WorldWideScience

Sample records for hyperthermophilic archaea pyrobaculum

  1. Molecular biology of hyperthermophilic Archaea.

    Science.gov (United States)

    van der Oost, J; Ciaramella, M; Moracci, M; Pisani, F M; Rossi, M; de Vos, W M

    1998-01-01

    The sequences of a number of archaeal genomes have recently been completed, and many more are expected shortly. Consequently, the research of Archaea in general and hyperthermophiles in particular has entered a new phase, with many exciting discoveries to be expected. The wealth of sequence information has already led, and will continue to lead to the identification of many enzymes with unique properties, some of which have potential for industrial applications. Subsequent functional genomics will help reveal fundamental matters such as details concerning the genetic, biochemical and physiological adaptation of extremophiles, and hence give insight into their genomic evolution, polypeptide structure-function relations, and metabolic regulation. In order to optimally exploit many unique features that are now emerging, the development of genetic systems for hyperthermophilic Archaea is an absolute requirement. Such systems would allow the application of this class of Archaea as so-called "cell factories": (i) expression of certain archaeal enzymes for which no suitable conventional (mesophilic bacterial or eukaryal) systems are available, (ii) selection for thermostable variants of potentially interesting enzymes from mesophilic origin, and (iii) the development of in vivo production systems by metabolic engineering. An overview is given of recent insight in the molecular biology of hyperthermophilic Archaea, as well as of a number of promising developments that should result in the generation of suitable genetic systems in the near future.

  2. Regulation of transcription in hyperthermophilic archaea

    NARCIS (Netherlands)

    Brinkman, A.B.

    2002-01-01

    The aim of the research presented here was to insight in the mechanisms by which transcription in hyperthermophilic archaea is regulated. To accomplish this, we have aimed (I) to identify transcriptional regulatory proteins from hyperthermophilic archaea, (II) to characterize these

  3. Pyrobaculum calidifontis sp. nov., a novel hyperthermophilic archaeon that grows in atmospheric air

    Directory of Open Access Journals (Sweden)

    Taku Amo

    2002-01-01

    Full Text Available A novel, facultatively aerobic, heterotrophic hyperthermophilic archaeon was isolated from a terrestrial hot spring in the Philippines. Cells of the new isolate, strain VA1, were rod-shaped with a length of 1.5 to 10 μm and a width of 0.5 to 1.0 μm. Isolate VA1 grew optimally at 90 to 95 °C and pH 7.0 under atmospheric air. Oxygen served as a final electron acceptor under aerobic growth conditions, and vigorous shaking of the medium significantly enhanced growth. Elemental sulfur inhibited cell growth under aerobic growth conditions, whereas thiosulfate stimulated cell growth. Under anaerobic growth conditions, nitrate served as a final electron acceptor, but nitrite or sulfur-containing compounds such as elemental sulfur, thiosulfate, sulfate and sulfite could not act as final electron acceptors. The G+C content of the genomic DNA was 51 mol%. Phylogenetic analysis based on 16S rRNA sequences indicated that strain VA1 exhibited close relationships to species of the genus Pyrobaculum. A DNA–DNA hybridization study revealed a low level of similarity (≤ 18% between strain VA1 and previously described members of the genus Pyrobaculum. Physiological characteristics also indicated that strain VA1 was distinct from these Pyrobaculum species. Our results indicate that isolate VA1 represents a novel species, named Pyrobaculum calidifontis.

  4. Molecular characterization of hydrolytic enzymes from hyperthermophilic archaea

    NARCIS (Netherlands)

    Voorhorst, W.G.B.

    1998-01-01

    Hyperthermophiles are recently discovered microorganisms which are able to grow optimally above 85 °C. Most hyperthermophiles belong to the Archaea, the third domain of life. One of the main interests in hyperthermophiles to deepen the insight in the way their proteins

  5. Respiration of arsenate and selenate by hyperthermophilic archaea.

    Science.gov (United States)

    Huber, R; Sacher, M; Vollmann, A; Huber, H; Rose, D

    2000-10-01

    A novel, strictly anaerobic, hyperthermophilic, facultative organotrophic archaeon was isolated from a hot spring at Pisciarelli Solfatara, Naples, Italy. The rod-shaped cells grew chemolithoautotrophically with carbon dioxide as carbon source, hydrogen as electron donor and arsenate, thiosulfate or elemental sulfur as electron acceptor. H2S was formed from sulfur or thiosulfate, arsenite from arsenate. Organotrophically, the new isolate grew optimally in the presence of an inorganic electron acceptor like sulfur, selenate or arsenate. Cultures, grown on arsenate and thiosulfate or arsenate and L-cysteine, precipitated realgar (As2S2). During growth on selenate, elemental selenium was produced. The G+C content of the DNA was 58.3 mol%. Due to 16S rRNA gene sequence analysis combined with physiological and morphological criteria, the new isolate belongs to the Thermoproteales order. It represents a new species within the genus Pyrobaculum, the type species of which we name Pyrobaculum arsenaticum (type strain PZ6*, DSM 13514, ATCC 700994). Comparative studies with different Pyrobaculum-species showed, that Pyrobaculum aerophilum was also able to grow organotrophically under anaerobic culture conditions in the presence of arsenate, selenate and selenite. During growth on selenite, elemental selenium was formed as final product. In contrast to P. arsenaticum, P. aerophilum could use selenate or arsenate for lithoautotrophic growth with carbon dioxide and hydrogen.

  6. Morphology and genome organization of the virus PSV of the hyperthermophilic archaeal genera Pyrobaculum and Thermoproteus: a novel virus family, the Globuloviridae.

    Science.gov (United States)

    Häring, Monika; Peng, Xu; Brügger, Kim; Rachel, Reinhard; Stetter, Karl O; Garrett, Roger A; Prangishvili, David

    2004-06-01

    A novel virus, termed Pyrobaculum spherical virus (PSV), is described that infects anaerobic hyperthermophilic archaea of the genera Pyrobaculum and Thermoproteus. Spherical enveloped virions, about 100 nm in diameter, contain a major multimeric 33-kDa protein and host-derived lipids. A viral envelope encases a superhelical nucleoprotein core containing linear double-stranded DNA. The PSV infection cycle does not cause lysis of host cells. The viral genome was sequenced and contains 28337 bp. The genome is unique for known archaeal viruses in that none of the genes, including that encoding the major structural protein, show any significant sequence matches to genes in public sequence databases. Exceptionally for an archaeal double-stranded DNA virus, almost all the recognizable genes are located on one DNA strand. The ends of the genome consist of 190-bp inverted repeats that contain multiple copies of short direct repeats. The two DNA strands are probably covalently linked at their termini. On the basis of the unusual morphological and genomic properties of this DNA virus, we propose to assign PSV to a new viral family, the Globuloviridae.

  7. Evolutionary insights from studies on viruses of hyperthermophilic archaea.

    Science.gov (United States)

    Prangishvili, David

    2003-05-01

    The morphological diversity of viruses which parasitize hyperthermophilic archaea thriving at temperatures > or = 80 degrees C appears to exceed that of viruses of prokaryotes living at lower temperatures. Based on assumptions of the existence of viruses in the prebiotic phase of evolution and hot origins of cellular life, we suggest that this remarkable diversity could have its source in ancestral diversity of viral morphotypes in hot environments. Attempts are made to trace evolutionary relationships of viruses of hyperthermophilic archaea with other viruses.

  8. Diversity of antisense and other non-coding RNAs in Archaea revealed by comparative small RNA sequencing in four Pyrobaculum species

    Directory of Open Access Journals (Sweden)

    David L Bernick

    2012-07-01

    Full Text Available A great diversity of small, non-coding RNA molecules with roles in gene regulation and RNA processing have been intensely studied in eukaryotic and bacterial model organisms, yet our knowledge of possible parallel roles for small RNAs in archaea is limited. We employed RNA-seq to identify novel small RNA across multiple species of the hyperthermophilic genus Pyrobaculum, known for unusual RNA gene characteristics. By comparing transcriptional data collected in parallel among four species, we were able to identify conserved RNA genes fitting into known and novel families. Among our findings, we highlight three novel cis-antisense small RNAs encoded opposite to key regulatory (ferric uptake regulator, metabolic (triose-phosphate isomerase, and core transcriptional apparatus genes (transcription factor B. We also found a large increase in the number of conserved C/D box small RNA genes over what had been previously recognized; many of these genes are encoded antisense to protein coding genes. The conserved opposition to orthologous genes across the Pyrobaculum genus suggests similarities to other cis-antisense regulatory systems. Furthermore, the genus-specific nature of these small RNAs indicates they are relatively recent, stable adaptations.

  9. Engineering of β-glycosidases from hyperthermophilic Archaea

    NARCIS (Netherlands)

    Kaper, T.

    2001-01-01

    Hyperthermophilic Archaea are microorganisms that grow optimally above 80°C. To be able to live at these temperature extremes their cell components display extreme resistance towards thermal degradation. This characteristic is an attractive feature

  10. Identification of a mismatch-specific endonuclease in hyperthermophilic Archaea

    OpenAIRE

    Ishino, Sonoko; Nishi, Yuki; Oda, Soichiro; Uemori, Takashi; Sagara, Takehiro; Takatsu, Nariaki; Yamagami, Takeshi; Shirai, Tsuyoshi; Ishino, Yoshizumi

    2016-01-01

    The common mismatch repair system processed by MutS and MutL and their homologs was identified in Bacteria and Eukarya. However, no evidence of a functional MutS/L homolog has been reported for archaeal organisms, and it is not known whether the mismatch repair system is conserved in Archaea. Here, we describe an endonuclease that cleaves double-stranded DNA containing a mismatched base pair, from the hyperthermophilic archaeon Pyrococcus furiosus. The corresponding gene revealed that the act...

  11. A virus of hyperthermophilic archaea with a unique architecture among DNA viruses.

    Science.gov (United States)

    Rensen, Elena Ilka; Mochizuki, Tomohiro; Quemin, Emmanuelle; Schouten, Stefan; Krupovic, Mart; Prangishvili, David

    2016-03-01

    Viruses package their genetic material in diverse ways. Most known strategies include encapsulation of nucleic acids into spherical or filamentous virions with icosahedral or helical symmetry, respectively. Filamentous viruses with dsDNA genomes are currently associated exclusively with Archaea. Here, we describe a filamentous hyperthermophilic archaeal virus, Pyrobaculum filamentous virus 1 (PFV1), with a type of virion organization not previously observed in DNA viruses. The PFV1 virion, 400 ± 20 × 32 ± 3 nm, contains an envelope and an inner core consisting of two structural units: a rod-shaped helical nucleocapsid formed of two 14-kDa major virion proteins and a nucleocapsid-encompassing protein sheath composed of a single major virion protein of 18 kDa. The virion organization of PFV1 is superficially similar to that of negative-sense RNA viruses of the family Filoviridae, including Ebola virus and Marburg virus. The linear dsDNA of PFV1 carries 17,714 bp, including 60-bp-long terminal inverted repeats, and contains 39 predicted ORFs, most of which do not show similarities to sequences in public databases. PFV1 is a lytic virus that completely disrupts the host cell membrane at the end of the infection cycle.

  12. Cell architecture and flagella of hyperthermophilic Archaea

    OpenAIRE

    Bellack, Annett

    2011-01-01

    Earlier studies indicated that flagella might play a crucial role in motility, adhesion, and cell-cell contacts of Archaea. Thus, the ultrastructural and functional characterization of flagella and their anchoring in the cell are crucial for understanding the archaeal cell organization in general. To address this topic, Pyrococcus furiosus was chosen as a suitable model organism. However, in the course of this study, morphological changes of this strain, cultured continuously for several y...

  13. Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: mechanisms for reductant disposal

    NARCIS (Netherlands)

    Verhaart, M.R.A.; Bielen, A.A.M.; Oost, van der J.; Stams, A.J.M.; Kengen, S.W.M.

    2010-01-01

    Hydrogen produced from biomass by bacteria and archaea is an attractive renewable energy source. However, to make its application more feasible, microorganisms are needed with high hydrogen productivities. For several reasons, hyperthermophilic and extremely thermophilic bacteria and archaea are

  14. A Novel Type of Polyhedral Viruses Infecting Hyperthermophilic Archaea.

    Science.gov (United States)

    Liu, Ying; Ishino, Sonoko; Ishino, Yoshizumi; Pehau-Arnaudet, Gérard; Krupovic, Mart; Prangishvili, David

    2017-07-01

    Encapsidation of genetic material into polyhedral particles is one of the most common structural solutions employed by viruses infecting hosts in all three domains of life. Here, we describe a new virus of hyperthermophilic archaea, Sulfolobus polyhedral virus 1 (SPV1), which condenses its circular double-stranded DNA genome in a manner not previously observed for other known viruses. The genome complexed with virion proteins is wound up sinusoidally into a spherical coil which is surrounded by an envelope and further encased by an outer polyhedral capsid apparently composed of the 20-kDa virion protein. Lipids selectively acquired from the pool of host lipids are integral constituents of the virion. None of the major virion proteins of SPV1 show similarity to structural proteins of known viruses. However, minor structural proteins, which are predicted to mediate host recognition, are shared with other hyperthermophilic archaeal viruses infecting members of the order Sulfolobales The SPV1 genome consists of 20,222 bp and contains 45 open reading frames, only one-fifth of which could be functionally annotated. IMPORTANCE Viruses infecting hyperthermophilic archaea display a remarkable morphological diversity, often presenting architectural solutions not employed by known viruses of bacteria and eukaryotes. Here we present the isolation and characterization of Sulfolobus polyhedral virus 1, which condenses its genome into a unique spherical coil. Due to the original genomic and architectural features of SPV1, the virus should be considered a representative of a new viral family, "Portogloboviridae." Copyright © 2017 American Society for Microbiology.

  15. A First Analysis of Metallome Biosignatures of Hyperthermophilic Archaea

    Directory of Open Access Journals (Sweden)

    Vyllinniskii Cameron

    2012-01-01

    Full Text Available To date, no experimental data has been reported for the metallome of hyperthermophilic microorganisms although their metal requirements for growth are known to be unique. Here, experiments were conducted to determine (i cellular trace metal concentrations of the hyperthermophilic Archaea Methanococcus jannaschii and Pyrococcus furiosus, and (ii a first estimate of the metallome for these hyperthermophilic species via ICP-MS. The metal contents of these cells were compared to parallel experiments using the mesophilic bacterium Escherichia coli grown under aerobic and anaerobic conditions. Fe and Zn were typically the most abundant metals in cells. Metal concentrations for E. coli grown aerobically decreased in the order Fe > Zn > Cu > Mo > Ni > W > Co. In contrast, M. jannaschii and P. furiosus show almost the reverse pattern with elevated Ni, Co, and W concentrations. Of the three organisms, a biosignature is potentially demonstrated for the methanogen M. jannaschii that may, in part, be related to the metallome requirements of methanogenesis. The bioavailability of trace metals more than likely has varied through time. If hyperthermophiles are very ancient, then the trace metal patterns observed here may begin to provide some insights regarding Earth's earliest cells and in turn, early Earth chemistry.

  16. Identification of a mismatch-specific endonuclease in hyperthermophilic Archaea.

    Science.gov (United States)

    Ishino, Sonoko; Nishi, Yuki; Oda, Soichiro; Uemori, Takashi; Sagara, Takehiro; Takatsu, Nariaki; Yamagami, Takeshi; Shirai, Tsuyoshi; Ishino, Yoshizumi

    2016-04-20

    The common mismatch repair system processed by MutS and MutL and their homologs was identified in Bacteria and Eukarya. However, no evidence of a functional MutS/L homolog has been reported for archaeal organisms, and it is not known whether the mismatch repair system is conserved in Archaea. Here, we describe an endonuclease that cleaves double-stranded DNA containing a mismatched base pair, from the hyperthermophilic archaeon Pyrococcus furiosus The corresponding gene revealed that the activity originates from PF0012, and we named this enzyme Endonuclease MS (EndoMS) as the mismatch-specific Endonuclease. The sequence similarity suggested that EndoMS is the ortholog of NucS isolated from Pyrococcus abyssi, published previously. Biochemical characterizations of the EndoMS homolog from Thermococcus kodakarensis clearly showed that EndoMS specifically cleaves both strands of double-stranded DNA into 5'-protruding forms, with the mismatched base pair in the central position. EndoMS cleaves G/T, G/G, T/T, T/C and A/G mismatches, with a more preference for G/T, G/G and T/T, but has very little or no effect on C/C, A/C and A/A mismatches. The discovery of this endonuclease suggests the existence of a novel mismatch repair process, initiated by the double-strand break generated by the EndoMS endonuclease, in Archaea and some Bacteria. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Understanding DNA Repair in Hyperthermophilic Archaea: Persistent Gaps and Other Reasons to Focus on the Fork

    Directory of Open Access Journals (Sweden)

    Dennis W. Grogan

    2015-01-01

    Full Text Available Although hyperthermophilic archaea arguably have a great need for efficient DNA repair, they lack members of several DNA repair protein families broadly conserved among bacteria and eukaryotes. Conversely, the putative DNA repair genes that do occur in these archaea often do not generate the expected phenotype when deleted. The prospect that hyperthermophilic archaea have some unique strategies for coping with DNA damage and replication errors has intellectual and technological appeal, but resolving this question will require alternative coping mechanisms to be proposed and tested experimentally. This review evaluates a combination of four enigmatic properties that distinguishes the hyperthermophilic archaea from all other organisms: DNA polymerase stalling at dU, apparent lack of conventional NER, lack of MutSL homologs, and apparent essentiality of homologous recombination proteins. Hypothetical damage-coping strategies that could explain this set of properties may provide new starting points for efforts to define how archaea differ from conventional models of DNA repair and replication fidelity.

  18. Crystal structure of the NADP+ and tartrate-bound complex of L-serine 3-dehydrogenase from the hyperthermophilic archaeon Pyrobaculum calidifontis.

    Science.gov (United States)

    Yoneda, Kazunari; Sakuraba, Haruhiko; Araki, Tomohiro; Ohshima, Toshihisa

    2018-05-01

    A gene encoding L-serine dehydrogenase (L-SerDH) that exhibits extremely low sequence identity to the Agrobacterium tumefaciens L-SerDH was identified in the hyperthermophilic archaeon Pyrobaculum calidifontis. The predicted amino acid sequence showed 36% identity with that of Pseudomonas aeruginosa L-SerDH, suggesting that P. calidifontis L-SerDH is a novel type of L-SerDH, like Ps. aeruginosa L-SerDH. The overexpressed enzyme appears to be the most thermostable L-SerDH described to date, and no loss of activity was observed by incubation for 30 min at temperatures up to 100 °C. The enzyme showed substantial reactivity towards D-serine, in addition to L-serine. Two different crystal structures of P. calidifontis L-SerDH were determined using the Se-MAD and MR method: the structure in complex with NADP + /sulfate ion at 1.18 Å and the structure in complex with NADP + /L-tartrate (substrate analog) at 1.57 Å. The fold of the catalytic domain showed similarity with that of Ps. aeruginosa L-SerDH. However, the active site structure significantly differed between the two enzymes. Based on the structure of the tartrate, L- and D-serine and 3-hydroxypropionate molecules were modeled into the active site and the substrate binding modes were estimated. A structural comparison suggests that the wide cavity at the substrate binding site is likely responsible for the high reactivity of the enzyme toward both L- and D-serine enantiomers. This is the first description of the structure of the novel type of L-SerDH with bound NADP + and substrate analog, and it provides new insight into the substrate binding mechanism of L-SerDH. The results obtained here may be very informative for the creation of L- or D-serine-specific SerDH by protein engineering.

  19. Electrical current generation in microbial electrolysis cells by hyperthermophilic archaea Ferroglobus placidus and Geoglobus ahangari

    KAUST Repository

    Yilmazel, Yasemin D.

    2017-10-02

    Few microorganisms have been examined for current generation under thermophilic (40–65 °C) or hyperthermophilic temperatures (≥ 80 °C) in microbial electrochemical systems. Two iron-reducing archaea from the family Archaeoglobaceae, Ferroglobus placidus and Geoglobus ahangari, showed electro-active behavior leading to current generation at hyperthermophilic temperatures in single-chamber microbial electrolysis cells (MECs). A current density (j) of 0.68 ± 0.11 A/m2 was attained in F. placidus MECs at 85 °C, and 0.57 ± 0.10 A/m2 in G. ahangari MECs at 80 °C, with an applied voltage of 0.7 V. Cyclic voltammetry (CV) showed that both strains produced a sigmoidal catalytic wave, with a mid-point potential of − 0.39 V (vs. Ag/AgCl) for F. placidus and − 0.37 V for G. ahangari. The comparison of CVs using spent medium and turnover CVs, coupled with the detection of peaks at the same potentials in both turnover and non-turnover conditions, suggested that mediators were not used for electron transfer and that both archaea produced current through direct contact with the electrode. These two archaeal species, and other hyperthermophilic exoelectrogens, have the potential to broaden the applications of microbial electrochemical technologies for producing biofuels and other bioelectrochemical products under extreme environmental conditions.

  20. Electrical current generation in microbial electrolysis cells by hyperthermophilic archaea Ferroglobus placidus and Geoglobus ahangari

    KAUST Repository

    Yilmazel, Yasemin D.; Zhu, Xiuping; Kim, Kyoung-Yeol; Holmes, Dawn E.; Logan, Bruce E.

    2017-01-01

    Few microorganisms have been examined for current generation under thermophilic (40–65 °C) or hyperthermophilic temperatures (≥ 80 °C) in microbial electrochemical systems. Two iron-reducing archaea from the family Archaeoglobaceae, Ferroglobus placidus and Geoglobus ahangari, showed electro-active behavior leading to current generation at hyperthermophilic temperatures in single-chamber microbial electrolysis cells (MECs). A current density (j) of 0.68 ± 0.11 A/m2 was attained in F. placidus MECs at 85 °C, and 0.57 ± 0.10 A/m2 in G. ahangari MECs at 80 °C, with an applied voltage of 0.7 V. Cyclic voltammetry (CV) showed that both strains produced a sigmoidal catalytic wave, with a mid-point potential of − 0.39 V (vs. Ag/AgCl) for F. placidus and − 0.37 V for G. ahangari. The comparison of CVs using spent medium and turnover CVs, coupled with the detection of peaks at the same potentials in both turnover and non-turnover conditions, suggested that mediators were not used for electron transfer and that both archaea produced current through direct contact with the electrode. These two archaeal species, and other hyperthermophilic exoelectrogens, have the potential to broaden the applications of microbial electrochemical technologies for producing biofuels and other bioelectrochemical products under extreme environmental conditions.

  1. Alcohol dehydrogenases from thermophilic and hyperthermophilic archaea and bacteria.

    Science.gov (United States)

    Radianingtyas, Helia; Wright, Phillip C

    2003-12-01

    Many studies have been undertaken to characterise alcohol dehydrogenases (ADHs) from thermophiles and hyperthermophiles, mainly to better understand their activities and thermostability. To date, there are 20 thermophilic archaeal and 17 thermophilic bacterial strains known to have ADHs or similar enzymes, including the hypothetical proteins. Some of these thermophiles are found to have multiple ADHs, sometimes of different types. A rigid delineation of amino acid sequences amongst currently elucidated thermophilic ADHs and similar proteins is phylogenetically apparent. All are NAD(P)-dependent, with one exception that utilises the cofactor F(420) instead. Within the NAD(P)-dependent group, the thermophilic ADHs are orderly clustered as zinc-dependent ADHs, short-chain ADHs, and iron-containing/activated ADHs. Distance matrix calculations reveal that thermophilic ADHs within one type are homologous, with those derived from a single genus often showing high similarities. Elucidation of the enzyme activity and stability, coupled with structure analysis, provides excellent information to explain the relationship between them, and thermophilic ADHs diversity.

  2. Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: mechanisms for reductant disposal.

    Science.gov (United States)

    Verhaart, Marcel R A; Bielen, Abraham A M; van der Oost, John; Stams, Alfons J M; Kengen, Servé W M

    2010-01-01

    Hydrogen produced from biomass by bacteria and archaea is an attractive renewable energy source. However, to make its application more feasible, microorganisms are needed with high hydrogen productivities. For several reasons, hyperthermophilic and extremely thermophilic bacteria and archaea are promising is this respect. In addition to the high polysaccharide-hydrolysing capacities of many of these organisms, an important advantage is their ability to use most of the reducing equivalents (e.g. NADH, reduced ferredoxin) formed during glycolysis for the production of hydrogen, enabling H2/hexose ratios of between 3.0 and 4.0. So, despite the fact that the hydrogen-yielding reactions, especially the one from NADH, are thermodynamically unfavourable, high hydrogen yields are obtained. In this review we focus on three different mechanisms that are employed by a few model organisms, viz. Caldicellulosiruptor saccharolyticus and Thermoanaerobacter tengcongensis, Thermotoga maritima, and Pyrococcus furiosus, to efficiently produce hydrogen. In addition, recent developments to improve hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea are discussed.

  3. Structural studies of substrate and product complexes of 5-aminolaevulinic acid dehydratase from humans, Escherichia coli and the hyperthermophile Pyrobaculum calidifontis.

    Science.gov (United States)

    Mills-Davies, N; Butler, D; Norton, E; Thompson, D; Sarwar, M; Guo, J; Gill, R; Azim, N; Coker, A; Wood, S P; Erskine, P T; Coates, L; Cooper, J B; Rashid, N; Akhtar, M; Shoolingin-Jordan, P M

    2017-01-01

    A number of X-ray analyses of an enzyme involved in a key early stage of tetrapyrrole biosynthesis are reported. Two structures of human 5-aminolaevulinate dehydratase (ALAD), native and recombinant, have been determined at 2.8 Å resolution, showing that the enzyme adopts an octameric quaternary structure in accord with previously published analyses of the enzyme from a range of other species. However, this is in contrast to the finding that a disease-related F12L mutant of the human enzyme uniquely forms hexamers [Breinig et al. (2003), Nature Struct. Biol. 10, 757-763]. Monomers of all ALADs adopt the TIM-barrel fold; the subunit conformation that assembles into the octamer includes the N-terminal tail of one monomer curled around the (α/β) 8 barrel of a neighbouring monomer. Both crystal forms of the human enzyme possess two monomers per asymmetric unit, termed A and B. In the native enzyme there are a number of distinct structural differences between the A and B monomers, with the latter exhibiting greater disorder in a number of loop regions and in the active site. In contrast, the second monomer of the recombinant enzyme appears to be better defined and the active site of both monomers clearly possesses a zinc ion which is bound by three conserved cysteine residues. In native human ALAD, the A monomer also has a ligand resembling the substrate ALA which is covalently bound by a Schiff base to one of the active-site lysines (Lys252) and is held in place by an ordered active-site loop. In contrast, these features of the active-site structure are disordered or absent in the B subunit of the native human enzyme. The octameric structure of the zinc-dependent ALAD from the hyperthermophile Pyrobaculum calidifontis is also reported at a somewhat lower resolution of 3.5 Å. Finally, the details are presented of a high-resolution structure of the Escherichia coli ALAD enzyme co-crystallized with a noncovalently bound moiety of the product, porphobilinogen (PBG

  4. Amylomaltase of Pyrobaculum aerophilum IM2 produces thermoreversible starch gels

    NARCIS (Netherlands)

    Kaper, T.; Talik, B.; Ettema, T.J.; Bos, H.; Maarel, M.J.E.C. van der; Dijkhuizen, L.

    2005-01-01

    Amylomaltases are 4-α-glucanotransferases (EC 2.4.1.25) of glycoside hydrolase family 77 that transfer α-1,4-linked glucans to another acceptor, which can be the 4-OH group of an α-1,4-linked glucan or glucose. The amylomaltase-encoding gene (PAE1209) from the hyperthermophilic archaeon Pyrobaculum

  5. A virus of hyperthermophilic archaea with a unique architecture among DNA viruses

    NARCIS (Netherlands)

    Rensen, Elena Ilka; Mochizuki, Tomohiro; Quemin, Emmanuelle; Schouten, S.; Krupovic, Mart; Prangishvili, David

    2016-01-01

    Viruses package their genetic material in diverse ways. Most known strategies include encapsulation of nucleic acids into spherical or filamentous virions with icosahedral or helical symmetry, respectively. Filamentous viruses with dsDNA genomes are currently associated exclusively with Archaea.

  6. Stability of the 'L12 stalk' in ribosomes from mesophilic and (hyper)thermophilic Archaea and Bacteria.

    Science.gov (United States)

    Shcherbakov, D; Dontsova, M; Tribus, M; Garber, M; Piendl, W

    2006-01-01

    The ribosomal stalk complex, consisting of one molecule of L10 and four or six molecules of L12, is attached to 23S rRNA via protein L10. This complex forms the so-called 'L12 stalk' on the 50S ribosomal subunit. Ribosomal protein L11 binds to the same region of 23S rRNA and is located at the base of the 'L12 stalk'. The 'L12 stalk' plays a key role in the interaction of the ribosome with translation factors. In this study stalk complexes from mesophilic and (hyper)thermophilic species of the archaeal genus Methanococcus and from the Archaeon Sulfolobus solfataricus, as well as from the Bacteria Escherichia coli, Geobacillus stearothermophilus and Thermus thermophilus, were overproduced in E.coli and purified under non-denaturing conditions. Using filter-binding assays the affinities of the archaeal and bacterial complexes to their specific 23S rRNA target site were analyzed at different pH, ionic strength and temperature. Affinities of both archaeal and bacterial complexes for 23S rRNA vary by more than two orders of magnitude, correlating very well with the growth temperatures of the organisms. A cooperative effect of binding to 23S rRNA of protein L11 and the L10/L12(4) complex from mesophilic and thermophilic Archaea was shown to be temperature-dependent.

  7. AFV1, a novel virus infecting hyperthermophilic archaea of the genus acidianus

    International Nuclear Information System (INIS)

    Bettstetter, Marcus; Peng Xu; Garrett, Roger A.; Prangishvili, David

    2003-01-01

    We describe a novel virus, AFV1, of the hyperthermophilic archaeal genus Acidianus. Filamentous virions are covered with a lipid envelope and contain at least five different proteins with molecular masses in the range of 23-130 kDa and a 20.8-kb-long linear double-stranded DNA. The virus has been assigned to the family Lipothrixviridae on the basis of morphotypic characteristics. Host range is confined to several strains of Acidianus and the virus persists in its hosts in a stable carrier state. The latent period of virus infection is about 4 h. Viral DNA was sequenced and sequence similarities were found to the lipothrixvirus SIFV, the rudiviruses SIRV1 and SIRV2, as well as to conjugative plasmids and chromosomes of the genus Sulfolobus. Exceptionally for the linear genomes of archaeal viruses, many short direct repeats, with the sequence TTGTT or close variants thereof, are closely clustered over 300 bp at each end of the genome. They are reminiscent of the telomeric ends of linear eukaryal chromosomes

  8. Physiological and molecular studies of the resistance to ionizing radiations of hyper-thermophilic archaea isolated from deep ocean hydrothermal sources

    International Nuclear Information System (INIS)

    Jolivet, E.

    2002-10-01

    In this study, we have first tested in vivo the effect of gamma irradiation on Pyrococcus abyssi, a hyper-thermophilic archaeon, isolated from a deep-sea hydrothermal vent. We have shown that this strain was as radioresistant as P. furiosus but less than Deinococcus radiodurans. The rates of double stranded breaks provoked into DNA following irradiation were monitored by the pulsed-field gel electrophoresis technique (P.F.G.E.) with P. abyssi, P. furiosus, D. radiodurans and Escherichia coli. Results clearly showed that all these rates were similar suggesting that no specific DNA protection system exits in Pyrococcus species. The growth of P. abyssi was efficiently recovered within two hours following the exposure to 2.5 kGy of gamma irradiation. As revealed by P.F.G.E., genomic DNA of P. abyssi totally fragmented after irradiation was efficiently restored within two hours presumably by inter chromosomal homologous recombination. The DNA replication in P. abyssi cells following irradiation at 2.5 kGy was blocked for 90 minutes that corresponds to the decay for repairing damaged DNA. Moreover, following irradiation P. abyssi actively expulse damaged DNA material before DNA replication resumes, preventing the amplification of genetic mutations. We have also showed that at least a subset cf P. abyssi DNA repair and replication proteins, such as RadA, RPA-41 and RFC-S. were constitutively expressed in chromatin bound forms in stationary phase cells. Our results were in agreement with the view that P. abyssi contains a very efficient DNA repair system, which is continuously ready to counteract the DNA damaged caused by the high temperature and/or ionizing radiation. For the first time, three novel hyper-thermophilic archaea species from deep-sea hydrothermal vents more radioresistant than P. abyssi were isolated and characterized, after 'y-irradiation exposures of some enrichment cultures. Thermococcus marinus, Thermococcus radiophilus and Thermococcus gammafolerans

  9. Archaea.

    Science.gov (United States)

    Eme, Laura; Doolittle, W Ford

    2015-10-05

    A headline on the front page of the New York Times for November 3, 1977, read "Scientists Discover a Way of Life That Predates Higher Organisms". The accompanying article described a spectacular claim by Carl Woese and George Fox to have discovered a third form of life, a new 'domain' that we now call Archaea. It's not that these microbes were unknown before, nor was it the case that their peculiarities had gone completely unnoticed. Indeed, Ralph Wolfe, in the same department at the University of Illinois as Woese, had already discovered how it was that methanogens (uniquely on the planet) make methane, and the bizarre adaptations that allow extremely halophilic archaea (then called halobacteria) and thermoacidophiles to live in the extreme environments where they do were already under investigation in many labs. But what Woese and Fox had found was that these organisms were related to each other not just in their 'extremophily' but also phylogenetically. And, most surprisingly, they were only remotely related to the rest of the prokaryotes, which we now call the domain Bacteria (Figure 1). Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Molecular evolution of the hyperthermophilic archaea of the Pyrococcus genus: analysis of adaptation to different environmental conditions

    Directory of Open Access Journals (Sweden)

    Afonnikov Dmitry A

    2009-12-01

    Full Text Available Abstract Background Prokaryotic microorganisms are able to survive and proliferate in severe environmental conditions. The increasing number of complete sequences of prokaryotic genomes has provided the basis for studying the molecular mechanisms of their adaptation at the genomic level. We apply here a computer-based approach to compare the genomes and proteomes from P. furiosus, P. horikoshii, and P. abyssi to identify features of their molecular evolution related to adaptation strategy to diverse environmental conditions. Results Phylogenetic analysis of rRNA genes from 26 Pyrococcus strains suggested that the divergence of P. furiosus, P. horikoshii and P. abyssi might have occurred from ancestral deep-sea organisms. It was demonstrated that the function of genes that have been subject to positive Darwinian selection is closely related to abiotic and biotic conditions to which archaea managed to become adapted. Divergence of the P. furiosus archaea might have been due to loss of some genes involved in cell motility or signal transduction, and/or to evolution under positive selection of the genes for translation machinery. In the course of P. horikoshii divergence, positive selection was found to operate mainly on the transcription machinery; divergence of P. abyssi was related with positive selection for the genes mainly involved in inorganic ion transport. Analysis of radical amino acid replacement rate in evolving P. furiosus, P. horikoshii and P. abyssi showed that the fixation rate was higher for radical substitutions relative to the volume of amino acid side-chain. Conclusions The current results give due credit to the important role of hydrostatic pressure as a cause of variability in the P. furiosus, P. horikoshii and P. abyssi genomes evolving in different habitats. Nevertheless, adaptation to pressure does not appear to be the sole factor ensuring adaptation to environment. For example, at the stage of the divergence of P

  11. Viruses of the Archaea

    DEFF Research Database (Denmark)

    Basta, T.; Garrett, Roger Antony; Prangishvili,, David

    2009-01-01

    Double-stranded deoxyribonucleic acid (DNA) viruses that infect members of the third domain of life, the Archaea, are diverse and exceptional in both their morphotypes and their genomic properties. The majority of characterized species infect hyperthermophilic hosts and carry morphological featur...

  12. Viruses of the Archaea

    DEFF Research Database (Denmark)

    Prangishvili,, David; Basta, Tamara; Garrett, Roger Antony

    2016-01-01

    Viruses infecting members of Archaea, the third domain of life, constitute an integral, yet unique part of the virosphere. Many of these viruses, specifically the species that infect hyperthermophilic hosts, display morphotypes – for example, bottle shaped, spindle shaped, droplet shaped, coil sh...

  13. Molecular characterisation of the thermostability and catalytic properties of enzymes from hyperthermophiles

    NARCIS (Netherlands)

    Lebbink, J.H.G.

    1999-01-01

    Hyperthermophilic organisms are able to survive and reproduce optimally between 80°C and 113°C. Most of them belong to the domain of the Archaea, although several hyperthermophilic Bacteria have been described. One of the major questions regarding hyperthermophiles concerns the molecular

  14. Mono-, di- and trimethylated homologues of isoprenoid tetraether lipid cores in archaea and environmental samples: mass spectrometric identification and significance.

    Science.gov (United States)

    Knappy, Chris; Barillà, Daniela; Chong, James; Hodgson, Dominic; Morgan, Hugh; Suleman, Muhammad; Tan, Christine; Yao, Peng; Keely, Brendan

    2015-12-01

    Higher homologues of widely reported C(86) isoprenoid diglycerol tetraether lipid cores, containing 0-6 cyclopentyl rings, have been identified in (hyper)thermophilic archaea, representing up to 21% of total tetraether lipids in the cells. Liquid chromatography-tandem mass spectrometry confirms that the additional carbon atoms in the C(87-88) homologues are located in the etherified chains. Structures identified include dialkyl and monoalkyl ('H-shaped') tetraethers containing C(40-42) or C(81-82) hydrocarbons, respectively, many representing novel compounds. Gas chromatography-mass spectrometric analysis of hydrocarbons released from the lipid cores by ether cleavage suggests that the C(40) chains are biphytanes and the C(41) chains 13-methylbiphytanes. Multiple isomers, having different chain combinations, were recognised among the dialkyl lipids. Methylated tetraethers are produced by Methanothermobacter thermautotrophicus in varying proportions depending on growth conditions, suggesting that methylation may be an adaptive mechanism to regulate cellular function. The detection of methylated lipids in Pyrobaculum sp. AQ1.S2 and Sulfolobus acidocaldarius represents the first reported occurrences in Crenarchaeota. Soils and aquatic sediments from geographically distinct mesotemperate environments that were screened for homologues contained monomethylated tetraethers, with di- and trimethylated structures being detected occasionally. The structural diversity and range of occurrences of the C(87-89) tetraethers highlight their potential as complementary biomarkers for archaea in natural environments. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Distribution and phylogenies of enzymes of the Embden-Meyerhof-Parnas pathway from archaea and hyperthermophilic bacteria support a gluconeogenic origin of metabolism

    Directory of Open Access Journals (Sweden)

    Ron S. Ronimus

    2003-01-01

    Full Text Available Enzymes of the gluconeogenic/glycolytic pathway (the Embden-Meyerhof-Parnas (EMP pathway, the reductive tricarboxylic acid cycle, the reductive pentose phosphate cycle and the Entner-Doudoroff pathway are widely distributed and are often considered to be central to the origins of metabolism. In particular, several enzymes of the lower portion of the EMP pathway (the so-called trunk pathway, including triosephosphate isomerase (TPI; EC 5.3.1.1, glyceraldehyde-3-phosphate dehydrogenase (GAPDH; EC 1.2.1.12/13, phosphoglycerate kinase (PGK; EC 2.7.2.3 and enolase (EC 4.2.1.11, are extremely well conserved and universally distributed among the three domains of life. In this paper, the distribution of enzymes of gluconeogenesis/glycolysis in hyperthermophiles—microorganisms that many believe represent the least evolved organisms on the planet—is reviewed. In addition, the phylogenies of the trunk pathway enzymes (TPIs, GAPDHs, PGKs and enolases are examined. The enzymes catalyzing each of the six-carbon transformations in the upper portion of the EMP pathway, with the possible exception of aldolase, are all derived from multiple gene sequence families. In contrast, single sequence families can account for the archaeal and hyperthermophilic bacterial enzyme activities of the lower portion of the EMP pathway. The universal distribution of the trunk pathway enzymes, in combination with their phylogenies, supports the notion that the EMP pathway evolved in the direction of gluconeogenesis, i.e., from the bottom up.

  16. Sulfur-inhibited Thermosphaera aggregans sp. nov., a new genus of hyperthermophilic archaea isolated after its prediction from environmentally derived 16S rRNA sequences.

    Science.gov (United States)

    Huber, R; Dyba, D; Huber, H; Burggraf, S; Rachel, R

    1998-01-01

    Recently, a new procedure was developed which allowed for the first time the isolation of a hyperthermophilic archaeum tracked by 165 rRNA analysis from a terrestrial hot solfataric spring ('Obsidian Pool', Yellowstone National Park, WY, USA). This novel isolate is characterized here. Cells are round cocci with a diameter of 0.2-0.8 micron, occurring singly, in pairs, short chains and in grape-like aggregates. The aggregates exhibit a weak bluish-green fluorescence under UV radiation at 420 nm. The new isolate is an anaerobic obligate heterotroph, using preferentially yeast extract for growth. The metabolic products include CO2, H2, acetate and isovalerate. Growth is observed between 65 and 90 degrees C (optimum: 85 degrees C), from pH 5.0 to 7.0 (optimum: 6.5) and up to 0.7% NaCl. The apparent activation energy for growth is about 149 kJ mol-1. Elemental sulfur or hydrogen inhibits growth. The core lipids consist mainly of acyclic and cyclic glycerol diphytanyl tetraethers. The cell envelope contains a cytoplasmic membrane covered by an amorphous layer of unknown composition; there is no evidence for a regularly arrayed surface-layer protein. The G + C content is 46 mol%. On the basis of 165 rRNA sequence comparisons in combination with morphological, physiological and biochemical properties, the isolate represents a new genus within the Desulfurococcaceae, which has been named Thermosphaera. The type species is Thermosphaera aggregans, the type strain is isolate M11TLT (= DSM 11486T).

  17. Comparative Genomic and Transcriptional Analyses of CRISPR Systems Across the Genus Pyrobaculum

    Directory of Open Access Journals (Sweden)

    David L Bernick

    2012-07-01

    Full Text Available Within the domain Archaea, the CRISPR immune system appears to be nearly ubiquitous based on computational genome analyses. Initial studies in bacteria demonstrated that the CRISPR system targets invading plasmid and viral DNA. Recent experiments in the model archaeon Pyrococcus furiosus uncovered a novel RNA-targeting variant of the CRISPR system potentially unique to archaea. Because our understanding of CRISPR system evolution in other archaea is limited, we have taken a comparative genomic and transcriptomic view of the CRISPR arrays across six diverse species within the crenarchaeal genus Pyrobaculum. We present transcriptional data from each of four species in the genus (P. aerophilum, P. islandicum, P. calidifontis, P. arsenaticum, analyzing mature CRISPR-associated small RNA abundance from over 20 arrays. Within the genus, there is remarkable conservation of CRISPR array structure, as well as unique features that are have not been studied in other archaeal systems. These unique features include: a nearly invariant CRISPR promoter, conservation of direct repeat families, the 5' polarity of CRISPR-associated small RNA abundance, and a novel CRISPR-specific association with homologues of nurA and herA. These analyses provide a genus-level evolutionary perspective on archaeal CRISPR systems, broadening our understanding beyond existing non-comparative model systems.

  18. ADP-dependent Phosphofructokinases in Mesophilic and Thermophilic Methanogenic Archaea

    NARCIS (Netherlands)

    Verhees, C.H.; Tuininga, J.E.; Kengen, S.W.M.; Stams, A.J.M.; Oost, van der J.; Vos, de W.M.

    2001-01-01

    Phosphofructokinase (PFK) is a key enzyme of the glycolytic pathway in all domains of life. Two related PFKs, ATP-dependent and PPi-dependent PFK, have been distinguished in bacteria and eucarya, as well as in some archaea. Hyperthermophilic archaea of the order Thermococcales, including Pyrococcus

  19. The Peculiar Glycolytic Pathway in Hyperthermophylic Archaea : Understanding Its Whims by Experimentation In Silico

    NARCIS (Netherlands)

    Zhang, Y.; Kouril, T.; Snoep, J.L.; Siebers, B.; Barberis, M.; Westerhoff, H.V.

    2017-01-01

    Mathematical models are key to systems biology where they typically describe the topology and dynamics of biological networks, listing biochemical entities and their relationships with one another. Some (hyper)thermophilic Archaea contain an enzyme, called non-phosphorylating

  20. Stability of Hyperthermophilic Proteins

    DEFF Research Database (Denmark)

    Stiefler-Jensen, Daniel

    stability by randomly generate mutants and lengthy screening processes to identify the best new mutants. However, with the increase in available genomic sequences of thermophilic or hyperthermophilic organisms a world of enzymes with intrinsic high stability are now available. As these organisms are adapted...... to life at high temperatures so are their enzymes, as a result the high stability is accompanied by low activity at moderate temperatures. Thus, much effort had been put into decoding the mechanisms behind the high stability of the thermophilic enzymes. The hope is to enable scientist to design enzymes...... in the high stability of hyperthermophilic enzymes. The thesis starts with an introduction to the field of protein and enzyme stability with special focus on the thermophilic and hyperthermophilic enzymes and proteins. After the introduction three original research manuscripts present the experimental data...

  1. Proteomic properties reveal phyloecological clusters of Archaea.

    Directory of Open Access Journals (Sweden)

    Nela Nikolic

    Full Text Available In this study, we propose a novel way to describe the variety of environmental adaptations of Archaea. We have clustered 57 Archaea by using a non-redundant set of proteomic features, and verified that the clusters correspond to environmental adaptations to the archaeal habitats. The first cluster consists dominantly of hyperthermophiles and hyperthermoacidophilic aerobes. The second cluster joins together halophilic and extremely halophilic Archaea, while the third cluster contains mesophilic (mostly methanogenic Archaea together with thermoacidophiles. The non-redundant subset of proteomic features was found to consist of five features: the ratio of charged residues to uncharged, average protein size, normalized frequency of beta-sheet, normalized frequency of extended structure and number of hydrogen bond donors. We propose this clustering to be termed phyloecological clustering. This approach could give additional insights into relationships among archaeal species that may be hidden by sole phylogenetic analysis.

  2. A novel rudivirus, ARV1, of the hyperthermophilic archaeal genus Acidianus

    DEFF Research Database (Denmark)

    Vestergaard, Gisle Alberg; Häring, Monika; Peng, Xu

    2005-01-01

    Virus ARV1, the first member of the family Rudiviridae infecting hyperthermophilic archaea of the genus Acidianus, was isolated from a hot spring in Pozzuoli, Italy. The rod-shaped virions, 610 +/- 50 nm long and 22 +/- 3 nm wide, are non-enveloped and carry a helical nucleoprotein core, with thr...

  3. Proteolysis in hyperthermophilic microorganisms

    Directory of Open Access Journals (Sweden)

    Donald E. Ward

    2002-01-01

    Full Text Available Proteases are found in every cell, where they recognize and break down unneeded or abnormal polypeptides or peptide-based nutrients within or outside the cell. Genome sequence data can be used to compare proteolytic enzyme inventories of different organisms as they relate to physiological needs for protein modification and hydrolysis. In this review, we exploit genome sequence data to compare hyperthermophilic microorganisms from the euryarchaeotal genus Pyrococcus, the crenarchaeote Sulfolobus solfataricus, and the bacterium Thermotoga maritima. An overview of the proteases in these organisms is given based on those proteases that have been characterized and on putative proteases that have been identified from genomic sequences, but have yet to be characterized. The analysis revealed both similarities and differences in the mechanisms utilized for proteolysis by each of these hyperthermophiles and indicated how these mechanisms relate to proteolysis in less thermophilic cells and organisms.

  4. Industrial relevance of thermophilic Archaea.

    Science.gov (United States)

    Egorova, Ksenia; Antranikian, Garabed

    2005-12-01

    The dramatic increase of newly isolated extremophilic microorganisms, analysis of their genomes and investigations of their enzymes by academic and industrial laboratories demonstrate the great potential of extremophiles in industrial (white) biotechnology. Enzymes derived from extremophiles (extremozymes) are superior to the traditional catalysts because they can perform industrial processes even under harsh conditions, under which conventional proteins are completely denatured. In particular, enzymes from thermophilic and hyperthermophilic Archaea have industrial relevance. Despite intensive investigations, our knowledge of the structure-function relationships of their enzymes is still limited. Information concerning the molecular properties of their enzymes and genes has to be obtained to be able to understand the mechanisms that are responsible for catalytic activity and stability at the boiling point of water.

  5. Pnserpin: A Novel Serine Protease Inhibitor from Extremophile Pyrobaculum neutrophilum

    Directory of Open Access Journals (Sweden)

    Huan Zhang

    2017-01-01

    Full Text Available Serine protease inhibitors (serpins are native inhibitors of serine proteases, constituting a large protein family with members spread over eukaryotes and prokaryotes. However, only very few prokaryotic serpins, especially from extremophiles, have been characterized to date. In this study, Pnserpin, a putative serine protease inhibitor from the thermophile Pyrobaculum neutrophilum, was overexpressed in Escherichia coli for purification and characterization. It irreversibly inhibits chymotrypsin-, trypsin-, elastase-, and subtilisin-like proteases in a temperature range from 20 to 100 °C in a concentration-dependent manner. The stoichiometry of inhibition (SI of Pnserpin for proteases decreases as the temperature increases, indicating that the inhibitory activity of Pnserpin increases with the temperature. SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis showed that Pnserpin inhibits proteases by forming a SDS-resistant covalent complex. Homology modeling and molecular dynamic simulations predicted that Pnserpin can form a stable common serpin fold. Results of the present work will help in understanding the structural and functional characteristics of thermophilic serpin and will broaden the current knowledge about serpins from extremophiles.

  6. Perspectives on biotechnological applications of archaea

    Science.gov (United States)

    Schiraldi, Chiara; Giuliano, Mariateresa; De Rosa, Mario

    2002-01-01

    Many archaea colonize extreme environments. They include hyperthermophiles, sulfur-metabolizing thermophiles, extreme halophiles and methanogens. Because extremophilic microorganisms have unusual properties, they are a potentially valuable resource in the development of novel biotechnological processes. Despite extensive research, however, there are few existing industrial applications of either archaeal biomass or archaeal enzymes. This review summarizes current knowledge about the biotechnological uses of archaea and archaeal enzymes with special attention to potential applications that are the subject of current experimental evaluation. Topics covered include cultivation methods, recent achievements in genomics, which are of key importance for the development of new biotechnological tools, and the application of wild-type biomasses, engineered microorganisms, enzymes and specific metabolites in particular bioprocesses of industrial interest. PMID:15803645

  7. Methanogenic archaea

    International Nuclear Information System (INIS)

    Joblin, K.N.

    2005-01-01

    This chapter outlines procedures for enumerating, isolating, culturing and storing methanogens from ruminal digesta. The methanogens, a large and diverse group of Archaea, have unique features that separate them from the bacteria and the eukaryotes. They are the only recognized ruminal microbes belonging to the Archaea and are an integral part of the rumen microbial ecosystem. By scavenging hydrogen gas, methanogens play a key ecological role in keeping the partial pressure of hydrogen low so that fermentation can proceed efficiently. Although about 70 methanogenic species belonging to 2 1 genera have been identified from anaerobic environments, and a range of different methanogens co-exist in the rumen, to date only seven ruminal species have been isolated and purified. The population densities of methanogens in the rumen appear to be influenced by diet, and in particular by the fibre content of the diet. Sheep and cattle fed diets rich in concentrates contained 10 7 -10 8 and 10 8 - 10 9 ruminal methanogens/g, respectively, whereas sheep and dairy cows grazing pasture contained 10 9 -10 10 ruminal methanogens/g (G.N. Jarvis and K.N. Joblin, unpublished data). With careful application, methanogen population densities can readily be determined using culture methods. These appear to be similar to the population densities determined by culture-independent methods (P. Evans and K.N. Joblin, unpublished data)

  8. The Helicase Activity of Hyperthermophilic Archaeal MCM is Enhanced at High Temperatures by Lysine Methylation.

    Science.gov (United States)

    Xia, Yisui; Niu, Yanling; Cui, Jiamin; Fu, Yang; Chen, Xiaojiang S; Lou, Huiqiang; Cao, Qinhong

    2015-01-01

    Lysine methylation and methyltransferases are widespread in the third domain of life, archaea. Nevertheless, the effects of methylation on archaeal proteins wait to be defined. Here, we report that recombinant sisMCM, an archaeal homolog of Mcm2-7 eukaryotic replicative helicase, is methylated by aKMT4 in vitro. Mono-methylation of these lysine residues occurs coincidently in the endogenous sisMCM protein purified from the hyperthermophilic Sulfolobus islandicus cells as indicated by mass spectra. The helicase activity of mini-chromosome maintenance (MCM) is stimulated by methylation, particularly at temperatures over 70°C. The methylated MCM shows optimal DNA unwinding activity after heat-treatment between 76 and 82°C, which correlates well with the typical growth temperatures of hyperthermophilic Sulfolobus. After methylation, the half life of MCM helicase is dramatically extended at 80°C. The methylated sites are located on the accessible protein surface, which might modulate the intra- and inter- molecular interactions through changing the hydrophobicity and surface charge. Furthermore, the methylation-mimic mutants of MCM show heat resistance helicase activity comparable to the methylated MCM. These data provide the biochemical evidence that posttranslational modifications such as methylation may enhance kinetic stability of proteins under the elevated growth temperatures of hyperthermophilic archaea.

  9. Energetic and hydrogen limitations of thermophilic and hyperthermophilic methanogens

    Science.gov (United States)

    Stewart, L. C.; Holden, J. F.

    2013-12-01

    Deep-sea hydrothermal vents are a unique ecosystem, based ultimately not on photosynthesis but chemosynthetic primary production. This makes them an excellent analog environment for the early Earth, and for potential extraterrestrial habitable environments, such as those on Mars and Europa. The habitability of given vent systems for chemoautotrophic prokaryotes can be modeled energetically by estimating the available Gibbs energy for specific modes of chemoautotrophy, using geochemical data and mixing models for hydrothermal fluids and seawater (McCollom and Shock, 1997). However, modeling to date has largely not taken into account variation in organisms' energy demands in these environments. Controls on maintenance energies are widely assumed to be temperature-dependent, rising with increasing temperature optima (Tijhuis et al., 1993), and species-independent. The impacts of other environmental stressors and particular energy-gathering strategies on maintenance energies have not been investigated. We have undertaken culture-based studies of growth and maintenance energies in thermophilic and hyperthermophilic methanogenic (hydrogenotrophic) archaea from deep-sea hydrothermal vents to investigate potential controls on energy demands in hydrothermal vent microbes, and to quantify their growth and maintenance energies for future bioenergetic modeling. We have investigated trends in their growth energies over their full temperature range and a range of nitrogen concentrations, and in their maintenance energies at different hydrogen concentrations. Growth energies in these organisms appear to rise with temperature, but do not vary between hyperthermophilic and thermophilic methanogens. Nitrogen availability at tested levels (40μM - 9.4 mM) does not appear to affect growth energies in all but one tested organism. In continuous chemostat culture, specific methane production varied with hydrogen availability but was similar between a thermophilic and a hyperthermophilic

  10. Diversity of bacteria and archaea from two shallow marine hydrothermal vents from Vulcano Island.

    Science.gov (United States)

    Antranikian, Garabed; Suleiman, Marcel; Schäfers, Christian; Adams, Michael W W; Bartolucci, Simonetta; Blamey, Jenny M; Birkeland, Nils-Kåre; Bonch-Osmolovskaya, Elizaveta; da Costa, Milton S; Cowan, Don; Danson, Michael; Forterre, Patrick; Kelly, Robert; Ishino, Yoshizumi; Littlechild, Jennifer; Moracci, Marco; Noll, Kenneth; Oshima, Tairo; Robb, Frank; Rossi, Mosè; Santos, Helena; Schönheit, Peter; Sterner, Reinhard; Thauer, Rudolf; Thomm, Michael; Wiegel, Jürgen; Stetter, Karl Otto

    2017-07-01

    To obtain new insights into community compositions of hyperthermophilic microorganisms, defined as having optimal growth temperatures of 80 °C and above, sediment and water samples were taken from two shallow marine hydrothermal vents (I and II) with temperatures of 100 °C at Vulcano Island, Italy. A combinatorial approach of denaturant gradient gel electrophoresis (DGGE) and metagenomic sequencing was used for microbial community analyses of the samples. In addition, enrichment cultures, growing anaerobically on selected polysaccharides such as starch and cellulose, were also analyzed by the combinatorial approach. Our results showed a high abundance of hyperthermophilic archaea, especially in sample II, and a comparable diverse archaeal community composition in both samples. In particular, the strains of the hyperthermophilic anaerobic genera Staphylothermus and Thermococcus, and strains of the aerobic hyperthermophilic genus Aeropyrum, were abundant. Regarding the bacterial community, ε-Proteobacteria, especially the genera Sulfurimonas and Sulfurovum, were highly abundant. The microbial diversity of the enrichment cultures changed significantly by showing a high dominance of archaea, particularly the genera Thermococcus and Palaeococcus, depending on the carbon source and the selected temperature.

  11. Metabolism Dealing with Thermal Degradation of NAD+ in the Hyperthermophilic Archaeon Thermococcus kodakarensis.

    Science.gov (United States)

    Hachisuka, Shin-Ichi; Sato, Takaaki; Atomi, Haruyuki

    2017-10-01

    degradation to ADP-ribose and nicotinamide. Here we show that an ADP-ribose pyrophosphatase homolog from the hyperthermophilic archaeon Thermococcus kodakarensis converts the detrimental ADP-ribose to ribose 5-phosphate and AMP, compounds that can be directed to central carbon metabolism. This physiological role for ADP-ribose pyrophosphatases might be universal in hyperthermophiles, as their homologs are widely distributed among both hyperthermophilic bacteria and archaea. Copyright © 2017 American Society for Microbiology.

  12. Structural and physicochemical properties of polar lipids from thermophilic archaea.

    Science.gov (United States)

    Ulrih, Natasa Poklar; Gmajner, Dejan; Raspor, Peter

    2009-08-01

    The essential general features required for lipid membranes of extremophilic archaea to fulfill biological functions are that they are in the liquid crystalline phase and have extremely low permeability of solutes that is much less temperature sensitive due to a lack of lipid-phase transition and highly branched isoprenoid chains. Many accumulated data indicate that the organism's response to extremely low pH is the opposite of that to high temperature. The high temperature adaptation does not require the tetraether lipids, while the adaptation of thermophiles to acidic environment requires the tetraether polar lipids. The presence of cyclopentane rings and the role of polar heads are not so straightforward regarding the correlations between fluidity and permeability of the lipid membrane. Due to the unique lipid structures and properties of archaeal lipids, they are a valuable resource in the development of novel biotechnological processes. This microreview focuses primarily on structural and physicochemical properties of polar lipids of (hyper)thermophilic archaea.

  13. Widespread Disulfide Bonding in Proteins from Thermophilic Archaea

    Directory of Open Access Journals (Sweden)

    Julien Jorda

    2011-01-01

    Full Text Available Disulfide bonds are generally not used to stabilize proteins in the cytosolic compartments of bacteria or eukaryotic cells, owing to the chemically reducing nature of those environments. In contrast, certain thermophilic archaea use disulfide bonding as a major mechanism for protein stabilization. Here, we provide a current survey of completely sequenced genomes, applying computational methods to estimate the use of disulfide bonding across the Archaea. Microbes belonging to the Crenarchaeal branch, which are essentially all hyperthermophilic, are universally rich in disulfide bonding while lesser degrees of disulfide bonding are found among the thermophilic Euryarchaea, excluding those that are methanogenic. The results help clarify which parts of the archaeal lineage are likely to yield more examples and additional specific data on protein disulfide bonding, as increasing genomic sequencing efforts are brought to bear.

  14. Widespread disulfide bonding in proteins from thermophilic archaea.

    Science.gov (United States)

    Jorda, Julien; Yeates, Todd O

    2011-01-01

    Disulfide bonds are generally not used to stabilize proteins in the cytosolic compartments of bacteria or eukaryotic cells, owing to the chemically reducing nature of those environments. In contrast, certain thermophilic archaea use disulfide bonding as a major mechanism for protein stabilization. Here, we provide a current survey of completely sequenced genomes, applying computational methods to estimate the use of disulfide bonding across the Archaea. Microbes belonging to the Crenarchaeal branch, which are essentially all hyperthermophilic, are universally rich in disulfide bonding while lesser degrees of disulfide bonding are found among the thermophilic Euryarchaea, excluding those that are methanogenic. The results help clarify which parts of the archaeal lineage are likely to yield more examples and additional specific data on protein disulfide bonding, as increasing genomic sequencing efforts are brought to bear.

  15. Deletion of the topoisomerase III gene in the hyperthermophilic archaeon Sulfolobus islandicus results in slow growth and defects in cell cycle control

    DEFF Research Database (Denmark)

    Li, Xiyang; Guo, Li; Deng, Ling

    2011-01-01

    Topoisomerase III (topo III), a type IA topoisomerase, is widespread in hyperthermophilic archaea. In order to interrogate the in vivo role of archaeal topo III, we constructed and characterized a topo III gene deletion mutant of Sulfolobus islandicus. The mutant was viable but grew more slowly...... results suggest that the enzyme may serve roles in chromosomal segregation and control of the level of supercoiling in the cell....

  16. A new thermophilic nitrilase from an antarctic hyperthermophilic microorganism.

    Directory of Open Access Journals (Sweden)

    Geraldine V. Dennett

    2016-02-01

    Full Text Available Several environmental samples from Antarctica were collected and enriched to search for microorganisms with nitrilase activity. A new thermostable nitrilase from a novel hyperthermophilic archaea Pyrococcus sp. M24D13 was purified and characterized. The activity of this enzyme increased as the temperatures rise from 70 up to 85 °C. Its optimal activity occurred at 85 °C and pH 7.5. This new enzyme shows a remarkable resistance to thermal inactivation retaining more than 50% of its activity even after 8 h of incubation at 85 °C.In addition, this nitrilase is highly versatile demonstrating activity towards different substrates such as benzonitrile (60 mM, aromatic nitrile and butyronitrile (60 mM, aliphatic nitrile, with a specific activity of 3286.7 U mg-1 of protein and 4008.2 U mg-1 of protein respectively. Moreover the enzyme NitM24D13 also presents cyanidase activity.The apparent Michaelis-Menten constant (Km and Vmáx of this Nitrilase for benzonitrile were 0.3 mM and 333.3 µM min-1, respectively, and the specificity constant (kcat/Km for benzonitrile was 2.05×105 s-1 M-1.

  17. (Hyper)thermophilic Enzymes: Production and Purification

    NARCIS (Netherlands)

    Falcicchio, P.; Levisson, M.; Kengen, S.W.M.; Koutsopoulos, S.

    2014-01-01

    The discovery of thermophilic and hyperthermophilic microorganisms, thriving at environmental temperatures near or above 100 °C, has revolutionized our ideas about the upper temperature limit at which life can exist. The characterization of (hyper)thermostable proteins has broadened our

  18. Metagenomics of Kamchatkan hot spring filaments reveal two new major (hyper)thermophilic lineages related to Thaumarchaeota.

    Science.gov (United States)

    Eme, Laura; Reigstad, Laila J; Spang, Anja; Lanzén, Anders; Weinmaier, Thomas; Rattei, Thomas; Schleper, Christa; Brochier-Armanet, Céline

    2013-06-01

    Based on phylogenetic analyses and gene distribution patterns of a few complete genomes, a new distinct phylum within the Archaea, the Thaumarchaeota, has recently been proposed. Here we present analyses of six archaeal fosmid sequences derived from a microbial hot spring community in Kamchatka. The phylogenetic analysis of informational components (ribosomal RNAs and proteins) reveals two major (hyper-)thermophilic clades ("Hot Thaumarchaeota-related Clade" 1 and 2, HTC1 and HTC2) related to Thaumarchaeota, representing either deep branches of this phylum or a new archaeal phylum and provides information regarding the ancient evolution of Archaea and their evolutionary links with Eukaryotes. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  19. Proteomic Insights into Sulfur Metabolism in the Hydrogen-Producing Hyperthermophilic Archaeon Thermococcus onnurineus NA1

    Directory of Open Access Journals (Sweden)

    Yoon-Jung Moon

    2015-04-01

    Full Text Available The hyperthermophilic archaeon Thermococcus onnurineus NA1 has been shown to produce H2 when using CO, formate, or starch as a growth substrate. This strain can also utilize elemental sulfur as a terminal electron acceptor for heterotrophic growth. To gain insight into sulfur metabolism, the proteome of T. onnurineus NA1 cells grown under sulfur culture conditions was quantified and compared with those grown under H2-evolving substrate culture conditions. Using label-free nano-UPLC-MSE-based comparative proteomic analysis, approximately 38.4% of the total identified proteome (589 proteins was found to be significantly up-regulated (≥1.5-fold under sulfur culture conditions. Many of these proteins were functionally associated with carbon fixation, Fe–S cluster biogenesis, ATP synthesis, sulfur reduction, protein glycosylation, protein translocation, and formate oxidation. Based on the abundances of the identified proteins in this and other genomic studies, the pathways associated with reductive sulfur metabolism, H2-metabolism, and oxidative stress defense were proposed. The results also revealed markedly lower expression levels of enzymes involved in the sulfur assimilation pathway, as well as cysteine desulfurase, under sulfur culture condition. The present results provide the first global atlas of proteome changes triggered by sulfur, and may facilitate an understanding of how hyperthermophilic archaea adapt to sulfur-rich, extreme environments.

  20. Proteomic Insights into Sulfur Metabolism in the Hydrogen-Producing Hyperthermophilic Archaeon Thermococcus onnurineus NA1

    Science.gov (United States)

    Moon, Yoon-Jung; Kwon, Joseph; Yun, Sung-Ho; Lim, Hye Li; Kim, Jonghyun; Kim, Soo Jung; Kang, Sung Gyun; Lee, Jung-Hyun; Kim, Seung Il; Chung, Young-Ho

    2015-01-01

    The hyperthermophilic archaeon Thermococcus onnurineus NA1 has been shown to produce H2 when using CO, formate, or starch as a growth substrate. This strain can also utilize elemental sulfur as a terminal electron acceptor for heterotrophic growth. To gain insight into sulfur metabolism, the proteome of T. onnurineus NA1 cells grown under sulfur culture conditions was quantified and compared with those grown under H2-evolving substrate culture conditions. Using label-free nano-UPLC-MSE-based comparative proteomic analysis, approximately 38.4% of the total identified proteome (589 proteins) was found to be significantly up-regulated (≥1.5-fold) under sulfur culture conditions. Many of these proteins were functionally associated with carbon fixation, Fe–S cluster biogenesis, ATP synthesis, sulfur reduction, protein glycosylation, protein translocation, and formate oxidation. Based on the abundances of the identified proteins in this and other genomic studies, the pathways associated with reductive sulfur metabolism, H2-metabolism, and oxidative stress defense were proposed. The results also revealed markedly lower expression levels of enzymes involved in the sulfur assimilation pathway, as well as cysteine desulfurase, under sulfur culture condition. The present results provide the first global atlas of proteome changes triggered by sulfur, and may facilitate an understanding of how hyperthermophilic archaea adapt to sulfur-rich, extreme environments. PMID:25915030

  1. Insights into dynamics of mobile genetic elements in hyperthermophilic environments from five new Thermococcus plasmids.

    Directory of Open Access Journals (Sweden)

    Mart Krupovic

    Full Text Available Mobilome of hyperthermophilic archaea dwelling in deep-sea hydrothermal vents is poorly characterized. To gain insight into genetic diversity and dynamics of mobile genetic elements in these environments we have sequenced five new plasmids from different Thermococcus strains that have been isolated from geographically remote hydrothermal vents. The plasmids were ascribed to two subfamilies, pTN2-like and pEXT9a-like. Gene content and phylogenetic analyses illuminated a robust connection between pTN2-like plasmids and Pyrococcus abyssi virus 1 (PAV1, with roughly half of the viral genome being composed of genes that have homologues in plasmids. Unexpectedly, pEXT9a-like plasmids were found to be closely related to the previously sequenced plasmid pMETVU01 from Methanocaldococcus vulcanius M7. Our data suggests that the latter observation is most compatible with an unprecedented horizontal transfer of a pEXT9a-like plasmid from Thermococcales to Methanococcales. Gene content analysis revealed that thermococcal plasmids encode Hfq-like proteins and toxin-antitoxin (TA systems of two different families, VapBC and RelBE. Notably, although abundant in archaeal genomes, to our knowledge, TA and hfq-like genes have not been previously found in archaeal plasmids or viruses. Finally, the plasmids described here might prove to be useful in developing new genetic tools for hyperthermophiles.

  2. Characterization of technetium(vII) reduction by cell suspensions of thermophilic bacteria and archaea.

    Science.gov (United States)

    Chernyh, Nikolay A; Gavrilov, Sergei N; Sorokin, Vladimir V; German, Konstantin E; Sergeant, Claire; Simonoff, Monique; Robb, Frank; Slobodkin, Alexander I

    2007-08-01

    Washed cell suspensions of the anaerobic hyperthermophilic archaea Thermococcus pacificus and Thermoproteus uzoniensis and the anaerobic thermophilic gram-positive bacteria Thermoterrabacterium ferrireducens and Tepidibacter thalassicus reduced technetium [(99)Tc(VII)], supplied as soluble pertechnetate with molecular hydrogen as an electron donor, forming highly insoluble Tc(IV)-containing grayish-black precipitate. Apart from molecular hydrogen, T. ferrireducens reduced Tc(VII) with lactate, glycerol, and yeast extract as electron donors, and T. thalassicus reduced it with peptone. Scanning electron microscopy and X-ray microanalysis of cell suspensions of T. ferrireducens showed the presence of Tc-containing particles attached to the surfaces of non-lysed cells. This is the first report on the reduction in Tc(VII) by thermophilic microorganisms of the domain Bacteria and by archaea of the phylum Euryarchaeota.

  3. Chromatin structure and dynamics in hot environments: architectural proteins and DNA topoisomerases of thermophilic archaea.

    Science.gov (United States)

    Visone, Valeria; Vettone, Antonella; Serpe, Mario; Valenti, Anna; Perugino, Giuseppe; Rossi, Mosè; Ciaramella, Maria

    2014-09-25

    In all organisms of the three living domains (Bacteria, Archaea, Eucarya) chromosome-associated proteins play a key role in genome functional organization. They not only compact and shape the genome structure, but also regulate its dynamics, which is essential to allow complex genome functions. Elucidation of chromatin composition and regulation is a critical issue in biology, because of the intimate connection of chromatin with all the essential information processes (transcription, replication, recombination, and repair). Chromatin proteins include architectural proteins and DNA topoisomerases, which regulate genome structure and remodelling at two hierarchical levels. This review is focussed on architectural proteins and topoisomerases from hyperthermophilic Archaea. In these organisms, which live at high environmental temperature (>80 °C <113 °C), chromatin proteins and modulation of the DNA secondary structure are concerned with the problem of DNA stabilization against heat denaturation while maintaining its metabolic activity.

  4. Chromatin Structure and Dynamics in Hot Environments: Architectural Proteins and DNA Topoisomerases of Thermophilic Archaea

    Directory of Open Access Journals (Sweden)

    Valeria Visone

    2014-09-01

    Full Text Available In all organisms of the three living domains (Bacteria, Archaea, Eucarya chromosome-associated proteins play a key role in genome functional organization. They not only compact and shape the genome structure, but also regulate its dynamics, which is essential to allow complex genome functions. Elucidation of chromatin composition and regulation is a critical issue in biology, because of the intimate connection of chromatin with all the essential information processes (transcription, replication, recombination, and repair. Chromatin proteins include architectural proteins and DNA topoisomerases, which regulate genome structure and remodelling at two hierarchical levels. This review is focussed on architectural proteins and topoisomerases from hyperthermophilic Archaea. In these organisms, which live at high environmental temperature (>80 °C <113 °C, chromatin proteins and modulation of the DNA secondary structure are concerned with the problem of DNA stabilization against heat denaturation while maintaining its metabolic activity.

  5. Isolation of a hyperthermophilic archaeum predicted by in situ RNA analysis.

    Science.gov (United States)

    Huber, R; Burggraf, S; Mayer, T; Barns, S M; Rossnagel, P; Stetter, K O

    1995-07-06

    A variety of hyperthermophilic bacteria and archaea have been isolated from high-temperature environments by plating and serial dilutions. However, these techniques allow only the small percentage of organisms able to form colonies, or those that are predominant within environmental samples, to be obtained in pure culture. Recently, in situ 16S ribosomal RNA analyses of samples from the Obsidian hot pool at Yellowstone National Park, Wyoming, revealed a variety of archaeal sequences, which were all different from those of previously isolated species. This suggests substantial diversity of archaea with so far unknown morphological, physiological and biochemical features, which may play an important part within high-temperature ecosystems. Here we describe a procedure to obtain pure cultures of unknown organisms harbouring specific 16S rRNA sequences identified previously within the environment. It combines visual recognition of single cells by phylogenetic staining and cloning by 'optical tweezers'. Our result validates polymerase chain reaction data on the existence of large archael communities.

  6. Survival of thermophilic and hyperthermophilic microorganisms after exposure to UV-C, ionizing radiation and desiccation.

    Science.gov (United States)

    Beblo, Kristina; Douki, Thierry; Schmalz, Gottfried; Rachel, Reinhard; Wirth, Reinhard; Huber, Harald; Reitz, Günther; Rettberg, Petra

    2011-11-01

    In this study, we investigated the ability of several (hyper-) thermophilic Archaea and phylogenetically deep-branching thermophilic Bacteria to survive high fluences of monochromatic UV-C (254 nm) and high doses of ionizing radiation, respectively. Nine out of fourteen tested microorganisms showed a surprisingly high tolerance against ionizing radiation, and two species (Aquifex pyrophilus and Ignicoccus hospitalis) were even able to survive 20 kGy. Therefore, these species had a comparable survivability after exposure to ionizing radiation such as Deinococcus radiodurans. In contrast, there was nearly no difference in survival of the tested strains after exposure to UV-C under anoxic conditions. If the cells had been dried in advance of UV-C irradiation, they were more sensitive to UV-C radiation compared with cells irradiated in liquid suspension; this effect could be reversed by the addition of protective material like sulfidic ores before irradiation. By exposure to UV-C, photoproducts were formed in the DNA of irradiated Archaea and Bacteria. The distribution of the main photoproducts was species specific, but the amount of the photoproducts was only partly dependent on the applied fluence. Overall, our results show that tolerance to radiation seems to be a common phenomenon among thermophilic and hyperthermophilic microorganisms.

  7. Hyperthermophilic Archaeal Viruses as Novel Nanoplatforms

    DEFF Research Database (Denmark)

    Uldahl, Kristine Buch

    Viruses are the most abundant biological entities on earth, and with an estimated 1031 virus-like particles in the biosphere, viruses are virtually everywhere. Traditionally, the study of viruses has focused on their roles as infectious agents. However, over the last decades with the development...... presents an in depth investigation of the hyperthermophilic archaeal virus SMV. Decisive steps in the viral life-cycle are studied with focus on the early stages of infection. TEM observations suggest that SMV1 virions enter into host cells via a fusion entry mechanism, involving three distinct stages...

  8. Hyperthermophilic endoglucanase for in planta lignocellulose conversion

    Directory of Open Access Journals (Sweden)

    Klose Holger

    2012-08-01

    Full Text Available Abstract Background The enzymatic conversion of lignocellulosic plant biomass into fermentable sugars is a crucial step in the sustainable and environmentally friendly production of biofuels. However, a major drawback of enzymes from mesophilic sources is their suboptimal activity under established pretreatment conditions, e.g. high temperatures, extreme pH values and high salt concentrations. Enzymes from extremophiles are better adapted to these conditions and could be produced by heterologous expression in microbes, or even directly in the plant biomass. Results Here we show that a cellulase gene (sso1354 isolated from the hyperthermophilic archaeon Sulfolobus solfataricus can be expressed in plants, and that the recombinant enzyme is biologically active and exhibits the same properties as the wild type form. Since the enzyme is inactive under normal plant growth conditions, this potentially allows its expression in plants without negative effects on growth and development, and subsequent heat-inducible activation. Furthermore we demonstrate that the recombinant enzyme acts in high concentrations of ionic liquids and can therefore degrade α-cellulose or even complex cell wall preparations under those pretreatment conditions. Conclusion The hyperthermophilic endoglucanase SSO1354 with its unique features is an excellent tool for advanced biomass conversion. Here we demonstrate its expression in planta and the possibility for post harvest activation. Moreover the enzyme is suitable for combined pretreatment and hydrolysis applications.

  9. (Hyper)thermophilic enzymes: production and purification.

    Science.gov (United States)

    Falcicchio, Pierpaolo; Levisson, Mark; Kengen, Servé W M; Koutsopoulos, Sotirios

    2014-01-01

    The discovery of thermophilic and hyperthermophilic microorganisms, thriving at environmental temperatures near or above 100 °C, has revolutionized our ideas about the upper temperature limit at which life can exist. The characterization of (hyper)thermostable proteins has broadened our understanding and presented new opportunities for solving one of the most challenging problems in biophysics: how is structural stability and biological function maintained at high temperatures where "normal" proteins undergo dramatic structural changes? In our laboratory we have purified and studied many thermostable and hyperthermostable proteins in an attempt to determine the molecular basis of heat stability. Here, we present methods to express such proteins and enzymes in E. coli and provide a general protocol for overproduction and purification. The ability to produce enzymes that retain their stability and activity at elevated temperatures creates exciting opportunities for a wide range of biocatalytic applications.

  10. A synthetic arabinose-inducible promoter confers high levels of recombinant protein expression in hyperthermophilic archaeon Sulfolobus islandicus

    DEFF Research Database (Denmark)

    Peng, Nan; Deng, Ling; Mei, Yuxia

    2012-01-01

    Despite major progresses in genetic studies of hyperthermophilic archaea, recombinant protein production in these organisms always suffers from low yields and a robust expression system is still in great demand. Here we report a versatile vector that confers high levels of protein expression...... to remove the peptide tags from expressed recombinant proteins. While pEXA employed an araS promoter for protein expression, pSeSD utilized P(araS-SD), an araS derivative promoter carrying an engineered ribosome-binding site (RBS; a Shine-Dalgarno [SD] sequence). We found that P(araS-SD) directed high...... levels of target gene expression. More strikingly, N-terminal amino acid sequencing of recombinant proteins unraveled that the protein synthesized from pEXA-N-lacS lacked the designed 6×His tag and that translation initiation did not start at the ATG codon of the fusion gene. Instead, it started...

  11. Differences in substrate specificity of C(5)-substituted or C(5)-unsubstituted pyrimidine nucleotides by DNA polymerases from thermophilic bacteria, archaea, and phages.

    Science.gov (United States)

    Sawai, Hiroaki; Nagashima, Junichi; Kuwahara, Msayasu; Kitagata, Rina; Tamura, Takehiro; Matsui, Ikuo

    2007-09-01

    The pyrimidine bases of RNA are uracil (U) and cytosine (C), while thymine (T) and C are used for DNA. The C(5) position of C and U is unsubstituted, whereas the C(5) of T is substituted with a Me group. Miller et al. hypothesized that various C(5)-substituted uracil derivatives were formed during chemical evolution, and that C(5)-substituted U derivatives may have played important roles in the transition from an 'RNA world' to a 'DNA-RNA-protein world'. Hyperthermophilic bacteria and archaea are considered to be primitive organisms that are evolutionarily close to the universal ancestor of all life on earth. Thus, we examined the substrate specificity of several C(5)-substituted or C(5)-unsubstituted dUTP and dCTP analogs for several DNA polymerases from hyperthermophilic bacteria, hyperthermophilic archaea, and viruses during PCR or primer extension reaction. The substrate specificity of the C(5)-substituted or C(5)-unsubstituted pyrimidine nucleotides varied greatly depending on the type of DNA polymerase. The significance of this difference in substrate specificity in terms of the origin and evolution of the DNA replication system is discussed briefly.

  12. Backbone and side-chain 1H, 15N and 13C resonance assignments of two Sac10b family members Mvo10b and Mth10bTQQA from archaea.

    Science.gov (United States)

    Xuan, Jinsong; Yao, Hongwei; Feng, Yingang; Wang, Jinfeng

    2017-10-01

    The Sac10b family proteins, also named as Alba, are small, basic, nucleic acid-binding proteins widely distributed in archaea. They possess divergent physiological functions such as binding to both DNA and RNA with a high affinity and involving in genomic DNA compaction, RNA transactions and transcriptional regulations. The structures of many Sac10b family proteins from hyperthermophilic archaea have been reported, while those from thermophilic and mesophilic archaea are largely unknown. As was pointed out, the homologous members from thermophilic and mesophilic archaea may have functions different from the hyperthermophilic members. Therefore, comparison of these homologous members can provide biophysical and structural insight into the functional diversity and thermal adaptation mechanism. The present work mainly focused on the NMR study of two Sac10b family members, Mvo10b and Mth10b, from the mesophilic and thermophilic archaea, respectively. To overcome the difficulties caused by the oligomerization and conformation heterogeneity of Mth10b, a M13T/L17Q/I20Q/P56A mutant Mth10b (Mth10bTQQA) was constructed and used together with Mvo10b for multi-dimensional NMR experiments. The resonance assignments of Mvo10b and Mth10bTQQA are reported for further structural determination which is a basis for understanding the functional diversity and their thermal adaption mechanisms.

  13. Insights into Head-Tailed Viruses Infecting Extremely Halophilic Archaea

    Science.gov (United States)

    Pietilä, Maija K.; Laurinmäki, Pasi; Russell, Daniel A.; Ko, Ching-Chung; Jacobs-Sera, Deborah; Butcher, Sarah J.

    2013-01-01

    Extremophilic archaea, both hyperthermophiles and halophiles, dominate in habitats where rather harsh conditions are encountered. Like all other organisms, archaeal cells are susceptible to viral infections, and to date, about 100 archaeal viruses have been described. Among them, there are extraordinary virion morphologies as well as the common head-tailed viruses. Although approximately half of the isolated archaeal viruses belong to the latter group, no three-dimensional virion structures of these head-tailed viruses are available. Thus, rigorous comparisons with bacteriophages are not yet warranted. In the present study, we determined the genome sequences of two of such viruses of halophiles and solved their capsid structures by cryo-electron microscopy and three-dimensional image reconstruction. We show that these viruses are inactivated, yet remain intact, at low salinity and that their infectivity is regained when high salinity is restored. This enabled us to determine their three-dimensional capsid structures at low salinity to a ∼10-Å resolution. The genetic and structural data showed that both viruses belong to the same T-number class, but one of them has enlarged its capsid to accommodate a larger genome than typically associated with a T=7 capsid by inserting an additional protein into the capsid lattice. PMID:23283946

  14. Survival of thermophilic and hyper-thermophilic microorganisms after exposure to UV-C, ionizing radiation and desiccation

    International Nuclear Information System (INIS)

    Beblo, K.; Wirth, R.; Huber, H.; Douki, T.; Schmalz, G.; Rachel, R.

    2011-01-01

    In this study, we investigated the ability of several (hyper-) thermophilic Archaea and phylo-genetically deep-branching thermophilic Bacteria to survive high fluences of monochromatic UV-C (254 nm) and high doses of ionizing radiation, respectively. Nine out of fourteen tested microorganisms showed a surprisingly high tolerance against ionizing radiation, and two species (Aquifex pyrophilus and Ignicoccus hospitalis) were even able to survive 20 kGy. Therefore, these species had a comparable survivability after exposure to ionizing radiation such as Deinococcus radiodurans. In contrast, there was nearly no difference in survival of the tested strains after exposure to UV-C under anoxic conditions. If the cells had been dried in advance of UV-C irradiation, they were more sensitive to UV-C radiation compared with cells irradiated in liquid suspension; this effect could be reversed by the addition of protective material like sulfidic ores before irradiation. By exposure to UV-C, photoproducts were formed in the DNA of irradiated Archaea and Bacteria. The distribution of the main photoproducts was species specific, but the amount of the photoproducts was only partly dependent on the applied fluence. Overall, our results show that tolerance to radiation seems to be a common phenomenon among thermophilic and hyper-thermophilic microorganisms. (authors)

  15. Overexpression, purification, crystallization and preliminary crystallographic studies of a hyperthermophilic adenylosuccinate synthetase from Pyrococcus horikoshii OT3

    International Nuclear Information System (INIS)

    Wang, Xiaoying; Akasaka, Ryogo; Takemoto, Chie; Morita, Satoshi; Yamaguchi, Machiko; Terada, Takaho; Shirozu, Mikako; Yokoyama, Shigeyuki; Chen, Shilin; Si, Shuyi; Xie, Yong

    2011-01-01

    A hyperthermophilic adenylosuccinate synthetase from P. horikoshii OT3, which is 90–120 amino acids shorter than those from the vast majority of organisms, was expressed, purified and crystallized and X-ray diffraction data were collected to 2.5 Å resolution. Adenylosuccinate synthetase (AdSS) is a ubiquitous enzyme that catalyzes the first committed step in the conversion of inosine monophosphate (IMP) to adenosine monophosphate (AMP) in the purine-biosynthetic pathway. Although AdSS from the vast majority of organisms is 430–457 amino acids in length, AdSS sequences isolated from thermophilic archaea are 90–120 amino acids shorter. In this study, crystallographic studies of a short AdSS sequence from Pyrococcus horikoshii OT3 (PhAdSS) were performed in order to reveal the unusual structure of AdSS from thermophilic archaea. Crystals of PhAdSS were obtained by the microbatch-under-oil method and X-ray diffraction data were collected to 2.50 Å resolution. The crystal belonged to the trigonal space group P3 2 12, with unit-cell parameters a = b = 57.2, c = 107.9 Å. There was one molecule per asymmetric unit, giving a Matthews coefficient of 2.17 Å 3 Da −1 and an approximate solvent content of 43%. In contrast, the results of native polyacrylamide gel electrophoresis and analytical ultracentrifugation showed that the recombinant PhAdSS formed a dimer in solution

  16. Novel metabolic pathways in Archaea.

    Science.gov (United States)

    Sato, Takaaki; Atomi, Haruyuki

    2011-06-01

    The Archaea harbor many metabolic pathways that differ to previously recognized classical pathways. Glycolysis is carried out by modified versions of the Embden-Meyerhof and Entner-Doudoroff pathways. Thermophilic archaea have recently been found to harbor a bi-functional fructose-1,6-bisphosphate aldolase/phosphatase for gluconeogenesis. A number of novel pentose-degrading pathways have also been recently identified. In terms of anabolic metabolism, a pathway for acetate assimilation, the methylaspartate cycle, and two CO2-fixing pathways, the 3-hydroxypropionate/4-hydroxybutyrate cycle and the dicarboxylate/4-hydroxybutyrate cycle, have been elucidated. As for biosynthetic pathways, recent studies have clarified the enzymes responsible for several steps involved in the biosynthesis of inositol phospholipids, polyamine, coenzyme A, flavin adeninedinucleotide and heme. By examining the presence/absence of homologs of these enzymes on genome sequences, we have found that the majority of these enzymes and pathways are specific to the Archaea. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. RNomics and Modomics in the halophilic archaea Haloferax volcanii: identification of RNA modification genes

    Directory of Open Access Journals (Sweden)

    Decatur Wayne A

    2008-10-01

    Full Text Available Abstract Background Naturally occurring RNAs contain numerous enzymatically altered nucleosides. Differences in RNA populations (RNomics and pattern of RNA modifications (Modomics depends on the organism analyzed and are two of the criteria that distinguish the three kingdoms of life. If the genomic sequences of the RNA molecules can be derived from whole genome sequence information, the modification profile cannot and requires or direct sequencing of the RNAs or predictive methods base on the presence or absence of the modifications genes. Results By employing a comparative genomics approach, we predicted almost all of the genes coding for the t+rRNA modification enzymes in the mesophilic moderate halophile Haloferax volcanii. These encode both guide RNAs and enzymes. Some are orthologous to previously identified genes in Archaea, Bacteria or in Saccharomyces cerevisiae, but several are original predictions. Conclusion The number of modifications in t+rRNAs in the halophilic archaeon is surprisingly low when compared with other Archaea or Bacteria, particularly the hyperthermophilic organisms. This may result from the specific lifestyle of halophiles that require high intracellular salt concentration for survival. This salt content could allow RNA to maintain its functional structural integrity with fewer modifications. We predict that the few modifications present must be particularly important for decoding, accuracy of translation or are modifications that cannot be functionally replaced by the electrostatic interactions provided by the surrounding salt-ions. This analysis also guides future experimental validation work aiming to complete the understanding of the function of RNA modifications in Archaeal translation.

  18. Identification of a novel amino acid racemase from a hyperthermophilic archaeon Pyrococcus horikoshii OT-3 induced by D-amino acids.

    Science.gov (United States)

    Kawakami, Ryushi; Ohmori, Taketo; Sakuraba, Haruhiko; Ohshima, Toshihisa

    2015-08-01

    To date, there have been few reports analyzing the amino acid requirement for growth of hyperthermophilic archaea. We here found that the hyperthermophilic archaeon Pyrococcus horikoshii OT-3 requires Thr, Leu, Val, Phe, Tyr, Trp, His and Arg in the medium for growth, and shows slow growth in medium lacking Met or Ile. This largely corresponds to the presence, or absence, of genes related to amino acid biosynthesis in its genome, though there are exceptions. The amino acid requirements were dramatically lost by addition of D-isomers of Met, Leu, Val, allo-Ile, Phe, Tyr, Trp and Arg. Tracer analysis using (14)C-labeled D-Trp showed that D-Trp in the medium was used as a protein component in the cells, suggesting the presence of D-amino acid metabolic enzymes. Pyridoxal 5'-phosphate (PLP)-dependent racemase activity toward Met, Leu and Phe was detected in crude extract of P. horikoshii and was enhanced in cells grown in the medium supplemented with D-amino acids, especially D-allo-Ile. The gene encoding the racemase was narrowed down to one open reading frame on the basis of enzyme purification from P. horikoshii cells, and the recombinant enzyme exhibited PLP-dependent racemase activity toward several amino acids, including Met, Leu and Phe, but not Pro, Asp or Glu. This is the first report showing the presence in a hyperthermophilic archaeon of a PLP-dependent amino acid racemase with broad substrate specificity that is likely responsible for utilization of D-amino acids for growth.

  19. Adaptation to environmental temperature is a major determinant of molecular evolutionary rates in archaea.

    Science.gov (United States)

    Groussin, Mathieu; Gouy, Manolo

    2011-09-01

    Methods to infer the ancestral conditions of life are commonly based on geological and paleontological analyses. Recently, several studies used genome sequences to gain information about past ecological conditions taking advantage of the property that the G+C and amino acid contents of bacterial and archaeal ribosomal DNA genes and proteins, respectively, are strongly influenced by the environmental temperature. The adaptation to optimal growth temperature (OGT) since the Last Universal Common Ancestor (LUCA) over the universal tree of life was examined, and it was concluded that LUCA was likely to have been a mesophilic organism and that a parallel adaptation to high temperature occurred independently along the two lineages leading to the ancestors of Bacteria on one side and of Archaea and Eukarya on the other side. Here, we focus on Archaea to gain a precise view of the adaptation to OGT over time in this domain. It has been often proposed on the basis of indirect evidence that the last archaeal common ancestor was a hyperthermophilic organism. Moreover, many results showed the influence of environmental temperature on the evolutionary dynamics of archaeal genomes: Thermophilic organisms generally display lower evolutionary rates than mesophiles. However, to our knowledge, no study tried to explain the differences of evolutionary rates for the entire archaeal domain and to investigate the evolution of substitution rates over time. A comprehensive archaeal phylogeny and a non homogeneous model of the molecular evolutionary process allowed us to estimate ancestral base and amino acid compositions and OGTs at each internal node of the archaeal phylogenetic tree. The last archaeal common ancestor is predicted to have been hyperthermophilic and adaptations to cooler environments can be observed for extant mesophilic species. Furthermore, mesophilic species present both long branches and high variation of nucleotide and amino acid compositions since the last archaeal

  20. Exceptionally diverse morphotypes and genomes of crenarchaeal hyperthermophilic viruses

    DEFF Research Database (Denmark)

    Prangishvili, D; Garrett, R A

    2004-01-01

    and Rudiviridae. They all have double-stranded DNA genomes and infect hyperthermophilic crenarchaea of the orders Sulfolobales and Thermoproteales. Representatives of the different viral families share a few homologous ORFs (open reading frames). However, about 90% of all ORFs in the seven sequenced genomes show...... no significant matches to sequences in public databases. This suggests that these hyperthermophilic viruses have exceptional biochemical solutions for biological functions. Specific features of genome organization, as well as strategies for DNA replication, suggest that phylogenetic relationships exist between...... crenarchaeal rudiviruses and the large eukaryal DNA viruses: poxviruses, the African swine fever virus and Chlorella viruses. Sequence patterns at the ends of the linear genome of the lipothrixvirus AFV1 are reminiscent of the telomeric ends of linear eukaryal chromosomes and suggest that a primitive telomeric...

  1. Unique features of glycolysis in Archaea

    NARCIS (Netherlands)

    Verhees, C.H.; Kengen, S.W.M.; Tuininga, J.E.; Schut, G.J.; Adams, M.W.W.; Vos, de W.M.; Oost, van der J.

    2003-01-01

    An early divergence in evolution has resulted in two prokaryotic domains, the Bacteria and the Archaea. Whereas the central metabolic routes of bacteria and eukaryotes are generally well-conserved, variant pathways have developed in Archaea involving several novel enzymes with a distinct control. A

  2. Alpha-amylase from the Hyperthermophilic Archaeon Thermococcus thioreducens

    Science.gov (United States)

    Bernhardsdotter, E. C. M. J.; Pusey, M. L.; Ng, M. L.; Garriott, O. K.

    2003-01-01

    Extremophiles are microorganisms that thrive in, from an anthropocentric view, extreme environments such as hot springs. The ability of survival at extreme conditions has rendered enzymes from extremophiles to be of interest in industrial applications. One approach to producing these extremozymes entails the expression of the enzyme-encoding gene in a mesophilic host such as E.coli. This method has been employed in the effort to produce an alpha-amylase from a hyperthermophile (an organism that displays optimal growth above 80 C) isolated from a hydrothermal vent at the Rainbow vent site in the Atlantic Ocean. alpha-amylases catalyze the hydrolysis of starch to produce smaller sugars and constitute a class of industrial enzymes having approximately 25% of the enzyme market. One application for thermostable alpha-amylases is the starch liquefaction process in which starch is converted into fructose and glucose syrups. The a-amylase encoding gene from the hyperthermophile Thermococcus thioreducens was cloned and sequenced, revealing high similarity with other archaeal hyperthermophilic a-amylases. The gene encoding the mature protein was expressed in E.coli. Initial characterization of this enzyme has revealed an optimal amylolytic activity between 85-90 C and around pH 5.3-6.0.

  3. Aerobic lineage of the oxidative stress response protein rubrerythrin emerged in an ancient microaerobic, (hyperthermophilic environment

    Directory of Open Access Journals (Sweden)

    Juan Pablo Cardenas

    2016-11-01

    Full Text Available Rubrerythrins (RBRs are non-heme di-iron proteins belonging to the ferritin-like superfamily (FLSF. They are involved in oxidative stress defense as peroxide scavengers in a wide range of organisms. The vast majority of RBRs, including classical forms of this protein, contain a C-terminal rubredoxin-like domain involved in electron transport that is used during catalysis in anaerobic conditions. Rubredoxin is an ancient and large protein family of short length (<100 residues that contains a Fe-S center involved in electron transfer. However, functional forms of the enzyme lacking the rubredoxin-like domain have been reported (e.g., sulerythrin and ferriperoxin. In this study, phylogenomic evidence is presented that suggests that a complete lineage of rubrerythrins, lacking the rubredoxin-like domain, arose in an ancient microaerobic and (hyperthermophilic environments in the ancestors of the Archaea Thermoproteales and Sulfolobales. This lineage (termed the aerobic-type lineage subsequently evolved to become adapted to environments with progressively lower temperatures and higher oxygen concentrations via the acquisition of two co-localized genes, termed DUF3501 and RFO, encoding a conserved protein of unknown function and a predicted Fe-S oxidoreductase respectively. Proposed Horizontal Gene Transfer (HGT events from these archaeal ancestors to Bacteria expanded the opportunities for further evolution of this RBR including adaption to lower temperatures. The second lineage (termed the cyanobacterial lineage is proposed to have evolved in cyanobacterial ancestors, maybe in direct response to the production of oxygen via oxygenic photosynthesis during the Great Oxygen Event (GOE. It is hypothesized that both lineages of RBR emerged in a largely anaerobic world with whiffs of oxygen and that their subsequent independent evolutionary trajectories allowed microorganisms to transition from this anaerobic world to an aerobic one.

  4. Regulated polyploidy in halophilic archaea.

    Directory of Open Access Journals (Sweden)

    Sebastian Breuert

    Full Text Available Polyploidy is common in higher eukaryotes, especially in plants, but it is generally assumed that most prokaryotes contain a single copy of a circular chromosome and are therefore monoploid. We have used two independent methods to determine the genome copy number in halophilic archaea, 1 cell lysis in agarose blocks and Southern blot analysis, and 2 Real-Time quantitative PCR. Fast growing H. salinarum cells contain on average about 25 copies of the chromosome in exponential phase, and their ploidy is downregulated to 15 copies in early stationary phase. The chromosome copy number is identical in cultures with a twofold lower growth rate, in contrast to the results reported for several other prokaryotic species. Of three additional replicons of H. salinarum, two have a low copy number that is not growth-phase regulated, while one replicon even shows a higher degree of growth phase-dependent regulation than the main replicon. The genome copy number of H. volcanii is similarly high during exponential phase (on average 18 copies/cell, and it is also downregulated (to 10 copies as the cells enter stationary phase. The variation of genome copy numbers in the population was addressed by fluorescence microscopy and by FACS analysis. These methods allowed us to verify the growth phase-dependent regulation of ploidy in H. salinarum, and they revealed that there is a wide variation in genome copy numbers in individual cells that is much larger in exponential than in stationary phase. Our results indicate that polyploidy might be more widespread in archaea (or even prokaryotes in general than previously assumed. Moreover, the presence of so many genome copies in a prokaryote raises questions about the evolutionary significance of this strategy.

  5. Archaea Signal Recognition Particle Shows the Way

    Directory of Open Access Journals (Sweden)

    Christian Zwieb

    2010-01-01

    Full Text Available Archaea SRP is composed of an SRP RNA molecule and two bound proteins named SRP19 and SRP54. Regulated by the binding and hydrolysis of guanosine triphosphates, the RNA-bound SRP54 protein transiently associates not only with the hydrophobic signal sequence as it emerges from the ribosomal exit tunnel, but also interacts with the membrane-associated SRP receptor (FtsY. Comparative analyses of the archaea genomes and their SRP component sequences, combined with structural and biochemical data, support a prominent role of the SRP RNA in the assembly and function of the archaea SRP. The 5e motif, which in eukaryotes binds a 72 kilodalton protein, is preserved in most archaea SRP RNAs despite the lack of an archaea SRP72 homolog. The primary function of the 5e region may be to serve as a hinge, strategically positioned between the small and large SRP domain, allowing the elongated SRP to bind simultaneously to distant ribosomal sites. SRP19, required in eukaryotes for initiating SRP assembly, appears to play a subordinate role in the archaea SRP or may be defunct. The N-terminal A region and a novel C-terminal R region of the archaea SRP receptor (FtsY are strikingly diverse or absent even among the members of a taxonomic subgroup.

  6. Diversity, biological roles and biosynthetic pathways for sugar-glycerate containing compatible solutes in bacteria and archaea.

    Science.gov (United States)

    Empadinhas, Nuno; da Costa, Milton S

    2011-08-01

    A decade ago the compatible solutes mannosylglycerate (MG) and glucosylglycerate (GG) were considered to be rare in nature. Apart from two species of thermophilic bacteria, Thermus thermophilus and Rhodothermus marinus, and a restricted group of hyperthermophilic archaea, the Thermococcales, MG had only been identified in a few red algae. Glucosylglycerate was considered to be even rarer and had only been detected as an insignificant solute in two halophilic microorganisms, a cyanobacterium, as a component of a polysaccharide and of a glycolipid in two actinobacteria. Unlike the hyper/thermophilic MG-accumulating microorganisms, branching close to the root of the Tree of Life, those harbouring GG shared a mesophilic lifestyle. Exceptionally, the thermophilic bacterium Persephonella marina was reported to accumulate GG. However, and especially owing to the identification of the key-genes for MG and GG synthesis and to the escalating numbers of genomes available, a plethora of new organisms with the resources to synthesize these solutes has been recognized. The accumulation of GG as an 'emergency' compatible solute under combined salt stress and nitrogen-deficient conditions now seems to be a disseminated survival strategy from enterobacteria to marine cyanobacteria. In contrast, the thermophilic and extremely radiation-resistant bacterium Rubrobacter xylanophilus is the only actinobacterium known to accumulate MG, and under all growth conditions tested. This review addresses the environmental factors underlying the accumulation of MG, GG and derivatives in bacteria and archaea and their roles during stress adaptation or as precursors for more elaborated macromolecules. The diversity of pathways for MG and GG synthesis as well as those for some of their derivatives is also discussed. The importance of glycerate-derived organic solutes in the microbial world is only now being recognized. Their stress-dependent accumulation and the molecular aspects of their

  7. Biochemical, transcriptional and translational evidences of the phenol-meta-degradation pathway by the hyperthermophilic Sulfolobus solfataricus 98/2.

    Directory of Open Access Journals (Sweden)

    Alexia Comte

    Full Text Available Phenol is a widespread pollutant and a model molecule to study the biodegradation of monoaromatic compounds. After a first oxidation step leading to catechol in mesophilic and thermophilic microorganisms, two main routes have been identified depending on the cleavage of the aromatic ring: ortho involving a catechol 1,2 dioxygenase (C12D and meta involving a catechol 2,3 dioxygenase (C23D. Our work aimed at elucidating the phenol-degradation pathway in the hyperthermophilic archaea Sulfolobus solfataricus 98/2. For this purpose, the strain was cultivated in a fermentor under different substrate and oxygenation conditions. Indeed, reducing dissolved-oxygen concentration allowed slowing down phenol catabolism (specific growth and phenol-consumption rates dropped 55% and 39%, respectively and thus, evidencing intermediate accumulations in the broth. HPLC/Diode Array Detector and LC-MS analyses on culture samples at low dissolved-oxygen concentration (DOC  =  0.06 mg x L(-1 suggested, apart for catechol, the presence of 2-hydroxymuconic acid, 4-oxalocrotonate and 4-hydroxy-2-oxovalerate, three intermediates of the meta route. RT-PCR analysis on oxygenase-coding genes of S. solfataricus 98/2 showed that the gene coding for the C23D was expressed only on phenol. In 2D-DIGE/MALDI-TOF analysis, the C23D was found and identified only on phenol. This set of results allowed us concluding that S. solfataricus 98/2 degrade phenol through the meta route.

  8. Elucidating the transcription cycle of the UV-inducible hyperthermophilic archaeal virus SSV1 by DNA microarrays

    International Nuclear Information System (INIS)

    Froels, Sabrina; Gordon, Paul M.K.; Panlilio, Mayi Arcellana; Schleper, Christa; Sensen, Christoph W.

    2007-01-01

    The spindle-shaped Sulfolobus virus SSV1 was the first of a series of unusual and uniquely shaped viruses isolated from hyperthermophilic Archaea. Using whole-genome microarrays we show here that the circular 15.5 kb DNA genome of SSV1 exhibits a chronological regulation of its transcription upon UV irradiation, reminiscent to the life cycles of bacteriophages and eukaryotic viruses. The transcriptional cycle starts with a small UV-specific transcript and continues with early transcripts on both its flanks. The late transcripts appear after the onset of viral replication and are extended to their full lengths towards the end of the approximately 8.5 h cycle. While we detected only small differences in genome-wide analysis of the host Sulfolobus solfataricus comparing infected versus uninfected strains, we found a marked difference with respect to the strength and speed of the general UV response of the host. Models for the regulation of the virus cycle, and putative functions of genes in SSV1 are presented

  9. Viruses of the Archaea: a unifying view

    DEFF Research Database (Denmark)

    Prangishvili, David; Forterre, Patrick; Garrett, Roger Antony

    2006-01-01

    DNA viruses of the Archaea have highly diverse and often exceptionally complex morphotypes. Many have been isolated from geothermally heated hot environments, raising intriguing questions about their origins, and contradicting the widespread notion of limited biodiversity in extreme environments...

  10. Bioprospecting Archaea: Focus on Extreme Halophiles

    KAUST Repository

    Antunes, André ; Simõ es, Marta F.; Grö tzinger, Stefan W.; Eppinger, Jö rg; Braganç a, Judith; Bajic, Vladimir B.

    2016-01-01

    knowledge, and (c) utilization of Archaea in biotechnology. They are increasingly employed in fields as diverse as biocatalysis, biocomputing, bioplastic production, bioremediation, bioengineering, food, pharmaceuticals, and nutraceuticals. This chapter

  11. ?Altiarchaeales?: Uncultivated Archaea from the Subsurface

    OpenAIRE

    Probst, Alexander J.; Moissl-Eichinger, Christine

    2015-01-01

    Due to the limited cultivability of the vast majority of microorganisms, researchers have applied environmental genomics and other state-of-the-art technologies to gain insights into the biology of uncultivated Archaea and bacteria in their natural biotope. In this review, we summarize the scientific findings on a recently proposed order-level lineage of uncultivated Archaea called Altiarchaeales, which includes “Candidatus Altiarchaeum hamiconexum” as the most well-described representative. ...

  12. Clusters of orthologous genes for 41 archaeal genomes and implications for evolutionary genomics of archaea

    Directory of Open Access Journals (Sweden)

    Wolf Yuri I

    2007-11-01

    Full Text Available Abstract Background An evolutionary classification of genes from sequenced genomes that distinguishes between orthologs and paralogs is indispensable for genome annotation and evolutionary reconstruction. Shortly after multiple genome sequences of bacteria, archaea, and unicellular eukaryotes became available, an attempt on such a classification was implemented in Clusters of Orthologous Groups of proteins (COGs. Rapid accumulation of genome sequences creates opportunities for refining COGs but also represents a challenge because of error amplification. One of the practical strategies involves construction of refined COGs for phylogenetically compact subsets of genomes. Results New Archaeal Clusters of Orthologous Genes (arCOGs were constructed for 41 archaeal genomes (13 Crenarchaeota, 27 Euryarchaeota and one Nanoarchaeon using an improved procedure that employs a similarity tree between smaller, group-specific clusters, semi-automatically partitions orthology domains in multidomain proteins, and uses profile searches for identification of remote orthologs. The annotation of arCOGs is a consensus between three assignments based on the COGs, the CDD database, and the annotations of homologs in the NR database. The 7538 arCOGs, on average, cover ~88% of the genes in a genome compared to a ~76% coverage in COGs. The finer granularity of ortholog identification in the arCOGs is apparent from the fact that 4538 arCOGs correspond to 2362 COGs; ~40% of the arCOGs are new. The archaeal gene core (protein-coding genes found in all 41 genome consists of 166 arCOGs. The arCOGs were used to reconstruct gene loss and gene gain events during archaeal evolution and gene sets of ancestral forms. The Last Archaeal Common Ancestor (LACA is conservatively estimated to possess 996 genes compared to 1245 and 1335 genes for the last common ancestors of Crenarchaeota and Euryarchaeota, respectively. It is inferred that LACA was a chemoautotrophic hyperthermophile

  13. Enrichment of Thermophilic Ammonia-Oxidizing Archaea from an Alkaline Hot Spring in the Great Basin, USA

    Science.gov (United States)

    Zhang, C.; Huang, Z.; Jiang, H.; Wiegel, J.; Li, W.; Dong, H.

    2010-12-01

    One of the major advances in the nitrogen cycle is the recent discovery of ammonia oxidation by archaea. While culture-independent studies have revealed occurrence of ammonia-oxidizing archaea (AOA) in nearly every surface niche on earth, most of these microorganisms have resisted isolation and so far only a few species have been identified. The Great Basin contains numerous hot springs, which are characterized by moderately high temperature (40-65 degree C) and circumneutral or alkaline pH. Unique thermophilic archaea have been identified based on molecular DNA and lipid biomarkers; some of which may be ammonia oxidizers. This study aims to isolate some of these archaea from a California hot spring that has pH around 9.0 and temperature around 42 degree C. Mat material was collected from the spring and transported on ice to the laboratory. A synthetic medium (SCM-5) was inoculated with the mat material and the culture was incubated under varying temperature (35-65 degree C) and pH (7.0-10.0) conditions using antibiotics to suppress bacterial growth. Growth of the culture was monitored by microscopy, decrease in ammonium and increase in nitrite, and increases in Crenarchaeota and AOA abundances over time. Clone libraries were constructed to compare archaeal community structures before and after the enrichment experiment. Temperature and pH profiles indicated that the culture grew optimally at pH 9.0 and temperature 45 degree C, which are consistent with the geochemical conditions of the natural environment. Phylogenetic analysis showed that the final OTU was distantly related to all known hyperthermophilic archaea. Analysis of the amoA genes showed two OTUs in the final culture; one of them was closely related to Candidatus Nitrososphaera gargensis. However, the enrichment culture always contained bacteria and attempts to separate them from archaea have failed. This highlights the difficulty in bringing AOA into pure culture and suggests that some of the AOA may

  14. Bioprospecting Archaea: Focus on Extreme Halophiles

    KAUST Repository

    Antunes, André

    2016-12-12

    In 1990, Woese et al. divided the Tree of Life into three separate domains: Eukarya, Bacteria, and Archaea. Archaea were originally perceived as little more than “odd bacteria” restricted to extreme environmental niches, but later discoveries challenged this assumption. Members of this domain populate a variety of unexpected environments (e.g. soils, seawater, and human bodies), and we currently witness ongoing massive expansions of the archaeal branch of the Tree of Life. Archaea are now recognized as major players in the biosphere and constitute a significant fraction of the earth’s biomass, yet they remain underexplored. An ongoing surge in exploration efforts is leading to an increase in the (a) number of isolated strains, (b) associated knowledge, and (c) utilization of Archaea in biotechnology. They are increasingly employed in fields as diverse as biocatalysis, biocomputing, bioplastic production, bioremediation, bioengineering, food, pharmaceuticals, and nutraceuticals. This chapter provides a general overview on bioprospecting Archaea, with a particular focus on extreme halophiles. We explore aspects such as diversity, ecology, screening techniques and biotechnology. Current and future trends in mining for applications are discussed.

  15. 2009 Archaea: Ecology, Metabolism & Molecular Biology GRC

    Energy Technology Data Exchange (ETDEWEB)

    Furlow, Julie Maupin- [Univ. of Florida, Gainesville, FL (United States)

    2009-07-26

    Archaea, one of three major evolutionary lineages of life, are a fascinating and diverse group of microbes with deep roots overlapping those of eukaryotes. The focus of the 'Archaea: Ecology Metabolism & Molecular Biology' GRC conference expands on a number of emerging topics highlighting new paradigms in archaeal metabolism, genome function and systems biology; information processing; evolution and the tree of life; the ecology and diversity of archaea and their viruses; and industrial applications. The strength of this conference lies in its ability to couple a field with a rich history in high quality research with new scientific findings in an atmosphere of stimulating exchange. This conference remains an excellent opportunity for younger scientists to interact with world experts in this field.

  16. 2011 Archaea: Ecology, Metabolism, & Molecular Biology

    Energy Technology Data Exchange (ETDEWEB)

    Keneth Stedman

    2011-08-05

    Archaea, one of three major evolutionary lineages of life, are a fascinating and diverse group of microbes with deep roots overlapping those of eukaryotes. The focus of the 'Archaea: Ecology Metabolism & Molecular Biology' GRC conference expands on a number of emerging topics highlighting new paradigms in archaeal metabolism, genome function and systems biology; information processing; evolution and the tree of life; the ecology and diversity of archaea and their viruses. The strength of this conference lies in its ability to couple a field with a rich history in high quality research with new scientific findings in an atmosphere of stimulating exchange. This conference remains an excellent opportunity for younger scientists to interact with world experts in this field.

  17. Diversity of Archaea in Brazilian savanna soils.

    Science.gov (United States)

    Catão, E; Castro, A P; Barreto, C C; Krüger, R H; Kyaw, C M

    2013-07-01

    Although the richness of Bacteria and Fungi in Cerrado' soils has been reported, here we report, for the first time, the archaeal community in Cerrado's soils. DNA extracted from soil of two distinct vegetation types, a dense subtype of sensu strict (cerrado denso) and riverbank forest (mata de galeria), was used to amplify Archaea-specific 16S rRNA gene. All of the fragments sequenced were classified as Archaea into the phylum Thaumarchaeota, predominantly affiliated to groups I.1b and I.1c. Sequences affiliated to the group I.1a were found only in the soil from riverbank forest. Soils from 'cerrado denso' had greater Archaea richness than those from 'mata de galeria' based on the richness indexes and on the rarefaction curve. β-Diversity analysis showed significant differences between the sequences from the two soil areas studied because of their different thaumarchaeal group composition. These results provide information about the third domain of life from Cerrado soils.

  18. The 60 kDa heat shock proteins in the hyperthermophilic archaeon Sulfolobus shibatae.

    Science.gov (United States)

    Kagawa, H K; Osipiuk, J; Maltsev, N; Overbeek, R; Quaite-Randall, E; Joachimiak, A; Trent, J D

    1995-11-10

    One of the most abundant proteins in the hyperthermophilic archaeon Sulfolobus shibatae is the 59 kDa heat shock protein (TF55) that is believed to form a homo-oligomeric double ring complex structurally similar to the bacterial chaperonins. We discovered a second protein subunit in the S. shibatae ring complex (referred to as alpha) that is stoichiometric with TF55 (renamed beta). The gene and flanking regions of alpha were cloned and sequenced and its inferred amino acid sequence has 54.4% identity and 74.4% similarity to beta. Transcription start sites for both alpha and beta were mapped and three potential transcription regulatory regions were identified. Northern analyses of cultures shifted from normal growth temperatures (70 to 75 degrees C) to heat shock temperatures (85 to 90 degrees C) indicated that the levels of alpha and beta mRNAs increased during heat shock, but at all temperatures their relative proportions remained constant. Monitoring protein synthesis by autoradiography of total proteins from cultures pulse labeled with L(-)[35S]methionine at normal and heat shock temperatures indicated significant increases in alpha and beta synthesis during heat shock. Under extreme heat shock conditions (> or = 90 degrees C) alpha and beta appeared to be the only two proteins synthesized. The purified alpha and beta subunits combined to form high molecular mass complexes with similar mobilities on native polyacrylamide gels to the complexes isolated directly from cells. Equal proportions of the two subunits gave the greatest yield of the complex, which we refer to as a "rosettasome". It is argued that the rosettasome consists of two homo-oligomeric rings; one of alpha and the other of beta. Polyclonal antibodies against alpha and beta from S. shibatae cross-reacted with proteins of similar molecular mass in 10 out of the 17 archaeal species tested, suggesting that the two rosettasome proteins are highly conserved among the archaea. The archaeal sequences were

  19. Purification, crystallization and preliminary crytallographic analysis of phosphoglucose isomerase from the hyperthermophilic archaeon Pyrococcus furiosus

    NARCIS (Netherlands)

    Akerboom, A.P.; Turnbull, A.P.; Hargreaves, D.; Fischer, M.; Geus, de D.; Sedelnikova, S.E.; Berrisford, J.M.; Baker, P.J.; Verhees, C.H.; Oost, van der J.; Rice, D.W.

    2003-01-01

    The glycolytic enzyme phosphoglucose isomerase catalyses the reversible isomerization of glucose 6-phosphate to fructose 6-phosphate. The phosphoglucose isomerase from the hyperthermophilic archaeon Pyrococcus furiosus, which shows no sequence similarity to any known bacterial or eukaryotic

  20. Archaea: Evolution, Physiology, and Molecular Biology

    DEFF Research Database (Denmark)

    field, including an account by Carl Woese of his original discovery of the Archaea (until 1990 termed archaebacteria) and the initially mixed reactions of the scientific community. The review chapters and specialized articles address the emerging significance of the Archaea within a broader scientific......Introduced by Crafoord Prize winner Carl Woese, this volume combines reviews of the major developments in archaeal research over the past 10-15 years with more specialized articles dealing with important recent breakthroughs. Drawing on major themes presented at the June 2005 meeting held in Munich...

  1. Functional Encyclopedia of Bacteria and Archaea

    Energy Technology Data Exchange (ETDEWEB)

    Blow, M. J.; Deutschbauer, A. M.; Hoover, C. A.; Lamson, J.; Lamson, J.; Price, M. N.; Waters, J.; Wetmore, K. M.; Bristow, J.; Arkin, A. P.

    2013-03-20

    Bacteria and Archaea exhibit a huge diversity of metabolic capabilities with fundamental importance in the environment, and potential applications in biotechnology. However, the genetic bases of these capabilities remain unclear due largely to an absence of technologies that link DNA sequence to molecular function. To address this challenge, we are developing a pipeline for high throughput annotation of gene function using mutagenesis, growth assays and DNA sequencing. By applying this pipeline to annotate gene function in 50 diverse microbes we hope to discover thousands of new gene functions and produce a proof of principle `Functional Encyclopedia of Bacteria and Archaea?.

  2. Role of Mn2+ and Compatible Solutes in the Radiation Resistance of Thermophilic Bacteria and Archaea

    Directory of Open Access Journals (Sweden)

    Kimberly M. Webb

    2012-01-01

    Full Text Available Radiation-resistant bacteria have garnered a great deal of attention from scientists seeking to expose the mechanisms underlying their incredible survival abilities. Recent analyses showed that the resistance to ionizing radiation (IR in the archaeon Halobacterium salinarum is dependent upon Mn-antioxidant complexes responsible for the scavenging of reactive oxygen species (ROS generated by radiation. Here we examined the role of the compatible solutes trehalose, mannosylglycerate, and di-myo-inositol phosphate in the radiation resistance of aerobic and anaerobic thermophiles. We found that the IR resistance of the thermophilic bacteria Rubrobacter xylanophilus and Rubrobacter radiotolerans was highly correlated to the accumulation of high intracellular concentration of trehalose in association with Mn, supporting the model of Mn2+-dependent ROS scavenging in the aerobes. In contrast, the hyperthermophilic archaea Thermococcus gammatolerans and Pyrococcus furiosus did not contain significant amounts of intracellular Mn, and we found no significant antioxidant activity from mannosylglycerate and di-myo-inositol phosphate in vitro. We therefore propose that the low levels of IR-generated ROS under anaerobic conditions combined with highly constitutively expressed detoxification systems in these anaerobes are key to their radiation resistance and circumvent the need for the accumulation of Mn-antioxidant complexes in the cell.

  3. Role of Mn2+ and compatible solutes in the radiation resistance of thermophilic bacteria and archaea.

    Science.gov (United States)

    Webb, Kimberly M; DiRuggiero, Jocelyne

    2012-01-01

    Radiation-resistant bacteria have garnered a great deal of attention from scientists seeking to expose the mechanisms underlying their incredible survival abilities. Recent analyses showed that the resistance to ionizing radiation (IR) in the archaeon Halobacterium salinarum is dependent upon Mn-antioxidant complexes responsible for the scavenging of reactive oxygen species (ROS) generated by radiation. Here we examined the role of the compatible solutes trehalose, mannosylglycerate, and di-myo-inositol phosphate in the radiation resistance of aerobic and anaerobic thermophiles. We found that the IR resistance of the thermophilic bacteria Rubrobacter xylanophilus and Rubrobacter radiotolerans was highly correlated to the accumulation of high intracellular concentration of trehalose in association with Mn, supporting the model of Mn(2+)-dependent ROS scavenging in the aerobes. In contrast, the hyperthermophilic archaea Thermococcus gammatolerans and Pyrococcus furiosus did not contain significant amounts of intracellular Mn, and we found no significant antioxidant activity from mannosylglycerate and di-myo-inositol phosphate in vitro. We therefore propose that the low levels of IR-generated ROS under anaerobic conditions combined with highly constitutively expressed detoxification systems in these anaerobes are key to their radiation resistance and circumvent the need for the accumulation of Mn-antioxidant complexes in the cell.

  4. Scaffold diversification enhances effectiveness of a superlibrary of hyperthermophilic proteins.

    Science.gov (United States)

    Hussain, Mahmud; Gera, Nimish; Hill, Andrew B; Rao, Balaji M

    2013-01-18

    The use of binding proteins from non-immunoglobulin scaffolds has become increasingly common in biotechnology and medicine. Typically, binders are isolated from a combinatorial library generated by mutating a single scaffold protein. In contrast, here we generated a "superlibrary" or "library-of-libraries" of 4 × 10(8) protein variants by mutagenesis of seven different hyperthermophilic proteins; six of the seven proteins have not been used as scaffolds prior to this study. Binding proteins for five different model targets were successfully isolated from this library. Binders obtained were derived from five out of the seven scaffolds. Strikingly, binders from this modestly sized superlibrary have affinities comparable or higher than those obtained from a library with 1000-fold higher sequence diversity but derived from a single stable scaffold. Thus scaffold diversification, i.e., randomization of multiple different scaffolds, is a powerful alternate strategy for combinatorial library construction.

  5. Isolation and characterization of extreme halophilic archaea

    Energy Technology Data Exchange (ETDEWEB)

    Franze, Madlen; Cherkouk, Andrea [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). HZDR Young Investigator Group

    2017-06-01

    Extreme halophilic archaea from the family Halobactereacea represent a dominant part of the microbial community present in saline soils as well as rock salts. By using a culture-dependent approach different Haloarchaea could be isolated and were phylogenetic analysed. Interestingly, isolates closely related to different Halobacterium spp. were found in both environments.

  6. Isolation and characterization of extreme halophilic archaea

    International Nuclear Information System (INIS)

    Franze, Madlen; Cherkouk, Andrea

    2017-01-01

    Extreme halophilic archaea from the family Halobactereacea represent a dominant part of the microbial community present in saline soils as well as rock salts. By using a culture-dependent approach different Haloarchaea could be isolated and were phylogenetic analysed. Interestingly, isolates closely related to different Halobacterium spp. were found in both environments.

  7. Lipidomic Analysis: From Archaea to Mammals

    Czech Academy of Sciences Publication Activity Database

    Řezanka, Tomáš; Kolouchová, I.; Gharwalová, L.; Palyzová, Andrea; Sigler, Karel

    2018-01-01

    Roč. 53, č. 1 (2018), s. 5-25 ISSN 0024-4201 R&D Projects: GA ČR(CZ) GA17-00027S Institutional support: RVO:61388971 Keywords : Algae * Animals * Archaea Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 1.934, year: 2016

  8. Pyrobaculum Yellowstonensis Strain WP30 Respires On Elemental Sulfur And/or Arsenate in Circumneutral Sulfidic Sediments of Yellowstone National Park

    Energy Technology Data Exchange (ETDEWEB)

    Jay, Z.; Beam, Jake; Dohnalkova, Alice; Lohmayer, R.; Bodle, B.; Planer-Friedrich, B.; Romine, Margaret F.; Inskeep, William

    2015-09-15

    Thermoproteales populations (phylum Crenarchaeota) are abundant in high-25 temperature (>70° C) environments of Yellowstone National Park (YNP) and are important in mediating biogeochemical cycles of sulfur, arsenic and carbon. The objectives of this study were to determine specific physiological attributes of the isolate Pyrobaculum yellowstonensis strain WP30, which was obtained from an elemental sulfur sediment (Joseph’s Coat Hot Spring [JCHS]; 80 °C; pH 6.1), and relate this organism to geochemical processes occurring in situ. Strain WP30 is a chemoheterotroph that utilizes organic carbon as a source of carbon and electrons and requires elemental sulfur and/or arsenic as electron acceptors. Growth in the presence of elemental sulfur and arsenate resulted in the production of thioarsenates and polysulfides relative to sterile controls. The complete genome of this organism was sequenced (1.99 Mb, 58 % G+C) and revealed numerous metabolic pathways for the degradation of carbohydrates, amino acids and lipids, multiple dimethylsulfoxide molybdopterin (DMSO-MPT) oxidoreductase genes, which are implicated in the reduction of sulfur and arsenic, and pathways for the de novo synthesis of nearly all required cofactors and metabolites. Comparative genomics of P. yellowstonensis versus assembled metagenome sequence from JCHS showed that this organisms is highly-related (~95% average nucleotide identity) to in situ populations. The physiological attributes and metabolic capabilities of P. yellowstonensis provide importanat information towards understanding the distribution and function of these populations in YNP.

  9. Structural and genomic properties of the hyperthermophilic archaeal virus ATV with an extracellular stage of the reproductive cycle.

    Science.gov (United States)

    Prangishvili, David; Vestergaard, Gisle; Häring, Monika; Aramayo, Ricardo; Basta, Tamara; Rachel, Reinhard; Garrett, Roger A

    2006-06-23

    A novel virus, ATV, of the hyperthermophilic archaeal genus Acidianus has the unique property of undergoing a major morphological development outside of, and independently of, the host cell. Virions are extruded from host cells as lemon-shaped tail-less particles, after which they develop long tails at each pointed end, at temperatures close to that of the natural habitat, 85 degrees C. The extracellularly developed tails constitute tubes, which terminate in an anchor-like structure that is not observed in the tail-less particles. A thin filament is located within the tube, which exhibits a periodic structure. Tail development produces a one half reduction in the volume of the virion, concurrent with a slight expansion of the virion surface. The circular, double-stranded DNA genome contains 62,730 bp and is exceptional for a crenarchaeal virus in that it carries four putative transposable elements as well as genes, which previously have been associated only with archaeal self-transmissable plasmids. In total, it encodes 72 predicted proteins, including 11 structural proteins with molecular masses in the range of 12 to 90 kDa. Several of the larger proteins are rich in coiled coil and/or low complexity sequence domains, which are unusual for archaea. One protein, in particular P800, resembles an intermediate filament protein in its structural properties. It is modified in the two-tailed, but not in the tail-less, virion particles and it may contribute to viral tail development. Exceptionally for a crenarchaeal virus, infection with ATV results either in viral replication and subsequent cell lysis or in conversion of the infected cell to a lysogen. The lysogenic cycle involves integration of the viral genome into the host chromosome, probably facilitated by the virus-encoded integrase and this process can be interrupted by different stress factors.

  10. The unique features of glycolytic pathways in Archaea.

    OpenAIRE

    Verhees, Corné H; Kengen, Servé W M; Tuininga, Judith E; Schut, Gerrit J; Adams, Michael W W; De Vos, Willem M; Van Der Oost, John

    2003-01-01

    An early divergence in evolution has resulted in two prokaryotic domains, the Bacteria and the Archaea. Whereas the central metabolic routes of bacteria and eukaryotes are generally well-conserved, variant pathways have developed in Archaea involving several novel enzymes with a distinct control. A spectacular example of convergent evolution concerns the glucose-degrading pathways of saccharolytic archaea. The identification, characterization and comparison of the glycolytic enzymes of a vari...

  11. In vivo and in vitro protein imaging in thermophilic archaea by exploiting a novel protein tag.

    Science.gov (United States)

    Visone, Valeria; Han, Wenyuan; Perugino, Giuseppe; Del Monaco, Giovanni; She, Qunxin; Rossi, Mosè; Valenti, Anna; Ciaramella, Maria

    2017-01-01

    Protein imaging, allowing a wide variety of biological studies both in vitro and in vivo, is of great importance in modern biology. Protein and peptide tags fused to proteins of interest provide the opportunity to elucidate protein location and functions, detect protein-protein interactions, and measure protein activity and kinetics in living cells. Whereas several tags are suitable for protein imaging in mesophilic organisms, the application of this approach to microorganisms living at high temperature has lagged behind. Archaea provide an excellent and unique model for understanding basic cell biology mechanisms. Here, we present the development of a toolkit for protein imaging in the hyperthermophilic archaeon Sulfolobus islandicus. The system relies on a thermostable protein tag (H5) constructed by engineering the alkylguanine-DNA-alkyl-transferase protein of Sulfolobus solfataricus, which can be covalently labeled using a wide range of small molecules. As a suitable host, we constructed, by CRISPR-based genome-editing technology, a S. islandicus mutant strain deleted for the alkylguanine-DNA-alkyl-transferase gene (Δogt). Introduction of a plasmid-borne H5 gene in this strain led to production of a functional H5 protein, which was successfully labeled with appropriate fluorescent molecules and visualized in cell extracts as well as in Δogt live cells. H5 was fused to reverse gyrase, a peculiar thermophile-specific DNA topoisomerase endowed with positive supercoiling activity, and allowed visualization of the enzyme in living cells. To the best of our knowledge, this is the first report of in vivo imaging of any protein of a thermophilic archaeon, filling an important gap in available tools for cell biology studies in these organisms.

  12. Genome Sequence of a Hyperthermophilic Archaeon, Thermococcus nautili 30-1, That Produces Viral Vesicles.

    Science.gov (United States)

    Oberto, Jacques; Gaudin, Marie; Cossu, Matteo; Gorlas, Aurore; Slesarev, Alexeï; Marguet, Evelyne; Forterre, Patrick

    2014-03-27

    Thermococcus nautili 30-1 (formerly Thermococcus nautilus), an anaerobic hyperthermophilic marine archaeon, was isolated in 1999 from a deep-sea hydrothermal vent during the Amistad campaign. Here, we present the complete sequence of T. nautili, which is able to produce membrane vesicles containing plasmid DNA. This property makes T. nautili a model organism to study horizontal gene transfer.

  13. The activity of hyperthermophilic glycosynthases is significantly enhanced at acidic pH

    NARCIS (Netherlands)

    Perugino, G.; Trincone, A.; Giordano, A.; Oost, van der J.; Kaper, T.; Rossi, M.; Moracci, M.

    2003-01-01

    We have previously shown that the hyperthermophilic glycosynthase from Sulfolobus so fataricus (Ssbeta-glyE387G) can promote the synthesis of branched oligosaccharides from activated beta-glycosides, at pH 6.5, in the presence of 2 M sodium formate as an external nucleophile. In an effort to

  14. Improved oligosaccharide synthesis by protein engineering of b-glucosidase from hyperthermophilic Pyrococcus furiosus

    NARCIS (Netherlands)

    Hanson, T.; Kaper, T.; Oost, van der J.; Vos, de W.M.

    2001-01-01

    Enzymatic transglycosylation of lactose into oligosaccharides was studied using wild-type -glucosidase (CelB) and active site mutants thereof (M424K, F426Y, M424K/F426Y) and wild-type -mannosidase (BmnA) of the hyperthermophilic Pyrococcus furiosus. The effects of the mutations on kinetics, enzyme

  15. Isoprenoid biosynthesis in Archaea - Biochemical and evolutionary implications

    NARCIS (Netherlands)

    Matsumi, Rie; Atomi, Haruyuki; Driessen, Arnold J. M.; van der Oost, John

    Isoprenoids are indispensable for all types of cellular life in the Archaea, Bacteria, and Eucarya. These membrane-associated molecules are involved in a wide variety of vital biological functions, ranging from compartmentalization and stability, to protection and energy-transduction. In Archaea,

  16. Structural adaptation of the subunit interface of oligomeric thermophilic and hyperthermophilic enzymes.

    Science.gov (United States)

    Maugini, Elisa; Tronelli, Daniele; Bossa, Francesco; Pascarella, Stefano

    2009-04-01

    Enzymes from thermophilic and, particularly, from hyperthermophilic organisms are surprisingly stable. Understanding of the molecular origin of protein thermostability and thermoactivity attracted the interest of many scientist both for the perspective comprehension of the principles of protein structure and for the possible biotechnological applications through application of protein engineering. Comparative studies at sequence and structure levels were aimed at detecting significant differences of structural parameters related to protein stability between thermophilic and hyperhermophilic structures and their mesophilic homologs. Comparative studies were useful in the identification of a few recurrent themes which the evolution utilized in different combinations in different protein families. These studies were mostly carried out at the monomer level. However, maintenance of a proper quaternary structure is an essential prerequisite for a functional macromolecule. At the environmental temperatures experienced typically by hyper- and thermophiles, the subunit interactions mediated by the interface must be sufficiently stable. Our analysis was therefore aimed at the identification of the molecular strategies adopted by evolution to enhance interface thermostability of oligomeric enzymes. The variation of several structural properties related to protein stability were tested at the subunit interfaces of thermophilic and hyperthermophilic oligomers. The differences of the interface structural features observed between the hyperthermophilic and thermophilic enzymes were compared with the differences of the same properties calculated from pairwise comparisons of oligomeric mesophilic proteins contained in a reference dataset. The significance of the observed differences of structural properties was measured by a t-test. Ion pairs and hydrogen bonds do not vary significantly while hydrophobic contact area increases specially in hyperthermophilic interfaces. Interface

  17. Horizontal gene transfer of a chloroplast DnaJ-Fer protein to Thaumarchaeota and the evolutionary history of the DnaK chaperone system in Archaea.

    Science.gov (United States)

    Petitjean, Céline; Moreira, David; López-García, Purificación; Brochier-Armanet, Céline

    2012-11-26

    In 2004, we discovered an atypical protein in metagenomic data from marine thaumarchaeotal species. This protein, referred as DnaJ-Fer, is composed of a J domain fused to a Ferredoxin (Fer) domain. Surprisingly, the same protein was also found in Viridiplantae (green algae and land plants). Because J domain-containing proteins are known to interact with the major chaperone DnaK/Hsp70, this suggested that a DnaK protein was present in Thaumarchaeota. DnaK/Hsp70, its co-chaperone DnaJ and the nucleotide exchange factor GrpE are involved, among others, in heat shocks and heavy metal cellular stress responses. Using phylogenomic approaches we have investigated the evolutionary history of the DnaJ-Fer protein and of interacting proteins DnaK, DnaJ and GrpE in Thaumarchaeota. These proteins have very complex histories, involving several inter-domain horizontal gene transfers (HGTs) to explain the contemporary distribution of these proteins in archaea. These transfers include one from Cyanobacteria to Viridiplantae and one from Viridiplantae to Thaumarchaeota for the DnaJ-Fer protein, as well as independent HGTs from Bacteria to mesophilic archaea for the DnaK/DnaJ/GrpE system, followed by HGTs among mesophilic and thermophilic archaea. We highlight the chimerical origin of the set of proteins DnaK, DnaJ, GrpE and DnaJ-Fer in Thaumarchaeota and suggest that the HGT of these proteins has played an important role in the adaptation of several archaeal groups to mesophilic and thermophilic environments from hyperthermophilic ancestors. Finally, the evolutionary history of DnaJ-Fer provides information useful for the relative dating of the diversification of Archaeplastida and Thaumarchaeota.

  18. Horizontal gene transfer of a chloroplast DnaJ-Fer protein to Thaumarchaeota and the evolutionary history of the DnaK chaperone system in Archaea

    Directory of Open Access Journals (Sweden)

    Petitjean Céline

    2012-11-01

    Full Text Available Abstract Background In 2004, we discovered an atypical protein in metagenomic data from marine thaumarchaeotal species. This protein, referred as DnaJ-Fer, is composed of a J domain fused to a Ferredoxin (Fer domain. Surprisingly, the same protein was also found in Viridiplantae (green algae and land plants. Because J domain-containing proteins are known to interact with the major chaperone DnaK/Hsp70, this suggested that a DnaK protein was present in Thaumarchaeota. DnaK/Hsp70, its co-chaperone DnaJ and the nucleotide exchange factor GrpE are involved, among others, in heat shocks and heavy metal cellular stress responses. Results Using phylogenomic approaches we have investigated the evolutionary history of the DnaJ-Fer protein and of interacting proteins DnaK, DnaJ and GrpE in Thaumarchaeota. These proteins have very complex histories, involving several inter-domain horizontal gene transfers (HGTs to explain the contemporary distribution of these proteins in archaea. These transfers include one from Cyanobacteria to Viridiplantae and one from Viridiplantae to Thaumarchaeota for the DnaJ-Fer protein, as well as independent HGTs from Bacteria to mesophilic archaea for the DnaK/DnaJ/GrpE system, followed by HGTs among mesophilic and thermophilic archaea. Conclusions We highlight the chimerical origin of the set of proteins DnaK, DnaJ, GrpE and DnaJ-Fer in Thaumarchaeota and suggest that the HGT of these proteins has played an important role in the adaptation of several archaeal groups to mesophilic and thermophilic environments from hyperthermophilic ancestors. Finally, the evolutionary history of DnaJ-Fer provides information useful for the relative dating of the diversification of Archaeplastida and Thaumarchaeota.

  19. Growth of Thermophilic and Hyperthermophilic Fe(III)-Reducing Microorganisms on a Ferruginous Smectite as the Sole Electron Acceptor▿

    Science.gov (United States)

    Kashefi, Kazem; Shelobolina, Evgenya S.; Elliott, W. Crawford; Lovley, Derek R.

    2008-01-01

    Recent studies have suggested that the structural Fe(III) within phyllosilicate minerals, including smectite and illite, is an important electron acceptor for Fe(III)-reducing microorganisms in sedimentary environments at moderate temperatures. The reduction of structural Fe(III) by thermophiles, however, has not previously been described. A wide range of thermophilic and hyperthermophilic Archaea and Bacteria from marine and freshwater environments that are known to reduce poorly crystalline Fe(III) oxides were tested for their ability to reduce structural (octahedrally coordinated) Fe(III) in smectite (SWa-1) as the sole electron acceptor. Two out of the 10 organisms tested, Geoglobus ahangari and Geothermobacterium ferrireducens, were not able to conserve energy to support growth by reduction of Fe(III) in SWa-1 despite the fact that both organisms were originally isolated with solid-phase Fe(III) as the electron acceptor. The other organisms tested were able to grow on SWa-1 and reduced 6.3 to 15.1% of the Fe(III). This is 20 to 50% less than the reported amounts of Fe(III) reduced in the same smectite (SWa-1) by mesophilic Fe(III) reducers. Two organisms, Geothermobacter ehrlichii and archaeal strain 140, produced copious amounts of an exopolysaccharide material, which may have played an active role in the dissolution of the structural iron in SWa-1 smectite. The reduction of structural Fe(III) in SWa-1 by archaeal strain 140 was studied in detail. Microbial Fe(III) reduction was accompanied by an increase in interlayer and octahedral charges and some incorporation of potassium and magnesium into the smectite structure. However, these changes in the major element chemistry of SWa-1 smectite did not result in the formation of an illite-like structure, as reported for a mesophilic Fe(III) reducer. These results suggest that thermophilic Fe(III)-reducing organisms differ in their ability to reduce and solubilize structural Fe(III) in SWa-1 smectite and that SWa-1

  20. Translation termination in pyrrolysine-utilizing archaea.

    Science.gov (United States)

    Alkalaeva, Elena; Eliseev, Boris; Ambrogelly, Alexandre; Vlasov, Peter; Kondrashov, Fyodor A; Gundllapalli, Sharath; Frolova, Lyudmila; Söll, Dieter; Kisselev, Lev

    2009-11-03

    Although some data link archaeal and eukaryotic translation, the overall mechanism of protein synthesis in archaea remains largely obscure. Both archaeal (aRF1) and eukaryotic (eRF1) single release factors recognize all three stop codons. The archaeal genus Methanosarcinaceae contains two aRF1 homologs, and also uses the UAG stop to encode the 22nd amino acid, pyrrolysine. Here we provide an analysis of the last stage of archaeal translation in pyrrolysine-utilizing species. We demonstrated that only one of two Methanosarcina barkeri aRF1 homologs possesses activity and recognizes all three stop codons. The second aRF1 homolog may have another unknown function. The mechanism of pyrrolysine incorporation in the Methanosarcinaceae is discussed.

  1. Archaea: Essential inhabitants of the human digestive microbiota

    Directory of Open Access Journals (Sweden)

    Vanessa Demonfort Nkamga

    2017-03-01

    Full Text Available Prokaryotes forming the domain of Archaea, named after their first discovery in extreme environments, are acknowledged but still neglected members of the human digestive tract microbiota. In this microbiota, cultured archaea comprise anaerobic methanogens: Methanobrevibacter smithii, Methanobrevibacter oralis, Methanobrevibacter massiliense, Methanosphaera stadtmanae, Methanobrevibacter arboriphilus, Methanobrevibacter millerae and Methanomassiliicoccus luminyensis; along with the non-methanogen halophilic Archaea Halopherax massiliense. Metagenomic analyses detected DNA sequences indicative of the presence of additional methanogenic and non-methanogenic halophilic Archaea in the human intestinal tract and oral cavity. Methanogens specifically metabolize hydrogen produced by anaerobic fermentation of carbohydrates into methane; further transforming heavy metals and metalloids into methylated derivatives, such as trimethylbismuth which is toxic for both human and bacterial cells. However, the role of Archaea as pathogens remains to be established. Future researches will aim to increase the repertoire of the human digestive tract Archaea and to understand their possible association with intestinal and extra-intestinal infections and diseases including weight regulation abnormalities. Keywords: Human-associated Archaea, Methanogens, Halophiles, Oral cavity, Intestinal tract

  2. Protein Ser/Thr/Tyr phosphorylation in the Archaea.

    Science.gov (United States)

    Kennelly, Peter J

    2014-04-04

    The third domain of life, the Archaea (formerly Archaebacteria), is populated by a physiologically diverse set of microorganisms, many of which reside at the ecological extremes of our global environment. Although ostensibly prokaryotic in morphology, the Archaea share much closer evolutionary ties with the Eukarya than with the superficially more similar Bacteria. Initial genomic, proteomic, and biochemical analyses have revealed the presence of "eukaryotic" protein kinases and phosphatases and an intriguing set of serine-, threonine-, and tyrosine-phosphorylated proteins in the Archaea that may offer new insights into this important regulatory mechanism.

  3. Diversity of the DNA Replication System in the Archaea Domain

    Directory of Open Access Journals (Sweden)

    Felipe Sarmiento

    2014-01-01

    Full Text Available The precise and timely duplication of the genome is essential for cellular life. It is achieved by DNA replication, a complex process that is conserved among the three domains of life. Even though the cellular structure of archaea closely resembles that of bacteria, the information processing machinery of archaea is evolutionarily more closely related to the eukaryotic system, especially for the proteins involved in the DNA replication process. While the general DNA replication mechanism is conserved among the different domains of life, modifications in functionality and in some of the specialized replication proteins are observed. Indeed, Archaea possess specific features unique to this domain. Moreover, even though the general pattern of the replicative system is the same in all archaea, a great deal of variation exists between specific groups.

  4. Creation of metal-independent hyperthermophilic L-arabinose isomerase by homologous recombination.

    Science.gov (United States)

    Hong, Young-Ho; Lee, Dong-Woo; Pyun, Yu-Ryang; Lee, Sung Haeng

    2011-12-28

    Hyperthermophilic L-arabinose isomerases (AIs) are useful in the commercial production of D-tagatose as a low-calorie bulk sweetener. Their catalysis and thermostability are highly dependent on metals, which is a major drawback in food applications. To study the role of metal ions in the thermostability and catalysis of hyperthermophilic AI, four enzyme chimeras were generated by PCR-based hybridization to replace the variable N- and C-terminal regions of hyperthermophilic Thermotoga maritima AI (TMAI) and thermophilic Geobacillus stearothermophilus AI (GSAI) with those of the homologous mesophilic Bacillus halodurans AI (BHAI). Unlike Mn(2+)-dependent TMAI, the GSAI- and TMAI-based hybrids with the 72 C-terminal residues of BHAI were not metal-dependent for catalytic activity. By contrast, the catalytic activities of the TMAI- and GSAI-based hybrids containing the N-terminus (residues 1-89) of BHAI were significantly enhanced by metals, but their thermostabilities were poor even in the presence of Mn(2+), indicating that the effects of metals on catalysis and thermostability involve different structural regions. Moreover, in contrast to the C-terminal truncate (Δ20 residues) of GSAI, the N-terminal truncate (Δ7 residues) exhibited no activity due to loss of its native structure. The data thus strongly suggest that the metal dependence of the catalysis and thermostability of hyperthermophilic AIs evolved separately to optimize their activity and thermostability at elevated temperatures. This may provide effective target regions for engineering, thereby meeting industrial demands for the production of d-tagatose.

  5. Widespread Disulfide Bonding in Proteins from Thermophilic Archaea

    OpenAIRE

    Jorda, Julien; Yeates, Todd O.

    2011-01-01

    Disulfide bonds are generally not used to stabilize proteins in the cytosolic compartments of bacteria or eukaryotic cells, owing to the chemically reducing nature of those environments. In contrast, certain thermophilic archaea use disulfide bonding as a major mechanism for protein stabilization. Here, we provide a current survey of completely sequenced genomes, applying computational methods to estimate the use of disulfide bonding across the Archaea. Microbes belonging to the Crenarchaea...

  6. Experimental fossilisation of viruses from extremophilic Archaea

    Directory of Open Access Journals (Sweden)

    F. Orange

    2011-06-01

    Full Text Available The role of viruses at different stages of the origin of life has recently been reconsidered. It appears that viruses may have accompanied the earliest forms of life, allowing the transition from an RNA to a DNA world and possibly being involved in the shaping of tree of life in the three domains that we know presently. In addition, a large variety of viruses has been recently identified in extreme environments, hosted by extremophilic microorganisms, in ecosystems considered as analogues to those of the early Earth. Traces of life on the early Earth were preserved by the precipitation of silica on the organic structures. We present the results of the first experimental fossilisation by silica of viruses from extremophilic Archaea (SIRV2 – Sulfolobus islandicus rod-shaped virus 2, TPV1 – Thermococcus prieurii virus 1, and PAV1 – Pyrococcus abyssi virus 1. Our results confirm that viruses can be fossilised, with silica precipitating on the different viral structures (proteins, envelope over several months in a manner similar to that of other experimentally and naturally fossilised microorganisms. This study thus suggests that viral remains or traces could be preserved in the rock record although their identification may be challenging due to the small size of the viral particles.

  7. Studying gene regulation in methanogenic archaea.

    Science.gov (United States)

    Rother, Michael; Sattler, Christian; Stock, Tilmann

    2011-01-01

    Methanogenic archaea are a unique group of strictly anaerobic microorganisms characterized by their ability, and dependence, to convert simple C1 and C2 compounds to methane for growth. The major models for studying the biology of methanogens are members of the Methanococcus and Methanosarcina species. Recent development of sophisticated tools for molecular analysis and for genetic manipulation allows investigating not only their metabolism but also their cell cycle, and their interaction with the environment in great detail. One aspect of such analyses is assessment and dissection of methanoarchaeal gene regulation, for which, at present, only a handful of cases have been investigated thoroughly, partly due to the great methodological effort required. However, it becomes more and more evident that many new regulatory paradigms can be unraveled in this unique archaeal group. Here, we report both molecular and physiological/genetic methods to assess gene regulation in Methanococcus maripaludis and Methanosarcina acetivorans, which should, however, be applicable for other methanogens as well. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Space agriculture for habitation on Mars with hyper-thermophilic aerobic composting bacteria

    Science.gov (United States)

    Kanazawa, S.; Ishikawa, Y.; Tomita-Yokotani, K.; Hashimoto, H.; Kitaya, Y.; Yamashita, M.; Nagatomo, M.; Oshima, T.; Wada, H.; Space Agriculture Task Force, J.

    Manned Mars exploration requires recycle of materials to support human life A conceptual design is developed for space agriculture which is driven by the biologically regenerative function Hyper-thermophilic aerobic composting bacterial ecology is the core of materials recycling system to process human metabolic waste and inedible biomass and convert them to fertilizer for plants cultivation A photosynthetic reaction of plants will be driven by solar energy Water will be recycled by cultivation of plants and passing it through plant bodies Sub-surface water and atmospheric carbon dioxide are the natural resource available on Mars and these resources will be converted to oxygen and foods We envision that the agricultural system will be scaled up by importing materials from Martian environment Excess oxygen will be obtained from growing trees for structural and other components Minor elements including N P K and other traces will be introduced as fertilizers or nutrients into the agricultural materials circulation Nitrogen will be collected from Martian atmosphere We will assess biological fixation of nitrogen using micro-organisms responsible in Earth biosphere Hyper-thermophilic aerobic bacterial ecology is effective to convert waste materials into useful forms to plants This microbial technology has been well established on ground for processing sewage and waste materials For instance the hyper-thermophilic bacterial system is applied to a composting machine in a size of a trash box in home kitchen Since such a home electronics

  9. The unique features of glycolytic pathways in Archaea.

    Science.gov (United States)

    Verhees, Corné H; Kengen, Servé W M; Tuininga, Judith E; Schut, Gerrit J; Adams, Michael W W; De Vos, Willem M; Van Der Oost, John

    2003-10-15

    An early divergence in evolution has resulted in two prokaryotic domains, the Bacteria and the Archaea. Whereas the central metabolic routes of bacteria and eukaryotes are generally well-conserved, variant pathways have developed in Archaea involving several novel enzymes with a distinct control. A spectacular example of convergent evolution concerns the glucose-degrading pathways of saccharolytic archaea. The identification, characterization and comparison of the glycolytic enzymes of a variety of phylogenetic lineages have revealed a mosaic of canonical and novel enzymes in the archaeal variants of the Embden-Meyerhof and the Entner-Doudoroff pathways. By means of integrating results from biochemical and genetic studies with recently obtained comparative and functional genomics data, the structure and function of the archaeal glycolytic routes, the participating enzymes and their regulation are re-evaluated.

  10. Improving anaerobic sewage sludge digestion by implementation of a hyper-thermophilic prehydrolysis step

    DEFF Research Database (Denmark)

    Lu, Jingquan; Gavala, Hariklia N.; Skiadas, Ioannis V.

    2008-01-01

    The present study focuses on a two-step process for treatment and stabilisation of primary sludge. The process consists of a hyperthermophilic hydrolysis step operated at 70 degrees C and a hydraulic retention time (HRT) of 2 clays followed by a thermophilic (55 degrees C) anaerobic digestion step......) with and Without pre-treatment respectively) and up to 115% increase of the methane production rate. Finally it was shown that the extra energy requirements for the operation of a pre-treatment step would be covered by the energy Produced from the extra methane production and in addition there would...

  11. Space agriculture for habitation on Mars with hyper-thermophilic aerobic composting bacteria

    Science.gov (United States)

    Space Agriculture Task Force; Ishikawa, Y.; Tomita-Yokotani, K.; Hashimoto, H.; Kitaya, Y.; Yamashita, M.; Nagatomo, M.; Oshima, T.; Wada, H.

    Manned Mars exploration, especially for extended periods of time, will require recycle of materials to support human life. Here, a conceptual design is developed for a Martian agricultural system driven by biologically regenerative functions. One of the core biotechnologies function is the use of hyper-thermophilic aerobic composting bacterial ecology. These thermophilic bacteria can play an important role in increasing the effectiveness of the processing of human metabolic waste and inedible biomass and of converting them to fertilizer for the cultivation of plants. This microbial technology has been already well established for the purpose of processing sewage and waste materials for small local communities in Japan. One of the characteristics of the technology is that the metabolic heat release that occurs during bacterial fermentation raises the processing temperature sufficiently high at 80 100 °C to support hyper-thermophilic bacteria. Such a hyper-thermophilic system is found to have great capability of decomposing wastes including even their normally recalcitrant components, in a reasonably short period of time and of providing a better quality of fertilizer as an end-product. High quality compost has been shown to be a key element in creating a healthy regenerative food production system. In ground-based studies, the soil microbial ecology after the addition of high quality compost was shown to improve plant growth and promote a healthy symbiosis of arbuscular mycorrhizal fungi. Another advantage of such high processing temperature is the ability to sterilize the pathogenic organisms through the fermentation process and thus to secure the hygienic safety of the system. Plant cultivation is one of the other major systems. It should fully utilize solar energy received on the Martian surface for supplying energy for photosynthesis. Subsurface water and atmospheric carbon dioxide mined on Mars should be also used in the plant cultivation system. Oxygen and

  12. Updated clusters of orthologous genes for Archaea: a complex ancestor of the Archaea and the byways of horizontal gene transfer

    Directory of Open Access Journals (Sweden)

    Wolf Yuri I

    2012-12-01

    Full Text Available Abstract Background Collections of Clusters of Orthologous Genes (COGs provide indispensable tools for comparative genomic analysis, evolutionary reconstruction and functional annotation of new genomes. Initially, COGs were made for all complete genomes of cellular life forms that were available at the time. However, with the accumulation of thousands of complete genomes, construction of a comprehensive COG set has become extremely computationally demanding and prone to error propagation, necessitating the switch to taxon-specific COG collections. Previously, we reported the collection of COGs for 41 genomes of Archaea (arCOGs. Here we present a major update of the arCOGs and describe evolutionary reconstructions to reveal general trends in the evolution of Archaea. Results The updated version of the arCOG database incorporates 91% of the pangenome of 120 archaea (251,032 protein-coding genes altogether into 10,335 arCOGs. Using this new set of arCOGs, we performed maximum likelihood reconstruction of the genome content of archaeal ancestral forms and gene gain and loss events in archaeal evolution. This reconstruction shows that the last Common Ancestor of the extant Archaea was an organism of greater complexity than most of the extant archaea, probably with over 2,500 protein-coding genes. The subsequent evolution of almost all archaeal lineages was apparently dominated by gene loss resulting in genome streamlining. Overall, in the evolution of Archaea as well as a representative set of bacteria that was similarly analyzed for comparison, gene losses are estimated to outnumber gene gains at least 4 to 1. Analysis of specific patterns of gene gain in Archaea shows that, although some groups, in particular Halobacteria, acquire substantially more genes than others, on the whole, gene exchange between major groups of Archaea appears to be largely random, with no major ‘highways’ of horizontal gene transfer. Conclusions The updated collection

  13. On the Response of Halophilic Archaea to Space Conditions

    Science.gov (United States)

    Leuko, Stefan; Rettberg, Petra; Pontifex, Ashleigh L.; Burns, Brendan P.

    2014-01-01

    Microorganisms are ubiquitous and can be found in almost every habitat and ecological niche on Earth. They thrive and survive in a broad spectrum of environments and adapt to rapidly changing external conditions. It is of great interest to investigate how microbes adapt to different extreme environments and with modern human space travel, we added a new extreme environment: outer space. Within the last 50 years, technology has provided tools for transporting microbial life beyond Earth’s protective shield in order to study in situ responses to selected conditions of space. This review will focus on halophilic archaea, as, due to their ability to survive in extremes, they are often considered a model group of organisms to study responses to the harsh conditions associated with space. We discuss ground-based simulations, as well as space experiments, utilizing archaea, examining responses and/or resistance to the effects of microgravity and UV in particular. Several halophilic archaea (e.g., Halorubrum chaoviator) have been exposed to simulated and actual space conditions and their survival has been determined as well as the protective effects of halite shown. Finally, the intriguing potential of archaea to survive on other planets or embedded in a meteorite is postulated. PMID:25370029

  14. Nitrogen metabolism and kinetics of ammonia-oxidizing archaea.

    Science.gov (United States)

    Martens-Habbena, Willm; Stahl, David A

    2011-01-01

    The discovery of ammonia-oxidizing mesophilic and thermophilic Group I archaea changed the century-old paradigm that aerobic ammonia oxidation is solely mediated by two small clades of Beta- and Gammaproteobacteria. Group I archaea are extremely diverse and ubiquitous in marine and terrestrial environments, accounting for 20-30% of the microbial plankton in the global oceans. Recent studies indicated that many of these organisms carry putative ammonia monooxygenase genes and are more abundant than ammonia-oxidizing bacteria in most natural environments suggesting a potentially significant role in the nitrogen cycle. The isolation of Nitrosopumilus maritimus strain SCM1 provided the first direct evidence that Group I archaea indeed gain energy from ammonia oxidation. To characterize the physiology of this archaeal nitrifier, we developed a respirometry setup particularly suited for activity measurements in dilute microbial cultures with extremely low oxygen uptake rates. Here, we describe the setup and review the kinetic experiments conducted with N. maritimus and other nitrifying microorganisms. These experiments demonstrated that N. maritimus is adapted to grow on ammonia concentrations found in oligotrophic open ocean environments, far below the survival threshold of ammonia-oxidizing bacteria. The described setup and experimental procedures should facilitate physiological studies on other nitrifying archaea and oligotrophic microorganisms in general. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Bacteria, not archaea, restore nitrification in a zinc contaminated soil.

    NARCIS (Netherlands)

    Mertens, J.; Broos, K.; Wakelin, S.A.; Kowalchuk, G.A.; Springael, D.; Smolders, E.

    2009-01-01

    Biological ammonia oxidation had long been thought to be mediated solely by discrete clades of Β- and γ-proteobacteria (ammonia-oxidizing bacteria; AOB). However, ammonia-oxidizing Crenarchaeota (ammonia-oxidizing archaea; AOA) have recently been identified and proposed to be the dominant agents of

  16. On the Response of Halophilic Archaea to Space Conditions

    Directory of Open Access Journals (Sweden)

    Stefan Leuko

    2014-02-01

    Full Text Available Microorganisms are ubiquitous and can be found in almost every habitat and ecological niche on Earth. They thrive and survive in a broad spectrum of environments and adapt to rapidly changing external conditions. It is of great interest to investigate how microbes adapt to different extreme environments and with modern human space travel, we added a new extreme environment: outer space. Within the last 50 years, technology has provided tools for transporting microbial life beyond Earth’s protective shield in order to study in situ responses to selected conditions of space. This review will focus on halophilic archaea, as, due to their ability to survive in extremes, they are often considered a model group of organisms to study responses to the harsh conditions associated with space. We discuss ground-based simulations, as well as space experiments, utilizing archaea, examining responses and/or resistance to the effects of microgravity and UV in particular. Several halophilic archaea (e.g., Halorubrum chaoviator have been exposed to simulated and actual space conditions and their survival has been determined as well as the protective effects of halite shown. Finally, the intriguing potential of archaea to survive on other planets or embedded in a meteorite is postulated.

  17. Structural analysis of β-glucosidase mutants derived from a hyperthermophilic tetrameric structure

    International Nuclear Information System (INIS)

    Nakabayashi, Makoto; Kataoka, Misumi; Mishima, Yumiko; Maeno, Yuka; Ishikawa, Kazuhiko

    2014-01-01

    Substitutive mutations that convert a tetrameric β-glucosidase into a dimeric state lead to improvement of its crystal quality. β-Glucosidase from Pyrococcus furiosus (BGLPf) is a hyperthermophilic tetrameric enzyme which can degrade cellooligosaccharides to glucose under hyperthermophilic conditions and thus holds promise for the saccharification of lignocellulosic biomass at high temperature. Prior to the production of large amounts of this enzyme, detailed information regarding the oligomeric structure of the enzyme is required. Several crystals of BGLPf have been prepared over the past ten years, but its crystal structure had not been solved until recently. In 2011, the first crystal structure of BGLPf was solved and a model was constructed at somewhat low resolution (2.35 Å). In order to obtain more detailed structural data on BGLPf, the relationship between its tetrameric structure and the quality of the crystal was re-examined. A dimeric form of BGLPf was constructed and its crystal structure was solved at a resolution of 1.70 Å using protein-engineering methods. Furthermore, using the high-resolution crystal structural data for the dimeric form, a monomeric form of BGLPf was constructed which retained the intrinsic activity of the tetrameric form. The thermostability of BGLPf is affected by its oligomeric structure. Here, the biophysical and biochemical properties of engineered dimeric and monomeric BGLPfs are reported, which are promising prototype models to apply to the saccharification reaction. Furthermore, details regarding the oligomeric structures of BGLPf and the reasons why the mutations yielded improved crystal structures are discussed

  18. Crystal structure of a family 16 endoglucanase from the hyperthermophile Pyrococcus furiosus--structural basis of substrate recognition

    NARCIS (Netherlands)

    Ilari, A.; Fiorillo, A.; Angelaccio, S.; Florio, R.; Chiaraluce, R.; Oost, van der J.; Consalvi, V.

    2009-01-01

    Bacterial and archaeal endo-beta-1,3-glucanases that belong to glycoside hydrolase family 16 share a beta-jelly-roll fold, but differ significantly in sequence and in substrate specificity. The crystal structure of the laminarinase (EC 3.2.1.39) from the hyperthermophilic archaeon Pyrococcus

  19. Purification, crystallization and preliminary crystallographic analysis of GTP-binding protein from the hyperthermophilic archaeon Sulfolobus solfataricus

    NARCIS (Netherlands)

    Wu Hao,; Sun, L.; Brouns, S.J.J.; Fu, S.; Akerboom, A.P.; Li, X.; Oost, van der J.

    2007-01-01

    A predicted GTP-binding protein from the hyperthermophilic archaeon Sulfolobus solfataricus, termed SsGBP, has been cloned and overexpressed in Escherichia coli. The purified protein was crystallized using the hanging-drop vapour-diffusion technique in the presence of 0.05 M cadmium sulfate and 0.8

  20. Crystallization and preliminary crystallographic analysis of an esterase with a novel domain from the hyperthermophile Thermotoga maritima

    NARCIS (Netherlands)

    Sun, Lei; Levisson, Mark; Hendriks, Sjon; Akveld, Twan; Kengen, Serve W. M.; Dijkstra, Bauke W.; van der Oost, John

    A predicted esterase ( EstA) with an unusual new domain from the hyperthermophilic bacterium Thermotoga maritima has been cloned and overexpressed in Escherichia coli. The purified protein was crystallized by the hanging-drop vapour-diffusion technique in the presence of lithium sulfate and

  1. How hyperthermophiles adapt to change their lives : DNA exchange in extreme conditions

    NARCIS (Netherlands)

    van Wolferen, Marleen; Ajon, Malgorzata; Driessen, Arnold J. M.; Albers, Sonja-Verena; Ajon, Małgorzata; Huang, L.

    Transfer of DNA has been shown to be involved in genome evolution. In particular with respect to the adaptation of bacterial species to high temperatures, DNA transfer between the domains of bacteria and archaea seems to have played a major role. In addition, DNA exchange between similar species

  2. Hyperthermophilic Archaeon Thermococcus kodakarensis Utilizes a Four-Step Pathway for NAD+ Salvage through Nicotinamide Deamination.

    Science.gov (United States)

    Hachisuka, Shin-Ichi; Sato, Takaaki; Atomi, Haruyuki

    2018-06-01

    Many organisms possess pathways that regenerate NAD + from its degradation products, and two pathways are known to salvage NAD + from nicotinamide (Nm). One is a four-step pathway that proceeds through deamination of Nm to nicotinic acid (Na) by Nm deamidase and phosphoribosylation to nicotinic acid mononucleotide (NaMN), followed by adenylylation and amidation. Another is a two-step pathway that does not involve deamination and directly proceeds with the phosphoribosylation of Nm to nicotinamide mononucleotide (NMN), followed by adenylylation. Judging from genome sequence data, the hyperthermophilic archaeon Thermococcus kodakarensis is supposed to utilize the four-step pathway, but the fact that the adenylyltransferase encoded by TK0067 recognizes both NMN and NaMN also raises the possibility of a two-step salvage mechanism. Here, we examined the substrate specificity of the recombinant TK1676 protein, annotated as nicotinic acid phosphoribosyltransferase. The TK1676 protein displayed significant activity toward Na and phosphoribosyl pyrophosphate (PRPP) and only trace activity with Nm and PRPP. We further performed genetic analyses on TK0218 (quinolinic acid phosphoribosyltransferase) and TK1650 (Nm deamidase), involved in de novo biosynthesis and four-step salvage of NAD + , respectively. The ΔTK0218 mutant cells displayed growth defects in a minimal synthetic medium, but growth was fully restored with the addition of Na or Nm. The ΔTK0218 ΔTK1650 mutant cells did not display growth in the minimal medium, and growth was restored with the addition of Na but not Nm. The enzymatic and genetic analyses strongly suggest that NAD + salvage in T. kodakarensis requires deamination of Nm and proceeds through the four-step pathway. IMPORTANCE Hyperthermophiles must constantly deal with increased degradation rates of their biomolecules due to their high growth temperatures. Here, we identified the pathway that regenerates NAD + from nicotinamide (Nm) in the

  3. Bacteria and archaea paleomicrobiology of the dental calculus: a review.

    Science.gov (United States)

    Huynh, H T T; Verneau, J; Levasseur, A; Drancourt, M; Aboudharam, G

    2016-06-01

    Dental calculus, a material observed in the majority of adults worldwide, emerged as a source for correlating paleomicrobiology with human health and diet. This mini review of 48 articles on the paleomicrobiology of dental calculus over 7550 years discloses a secular core microbiota comprising nine bacterial phyla - Firmicutes, Actinobacteria, Proteobacteria, Bacteroidetes, TM7, Synergistetes, Chloroflexi, Fusobacteria, Spirochetes - and one archaeal phylum Euryarchaeota; and some accessory microbiota that appear and disappear according to time frame. The diet residues and oral microbes, including bacteria, archaea, viruses and fungi, consisting of harmless organisms and pathogens associated with local and systemic infections have been found trapped in ancient dental calculus by morphological approaches, immunolabeling techniques, isotope analyses, fluorescent in situ hybridization, DNA-based approaches, and protein-based approaches. These observations led to correlation of paleomicrobiology, particularly Streptococcus mutans and archaea, with past human health and diet. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Martinez, Asuncion; Mincer, Tracy J

    2006-01-01

    Planktonic Bacteria, Archaea and Eukarya reside and compete in the ocean's photic zone under the pervasive influence of light. Bacteria in this environment were recently shown to contain photoproteins called proteorhodopsins, thought to contribute to cellular energy metabolism by catalysing light...... phylogenetic distribution of proteorhodopsins reflects their significant light-dependent fitness contributions, which drive the photoprotein's lateral acquisition and retention, but constrain its dispersal to the photic zone....

  5. Diversity of Ammonia Oxidizing Archaea in Tropical Compost Systems

    OpenAIRE

    Vidya eDe Gannes; Gaius eEudoxie; David H Dyer; William James Hickey

    2012-01-01

    Composting is widely used to transform waste materials into valuable agricultural products. In the tropics, large quantities of agricultural wastes could be potentially useful in agriculture after composting. However, while microbiological processes of composts in general are well established, relatively little is known about microbial communities that may be unique to these in tropical systems, particularly nitrifiers. The recent discovery of ammonia oxidizing archaea (AOA) has changed the p...

  6. Selenoproteins in Archaea and Gram-positive bacteria.

    Science.gov (United States)

    Stock, Tilmann; Rother, Michael

    2009-11-01

    Selenium is an essential trace element for many organisms by serving important catalytic roles in the form of the 21st co-translationally inserted amino acid selenocysteine. It is mostly found in redox-active proteins in members of all three domains of life and analysis of the ever-increasing number of genome sequences has facilitated identification of the encoded selenoproteins. Available data from biochemical, sequence, and structure analyses indicate that Gram-positive bacteria synthesize and incorporate selenocysteine via the same pathway as enterobacteria. However, recent in vivo studies indicate that selenocysteine-decoding is much less stringent in Gram-positive bacteria than in Escherichia coli. For years, knowledge about the pathway of selenocysteine synthesis in Archaea and Eukarya was only fragmentary, but genetic and biochemical studies guided by analysis of genome sequences of Sec-encoding archaea has not only led to the characterization of the pathways but has also shown that they are principally identical. This review summarizes current knowledge about the metabolic pathways of Archaea and Gram-positive bacteria where selenium is involved, about the known selenoproteins, and about the respective pathways employed in selenoprotein synthesis.

  7. Dissimilatory oxidation and reduction of elemental sulfur in thermophilic archaea.

    Science.gov (United States)

    Kletzin, Arnulf; Urich, Tim; Müller, Fabian; Bandeiras, Tiago M; Gomes, Cláudio M

    2004-02-01

    The oxidation and reduction of elemental sulfur and reduced inorganic sulfur species are some of the most important energy-yielding reactions for microorganisms living in volcanic hot springs, solfataras, and submarine hydrothermal vents, including both heterotrophic, mixotrophic, and chemolithoautotrophic, carbon dioxide-fixing species. Elemental sulfur is the electron donor in aerobic archaea like Acidianus and Sulfolobus. It is oxidized via sulfite and thiosulfate in a pathway involving both soluble and membrane-bound enzymes. This pathway was recently found to be coupled to the aerobic respiratory chain, eliciting a link between sulfur oxidation and oxygen reduction at the level of the respiratory heme copper oxidase. In contrast, elemental sulfur is the electron acceptor in a short electron transport chain consisting of a membrane-bound hydrogenase and a sulfur reductase in (facultatively) anaerobic chemolithotrophic archaea Acidianus and Pyrodictium species. It is also the electron acceptor in organoheterotrophic anaerobic species like Pyrococcus and Thermococcus, however, an electron transport chain has not been described as yet. The current knowledge on the composition and properties of the aerobic and anaerobic pathways of dissimilatory elemental sulfur metabolism in thermophilic archaea is summarized in this contribution.

  8. Evolution of DNA replication protein complexes in eukaryotes and Archaea.

    Directory of Open Access Journals (Sweden)

    Nicholas Chia

    Full Text Available BACKGROUND: The replication of DNA in Archaea and eukaryotes requires several ancillary complexes, including proliferating cell nuclear antigen (PCNA, replication factor C (RFC, and the minichromosome maintenance (MCM complex. Bacterial DNA replication utilizes comparable proteins, but these are distantly related phylogenetically to their archaeal and eukaryotic counterparts at best. METHODOLOGY/PRINCIPAL FINDINGS: While the structures of each of the complexes do not differ significantly between the archaeal and eukaryotic versions thereof, the evolutionary dynamic in the two cases does. The number of subunits in each complex is constant across all taxa. However, they vary subtly with regard to composition. In some taxa the subunits are all identical in sequence, while in others some are homologous rather than identical. In the case of eukaryotes, there is no phylogenetic variation in the makeup of each complex-all appear to derive from a common eukaryotic ancestor. This is not the case in Archaea, where the relationship between the subunits within each complex varies taxon-to-taxon. We have performed a detailed phylogenetic analysis of these relationships in order to better understand the gene duplications and divergences that gave rise to the homologous subunits in Archaea. CONCLUSION/SIGNIFICANCE: This domain level difference in evolution suggests that different forces have driven the evolution of DNA replication proteins in each of these two domains. In addition, the phylogenies of all three gene families support the distinctiveness of the proposed archaeal phylum Thaumarchaeota.

  9. Diversity of halophilic archaea in fermented foods and human intestines and their application.

    Science.gov (United States)

    Lee, Han-Seung

    2013-12-01

    Archaea are prokaryotic organisms distinct from bacteria in the structural and molecular biological sense, and these microorganisms are known to thrive mostly at extreme environments. In particular, most studies on halophilic archaea have been focused on environmental and ecological researches. However, new species of halophilic archaea are being isolated and identified from high salt-fermented foods consumed by humans, and it has been found that various types of halophilic archaea exist in food products by culture-independent molecular biological methods. In addition, even if the numbers are not quite high, DNAs of various halophilic archaea are being detected in human intestines and much interest is given to their possible roles. This review aims to summarize the types and characteristics of halophilic archaea reported to be present in foods and human intestines and to discuss their application as well.

  10. "Hot cores" in proteins: Comparative analysis of the apolar contact area in structures from hyper/thermophilic and mesophilic organisms

    Directory of Open Access Journals (Sweden)

    Bossa Francesco

    2008-02-01

    Full Text Available Abstract Background A wide variety of stabilizing factors have been invoked so far to elucidate the structural basis of protein thermostability. These include, amongst the others, a higher number of ion-pairs interactions and hydrogen bonds, together with a better packing of hydrophobic residues. It has been frequently observed that packing of hydrophobic side chains is improved in hyperthermophilic proteins, when compared to their mesophilic counterparts. In this work, protein crystal structures from hyper/thermophilic organisms and their mesophilic homologs have been compared, in order to quantify the difference of apolar contact area and to assess the role played by the hydrophobic contacts in the stabilization of the protein core, at high temperatures. Results The construction of two datasets was carried out so as to satisfy several restrictive criteria, such as minimum redundancy, resolution and R-value thresholds and lack of any structural defect in the collected structures. This approach allowed to quantify with relatively high precision the apolar contact area between interacting residues, reducing the uncertainty due to the position of atoms in the crystal structures, the redundancy of data and the size of the dataset. To identify the common core regions of these proteins, the study was focused on segments that conserve a similar main chain conformation in the structures analyzed, excluding the intervening regions whose structure differs markedly. The results indicated that hyperthermophilic proteins underwent a significant increase of the hydrophobic contact area contributed by those residues composing the alpha-helices of the structurally conserved regions. Conclusion This study indicates the decreased flexibility of alpha-helices in proteins core as a major factor contributing to the enhanced termostability of a number of hyperthermophilic proteins. This effect, in turn, may be due to an increased number of buried methyl groups in

  11. Asymmetry in the burial of hydrophobic residues along the histone chains of Eukarya, Archaea and a transcription factor

    Directory of Open Access Journals (Sweden)

    Silverman B David

    2005-10-01

    Full Text Available Abstract Background The histone fold is a common structural motif of proteins involved in the chromatin packaging of DNA and in transcription regulation. This single chain fold is stabilized by either homo- or hetero-dimer formation in archaea and eukarya. X-ray structures at atomic resolution have shown the eukaryotic nucleosome core particle to consist of a central tetramer of two bound H3-H4 dimers flanked by two H2A-H2B dimers. The c-terminal region of the H3 histone fold involved in coupling the two eukaryotic dimers of the tetramer, through a four-fold helical bundle, had previously been shown to be a region of reduced burial of hydrophobic residues within the dimers, and thereby provide a rationale for the observed reduced stability of the H3-H4 dimer compared with that of the H2A-H2B dimer. Furthermore, comparison between eukaryal and archaeal histones had suggested that this asymmetry in the distribution of hydrophobic residues along the H3 histone chains could be due to selective evolution that enhanced the coupling between the eukaryotic dimers of the tetramer. Results and discussion The present work describes calculations utilizing the X-ray structures at atomic resolution of a hyperthermophile from Methanopyrus kandleri (HMk and a eukaryotic transcription factor from Drosophila melanogaster (DRm, that are structurally homologous to the eukaryotic (H3-H42 tetramer. The results for several other related structures are also described. Reduced burial of hydrophobic residues, at the homologous H3 c-terminal regions of these structures, is found to parallel the burial at the c-terminal regions of the H3 histones and is, thereby, expected to affect dimer stability and the processes involving histone structural rearrangement. Significantly different sequence homology between the two histones of the HMk doublet with other archaeal sequences is observed, and how this might have occurred during selection to enhance tetramer stability is

  12. Crystal structure of the regulatory subunit of archaeal initiation factor 2B (aIF2B) from hyperthermophilic archaeon Pyrococcus horikoshii OT3: a proposed structure of the regulatory subcomplex of eukaryotic IF2B

    International Nuclear Information System (INIS)

    Kakuta, Yoshimitsu; Tahara, Maino; Maetani, Shigehiro; Yao, Min; Tanaka, Isao; Kimura, Makoto

    2004-01-01

    Eukaryotic translation initiation factor 2B (eIF2B) is the guanine-nucleotide exchange factor for eukaryotic initiation factor 2 (eIF2). eIF2B is a heteropentameric protein composed of α-ε subunits. The α, β, and δ subunits form a regulatory subcomplex, while the γ and ε form a catalytic subcomplex. Archaea possess homologues of α, β, and δ subunits of eIF2B. Here, we report the three-dimensional structure of an archaeal regulatory subunit (aIF2Bα) from the hyperthermophilic archaeon Pyrococcus horikoshii OT3 determined by X-ray crystallography at 2.2 A resolution. aIF2Bα consists of two subdomains, an N-domain (residues 1-95) and a C-domain (residues 96-276), connected by a long α-helix (α5: 78-106). The N-domain contains a five helix bundle structure, while the C-domain folds into the α/β structure, thus showing similarity to D-ribose-5-phosphate isomerase structure. The presence of two molecules in the crystallographic asymmetric unit and the gel filtration analysis suggest a dimeric structure of aIF2Bα in solution, interacting with each other by C-domains. Furthermore, the crystallographic 3-fold symmetry generates a homohexameric structure of aIF2Bα; the interaction is primarily mediated by the long α-helix at the N-domains. This structure suggests an architecture of the three subunits, α, β, and δ, in the regulatory subcomplex within eIF2B

  13. Diversity and stratification of archaea in a hypersaline microbial mat.

    Science.gov (United States)

    Robertson, Charles E; Spear, John R; Harris, J Kirk; Pace, Norman R

    2009-04-01

    The Guerrero Negro (GN) hypersaline microbial mats have become one focus for biogeochemical studies of stratified ecosystems. The GN mats are found beneath several of a series of ponds of increasing salinity that make up a solar saltern fed from Pacific Ocean water pumped from the Laguna Ojo de Liebre near GN, Baja California Sur, Mexico. Molecular surveys of the laminated photosynthetic microbial mat below the fourth pond in the series identified an enormous diversity of bacteria in the mat, but archaea have received little attention. To determine the bulk contribution of archaeal phylotypes to the pond 4 study site, we determined the phylogenetic distribution of archaeal rRNA gene sequences in PCR libraries based on nominally universal primers. The ratios of bacterial/archaeal/eukaryotic rRNA genes, 90%/9%/1%, suggest that the archaeal contribution to the metabolic activities of the mat may be significant. To explore the distribution of archaea in the mat, sequences derived using archaeon-specific PCR primers were surveyed in 10 strata of the 6-cm-thick mat. The diversity of archaea overall was substantial albeit less than the diversity observed previously for bacteria. Archaeal diversity, mainly euryarchaeotes, was highest in the uppermost 2 to 3 mm of the mat and decreased rapidly with depth, where crenarchaeotes dominated. Only 3% of the sequences were specifically related to known organisms including methanogens. While some mat archaeal clades corresponded with known chemical gradients, others did not, which is likely explained by heretofore-unrecognized gradients. Some clades did not segregate by depth in the mat, indicating broad metabolic repertoires, undersampling, or both.

  14. Purine biosynthesis in archaea: variations on a theme

    Directory of Open Access Journals (Sweden)

    Brown Anne M

    2011-12-01

    Full Text Available Abstract Background The ability to perform de novo biosynthesis of purines is present in organisms in all three domains of life, reflecting the essentiality of these molecules to life. Although the pathway is quite similar in eukaryotes and bacteria, the archaeal pathway is more variable. A careful manual curation of genes in this pathway demonstrates the value of manual curation in archaea, even in pathways that have been well-studied in other domains. Results We searched the Integrated Microbial Genome system (IMG for the 17 distinct genes involved in the 11 steps of de novo purine biosynthesis in 65 sequenced archaea, finding 738 predicted proteins with sequence similarity to known purine biosynthesis enzymes. Each sequence was manually inspected for the presence of active site residues and other residues known or suspected to be required for function. Many apparently purine-biosynthesizing archaea lack evidence for a single enzyme, either glycinamide ribonucleotide formyltransferase or inosine monophosphate cyclohydrolase, suggesting that there are at least two more gene variants in the purine biosynthetic pathway to discover. Variations in domain arrangement of formylglycinamidine ribonucleotide synthetase and substantial problems in aminoimidazole carboxamide ribonucleotide formyltransferase and inosine monophosphate cyclohydrolase assignments were also identified. Manual curation revealed some overly specific annotations in the IMG gene product name, with predicted proteins without essential active site residues assigned product names implying enzymatic activity (21 proteins, 2.8% of proteins inspected or Enzyme Commission (E. C. numbers (57 proteins, 7.7%. There were also 57 proteins (7.7% assigned overly generic names and 78 proteins (10.6% without E.C. numbers as part of the assigned name when a specific enzyme name and E. C. number were well-justified. Conclusions The patchy distribution of purine biosynthetic genes in archaea is

  15. Energy Metabolism during Anaerobic Methane Oxidation in ANME Archaea

    Science.gov (United States)

    McGlynn, Shawn E.

    2017-01-01

    Anaerobic methane oxidation in archaea is often presented to operate via a pathway of “reverse methanogenesis”. However, if the cumulative reactions of a methanogen are run in reverse there is no apparent way to conserve energy. Recent findings suggest that chemiosmotic coupling enzymes known from their use in methylotrophic and acetoclastic methanogens—in addition to unique terminal reductases—biochemically facilitate energy conservation during complete CH4 oxidation to CO2. The apparent enzyme modularity of these organisms highlights how microbes can arrange their energy metabolisms to accommodate diverse chemical potentials in various ecological niches, even in the extreme case of utilizing “reverse” thermodynamic potentials. PMID:28321009

  16. Biohydrogen production from pig slurry in a CSTR reactor system with mixed cultures under hyper-thermophilic temperature (70 oC)

    International Nuclear Information System (INIS)

    Kotsopoulos, Thomas A.; Fotidis, Ioannis A.; Tsolakis, Nikolaos; Martzopoulos, Gerassimos G.

    2009-01-01

    A continuous stirred tank reactor (CSTR) (750 cm 3 working volume) was operated with pig slurry under hyper-thermophilic (70 o C) temperature for hydrogen production. The hydraulic retention time (HRT) was 24 h and the organic loading rate was 24.9 g d -1 of volatile solid (VS). The inoculum used in the hyper-thermophilic reactor was sludge obtained from a mesophilic methanogenic reactor. The continuous feeding with active biomass (inoculum) from the mesophilic methanogenic reactor was necessary in order to achieve hydrogen production. The hyper-thermophilic reactor started to produce hydrogen after a short adapted period of 4 days. During the steady state period the mean hydrogen yield was 3.65 cm 3 g -1 of volatile solid added. The high operation temperature of the reactor enhanced the hydrolytic activity in pig slurry and increased the volatile fatty acids (VFA) production. The short HRT (24 h) and the hyper-thermophilic temperature applied in the reactor were enough to prevent methanogenesis. No pre-treatment methods or other control methods for preventing methanogenesis were necessary. Hyper-thermophilic hydrogen production was demonstrated for the first time in a CSTR system, fed with pig slurry, using mixed culture. The results indicate that this system is a promising one for biohydrogen production from pig slurry.

  17. CRISPR loci reveal networks of gene exchange in archaea

    Directory of Open Access Journals (Sweden)

    Brodt Avital

    2011-12-01

    Full Text Available Abstract Background CRISPR (Clustered, Regularly, Interspaced, Short, Palindromic Repeats loci provide prokaryotes with an adaptive immunity against viruses and other mobile genetic elements. CRISPR arrays can be transcribed and processed into small crRNA molecules, which are then used by the cell to target the foreign nucleic acid. Since spacers are accumulated by active CRISPR/Cas systems, the sequences of these spacers provide a record of the past "infection history" of the organism. Results Here we analyzed all currently known spacers present in archaeal genomes and identified their source by DNA similarity. While nearly 50% of archaeal spacers matched mobile genetic elements, such as plasmids or viruses, several others matched chromosomal genes of other organisms, primarily other archaea. Thus, networks of gene exchange between archaeal species were revealed by the spacer analysis, including many cases of inter-genus and inter-species gene transfer events. Spacers that recognize viral sequences tend to be located further away from the leader sequence, implying that there exists a selective pressure for their retention. Conclusions CRISPR spacers provide direct evidence for extensive gene exchange in archaea, especially within genera, and support the current dogma where the primary role of the CRISPR/Cas system is anti-viral and anti-plasmid defense. Open peer review This article was reviewed by: Profs. W. Ford Doolittle, John van der Oost, Christa Schleper (nominated by board member Prof. J Peter Gogarten

  18. Proteasomes in the archaea: from structure to function.

    Science.gov (United States)

    Maupin-Furlow, J A; Wilson, H L; Kaczowka, S J; Ou, M S

    2000-09-01

    Survival of cells is critically dependent on their ability to rapidly adapt to changes in the natural environment no matter how 'extreme'the habitat. An interplay between protein folding and hydrolysis is emerging as a central mechanism for stress survival and proper cell function. In eucaryotic cells, most proteins destined for destruction are covalently modified by the ubiquitin-system and then degraded in an energy-dependent mechanism by the 26S proteasome, a multicatalytic protease. The 26S proteasome is composed of a 20S proteolytic core and 19S cap (PA700) regulator which includes six AAA+ ATPase subunits. Related AAA+ proteins and 20S proteasomes are found in the archaea and Gram positive actinomycetes. In general, 20S proteasomes form a barrel-shaped nanocompartment with narrow openings which isolate rather non-specific proteolytic active-sites to the interior of the cylinder and away from interaction with cytosolic proteins. The proteasome-associated AAA+ proteins are predicted to form ring-like structures which unfold substrate proteins for entry into the central proteolytic 20S chamber resulting in an energy-dependent and processive destruction of the protein. Detailed biochemical and biophysical analysis as well as identification of proteasomes in archaea with developed genetic tools are providing a foundation for understanding the biological role of the proteasome in these unusual organisms.

  19. Thermophilic archaea activate butane via alkyl-coenzyme M formation.

    Science.gov (United States)

    Laso-Pérez, Rafael; Wegener, Gunter; Knittel, Katrin; Widdel, Friedrich; Harding, Katie J; Krukenberg, Viola; Meier, Dimitri V; Richter, Michael; Tegetmeyer, Halina E; Riedel, Dietmar; Richnow, Hans-Hermann; Adrian, Lorenz; Reemtsma, Thorsten; Lechtenfeld, Oliver J; Musat, Florin

    2016-11-17

    The anaerobic formation and oxidation of methane involve unique enzymatic mechanisms and cofactors, all of which are believed to be specific for C 1 -compounds. Here we show that an anaerobic thermophilic enrichment culture composed of dense consortia of archaea and bacteria apparently uses partly similar pathways to oxidize the C 4 hydrocarbon butane. The archaea, proposed genus 'Candidatus Syntrophoarchaeum', show the characteristic autofluorescence of methanogens, and contain highly expressed genes encoding enzymes similar to methyl-coenzyme M reductase. We detect butyl-coenzyme M, indicating archaeal butane activation analogous to the first step in anaerobic methane oxidation. In addition, Ca. Syntrophoarchaeum expresses the genes encoding β-oxidation enzymes, carbon monoxide dehydrogenase and reversible C 1 methanogenesis enzymes. This allows for the complete oxidation of butane. Reducing equivalents are seemingly channelled to HotSeep-1, a thermophilic sulfate-reducing partner bacterium known from the anaerobic oxidation of methane. Genes encoding 16S rRNA and methyl-coenzyme M reductase similar to those identifying Ca. Syntrophoarchaeum were repeatedly retrieved from marine subsurface sediments, suggesting that the presented activation mechanism is naturally widespread in the anaerobic oxidation of short-chain hydrocarbons.

  20. CRISPR loci reveal networks of gene exchange in archaea.

    Science.gov (United States)

    Brodt, Avital; Lurie-Weinberger, Mor N; Gophna, Uri

    2011-12-21

    CRISPR (Clustered, Regularly, Interspaced, Short, Palindromic Repeats) loci provide prokaryotes with an adaptive immunity against viruses and other mobile genetic elements. CRISPR arrays can be transcribed and processed into small crRNA molecules, which are then used by the cell to target the foreign nucleic acid. Since spacers are accumulated by active CRISPR/Cas systems, the sequences of these spacers provide a record of the past "infection history" of the organism. Here we analyzed all currently known spacers present in archaeal genomes and identified their source by DNA similarity. While nearly 50% of archaeal spacers matched mobile genetic elements, such as plasmids or viruses, several others matched chromosomal genes of other organisms, primarily other archaea. Thus, networks of gene exchange between archaeal species were revealed by the spacer analysis, including many cases of inter-genus and inter-species gene transfer events. Spacers that recognize viral sequences tend to be located further away from the leader sequence, implying that there exists a selective pressure for their retention. CRISPR spacers provide direct evidence for extensive gene exchange in archaea, especially within genera, and support the current dogma where the primary role of the CRISPR/Cas system is anti-viral and anti-plasmid defense. This article was reviewed by: Profs. W. Ford Doolittle, John van der Oost, Christa Schleper (nominated by board member Prof. J Peter Gogarten).

  1. Taxonomic, phylogenetic, and ecological diversity of methanogenic Archaea

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, J.-L.; Ollivier, B. [Universite de Provence, Marseille (France). Laboratoire de Microbiologist; Patel, B.K.C. [Griffith University, Brisbane (Australia). Microbial Discovery Research Unit

    2000-07-01

    Methanogens are strict anaerobes which share a complex biochemistry for methane synthesis as part of their energy metabolism. The discovery of the unique biochemical and genetic properties of these organisms led to the concept of Archaebacteria at the end of the seventies and the proposal in 1990 for the domain Archaea. A number of studies have provided evidence that they are of economic value. The successive petroleum crisis since 1973 has led to great interest in alternative forms of energy, including recovery of methane via anaerobic digestion of wastes. Improvements in the design of digestors have been made possible by advances in understanding the ecology and physiology of methanogens. In the cattle industry, the knowledge of the fermentation processes in the rumen demonstrated a net loss of energy via the methanogenesis, and inhibitors such as Rumensin have been developed to enhance meat yields. Oil companies try to distinguish between natural gas produced by methanogens or by the thermocatalytic reactions associated with petroleum generation. Finally, studies on the global distribution of methane in the earth's atmosphere are increasing due to the sudden awareness of its possible role in the enhancement of the greenhouse effect from CO-2 accumulation, and on the reversal of stratospheric ozone depletion. This paper summarizes the recent knowledge of methanogenic Archaea with emphasis on their taxonomy and ecology. (author)

  2. The impact of genomics on research in diversity and evolution of archaea.

    Science.gov (United States)

    Mardanov, A V; Ravin, N V

    2012-08-01

    Since the definition of archaea as a separate domain of life along with bacteria and eukaryotes, they have become one of the most interesting objects of modern microbiology, molecular biology, and biochemistry. Sequencing and analysis of archaeal genomes were especially important for studies on archaea because of a limited availability of genetic tools for the majority of these microorganisms and problems associated with their cultivation. Fifteen years since the publication of the first genome of an archaeon, more than one hundred complete genome sequences of representatives of different phylogenetic groups have been determined. Analysis of these genomes has expanded our knowledge of biology of archaea, their diversity and evolution, and allowed identification and characterization of new deep phylogenetic lineages of archaea. The development of genome technologies has allowed sequencing the genomes of uncultivated archaea directly from enrichment cultures, metagenomic samples, and even from single cells. Insights have been gained into the evolution of key biochemical processes in archaea, such as cell division and DNA replication, the role of horizontal gene transfer in the evolution of archaea, and new relationships between archaea and eukaryotes have been revealed.

  3. Random mutagenesis of the hyperthermophilic archaeon Pyrococcus furiosus using in vitro mariner transposition and natural transformation.

    Science.gov (United States)

    Guschinskaya, Natalia; Brunel, Romain; Tourte, Maxime; Lipscomb, Gina L; Adams, Michael W W; Oger, Philippe; Charpentier, Xavier

    2016-11-08

    Transposition mutagenesis is a powerful tool to identify the function of genes, reveal essential genes and generally to unravel the genetic basis of living organisms. However, transposon-mediated mutagenesis has only been successfully applied to a limited number of archaeal species and has never been reported in Thermococcales. Here, we report random insertion mutagenesis in the hyperthermophilic archaeon Pyrococcus furiosus. The strategy takes advantage of the natural transformability of derivatives of the P. furiosus COM1 strain and of in vitro Mariner-based transposition. A transposon bearing a genetic marker is randomly transposed in vitro in genomic DNA that is then used for natural transformation of P. furiosus. A small-scale transposition reaction routinely generates several hundred and up to two thousands transformants. Southern analysis and sequencing showed that the obtained mutants contain a single and random genomic insertion. Polyploidy has been reported in Thermococcales and P. furiosus is suspected of being polyploid. Yet, about half of the mutants obtained on the first selection are homozygous for the transposon insertion. Two rounds of isolation on selective medium were sufficient to obtain gene conversion in initially heterozygous mutants. This transposition mutagenesis strategy will greatly facilitate functional exploration of the Thermococcales genomes.

  4. Cloning and Characterization of an Alpha-amylase Gene from the Hyperthermophilic Archaeon Thermococcus Thioreducens

    Science.gov (United States)

    Bernhardsdotter, Eva C. M. J.; Pusey, Marc L.; Ng, Joseph D.; Garriott, Owen K.

    2004-01-01

    The gene encoding an extracellular a-amylase, TTA, from the hyperthermophilic archaeon Thermococcus thioreducens was cloned and expressed in Escherichia coli. Primary structural analysis revealed high similarity with other a-amylases from the Thermococcus and Pyrococcus genera, as well as the four highly conserved regions typical for a-amylases. The 1374 bp gene encodes a protein of 457 amino acids, of which 435 constitute the mature protein preceded by a 22 amino acid signal peptide. The molecular weight of the purified recombinant enzyme was estimated to be 43 kDa by denaturing gel electrophoresis. Maximal enzymatic activity of recombinant TTA was observed at 90 C and pH 5.5 in the absence of exogenous Ca(2+), and the enzyme was considerably stable even after incubation at 90 C for 2 hours. The thermostability at 90 and 102 C was enhanced in the presence of 5 mM Ca(2+). The extraordinarily high specific activity (about 7.4 x 10(exp 3) U/mg protein at 90 C, pH 5.5 with soluble starch as substrate) together with its low pH optimum makes this enzyme an interesting candidate for starch processing applications.

  5. The complete genome sequence of hyperthermophile Dictyoglomus turgidum DSM 6724™ reveals a specialized carbohydrate fermentor

    Directory of Open Access Journals (Sweden)

    Phillip Brumm

    2016-12-01

    Full Text Available Here we report the complete genome sequence of the chemoorganotrophic, extremely thermophilic bacterium, Dictyoglomus turgidum, which is a Gram negative, strictly anaerobic bacterium. D. turgidum and D. thermophilum together form the Dictyoglomi phylum. The two Dictyoglomus genomes are highly syntenic, and both are distantly related to Caldicellulosiruptor spp. D. turgidum is able to grow on a wide variety of polysaccharide substrates due to significant genomic commitment to glycosyl hydrolases, sixteen of which were cloned and expressed in our study. The GH5, GH10 and GH42 enzymes characterized in this study suggest that D. turgidum can utilize most plant-based polysaccharides except crystalline cellulose. The DNA polymerase I enzyme was also expressed and characterized. The pure enzyme showed improved amplification of long PCR targets compared to Taq polymerase. The genome contains a full complement of DNA modifying enzymes, and an unusually high copy number (4 of a new, ancestral family of polB type nucleotidyltransferases designated as MNT (minimal nucleotidyltransferases. Considering its optimal growth at 72ºC, D. turgidum has an anomalously low G+C content of 39.9% that may account for the presence of reverse gyrase, usually associated with hyperthermophiles.

  6. Activation and thermostabilization effects of cyclic 2, 3-diphosphoglycerate on enzymes from the hyperthermophilic Methanopyrus kandleri.

    Science.gov (United States)

    Shima, S; Hérault, D A; Berkessel, A; Thauer, R K

    1998-11-01

    Enzymes involved in methane formation from carbon dioxide and dihydrogen in Methanopyrus kandleri require high concentrations (> 1 M) of lyotropic salts such as K2HPO4/KH2PO4 or (NH4)2SO4 for activity and for thermostability. The requirement correlates with high intracellular concentrations of cyclic 2,3-diphosphoglycerate (cDPG; approximately 1 M) in this hyperthermophilic organism. We report here on the effects of potassium cDPG on the activity and thermostability of the two methanogenic enzymes cyclohydrolase and formyltransferase and show that at cDPG concentrations prevailing in the cells the investigated enzymes are highly active and completely thermostable. At molar concentrations also the potassium salts of phosphate and of 2,3-bisphosphoglycerate, the biosynthetic precursor of cDPG, were found to confer activity and thermostability to the enzymes. Thermodynamic arguments are discussed as to why cDPG, rather than these salts, is present in high concentrations in the cells of Mp. kandleri.

  7. Membrane homeoviscous adaptation in the piezo-hyperthermophilic archaeon Thermococcus barophilus

    Directory of Open Access Journals (Sweden)

    Anaïs eCario

    2015-10-01

    Full Text Available The archaeon Thermococcus barophilus, one of the most extreme members of hyperthermophilic piezophiles known thus far, is able to grow at temperatures up to 103°C and pressures up to 80MPa. We analyzed the membrane lipids of T. barophilus by HPLC-MS as a function of pressure and temperature. In contrast to previous reports, we show that under optimal growth conditions (40 MPa, 85°C the membrane spanning tetraether lipid GDGT-0 (sometimes called caldarchaeol is a major membrane lipid of T. barophilus together with archaeol. Increasing pressure and decreasing temperature lead to an increase of the proportion of archaeol and, reversely, a higher proportion of GDGT-0 is observed under low pressure and high temperature conditions. Noticeably, pressure and temperature fluctuations also impact the level of unsaturation of non-polar lipids with an irregular polyisoprenoid carbon skeleton (polyunsaturated lycopane derivatives, suggesting a structural role for these neutral lipids in the membrane of T. barophilus. Whether these apolar lipids insert in the membrane or not remains to be addressed. However, our results raise questions about the structure of the membrane in this archaeon and other archaeon harboring a mixture of di- and tetraether lipids.

  8. Mrp Antiporters Have Important Roles in Diverse Bacteria and Archaea.

    Science.gov (United States)

    Ito, Masahiro; Morino, Masato; Krulwich, Terry A

    2017-01-01

    Mrp (Multiple resistance and pH) antiporter was identified as a gene complementing an alkaline-sensitive mutant strain of alkaliphilic Bacillus halodurans C-125 in 1990. At that time, there was no example of a multi-subunit type Na + /H + antiporter comprising six or seven hydrophobic proteins, and it was newly designated as the monovalent cation: proton antiporter-3 (CPA3) family in the classification of transporters. The Mrp antiporter is broadly distributed among bacteria and archaea, not only in alkaliphiles. Generally, all Mrp subunits, mrpA-G , are required for enzymatic activity. Two exceptions are Mrp from the archaea Methanosarcina acetivorans and the eubacteria Natranaerobius thermophilus , which are reported to sustain Na + /H + antiport activity with the MrpA subunit alone. Two large subunits of the Mrp antiporter, MrpA and MrpD, are homologous to membrane-embedded subunits of the respiratory chain complex I, NuoL, NuoM, and NuoN, and the small subunit MrpC has homology with NuoK. The functions of the Mrp antiporter include sodium tolerance and pH homeostasis in an alkaline environment, nitrogen fixation in Schizolobium meliloti , bile salt tolerance in Bacillus subtilis and Vibrio cholerae , arsenic oxidation in Agrobacterium tumefaciens , pathogenesis in Pseudomonas aeruginosa and Staphylococcus aureus , and the conversion of energy involved in metabolism and hydrogen production in archaea. In addition, some Mrp antiporters transport K + and Ca 2+ instead of Na + , depending on the environmental conditions. Recently, the molecular structure of the respiratory chain complex I has been elucidated by others, and details of the mechanism by which it transports protons are being clarified. Based on this, several hypotheses concerning the substrate transport mechanism in the Mrp antiporter have been proposed. The MrpA and MrpD subunits, which are homologous to the proton transport subunit of complex I, are involved in the transport of protons and their

  9. Production of oceanic nitrous oxide by ammonia-oxidizing archaea

    Directory of Open Access Journals (Sweden)

    C. R. Löscher

    2012-07-01

    Full Text Available The recent finding that microbial ammonia oxidation in the ocean is performed by archaea to a greater extent than by bacteria has drastically changed the view on oceanic nitrification. The numerical dominance of archaeal ammonia-oxidizers (AOA over their bacterial counterparts (AOB in large parts of the ocean leads to the hypothesis that AOA rather than AOB could be the key organisms for the oceanic production of the strong greenhouse gas nitrous oxide (N2O that occurs as a by-product of nitrification. Very recently, enrichment cultures of marine ammonia-oxidizing archaea have been reported to produce N2O.

    Here, we demonstrate that archaeal ammonia monooxygenase genes (amoA were detectable throughout the water column of the eastern tropical North Atlantic (ETNA and eastern tropical South Pacific (ETSP Oceans. Particularly in the ETNA, comparable patterns of abundance and expression of archaeal amoA genes and N2O co-occurred in the oxygen minimum, whereas the abundances of bacterial amoA genes were negligible. Moreover, selective inhibition of archaea in seawater incubations from the ETNA decreased the N2O production significantly. In studies with the only cultivated marine archaeal ammonia-oxidizer Nitrosopumilus maritimus SCM1, we provide the first direct evidence for N2O production in a pure culture of AOA, excluding the involvement of other microorganisms as possibly present in enrichments. N. maritimus showed high N2O production rates under low oxygen concentrations comparable to concentrations existing in the oxycline of the ETNA, whereas the N2O production from two AOB cultures was comparably low under similar conditions. Based on our findings, we hypothesize that the production of N2O in tropical ocean areas results mainly from archaeal nitrification and will be affected by the predicted decrease in dissolved

  10. Diversity of halophilic archaea from six hypersaline environments in Turkey.

    Science.gov (United States)

    Ozcan, Birgul; Ozcengiz, Gulay; Coleri, Arzu; Cokmus, Cumhur

    2007-06-01

    The diversity of archaeal strains from six hypersaline environments in Turkey was analyzed by comparing their phenotypic characteristics and 16S rDNA sequences. Thirty-three isolates were characterized in terms of their phenotypic properties including morphological and biochemical characteristics, susceptibility to different antibiotics, and total lipid and plasmid contents, and finally compared by 16S rDNA gene sequences. The results showed that all isolates belong to the family Halobacteriaceae. Phylogenetic analyses using approximately 1,388 bp comparisions of 16S rDNA sequences demonstrated that all isolates clustered closely to species belonging to 9 genera, namely Halorubrum (8 isolates), Natrinema (5 isolates), Haloarcula (4 isolates), Natronococcus (4 isolates), Natrialba (4 isolates), Haloferax (3 isolates), Haloterrigena (3 isolates), Halalkalicoccus (1 isolate), and Halomicrobium (1 isolate). The results revealed a high diversity among the isolated halophilic strains and indicated that some of these strains constitute new taxa of extremely halophilic archaea.

  11. Evolvability of thermophilic proteins from archaea and bacteria.

    Science.gov (United States)

    Takano, Kazufumi; Aoi, Atsushi; Koga, Yuichi; Kanaya, Shigenori

    2013-07-16

    Proteins from thermophiles possess high thermostability. The stabilization mechanisms differ between archaeal and bacterial proteins, whereby archaeal proteins are mainly stabilized via hydrophobic interactions and bacterial proteins by ion pairs. High stability is an important factor in promoting protein evolution, but the precise means by which different stabilization mechanisms affect the evolution process remain unclear. In this study, we investigated a random mutational drift of esterases from thermophilic archaea and bacteria at high temperatures. Our results indicate that mutations in archaeal proteins lead to improved function with no loss of stability, while mutant bacterial proteins are largely destabilized with decreased activity at high temperatures. On the basis of these findings, we suggest that archaeal proteins possess higher "evolvability" than bacterial proteins under temperature selection and are additionally able to evolve into eukaryotic proteins.

  12. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria.

    Science.gov (United States)

    Wegener, Gunter; Krukenberg, Viola; Riedel, Dietmar; Tegetmeyer, Halina E; Boetius, Antje

    2015-10-22

    The anaerobic oxidation of methane (AOM) with sulfate controls the emission of the greenhouse gas methane from the ocean floor. In marine sediments, AOM is performed by dual-species consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB) inhabiting the methane-sulfate transition zone. The biochemical pathways and biological adaptations enabling this globally relevant process are not fully understood. Here we study the syntrophic interaction in thermophilic AOM (TAOM) between ANME-1 archaea and their consortium partner SRB HotSeep-1 (ref. 6) at 60 °C to test the hypothesis of a direct interspecies exchange of electrons. The activity of TAOM consortia was compared to the first ANME-free culture of an AOM partner bacterium that grows using hydrogen as the sole electron donor. The thermophilic ANME-1 do not produce sufficient hydrogen to sustain the observed growth of the HotSeep-1 partner. Enhancing the growth of the HotSeep-1 partner by hydrogen addition represses methane oxidation and the metabolic activity of ANME-1. Further supporting the hypothesis of direct electron transfer between the partners, we observe that under TAOM conditions, both ANME and the HotSeep-1 bacteria overexpress genes for extracellular cytochrome production and form cell-to-cell connections that resemble the nanowire structures responsible for interspecies electron transfer between syntrophic consortia of Geobacter. HotSeep-1 highly expresses genes for pili production only during consortial growth using methane, and the nanowire-like structures are absent in HotSeep-1 cells isolated with hydrogen. These observations suggest that direct electron transfer is a principal mechanism in TAOM, which may also explain the enigmatic functioning and specificity of other methanotrophic ANME-SRB consortia.

  13. An intertwined evolutionary history of methanogenic archaea and sulfate reduction.

    Directory of Open Access Journals (Sweden)

    Dwi Susanti

    Full Text Available Hydrogenotrophic methanogenesis and dissimilatory sulfate reduction, two of the oldest energy conserving respiratory systems on Earth, apparently could not have evolved in the same host, as sulfite, an intermediate of sulfate reduction, inhibits methanogenesis. However, certain methanogenic archaea metabolize sulfite employing a deazaflavin cofactor (F(420-dependent sulfite reductase (Fsr where N- and C-terminal halves (Fsr-N and Fsr-C are homologs of F(420H(2 dehydrogenase and dissimilatory sulfite reductase (Dsr, respectively. From genome analysis we found that Fsr was likely assembled from freestanding Fsr-N homologs and Dsr-like proteins (Dsr-LP, both being abundant in methanogens. Dsr-LPs fell into two groups defined by following sequence features: Group I (simplest, carrying a coupled siroheme-[Fe(4-S(4] cluster and sulfite-binding Arg/Lys residues; Group III (most complex, with group I features, a Dsr-type peripheral [Fe(4-S(4] cluster and an additional [Fe(4-S(4] cluster. Group II Dsr-LPs with group I features and a Dsr-type peripheral [Fe(4-S(4] cluster were proposed as evolutionary intermediates. Group III is the precursor of Fsr-C. The freestanding Fsr-N homologs serve as F(420H(2 dehydrogenase unit of a putative novel glutamate synthase, previously described membrane-bound electron transport system in methanogens and of assimilatory type sulfite reductases in certain haloarchaea. Among archaea, only methanogens carried Dsr-LPs. They also possessed homologs of sulfate activation and reduction enzymes. This suggested a shared evolutionary history for methanogenesis and sulfate reduction, and Dsr-LPs could have been the source of the oldest (3.47-Gyr ago biologically produced sulfide deposit.

  14. The Non-Coding Regulatory RNA Revolution in Archaea

    Directory of Open Access Journals (Sweden)

    Diego Rivera Gelsinger

    2018-03-01

    Full Text Available Small non-coding RNAs (sRNAs are ubiquitously found in the three domains of life playing large-scale roles in gene regulation, transposable element silencing and defense against foreign elements. While a substantial body of experimental work has been done to uncover function of sRNAs in Bacteria and Eukarya, the functional roles of sRNAs in Archaea are still poorly understood. Recently, high throughput studies using RNA-sequencing revealed that sRNAs are broadly expressed in the Archaea, comprising thousands of transcripts within the transcriptome during non-challenged and stressed conditions. Antisense sRNAs, which overlap a portion of a gene on the opposite strand (cis-acting, are the most abundantly expressed non-coding RNAs and they can be classified based on their binding patterns to mRNAs (3′ untranslated region (UTR, 5′ UTR, CDS-binding. These antisense sRNAs target many genes and pathways, suggesting extensive roles in gene regulation. Intergenic sRNAs are less abundantly expressed and their targets are difficult to find because of a lack of complete overlap between sRNAs and target mRNAs (trans-acting. While many sRNAs have been validated experimentally, a regulatory role has only been reported for very few of them. Further work is needed to elucidate sRNA-RNA binding mechanisms, the molecular determinants of sRNA-mediated regulation, whether protein components are involved and how sRNAs integrate with complex regulatory networks.

  15. Structural and genomic properties of the hyperthermophilic archaeal virus ATV with an extracellular stage of the reproductive cycle

    DEFF Research Database (Denmark)

    Prangishvili, David; Vestergaard, Gisle Alberg; Häring, Monika

    2006-01-01

    A novel virus, ATV, of the hyperthermophilic archaeal genus Acidianus has the unique property of undergoing a major morphological development outside of, and independently of, the host cell. Virions are extruded from host cells as lemon-shaped tail-less particles, after which they develop long...... tails at each pointed end, at temperatures close to that of the natural habitat, 85 degrees C. The extracellularly developed tails constitute tubes, which terminate in an anchor-like structure that is not observed in the tail-less particles. A thin filament is located within the tube, which exhibits...... can be interrupted by different stress factors....

  16. A Novel Process Configuration for Anaerobic Digestion of Source-Sorted Household Waste Using Hyper-Thermophilic Post-Treatment

    DEFF Research Database (Denmark)

    Hartmann, H.; Ahring, Birgitte Kiær

    2005-01-01

    A novel reactor configuration was investigated for anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW). An anaerobic hyper-thermophilic (68°C) reactor R68 was implemented as a post–treatment step for the effluent of a thermophilic reactor R1 (55°C) in order to enhance...... hydrolysis of recalcitrant organic matter, improve sanitation and ease the stripping of ammonia from the reactor. The efficiency of the combined system was studied in terms of methane yield, volatile solids (VS) reduction and volatile fatty acid (VFA) production at different hydraulic retention times (HRT...

  17. A proposal to rename the hyperthermophile Pyrococcus woesei as Pyrococcus furiosus subsp. woesei

    Directory of Open Access Journals (Sweden)

    Wirojne Kanoksilapatham

    2004-01-01

    Full Text Available Pyrococcus species are hyperthermophilic members of the order Thermococcales, with optimal growth temperatures approaching 100 °C. All species grow heterotrophically and produce H2 or, in the presence of elemental sulfur (S°, H2S. Pyrococcus woesei and P. furiosus were isolated from marine sediments at the same Vulcano Island beach site and share many morphological and physiological characteristics. We report here that the rDNA operons of these strains have identical sequences, including their intergenic spacer regions and part of the 23S rRNA. Both species grow rapidly and produce H2 in the presence of 0.1% maltose and 10–100 µM sodium tungstate in S°-free medium. However,P. woesei shows more extensive autolysis than P. furiosus in the stationary phase. Pyrococcusfuriosus and P. woesei share three closely related families of insertion sequences (ISs. A Southern blot performed with IS probes showed extensive colinearity between the genomes of P. woesei and P. furiosus. Cloning and sequencing of ISs that were in different contexts in P. woesei and P. furiosus revealed that the napA gene in P. woesei is disrupted by a type III IS element, whereas in P. furiosus, this gene is intact. A type I IS element, closely linked to the napA gene, was observed in the same context in both P. furiosus and P. woesei genomes. Our results suggest that the IS elements are implicated in genomic rearrangements and reshuffling in these closely related strains. We propose to rename P. woesei a subspecies of P. furiosus based on their identical rDNA operon sequences, many common IS elements that are shared genomic markers, and the observation that all P. woesei nucleotide sequences deposited in GenBank to date are > 99% identical to P. furiosus sequences.

  18. A proposal to rename the hyperthermophile Pyrococcus woesei as Pyrococcus furiosus subsp. woesei.

    Science.gov (United States)

    Kanoksilapatham, Wirojne; González, Juan M; Maeder, Dennis L; DiRuggiero, Jocelyne; Robb, Frank T

    2004-10-01

    Pyrococcus species are hyperthermophilic members of the order Thermococcales, with optimal growth temperatures approaching 100 degrees C. All species grow heterotrophically and produce H2 or, in the presence of elemental sulfur (S(o)), H2S. Pyrococcus woesei and P. furiosus were isolated from marine sediments at the same Vulcano Island beach site and share many morphological and physiological characteristics. We report here that the rDNA operons of these strains have identical sequences, including their intergenic spacer regions and part of the 23S rRNA. Both species grow rapidly and produce H2 in the presence of 0.1% maltose and 10-100 microM sodium tungstate in S(o)-free medium. However, P. woesei shows more extensive autolysis than P. furiosus in the stationary phase. Pyrococcus furiosus and P. woesei share three closely related families of insertion sequences (ISs). A Southern blot performed with IS probes showed extensive colinearity between the genomes of P. woesei and P. furiosus. Cloning and sequencing of ISs that were in different contexts in P. woesei and P. furiosus revealed that the napA gene in P. woesei is disrupted by a type III IS element, whereas in P. furiosus, this gene is intact. A type I IS element, closely linked to the napA gene, was observed in the same context in both P. furiosus and P. woesei genomes. Our results suggest that the IS elements are implicated in genomic rearrangements and reshuffling in these closely related strains. We propose to rename P. woesei a subspecies of P. furiosus based on their identical rDNA operon sequences, many common IS elements that are shared genomic markers, and the observation that all P. woesei nucleotide sequences deposited in GenBank to date are > 99% identical to P. furiosus sequences.

  19. Domain-swapping of mesophilic xylanase with hyper-thermophilic glucanase

    Directory of Open Access Journals (Sweden)

    Liu Liangwei

    2012-06-01

    Full Text Available Abstract Background Domain fusion is limited at enzyme one terminus. The issue was explored by swapping a mesophilic Aspergillus niger GH11 xylanase (Xyn with a hyper-thermophilic Thermotoga maritima glucanase (Glu to construct two chimeras, Xyn-Glu and Glu-Xyn, with an intention to create thermostable xylanase containing glucanase activity. Results When expressed in E. coli BL21(DE3, the two chimeras exhibited bi-functional activities of xylanase and glucanase. The Xyn-Glu Xyn moiety had optimal reaction temperature (Topt at 50 °C and thermal in-activation half-life (t1/2 at 50 °C for 47.6 min, compared to 47 °C and 17.6 min for the Xyn. The Glu-Xyn Xyn moiety had equivalent Topt to and shorter t1/2 (5.2 min than the Xyn. Both chimera Glu moieties were more thermostable than the Glu, and the three enzyme Topt values were higher than 96 °C. The Glu-Xyn Glu moiety optimal pH was 5.8, compared to 3.8 for the Xyn-Glu Glu moiety and the Glu. Both chimera two moieties cooperated with each other in degrading substrates. Conclusions Domain-swapping created different effects on each moiety properties. Fusing the Glu domain at C-terminus increased the xylanase thermostability, but fusing the Glu domain at N-terminus decreased the xylanase thermostability. Fusing the Xyn domain at either terminus increased the glucanase thermostability, and fusing the Xyn domain at C-terminus shifted the glucanase pH property 2 units higher towards alkaline environments. Fusing a domain at C-terminus contributes more to enzyme catalytic activity; whereas, fusing a bigger domain at N-terminus disturbs enzyme substrate binding affinity.

  20. Heterologous Production of an Energy-Conserving Carbon Monoxide Dehydrogenase Complex in the Hyperthermophile Pyrococcus furiosus

    Directory of Open Access Journals (Sweden)

    Gerrit Jan Schut

    2016-01-01

    Full Text Available Carbon monoxide (CO is an important intermediate in anaerobic carbon fixation pathways in acetogenesis and methanogenesis. In addition, some anaerobes can utilize CO as an energy source. In the hyperthermophilic archaeon Thermococcus onnurineus, which grows optimally at 80°C, CO oxidation and energy conservation is accomplished by a respiratory complex encoded by a 16-gene cluster containing a carbon monoxide dehydrogenase, a membrane-bound [NiFe]-hydrogenase and a Na+/H+ antiporter module. This complex oxidizes CO, evolves CO2 and H2, and generates a Na+ motive force that is used to conserve energy by a Na+-dependent ATP synthase. Herein we used a bacterial artificial chromosome to insert the 13.2 kb gene cluster encoding the CO-oxidizing respiratory complex of T. onnurineus into the genome of the heterotrophic archaeon, Pyrococcus furiosus, which grows optimally at 100°C. P. furiosus is normally unable to utilize CO, however, the recombinant strain readily oxidized CO and generated H2 at 80°C. Moreover, CO also served as an energy source and allowed the P. furiosus strain to grow with a limiting concentration of sugar or with peptides as the carbon source. Moreover, CO oxidation by P. furiosus was also coupled to the re-utilization, presumably for biosynthesis, of acetate generated by fermentation. The functional transfer of CO utilization between Thermococcus and Pyrococcus species demonstrated herein is representative of the horizontal gene transfer of an environmentally-relevant metabolic capability. The transfer of CO utilizing, hydrogen-producing genetic modules also has applications for biohydrogen production and a CO-based industrial platform for various thermophilic organisms.

  1. Continuous Hydrogen Production from Agricultural Wastewaters at Thermophilic and Hyperthermophilic Temperatures.

    Science.gov (United States)

    Ramos, Lucas Rodrigues; Silva, Edson Luiz

    2017-06-01

    The objective of this study was to investigate the effects of hydraulic retention time (HRT) (8 to 0.5 h) and temperature (55 to 75 °C) in two anaerobic fluidized bed reactors (AFBR) using cheese whey (AFBR-CW = 10,000 mg sugars L -1 ) and vinasse (AFBR-V = 10,000 mg COD L -1 ) as substrates. Decreasing the HRT to 0.5 h increased the hydrogen production rates in both reactors, with maximum values of 5.36 ± 0.81 L H 2 h -1 L -1 in AFBR-CW and 0.71 ± 0.16 L H 2 h -1 L -1 in AFBR-V. The optimal conditions for hydrogen production were the HRT of 4 h and temperature of 65 °C in AFBR-CW, observing maximum hydrogen yield (HY) of 5.51 ± 0.37 mmol H 2 g COD -1 . Still, the maximum HY in AFBR-V was 1.64 ± 0.22 mmol H 2 g COD -1 at 4 h and 55 °C. However, increasing the temperature to 75 °C reduced the hydrogen production in both reactors. Methanol and butyric, acetic, and lactic acids were the main metabolites at temperatures of 55 and 65 °C, favoring the butyric and acetic metabolic pathways of hydrogen production. The increased productions of lactate, propionate, and methanol at 75 °C indicate that the hydrogen-producing bacteria in the thermophilic inoculum were inhibited under hyperthermophilic conditions.

  2. Mesophilic and hyperthermophilic adenylate kinases differ in their tolerance to random fragmentation.

    Science.gov (United States)

    Segall-Shapiro, Thomas H; Nguyen, Peter Q; Dos Santos, Edgardo D; Subedi, Saurav; Judd, Justin; Suh, Junghae; Silberg, Jonathan J

    2011-02-11

    The extent to which thermostability influences the location of protein fragmentation sites that allow retention of function is not known. To evaluate this, we used a novel transposase-based approach to create libraries of vectors that express structurally-related fragments of Bacillus subtilis adenylate kinase (BsAK) and Thermotoga neapolitana adenylate kinase (TnAK) with identical modifications at their termini, and we selected for variants in each library that complement the growth of Escherichia coli with a temperature-sensitive adenylate kinase (AK). Mutants created using the hyperthermophilic TnAK were found to support growth with a higher frequency (44%) than those generated from the mesophilic BsAK (6%), and selected TnAK mutants complemented E. coli growth more strongly than homologous BsAK variants. Sequencing of functional clones from each library also identified a greater dispersion of fragmentation sites within TnAK. Nondisruptive fission sites were observed within the AMP binding and core domains of both AK homologs. However, only TnAK contained sites within the lid domain, which undergoes dynamic fluctuations that are critical for catalysis. These findings implicate the flexible lid domain as having an increased sensitivity to fission events at physiological temperatures. In addition, they provide evidence that comparisons of nondisruptive fission sites in homologous proteins could be useful for finding dynamic regions whose conformational fluctuations are important for function, and they show that the discovery of protein fragments that cooperatively function in mesophiles can be aided by the use of thermophilic enzymes as starting points for protein design. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. A novel carbohydrate-binding surface layer protein from the hyperthermophilic archaeon Pyrococcus horikoshii.

    Science.gov (United States)

    Goda, Shuichiro; Koga, Tomoyuki; Yamashita, Kenichiro; Kuriura, Ryo; Ueda, Toshifumi

    2018-04-08

    In Archaea and Bacteria, surface layer (S-layer) proteins form the cell envelope and are involved in cell protection. In the present study, a putative S-layer protein was purified from the crude extract of Pyrococcus horikoshii using affinity chromatography. The S-layer gene was cloned and expressed in Escherichia coli. Isothermal titration calorimetry analyses showed that the S-layer protein bound N-acetylglucosamine and induced agglutination of the gram-positive bacterium Micrococcus lysodeikticus. The protein comprised a 21-mer structure, with a molecular mass of 1,340 kDa, as determined using small-angle X-ray scattering. This protein showed high thermal stability, with a midpoint of thermal denaturation of 79 °C in dynamic light scattering experiments. This is the first description of the carbohydrate-binding archaeal S-layer protein and its characteristics.

  4. Structure of a d-tagatose 3-epimerase-related protein from the hyperthermophilic bacterium Thermotoga maritima

    International Nuclear Information System (INIS)

    Sakuraba, Haruhiko; Yoneda, Kazunari; Satomura, Takenori; Kawakami, Ryushi; Ohshima, Toshihisa

    2009-01-01

    The crystal structure of a hyperthermophilic d-tagatose 3-epimerase-related protein with a unique active-site architecture was determined. The crystal structure of a d-tagatose 3-epimerase-related protein (TM0416p) encoded by the hypothetical open reading frame TM0416 in the genome of the hyperthermophilic bacterium Thermotoga maritima was determined at a resolution of 2.2 Å. The asymmetric unit contained two homologous subunits and a dimer was generated by twofold symmetry. The main-chain coordinates of the enzyme monomer proved to be similar to those of d-tagatose 3-epimerase from Pseudomonas cichorii and d-psicose 3-epimerase from Agrobacterium tumefaciens; however, TM0416p exhibited a unique solvent-accessible substrate-binding pocket that reflected the absence of an α-helix that covers the active-site cleft in the two aforementioned ketohexose 3-epimerases. In addition, the residues responsible for creating a hydrophobic environment around the substrate in TM0416p differ entirely from those in the other two enzymes. Collectively, these findings suggest that the substrate specificity of TM0416p is likely to differ substantially from those of other d-tagatose 3-epimerase family enzymes

  5. Overexpression, purification and crystallization of tyrosyl-tRNA synthetase from the hyperthermophilic archaeon Aeropyrum pernix K1

    International Nuclear Information System (INIS)

    Iwaki, Jun; Suzuki, Ryuichiro; Fujimoto, Zui; Momma, Mitsuru; Kuno, Atsushi; Hasegawa, Tsunemi

    2005-01-01

    Tyrosyl-tRNA synthetase from the hyperthermophilic archaeon A. pernix K1 was cloned, purified and crystallized. The crystals belonged to the tetragonal space group P4 3 2 1 2, with unit-cell parameters a = b = 66.1, c = 196.2 Å, and diffracted to beyond 2.15 Å resolution at 100 K. Hyperthermophilic archaeal tyrosyl-tRNA synthetase from Aeropyrum pernix K1 was cloned and overexpressed in Escherichia coli. The expressed protein was purified by Cibacron Blue affinity chromatography following heat treatment at 363 K. Crystals suitable for X-ray diffraction studies were obtained under optimized crystallization conditions in the presence of 1.5 M ammonium sulfate using the hanging-drop vapour-diffusion method. The crystals belonged to the tetragonal space group P4 3 2 1 2, with unit-cell parameters a = b = 66.1, c = 196.2 Å, and diffracted to beyond 2.15 Å resolution at 100 K

  6. Bio-hydrolysis and bio-hydrogen production from food waste by thermophilic and hyperthermophilic anaerobic process.

    Science.gov (United States)

    Algapani, Dalal E; Qiao, Wei; Su, Min; di Pumpo, Francesca; Wandera, Simon M; Adani, Fabrizio; Dong, Renjie

    2016-09-01

    High-temperature pretreatment plays a key role in the anaerobic digestion of food waste (FW). However, the suitable temperature is not yet determined. In this work, a long-term experiment was conducted to compare hydrolysis, acidogenesis, acetogenesis, and hydrogen production at 55°C and 70°C, using real FW in CSTR reactors. The results obtained indicated that acidification was the rate-limiting step at both temperatures with similar process kinetics characterizations. However, the thermophilic pretreatment was more advantageous than the hyperthermophilic with suspended solids solubilization of 47.7% and 29.5% and total VFA vs. soluble COD ratio of 15.2% and 4.9%, for thermophilic and hyperthermophilic treatment, respectively, with a hydrolytic reaction time (HRT) of 10days and an OLR of 14kgCOD/m(3)d. Moreover, stable hydrogen yield (70.7ml-H2/gVSin) and content in off gas (58.6%) was achieved at HRT 5days, pH 5.5, and temperature of 55°C, as opposed to 70°C. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. An Integrative Genomic Island Affects the Adaptations of Piezophilic Hyperthermophilic Archaeon Pyrococcus yayanosii to High Temperature and High Hydrostatic Pressure

    Directory of Open Access Journals (Sweden)

    Zhen Li

    2016-11-01

    Full Text Available Deep-sea hydrothermal vent environments are characterized by high hydrostatic pressure and sharp temperature and chemical gradients. Horizontal gene transfer is thought to play an important role in the microbial adaptation to such an extreme environment. In this study, a 21.4-kb DNA fragment was identified as a genomic island, designated PYG1, in the genomic sequence of the piezophilic hyperthermophile Pyrococcus yayanosii. According to the sequence alignment and functional annotation, the genes in PYG1 could tentatively be divided into five modules, with functions related to mobility, DNA repair, metabolic processes and the toxin-antitoxin system. Integrase can mediate the site-specific integration and excision of PYG1 in the chromosome of P. yayanosii A1. Gene replacement of PYG1 with a SimR cassette was successful. The growth of the mutant strain ∆PYG1 was compared with its parent strain P. yayanosii A2 under various stress conditions, including different pH, salinity, temperature and hydrostatic pressure. The ∆PYG1 mutant strain showed reduced growth when grown at 100 °C, while the biomass of ∆PYG1 increased significantly when cultured at 80 MPa. Differential expression of the genes in module Ⅲ of PYG1 was observed under different temperature and pressure conditions. This study demonstrates the first example of an archaeal integrative genomic island that could affect the adaptation of the hyperthermophilic piezophile P. yayanosii to high temperature and high hydrostatic pressure.

  8. New Lipids From Cultured Archaea and Environmental Samples

    Science.gov (United States)

    Summons, R. E.; Meyer-Dombard, D. R.; Bradley, A. S.; Hebting, Y.; Jahnke, L. L.; Embaye, T.; Orphan, V. J.

    2006-12-01

    The intact polar lipids of Archaea comprise cores with isoprenoid hydrocarbon chains with 20, 25 or 40 carbon atoms linked through ether bonds to glycerol. These cores can take the form of diethers or membrane- spanning tetraethers. Together with their wide array of polar head groups, these compounds are structurally diverse and potentially very useful as taxonomic markers for making assessments of microbial diversity independently of genomic approaches. Furthermore, the recalcitrant hydrocarbon chains of these lipids are the only really effective means to identify the presence of Archaea in ancient sedimentary environments. The advent of new LC-MS methods has enabled ready identification and quantification of intact polar lipids in cultures and environmental samples based on comparisons with appropriate standard compounds [1, 2]. However, these LC-MS analyses of intact lipids have also revealed the presence of additional compounds and it is likely that many of these represent chemical structures that are new to science. Elucidating these structures is a major analytical challenge because, generally, only minute amounts of material available for chemical characterization. In order to study these potentially new structures, one layer of information can be obtained by chemical degradation to remove and identify the polar head groups [2]. Cleavage of the ether bonds releases the hydrocarbon chains for their further characterization. One class of core lipids, the 3-hydroxyarchaeols, escaped detection for many years because strong acid treatments in the analysis protocols had destroyed hydroxyl-containing isoprenoid chains. We have now re-examined the lipids of a thermophilic methanogen, M. thermolithotrophicus, using mild procedures and avoiding strong acids. As well as the known compounds archaeol, sn-2-hydroxyarchaeol and sn-3-hydroxyarchaeol, we encountered dihydroxyarchaeol. Moreover, the hydroxylated archaeols were found to exist as a very complex mixture of

  9. Design and Synthesis of Archaea-Inspired Tetraether Lipids

    Science.gov (United States)

    Koyanagi, Takaoki

    Maintaining the correct ion homeostasis across membranes is a major challenge in both nature and artificial systems. Archaea, have evolved to solve membrane permeability problems to survive in extreme environments by incorporating unique structural features found in their lipid. Specifically, inclusion of phytanyl side chains, ether glycerol linkages, tethering of lipids, cycloalkanes, and different polar lipid headgroups into their lipid membrane are believed to contribute to membrane stability. We sought to gain a better understanding of the functional benefits attributed to these structural features to membrane stability to design a new class of synthetic Archaea inspired lipid membranes that can be used to overcome limitations (i.e. unstable in serum environment, high background leakage, and prone to hydrolysis) found in current lipid based technologies. Leakage experiments revealed liposomes made from GMGTPC (glycerol monoalkyl glycerol tetraether lipid with phosphatidylcholine headgroup) demonstrated a two order magnitude reduction in membrane leakage to small ions when compared with liposomes made from EggPC. Additionally, liposomes composed of GMGTPC-CH (cyclohexane integrated) lipid displayed an additional 40% decrease in membrane leakage to small ions when compared with liposomes made from GMGTPC lipids. Furthermore, leakage experiments revealed a higher degree of tolerance to headgroup modifications to membrane leakage for liposomes made from GMGT lipid analogs when compared with liposomes made from POPC. After designing an optimal tetraether lipid scaffold that incorporates key Archaeal structural features for membrane leakage, we explored to integrate strategies employed by eukaryotes to improve membrane properties (i.e. addition of cholesterol). Liposomes made from the hybrid lipid, GcGTPC-CH, displayed a five-fold decrease in membrane leakage when compared with liposomes made from GMGTPC-CH, while maintaining functional membrane properties similar to

  10. Genome-wide identification of SF1 and SF2 helicases from archaea.

    Science.gov (United States)

    Chamieh, Hala; Ibrahim, Hiba; Kozah, Juliana

    2016-01-15

    Archaea microorganisms have long been used as model organisms for the study of protein molecular machines. Archaeal proteins are particularly appealing to study since archaea, even though prokaryotic, possess eukaryotic-like cellular processes. Super Family I (SF1) and Super Family II (SF2) helicase families have been studied in many model organisms, little is known about their presence and distribution in archaea. We performed an exhaustive search of homologs of SF1 and SF2 helicase proteins in 95 complete archaeal genomes. In the present study, we identified the complete sets of SF1 and SF2 helicases in archaea. Comparative analysis between archaea, human and the bacteria E. coli SF1 and SF2 helicases, resulted in the identification of seven helicase families conserved among representatives of the domains of life. This analysis suggests that these helicase families are highly conserved throughout evolution. We highlight the conserved motifs of each family and characteristic domains of the detected families. Distribution of SF1/SF2 families show that Ski2-like, Lhr, Sfth and Rad3-like helicases are ubiquitous among archaeal genomes while the other families are specific to certain archaeal groups. We also report the presence of a novel SF2 helicase specific to archaea domain named Archaea Specific Helicase (ASH). Phylogenetic analysis indicated that ASH has evolved in Euryarchaeota and is evolutionary related to the Ski2-like family with specific characteristic domains. Our study provides the first exhaustive analysis of SF1 and SF2 helicases from archaea. It expands the variety of SF1 and SF2 archaeal helicases known to exist to date and provides a starting point for new biochemical and genetic studies needed to validate their biological functions. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. A comprehensive study into the molecular methodology and molecular biology of methanogenic Archaea

    DEFF Research Database (Denmark)

    Lange, M.; Ahring, Birgitte Kiær

    2001-01-01

    Methanogens belong to the kingdom of Euryarchaeota in the domain of Archaea. The Archaea differ from Bacteria in many aspects important to molecular work. Among these are cell wall composition, their sensitivity to antibiotics, their translation and transcription machinery, and their very strict ...... procedures. Efficient genetic manipulation systems, including shuttle and integration vector systems, have appeared for mesophilic, but not for thermophilic species within the last few years and will have a major impact on future investigations of methanogenic molecular biology....

  12. Picoheterotroph (Bacteria and Archaea biomass distribution in the global ocean

    Directory of Open Access Journals (Sweden)

    M. R. Landry

    2012-09-01

    Full Text Available We compiled a database of 39 766 data points consisting of flow cytometric and microscopical measurements of picoheterotroph abundance, including both Bacteria and Archaea. After gridding with 1° spacing, the database covers 1.3% of the ocean surface. There are data covering all ocean basins and depths except the Southern Hemisphere below 350 m or from April until June. The average picoheterotroph biomass is 3.9 ± 3.6 μg C l−1 with a 20-fold decrease between the surface and the deep sea. We estimate a total ocean inventory of about 1.3 × 1029 picoheterotroph cells. Surprisingly, the abundance in the coastal regions is the same as at the same depths in the open ocean. Using an average of published open ocean measurements for the conversion from abundance to carbon biomass of 9.1 fg cell−1, we calculate a picoheterotroph carbon inventory of about 1.2 Pg C. The main source of uncertainty in this inventory is the conversion factor from abundance to biomass. Picoheterotroph biomass is ~2 times higher in the tropics than in the polar oceans. doi:10.1594/PANGAEA.779142

  13. Patterns of gene flow define species of thermophilic Archaea.

    Directory of Open Access Journals (Sweden)

    Hinsby Cadillo-Quiroz

    2012-02-01

    Full Text Available Despite a growing appreciation of their vast diversity in nature, mechanisms of speciation are poorly understood in Bacteria and Archaea. Here we use high-throughput genome sequencing to identify ongoing speciation in the thermoacidophilic Archaeon Sulfolobus islandicus. Patterns of homologous gene flow among genomes of 12 strains from a single hot spring in Kamchatka, Russia, demonstrate higher levels of gene flow within than between two persistent, coexisting groups, demonstrating that these microorganisms fit the biological species concept. Furthermore, rates of gene flow between two species are decreasing over time in a manner consistent with incipient speciation. Unlike other microorganisms investigated, we do not observe a relationship between genetic divergence and frequency of recombination along a chromosome, or other physical mechanisms that would reduce gene flow between lineages. Each species has its own genetic island encoding unique physiological functions and a unique growth phenotype that may be indicative of ecological specialization. Genetic differentiation between these coexisting groups occurs in large genomic "continents," indicating the topology of genomic divergence during speciation is not uniform and is not associated with a single locus under strong diversifying selection. These data support a model where species do not require physical barriers to gene flow but are maintained by ecological differentiation.

  14. Patterns of gene flow define species of thermophilic Archaea.

    Science.gov (United States)

    Cadillo-Quiroz, Hinsby; Didelot, Xavier; Held, Nicole L; Herrera, Alfa; Darling, Aaron; Reno, Michael L; Krause, David J; Whitaker, Rachel J

    2012-02-01

    Despite a growing appreciation of their vast diversity in nature, mechanisms of speciation are poorly understood in Bacteria and Archaea. Here we use high-throughput genome sequencing to identify ongoing speciation in the thermoacidophilic Archaeon Sulfolobus islandicus. Patterns of homologous gene flow among genomes of 12 strains from a single hot spring in Kamchatka, Russia, demonstrate higher levels of gene flow within than between two persistent, coexisting groups, demonstrating that these microorganisms fit the biological species concept. Furthermore, rates of gene flow between two species are decreasing over time in a manner consistent with incipient speciation. Unlike other microorganisms investigated, we do not observe a relationship between genetic divergence and frequency of recombination along a chromosome, or other physical mechanisms that would reduce gene flow between lineages. Each species has its own genetic island encoding unique physiological functions and a unique growth phenotype that may be indicative of ecological specialization. Genetic differentiation between these coexisting groups occurs in large genomic "continents," indicating the topology of genomic divergence during speciation is not uniform and is not associated with a single locus under strong diversifying selection. These data support a model where species do not require physical barriers to gene flow but are maintained by ecological differentiation.

  15. Diversity of methanogenic archaea in freshwater sediments of lacustrine ecosystems.

    Science.gov (United States)

    Laskar, Folguni; Das Purkayastha, Sumi; Sen, Aniruddha; Bhattacharya, Mrinal K; Misra, Biswapriya B

    2018-02-01

    About half of the global methane (CH 4 ) emission is contributed by the methanogenic archaeal communities leading to a significant increase in global warming. This unprecedented situation has increased the ever growing necessity of evaluating the control measures for limiting CH 4 emission to the atmosphere. Unfortunately, research endeavors on the diversity and functional interactions of methanogens are not extensive till date. We anticipate that the study of the diversity of methanogenic community is paramount for understanding the metabolic processes in freshwater lake ecosystems. Although there are several disadvantages of conventional culture-based methods for determining the diversity of methanogenic archaeal communities, in order to understand their ecological roles in natural environments it is required to culture the microbes. Recently different molecular techniques have been developed for determining the structure of methanogenic archaeal communities thriving in freshwater lake ecosystem. The two gene based cloning techniques required for this purpose are 16S rRNA and methyl coenzyme M reductase (mcrA) in addition to the recently developed metagenomics approaches and high throughput next generation sequencing efforts. This review discusses the various methods of culture-dependent and -independent measures of determining the diversity of methanogen communities in lake sediments in lieu of the different molecular approaches and inter-relationships of diversity of methanogenic archaea. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Involvement of thermophilic archaea in the biocorrosion of oil pipelines.

    Science.gov (United States)

    Davidova, Irene A; Duncan, Kathleen E; Perez-Ibarra, B Monica; Suflita, Joseph M

    2012-07-01

    Two thermophilic archaea, strain PK and strain MG, were isolated from a culture enriched at 80°C from the inner surface material of a hot oil pipeline. Strain PK could ferment complex organic nitrogen sources (e.g. yeast extract, peptone, tryptone) and was able to reduce elemental sulfur (S°), Fe(3+) and Mn(4+) . Phylogenetic analysis revealed that the organism belonged to the order Thermococcales. Incubations of this strain with elemental iron (Fe°) resulted in the abiotic formation of ferrous iron and the accumulation of volatile fatty acids during yeast extract fermentation. The other isolate, strain MG, was a H(2) :CO(2) -utilizing methanogen, phylogenetically affiliated with the genus Methanothermobacter family. Co-cultures of the strains grew as aggregates that produced CH(4) without exogenous H(2) amendment. The co-culture produced the same suite but greater concentrations of fatty acids from yeast extract than did strain PK alone. Thus, the physiological characteristics of organisms both alone and in combination could conceivably contribute to pipeline corrosion. The Thermococcus strain PK could reduce elemental sulfur to sulfide, produce fatty acids and reduce ferric iron. The hydrogenotrophic methanogen strain MG enhanced fatty acid production by fermentative organisms but could not couple the dissolution Fe° with the consumption of water-derived H(2) like other methanogens. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  17. Intercontinental dispersal of bacteria and archaea by transpacific winds

    Science.gov (United States)

    D. Smith,; H. Timonen,; D. Jaffe,; Griffin, Dale W.; M. Birmele,; Perry, K.D.; Ward, P.D.; M. Roberts,

    2013-01-01

    Microorganisms are abundant in the upper atmosphere, particularly downwind of arid regions, where winds can mobilize large amounts of topsoil and dust. However, the challenge of collecting samples from the upper atmosphere and reliance upon culture-based characterization methods have prevented a comprehensive understanding of globally dispersed airborne microbes. In spring 2011 at the Mt. Bachelor Observatory in North America (2.8 km above sea level), we captured enough microbial biomass in two transpacific air plumes to permit a microarray analysis using 16S rRNA genes. Thousands of distinct bacterial taxa spanning a wide range of phyla and surface environments were detected before, during, and after each Asian long-range transport event. Interestingly, the transpacific plumes delivered higher concentrations of taxa already in the background air (particularly Proteobacteria, Actinobacteria, and Firmicutes). While some bacterial families and a few marine archaea appeared for the first and only time during the plumes, the microbial community compositions were similar, despite the unique transport histories of the air masses. It seems plausible, when coupled with atmospheric modeling and chemical analysis, that microbial biogeography can be used to pinpoint the source of intercontinental dust plumes. Given the degree of richness measured in our study, the overall contribution of Asian aerosols to microbial species in North American air warrants additional investigation.

  18. The common ancestor of archaea and eukarya was not an archaeon.

    Science.gov (United States)

    Forterre, Patrick

    2013-01-01

    It is often assumed that eukarya originated from archaea. This view has been recently supported by phylogenetic analyses in which eukarya are nested within archaea. Here, I argue that these analyses are not reliable, and I critically discuss archaeal ancestor scenarios, as well as fusion scenarios for the origin of eukaryotes. Based on recognized evolutionary trends toward reduction in archaea and toward complexity in eukarya, I suggest that their last common ancestor was more complex than modern archaea but simpler than modern eukaryotes (the bug in-between scenario). I propose that the ancestors of archaea (and bacteria) escaped protoeukaryotic predators by invading high temperature biotopes, triggering their reductive evolution toward the "prokaryotic" phenotype (the thermoreduction hypothesis). Intriguingly, whereas archaea and eukarya share many basic features at the molecular level, the archaeal mobilome resembles more the bacterial than the eukaryotic one. I suggest that selection of different parts of the ancestral virosphere at the onset of the three domains played a critical role in shaping their respective biology. Eukarya probably evolved toward complexity with the help of retroviruses and large DNA viruses, whereas similar selection pressure (thermoreduction) could explain why the archaeal and bacterial mobilomes somehow resemble each other.

  19. The Common Ancestor of Archaea and Eukarya Was Not an Archaeon

    Directory of Open Access Journals (Sweden)

    Patrick Forterre

    2013-01-01

    Full Text Available It is often assumed that eukarya originated from archaea. This view has been recently supported by phylogenetic analyses in which eukarya are nested within archaea. Here, I argue that these analyses are not reliable, and I critically discuss archaeal ancestor scenarios, as well as fusion scenarios for the origin of eukaryotes. Based on recognized evolutionary trends toward reduction in archaea and toward complexity in eukarya, I suggest that their last common ancestor was more complex than modern archaea but simpler than modern eukaryotes (the bug in-between scenario. I propose that the ancestors of archaea (and bacteria escaped protoeukaryotic predators by invading high temperature biotopes, triggering their reductive evolution toward the “prokaryotic” phenotype (the thermoreduction hypothesis. Intriguingly, whereas archaea and eukarya share many basic features at the molecular level, the archaeal mobilome resembles more the bacterial than the eukaryotic one. I suggest that selection of different parts of the ancestral virosphere at the onset of the three domains played a critical role in shaping their respective biology. Eukarya probably evolved toward complexity with the help of retroviruses and large DNA viruses, whereas similar selection pressure (thermoreduction could explain why the archaeal and bacterial mobilomes somehow resemble each other.

  20. Thermococcus prieurii sp. nov., a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent.

    Science.gov (United States)

    Gorlas, Aurore; Alain, Karine; Bienvenu, Nadège; Geslin, Claire

    2013-08-01

    A novel hyperthermophilic, anaerobic archaeon, strain Bio-pl-0405IT2(T), was isolated from a hydrothermal chimney sample collected from the East Pacific Rise at 2700 m depth in the 'Sarah Spring' area (7° 25' 24" S 107° 47' 66" W). Cells were irregular, motile cocci (0.8-1.5 µm in diameter) and divided by constriction. Growth was observed at temperatures between 60 °C and 95 °C with an optimum at 80 °C. The pH range for growth was between pH 4.0 and pH 8.0 with an optimum around pH 7.0. Strain Bio-pl-0405IT2(T) grew at salt concentrations of 1-5 % (w/v) NaCl with an optimum at 2 %. The novel isolate grew by fermentation or sulphur respiration on a variety of organic compounds. It was a chemoorganoheterotrophic archaeon growing preferentially with yeast extract, peptone and tryptone as carbon and energy sources and sulphur and organic compounds as electron acceptors; it also grew on maltose and starch. Sulphur or l-cystine were required for growth and were reduced to hydrogen sulfide. The strain was resistant to rifampicin, chloramphenicol, vancomycin and kanamycin (all at 100 µg ml(-1)) but was sensitive to tetracycline. The G+C content of its genomic DNA was 53.6 mol%. Phylogenetic analysis of the almost complete 16S rRNA gene sequence (1450 bp) of strain Bio-pl-0405IT2(T) showed that the novel isolate belonged to the genus Thermococcus. DNA-DNA hybridization values with the two closest relatives Thermococcus hydrothermalis AL662(T) and Thermococcus celer JCM 8558(T) were below the threshold value of 70 %. On the basis of the physiological and genotypic distinctness, we propose a novel species, Thermococcus prieurii sp. nov. The type strain is Bio-pl-0405IT2(T) ( = CSUR P577(T)= JCM 16307(T)).

  1. Distance-decay and taxa-area relationships for bacteria, archaea and methanogenic archaea in a tropical lake sediment.

    Directory of Open Access Journals (Sweden)

    Davi Pedroni Barreto

    Full Text Available The study of of the distribution of microorganisms through space (and time allows evaluation of biogeographic patterns, like the species-area index (z. Due to their high dispersal ability, high reproduction rates and low rates of extinction microorganisms tend to be widely distributed, and they are thought to be virtually cosmopolitan and selected primarily by environmental factors. Recent studies have shown that, despite these characteristics, microorganisms may behave like larger organisms and exhibit geographical distribution. In this study, we searched patterns of spatial diversity distribution of bacteria and archaea in a contiguous environment. We collected 26 samples of a lake sediment, distributed in a nested grid, with distances between samples ranging from 0.01 m to 1000 m. The samples were analyzed using T-RFLP (Terminal restriction fragment length polymorphism targeting mcrA (coding for a subunit of methyl-coenzyme M reductase and the genes of Archaeal and Bacterial 16S rRNA. From the qualitative and quantitative results (relative abundance of operational taxonomic units we calculated the similarity index for each pair to evaluate the taxa-area and distance decay relationship slopes by linear regression. All results were significant, with mcrA genes showing the highest slope, followed by Archaeal and Bacterial 16S rRNA genes. We showed that the microorganisms of a methanogenic community, that is active in a contiguous environment, display spatial distribution and a taxa-area relationship.

  2. Molecular Studies of Filamentous and Biofilm-Forming Hyperthermophilic Communities in Yellowstone National Park

    Science.gov (United States)

    Summons, R. E.; Meyer-Dombard, D. R.; Bradley, A. S.; Dibbell, A. K.; Fredricks, H. F.; Hinrichs, K.; Jahnke, L. L.; Shock, E.; Amend, J. P.

    2005-12-01

    The Aquificales, the most deeply-branching order of Bacteria in the phylogenetic tree of life, comprises eight recognized thermophilic genera, including Aquifex, Hydrogenobacter, and Thermocrinis. The common metabolism for these Bacteria, when grown in culture, is the oxidation of hydrogen with molecular oxygen (Knallgas reaction). Aquificales have been identified by molecular techniques (16S rRNA gene surveys, fluorescent in situ hybridization) in Yellowstone National Park (YNP), sea vent chimneys and fluids, and many other terrestrial and marine locations. In situ, Aquificales can reside as biofilms on vent sinters but they also commonly form filamentous communities, otherwise known as pink streamers, which attach to solid substrates. Initial 16S rRNA gene surveys conducted on streamer communities from Octopus Spring YNP indicated that these were low diversity ecosystems dominated by a few phylotypes including Thermocrinis sp., Thermotoga sp. and one other bacterial clade (Reysenbach et al 1994). Archaea were notable for their absence. In one of the first geobiological studies of pink streamers and vent biofilms in Yellowstone National Park, Jahnke and coworkers (2001) used classical lipidological techniques to compare Aquificales cultures with environmental samples to show that YNP pink filaments were more phylogenetically diverse and physiologically more complex than the early genomic studies indicated. The presence of archaeol, the range and structures of other lipids and a wide dispersion in the carbon isotopic signatures of biomass and individual lipids (-15 to -27%) showed that Archaea were present in pink filament communities and that there was, at least, one additional bacterial group besides the dominant Aquificales component. New molecular studies that comprise analyses of 16S rRNA genes and total lipid extracts by liquid chromatography and mass spectrometry and chemical degradation with gas chromatography and mass spectrometry now show that Crenarchaea

  3. Diversity of Ammonia Oxidizing Archaea in Tropical Compost Systems

    Directory of Open Access Journals (Sweden)

    Vidya eDe Gannes

    2012-07-01

    Full Text Available Composting is widely used to transform waste materials into valuable agricultural products. In the tropics, large quantities of agricultural wastes could be potentially useful in agriculture after composting. However, while microbiological processes of composts in general are well established, relatively little is known about microbial communities that may be unique to these in tropical systems, particularly nitrifiers. The recent discovery of ammonia oxidizing archaea (AOA has changed the paradigm of nitrification being initiated solely by ammonia oxidizing bacteria. In the present study, AOA abundance and diversity was examined in composts produced from combinations of plant waste materials common in tropical agriculture (rice straw, sugar cane bagasse, coffee hulls, which were mixed with either cow- or sheep-manure. The objective was to determine how AOA abundance and diversity varied as a function of compost system and time, the latter being a contrast between the start of the compost process (mesophilic phase and the finished product (mature phase. The results showed that AOA were relatively abundant in composts of tropical agricultural wastes, and significantly more so than were the ammonia-oxidizing bacteria. Furthermore, while the AOA communities in the composts were predominatly group I.1b, the communities were diverse and exhibited structures that diverged between compost types and phases. These patterns could be taken as indicators of the ecophysiological diversity in the soil AOA (groub I.1b, in that significantly different AOA communties developed when exposed to varying physico-chemical environments. Nitrification patterns and levels differed in the composts which, for the mature material, could have signifcant effects on its performanc as a plant growth medium. Thus, it will also be important to determine the association of AOA (and diversity in their communities with nitrification in these systems.

  4. In-vitro archaeacidal activity of biocides against human-associated archaea.

    Directory of Open Access Journals (Sweden)

    Saber Khelaifia

    Full Text Available BACKGROUND: Several methanogenic archaea have been detected in the human intestinal microbiota. These intestinal archaea may contaminate medical devices such as colonoscopes. However, no biocide activity has been reported among these human-associated archaea. METHODOLOGY: The minimal archaeacidal concentration (MAC of peracetic acid, chlorhexidine, squalamine and twelve parent synthetic derivatives reported in this study was determined against five human-associated methanogenic archaea including Methanobrevibacter smithii, Methanobrevibacter oralis, Methanobrevibacter arboriphilicus, Methanosphaera stadtmanae, Methanomassiliicoccus luminyensis and two environmental methanogens Methanobacterium beijingense and Methanosaeta concilii by using a serial dilution technique in Hungates tubes. PRINCIPAL FINDINGS: MAC of squalamine derivative S1 was 0.05 mg/L against M. smithii strains, M. oralis, M. arboriphilicus, M. concilii and M. beijingense whereas MAC of squalamine and derivatives S2-S12 varied from 0.5 to 5 mg/L. For M. stadtmanae and M. luminyensis, MAC of derivative S1 was 0.1 mg/L and varied from 1 to ≥ 10 mg/L for squalamine and its parent derivatives S2-S12. Under the same experimental conditions, chlorhexidine and peracetic acid lead to a MAC of 0.2 and 1.5 mg/L, respectively against all tested archaea. CONCLUSIONS/SIGNIFICANCE: Squalamine derivative S1 exhibited a 10-200 higher archaeacidal activity than other tested squalamine derivatives, on the majority of human-associated archaea. As previously reported and due to their week corrosivity and their wide spectrum of antibacterial and antifungal properties, squalamine and more precisely derivative S1 appear as promising compounds to be further tested for the decontamination of medical devices contaminated by human-associated archaea.

  5. Expression, purification, crystallization and preliminary X-ray analysis of a nucleoside kinase from the hyperthermophile Methanocaldococcus jannaschii

    International Nuclear Information System (INIS)

    Arnfors, Linda; Hansen, Thomas; Meining, Winfried; Schönheit, Peter; Ladenstein, Rudolf

    2005-01-01

    Nucleoside kinase from the hyperthermophilic archaeon M. jannaschii is a member of the PFK-B family which belongs to the ribokinase superfamily. Here, its expression, purification, crystallization and preliminary X-ray analysis are described. Methanocaldococcus jannaschii nucleoside kinase (MjNK) is an ATP-dependent non-allosteric phosphotransferase that shows high catalytic activity for guanosine, inosine and cytidine. MjNK is a member of the phosphofructokinase B family, but participates in the biosynthesis of nucleoside monophosphates rather than in glycolysis. MjNK was crystallized as the apoenzyme as well as in complex with an ATP analogue and Mg 2+ . The latter crystal form was also soaked with fructose-6-phosphate. Synchrotron-radiation data were collected to 1.70 Å for the apoenzyme crystals and 1.93 Å for the complex crystals. All crystals exhibit orthorhombic symmetry; however, the apoenzyme crystals contain one monomer per asymmetric unit whereas the complex crystals contain a dimer

  6. Hydrogen production by the hyperthermophilic bacterium Thermotoga maritima Part II: modeling and experimental approaches for hydrogen production.

    Science.gov (United States)

    Auria, Richard; Boileau, Céline; Davidson, Sylvain; Casalot, Laurence; Christen, Pierre; Liebgott, Pierre Pol; Combet-Blanc, Yannick

    2016-01-01

    Thermotoga maritima is a hyperthermophilic bacterium known to produce hydrogen from a large variety of substrates. The aim of the present study is to propose a mathematical model incorporating kinetics of growth, consumption of substrates, product formations, and inhibition by hydrogen in order to predict hydrogen production depending on defined culture conditions. Our mathematical model, incorporating data concerning growth, substrates, and products, was developed to predict hydrogen production from batch fermentations of the hyperthermophilic bacterium, T. maritima . It includes the inhibition by hydrogen and the liquid-to-gas mass transfer of H 2 , CO 2 , and H 2 S. Most kinetic parameters of the model were obtained from batch experiments without any fitting. The mathematical model is adequate for glucose, yeast extract, and thiosulfate concentrations ranging from 2.5 to 20 mmol/L, 0.2-0.5 g/L, or 0.01-0.06 mmol/L, respectively, corresponding to one of these compounds being the growth-limiting factor of T. maritima . When glucose, yeast extract, and thiosulfate concentrations are all higher than these ranges, the model overestimates all the variables. In the window of the model validity, predictions of the model show that the combination of both variables (increase in limiting factor concentration and in inlet gas stream) leads up to a twofold increase of the maximum H 2 -specific productivity with the lowest inhibition. A mathematical model predicting H 2 production in T. maritima was successfully designed and confirmed in this study. However, it shows the limit of validity of such mathematical models. Their limit of applicability must take into account the range of validity in which the parameters were established.

  7. Identifying members of the domain Archaea with rRNA-targeted oligonucleotide probes.

    Science.gov (United States)

    Burggraf, S; Mayer, T; Amann, R; Schadhauser, S; Woese, C R; Stetter, K O

    1994-09-01

    Two 16S rRNA-targeted oligonucleotide probes were designed for the archaeal kingdoms Euryachaeota and Crenarchaeota. Probe specificities were evaluated by nonradioactive dot blot hybridization against selected reference organisms. The successful application of fluorescent-probe derivatives for whole-cell hybridization required organism-specific optimizations of fixation and hybridization conditions to assure probe penetration and morphological integrity of the cells. The probes allowed preliminary grouping of three new hyperthermophilic isolates. Together with other group-specific rRNA-targeted oligonucleotide probes, these probes will facilitate rapid in situ monitoring of the populations present in hydrothermal systems and support cultivation attempts.

  8. Taxonomic study of extreme halophilic archaea isolated from the "Salar de Atacama", Chile.

    Science.gov (United States)

    Lizama, C; Monteoliva-Sánchez, M; Prado, B; Ramos-Cormenzana, A; Weckesser, J; Campos, V

    2001-11-01

    A large number of halophilic bacteria were isolated in 1984-1992 from the Atacama Saltern (North of Chile). For this study 82 strains of extreme halophilic archaea were selected. The characterization was performed by using the phenotypic characters including morphological, physiological, biochemical, nutritional and antimicrobial susceptibility test. The results, together with those from reference strains, were subjected to numerical analysis, using the Simple Matching (S(SM)) coefficient and clustered by the unweighted pair group method of association (UPGMA). Fifteen phena were obtained at an 70% similarity level. The results obtained reveal a high diversity among the halophilic archaea isolated. Representative strains from the phena were chosen to determine their DNA base composition and the percentage of DNA-DNA similarity compared to reference strains. The 16S rRNA studies showed that some of these strains constitutes a new taxa of extreme halophilic archaea.

  9. Base excision repair in Archaea: back to the future in DNA repair.

    Science.gov (United States)

    Grasso, Stefano; Tell, Gianluca

    2014-09-01

    Together with Bacteria and Eukarya, Archaea represents one of the three domain of life. In contrast with the morphological difference existing between Archaea and Eukarya, these two domains are closely related. Phylogenetic analyses confirm this evolutionary relationship showing that most of the proteins involved in DNA transcription and replication are highly conserved. On the contrary, information is scanty about DNA repair pathways and their mechanisms. In the present review the most important proteins involved in base excision repair, namely glycosylases, AP lyases, AP endonucleases, polymerases, sliding clamps, flap endonucleases, and ligases, will be discussed and compared with bacterial and eukaryotic ones. Finally, possible applications and future perspectives derived from studies on Archaea and their repair pathways, will be taken into account. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Archaea in metazoan diets: implications for food webs and biogeochemical cycling.

    Science.gov (United States)

    Thurber, Andrew R; Levin, Lisa A; Orphan, Victoria J; Marlow, Jeffrey J

    2012-08-01

    Although the importance of trophic linkages, including 'top-down forcing', on energy flow and ecosystem productivity is recognized, the influence of metazoan grazing on Archaea and the biogeochemical processes that they mediate is unknown. Here, we test if: (1) Archaea provide a food source sufficient to allow metazoan fauna to complete their life cycle; (2) neutral lipid biomarkers (including crocetane) can be used to identify Archaea consumers; and (3) archaeal aggregates are a dietary source for methane seep metazoans. In the laboratory, we demonstrated that a dorvilleid polychaete, Ophryotrocha labronica, can complete its life cycle on two strains of Euryarchaeota with the same growth rate as when fed bacterial and eukaryotic food. Archaea were therefore confirmed as a digestible and nutritious food source sufficient to sustain metazoan populations. Both strains of Euryarchaeota used as food sources had unique lipids that were not incorporated into O. labronica tissues. At methane seeps, sulfate-reducing bacteria that form aggregations and live syntrophically with anaerobic-methane oxidizing Archaea contain isotopically and structurally unique fatty acids (FAs). These biomarkers were incorporated into tissues of an endolithofaunal dorvilleid polychaete species from Costa Rica (mean bulk δ(13)C=-92±4‰; polar lipids -116‰) documenting consumption of archaeal-bacterial aggregates. FA composition of additional soft-sediment methane seep species from Oregon and California provided evidence that consumption of archaeal-bacterial aggregates is widespread at methane seeps. This work is the first to show that Archaea are consumed by heterotrophic metazoans, a trophic process we coin as 'archivory'.

  11. Etude de la réplication de l'ADN chez les Archaea

    OpenAIRE

    Berthon , Jonathan

    2008-01-01

    Thèse réalisée entre France et Japon (boursier JSPS); Cellular organisms belong to one of the three domains of life: Archaea, Bacteria, and Eucarya. Archaea are unicellular organisms with a bacterial phenotype, yet they exhibit many eucaryotic features at the molecular level. In particular, archaeal DNA replication machinery is a homologous and simplified version of that in eucaryotes. In this work, I have studied archaeal DNA replication with both in vitro and in silico approaches.First, I h...

  12. Effect of the environment on horizontal gene transfer between bacteria and archaea.

    Science.gov (United States)

    Fuchsman, Clara A; Collins, Roy Eric; Rocap, Gabrielle; Brazelton, William J

    2017-01-01

    Horizontal gene transfer, the transfer and incorporation of genetic material between different species of organisms, has an important but poorly quantified role in the adaptation of microbes to their environment. Previous work has shown that genome size and the number of horizontally transferred genes are strongly correlated. Here we consider how genome size confuses the quantification of horizontal gene transfer because the number of genes an organism accumulates over time depends on its evolutionary history and ecological context (e.g., the nutrient regime for which it is adapted). We investigated horizontal gene transfer between archaea and bacteria by first counting reciprocal BLAST hits among 448 bacterial and 57 archaeal genomes to find shared genes. Then we used the DarkHorse algorithm, a probability-based, lineage-weighted method (Podell & Gaasterland, 2007), to identify potential horizontally transferred genes among these shared genes. By removing the effect of genome size in the bacteria, we have identified bacteria with unusually large numbers of shared genes with archaea for their genome size. Interestingly, archaea and bacteria that live in anaerobic and/or high temperature conditions are more likely to share unusually large numbers of genes. However, high salt was not found to significantly affect the numbers of shared genes. Numbers of shared (genome size-corrected, reciprocal BLAST hits) and transferred genes (identified by DarkHorse) were strongly correlated. Thus archaea and bacteria that live in anaerobic and/or high temperature conditions are more likely to share horizontally transferred genes. These horizontally transferred genes are over-represented by genes involved in energy conversion as well as the transport and metabolism of inorganic ions and amino acids. Anaerobic and thermophilic bacteria share unusually large numbers of genes with archaea. This is mainly due to horizontal gene transfer of genes from the archaea to the bacteria. In

  13. Effect of the environment on horizontal gene transfer between bacteria and archaea

    Directory of Open Access Journals (Sweden)

    Clara A. Fuchsman

    2017-09-01

    Full Text Available Background Horizontal gene transfer, the transfer and incorporation of genetic material between different species of organisms, has an important but poorly quantified role in the adaptation of microbes to their environment. Previous work has shown that genome size and the number of horizontally transferred genes are strongly correlated. Here we consider how genome size confuses the quantification of horizontal gene transfer because the number of genes an organism accumulates over time depends on its evolutionary history and ecological context (e.g., the nutrient regime for which it is adapted. Results We investigated horizontal gene transfer between archaea and bacteria by first counting reciprocal BLAST hits among 448 bacterial and 57 archaeal genomes to find shared genes. Then we used the DarkHorse algorithm, a probability-based, lineage-weighted method (Podell & Gaasterland, 2007, to identify potential horizontally transferred genes among these shared genes. By removing the effect of genome size in the bacteria, we have identified bacteria with unusually large numbers of shared genes with archaea for their genome size. Interestingly, archaea and bacteria that live in anaerobic and/or high temperature conditions are more likely to share unusually large numbers of genes. However, high salt was not found to significantly affect the numbers of shared genes. Numbers of shared (genome size-corrected, reciprocal BLAST hits and transferred genes (identified by DarkHorse were strongly correlated. Thus archaea and bacteria that live in anaerobic and/or high temperature conditions are more likely to share horizontally transferred genes. These horizontally transferred genes are over-represented by genes involved in energy conversion as well as the transport and metabolism of inorganic ions and amino acids. Conclusions Anaerobic and thermophilic bacteria share unusually large numbers of genes with archaea. This is mainly due to horizontal gene transfer of

  14. Massive expansion of marine archaea during a mid-Cretaceous oceanic anoxic event

    DEFF Research Database (Denmark)

    Kuypers, M.M.M.; Blokker, P.; Erbacher, J.

    2001-01-01

    molecular fossils indicates that these archaea were living chemoautotrophically. Their massive expansion may have been a response to the strong stratification of the ocean during this anoxic event. Indeed, the sedimentary record of archaeal membrane lipids suggests that this anoxic event marks a time......Biogeochemical and stable carbon isotopic analysis of black-shale sequences deposited during an Albian oceanic anoxic event (∼112 million years ago) indicate that up to 80 weight percent of sedimentary organic carbon is derived from marine, nonthermophilic archaea. The carbon-13 content of archaeal...

  15. Distribution of Metabolically Active Prokaryotes (Archaea and Bacteria) throughout the Profiles of Chernozem and Brown Semidesert Soil

    Science.gov (United States)

    Semenov, M. V.; Manucharova, N. A.; Stepanov, A. L.

    2016-02-01

    The distribution of metabolically active cells of archaea and bacteria in the profiles of typical chernozems (Voronezh oblast) and brown semidesert soils (Astrakhan oblast) of natural and agricultural ecosystems was studied using the method of fluorescent in situ hybridization (FISH). The studied soils differed sharply in the microbial biomass and in the numbers of metabolically active cells of archaea and bacteria. The number of active bacterial cells was 3.5-7.0 times greater than that of archaea. In the arable chernozem, the numbers of active cells of archaea and bacteria were 2.6 and 1.5 times, respectively, lower than those in the chernozem under the shelterbelt. The agricultural use of the brown semidesert soil had little effect on the abundances of bacteria and archaea. The soil organic carbon content was the major factor controlling the numbers of metabolically active cells of both domains. However, the dependence of the abundance of bacteria on the organic matter content was more pronounced. The decrease in the organic carbon and total nitrogen contents down the soil profiles was accompanied by the decrease in the bacteria: archaea ratio attesting to a better adaptation of archaea to the permanent deficiency of carbon and nitrogen. The bacteria: archaea ratio can serve as an ecotrophic indicator of the state of soil microbial communities.

  16. Massive Expansion of Marine Archaea During The Early Albian Oceanic Anoxic Event 1B

    Science.gov (United States)

    Kuypers, M. M.; Kuypers, M. M.; Blokker, P.; Erbacher, J.; Kinkel, H.; Pancost, R. D.; Pancost, R. D.; Schouten, S.; Sinninghe Damsté, J. S.

    2001-12-01

    Oceanic anoxic events (OAEs), periods of globally enhanced burial of organic matter (OM) in the marine realm, played an important role in the mid-Cretaceous `greenhouse climate' by effectively reducing atmospheric carbon dioxide concentrations. It is generally believed that these OAEs were caused either by decreased remineralisation or increased production of phytoplanktonic OM. Here we show that enhanced organic carbon (OC) burial during the early Albian OAE1b (~112 My) was caused by a different process. Combined biogeochemical and stable carbon isotopic analyses indicate that black shales from this period contain up to 80% of OC derived from archaea. Archaea-derived isoprenoidal tetraether membrane lipids and free and macromolecularly bound isoprenoid alkanes are abundantly present in these black shales. More specifically the presence of certain ether lipids (cyclic biphytane tetraethers) indicates representatives of the pelagic archaea. To the best of our knowledge this is the earliest fossil evidence for marine planktonic archaea, extending their geological record by more than 60 million years. The diversity of archaeal lipids recovered from the OAE1b black shales suggests that they derive from a multitude of archaeal species. However, the specific 13C enrichment of all such lipids indicates a common `heavy' (13C-rich) carbon source for the archaea and/or a common pathway of carbon-fixation with a reduced 13C fractionation effect compared to the Calvin cycle used by algae, cyanobacteria and higher plants. The large differences (up to 12%) in 13C/12C ratios between the algal biomarkers and the much more abundant archaeal molecular fossils suggest that the latter were not living heterotrophically on photoautotrophic biomass. It seems likely that the archaea present during OAE1b used a chemical energy source (possibly ammonium) for carbon fixation since photoautotrophy within the domain of the Archaea is restricted to only a few species from hypersaline

  17. TM0416, a Hyperthermophilic Promiscuous Nonphosphorylated Sugar Isomerase, Catalyzes Various C5 and C6 Epimerization Reactions.

    Science.gov (United States)

    Shin, Sun-Mi; Cao, Thinh-Phat; Choi, Jin Myung; Kim, Seong-Bo; Lee, Sang-Jae; Lee, Sung Haeng; Lee, Dong-Woo

    2017-05-15

    There is currently little information on nonphosphorylated sugar epimerases, which are of potential interest for producing rare sugars. We found a gene (the TM0416 gene) encoding a putative d-tagatose-3-epimerase-related protein from the hyperthermophilic bacterium Thermotoga maritima We overexpressed the TM0416 gene in Escherichia coli and purified the resulting recombinant protein for detailed characterization. Amino acid sequence alignment and a structural similarity search revealed that TM0416 is a putative nonphosphorylated sugar epimerase. The recombinant enzyme exhibited maximal C-3 epimerization of l-ribulose to l-xylulose at ∼80°C and pH 7 in the presence of 1 mM Mn 2+ In addition, this enzyme showed unusually high activity for the epimerization of d-tagatose to d-sorbose, with a conversion yield of 20% after 6 h at 80°C. Remarkably, the enzyme catalyzed the isomerization of d-erythrose or d-threose to d-erythrulose significantly, with conversion yields of 71% and 54.5%, respectively, after 6 h at 80°C at pH 7. To further investigate the substrate specificity of TM0416, we determined its crystal structures in complex with divalent metal ions and l-erythrulose at resolutions of 1.5 and 1.6 Å. Detailed inspection of the structural features and biochemical data clearly demonstrated that this metalloenzyme, with a freely accessible substrate-binding site and neighboring hydrophobic residues, exhibits different and promiscuous substrate preferences, compared with its mesophilic counterparts. Therefore, this study suggests that TM0416 can be functionally classified as a novel type of l-ribulose 3-epimerase (R3E) with d-erythrose isomerase activity. IMPORTANCE Rare sugars, which occur naturally in small amounts, have attracted considerable attention in the food and drug industries. However, there is little information on nonphosphorylated sugar epimerases, which might potentially be applied for the production of rare sugars. This study describes the

  18. Isolation and characterization of the first xylanolytic hyperthermophilic euryarchaeon Thermococcus sp. strain 2319x1 and its unusual multidomain glycosidase

    Directory of Open Access Journals (Sweden)

    Sergey N Gavrilov

    2016-05-01

    Full Text Available Enzymes from (hyperthermophiles Thermozymes offer a great potential for biotechnological applications. Thermophilic adaptation does not only provide stability towards high temperature but is also often accompanied by a higher resistance to other harsh physicochemical conditions, which are also frequently employed in industrial processes, such as the presence of e.g. denaturing agents as well as low or high pH of the medium. In order to find new thermostable, xylan degrading hydrolases with potential for biotechnological application we used an in situ enrichment strategy incubating Hungate tubes with xylan as the energy substrate in a hot vent located in the tidal zone of Kunashir Island (Kuril archipelago. Using this approach a hyperthermophilic euryarchaeon, designated Thermococcus sp. strain 2319x1, growing on xylan as sole energy and carbon source was isolated. The organism grows optimally at 85°C and pH 7.0 on a variety of natural polysaccharides including xylan, carboxymethyl cellulose (CMC, amorphous cellulose (AMC, xyloglucan, and chitin. The protein fraction extracted from the cells surface with Twin 80 exhibited endoxylanase, endoglucanase and xyloglucanase activities. The genome of Thermococcus sp. strain 2319x1 was sequenced and assembled into one circular chromosome. Within the newly sequenced genome, a gene, encoding a novel type of glycosidase (143 kDa with a unique five-domain structure, was identified. It consists of three glycoside hydrolase (GH domains and two carbohydrate-binding modules (CBM with the domain order GH5-12-12-CBM2-2 (N- to C-terminal direction. The full length protein, as well as truncated versions, were heterologously expressed in Escherichia coli and their activity was analyzed. The full length multidomain glycosidase (MDG was able to hydrolyze various polysaccharides, with the highest activity for barley β-glucan (β-1,3/1,4-glucoside, followed by that for carboxymethyl cellulose (β-1,4-glucoside

  19. Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: teamwork or coexistence?

    NARCIS (Netherlands)

    Ozuolmez, D.; Na, H.; Lever, M.A.; Kjeldsen, K.U.; Jørgensen, B.B.; Plugge, C.M.

    2015-01-01

    Acetate is a major product of fermentation processes and an important substrate for sulfate reducing bacteria and methanogenic archaea. Most studies on acetate catabolism by sulfate reducers and methanogens have used pure cultures. Less is known about acetate conversion by mixed pure cultures and

  20. Evaluation of biodecolorization of the textile azo dye by halophilic archaea

    Directory of Open Access Journals (Sweden)

    Masoomeh Selseleh Hassan-Kiadehi

    2017-09-01

    Discussion and conclusion: In conclusion, our results indicate that halophilic archaea have very high potential to decolorize azo dyes. Regarding high amounts of salts in textile wastewaters, using such microorganisms which can tolerate the harsh environment in order to decolorize azo dyes, could be a new approach in this field.

  1. Bacteria and Archaea in acidic environments and a key to morphological identification

    Science.gov (United States)

    Robbins, E.I.

    2000-01-01

    Natural and anthropogenic acidic environments are dominated by bacteria and Archaea. As many as 86 genera or species have been identified or isolated from pH morphological characteristics, habitat information and a key for light microscope identification for the non-microbiologist.

  2. Diversity of archaea and bacteria in a biogas reactor fed with ...

    African Journals Online (AJOL)

    Diversity of archaea and bacteria in a biogas reactor fed with Pennisetum sinese ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING ... rumen microbial community in a biogas reactor by 16S rRNA gene analysis, ...

  3. Diversity of membrane transport proteins for vitamins in bacteria and archaea

    NARCIS (Netherlands)

    Jähme, Michael; Slotboom, Dirk Jan

    BACKGROUND: All organisms use cofactors to extend the catalytic capacities of proteins. Many bacteria and archaea can synthesize cofactors from primary metabolites, but there are also prokaryotes that do not have the complete biosynthetic pathways for all essential cofactors. These organisms are

  4. Detection of methanogenic archaea in seawater particles and the digestive tract of a marine fish species

    NARCIS (Netherlands)

    van der Maarel, MJEC; Sprenger, W; Haanstra, R; Forney, LJ

    1999-01-01

    A methanogen-specific nested PCR approach was used to detect methanogenic archaea in seawater particles of the North Sea and the feces and the digestive tract of flounder (Platichthys flesus), a fish found in the North Sea. A number of 16S rDNA sequences with 97.6-99.5% similarity to

  5. Contributions of ammonia-oxidizing archaea and bacteria to nitrification in Oregon forest soils

    Science.gov (United States)

    Xinda Lu; Peter J. Bottomley; David D. Myrold

    2015-01-01

    Ammonia oxidation, the first step of nitrification, is mediated by both ammonia-oxidizing archaea (AOA) and bacteria (AOB); however, the relative contributions of AOA and AOB to soil nitrification are not well understood. In this study we used 1-octyne to discriminate between AOA-and AOB-supported nitrifi-cation determined both in soil-water slurries and in unsaturated...

  6. Bipyrimidine Signatures as a Photoprotective Genome Strategy in G + C-rich Halophilic Archaea.

    Science.gov (United States)

    Jones, Daniel L; Baxter, Bonnie K

    2016-09-02

    Halophilic archaea experience high levels of ultraviolet (UV) light in their environments and demonstrate resistance to UV irradiation. DNA repair systems and carotenoids provide UV protection but do not account for the high resistance observed. Herein, we consider genomic signatures as an additional photoprotective strategy. The predominant forms of UV-induced DNA damage are cyclobutane pyrimidine dimers, most notoriously thymine dimers (T^Ts), which form at adjacent Ts. We tested whether the high G + C content seen in halophilic archaea serves a photoprotective function through limiting T nucleotides, and thus T^T lesions. However, this speculation overlooks the other bipyrimidine sequences, all of which capable of forming photolesions to varying degrees. Therefore, we designed a program to determine the frequencies of the four bipyrimidine pairs (5' to 3': TT, TC, CT, and CC) within genomes of halophilic archaea and four other randomized sample groups for comparison. The outputs for each sampled genome were weighted by the intrinsic photoreactivities of each dinucleotide pair. Statistical methods were employed to investigate intergroup differences. Our findings indicate that the UV-resistance seen in halophilic archaea can be attributed in part to a genomic strategy: high G + C content and the resulting bipyrimidine signature reduces the genomic photoreactivity.

  7. DNA Repair and Photoprotection: Mechanisms of Overcoming Environmental Ultraviolet Radiation Exposure in Halophilic Archaea.

    Science.gov (United States)

    Jones, Daniel L; Baxter, Bonnie K

    2017-01-01

    Halophilic archaea push the limits of life at several extremes. In particular, they are noted for their biochemical strategies in dealing with osmotic stress, low water activity and cycles of desiccation in their hypersaline environments. Another feature common to their habitats is intense ultraviolet (UV) radiation, which is a challenge that microorganisms must overcome. The consequences of high UV exposure include DNA lesions arising directly from bond rearrangement of adjacent bipyrimidines, or indirectly from oxidative damage, which may ultimately result in mutation and cell death. As such, these microorganisms have evolved a number of strategies to navigate the threat of DNA damage, which we differentiate into two categories: DNA repair and photoprotection. Photoprotection encompasses damage avoidance strategies that serve as a "first line of defense," and in halophilic archaea include pigmentation by carotenoids, mechanisms of oxidative damage avoidance, polyploidy, and genomic signatures that make DNA less susceptible to photodamage. Photolesions that do arise are addressed by a number of DNA repair mechanisms that halophilic archaea efficiently utilize, which include photoreactivation, nucleotide excision repair, base excision repair, and homologous recombination. This review seeks to place DNA damage, repair, and photoprotection in the context of halophilic archaea and the solar radiation of their hypersaline environments. We also provide new insight into the breadth of strategies and how they may work together to produce remarkable UV-resistance for these microorganisms.

  8. Survival of Halophilic Archaea in the Stratosphere as a Mars Analog: A Transcriptomic Approach

    Science.gov (United States)

    DasSarma, S.; DasSarma, P.; Laye, V.; Harvey, J.; Reid, C.; Shultz, J.; Yarborough, A.; Lamb, A.; Koske-Phillips, A.; Herbst, A.; Molina, F.; Grah, O.; Phillips, T.

    2016-05-01

    On Earth, halophilic Archaea tolerate multiple extreme conditions similar to those on Mars. In order to study their survival, we launched live cultures into Earth’s stratosphere on helium balloons. The effects on survival and transcriptomes were interrogated in the lab.

  9. Ion permeability of the cytoplasmic membrane limits the maximum growth temperature of bacteria and archaea

    NARCIS (Netherlands)

    van de Vossenberg, J.L C M; Ubbink-Kok, T.; Elferink, M.G.L.; Driessen, A.J.M.; Konings, W.N

    1995-01-01

    Protons and sodium ions are the most commonly used coupling ions in energy transduction in bacteria and archaea. At their growth temperature, the permeability of the cytoplasmic membrane of thermophilic bacteria to protons is high compared with that of sodium ions. In some thermophiles, sodium is

  10. The cell membrane plays a crucial role in survival of bacteria and archaea in extreme environments

    NARCIS (Netherlands)

    Konings, Wil N.; Albers, Sonja-Verena; Koning, Sonja; Driessen, Arnold J.M.

    2002-01-01

    The cytoplasmic membrane of bacteria and archaea determine to a large extent the composition of the cytoplasm. Since the ion and in particular the proton and/or the sodium ion electrochemical gradients across the membranes are crucial for the bioenergetic conditions of these microorganisms,

  11. Biogeochemical evidence that thermophilic Archaea mediate the anaerobic oxidation of methane

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Schouten, S.; Wakeham, S.G.; Hopmans, E.C.

    2003-01-01

    Distributions and isotopic analyses of lipids from sediment cores at a hydrothermally active site in the Guaymas Basin with a steep sedimentary temperature gradient revealed the presence of archaea that oxidize methane anaerobically. The presence of strongly 13C-depleted lipids at greater depths in

  12. Differential antibiotic sensitivity determined by the large ribosomal subunit in thermophilic archaea.

    OpenAIRE

    Ruggero, D; Londei, P

    1996-01-01

    Hybrid ribosomes obtained by mixing the ribosomal subunits of the extremely thermophilic archaea Sulfolobus solfataricus and Desulfurococcus mobilis were tested for their sensitivity to selected antibiotics. It is shown that structural differences in the large ribosomal subunits determine qualitatively and quantitatively the patterns of response to alpha-sarcin and paromomycin in these species.

  13. Association of marine archaea with the digestive tracts of two marine fish species

    NARCIS (Netherlands)

    Maarel, Marc J.E.C. van der; Artz, Rebekka R.E.; Haanstra, Rene; Forney, Larry J.

    Recent studies have shown that archaea which were always thought to live under strict anoxic or extreme environmental conditions are also present in cold, oxygenated seawater, soils, the digestive tract of a holothurian deep-sea-deposit feeder, and a marine sponge, In this study we show, by using

  14. Role of multiprotein bridging factor 1 in archaea: bridging the domains?

    NARCIS (Netherlands)

    Koning, de B.; Blombach, F.; Wu Hao,; Brouns, S.J.J.; Oost, van der J.

    2009-01-01

    MBF1 (multiprotein bridging factor 1) is a highly conserved protein in archaea and eukaryotes. It was originally identified as a mediator of the eukaryotic transcription regulator BmFTZ-F1 (Bombyx mori regulator of fushi tarazu). MBF1 was demonstrated to enhance transcription by forming a bridge

  15. ARCPHdb: A comprehensive protein database for SF1 and SF2 helicase from archaea.

    Science.gov (United States)

    Moukhtar, Mirna; Chaar, Wafi; Abdel-Razzak, Ziad; Khalil, Mohamad; Taha, Samir; Chamieh, Hala

    2017-01-01

    Superfamily 1 and Superfamily 2 helicases, two of the largest helicase protein families, play vital roles in many biological processes including replication, transcription and translation. Study of helicase proteins in the model microorganisms of archaea have largely contributed to the understanding of their function, architecture and assembly. Based on a large phylogenomics approach, we have identified and classified all SF1 and SF2 protein families in ninety five sequenced archaea genomes. Here we developed an online webserver linked to a specialized protein database named ARCPHdb to provide access for SF1 and SF2 helicase families from archaea. ARCPHdb was implemented using MySQL relational database. Web interfaces were developed using Netbeans. Data were stored according to UniProt accession numbers, NCBI Ref Seq ID, PDB IDs and Entrez Databases. A user-friendly interactive web interface has been developed to browse, search and download archaeal helicase protein sequences, their available 3D structure models, and related documentation available in the literature provided by ARCPHdb. The database provides direct links to matching external databases. The ARCPHdb is the first online database to compile all protein information on SF1 and SF2 helicase from archaea in one platform. This database provides essential resource information for all researchers interested in the field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Substrate and nutrient limitation of ammonia-oxidizing bacteria and archaea in temperate forest soil

    Science.gov (United States)

    J.S. Norman; J.E. Barrett

    2014-01-01

    Ammonia-oxidizing microbes control the rate-limiting step of nitrification, a critical ecosystem process, which affects retention and mobility of nitrogen in soil ecosystems. This study investigated substrate (NH4þ) and nutrient (K and P) limitation of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in temperate forest soils at Coweeta Hydrologic...

  17. Bacteria, not archaea, restore nitrification in a zinc-contaminated soil

    NARCIS (Netherlands)

    Mertens, J.; Broos, K.; Wakelin, S.A.; Kowalchuk, G.A.; Springael, D.; Smolders, E.

    2009-01-01

    Biological ammonia oxidation had long been thought to be mediated solely by discrete clades of - and -proteobacteria (ammonia-oxidizing bacteria; AOB). However, ammonia-oxidizing Crenarchaeota (ammonia-oxidizing archaea; AOA) have recently been identified and proposed to be the dominant agents of

  18. Methane production and methanogenic Archaea in the digestive tracts of millipedes (Diplopoda)

    Czech Academy of Sciences Publication Activity Database

    Šustr, Vladimír; Chroňáková, Alica; Semanová, Stanislava; Tajovský, Karel; Šimek, Miloslav

    2014-01-01

    Roč. 9, č. 7 (2014), e102659 E-ISSN 1932-6203 R&D Projects: GA ČR GA526/09/1570 Institutional support: RVO:60077344 Keywords : methane production * methanogenic Archaea * digestive tracts of millipedes Subject RIV: EG - Zoology Impact factor: 3.234, year: 2014

  19. DNA Repair and Photoprotection: Mechanisms of Overcoming Environmental Ultraviolet Radiation Exposure in Halophilic Archaea

    Directory of Open Access Journals (Sweden)

    Daniel L. Jones

    2017-09-01

    Full Text Available Halophilic archaea push the limits of life at several extremes. In particular, they are noted for their biochemical strategies in dealing with osmotic stress, low water activity and cycles of desiccation in their hypersaline environments. Another feature common to their habitats is intense ultraviolet (UV radiation, which is a challenge that microorganisms must overcome. The consequences of high UV exposure include DNA lesions arising directly from bond rearrangement of adjacent bipyrimidines, or indirectly from oxidative damage, which may ultimately result in mutation and cell death. As such, these microorganisms have evolved a number of strategies to navigate the threat of DNA damage, which we differentiate into two categories: DNA repair and photoprotection. Photoprotection encompasses damage avoidance strategies that serve as a “first line of defense,” and in halophilic archaea include pigmentation by carotenoids, mechanisms of oxidative damage avoidance, polyploidy, and genomic signatures that make DNA less susceptible to photodamage. Photolesions that do arise are addressed by a number of DNA repair mechanisms that halophilic archaea efficiently utilize, which include photoreactivation, nucleotide excision repair, base excision repair, and homologous recombination. This review seeks to place DNA damage, repair, and photoprotection in the context of halophilic archaea and the solar radiation of their hypersaline environments. We also provide new insight into the breadth of strategies and how they may work together to produce remarkable UV-resistance for these microorganisms.

  20. Clusters of orthologous genes for 41 archaeal genomes and implications for evolutionary genomics of archaea

    OpenAIRE

    Wolf Yuri I; Novichkov Pavel S; Sorokin Alexander V; Makarova Kira S; Koonin Eugene V

    2007-01-01

    Abstract Background An evolutionary classification of genes from sequenced genomes that distinguishes between orthologs and paralogs is indispensable for genome annotation and evolutionary reconstruction. Shortly after multiple genome sequences of bacteria, archaea, and unicellular eukaryotes became available, an attempt on such a classification was implemented in Clusters of Orthologous Groups of proteins (COGs). Rapid accumulation of genome sequences creates opportunities for refining COGs ...

  1. Bridging domains : a comparison between information processing in Archaea and Eukarya

    NARCIS (Netherlands)

    Koning, de B.

    2015-01-01

    Bridging Domains

    A Comparison between Information Processing in Archaea and Eukarya

    Studying Information Processing

    Living cells evolved complex systems to handle the flow of information both

  2. Grappling archaea: ultrastructural analyses of an uncultivated, cold-loving archaeon and its biofilm

    Directory of Open Access Journals (Sweden)

    Alexandra ePerras

    2014-08-01

    Full Text Available Similarly to Bacteria, Archaea are microorganisms that interact with their surrounding environment in a versatile manner. To date, interactions based on cellular structure and surface appendages have mainly been documented using model systems of cultivable archaea under laboratory conditions. Here, we report on the microbial interactions and ultrastructural features of the uncultivated SM1 Euryarchaeon, which is highly dominant in its biotope. Therefore, biofilm samples taken from the Sippenauer Moor, Germany, were investigated via transmission electron microscopy (TEM; negative staining, thin-sectioning and scanning electron microscopy (SEM in order to elucidate the fine structures of the microbial cells and the biofilm itself. The biofilm consisted of small archaeal cocci (0.6 µm diameter, arranged in a regular pattern (1.2-2.0 µm distance from cell to cell, whereas each archaeon was connected to 6 other archaea on average. Extracellular polymeric substances (EPS were limited to the close vicinity of the archaeal cells, and specific cell surface appendages (hami, Moissl et al., 2005 protruded beyond the EPS matrix enabling microbial interaction by cell-cell contacts among the archaea and between archaea and bacteria. All analyzed hami revealed their previously described architecture of nano-grappling hooks and barb-wire basal structures. Considering the archaeal cell walls, the SM1 Euryarchaea exhibited a double-membrane, which has rarely been reported for members of this phylogenetic domain. Based on these findings, the current generalized picture on archaeal cell walls needs to be revisited, as archaeal cell structures are more complex and sophisticated than previously assumed, particularly when looking into the uncultivated majority.

  3. Thermodesulfobacterium geofontis sp. nov., a hyperthermophilic, sulfate-reducing bacterium isolated from Obsidian Pool, Yellowstone National Park.

    Science.gov (United States)

    Hamilton-Brehm, Scott D; Gibson, Robert A; Green, Stefan J; Hopmans, Ellen C; Schouten, Stefan; van der Meer, Marcel T J; Shields, John P; Damsté, Jaap S S; Elkins, James G

    2013-03-01

    A novel sulfate-reducing bacterium designated OPF15(T) was isolated from Obsidian Pool, Yellowstone National Park, Wyoming. The phylogeny of 16S rRNA and functional genes (dsrAB) placed the organism within the family Thermodesulfobacteriaceae. The organism displayed hyperthermophilic temperature requirements for growth with a range of 70-90 °C and an optimum of 83 °C. Optimal pH was around 6.5-7.0 and the organism required the presence of H2 or formate as an electron donor and CO2 as a carbon source. Electron acceptors supporting growth included sulfate, thiosulfate, and elemental sulfur. Lactate, acetate, pyruvate, benzoate, oleic acid, and ethanol did not serve as electron donors. Membrane lipid analysis revealed diacyl glycerols and acyl/ether glycerols which ranged from C14:0 to C20:0. Alkyl chains present in acyl/ether and diether glycerol lipids ranged from C16:0 to C18:0. Straight, iso- and anteiso-configurations were found for all lipid types. The presence of OPF15(T) was also shown to increase cellulose consumption during co-cultivation with Caldicellulosiruptor obsidiansis, a fermentative, cellulolytic extreme thermophile isolated from the same environment. On the basis of phylogenetic, phenotypic, and structural analyses, Thermodesulfobacterium geofontis sp. nov. is proposed as a new species with OPF15(T) representing the type strain.

  4. Influence of C-terminal tail deletion on structure and stability of hyperthermophile Sulfolobus tokodaii RNase HI.

    Science.gov (United States)

    Chen, Lin; Zhang, Ji-Long; Zheng, Qing-Chuan; Chu, Wen-Ting; Xue, Qiao; Zhang, Hong-Xing; Sun, Chia-Chung

    2013-06-01

    The C-terminus tail (G144-T149) of the hyperthermophile Sulfolobus tokodaii (Sto-RNase HI) plays an important role in this protein's hyperstabilization and may therefore be a good protein stability tag. Detailed understanding of the structural and dynamic effects of C-terminus tail deletion is required for gaining insights into the thermal stability mechanism of Sto-RNase HI. Focused on Sulfolobus tokodaii RNase HI (Sto-RNase HI) and its derivative lacking the C-terminal tail (ΔC6 Sto-RNase HI) (PDB codes: 2EHG and 3ALY), we applied molecular dynamics (MD) simulations at four different temperatures (300, 375, 475, and 500 K) to examine the effect of the C-terminal tail on the hyperstabilization of Sto-RNase HI and to investigate the unfolding process of Sto-RNase HI and ΔC6 Sto-RNase HI. The simulations suggest that the C-terminal tail has significant impact in hyperstabilization of Sto-RNase HI and the unfolding of these two proteins evolves along dissimilar pathways. Essential dynamics analysis indicates that the essential subspaces of the two proteins at different temperatures are non-overlapping within the trajectories and they exhibit different directions of motion. Our work can give important information to understand the three-state folding mechanism of Sto-RNase HI and to offer alternative strategies to improve the protein stability.

  5. Improving the Thermostability and Optimal Temperature of a Lipase from the Hyperthermophilic Archaeon Pyrococcus furiosus by Covalent Immobilization

    Directory of Open Access Journals (Sweden)

    Roberta V. Branco

    2015-01-01

    Full Text Available A recombinant thermostable lipase (Pf2001Δ60 from the hyperthermophilic Archaeon Pyrococcus furiosus (PFUL was immobilized by hydrophobic interaction on octyl-agarose (octyl PFUL and by covalent bond on aldehyde activated-agarose in the presence of DTT at pH = 7.0 (one-point covalent attachment (glyoxyl-DTT PFUL and on glyoxyl-agarose at pH 10.2 (multipoint covalent attachment (glyoxyl PFUL. The enzyme’s properties, such as optimal temperature and pH, thermostability, and selectivity, were improved by covalent immobilization. The highest enzyme stability at 70°C for 48 h incubation was achieved for glyoxyl PFUL (around 82% of residual activity, whereas glyoxyl-DTT PFUL maintained around 69% activity, followed by octyl PFUL (27% remaining activity. Immobilization on glyoxyl-agarose improved the optimal temperature to 90°C, while the optimal temperature of octyl PFUL was 70°C. Also, very significant changes in activity with different substrates were found. In general, the covalent bond derivatives were more active than octyl PFUL. The E value also depended substantially on the derivative and the conditions used. It was observed that the reaction of glyoxyl-DTT PFUL using methyl mandelate as a substrate at pH 7 presented the best results for enantioselectivity E=22 and enantiomeric excess (ee (% = 91.

  6. Structure of a D-tagatose 3-epimerase-related protein from the hyperthermophilic bacterium Thermotoga maritima.

    Science.gov (United States)

    Sakuraba, Haruhiko; Yoneda, Kazunari; Satomura, Takenori; Kawakami, Ryushi; Ohshima, Toshihisa

    2009-03-01

    The crystal structure of a D-tagatose 3-epimerase-related protein (TM0416p) encoded by the hypothetical open reading frame TM0416 in the genome of the hyperthermophilic bacterium Thermotoga maritima was determined at a resolution of 2.2 A. The asymmetric unit contained two homologous subunits and a dimer was generated by twofold symmetry. The main-chain coordinates of the enzyme monomer proved to be similar to those of D-tagatose 3-epimerase from Pseudomonas cichorii and D-psicose 3-epimerase from Agrobacterium tumefaciens; however, TM0416p exhibited a unique solvent-accessible substrate-binding pocket that reflected the absence of an alpha-helix that covers the active-site cleft in the two aforementioned ketohexose 3-epimerases. In addition, the residues responsible for creating a hydrophobic environment around the substrate in TM0416p differ entirely from those in the other two enzymes. Collectively, these findings suggest that the substrate specificity of TM0416p is likely to differ substantially from those of other D-tagatose 3-epimerase family enzymes.

  7. Crystallization and preliminary crystallographic analysis of an esterase with a novel domain from the hyperthermophile Thermotoga maritima

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Lei [Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenplein 10, 6703 HB Wageningen (Netherlands); Laboratory of Biophysical Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Levisson, Mark; Hendriks, Sjon; Akveld, Twan; Kengen, Servé W. M. [Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenplein 10, 6703 HB Wageningen (Netherlands); Dijkstra, Bauke W. [Laboratory of Biophysical Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Oost, John van der, E-mail: john.vanderoost@wur.nl [Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenplein 10, 6703 HB Wageningen (Netherlands)

    2007-09-01

    A thermostable esterase (EstA) from Thermotoga maritima was cloned and purified. Crystals of EstA and its selenomethionine derivative were grown and diffract to beyond 2.6 Å resolution at 100 K using synchrotron radiation. A predicted esterase (EstA) with an unusual new domain from the hyperthermophilic bacterium Thermotoga maritima has been cloned and overexpressed in Escherichia coli. The purified protein was crystallized by the hanging-drop vapour-diffusion technique in the presence of lithium sulfate and polyethylene glycol 8000. Selenomethionine-substituted EstA crystals were obtained under the same conditions and three different-wavelength data sets were collected to 2.6 Å resolution. The crystal belongs to space group H32, with unit-cell parameters a = b = 130.2, c = 306.2 Å. There are two molecules in the asymmetric unit, with a V{sub M} of 2.9 Å{sup 3} Da{sup −1} and 58% solvent content.

  8. Unusual Starch Degradation Pathway via Cyclodextrins in the Hyperthermophilic Sulfate-Reducing Archaeon Archaeoglobus fulgidus Strain 7324▿

    Science.gov (United States)

    Labes, Antje; Schönheit, Peter

    2007-01-01

    The hyperthermophilic archaeon Archaeoglobus fulgidus strain 7324 has been shown to grow on starch and sulfate and thus represents the first sulfate reducer able to degrade polymeric sugars. The enzymes involved in starch degradation to glucose 6-phosphate were studied. In extracts of starch-grown cells the activities of the classical starch degradation enzymes, α-amylase and amylopullulanase, could not be detected. Instead, evidence is presented here that A. fulgidus utilizes an unusual pathway of starch degradation involving cyclodextrins as intermediates. The pathway comprises the combined action of an extracellular cyclodextrin glucanotransferase (CGTase) converting starch to cyclodextrins and the intracellular conversion of cyclodextrins to glucose 6-phosphate via cyclodextrinase (CDase), maltodextrin phosphorylase (Mal-P), and phosphoglucomutase (PGM). These enzymes, which are all induced after growth on starch, were characterized. CGTase catalyzed the conversion of starch to mainly β-cyclodextrin. The gene encoding CGTase was cloned and sequenced and showed highest similarity to a glucanotransferase from Thermococcus litoralis. After transport of the cyclodextrins into the cell by a transport system to be defined, these molecules are linearized via a CDase, catalyzing exclusively the ring opening of the cyclodextrins to the respective maltooligodextrins. These are degraded by a Mal-P to glucose 1-phosphate. Finally, PGM catalyzes the conversion of glucose 1-phosphate to glucose 6-phosphate, which is further degraded to pyruvate via the modified Embden-Meyerhof pathway. PMID:17921308

  9. Palaeococcus helgesonii sp. nov., a facultatively anaerobic, hyperthermophilic archaeon from a geothermal well on Vulcano Island, Italy.

    Science.gov (United States)

    Amend, Jan P; Meyer-Dombard, D'Arcy R; Sheth, Seema N; Zolotova, Natalya; Amend, Andrea C

    2003-06-01

    A novel, hyperthermophilic archaeon was isolated from a shallow geothermal well that taps marine waters on the Island of Vulcano in the southern Tyrrhenian Sea, Italy. The cells were irregular cocci, 0.6-1.5 microm in diameter, with multiple polar flagella. Growth was observed at temperatures from 45 to 85 degrees C (optimum at approximately 80 degrees C), pH 5-8 (optimum at 6.5), and 0.5-6.0% NaCl (optimum at approximately 2.8%). The minimum doubling time was 50 min. The isolate was obligately chemoheterotrophic, utilizing complex organic compounds including yeast or beef extract, peptone, tryptone, or casein for best growth. The presence of elemental sulfur enhanced growth. The isolate grew anaerobically as well as microaerobically. The G+C content of the genomic DNA was 42.5 mol%. The 16S rRNA sequence indicated that the new isolate was a member of the Thermococcales within the euryarchaeota, representing the second species in the genus Palaeococcus. Its physiology and phylogeny differed in several key characteristics from those of Palaeococcus ferrophilus, justifying the establishment of a new species; the name Palaeococcus helgesonii sp. nov. is proposed, type strain PI1 (DSM 15127).

  10. Approaching the sequential and three-dimensional organization of Archaea, Bacteria and Eukarya genomes. Dynamic Organization of Nuclear Function

    NARCIS (Netherlands)

    T.A. Knoch (Tobias); M. Göker (Markus); R. Lohner (Rudolf); J. Langowski (Jörg)

    2002-01-01

    textabstractThe largely unresolved sequential organization, i.e. the relations within DNA sequences, and its connection to the three-dimensional organization of genomes was investigated by correlation analyses of completely sequenced chromosomes from Viroids, Archaea, Bacteria, Arabidopsis

  11. Methanogenic Archaea and oral infections – ways to unravel the black box

    Directory of Open Access Journals (Sweden)

    Hans-Peter Horz

    2011-02-01

    Full Text Available Archaea, organisms that make up the third domain of cellular life are members of the human oral microflora. They are strikingly less diverse than oral bacteria and appear to be relatively rare with respect to their numerical abundance. Since they have been exclusively found in association with oral infections such as periodontitis and apical periodontitis and given their unique physiology and energy metabolism, it is highly plausible that they are more than just secondary colonizers of infected areas, but instead are actively involved in the overall poly-microbial infection process. Conversely, it is a highly challenging task to clearly demonstrate their possible active participation – mostly due to the difficulty to grow them in routine microbiology laboratories. This current review points out the importance for understanding the medical impact of methanogens and aims at devising strategies for elucidating the true function of archaea in the oral ecosystem.

  12. Diversity and abundance of ammonia oxidizing archaea in tropical compost systems

    OpenAIRE

    de Gannes, Vidya; Eudoxie, Gaius; Dyer, David H.; Hickey, William J.

    2012-01-01

    Composting is widely used to transform waste materials into valuable agricultural products. In the tropics, large quantities of agricultural wastes could be potentially useful in agriculture after composting. However, while microbiological processes of composts in general are well established, relatively little is known about microbial communities that may be unique to these in tropical systems, particularly nitrifiers. The recent discovery of ammonia oxidizing archaea (AOA) has changed the p...

  13. DNA Repair and Photoprotection: Mechanisms of Overcoming Environmental Ultraviolet Radiation Exposure in Halophilic Archaea

    OpenAIRE

    Daniel L. Jones; Bonnie K. Baxter

    2017-01-01

    Halophilic archaea push the limits of life at several extremes. In particular, they are noted for their biochemical strategies in dealing with osmotic stress, low water activity and cycles of desiccation in their hypersaline environments. Another feature common to their habitats is intense ultraviolet (UV) radiation, which is a challenge that microorganisms must overcome. The consequences of high UV exposure include DNA lesions arising directly from bond rearrangement of adjacent bipyrimidine...

  14. Table 1. Details of Archaea considered for this study. P hylum Name ...

    Indian Academy of Sciences (India)

    User

    Table 1. Details of Archaea considered for this study. P hylum. Name. Genome G+. C. %. *. G enome. S ize. *. Gene count. *. Max growth temp. (oC). Optimum growth temp (oC). Generation time, tg. (min). ttR. NA. #. dtR. NA. #. Source. †. 1. C renarchaeota. Aeropyrum pernix K1. 56.31 1669696 1752 100 90-95. 200. 42. 42.

  15. Genetic diversity of archaea in deep-sea hydrothermal vent environments.

    OpenAIRE

    Takai, K; Horikoshi, K

    1999-01-01

    Molecular phylogenetic analysis of naturally occurring archaeal communities in deep-sea hydrothermal vent environments was carried out by PCR-mediated small subunit rRNA gene (SSU rDNA) sequencing. As determined through partial sequencing of rDNA clones amplified with archaea-specific primers, the archaeal populations in deep-sea hydrothermal vent environments showed a great genetic diversity, and most members of these populations appeared to be uncultivated and unidentified organisms. In the...

  16. Carbohydrate Metabolism in Archaea: Current Insights into Unusual Enzymes and Pathways and Their Regulation

    Science.gov (United States)

    Esser, Dominik; Rauch, Bernadette

    2014-01-01

    SUMMARY The metabolism of Archaea, the third domain of life, resembles in its complexity those of Bacteria and lower Eukarya. However, this metabolic complexity in Archaea is accompanied by the absence of many “classical” pathways, particularly in central carbohydrate metabolism. Instead, Archaea are characterized by the presence of unique, modified variants of classical pathways such as the Embden-Meyerhof-Parnas (EMP) pathway and the Entner-Doudoroff (ED) pathway. The pentose phosphate pathway is only partly present (if at all), and pentose degradation also significantly differs from that known for bacterial model organisms. These modifications are accompanied by the invention of “new,” unusual enzymes which cause fundamental consequences for the underlying regulatory principles, and classical allosteric regulation sites well established in Bacteria and Eukarya are lost. The aim of this review is to present the current understanding of central carbohydrate metabolic pathways and their regulation in Archaea. In order to give an overview of their complexity, pathway modifications are discussed with respect to unusual archaeal biocatalysts, their structural and mechanistic characteristics, and their regulatory properties in comparison to their classic counterparts from Bacteria and Eukarya. Furthermore, an overview focusing on hexose metabolic, i.e., glycolytic as well as gluconeogenic, pathways identified in archaeal model organisms is given. Their energy gain is discussed, and new insights into different levels of regulation that have been observed so far, including the transcript and protein levels (e.g., gene regulation, known transcription regulators, and posttranslational modification via reversible protein phosphorylation), are presented. PMID:24600042

  17. Contribution of Ruminal Fungi, Archaea, Protozoa, and Bacteria to the Methane Suppression Caused by Oilseed Supplemented Diets

    OpenAIRE

    Wang, Shaopu; Giller, Katrin; Kreuzer, Michael; Ulbrich, Susanne E.; Braun, Ueli; Schwarm, Angela

    2017-01-01

    Dietary lipids can suppress methane emission from ruminants, but effects are variable. Especially the role of bacteria, archaea, fungi and protozoa in mediating the lipid effects is unclear. In the present in vitro study, archaea, fungi and protozoa were selectively inhibited by specific agents. This was fully or almost fully successful for fungi and protozoa as well as archaeal activity as determined by the methyl-coenzyme M reductase alpha subunit gene. Five different microbial treatments w...

  18. Crystal structure of hyperthermophilic esterase EstE1 and the relationship between its dimerization and thermostability properties

    Directory of Open Access Journals (Sweden)

    Koh Eunhee

    2007-07-01

    Full Text Available Abstract Background EstE1 is a hyperthermophilic esterase belonging to the hormone-sensitive lipase family and was originally isolated by functional screening of a metagenomic library constructed from a thermal environmental sample. Dimers and oligomers may have been evolutionally selected in thermophiles because intersubunit interactions can confer thermostability on the proteins. The molecular mechanisms of thermostabilization of this extremely thermostable esterase are not well understood due to the lack of structural information. Results Here we report for the first time the 2.1-Å resolution crystal structure of EstE1. The three-dimensional structure of EstE1 exhibits a classic α/β hydrolase fold with a central parallel-stranded beta sheet surrounded by alpha helices on both sides. The residues Ser154, Asp251, and His281 form the catalytic triad motif commonly found in other α/β hydrolases. EstE1 exists as a dimer that is formed by hydrophobic interactions and salt bridges. Circular dichroism spectroscopy and heat inactivation kinetic analysis of EstE1 mutants, which were generated by structure-based site-directed mutagenesis of amino acid residues participating in EstE1 dimerization, revealed that hydrophobic interactions through Val274 and Phe276 on the β8 strand of each monomer play a major role in the dimerization of EstE1. In contrast, the intermolecular salt bridges contribute less significantly to the dimerization and thermostability of EstE1. Conclusion Our results suggest that intermolecular hydrophobic interactions are essential for the hyperthermostability of EstE1. The molecular mechanism that allows EstE1 to endure high temperature will provide guideline for rational design of a thermostable esterase/lipase using the lipolytic enzymes showing structural similarity to EstE1.

  19. Thermococcus sulfurophilus sp. nov., a New Hyperthermophilic, Sulfur-Reducing Archaeon Isolated from Deep-Sea Hydrothermal Vent

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.; Whitman, William B.; Marsic, Damien; Garriott, Owen; Six, N. Frank (Technical Monitor)

    2002-01-01

    A new hyperthermophilic, anaerobic, sulfur-reducing, organo-heterotrophic archaeon, strain OGL-20P, was isolated from "black smoker" chimney material at the Rainbow hydrothermal vent site in the Atlantic Ocean (36.2 N; 33.9 W). The cells of strain OGL-20P have irregular coccoid shape and are motile with a single flagellum. Growth occurs within pH range of 5.5-8.2 (optimal at pH 7.0-7.2), salinity range of 1-5% NaCl (optimal concentration 3% NaCl wt/vol), and temperature range of +55 C to +94 C (optimal growth at +83 C to +85 C). Strain OGL-20P is resistant to freezing (at -20 C). New isolate is strictly anaerobic with sulfur-type of respiration. A limited number of compounds are utilized as electron donors, including peptone, becto-tryptone, casamino-acids, and yeast extract but does not grow with separate amino acids. Sulfur and Iron can be used as electron acceptors; but not sulfate, sulfite, thiosulfate or nitrate. Strain OGL-20P is resistant to chloramphenicol, kanamycin, and gentamycin. Growth of str. OGL20P is inhibited by tetracyclin but not by Na2MoO4. The G+C content of DNA is 57.2 mol%. The 16S ribosomal RNA sequence analysis allows one to classify strain OGL-20P as a representative of a now species of Thermococcus genus. The name Thermococcus sulfurophilus op. nov., was suggested for the new isolate, type strain OGL-20P (sup T) (= ATCC BAA_394 (sup T) = DSM...(supT)).

  20. Crystal structure of THEP1 from the hyperthermophile Aquifex aeolicus: a variation of the RecA fold

    Directory of Open Access Journals (Sweden)

    Wittinghofer Alfred

    2005-03-01

    Full Text Available Abstract Background aaTHEP1, the gene product of aq_1292 from Aquifex aeolicus, shows sequence homology to proteins from most thermophiles, hyperthermophiles, and higher organisms such as man, mouse, and fly. In contrast, there are almost no homologous proteins in mesophilic unicellular microorganisms. aaTHEP1 is a thermophilic enzyme exhibiting both ATPase and GTPase activity in vitro. Although annotated as a nucleotide kinase, such an activity could not be confirmed for aaTHEP1 experimentally and the in vivo function of aaTHEP1 is still unknown. Results Here we report the crystal structure of selenomethionine substituted nucleotide-free aaTHEP1 at 1.4 Å resolution using a multiple anomalous dispersion phasing protocol. The protein is composed of a single domain that belongs to the family of 3-layer (α/β/α-structures consisting of nine central strands flanked by six helices. The closest structural homologue as determined by DALI is the RecA family. In contrast to the latter proteins, aaTHEP1 possesses an extension of the β-sheet consisting of four additional β-strands. Conclusion We conclude that the structure of aaTHEP1 represents a variation of the RecA fold. Although the catalytic function of aaTHEP1 remains unclear, structural details indicate that it does not belong to the group of GTPases, kinases or adenosyltransferases. A mainly positive electrostatic surface indicates that aaTHEP1 might be a DNA/RNA modifying enzyme. The resolved structure of aaTHEP1 can serve as paradigm for the complete THEP1 family.

  1. Thermococcus Thioreducens sp. Nov., a Novel Hyperthermophilic, Obligately Sulfur-reducing Archaeon from a Deep-sea Hydrothermal Vent

    Science.gov (United States)

    Pikuta, Elena V.; Marsic, Damien; Itoh, Takashi; Bej, Asim K.; Tang, Jane; Whitman, William B.; Ng, Joseph D.; Garriott, Owen K.; Hoover, Richard B.

    2007-01-01

    A hyperthermophilic, sulfur-reducing, organo-heterotrophic archaeon, strain OGL-20P was isolated from black smoker chimney material from the Rainbow hydrothermal vent site on the Mid-Atlantic Ridge (36.2 N, 33.9 W). The cells of strain OGL-20P(sup T) have an irregular coccoid shape and are motile with a single flagellum. Growth was observed within the pH range 5.0-8.5 (optimum pH 7.0), NaCl concentration range 1-5 % (w/v) (optimum 3%), and temperature range 55-94 C (optimum 83-85 C). The novel isolate is strictly anaerobic and obligately dependent upon elemental sulfur as an electron acceptor, but it does not reduce sulfate, sulfite, thiosulfate, iron (III) or nitrate. Proteolysis products (peptone, bacto-tryptone, casamino-acids, and yeast extract) are utilized as substrates during sulfur-reduction. Strain OGL-20P(sup T) is resistant to ampicillin, chloramphenicol, kanamycin, and gentamycin, but sensitive to tetracycline and rifampicin. The G+C content of DNA is 52.9 mol%. The 16S rRNA gene sequence analysis revealed that strain OGL-20P(sup T) is closely related to Thermococcus coalescens and related species, but no significant homology by DNA-DNA hybridization was observed between those species and the new isolate. On the basis of physiological and molecular properties of the new isolate, we conclude that strain OGL-20P(sup T) represents a new separate species within the genus Thermococcus, and propose the name Thermococcus thioreducens sp. nov. The type strain is OGL-20P(sup T) (= ATCC BAA-394(sup T) = JCM 12859(sup T) = DSM 14981(sup T)).

  2. Methane Production and Methanogenic Archaea in the Digestive Tracts of Millipedes (Diplopoda)

    Science.gov (United States)

    Šustr, Vladimír; Chroňáková, Alica; Semanová, Stanislava; Tajovský, Karel; Šimek, Miloslav

    2014-01-01

    Methane production by intestinal methanogenic Archaea and their community structure were compared among phylogenetic lineages of millipedes. Tropical and temperate millipedes of 35 species and 17 families were investigated. Species that emitted methane were mostly in the juliform orders Julida, Spirobolida, and Spirostreptida. The irregular phylogenetic distribution of methane production correlated with the presence of the methanogen-specific mcrA gene. The study brings the first detailed survey of methanogens’ diversity in the digestive tract of millipedes. Sequences related to Methanosarcinales, Methanobacteriales, Methanomicrobiales and some unclassified Archaea were detected using molecular profiling (DGGE). The differences in substrate preferences of the main lineages of methanogenic Archaea found in different millipede orders indicate that the composition of methanogen communities may reflect the differences in available substrates for methanogenesis or the presence of symbiotic protozoa in the digestive tract. We conclude that differences in methane production in the millipede gut reflect differences in the activity and proliferation of intestinal methanogens rather than an absolute inability of some millipede taxa to host methanogens. This inference was supported by the general presence of methanogenic activity in millipede faecal pellets and the presence of the 16S rRNA gene of methanogens in all tested taxa in the two main groups of millipedes, the Helminthophora and the Pentazonia. PMID:25028969

  3. Seryl-tRNA Synthetases from Methanogenic Archaea: Suppression of Bacterial Amber Mutation and Heterologous Toxicity

    Directory of Open Access Journals (Sweden)

    Drasko Boko

    2010-01-01

    Full Text Available Methanogenic archaea possess unusual seryl-tRNA synthetases (SerRS, evolutionarily distinct from the SerRSs found in other archaea, eucaryotes and bacteria. Our recent X-ray structural analysis of Methanosarcina barkeri SerRS revealed an idiosyncratic N-terminal domain and catalytic zinc ion in the active site. To shed further light on substrate discrimination by methanogenic-type SerRS, we set up to explore in vivo the interaction of methanogenic-type SerRSs with their cognate tRNAs in Escherichia coli or Saccharomyces cerevisiae. The expression of various methanogenic-type SerRSs was toxic for E. coli, resulting in the synthesis of erroneous proteins, as revealed by β-galactosidase stability assay. Although SerRSs from methanogenic archaea recognize tRNAsSer from all three domains of life in vitro, the toxicity presumably precluded the complementation of endogenous SerRS function in both, E. coli and S. cerevisiae. However, despite the observed toxicity, coexpression of methanogenic-type SerRS with its cognate tRNA suppressed bacterial amber mutation.

  4. Human age and skin physiology shape diversity and abundance of Archaea on skin.

    Science.gov (United States)

    Moissl-Eichinger, Christine; Probst, Alexander J; Birarda, Giovanni; Auerbach, Anna; Koskinen, Kaisa; Wolf, Peter; Holman, Hoi-Ying N

    2017-06-22

    The human skin microbiome acts as an important barrier protecting our body from pathogens and other environmental influences. Recent investigations have provided evidence that Archaea are a constant but highly variable component of the human skin microbiome, yet factors that determine their abundance changes are unknown. Here, we tested the hypothesis that the abundance of archaea on human skin is influenced by human age and skin physiology by quantitative PCR of 51 different skin samples taken from human subjects of various age. Our results reveal that archaea are more abundant in human subjects either older than 60 years or younger than 12 years as compared to middle-aged human subjects. These results, together with results obtained from spectroscopy analysis, allowed us gain first insights into a potential link of lower sebum levels and lipid content and thus reduced skin moisture with an increase in archaeal signatures. Amplicon sequencing of selected samples revealed the prevalence of specific eury- and mainly thaumarchaeal taxa, represented by a core archaeome of the human skin.

  5. In Vitro Antioxidant, Antihemolytic, and Anticancer Activity of the Carotenoids from Halophilic Archaea.

    Science.gov (United States)

    Hou, Jing; Cui, Heng-Lin

    2018-03-01

    Halophilic archaea represent a promising natural source of carotenoids. However, little information is available about the biological effects of carotenoids from halophilic archaea. In this study, the carotenoids produced by seven halophilic archaeal strains Halogeometricum rufum, Halogeometricum limi, Haladaptatus litoreus, Haloplanus vescus, Halopelagius inordinatus, Halogranum rubrum, and Haloferax volcanii were identified by ultraviolet/visible spectroscopy, thin-layer chromatography, and high-performance liquid chromatography-tandem mass spectrometry. The C 50 carotenoids bacterioruberin and its derivatives monoanhydrobacterioruberin and bisanhydrobacterioruberin were found to be the predominant carotenoids. The antioxidant capacities of the carotenoids from these strains were significantly higher than β-carotene as determined by 1,1-diphenyl-2-picrylhydrazyl radical scavenging assay. The antihemolytic activities of these carotenoid extracts against H 2 O 2 -induced hemolysis in mouse erythrocytes were 3.9-6.3 times higher than β-carotene. A dose-dependent in vitro antiproliferative activity against HepG2 cells was observed for the extract from Hgm. limi, while that from Hpn. vescus exhibited a relatively high activity in a dose-independent manner. These results suggested that halophilic archaea could be considered as an alternative source of natural carotenoids with high antioxidant, antihemolytic, and anticancer activity.

  6. Transcription-coupled repair of UV damage in the halophilic archaea.

    Science.gov (United States)

    Stantial, Nicole; Dumpe, Jarrod; Pietrosimone, Kathryn; Baltazar, Felicia; Crowley, David J

    2016-05-01

    Transcription-coupled repair (TCR) is a subpathway of nucleotide excision repair (NER) in which excision repair proteins are targeted to RNA polymerase-arresting lesions located in the transcribed strand of active genes. TCR has been documented in a variety of bacterial and eukaryotic organisms but has yet to be observed in the Archaea. We used Halobacterium sp. NRC-1 and Haloferax volcanii to determine if TCR occurs in the halophilic archaea. Following UV irradiation of exponentially growing cultures, we quantified the rate of repair of cyclobutane pyrimidine dimers in the two strands of the rpoB2B1A1A2 and the trpDFEG operons of Halobacterium sp. NRC-1 and the pts operon of H. volcanii through the use of a Southern blot assay and strand-specific probes. TCR was observed in all three operons and was dependent on the NER gene uvrA in Halobacterium sp. NRC-1, but not in H. volcanii. The halophilic archaea likely employ a novel mechanism for TCR in which an as yet unknown coupling factor recognizes the arrested archaeal RNA polymerase complex and recruits certain NER proteins to complete the process. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Respiratory quinones in Archaea: phylogenetic distribution and application as biomarkers in the marine environment.

    Science.gov (United States)

    Elling, Felix J; Becker, Kevin W; Könneke, Martin; Schröder, Jan M; Kellermann, Matthias Y; Thomm, Michael; Hinrichs, Kai-Uwe

    2016-02-01

    The distribution of respiratory quinone electron carriers among cultivated organisms provides clues on both the taxonomy of their producers and the redox processes these are mediating. Our study of the quinone inventories of 25 archaeal species belonging to the phyla Eury-, Cren- and Thaumarchaeota facilitates their use as chemotaxonomic markers for ecologically important archaeal clades. Saturated and monounsaturated menaquinones with six isoprenoid units forming the alkyl chain may serve as chemotaxonomic markers for Thaumarchaeota. Other diagnostic biomarkers are thiophene-bearing quinones for Sulfolobales and methanophenazines as functional quinone analogues of the Methanosarcinales. The ubiquity of saturated menaquinones in the Archaea in comparison to Bacteria suggests that these compounds may represent an ancestral and diagnostic feature of the Archaea. Overlap between quinone compositions of distinct thermophilic and halophilic archaea and bacteria may indicate lateral gene transfer. The biomarker potential of thaumarchaeal quinones was exemplarily demonstrated on a water column profile of the Black Sea. Both, thaumarchaeal quinones and membrane lipids showed similar distributions with maxima at the chemocline. Quinone distributions indicate that Thaumarchaeota dominate respiratory activity at a narrow interval in the chemocline, while they contribute only 9% to the microbial biomass at this depth, as determined by membrane lipid analysis. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. Genetic diversity of archaea in deep-sea hydrothermal vent environments.

    Science.gov (United States)

    Takai, K; Horikoshi, K

    1999-08-01

    Molecular phylogenetic analysis of naturally occurring archaeal communities in deep-sea hydrothermal vent environments was carried out by PCR-mediated small subunit rRNA gene (SSU rDNA) sequencing. As determined through partial sequencing of rDNA clones amplified with archaea-specific primers, the archaeal populations in deep-sea hydrothermal vent environments showed a great genetic diversity, and most members of these populations appeared to be uncultivated and unidentified organisms. In the phylogenetic analysis, a number of rDNA sequences obtained from deep-sea hydrothermal vents were placed in deep lineages of the crenarchaeotic phylum prior to the divergence of cultivated thermophilic members of the crenarchaeota or between thermophilic members of the euryarchaeota and members of the methanogen-halophile clade. Whole cell in situ hybridization analysis suggested that some microorganisms of novel phylotypes predicted by molecular phylogenetic analysis were likely present in deep-sea hydrothermal vent environments. These findings expand our view of the genetic diversity of archaea in deep-sea hydrothermal vent environments and of the phylogenetic organization of archaea.

  9. RNA degradation in Archaea and Gram-negative bacteria different from Escherichia coli.

    Science.gov (United States)

    Evguenieva-Hackenberg, Elena; Klug, Gabriele

    2009-01-01

    Exoribonucleolytic and endoribonucleolytic activities are important for controlled degradation of RNA and contribute to the regulation of gene expression at the posttranscriptional level by influencing the half-lives of specific messenger RNAs. The RNA half-lives are determined by the characteristics of the RNA substrates and by the availability and the properties of the involved proteins-ribonucleases and assisting polypeptides. Much is known about RNA degradation in Eukarya and Bacteria, but there is limited information about RNA-degrading enzymes and RNA destabilizing or stabilizing elements in the domain of the Archaea. The recent progress in the understanding of the structure and function of the archaeal exosome, a protein complex with RNA-degrading and RNA-tailing capabilities, has given some first insights into the mechanisms of RNA degradation in the third domain of life and into the evolution of RNA-degrading enzymes. Moreover, other archaeal RNases with degrading potential have been described and a new mechanism for protection of the 5'-end of RNA in Archaea was discovered. Here, we summarize the current knowledge on RNA degradation in the Archaea. Additionally, RNA degradation mechanisms in Rhodobacter capsulatus and Pseudomonas syringae are compared to those in the major model organism for Gram-negatives, Escherichia coli, which dominates our view on RNA degradation in Bacteria.

  10. Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents.

    Directory of Open Access Journals (Sweden)

    Christian Hoffmann

    Full Text Available Diet influences health as a source of nutrients and toxins, and by shaping the composition of resident microbial populations. Previous studies have begun to map out associations between diet and the bacteria and viruses of the human gut microbiome. Here we investigate associations of diet with fungal and archaeal populations, taking advantage of samples from 98 well-characterized individuals. Diet was quantified using inventories scoring both long-term and recent diet, and archaea and fungi were characterized by deep sequencing of marker genes in DNA purified from stool. For fungi, we found 66 genera, with generally mutually exclusive presence of either the phyla Ascomycota or Basiodiomycota. For archaea, Methanobrevibacter was the most prevalent genus, present in 30% of samples. Several other archaeal genera were detected in lower abundance and frequency. Myriad associations were detected for fungi and archaea with diet, with each other, and with bacterial lineages. Methanobrevibacter and Candida were positively associated with diets high in carbohydrates, but negatively with diets high in amino acids, protein, and fatty acids. A previous study emphasized that bacterial population structure was associated primarily with long-term diet, but high Candida abundance was most strongly associated with the recent consumption of carbohydrates. Methobrevibacter abundance was associated with both long term and recent consumption of carbohydrates. These results confirm earlier targeted studies and provide a host of new associations to consider in modeling the effects of diet on the gut microbiome and human health.

  11. The growing tree of Archaea: new perspectives on their diversity, evolution and ecology.

    Science.gov (United States)

    Adam, Panagiotis S; Borrel, Guillaume; Brochier-Armanet, Céline; Gribaldo, Simonetta

    2017-11-01

    The Archaea occupy a key position in the Tree of Life, and are a major fraction of microbial diversity. Abundant in soils, ocean sediments and the water column, they have crucial roles in processes mediating global carbon and nutrient fluxes. Moreover, they represent an important component of the human microbiome, where their role in health and disease is still unclear. The development of culture-independent sequencing techniques has provided unprecedented access to genomic data from a large number of so far inaccessible archaeal lineages. This is revolutionizing our view of the diversity and metabolic potential of the Archaea in a wide variety of environments, an important step toward understanding their ecological role. The archaeal tree is being rapidly filled up with new branches constituting phyla, classes and orders, generating novel challenges for high-rank systematics, and providing key information for dissecting the origin of this domain, the evolutionary trajectories that have shaped its current diversity, and its relationships with Bacteria and Eukarya. The present picture is that of a huge diversity of the Archaea, which we are only starting to explore.

  12. Public aquaria as long-term enrichments for investigating planktonic Archaea

    Science.gov (United States)

    Goldenstein, Nadine I.; Warren, Courtney E.; Lipp, Julius S.; Pagani, Mark; Hinrichs, Kai-Uwe

    2016-04-01

    The most abundant group of planktonic Archaea , the so-called Thaumarchaeota, represents 20% of all marine planktonic microorganisms (Karner et al., 2001) and their energy efficient performance of nitrification makes them key players in the global nitrogen- and carbon-cycle (Könneke et al., 2014). Furthermore, planktonic Archaea are considered to be the major producers of specific microbial membrane lipids that are extensively used as paleoproxies in marine climate research (Schouten et al., 2002). Therefore, assessing the parameters controlling the distribution of Archaea in the marine water column is crucial for studies of modern and past marine environments. Although diverse studies utilizing DNA- and biomarker-based approaches have constrained the turnover and distribution of marine Archaea, the environmental factors affecting their abundance and activity (e.g., Wuchter et al., 2006; Bale et al., 2013) are still poorly understood. Further, previous surveys, using enrichment cultivation and pure culture experiments, provided valuable information on adaptation of planktonic Archaea to changes of parameters affecting growth conditions, such as temperature, salinity and growth stage (Elling et al., 2014, 2015). Hence, we know that planktonic Archaea directly adapt their membranes to changing growth conditions, but also that environmental selection for individual phylogenetic groups of these organisms is also reflected in the membrane lipid pool. Extending these studies, this project further aims at constraining the environmental parameters controlling archaeal abundance in the marine environment. Public aquaria, which are comparable to perfectly monitored long-term enrichment cultures, are optimal sampling sites for this task. A comprehensive set of 120 water and substrate samples from fresh, marine and brackish systems exhibiting diverse conditions was selected from 15 public aquaria at the east and west coast of the USA. These samples were examined for their

  13. First description of giant Archaea (Thaumarchaeota) associated with putative bacterial ectosymbionts in a sulfidic marine habitat.

    Science.gov (United States)

    Muller, Félix; Brissac, Terry; Le Bris, Nadine; Felbeck, Horst; Gros, Olivier

    2010-08-01

    Archaea may be involved in global energy cycles, and are known for their ability to interact with eukaryotic species (sponges, corals and ascidians) or as archaeal-bacterial consortia. The recently proposed phylum Thaumarchaeota may represent the deepest branching lineage in the archaeal phylogeny emerging before the divergence between Euryarchaeota and Crenarchaeota. Here we report the first characterization of two marine thaumarchaeal species from shallow waters that consist of multiple giant cells. One species is coated with sulfur-oxidizing γ-Proteobacteria. These new uncultured thaumarchaeal species are able to live in the sulfide-rich environments of a tropical mangrove swamp, either on living tissues such as roots or on various kinds of materials such as stones, sunken woods, etc. These archaea and archaea/bacteria associations have been studied using light microscopy, transmission electron microscopy and scanning electron microscopy. Species identification of archaeons and the putative bacterial symbiont have been assessed by 16S small subunit ribosomal RNA analysis. The sulfur-oxidizing ability of the bacteria has been assessed by genetic investigation on alpha-subunit of the adenosine-5'-phosphosulfate reductase/oxidase's (AprA). Species identifications have been confirmed by fluorescence in situ hybridization using specific probes designed in this study. In this article, we describe two new giant archaeal species that form the biggest archaeal filaments ever observed. One of these species is covered by a specific biofilm of sulfur-oxidizing γ-Proteobacteria. This study highlights an unexpected morphological and genetic diversity of the phylum Thaumarchaeota. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  14. Stoichiometric and kinetic analysis of extreme halophilic Archaea on various substrates in a corrosion resistant bioreactor.

    Science.gov (United States)

    Lorantfy, Bettina; Seyer, Bernhard; Herwig, Christoph

    2014-01-25

    Extreme halophilic Archaea are extremophile species which can thrive in hypersaline environments of up to 3-5 M sodium chloride concentration. Although their ecology and physiology are widely identified on the microbiological level, little emphasis has been laid on quantitative bioprocess development with extreme halophiles. The goal of this study was to establish, on the one hand, a methodological basis for quantitative bioprocess analysis of extreme halophilic Archaea with an extreme halophilic strain as an example. Firstly, as a novel usage, a corrosion resistant bioreactor setup for extreme halophiles has been implemented. Then, paying special attention to total bioprocess quantification approaches, an indirect method for biomass quantification using on-line process signals was introduced. Subsequently, robust quantitative data evaluation methods for halophiles could be developed, providing defined and controlled cultivation conditions in the bioreactor and therefore obtaining suitable quality of on-line as well as off-line datasets. On the other hand, new physiological results of extreme halophiles in bioreactor have also been obtained based on the quantitative methodological tools. For the first time, quantitative data on stoichiometry and kinetics were collected and evaluated on different carbon sources. The results on various substrates were interpreted, with proposed metabolic mechanisms, by linking to the reported primary carbon metabolism of extreme halophilic Archaea. Moreover, results of chemostat cultures demonstrated that extreme halophilic organisms show Monod-kinetics on different sole carbon sources. A diauxic growth pattern was described on a mixture of substrates in batch cultivations. In addition, the methodologies presented here enable one to characterize the utilized strain Haloferax mediterranei (HFX) as a potential new host organism. Thus, this study offers a strong methodological basis as well as a fundamental physiological assessment for

  15. Computational Exploration of Putative LuxR Solos in Archaea and Their Functional Implications in Quorum Sensing

    Science.gov (United States)

    Rajput, Akanksha; Kumar, Manoj

    2017-01-01

    LuxR solos are unexplored in Archaea, despite their vital role in the bacterial regulatory network. They assist bacteria in perceiving acyl homoserine lactones (AHLs) and/or non-AHLs signaling molecules for establishing intraspecies, interspecies, and interkingdom communication. In this study, we explored the potential LuxR solos of Archaea from InterPro v62.0 meta-database employing taxonomic, probable function, distribution, and evolutionary aspects to decipher their role in quorum sensing (QS). Our bioinformatics analyses showed that putative LuxR solos of Archaea shared few conserved domains with bacterial LuxR despite having less similarity within proteins. Functional characterization revealed their ability to bind various AHLs and/or non-AHLs signaling molecules that involve in QS cascades alike bacteria. Further, the phylogenetic study indicates that Archaeal LuxR solos (with less substitution per site) evolved divergently from bacteria and share distant homology along with instances of horizontal gene transfer. Moreover, Archaea possessing putative LuxR solos, exhibit the correlation between taxonomy and ecological niche despite being the inhabitant of diverse habitats like halophilic, thermophilic, barophilic, methanogenic, and chemolithotrophic. Therefore, this study would shed light in deciphering the role of the putative LuxR solos of Archaea to adapt varied habitats via multilevel communication with other organisms using QS. PMID:28515720

  16. Computational Exploration of Putative LuxR Solos in Archaea and Their Functional Implications in Quorum Sensing

    Directory of Open Access Journals (Sweden)

    Akanksha Rajput

    2017-05-01

    Full Text Available LuxR solos are unexplored in Archaea, despite their vital role in the bacterial regulatory network. They assist bacteria in perceiving acyl homoserine lactones (AHLs and/or non-AHLs signaling molecules for establishing intraspecies, interspecies, and interkingdom communication. In this study, we explored the potential LuxR solos of Archaea from InterPro v62.0 meta-database employing taxonomic, probable function, distribution, and evolutionary aspects to decipher their role in quorum sensing (QS. Our bioinformatics analyses showed that putative LuxR solos of Archaea shared few conserved domains with bacterial LuxR despite having less similarity within proteins. Functional characterization revealed their ability to bind various AHLs and/or non-AHLs signaling molecules that involve in QS cascades alike bacteria. Further, the phylogenetic study indicates that Archaeal LuxR solos (with less substitution per site evolved divergently from bacteria and share distant homology along with instances of horizontal gene transfer. Moreover, Archaea possessing putative LuxR solos, exhibit the correlation between taxonomy and ecological niche despite being the inhabitant of diverse habitats like halophilic, thermophilic, barophilic, methanogenic, and chemolithotrophic. Therefore, this study would shed light in deciphering the role of the putative LuxR solos of Archaea to adapt varied habitats via multilevel communication with other organisms using QS.

  17. Environmental evaluation of coexistence of denitrifying anaerobic methane-oxidizing archaea and bacteria in a paddy field.

    Science.gov (United States)

    Ding, Jing; Fu, Liang; Ding, Zhao-Wei; Lu, Yong-Ze; Cheng, Shuk H; Zeng, Raymond J

    2016-01-01

    The nitrate-dependent denitrifying anaerobic methane oxidation (DAMO) process, which is metabolized together by anaerobic methanotrophic archaea and NC10 phylum bacteria, is expected to be important for the global carbon and nitrogen cycles. However, there are little studies about the existence of this process and the functional microbes in environments. Therefore, the coexistence of DAMO archaea and bacteria in a paddy field was evaluated in this study. Next-generation sequencing showed that the two orders, Methanosarcinales and Nitrospirales, to which DAMO archaea and DAMO bacteria belong, were detected in the four soil samples. Then the in vitro experiments demonstrated both of nitrite- and nitrate-dependent DAMO activities, which confirmed the coexistence of DAMO archaea and DAMO bacteria. It was the first report about the coexistence of DAMO archaea and bacteria in a paddy field. Furthermore, anammox bacteria were detected in two of the four samples. The in vitro experiments did not show anammox activity in the initial period but showed low anammox activity after 20 days' enrichment. These results implicated that anammox bacteria may coexist with DAMO microorganisms in this field, but at a very low percentage.

  18. Archaea como componentes da microbiota endofítica de frutos do cafeeiro

    OpenAIRE

    Oliveira, Marcelo Nagem Valério de

    2009-01-01

    Este é o primeiro estudo de diversidade genética da comunidade de Archaea associada a frutos de café (Coffea arabica L.). Ele foi realizado em amostras de frutos no estádio cereja das cultivares Bourbon Amarelo, Bourbon Vermelho, Catuaí Amarelo, Catuaí Vermelho e Catucaí Vermelho, em diferentes altitudes. A diversidade de arqueas presentes durante a secagem natural de grãos despolpados em terreiro revestido com cimento também foi estudada. A adição de proteases durante a etapa de lise celular...

  19. Shifts among Eukaryota, Bacteria, and Archaea define the vertical organization of a lake sediment.

    Science.gov (United States)

    Wurzbacher, Christian; Fuchs, Andrea; Attermeyer, Katrin; Frindte, Katharina; Grossart, Hans-Peter; Hupfer, Michael; Casper, Peter; Monaghan, Michael T

    2017-04-08

    Lake sediments harbor diverse microbial communities that cycle carbon and nutrients while being constantly colonized and potentially buried by organic matter sinking from the water column. The interaction of activity and burial remained largely unexplored in aquatic sediments. We aimed to relate taxonomic composition to sediment biogeochemical parameters, test whether community turnover with depth resulted from taxonomic replacement or from richness effects, and to provide a basic model for the vertical community structure in sediments. We analyzed four replicate sediment cores taken from 30-m depth in oligo-mesotrophic Lake Stechlin in northern Germany. Each 30-cm core spanned ca. 170 years of sediment accumulation according to 137 Cs dating and was sectioned into layers 1-4 cm thick. We examined a full suite of biogeochemical parameters and used DNA metabarcoding to examine community composition of microbial Archaea, Bacteria, and Eukaryota. Community β-diversity indicated nearly complete turnover within the uppermost 30 cm. We observed a pronounced shift from Eukaryota- and Bacteria-dominated upper layers (14 cm) dominated by enigmatic Archaea that typically occur in deep-sea sediments. Taxonomic replacement was the prevalent mechanism in structuring the community composition and was linked to parameters indicative of microbial activity (e.g., CO 2 and CH 4 concentration, bacterial protein production). Richness loss played a lesser role but was linked to conservative parameters (e.g., C, N, P) indicative of past conditions. By including all three domains, we were able to directly link the exponential decay of eukaryotes with the active sediment microbial community. The dominance of Archaea in deeper layers confirms earlier findings from marine systems and establishes freshwater sediments as a potential low-energy environment, similar to deep sea sediments. We propose a general model of sediment structure and function based on microbial characteristics and

  20. Uncovering Mechanisms for Repair and Protection in Cold Environments Through Studies of Cold Adapted Archaea

    Science.gov (United States)

    2009-12-18

    Cpn60) subunits is more abundant during growth at 4°C compared to 23°C. Consistent with this, cold shock studies in thermophilic archaea, and...helicases (Mbur_0245, Mbur_1950): These enzymes may be responsible for unwinding secondary structures in messenger RNA, and a role in cold adaptation in M...limiting step, it is unsurprising that these enzymes showed higher abundance at 4ºC. ParA protein (Mbur_2141): ParA ATPases are a ubiquitous

  1. Meta-Analysis of Quantification Methods Shows that Archaea and Bacteria Have Similar Abundances in the Subseafloor

    Science.gov (United States)

    May, Megan K.; Kevorkian, Richard T.; Steen, Andrew D.

    2013-01-01

    There is no universally accepted method to quantify bacteria and archaea in seawater and marine sediments, and different methods have produced conflicting results with the same samples. To identify best practices, we compiled data from 65 studies, plus our own measurements, in which bacteria and archaea were quantified with fluorescent in situ hybridization (FISH), catalyzed reporter deposition FISH (CARD-FISH), polyribonucleotide FISH, or quantitative PCR (qPCR). To estimate efficiency, we defined “yield” to be the sum of bacteria and archaea counted by these techniques divided by the total number of cells. In seawater, the yield was high (median, 71%) and was similar for FISH, CARD-FISH, and polyribonucleotide FISH. In sediments, only measurements by CARD-FISH in which archaeal cells were permeabilized with proteinase K showed high yields (median, 84%). Therefore, the majority of cells in both environments appear to be alive, since they contain intact ribosomes. In sediments, the sum of bacterial and archaeal 16S rRNA gene qPCR counts was not closely related to cell counts, even after accounting for variations in copy numbers per genome. However, qPCR measurements were precise relative to other qPCR measurements made on the same samples. qPCR is therefore a reliable relative quantification method. Inconsistent results for the relative abundance of bacteria versus archaea in deep subsurface sediments were resolved by the removal of CARD-FISH measurements in which lysozyme was used to permeabilize archaeal cells and qPCR measurements which used ARCH516 as an archaeal primer or TaqMan probe. Data from best-practice methods showed that archaea and bacteria decreased as the depth in seawater and marine sediments increased, although archaea decreased more slowly. PMID:24096423

  2. Evolutionary patterns in the sequence and structure of transfer RNA: early origins of archaea and viruses.

    Directory of Open Access Journals (Sweden)

    Feng-Jie Sun

    2008-03-01

    Full Text Available Transfer RNAs (tRNAs are ancient molecules that are central to translation. Since they probably carry evolutionary signatures that were left behind when the living world diversified, we reconstructed phylogenies directly from the sequence and structure of tRNA using well-established phylogenetic methods. The trees placed tRNAs with long variable arms charging Sec, Tyr, Ser, and Leu consistently at the base of the rooted phylogenies, but failed to reveal groupings that would indicate clear evolutionary links to organismal origin or molecular functions. In order to uncover evolutionary patterns in the trees, we forced tRNAs into monophyletic groups using constraint analyses to generate timelines of organismal diversification and test competing evolutionary hypotheses. Remarkably, organismal timelines showed Archaea was the most ancestral superkingdom, followed by viruses, then superkingdoms Eukarya and Bacteria, in that order, supporting conclusions from recent phylogenomic studies of protein architecture. Strikingly, constraint analyses showed that the origin of viruses was not only ancient, but was linked to Archaea. Our findings have important implications. They support the notion that the archaeal lineage was very ancient, resulted in the first organismal divide, and predated diversification of tRNA function and specificity. Results are also consistent with the concept that viruses contributed to the development of the DNA replication machinery during the early diversification of the living world.

  3. Halophilic archaea on Earth and in space: growth and survival under extreme conditions.

    Science.gov (United States)

    Oren, Aharon

    2014-12-13

    Salts are abundant on Mars, and any liquid water that is present or may have been present on the planet is expected to be hypersaline. Halophilic archaea (family Halobacteriaceae) are the microorganisms best adapted to life at extremes of salinity on Earth. This paper reviews the properties of the Halobacteriaceae that may make the group good candidates for life also on Mars. Many species resist high UV and gamma radiation levels; one species has survived exposure to vacuum and radiation during a space flight; and there is at least one psychrotolerant species. Halophilic archaea may survive for millions of years within brine inclusions in salt crystals. Many species have different modes of anaerobic metabolism, and some can use light as an energy source using the light-driven proton pump bacteriorhodopsin. They are also highly tolerant to perchlorate, recently shown to be present in Martian soils, and some species can even use perchlorate as an electron acceptor to support anaerobic growth. The presence of characteristic carotenoid pigments (α-bacterioruberin and derivatives) makes the Halobacteriaceae easy to identify by Raman spectroscopy. Thus, if present on Mars, such organisms may be detected by Raman instrumentation planned to explore Mars during the upcoming ExoMars mission. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  4. Halophilic archaea cultivated from surface sterilized middle-late eocene rock salt are polyploid.

    Directory of Open Access Journals (Sweden)

    Salla T Jaakkola

    Full Text Available Live bacteria and archaea have been isolated from several rock salt deposits of up to hundreds of millions of years of age from all around the world. A key factor affecting their longevity is the ability to keep their genomic DNA intact, for which efficient repair mechanisms are needed. Polyploid microbes are known to have an increased resistance towards mutations and DNA damage, and it has been suggested that microbes from deeply buried rock salt would carry several copies of their genomes. Here, cultivable halophilic microbes were isolated from a surface sterilized middle-late Eocene (38-41 million years ago rock salt sample, drilled from the depth of 800 m at Yunying salt mine, China. Eight unique isolates were obtained, which represented two haloarchaeal genera, Halobacterium and Halolamina. We used real-time PCR to show that our isolates are polyploid, with genome copy numbers of 11-14 genomes per cell in exponential growth phase. The ploidy level was slightly downregulated in stationary growth phase, but the cells still had an average genome copy number of 6-8. The polyploidy of halophilic archaea living in ancient rock salt might be a factor explaining how these organisms are able to overcome the challenge of prolonged survival during their entombment.

  5. Solid-state fermentation as a potential technique for esterase/lipase production by halophilic archaea.

    Science.gov (United States)

    Martin del Campo, Martha; Camacho, Rosa M; Mateos-Díaz, Juan C; Müller-Santos, Marcelo; Córdova, Jesus; Rodríguez, Jorge A

    2015-11-01

    Halophilic archaea are extremophiles, adapted to high-salt environments, showing a big biotechnological potential as enzyme, lipids and pigments producers. Four inert supports (perlite, vermiculite, polyurethane foam and glass fiber) were employed for solid-state fermentation (SSF) of the halophilic archaeon Natronococcus sp. TC6 to investigate biomass and esterase production. A very low esterase activity and high water activity were observed when perlite, vermiculite and polyurethane were used as supports. When glass fiber was employed, an important moisture loss was observed (8.6%). Moreover, moisture retention was improved by mixing polyurethane and glass fiber, resulting in maximal biomass and esterase production. Three halophilic archaea: Natronococcus sp. TC6, Halobacterium sp. NRC-1 and Haloarcula marismortui were cultured by submerged fermentation (SmF) and by SSF; an improvement of 1.3- to 6.2-fold was observed in the biomass and esterase production when SSF was used. Growth was not homogeneous in the mixture, but was predominant in the glass fiber thus was probably because the glass fiber provides a holder to the cells, while the polyurethane acts as an impregnation medium reservoir. To the best of our knowledge, this work is the first report on haloarchaea cultivation by SSF aiming biomass and esterase/lipase activity production.

  6. Differential stability of TATA box binding proteins from archaea with different optimal growth temperatures

    Science.gov (United States)

    Kopitz, Annette; Soppa, Jörg; Krejtschi, Carsten; Hauser, Karin

    2009-09-01

    The TATA box binding protein (TBP) is involved in promoter recognition, the first step of transcription initiation. TBP is universally conserved and essential in archaea and eukaryotes. In archaea, TBPs have to be stable and to function in species that cover an extremely wide range of optimal growth temperatures (OGTs), from below 0 °C to more than 100 °C. Thus, the archaeal TBP family is ideally suited to study the evolutionary adaptation of proteins to an extremely wide range of temperatures. We characterized the thermostability of one mesophilic and one thermophilic TBP by infrared spectroscopy. Transition temperatures ( Tms) of thermal unfolding have been determined using TBPs from Methanosarcina mazei (OGT 37 °C) and from Methanothermobacter thermautotrophicus (OGT 65 °C). Furthermore, the influence of protein and salt concentration on thermostability has been characterized. Together with previous studies, our results reveal that the Tms of archaeal TBPs are closely correlated with the OGTs of the respective species. Noteworthy, this is also true for the TBP from M. mazei representing the first characterized TBP from a mesophilic archaeon. In contrast, the only characterized eukaryotic TBP of the mesophilic plant Arabidopsis thaliana has a Tm more than 40 °C above the OGT.

  7. Deciphering the Translation Initiation Factor 5A Modification Pathway in Halophilic Archaea

    Directory of Open Access Journals (Sweden)

    Laurence Prunetti

    2016-01-01

    Full Text Available Translation initiation factor 5A (IF5A is essential and highly conserved in Eukarya (eIF5A and Archaea (aIF5A. The activity of IF5A requires hypusine, a posttranslational modification synthesized in Eukarya from the polyamine precursor spermidine. Intracellular polyamine analyses revealed that agmatine and cadaverine were the main polyamines produced in Haloferax volcanii in minimal medium, raising the question of how hypusine is synthesized in this halophilic Archaea. Metabolic reconstruction led to a tentative picture of polyamine metabolism and aIF5A modification in Hfx. volcanii that was experimentally tested. Analysis of aIF5A from Hfx. volcanii by LC-MS/MS revealed it was exclusively deoxyhypusinylated. Genetic studies confirmed the role of the predicted arginine decarboxylase gene (HVO_1958 in agmatine synthesis. The agmatinase-like gene (HVO_2299 was found to be essential, consistent with a role in aIF5A modification predicted by physical clustering evidence. Recombinant deoxyhypusine synthase (DHS from S. cerevisiae was shown to transfer 4-aminobutyl moiety from spermidine to aIF5A from Hfx. volcanii in vitro. However, at least under conditions tested, this transfer was not observed with the Hfx. volcanii DHS. Furthermore, the growth of Hfx. volcanii was not inhibited by the classical DHS inhibitor GC7. We propose a model of deoxyhypusine synthesis in Hfx. volcanii that differs from the canonical eukaryotic pathway, paving the way for further studies.

  8. Microbial nitrification in throughfall of a Japanese cedar associated with archaea from the tree canopy.

    Science.gov (United States)

    Watanabe, Keiji; Kohzu, Ayato; Suda, Wataru; Yamamura, Shigeki; Takamatsu, Takejiro; Takenaka, Akio; Koshikawa, Masami Kanao; Hayashi, Seiji; Watanabe, Mirai

    2016-01-01

    To investigate the nitrification potential of phyllospheric microbes, we incubated throughfall samples collected under the canopies of Japanese cedar (Cryptomeria japonica) and analyzed the transformation of inorganic nitrogen in the samples. Nitrate concentration increased in the unfiltered throughfall after 4 weeks of incubation, but remained nearly constant in the filtered samples (pore size: 0.2 and 0.4 µm). In the unfiltered samples, δ(18)O and δ(15)N values of nitrate decreased during incubation. In addition, archaeal ammonia monooxygenase subunit A (amoA) genes, which participate in the oxidation of ammonia, were found in the throughfall samples, although betaproteobacterial amoA genes were not detected. The amoA genes recovered from the leaf surface of C. japonica were also from archaea. Conversely, nitrate production, decreased isotope ratios of nitrate, and the presence of amoA genes was not observed in rainfall samples collected from an open area. Thus, the microbial nitrification that occurred in the incubated throughfall is likely due to ammonia-oxidizing archaea that were washed off the tree canopy by precipitation.

  9. Marine Group II Dominates Planktonic Archaea in Water Column of the Northeastern South China Sea

    Directory of Open Access Journals (Sweden)

    Haodong Liu

    2017-06-01

    Full Text Available Temperature, nutrients, and salinity are among the important factors constraining the distribution and abundance of microorganisms in the ocean. Marine Group II (MGII belonging to Euryarchaeota commonly dominates the planktonic archaeal community in shallow water and Marine Group I (MGI, now is called Thaumarchaeota in deeper water in global oceans. Results of quantitative PCR (qPCR and 454 sequencing in our study, however, showed the dominance of MGII in planktonic archaea throughout the water column of the northeastern South China Sea (SCS that is characterized by strong water mixing. The abundance of ammonia-oxidizing archaea (AOA representing the main group of Thaumarchaeota in deeper water in the northeastern SCS was significantly lower than in other oceanic regions. Phylogenetic analysis showed that the top operational taxonomic units (OTUs of the MGII occurring predominantly below 200 m depth may be unique in the northeastern SCS based on the observation that they are distantly related to known sequences (identity ranging from 90–94%. The abundance of MGII was also significantly correlated with total bacteria in the whole column, which may indicate that MGII and bacteria may have similar physiological or biochemical properties or responses to environmental variation. This study provides valuable information about the dominance of MGII over AOA in both shallow and deep water in the northeastern SCS and highlights the need for comprehensive studies integrating physical, chemical, and microbial oceanography.

  10. Computational genomics of hyperthermophiles

    NARCIS (Netherlands)

    Werken, van de H.J.G.

    2008-01-01

    With the ever increasing number of completely sequenced prokaryotic genomes and the subsequent use of functional genomics tools, e.g. DNA microarray and proteomics, computational data analysis and the integration of microbial and molecular data is inevitable. This thesis describes the computational

  11. The Role of Tetraether Lipid Composition in the Adaptation of Thermophilic Archaea to Acidity

    Science.gov (United States)

    Boyd, Eric S.; Hamilton, Trinity L.; Wang, Jinxiang; He, Liu; Zhang, Chuanlun L.

    2013-01-01

    Diether and tetraether lipids are fundamental components of the archaeal cell membrane. Archaea adjust the degree of tetraether lipid cyclization in order to maintain functional membranes and cellular homeostasis when confronted with pH and/or thermal stress. Thus, the ability to adjust tetraether lipid composition likely represents a critical phenotypic trait that enabled archaeal diversification into environments characterized by extremes in pH and/or temperature. Here we assess the relationship between geochemical variation, core- and polar-isoprenoid glycerol dibiphytanyl glycerol tetraether (C-iGDGT and P-iGDGT, respectively) lipid composition, and archaeal 16S rRNA gene diversity and abundance in 27 geothermal springs in Yellowstone National Park, Wyoming. The composition and abundance of C-iGDGT and P-iGDGT lipids recovered from geothermal ecosystems were distinct from surrounding soils, indicating that they are synthesized endogenously. With the exception of GDGT-0 (no cyclopentyl rings), the abundances of individual C-iGDGT and P-iGDGT lipids were significantly correlated. The abundance of a number of individual tetraether lipids varied positively with the relative abundance of individual 16S rRNA gene sequences, most notably crenarchaeol in both the core and polar GDGT fraction and sequences closely affiliated with Candidatus Nitrosocaldus yellowstonii. This finding supports the proposal that crenarchaeol is a biomarker for nitrifying archaea. Variation in the degree of cyclization of C- and P-iGDGT lipids recovered from geothermal mats and sediments could best be explained by variation in spring pH, with lipids from acidic environments tending to have, on average, more internal cyclic rings than those from higher pH ecosystems. Likewise, variation in the phylogenetic composition of archaeal 16S rRNA genes could best be explained by spring pH. In turn, the phylogenetic similarity of archaeal 16S rRNA genes was significantly correlated with the similarity

  12. The role of tetraether lipid composition in the adaptation of thermophilic archaea to acidity.

    Science.gov (United States)

    Boyd, Eric S; Hamilton, Trinity L; Wang, Jinxiang; He, Liu; Zhang, Chuanlun L

    2013-01-01

    Diether and tetraether lipids are fundamental components of the archaeal cell membrane. Archaea adjust the degree of tetraether lipid cyclization in order to maintain functional membranes and cellular homeostasis when confronted with pH and/or thermal stress. Thus, the ability to adjust tetraether lipid composition likely represents a critical phenotypic trait that enabled archaeal diversification into environments characterized by extremes in pH and/or temperature. Here we assess the relationship between geochemical variation, core- and polar-isoprenoid glycerol dibiphytanyl glycerol tetraether (C-iGDGT and P-iGDGT, respectively) lipid composition, and archaeal 16S rRNA gene diversity and abundance in 27 geothermal springs in Yellowstone National Park, Wyoming. The composition and abundance of C-iGDGT and P-iGDGT lipids recovered from geothermal ecosystems were distinct from surrounding soils, indicating that they are synthesized endogenously. With the exception of GDGT-0 (no cyclopentyl rings), the abundances of individual C-iGDGT and P-iGDGT lipids were significantly correlated. The abundance of a number of individual tetraether lipids varied positively with the relative abundance of individual 16S rRNA gene sequences, most notably crenarchaeol in both the core and polar GDGT fraction and sequences closely affiliated with Candidatus Nitrosocaldus yellowstonii. This finding supports the proposal that crenarchaeol is a biomarker for nitrifying archaea. Variation in the degree of cyclization of C- and P-iGDGT lipids recovered from geothermal mats and sediments could best be explained by variation in spring pH, with lipids from acidic environments tending to have, on average, more internal cyclic rings than those from higher pH ecosystems. Likewise, variation in the phylogenetic composition of archaeal 16S rRNA genes could best be explained by spring pH. In turn, the phylogenetic similarity of archaeal 16S rRNA genes was significantly correlated with the similarity

  13. Physiological Evidence for Isopotential Tunneling in the Electron Transport Chain of Methane-Producing Archaea.

    Science.gov (United States)

    Duszenko, Nikolas; Buan, Nicole R

    2017-09-15

    Many, but not all, organisms use quinones to conserve energy in their electron transport chains. Fermentative bacteria and methane-producing archaea (methanogens) do not produce quinones but have devised other ways to generate ATP. Methanophenazine (MPh) is a unique membrane electron carrier found in Methanosarcina species that plays the same role as quinones in the electron transport chain. To extend the analogy between quinones and MPh, we compared the MPh pool sizes between two well-studied Methanosarcina species, Methanosarcina acetivorans C2A and Methanosarcina barkeri Fusaro, to the quinone pool size in the bacterium Escherichia coli We found the quantity of MPh per cell increases as cultures transition from exponential growth to stationary phase, and absolute quantities of MPh were 3-fold higher in M. acetivorans than in M. barkeri The concentration of MPh suggests the cell membrane of M. acetivorans , but not of M. barkeri , is electrically quantized as if it were a single conductive metal sheet and near optimal for rate of electron transport. Similarly, stationary (but not exponentially growing) E. coli cells also have electrically quantized membranes on the basis of quinone content. Consistent with our hypothesis, we demonstrated that the exogenous addition of phenazine increases the growth rate of M. barkeri three times that of M. acetivorans Our work suggests electron flux through MPh is naturally higher in M. acetivorans than in M. barkeri and that hydrogen cycling is less efficient at conserving energy than scalar proton translocation using MPh. IMPORTANCE Can we grow more from less? The ability to optimize and manipulate metabolic efficiency in cells is the difference between commercially viable and nonviable renewable technologies. Much can be learned from methane-producing archaea (methanogens) which evolved a successful metabolic lifestyle under extreme thermodynamic constraints. Methanogens use highly efficient electron transport systems and

  14. Improving the Catalytic Activity of Hyperthermophilic Pyrococcus horikoshii Prolidase for Detoxification of Organophosphorus Nerve Agents over a Broad Range of Temperatures

    Science.gov (United States)

    2011-01-01

    affinity for metal, and increased thermostability compared to P. furiosus prolidase, Pf prol (PF1343). To obtain a better enzyme for OP nerve agent...decontamination and to investigate the structural factors that may influence protein thermostability and thermoactivity, randomly mutated Ph1prol enzymes ...Introduction Pyrococcus horikoshii and Pyrococcus furiosus are both hyper- thermophilic archaea, growing optimally at 98 –100◦C that were isolated from a

  15. [Comparative analysis of clustered regularly interspaced short palindromic repeats (CRISPRs) loci in the genomes of halophilic archaea].

    Science.gov (United States)

    Zhang, Fan; Zhang, Bing; Xiang, Hua; Hu, Songnian

    2009-11-01

    Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is a widespread system that provides acquired resistance against phages in bacteria and archaea. Here we aim to genome-widely analyze the CRISPR in extreme halophilic archaea, of which the whole genome sequences are available at present time. We used bioinformatics methods including alignment, conservation analysis, GC content and RNA structure prediction to analyze the CRISPR structures of 7 haloarchaeal genomes. We identified the CRISPR structures in 5 halophilic archaea and revealed a conserved palindromic motif in the flanking regions of these CRISPR structures. In addition, we found that the repeat sequences of large CRISPR structures in halophilic archaea were greatly conserved, and two types of predicted RNA secondary structures derived from the repeat sequences were likely determined by the fourth base of the repeat sequence. Our results support the proposal that the leader sequence may function as recognition site by having palindromic structures in flanking regions, and the stem-loop secondary structure formed by repeat sequences may function in mediating the interaction between foreign genetic elements and CAS-encoded proteins.

  16. The contribution of fermentative bacteria and methanogenic archaea to azo dye reduction by a thermophilic anaerobic consortium

    NARCIS (Netherlands)

    Santos, dos A.B.; Cervantes, F.J.; Madrid, de M.P.; Bok, de F.A.M.; Stams, A.J.M.; Lier, van J.B.

    2006-01-01

    The contribution of fermentative bacteria and methanogenic archaea to azo dye reduction by a thermophilic anaerobic consortium was studied. Additionally, the effects of different electron-donating substrates and the redox mediator riboflavin on dye reduction were assessed by using either a

  17. Substrate availability drives spatial patterns in richness of ammonia-oxidizing bacteria and archaea in temperate forest soils

    Science.gov (United States)

    J.S. Norman; J.E. Barrett

    2016-01-01

    We sought to investigate the drivers of richness of ammonia-oxidizing bacteria (AOB) and archaea (AOA) in temperate forest soils. We sampled soils across four experimental watersheds in the Coweeta Hydrologic Laboratory, North Carolina USA. These watersheds are geographically close, but vary in soil chemistry due to differences in land use history. While we...

  18. Differentiating leucine incorporation of Archaea and Bacteria throughout the water column of the eastern Atlantic using metabolic inhibitors

    NARCIS (Netherlands)

    Yokokawa, Taichi; Sintes, Eva; de Corte, Daniele; Olbrich, Kerstin; Herndl, Gerhard J.

    2012-01-01

    The abundance (based on catalyzed reporter deposition-fluorescence in situ hybrid ization, CARD-FISH) and leucine incorporation rates of Archaea and Bacteria were determined throughout the water column in the eastern Atlantic. Bacteria dominated throughout the water column, although their

  19. [Ammonia-oxidizing archaea and their important roles in nitrogen biogeochemical cycling: a review].

    Science.gov (United States)

    Liu, Jing-Jing; Wu, Wei-Xiang; Ding, Ying; Shi, De-Zhi; Chen, Ying-Xu

    2010-08-01

    As the first step of nitrification, ammonia oxidation is the key process in global nitrogen biogeochemical cycling. So far, the autotrophic ammonia-oxidizing bacteria (AOB) in the beta- and gamma-subgroups of proteobacteria have been considered as the most important contributors to ammonia oxidation, but the recent researches indicated that ammonia-oxidizing archaea (AOA) are widely distributed in various kinds of ecosystems and quantitatively predominant, playing important roles in the global nitrogen biogeochemical cycling. This paper reviewed the morphological, physiological, and ecological characteristics and the molecular phylogenies of AOA, and compared and analyzed the differences and similarities of the ammonia monooxygenase (AMO) and its encoding genes between AOA and AOB. In addition, the potential significant roles of AOA in nitrogen biogeochemical cycling in aquatic and terrestrial ecosystems were summarized, and the future research directions of AOA in applied ecology and environmental protection were put forward.

  20. 2001 Gordon Research Conference on Archaea: Ecology [sic], Metabolism. Final progress report [agenda and attendee list

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, Charles

    2001-08-10

    The Gordon Research Conference on Archaea: Ecology, Metabolism [and Molecular Biology] was held at Proctor Academy, Andover, New Hampshire, August 5-10, 2001. The conference was attended by 135 participants. The attendees represented the spectrum of endeavor in this field, coming from academia, industry, and government laboratories, and included US and foreign scientists, senior researchers, young investigators, and students. Emphasis was placed on current unpublished research and discussion of the future target areas in this field. There was a conscious effort to stimulate discussion about the key issues in the field today. Session topics included the following: Ecology and genetic elements; Genomics and evolution; Ecology, genomes and gene regulation; Replication and recombination; Chromatin and transcription; Gene regulation; Post-transcription processing; Biochemistry and metabolism; Proteomics and protein structure; Metabolism and physiology. The featured speaker addressed the topic: ''Archaeal viruses, witnesses of prebiotic evolution?''

  1. An Archaea 5S rRNA analog is stably expressed in Escherichia coli

    Science.gov (United States)

    Yang, Y.; Fox, G. E.

    1996-01-01

    Mini-genes for 5S-like rRNA were constructed. These genes had a sequence which largely resembles that of the naturally occurring 5S rRNA of a bacterium, Halococcus morrhuae, which phylogenetically belongs to the Archaea. Plasmids carrying the mini-genes were transformed into Escherichia coli (Ec). Ribosomal incorporation was not a prerequisite for stable accumulation of the RNA product. However, only those constructs with a well-base-paired helix I accumulated RNA product. This result strongly implies that this aspect of the structure is likely to be an important condition for stabilizing 5S rRNA-like products. The results are consistent with our current understanding of 5S rRNA processing in Ec. When used in conjunction with rRNA probe technology, the resulting chimeric RNA may be useful as a monitoring tool for genetically engineered microorganisms or naturally occurring organisms that are released into the environment.

  2. Bacterioruberin and salinixanthin carotenoids of extremely halophilic Archaea and Bacteria: A Raman spectroscopic study

    Science.gov (United States)

    Jehlička, J.; Edwards, H. G. M.; Oren, A.

    2013-04-01

    Laboratory cultures of a number of red extremely halophilic Archaea (Halobacterium salinarum strains NRC-1 and R1, Halorubrum sodomense, Haloarcula valismortis) and of Salinibacter ruber, a red extremely halophilic member of the Bacteria, have been investigated by Raman spectroscopy using 514.5 nm excitation to characterize their carotenoids. The 50-carbon carotenoid α-bacterioruberin was detected as the major carotenoid in all archaeal strains. Raman spectroscopy also detected bacterioruberin as the main pigment in a red pellet of cells collected from a saltern crystallizer pond. Salinibacter contains the C40-carotenoid acyl glycoside salinixanthin (all-E, 2'S)-2'-hydroxy-1'-[6-O-(methyltetradecanoyl)-β-D-glycopyranosyloxy]-3',4'-didehydro-1',2'-dihydro-β,ψ-carotene-4-one), for which the Raman bands assignments of are given here for the first time.

  3. Structure, function, and regulation of enzymes involved in amino acid metabolism of bacteria and archaea.

    Science.gov (United States)

    Tomita, Takeo

    2017-11-01

    Amino acids are essential components in all organisms because they are building blocks of proteins. They are also produced industrially and used for various purposes. For example, L-glutamate is used as the component of "umami" taste and lysine has been used as livestock feed. Recently, many kinds of amino acids have attracted attention as biological regulators and are used for a healthy life. Thus, to clarify the mechanism of how amino acids are biosynthesized and how they work as biological regulators will lead to further effective utilization of them. Here, I review the leucine-induced-allosteric activation of glutamate dehydrogenase (GDH) from Thermus thermophilus and the relationship with the allosteric regulation of GDH from mammals. Next, I describe structural insights into the efficient production of L-glutamate by GDH from an excellent L-glutamate producer, Corynebacterium glutamicum. Finally, I review the structural biology of lysine biosynthesis of thermophilic bacterium and archaea.

  4. Characterising the CRISPR immune system in Archaea using genome sequence analysis

    DEFF Research Database (Denmark)

    Shah, Shiraz Ali

    Archaea, a group of microorganisms distinct from bacteria and eukaryotes, are equipped with an adaptive immune system called the CRISPR system, which relies on an RNA interference mechanism to combat invading viruses and plasmids. Using a genome sequence analysis approach, the four components...... of archaeal genomic CRISPR loci were analysed, namely, repeats, spacers, leaders and cas genes. Based on analysis of spacer sequences it was predicted that the immune system combats viruses and plasmids by targeting their DNA. Furthermore, analysis of repeats, leaders and cas genes revealed that CRISPR...... systems exist as distinct families which have key differences between themselves. Closely related organisms were seen harbouring different CRISPR systems, while some distantly related species carried similar systems, indicating frequent horizontal exchange. Moreover, it was found that cas genes of Type I...

  5. Ammonia-oxidizing Bacteria and Archaea in the Rhizosphere of Freshwater Macrophytes

    DEFF Research Database (Denmark)

    Herrmann, Martina; Schramm, Andreas

    2007-01-01

    AMMONIA-OXIDIZING ARCHAEA AND BACTERIA IN THE RHIZOSPHERE OF FRESHWATER MACROPHYTES Martina Herrmann and Andreas Schramm Department of Biological Sciences, Microbiology, University of Aarhus, Denmark Aquatic macrophytes such as Littorella uniflora and Lobelia dortmanna release oxygen from...... their roots and thereby stimulate nitrification and coupled nitrification-denitrification in their rhizosphere. However, oxygen release and inorganic nitrogen concentrations differ markedly between macrophyte species. We therefore propose (i) that the rhizosphere of freshwater macrophytes harbours a species......-specific microbial community distinct from that of unvegetated sediment and (ii) that aquatic macrophytes have an impact on abundance and activity of nitrifying and denitrifying bacteria in freshwater sediment. The goal of this study was to test these hypotheses for the key functional group for coupled nitrification...

  6. Physical constraints in the deep hypolimnion of a subalpine lake driving planktonic Bacteria and Archaea distribution

    Directory of Open Access Journals (Sweden)

    Roberto Bertoni

    2010-06-01

    Full Text Available The study of the hydrodynamics of the hypolimnion of a deep holo-oligomictic lake (Lake Maggiore, Northern Italy, zmax¼370 m during the last 28 years showed that hypolimnetic waters remained isolated, not exchanging with the mixing zone even in winter when the full overturn conditions are most likely. The thickness of the isolated layer can range from 100 to 300 m. Thus, water masses of variable size reside in the lake for many years, and their physical and chemical conditions remain relatively unaffected by seasonal variability and epilimnetic imputs. In the hypolimnetic waters prokaryote abundance is three times lower than in the mixing layer but cell size is significantly higher. In addition, the relative abundance of Archaea and Crenarchaeota increases with depth in respect to that of Bacteria. The heterogeneous distribution of the two domains within the habitat can be attributed to the existence in the same environment of isolated water masses.

  7. Aerobic nitrous oxide production through N-nitrosating hybrid formation in ammonia-oxidizing archaea.

    Science.gov (United States)

    Stieglmeier, Michaela; Mooshammer, Maria; Kitzler, Barbara; Wanek, Wolfgang; Zechmeister-Boltenstern, Sophie; Richter, Andreas; Schleper, Christa

    2014-05-01

    Soil emissions are largely responsible for the increase of the potent greenhouse gas nitrous oxide (N2O) in the atmosphere and are generally attributed to the activity of nitrifying and denitrifying bacteria. However, the contribution of the recently discovered ammonia-oxidizing archaea (AOA) to N2O production from soil is unclear as is the mechanism by which they produce it. Here we investigate the potential of Nitrososphaera viennensis, the first pure culture of AOA from soil, to produce N2O and compare its activity with that of a marine AOA and an ammonia-oxidizing bacterium (AOB) from soil. N. viennensis produced N2O at a maximum yield of 0.09% N2O per molecule of nitrite under oxic growth conditions. N2O production rates of 4.6±0.6 amol N2O cell(-1) h(-1) and nitrification rates of 2.6±0.5 fmol NO2(-) cell(-1) h(-1) were in the same range as those of the AOB Nitrosospira multiformis and the marine AOA Nitrosopumilus maritimus grown under comparable conditions. In contrast to AOB, however, N2O production of the two archaeal strains did not increase when the oxygen concentration was reduced, suggesting that they are not capable of denitrification. In (15)N-labeling experiments we provide evidence that both ammonium and nitrite contribute equally via hybrid N2O formation to the N2O produced by N. viennensis under all conditions tested. Our results suggest that archaea may contribute to N2O production in terrestrial ecosystems, however, they are not capable of nitrifier-denitrification and thus do not produce increasing amounts of the greenhouse gas when oxygen becomes limiting.

  8. Differences down-under: alcohol-fueled methanogenesis by archaea present in Australian macropodids.

    Science.gov (United States)

    Hoedt, Emily C; Cuív, Páraic Ó; Evans, Paul N; Smith, Wendy J M; McSweeney, Chris S; Denman, Stuart E; Morrison, Mark

    2016-10-01

    The Australian macropodids (kangaroos and wallabies) possess a distinctive foregut microbiota that contributes to their reduced methane emissions. However, methanogenic archaea are present within the macropodid foregut, although there is scant understanding of these microbes. Here, an isolate taxonomically assigned to the Methanosphaera genus (Methanosphaera sp. WGK6) was recovered from the anterior sacciform forestomach contents of a Western grey kangaroo (Macropus fuliginosus). Like the human gut isolate Methanosphaera stadtmanae DSMZ 3091(T), strain WGK6 is a methylotroph with no capacity for autotrophic growth. In contrast, though with the human isolate, strain WGK6 was found to utilize ethanol to support growth, but principally as a source of reducing power. Both the WGK6 and DSMZ 3091(T) genomes are very similar in terms of their size, synteny and G:C content. However, the WGK6 genome was found to encode contiguous genes encoding putative alcohol and aldehyde dehydrogenases, which are absent from the DSMZ 3091(T) genome. Interestingly, homologs of these genes are present in the genomes for several other members of the Methanobacteriales. In WGK6, these genes are cotranscribed under both growth conditions, and we propose the two genes provide a plausible explanation for the ability of WGK6 to utilize ethanol for methanol reduction to methane. Furthermore, our in vitro studies suggest that ethanol supports a greater cell yield per mol of methane formed compared to hydrogen-dependent growth. Taken together, this expansion in metabolic versatility can explain the persistence of these archaea in the kangaroo foregut, and their abundance in these 'low-methane-emitting' herbivores.

  9. Uranium association with halophilic and non-halophilic bacteria and archaea

    International Nuclear Information System (INIS)

    Francis, A.J.; Gillow, J.B.; Dodge, C.J.; Harris, R.; Beveridge, T.J.; Papenguth, H.W.

    2004-01-01

    We determined the association of uranium with bacteria isolated from the Waste Isolation Pilot Plant (WIPP), Carlsbad, New Mexico, and compared this with known strains of halophilic and non-halophilic bacteria and archaea. Examination of the cultures by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) showed uranium accumulation extracellularly and/or intracellularly to a varying degree. In Pseudomonas fluorescens and Bacillus subtilis uranium was associated with the cell surface and in the latter it was present as irregularly shaped grains. In Halobacterium halobium, the only archeon studied here, uranium was present as dense deposits and with Haloanaerobium praevalens as spikey deposits. Halomonas sp. isolated from the WIPP site accumulated uranium both extracellularly on the cell surface and intracellularly as electron-dense discrete granules. Extended X-ray absorption fine structure (EXAFS) analysis of uranium with the halophilic and non-halophilic bacteria and archaea showed that the uranium present in whole cells was bonded to an average of 2.4 ± 0.7 phosphoryl groups at a distance of 3.65 ± 0.03 Aa. Comparison of whole cells of Halomonas sp. with the cell wall fragments of lysed cells showed the presence of a uranium bidentate complex at 2.91 ± 0.03 Aa with the carboxylate group on the cell wall, and uranyl hydroxide with U-U interaction at 3.71 ± 0.03 Aa due to adsorption or precipitation reactions; no U-P interaction was observed. Addition of uranium to the cell lysate of Halomonas sp. resulted in the precipitation of uranium due to the inorganic phosphate produced by the cells. These results show that the phosphates released from bacteria bind a significant amount of uranium. However, the bacterially immobilized uranium was readily solubilized by bicarbonate with concurrent release of phosphate into solution. (orig.)

  10. Diversity and ubiquity of thermophilic methanogenic archaea in temperate anoxic soils.

    Science.gov (United States)

    Wu, Xiao-Lei; Friedrich, Michael W; Conrad, Ralf

    2006-03-01

    Temperate rice field soil from Vercelli (Italy) contains moderately thermophilic methanogens of the yet uncultivated rice cluster I (RC-I), which become prevalent upon incubation at temperatures of 45-50 degrees C. We studied whether such thermophilic methanogens were ubiquitously present in anoxic soils. Incubation of different rice field soils (from Italy, China and the Philippines) and flooded riparian soils (from the Netherlands) at 45 degrees C resulted in vigorous CH(4) production after a lag phase of about 10 days. The archaeal community structure in the soils was analysed by terminal restriction fragment length polymorphism (T-RFLP) targeting the SSU rRNA genes retrieved from the soil, and by cloning and sequencing. Clones of RC-I methanogens mostly exhibited T-RF of 393 bp, but also terminal restriction fragment (T-RF) of 158 and 258 bp length, indicating a larger diversity than previously assumed. No RC-I methanogens were initially found in flooded riparian soils. However, these archaea became abundant upon incubation of the soil at 45 degrees C. Thermophilic RC-I methanogens were also found in the rice field soils from Pavia, Pila and Gapan. However, the archaeal communities in these soils also contained other methanogenic archaea at high temperature. Rice field soil from Buggalon, on the other hand, only contained thermophilic Methanomicrobiales rather than RC-I methanogens, and rice field soil from Jurong mostly Methanomicrobiales and only a few RC-I methanogens. The archaeal community of rice field soil from Zhenjiang almost exclusively consisted of Methanosarcinaceae when incubated at high temperature. Our results show that moderately thermophilic methanogens are common in temperate soils. However, RC-I methanogens are not always dominating or ubiquitous.

  11. The Role of Tetraether Lipid Composition in the Adaptation of Thermophilic Archaea to Acidity

    Directory of Open Access Journals (Sweden)

    Eric eBoyd

    2013-04-01

    Full Text Available Diether and tetraether lipids are fundamental components of the archaeal cell membrane. Archaea adjust the degree of tetraether lipid cyclization in order to maintain functional membranes and cellular homeostasis when confronted with pH and/or thermal stress. Thus, the ability to adjust tetraether lipid composition likely represents a critical phenotypic trait that enabled archaeal diversification into environments characterized by extremes in pH and/or temperature. Here we assess the relationship between geochemical variation, core- and polar-isoprenoid glycerol dibiphytanyl glycerol tetraether (C-iGDGT and P-iGDGT, respectively lipid composition, and archaeal 16S rRNA gene diversity and abundance in 27 geothermal springs in Yellowstone National Park (YNP, Wyoming. The composition and abundance of C-iGDGT and P-iGDGT lipids recovered from geothermal ecosystems were distinct from surrounding soils, indicating that they are synthesized endogenously. With the exception of GDGT-0 (no cyclopentyl rings, the abundances of individual C-iGDGT and P-iGDGT lipids were significantly correlated. The abundance of a number of individual tetraether lipids varied positively with the relative abundance of individual 16S rRNA gene sequences, most notably crenarchaeol in both the core and polar GDGT fraction and sequences closely affiliated with Candidatus Nitrosocaldus yellowstonii. This finding supports the proposal that crenarchaeol is a biomarker for nitrifying archaea. Variation in the degree of cyclization of C- and P-iGDGT lipids recovered from geothermal mats and sediments could best be explained by variation in spring pH, with lipids from acidic environments tending to have, on average, more internal cyclic rings than those from higher pH ecosystems. Likewise, variation in the phylogenetic composition of archaeal 16S rRNA genes could best be explained by spring pH. In turn, the phylogenetic similarity of archaeal 16S rRNA genes was significantly

  12. Geographic Distribution of Ammonia-Oxidizing Archaea along the Kuril Islands in the Western Subarctic Pacific

    Directory of Open Access Journals (Sweden)

    Hongmei Jing

    2017-06-01

    Full Text Available Community composition and abundance of ammonia-oxidizing archaea (AOA in the ocean were affected by different physicochemical conditions, but their responses to physical barriers (such as a chain of islands were largely unknown. In our study, geographic distribution of the AOA from the surface photic zone to the deep bathypelagic waters in the western subarctic Pacific adjacent to the Kuril Islands was investigated using pyrosequencing based on the ammonia monooxygenase subunit A (amoA gene. Genotypes of clusters A and B dominated in the upper euphotic zone and the deep waters, respectively. Quantitative PCR assays revealed that the occurrence and ammonia-oxidizing activity of ammonia-oxidizing archaea (AOA reached their maxima at the depth of 200 m, where a higher diversity and abundance of actively transcribed AOA was observed at the station located in the marginal sea exposed to more terrestrial input. Similar community composition of AOA observed at the two stations adjacent to the Kuril Islands maybe due to water exchange across the Bussol Strait. They distinct from the station located in the western subarctic gyre, where sub-cluster WCAII had a specific distribution in the surface water, and this sub-cluster seemed having a confined distribution in the western Pacific. Habitat-specific groupings of different WCB sub-clusters were observed reflecting the isolated microevolution existed in cluster WCB. The effect of the Kuril Islands on the phylogenetic composition of AOA between the Sea of Okhotsk and the western subarctic Pacific is not obvious, possibly because our sampling stations are near to the Bussol Strait, the main gateway through which water is exchanged between the Sea of Okhotsk and the Pacific. The vertical and horizontal distribution patterns of AOA communities among stations along the Kuril Islands were essentially determined by the in situ prevailing physicochemical gradients along the two dimensions.

  13. Changes in N-transforming archaea and bacteria in soil during the establishment of bioenergy crops.

    Directory of Open Access Journals (Sweden)

    Yuejian Mao

    Full Text Available Widespread adaptation of biomass production for bioenergy may influence important biogeochemical functions in the landscape, which are mainly carried out by soil microbes. Here we explore the impact of four potential bioenergy feedstock crops (maize, switchgrass, Miscanthus X giganteus, and mixed tallgrass prairie on nitrogen cycling microorganisms in the soil by monitoring the changes in the quantity (real-time PCR and diversity (barcoded pyrosequencing of key functional genes (nifH, bacterial/archaeal amoA and nosZ and 16S rRNA genes over two years after bioenergy crop establishment. The quantities of these N-cycling genes were relatively stable in all four crops, except maize (the only fertilized crop, in which the population size of AOB doubled in less than 3 months. The nitrification rate was significantly correlated with the quantity of ammonia-oxidizing archaea (AOA not bacteria (AOB, indicating that archaea were the major ammonia oxidizers. Deep sequencing revealed high diversity of nifH, archaeal amoA, bacterial amoA, nosZ and 16S rRNA genes, with 229, 309, 330, 331 and 8989 OTUs observed, respectively. Rarefaction analysis revealed the diversity of archaeal amoA in maize markedly decreased in the second year. Ordination analysis of T-RFLP and pyrosequencing results showed that the N-transforming microbial community structures in the soil under these crops gradually differentiated. Thus far, our two-year study has shown that specific N-transforming microbial communities develop in the soil in response to planting different bioenergy crops, and each functional group responded in a different way. Our results also suggest that cultivation of maize with N-fertilization increases the abundance of AOB and denitrifiers, reduces the diversity of AOA, and results in significant changes in the structure of denitrification community.

  14. Application of real-time PCR to determination of combined effect of antibiotics on Bacteria, Methanogenic Archaea, Archaea in anaerobic sequencing batch reactors.

    Science.gov (United States)

    Aydin, Sevcan; Ince, Bahar; Ince, Orhan

    2015-06-01

    This study evaluated the long-term effects of erythromycin-tetracycline-sulfamethoxazole (ETS) and sulfamethoxazole-tetracycline (ST) antibiotic combinations on the microbial community and examined the ways in which these antimicrobials impact the performance of anaerobic reactors. Quantitative real-time PCR was used to determine the effect that different antibiotic combinations had on the total and active Bacteria, Archae and Methanogenic Archae. Three primer sets that targeted metabolic genes encoding formylterahydrofolate synthetase, methyl-coenzyme M reductase and acetyl-coA synthetase were also used to determine the inhibition level on the mRNA expression of the homoacetogens, methanogens and specifically acetoclastic methanogens, respectively. These microorganisms play a vital role in the anaerobic degradation of organic waste and targeting these gene expressions offers operators or someone at a treatment plant the potential to control and the improve the anaerobic system. The results of the investigation revealed that acetogens have a competitive advantage over Archaea in the presence of ETS and ST combinations. Although the efficiency with which methane production takes place and the quantification of microbial populations in both the ETS and ST reactors decreased as antibiotic concentrations increased, the ETS batch reactor performed better than the ST batch reactor. According to the expression of genes results, the syntrophic interaction of acetogens and methanogens is critical to the performance of the ETS and ST reactors. Failure to maintain the stability of these microorganisms resulted in a decrease in the performance and stability of the anaerobic reactors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Extremely halophilic archaea from ancient salt sediments and their possible survival in halite fluid inclusions

    Science.gov (United States)

    Stan-Lotter, H.; Fendrihan, S.; Gerbl, F. W.; Dornmayr-Pfaffenhuemer, M.; Frethem, C.

    2008-09-01

    Halophilic archaebacteria (haloarchaea) thrive in environments with salt concentrations approaching saturation, such as natural brines, marine solar salterns and alkaline salt lakes; they have also been isolated from ancient subsurface salt sediments of great geological age (195-280 million years) and some of those strains were described as novel species (1). The cells survived perhaps while being enclosed within small fluid inclusions in the halite. The characterization of subsurface microbial life is of astrobiological relevance since extraterrestrial halite has been detected and since microbial life on Mars, if existent, may have retreated into the subsurface. We attempted to simulate the embedding process of extremely halophilic archaea and to analyse any cellular changes which might occur. When enclosing haloarchaea in laboratory grown halite, cells accumulated preferentially in fluid inclusions, as could be demonstrated by pre-staining with fluorescent dyes. With increased time of embedding, rod-shaped cells of Halobacterium salinarum strains were found to assume roundish morphologies. Upon dissolution of the salt crystals, these spheres were stable and viable for months when kept in buffers containing 4 M NaCl. Scanning electron microscopy (SEM) following fixation with glutaraldehyde suggested a potentially gradual transformation from rods to spheres. This notion was supported by fluorescence microscopy of Halobacterium cells, following embedding in halite and staining with SYTO 9. One-dimensional protein patterns of rods and spheres, following SDS polyacrylamide gel electrophoresis, were similar except that the S-layer protein appeared reduced by about 15 - 20 % in spheres. The reddish-orange pigmentation of spheres was much lighter compared to that of rod-shaped cells, suggesting lowered concentrations of carotenoids; this was confirmed by extraction and spectrometry of pigments. The data suggested that Halobacterium cells are capable of forming specific

  16. Respiratory transformation of nitrous oxide (N2O) to dinitrogen by Bacteria and Archaea.

    Science.gov (United States)

    Zumft, Walter G; Kroneck, Peter M H

    2007-01-01

    N2O is a potent greenhouse gas and stratospheric reactant that has been steadily on the rise since the beginning of industrialization. It is an obligatory inorganic metabolite of denitrifying bacteria, and some production of N2O is also found in nitrifying and methanotrophic bacteria. We focus this review on the respiratory aspect of N2O transformation catalysed by the multicopper enzyme nitrous oxide reductase (N2OR) that provides the bacterial cell with an electron sink for anaerobic growth. Two types of Cu centres discovered in N2OR were both novel structures among the Cu proteins: the mixed-valent dinuclear Cu(A) species at the electron entry site of the enzyme, and the tetranuclear Cu(Z) centre as the first catalytically active Cu-sulfur complex known. Several accessory proteins function as Cu chaperone and ABC transporter systems for the biogenesis of the catalytic centre. We describe here the paradigm of Z-type N2OR, whose characteristics have been studied in most detail in the genera Pseudomonas and Paracoccus. Sequenced bacterial genomes now provide an invaluable additional source of information. New strains harbouring nos genes and capability of N2O utilization are being uncovered. This reveals previously unknown relationships and allows pattern recognition and predictions. The core nos genes, nosZDFYL, share a common phylogeny. Most principal taxonomic lineages follow the same biochemical and genetic pattern and share the Z-type enzyme. A modified N2OR is found in Wolinella succinogenes, and circumstantial evidence also indicates for certain Archaea another type of N2OR. The current picture supports the view of evolution of N2O respiration prior to the separation of the domains Bacteria and Archaea. Lateral nos gene transfer from an epsilon-proteobacterium as donor is suggested for Magnetospirillum magnetotacticum and Dechloromonas aromatica. In a few cases, nos gene clusters are plasmid borne. Inorganic N2O metabolism is associated with a diversity of

  17. Genome signature analysis of thermal virus metagenomes reveals Archaea and thermophilic signatures

    Directory of Open Access Journals (Sweden)

    Pride David T

    2008-09-01

    Full Text Available Abstract Background Metagenomic analysis provides a rich source of biological information for otherwise intractable viral communities. However, study of viral metagenomes has been hampered by its nearly complete reliance on BLAST algorithms for identification of DNA sequences. We sought to develop algorithms for examination of viral metagenomes to identify the origin of sequences independent of BLAST algorithms. We chose viral metagenomes obtained from two hot springs, Bear Paw and Octopus, in Yellowstone National Park, as they represent simple microbial populations where comparatively large contigs were obtained. Thermal spring metagenomes have high proportions of sequences without significant Genbank homology, which has hampered identification of viruses and their linkage with hosts. To analyze each metagenome, we developed a method to classify DNA fragments using genome signature-based phylogenetic classification (GSPC, where metagenomic fragments are compared to a database of oligonucleotide signatures for all previously sequenced Bacteria, Archaea, and viruses. Results From both Bear Paw and Octopus hot springs, each assembled contig had more similarity to other metagenome contigs than to any sequenced microbial genome based on GSPC analysis, suggesting a genome signature common to each of these extreme environments. While viral metagenomes from Bear Paw and Octopus share some similarity, the genome signatures from each locale are largely unique. GSPC using a microbial database predicts most of the Octopus metagenome has archaeal signatures, while bacterial signatures predominate in Bear Paw; a finding consistent with those of Genbank BLAST. When using a viral database, the majority of the Octopus metagenome is predicted to belong to archaeal virus Families Globuloviridae and Fuselloviridae, while none of the Bear Paw metagenome is predicted to belong to archaeal viruses. As expected, when microbial and viral databases are combined, each of

  18. Genome signature analysis of thermal virus metagenomes reveals Archaea and thermophilic signatures.

    Science.gov (United States)

    Pride, David T; Schoenfeld, Thomas

    2008-09-17

    Metagenomic analysis provides a rich source of biological information for otherwise intractable viral communities. However, study of viral metagenomes has been hampered by its nearly complete reliance on BLAST algorithms for identification of DNA sequences. We sought to develop algorithms for examination of viral metagenomes to identify the origin of sequences independent of BLAST algorithms. We chose viral metagenomes obtained from two hot springs, Bear Paw and Octopus, in Yellowstone National Park, as they represent simple microbial populations where comparatively large contigs were obtained. Thermal spring metagenomes have high proportions of sequences without significant Genbank homology, which has hampered identification of viruses and their linkage with hosts. To analyze each metagenome, we developed a method to classify DNA fragments using genome signature-based phylogenetic classification (GSPC), where metagenomic fragments are compared to a database of oligonucleotide signatures for all previously sequenced Bacteria, Archaea, and viruses. From both Bear Paw and Octopus hot springs, each assembled contig had more similarity to other metagenome contigs than to any sequenced microbial genome based on GSPC analysis, suggesting a genome signature common to each of these extreme environments. While viral metagenomes from Bear Paw and Octopus share some similarity, the genome signatures from each locale are largely unique. GSPC using a microbial database predicts most of the Octopus metagenome has archaeal signatures, while bacterial signatures predominate in Bear Paw; a finding consistent with those of Genbank BLAST. When using a viral database, the majority of the Octopus metagenome is predicted to belong to archaeal virus Families Globuloviridae and Fuselloviridae, while none of the Bear Paw metagenome is predicted to belong to archaeal viruses. As expected, when microbial and viral databases are combined, each of the Octopus and Bear Paw metagenomic contigs

  19. The Co-Distribution of Nitrifying Archaea and Diazotrophic Bacteria in Geothermal Springs

    Science.gov (United States)

    Hamilton, T. L.; Jewell, T. N. M.; de la Torre, J. R.; Boyd, E. S.

    2014-12-01

    Microbial processes that regulate availability of nutrients play key roles in shaping community composition. All life requires fixed nitrogen (N), and its bioavailability is what often limits ecosystem productivity. Biological nitrogen fixation, or the reduction of dinitrogen (N2) to ammonia (NH3), is a keystone process in N limited ecosystems, providing nitrogen for members of the community. N2 fixing organisms likely represent a 'bottom up control' on the structure of communities that develop in N limited environments. N2 fixation is catalyzed by a limited number of metabolically diverse bacteria and some methanogenic archaea and occurs in a variety of physically and geochemically diverse environments. Nitrification, or the sequential oxidation of NH4+ to nitrite (NO2-) and ultimately nitrate (NO3-), is catalyzed by several lineages of Proteobacteria at temperatures of < 62°C and by members of the Thaumarcheota at temperatures up to 90°C. Nitrification can thus be considered a 'top down control' on the structure of communities that develop in N limited environments. Our research in Yellowstone National Park (YNP) reveals a strong correspondence between the distribution of ammonia oxidizing archaea (AOA) and nitrogen fixing aquificae (NFA) in nitrogen-limited geothermal hot springs over large environmental gradients. Based on the physiology of AOA and NFA, we propose that the strong co-distributional pattern results from interspecies interactions, namely competition for bioavailable ammonia. Our recent work has shown that in springs where the niche dimension of AOA and NFA overlap (e.g., Perpetual Spouter; pH 7.1, 86.4°C), the dissimilar affinities for NH4 result in AOA metabolism maintaining a low NH4(T) pool and selecting for inclusion of NFA during the assembly of these communities. Here, we examine in situ physiological interactions of AOA and NFA, tracking changes in transcript levels of key genes involved in nitrogen metabolism and carbon fixation of

  20. Rice Cluster I, an Important Group of Archaea Producing Methane in Rice Fields

    Science.gov (United States)

    Conrad, R.

    2006-12-01

    Rice fields are an important source for the greenhouse gas methane. Methane is a major degradation product of organic matter in the anoxic soil, is partially oxidized in the rhizosphere and is emitted into the atmosphere through the aerenchyma system of the plants. Anaerobic degradation of organic matter by fermenting bacteria eventually results in the production of acetate and hydrogen, the two major substrates for microbial methanogenesis. The community of methanogenic archaea consists of several major orders or families including hydrogen-utilizing Rice Cluster-I (RC-I). Environmental conditions affect the methanogenic degradation process and the community structure of the methanogenic archaea in soil and rhizosphere. For example, populations of acetoclastic Methanosaetaceae and Methanosarcinaceae are enhanced by low and high acetate concentrations, respectively. Stable isotope probing of 16S rRNA showed that RC-I methanogens are mainly active on rice roots and at low H2 concentrations. Growth and population size is largely consistent with energetic conditions. RC-I methanogens on roots seem to be responsible for methane production from plant photosynthates that account for a major part of the emitted methane. Populations of RC-I methanogens in rice field soil are also enhanced at elevated temperatures (40-50°C). Moderately thermophilic members of RC-I methanogens or other methanogenic families were found to be ubiquitously present in soils from rice fields and river marshes. The genome of a RC-I methanogen was completely sequenced out of an enrichment culture using a metagenome approach. Genes found are consistent with life in the rhizosphere and in temporarily drained, oxic soil. We found that the methanogenic community structure on the rice roots is mainly determined by the respective community structure of the soil, but is in addition affected by the rice cultivar. Rice microcosms in which soil and rice roots are mainly colonized by RC-I methanogens produce

  1. Expanding diversity of potential bacterial partners of the methanotrophic ANME archaea using Magneto-FISH

    Science.gov (United States)

    Trembath-Reichert, E.; Green-Saxena, A.; Steele, J. A.; Orphan, V. J.

    2012-12-01

    Sulfate-coupled anaerobic oxidation of methane (AOM) in marine sediments is the major sink for methane in the oceans. This process is believed to be catalyzed by as yet uncultured syntrophic consortia of ANME archaea (affiliated with the Methanosarcinales) and sulfate-reducing bacteria belonging to the Desulfosarcina/Desulfococcus and Desulfobulbaceae. These syntrophic consortia have been described from methane-rich habitats worldwide and appear to be most concentrated in areas of high methane flux, such as cold seeps along continental margins. The extent of the diversity and ecophysiological potential of these microbial associations is still poorly constrained. In an effort to better characterize the diversity of microorganisms forming associations with different clades of methanotrophic ANME archaea (ANME-1, ANME-2a/b/c, ANME-3) and link these organisms to potentially diagnostic metabolic genes (e.g. mcrA, dsrAB, aprA), we employed a unique culture-independent whole cell capture technique which combines Fluorescence In Situ Hybridization with immuno-magnetic cell capture (Magneto-FISH). We used Magneto-FISH for targeted enrichment of specific ANME groups and their associated bacteria directly from formalin- and ethanol-fixed methane seep sediment. The identity and metabolic gene diversity of captured microorganisms were then assessed by clone library construction and sequencing. Diversity recovered from Magneto-FISH experiments using general and clade-specific ANME targeted probes show both the expected selectivity of the FISH probes (i.e. predominately ANME-2c subclade captured with an ANME-2c probe and multiple ANME groups recovered with the general probe targeting most ANME). Follow up FISH experiments were conducted to confirm physical associations between ANME and unique bacterial members (deltaproteobacteria and other non-sulfate reducing groups) that were common to multiple Magneto-FISH capture experiments. Analyses of metabolic gene diversity for archaeal

  2. tRNA-dependent cysteine biosynthetic pathway represents a strategy to increase cysteine contents by preventing it from thermal degradation: thermal adaptation of methanogenic archaea ancestor.

    Science.gov (United States)

    Qu, Ge; Wang, Wei; Chen, Ling-Ling; Qian, Shao-Song; Zhang, Hong-Yu

    2009-10-01

    Although cysteine (Cys) is beneficial to stabilize protein structures, it is not prevalent in thermophiles. For instance, the Cys contents in most thermophilic archaea are only around 0.7%. However, methanogenic archaea, no matter thermophilic or not, contain relatively abundant Cys, which remains elusive for a long time. Recently, Klipcan et al. correlated this intriguing property of methanogenic archaea with their unique tRNA-dependent Cys biosynthetic pathway. But, the deep reasons underlying the correlation are ambiguous. Considering the facts that free Cys is thermally labile and the tRNA-dependent Cys biosynthesis avoids the use of free Cys, we speculate that the unique Cys biosynthetic pathway represents a strategy to increase Cys contents by preventing it from thermal degradation, which may be relevant to the thermal adaptation of methanogenic archaea ancestor.

  3. Improvement and characterization of a hyperthermophilic glucose isomerase from Thermoanaerobacter ethanolicus and its application in production of high fructose corn syrup.

    Science.gov (United States)

    Liu, Zhi-Qiang; Zheng, Wei; Huang, Jian-Feng; Jin, Li-Qun; Jia, Dong-Xu; Zhou, Hai-Yan; Xu, Jian-Miao; Liao, Cheng-Jun; Cheng, Xin-Ping; Mao, Bao-Xing; Zheng, Yu-Guo

    2015-08-01

    High fructose corn syrup (HFCS) is an alternative of liquid sweetener to sucrose that is isomerized by commercial glucose isomerase (GI). One-step production of 55 % HFCS by thermostable GI has been drawn more and more attentions. In this study, a new hyperthermophilic GI from Thermoanaerobacter ethanolicus CCSD1 (TEGI) was identified by genome mining, and then a 1317 bp fragment encoding the TEGI was synthesized and expressed in Escherichia coli BL21(DE3). To improve the activity of TEGI, two amino acid residues, Trp139 and Val186, around the active site and substrate-binding pocket based on the structural analysis and molecular docking were selected for site-directed mutagenesis. The specific activity of mutant TEGI-W139F/V186T was 2.3-fold and the value of k cat/K m was 1.86-fold as compared to the wild type TEGI, respectively. Thermostability of mutant TEGI-W139F/V186T at 90 °C for 24 h showed 1.21-fold extension than that of wild type TEGI. During the isomerization of glucose to fructose, the yield of fructose could maintain above 55.4 % by mutant TEGI-W139F/V186T as compared to 53.8 % by wild type TEGI at 90 °C. This study paved foundation for the production of 55 % HFCS using the thermostable TEGI.

  4. Effect of biowaste sludge maturation on the diversity of thermophilic bacteria and archaea in an anaerobic reactor.

    Science.gov (United States)

    Goberna, M; Insam, H; Franke-Whittle, I H

    2009-04-01

    Prokaryotic diversity was investigated near the inlet and outlet of a plug-flow reactor. After analyzing 800 clones, 50 bacterial and 3 archaeal phylogenetic groups were defined. Clostridia (>92%) dominated among bacteria and Methanoculleus (>90%) among archaea. Significant changes in pH and volatile fatty acids did not invoke a major shift in the phylogenetic groups. We suggest that the environmental filter imposed by the saline conditions (20 g liter(-1)) selected a stable community of halotolerant and halophilic prokaryotes.

  5. A pursuit of lineage-specific and niche-specific proteome features in the world of archaea.

    Science.gov (United States)

    Roy Chowdhury, Anindya; Dutta, Chitra

    2012-06-12

    Archaea evoke interest among researchers for two enigmatic characteristics -a combination of bacterial and eukaryotic components in their molecular architectures and an enormous diversity in their life-style and metabolic capabilities. Despite considerable research efforts, lineage- specific/niche-specific molecular features of the whole archaeal world are yet to be fully unveiled. The study offers the first large-scale in silico proteome analysis of all archaeal species of known genome sequences with a special emphasis on methanogenic and sulphur-metabolising archaea. Overall amino acid usage in archaea is dominated by GC-bias. But the environmental factors like oxygen requirement or thermal adaptation seem to play important roles in selection of residues with no GC-bias at the codon level. All methanogens, irrespective of their thermal/salt adaptation, show higher usage of Cys and have relatively acidic proteomes, while the proteomes of sulphur-metabolisers have higher aromaticity and more positive charges. Despite of exhibiting thermophilic life-style, korarchaeota possesses an acidic proteome. Among the distinct trends prevailing in COGs (Cluster of Orthologous Groups of proteins) distribution profiles, crenarchaeal organisms display higher intra-order variations in COGs repertoire, especially in the metabolic ones, as compared to euryarchaea. All methanogens are characterised by a presence of 22 exclusive COGs. Divergences in amino acid usage, aromaticity/charge profiles and COG repertoire among methanogens and sulphur-metabolisers, aerobic and anaerobic archaea or korarchaeota and nanoarchaeota, as elucidated in the present study, point towards the presence of distinct molecular strategies for niche specialization in the archaeal world.

  6. Geoarchaeota: a new candidate phylum in the Archaea from high-temperature acidic iron mats in Yellowstone National Park

    OpenAIRE

    Kozubal, Mark A; Romine, Margaret; Jennings, Ryan deM; Jay, Zack J; Tringe, Susannah G; Rusch, Doug B; Beam, Jacob P; McCue, Lee Ann; Inskeep, William P

    2012-01-01

    Geothermal systems in Yellowstone National Park (YNP) provide an outstanding opportunity to understand the origin and evolution of metabolic processes necessary for life in extreme environments including low pH, high temperature, low oxygen and elevated concentrations of reduced iron. Previous phylogenetic studies of acidic ferric iron mats from YNP have revealed considerable diversity of uncultivated and undescribed archaea. The goal of this study was to obtain replicate de novo genome assem...

  7. Enrichment of anaerobic nitrate-dependent methanotrophic ?Candidatus Methanoperedens nitroreducens? archaea from an Italian paddy field soil

    OpenAIRE

    Vaksmaa, Annika; Guerrero-Cruz, Simon; van Alen, Theo A.; Cremers, Geert; Ettwig, Katharina F.; L?ke, Claudia; Jetten, Mike S. M.

    2017-01-01

    Paddy fields are a significant source of methane and contribute up to 20% of total methane emissions from wetland ecosystems. These inundated, anoxic soils featuring abundant nitrogen compounds and methane are an ideal niche for nitrate-dependent anaerobic methanotrophs. After 2?years of enrichment with a continuous supply of methane and nitrate as the sole electron donor and acceptor, a stable enrichment dominated by ?Candidatus Methanoperedens nitroreducens? archaea and ?Candidatus Methylom...

  8. Differentiating leucine incorporation of Archaea and Bacteria throughout the water column of the eastern Atlantic using metabolic inhibitors

    OpenAIRE

    Yokokawa, Taichi; Sintes, Eva; de Corte, Daniele; Olbrich, Kerstin; Herndl, Gerhard J.

    2012-01-01

    The abundance (based on catalyzed reporter deposition-fluorescence in situ hybrid ization, CARD-FISH) and leucine incorporation rates of Archaea and Bacteria were determined throughout the water column in the eastern Atlantic. Bacteria dominated throughout the water column, although their contribution to total prokaryotic abundance in the bathypelagic layer (1000 to 4000 m depth) was lower than in the surface and mesopelagic layers (0 to 1000 m depth). While marine Crenarchaeota Group I (MCG ...

  9. A pursuit of lineage-specific and niche-specific proteome features in the world of archaea

    Directory of Open Access Journals (Sweden)

    Roy Chowdhury Anindya

    2012-06-01

    Full Text Available Abstract Background Archaea evoke interest among researchers for two enigmatic characteristics –a combination of bacterial and eukaryotic components in their molecular architectures and an enormous diversity in their life-style and metabolic capabilities. Despite considerable research efforts, lineage- specific/niche-specific molecular features of the whole archaeal world are yet to be fully unveiled. The study offers the first large-scale in silico proteome analysis of all archaeal species of known genome sequences with a special emphasis on methanogenic and sulphur-metabolising archaea. Results Overall amino acid usage in archaea is dominated by GC-bias. But the environmental factors like oxygen requirement or thermal adaptation seem to play important roles in selection of residues with no GC-bias at the codon level. All methanogens, irrespective of their thermal/salt adaptation, show higher usage of Cys and have relatively acidic proteomes, while the proteomes of sulphur-metabolisers have higher aromaticity and more positive charges. Despite of exhibiting thermophilic life-style, korarchaeota possesses an acidic proteome. Among the distinct trends prevailing in COGs (Cluster of Orthologous Groups of proteins distribution profiles, crenarchaeal organisms display higher intra-order variations in COGs repertoire, especially in the metabolic ones, as compared to euryarchaea. All methanogens are characterised by a presence of 22 exclusive COGs. Conclusions Divergences in amino acid usage, aromaticity/charge profiles and COG repertoire among methanogens and sulphur-metabolisers, aerobic and anaerobic archaea or korarchaeota and nanoarchaeota, as elucidated in the present study, point towards the presence of distinct molecular strategies for niche specialization in the archaeal world.

  10. Characterization of halophilic C50 carotenoid-producing archaea isolated from solar saltworks in Bohai Bay, China

    Science.gov (United States)

    Sui, Liying; Liu, Liangsen; Deng, Yuangao

    2014-11-01

    Halophilic archaea comprise the majority of microorganisms found in hypersaline environments. C50 carotenoids accumulated in archaea cells are considered potential biotechnological products and possess a number of biological functions. Ten red colonies were isolated from brine water in a saltern crystallizer pond of the Hangu Saltworks, China. 16S rRNA gene sequence analysis showed that the colonies belonged to the extremely halophilic archaea genera Halobacterium and Halorubrum. Two representative strains, Halobacterium strain SP-2 and Halorubrum strain SP-4, were selected for further study on the phenotypic characteristics and effects of salinity and pH on accumulation and composition of pigments in their cells. The archaeal strains were isolated and grown in a culture medium prepared by dissolving yeast extract (10 g/L) and acid-hydrolyzed casein (7.5 g/L) into brine water obtained from a local salt pond. Their optimum salinity and pH for growth were 250 and 7, respectively, although pigment accumulation (OD490 / mL broth) was highest at pH 8. In addition, at 150-300 salinity, increasing salinity resulted in decreasing pigment accumulation. Analysis of the UV-Vis spectrum, TLC and HLPC chromatograms showed that C50 carotenoid bacterioruberin is the major pigment in both strains.

  11. Diverse antimicrobial interactions of halophilic archaea and bacteria extend over geographical distances and cross the domain barrier.

    Science.gov (United States)

    Atanasova, Nina S; Pietilä, Maija K; Oksanen, Hanna M

    2013-10-01

    The significance of antimicrobial substances, halocins, produced by halophilic archaea and bacteria thriving in hypersaline environments is relatively unknown. It is suggested that their production might increase species diversity and give transient competitive advances to the producer strain. Halocin production is considered to be common among halophilic archaea, but there is a lack of information about halocins produced by bacteria in highly saline environments. We studied the antimicrobial activity of 68 halophilic archaea and 22 bacteria isolated from numerous geographically distant hypersaline environments. Altogether 144 antimicrobial interactions were found between the strains and aside haloarchaea, halophilic bacteria from various genera were identified as halocin producers. Close to 80% of the interactions were detected between microorganisms from different genera and in few cases, even across the domain boundary. Several of the strains produced halocins with a wide inhibitory spectrum as has been observed before. Most of the antimicrobial interactions were found between strains from distant sampling sites indicating that hypersaline environments around the world have similar microorganisms with the potential to produce wide activity range antimicrobials. © 2013 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  12. Geoarchaeota: a new candidate phylum in the Archaea from high-temperature acidic iron mats in Yellowstone National Park.

    Science.gov (United States)

    Kozubal, Mark A; Romine, Margaret; Jennings, Ryan deM; Jay, Zack J; Tringe, Susannah G; Rusch, Doug B; Beam, Jacob P; McCue, Lee Ann; Inskeep, William P

    2013-03-01

    Geothermal systems in Yellowstone National Park (YNP) provide an outstanding opportunity to understand the origin and evolution of metabolic processes necessary for life in extreme environments including low pH, high temperature, low oxygen and elevated concentrations of reduced iron. Previous phylogenetic studies of acidic ferric iron mats from YNP have revealed considerable diversity of uncultivated and undescribed archaea. The goal of this study was to obtain replicate de novo genome assemblies for a dominant archaeal population inhabiting acidic iron-oxide mats in YNP. Detailed analysis of conserved ribosomal and informational processing genes indicates that the replicate assemblies represent a new candidate phylum within the domain Archaea referred to here as 'Geoarchaeota' or 'novel archaeal group 1 (NAG1)'. The NAG1 organisms contain pathways necessary for the catabolism of peptides and complex carbohydrates as well as a bacterial-like Form I carbon monoxide dehydrogenase complex likely used for energy conservation. Moreover, this novel population contains genes involved in the metabolism of oxygen including a Type A heme copper oxidase, a bd-type terminal oxidase and a putative oxygen-sensing protoglobin. NAG1 has a variety of unique bacterial-like cofactor biosynthesis and transport genes and a Type3-like CRISPR system. Discovery of NAG1 is critical to our understanding of microbial community structure and function in extant thermophilic iron-oxide mats of YNP, and will provide insight regarding the evolution of Archaea in early Earth environments that may have important analogs active in YNP today.

  13. A Phylogenomic Census of Molecular Functions Identifies Modern Thermophilic Archaea as the Most Ancient Form of Cellular Life

    Directory of Open Access Journals (Sweden)

    Arshan Nasir

    2014-01-01

    Full Text Available The origins of diversified life remain mysterious despite considerable efforts devoted to untangling the roots of the universal tree of life. Here we reconstructed phylogenies that described the evolution of molecular functions and the evolution of species directly from a genomic census of gene ontology (GO definitions. We sampled 249 free-living genomes spanning organisms in the three superkingdoms of life, Archaea, Bacteria, and Eukarya, and used the abundance of GO terms as molecular characters to produce rooted phylogenetic trees. Results revealed an early thermophilic origin of Archaea that was followed by genome reduction events in microbial superkingdoms. Eukaryal genomes displayed extraordinary functional diversity and were enriched with hundreds of novel molecular activities not detected in the akaryotic microbial cells. Remarkably, the majority of these novel functions appeared quite late in evolution, synchronized with the diversification of the eukaryal superkingdom. The distribution of GO terms in superkingdoms confirms that Archaea appears to be the simplest and most ancient form of cellular life, while Eukarya is the most diverse and recent.

  14. A phylogenomic census of molecular functions identifies modern thermophilic archaea as the most ancient form of cellular life.

    Science.gov (United States)

    Nasir, Arshan; Kim, Kyung Mo; Caetano-Anollés, Gustavo

    2014-01-01

    The origins of diversified life remain mysterious despite considerable efforts devoted to untangling the roots of the universal tree of life. Here we reconstructed phylogenies that described the evolution of molecular functions and the evolution of species directly from a genomic census of gene ontology (GO) definitions. We sampled 249 free-living genomes spanning organisms in the three superkingdoms of life, Archaea, Bacteria, and Eukarya, and used the abundance of GO terms as molecular characters to produce rooted phylogenetic trees. Results revealed an early thermophilic origin of Archaea that was followed by genome reduction events in microbial superkingdoms. Eukaryal genomes displayed extraordinary functional diversity and were enriched with hundreds of novel molecular activities not detected in the akaryotic microbial cells. Remarkably, the majority of these novel functions appeared quite late in evolution, synchronized with the diversification of the eukaryal superkingdom. The distribution of GO terms in superkingdoms confirms that Archaea appears to be the simplest and most ancient form of cellular life, while Eukarya is the most diverse and recent.

  15. Stratification of archaeal membrane lipids in the ocean and implications for adaptation and chemotaxonomy of planktonic archaea.

    Science.gov (United States)

    Zhu, Chun; Wakeham, Stuart G; Elling, Felix J; Basse, Andreas; Mollenhauer, Gesine; Versteegh, Gerard J M; Könneke, Martin; Hinrichs, Kai-Uwe

    2016-12-01

    Membrane lipids of marine planktonic archaea have provided unique insights into archaeal ecology and paleoceanography. However, past studies of archaeal lipids in suspended particulate matter (SPM) and sediments mainly focused on a small class of fully saturated glycerol dibiphytanyl glycerol tetraether (GDGT) homologues identified decades ago. The apparent low structural diversity of GDGTs is in strong contrast to the high diversity of metabolism and taxonomy among planktonic archaea. Furthermore, adaptation of archaeal lipids in the deep ocean remains poorly constrained. We report the archaeal lipidome in SPM from diverse oceanic regimes. We extend the known inventory of planktonic archaeal lipids to include numerous unsaturated archaeal ether lipids (uns-AELs). We further reveal (i) different thermal regulations and polar headgroup compositions of membrane lipids between the epipelagic (≤ 100 m) and deep (>100 m) populations of archaea, (ii) stratification of unsaturated GDGTs with varying redox conditions, and (iii) enrichment of tetra-unsaturated archaeol and fully saturated GDGTs in epipelagic and deep oxygenated waters, respectively. Such stratified lipid patterns are consistent with the typical distribution of archaeal phylotypes in marine environments. We, thus, provide an ecological context for GDGT-based paleoclimatology and bring about the potential use of uns-AELs as biomarkers for planktonic Euryarchaeota. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Genomic Encyclopedia of Bacteria and Archaea: Sequencing a Myriad of Type Strains

    KAUST Repository

    Kyrpides, Nikos C.; Hugenholtz, Philip; Eisen, Jonathan A.; Woyke, Tanja; Gö ker, Markus; Parker, Charles T.; Amann, Rudolf; Beck, Brian J.; Chain, Patrick S. G.; Chun, Jongsik; Colwell, Rita R.; Danchin, Antoine; Dawyndt, Peter; Dedeurwaerdere, Tom; DeLong, Edward F.; Detter, John C.; De Vos, Paul; Donohue, Timothy J.; Dong, Xiu-Zhu; Ehrlich, Dusko S.; Fraser, Claire; Gibbs, Richard; Gilbert, Jack; Gilna, Paul; Glö ckner, Frank Oliver; Jansson, Janet K.; Keasling, Jay D.; Knight, Rob; Labeda, David; Lapidus, Alla; Lee, Jung-Sook; Li, Wen-Jun; MA, Juncai; Markowitz, Victor; Moore, Edward R. B.; Morrison, Mark; Meyer, Folker; Nelson, Karen E.; Ohkuma, Moriya; Ouzounis, Christos A.; Pace, Norman; Parkhill, Julian; Qin, Nan; Rossello-Mora, Ramon; Sikorski, Johannes; Smith, David; Sogin, Mitch; Stevens, Rick; Stingl, Ulrich; Suzuki, Ken-ichiro; Taylor, Dorothea; Tiedje, Jim M.; Tindall, Brian; Wagner, Michael; Weinstock, George; Weissenbach, Jean; White, Owen; Wang, Jun; Zhang, Lixin; Zhou, Yu-Guang; Field, Dawn; Whitman, William B.; Garrity, George M.; Klenk, Hans Peter

    2014-01-01

    Microbes hold the key to life. They hold the secrets to our past (as the descendants of the earliest forms of life) and the prospects for our future (as we mine their genes for solutions to some of the planet's most pressing problems, from global warming to antibiotic resistance). However, the piecemeal approach that has defined efforts to study microbial genetic diversity for over 20 years and in over 30,000 genome projects risks squandering that promise. These efforts have covered less than 20% of the diversity of the cultured archaeal and bacterial species, which represent just 15% of the overall known prokaryotic diversity. Here we call for the funding of a systematic effort to produce a comprehensive genomic catalog of all cultured Bacteria and Archaea by sequencing, where available, the type strain of each species with a validly published name (currently∼11,000). This effort will provide an unprecedented level of coverage of our planet's genetic diversity, allow for the large-scale discovery of novel genes and functions, and lead to an improved understanding of microbial evolution and function in the environment.

  17. Evolutionary strategies of viruses, bacteria and archaea in hydrothermal vent ecosystems revealed through metagenomics.

    Science.gov (United States)

    Anderson, Rika E; Sogin, Mitchell L; Baross, John A

    2014-01-01

    The deep-sea hydrothermal vent habitat hosts a diverse community of archaea and bacteria that withstand extreme fluctuations in environmental conditions. Abundant viruses in these systems, a high proportion of which are lysogenic, must also withstand these environmental extremes. Here, we explore the evolutionary strategies of both microorganisms and viruses in hydrothermal systems through comparative analysis of a cellular and viral metagenome, collected by size fractionation of high temperature fluids from a diffuse flow hydrothermal vent. We detected a high enrichment of mobile elements and proviruses in the cellular fraction relative to microorganisms in other environments. We observed a relatively high abundance of genes related to energy metabolism as well as cofactors and vitamins in the viral fraction compared to the cellular fraction, which suggest encoding of auxiliary metabolic genes on viral genomes. Moreover, the observation of stronger purifying selection in the viral versus cellular gene pool suggests viral strategies that promote prolonged host integration. Our results demonstrate that there is great potential for hydrothermal vent viruses to integrate into hosts, facilitate horizontal gene transfer, and express or transfer genes that manipulate the hosts' functional capabilities.

  18. Isolation and characterization of halophilic bacteria and archaea from salt ponds in Hangu Saltworks, Tianjin, China

    Science.gov (United States)

    Deng, Yuangao; Xu, Gaochao; Sui, Liying

    2015-07-01

    A total of 26 isolates were obtained from solar salt ponds of different salinities (100, 150, 200, and 250) in Hangu Saltworks Co. Ltd., Tianjin, China. Phylogenetic analysis of 16S rRNA gene sequences indicated that five bacteria genera Halomonas, Salinicoccus, Oceanobacillus, Gracibacillus, and Salimicrobium and one archaea genera Halorubrum were present. The genus Halomonas was predominant with eight strains distributed in a salinity range of 100-200, followed by Halorubrum with six strains in salinity 250. Based on the genus and original sampling salinity, eight bacterial and two archaeal isolates were selected for further morphological, physiological, and biochemical characterization. All of the bacterial strains were moderately halophilic with the optimal salinity for growth being either 50 or 100, while two archaeal strains were extremely halophilic with an optimal growth salinity of 200. Additionally, we put forth strain SM.200-5 as a new candidate Salimicrobium species based on the phylogenic analysis of the 16S rRNA gene sequence and its biochemical characteristics when compared with known related species.

  19. Gut Microbial Diversity Assessment of Indian Type-2-Diabetics Reveals Alterations in Eubacteria, Archaea, and Eukaryotes.

    Science.gov (United States)

    Bhute, Shrikant S; Suryavanshi, Mangesh V; Joshi, Suyog M; Yajnik, Chittaranjan S; Shouche, Yogesh S; Ghaskadbi, Saroj S

    2017-01-01

    Diabetes in India has distinct genetic, nutritional, developmental and socio-economic aspects; owing to the fact that changes in gut microbiota are associated with diabetes, we employed semiconductor-based sequencing to characterize gut microbiota of diabetic subjects from this region. We suggest consolidated dysbiosis of eubacterial, archaeal and eukaryotic components in the gut microbiota of newly diagnosed (New-DMs) and long-standing diabetic subjects (Known-DMs) compared to healthy subjects (NGTs). Increased abundance of phylum Firmicutes ( p = 0.010) and Operational Taxonomic Units (OTUs) of Lactobacillus ( p PERMANOVA test indicated that the eubacterial component was associated with diabetes-related risk factors like high triglyceride ( p = 0.05), low HDL ( p = 0.03), and waist-to-hip ratio ( p = 0.02). Metagenomic imputation of eubacteria depict deficiencies of various essential functions such as carbohydrate metabolism, amino acid metabolism etc. in New-DMs subjects. Results presented here shows that in diabetes, microbial dysbiosis may not be just limited to eubacteria. Due to the inter-linked metabolic interactions among the eubacteria, archaea and eukarya in the gut, it may extend into other two domains leading to trans-domain dysbiosis in microbiota. Our results thus contribute to and expand the identification of biomarkers in diabetes.

  20. Gut Microbial Diversity Assessment of Indian Type-2-Diabetics Reveals Alterations in Eubacteria, Archaea, and Eukaryotes

    Science.gov (United States)

    Bhute, Shrikant S.; Suryavanshi, Mangesh V.; Joshi, Suyog M.; Yajnik, Chittaranjan S.; Shouche, Yogesh S.; Ghaskadbi, Saroj S.

    2017-01-01

    Diabetes in India has distinct genetic, nutritional, developmental and socio-economic aspects; owing to the fact that changes in gut microbiota are associated with diabetes, we employed semiconductor-based sequencing to characterize gut microbiota of diabetic subjects from this region. We suggest consolidated dysbiosis of eubacterial, archaeal and eukaryotic components in the gut microbiota of newly diagnosed (New-DMs) and long-standing diabetic subjects (Known-DMs) compared to healthy subjects (NGTs). Increased abundance of phylum Firmicutes (p = 0.010) and Operational Taxonomic Units (OTUs) of Lactobacillus (p PERMANOVA test indicated that the eubacterial component was associated with diabetes-related risk factors like high triglyceride (p = 0.05), low HDL (p = 0.03), and waist-to-hip ratio (p = 0.02). Metagenomic imputation of eubacteria depict deficiencies of various essential functions such as carbohydrate metabolism, amino acid metabolism etc. in New-DMs subjects. Results presented here shows that in diabetes, microbial dysbiosis may not be just limited to eubacteria. Due to the inter-linked metabolic interactions among the eubacteria, archaea and eukarya in the gut, it may extend into other two domains leading to trans-domain dysbiosis in microbiota. Our results thus contribute to and expand the identification of biomarkers in diabetes. PMID:28261173

  1. Evolutionary strategies of viruses, bacteria and archaea in hydrothermal vent ecosystems revealed through metagenomics.

    Directory of Open Access Journals (Sweden)

    Rika E Anderson

    Full Text Available The deep-sea hydrothermal vent habitat hosts a diverse community of archaea and bacteria that withstand extreme fluctuations in environmental conditions. Abundant viruses in these systems, a high proportion of which are lysogenic, must also withstand these environmental extremes. Here, we explore the evolutionary strategies of both microorganisms and viruses in hydrothermal systems through comparative analysis of a cellular and viral metagenome, collected by size fractionation of high temperature fluids from a diffuse flow hydrothermal vent. We detected a high enrichment of mobile elements and proviruses in the cellular fraction relative to microorganisms in other environments. We observed a relatively high abundance of genes related to energy metabolism as well as cofactors and vitamins in the viral fraction compared to the cellular fraction, which suggest encoding of auxiliary metabolic genes on viral genomes. Moreover, the observation of stronger purifying selection in the viral versus cellular gene pool suggests viral strategies that promote prolonged host integration. Our results demonstrate that there is great potential for hydrothermal vent viruses to integrate into hosts, facilitate horizontal gene transfer, and express or transfer genes that manipulate the hosts' functional capabilities.

  2. Characterization and antimicrobial potential of extremely halophilic archaea isolated from hypersaline environments of the Algerian Sahara.

    Science.gov (United States)

    Quadri, Inès; Hassani, Imene Ikrame; l'Haridon, Stéphane; Chalopin, Morgane; Hacène, Hocine; Jebbar, Mohamed

    2016-01-01

    Halophilic archaea were isolated from different chotts and sebkha, dry salt lakes and salt flat respectively, of the Algerian Sahara and characterized using phenotypic and phylogenetic approaches. From 102 extremely halophilic strains isolated, forty three were selected and studied. These strains were also screened for their antagonistic potential and the production of hydrolytic enzymes. Sequencing of the 16S rRNA genes and phylogenetic analysis allowed the identification of 10 archaeal genera within the class Halobacteria: Natrinema (13 strains), Natrialba (12 strains), Haloarcula (4 strains), Halopiger (4 strains), Haloterrigena (3 strains), Halorubrum (2 strains), Halostagnicola (2 strains), Natronococcus, Halogeometricum and Haloferax (1 strain each). The most common producers of antimicrobial compounds belong to the genus Natrinema while the most hydrolytic isolates, with combined production of several enzymes, belong to the genus Natrialba. The strain affiliated to Halopiger djelfamassilliensis was found to produce some substances of interest (halocins, anti-Candida, enzymes). After partial purification and characterization of one of the strains Natrinema gari QI1, we found similarities between the antimicrobial compound and the halocin C8. Therefore, the gene encoding halocin C8 was amplified and sequenced. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Global transcriptome analysis of Halolamina sp. to decipher the salt tolerance in extremely halophilic archaea.

    Science.gov (United States)

    Kurt-Kızıldoğan, Aslıhan; Abanoz, Büşra; Okay, Sezer

    2017-02-15

    Extremely halophilic archaea survive in the hypersaline environments such as salt lakes or salt mines. Therefore, these microorganisms are good sources to investigate the molecular mechanisms underlying the tolerance to high salt concentrations. In this study, a global transcriptome analysis was conducted in an extremely halophilic archaeon, Halolamina sp. YKT1, isolated from a salt mine in Turkey. A comparative RNA-seq analysis was performed using YKT1 isolate grown either at 2.7M NaCl or 5.5M NaCl concentrations. A total of 2149 genes were predicted to be up-regulated and 1638 genes were down-regulated in the presence of 5.5M NaCl. The salt tolerance of Halolamina sp. YKT1 involves the up-regulation of genes related with membrane transporters, CRISPR-Cas systems, osmoprotectant solutes, oxidative stress proteins, and iron metabolism. On the other hand, the genes encoding the proteins involved in DNA replication, transcription, translation, mismatch and nucleotide excision repair were down-regulated. The RNA-seq data were verified for seven up-regulated genes as well as six down-regulated genes via qRT-PCR analysis. This comprehensive transcriptome analysis showed that the halophilic archaeon canalizes its energy towards keeping the intracellular osmotic balance minimizing the production of nucleic acids and peptides. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Resistance of extremely halophilic archaea to zinc and zinc oxide nanoparticles

    Science.gov (United States)

    Salgaonkar, Bhakti B.; Das, Deepthi; Bragança, Judith Maria

    2016-02-01

    Industrialization as well as other anthropogenic activities have resulted in addition of high loads of metal and/or metal nanoparticles to the environment. In this study, the effect of one of the widely used heavy metal, zinc (Zn) and zinc oxide nanoparticles (ZnO NPs) on extremely halophilic archaea was evaluated. One representative member from four genera namely Halococcus, Haloferax, Halorubrum and Haloarcula of the family Halobacteriaceae was taken as the model organism. All the haloarchaeal genera investigated were resistant to both ZnCl2 and ZnO NPs at varying concentrations. Halococcus strain BK6 and Haloferax strain BBK2 showed the highest resistance in complex/minimal medium of up to 2.0/1.0 mM ZnCl2 and 2.0/1.0-0.5 mM ZnO NP. Accumulation of ZnCl2/ZnO NPs was seen as Haloferax strain BBK2 (287.2/549.6 mg g-1) > Halococcus strain BK6 (165.9/388.5 mg g-1) > Haloarcula strain BS2 (93.2/28.5 mg g-1) > Halorubrum strain BS17 (29.9/16.2 mg g-1). Scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM-EDX) analysis revealed that bulk ZnCl2 was sorbed at a higher concentration (21.77 %) on the cell surface of Haloferax strain BBK2 as compared to the ZnO NPs (14.89 %).

  5. Archaea, Bacteria, and Sulfur-Cycling in a Shallow-Sea Hydrothermal Ecosystem

    Science.gov (United States)

    Amend, J. P.; Huang, C.; Amann, R.; Bach, W.; Meyerdierks, A.; Price, R. E.; Schubotz, F.; Summons, R. E.; Wenzhoefer, F.

    2009-12-01

    Deep-sea hydrothermal systems are windows to the marine subsurface biosphere. It often is overlooked, however, that their far more accessible shallow-sea counterparts can serve the same purpose. To characterize the extent, diversity, and activity of the subsurface microbial community in the shallow vent ecosystem near Panarea Island (Italy), sediment cores were analyzed with a broad array of analytical techniques. Vent fluid and sediment temperatures reached up to 135 °C, with pHs in porewaters generally measuring 5-6. Microsensor profiles marked a very sharp oxic-anoxic transition, and when coupled to pH and H2S profiles, pointed to aerobic sulfide oxidation. With increasing depth from the sediment-water interface, porewater analyses showed a decrease in sulfate levels from ~30 mM to thermophilic sulfate reducing and acidophilic sulfide oxidizing bacteria. Results from several sites also showed that with increasing depth and temperature, biomass abundance of archaea generally increased relative to that of bacteria. Lastly, DGGE fingerprinting and 16S rRNA clone libraries from several depths at Hot Lake revealed a moderate diversity of bacteria, dominated by Epsilonproteobacteria; this class is known to catalyze both sulfur reduction and oxidation reactions, and to mediate the formation of iron-sulfides, including framboidal pyrite. Archaeal sequences at Hot Lake are dominated by uncultured Thermoplasmatales, plus several sequences in the Korarchaeota.

  6. Genomic encyclopedia of bacteria and archaea: sequencing a myriad of type strains.

    Directory of Open Access Journals (Sweden)

    Nikos C Kyrpides

    2014-08-01

    Full Text Available Microbes hold the key to life. They hold the secrets to our past (as the descendants of the earliest forms of life and the prospects for our future (as we mine their genes for solutions to some of the planet's most pressing problems, from global warming to antibiotic resistance. However, the piecemeal approach that has defined efforts to study microbial genetic diversity for over 20 years and in over 30,000 genome projects risks squandering that promise. These efforts have covered less than 20% of the diversity of the cultured archaeal and bacterial species, which represent just 15% of the overall known prokaryotic diversity. Here we call for the funding of a systematic effort to produce a comprehensive genomic catalog of all cultured Bacteria and Archaea by sequencing, where available, the type strain of each species with a validly published name (currently∼11,000. This effort will provide an unprecedented level of coverage of our planet's genetic diversity, allow for the large-scale discovery of novel genes and functions, and lead to an improved understanding of microbial evolution and function in the environment.

  7. Archaea produce lower yields of N2 O than bacteria during aerobic ammonia oxidation in soil.

    Science.gov (United States)

    Hink, Linda; Nicol, Graeme W; Prosser, James I

    2017-12-01

    Nitrogen fertilisation of agricultural soil contributes significantly to emissions of the potent greenhouse gas nitrous oxide (N 2 O), which is generated during denitrification and, in oxic soils, mainly by ammonia oxidisers. Although laboratory cultures of ammonia oxidising bacteria (AOB) and archaea (AOA) produce N 2 O, their relative activities in soil are unknown. This work tested the hypothesis that AOB dominate ammonia oxidation and N 2 O production under conditions of high inorganic ammonia (NH 3 ) input, but result mainly from the activity of AOA when NH 3 is derived from mineralisation. 1-octyne, a recently discovered inhibitor of AOB, was used to distinguish N 2 O production resulting from archaeal and bacterial ammonia oxidation in soil microcosms, and specifically inhibited AOB growth, activity and N 2 O production. In unamended soils, ammonia oxidation and N 2 O production were lower and resulted mainly from ammonia oxidation by AOA. The AOA N 2 O yield relative to nitrite produced was half that of AOB, likely due to additional enzymatic mechanisms in the latter, but ammonia oxidation and N 2 O production were directly linked in all treatments. Relative contributions of AOA and AOB to N 2 O production, therefore, reflect their respective contributions to ammonia oxidation. These results suggest potential mitigation strategies for N 2 O emissions from fertilised agricultural soils. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world

    Science.gov (United States)

    Koonin, Eugene V.; Wolf, Yuri I.

    2008-01-01

    The first bacterial genome was sequenced in 1995, and the first archaeal genome in 1996. Soon after these breakthroughs, an exponential rate of genome sequencing was established, with a doubling time of approximately 20 months for bacteria and approximately 34 months for archaea. Comparative analysis of the hundreds of sequenced bacterial and dozens of archaeal genomes leads to several generalizations on the principles of genome organization and evolution. A crucial finding that enables functional characterization of the sequenced genomes and evolutionary reconstruction is that the majority of archaeal and bacterial genes have conserved orthologs in other, often, distant organisms. However, comparative genomics also shows that horizontal gene transfer (HGT) is a dominant force of prokaryotic evolution, along with the loss of genetic material resulting in genome contraction. A crucial component of the prokaryotic world is the mobilome, the enormous collection of viruses, plasmids and other selfish elements, which are in constant exchange with more stable chromosomes and serve as HGT vehicles. Thus, the prokaryotic genome space is a tightly connected, although compartmentalized, network, a novel notion that undermines the ‘Tree of Life’ model of evolution and requires a new conceptual framework and tools for the study of prokaryotic evolution. PMID:18948295

  9. Genomic Encyclopedia of Bacteria and Archaea: Sequencing a Myriad of Type Strains

    KAUST Repository

    Kyrpides, Nikos C.

    2014-08-05

    Microbes hold the key to life. They hold the secrets to our past (as the descendants of the earliest forms of life) and the prospects for our future (as we mine their genes for solutions to some of the planet\\'s most pressing problems, from global warming to antibiotic resistance). However, the piecemeal approach that has defined efforts to study microbial genetic diversity for over 20 years and in over 30,000 genome projects risks squandering that promise. These efforts have covered less than 20% of the diversity of the cultured archaeal and bacterial species, which represent just 15% of the overall known prokaryotic diversity. Here we call for the funding of a systematic effort to produce a comprehensive genomic catalog of all cultured Bacteria and Archaea by sequencing, where available, the type strain of each species with a validly published name (currently∼11,000). This effort will provide an unprecedented level of coverage of our planet\\'s genetic diversity, allow for the large-scale discovery of novel genes and functions, and lead to an improved understanding of microbial evolution and function in the environment.

  10. Fiscal 1999 achievement report on research and development project on intellectual infrastructure creation and utilization technologies. Development of efficient protein expression system (Development of efficient protein expression system utilizing protein folding mechanism of hyperthermophilic bacteria); 1999 nendo kokoritsu tanpakushitsu hatsugen system no kaihatsu seika hokokusho. Chokonetsukin no tanpakushitsu oritatami kiko wo riyoshita kokoritsu tanpakushitsu hatsugen system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Efforts were exerted to achieve efficient expression of proteins of hyperthermophilic bacteria, hyperthermophilic archaeabacteria in particular, using a heterogene expression system in which Escherichia coli was the host. In an effort to search for genes related to protein folding and to elucidate the mechanism of folding, chaperonin and prefoldin subunit genes, out of various factors participating in protein folding in hyperthermophilic archaeabacteria, were cloned, and expressed in Escherichia coli. As a system for analyzing protein folding reaction, an experimental system was established on a substrate comprising isopropyl malate dehydrogenase, citrate synthase, glucose dehydrogenase, and a green fluorescent protein. Studies were further conducted to elucidate the mechanism of expression of enzyme genes in Escherichia coli for the establishment of a mass production method for useful enzymes. Also carried out was the research and development of an element technology evaluation system involving protein expression. (NEDO)

  11. Contribution of Ruminal Fungi, Archaea, Protozoa, and Bacteria to the Methane Suppression Caused by Oilseed Supplemented Diets

    Directory of Open Access Journals (Sweden)

    Shaopu Wang

    2017-09-01

    Full Text Available Dietary lipids can suppress methane emission from ruminants, but effects are variable. Especially the role of bacteria, archaea, fungi and protozoa in mediating the lipid effects is unclear. In the present in vitro study, archaea, fungi and protozoa were selectively inhibited by specific agents. This was fully or almost fully successful for fungi and protozoa as well as archaeal activity as determined by the methyl-coenzyme M reductase alpha subunit gene. Five different microbial treatments were generated: rumen fluid being intact (I, without archaea (–A, without fungi (–F, without protozoa (–P and with bacteria only (–AFP. A forage-concentrate diet given alone or supplemented with crushed full-fat oilseeds of either safflower (Carthamus tinctorius or poppy (Papaver somniferum or camelina (Camelina sativa at 70 g oil kg−1 diet dry matter was incubated. This added up to 20 treatments with six incubation runs per treatment. All oilseeds suppressed methane emission compared to the non-supplemented control. Compared to the non-supplemented control, –F decreased organic matter (OM degradation, and short-chain fatty acid concentration was greater with camelina and safflower seeds. Methane suppression per OM digested in –F was greater with camelina seeds (−12 vs.−7% with I, P = 0.06, but smaller with poppy seeds (−4 vs. −8% with I, P = 0.03, and not affected with safflower seeds. With –P, camelina seeds decreased the acetate-to-propionate ratio and enhanced the methane suppression per gram dry matter (18 vs. 10% with I, P = 0.08. Hydrogen recovery was improved with –P in any oilseeds compared to non-supplemented control. No methane emission was detected with the –A and –AFP treatments. In conclusion, concerning methanogenesis, camelina seeds seem to exert effects only on archaea and bacteria. By contrast, with safflower and poppy seeds methane was obviously reduced mainly through the interaction with protozoa or archaea

  12. Contribution of Ruminal Fungi, Archaea, Protozoa, and Bacteria to the Methane Suppression Caused by Oilseed Supplemented Diets.

    Science.gov (United States)

    Wang, Shaopu; Giller, Katrin; Kreuzer, Michael; Ulbrich, Susanne E; Braun, Ueli; Schwarm, Angela

    2017-01-01

    Dietary lipids can suppress methane emission from ruminants, but effects are variable. Especially the role of bacteria, archaea, fungi and protozoa in mediating the lipid effects is unclear. In the present in vitro study, archaea, fungi and protozoa were selectively inhibited by specific agents. This was fully or almost fully successful for fungi and protozoa as well as archaeal activity as determined by the methyl-coenzyme M reductase alpha subunit gene. Five different microbial treatments were generated: rumen fluid being intact (I), without archaea (-A), without fungi (-F), without protozoa (-P) and with bacteria only (-AFP). A forage-concentrate diet given alone or supplemented with crushed full-fat oilseeds of either safflower ( Carthamus tinctorius ) or poppy ( Papaver somniferum ) or camelina ( Camelina sativa ) at 70 g oil kg -1 diet dry matter was incubated. This added up to 20 treatments with six incubation runs per treatment. All oilseeds suppressed methane emission compared to the non-supplemented control. Compared to the non-supplemented control, -F decreased organic matter (OM) degradation, and short-chain fatty acid concentration was greater with camelina and safflower seeds. Methane suppression per OM digested in -F was greater with camelina seeds (-12 vs.-7% with I, P = 0.06), but smaller with poppy seeds (-4 vs. -8% with I, P = 0.03), and not affected with safflower seeds. With -P, camelina seeds decreased the acetate-to-propionate ratio and enhanced the methane suppression per gram dry matter (18 vs. 10% with I, P = 0.08). Hydrogen recovery was improved with -P in any oilseeds compared to non-supplemented control. No methane emission was detected with the -A and -AFP treatments. In conclusion, concerning methanogenesis, camelina seeds seem to exert effects only on archaea and bacteria. By contrast, with safflower and poppy seeds methane was obviously reduced mainly through the interaction with protozoa or archaea associated with protozoa. This

  13. Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: teamwork or coexistence?

    Science.gov (United States)

    Ozuolmez, Derya; Na, Hyunsoo; Lever, Mark A; Kjeldsen, Kasper U; Jørgensen, Bo B; Plugge, Caroline M

    2015-01-01

    Acetate is a major product of fermentation processes and an important substrate for sulfate reducing bacteria and methanogenic archaea. Most studies on acetate catabolism by sulfate reducers and methanogens have used pure cultures. Less is known about acetate conversion by mixed pure cultures and the interactions between both groups. We tested interspecies hydrogen transfer and coexistence between marine methanogens and sulfate reducers using mixed pure cultures of two types of microorganisms. First, Desulfovibrio vulgaris subsp. vulgaris (DSM 1744), a hydrogenotrophic sulfate reducer, was cocultured together with the obligate aceticlastic methanogen Methanosaeta concilii using acetate as carbon and energy source. Next, Methanococcus maripaludis S2, an obligate H2- and formate-utilizing methanogen, was used as a partner organism to M. concilii in the presence of acetate. Finally, we performed a coexistence experiment between M. concilii and an acetotrophic sulfate reducer Desulfobacter latus AcSR2. Our results showed that D. vulgaris was able to reduce sulfate and grow from hydrogen leaked by M. concilii. In the other coculture, M. maripaludis was sustained by hydrogen leaked by M. concilii as revealed by qPCR. The growth of the two aceticlastic microbes indicated co-existence rather than competition. Altogether, our results indicate that H2 leaking from M. concilii could be used by efficient H2-scavengers. This metabolic trait, revealed from coculture studies, brings new insight to the metabolic flexibility of methanogens and sulfate reducers residing in marine environments in response to changing environmental conditions and community compositions. Using dedicated physiological studies we were able to unravel the occurrence of less obvious interactions between marine methanogens and sulfate-reducing bacteria.

  14. Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: teamwork or coexistence?

    Directory of Open Access Journals (Sweden)

    Derya eOzuolmez

    2015-05-01

    Full Text Available Acetate is a major product of fermentation processes and an important substrate for sulfate reducing bacteria and methanogenic archaea. Most studies on acetate catabolism by sulfate reducers and methanogens have used pure cultures. Less is known about acetate conversion by mixed pure cultures and the interactions between both groups. We tested interspecies hydrogen transfer and coexistence between marine methanogens and sulfate reducers using mixed pure cultures of two types of microorganisms. First, Desulfovibrio vulgaris subsp. vulgaris (DSM 1744, a hydrogenotrophic sulfate reducer, was cocultured together with the obligate aceticlastic methanogen Methanosaeta concilii using acetate as carbon and energy source. Next, Methanococcus maripaludis S2, an obligate H2- and formate-utilizing methanogen, was used as a partner organism to M. concilii in the presence of acetate. Finally, we performed a coexistence experiment between M. concilii and an acetotrophic sulfate reducer Desulfobacter latus AcSR2. Our results showed that D. vulgaris was able to reduce sulfate and grow from hydrogen leaked by M. concilii. In the other coculture, M. maripaludis was sustained by hydrogen leaked by M. concilii as revealed by qPCR. The growth of the two aceticlastic microbes indicated co-existence rather than competition. Altogether, our results indicate that H2 leaking from M. concilii could be used by efficient H2-scavengers. This metabolic trait, revealed from coculture studies, brings new insight to the metabolic flexibility of methanogens and sulfate reducers residing in marine environments in response to changing environmental conditions and community compositions. Using dedicated physiological studies we were able to unravel the occurrence of less obvious interactions between marine methanogens and sulfate-reducing bacteria.

  15. Comparative community structure of archaea in rumen of buffaloes and cattle.

    Science.gov (United States)

    Paul, Shyam S; Dey, Avijit; Baro, Daoharu; Punia, Balbir S

    2017-08-01

    Detailed knowledge of the community structure of methanogens is essential for amelioration of methane emission from livestock species. Several studies have indicated that predominant methanogens of buffalo rumen are different from those in cattle. However, predominant genera of methanogens reported by individual studies varied primarily because of limited scope of sampling, sequencing of limited number of sequences and potential PCR bias in individual studies. In this study, the collective comparative diversity of methanogenic archaea in the rumen of cattle and buffaloes was examined by performing a meta-analysis of all the 16S rRNA (rrn) sequences deposited in GenBank. Ruminal methanogen sequences of buffalo were clustered into 900 species-level operational taxonomic units (OTUs), and ruminal methanogen sequences of cattle were clustered into 1522 species level OTUs. The number of species-level OTUs shared between cattle and buffaloes was 229 (10.4% of all OTUs), comprising 1746 sequences (27% of the total 6447 sequences). According to taxonomic classification by three different classifiers, Methanobrevibacter was found to be the most predominant genus both in cattle (69-71% of sequences) as well as buffaloes (65.1-68.9% of sequences). Percentage of Methanomicrobium was much higher (P cattle (4.5%). On the other hand, percentages of Methanosphaera- and Methanomassiliicoccus-like methanogens were much higher (P cattle than in buffaloes. This study indicated that there is a substantial difference in community structure of ruminal methanogens of cattle and buffaloes. The study has also indicated that the percent of species-level operational taxonomic units shared between cattle and buffalo is very low, and thus host species-specific methane mitigation strategies need to be developed for cattle and buffaloes. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  16. Isolation, characterization and exploring biotechnological potential of halophilic archaea from salterns of western India.

    Science.gov (United States)

    Singh, Aparna; Singh, Anil Kumar

    2018-01-01

    Thirteen halophilic archaea were isolated from Kandla and Bhayander salt pans. These isolates were grouped into three different genera Halobacterium, Haloferax and Haloarcula based on morphological and biochemical characterization, polar lipid analysis, Amplified 16S rDNA restriction analysis (ARDRA) and 16S rDNA sequence analysis. Biochemical characterization suggested the ability of isolates to produce protease, amylase and poly-hydroxybutyrate (PHB) indicating their biotechnological potential. The isolates were further screened for the amount of extracellular protease produced. Halobacterium sp. SP1(1) showed significant protease production compared to other isolates. Protease producing ability of the isolate was influenced by several factors such as NaCl concentration, type of protein source, metal ions and surfactants, and presence of amino acid supplements in the production medium. Soybean flour, FeCl 3 and dicotylsulfosuccinate were found to increase protease production by 2.36, 1.54 and 1.26 folds, respectively compared to production in basal medium. Effect of organic solvents used in paints (n-decane, n-undecane and n-dodecane) was also investigated on protease production by the isolate. Protease production by Halobacterium sp. SP1(1) was enhanced by 1.2 folds in presence of n-decane compared to control. Furthermore, the ability of isolate to hydrolyse fish protein was investigated using three different edible fishes (Pomfret, Flat fish and Seer fish) as sole protein source. Pomfret was found to be a good protein source for protease production by the isolate. These results revealed that Halobacterium sp. SP1(1) may have potential for paint-based antifouling coating preparations and fish sauce preparation by virtue of its extracellular protease.

  17. Diversity and abundance of ammonia oxidizing archaea in tropical compost systems.

    Science.gov (United States)

    de Gannes, Vidya; Eudoxie, Gaius; Dyer, David H; Hickey, William J

    2012-01-01

    Composting is widely used to transform waste materials into valuable agricultural products. In the tropics, large quantities of agricultural wastes could be potentially useful in agriculture after composting. However, while microbiological processes of composts in general are well established, relatively little is known about microbial communities that may be unique to these in tropical systems, particularly nitrifiers. The recent discovery of ammonia oxidizing archaea (AOA) has changed the paradigm of nitrification being initiated solely by ammonia oxidizing bacteria. In the present study, AOA abundance and diversity was examined in composts produced from combinations of plant waste materials common in tropical agriculture (rice straw, sugar cane bagasse, and coffee hulls), which were mixed with either cow- or sheep-manure. The objective was to determine how AOA abundance and diversity varied as a function of compost system and time, the latter being a contrast between the start of the compost process (mesophilic phase) and the finished product (mature phase). The results showed that AOA were relatively abundant in composts of tropical agricultural wastes, and significantly more so than were the ammonia-oxidizing bacteria. Furthermore, while the AOA communities in the composts were predominatly group I.1b, the communities were diverse and exhibited structures that diverged between compost types and phases. These patterns could be taken as indicators of the ecophysiological diversity in the soil AOA (group I.1b), in that significantly different AOA communties developed when exposed to varying physico-chemical environments. Nitrification patterns and levels differed in the composts which, for the mature material, could have significant effects on its performance as a plant growth medium. Thus, it will also be important to determine the association of AOA (and diversity in their communities) with nitrification in these systems.

  18. Temporal and Spatial Stability of Ammonia-Oxidizing Archaea and Bacteria in Aquarium Biofilters

    KAUST Repository

    Bagchi, Samik

    2014-12-05

    Nitrifying biofilters are used in aquaria and aquaculture systems to prevent accumulation of ammonia by promoting rapid conversion to nitrate via nitrite. Ammonia-oxidizing archaea (AOA), as opposed to ammonia-oxidizing bacteria (AOB), were recently identified as the dominant ammonia oxidizers in most freshwater aquaria. This study investigated biofilms from fixed-bed aquarium biofilters to assess the temporal and spatial dynamics of AOA and AOB abundance and diversity. Over a period of four months, ammonia-oxidizing microorganisms from six freshwater and one marine aquarium were investigated at 4–5 time points. Nitrogen balances for three freshwater aquaria showed that active nitrification by aquarium biofilters accounted for ≥81–86% of total nitrogen conversion in the aquaria. Quantitative PCR (qPCR) for bacterial and thaumarchaeal ammonia monooxygenase (amoA) genes demonstrated that AOA were numerically dominant over AOB in all six freshwater aquaria tested, and contributed all detectable amoA genes in three aquarium biofilters. In the marine aquarium, however, AOB outnumbered AOA by three to five orders of magnitude based on amoA gene abundances. A comparison of AOA abundance in three carrier materials (fine sponge, rough sponge and sintered glass or ceramic rings) of two three-media freshwater biofilters revealed preferential growth of AOA on fine sponge. Denaturing gel gradient electrophoresis (DGGE) of thaumarchaeal 16S rRNA genes indicated that community composition within a given biofilter was stable across media types. In addition, DGGE of all aquarium biofilters revealed low AOA diversity, with few bands, which were stable over time. Nonmetric multidimensional scaling (NMDS) based on denaturing gradient gel electrophoresis (DGGE) fingerprints of thaumarchaeal 16S rRNA genes placed freshwater and marine aquaria communities in separate clusters. These results indicate that AOA are the dominant ammonia-oxidizing microorganisms in freshwater aquarium

  19. Response of ammonia oxidizing archaea and bacteria to decabromodiphenyl ether and copper contamination in river sediments.

    Science.gov (United States)

    Wang, Linqiong; Li, Yi; Niu, Lihua; Zhang, Wenlong; Zhang, Huanjun; Wang, Longfei; Wang, Peifang

    2018-01-01

    Ammonia oxidation plays a fundamental role in river nitrogen cycling ecosystems, which is normally governed by both ammonia oxidizing archaea (AOA) and ammonia oxidizing bacteria (AOB). Co-contamination of typical emerging pollutant Polybrominated diphenyl ethers (PBDEs) and heavy metal on AOA and AOB communities in river sediments remains unknown. In this study, multiple analytical tools, including high-throughput pyrosequencing and real-time quantitative PCR (qPCR), were used to reveal the ammonia monooxygenase (AMO) activity, subunit alpha (amoA) gene abundance, and community structures of AOA and AOB in river sediments. It was found that the inhibition of AMO activities was increased with the increase of decabromodiphenyl ether (BDE 209, 1-100 mg kg -1 ) and copper (Cu, 50-500 mg kg -1 ) concentrations. Moreover, the synergic effects of BDE 209 and Cu resulted in a higher AMO activity reduction than the individual pollutant BDE 209. The AOA amoA copy number declined by 75.9% and 83.2% and AOB amoA gene abundance declined 82.8% and 90.0% at 20 and 100 mg kg -1 BDE 209 with a 100 mg kg -1 Cu co-contamination, respectively. The pyrosequencing results showed that both AOB and AOA community structures were altered, with a higher change of AOB than that of AOA. The results demonstrated that the AOB microbial community may be better adapted to BDE 209 and Cu pollution, while AOA might possess a greater capacity for stress resistance. Our study provides a better understanding of the ecotoxicological effects of heavy metal and micropollutant combined exposure on AOA and AOB in river sediments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Temporal and Spatial Stability of Ammonia-Oxidizing Archaea and Bacteria in Aquarium Biofilters

    KAUST Repository

    Bagchi, Samik; Vlaeminck, Siegfried E.; Sauder, Laura A.; Mosquera, Mariela; Neufeld, Josh D.; Boon, Nico; Poulain, Alexandre

    2014-01-01

    Nitrifying biofilters are used in aquaria and aquaculture systems to prevent accumulation of ammonia by promoting rapid conversion to nitrate via nitrite. Ammonia-oxidizing archaea (AOA), as opposed to ammonia-oxidizing bacteria (AOB), were recently identified as the dominant ammonia oxidizers in most freshwater aquaria. This study investigated biofilms from fixed-bed aquarium biofilters to assess the temporal and spatial dynamics of AOA and AOB abundance and diversity. Over a period of four months, ammonia-oxidizing microorganisms from six freshwater and one marine aquarium were investigated at 4–5 time points. Nitrogen balances for three freshwater aquaria showed that active nitrification by aquarium biofilters accounted for ≥81–86% of total nitrogen conversion in the aquaria. Quantitative PCR (qPCR) for bacterial and thaumarchaeal ammonia monooxygenase (amoA) genes demonstrated that AOA were numerically dominant over AOB in all six freshwater aquaria tested, and contributed all detectable amoA genes in three aquarium biofilters. In the marine aquarium, however, AOB outnumbered AOA by three to five orders of magnitude based on amoA gene abundances. A comparison of AOA abundance in three carrier materials (fine sponge, rough sponge and sintered glass or ceramic rings) of two three-media freshwater biofilters revealed preferential growth of AOA on fine sponge. Denaturing gel gradient electrophoresis (DGGE) of thaumarchaeal 16S rRNA genes indicated that community composition within a given biofilter was stable across media types. In addition, DGGE of all aquarium biofilters revealed low AOA diversity, with few bands, which were stable over time. Nonmetric multidimensional scaling (NMDS) based on denaturing gradient gel electrophoresis (DGGE) fingerprints of thaumarchaeal 16S rRNA genes placed freshwater and marine aquaria communities in separate clusters. These results indicate that AOA are the dominant ammonia-oxidizing microorganisms in freshwater aquarium

  1. Influence of DNA isolation on Q-PCR-based quantification of methanogenic Archaea in biogas fermenters.

    Science.gov (United States)

    Bergmann, I; Mundt, K; Sontag, M; Baumstark, I; Nettmann, E; Klocke, M

    2010-03-01

    Quantitative real-time PCR (Q-PCR) is commonly applied for the detection of certain microorganisms in environmental samples. However, some environments, like biomass-degrading biogas fermenters, are enriched with PCR-interfering substances. To study the impact of the DNA extraction protocol on the results of Q-PCR-based analysis of the methane-producing archaeal community in biogas fermenters, nine different protocols with varying cell disruption and DNA purification approaches were tested. Differences in the quantities of the isolated DNA and the purity parameters were found, with the best cell lysis efficiencies being obtained by a combined lysozyme/SDS-based lysis. When DNA was purified by sephacryl columns, the amount of DNA decreased by one log cycle but PCR inhibitors were eliminated sufficiently. In the case of detection of methanogenic Archaea, the chosen DNA isolation protocol strongly influenced the Q-PCR-based determination of 16S rDNA copy numbers. For example, with protocols including mechanical cell disruption, the 16S rDNA of Methanobacteriales were predominantly amplified (81-90% of the total 16S rDNA copy numbers), followed by the 16S rDNA of Methanomicrobiales (9-18%). In contrast, when a lysozyme/SDS-based cell lysis was applied, the 16S rDNA copy numbers determined for these two orders were the opposite (Methanomicrobiales 82-95%, Methanobacteriales 4-18%). In extreme cases, the DNA isolation method led to discrimination of some groups of methanogens (e.g. members of the Methanosaetaceae). In conclusion, for extraction of high amounts of microbial DNA with high purity from samples of biogas plants, a combined lysozyme/SDS-based cell lysis followed by a purification step with sephacryl columns is recommended. Copyright 2010 Elsevier GmbH. All rights reserved.

  2. First Insights into the Diverse Human Archaeome: Specific Detection of Archaea in the Gastrointestinal Tract, Lung, and Nose and on Skin

    Directory of Open Access Journals (Sweden)

    Kaisa Koskinen

    2017-11-01

    Full Text Available Human-associated archaea remain understudied in the field of microbiome research, although in particular methanogenic archaea were found to be regular commensals of the human gut, where they represent keystone species in metabolic processes. Knowledge on the abundance and diversity of human-associated archaea is extremely limited, and little is known about their function(s, their overall role in human health, or their association with parts of the human body other than the gastrointestinal tract and oral cavity. Currently, methodological issues impede the full assessment of the human archaeome, as bacteria-targeting protocols are unsuitable for characterization of the full spectrum of Archaea. The goal of this study was to establish conservative protocols based on specifically archaea-targeting, PCR-based methods to retrieve first insights into the archaeomes of the human gastrointestinal tract, lung, nose, and skin. Detection of Archaea was highly dependent on primer selection and the sequence processing pipeline used. Our results enabled us to retrieve a novel picture of the human archaeome, as we found for the first time Methanobacterium and Woesearchaeota (DPANN superphylum to be associated with the human gastrointestinal tract and the human lung, respectively. Similar to bacteria, human-associated archaeal communities were found to group biogeographically, forming (i the thaumarchaeal skin landscape, (ii the (methanoeuryarchaeal gastrointestinal tract, (iii a mixed skin-gastrointestinal tract landscape for the nose, and (iv a woesearchaeal lung landscape. On the basis of the protocols we used, we were able to detect unexpectedly high diversity of archaea associated with different body parts.

  3. Deletion of acetyl-CoA synthetases I and II increases production of 3-hydroxypropionate by the metabolically-engineered hyperthermophile Pyrococcus furiosus.

    Science.gov (United States)

    Thorgersen, Michael P; Lipscomb, Gina L; Schut, Gerrit J; Kelly, Robert M; Adams, Michael W W

    2014-03-01

    The heterotrophic, hyperthermophilic archaeon Pyrococcus furiosus is a new addition to the growing list of genetically-tractable microorganisms suitable for metabolic engineering to produce liquid fuels and industrial chemicals. P. furiosus was recently engineered to generate 3-hydroxypropionate (3-HP) from CO₂ and acetyl-CoA by the heterologous-expression of three enzymes from the CO₂ fixation cycle of the thermoacidophilic archaeon Metallosphaera sedula using a thermally-triggered induction system. The acetyl-CoA for this pathway is generated from glucose catabolism that in wild-type P. furiosus is converted to acetate with concurrent ATP production by the heterotetrameric (α₂β₂) acetyl-CoA synthetase (ACS). Hence ACS in the engineered 3-HP production strain (MW56) competes with the heterologous pathway for acetyl-CoA. Herein we show that strains of MW56 lacking the α-subunit of either of the two ACSs previously characterized from P. furiosus (ACSI and ACSII) exhibit a three-fold increase in specific 3-HP production. The ΔACSIα strain displayed only a minor defect in growth on either maltose or peptides, while no growth defect on these substrates was observed with the ΔACSIIα strain. Deletion of individual and multiple ACS subunits was also shown to decrease CoA release activity for several different CoA ester substrates in addition to acetyl-CoA, information that will be extremely useful for future metabolic engineering endeavors in P. furiosus. Copyright © 2014 International Metabolic Engineering Society. All rights reserved.

  4. Composition of ammonia-oxidizing archaea and their contribution to nitrification in a high-temperature hot spring

    Science.gov (United States)

    Chen, S.; Peng, X.-T.; Xu, H.-C.; Ta, K.-W.

    2015-10-01

    The oxidation of ammonia by microbes and associated organisms has been shown to occur in diverse natural environments. However, the contribution of ammonia-oxidizing archaea to nitrification in high-temperature environments remains unclear. Here, we studied in situ ammonia oxidation rates and the abundance of ammonia-oxidizing archaea (AOA) in surface and bottom sediments at 77 °C in the Gongxiaoshe hot spring, Tengchong, Yunnan, China. The in situ ammonia oxidation rates measured by the 15N-NO3- pool dilution technique in the surface sinter and bottom sediments were 4.8 and 5.3 nmol N g-1 h-1, respectively. Relative abundances of Crenarchaea in both samples were determined by fluorescence in situ hybridization (FISH). Phylogenetic analysis of 16S rRNA genes showed high sequence similarity to thermophilic "Candidatus Nitrosocaldus yellowstonii", which represented the most abundant operation taxonomic units (OTU) in both sediments. Furthermore, bacterial amoA was not detected in this study. Quantitative PCR (qPCR) indicated that AOA and 16S rRNA genes were present in the range of 2.75 to 9.80 × 105 and 0.128 to 1.96 × 108 gene copies g-1 sediment. The cell-specific nitrification rates were estimated to be in the range of 0.41 to 0.79 fmol N archaeal cell-1 h-1, which is consistent with earlier estimates in estuary environments. This study demonstrated that AOA were widely involved in nitrification in this hot spring. It further indicated the importance of archaea rather than bacteria in driving the nitrogen cycle in terrestrial geothermal environments.

  5. MTH1745, a protein disulfide isomerase-like protein from thermophilic archaea, Methanothermobacter thermoautotrophicum involving in stress response.

    Science.gov (United States)

    Ding, Xia; Lv, Zhen-Mei; Zhao, Yang; Min, Hang; Yang, Wei-Jun

    2008-01-01

    MTH1745 is a putative protein disulfide isomerase characterized with 151 amino acid residues and a CPAC active-site from the anaerobic archaea Methanothermobacter thermoautotrophicum. The potential functions of MTH1745 are not clear. In the present study, we show a crucial role of MTH1745 in protecting cells against stress which may be related to its functions as a disulfide isomerase and its chaperone properties. Using real-time polymerase chain reaction analyses, the level of MTH1745 messenger RNA (mRNA) in the thermophilic archaea M. thermoautotrophicum was found to be stress-induced in that it was significantly higher under low (50 degrees C) and high (70 degrees C) growth temperatures than under the optimal growth temperature for the organism (65 degrees C). Additionally, the expression of MTH1745 mRNA was up-regulated by cold shock (4 degrees C). Furthermore, the survival of MTH1745 expressing Escherichia coli cells was markedly higher than that of control cells in response to heat shock (51.0 degrees C). These results indicated that MTH1745 plays an important role in the resistance of stress. By assay of enzyme activities in vitro, MTH1745 also exhibited a chaperone function by promoting the functional folding of citrate synthase after thermodenaturation. On the other hand, MTH1745 was also shown to function as a disulfide isomerase on the refolding of denatured and reduced ribonuclease A. On the basis of its single thioredoxin domain, function as a disulfide isomerase, and its chaperone activity, we suggest that MTH1745 may be an ancient protein disulfide isomerase. These studies may provide clues to the understanding of the function of protein disulfide isomerase in archaea.

  6. Ammonia oxidation driven by archaea rather than bacteria in the hot spring at Tengchong geothermal field, China.

    Science.gov (United States)

    Chen, Shun; Peng, Xiaotong; Xu, Hengchao; Li, Jiwei; Ta, Kaiwen

    2015-04-01

    The occurrence of microbial mediated ammonia oxidation and these organisms are present in large numbers in natural environments indicated a potential biogeochemical role for them in the global nitrogen cycle. However, very little is understood about their role and contribution to nitrification in the high temperature extreme environments. Here we explore the ammonia oxidation rates and abundance of potential ammonia-oxidizing archaea (AOA) in upper and bottom sediments from Gongxiaoshe hot spring, Tengchong, Yunnan, China. The 15N-incorporating AOA cells and cell aggregated were detected with Fluorescence in situ hybridization (FISH) and Nano secondary ion mass spectrometry (Nano-SIMS). Ammonia oxidation rates measured using 15N-NO3- pool dilution in upper and bottom sediments (without NH4+ stimulated) were 4.8 and 5.3 nmol N g-1h-1, respectively. Close relatives of the autotrophic, ammonia-oxidizing archaeon 'Candidatus Nitrosocaldus yellowstonii' represented the most abundant OTU in both of the two spring sediments by 16S rRNA gene analysis. Furthermore, it should be noted that no ammonia-oxidizing bacterial clones detected in this study. Quantitative PCR (qPCR) indicated that AOA and 16S rRNA genes were present at 2.75-9.80×105 and 0.128-1.96×108 gene copies g-1 sediment. Based on the reaction rates and AOA abundance, we estimated the cell-specific nitrification rates were 0.41 to 0.79 fmol N archaeal cell-1 h-1, which are comparable to those observed in estuary environment. We suggest that AOA have the responsibility in nitrification in this hot spring, and these archaea rather than bacteria may be considered as a driver in nitrogen cycling in terrestrial hot ecosystems. Key words: ammonia-oxidizing archaea (AOA); nitrification; ammonia-oxidizing rate; hot spring;

  7. Identifying and Further Understanding the Role of Bacteria and Archaea in a Basic Mine Drainage Remediation Site in Tanoma, PA

    Science.gov (United States)

    Sharp, G.; Mount, G.

    2017-12-01

    Acid mine drainage pollutes over 3000 miles of streams and ground water in Pennsylvania alone, and in response many solutions have been developed to counteract the effects of acidic mine drainage. It is estimated by USGS that restoring these watersheds would cost 5 billion-15 billion in total. As economic conditions place limits on expenditures, cost effective means of remediation will be of critical importance. One such method is passive bioremediation, and in the case of metal contamination, self-sustaining oxygenation. Our location of interest is the Tanoma Acid Mine Drainage engineered wetland near Tanoma, Pennsylvania. It is estimated that up to 5,000 gallons per minute is currently being discharged into the site. While most local remediation sites are acidic (pH bioremediation in more neutral pH setting (pH of 5.5-7.5). In this study, we look to further understand biologic, chemical, and hydrologic controls that contribute to the efficiency of the wetland. Our research will focus on the spatial and temporal distribution of biomass through the wetland system as well as changes in water and soil chemistry. Local biofilm (Leptothrix discophora ) are an important part of the remediation process, using iron from the water as an energy source. The bacteria reduce the iron content of the water, precipitating it onto the pond bed as Terraced Iron Formations (TIF). Terraces iron formations (TIF's) are correlated with localized biofilm-archaea densities where archaea thrive in iron rich sediments. By determining bacteria densities in the wetland through gram stain analysis, we can further understand their role in terraced iron formation creation, find localized TIF's that occur, and correlate methane production due to archaea in that location. Mapping TIF locations and identifying bacteria densities will help determine the bioremediation effects on the overall efficiency of iron reduction throughout the Tanoma AMD passive remediation system.

  8. Differential responses of soil bacteria, fungi, archaea and protists to plant species richness and plant functional group identity.

    Science.gov (United States)

    Dassen, Sigrid; Cortois, Roeland; Martens, Henk; de Hollander, Mattias; Kowalchuk, George A; van der Putten, Wim H; De Deyn, Gerlinde B

    2017-08-01

    Plants are known to influence belowground microbial community structure along their roots, but the impacts of plant species richness and plant functional group (FG) identity on microbial communities in the bulk soil are still not well understood. Here, we used 454-pyrosequencing to analyse the soil microbial community composition in a long-term biodiversity experiment at Jena, Germany. We examined responses of bacteria, fungi, archaea, and protists to plant species richness (communities varying from 1 to 60 sown species) and plant FG identity (grasses, legumes, small herbs, tall herbs) in bulk soil. We hypothesized that plant species richness and FG identity would alter microbial community composition and have a positive impact on microbial species richness. Plant species richness had a marginal positive effect on the richness of fungi, but we observed no such effect on bacteria, archaea and protists. Plant species richness also did not have a large impact on microbial community composition. Rather, abiotic soil properties partially explained the community composition of bacteria, fungi, arbuscular mycorrhizal fungi (AMF), archaea and protists. Plant FG richness did not impact microbial community composition; however, plant FG identity was more effective. Bacterial richness was highest in legume plots and lowest in small herb plots, and AMF and archaeal community composition in legume plant communities was distinct from that in communities composed of other plant FGs. We conclude that soil microbial community composition in bulk soil is influenced more by changes in plant FG composition and abiotic soil properties, than by changes in plant species richness per se. © 2017 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  9. Nanoscopical dissection of ancestral nucleoli in Archaea: a case of study in Evolutionary Cell Biology

    KAUST Repository

    Islas Morales, Parsifal

    2018-04-01

    lessons learned from ECB and attempts to find a homologue structure of the eukaryotic nucleolus within the Archaea. We found nanometric structures in S. solfactarius that either are positive to specific nucleolar techniques such as Nucleolar organizer regions NOR silver staining. These is structures are novel and its significance should be revised on the evolutionary cell biology perspective.

  10. Computational Modeling of Fluctuations in Energy and Metabolic Pathways of Methanogenic Archaea

    Energy Technology Data Exchange (ETDEWEB)

    Luthey-Schulten, Zaida [Univ. of Illinois, Urbana-Champaign, IL (United States). Dept. of Chemistry; Carl R. Woese Inst. for Genomic Biology

    2017-01-04

    The methanogenic archaea, anaerobic microbes that convert CO2 and H2 and/or other small organic fermentation products into methane, play an unusually large role in the global carbon cycle. As they perform the final step in the anaerobic breakdown of biomass, methanogens are a biogenic source of an estimated one billion tons methane each year. Depending on the location, produced methane can be considered as either a greenhouse gas (agricultural byproduct), sequestered carbon storage (methane hydrate deposits), or a potential energy source (organic wastewater treatment). These microbes therefore represent an important target for biotechnology applications. Computational models of methanogens with predictive power are useful aids in the adaptation of methanogenic systems, but need to connect processes of wide-ranging time and length scales. In this project, we developed several computational methodologies for modeling the dynamic behavior of entire cells that connects stochastic reaction-diffusion dynamics of individual biochemical pathways with genome-scale modeling of metabolic networks. While each of these techniques were in the realm of well-defined computational methods, here we integrated them to develop several entirely new approaches to systems biology. The first scientific aim of the project was to model how noise in a biochemical pathway propagates into cellular phenotypes. Genetic circuits have been optimized by evolution to regulate molecular processes despite stochastic noise, but the effect of such noise on a cellular biochemical networks is currently unknown. An integrated stochastic/systems model of Escherichia coli species was created to analyze how noise in protein expression gives—and therefore noise in metabolic fluxes—gives rise to multiple cellular phenotype in isogenic population. After the initial work developing and validating methods that allow characterization of the heterogeneity in the model organism E. coli, the project shifted toward

  11. Fiscal 1999 R and D project report on intellectual base creation and use technology. Development of the efficient expression system of proteins. Part 1 (Development of the system for hyperthermophilic proteins); 1999 nendo kokoritsu tanpakushitsu hatsugen system no kaihatsu gyomu seika hokokusho. 1. Chokonetsukin yurai tanpakushitsu wo kokoritsu ni hatsugensuru system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    R and D were made on the efficient expression system of hyperthermophilic proteins. Hyperthermophilic strains living in the limited tropical zone of the earth can produce heat- resistant enzyme group with activity even at more than 90 degrees C. To utilize the effective information obtained from analysis of these genomes for industries, the base arrangement of all genomes of P.horikoshii OT3 has been opened. For the efficient expression of hyperthermophilic proteins in Escherichia coli, enzyme PhFEN was improved. For Bacillus strains, new host strains were screened. Expression of several genes from hyperthermophile, P.horikoshii OT3 was tried to be expressed in T.thermophilus using expression vector pTEV131. 8 genes were selected to be expressed using T.thermophilus as a host for independent insertion of every gene. 7 genes except the gene encoding DNA polymerase I were introduced into T.thermophilus as expression plasmid, and 5 genes were also expressed active oxygen. This R and D can largely contribute to development of genome informatics technology based on DNA analysis data. (NEDO)

  12. ClubSub-P: Cluster-based subcellular localization prediction for Gram-negative bacteria and Archaea.

    Directory of Open Access Journals (Sweden)

    Nagarajan eParamasivam

    2011-11-01

    Full Text Available The subcellular localization of proteins provides important clues to their function in a cell. In our efforts to predict useful vaccine targets against Gram-negative bacteria, we noticed that misannotated start codons frequently lead to wrongly assigned subcellular localizations. This and other problems in subcellular localization prediction, such as the relatively high false positive and false negative rates of some tools, can be avoided by applying multiple prediction tools to groups of homologous proteins. Here we present ClubSub-P, an online database that combines existing subcellular localization prediction tools into a consensus pipeline from more than 600 proteomes of fully sequenced microorganisms. On top of the consensus prediction at the level of single sequences, the tool uses clusters of homologous proteins from Gram-negative bacteria and from Archaea to eliminate false positive and false negative predictions. ClubSub-P can assign the subcellular localization of proteins from Gram-negative bacteria and Archaea with high precision. The database is searchable, and can easily be expanded using either new bacterial genomes or new prediction tools as they become available. This will further improve the performance of the subcellular localization prediction, as well as the detection of misannotated start codons and other annotation errors. ClubSub-P is available online at http://toolkit.tuebingen.mpg.de/clubsubp/

  13. Confocal Raman microspectroscopy reveals a convergence of the chemical composition in methanogenic archaea from a Siberian permafrost-affected soil.

    Science.gov (United States)

    Serrano, Paloma; Hermelink, Antje; Lasch, Peter; de Vera, Jean-Pierre; König, Nicole; Burckhardt, Oliver; Wagner, Dirk

    2015-12-01

    Methanogenic archaea are widespread anaerobic microorganisms responsible for the production of biogenic methane. Several new species of psychrotolerant methanogenic archaea were recently isolated from a permafrost-affected soil in the Lena Delta (Siberia, Russia), showing an exceptional resistance against desiccation, osmotic stress, low temperatures, starvation, UV and ionizing radiation when compared to methanogens from non-permafrost environments. To gain a deeper insight into the differences observed in their resistance, we described the chemical composition of methanogenic strains from permafrost and non-permafrost environments using confocal Raman microspectroscopy (CRM). CRM is a powerful tool for microbial identification and provides fingerprint-like information about the chemical composition of the cells. Our results show that the chemical composition of methanogens from permafrost-affected soils presents a high homology and is remarkably different from strains inhabiting non-permafrost environments. In addition, we performed a phylogenetic reconstruction of the studied strains based on the functional gene mcrA to prove the different evolutionary relationship of the permafrost strains. We conclude that the permafrost methanogenic strains show a convergent chemical composition regardless of their genotype. This fact is likely to be the consequence of a complex adaptive process to the Siberian permafrost environment and might be the reason underlying their resistant nature. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, Robert M.; Kyrpides, Nikos C.; Stepanauskas, Ramunas; Harmon-Smith, Miranda; Doud, Devin; Reddy, T. B. K.; Schulz, Frederik; Jarett, Jessica; Rivers, Adam R.; Eloe-Fadrosh, Emiley A.; Tringe, Susannah G.; Ivanova, Natalia N.; Copeland, Alex; Clum, Alicia; Becraft, Eric D.; Malmstrom, Rex R.; Birren, Bruce; Podar, Mircea; Bork, Peer; Weinstock, George M.; Garrity, George M.; Dodsworth, Jeremy A.; Yooseph, Shibu; Sutton, Granger; Glöckner, Frank O.; Gilbert, Jack A.; Nelson, William C.; Hallam, Steven J.; Jungbluth, Sean P.; Ettema, Thijs J. G.; Tighe, Scott; Konstantinidis, Konstantinos T.; Liu, Wen-Tso; Baker, Brett J.; Rattei, Thomas; Eisen, Jonathan A.; Hedlund, Brian; McMahon, Katherine D.; Fierer, Noah; Knight, Rob; Finn, Rob; Cochrane, Guy; Karsch-Mizrachi, Ilene; Tyson, Gene W.; Rinke, Christian; Kyrpides, Nikos C.; Schriml, Lynn; Garrity, George M.; Hugenholtz, Philip; Sutton, Granger; Yilmaz, Pelin; Meyer, Folker; Glöckner, Frank O.; Gilbert, Jack A.; Knight, Rob; Finn, Rob; Cochrane, Guy; Karsch-Mizrachi, Ilene; Lapidus, Alla; Meyer, Folker; Yilmaz, Pelin; Parks, Donovan H.; Eren, A. M.; Schriml, Lynn; Banfield, Jillian F.; Hugenholtz, Philip; Woyke, Tanja

    2017-08-08

    The number of genomes from uncultivated microbes will soon surpass the number of isolate genomes in public databases (Hugenholtz, Skarshewski, & Parks, 2016). Technological advancements in high-throughput sequencing and assembly, including single-cell genomics and the computational extraction of genomes from metagenomes (GFMs), are largely responsible. Here we propose community standards for reporting the Minimum Information about a Single-Cell Genome (MIxS-SCG) and Minimum Information about Genomes extracted From Metagenomes (MIxS-GFM) specific for Bacteria and Archaea. The standards have been developed in the context of the International Genomics Standards Consortium (GSC) community (Field et al., 2014) and can be viewed as a supplement to other GSC checklists including the Minimum Information about a Genome Sequence (MIGS), Minimum information about a Metagenomic Sequence(s) (MIMS) (Field et al., 2008) and Minimum Information about a Marker Gene Sequence (MIMARKS) (P. Yilmaz et al., 2011). Community-wide acceptance of MIxS-SCG and MIxS-GFM for Bacteria and Archaea will enable broad comparative analyses of genomes from the majority of taxa that remain uncultivated, improving our understanding of microbial function, ecology, and evolution.

  15. Diversity and Distribution of Archaea Community along a Stratigraphic Permafrost Profile from Qinghai-Tibetan Plateau, China

    Directory of Open Access Journals (Sweden)

    Shiping Wei

    2014-01-01

    Full Text Available Accompanying the thawing permafrost expected to result from the climate change, microbial decomposition of the massive amounts of frozen organic carbon stored in permafrost is a potential emission source of greenhouse gases, possibly leading to positive feedbacks to the greenhouse effect. In this study, the community composition of archaea in stratigraphic soils from an alpine permafrost of Qinghai-Tibetan Plateau was investigated. Phylogenic analysis of 16S rRNA sequences revealed that the community was predominantly constituted by Crenarchaeota and Euryarchaeota. The active layer contained a proportion of Crenarchaeota at 51.2%, with the proportion of Euryarchaeota at 48.8%, whereas the permafrost contained 41.2% Crenarchaeota and 58.8% Euryarchaeota, based on 16S rRNA gene sequence analysis. OTU1 and OTU11, affiliated to Group 1.3b/MCG-A within Crenarchaeota and the unclassified group within Euryarchaeota, respectively, were widely distributed in all sediment layers. However, OTU5 affiliated to Group 1.3b/MCG-A was primarily distributed in the active layers. Sequence analysis of the DGGE bands from the 16S rRNAs of methanogenic archaea showed that the majority of methanogens belonged to Methanosarcinales and Methanomicrobiales affiliated to Euryarchaeota and the uncultured ZC-I cluster affiliated to Methanosarcinales distributed in all the depths along the permafrost profile, which indicated a dominant group of methanogens occurring in the cold ecosystems.

  16. Geoarchaeota: a new candidate phylum in the Archaea from high-temperature acidic iron mats in Yellowstone National Park

    Energy Technology Data Exchange (ETDEWEB)

    Kozubal, Mark; Romine, Margaret F.; Jennings, Ryan; Jay, Z.; Tringe, Susannah G.; Rusch, Douglas B.; Beam, Jake; McCue, Lee Ann; Inskeep, William P.

    2013-03-01

    Geothermal systems in Yellowstone National Park (YNP) provide an outstanding opportunity to understand the origin and evolution of metabolic processes necessary for life in extreme environments including low pH, high temperature, low oxygen and elevated concentrations of reduced iron. Previous phylogenetic studies of acidic ferric iron mats from YNP have revealed considerable diversity of uncultivated and undescribed archaea. The goal of this study was to obtain replicate de novo genome assemblies for a dominant archaeal population inhabiting acidic iron oxide mats in YNP. Detailed analysis of conserved ribosomal and informational processing genes indicate that the replicate assemblies represent a new phylum-level lineage referred to here as 'novel archaeal group 1 (NAG1)'. The NAG1 organisms contain pathways necessary for the catabolism of peptides and complex carbohydrates as well as a bacterial-like Form I CO dehydrogenase complex likely used for energy conservation. Moreover, this novel population contains genes involved in metabolism of oxygen including a Type A heme copper oxidase, a bd-type terminal oxidase and a putative oxygen sensing protoglobin. NAG1 has a variety of unique bacterial-like cofactor biosynthesis and transport genes and a Type3-like CRISPR system. Discovery of NAG1 is critical to our understanding of microbial community structure and function in extant thermophilic iron mats of YNP, and will provide insight regarding the evolution of Archaea in early Earth environments that may have important analogues active in YNP today.

  17. ClubSub-P: Cluster-Based Subcellular Localization Prediction for Gram-Negative Bacteria and Archaea

    Science.gov (United States)

    Paramasivam, Nagarajan; Linke, Dirk

    2011-01-01

    The subcellular localization (SCL) of proteins provides important clues to their function in a cell. In our efforts to predict useful vaccine targets against Gram-negative bacteria, we noticed that misannotated start codons frequently lead to wrongly assigned SCLs. This and other problems in SCL prediction, such as the relatively high false-positive and false-negative rates of some tools, can be avoided by applying multiple prediction tools to groups of homologous proteins. Here we present ClubSub-P, an online database that combines existing SCL prediction tools into a consensus pipeline from more than 600 proteomes of fully sequenced microorganisms. On top of the consensus prediction at the level of single sequences, the tool uses clusters of homologous proteins from Gram-negative bacteria and from Archaea to eliminate false-positive and false-negative predictions. ClubSub-P can assign the SCL of proteins from Gram-negative bacteria and Archaea with high precision. The database is searchable, and can easily be expanded using either new bacterial genomes or new prediction tools as they become available. This will further improve the performance of the SCL prediction, as well as the detection of misannotated start codons and other annotation errors. ClubSub-P is available online at http://toolkit.tuebingen.mpg.de/clubsubp/ PMID:22073040

  18. Biosynthesis of ribose-5-phosphate and erythrose-4-phosphate in archaea: a phylogenetic analysis of archaeal genomes

    Directory of Open Access Journals (Sweden)

    Tim Soderberg

    2005-01-01

    Full Text Available A phylogenetic analysis of the genes encoding enzymes in the pentose phosphate pathway (PPP, the ribulose monophosphate (RuMP pathway, and the chorismate pathway of aromatic amino acid biosynthesis, employing data from 13 complete archaeal genomes, provides a potential explanation for the enigmatic phylogenetic patterns of the PPP genes in archaea. Genomic and biochemical evidence suggests that three archaeal species (Methanocaldococcus jannaschii, Thermoplasma acidophilum and Thermoplasma volcanium produce ribose-5-phosphate via the nonoxidative PPP (NOPPP, whereas nine species apparently lack an NOPPP but may employ a reverse RuMP pathway for pentose synthesis. One species (Halobacterium sp. NRC-1 lacks both the NOPPP and the RuMP pathway but may possess a modified oxidative PPP (OPPP, the details of which are not yet known. The presence of transketolase in several archaeal species that are missing the other two NOPPP genes can be explained by the existence of differing requirements for erythrose-4-phosphate (E4P among archaea: six species use transketolase to make E4P as a precursor to aromatic amino acids, six species apparently have an alternate biosynthetic pathway and may not require the ability to make E4P, and one species (Pyrococcus horikoshii probably does not synthesize aromatic amino acids at all.

  19. Influence of four antimicrobials on methane-producing archaea and sulfate-reducing bacteria in anaerobic granular sludge.

    Science.gov (United States)

    Du, Jingru; Hu, Yong; Qi, Weikang; Zhang, Yanlong; Jing, Zhaoqian; Norton, Michael; Li, Yu-You

    2015-12-01

    The influence of Cephalexin (CLX), Tetracycline (TC), Erythromycin (ERY) and Sulfathiazole (ST) on methane-producing archaea (MPA) and sulfate-reducing bacteria (SRB) in anaerobic sludge was investigated using acetate or ethanol as substrate. With antimicrobial concentrations below 400mgL(-1), the relative specific methanogenic activity (SMA) was above 50%, so that the antimicrobials exerted slight effects on archaea. However ERY and ST at 400mgL(-1) caused a 74.5% and 57.6% inhibition to specific sulfidogenic activity (SSA) when the sludge granules were disrupted and ethanol used as substrate. After disruption, microbial tolerance to antimicrobials decreased, but the rate at which MPA utilized acetate and ethanol increased from 0.95gCOD·(gVSS⋅d)(-1) to 1.45gCOD·(gVSS⋅d)(-1) and 0.90gCOD·(gVSS⋅d)(-1) to 1.15gCOD·(gVSS⋅d)(-1) respectively. The ethanol utilization rate for SRB also increased after disruption from 0.35gCOD·(gVSS⋅d)(-1) to 0.46gCOD·(gVSS⋅d)(-1). Removal rates for CLX approaching 20.0% and 25.0% were obtained used acetate and ethanol respectively. The disintegration of granules improved the CLX removal rate to 65% and 78%, but ST was not removed during this process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Efficient Fludarabine-Activating PNP From Archaea as a Guidance for Redesign the Active Site of E. Coli PNP.

    Science.gov (United States)

    Cacciapuoti, Giovanna; Bagarolo, Maria Libera; Martino, Elisa; Scafuri, Bernardina; Marabotti, Anna; Porcelli, Marina

    2016-05-01

    The combination of the gene of purine nucleoside phosphorylase (PNP) from Escherichia coli and fludarabine represents one of the most promising systems in the gene therapy of solid tumors. The use of fludarabine in gene therapy is limited by the lack of an enzyme that is able to efficiently activate this prodrug which, consequently, has to be administered in high doses that cause serious side effects. In an attempt to identify enzymes with a better catalytic efficiency than E. coli PNP towards fludarabine to be used as a guidance on how to improve the activity of the bacterial enzyme, we have selected 5'-deoxy-5'-methylthioadenosine phosphorylase (SsMTAP) and 5'-deoxy-5'-methylthioadenosine phosphorylase II (SsMTAPII), two PNPs isolated from the hyperthermophilic archaeon Sulfolobus solfataricus. Substrate specificity and catalytic efficiency of SsMTAP and SsMTAPII for fludarabine were analyzed by kinetic studies and compared with E. coli PNP. SsMTAP and SsMTAPII share with E. coli PNP a comparable low affinity for the arabinonucleoside but are better catalysts of fludarabine cleavage with k(cat)/K(m) values that are 12.8-fold and 6-fold higher, respectively, than those reported for the bacterial enzyme. A computational analysis of the interactions of fludarabine in the active sites of E. coli PNP, SsMTAP, and SsMTAPII allowed to identify the crucial residues involved in the binding with this substrate, and provided structural information to improve the catalytic efficiency of E. coli PNP by enzyme redesign. © 2015 Wiley Periodicals, Inc.

  1. Colonization and Succession within the Human Gut Microbiome by Archaea, Bacteria, and Microeukaryotes during the First Year of Life

    Directory of Open Access Journals (Sweden)

    Paul Wilmes

    2017-05-01

    Full Text Available Perturbations to the colonization process of the human gastrointestinal tract have been suggested to result in adverse health effects later in life. Although much research has been performed on bacterial colonization and succession, much less is known about the other two domains of life, archaea, and eukaryotes. Here we describe colonization and succession by bacteria, archaea and microeukaryotes during the first year of life (samples collected around days 1, 3, 5, 28, 150, and 365 within the gastrointestinal tract of infants delivered either vaginally or by cesarean section and using a combination of quantitative real-time PCR as well as 16S and 18S rRNA gene amplicon sequencing. Sequences from organisms belonging to all three domains of life were detectable in all of the collected meconium samples. The microeukaryotic community composition fluctuated strongly over time and early diversification was delayed in infants receiving formula milk. Cesarean section-delivered (CSD infants experienced a delay in colonization and succession, which was observed for all three domains of life. Shifts in prokaryotic succession in CSD infants compared to vaginally delivered (VD infants were apparent as early as days 3 and 5, which were characterized by increased relative abundances of the genera Streptococcus and Staphylococcus, and a decrease in relative abundance for the genera Bifidobacterium and Bacteroides. Generally, a depletion in Bacteroidetes was detected as early as day 5 postpartum in CSD infants, causing a significantly increased Firmicutes/Bacteroidetes ratio between days 5 and 150 when compared to VD infants. Although the delivery mode appeared to have the strongest influence on differences between the infants, other factors such as a younger gestational age or maternal antibiotics intake likely contributed to the observed patterns as well. Our findings complement previous observations of a delay in colonization and succession of CSD infants

  2. Sulfate- and Sulfur-Reducing Bacteria as Terrestrial Analogs for Microbial Life on Jupiter's Satellite Io

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.; Six, N. Frank (Technical Monitor)

    2001-01-01

    Observations from the Voyager and Galileo spacecraft have revealed Jupiter's moon Io to be the most volcanically active body of our Solar System. The Galileo Near Infrared Imaging Spectrometer (NIMS) detected extensive deposits of sulfur compounds, elemental sulfur and SO2 frost on the surface of Io. There are extreme temperature variations on Io's surface, ranging from -130 C to over 2000 C at the Pillan Patera volcanic vent. The active volcanoes, fumaroles, calderas, and lava lakes and vast sulfur deposits on this frozen moon indicate that analogs of sulfur- and sulfate-reducing bacteria might inhabit Io. Hence Io may have great significance to Astrobiology. Earth's life forms that depend on sulfur respiration are members of two domains: Bacteria and Archaea. Two basic links of the biogeochemical sulfur cycle of Earth have been studied: 1) the sulfur oxidizing process (occurring at aerobic conditions) and 2) the process of sulfur-reduction to hydrogen sulfide (anaerobic conditions). Sulfate-reducing bacteria (StRB) and sulfur-reducing bacteria (SrRB) are responsible for anaerobic reducing processes. At the present time the systematics of StRB include over 112 species distributed into 35 genera of Bacteria and Archaea. Moderately thermophilic and mesophilic SrRB belong to the Bacteria. The hyperthermophilic SrRB predominately belong to the domain Archaea and are included in the genera: Pyrodictium, Thermoproteus, Pyrobaculum, Thermophilum, Desulfurococcus, and Thermodiscus. The StRB and SrRB use a wide spectrum of substrates as electron donors for lithotrophic and heterotrophic type nutrition. The electron acceptors for the StRB include: sulfate, thiosulfate, sulfite, sulfur, arsenate, dithionite, tetrathionate, sulfur monoxide, iron, nitrite, selenite, fumarate, oxygen, carbon dioxide, and chlorine-containing phenol compounds. The Sulfate- and Sulfur-reducing bacteria are widely distributed in anaerobic ecosystems, including extreme environments like hot springs

  3. Structural analysis by reductive cleavage with LiAlH4 of an allyl ether choline-phospholipid, archaetidylcholine, from the hyperthermophilic methanoarchaeon Methanopyrus kandleri

    Directory of Open Access Journals (Sweden)

    Masateru Nishihara

    2002-01-01

    Full Text Available A choline-containing phospholipid (PL-4 in Methanopyrus kandleri cells was identified as archaetidylcholine, which has been described by Sprott et al. (1997. The PL-4 consisted of a variety of molecular species differing in hydrocarbon composition. Most of the PL-4 was acid-labile because of its allyl ether bond. The identity of PL-4 was confirmed by thin-layer chromatography (TLC followed by positive staining with Dragendorff-reagent and fast-atom bombardment–mass spectrometry. A new method of LiAlH4 hydrogenolysis was developed to cleave allyl ether bonds and recover the corresponding hydrocarbons. We confirmed the validity of the LiAlH4 method in a study of the model compound synthetic unsaturated archaetidic acid (2,3-di-O-geranylgeranyl-sn-glycerol-1-phosphate. Saturated ether bonds were not cleaved by the LiAlH4 method. The hydrocarbons formed following LiAlH4 hydrogenolysis of PL-4 were identified by gas–liquid chromatography and mass spectrometry. Four kinds of hydrocarbons with one to four double bonds were detected: 47% of the hydrocarbons had four double bonds; 11% had three double bonds; 14% had two double bonds; 7% had one double bond; and 6% were saturated species. The molecular species composition of PL-4 was also estimated based on acid lability: 77% of the molecular species had two acid-labile hydrocarbons; 11% had one acid-labile and one acid-stable hydrocarbon; and 11% had two acid-stable hydrocarbons. To our knowledge, this is the first report of a specific chemical degradation method for the structural analysis of allyl ether phospholipid in archaea.

  4. Methane-Fueled Syntrophy through Extracellular Electron Transfer: Uncovering the Genomic Traits Conserved within Diverse Bacterial Partners of Anaerobic Methanotrophic Archaea.

    Science.gov (United States)

    Skennerton, Connor T; Chourey, Karuna; Iyer, Ramsunder; Hettich, Robert L; Tyson, Gene W; Orphan, Victoria J

    2017-08-01

    The anaerobic oxidation of methane by anaerobic methanotrophic (ANME) archaea in syntrophic partnership with deltaproteobacterial sulfate-reducing bacteria (SRB) is the primary mechanism for methane removal in ocean sediments. The mechanism of their syntrophy has been the subject of much research as traditional intermediate compounds, such as hydrogen and formate, failed to decouple the partners. Recent findings have indicated the potential for extracellular electron transfer from ANME archaea to SRB, though it is unclear how extracellular electrons are integrated into the metabolism of the SRB partner. We used metagenomics to reconstruct eight genomes from the globally distributed SEEP-SRB1 clade of ANME partner bacteria to determine what genomic features are required for syntrophy. The SEEP-SRB1 genomes contain large multiheme cytochromes that were not found in previously described free-living SRB and also lack periplasmic hydrogenases that may prevent an independent lifestyle without an extracellular source of electrons from ANME archaea. Metaproteomics revealed the expression of these cytochromes at in situ methane seep sediments from three sites along the Pacific coast of the United States. Phylogenetic analysis showed that these cytochromes appear to have been horizontally transferred from metal-respiring members of the Deltaproteobacteria such as Geobacter and may allow these syntrophic SRB to accept extracellular electrons in place of other chemical/organic electron donors. IMPORTANCE Some archaea, known as anaerobic methanotrophs, are capable of converting methane into carbon dioxide when they are growing syntopically with sulfate-reducing bacteria. This partnership is the primary mechanism for methane removal in ocean sediments; however, there is still much to learn about how this syntrophy works. Previous studies have failed to identify the metabolic intermediate, such as hydrogen or formate, that is passed between partners. However, recent analysis of

  5. Improved methane production from sugarcane vinasse with filter cake in thermophilic UASB reactors, with predominance of Methanothermobacter and Methanosarcina archaea and Thermotogae bacteria.

    Science.gov (United States)

    Barros, Valciney Gomes de; Duda, Rose Maria; Vantini, Juliana da Silva; Omori, Wellington Pine; Ferro, Maria Inês Tiraboschi; Oliveira, Roberto Alves de

    2017-11-01

    Biogas production from sugarcane vinasse has enormous economic, energy, and environmental management potential. However, methane production stability and biodigested vinasse quality remain key issues, requiring better nutrient and alkalinity availability, operational strategies, and knowledge of reactor microbiota. This study demonstrates increased methane production from vinasse through the use of sugarcane filter cake and improved effluent recirculation, with elevated organic loading rates (OLR) and good reactor stability. We used UASB reactors in a two-stage configuration, with OLRs up to 45gCODL -1 d -1 , and obtained methane production as high as 3LL -1 d -1 . Quantitative PCR indicated balanced amounts of bacteria and archaea in the sludge (10 9 -10 10 copiesg -1 VS), and of the predominant archaea orders, Methanobacteriales and Methanosarcinales (10 6 -10 8 copiesg -1 VS). 16S rDNA sequencing also indicated the thermophilic Thermotogae as the most abundant class of bacteria in the sludge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. A Rapid and Reproducible Genomic DNA Extraction Protocol for Sequence-Based Identification of Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and Green Algae

    OpenAIRE

    Farkhondeh Saba; Moslem Papizadeh; Javad Khansha; Mahshid Sedghi; Mehrnoosh Rasooli; Mohammad Ali Amoozegar; Mohammad Reza Soudi; Seyed Abolhassan Shahzadeh Fazeli

    2016-01-01

    Background:  Sequence-based identification of various microorganisms including Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and green algae necessitates an efficient and reproducible genome extraction procedure though which a pure template DNA is yielded and it can be used in polymerase chain reactions (PCR). Considering the fact that DNA extraction from these microorganisms is time consuming and laborious, we developed and standardized a safe, rapid and inexpensive miniprep protocol. Me...

  7. Differentiating leucine incorporation of Archaea and Bacteria throughout the water column of the eastern Atlantic using metabolic inhibitors

    OpenAIRE

    Yokokawa, T.; Sintes, E.; de Corte, D.; Olbrich, K.; Herndl, G.J.

    2012-01-01

    The abundance (based on catalyzed reporter deposition-fluorescence in situ hybrid ization, CARD-FISH) and leucine incorporation rates of Archaea and Bacteria were determined throughout the water column in the eastern Atlantic. Bacteria dominated throughout the water column, although their contribution to total prokaryotic abundance in the bathypelagic layer (1000 to 4000 m depth) was lower than in the surface and mesopelagic layers (0 to 1000 m depth). While marine Crenarchaeota Group I (MCG ...

  8. Adaptation de l'Archaea halophile halobacterium salinarum aux stress environnementaux : mécanismes de survie et rôle de la protéolyse intracellulaire

    OpenAIRE

    Marty , Vincent

    2011-01-01

    Molecular systems described for Archaea show primitive and simple characteristics, compared to their homologous eukaryotes. In addition, extremophilic characteristic results in an hyper-robust which makes in vitro manipulation and structural studies much easier. Thus, Archaea represent good models for understanding complex cellular functions, particularly those that involve large molecular machines, such as those involved in proteolysis. My thesis consisted in understanding the resistance mec...

  9. Apparent Minimum Free Energy Requirements for Methanogenic Archaea and Sulfate-Reducing Bacteria in an Anoxic Marine Sediment

    Science.gov (United States)

    Hoehler, Tori M.; Alperin, Marc J.; Albert, Daniel B.; Martens, Christopher S.; DeVincenzi, Don (Technical Monitor)

    2000-01-01

    Among the most fundamental constraints governing the distribution of microorganisms in the environment is the availability of chemical energy at biologically useful levels. To assess the minimum free energy yield that can support microbial metabolism in situ, we examined the thermodynamics of H2-consuming processes in anoxic sediments from Cape Lookout Bight, NC, USA. Depth distributions of H2 partial pressure, along with a suite of relevant concentration data, were determined in sediment cores collected in November (at 14.5 C) and August (at 27 C) and used to calculate free energy yields for methanogenesis and sulfate reduction. At both times of year, and for both processes, free energy yields gradually decreased (became less negative) with depth before reaching an apparent asymptote. Sulfate reducing bacteria exhibited an asymptote of -19.1 +/- 1.7 kj(mol SO4(2-)(sup -1) while methanogenic archaea were apparently supported by energy yields as small as -10.6 +/- 0.7 kj(mol CH4)(sup -1).

  10. Influence of land use intensity on the diversity of ammonia oxidizing bacteria and archaea in soils from grassland ecosystems.

    Science.gov (United States)

    Meyer, Annabel; Focks, Andreas; Radl, Viviane; Welzl, Gerhard; Schöning, Ingo; Schloter, Michael

    2014-01-01

    In the present study, the influence of the land use intensity on the diversity of ammonia oxidizing bacteria (AOB) and archaea (AOA) in soils from different grassland ecosystems has been investigated in spring and summer of the season (April and July). Diversity of AOA and AOB was studied by TRFLP fingerprinting of amoA amplicons. The diversity from AOB was low and dominated by a peak that could be assigned to Nitrosospira. The obtained profiles for AOB were very stable and neither influenced by the land use intensity nor by the time point of sampling. In contrast, the obtained patterns for AOA were more complex although one peak that could be assigned to Nitrosopumilus was dominating all profiles independent from the land use intensity and the sampling time point. Overall, the AOA profiles were much more dynamic than those of AOB and responded clearly to the land use intensity. An influence of the sampling time point was again not visible. Whereas AOB profiles were clearly linked to potential nitrification rates in soil, major TRFs from AOA were negatively correlated to DOC and ammonium availability and not related to potential nitrification rates.

  11. Comparison of the Effects of Phenylhydrazine Hydrochloride and Dicyandiamide on Ammonia-Oxidizing Bacteria and Archaea in Andosols

    Directory of Open Access Journals (Sweden)

    Wenjie Yang

    2017-11-01

    Full Text Available Dicyandiamide, a routinely used commercial nitrification inhibitor (NI, inhibits ammonia oxidation catalyzed by ammonia monooxygenase (AMO. Phenylhydrazine hydrochloride has shown considerable potential for the development of next-generation NIs targeting hydroxylamine dehydrogenase (HAO. The effects of the AMO inhibitor and the HAO inhibitor on ammonia-oxidizing bacteria (AOB and ammonia-oxidizing archaea (AOA present in agricultural soils have not been compared thus far. In the present study, the effects of the two inhibitors on soil nitrification and the abundance of AOA and AOB as well as their community structure were investigated in a soil microcosm using quantitative polymerase chain reaction and pyrosequencing. The net nitrification rates and the growth of AOA and AOB in this soil microcosm were inhibited by both NIs. Both NIs had limited effect on the community structure of AOB and no effect on that of AOA in this soil microcosm. The effects of phenylhydrazine hydrochloride were similar to those of dicyandiamide. These results indicated that organohydrazine-based NIs have potential for the development of next-generation NIs targeting HAO in the future.

  12. Large cryoconite aggregates on a Svalbard glacier support a diverse microbial community including ammonia-oxidizing archaea

    Science.gov (United States)

    Zarsky, Jakub D.; Stibal, Marek; Hodson, Andy; Sattler, Birgit; Schostag, Morten; Hansen, Lars H.; Jacobsen, Carsten S.; Psenner, Roland

    2013-09-01

    The aggregation of surface debris particles on melting glaciers into larger units (cryoconite) provides microenvironments for various microorganisms and metabolic processes. Here we investigate the microbial community on the surface of Aldegondabreen, a valley glacier in Svalbard which is supplied with carbon and nutrients from different sources across its surface, including colonies of seabirds. We used a combination of geochemical analysis (of surface debris, ice and meltwater), quantitative polymerase chain reactions (targeting the 16S ribosomal ribonucleic acid and amoA genes), pyrosequencing and multivariate statistical analysis to suggest possible factors driving the ecology of prokaryotic microbes on the surface of Aldegondabreen and their potential role in nitrogen cycling. The combination of high nutrient input with subsidy from the bird colonies, supraglacial meltwater flow and the presence of fine, clay-like particles supports the formation of centimetre-scale cryoconite aggregates in some areas of the glacier surface. We show that a diverse microbial community is present, dominated by the cyanobacteria, Proteobacteria, Bacteroidetes, and Actinobacteria, that are well-known in supraglacial environments. Importantly, ammonia-oxidizing archaea were detected in the aggregates for the first time on an Arctic glacier.

  13. Spatial distribution of ammonia-oxidizing archaea and bacteria across eight freshwater lakes in sediments from Jiangsu of China

    Directory of Open Access Journals (Sweden)

    Xu Sun

    2014-03-01

    Full Text Available Ammonia-oxidizingarchaea (AOA and ammonia-oxidizing bacteria (AOB play an important role innitrogen transformation in freshwater sediments. However, it is still unclear towhat extent the distribution patterns of these microorganisms are affected bythe freshwater sediment across a large geographical scale. This study wasdesigned to gain insight into the heterogeneity distribution of AOA and AOB in32 freshwater sediments from a wide range of ecologic types. Real-time quantitative polymerasechain reaction PCR(qPCR combined with the terminal restrictionfragment length polymorphism(T-RFLP were employed to characterize the abundance, diversity, and communitystructure of the AOA and AOB in 32 freshwater sediments. AOA and AOB wereubiquitous in all sediments, and archaeal amoA far outnumbered bacterial amoA inmost sediments with lower organic matters. The abundance of AOA and AOB did notvary with the freshwater ecological type (macrophyte dominated region and algaedominated region. Based on  the T-RFLP of an amoA gene, this research found that organicmatters in pore water rather than other factors affect the AOA communitystructure in sediments, while the AOB were not significantly different in thefreshwater sediments. Phylogenetic analysis showed that all archaeal amoAsequences fell within either the Crenarchaeotal Group (CG I.1b or the CGI.1asubgroup, and all AOB clustered with genus Nitrosomonas or Nitrosospira. The data obtained inthis study elucidates the role of ammonia-oxidizing archaea andammonia-oxidizing bacteria in the nitrogen cycle of freshwater ecosystems.

  14. Growth of ammonia-oxidizing archaea and bacteria in cattle manure compost under various temperatures and ammonia concentrations.

    Science.gov (United States)

    Oishi, Ryu; Tada, Chika; Asano, Ryoki; Yamamoto, Nozomi; Suyama, Yoshihisa; Nakai, Yutaka

    2012-05-01

    A recent study showed that ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) coexist in the process of cattle manure composting. To investigate their physiological characteristics, liquid cultures seeded with fermenting cattle manure compost were incubated at various temperatures (37°C, 46°C, or 60°C) and ammonium concentrations (0.5, 1, 4, or 10 mM NH (4) (+) -N). The growth rates of the AOB and AOA were monitored using real-time polymerase chain reaction analysis targeting the bacterial and archaeal ammonia monooxygenase subunit A genes. AOB grew at 37°C and 4 or 10 mM NH (4) (+) -N, whereas AOA grew at 46°C and 10 mM NH (4) (+) -N. Incubation with allylthiourea indicated that the AOB and AOA grew by oxidizing ammonia. Denaturing gradient gel electrophoresis and subsequent sequencing analyses revealed that a bacterium related to Nitrosomonas halophila and an archaeon related to Candidatus Nitrososphaera gargensis were the predominant AOB and AOA, respectively, in the seed compost and in cultures after incubation. This is the first report to demonstrate that the predominant AOA in cattle manure compost can grow and can probably oxidize ammonia under moderately thermophilic conditions.

  15. Relative contributions of archaea and bacteria to microbial ammonia oxidation differ under different conditions during agricultural waste composting.

    Science.gov (United States)

    Zeng, Guangming; Zhang, Jiachao; Chen, Yaoning; Yu, Zhen; Yu, Man; Li, Hui; Liu, Zhifeng; Chen, Ming; Lu, Lunhui; Hu, Chunxiao

    2011-10-01

    The aim of this study was to compare the relative contribution of ammonia-oxidizing archaea (AOA) and bacteria (AOB) to nitrification during agricultural waste composting. The AOA and AOB amoA gene abundance and composition were determined by quantitative PCR and denaturing gradient gel electrophoresis (DGGE), respectively. The results showed that the archaeal amoA gene was abundant throughout the composting process, while the bacterial amoA gene abundance decreased to undetectable level during the thermophilic and cooling stages. DGGE showed more diverse archaeal amoA gene composition when the potential ammonia oxidation (PAO) rate reached peak values. A significant positive relationship was observed between the PAO rate and the archaeal amoA gene abundance (R²=0.554; Parchaea dominated ammonia oxidation during the thermophilic and cooling stages. Bacteria were also related to ammonia oxidation activity (R²=0.503; P=0.03) especially during the mesophilic and maturation stages. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. [Distribution and Diversity of Ammonium-oxidizing Archaea and Ammonium-oxidizing Bacteria in Surface Sediments of Oujiang River].

    Science.gov (United States)

    Li, Hu; Huang, Fu-yi; Su, Jian-qiang; Hong, You-wei; Yu, Shen

    2015-12-01

    Ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) play important roles in the biogeochemical nitrogen cycle. Rivers are important ecosystems containing a large number of functional microbes in nitrogen cycle. In this study, denaturing gradient gel electrophoresis (DGGE ) and real-time quantitative PCR (qPCR) technology were used to analyze the distribution and diversity of AOA and AOB in sediments from Oujiang. The results showed that the AOA community structure was similar among various sites, while the AOB community structure was significantly different, in which all detected AOB sequences were classified into Nitrosospira and Nitrosomonas, and 90% affiliated to Nitrosospira. The community composition of AOA was influenced by NH₄⁺ and TS, in addition, the AOB composition was affected by NH₄⁺, EC, pH, NO₃⁻, TC and TN. Total sulfur (TS) and electrical conductivity (EC) were the major factors influencing the diversity of AOA and AOB, respectively. AOA abundance was significantly higher than that of AOB. EC, NH₄⁺-N and NO₃⁻-N were the main environmental factors affecting the abundance of AOA and AOB. This study indicated that the community composition and diversity of AOA and AOB were significantly influenced by environmental factors, and AOA might be dominant drivers in the ammonia oxidation process in Oujiang surface sediment.

  17. Community Structure of Ammonia-Oxidizing Archaea and Ammonia-Oxidizing Bacteria in Soil Treated with the Insecticide Imidacloprid

    Directory of Open Access Journals (Sweden)

    Mariusz Cycoń

    2015-01-01

    Full Text Available The purpose of this experiment was to assess the effect of imidacloprid on the community structure of ammonia-oxidizing archaea (AOA and ammonia-oxidizing bacteria (AOB in soil using the denaturing gradient gel electrophoresis (DGGE approach. Analysis showed that AOA and AOB community members were affected by the insecticide treatment. However, the calculation of the richness (S and the Shannon-Wiener index (H values for soil treated with the field rate (FR dosage of imidacloprid (1 mg/kg soil showed no changes in measured indices for the AOA and AOB community members. In turn, the 10*FR dosage of insecticide (10 mg/kg soil negatively affected the AOA community, which was confirmed by the decrease of the S and H values in comparison with the values obtained for the control soil. In the case of AOB community, an initial decline followed by the increase of the S and H values was obtained. Imidacloprid decreased the nitrification rate while the ammonification process was stimulated by the addition of imidacloprid. Changes in the community structure of AOA and AOB could be due to an increase in the concentration of N-NH4+, known as the most important factor which determines the contribution of these microorganisms to soil nitrification.

  18. Distinct symmetry and limited peptide refolding activity of the thermosomes from the acidothermophilic archaea Acidianus tengchongensis S5T

    International Nuclear Information System (INIS)

    Wang, Li; Hu, Zhong-jun; Luo, Yuan-ming; Huo, Yan-wu; Ma, Qing; He, Yong-zhi; Zhang, Yu-ying; Sun, Fei; Dong, Zhi-yang

    2010-01-01

    Recombinant thermosomes from the Acidianus tengchongensis strain S5 T were purified to homogeneity and assembled in vitro into homo-oligomers (rATcpnα or rATcpnβ) and hetero-oligomers (rATcpnαβ). The symmetries of these complexes were determined by electron microscopy and image analysis. The rATcpnα homo-oligomer was shown to possess 8-fold symmetry while both rATcpnβ and rATcpnαβ oligomers adopted 9-fold symmetry. rATcpnαβ oligomers were shown to contain the α and β subunits in a 1:2 ratio. All of the complexes prevented the irreversible inactivation of yeast alcohol dehydrogenase at 55 o C and completely prevented the formation of aggregates during thermal inactivation of citrate synthase at 45 o C. All rATcpn complexes showed trace ATP hydrolysis activity. Furthermore, rATcpnβ sequestered fully chemically denatured substrates (GFP and thermophilic malic dehydrogenase) in vitro without refolding them in an ATP-dependent manner. This property is similar to previously reported properties of chaperonins from Sulfolobus tokodaii and Sulfolobus acidocaldarius. These features are consistent with the slow growth rates of these species of archaea in their native environment.

  19. Encapsulation of carotenoids extracted from halophilic Archaea in oil-in-water (O/W) micro- and nano-emulsions.

    Science.gov (United States)

    Chaari, Marwa; Theochari, Ioanna; Papadimitriou, Vassiliki; Xenakis, Aristotelis; Ammar, Emna

    2018-01-01

    Carotenoids extracted from halophilc Archaea have potential health benefits. Their poor water-solubility and low bioavailability is a challenge to their incorporation into foods. The aim of this work was the carotenoids encapsulation into two oil-in-water (O/W) dispersions, to increase their use as functional food applications. A nanoemulsion produced by high pressure homogenization and a spontaneously formed microemulsion were conceived. The limonene was the dispersed oil phase, and mixtures of Triton X-100/Tween-80 (3:1) as emulsifiers and of water/glycerol (2:1) as the continuous aqueous phase. The microemulsion monophasic area was determined through the pseudo-ternary phase diagram. Dynamic Light Scattering was used for the structural characterization of the nano- and micro-emulsions in the presence of the carotenoids. Moreover, the radical scavenging activity of the encapsulated carotenoids was examined by Electron Paramagnetic Resonance spectroscopy. The results confirmed the delivery systems design effectiveness to encapsulate and stabilize the carotenoids for food applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Large cryoconite aggregates on a Svalbard glacier support a diverse microbial community including ammonia-oxidizing archaea

    International Nuclear Information System (INIS)

    Zarsky, Jakub D; Sattler, Birgit; Psenner, Roland; Stibal, Marek; Schostag, Morten; Jacobsen, Carsten S; Hodson, Andy; Hansen, Lars H

    2013-01-01

    The aggregation of surface debris particles on melting glaciers into larger units (cryoconite) provides microenvironments for various microorganisms and metabolic processes. Here we investigate the microbial community on the surface of Aldegondabreen, a valley glacier in Svalbard which is supplied with carbon and nutrients from different sources across its surface, including colonies of seabirds. We used a combination of geochemical analysis (of surface debris, ice and meltwater), quantitative polymerase chain reactions (targeting the 16S ribosomal ribonucleic acid and amoA genes), pyrosequencing and multivariate statistical analysis to suggest possible factors driving the ecology of prokaryotic microbes on the surface of Aldegondabreen and their potential role in nitrogen cycling. The combination of high nutrient input with subsidy from the bird colonies, supraglacial meltwater flow and the presence of fine, clay-like particles supports the formation of centimetre-scale cryoconite aggregates in some areas of the glacier surface. We show that a diverse microbial community is present, dominated by the cyanobacteria, Proteobacteria, Bacteroidetes, and Actinobacteria, that are well-known in supraglacial environments. Importantly, ammonia-oxidizing archaea were detected in the aggregates for the first time on an Arctic glacier. (letter)

  1. Large cryoconite aggregates on a Svalbard glacier support a diverse microbial community including ammonia-oxidizing archaea

    Energy Technology Data Exchange (ETDEWEB)

    Zarsky, Jakub D; Sattler, Birgit; Psenner, Roland [Institute of Ecology, University of Innsbruck, Innsbruck (Austria); Stibal, Marek; Schostag, Morten; Jacobsen, Carsten S [Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Copenhagen (Denmark); Hodson, Andy [Department of Geography, University of Sheffield, Sheffield (United Kingdom); Hansen, Lars H, E-mail: j.zarsky@gmail.com [Department of Biology, University of Copenhagen, Copenhagen (Denmark)

    2013-09-15

    The aggregation of surface debris particles on melting glaciers into larger units (cryoconite) provides microenvironments for various microorganisms and metabolic processes. Here we investigate the microbial community on the surface of Aldegondabreen, a valley glacier in Svalbard which is supplied with carbon and nutrients from different sources across its surface, including colonies of seabirds. We used a combination of geochemical analysis (of surface debris, ice and meltwater), quantitative polymerase chain reactions (targeting the 16S ribosomal ribonucleic acid and amoA genes), pyrosequencing and multivariate statistical analysis to suggest possible factors driving the ecology of prokaryotic microbes on the surface of Aldegondabreen and their potential role in nitrogen cycling. The combination of high nutrient input with subsidy from the bird colonies, supraglacial meltwater flow and the presence of fine, clay-like particles supports the formation of centimetre-scale cryoconite aggregates in some areas of the glacier surface. We show that a diverse microbial community is present, dominated by the cyanobacteria, Proteobacteria, Bacteroidetes, and Actinobacteria, that are well-known in supraglacial environments. Importantly, ammonia-oxidizing archaea were detected in the aggregates for the first time on an Arctic glacier. (letter)

  2. Temporal Eukarya, Bacteria, and Archaea biodiversity during cultivation of an alkaliphilic algae, Chlorella vulgaris, in an outdoor raceway pond

    Directory of Open Access Journals (Sweden)

    Tisza Ann Szeremy Bell

    2016-01-01

    Full Text Available Algal biofuels and valuable co-products are being produced in both open and closed cultivation systems. Growing algae in open pond systems may be a more economical alternative, but this approach allows environmental microorganisms to colonize the pond and potentially infect or outcompete the algal crop. In this study, we monitored the microbial community of an outdoor, open raceway pond inoculated with a high lipid-producing alkaliphilic alga, Chlorella vulgaris BA050. The strain C. vulgaris BA050 was previously isolated from Soap Lake, Washington, a system characterized by a high pH (approximately 9.8. An outdoor raceway pond (200L was inoculated with C. vulgaris and monitored for ten days and then the culture was transferred to a 2,000L raceway pond and cultivated for an additional six days. Community DNA samples were collected over the 16-day period in conjunction with water chemistry analyses and cell counts. Universal primers for the SSU rRNA gene sequences for Eukarya, Bacteria, and Archaea were used for barcoded pyrosequence determination. The environmental parameters that most closely correlated with C. vulgaris abundance were pH and phosphate. Community analyses indicated that the pond system remained dominated by the Chlorella population (93% of eukaryotic sequences, but was also colonized by other microorganisms. Bacterial sequence diversity increased over time while archaeal sequence diversity declined over the same time period. Using SparCC co-occurrence network analysis, a positive correlation was observed between C. vulgaris and Pseudomonas sp. throughout the experiment, which may suggest a symbiotic relationship between the two organisms. The putative relationship coupled with high pH may have contributed to the success of C. vulgaris. The characterization of the microbial community dynamics of an alkaliphilic open pond system provides significant insight into open pond systems that could be used to control photoautotrophic

  3. Ammonia-Oxidizing Archaea Are More Resistant Than Denitrifiers to Seasonal Precipitation Changes in an Acidic Subtropical Forest Soil

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2017-07-01

    Full Text Available Seasonal precipitation changes are increasingly severe in subtropical areas. However, the responses of soil nitrogen (N cycle and its associated functional microorganisms to such precipitation changes remain unclear. In this study, two projected precipitation patterns were manipulated: intensifying the dry-season drought (DD and extending the dry-season duration (ED but increasing the wet-season storms following the DD and ED treatment period. The effects of these two contrasting precipitation patterns on soil net N transformation rates and functional gene abundances were quantitatively assessed through a resistance index. Results showed that the resistance index of functional microbial abundance (-0.03 ± 0.08 was much lower than that of the net N transformation rate (0.55 ± 0.02 throughout the experiment, indicating that microbial abundance was more responsive to precipitation changes compared with the N transformation rate. Spring drought under the ED treatment significantly increased the abundances of both nitrifying (amoA and denitrifying genes (nirK, nirS, and nosZ, while changes in these gene abundances overlapped largely with control treatment during droughts in the dry season. Interestingly, the resistance index of the ammonia-oxidizing archaea (AOA amoA abundance was significantly higher than that of the denitrifying gene abundances, suggesting that AOA were more resistant to the precipitation changes. This was attributed to the stronger environmental adaptability and higher resource utilization efficiency of the AOA community, as indicated by the lack of correlations between AOA gene abundance and environmental factors [i.e., soil water content, ammonium (NH4+ and dissolved organic carbon concentrations] during the experiment.

  4. Investigating the Effects of Simulated Space conditions on Novel Extremely Halophilic Archaea: Halovarius Luteus gen. nov., sp. nov.

    Science.gov (United States)

    Feshangsaz, Niloofar; Van Loon, ing.. Jack J. W. A.; Nazmi, Kamran; Semsarha, Farid

    2016-07-01

    Studying halophiles from different environments of Earth provide new insights into our search for life in the universe. Haloarchaea show some unique characteristics and physiological adaptations like acidic proteins against harsh environments such as natural brine with salt concentration approaching saturation (5 M) and regions with low active water. These properties make haloarchaea interesting candidate for astrobiological studies. Halovarius luteus gen. nov., sp. nov. a novel extremely halophilic archaeon from Urmia salt lake, in Iran has been chosen to explore its resistance against a series of extreme conditions. The aim of this study is to assess the resistance of strain DA50T under the effects of simulated space conditions like simulated microgravity, hypergravity, and desiccation. In this paper we will discuss the results of these studies where we specifically focus on changes in carotenoid pigments production and whole cell proteome. This is the first report of very novel Iranian archaea in response to extreme space conditions. The pigments were extracted by acetone and methanol. Pigments were analyzed by scanning the absorbance spectrum in the UV-VIS spectrophotometer. And they were separated by TLC. Whole protein from cell lysate supernatant was extracted after lysis with Bacterial Protein Extraction Reagent and fractionated by RP-HPLC using C18 column. Proteome analyzed by electrophoresis (SDS-PAGE), and MALDI-TOF. Carotenoid pigments are formed under different extreme conditions such as dry environment and gravitational changes. Also the protein composition exhibits alterations after exposure to the same conditions. Our conclusion is that pigments and proteins formation depend on the growth circumstances. Halophiles use this as an adaptation to survive under different environmental conditions.

  5. A Transition Metal-Binding, Trimeric βγ-Crystallin from Methane-Producing Thermophilic Archaea, Methanosaeta thermophila.

    Science.gov (United States)

    Srivastava, Shanti Swaroop; Jamkhindikar, Aditya Anand; Raman, Rajeev; Jobby, Maroor K; Chadalawada, Swathi; Sankaranarayanan, Rajan; Sharma, Yogendra

    2017-03-07

    βγ-Crystallins are important constituents of the vertebrate eye lens, whereas in microbes, they are prevalent as Ca 2+ -binding proteins. In archaea, βγ-crystallins are conspicuously confined to two methanogens, viz., Methanosaeta and Methanosarcina. One of these, i.e., M-crystallin from Methanosarcina acetivorans, has been shown to be a typical Ca 2+ -binding βγ-crystallin. Here, with the aid of a high-resolution crystal structure and isothermal titration calorimetry, we report that "Methallin", a βγ-crystallin from Methanosaeta thermophila, is a trimeric, transition metal-binding protein. It binds Fe, Ni, Co, or Zn ion with nanomolar affinity, which is consistent even at 55 °C, the optimal temperature for the methanogen's growth. At the center of the protein trimer, the metal ion is coordinated by six histidines, two from each protomer, leading to an octahedral geometry. Small-angle X-ray scattering analysis confirms that the trimer seen in the crystal lattice is a biological assembly; this assembly dissociates to monomers upon removal of the metal ion. The introduction of two histidines (S17H/S19H) into a homologous βγ-crystallin, Clostrillin, allows it to bind nickel at the introduced site, though with micromolar affinity. However, because of the lack of a compatible interface, nickel binding could not induce trimerization, affirming that Methallin is a naturally occurring trimer for high-affinity transition metal binding. While βγ-crystallins are known to bind Ca 2+ and form homodimers and oligomers, the transition metal-binding, trimeric Methallin is a new paradigm for βγ-crystallins. The distinct features of Methallin, such as nickel or iron binding, are also possible imprints of biogeochemical changes during the period of its origin.

  6. Phylogenetic diversity and ecological pattern of ammonia-oxidizing archaea in the surface sediments of the western Pacific.

    Science.gov (United States)

    Cao, Huiluo; Hong, Yiguo; Li, Meng; Gu, Ji-Dong

    2011-11-01

    The phylogenetic diversity of ammonia-oxidizing archaea (AOA) was surveyed in the surface sediments from the northern part of the South China Sea (SCS). The distribution pattern of AOA in the western Pacific was discussed through comparing the SCS with other areas in the western Pacific including Changjiang Estuary and the adjacent East China Sea where high input of anthropogenic nitrogen was evident, the tropical West Pacific Continental Margins close to the Philippines, the deep-sea methane seep sediments in the Okhotsk Sea, the cold deep sea of Northeastern Japan Sea, and the hydrothermal field in the Southern Okinawa Trough. These various environments provide a wide spectrum of physical and chemical conditions for a better understanding of the distribution pattern and diversities of AOA in the western Pacific. Under these different conditions, the distinct community composition between shallow and deep-sea sediments was clearly delineated based on the UniFrac PCoA and Jackknife Environmental Cluster analyses. Phylogenetic analyses showed that a few ammonia-oxidizing archaeal subclades in the marine water column/sediment clade and endemic lineages were indicative phylotypes for some environments. Higher phylogenetic diversity was observed in the Philippines while lower diversity in the hydrothermal vent habitat. Water depth and possibly with other environmental factors could be the main driving forces to shape the phylogenetic diversity of AOA observed, not only in the SCS but also in the whole western Pacific. The multivariate regression tree analysis also supported this observation consistently. Moreover, the functions of current and other climate factors were also discussed in comparison of phylogenetic diversity. The information collectively provides important insights into the ecophysiological requirements of uncultured ammonia-oxidizing archaeal lineages in the western Pacific Ocean.

  7. Elevational diversity and distribution of ammonia-oxidizing archaea community in meadow soils on the Tibetan Plateau.

    Science.gov (United States)

    Zhao, Kang; Kong, Weidong; Khan, Ajmal; Liu, Jinbo; Guo, Guangxia; Muhanmmad, Said; Zhang, Xianzhou; Dong, Xiaobin

    2017-09-01

    Unraveling elevational diversity patterns of plants and animals has long been attracting scientific interests. However, whether soil microorganisms exhibit similar elevational patterns remains largely less explored, especially for functional microbial communities, such as ammonia oxidizers. Here, we investigated the diversity and distribution pattern of ammonia-oxidizing archaea (AOA) in meadow soils along an elevation gradient from 4400 m to the grassline at 5100 m on the Tibetan Plateau using terminal restriction fragment length polymorphism (T-RFLP) and sequencing methods by targeting amoA gene. Increasing elevations led to lower soil temperature and pH, but higher nutrients and water content. The results showed that AOA diversity and evenness monotonically increased with elevation, while richness was relatively stable. The increase of diversity and evenness was attributed to the growth inhibition of warm-adapted AOA phylotypes by lower temperature and the growth facilitation of cold-adapted AOA phylotypes by richer nutrients at higher elevations. Low temperature thus played an important role in the AOA growth and niche separation. The AOA community variation was explained by the combined effect of all soil properties (32.6%), and 8.1% of the total variation was individually explained by soil pH. The total AOA abundance decreased, whereas soil potential nitrification rate (PNR) increased with increasing elevations. Soil PNR positively correlated with the abundance of cold-adapted AOA phylotypes. Our findings suggest that low temperature plays an important role in AOA elevational diversity pattern and niche separation, rising the negative effects of warming on AOA diversity and soil nitrification process in the Tibetan region.

  8. A Metagenomics-Based Metabolic Model of Nitrate-Dependent Anaerobic Oxidation of Methane by Methanoperedens-Like Archaea

    Science.gov (United States)

    Arshad, Arslan; Speth, Daan R.; de Graaf, Rob M.; Op den Camp, Huub J. M.; Jetten, Mike S. M.; Welte, Cornelia U.

    2015-01-01

    Methane oxidation is an important process to mitigate the emission of the greenhouse gas methane and further exacerbating of climate forcing. Both aerobic and anaerobic microorganisms have been reported to catalyze methane oxidation with only a few possible electron acceptors. Recently, new microorganisms were identified that could couple the oxidation of methane to nitrate or nitrite reduction. Here we investigated such an enrichment culture at the (meta) genomic level to establish a metabolic model of nitrate-driven anaerobic oxidation of methane (nitrate-AOM). Nitrate-AOM is catalyzed by an archaeon closely related to (reverse) methanogens that belongs to the ANME-2d clade, tentatively named Methanoperedens nitroreducens. Methane may be activated by methyl-CoM reductase and subsequently undergo full oxidation to carbon dioxide via reverse methanogenesis. All enzymes of this pathway were present and expressed in the investigated culture. The genome of the archaeal enrichment culture encoded a variety of enzymes involved in an electron transport chain similar to those found in Methanosarcina species with additional features not previously found in methane-converting archaea. Nitrate reduction to nitrite seems to be located in the pseudoperiplasm and may be catalyzed by an unusual Nar-like protein complex. A small part of the resulting nitrite is reduced to ammonium which may be catalyzed by a Nrf-type nitrite reductase. One of the key questions is how electrons from cytoplasmically located reverse methanogenesis reach the nitrate reductase in the pseudoperiplasm. Electron transport in M. nitroreducens probably involves cofactor F420 in the cytoplasm, quinones in the cytoplasmic membrane and cytochrome c in the pseudoperiplasm. The membrane-bound electron transport chain includes F420H2 dehydrogenase and an unusual Rieske/cytochrome b complex. Based on genome and transcriptome studies a tentative model of how central energy metabolism of nitrate-AOM could work is

  9. Exploring the biotechnologial applications in the archaeal domain Explorando as aplicações biotecnológicas do domínio archaea

    Directory of Open Access Journals (Sweden)

    S.M.C. Alquéres

    2007-09-01

    Full Text Available Archaea represent a considerable fraction of the prokaryotic world in marine and terrestrial ecosystems, indicating that organisms from this domain might have a large impact on global energy cycles. The extremophilic nature of many archaea has stimulated intense efforts to understand the physiological adaptations for living in extreme environments. Their unusual properties make them a potentially valuable resource in the development of novel biotechnological processes and industrial applications as new pharmaceuticals, cosmetics, nutritional supplements, molecular probes, enzymes, and fine chemicals. In the present mini-review, we show and discuss some exclusive characteristics of Archaea domain and the current knowledge about the biotechnological uses of the archaeal enzymes. The topics are: archaeal characteristics, phylogenetic division, biotechnological applications, isolation and cultivation of new microbes, achievements in genomics, and metagenomic.As arqueas representam uma considerável fração dos procariotos nos ecossistemas marinhos e terrestes, indicando que estes organismos devem possuir um grande impacto nos ciclos energéticos. A natureza extremofílica de muitas arqueas tem estimulado intensos esforços para compreender sua adaptação fisiológica a ambientes extremos. Suas propriedades incomus as tornam uma fonte valiosa no desenvolvimento de novos processos biotecnológicos e aplicações industriais como novos fármacos, cosméticos, suplementos nutricionais, sondas moleculares, enzimas e reagentes. Na presente mini-revisão, mostramos e discutimos algumas de suas características exclusivas correlacionando-as com seu potencial biotecnológico e aplicação industrial. Os tópicos são: características das arqueas, divisão filogenética, aplicações biotecnológicas, isolamento e cultivo de novos microrganismos, genoma e metagenoma.

  10. Influence of Martian regolith analogs on the activity and growth of methanogenic archaea, with special regard to long-term desiccation

    Directory of Open Access Journals (Sweden)

    Janosch eSchirmack

    2015-03-01

    Full Text Available Methanogenic archaea have been studied as model organisms for possible life on Mars for several reasons: they can grow lithoautotrophically by using hydrogen and carbon dioxide as energy and carbon sources, respectively; they are anaerobes; and they evolved at a time when conditions on early Earth are believed to have looked similar to those of early Mars. As Mars is currently dry and cold and as water might be available only at certain time intervals, any organism living on this planet would need to cope with desiccation. On Earth there are several regions with low water availability as well, e.g. permafrost environments, desert soils and salt pans. Here, we present the results of a set of experiments investigating the influence of different Martian regolith analogs on the metabolic activity and growth of three methanogenic strains exposed to culture conditions as well as long-term desiccation. In most cases, concentrations below 1 %wt of regolith in the media resulted in an increase of methane production rates, whereas higher concentrations decreased the rates, thus prolonging the lag phase. Further experiments showed that methanogenic archaea are capable of producing methane when incubated on a water-saturated sedimentary matrix of regolith lacking nutrients. Survival of methanogens under these conditions was analyzed with a 400 day desiccation experiment in the presence of regolith analogs. All tested strains of methanogens survived the desiccation period as it was determined through reincubation on fresh medium and via qPCR following propidium monoazide treatment to identify viable cells. The survival of long-term desiccation and the ability of active metabolism on water-saturated MRAs strengthens the possibility of methanogenic archaea or physiologically similar organisms to exist in environmental niches on Mars. The best results were achieved in presence of a phyllosilicate, which provides insights of possible positive effects in habitats

  11. Classification and regression tree (CART) analyses of genomic signatures reveal sets of tetramers that discriminate temperature optima of archaea and bacteria

    Science.gov (United States)

    Dyer, Betsey D.; Kahn, Michael J.; LeBlanc, Mark D.

    2008-01-01

    Classification and regression tree (CART) analysis was applied to genome-wide tetranucleotide frequencies (genomic signatures) of 195 archaea and bacteria. Although genomic signatures have typically been used to classify evolutionary divergence, in this study, convergent evolution was the focus. Temperature optima for most of the organisms examined could be distinguished by CART analyses of tetranucleotide frequencies. This suggests that pervasive (nonlinear) qualities of genomes may reflect certain environmental conditions (such as temperature) in which those genomes evolved. The predominant use of GAGA and AGGA as the discriminating tetramers in CART models suggests that purine-loading and codon biases of thermophiles may explain some of the results. PMID:19054742

  12. Subgroup characteristics of marine methane-oxidizing ANME-2 archaea and their syntrophic partners revealed by integrated multimodal analytical microscopy.

    Science.gov (United States)

    McGlynn, Shawn E; Chadwick, Grayson L; O'Neill, Ariel; Mackey, Mason; Thor, Andrea; Deerinck, Thomas J; Ellisman, Mark H; Orphan, Victoria J

    2018-04-06

    Phylogenetically diverse environmental ANME archaea and sulfate-reducing bacteria cooperatively catalyze the anaerobic oxidation of methane oxidation (AOM) in multi-celled consortia within methane seep environments. To better understand these cells and their symbiotic associations, we applied a suite of electron microscopy approaches including correlative f luorescence i n s itu h ybridization - e lectron m icroscopy (FISH-EM), t ransmission e lectron m icroscopy (TEM), and s erial b lock face scanning e lectron m icroscopy 3D reconstructions (SBEM). FISH-EM of methane seep derived consortia revealed phylogenetic variability in terms of cell morphology, ultrastructure, and storage granules. Representatives of the ANME-2b clade, but not other ANME-2 groups, contained polyphosphate-like granules, while some bacteria associated with ANME-2a/2c contained two distinct phases of iron mineral chains resembling magnetosomes. 3D segmentation of two ANME-2 consortia types revealed cellular volumes of ANME and their symbiotic partners which were larger than previous estimates based on light microscopy. Phosphorous granule containing ANME (tentatively ANME-2b) were larger than both ANME with no granules and partner bacteria. This cell type was observed with up to 4 granules per cell and the volume of the cell was larger in proportion to the number of granules inside it, but the percent of the cell occupied by these granules did not vary with granule number. These results illuminate distinctions between ANME-2 archaeal lineages and partnering bacterial populations that are apparently unified in their capability of performing anaerobic methane oxidation. Importance Methane oxidation in anaerobic environments can be accomplished by a number of archaeal groups, some of which live in syntrophic relationships with bacteria in structured consortia. Little is known as to the distinguishing characteristics of these groups. Here we applied imaging approaches to better understand the

  13. Diversity and activity of nitrogen fixing archaea and bacteria associated with micro-environments of wetland rice

    Science.gov (United States)

    Schmidt, Hannes; Woebken, Dagmar

    2017-04-01

    Wetland rice is one of the world's most important crop plants. The cultivation on waterlogged paddy soils is strongly limited by nitrogen (N), which is typically supplied by industrial fertilizers that are not only costly but also exhibit hazardous effects on the environment. It has been reported that "Biological Nitrogen Fixation" through N2-fixing bacteria and archaea (diazotrophs) can alleviate the N-shortage in rice cultivation, thus carrying out an important ecosystem function. However, our understanding of the diversity and in situ N2 fixation activity of diazotrophs in flooded rice fields is still rudimentary. Moreover, knowledge on the impact of biochemical gradients established by root activity (i.e. exudation, radial oxygen loss) on the functioning of N-fixing microorganisms in paddy soil ecosystems is limited. We aimed at studying underlying processes on biologically relevant scales. Greenhouse studies were performed to identify key factors that control rice-diazotroph association and related N2 fixation activities. Paddy soils of different geographical origin were cultivated with two commercially used genotypes of wetland rice. Samples were separated into bulk soil, rhizosphere soil, rhizoplane, and roots at flowering stage of rice plant development. These samples were subjected to functional assays and various molecular biological techniques in order to analyze the associated diazotroph communities. Based on Illumina amplicon sequencing of nifH genes and transcripts, we show that the diversity and potential activity of diazotroph communities varies according to micro-environments. We will comparatively discuss the influence of (a) the soil microbial "seed bank" and (b) plant genotype in shaping the respective microbiomes and selecting for potentially active diazotrophs. Actual N2 fixation activities of soil-genotype combinations and micro-environments will be shown on the basis of incubation assays using 15N2-containing atmospheres. Areas of potential

  14. Interaction of Extreme Halophilic Archaea With the Evaporites of the Solar Salterns Guerrero Negro Baja California, Mexico

    Science.gov (United States)

    Tamez, P.; Lopez-Cortés, A.

    2008-12-01

    Hypersaline environments have been significant reservoirs for the long-term evolution of specifically adapted microorganisms. Characterized to have higher salt concentrations (up to 35 g/L), they are worldwide distributed and have a commercial significance. Exportadora de Sal, Guerrero Negro, Mexico has a multipond salterns system designed to harvest common salt (NaCl) from sea water. To achieve this purpose, sea water is pumped through a set of shallow ponds where water evaporates and salts concentrate. Sequential precipitation of CaCO3, CaSO4 2H2O and NaCl occurs in a mineral formations call it evaporites. In the interior of those gypsum-encrusted and halite-encrusted minerals, communities of extremely salt-loving archaea prosper. Previous studies have showed the influence of Haloarchaeal cells in the formation of larger fluid inclusions than crystals formed in sterile salt solutions. S-layer envelopes and cells of Haloarcula strain SP8807 contributed to the nucleation of new crystals of NaCl. Given the significance of the scope in phylogenetic archaeal diversity research, this study had a polyphasic approach. SEM micrographs from a 21- 31% (w/v) gradient salt multipond system evaporites, gave an insight profile of the extreme halophilic archaeal communities thriving in the surface of the gypsum and halite evaporites. Halite crystals were form after 21 days of incubation in solid medium with archaeal cells. Both culture and non-culture dependent methods, Nested-PCR-DGGE analysis and sequencing of 16S rDNA amplified fragment genes from environmental samples and isolated strains were used for this purpose. We isolate three strains from Pond 9 (21.07% total salt concentration) and one strain from Cristallizer 20 (25.15% total salt concentration). 16S rDNA signaling gave 99% of similarity with Halogeometricum borinquense, sequence AF002984, two other strains were 99% of similarity with Halobacterium salinarum, sequence AJ496185 these strains shown different colony

  15. Thymidine kinases in archaea

    DEFF Research Database (Denmark)

    Clausen, A.R.; Matakos, A.; Sandrini, Michael

    2006-01-01

    Twenty-six fully sequenced archaeal genomes were searched for genes coding for putative deoxyribonucleoside kinases (dNKs). We identified only 5 human-like thymidine kinase 1 genes (TK1s) and none for non-TK1 kinases. Four TK1s were identified in the Euryarchaea and one was found in the Crenarcha...

  16. Effect of feeding palm oil by-products based diets on total bacteria, cellulolytic bacteria and methanogenic archaea in the rumen of goats.

    Science.gov (United States)

    Abubakr, Abdelrahim; Alimon, Abdul Razak; Yaakub, Halimatun; Abdullah, Norhani; Ivan, Michael

    2014-01-01

    Rumen microorganisms are responsible for digestion and utilization of dietary feeds by host ruminants. Unconventional feed resources could be used as alternatives in tropical areas where feed resources are insufficient in terms of quality and quantity. The objective of the present experiment was to evaluate the effect of diets based on palm oil (PO), decanter cake (DC) or palm kernel cake (PKC) on rumen total bacteria, selected cellulolytic bacteria, and methanogenic archaea. Four diets: control diet (CD), decanter cake diet (DCD), palm kernel cake diet (PKCD) and CD plus 5% PO diet (CPOD) were fed to rumen cannulated goats and rumen samples were collected at the start of the experimental diets (day 0) and on days 4, 6, 8, 12, 18, 24 and 30 post dietary treatments. Feeding DCD and PKCD resulted in significantly higher (Pgoats fed PKCD and CPOD and the trend showed a severe reduction on days 4 and 6 post experimental diets. In conclusion, results indicated that feeding DCD and PKC increased the populations of cellulolytic bacteria and decreased the density of methanogenic archaea in the rumen of goats.

  17. Diversity, abundance and distribution of amoA-encoding archaea in deep-sea methane seep sediments of the Okhotsk Sea.

    Science.gov (United States)

    Dang, Hongyue; Luan, Xi-Wu; Chen, Ruipeng; Zhang, Xiaoxia; Guo, Lizhong; Klotz, Martin G

    2010-06-01

    The ecological characteristics of amoA-encoding archaea (AEA) in deep-sea sediments are largely unsolved. This paper aimed to study the diversity, structure, distribution and abundance of the archaeal community and especially its AEA components in the cold seep surface sediments of the Okhotsk Sea, a marginal sea harboring one of the largest methane hydrate reservoirs in the world. Diverse archaeal 16S rRNA gene sequences were identified, with the majority being related to sequences from other cold seep and methane-rich sediment environments. However, the AEA diversity and abundance were quite low as revealed by amoA gene analyses. Correlation analysis indicates that the abundance of the archaeal amoA genes was correlated with the sediment organic matter content. Thus, it is possible that the amoA-carrying archaea here might utilize organic matter for a living. The affiliation of certain archaeal amoA sequences to the GenBank sequences originally obtained from deep-sea hydrothermal vent environments indicated that the related AEA either have a wide range of temperature adaptation or they have a thermophilic evolutionary history in the modern cold deep-sea sediments of the Okhotsk Sea. The dominance of ammonia-oxidizing bacteria over AEA may indicate that bacteria play a significant role in nitrification in the Okhotsk Sea cold seep sediments.

  18. Constraints on mechanisms and rates of anaerobic oxidation of methane by microbial consortia: process-based modeling of ANME-2 archaea and sulfate reducing bacteria interactions

    Directory of Open Access Journals (Sweden)

    B. Orcutt

    2008-11-01

    Full Text Available Anaerobic oxidation of methane (AOM is the main process responsible for the removal of methane generated in Earth's marine subsurface environments. However, the biochemical mechanism of AOM remains elusive. By explicitly resolving the observed spatial arrangement of methanotrophic archaea and sulfate reducing bacteria found in consortia mediating AOM, potential intermediates involved in the electron transfer between the methane oxidizing and sulfate reducing partners were investigated via a consortium-scale reaction transport model that integrates the effect of diffusional transport with thermodynamic and kinetic controls on microbial activity. Model simulations were used to assess the impact of poorly constrained microbial characteristics such as minimum energy requirements to sustain metabolism and cell specific rates. The role of environmental conditions such as the influence of methane levels on the feasibility of H2, formate and acetate as intermediate species, and the impact of the abundance of intermediate species on pathway reversal were examined. The results show that higher production rates of intermediates via AOM lead to increased diffusive fluxes from the methane oxidizing archaea to sulfate reducing bacteria, but the build-up of the exchangeable species can cause the energy yield of AOM to drop below that required for ATP production. Comparison to data from laboratory experiments shows that under the experimental conditions of Nauhaus et al. (2007, none of the potential intermediates considered here is able to support metabolic activity matching the measured rates.

  19. Transcriptome-wide mapping of 5-methylcytidine RNA modifications in bacteria, archaea, and yeast reveals m5C within archaeal mRNAs.

    Directory of Open Access Journals (Sweden)

    Sarit Edelheit

    2013-06-01

    Full Text Available The presence of 5-methylcytidine (m(5C in tRNA and rRNA molecules of a wide variety of organisms was first observed more than 40 years ago. However, detection of this modification was limited to specific, abundant, RNA species, due to the usage of low-throughput methods. To obtain a high resolution, systematic, and comprehensive transcriptome-wide overview of m(5C across the three domains of life, we used bisulfite treatment on total RNA from both gram positive (B. subtilis and gram negative (E. coli bacteria, an archaeon (S. solfataricus and a eukaryote (S. cerevisiae, followed by massively parallel sequencing. We were able to recover most previously documented m(5C sites on rRNA in the four organisms, and identified several novel sites in yeast and archaeal rRNAs. Our analyses also allowed quantification of methylated m(5C positions in 64 tRNAs in yeast and archaea, revealing stoichiometric differences between the methylation patterns of these organisms. Molecules of tRNAs in which m(5C was absent were also discovered. Intriguingly, we detected m(5C sites within archaeal mRNAs, and identified a consensus motif of AUCGANGU that directs methylation in S. solfataricus. Our results, which were validated using m(5C-specific RNA immunoprecipitation, provide the first evidence for mRNA modifications in archaea, suggesting that this mode of post-transcriptional regulation extends beyond the eukaryotic domain.

  20. Transcription factor IID in the Archaea: sequences in the Thermococcus celer genome would encode a product closely related to the TATA-binding protein of eukaryotes

    Science.gov (United States)

    Marsh, T. L.; Reich, C. I.; Whitelock, R. B.; Olsen, G. J.; Woese, C. R. (Principal Investigator)

    1994-01-01

    The first step in transcription initiation in eukaryotes is mediated by the TATA-binding protein, a subunit of the transcription factor IID complex. We have cloned and sequenced the gene for a presumptive homolog of this eukaryotic protein from Thermococcus celer, a member of the Archaea (formerly archaebacteria). The protein encoded by the archaeal gene is a tandem repeat of a conserved domain, corresponding to the repeated domain in its eukaryotic counterparts. Molecular phylogenetic analyses of the two halves of the repeat are consistent with the duplication occurring before the divergence of the archael and eukaryotic domains. In conjunction with previous observations of similarity in RNA polymerase subunit composition and sequences and the finding of a transcription factor IIB-like sequence in Pyrococcus woesei (a relative of T. celer) it appears that major features of the eukaryotic transcription apparatus were well-established before the origin of eukaryotic cellular organization. The divergence between the two halves of the archael protein is less than that between the halves of the individual eukaryotic sequences, indicating that the average rate of sequence change in the archael protein has been less than in its eukaryotic counterparts. To the extent that this lower rate applies to the genome as a whole, a clearer picture of the early genes (and gene families) that gave rise to present-day genomes is more apt to emerge from the study of sequences from the Archaea than from the corresponding sequences from eukaryotes.

  1. Vertical profiles of community abundance and diversity of anaerobic methanotrophic archaea (ANME) and bacteria in a simple waste landfill in north China.

    Science.gov (United States)

    Dong, Jun; Ding, Linjie; Wang, Xu; Chi, Zifang; Lei, Jiansen

    2015-03-01

    Anaerobic methane oxidation (AMO) is considered to be an important sink of CH4 in habitats as marine sediments. But, few studies focused on AMO in landfills which may be an important sink of CH4 derived from waste fermentation. To show evidence of AMO and to uncover function anaerobic methanotroph (ANME) community in landfill, different age waste samples were collected in Jinqianpu landfill located in north China. Through high-throughput sequencing, Methanomicrobiales and Methanosarcinales archaea associated with ANME and reverse methanogenic archaea of Methanosarcina and Methanobacterium were detected. Sulfate-reducing bacteria (SRB) (Desulfobulbus and Desulfococcus) which could couple with ANME-conducting AMO were also found. But, the community structure of ANME had no significant difference with depths. From the results of investigation, we can come to a conclusion that sulfate-dependent anaerobic methane oxidation (SR-DAMO) would be the dominant AMO process in the landfill, while iron-dependent anaerobic methane oxidation (M/IR-DAMO) process was weak though concentration of ferric iron was large in the landfill. Denitrification-dependent anaerobic methane oxidation (NR-DAMO) was negative because of lack of nitrate and relevant function microorganisms in the landfill. Results also indicate that CH4 mitigation would have higher potential by increasing electron acceptor contents and promoting the growth of relevant function microorganisms.

  2. Associative patterns among anaerobic fungi, methanogenic archaea, and bacterial communities in response to changes in diet and age in the rumen of dairy cows.

    Science.gov (United States)

    Kumar, Sanjay; Indugu, Nagaraju; Vecchiarelli, Bonnie; Pitta, Dipti W

    2015-01-01

    The rumen microbiome represents a complex microbial genetic web where bacteria, anaerobic rumen fungi (ARF), protozoa and archaea work in harmony contributing to the health and productivity of ruminants. We hypothesized that the rumen microbiome shifts as the dairy cow advances in lactations and these microbial changes may contribute to differences in productivity between primiparous (first lactation) and multiparous (≥second lactation) cows. To this end, we investigated shifts in the ruminal ARF and methanogenic communities in both primiparous (n = 5) and multiparous (n = 5) cows as they transitioned from a high forage to a high grain diet upon initiation of lactation. A total of 20 rumen samples were extracted for genomic DNA, amplified using archaeal and fungal specific primers, sequenced on a 454 platform and analyzed using QIIME. Community comparisons (Bray-Curtis index) revealed the effect of diet (P bacteria, ARF and archaea revealed syntrophic interactions both within and between microbial domains in response to change in diet as well as age of dairy cows. Notably, these interactions were numerous and complex in multiparous cows, supporting our hypothesis that the rumen microbiome also matures with age to sustain the growing metabolic needs of the host. This study provides a broader picture of the ARF and methanogenic populations in the rumen of dairy cows and their co-occurrence implicates specific relationships between different microbial domains in response to diet and age.

  3. Saccharolobus caldissimus gen. nov., sp. nov., a facultatively anaerobic iron-reducing hyperthermophilic archaeon isolated from an acidic terrestrial hot spring, and reclassification of Sulfolobus solfataricus as Saccharolobus solfataricus comb. nov. and Sulfolobus shibatae as Saccharolobus shibatae comb. nov.

    Science.gov (United States)

    Sakai, Hiroyuki D; Kurosawa, Norio

    2018-04-01

    A novel hyperthermophilic archaeon of strain HS-3 T , belonging to the family Sulfolobaceae, was isolated from an acidic terrestrial hot spring in Hakone Ohwaku-dani, Japan. Based on 16S rRNA gene sequence analysis, the closest phylogenetic relatives of strain HS-3 T were, first, Sulfolobus solfataricus (96.4 %) and, second, Sulfolobus shibatae (96.2 %), indicating that the strain belongs to the genus Sulfolobus. However, the sequence similarity to the type species of the genus Sulfolobus (Sulfolobus acidocaldarius) was remarkably low (91.8 %). In order to determine whether strain HS-3 T belongs to the genus Sulfolobus, its morphological, biochemical and physiological characteristics were examined in parallel with those of S. solfataricus and S. shibatae. Although there were some differences in chemolithotrophic growth between strain HS-3 T , S. solfataricus and S. shibatae, their temperature, pH and facultatively anaerobic characteristics of growth, and their utilization of various sugars were almost identical. In contrast, the utilization of various sugars by S. acidocaldarius was quite different from that of HS-3 T , S. solfataricus and S. shibatae. Phylogenetic evidence based on the 16S and the 23S rRNA gene sequences also clearly distinguished the monophyletic clade composed of strain HS-3 T , S. solfataricus, and S. shibatae from S. acidocaldarius. Based on these results, we propose a new genus and species, Saccharolobus caldissimus gen. nov., sp. nov., for strain HS-3 T , as well as two reclassifications, Saccharolobus solfataricus comb. nov. and Saccharolobus shibatae comb. nov. The type strain of Saccharolobus caldissimus is HS-3 T (=JCM 32116 T and InaCC Ar80 T ). The type species of the genus is Saccharolobus solfataricus.

  4. Fiscal 2000 achievement report on project for research and development of technologies for intelligent infrastructure creation and utilization. 'Development of high-efficiency protein expression system - 1 Development of system capable of high-efficiency expression of hyperthermophile-derived protein'; 2000 nendo chiteki kiban sose riyo gijutsu kenkyu kaihatsu gyomu seika hokokusho. Kokoritsu tanpakushitsu hatsugen system no kaihatsu -1 (Cho konetsukin yurai tanpakushitsu wo kokoritsu ni hatsugen suru system no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Research and development was conducted aiming at the establishment of a system to enable the high-efficiency expression of the gene products of P. horikoshii OT3 and A. pernix K1. In an effort to develop a high-efficiency protein expression system with Escherichia coli acting as the host, studies were made about the expression of hyperthermophile protein by arginine rare codon elimination, and Ph FEN (flap endonuclease) was successfully overexpressed. In the development of Bacillus strains, screening was conducted for novel hosts, and a library was constructed for a screening task suitable for hyperthermophile-derived protein production. A system was also constructed capable of the high-throughput expression of various kinds of genes using Bacillus brevis. In the study of the expression of hyperthermophile-derived genes using T. thermophilus, promoter replacement resulted in an approximately 2-fold increase in representation at the maximum. Moreover, studies were made about the length at which foreign genes were efficiently incorporated into the T. thermophilus genome. (NEDO)

  5. New insight in the structural features of haloadaptation in α-amylases from halophilic Archaea following homology modeling strategy: folded and stable conformation maintained through low hydrophobicity and highly negative charged surface

    Science.gov (United States)

    Zorgani, Mohamed Amine; Patron, Kevin; Desvaux, Mickaël

    2014-07-01

    Proteins from halophilic archaea, which live in extreme saline conditions, have evolved to remain folded, active and stable at very high ionic strengths. Understanding the mechanism of haloadaptation is the first step toward engineering of halostable biomolecules. Amylases are one of the main enzymes used in industry. Yet, no three-dimensional structure has been experimentally resolved for α-amylases from halophilic archaea. In this study, homology structure modeling of α-amylases from the halophilic archaea Haloarcula marismortui, Haloarcula hispanica, and Halalkalicoccus jeotgali were performed. The resulting models were subjected to energy minimization, evaluation, and structural analysis. Calculations of the amino acid composition, salt bridges and hydrophobic interactions were also performed and compared to a set of non-halophilic counterparts. It clearly appeared that haloarchaeal α-amylases exhibited lower propensities for helix formation and higher propensities for coil-forming regions. Furthermore, they could maintain a folded and stable conformation in high salt concentration through highly negative charged surface with over representation of acidic residues, especially Asp, and low hydrophobicity with increase of salt bridges and decrease in hydrophobic interactions on the protein surface. This study sheds some light on the stability of α-amylases from halophilic archaea and provides strong basis not only to understand haloadaptation mechanisms of proteins in microorganisms from hypersalines environments but also for biotechnological applications.

  6. Genomics Encyclopedia of Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB): a resource for microsymbiont genomes (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    Energy Technology Data Exchange (ETDEWEB)

    Reeve, Wayne [Murdoch University

    2013-03-01

    Wayne Reeve of Murdoch University on "Genomics Encyclopedia of Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB): a resource for microsymbiont genomes" at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, Calif.

  7. Phylogeny and Taxonomy of Archaea: A Comparison of the Whole-Genome-Based CVTree Approach with 16S rRNA Sequence Analysis

    Directory of Open Access Journals (Sweden)

    Guanghong Zuo

    2015-03-01

    Full Text Available A tripartite comparison of Archaea phylogeny and taxonomy at and above the rank order is reported: (1 the whole-genome-based and alignment-free CVTree using 179 genomes; (2 the 16S rRNA analysis exemplified by the All-Species Living Tree with 366 archaeal sequences; and (3 the Second Edition of Bergey’s Manual of Systematic Bacteriology complemented by some current literature. A high degree of agreement is reached at these ranks. From the newly proposed archaeal phyla, Korarchaeota, Thaumarchaeota, Nanoarchaeota and Aigarchaeota, to the recent suggestion to divide the class Halobacteria into three orders, all gain substantial support from CVTree. In addition, the CVTree helped to determine the taxonomic position of some newly sequenced genomes without proper lineage information. A few discrepancies between the CVTree and the 16S rRNA approaches call for further investigation.

  8. The effects of various land reclamation scenarios on the succession of soil Bacteria, Archaea, and fungi over the short and long term

    Directory of Open Access Journals (Sweden)

    Junjian eLi

    2016-03-01

    Full Text Available Ecological restoration of mining areas has mainly focused on the succession dynamics of vegetation and the fate of microbial communities remains poorly understood. We examined changes in soil characteristics and plant and microbial communities with increasing reclamation period in an open coal mine. Bacterial, archaeal and fungal communities were assessed by tag-encoded 454 pyrosequencing. At the phylum level, Proteobacteria, Crenarchaeota, and Ascomycota had the highest detected relative abundance within bacteria, archaea, and fungi, respectively. Partial regressions and canonical correspondence analysis demonstrated that vegetation played a major role in bacterial and archaeal diversity and assemblies, and soil characteristics, especially nitrogen, were important for fungal diversity and assemblies. Spearman rank correlation indicated that bacterial and archaeal communities showed synergistic succession with plants; whereas, fungal communities showed no such pattern. Overall, our data suggest that there are different drivers of bacterial, archaeal and fungal succession during secondary succession in a reclaimed open mine.

  9. Associative patterns among anaerobic fungi, methanogenic archaea and bacterial communities in response to changes in diet and age in the rumen of dairy cows

    Directory of Open Access Journals (Sweden)

    Sanjay eKumar

    2015-07-01

    Full Text Available The rumen microbiome represents a complex microbial genetic web where bacteria, anaerobic rumen fungi (ARF, protozoa and archaea work in harmony contributing to the health and productivity of ruminants. We hypothesized that the rumen microbiome shifts as the dairy cow advances in lactations and these microbial changes may contribute to differences in productivity between primiparous (first lactation and multiparous (≥ second lactation cows. To this end, we investigated shifts in the ruminal ARF and methanogenic communities in both primiparous (n=5 and multiparous (n=5 cows as they transitioned from a high forage to a high grain diet upon initiation of lactation. A total of 20 rumen samples were extracted for genomic DNA, amplified using archaeal and fungal specific primers, sequenced on a 454 platform and analyzed using QIIME. Community comparisons (Bray-Curtis index revealed the effect of diet (P < 0.01 on ARF composition, while archaeal communities differed between primiparous and multiparous cows (P < 0.05. Among ARF, several lineages were unclassified, however, phylum Neocallimastigomycota showed the presence of three known genera. Abundance of Cyllamyces and Caecomyces shifted with diet whereas, Orpinomyces was influenced by both diet and age. Methanobrevibacter constituted the most dominant archaeal genus across all samples. Co-occurrence analysis incorporating taxa from bacteria, ARF and archaea revealed syntrophic interactions both within and between microbial domains in response to change in diet as well as age of dairy cows. Notably, these interactions were numerous and complex in multiparous cows supporting our hypothesis that the rumen microbiome also matures with age to sustain the growing metabolic needs of the host. This study provides a broader picture of the ARF and methanogenic populations in the rumen of dairy cows and their co-occurrence implicates specific relationships between different microbial domains in response to

  10. NADP-Dependent Aldehyde Dehydrogenase from Archaeon Pyrobaculum sp.1860: Structural and Functional Features

    Directory of Open Access Journals (Sweden)

    Ekaterina Yu. Bezsudnova

    2016-01-01

    Full Text Available We present the functional and structural characterization of the first archaeal thermostable NADP-dependent aldehyde dehydrogenase AlDHPyr1147. In vitro, AlDHPyr1147 catalyzes the irreversible oxidation of short aliphatic aldehydes at 60–85°С, and the affinity of AlDHPyr1147 to the NADP+ at 60°С is comparable to that for mesophilic analogues at 25°С. We determined the structures of the apo form of AlDHPyr1147 (3.04 Å resolution, three binary complexes with the coenzyme (1.90, 2.06, and 2.19 Å, and the ternary complex with the coenzyme and isobutyraldehyde as a substrate (2.66 Å. The nicotinamide moiety of the coenzyme is disordered in two binary complexes, while it is ordered in the ternary complex, as well as in the binary complex obtained after additional soaking with the substrate. AlDHPyr1147 structures demonstrate the strengthening of the dimeric contact (as compared with the analogues and the concerted conformational flexibility of catalytic Cys287 and Glu253, as well as Leu254 and the nicotinamide moiety of the coenzyme. A comparison of the active sites of AlDHPyr1147 and dehydrogenases characterized earlier suggests that proton relay systems, which were previously proposed for dehydrogenases of this family, are blocked in AlDHPyr1147, and the proton release in the latter can occur through the substrate channel.

  11. A Ferredoxin- and F420H2-Dependent, Electron-Bifurcating, Heterodisulfide Reductase with Homologs in the Domains Bacteria and Archaea.

    Science.gov (United States)

    Yan, Zhen; Wang, Mingyu; Ferry, James G

    2017-02-07

    Heterodisulfide reductases (Hdr) of the HdrABC class are ancient enzymes and a component of the anaerobic core belonging to the prokaryotic common ancestor. The ancient origin is consistent with the widespread occurrence of genes encoding putative HdrABC homologs in metabolically diverse prokaryotes predicting diverse physiological functions; however, only one HdrABC has been characterized and that was from a narrow metabolic group of obligate CO 2 -reducing methanogenic anaerobes (methanogens) from the domain Archaea Here we report the biochemical characterization of an HdrABC homolog (HdrA2B2C2) from the acetate-utilizing methanogen Methanosarcina acetivorans with unusual properties structurally and functionally distinct from the only other HdrABC characterized. Homologs of the HdrA2B2C2 archetype are present in phylogenetically and metabolically diverse species from the domains Bacteria and Archaea The expression of the individual HdrA2, HdrB2, and HdrB2C2 enzymes in Escherichia coli, and reconstitution of an active HdrA2B2C2 complex, revealed an intersubunit electron transport pathway dependent on ferredoxin or coenzyme F 420 (F 420 H 2 ) as an electron donor. Remarkably, HdrA2B2C2 couples the previously unknown endergonic oxidation of F 420 H 2 and reduction of ferredoxin with the exergonic oxidation of F 420 H 2 and reduction of the heterodisulfide of coenzyme M and coenzyme B (CoMS-SCoB). The unique electron bifurcation predicts a role for HdrA2B2C2 in Fe(III)-dependent anaerobic methane oxidation (ANME) by M. acetivorans and uncultured species from ANME environments. HdrA2B2C2, ubiquitous in acetotrophic methanogens, was shown to participate in electron transfer during acetotrophic growth of M. acetivorans and proposed to be essential for growth in the environment when acetate is limiting. Discovery of the archetype HdrA2B2C2 heterodisulfide reductase with categorically unique properties extends the understanding of this ancient family beyond CO 2

  12. A Ferredoxin- and F420H2-Dependent, Electron-Bifurcating, Heterodisulfide Reductase with Homologs in the Domains Bacteria and Archaea

    Directory of Open Access Journals (Sweden)

    Zhen Yan

    2017-02-01

    Full Text Available Heterodisulfide reductases (Hdr of the HdrABC class are ancient enzymes and a component of the anaerobic core belonging to the prokaryotic common ancestor. The ancient origin is consistent with the widespread occurrence of genes encoding putative HdrABC homologs in metabolically diverse prokaryotes predicting diverse physiological functions; however, only one HdrABC has been characterized and that was from a narrow metabolic group of obligate CO2-reducing methanogenic anaerobes (methanogens from the domain Archaea. Here we report the biochemical characterization of an HdrABC homolog (HdrA2B2C2 from the acetate-utilizing methanogen Methanosarcina acetivorans with unusual properties structurally and functionally distinct from the only other HdrABC characterized. Homologs of the HdrA2B2C2 archetype are present in phylogenetically and metabolically diverse species from the domains Bacteria and Archaea. The expression of the individual HdrA2, HdrB2, and HdrB2C2 enzymes in Escherichia coli, and reconstitution of an active HdrA2B2C2 complex, revealed an intersubunit electron transport pathway dependent on ferredoxin or coenzyme F420 (F420H2 as an electron donor. Remarkably, HdrA2B2C2 couples the previously unknown endergonic oxidation of F420H2 and reduction of ferredoxin with the exergonic oxidation of F420H2 and reduction of the heterodisulfide of coenzyme M and coenzyme B (CoMS-SCoB. The unique electron bifurcation predicts a role for HdrA2B2C2 in Fe(III-dependent anaerobic methane oxidation (ANME by M. acetivorans and uncultured species from ANME environments. HdrA2B2C2, ubiquitous in acetotrophic methanogens, was shown to participate in electron transfer during acetotrophic growth of M. acetivorans and proposed to be essential for growth in the environment when acetate is limiting.

  13. Deuterium incorporation experiments from (3R)- and (3S)-[3-2H]leucine into characteristic isoprenoidal lipid-core of halophilic archaea suggests the involvement of isovaleryl-CoA dehydrogenase.

    Science.gov (United States)

    Yamauchi, Noriaki; Tanoue, Ryo

    2017-11-01

    The stereochemical reaction course for the two C-3 hydrogens of leucine to produce a characteristic isoprenoidal lipid in halophilic archaea was observed using incubation experiments with whole cell Halobacterium salinarum. Deuterium-labeled (3R)- and (3S)-[3- 2 H]leucine were freshly prepared as substrates from 2,3-epoxy-4-methyl-1-pentanol. Incorporation of deuterium from (3S)-[3- 2 H]leucine and loss of deuterium from (3R)-[3- 2 H]leucine in the lipid-core of H. salinarum was observed. Taken together with the results of our previous report, involving the incubation of chiral-labeled [5- 2 H]leucine, these results strongly suggested an involvement of isovaleryl-CoA dehydrogenase in leucine conversion to isoprenoid lipid in halophilic archaea. The stereochemical course of the reaction (anti-elimination) might have been the same as that previously reported for mammalian enzyme reactions. Thus, these results suggested that branched amino acids were metabolized to mevalonate in archaea in a manner similar to other organisms.

  14. The Sulfate-Rich and Extreme Saline Sediment of the Ephemeral Tirez Lagoon: A Biotope for Acetoclastic Sulfate-Reducing Bacteria and Hydrogenotrophic Methanogenic Archaea

    Directory of Open Access Journals (Sweden)

    Lilia Montoya

    2011-01-01

    Full Text Available Our goal was to examine the composition of methanogenic archaea (MA and sulfate-reducing (SRP and sulfur-oxidizing (SOP prokaryotes in the extreme athalassohaline and particularly sulfate-rich sediment of Tirez Lagoon (Spain. Thus, adenosine-5′-phosphosulfate (APS reductase α (aprA and methyl coenzyme M reductase α (mcrA gene markers were amplified given that both enzymes are specific for SRP, SOP, and MA, respectively. Anaerobic populations sampled at different depths in flooded and dry seasons from the anoxic sediment were compared qualitatively via denaturing gradient gel electrophoresis (DGGE fingerprint analysis. Phylogenetic analyses allowed the detection of SRP belonging to Desulfobacteraceae, Desulfohalobiaceae, and Peptococcaceae in ∂-proteobacteria and Firmicutes and SOP belonging to Chromatiales/Thiotrichales clade and Ectothiorhodospiraceae in γ-proteobacteria as well as MA belonging to methylotrophic species in Methanosarcinaceae and one hydrogenotrophic species in Methanomicrobiaceae. We also estimated amino acid composition, GC content, and preferential codon usage for the AprA and McrA sequences from halophiles, nonhalophiles, and Tirez phylotypes. Even though our results cannot be currently conclusive regarding the halotolerant strategies carried out by Tirez phylotypes, we discuss the possibility of a plausible “salt-in” signal in SRP and SOP as well as of a speculative complementary haloadaptation between salt-in and salt-out strategies in MA.

  15. The Sulfate-Rich and Extreme Saline Sediment of the Ephemeral Tirez Lagoon: A Biotope for Acetoclastic Sulfate-Reducing Bacteria and Hydrogenotrophic Methanogenic Archaea

    Science.gov (United States)

    Montoya, Lilia; Lozada-Chávez, Irma; Amils, Ricardo; Rodriguez, Nuria; Marín, Irma

    2011-01-01

    Our goal was to examine the composition of methanogenic archaea (MA) and sulfate-reducing (SRP) and sulfur-oxidizing (SOP) prokaryotes in the extreme athalassohaline and particularly sulfate-rich sediment of Tirez Lagoon (Spain). Thus, adenosine-5′-phosphosulfate (APS) reductase α (aprA) and methyl coenzyme M reductase α (mcrA) gene markers were amplified given that both enzymes are specific for SRP, SOP, and MA, respectively. Anaerobic populations sampled at different depths in flooded and dry seasons from the anoxic sediment were compared qualitatively via denaturing gradient gel electrophoresis (DGGE) fingerprint analysis. Phylogenetic analyses allowed the detection of SRP belonging to Desulfobacteraceae, Desulfohalobiaceae, and Peptococcaceae in ∂-proteobacteria and Firmicutes and SOP belonging to Chromatiales/Thiotrichales clade and Ectothiorhodospiraceae in γ-proteobacteria as well as MA belonging to methylotrophic species in Methanosarcinaceae and one hydrogenotrophic species in Methanomicrobiaceae. We also estimated amino acid composition, GC content, and preferential codon usage for the AprA and McrA sequences from halophiles, nonhalophiles, and Tirez phylotypes. Even though our results cannot be currently conclusive regarding the halotolerant strategies carried out by Tirez phylotypes, we discuss the possibility of a plausible “salt-in” signal in SRP and SOP as well as of a speculative complementary haloadaptation between salt-in and salt-out strategies in MA. PMID:21915180

  16. Natronolimnobius baerhuensis gen. nov., sp. nov. and Natronolimnobius innermongolicus sp. nov., novel haloalkaliphilic archaea isolated from soda lakes in Inner Mongolia, China.

    Science.gov (United States)

    Itoh, Takashi; Yamaguchi, Takashi; Zhou, Peijin; Takashina, Tomonori

    2005-04-01

    Three novel isolates of haloalkaliphilic archaea, strains IHC-005T, IHC-010, and N-1311T, from soda lakes in Inner Mongolia, China, were characterized to elucidate their taxonomic positions. The three strains were aerobic, Gram-negative chemoorganotrophs growing optimally at 37-45 degrees C, pH 9.0-9.5, and 15-20% NaCl. Cells of strains IHC-005T/IHC-010 were motile rods, while those of strain N-1311T were non-motile pleomorphic flats or cocci. The three strains contained diphytanyl and phytanyl-sesterterpanyl diether derivatives of phosphatidylglycerol and phosphatidylglycerophosphate methyl ester. No glycolipids were detected. On phylogenetic analysis of 16S rRNA gene sequences, they formed an independent cluster in the Natro group of the family Halobacteriaceae. Comparison of their morphological, physiological, and biochemical properties, DNA G + C content and 16S rRNA gene sequences, and DNA-DNA hybridization study support the view that strains IHC-005T/IHC-010 and strain N-1311T represent separate species. Therefore, we propose Natronolimnobius baerhuensis gen. nov., sp. nov. for strains IHC-005T (=CGMCC 1.3597T =JCM 12253T)/IHC-010 (=CGMCC 1.3598 = JCM 12254) and Natronolimnobius innermongolicus sp. nov. for N-1311T (=CGMCC 1.2124T =JCM 12255T).

  17. Enhancement of anaerobic acidogenesis by integrating an electrochemical system into an acidogenic reactor: effect of hydraulic retention times (HRT) and role of bacteria and acidophilic methanogenic Archaea.

    Science.gov (United States)

    Zhang, Jingxin; Zhang, Yaobin; Quan, Xie; Chen, Shuo

    2015-03-01

    In this study, an acidogenic reactor packed with a pair of Fe-carbon electrodes (R1) was developed to enhance anaerobic acidogenesis of organic wastewater at short hydraulic retention times. The results indicated that the acidogenic efficiency was improved by settling a bio-electrochemical system. When hydraulic retention times decreased from 12 to 3h, R1 showed 18.9% more chemical oxygen demand removal and 13.8% more acidification efficiency. After cutting off the voltage of R1, the COD removal decreased by about 5%. Coupling of Fe(2+) leaching and electric field accelerated the hydrolysis of polysaccharide, relieving its accumulation in the sludge phase. Several acidophilic methanogenic Archaea such as Methanosarcina sp. were enriched in R1, which was favorable for consuming organic acids and preventing excessive pH decline. Thus, the developed acidogenic reactor with Fe-carbon electrodes is expected to be potentially effective and useful for wastewater treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. A Rapid and Reproducible Genomic DNA Extraction Protocol for Sequence-Based Identification of Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and Green Algae

    Directory of Open Access Journals (Sweden)

    Farkhondeh Saba

    2017-01-01

    Full Text Available Background:  Sequence-based identification of various microorganisms including Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and green algae necessitates an efficient and reproducible genome extraction procedure though which a pure template DNA is yielded and it can be used in polymerase chain reactions (PCR. Considering the fact that DNA extraction from these microorganisms is time consuming and laborious, we developed and standardized a safe, rapid and inexpensive miniprep protocol. Methods:  According to our results, amplification of various genomic regions including SSU, LSU, ITS, β-tubulin, actin, RPB2, and EF-1 resulted in a reproducible and efficient DNA extraction from a wide range of microorganisms yielding adequate pure genomic material for reproducible PCR-amplifications. Results:   This method relies on a temporary shock of increased concentrations of detergent which can be applied concomitant with multiple freeze-thaws to yield sufficient amount of DNA for PCR amplification of multiple or single fragments(s of the genome. As an advantage, the recipe seems very flexible, thus, various optional steps can be included depending on the samples used.Conclusion:   Having the needed flexibility in each step, this protocol is applicable on a very wide range of samples. Hence, various steps can be included depending on the desired quantity and quality.

  19. A Rapid and Reproducible Genomic DNA Extraction Protocol for Sequence-Based Identification of Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and Green Algae

    Directory of Open Access Journals (Sweden)

    Farkhondeh Saba

    2016-09-01

    Full Text Available Background:  Sequence-based identification of various microorganisms including Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and green algae necessitates an efficient and reproducible genome extraction procedure though which a pure template DNA is yielded and it can be used in polymerase chain reactions (PCR. Considering the fact that DNA extraction from these microorganisms is time consuming and laborious, we developed and standardized a safe, rapid and inexpensive miniprep protocol. Methods:  According to our results, amplification of various genomic regions including SSU, LSU, ITS, β-tubulin, actin, RPB2, and EF-1 resulted in a reproducible and efficient DNA extraction from a wide range of microorganisms yielding adequate pure genomic material for reproducible PCR-amplifications. Results:   This method relies on a temporary shock of increased concentrations of detergent which can be applied concomitant with multiple freeze-thaws to yield sufficient amount of DNA for PCR amplification of multiple or single fragments(s of the genome. As an advantage, the recipe seems very flexible, thus, various optional steps can be included depending on the samples used.Conclusion:   Having the needed flexibility in each step, this protocol is applicable on a very wide range of samples. Hence, various steps can be included depending on the desired quantity and quality.

  20. Changes in the microbial community structure of bacteria, archaea and fungi in response to elevated CO(2) and warming in an Australian native grassland soil.

    Science.gov (United States)

    Hayden, Helen L; Mele, Pauline M; Bougoure, Damian S; Allan, Claire Y; Norng, Sorn; Piceno, Yvette M; Brodie, Eoin L; Desantis, Todd Z; Andersen, Gary L; Williams, Amity L; Hovenden, Mark J

    2012-12-01

    The microbial community structure of bacteria, archaea and fungi is described in an Australian native grassland soil after more than 5 years exposure to different atmospheric CO2 concentrations ([CO2]) (ambient, +550 ppm) and temperatures (ambient, + 2°C) under different plant functional types (C3 and C4 grasses) and at two soil depths (0-5 cm and 5-10 cm). Archaeal community diversity was influenced by elevated [CO2], while under warming archaeal 16S rRNA gene copy numbers increased for C4 plant Themeda triandra and decreased for the C3 plant community (P fungi in soil responded differently to elevated [CO2], warming and their interaction. Taxa identified as significantly climate-responsive could show differing trends in the direction of response ('+' or '-') under elevated CO2 or warming, which could then not be used to predict their interactive effects supporting the need to investigate interactive effects for climate change. The approach of focusing on specific taxonomic groups provides greater potential for understanding complex microbial community changes in ecosystems under climate change. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  1. Structure of the hexameric HerA ATPase reveals a mechanism of translocation-coupled DNA-end processing in archaea.

    Science.gov (United States)

    Rzechorzek, Neil J; Blackwood, John K; Bray, Sian M; Maman, Joseph D; Pellegrini, Luca; Robinson, Nicholas P

    2014-11-25

    The HerA ATPase cooperates with the NurA nuclease and the Mre11-Rad50 complex for the repair of double-strand DNA breaks in thermophilic archaea. Here we extend our structural knowledge of this minimal end-resection apparatus by presenting the first crystal structure of hexameric HerA. The full-length structure visualizes at atomic resolution the N-terminal HerA-ATP synthase domain and a conserved C-terminal extension, which acts as a physical brace between adjacent protomers. The brace also interacts in trans with nucleotide-binding residues of the neighbouring subunit. Our observations support a model in which the coaxial interaction of the HerA ring with the toroidal NurA dimer generates a continuous channel traversing the complex. HerA-driven translocation would propel the DNA towards the narrow annulus of NurA, leading to duplex melting and nucleolytic digestion. This system differs substantially from the bacterial end-resection paradigms. Our findings suggest a novel mode of DNA-end processing by this integrated archaeal helicase-nuclease machine.

  2. Abundance and diversity of ammonia-oxidizing archaea and bacteria in the rhizosphere soil of three plants in the Ebinur Lake wetland.

    Science.gov (United States)

    He, Yuan; Hu, Wenge; Ma, Decao; Lan, Hongzhu; Yang, Yang; Gao, Yan

    2017-07-01

    Ammonia oxidation is carried out by ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). The Ebinur Lake wetland is the best example of a temperate arid zone wetland ecosystem in China. Soil samples were collected from rhizosphere and non-rhizosphere soil containing Halocnemum strobilaceum (samples H and H'), Phragmites australis (samples R and R'), and Karelinia caspia (samples K and K') to study the relationship between environmental factors and the community structure of AOB and AOA. Phylogenetic analysis showed that the AOA sequences belonged to the Nitrosopumilus and Nitrososphaera clusters. AOB were grouped into Nitrosospira sp. and Nitrosomonas sp. Quantitative polymerase chain reaction results showed that the AOA abundance ranged from 2.09 × 10 4 to 2.94 × 10 5 gene copies/g soil. The highest number of AOA was detected in sample K, followed by samples R and H. AOB abundance varied between 2.91 × 10 5 and 1.05 × 10 6 gene copies/g soil, which was higher than that of AOA. Redundancy analysis indicated that electrical conductivity, pH, and NH 4 + -N might influence the community structure of AOA and AOB. AOB might play a more crucial role than AOA in ammonia oxidation based on AOB's higher diversity and abundance in the Ebinur Lake wetland in Xinjiang.

  3. High abundances of potentially active ammonia-oxidizing bacteria and archaea in oligotrophic, high-altitude lakes of the Sierra Nevada, California, USA.

    Directory of Open Access Journals (Sweden)

    Curtis J Hayden

    Full Text Available Nitrification plays a central role in the nitrogen cycle by determining the oxidation state of nitrogen and its subsequent bioavailability and cycling. However, relatively little is known about the underlying ecology of the microbial communities that carry out nitrification in freshwater ecosystems--and particularly within high-altitude oligotrophic lakes, where nitrogen is frequently a limiting nutrient. We quantified ammonia-oxidizing archaea (AOA and bacteria (AOB in 9 high-altitude lakes (2289-3160 m in the Sierra Nevada, California, USA, in relation to spatial and biogeochemical data. Based on their ammonia monooxygenase (amoA genes, AOB and AOA were frequently detected. AOB were present in 88% of samples and were more abundant than AOA in all samples. Both groups showed >100 fold variation in abundance between different lakes, and were also variable through time within individual lakes. Nutrient concentrations (ammonium, nitrite, nitrate, and phosphate were generally low but also varied across and within lakes, suggestive of active internal nutrient cycling; AOB abundance was significantly correlated with phosphate (r(2 = 0.32, p<0.1, whereas AOA abundance was inversely correlated with lake elevation (r(2 = 0.43, p<0.05. We also measured low rates of ammonia oxidation--indicating that AOB, AOA, or both, may be biogeochemically active in these oligotrophic ecosystems. Our data indicate that dynamic populations of AOB and AOA are found in oligotrophic, high-altitude, freshwater lakes.

  4. Ammonia-oxidizing bacteria and archaea in wastewater treatment plant sludge and nearby coastal sediment in an industrial area in China.

    Science.gov (United States)

    Zhang, Yan; Chen, Lujun; Sun, Renhua; Dai, Tianjiao; Tian, Jinping; Wen, Donghui

    2015-05-01

    Under the increasing pressure of human activities, Hangzhou Bay has become one of the most seriously polluted waters along China's coast. Considering the excessive inorganic nitrogen detected in the bay, in this study, the impact of an effluent from a coastal industrial park on ammonia-oxidizing microorganisms (AOMs) of the receiving area was interpreted for the first time by molecular technologies. Revealed by real-time PCR, the ratio of archaeal amoA/bacterial amoA ranged from 5.68 × 10(-6) to 4.79 × 10(-5) in the activated sludge from two wastewater treatment plants (WWTPs) and 0.54-3.44 in the sediments from the effluent receiving coastal area. Analyzed by clone and pyrosequencing libraries, genus Nitrosomonas was the predominant ammonia-oxidizing bacteria (AOB), but no ammonia-oxidizing archaea (AOA) was abundant enough for sequencing in the activated sludge from the WWTPs; genus Nitrosomonas and Nitrosopumilus were the dominant AOB and AOA, respectively, in the coastal sediments. The different abundance of AOA but similar structure of AOB between the WWTPs and nearby coastal area probably indicated an anthropogenic impact on the microbial ecology in Hangzhou Bay.

  5. Abundance and distribution of archaeal acetyl-CoA/propionyl-CoA carboxylase genes indicative for putatively chemoautotrophic Archaea in the tropical Atlantic's interior.

    Science.gov (United States)

    Bergauer, Kristin; Sintes, Eva; van Bleijswijk, Judith; Witte, Harry; Herndl, Gerhard J

    2013-06-01

    Recently, evidence suggests that dark CO2 fixation in the pelagic realm of the ocean does not only occur in the suboxic and anoxic water bodies but also in the oxygenated meso- and bathypelagic waters of the North Atlantic. To elucidate the significance and phylogeny of the key organisms mediating dark CO2 fixation in the tropical Atlantic, we quantified functional genes indicative for CO2 fixation. We used a Q-PCR-based assay targeting the bifunctional acetyl-CoA/propionyl-CoA carboxylase (accA subunit), a key enzyme powering inter alia the 3-hydroxypropionate/4-hydroxybutyrate cycle (HP/HB) and the archaeal ammonia monooxygenase (amoA). Quantification of accA-like genes revealed a consistent depth profile in the upper mesopelagial with increasing gene abundances from subsurface layers towards the oxygen minimum zone (OMZ), coinciding with an increase in archaeal amoA gene abundance. Gene abundance profiles of metabolic marker genes (accA, amoA) were correlated with thaumarchaeal 16S rRNA gene abundances as well as CO2 fixation rates to link the genetic potential to actual rate measurements. AccA gene abundances correlated with archaeal amoA gene abundance throughout the water column (r(2)  = 0.309, P < 0.0001). Overall, a substantial genetic predisposition of CO2 fixation was present in the dark realm of the tropical Atlantic in both Archaea and Bacteria. Hence, dark ocean CO2 fixation might be more widespread among prokaryotes inhabiting the oxygenated water column of the ocean's interior than hitherto assumed. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  6. amoA Gene abundances and nitrification potential rates suggest that benthic ammonia-oxidizing bacteria and not Archaea dominate N cycling in the Colne Estuary, United Kingdom.

    Science.gov (United States)

    Li, Jialin; Nedwell, David B; Beddow, Jessica; Dumbrell, Alex J; McKew, Boyd A; Thorpe, Emma L; Whitby, Corinne

    2015-01-01

    Nitrification, mediated by ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), is important in global nitrogen cycling. In estuaries where gradients of salinity and ammonia concentrations occur, there may be differential selections for ammonia-oxidizer populations. The aim of this study was to examine the activity, abundance, and diversity of AOA and AOB in surface oxic sediments of a highly nutrified estuary that exhibits gradients of salinity and ammonium. AOB and AOA communities were investigated by measuring ammonia monooxygenase (amoA) gene abundance and nitrification potentials both spatially and temporally. Nitrification potentials differed along the estuary and over time, with the greatest nitrification potentials occurring mid-estuary (8.2 μmol N grams dry weight [gdw](-1) day(-1) in June, increasing to 37.4 μmol N gdw(-1) day(-1) in January). At the estuary head, the nitrification potential was 4.3 μmol N gdw(-1) day(-1) in June, increasing to 11.7 μmol N gdw(-1) day(-1) in January. At the estuary head and mouth, nitrification potentials fluctuated throughout the year. AOB amoA gene abundances were significantly greater (by 100-fold) than those of AOA both spatially and temporally. Nitrosomonas spp. were detected along the estuary by denaturing gradient gel electrophoresis (DGGE) band sequence analysis. In conclusion, AOB dominated over AOA in the estuarine sediments, with the ratio of AOB/AOA amoA gene abundance increasing from the upper (freshwater) to lower (marine) regions of the Colne estuary. These findings suggest that in this nutrified estuary, AOB (possibly Nitrosomonas spp.) were of major significance in nitrification. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Reverse-transcriptional gene expression of anammox and ammonia-oxidizing archaea and bacteria in soybean and rice paddy soils of Northeast China.

    Science.gov (United States)

    Wang, Jing; Dong, Hailiang; Wang, Weidong; Gu, Ji-Dong

    2014-03-01

    The relative gene expression of hydrazine oxidoreductase encoding gene (hzo) for anaerobic ammonium oxidizing bacteria (anammox) and ammonia monooxygenase encoding gene (amoA) for both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in Sanjiang Plain soybean and rice paddy soils of Northeast China was investigated by using real-time reverse-transcriptional quantitative PCR. Metabolically active populations of anammox, AOA, and AOB in rice paddy soils were evident by the presence and successful quantification of hzo mRNA and amoA mRNA genes. The expression ratio of amoA gene for both AOA and AOB varied between soybean soils and different rice paddy soils while the expression of hzo gene for anammox was detectable only in rice paddy soils by showing a diverse relative expression ratio in each soil sample. Gene expression of both archaeal and bacterial amoA genes in rice paddy soils differed among the three sampling depths, but that of hzo was not. Both archaeal and bacterial amoA genes showed an increase trend of expression level with continuation of rice paddy cultivation, but the low expression ratio of hzo gene indicated a relatively small contribution of anammox in overall removal of inorganic nitrogen through N2 even under anoxic and high nitrogen input in agriculture. Bacterial amoA gene from two soybean fields and three rice paddy fields were also analyzed for community composition by denaturing gradient gel electrophoresis fingerprint. Community shift was observed between soybean and paddy fields and within each of them. The consistent occurrence of three bands 5, 6, and 7 in all samples showed their high adaptability for both arid cultivation and continuous rice paddy cultivation. Our data suggest that AOA and AOB are playing a more important role in nitrogen transformation in agricultural soils in oxic or anoxic environment and anammox bacteria may also contribute but in a less extent to N transformation in these agricultural soils

  8. Succession of methanogenic archaea in rice straw incorporated into a Japanese rice field: estimation by PCR-DGGE and sequence analyses

    Directory of Open Access Journals (Sweden)

    Atsuo Sugano

    2005-01-01

    Full Text Available The succession and phylogenetic profiles of methanogenic archaeal communities associated with rice straw decomposition in rice-field soil were studied by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE analysis followed by 16S rDNA sequencing. Nylon bags containing either leaf sheaths or blades were buried in the plowed layer of a Japanese rice field under drained conditions during the off-crop season and under flooded conditions after transplanting. In addition, rice straw samples that had been buried in the rice field under drained conditions during the off-crop season were temporarily removed during spring plowing and then re-buried in the same rice field under flooded conditions at transplanting. Populations of methanogenic archaea were examined by amplification of the 16S rRNA genes in the DNA extracted from the rice straw samples. No PCR product was produced for samples of leaf sheath or blade prior to burial or after burial under drained conditions, indicating that the methanogen population was very small during decomposition of rice straw under oxic conditions. Many common bands were observed in rice straw samples of leaf sheath and blade during decomposition of rice straw under flooded conditions. Cluster analysis based on DGGE patterns divided methanogenic archaeal communities into two groups before and after the mid-season drainage. Sequence analysis of DGGE bands that were commonly present were closely related to Methanomicrobiales and Rice cluster I. Methanomicrobiales, Rice cluster I and Methanosarcinales were major members before the mid-season drainage, whereas the DGGE bands that characterized methanogenic archaeal communities after the mid-season drainage were closely related to Methanomicrobiales. These results indicate that mid-season drainage affected the methanogenic archaeal communities irrespective of their location on rice straw (sheath and blade and the previous history of decomposition

  9. Shifts in Abundance and Diversity of Soil Ammonia-Oxidizing Bacteria and Archaea Associated with Land Restoration in a Semi-Arid Ecosystem.

    Directory of Open Access Journals (Sweden)

    Zhu Chen

    Full Text Available The Grain to Green Project (GGP is an unprecedented land restoration action in China. The project converted large areas (ca 10 million ha of steep-sloped/degraded farmland and barren land into forest and grassland resulting in ecological benefits such as a reduction in severe soil erosion. It may also affect soil microorganisms involved in ammonia oxidization, which is a key step in the global nitrogen cycle. The methods for restoration that are typically adopted in semi-arid regions include abandoning farmland and growing drought tolerant grass (Lolium perenne L. or shrubs (Caragana korshinskii Kom.. In the present study, the effects of these methods on the abundance and diversity of ammonia-oxidizing bacteria (AOB and ammonia-oxidizing archaea (AOA were evaluated via quantitative real-time PCR, terminal restriction fragment length polymorphism and clone library analysis of amoA genes. Comparisons were made between soil samples from three restored lands and the adjacent farmland in Inner Mongolia. Both the abundance and community composition of AOB were significantly different between the restored lands and the adjacent control. Significantly lower nitrification activity was observed for the restored land. Clone library analysis revealed that all AOB amoA gene sequences were affiliated with Nitrosospira. Abundance of the populations that were associated with Nitrosospira sp. Nv6 which had possibly adapted to high concentrations of inorganic nitrogen, decreased on the restored land. Only a slight difference in the AOB communities was observed between the restored land with and without the shrub (Caragana korshinskii Kom.. A minor effect of land restoration on AOA was observed. In summary, land restoration negatively affected the abundance of AOB and soil nitrification activities, suggesting the potential role of GGP in the leaching of nitrates, and in the emission of N2O in related terrestrial ecosystems.

  10. Abundance and diversity of ammonia-oxidizing archaea and bacteria on granular activated carbon and their fates during drinking water purification process.

    Science.gov (United States)

    Niu, Jia; Kasuga, Ikuro; Kurisu, Futoshi; Furumai, Hiroaki; Shigeeda, Takaaki; Takahashi, Kazuhiko

    2016-01-01

    Ammonia is a precursor to trichloramine, which causes an undesirable chlorinous odor. Granular activated carbon (GAC) filtration is used to biologically oxidize ammonia during drinking water purification; however, little information is available regarding the abundance and diversity of ammonia-oxidizing archaea (AOA) and bacteria (AOB) associated with GAC. In addition, their sources and fates in water purification process remain unknown. In this study, six GAC samples were collected from five full-scale drinking water purification plants in Tokyo during summer and winter, and the abundance and community structure of AOA and AOB associated with GAC were studied in these two seasons. In summer, archaeal and bacterial amoA genes on GACs were present at 3.7 × 10(5)-3.9 × 10(8) gene copies/g-dry and 4.5 × 10(6)-4.2 × 10(8) gene copies/g-dry, respectively. In winter, archaeal amoA genes remained at the same level, while bacterial amoA genes decreased significantly for all GACs. No differences were observed in the community diversity of AOA and AOB from summer to winter. Phylogenetic analysis revealed high AOA diversity in group I.1a and group I.1b in raw water. Terminal-restriction fragment length polymorphism analysis of processed water samples revealed that AOA diversity decreased dramatically to only two OTUs in group I.1a after ozonation, which were identical to those detected on GAC. It suggests that ozonation plays an important role in determining AOA diversity on GAC. Further study on the cell-specific activity of AOA and AOB is necessary to understand their contributions to in situ nitrification performance.

  11. Testing the Role of Microbial Ecology, Redox-Mediated Deep Water Production and Hypersalinity on TEX86: Lipids and 16s Sequences from Archaea and Bacteria in the Water Column and Sediments of Orca Basin

    Science.gov (United States)

    Warren, C.; Romero, I.; Ellis, G.; Goddard, E.; Krishnan, S.; Nigro, L. M.; Super, J. R.; Zhang, Y.; Zhuang, G.; Hollander, D. J.; Pagani, M.

    2014-12-01

    Mesophilic marine archaea and bacteria are known to substantially contribute to the oceanic microbial biomass and play critical roles in global carbon, nitrogen and nutrient cycles. The Orca Basin, a 2400 meter deep bathymetric depression on the continental slope of the north-central Gulf of Mexico, is an ideal environment to examine how redox-dependent biochemical processes control the input and cycling of bacterial and archaea-derived lipid compounds from formation in near-surface water, through secondary recycling processes operating at the redox-transition in the water column, to sedimentary diagenetic processes operating in oxic to anoxic zones within the basin. The lowermost 180 meters of the Orca Basin is characterized by an anoxic, hypersaline brine that is separated from the overlying oxic seawater by a well-defined redox sequence associated with a systematic increasing in salinity from 35 - 250‰. While surface water conditions are viewed as normal marine with a seasonally productive water column, the sub-oxic to anoxic transition zones within the deep-water column and the sediment spans over 200 m allowing the unique opportunity for discrete sampling of resident organisms and lipids. Here we present 16s rRNA sequence data of Bacteria and Archaea collected parallel to GDGT lipid profiles and in situ environmental measurements from the sediment and overlying water column in the intermediate zone of the basin, where movements of chemical transition zones are preserved. We evaluated GDGTs and corresponding taxa across the surface water, chlorophyll maximum, thermocline, and the deep redox boundary, including oxygenation, denitrification, manganese, iron and sulfate reduction zones, to determine if GDGTs are being produced under these conditions and how surface-derived GDGT lipids and the TEX86 signal may be altered. The results have implications for the application of the TEX86 paleotemperature proxy.

  12. Characterization of microbial associations with methanotrophic archaea and sulfate-reducing bacteria through statistical comparison of nested Magneto-FISH enrichments

    Directory of Open Access Journals (Sweden)

    Elizabeth Trembath-Reichert

    2016-04-01

    Full Text Available Methane seep systems along continental margins host diverse and dynamic microbial assemblages, sustained in large part through the microbially mediated process of sulfate-coupled Anaerobic Oxidation of Methane (AOM. This methanotrophic metabolism has been linked to consortia of anaerobic methane-oxidizing archaea (ANME and sulfate-reducing bacteria (SRB. These two groups are the focus of numerous studies; however, less is known about the wide diversity of other seep associated microorganisms. We selected a hierarchical set of FISH probes targeting a range of Deltaproteobacteria diversity. Using the Magneto-FISH enrichment technique, we then magnetically captured CARD-FISH hybridized cells and their physically associated microorganisms from a methane seep sediment incubation. DNA from nested Magneto-FISH experiments was analyzed using Illumina tag 16S rRNA gene sequencing (iTag. Enrichment success and potential bias with iTag was evaluated in the context of full-length 16S rRNA gene clone libraries, CARD-FISH, functional gene clone libraries, and iTag mock communities. We determined commonly used Earth Microbiome Project (EMP iTAG primers introduced bias in some common methane seep microbial taxa that reduced the ability to directly compare OTU relative abundances within a sample, but comparison of relative abundances between samples (in nearly all cases and whole community-based analyses were robust. The iTag dataset was subjected to statistical co-occurrence measures of the most abundant OTUs to determine which taxa in this dataset were most correlated across all samples. Many non-canonical microbial partnerships were statistically significant in our co-occurrence network analysis, most of which were not recovered with conventional clone library sequencing, demonstrating the utility of combining Magneto-FISH and iTag sequencing methods for hypothesis generation of associations within complex microbial communities. Network analysis pointed to

  13. Characterization of microbial associations with methanotrophic archaea and sulfate-reducing bacteria through statistical comparison of nested Magneto-FISH enrichments.

    Science.gov (United States)

    Trembath-Reichert, Elizabeth; Case, David H; Orphan, Victoria J

    2016-01-01

    Methane seep systems along continental margins host diverse and dynamic microbial assemblages, sustained in large part through the microbially mediated process of sulfate-coupled Anaerobic Oxidation of Methane (AOM). This methanotrophic metabolism has been linked to consortia of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria (SRB). These two groups are the focus of numerous studies; however, less is known about the wide diversity of other seep associated microorganisms. We selected a hierarchical set of FISH probes targeting a range of Deltaproteobacteria diversity. Using the Magneto-FISH enrichment technique, we then magnetically captured CARD-FISH hybridized cells and their physically associated microorganisms from a methane seep sediment incubation. DNA from nested Magneto-FISH experiments was analyzed using Illumina tag 16S rRNA gene sequencing (iTag). Enrichment success and potential bias with iTag was evaluated in the context of full-length 16S rRNA gene clone libraries, CARD-FISH, functional gene clone libraries, and iTag mock communities. We determined commonly used Earth Microbiome Project (EMP) iTAG primers introduced bias in some common methane seep microbial taxa that reduced the ability to directly compare OTU relative abundances within a sample, but comparison of relative abundances between samples (in nearly all cases) and whole community-based analyses were robust. The iTag dataset was subjected to statistical co-occurrence measures of the most abundant OTUs to determine which taxa in this dataset were most correlated across all samples. Many non-canonical microbial partnerships were statistically significant in our co-occurrence network analysis, most of which were not recovered with conventional clone library sequencing, demonstrating the utility of combining Magneto-FISH and iTag sequencing methods for hypothesis generation of associations within complex microbial communities. Network analysis pointed to many co

  14. Ammonia-Oxidizing Archaea Show More Distinct Biogeographic Distribution Patterns than Ammonia-Oxidizing Bacteria across the Black Soil Zone of Northeast China.

    Science.gov (United States)

    Liu, Junjie; Yu, Zhenhua; Yao, Qin; Sui, Yueyu; Shi, Yu; Chu, Haiyan; Tang, Caixian; Franks, Ashley E; Jin, Jian; Liu, Xiaobing; Wang, Guanghua

    2018-01-01

    Black soils (Mollisols) of northeast China are highly productive and agriculturally important for food production. Ammonia-oxidizing microbes play an important role in N cycling in the black soils. However, the information related to the composition and distribution of ammonia-oxidizing microbes in the black soils has not yet been addressed. In this study, we used the amoA gene to quantify the abundance and community composition of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) across the black soil zone. The amoA abundance of AOA was remarkably larger than that of AOB, with ratios of AOA/AOB in the range from 3.1 to 91.0 across all soil samples. The abundance of AOA amoA was positively correlated with total soil C content ( p 0.05). In contrast, the abundance of AOB amoA positively correlated with soil pH ( p = 0.009) but not with total soil C. Alpha diversity of AOA did not correlate with any soil parameter, however, alpha diversity of AOB was affected by multiple soil factors, such as soil pH, total P, N, and C, available K content, and soil water content. Canonical correspondence analysis indicated that the AOA community was mainly affected by the sampling latitude, followed by soil pH, total P and C; while the AOB community was mainly determined by soil pH, as well as total P, C and N, water content, and sampling latitude, which highlighted that the AOA community was more geographically distributed in the black soil zone of northeast China than AOB community. In addition, the pairwise analyses showed that the potential nitrification rate (PNR) was not correlated with alpha diversity but weakly positively with the abundance of the AOA community ( p = 0.048), whereas PNR significantly correlated positively with the richness ( p = 0.003), diversity ( p = 0.001) and abundance ( p < 0.001) of the AOB community, which suggested that AOB community might make a greater contribution to nitrification than AOA community in the black soils when

  15. Fibrillarin from Archaea to human

    Czech Academy of Sciences Publication Activity Database

    Rodriguez-Corona, U.; Sobol, Margaryta; Rodriguez-Zapata, L.C.; Hozák, Pavel; Castano, E.

    2015-01-01

    Roč. 107, č. 6 (2015), s. 159-174 ISSN 0248-4900 Institutional support: RVO:68378050 Keywords : Cancer * Methylation * p53 * Ribosomal biogenesis * RNA processing Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.552, year: 2015

  16. Solution Structure of Archaeoglobus fulgidis Peptidyl-tRNA Hydrolase(Pth2) Provides Evidence for an Extensive Conserved Family of Pth2 Enzymes in Archaea, Bacteria and Eukaryotes.

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Robert; Mirkovic, Nebojsa; Goldsmith-Fischman, Sharon; Acton, Thomas; Chiang, Yiwen; Huang, Yuanpeng; Ma, LiChung; Rajan, Paranji K.; Cort, John R.; Kennedy, Michael A.; Liu, Jinfeng; Rost, Burkhard; Honig, Barry; Murray, Diana; Montelione, Gaetano

    2005-11-01

    The solution structure of protein AF2095 from the thermophilic archaea Archaeglobus fulgidis, a 123-residue (13.6 kDa) protein, has been determined by NMR methods. The structure of AF2095 is comprised of four a-helices and a mixed b-sheet consisting of four parallel and anti-parallel b-strands, where the a-helices sandwich the b-sheet. Sequence and structural comparison of AF2095 with proteins from Homo sapiens, Methanocaldococcus jannaschii and Sulfolobus solfataricus, reveals that AF2095 is a peptidyl-tRNA hydrolase (Pth2). This structural comparison also identifies putative catalytic residues and a tRNA interaction region for AF2095. The structure of AF2095 is also similar to the structure of protein TA0108 from archaea Thermoplasma acidophilum, which is deposited in the Protein Database but not functionally annotated. The NMR structure of AF2095 has been further leveraged to obtain good quality structural models for 55 other proteins. Although earlier studies have proposed that the Pth2 protein family is restricted to archeal and eukaryotic organisms, the similarity of the AF2095 structure to human Pth2, the conservation of key active-site residues, and the good quality of the resulting homology models demonstrate a large family of homologous Pth2 proteins that are conserved in eukaryotic, archaeal and bacterial organisms, providing novel insights in the evolution of the Pth and Pth2 enzyme families.

  17. Conditions for gene disruption by homologous recombination of exogenous DNA into the Sulfolobus solfataricus genome

    NARCIS (Netherlands)

    Albers, Sonja-Verena; Driessen, Arnold J.M.

    2008-01-01

    The construction of directed gene deletion mutants is an essential tool in molecular biology that allows functional studies on the role of genes in their natural environment. For hyperthermophilic archaea, it has been difficult to obtain a reliable system to construct such mutants. However, during

  18. Conditions for gene disruption by homologous recombination of exogenous DNA into the Sulfolobus solfataricus genome

    OpenAIRE

    Albers, Sonja-Verena; Driessen, Arnold J. M.

    2008-01-01

    The construction of directed gene deletion mutants is an essential tool in molecular biology that allows functional studies on the role of genes in their natural environment. For hyperthermophilic archaea, it has been difficult to obtain a reliable system to construct such mutants. However, during the past years, systems have been developed for Thermococcus kodakarensis and two Sulfolobus species, S. ac...

  19. Survivability and growth kinetics of methanogenic archaea at various pHs and pressures: Implications for deep subsurface life on Mars

    Science.gov (United States)

    Sinha, Navita; Nepal, Sudip; Kral, Timothy; Kumar, Pradeep

    2017-02-01

    Life as we know it requires liquid water and sufficient liquid water is highly unlikely on the surface of present-day Mars. However, according to thermal models there is a possibility of liquid water in the deep subsurface of Mars. Thus, the martian subsurface, where the pressure and temperature is higher, could potentially provide a hospitable environment for a biosphere. Also, methane has been detected in the Mars' atmosphere. Analogous to Earth's atmospheric methane, martian methane could also be biological in origin. The carbon and energy sources for methanogenesis in the subsurface of Mars could be available by downwelling of atmospheric CO2 into the regolith and water-rock reactions such as serpentinization, respectively. Corresponding analogs of the martian subsurface on Earth might be the active sites of serpentinization at depths where methanogenic thermophilic archaea are the dominant species. Methanogens residing in Earth's hydrothermal environments are usually exposed to a variety of physiological stresses including a wide range of pressures, temperatures, and pHs. Martian geochemical models imply that the pH of probable groundwater varies from 4.96 to 9.13. In this work, we used the thermophilic methanogen, Methanothermobacter wolfeii, which grows optimally at 55oC. Therefore, a temperature of 55oC was chosen for these experiments, possibly simulating Mars' subsurface temperature. A martian geophysical model suggests depth and pressure corresponding to a temperature of 55 °C would be between 1-30 km and 100-3,000 atm respectively. Here, we have simulated Mars deep subsurface pH, pressure, and temperature conditions and have investigated the survivability, growth rate, and morphology of M. wolfeii after exposure to a wide range of pH 5-9) and pressure (1-1200 atm) at a temperature of 55 °C. Interestingly, in this study we have found that M. wolfeii was able to survive at all the pressures and pHs tested at 55 °C. In order to understand the effect of

  20. Effects of inorganic electron acceptors on methanogenesis and methanotrophy and on the community structure of bacteria and archaea in sediments of a boreal lake

    Science.gov (United States)

    Rissanen, Antti J.; Karvinen, Anu; Nykänen, Hannu; Peura, Sari; Tiirola, Marja; Mäki, Anita; Kankaala, Paula

    2016-04-01

    occurred. Besides decreasing the availability of methanogenic substrates, the Mn4+/Fe3+ - induced changes in the bacterial community also probably decreased the H2:acetate - ratio in the substrate pool. This led to increase in the relative activity (mRNA level) of some operational taxonomic units assigned to aceticlastic Methanosaetaceae and decrease in the relative activity of hydrogenotrophic Methanoregulaceae in the sediment. CH4 oxidation (0.02 - 0.30 nmol gdw-1d-1 in anaerobic and 18 - 73 nmol gdw-1d-1in aerobic treatments) took place without EA additions and was enhanced only by O2. This suggests decoupling of the process from the reduction of other inorganic EAs. The results also indicate that Fe3+/Mn4+ - reduction did not increase CH4 oxidation via increased availability of SO42- by cryptic sulfur cycle or via increased availability of organic EAs. Furthermore, ANME - archaea were only ≤ 3% of sediment archaeal community and their relative activity was decreased during incubations. Thus, EA driving CH4 oxidation in the anoxic sediments of the lake remains unknown or the process was methanogen-driven via trace methane oxidation.

  1. Effect of pH buffering capacity and sources of dietary sulfur on rumen fermentation, sulfide production, methane production, sulfate reducing bacteria, and total Archaea in in vitro rumen cultures.

    Science.gov (United States)

    Wu, Hao; Meng, Qingxiang; Yu, Zhongtang

    2015-06-01

    The effects of three types of dietary sulfur on in vitro fermentation characteristics, sulfide production, methane production, and microbial populations at two different buffer capacities were examined using in vitro rumen cultures. Addition of dry distilled grain with soluble (DDGS) generally decreased total gas production, degradation of dry matter and neutral detergent fiber, and concentration of total volatile fatty acids, while increasing ammonia concentration. High buffering capacity alleviated these adverse effects on fermentation. Increased sulfur content resulted in decreased methane emission, but total Archaea population was not changed significantly. The population of sulfate reducing bacteria was increased in a sulfur type-dependent manner. These results suggest that types of dietary sulfur and buffering capacity can affect rumen fermentation and sulfide production. Diet buffering capacity, and probably alkalinity, may be increased to alleviate some of the adverse effects associated with feeding DDGS at high levels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Transfer of Natrialba asiatica B1T to Natrialba taiwanensis sp. nov. and description of Natrialba aegyptiaca sp. nov., a novel extremely halophilic, aerobic, non-pigmented member of the Archaea from Egypt that produces extracellular poly(glutamic acid).

    Science.gov (United States)

    Hezayen, F F; Rehm, B H; Tindall, B J; Steinbüchel, A

    2001-05-01

    A novel extremely halophilic member of the Archaea, strain 40T, was isolated from Egypt (Aswan). This isolate requires at least 1.6 M sodium chloride for growth and exhibits optimal growth between 37 and 42 degrees C. Determination of the entire 16S rRNA gene sequence revealed the highest similarity to the type strain of Natrialba asiatica (> 99%). Polar lipid analysis indicated that strain 40T and Natrialba asiatica have essentially identical compositions, indicating that the former is a member of genus Natrialba. However, physiological and biochemical data provided evidence that Natrialba asiatica strains B1T and 172P1T, as well as strain 40T, are sufficiently different to be divided in three different species. The G+C content of strain 40T was 61.5+/-0.6 mol%. In addition, DNA-DNA hybridization data supported the placement of the isolate in a new species in the genus Natrialba, Natrialba aegyptiaca sp. nov., and indicated that Natrialba asiatica strain B1T should also be placed in a separate species, Natrialba taiwanensis sp. nov. Morphological studies of strain 40T indicated clearly that this isolate appears in three completely different cell shapes (cocci, rods, tetrads) under different conditions of growth, including different sodium chloride concentrations and different growth temperatures. Another interesting property of strain 40T is the ability to produce an extracellular polymer, which was found to be composed predominantly of glutamic acid (85% w/w), representing poly(glutamic acid), carbohydrates (12.5% w/w) and unidentified compounds (2.5% w/w). Among the Archaea, production of an extracellular polysaccharide has been described for some members of the genera Haloferax and Haloarcula.

  3. Community Structure of Denitrifiers, Bacteria, and Archaea along Redox Gradients in Pacific Northwest Marine Sediments by Terminal Restriction Fragment Length Polymorphism Analysis of Amplified Nitrite Reductase (nirS) and 16S rRNA Genes

    Science.gov (United States)

    Braker, Gesche; Ayala-del-Río, Héctor L.; Devol, Allan H.; Fesefeldt, Andreas; Tiedje, James M.

    2001-01-01

    Steep vertical gradients of oxidants (O2 and NO3−) in Puget Sound and Washington continental margin sediments indicate that aerobic respiration and denitrification occur within the top few millimeters to centimeters. To systematically explore the underlying communities of denitrifiers, Bacteria, and Archaea along redox gradients at distant geographic locations, nitrite reductase (nirS) genes and bacterial and archaeal 16S rRNA genes (rDNAs) were PCR amplified and analyzed by terminal restriction fragment length polymorphism (T-RFLP) analysis. The suitablility of T-RFLP analysis for investigating communities of nirS-containing denitrifiers was established by the correspondence of dominant terminal restriction fragments (T-RFs) of nirS to computer-simulated T-RFs of nirS clones. These clones belonged to clusters II, III, and IV from the same cores and were analyzed in a previous study (G. Braker, J. Zhou, L. Wu, A. H. Devol, and J. M. Tiedje, Appl. Environ. Microbiol. 66:2096–2104, 2000). T-RFLP analysis of nirS and bacterial rDNA revealed a high level of functional and phylogenetic diversity, whereas the level of diversity of Archaea was lower. A comparison of T-RFLPs based on the presence or absence of T-RFs and correspondence analysis based on the frequencies and heights of T-RFs allowed us to group sediment samples according to the sampling location and thus clearly distinguish Puget Sound and the Washington margin populations. However, changes in community structure within sediment core sections during the transition from aerobic to anaerobic conditions were minor. Thus, within the top layers of marine sediments, redox gradients seem to result from the differential metabolic activities of populations of similar communities, probably through mixing by marine invertebrates rather than from the development of distinct communities. PMID:11282647

  4. Effects of Mars Regolith Analogs, UVC radiation, Temperature, Pressure, and pH on the Growth and Survivability of Methanogenic Archaea and Stable Carbon Isotope Fractionation: Implications for Surface and Subsurface Life on Mars

    Science.gov (United States)

    Sinha, Navita

    Mars is one of the suitable bodies in our solar system that can accommodate extraterrestrial life. The detection of plumes of methane in the Martian atmosphere, geochemical evidence, indication of flow of intermittent liquid water on the Martian surface, and geomorphologies of Mars have bolstered the plausibility of finding extant or evidence of extinct life on its surface and/or subsurface. However, contemporary Mars has been considered as an inhospitable planet for several reasons, such as low atmospheric surface pressure, low surface temperature, and intense DNA damaging radiation. Despite the hostile conditions of Mars, a few strains of methanogenic archaea have shown survivability in limited surface and subsurface conditions of Mars. Methanogens, which are chemolithoautotrophic non-photosynthetic anaerobic archaea, have been considered ideal models for possible Martian life forms for a long time. The search for biosignatures in the Martian atmosphere and possibility of life on the Martian surface under UVC radiation and deep subsurface under high pressure, temperature, and various pHs are the motivations of this research. Analogous to Earth, Martian atmospheric methane could be biological in origin. Chapter 1 provides relevant information about Mars' habitability, methane on Mars, and different strains of methanogens used in this study. Chapter 2 describes the interpretation of the carbon isotopic data of biogenic methane produced by methanogens grown on various Mars analogs and the results provide clues to determine ambiguous sources of methane on Mars. Chapter 3 illustrates the sensitivity of hydrated and desiccated cultures of halophilic and non-halophilic methanogens to DNA-damaging ultraviolet radiations, and the results imply that UVC radiation may not be an enormous constraint for methanogenic life forms on the surface of Mars. Chapters 4, 5, and 6 discuss the data for the survivability, growth, and morphology of methanogens in presumed deep subsurface

  5. Remarkable morphological diversity of viruses and virus-like particles in hot terrestrial environments.

    Science.gov (United States)

    Rachel, R; Bettstetter, M; Hedlund, B P; Häring, M; Kessler, A; Stetter, K O; Prangishvili, D

    2002-12-01

    Electron microscopic studies of the viruses in two hot springs (85 degrees C, pH 1.5-2.0, and 75-93 degrees C, pH 6.5) in Yellowstone National Park revealed particles with twelve different morphotypes. This diversity encompassed known viruses of hyperthermophilic archaea, filamentous Lipothrixviridae, rod-shaped Rudiviridae, and spindle-shaped Fuselloviridae, and novel morphotypes previously not observed in nature. Two virus types resembled head-and-tail bacteriophages from the families Siphoviridae and Podoviridae, and constituted the first observation of these viruses in a hydrothermal environment. Viral hosts in the acidic spring were members of the hyperthermophilic archaeal genus Acidianus.

  6. One-dimensional TRFLP-SSCP is an effective DNA fingerprinting strategy for soil Archaea that is able to simultaneously differentiate broad taxonomic clades based on terminal fragment length polymorphisms and closely related sequences based on single stranded conformation polymorphisms.

    Science.gov (United States)

    Swanson, Colby A; Sliwinski, Marek K

    2013-09-01

    DNA fingerprinting methods provide a means to rapidly compare microbial assemblages from environmental samples without the need to first cultivate species in the laboratory. The profiles generated by these techniques are able to identify statistically significant temporal and spatial patterns, correlations to environmental gradients, and biological variability to estimate the number of replicates for clone libraries or next generation sequencing (NGS) surveys. Here we describe an improved DNA fingerprinting technique that combines terminal restriction fragment length polymorphisms (TRFLP) and single stranded conformation polymorphisms (SSCP) so that both can be used to profile a sample simultaneously rather than requiring two sequential steps as in traditional two-dimensional (2-D) gel electrophoresis. For the purpose of profiling Archaeal 16S rRNA genes from soil, the dynamic range of this combined 1-D TRFLP-SSCP approach was superior to TRFLP and SSCP. 1-D TRFLP-SSCP was able to distinguish broad taxonomic clades with genetic distances greater than 10%, such as Euryarchaeota and the Thaumarchaeal clades g_Ca. Nitrososphaera (formerly 1.1b) and o_NRP-J (formerly 1.1c) better than SSCP. In addition, 1-D TRFLP-SSCP was able to simultaneously distinguish closely related clades within a genus such as s_SCA1145 and s_SCA1170 better than TRFLP. We also tested the utility of 1-D TRFLP-SSCP fingerprinting of environmental assemblages by comparing this method to the generation of a 16S rRNA clone library of soil Archaea from a restored Tallgrass prairie. This study shows 1-D TRFLP-SSCP fingerprinting provides a rapid and phylogenetically informative screen of Archaeal 16S rRNA genes in soil samples. © 2013.

  7. Dynamic fluorescence studies of beta-glycosidase mutants from Sulfolobus solfataricus: effects of single mutations on protein thermostability.

    Science.gov (United States)

    Bismuto, Ettore; Febbraio, Ferdinando; Limongelli, Simona; Briante, Raffaella; Nucci, Roberto

    2003-04-01

    Multiple sequence alignment on 73 proteins belonging to glycosyl hydrolase family 1 reveals the occurrence of a segment (83-124) in the enzyme sequences from hyperthermophilic archaea bacteria, which is absent in all the mesophilic members of the family. The alignment of the known three-dimensional structures of hyperthermophilic glycosidases with the known ones from mesophilic organisms shows a similar spatial organizations of beta-glycosidases except for this sequence segment whose structure is located on the external surface of each of four identical subunits, where it overlaps two alpha-helices. Site-directed mutagenesis substituting N97 or S101 with a cysteine residue in the sequence of beta-glycosidase from hyperthermophilic archaeon Sulfolobus solfataricus caused some changes in the structural and dynamic properties as observed by circular dichroism in far- and near-UV light, as well as by frequency domain fluorometry, with a simultaneous loss of thermostability. The results led us to hypothesize an important role of the sequence segment present only in hyperthermophilic beta-glycosidases, in the thermal adaptation of archaea beta-glycosidases. The thermostabilization mechanism could occur as a consequence of numerous favorable ionic interactions of the 83-124 sequence with the other part of protein matrix that becomes more rigid and less accessible to the insult of thermal-activated solvent molecules. Copyright 2003 Wiley-Liss, Inc.

  8. Evolutionary genomics of archaeal viruses: unique viral genomes in the third domain of life

    DEFF Research Database (Denmark)

    Prangishvili, D.; Garrett, R. A.; Koonin, E.

    2006-01-01

    In terms of virion morphology, the known viruses of archaea fall into two distinct classes: viruses of mesophilic and moderately thermophilic Eueryarchaeota closely resemble head-and-tail bacteriophages whereas viruses of hyperthermophilic Crenarchaeota show a variety of unique morphotypes...... of bacteriophages. The proteins encoded by the genes belonging to this pool include predicted transcription regulators, ATPases implicated in viral DNA replication and packaging, enzymes of DNA precursor metabolism, RNA modification enzymes, and glycosylases. In addition, each of the crenarchaeal viruses encodes...

  9. Precambrian Surface Temperatures and Molecular Phylogeny

    Science.gov (United States)

    Schwartzman, David; Lineweaver, Charles H.

    2004-06-01

    The timing of emergence of major organismal groups is consistent with the climatic temperature being equal to their upper temperature limit of growth (T_{max}), implying a temperature constraint on the evolution of each group, with the climatic temperature inferred from the oxygen isotope record of marine cherts. Support for this constraint comes from the correlation of T_{max} with the rRNA molecular phylogenetic distance from the last common ancestor (LCA) for both thermophilic Archaea and Bacteria. In particular, this correlation for hyperthermophilic Archaea suggests a climatic temperature of about 120°C at the time of the LCA, likely in the Hadean.

  10. Methanogenic archaea isolated from Taiwan's Chelungpu fault.

    Science.gov (United States)

    Wu, Sue-Yao; Lai, Mei-Chin

    2011-02-01

    Terrestrial rocks, petroleum reservoirs, faults, coal seams, and subseafloor gas hydrates contain an abundance of diverse methanoarchaea. However, reports on the isolation, purification, and characterization of methanoarchaea in the subsurface environment are rare. Currently, no studies investigating methanoarchaea within fault environments exist. In this report, we succeeded in obtaining two new methanogen isolates, St545Mb(T) of newly proposed species Methanolobus chelungpuianus and Methanobacterium palustre FG694aF, from the Chelungpu fault, which is the fault that caused a devastating earthquake in central Taiwan in 1999. Strain FG694aF was isolated from a fault gouge sample obtained at 694 m below land surface (mbls) and is an autotrophic, mesophilic, nonmotile, thin, filamentous-rod-shaped organism capable of using H(2)-CO(2) and formate as substrates for methanogenesis. The morphological, biochemical, and physiological characteristics and 16S rRNA gene sequence analysis revealed that this isolate belongs to Methanobacterium palustre. The mesophilic strain St545Mb(T), isolated from a sandstone sample at 545 mbls, is a nonmotile, irregular, coccoid organism that uses methanol and trimethylamine as substrates for methanogenesis. The 16S rRNA gene sequence of strain St545Mb(T) was 99.0% similar to that of Methanolobus psychrophilus strain R15 and was 96 to 97.5% similar to the those of other Methanolobus species. However, the optimal growth temperature and total cell protein profile of strain St545Mb(T) were different from those of M. psychrophilus strain R15, and whole-genome DNA-DNA hybridization revealed less than 20% relatedness between these two strains. On the basis of these observations, we propose that strain St545Mb(T) (DSM 19953(T); BCRC AR10030; JCM 15159) be named Methanolobus chelungpuianus sp. nov. Moreover, the environmental DNA database survey indicates that both Methanolobus chelungpuianus and Methanobacterium palustre are widespread in the subsurface environment.

  11. Archaea: evolution, physiology, and molecular biology

    National Research Council Canada - National Science Library

    Garrett, Roger A; Klenk, Hans-Peter

    2007-01-01

    ...: mechanisms of rearrangement and change Kim Brügger, Xu Peng and Roger A. Garrett vii xi 1 17 29 39 51 59 75 95 9 Specialist Article Plasmids Georg Lipps 10 Specialist Article Integration mech...

  12. Serpins in unicellular Eukarya, Archaea, and Bacteria:

    DEFF Research Database (Denmark)

    Roberts, T.H.; Hejgaard, Jørn; Saunders, N.F.W

    2004-01-01

    , where serpins were found in only 4 of 13 genera, and Bacteria, in only 9 of 56 genera. The serpins from unicellular organisms appear to be phylogenetically distinct from all of the clades of higher eukaryotic serpins. Most of the sequences from unicellular organisms have the characteristics...

  13. Genome stability: recent insights in the topoisomerase reverse gyrase and thermophilic DNA alkyltransferase.

    Science.gov (United States)

    Vettone, Antonella; Perugino, Giuseppe; Rossi, Mosè; Valenti, Anna; Ciaramella, Maria

    2014-09-01

    Repair and defence of genome integrity from endogenous and environmental hazard is a primary need for all organisms. Natural selection has driven the evolution of multiple cell pathways to deal with different DNA damaging agents. Failure of such processes can hamper cell functions and induce inheritable mutations, which in humans may cause cancerogenicity or certain genetic syndromes, and ultimately cell death. A special case is that of hyperthermophilic bacteria and archaea, flourishing at temperatures higher than 80 °C, conditions that favor genome instability and thus call for specific, highly efficient or peculiar mechanisms to keep their genome intact and functional. Over the last few years, numerous studies have been performed on the activity, function, regulation, physical and functional interaction of enzymes and proteins from hyperthermophilic microorganisms that are able to bind, repair, bypass damaged DNA, or modify its structure or conformation. The present review is focused on two enzymes that act on DNA catalyzing unique reactions: reverse gyrase and DNA alkyltransferase. Although both enzymes belong to evolutionary highly conserved protein families present in organisms of the three domains (Eucarya, Bacteria and Archaea), recently characterized members from hyperthermophilic archaea show both common and peculiar features.

  14. The evolution of lipids

    Science.gov (United States)

    Itoh, Y. H.; Sugai, A.; Uda, I.; Itoh, T.

    2001-01-01

    Living organisms on the Earth which are divided into three major domains - Archaea, Bacteria, and Eucarya, probably came from a common ancestral cell. Because there are many thermophilic microorganisms near the root of the universal phylogenetic tree, the common ancestral cell should be considered to be a thermophilic microorganism. The existence of a cell is necessary for the living organisms; the cell membrane is the essential structural component of a cell, so its amphiphilic property is vital for the molecule of lipids for cell membranes. Tetraether type glycerophospholipids with C 40 isoprenoid chains are major membrane lipids widely distributed in archaeal cells. Cyclization number of C 40 isoprenoid chains in thermophilic archaea influences the fluidity of lipids whereas the number of carbons and degree of unsaturation in fatty acids do so in bacteria and eucarya. In addition to the cyclization of the tetraether lipids, covalent bonding of two C 40 isoprenoid chains was found in hyperthermophiles. These characteristic structures of the lipids seem to contribute to their fundamental physiological roles in hyperthermophiles. Stereochemical differences between G-1-P archaeal lipids and G-3-P bacterial and eucaryal lipids might have occured by the function of some proteins long after the first cell was developed by the reactions of small organic molecules. We propose that the structure of lipids of the common ancestral cell may have been similar to those of hyperthermophilic archaea.

  15. The Effects of Temperature and Growth Phase on the Lipidomes of Sulfolobus islandicus and Sulfolobus tokodaii

    DEFF Research Database (Denmark)

    Jensen, Sara Munk; Neesgaard, Vinnie Lund; Skjoldbjerg, Sandra Landbo Nedergaard

    2015-01-01

    at three different temperatures, with samples withdrawn during lag, exponential, and stationary phases. Three abundant tetraether lipid classes and one diether lipid class were monitored. Beside the expected increase in the number of cyclopentane moieties with higher temperature in both archaea, we......The functionality of the plasma membrane is essential for all organisms. Adaption to high growth temperatures imposes challenges and Bacteria, Eukarya, and Archaea have developed several mechanisms to cope with these. Hyperthermophilic archaea have earlier been shown to synthesize tetraether...... membrane lipids with an increased number of cyclopentane moieties at higher growth temperatures. Here we used shotgun lipidomics to study this effect as well as the influence of growth phase on the lipidomes of Sulfolobus islandicus and Sulfolobus tokodaii for the first time. Both species were cultivated...

  16. Looking for the most ``primitive'' organism(s) on Earth today: the state of the art

    Science.gov (United States)

    Forterre, Patrick

    1995-02-01

    Molecular phylogenetic studies have revealed a tripartite division of the living world into two procaryotic groups, Bacteria and Archaea, and one eucaryotic group, Eucarya. Which group is the most "primitive"? Which groups are sister? The answer to these questions would help to delineate the characters of the last common ancestor to all living beings, as a first step to reconstruct the earliest periods of biological evolution on Earth. The current "Procaryotic dogma" claims that procaryotes are primitive. Since the ancestor of Archaea was most probably a hyperthermophile, and since bacteria too might have originated from hyperthermophiles, the procaryotic dogma has been recently connected to the hot origin of life hypothesis. However, the notion that present-day hyperthermophiles are primitive has been challenged by recent findings, in these unique microorganisms, of very elaborate adaptative devices for life at high temperature. Accordingly, I discuss here alternative hypotheses that challenge the procaryotic dogma, such as the idea of a universal ancestor with molecular features in between those of eucaryotes and procaryotes, or the origin of procaryotes via thermophilic adaptation. Clearly, major evolutionary questions about early cellular evolution on Earth remain to be settled before we can speculate with confidence about which kinds of life might have appeared on other planets.

  17. Solution structure of an archaeal DNA binding protein with an eukaryotic zinc finger fold.

    Directory of Open Access Journals (Sweden)

    Florence Guillière

    Full Text Available While the basal transcription machinery in archaea is eukaryal-like, transcription factors in archaea and their viruses are usually related to bacterial transcription factors. Nevertheless, some of these organisms show predicted classical zinc fingers motifs of the C2H2 type, which are almost exclusively found in proteins of eukaryotes and most often associated with transcription regulators. In this work, we focused on the protein AFV1p06 from the hyperthermophilic archaeal virus AFV1. The sequence of the protein consists of the classical eukaryotic C2H2 motif with the fourth histidine coordinating zinc missing, as well as of N- and C-terminal extensions. We showed that the protein AFV1p06 binds zinc and solved its solution structure by NMR. AFV1p06 displays a zinc finger fold with a novel structure extension and disordered N- and C-termini. Structure calculations show that a glutamic acid residue that coordinates zinc replaces the fourth histidine of the C2H2 motif. Electromobility gel shift assays indicate that the protein binds to DNA with different affinities depending on the DNA sequence. AFV1p06 is the first experimentally characterised archaeal zinc finger protein with a DNA binding activity. The AFV1p06 protein family has homologues in diverse viruses of hyperthermophilic archaea. A phylogenetic analysis points out a common origin of archaeal and eukaryotic C2H2 zinc fingers.

  18. Evolution and thermodynamics of the slow unfolding of hyperstable monomeric proteins

    Directory of Open Access Journals (Sweden)

    Koga Yuichi

    2010-07-01

    Full Text Available Abstract Background The unfolding speed of some hyperthermophilic proteins is dramatically lower than that of their mesostable homologs. Ribonuclease HII from the hyperthermophilic archaeon Thermococcus kodakaraensis (Tk-RNase HII is stabilized by its remarkably slow unfolding rate, whereas RNase HI from the thermophilic bacterium Thermus thermophilus (Tt-RNase HI unfolds rapidly, comparable with to that of RNase HI from Escherichia coli (Ec-RNase HI. Results To clarify whether the difference in the unfolding rate is due to differences in the types of RNase H or differences in proteins from archaea and bacteria, we examined the equilibrium stability and unfolding reaction of RNases HII from the hyperthermophilic bacteria Thermotoga maritima (Tm-RNase HII and Aquifex aeolicus (Aa-RNase HII and RNase HI from the hyperthermophilic archaeon Sulfolobus tokodaii (Sto-RNase HI. These proteins from hyperthermophiles are more stable than Ec-RNase HI over all the temperature ranges examined. The observed unfolding speeds of all hyperstable proteins at the different denaturant concentrations studied are much lower than those of Ec-RNase HI, which is in accordance with the familiar slow unfolding of hyperstable proteins. However, the unfolding rate constants of these RNases H in water are dispersed, and the unfolding rate constant of thermophilic archaeal proteins is lower than that of thermophilic bacterial proteins. Conclusions These results suggest that the nature of slow unfolding of thermophilic proteins is determined by the evolutionary history of the organisms involved. The unfolding rate constants in water are related to the amount of buried hydrophobic residues in the tertiary structure.

  19. The biochemical diversity of life near and above 100°C in marine environments.

    Science.gov (United States)

    Adams, M W

    1998-12-01

    Hyperthermophilic micro-organisms grow at temperatures above 90 °C with a current upper limit of 113 °C. They are a recent discovery in the microbial world and have been isolated mainly from marine geothermal environments, which include both shallow and deep sea hydrothermal vents. By 16S rRNA analyses they are the most slowly evolving of all extant life forms, and all but two of the nearly 20 known genera are classified as Archaea (formerly Archaebacteria). Almost all hyperthermophiles are strict anaerobes. They include species of methanogens, iron-oxidizers and sulphate reducers, but the majority are obligate heterotrophs that depend upon the reduction of elemental sulphur (S°) to hydrogen sulphide for significant growth. The heterotrophs utilize proteinaceous materials as carbon and energy sources, although a few species are also saccharolytic. A scheme for electron flow during the oxidation of carbohydrates and peptides and the reduction of S° has been proposed. Two S°-reducing enzymes have been purified from the cytoplasm of one hyperthermophile (T(opt) 100 °C) that is able to grow either with and without S°. However, the mechanisms by which S° reduction is coupled to energy conservation in this organism and in obligate S°-reducing hyperthermophiles is not known. In the heterotrophs, sugar fermentation is achieved by a novel glycolytic pathway involving unusual ADP-dependent kinases and ATP synthetases, and novel oxidoreductases that are ferredoxin- rather than NAD(P)-linked. Similarly, peptide fermentation involves several unusual ferredoxin-linked oxidoreductases not found in mesophilic organisms. Several of these oxido-reductases contain tungsten, an element that is rarely used in biological systems. Tungsten is present in exceedingly low concentrations in normal sea water, but hydrothermal systems contain much higher tungsten concentrations, more than sufficient to support hyperthermophilic life. 1998 Society of Applied Microbiology.

  20. Sulfolobus Replication Factor C stimulates the activity of DNA Polymerase B1

    DEFF Research Database (Denmark)

    Xing, Xuanxuan; Zhang, Likui; Guo, Li

    2014-01-01

    the hyperthermophilic archaea of the genus Sulfolobus physically interacts with DNA polymerase B1 (PolB1) and enhances both the polymerase and 3'-5' exonuclease activities of PolB1 in an ATP-independent manner. Stimulation of the PolB1 activity by RFC is independent of the ability of RFC to bind DNA but is consistent...... with the ability of RFC to facilitate DNA binding by PolB1 through protein-protein interaction. These results suggest that Sulfolobus RFC may play a role in recruiting DNA polymerase for efficient primer extension, in addition to clamp loading, during DNA replication....

  1. Conditions for gene disruption by homologous recombination of exogenous DNA into the Sulfolobus solfataricus genome

    Directory of Open Access Journals (Sweden)

    Sonja-Verena Albers

    2008-01-01

    Full Text Available The construction of directed gene deletion mutants is an essential tool in molecular biology that allows functional studies on the role of genes in their natural environment. For hyperthermophilic archaea, it has been difficult to obtain a reliable system to construct such mutants. However, during the past years, systems have been developed for Thermococcus kodakarensis and two Sulfolobus species, S. acidocaldarius and derivatives of S. solfataricus 98/2. Here we describe an optimization of the method for integration of exogenous DNA into S. solfataricus PBL 2025, an S. solfataricus 98/2 derivative, based on lactose auxotrophy that now allows for routine gene inactivation.

  2. Conditions for gene disruption by homologous recombination of exogenous DNA into the Sulfolobus solfataricus genome.

    Science.gov (United States)

    Albers, Sonja-Verena; Driessen, Arnold J M

    2008-12-01

    The construction of directed gene deletion mutants is an essential tool in molecular biology that allows functional studies on the role of genes in their natural environment. For hyperthermophilic archaea, it has been difficult to obtain a reliable system to construct such mutants. However, during the past years, systems have been developed for Thermococcus kodakarensis and two Sulfolobus species, S. acidocaldarius and derivatives of S. solfataricus 98/2. Here we describe an optimization of the method for integration of exogenous DNA into S. solfataricus PBL 2025, an S. solfataricus 98/2 derivative, based on lactose auxotrophy that now allows for routine gene inactivation.

  3. An abyssal mobilome: viruses, plasmids and vesicles from deep-sea hydrothermal vents.

    Science.gov (United States)

    Lossouarn, Julien; Dupont, Samuel; Gorlas, Aurore; Mercier, Coraline; Bienvenu, Nadege; Marguet, Evelyne; Forterre, Patrick; Geslin, Claire

    2015-12-01

    Mobile genetic elements (MGEs) such as viruses, plasmids, vesicles, gene transfer agents (GTAs), transposons and transpovirions, which collectively represent the mobilome, interact with cellular organisms from all three domains of life, including those thriving in the most extreme environments. While efforts have been made to better understand deep-sea vent microbial ecology, our knowledge of the mobilome associated with prokaryotes inhabiting deep-sea hydrothermal vents remains limited. Here we focus on the abyssal mobilome by reviewing accumulating data on viruses, plasmids and vesicles associated with thermophilic and hyperthermophilic Bacteria and Archaea present in deep-sea hydrothermal vents. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  4. Archaeal diversity in Icelandic hot springs

    DEFF Research Database (Denmark)

    Kvist, Thomas; Ahring, Birgitte Kiær; Westermann, Peter

    2007-01-01

    Whole-cell density gradient extractions from three solfataras (pH 2.5) ranging in temperature from 81 to 90 degrees C and one neutral hot spring (81 degrees C, pH 7) from the thermal active area of Hveragerethi (Iceland) were analysed for genetic diversity and local geographical variation...... of Archaea by analysis of amplified 16S rRNA genes. In addition to the three solfataras and the neutral hot spring, 10 soil samples in transects of the soil adjacent to the solfataras were analysed using terminal restriction fragment length polymorphism (t-RFLP). The sequence data from the clone libraries...... enzymes AluI and BsuRI. The sequenced clones from this solfatara belonged to Sulfolobales, Thermoproteales or were most closest related to sequences from uncultured Archaea. Sequences related to group I.1b were not found in the neutral hot spring or the hyperthermophilic solfatara (90 degrees C)....

  5. Comparative analysis of uranium bioassociation with halophilic bacteria and archaea

    Science.gov (United States)

    Bader, Miriam; Müller, Katharina; Foerstendorf, Harald; Schmidt, Matthias; Simmons, Karen; Swanson, Juliet S.; Reed, Donald T.; Stumpf, Thorsten

    2018-01-01

    Rock salt represents a potential host rock formation for the final disposal of radioactive waste. The interactions between indigenous microorganisms and radionuclides, e.g. uranium, need to be investigated to better predict the influence of microorganisms on the safety assessment of the repository. Hence, the association process of uranium with two microorganisms isolated from rock salt was comparatively studied. Brachybacterium sp. G1, which was isolated from the German salt dome Gorleben, and Halobacterium noricense DSM15987T, were selected as examples of a moderately halophilic bacterium and an extremely halophilic archaeon, respectively. The microorganisms exhibited completely different association behaviors with uranium. While a pure biosorption process took place with Brachybacterium sp. G1 cells, a multistage association process occurred with the archaeon. In addition to batch experiments, in situ attenuated total reflection Fourier-transform infrared spectroscopy was applied to characterize the U(VI) interaction process. Biosorption was identified as the dominating process for Brachybacterium sp. G1 with this method. Carboxylic functionalities are the dominant interacting groups for the bacterium, whereas phosphoryl groups are also involved in U(VI) association by the archaeon H. noricense. PMID:29329319

  6. ORF Alignment: NC_003364 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available initiation factor IIB (TFIIB) [Pyrobaculum aerophilum ... str. IM2] ... Length = 52 ... Query: 2 ... TRKLIFELEEYACPACGAVNDVI...VDYERGQVICKSCGVVLKDGIADLGPEWR 53 ... TRKLIFELEEYACPACGAVNDVI...VDYERGQVICKSCGVVLKDGIADLGPEWR Sbjct: 1 ... TRKLIFELEEYACPACGAVNDVIVDYERGQVICKSCGVVLKDGIADLGPEWR 52

  7. Genetic and functional properties of uncultivated thermophilic crenarchaeotes from a subsurface gold mine as revealed by analysis of genome fragments.

    Science.gov (United States)

    Nunoura, Takuro; Hirayama, Hisako; Takami, Hideto; Oida, Hanako; Nishi, Shinro; Shimamura, Shigeru; Suzuki, Yohey; Inagaki, Fumio; Takai, Ken; Nealson, Kenneth H; Horikoshi, Koki

    2005-12-01

    Within a phylum Crenarchaeota, only some members of the hyperthermophilic class Thermoprotei, have been cultivated and characterized. In this study, we have constructed a metagenomic library from a microbial mat formation in a subsurface hot water stream of the Hishikari gold mine, Japan, and sequenced genome fragments of two different phylogroups of uncultivated thermophilic Crenarchaeota: (i) hot water crenarchaeotic group (HWCG) I (41.2 kb), and (ii) HWCG III (49.3 kb). The genome fragment of HWCG I contained a 16S rRNA gene, two tRNA genes and 35 genes encoding proteins but no 23S rRNA gene. Among the genes encoding proteins, several genes for putative aerobic-type carbon monoxide dehydrogenase represented a potential clue with regard to the yet unknown metabolism of HWCG I Archaea. The genome fragment of HWCG III contained a 16S/23S rRNA operon and 44 genes encoding proteins. In the 23S rRNA gene, we detected a homing-endonuclease encoding a group I intron similar to those detected in hyperthermophilic Crenarchaeota and Bacteria, as well as eukaryotic organelles. The reconstructed phylogenetic tree based on the 23S rRNA gene sequence reinforced the intermediate phylogenetic affiliation of HWCG III bridging the hyperthermophilic and non-thermophilic uncultivated Crenarchaeota.

  8. Extremely thermophilic microorganisms for biomass conversion: status and prospects.

    Science.gov (United States)

    Blumer-Schuette, Sara E; Kataeva, Irina; Westpheling, Janet; Adams, Michael Ww; Kelly, Robert M

    2008-06-01

    Many microorganisms that grow at elevated temperatures are able to utilize a variety of carbohydrates pertinent to the conversion of lignocellulosic biomass to bioenergy. The range of substrates utilized depends on growth temperature optimum and biotope. Hyperthermophilic marine archaea (T(opt)>or=80 degrees C) utilize alpha- and beta-linked glucans, such as starch, barley glucan, laminarin, and chitin, while hyperthermophilic marine bacteria (T(opt)>or=80 degrees C) utilize the same glucans as well as hemicellulose, such as xylans and mannans. However, none of these organisms are able to efficiently utilize crystalline cellulose. Among the thermophiles, this ability is limited to a few terrestrial bacteria with upper temperature limits for growth near 75 degrees C. Deconstruction of crystalline cellulose by these extreme thermophiles is achieved by 'free' primary cellulases, which are distinct from those typically associated with large multi-enzyme complexes known as cellulosomes. These primary cellulases also differ from the endoglucanases (referred to here as 'secondary cellulases') reported from marine hyperthermophiles that show only weak activity toward cellulose. Many extremely thermophilic enzymes implicated in the deconstruction of lignocellulose can be identified in genome sequences, and many more promising biocatalysts probably remain annotated as 'hypothetical proteins'. Characterization of these enzymes will require intensive effort but is likely to generate new opportunities for the use of renewable resources as biofuels.

  9. Complete Genome Sequence of the Hyperthermophilic Sulfate-Reducing Bacterium Thermodesulfobacterium geofontis OPF15T.

    Science.gov (United States)

    Elkins, James G; Hamilton-Brehm, Scott D; Lucas, Susan; Han, James; Lapidus, Alla; Cheng, Jan-Fang; Goodwin, Lynne A; Pitluck, Sam; Peters, Lin; Mikhailova, Natalia; Davenport, Karen W; Detter, John C; Han, Cliff S; Tapia, Roxanne; Land, Miriam L; Hauser, Loren; Kyrpides, Nikos C; Ivanova, Natalia N; Pagani, Ioanna; Bruce, David; Woyke, Tanja; Cottingham, Robert W

    2013-04-11

    Thermodesulfobacterium geofontis OPF15(T) (ATCC BAA-2454, JCM 18567) was isolated from Obsidian Pool, Yellowstone National Park, and grows optimally at 83°C. The 1.6-Mb genome sequence was finished at the Joint Genome Institute and has been deposited for future genomic studies pertaining to microbial processes and nutrient cycles in high-temperature environments.

  10. A GH57 4-alpha-glucanotransferase of hyperthermophilic origin with potential for alkyl glycoside production

    NARCIS (Netherlands)

    Paul, Catherine J.; Leemhuis, Hans; Dobruchowska, Justyna M.; Grey, Carl; Onnby, Linda; van Leeuwen, Sander S.; Dijkhuizen, Lubbert; Karlsson, Eva Nordberg

    4-alpha-Glucanotransferase (GTase) enzymes (EC 2.4.1.25) modulate the size of alpha-glucans by cleaving and reforming alpha-1,4 glycosidic bonds in alpha-glucans, an essential process in starch and glycogen metabolism in plants and microorganisms. The glycoside hydrolase family 57 enzyme (GTase57)

  11. Crystallization of [Fe4S3]-ferredoxin from the hyperthermophile archaeon pyrococcus furiosus

    DEFF Research Database (Denmark)

    Nielsen, Michael Ericsson Skovbo; Harris, Pernille; Christensen, Hans Erik Mølager

    2003-01-01

    Recombinant Pyrococcus furiosus ferredoxin with a [Fe3S4]-cluster was crystallized through steps of optimization and X-ray diffraction data were collected from several crystal forms. Flat plate-like crystals were grown by hanging-drop vapour diffusion. The precipitant used was 30% PEG 400; the p...

  12. DHAP-dependent aldolases from (hyper)thermophiles: biochemistry and applications

    NARCIS (Netherlands)

    Falcicchio, P.; Wolterink-van Loo, S.; Franssen, M.C.R.; Oost, van der J.

    2014-01-01

    Generating new carbon-carbon (C-C) bonds in an enantioselective way is one of the big challenges in organic synthesis. Aldolases are a natural tool for stereoselective C-C bond formation in a green and sustainable way. This review will focus on thermophilic aldolases in general and on

  13. Maillard reactions and increased enzyme inactivation during oligosaccharide synthesis by a hyperthermophilic glycosidase

    NARCIS (Netherlands)

    Bruins, M.E.; Hellemond, van E.W.; Janssen, A.E.M.; Boom, R.M.

    2003-01-01

    The thermostable Pyrococcus furiosus beta-glycosidase was used for oligosaccharide production from lactose in a kinetically controlled reaction. Our experiments showed that higher temperatures are beneficial for the absolute as well as relative oligosaccharide yield. However, at reaction

  14. Production of Recombinant and Tagged Proteins in the Hyperthermophilic Archaeon Sulfolobus solfataricus

    NARCIS (Netherlands)

    Albers, S.-V.; Jonuscheit, M.; Dinkelaker, S.; Urich, T.; Kletzin, A.; Tampé, R.; Driessen, A.J.M.; Schleper, C.

    Many systems are available for the production of recombinant proteins in bacterial and eukaryotic model organisms, which allow us to study proteins in their native hosts and to identify protein-protein interaction partners. In contrast, only a few transformation systems have been developed for

  15. Extensive Lysine Methylation in Hyperthermophilic Crenarchaea: Potential Implications for Protein Stability and Recombinant Enzymes

    Directory of Open Access Journals (Sweden)

    Catherine H. Botting

    2010-01-01

    Full Text Available In eukarya and bacteria, lysine methylation is relatively rare and is catalysed by sequence-specific lysine methyltransferases that typically have only a single-protein target. Using RNA polymerase purified from the thermophilic crenarchaeum Sulfolobus solfataricus, we identified 21 methyllysines distributed across 9 subunits of the enzyme. The modified lysines were predominantly in α-helices and showed no conserved sequence context. A limited survey of the Thermoproteus tenax proteome revealed widespread modification with 52 methyllysines in 30 different proteins. These observations suggest the presence of an unusual lysine methyltransferase with relaxed specificity in the crenarchaea. Since lysine methylation is known to enhance protein thermostability, this may be an adaptation to a thermophilic lifestyle. The implications of this modification for studies and applications of recombinant crenarchaeal enzymes are discussed.

  16. Hydrogen Production by a Hyperthermophilic Membrane-Bound Hydrogenase in Soluble Nanolipoprotein Particles

    Energy Technology Data Exchange (ETDEWEB)

    Baker, S E; Hopkins, R C; Blanchette, C; Walsworth, V; Sumbad, R; Fischer, N; Kuhn, E; Coleman, M; Chromy, B; Letant, S; Hoeprich, P; Adams, M W; Henderson, P T

    2008-10-22

    Hydrogenases constitute a promising class of enzymes for ex vivo hydrogen production. Implementation of such applications is currently hindered by oxygen sensitivity and, in the case of membrane-bound hydrogenases (MBH), poor water solubility. Nanolipoprotein particles (NLPs), formed from apolipoproteins and phospholipids, offer a novel means to incorporate MBH into in a well-defined water-soluble matrix that maintains the enzymatic activity and is amenable to incorporation into more complex architectures. We report the synthesis, hydrogen-evolving activity and physical characterization of the first MBH-NLP assembly. This may ultimately lead to the development of biomimetic hydrogen production devices.

  17. Hyperthermophilic Composting Accelerates the Removal of Antibiotic Resistance Genes and Mobile Genetic Elements in Sewage Sludge

    NARCIS (Netherlands)

    Liao, Hanpeng; Lu, Xiaomei; Rensing, Christopher; Friman, Ville Petri; Geisen, Stefan; Chen, Zhi; Yu, Zhen; Wei, Zhong; Zhou, Shungui; Zhu, Yongguan

    2018-01-01

    Composting is an efficient way to convert organic waste into fertilizers. However, waste materials often contain large amounts of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) that can reduce the efficacy of antibiotic treatments when transmitted to humans. Because

  18. Improvement of the catalytic efficiency of a hyperthermophilic xylanase from Bispora sp. MEY-1.

    Directory of Open Access Journals (Sweden)

    Xiaoyu Wang

    Full Text Available Extremophilic xylanases have attracted great scientific and industrial interest. In this study, a GH10 xylanase-encoding gene, Xyl10E, was cloned from Bispora sp. MEY-1 and expressed in Pichia pastoris GS115. Deduced Xyl10E shares the highest identities of 62% and 57% with characterized family GH10 xylanases from Talaromyces leycettanus and Penicillium canescens (structure 4F8X, respectively. Xyl10E was most active at 93 to 95°C and pH 4.0, retained more than 75% or 48% of the initial activity when heated at 80°C or 90°C for 30 min, respectively, and hardly lost activity at pH 1.0 to 7.0, but was completely inhibited by SDS. Two residues, A160 and A161, located on loop 4, were identified to play roles in catalysis. Mutants A160D/E demonstrated higher affinity to substrate with lower Km values, while mutants A161D/E mainly displayed elevated Vmax values. All of these mutants had significantly improved catalytic efficiency. According to the molecular dynamics simulation, the mutation of A160E was able to a