Julia; Rios, Alexandre Pereira; Carranza-Tamayo, César Omar; Romero, Gustavo Adolfo Sierra

    2009-11-01

    The positivities of two methods for the diagnosis of localised cutaneous leishmaniasis (CL) were estimated in 280 patients enrolled in a clinical trial. The trial was conducted in an endemic area of Leishmania (Viannia) braziliensis and trial participants were patients with skin ulcers and positive leishmanin skin tests. Patients underwent aspirative skin punctures of the ulcerated lesions and lymph nodes for in vitro cultures, which were processed under field conditions at the local health centre. Skin lesion biopsies were tested at a reference laboratory using kinetoplastid DNA (kDNA)-PCR to detect DNA. The median time required to obtain a positive culture from the skin samples was seven days and the contamination rate of the samples was 1.8%. The positivities of the cultures from skin lesions, kDNA-PCR and the combination of the two methods were 78.2% (95% CI: 73-82.6%), 89.3% (95% CI: 85.1-92.4%) and 97.1% (95% CI: 94.5-98.5%). We conclude that parasite culture is a feasible method for the detection of Leishmania in field conditions and that the combination of culture and PCR has a potential role for the diagnosis of CL in candidates for clinical trials.

  8. Statistical optimization of culture conditions for milk-clotting enzyme production by bacillus amyloliquefaciens using wheat bran-an agro-industry waste.

    Science.gov (United States)

    Zhang, Weibing; He, Xiaoling; Liu, Hongna; Guo, Huiyuan; Ren, Fazheng; Wen, Pengcheng

    2013-12-01

    In order to improve the production of the milk-clotting enzyme under submerged fermentation, two statistical methods were applied to optimize the culture conditions of Bacillus amyloliquefaciens D4 using wheat bran as nutrient source. First, initial pH, agitation speed, and fermentation time were shown to have significant effects on D4 enzyme production using the Plackett-Burman experimental design. Subsequently, optimal conditions were obtained using the Box-Behnken method, which were as follows: initial pH 7.57, agitation speed 241 rpm, fermentation time 53.3 h. Under these conditions, the milk-clotting enzyme production was remarkably enhanced. The milk-clotting enzyme activity reached 1996.9 SU/mL, which was 2.92-fold higher than that of the initial culture conditions, showing that the Plackett-Burman design and Box-Behnken response surface method are effective to optimize culture conditions. The research can provide a reference for full utilization of wheat bran and the production of milk-clotting enzyme by B. amyloliquefaciens D4 under submerged fermentation.

  9. Maintenance of undifferentiated mouse embryonic stem cells in suspension by the serum- and feeder-free defined culture condition

    OpenAIRE

    Tsuji, Yukiiko; Yoshimura, Naoko; Aoki, Hitomi; Sharov, Alexei A; Minoru S.H. Ko; Motohashi, Tsutomu; KUNISADA, Takahiro

    2008-01-01

    The proven pluripotency of ES cells is expected to allow their therapeutic use for regenerative medicine. We present here a novel suspension culture method that facilitates the proliferation of pluripotent ES cells without feeder cells. The culture medium contains polyvinyl alcohol (PVA), free of either animal-derived or synthetic serum, and contains very low amounts of peptidic or proteinaceous materials, which are favorable for therapeutic use. ES cells showed sustained proliferation in the...

  10. [Development of a gentamicin producer under different culture conditions studied by a method of differential centrifugation of the mycelium in a saccharose density gradient].

    Science.gov (United States)

    Losev, V V; Laznikova, T N; Dmitrieva, S V

    1981-05-01

    The method of differential centrifugation in the sucrose density gradient (SDG) enabled one to trace the changes in the development of the seed and fermentation mycelium of the gentamicin-producing organism. Correlation between gentamicin distribution in the SDG and the culture productivity was found. It was shown that the culture grown under the optimal aeration and agitation conditions was characterized by formation of higher amounts of the mycelium in the 5th and 6th layers of the SDG. Such mycelium was more productive than that from the other SDG layers. The most productive 48-hour seed culture had the more significant part of the mycelium in the 3rd layer of the SDG. When such a culture had the more significant part of the mycelium in the 3rd layer of the SDG. When such a culture was used as the seed material, the activity of the fermentation broth was the highest. The method of differential centrifugation in the SDG provides determination of the culture productivity by the volumes of the fermentation mycelium in the 5th and 6th layers or the seed mycelium in the 3rd layer of the SDG.

  11. The influence of physiological matrix conditions on permanent culture of induced pluripotent stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Heras-Bautista, Carlos O; Katsen-Globa, Alisa; Schloerer, Nils E; Dieluweit, Sabine; Abd El Aziz, Osama M; Peinkofer, Gabriel; Attia, Wael A; Khalil, Markus; Brockmeier, Konrad; Hescheler, Jürgen; Pfannkuche, Kurt

    2014-08-01

    Cardiomyocytes (CMs) from induced pluripotent stem (iPS) cells mark an important achievement in the development of in vitro pharmacological, toxicological and developmental assays and in the establishment of protocols for cardiac cell replacement therapy. Using CMs generated from murine embryonic stem cells and iPS cells we found increased cell-matrix interaction and more matured embryoid body (EB) structures in iPS cell-derived EBs. However, neither suspension-culture in form of purified cardiac clusters nor adherence-culture on traditional cell culture plastic allowed for extended culture of CMs. CMs grown for five weeks on polystyrene exhibit signs of massive mechanical stress as indicated by α-smooth muscle actin expression and loss of sarcomere integrity. Hydrogels from polyacrylamide allow adapting of the matrix stiffness to that of cardiac tissue. We were able to eliminate the bottleneck of low cell adhesion using 2,5-Dioxopyrrolidin-1-yl-6-acrylamidohexanoate as a crosslinker to immobilize matrix proteins on the gels surface. Finally we present an easy method to generate polyacrylamide gels with a physiological Young's modulus of 55 kPa and defined surface ligand, facilitating the culture of murine and human iPS-CMs, removing excess mechanical stresses and reducing the risk of tissue culture artifacts exerted by stiff substrates.

  12. Feasibility of measuring superior mesenteric artery blood flow during cardiac surgery under hypothermic cardiopulmonary bypass using transesophageal echocardiography: An observational study

    Directory of Open Access Journals (Sweden)

    Naveen G Singh

    2016-01-01

    Full Text Available Background: Abdominal complications being rare but results in high mortality, commonly due to splanchnic organ hypoperfusion during the perioperative period of cardiac surgery. There are no feasible methods to monitor intraoperative superior mesenteric artery blood flow (SMABF. Hence, the aim of this study was to evaluate the feasibility and to measure SMABF using transesophageal echocardiography (TEE during cardiac surgery under hypothermic cardiopulmonary bypass (CPB. Methodology: Thirty-five patients undergoing elective cardiac surgery under CPB were enrolled. Heart rate, mean arterial pressure (MAP, cardiac output (CO, SMABF, superior mesenteric artery (SMA diameter, superior mesentric artery blood flow over cardiac output (SMA/CO ratio and arterial blood lactates were recorded at three time intervals. T0: before sternotomy, T1: 30 min after initiation of CPB and T2: after sternal closure. Results: SMA was demonstrated in 32 patients. SMABF, SMA diameter, SMA/CO, MAP and CO-decreased significantly (P 0.05 between T0 and T2. Lactates increased progressively from T0 to T2. Conclusion: Study shows that there is decrease in SMABF during CPB and returns to baseline after CPB. Hence, it is feasible to measure SMABF using TEE in patients undergoing cardiac surgery under hypothermic CPB. TEE can be a promising tool in detecting and preventing splanchnic hypoperfusion during perioperative period.

  13. Actinobacillus pleuropneumoniae genes expression in biofilms cultured under static conditions and in a drip-flow apparatus.

    Science.gov (United States)

    Tremblay, Yannick D N; Deslandes, Vincent; Jacques, Mario

    2013-05-31

    Actinobacillus pleuropneumoniae is the Gram-negative bacterium responsible for porcine pleuropneumonia. This respiratory infection is highly contagious and characterized by high morbidity and mortality. The objectives of our study were to study the transcriptome of A. pleuropneumoniae biofilms at different stages and to develop a protocol to grow an A. pleuropneumoniae biofilm in a drip-flow apparatus. This biofilm reactor is a system with an air-liquid interface modeling lung-like environment. Bacteria attached to a surface (biofilm) and free floating bacteria (plankton) were harvested for RNA isolation. Labelled cDNA was hybridized to a microarray to compare the expression profiles of planktonic cells and biofilm cells. It was observed that 47 genes were differentially expressed (22 up, 25 down) in a 4 h-static growing/maturing biofilm and 117 genes were differentially expressed (49 up, 68 down) in a 6h-static dispersing biofilm. The transcriptomes of a 4 h biofilm and a 6 h biofilm were also compared and 456 genes (235 up, 221 down) were identified as differently expressed. Among the genes identified in the 4 h vs 6h biofilm experiment, several regulators of stress response were down-regulated and energy metabolism associated genes were up-regulated. Biofilm bacteria cultured using the drip-flow apparatus differentially expressed 161 genes (68 up, 93 down) compared to the effluent bacteria. Cross-referencing of differentially transcribed genes in the different assays revealed that drip-flow biofilms shared few differentially expressed genes with static biofilms (4 h or 6 h) but shared several differentially expressed genes with natural or experimental infections in pigs. The formation of a static biofilm by A. pleuropneumoniae strain S4074 is a rapid process and transcriptional analysis indicated that dispersal observed at 6 h is driven by nutritional stresses. Furthermore, A. pleuropneumoniae can form a biofilm under low-shear force in a drip-flow apparatus and

  14. Physiological, Anatomical and Metabolic Implications of Salt Tolerance in the Halophyte Salvadora persica under Hydroponic Culture Condition.

    Science.gov (United States)

    Parida, Asish K; Veerabathini, Sairam K; Kumari, Asha; Agarwal, Pradeep K

    2016-01-01

    Salt tolerance mechanism of an extreme halophyte Salvadora persica was assessed by analyzing growth, nutrient uptake, anatomical modifications and alterations in levels of some organic metabolites in seedlings imposed to various levels of salinity (0, 250, 500, and 750 mM NaCl) under hydroponic culture condition. After 21 days of salt treatment, plant height, leaf area, and shoot biomass decreased with increase in salinity whereas the leaf succulence increased significantly with increasing salinity in S. persica. The RWC% of leaf increased progressively in salt-treated seedlings as compared to control. Na(+) contents of leaf, stem and root increased in dose-dependent manner whereas there was no significant changes in K(+) content. There was significant alterations in leaf, stem, and root anatomy by salinity. The thickness of epidermis and spongy parenchyma of leaf increased in salt treated seedlings as compared to control, whereas palisade parenchyma decreased dramatically in extreme salinity (750 mM NaCl). There was a significant reduction in stomatal density and stomatal pore area of leaf with increasing salinity. Anatomical observations of stem showed that the epidermal cells diameter and thickness of cortex decreased by salinity whereas thickness of hypodermal layer, diameter of hypodermal cell, pith area and pith cell diameter increased by high salinity. The root anatomy showed an increase in epidermal thickness by salinity whereas diameters of epidermal cells and xylem vessels decreased. Total soluble sugar content remained unchanged at all levels of salinity whereas reducing sugar content increased by twofold at high salinity (750 mM NaCl). The starch content of leaf decreased progressively in NaCl treated seedlings as compared to control. Total free amino acid content did not change at low salinity (250 mM), whereas it increased significantly at higher salinity (500 and 750 mM NaCl). The proline content increased in NaCl treated seedlings as compared to

  15. A defined mix of cytokines mimics conditioned medium from cultures of bone marrow-derived mesenchymal stem cells and elicits bone regeneration.

    Science.gov (United States)

    Katagiri, Wataru; Sakaguchi, Kohei; Kawai, Takamasa; Wakayama, Yukiko; Osugi, Masashi; Hibi, Hideharu

    2017-06-01

    We previously reported that conditioned medium from cultures of bone marrow-derived mesenchymal stem cells have strong potential to accelerate bone regeneration. We now examine in vitro and in vivo a defined cytokine cocktail that mimics the effects of conditioned medium on bone regeneration. A cocktail of recombinant human insulin-like growth factor-1, vascular endothelial growth factor-A and transforming growth factor-β1 was prepared at concentrations similar to those in conditioned medium. Conversely, these cytokines were depleted from conditioned medium, and the effects of the cocktail, the conditioned medium and the cytokine-depleted conditioned medium on bone regeneration were evaluated in vitro and in vivo. The cytokine cocktail and conditioned medium enhanced cell migration, tube formation, and expression of osteogenic and angiogenic genes. Depletion of cytokines significantly decreased the effects of conditioned medium in vitro. Similarly, the cytokine cocktail and conditioned medium, but not cytokine-depleted medium, increased bone regeneration in damaged rat calvarial bone. Immunohistochemistry indicated that the cytokine cocktail and conditioned medium strongly enhanced recruitment of endogenous stem cells and endothelial cells. The data indicate that the cytokine cocktail and conditioned medium enhance the migration of stem cells and endothelial cells to damaged bone, and elicit osteogenesis and angiogenesis. © 2017 John Wiley & Sons Ltd.

  16. Selective cerebral perfusion with aortic cannulation and short-term hypothermic circulatory arrest in aortic arch reconstruction.

    Science.gov (United States)

    Turkoz, R; Saritas, B; Ozker, E; Vuran, C; Yoruker, U; Balci, S; Altun, D; Turkoz, A

    2014-01-01

    The deep hypothermic circulatory arrest (DHCA) technique has been used in aortic arch and isthmus hypoplasia for many years. However, with the demonstration of the deleterious effects of prolonged DHCA, selective cerebral perfusion (SCP) has started to be used in aortic arch repair. For SCP, perfusion via the innominate artery route is generally preferred (either direct innominate artery cannulation or re-routing of the cannula in the aorta is used). Herein, we describe our technique and the result of arch reconstruction in combination with selective cerebral and myocardial perfusion (SCMP) and short-term total circulatory arrest (TCA) (5-10 min) through ascending aortic cannulation. Thirty-seven cases with aortic arch and isthmus hypoplasia accompanying cardiac defects were operated on with SCMP and short TCA in Baskent University Istanbul Research and Training Hospital between January 2007 and Sep 2012. There were 17 cases with ventricular septal defect (VSD)-coarctation with aortic arch hypoplasia (CoAAH), 4 cases of transposition of the great arteries-VSD-CoAAH, 4 cases of Taussing Bing Anomaly-CoAAH, 2 cases complete atrioventricular canal defect-CoAAH, 3 cases single ventricle-CoAAH, 3 cases of type A interruption-VSD, 2 subvalvular aortic stenosis-CoAAH and 2 cases of isolated CoAAH. The aorta was cannulated in the middle of the ascending aorta in all cases. The cross-clamp was applied to the aortic arch distal to either the innominate artery or the left carotid artery. In addition, a side-biting clamp was applied to the descending aorta. The aorta between these two clamps was reconstructed with gluteraldehyde-treated autogeneous pericardium, using SCMP. The proximal arch and distal ascending aorta reconstructions were carried out under short TCA. The mean age of the patients was 2.5 ± 2 months. The mean cardiopulmonary bypass and cross-clamp times were 144 ± 58 and 43 ± 27 minutes, respectively. The mean SCMP and descending aorta ischemia times were 22

  17. Ulinastatin Protects against Acute Kidney Injury in Infant Piglets Model Undergoing Surgery on Hypothermic Low-Flow Cardiopulmonary Bypass.

    Directory of Open Access Journals (Sweden)

    Xiaocou Wang

    Full Text Available Infants are more vulnerable to kidney injuries induced by inflammatory response syndrome and ischemia-reperfusion injury following cardiopulmonary bypass especially with prolonged hypothermic low-flow (HLF. This study aims to evaluate the protective role of ulinastatin, an anti-inflammatory agent, against acute kidney injuries in infant piglets model undergoing surgery on HLF cardiopulmonary bypass.Eighteen general-type infant piglets were randomly separated into the ulinastatin group (Group U, n = 6, the control group (Group C, n = 6, and the sham operation group (Group S, n = 6, and anaesthetized. The groups U and C received following experimental procedure: median thoracotomy, routine CPB and HLF, and finally weaned from CPB. The group S only underwent sham median thoracotomy. Ulinastatin at a dose of 5,000 units/kg body weight and a certain volume of saline were administrated to animals of the groups U and C at the beginning of CPB and at aortic declamping, respectively. Venous blood samples were collected at 3 different time points: after anesthesia induction in all experimental groups, 5 minutes, and 120 minutes after CPB in the Groups U and C. Markers for inflammation and acute kidney injury were tested in the collected plasma. N-acetyl-β-D-glucosaminidase (NAG from urine, markers of oxidative stress injury and TUNEL-positive cells in kidney tissues were also detected.The expressions of plasma inflammatory markers and acute kidney injury markers increased both in Group U and Group C at 5 min and 120 min after CPB. Also, numbers of TUNEL-positive cells and oxidative stress markers in kidney rose in both groups. At the time point of 120-min after CPB, compared with the Group C, some plasma inflammatory and acute kidney injury markers as well as TUNEL-positive cells and oxidative stress markers in kidney were significantly reduced in the Group U. Histologic analyses showed that HLF promoted acute tubular necrosis and dilatation

  18. Chronic voluntary alcohol consumption results in tolerance to sedative/hypnotic and hypothermic effects of alcohol in hybrid mice.

    Science.gov (United States)

    Ozburn, Angela Renee; Harris, R Adron; Blednov, Yuri A

    2013-03-01

    The continuous two-bottle choice test is the most common measure of alcohol consumption but there is remarkably little information about the development of tolerance or dependence with this procedure. We showed that C57BL/6J × FVB/NJ and FVB/NJ×C57BL/6JF1 hybrid mice demonstrate greater preference for and consumption of alcohol than either parental strain. In order to test the ability of this genetic model of high alcohol consumption to produce neuroadaptation, we examined development of alcohol tolerance and dependence after chronic self-administration using a continuous access two-bottle choice paradigm. Ethanol-experienced mice stably consumed about 16-18 g/kg/day of ethanol. Ethanol-induced withdrawal severity was assessed (after 59 days of drinking) by scoring handling-induced convulsions; withdrawal severity was minimal and did not differ between ethanol-experienced and -naïve mice. After 71 days of drinking, the rate of ethanol clearance was similar for ethanol-experienced and -naïve mice. After 77 days of drinking, ethanol-induced loss of righting reflex (LORR) was tested daily for 5 days. Ethanol-experienced mice had a shorter duration of LORR. For both ethanol-experienced and -naïve mice, blood ethanol concentrations taken at gain of righting reflex were greater on day 5 than on day 1, indicative of tolerance. After 98 days of drinking, ethanol-induced hypothermia was assessed daily for 3 days. Both ethanol-experienced and -naïve mice developed rapid and chronic tolerance to ethanol-induced hypothermia, with significant group differences on the first day of testing. In summary, chronic, high levels of alcohol consumption in F1 hybrid mice produced rapid and chronic tolerance to both the sedative/hypnotic and hypothermic effects of ethanol; additionally, a small degree of metabolic tolerance developed. The development of tolerance supports the validity of using this model of high alcohol consumption in genetic studies of alcoholism.

  19. Culture of bovine ovarian follicle wall sections maintained the highly estrogenic profile under basal and chemically defined conditions

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, R.B. [Laboratório de Biotecnologia da Reprodução, Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF (Brazil); Salles, L.P. [Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF (Brazil); Silva, I. Oliveira e; Gulart, L.V.M. [Laboratório de Biotecnologia da Reprodução, Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF (Brazil); Souza, D.K. [Laboratório de Biotecnologia da Reprodução, Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF (Brazil); Faculdade de Ceilândia, Universidade de Brasília, Ceilândia, DF (Brazil); Torres, F.A.G. [Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF (Brazil); Bocca, A.L. [Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF (Brazil); Silva, A.A.M. Rosa e [Laboratório de Biotecnologia da Reprodução, Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF (Brazil)

    2013-08-16

    Follicle cultures reproduce in vitro the functional features observed in vivo. In a search for an ideal model, we cultured bovine antral follicle wall sections (FWS) in a serum-free defined medium (DM) known to induce 17β-estradiol (E{sub 2}) production, and in a nondefined medium (NDM) containing serum. Follicles were sectioned and cultured in NDM or DM for 24 or 48 h. Morphological features were determined by light microscopy. Gene expression of steroidogenic enzymes and follicle-stimulating hormone (FSH) receptor were determined by RT-PCR; progesterone (P{sub 4}) and E{sub 2} concentrations in the media were measured by radioimmunoassay. DM, but not NDM, maintained an FWS morphology in vitro that was similar to fresh tissue. DM also induced an increase in the expression of all steroidogenic enzymes, except FSH receptor, but NDM did not. In both DM and NDM, there was a gradual increase in P{sub 4} throughout the culture period; however, P{sub 4} concentration was significantly higher in NDM. In both media, E{sub 2} concentration was increased at 24 h, followed by a decrease at 48 h. The E{sub 2}:P{sub 4} ratio was higher in DM than in NDM. These results suggest that DM maintains morphological structure, upregulates the expression of steroidogenic enzyme genes, and maintains steroid production with a high E{sub 2}:P{sub 4} ratio in FWS cultures.

  20. Large-scale gene expression profiling data for the model moss Physcomitrella patens aid understanding of developmental progression, culture and stress conditions.

    Science.gov (United States)

    Hiss, Manuel; Laule, Oliver; Meskauskiene, Rasa M; Arif, Muhammad A; Decker, Eva L; Erxleben, Anika; Frank, Wolfgang; Hanke, Sebastian T; Lang, Daniel; Martin, Anja; Neu, Christina; Reski, Ralf; Richardt, Sandra; Schallenberg-Rüdinger, Mareike; Szövényi, Peter; Tiko, Theodhor; Wiedemann, Gertrud; Wolf, Luise; Zimmermann, Philip; Rensing, Stefan A

    2014-08-01

    The moss Physcomitrella patens is an important model organism for studying plant evolution, development, physiology and biotechnology. Here we have generated microarray gene expression data covering the principal developmental stages, culture forms and some environmental/stress conditions. Example analyses of developmental stages and growth conditions as well as abiotic stress treatments demonstrate that (i) growth stage is dominant over culture conditions, (ii) liquid culture is not stressful for the plant, (iii) low pH might aid protoplastation by reduced expression of cell wall structure genes, (iv) largely the same gene pool mediates response to dehydration and rehydration, and (v) AP2/EREBP transcription factors play important roles in stress response reactions. With regard to the AP2 gene family, phylogenetic analysis and comparison with Arabidopsis thaliana shows commonalities as well as uniquely expressed family members under drought, light perturbations and protoplastation. Gene expression profiles for P. patens are available for the scientific community via the easy-to-use tool at https://www.genevestigator.com. By providing large-scale expression profiles, the usability of this model organism is further enhanced, for example by enabling selection of control genes for quantitative real-time PCR. Now, gene expression levels across a broad range of conditions can be accessed online for P. patens.

  1. Effects of Macromolecular Crowding on Human Adipose Stem Cell Culture in Fetal Bovine Serum, Human Serum, and Defined Xeno-Free/Serum-Free Conditions

    Directory of Open Access Journals (Sweden)

    Mimmi Patrikoski

    2017-01-01

    Full Text Available Microenvironment plays an important role for stem cell proliferation and differentiation. Macromolecular crowding (MMC was recently shown to assist stem cells in forming their own matrix microenvironment in vitro. The ability of MMC to support adipose stem cell (ASC proliferation, metabolism, and multilineage differentiation was studied under different conditions: fetal bovine serum- (FBS- and human serum- (HS- based media and xeno- and serum-free (XF/SF media. Furthermore, the immunophenotype of ASCs under MMC was evaluated. The proliferative capacity of ASCs under MMC was attenuated in each condition. However, osteogenic differentiation was enhanced under MMC, shown by increased deposition of mineralized matrix in FBS and HS cultures. Likewise, significantly greater lipid droplet accumulation and increased collagen IV deposition indicated enhanced adipogenesis under MMC in FBS and HS cultures. In contrast, chondrogenic differentiation was attenuated in ASCs expanded under MMC. The ASC immunophenotype was maintained under MMC with significantly higher expression of CD54. However, MMC impaired metabolic activity and differentiation capacity of ASCs in XF/SF conditions. Both the supportive and inhibitory effects of MMC on ASC are culture condition dependent. In the presence of serum, MMC maintains ASC immunophenotype and enhances adipogenic and osteogenic differentiation at the cost of reduced proliferation.

  2. Antarctic Dry Valleys: Geological Processes in Hyperarid, Hypothermal Environments and Implications for Water on Mars

    Science.gov (United States)

    Head, J.; Dickson, J. L.; Levy, J. S.; Baker, D. M. H.; Marchant, D. R.

    2012-04-01

    The Antarctic Dry Valleys (ADV) are characterized by mean annual temperatures (MAT) well below the freezing point of water and are among the coldest and driest environments on Earth. In spite of these extreme conditions, seasonal temperatures (ST) and peak daytime temperatures (PDT) can locally exceed the melting point of water in certain settings in certain microenvironments. Three major microenvironments (upland stable zone, inland mixed zone, coastal thaw zone) are defined in the ADV on the basis of measurements of atmospheric temperatures (MAT/ST), soil moisture and relative humidity, and the concurrent availability and mobility of water; these microenvironments show variations in the abundance and character of different geomorphic features. For example, in the coldest upland stable zone melting is almost non-existent and sublimation polygons dominate; ice-wedge polygons occur in the coastal thaw zone where seasonal temperatures can exceed the melting temperature of water; sand-wedge polygons occur in the inland mixed zone. The ADV are characterized by a regional permafrost layer and a shallow ice table. In contrast to more temperate latitudes on Earth where the hydrological system and cycle are vertically integrated, the ADV hydrological system consists of a horizontally stratified hydrological cycle; the regional permafrost layer precludes vertical exchange of surface water and deep groundwater below the permafrost. Local near-surface meltwater is produced seasonally, flows across the surface to create gullies, channels and small fluvial features, and soaks into the dry upper part of the permafrost, running downslope along the top of the ice table in a perched aquifer. In this context, melting of seasonal and perennial surface and very near surface snow and ice deposits during peak seasonal and peak daytime temperatures causes a range of fluvial and liquid water-related features in the coastal thaw zone and inland mixed zone. Among the features and processes

  3. Optimisation of storage conditions for maintaining culturability of penicillin-susceptible and penicillin-resistant isolates of Streptococcus pneumoniae in transport medium.

    Science.gov (United States)

    Mason, C K; Goldsmith, C E; Moore, J E; McCarron, P; Leggett, P; Montgomery, J; Coulter, W A

    2010-01-01

    Methods employed by the World Health Organization (WHO) are used during this study to determine the optimum storage conditions for maintaining the culturability of Streptococcus pneumoniae in skimmed milk, tryptone, glucose and glycerin (STGG) transport medium. A comparison of S. pneumoniae strains sensitive and resistant to penicillin showed no significant difference in their survival ability in STGG medium. Furthermore, it is confirmed that storage at -70 degrees C remains most effective for maintaining viability by culture of S. pneumoniae. Storage at -20 degrees C would only be acceptable in the short-term, while storage at +4 degrees C is not recommended. Of note, this study has shown STGG medium at room temperature to be an efficient growth medium for pneumococci in the short-term. This work will help to establish robust sampling protocols when performing community studies to ensure culturability of comparison between community and laboratory pneumococci survival.

  4. Characterization of Neurogenic Potential of Dental Pulp Stem Cells Cultured in Xeno/Serum-Free Condition: In Vitro and In Vivo Assessment

    Directory of Open Access Journals (Sweden)

    Jieun Jung

    2016-01-01

    Full Text Available Neural stem cells (NSCs have a high potency for differentiation to neurons and glial cells for replacement of damaged cells and paracrine effects for the regeneration and remyelination of host axons. Dental pulp is known to have a potential to differentiate into neural-like cells; therefore, dental pulp may be used as an autologous cell source for neural repair. In this study, we selectively expanded stem cells from human dental pulp in an initial culture using NSC media under xeno- and serum-free conditions. At the initial step of primary culture, human dental pulp was divided into two groups according to the culture media: 10% fetal bovine serum medium group (FBS group and NSC culture medium group (NSC group. In the NSC group relative to the FBS group, the expression of NSC markers and the concentrations of leukemia inhibitory factor, nerve growth factor, and stem cell factor were higher, although their expression levels were lower than those of human fetal NSCs. The transplanted cells of the NSC group survived well within the normal brain and injured spinal cord of rats and expressed nestin and Sox2. Under the xeno- and serum-free conditions, autologous human dental pulp-derived stem cells might prove useful for clinical cell-based therapies to repair damaged neural tissues.

  5. [Inhibitory effect of Gracilaria lemaneformis (Bory) Weber Bosse on the co-cultured Scrippsiella trochoidea (Stein) Loeblich III under controlled laboratory conditions].

    Science.gov (United States)

    Zhang, Shan-dong; Song, Xiu-xian; Cao, Xi-hua; Yu, Zhi-ming

    2008-08-01

    The inhibitory effects of Grcilaria lemaneiformis on the co-cultured Scrippsiella trochoidea were determined under controlled laboratory conditions, and the possible mechanism was studied. Results showed that: (1) in the separating S. trochoiea-G. lemaneormis co-culture system when the initial cell density of C. lemaneaonis was set at 0.5 g x L(-1), the growth of S. trochoidea was obviously inhibited and its maximum cell density and exponential phase were decreased compared with the control; however, the inhibitory effect was not as strong as that in the direct cell-cell contact co-culture. Result showed that allelopathy basing on the direct cell contact was the most possible reason leading to the observed result; (2) when the initial cell density of G. lemaneiformis was set at 0.2 g'L-' in the direct cell-cell contact co-culture, the intracellular nitrate concentration of S. trochoidea in monoculture system was 1.5 times of that in co-culture. It seemed that G. lemaneiformis could competitively absorb the environmental nitrate and ultimately led to the decrease of the stock of intracellular nitrate of S. trochoidea.

  6. Do We Pay Enough Attention to Culture Conditions in Context of Perinatal Outcome after In Vitro Fertilization? Up-to-Date Literature Review

    Directory of Open Access Journals (Sweden)

    Piotr Marianowski

    2016-01-01

    Full Text Available Adverse perinatal outcomes in singleton IVF pregnancies have been most often explained by parental underlying diseases and so far laboratory conditions during embryo culture are still not explored well. The following review discusses the current state of knowledge on the influence of IVF laboratory procedures on the possible perinatal outcome. The role of improved media for human embryo culture is unquestionable. Addition of certain components to culture media and their effect on embryo survival and implantation rates have been taken into consideration recently and studied on animal model. Impact of media on perinatal outcome in IVF offspring has also been studied. It has been discovered that epigenetic changes and neonatal birth weight are probably associated with the use of specific culture media, as is the relation between placental size and its influence on perinatal outcome. There are still questions in the discussion about duration of embryo culture (cleavage stage versus blastocyst transfer. Some of the IVF methods, such as in vitro maturation of oocytes and freezing/thawing procedures, also require well-powered randomized controlled trials in order to define their exact impact on perinatal outcome. Constant further research is needed to assess the impact of laboratory environment on fetal and postnatal development.

  7. Establishment of an Aseptic Culture System and Analysis of the Effective Growth Conditions for Eleocharis acicularis Ramets for Use in Phytoremediation

    Directory of Open Access Journals (Sweden)

    Yasushi Sato

    2017-06-01

    Full Text Available Eleocharis acicularis, an aquatic macrophyte of the Cyperaceae family, has been shown to accumulate multiple heavy metals and has great potential for use in the phytoremediation of contaminated soil and water. To investigate the mechanism of accumulation of heavy metals in E. acicularis while excluding biotic and abiotic environmental effects and to acquire homogenous and sufficient populations of E. acicularis, we established an aseptic culture system and analyzed the applicability of this species for phytoremediation. Young ramet bases and stolon tips of E. acicularis grown in the field were sterilized, cultured, and established in an aseptic culture system, and the effective growth conditions of isolated ramets were determined. Isolated ramets grew remarkably well in a medium of pH 4.8 to 5.7 with 0.25 mg/L kinetin as a plant hormone. Furthermore, capacity for the accumulation of heavy metals was examined using E. acicularis subcultured with or without Si. Aseptically cultured E. acicularis showed a sufficient capacity for Cs and Zn accumulation and exceeded the criteria for hyperaccumulator plants in accumulating Pb, Cd, and In regardless of the addition or not of Si during its subculture. The aseptic culture of E. acicularis enhances its capacity for the accumulation of heavy metals and its applicability for phytoremediation.

  8. Do We Pay Enough Attention to Culture Conditions in Context of Perinatal Outcome after In Vitro Fertilization? Up-to-Date Literature Review.

    Science.gov (United States)

    Marianowski, Piotr; Dąbrowski, Filip A; Zyguła, Aleksandra; Wielgoś, Mirosław; Szymusik, Iwona

    2016-01-01

    Adverse perinatal outcomes in singleton IVF pregnancies have been most often explained by parental underlying diseases and so far laboratory conditions during embryo culture are still not explored well. The following review discusses the current state of knowledge on the influence of IVF laboratory procedures on the possible perinatal outcome. The role of improved media for human embryo culture is unquestionable. Addition of certain components to culture media and their effect on embryo survival and implantation rates have been taken into consideration recently and studied on animal model. Impact of media on perinatal outcome in IVF offspring has also been studied. It has been discovered that epigenetic changes and neonatal birth weight are probably associated with the use of specific culture media, as is the relation between placental size and its influence on perinatal outcome. There are still questions in the discussion about duration of embryo culture (cleavage stage versus blastocyst transfer). Some of the IVF methods, such as in vitro maturation of oocytes and freezing/thawing procedures, also require well-powered randomized controlled trials in order to define their exact impact on perinatal outcome. Constant further research is needed to assess the impact of laboratory environment on fetal and postnatal development.

  9. A method for the design of 3D scaffolds for high-density cell attachment and determination of optimum perfusion culture conditions.

    Science.gov (United States)

    Provin, Christophe; Takano, Kiyoshi; Sakai, Yasuyuki; Fujii, Teruo; Shirakashi, Ryo

    2008-01-01

    The application of in vitro cultured cells in tissue engineering or drug screening, aimed at complex soft tissues such as liver, requires in vivo physiological function of the cultured cells. For this purpose, the scaffold in which cells are cultured should provide a microenvironment similar to an in vivo one with a three-dimensional extracellular matrix, a high supply capacity of O(2) and nutrients, and high cell density. In this paper, we propose a method to design (1) the geometry of the scaffold, with a surface/volume ratio optimized to allow high-density (5 x 10(7)cells/mL) cell culture and (2) culture conditions that will supply optimal quantities of oxygen and nutrients. CFD modeling of mass transport was used to determine the shear stress as well as O(2) and glucose metabolism in the scaffold (20 mm width-35 mm length) for various flow rates. Validation of the model was done through comparison with flow resistance and micro-PIV experiments. CFD analysis showed the maximum metabolic rate densities for this scaffold are 6.04 x 10(-3)mol/s/m(3) for O(2) at 0.71 mL/min and 1.91 x 10(-2)mol/s/m(3) for glucose at 0.35 mL/min.

  10. ISOLATION OF TYPICAL MARINE-BACTERIA BY DILUTION CULTURE - GROWTH, MAINTENANCE, AND CHARACTERISTICS OF ISOLATES UNDER LABORATORY CONDITIONS

    NARCIS (Netherlands)

    SCHUT, F; DEVRIES, EJ; GOTTSCHAL, JC; ROBERTSON, BR; HARDER, W; PRINS, R A; BUTTON, DK

    Marine bacteria in Resurrection Bay near Seward, Alaska, and in the central North Sea off the Dutch coast were cultured in filtered autoclaved seawater following dilution to extinction. The populations present before dilution varied from 0.11 x 10(9) to 1.07 x 10(9) cells per liter. The mean cell

  11. In vitro proliferation of haemopoietic cells in the presence of adherent cell layers. I. Culture conditions and strain dependence

    NARCIS (Netherlands)

    Reimann, J.; Burger, H.

    1979-01-01

    The culture system, in which a marrow-derived adherent cell population, established in vitro, exerts a long-term promoting influence on proliferation of haemopoietic cells, is reproduced. Essential parameters of the system are investigated; it is confirmed that the system is critically dependent on

  12. Main factors in the formation of socio-cultural identity under the conditions of incomplete modernization (case study of the Republic of Bashkortostan

    Directory of Open Access Journals (Sweden)

    Al’fira Raisovna Mazhitova

    2014-05-01

    socio-cultural environment and its infrastructure (family, education, culture, religion, etc. and mother tongue that should become crucial factors in the positive identification of the population. In the conditions of modernization these institutions (their activity, functions and role in the society experience radical changes. The proposed assumptions are supported by the materials of official statistics and sociological research

  13. Optimal primary culture conditions of human gastric mucosal fibroblasts%人胃黏膜成纤维细胞原代培养条件的优化

    Institute of Scientific and Technical Information of China (English)

    张浩; 申晓军; 唐古生; 毕建威

    2009-01-01

    目的 通过优化人胃黏膜成纤维细胞的原代培养条件,提高培养成功率,为进一步研究胃癌相关成纤维细胞奠定基础.方法 原代培养采用植块法,利用免疫组织化学、细胞形态学和电镜等方法进行细胞鉴定;分析不同培养表面、培养基和培养液pH值对原代细胞培养游出情况的影响,筛选适合的培养条件.结果 Logistic逐步回归分析提示RPMI 1640培养基的Waldχ2值=32.4533,P0.05),而且各培养条件之间无交互作用.结论 通过优化培养表面、培养基种类和pH值等培养条件,可以提高人胃黏膜成纤维细胞原代培养的成功率.%Objective To optimize primary culture conditions of human gastric mucosal fibre- blasts for further investigations of gastric cancer associated fibroblasts. Methods The fibroblasts were cul-tured primarily by explant method, and identified by immunohistochemistry, morphology and electron mi-croscopy. The effects of different culture conditions on emigration ratios of ceils were investigated to opti-mize the culture surface, medium and pH in primary culture of gastric mucosal fibroblasts. Results When the other conditions were the same,no significandy different emigration rate was found on the mouse tail-coated surface,fetal bovine serum-coated surface ,and nothing coated surface (P > 0.05 ). As to the role of different culture media including RPMI 1640 medium, DMEM and high-gluco DMEM,there was signifi-cantly higher emigration rate in the RPMI 1640 medium compared with other two media (P < 0.01, stand- ardized estimate = 0. 4688 ). Different pH values(pH = 7.0,7.4 and 7.8)of culture solution led to differ-ent emigration rate,and the best emigration rate was found in pH = 7.4 solution(P < 0.01, standardized estimate =0.5857 ). Furthermore, there was no interaetional effect on the cell emigration rate among cul- ture conditions. Conclusion The primary culture of human gastric mucosal fibroblasts can be greatly im-proved by

  14. Comparison of Lipase Production by Enterococcus faecium MTCC 5695 and Pediococcus acidilactici MTCC 11361 Using Fish Waste as Substrate: Optimization of Culture Conditions by Response Surface Methodology

    OpenAIRE

    2013-01-01

    A medium using fish waste as substrate was designed for production of lipase by Enterococcus faecium MTCC 5695 and Pediococcus acidilactici MTCC 11361. Medium components and culture conditions (fish waste protein hydrolysate (FWPH) concentration, fish waste oil (FWO) concentration, pH, temperature, and fermentation time) which affect lipase production were screened using factorial (5 factors ∗ 2 levels) design of which FWPH concentration, FWO concentration, and fermentation time showed signif...

  15. PprM is necessary for up-regulation of katE1, encoding the major catalase of Deinococcus radiodurans, under unstressed culture conditions.

    Science.gov (United States)

    Jeong, Sun-Wook; Seo, Ho Seong; Kim, Min-Kyu; Choi, Jong-Il; Lim, Heon-Man; Lim, Sangyong

    2016-06-01

    Deinococcus radiodurans is a poly-extremophilic organism, capable of tolerating a wide variety of different stresses, such as gamma/ultraviolet radiation, desiccation, and oxidative stress. PprM, a cold shock protein homolog, is involved in the radiation resistance of D. radiodurans, but its role in the oxidative stress response has not been investigated. In this study, we investigated the effect of pprM mutation on catalase gene expression. pprM disruption decreased the mRNA and protein levels of KatE1, which is the major catalase in D. radiodurans, under normal culture conditions. A pprM mutant strain (pprM MT) exhibited decreased catalase activity, and its resistance to hydrogen peroxide (H2O2) decreased accordingly compared with that of the wild-type strain. We confirmed that RecG helicase negatively regulates katE1 under normal culture conditions. Among katE1 transcriptional regulators, the positive regulator drRRA was not altered in pprM (-), while the negative regulators perR, dtxR, and recG were activated more than 2.5-fold in pprM MT. These findings suggest that PprM is necessary for KatE1 production under normal culture conditions by down-regulation of katE1 negative regulators.

  16. Co-production of lipids, eicosapentaenoic acid, fucoxanthin, and chrysolaminarin by Phaeodactylum tricornutum cultured in a flat-plate photobioreactor under varying nitrogen conditions

    Science.gov (United States)

    Gao, Baoyan; Chen, Ailing; Zhang, Wenyuan; Li, Aifen; Zhang, Chengwu

    2017-10-01

    The marine diatom Phaeodactylum tricornutum is a polymorphological, ecologically significant, and well-studied model of unicellular microalga. This diatom can accumulate diverse important metabolites. Herein, we cultured P. tricornutum in an internally installed tie-piece flat-plate photobioreactor under 14.5 m mol L-1 (high nitrogen, HN) and 2.9 m mol L-1 (low nitrogen, LN) of KNO3 and assessed its time-resolved changes in biochemical compositions. The results showed that HN was inductive to accumulate high biomass (4.1 g L-1). However, the LN condition could accelerate lipid accumulation in P. tricornutum. The maximum total lipid (TL) content under LN was up to 42.5% of biomass on day 12. Finally, neutral lipids (NLs) were 63.8% and 75.7% of TLs under HN and LN, respectively. The content of EPA ranged from 2.3% to 1.5% of dry weight during the growth period under the two culture conditions. Peak volumetric lipid productivity of 128.4 mg L-1d-1 was achieved in the HN group (on day 9). The highest volumetric productivity values of EPA, chrysolaminarin, and fucoxanthin were obtained in the exponential phase (on day 6) under HN, which were 9.6, 93.6, and 4.7 mg L-1d-1, respectively. In conclusion, extractable amounts of lipids, EPA, fucoxanthin, and chrysolaminarin could be obtained from P. tricornutum by regulating the culture conditions.

  17. Phenobarbital Augments Hypothermic Neuroprotection

    Science.gov (United States)

    Barks, John D.; Liu, Yi-Qing; Shangguan, Yu; Silverstein, Faye S.

    2010-01-01

    Seizures are associated with adverse outcome in infants with hypoxic-ischemic encephalopathy. We hypothesized that early administration of the anticonvulsant phenobarbital after cerebral hypoxia-ischemia could enhance the neuroprotective efficacy of delayed-onset hypothermia. We tested this hypothesis in a neonatal rodent model. Seven-day-old rats (n=104) underwent right carotid ligation, followed by 90 min 8%O2 exposure; 15 min later, they received injections of phenobarbital (40 mg/kg) or saline. One or 3h later, all were treated with hypothermia (30°C, 3h). Function and neuropathology were evaluated after 7 days (“early outcomes”) or 1 month (“late outcomes”). Early outcome assessment demonstrated better sensorimotor performance and less cortical damage in phenobarbital-treated groups; there were no differences between groups in which the hypothermia delay was shortened from 3h to 1h. Late outcome assessment confirmed sustained benefits of phenobarbital+hypothermia treatment; sensorimotor performance was better (persistent attenuation of contralateral forepaw placing deficits and absence of contralateral forepaw neglect); neuropathology scores were lower (medians, phenobarbital 2, saline 8.5, pphenobarbital may augment the neuroprotective efficacy of therapeutic hypothermia. PMID:20098339

  18. Use of Pseudomonas stutzeri and Candida utilis in the improvement of the conditions of Artemia culture and protection against pathogens

    Directory of Open Access Journals (Sweden)

    Mahdhi Abdelkarim

    2010-03-01

    Full Text Available To evaluate the effect of two bacterial strains isolated from Artemia cysts and yeast (Candida utilis on the survival, growth and total biomass production of its larvae, challenge tests were performed with Candida utilis, Pseudomonas stutzeri and Pasteurella haemolityca. In addition, a pathogenic strain of Vibrio alginolyticus was tested for comparative purposes. Pseudomonas stutzeri and Candida utilis have no impact on survival, but enhance growth and total biomass production of the larvae. However, we noted that Pasteurella haemolityca affect negatively Artemia larvae. The adhesion and antagonism assay demonstrates that Candida utilis and Pseudomonas stutzeri are fairly adherent and play an important role in the enhancement of the protection of Artemia culture against pathogens. On the basis of these results, it's suggested that it's possible to use Candida utilis and Pseudomonas stutzeri, potential candidates, as probiotic for the culture of Artemia larvae.

  19. Evaluation of a Fully Automated Research Prototype for the Immediate Identification of Microorganisms from Positive Blood Cultures under Clinical Conditions

    Directory of Open Access Journals (Sweden)

    Jay M. Hyman

    2016-04-01

    Full Text Available A clinical laboratory evaluation of an intrinsic fluorescence spectroscopy (IFS-based identification system paired to a BacT/Alert Virtuo microbial detection system (bioMéééérieux, Inc., Durham, NC was performed to assess the potential for fully automated identification of positive blood cultures. The prototype IFS system incorporates a novel method combining a simple microbial purification procedure with rapid in situ identification via spectroscopy. Results were available within 15 min of a bottle signaling positive and required no manual intervention. Among cultures positive for organisms contained within the database and producing acceptable spectra, 75 of 88 (85.2% and 79 of 88 (89.8% were correctly identified to the species and genus level, respectively. These results are similar to the performance of existing rapid methods.

  20. The presence of c-erbB-2 gene product-related protein in culture medium conditioned by breast cancer cell line SK-BR-3

    Energy Technology Data Exchange (ETDEWEB)

    Alper, O.; Yamaguchi, K.; Hitomi, J.; Honda, S.; Matsushima, T.; Abe, K. (National Cancer Center Research Institute, Tokyo (Japan))

    1990-12-01

    The Mr 185,000 glycoprotein encoded by human c-erbB-2/neu/HER2 gene, termed c-erbB-2 gene product, shows a close structural similarity with epidermal growth factor receptor and is now regarded to be a growth factor receptor for an as yet unidentified ligand. Abundant c-erbB-2 mRNA was demonstrated by Northern blot studies in the human breast cancer cell line SK-BR-3. Cellular radiolabeling experiments followed by immunoprecipitation with three different anti-c-erbB-2 gene product antibodies, recognizing extracellular domain, kinase domain, and carboxyl-terminal portion, respectively, demonstrated the production of a large amount of c-erbB-2 gene product which had the capacity to be phosphorylated. Immunization of mice with concentrated culture medium conditioned by SK-BR-3 cells always generated antibodies against c-erbB-2 gene product, demonstrating that this culture medium contained substance(s) immunologically indistinguishable from c-erbB-2 gene product. This observation was supported by the successful development of a monoclonal antibody against c-erbB-2 gene product, GFD-OA-p185-1, by immunizing mice with this culture medium. The biochemical nature of the substance(s) present in the culture medium was further characterized. When the culture medium conditioned by (35S)cysteine-labeled SK-BR-3 cells was immunoprecipitated by three different anti-c-erbB-2 gene product antibodies, only the antibody recognizing extracellular domain precipitated the (35S)-labeled protein with a molecular weight of 110,000, namely p110. The newly developed monoclonal antibody also immunoprecipitated this protein.

  1. The Effect of Culture Condition on Type 5 Capsular Polysaccharide Production of Staphylococcus aureus from Diary Cattle%培养条件对奶牛金葡菌5型荚膜多糖产量的影响

    Institute of Scientific and Technical Information of China (English)

    杨正涛; 张乃生; 刘庆涛; 杨琦; 尹荣兰

    2008-01-01

    [Objective]The effect of different culture conditions on type 5 capsular polysaccharide production of Staphylococcus aureus from diary cattle was studied to provide simple way for CP production and preparation and laid foundation for carrying out new polysaccharide vaccine research.[Method]Staphylococcus aureus was isolated from milk sample of sick dairy cattle and capsular polysaecharide serotypes were identified.Type 5 capsular polysaccharide was cultured on BHI,solid columbia and med110 culture media.Glucose and lactose were taken as carbon sources for every culture media in solid and liquid state.Therefore 9 different culture conditions were taken to study the effect of cuhure conditions on capsular polysaccharide production.[Result]Different culture conditions indicated that compared with columbia culture media,BHI culture media could decline capsular polysaccharide production and mod110 culture media could increase capsular polysaccharide production.While for same culture media,solid culture media was better for capsular polysaccharide production,meanwhile,taken lactose as carbon source could increase capsular polysaccharide production.

  2. Optimization of Polymer-ECM Composite Scaffolds for Tissue Engineering: Effect of Cells and Culture Conditions on Polymeric Nanofiber Mats.

    Science.gov (United States)

    Goyal, Ritu; Guvendiren, Murat; Freeman, Onyi; Mao, Yong; Kohn, Joachim

    2017-01-11

    The design of composite tissue scaffolds containing an extracellular matrix (ECM) and synthetic polymer fibers is a new approach to create bioactive scaffolds that can enhance cell function. Currently, studies investigating the effects of ECM-deposition and decellularization on polymer degradation are still lacking, as are data on optimizing the stability of the ECM-containing composite scaffolds during prolonged cell culture. In this study, we develop fibrous scaffolds using three polymer compositions, representing slow (E0000), medium (E0500), and fast (E1000) degrading materials, to investigate the stability, degradation, and mechanics of the scaffolds during ECM deposition and decellularization, and during the complete cellularization-decell-recell cycle. We report data on percent molecular weight (% Mw) retention of polymeric fiber mats, changes in scaffold stiffness, ECM deposition, and the presence of fibronectin after decellularization. We concluded that the fast degrading E1000 (Mw retention ≤ 50% after 28 days) was not sufficiently stable to allow scaffold handling after 28 days in culture, while the slow degradation of E0000 (Mw retention ≥ 80% in 28 days) did not allow deposited ECM to replace the polymer support. The scaffolds made from medium degrading E0500 (Mw retention about 60% at 28 days) allowed the gradual replacement of the polymer network with cell-derived ECM while maintaining the polymer network support. Thus, polymers with an intermediate rate of degradation, maintaining good scaffold handling properties after 28 days in culture, seem best suited for creating ECM-polymer composite scaffolds.

  3. Progesterone promotes neuronal differentiation of human umbilical cord mesenchymal stem cells in culture conditions that mimic the brain microenvironment

    Institute of Scientific and Technical Information of China (English)

    Xianying Wang; Honghai Wu; Gai Xue; Yanning Hou

    2012-01-01

    In this study, human umbilical cord mesenchymal stem cells from full-term neonates born by vaginal delivery were cultured in medium containing 150 mg/mL of brain tissue extracts from Sprague-Dawley rats (to mimic the brain microenvironment). Immunocytochemical analysis demonstrated that the cells differentiated into neuron-like cells. To evaluate the effects of progesterone as a neurosteroid on the neuronal differentiation of human umbilical cord mesenchymal stem cells, we cultured the cells in medium containing progesterone (0.1, 1, 10 μM) in addition to brain tissue extracts. Reverse transcription-PCR and flow cytometric analysis of neuron specific enolase-positive cells revealed that the percentages of these cells increased significantly following progesterone treatment, with the optimal progesterone concentration for neuron-like differentiation being 1 μM. These results suggest that progesterone can enhance the neuronal differentiation of human umbilical cord mesenchymal stem cells in culture medium containing brain tissue extracts to mimic the brain microenvironment.

  4. Optimization of Polymer-ECM Composite Scaffolds for Tissue Engineering: Effect of Cells and Culture Conditions on Polymeric Nanofiber Mats

    Directory of Open Access Journals (Sweden)

    Ritu Goyal

    2017-01-01

    Full Text Available The design of composite tissue scaffolds containing an extracellular matrix (ECM and synthetic polymer fibers is a new approach to create bioactive scaffolds that can enhance cell function. Currently, studies investigating the effects of ECM-deposition and decellularization on polymer degradation are still lacking, as are data on optimizing the stability of the ECM-containing composite scaffolds during prolonged cell culture. In this study, we develop fibrous scaffolds using three polymer compositions, representing slow (E0000, medium (E0500, and fast (E1000 degrading materials, to investigate the stability, degradation, and mechanics of the scaffolds during ECM deposition and decellularization, and during the complete cellularization-decell-recell cycle. We report data on percent molecular weight (% Mw retention of polymeric fiber mats, changes in scaffold stiffness, ECM deposition, and the presence of fibronectin after decellularization. We concluded that the fast degrading E1000 (Mw retention ≤ 50% after 28 days was not sufficiently stable to allow scaffold handling after 28 days in culture, while the slow degradation of E0000 (Mw retention ≥ 80% in 28 days did not allow deposited ECM to replace the polymer support. The scaffolds made from medium degrading E0500 (Mw retention about 60% at 28 days allowed the gradual replacement of the polymer network with cell-derived ECM while maintaining the polymer network support. Thus, polymers with an intermediate rate of degradation, maintaining good scaffold handling properties after 28 days in culture, seem best suited for creating ECM-polymer composite scaffolds.

  5. Essential conditions for the implementation of comprehensive school health to achieve changes in school culture and improvements in health behaviours of students.

    Science.gov (United States)

    Storey, Kate E; Montemurro, Genevieve; Flynn, Jenn; Schwartz, Marg; Wright, Erin; Osler, Jill; Veugelers, Paul J; Roberts, Erica

    2016-11-02

    Comprehensive School Health (CSH) is an internationally recognized framework that holistically addresses school health by transforming the school culture. It has been shown to be effective in enhancing health behaviours among students while also improving educational outcomes. Despite this effectiveness, there is a need to focus on how CSH is implemented. Previous studies have attempted to uncover the conditions necessary for successful operationalization, but none have described them in relation to a proven best practice model of implementation that has demonstrated positive changes to school culture and improvements in health behaviours. The purpose of this research was to identify the essential conditions of CSH implementation utilizing secondary analysis of qualitative interview data, incorporating a multitude of stakeholder perspectives. This included inductive content analysis of teacher (n = 45), principal (n = 46), and school health facilitator (n = 34) viewpoints, all of whom were employed within successful CSH project schools in Alberta, Canada between 2008 and 2013. Many themes were identified, here called conditions, that were divided into two categories: 'core conditions' (students as change agents, school-specific autonomy, demonstrated administrative leadership, dedicated champion to engage school staff, community support, evidence, professional development) and 'contextual conditions' (time, funding and project supports, readiness and prior community connectivity). Core conditions were define